Ilchibaeva, Tatiana V; Kondaurova, Elena M; Tsybko, Anton S; Kozhemyakina, Rimma V; Popova, Nina K; Naumenko, Vladimir S
2015-09-01
The brain-derived neurotrophic factor (BDNF), its precursor (proBDNF) and BDNF mRNA levels were studied in the brain of wild rats selectively bred for more than 70 generations for either high level or for the lack of affective aggressiveness towards man. Significant increase of BDNF mRNA level in the frontal cortex and increase of BDNF level in the hippocampus of aggressive rats was revealed. In the midbrain and hippocampus of aggressive rats proBDNF level was increased, whereas BDNF/proBDNF ratio was reduced suggesting the prevalence and increased influence of proBDNF in highly aggressive rats. In the frontal cortex, proBDNF level in aggressive rats was decreased. Thus, considerable structure-specific differences in BDNF and proBDNF levels as well as in BDNF gene expression between highly aggressive and nonaggressive rats were shown. The data suggested the implication of BDNF and its precursor proBDNF in the mechanism of aggressiveness and in the creation of either aggressive or nonaggressive phenotype. Copyright © 2015 Elsevier B.V. All rights reserved.
Hvid, L G; Nielsen, M K F; Simonsen, C; Andersen, M; Caserotti, P
2017-07-01
Brain-derived neurotrophic factor (BDNF) is a potential important factor involved in neuroplasticity, and may be a mediator for eliciting adaptations in neuromuscular function and physical function in older individuals following physical training. As power training taxes the neural system to a very high extent, it may be particularly effective in terms of eliciting increases in systemic BDNF levels. We examined the effects of 12weeks of power training on mature BDNF (mBDNF) and total BDNF (tBDNF) in mobility-limited older adults from the Healthy Ageing Network of Competence (HANC) study. We included 47 older men and women: n=22 in the training group (TG: progressive high intensity power training, 2 sessions per week; age 82.7±5.4years, 55% women) and n=25 in the control group (CG: no interventions; age 82.2±4.5years, 76% women). Following overnight fasting, basal serum levels of mBDNF and tBDNF were assessed (human ELISA kits) at baseline and post-intervention. At baseline, mBDNF and tBDNF levels were comparable in the two groups, TG and CG. Post-intervention, no significant within-group or between-group changes were observed in mBDNF or tBDNF. Moreover, when divided into responder tertiles based upon changes in mBDNF and tBDNF (i.e. decliners, maintainers, improvers), respectively, comparable findings were observed for TG and CG. Altogether, basal systemic levels of serum mBDNF and tBDNF are not affected in mobility-limited older adults following 12-weeks of power training, and do not appear to be a major mechanistic factor mediating neuroplasticity in mobility-limited older adults. Copyright © 2017 Elsevier Inc. All rights reserved.
Upregulation of blood proBDNF and its receptors in major depression.
Zhou, Li; Xiong, Jing; Lim, Yoon; Ruan, Ye; Huang, Chaohong; Zhu, Yuhong; Zhong, Jin-hua; Xiao, Zhicheng; Zhou, Xin-Fu
2013-09-25
In recent decades, the role of brain-derived neurotrophic factor (BDNF) in depression has received intensive attention. However, the relationship between proBDNF and depression has not been clearly elucidated. Forty drug-free women patients diagnosed with major depression and 50 healthy female controls were enrolled in our study. Peripheral blood was sampled from all the subjects. With the blood samples, we assessed the relationship between BDNF and major depression from following aspects: the levels of BDNF, proBDNF and their receptors in the sera and lymphocytes. The mRNA levels of these factors in lymphocytes were also examined. Furthermore, the correlations between each factor and the severity of major depression were tested. It was found that: (a) the protein and serum levels of proBDNF, sortilin and p75NTR were higher in major depressive patients than in healthy controls while mature BDNF and TrkB levels were lower; (b) the BDNF, TrkB, sortilin and p75NTR mRNA levels changed in line with their protein levels; (c) The levels of mature BDNF and TrkB had negative correlations with the major depression severity, and the levels of proBDNF, p75NTR and sortilin were positively correlated with the scores of HRSD-21; (d) the ratio of proBDNF and mBDNF was imbalanced in major depressive patients. The balance between the proBDNF/p75NTR/sortilin and mBDNF/TrkB signaling pathways appears dysregulated in major depression and both pathways should be considered as biomarkers for the major depression More cases on both genders should be enrolled in our study. And further works on the mechanisms of how BDNF and its receptors are regulated in depression should also be carried out. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.
Tunca, Zeliha; Ozerdem, Aysegul; Ceylan, Deniz; Yalçın, Yaprak; Can, Güneş; Resmi, Halil; Akan, Pınar; Ergör, Gül; Aydemir, Omer; Cengisiz, Cengiz; Kerim, Doyuran
2014-09-01
Brain-derived neurotrophic factor (BDNF) has been consistently reported to be decreased in mania or depression in bipolar disorders. Evidence suggests that Glial cell line-derived neurotrophic factor (GDNF) has a role in the pathogenesis of mood disorders. Whether GDNF and BDNF act in the same way across different episodes in bipolar disorders is unclear. BDNF and GDNF serum levels were measured simultaneously by enzyme-linked immunosorbent assay (ELISA) method in 96 patients diagnosed with bipolar disorder according to DSM-IV (37 euthymic, 33 manic, 26 depressed) in comparison to 61 healthy volunteers. SCID- I and SCID-non patient version were used for clinical evaluation of the patients and healthy volunteers respectively. Correlations between the two trophic factor levels, and medication dose, duration and serum levels of lithium or valproate were studied across different episodes of illness. Patients had significantly lower BDNF levels during mania and depression compared to euthymic patients and healthy controls. GDNF levels were not distinctive. However GDNF/BDNF ratio was higher in manic state compared to euthymia and healthy controls. Significant negative correlation was observed between BDNF and GDNF levels in euthymic patients. While BDNF levels correlated positively, GDNF levels correlated negatively with lithium levels. Regression analysis confirmed that lithium levels predicted only GDNF levels positively in mania, and negatively in euthymia. Small sample size in different episodes and drug-free patients was the limitation of thestudy. Current data suggests that lithium exerts its therapeutic action by an inverse effect on BDNF and GDNF levels, possibly by up-regulating BDNF and down-regulating GDNF to achieve euthymia. Copyright © 2014 Elsevier B.V. All rights reserved.
Coelho, F M; Pereira, D S; Lustosa, L P; Silva, J P; Dias, J M D; Dias, R C D; Queiroz, B Z; Teixeira, A L; Teixeira, M M; Pereira, L S M
2012-01-01
Biomarkers are important factors in the identification of the frail elderly (higher risk of developing disease) and in assessing the impact of PTI. On the other hand, BDNF has been related to neuroprotection in a series of central nervous system diseases in older age. The levels of BDNF in groups of elderly women classified according to Fried phenotype (non-frail and pre-frail) were compared. We assessed the impact of a PTI on BDNF levels. A convenience sample of 48 elderly women was randomly selected. The PTI group was composed by 20 elderly women selected from this group. Plasma neurotrophic factors, such as BDNF, glial-derived neutrophic factor (GDNF), and nerve growth factor (NGF) were measured by enzyme-linked immunosorbent assay (ELISA). Timed-up-and-go (TUG) test, hand-grip and work/body weight were evaluated before and after the intervention. Plasma concentrations of BDNF were significantly higher in non-frail in comparison to pre-frail elderly women. After the PTI, higher levels of BDNF were found in elderly women (before 351±68 pg/ml and after 593±79 pg/ml; p<0.001). Both groups had an increase in BDNF levels after the PTI. The low levels of BDNF in pre-frail elderly women suggest that this neurotrophic factor may be a key pathophysiological mediator in the syndrome of frailty. The fact that PTI increased BDNF levels in both groups suggests that it may be possible to modify this phenotype. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Yamamori, Hidenaga; Hashimoto, Ryota; Ishima, Tamaki; Kishi, Fukuko; Yasuda, Yuka; Ohi, Kazutaka; Fujimoto, Michiko; Umeda-Yano, Satomi; Ito, Akira; Hashimoto, Kenji; Takeda, Masatoshi
2013-11-27
Brain-derived neurotrophic factor (BDNF) regulates the survival and growth of neurons, and influences synaptic efficiency and plasticity. Peripheral BDNF levels in patients with schizophrenia have been widely reported in the literature. However, it is still controversial whether peripheral levels of BDNF are altered in patients with schizophrenia. The peripheral BDNF levels previously reported in patients with schizophrenia were total BDNF (proBDNF and mature BDNF) as it was unable to specifically measure mature BDNF due to limited BDNF antibody specificity. In this study, we examined whether peripheral levels of mature BDNF were altered in patients with treatment-resistant schizophrenia. Matrix metalloproteinase-9 (MMP-9) levels were also measured, as MMP-9 plays a role in the conversion of proBDNF to mature BDNF. Twenty-two patients with treatment-resistant schizophrenia treated with clozapine and 22 age- and sex-matched healthy controls were enrolled. The plasma levels of mature BDNF and MMP-9 were measured using ELISA kits. No significant difference was observed for mature BDNF however, MMP-9 was significantly increased in patients with schizophrenia. The significant correlation was observed between mature BDNF and MMP-9 plasma levels. Neither mature BDNF nor MMP-9 plasma levels were associated clinical variables. Our results do not support the view that peripheral BDNF levels are associated with schizophrenia. MMP-9 may play a role in the pathophysiology of schizophrenia and serve as a biomarker for schizophrenia. Copyright © 2013 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Chen, Shiou-Lan; Lee, Sheng-Yu; Chang, Yun-Hsuan; Wang, Tzu-Yun; Chen, Shih-Heng; Chu, Chun-Hsien; Chen, Po See; Yang, Yen Kuang; Hong, Jau-Shyong; Lu, Ru-Band
2015-02-02
BDNF and its gene polymorphism may be important in synaptic plasticity and neuron survival, and may become a key target in the physiopathology of long-term heroin use. Thus, we investigated the relationships between brain-derived neurotrophic factor (BDNF) plasma concentrations and the BDNF Val66Met nucleotide polymorphism (SNP) in heroin-dependent patients. The pretreatment expression levels of plasma BDNF and the BDNF Val66Met SNP in 172 heroin-dependent patients and 102 healthy controls were checked. BDNF levels were significantly lower in patients (F = 52.28, p < 0.0001), but the distribution of the SNP was not significantly different. Nor were plasma BDNF levels significantly different between Met/Met, Met/Val, and Val/Val carriers in each group, which indicated that the BDNF Val66Met SNP did not affect plasma BDNF levels in our participants. In heroin-dependent patients, plasma BDNF levels were negatively correlated with the length of heroin dependency. Long-term (>15 years) users had significantly lower plasma BDNF levels than did short-term (<5 years) users. We conclude that plasma BDNF concentration in habitual heroin users are not affected by BDNF Val66Met gene variants, but by the length of the heroin dependency.
Chen, Shiou-Lan; Lee, Sheng-Yu; Chang, Yun-Hsuan; Wang, Tzu-Yun; Chen, Shih-Heng; Chu, Chun-Hsien; Chen, Po See; Yang, Yen Kuang; Hong, Jau-Shyong; Lu, Ru-Band
2015-01-01
BDNF and its gene polymorphism may be important in synaptic plasticity and neuron survival, and may become a key target in the physiopathology of long-term heroin use. Thus, we investigated the relationships between brain-derived neurotrophic factor (BDNF) plasma concentrations and the BDNF Val66Met nucleotide polymorphism (SNP) in heroin-dependent patients. The pretreatment expression levels of plasma BDNF and the BDNF Val66Met SNP in 172 heroin-dependent patients and 102 healthy controls were checked. BDNF levels were significantly lower in patients (F = 52.28, p < 0.0001), but the distribution of the SNP was not significantly different. Nor were plasma BDNF levels significantly different between Met/Met, Met/Val, and Val/Val carriers in each group, which indicated that the BDNF Val66Met SNP did not affect plasma BDNF levels in our participants. In heroin-dependent patients, plasma BDNF levels were negatively correlated with the length of heroin dependency. Long-term (>15 years) users had significantly lower plasma BDNF levels than did short-term (<5 years) users. We conclude that plasma BDNF concentration in habitual heroin users are not affected by BDNF Val66Met gene variants, but by the length of the heroin dependency. PMID:25640280
Brain-derived neurotrophic factor (BDNF) in children with ASD and their parents: a 3-year follow-up.
Francis, K; Dougali, A; Sideri, K; Kroupis, C; Vasdekis, V; Dima, K; Douzenis, A
2018-05-01
Several lines of evidence point to a probable relationship between brain-derived neurotrophic factor (BDNF) and autism spectrum disorder (ASD), but studies have yielded inconsistent findings on the BDNF serum level in ASD. The study aimed to assess those levels in children with ASD and their families. BDNF serum levels were measured in 45 ASD children without intellectual disability (ID) and allergies, age 30-42 months and age-matched normal controls. BDNF serum levels in the parents of the ASD subjects were compared to normal controls. BDNF serum levels in the ASD subjects were followed up for 3 years and correlated with adaptive functioning changes. BDNF serum levels were measured to be lower in children with ASD and independent of all the major baseline characteristics of the subjects. Having a child with ASD raises the BDNF levels in parents comparing to controls. Prospectively, no correlation between the change of BDNF variables in time and the change of the Vineland scores was found. Our results contradict those from recent published meta-analyses with the age, the presence of ID and allergies being possible contributing factors. The parents' data indeed point to a role of BDNF in the pathophysiology of ASD. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Yoshida, Taisuke; Ishikawa, Masatomo; Niitsu, Tomihisa; Nakazato, Michiko; Watanabe, Hiroyuki; Shiraishi, Tetsuya; Shiina, Akihiro; Hashimoto, Tasuku; Kanahara, Nobuhisa; Hasegawa, Tadashi; Enohara, Masayo; Kimura, Atsushi; Iyo, Masaomi; Hashimoto, Kenji
2012-01-01
Meta-analyses have identified serum levels of brain-derived neurotrophic factor (BDNF) as a potential biomarker for major depressive disorder (MDD). However, at the time, commercially available human ELISA kits are unable to distinguish between proBDNF (precursor of BDNF) and mature BDNF because of limited BDNF antibody specificity. In this study, we examined whether serum levels of proBDNF, mature BDNF, and matrix metalloproteinase-9 (MMP-9), which converts proBDNF to mature BDNF, are altered in patients with MDD. Sixty-nine patients with MDD and 78 age- and gender-matched healthy subjects were enrolled. Patients were evaluated using 17 items on the Structured Interview Guide for the Hamilton Depression Rating Scale. Cognitive impairment was evaluated using the CogState battery. Serum levels of proBDNF, mature BDNF, and MMP-9 were measured using ELISA kits. Serum levels of mature BDNF in patients with MDD were significantly lower than those of normal controls. In contrast, there was no difference in the serum levels of proBDNF and MMP-9 between patients and normal controls. While neither proBDNF nor mature BDNF serum levels was associated with clinical variables, there were significant correlations between MMP-9 serum levels and the severity of depression, quality of life scores, and social function scores in patients. These findings suggest that mature BDNF may serve as a biomarker for MDD, and that MMP-9 may play a role in the pathophysiology of MDD. Further studies using larger sample sizes will be needed to investigate these results.
van den Heuvel, Leigh; Suliman, Sharain; Malan-Müller, Stefanie; Hemmings, Sian; Seedat, Soraya
2016-11-01
Alterations in brain-derived neurotrophic factor (BDNF) expression and release may play a role in the pathogenesis of post-traumatic stress disorder (PTSD). This study evaluated road traffic accident (RTA) survivors to determine whether PTSD and trauma-related factors were associated with plasma BDNF levels and BDNF Val66Met carrier status following RTA exposure. One hundred and twenty-three RTA survivors (mean age 33.2 years, SD = 10.6 years; 56.9% male) were assessed 10 (SD = 4.9) days after RTA exposure. Acute stress disorder (ASD), as assessed with the Acute Stress Disorder Scale, was present in 50 (42.0%) of the participants. Plasma BDNF levels were measured with enzyme-linked immunosorbent assay and BDNF Val66Met genotyping was performed. PTSD, as assessed with the Clinician-Administered PTSD Scale, was present in 10 (10.8%) participants at 6 months follow-up. Neither BDNF Val66Met genotype nor plasma BDNF was significantly associated with the presence or severity of ASD or PTSD. Plasma BDNF levels were, however, significantly correlated with the lifetime number of trauma exposures. In RTA survivors, plasma BDNF levels increased with increasing number of prior trauma exposures. Plasma BDNF may, therefore, be a marker of trauma load.
Cai, Qian-Ying; Zhang, Heng-Xin; Wang, Chen-Chen; Sun, Hao; Sun, Shu-Qiang; Wang, Yu-Huan; Yan, Hong-Tao; Yang, Xin-Jun
2017-08-01
To measure levels of placental brain derived neurotrophic factor (BDNF) gene expression and umbilical cord blood BDNF in neonates with nondiabetic macrosomia and determine associations between these levels and macrosomia. This case-control study included 58 nondiabetic macrosomic and 59 normal birth weight mother-infant pairs. Data were collected from interviews and our hospital's database. BDNF gene expression was quantified in placental tissues using quantitative real-time polymerase chain reaction (n = 117). Umbilical cord blood BDNF levels were measured by enzyme-linked immunosorbent assay (n = 90). Multivariate logistic regression models were used to evaluate associations between BDNF levels and macrosomia. Placental BDNF gene expression (P = 0.026) and cord blood BDNF (P = 0.008) were lower in neonates with nondiabetic macrosomia than in normal birth weight controls. Cord blood BDNF was significantly lower in vaginally delivered macrosomic neonates than vaginally delivered controls (P = 0.014), but cord BDNF did not differ between vaginal and cesarean section delivery modes in macrosomic neonates. Cord blood BDNF was positively associated with gestational age in control neonates (r = 0.496, P < 0.001), but not in macrosomic neonates. Cord blood BDNF was positively associated with placental BDNF relative expression (r s = 0.245, P = 0.02) in the total group. Higher cord blood BDNF levels were independently associated with protection against nondiabetic macrosomia (adjusted odds ratio 0.992; 95% confidence interval 0.986-0.998). Both placental BDNF gene expression and cord blood BDNF were downregulated in neonates with nondiabetic macrosomia compared with normal birth weight neonates. Cord BDNF may partly derive from BDNF secreted by the placenta. Higher cord plasma BDNF levels protected against nondiabetic macrosomia.
Chen, Shiou-Lan; Lee, Sheng-Yu; Chang, Yun-Hsuan; Chen, Shih-Heng; Chu, Chun-Hsien; Wang, Tzu-Yun; Chen, Po-See; Lee, I-Hui; Yang, Yen-Kuang; Hong, Jau-Shyong; Lu, Ru-Band
2014-06-03
Brain-derived neurotropic factor (BDNF) is widely distributed in the peripheral and central nervous systems. BDNF and its gene polymorphism may be important in synaptic plasticity and neuron survival, and may become a key target in the physiopathology of several mental illnesses. To elucidate the role of BDNF, we compared the plasma BDNF levels and the BDNF Val66Met gene variants effect in several mental disorders. We enrolled 644 participants: 177 patients with bipolar I disorder (BP-I), 190 with bipolar II disorder (BP-II), 151 with schizophrenia, and 126 healthy controls. Their plasma BDNF levels and BDNF Val66Met single nucleotide polymorphisms (SNP) were checked before pharmacological treatment. Plasma levels of BDNF were significantly lower in patients with schizophrenia than in healthy controls and patients with bipolar disorder (F = 37.667, p<0.001); the distribution of the BDNF Val66Met SNP was not different between groups (χ(2) = 5.289, p = 0.507). Nor were plasma BDNF levels significantly different between Met/Met, Met/Val, and Val/Val carriers in each group, which indicated that the BDNF Val66Met SNP did not influence plasma BDNF levels in our participants. Plasma BDNF levels were, however, significantly negatively correlated with depression scores in patients with bipolar disorder and with negative symptoms in patients with schizophrenia. We conclude that plasma BDNF profiles in different mental disorders are not affected by BDNF Val66Met gene variants, but by the process and progression of the illness itself. Copyright © 2014 Elsevier Inc. All rights reserved.
Ciszowski, Krzysztof; Gomółka, Ewa; Gawlikowski, Tomasz; Szpak, Dorota; Potoczek, Anna; Boba, Magdalena
Neurotrophins are the family of proteins which stimulate and regulate the process of neurogenesis. Several factors belong to the family, mainly nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT 3), and neurotrophin-4/5 (NT-4/5). Acute poisoning with carbon monoxide (CO), which usually is accompanied by neurologic symptoms, can potentially change the secretion profile of neurotrophins. Aim of the study. The main goal of the study is to assess the changes of NGF and BDNF plasma levels during an acute phase of CO poisoning as well as immediately after recovery. Additionally, the relationship among neurotrophin levels and selected aspects of clinical course of CO poisoning were studied. The study group consisted of 18 patients (mean age: 31.8±10.3 years) hospitalized in Toxicology Department of University Hospital in Cracow because of acute CO poisoning. There were 10 women (mean age: 30.2±6.9 years) and 8 men (mean age 33.9±13.7 years) in the group. The levels of NGF and BDNF were evaluated using immunoenzymatic method (ELISA) in plasma samples taken thrice in each patient. The sample 1. was taken during hospital admission, the sample 2. about 12-36 hours after admission, and the sample 3. just before the hospital discharging (usually, on the 3rd-4th day). The clinical data were collected from patients’ anamnesis, physical examination and neuropsychological evaluation. The statistical analysis were performed using tools comprised in STATISTICA 12.0 PL (StatSoft Polska, Cracow, Poland) software. The majority of NGF plasma levels were less than 14 pg/mL (values below the limit of quantification), contrary to the sole case of 34.3 pg/mL. BDNF plasma levels ranged from 4.8 ng/mL to above 48 ng/mL, i.e. they were higher than the upper limit of measurement range for the plasma dilution which had been used. The comparison of NGF and BDNF plasma levels in the study group with their analogues in healthy volunteers taken from the literature indicates that NGF level declines and BDNF level rises in patients with CO poisoning. The profile of BDNF concentrations in the majority of patients formed the characteristic pattern: BDNF sample 1. > BDNF sample 2. < BDNF sample 3. Taking all the values of BDNF higher than 48 ng/mL as equal to 48 ng/ mL, the statistically significant difference among 3 sample series was found according to BDNF levels. Maintaining the above mentioned assumption, the statistically significant negative correlation between the number of higher cognitive functions disturbed in one patient at the same time and the BDNF levels in sample series 2 was discovered, as well as the weak correlations between BDNF level in sample series 1 and carboxyhaemoglobin or lactate level. Moreover, weak but statistically significant correlations were present between the duration of CO exposure and BDNF levels in each sample series. The NGF plasma level is probably declined, while the BDNF plasma level is increased in patients with acute CO poisoning. The concentration–time curve for the plasma BDNF may sometimes undergo fluctuations with two peaks on its course. Plasma BDNF level may serve as a biological marker of disturbed higher cognitive functions in acute CO poisoning. Some clinical aspects of CO poisoning (duration of exposure, HbCO and lactate blood levels) may influence BDNF level.
Brain derived neurotrophic factor (BDNF) and autism spectrum disorders (ASD) in childhood.
Bryn, V; Halvorsen, B; Ueland, T; Isaksen, J; Kolkova, K; Ravn, K; Skjeldal, O H
2015-07-01
Neurotrophic factors are essential regulators of neuronal maturation including synaptic synthesis. Among those, Brain derived neurotrophic factor (BDNF) has been in particular focus in the understanding of autism spectrum disorders (ASD). The aim of our study was to investigate whether BNDF could be used as diagnostic/biological marker for ASD. For this purpose we examined the plasma levels of BDNF and the precursors pro- BDNF in patients with ASD and compared it with non-autistic controls; determined whether there was a correlation between the BDNF and proBDNF levels and clinical severity. We also investigated the coding region of BDNF identify for well-variations which could be associated to ASD. The 65 ASD patients (51 boys) were enrolled from a recent completed epidemiological survey covering two counties (Oppland and Hedmark) in Norway. The mean age of the total number of children who participated in this study was 11,7 years. 30 non-autistic children were included as controls, 14 boys and 16 girls. The mean age was 11.3 years. Exclusion criteria for control group were individuals suffering from either neurological, endocrine, or immune insuffiency. Patients with ASD were characterized by moderately but significantly elevated plasma levels of BDNF compared to matched controls. No differences were observed in the proBDNF level between patients and controls. Within the ASD group, children with intellectual disability demonstrated increased BDNF, but not proBDNF levels, while the presence of ADHD had no impact on circulating proBDNF or BDNF. No further associations between plasma proBDNF or BDNF and other clinical demographics were observed. Copyright © 2015 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.
BDNF in sleep, insomnia, and sleep deprivation.
Schmitt, Karen; Holsboer-Trachsler, Edith; Eckert, Anne
2016-01-01
The protein brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family of growth factors involved in plasticity of neurons in several brain regions. There are numerous evidence that BDNF expression is decreased by experiencing psychological stress and that, accordingly, a lack of neurotrophic support causes major depression. Furthermore, disruption in sleep homeostatic processes results in higher stress vulnerability and is often associated with stress-related mental disorders. Recently, we reported, for the first time, a relationship between BDNF and insomnia and sleep deprivation (SD). Using a biphasic stress model as explanation approach, we discuss here the hypothesis that chronic stress might induce a deregulation of the hypothalamic-pituitary-adrenal system. In the long-term it leads to sleep disturbance and depression as well as decreased BDNF levels, whereas acute stress like SD can be used as therapeutic intervention in some insomniac or depressed patients as compensatory process to normalize BDNF levels. Indeed, partial SD (PSD) induced a fast increase in BDNF serum levels within hours after PSD which is similar to effects seen after ketamine infusion, another fast-acting antidepressant intervention, while traditional antidepressants are characterized by a major delay until treatment response as well as delayed BDNF level increase. Key messages Brain-derived neurotrophic factor (BDNF) plays a key role in the pathophysiology of stress-related mood disorders. The interplay of stress and sleep impacts on BDNF level. Partial sleep deprivation (PSD) shows a fast action on BDNF level increase.
BDNF is Associated With Age-Related Decline in Hippocampal Volume
Erickson, Kirk I.; Prakash, Ruchika Shaurya; Voss, Michelle W.; Chaddock, Laura; Heo, Susie; McLaren, Molly; Pence, Brandt D.; Martin, Stephen A.; Vieira, Victoria J.; Woods, Jeffrey A.; Kramer, Arthur F.
2010-01-01
Hippocampal volume shrinks in late adulthood, but the neuromolecular factors that trigger hippocampal decay in aging humans remains a matter of speculation. In rodents, brain derived neurotrophic factor (BDNF) promotes the growth and proliferation of cells in the hippocampus and is important in long-term potentiation and memory formation. In humans, circulating levels of BDNF decline with advancing age and a genetic polymorphism for BDNF has been related to gray matter volume loss in old age. In this study, we tested whether age-related reductions in serum levels of BDNF would be related to shrinkage of the hippocampus and memory deficits in older adults. Hippocampal volume was acquired by automated segmentation of magnetic resonance images in 142 older adults without dementia. The caudate nucleus was also segmented and examined in relation to levels of serum BDNF. Spatial memory was tested using a paradigm in which memory load was parametrically increased. We found that increasing age was associated with smaller hippocampal volumes, reduced levels of serum BDNF, and poorer memory performance. Lower levels of BDNF were associated with smaller hippocampi and poorer memory, even when controlling for the variation related to age. In an exploratory mediation analysis, hippocampal volume mediated the age-related decline in spatial memory and BDNF mediated the age-related decline in hippocampal volume. Caudate nucleus volume was unrelated to BDNF levels or spatial memory performance. Our results identify serum BDNF as a significant factor related to hippocampal shrinkage and memory decline in late adulthood. PMID:20392958
Failla, Michelle D; Conley, Yvette P; Wagner, Amy K
2016-01-01
Older adults have higher mortality rates after severe traumatic brain injury (TBI) compared to younger adults. Brain-derived neurotrophic factor (BDNF) signaling is altered in aging and is important to TBI given its role in neuronal survival/plasticity and autonomic function. Following experimental TBI, acute BDNF administration has not been efficacious. Clinically, genetic variation in BDNF (reduced signaling alleles: rs6265, Met-carriers; rs7124442, C-carriers) can be protective against acute mortality. Postacutely, these genotypes carry lower mortality risk in older adults and greater mortality risk among younger adults. Investigate BDNF levels in mortality/outcome following severe TBI in the context of age and genetic risk. Cerebrospinal fluid (CSF) and serum BDNF were assessed prospectively during the first week following severe TBI (n = 203) and in controls (n = 10). Age, BDNF genotype, and BDNF levels were assessed as mortality/outcome predictors. CSF BDNF levels tended to be higher post-TBI (P = .061) versus controls and were associated with time until death (P = .042). In contrast, serum BDNF levels were reduced post-TBI versus controls (P < .0001). Both gene * BDNF serum and gene * age interactions were mortality predictors post-TBI in the same multivariate model. CSF and serum BDNF tended to be negatively correlated post-TBI (P = .07). BDNF levels predicted mortality, in addition to gene * age interactions, suggesting levels capture additional mortality risk. Higher CSF BDNF post-TBI may be detrimental due to injury and age-related increases in pro-apoptotic BDNF target receptors. Negative CSF and serum BDNF correlations post-TBI suggest blood-brain barrier transit alterations. Understanding BDNF signaling in neuronal survival, plasticity, and autonomic function may inform treatment. © The Author(s) 2015.
Heitz, Ulrike; Papmeyer, Martina; Studerus, Erich; Egloff, Laura; Ittig, Sarah; Andreou, Christina; Vogel, Tobias; Borgwardt, Stefan; Graf, Marc; Eckert, Anne; Riecher-Rössler, Anita
2018-06-25
Brain-derived neurotrophic factor (BDNF) is involved in numerous cognitive processes. Since cognitive deficits are a core feature of psychotic disorders, the investigation of BDNF levels in psychosis and their correlation with cognition has received increased attention. However, there are no studies investigating BDNF levels in individuals with an at-risk mental state (ARMS) for psychosis. Hence, the aims of the present study were: (1) assessing peripheral BDNF levels across different (potential) stages of psychosis; (2) investigating their association with cognition. Plasma and serum BDNF levels and neuropsychological performance were assessed in 16 ARMS, six first-episode psychosis (FEP), and 11 chronic schizophrenia (CS) patients. Neuropsychological assessment covered intelligence, verbal memory, working memory, attention and executive functioning. Both plasma and serum BDNF levels were highest in CS, intermediate in FEP and lowest in ARMS. Multiple regression analysis revealed a significant positive association of plasma BDNF levels with planning ability across all groups. The lower peripheral BDNF levels in ARMS compared to FEP and CS might point towards an important drop of this neurotrophin prior to the onset of frank psychosis. The associations of peripheral BDNF with planning-abilities match previous findings.
Failla, Michelle D.; Conley, Yvette P.; Wagner, Amy K.
2015-01-01
Background Older adults have higher mortality rates after severe traumatic brain injury (TBI) compared to younger adults. Brain derived neurotrophic factor (BDNF) signaling is altered in aging and is important to TBI given its role in neuronal survival/plasticity and autonomic function. Following experimental TBI, acute BDNF administration has not been efficacious. Clinically, genetic variation in BDNF (reduced signaling alleles: rs6265, Met-carriers; rs7124442, C-carriers) were protective in acute mortality. Post-acutely, these genotypes carried lower mortality risk in older adults, and greater mortality risk among younger adults. Objective Investigate BDNF levels in mortality/outcome following severe TBI in the context of age and genetic risk. Methods CSF and serum BDNF were assessed prospectively during the first week following severe TBI (n=203), and in controls (n=10). Age, BDNF genotype, and BDNF levels were assessed as mortality/outcome predictors. Results CSF BDNF levels tended to be higher post-TBI (p=0.061) versus controls and were associated with time until death (p=0.042). In contrast, serum BDNF levels were reduced post-TBI versus controls (p<0.0001). Both gene*BDNF serum and gene*age interactions were mortality predictors post-TBI in the same multivariate model. CSF and serum BDNF tended to be negatively correlated post-TBI (p=0.07). Conclusions BDNF levels predicted mortality, in addition to gene*age interactions, suggesting levels capture additional mortality risk. Higher CSF BDNF post-TBI may be detrimental due to injury and age-related increases in pro-apoptotic BDNF target receptors. Negative CSF and serum BDNF correlations post-TBI suggest blood-brain barrier transit alterations. Understanding BDNF signaling in neuronal survival, plasticity, and autonomic function may inform treatment. PMID:25979196
Coelho, Flávia Gomes de Melo; Vital, Thays Martins; Stein, Angelica Miki; Arantes, Franciel José; Rueda, André Veloso; Camarini, Rosana; Teodorov, Elizabeth; Santos-Galduróz, Ruth Ferreira
2014-01-01
Studies indicate the involvement of brain-derived neurotrophic factor (BDNF) in the pathogenesis of Alzheimer's disease (AD). Decreased BDNF levels may constitute a lack of trophic support and contribute to cognitive impairment in AD. The benefits of acute and chronic physical exercise on BDNF levels are well-documented in humans, however, exercise effects on BDNF levels have not been analyzed in older adults with AD. The aim of this study was to investigate the effects of acute aerobic exercise on BDNF levels in older adults with AD and to verify associations among BDNF levels, aerobic fitness, and level of physical activity. Using a controlled design, twenty-one patients with AD (76.3 ± 6.2 years) and eighteen healthy older adults (74.6 ± 4.7 years) completed an acute aerobic exercise. The outcomes included measures of BDNF plasma levels, aerobic fitness (treadmill grade, time to exhaustion, VO2, and maximal lactate) and level of physical activity (Baecke Questionnaire Modified for the Elderly). The independent t-test shows differences between groups with respect to the BDNF plasma levels at baseline (p = 0.04; t = 4.53; df = 37). In two-way ANOVA, a significant effect of time was found (p = 0.001; F = 13.63; df = 37), the aerobic exercise significantly increased BDNF plasma levels in AD patients and healthy controls. A significant correlation (p = 0.04; r = 0.33) was found between BDNF levels and the level of physical activity. The results of our study suggest that aerobic exercise increases BDNF plasma levels in patients with AD and healthy controls. In addition to that, BDNF levels had association with level of physical activity.
Diniz, Breno Satler; Reynolds, Charles F.; Begley, Amy; Dew, Mary Amanda; Anderson, Stewart J.; Lotrich, Francis; Erickson, Kirk I.; Lopez, Oscar; Aizenstein, Howard; Sibille, Etienne L.; Butters, Meryl A.
2014-01-01
Changes in brain-derived neurotrophic factor (BDNF) level are implicated in the pathophysiology of cognitive decline in depression and neurodegenerative disorders in older adults. We aimed to evaluate the longitudinal association over two years between BDNF and persistent cognitive decline in individuals with remitted late-life depression and Mild Cognitive Impairment (LLD+MCI) compared to either individuals with remitted LLD and no cognitive decline (LLD+NCD) or never-depressed, cognitively normal, elderly control participants. We additionally evaluated the effect of double-blind, placebo-controlled donepezil treatment on BDNF levels in all of the remitted LLD participants (across the levels of cognitive function). We included 160 elderly participants in this study (72 LLD+NCD, 55 LLD+MCI and 33 never-depressed cognitively normal elderly participants). At the same visits, cognitive assessments were conducted and blood sampling to determine serum BDNF levels were collected at baseline assessment and after one and two years of follow-up. We utilized repeated measure, mixed effect models to assess: (1) the effects of diagnosis (LLD+MCI, LLD+NCD, and controls), time, and their interaction on BDNF levels; and (2) the effects of donepezil treatment (donepezil vs. placebo), time, baseline diagnosis (LLD+MCI vs. LLD+NCD), and interactions between these contrasts on BDNF levels. We found a significant effect of time on BDNF level (p=0.02) and a significant decline in BDNF levels over 2 years of follow-up in participants with LLD+MCI (p=0.004) and controls (p=0.04). We found no effect of donepezil treatment on BDNF level. The present results suggest that aging is an important factor related to decline in BDNF level. PMID:24290367
Nomoto, Hiroshi; Baba, Hajime; Satomura, Emi; Maeshima, Hitoshi; Takebayashi, Naoko; Namekawa, Yuki; Suzuki, Toshihito; Arai, Heii
2015-03-04
Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family of growth factors. Previous studies have demonstrated lower serum BDNF levels in patients with major depressive disorder (MDD) and reported an association between BDNF levels and depression-related personality traits in healthy subjects. The aim of the present study was to explore for a possible association between peripheral BDNF levels and personality traits in patients with MDD. In this cross-sectional study, a total of 123 inpatients with MDD (Diagnostic and Statistical Manual for Mental Disorders, 4th edition) at the Juntendo University Koshigaya Hospital were recruited. Serum levels of BDNF were measured. Personality traits were assessed using the 125-item short version of the Temperament and Character Inventory (TCI). Multiple regression analysis adjusted for age, sex, body mass index, dose of antidepressant, and depression severity showed that TCI Self-Directedness (SD) scores were negatively associated with serum BDNF levels (β = -0.23, p = 0.026). MDD patients who have low SD did not show the reduction in serum BDNF levels that is normally associated with depressive state. Our findings suggest that depression-related biological changes may not occur in these individuals.
D’Sa, Carrol; Dileone, Ralph J.; Anderson, George M.; Sinha, Rajita
2013-01-01
Although the effects of alcohol on brain-derived neurotrophic factor (BDNF) have been extensively studied in rodents, BDNF levels have rarely been measured in abstinent, alcohol-dependent (AD) individuals. Interpretation of reported group comparisons of serum BDNF levels is difficult due to limited information regarding analytical variance, biological variability, and the relative contribution of platelet and plasma pools to serum BDNF. Analytical variance (intra- and inter-assay coefficients of variation) of the enzyme-linked immunosorbent assay (ELISA) was characterized. Within- and between-subject variability, and group differences in serum and plasma BDNF, was assessed on three separate days in 16, 4-week abstinent AD individuals (7M/9F) and 16 social drinkers (SDs; 8M/8F). Significantly higher mean (±sd) serum BDNF levels were observed for the AD group compared to the SD (p = 0.003). No significant difference in mean baseline plasma BDNF levels was observed between AD and SD groups. The low analytical variance, high day-to-day within-individual stability and the high degree of individuality demonstrates the potential clinical utility of measuring serum BDNF levels. The low correlations that we observed between plasma and serum levels are congruent with their representing separate pools of BDNF. The observation of higher basal serum BDNF in the AD group without a concomitant elevation in plasma BDNF levels indicates that the elevated serum BDNF in AD patients is not due to greater BDNF exposure. Further research is warranted to fully elucidate mechanisms underlying this alteration and determine the utility of serum BDNF as a predictor or surrogate marker of chronic alcohol abuse. PMID:22364688
Knorr, Ulla; Koefoed, Pernille; Soendergaard, Mia H Greisen; Vinberg, Maj; Gether, Ulrik; Gluud, Christian; Wetterslev, Jørn; Winkel, Per; Kessing, Lars V
2016-04-01
Brain-derived neurotrophic factor (BDNF) seems to play an important role in the course of depression including the response to antidepressants in patients with depression. We aimed to study the effect of an antidepressant intervention on peripheral BDNF in healthy individuals with a family history of depression. We measured changes in BDNF messenger RNA (mRNA) expression and whole-blood BDNF levels in 80 healthy first-degree relatives of patients with depression randomly allocated to receive daily tablets of escitalopram 10 mg versus placebo for 4 weeks. We found no statistically significant difference between the escitalopram and the placebo group in the change in BDNF mRNA expression and whole-blood BDNF levels. Post hoc analyses showed a statistically significant negative correlation between plasma escitalopram concentration and change in whole-blood BDNF levels in the escitalopram-treated group. The results of this randomised trial suggest that escitalopram 10 mg has no effect on peripheral BDNF levels in healthy individuals.
Brain-derived neurotrophic factor and Alzheimer's disease: physiopathology and beyond.
Diniz, Breno Satler; Teixeira, Antonio Lucio
2011-12-01
Brain-derived neurotrophic factor (BDNF) is the most widely distributed neurotrophin in the central nervous system where it plays several pivotal roles in synaptic plasticity and neuronal survival. As a consequence, BDNF became a key target in the physiopathology of several neurological and psychiatric diseases. Recent studies have reported altered levels of BDNF in the circulation, i.e. serum or plasma, of patients with Alzheimer's disease (AD), and low BDNF levels in the CSF as predictor of future cognitive decline in healthy older subjects. Altered BDNF circulating levels have also been reported in other neurodegenerative and psychiatric disorders, hampering its use as a specific biomarker for AD. Therefore, BDNF seems to be an unspecific biomarker of neuropsychiatric disorders marked by neurodegenerative changes.
Marie, Christine; Pedard, Martin; Quirié, Aurore; Tessier, Anne; Garnier, Philippe; Totoson, Perle; Demougeot, Céline
2018-06-01
Low cerebral levels of brain-derived neurotrophic factor (BDNF), which plays a critical role in many brain functions, have been implicated in neurodegenerative, neurological and psychiatric diseases. Thus, increasing BDNF levels in the brain is considered an attractive possibility for the prevention/treatment of various brain diseases. To date, BDNF-based therapies have largely focused on neurons. However, given the cross-talk between endothelial cells and neurons and recent evidence that BDNF expressed by the cerebral endothelium largely accounts for BDNF levels present in the brain, it is likely that BDNF-based therapies would be most effective if they also targeted the cerebral endothelium. In this review, we summarize the available knowledge about the biology and actions of BDNF derived from endothelial cells of the cerebral microvasculature and we emphasize the remaining gaps and shortcomings.
Urinary brain-derived neurotrophic factor as a biomarker of executive functioning.
Koven, Nancy S; Collins, Larisa R
2014-01-01
Neurotrophins such as brain-derived neurotrophic factor (BDNF) are vital for neuronal survival and adaptive plasticity. With high BDNF gene expression in the prefrontal cortex, BDNF is a potential regulatory factor for building and maintaining cognitive reserves. Recent studies suggest that individual differences in executive functioning, a broad cognitive domain reliant upon frontal lobe structure and function, are governed in part by variance in BDNF polymorphisms. However, as neurogenetic data are not necessarily indicative of in vivo neurochemistry, this study examines the relationship between executive functioning and the neurotransmitter by measuring peripheral BDNF levels. Fifty-two healthy young adults completed a battery of standardized executive function tests. BDNF levels, adjusted for creatinine, were quantified with enzyme-linked immunosorbent assay of urine samples taken at the time of testing. BDNF concentration was positively associated with cognitive flexibility but had no relationship with working memory, abstract reasoning/planning, self-monitoring/response inhibition, or fluency. These results individuate cognitive flexibility as the specific facet of executive functioning associated with in vivo BDNF levels. This study also validates urinary BDNF as a peripheral biomarker of cognition in healthy adults. © 2014 S. Karger AG, Basel.
Coskunoglu, Aysun; Orenay-Boyacioglu, Seda; Deveci, Artuner; Bayam, Mustafa; Onur, Ece; Onan, Arzu; Cam, Fethi S
2017-01-01
Brain-derived neurotrophic factor (BDNF) gene polymorphisms are associated with abnormalities in regulation of BDNF secretion. Studies also linked BDNF polymorphisms with changes in brainstem auditory-evoked response test results. Furthermore, BDNF levels are reduced in tinnitus, psychiatric disorders, depression, dysthymic disorder that may be associated with stress, conversion disorder, and suicide attempts due to crises of life. For this purpose, we investigated whether there is any role of BDNF changes in the pathophysiology of tinnitus. In this study, we examined the possible effects of BDNF variants in individuals diagnosed with tinnitus for more than 3 months. Fifty-two tinnitus subjects between the ages of 18 and 55, and 42 years healthy control subjects in the same age group, who were free of any otorhinolaryngology and systemic disease, were selected for examination. The intensity of tinnitus and depression was measured using the tinnitus handicap inventory, and the differential diagnosis of psychiatric diagnoses made using the Structured Clinical Interview for Fourth Edition of Mental Disorders. BDNF gene polymorphism was analyzed in the genomic deoxyribonucleic acid (DNA) samples extracted from the venous blood, and the serum levels of BDNF were measured. One-way analysis of variance and Chi-squared tests were applied. Serum BDNF level was found lower in the tinnitus patients than controls, and it appeared that there is no correlation between BDNF gene polymorphism and tinnitus. This study suggests neurotrophic factors such as BDNF may have a role in tinnitus etiology. Future studies with larger sample size may be required to further confirm our results.
Coskunoglu, Aysun; Orenay-Boyacioglu, Seda; Deveci, Artuner; Bayam, Mustafa; Onur, Ece; Onan, Arzu; Cam, Fethi S.
2017-01-01
Background: Brain-derived neurotrophic factor (BDNF) gene polymorphisms are associated with abnormalities in regulation of BDNF secretion. Studies also linked BDNF polymorphisms with changes in brainstem auditory-evoked response test results. Furthermore, BDNF levels are reduced in tinnitus, psychiatric disorders, depression, dysthymic disorder that may be associated with stress, conversion disorder, and suicide attempts due to crises of life. For this purpose, we investigated whether there is any role of BDNF changes in the pathophysiology of tinnitus. Materials and Methods: In this study, we examined the possible effects of BDNF variants in individuals diagnosed with tinnitus for more than 3 months. Fifty-two tinnitus subjects between the ages of 18 and 55, and 42 years healthy control subjects in the same age group, who were free of any otorhinolaryngology and systemic disease, were selected for examination. The intensity of tinnitus and depression was measured using the tinnitus handicap inventory, and the differential diagnosis of psychiatric diagnoses made using the Structured Clinical Interview for Fourth Edition of Mental Disorders. BDNF gene polymorphism was analyzed in the genomic deoxyribonucleic acid (DNA) samples extracted from the venous blood, and the serum levels of BDNF were measured. One-way analysis of variance and Chi-squared tests were applied. Results: Serum BDNF level was found lower in the tinnitus patients than controls, and it appeared that there is no correlation between BDNF gene polymorphism and tinnitus. Conclusions: This study suggests neurotrophic factors such as BDNF may have a role in tinnitus etiology. Future studies with larger sample size may be required to further confirm our results. PMID:28615544
Niitsu, Tomihisa; Ishima, Tamaki; Yoshida, Taisuke; Hashimoto, Tasuku; Matsuzawa, Daisuke; Shirayama, Yukihiko; Nakazato, Michiko; Shimizu, Eiji; Hashimoto, Kenji; Iyo, Masaomi
2014-02-28
A meta-analysis study reported serum brain-derived neurotrophic factor (BDNF) levels as a potential biomarker for schizophrenia. However, at the time, commercially available human ELISA kits were unable to distinguish between pro-BDNF (precursor BDNF) and mature BDNF, because of limited antibody specificity. Here, we used new ELISA kits, to examine serum levels of mature BDNF and matrix metalloproteinase-9 (MMP-9), which converts pro-BDNF to mature BDNF in schizophrenia. Sixty-three patients with chronic schizophrenia and 52 age- and sex-matched healthy controls were enrolled. Patients were evaluated using the Brief Psychiatry Rating Scale, the Scale for the Assessment of Negative Symptoms (SANS) and neuropsychological tests. Neither serum mature BDNF nor MMP-9 levels differed between patients and controls. In male subgroups, serum MMP-9 levels of smoking patients were higher than those of non-smoking patients, but this was not observed in male controls or the female subgroup. In patients, serum mature BDNF levels were associated with SANS total scores and the Information subtest scores of the Wechsler Adult Intelligence Scale Revised (WAIS-R), while serum MMP-9 levels were associated with smoking and category fluency scores. These findings suggest that neither mature BDNF nor MMP-9 is a suitable biomarker for schizophrenia, although further studies using large samples are needed. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Decreased serum BDNF levels in patients with epileptic and psychogenic nonepileptic seizures
LaFrance, W.C.; Leaver, K.; Stopa, E.G.; Papandonatos, G.D.; Blum, A.S.
2010-01-01
Objective: Neurotrophins promote neurogenesis and help regulate synaptic reorganization. Their dysregulation has been implicated in a number of neurologic and psychiatric disorders. Previous studies have shown decreased levels of brain-derived neurotrophic factor (BDNF) in the serum of patients with psychiatric disorders such as major depressive disorder (MDD) and conversion disorder (CD). In human patients with temporal lobe epilepsy, there is an increase in both BDNF mRNA and protein levels in surgically resected hippocampi compared to controls. One study of children with epilepsy has found normal to increased serum BDNF levels compared to controls. Serum BDNF levels have not been investigated in adult patients with epileptic seizures (ES). We hypothesized that BDNF would differentiate between ES and psychogenic nonepileptic seizures (PNES). Methods: We assessed serum BDNF immunoreactivity in 15 patients with ES, 12 patients with PNES, and 17 healthy volunteers. Serum BDNF levels were measured using an enzyme-linked immunoassay. Results: Healthy controls showed higher BDNF levels (4,289 ± 1,810 pg/mL) compared to patients with PNES (1,033 ± 435 pg/mL) (p < 0.001). However, unexpectedly, healthy controls also showed higher levels of BDNF compared to patients with ES without comorbid MDD (977 ± 565 pg/mL) (p < 0.001). Conclusions: Unlike children, adults with epilepsy appear to have decreased levels of serum BDNF. Reduced serum BDNF levels can be used to differentiate adult patients with ES or PNES from healthy controls. Further human studies are needed to better understand the pathophysiology explaining the decreased serum BDNF levels found in epilepsy and in PNES. GLOSSARY AED = antiepileptic drug; BDI-II = Beck Depression Inventory II; BDNF = brain-derived neurotrophic factor; CD = conversion disorder; ECS = electroconvulsive seizure; ES = epileptic seizure; GTC = generalized tonic-clonic seizure; HC = healthy control; MDD = major depressive disorder; PNES = psychogenic nonepileptic seizure; PRL = prolactin; RIH = Rhode Island Hospital. PMID:20921514
Serra-Millàs, Montserrat
2016-01-01
Brain-derived neurotrophic factor (BDNF) plays an important role in central nervous system development, neurogenesis and neuronal plasticity. BDNF is also expressed in several non-neuronal tissues, and it could play an important role in other processes, such as cancer, angiogenesis, etc. Platelets are the major source of peripheral BDNF. However, platelets also contain high amounts of serotonin; they express specific surface receptors during activation, and a multitude of pro-inflammatory and immunomodulatory bioactive compounds are secreted from the granules. Until recently, there was insufficient knowledge regarding the relationship between BDNF and platelets. Recent studies showed that BDNF is present in two distinct pools in platelets, in α-granules and in the cytoplasm, and only the BDNF in the granules is secreted following stimulation, representing 30% of the total BDNF in platelets. BDNF has an important role in the pathophysiology of depression. Low levels of serum BDNF have been described in patients with major depressive disorder, and BDNF levels increased with chronic antidepressant treatment. Interestingly, there is an association between depression and platelet function. This review analyzed studies that evaluated the relationship between BDNF and platelet activation and the effect of treatments on both parameters. Only a few studies consider this possible confounding factor, and it could be very important in diseases such as depression, which show changes in both parameters. PMID:27014600
Jiao, S-S; Shen, L-L; Zhu, C; Bu, X-L; Liu, Y-H; Liu, C-H; Yao, X-Q; Zhang, L-L; Zhou, H-D; Walker, D G; Tan, J; Götz, J; Zhou, X-F; Wang, Y-J
2016-01-01
Reduced expression of brain-derived neurotrophic factor (BDNF) has a crucial role in the pathogenesis of Alzheimer's disease (AD), which is characterized with the formation of neuritic plaques consisting of amyloid-beta (Aβ) and neurofibrillary tangles composed of hyperphosphorylated tau protein. A growing body of evidence indicates a potential protective effect of BDNF against Aβ-induced neurotoxicity in AD mouse models. However, the direct therapeutic effect of BDNF supplement on tauopathy in AD remains to be established. Here, we found that the BDNF level was reduced in the serum and brain of AD patients and P301L transgenic mice (a mouse model of tauopathy). Intralateral ventricle injection of adeno-associated virus carrying the gene encoding human BDNF (AAV-BDNF) achieved stable expression of BDNF gene and restored the BDNF level in the brains of P301L mice. Restoration of the BDNF level attenuated behavioral deficits, prevented neuron loss, alleviated synaptic degeneration and reduced neuronal abnormality, but did not affect tau hyperphosphorylation level in the brains of P301L mice. Long-term expression of AAV-BDNF in the brain was well tolerated by the mice. These findings suggest that the gene delivery of BDNF is a promising treatment for tau-related neurodegeneration for AD and other neurodegenerative disorders with tauopathy. PMID:27701410
Yau, S-Y; Lau, B W-M; Zhang, E-D; Lee, J C-D; Li, A; Lee, T M C; Ching, Y-P; Xu, A-M; So, K-F
2012-10-11
Previous studies have shown that a 2-week treatment with 40 mg/kg corticosterone (CORT) in rats suppresses hippocampal neurogenesis and decreases hippocampal brain-derived neurotrophic factor (BDNF) levels and impairs spatial learning, all of which could be counteracted by voluntary wheel running. BDNF and insulin-like growth factor (IGF-1) have been suggested to mediate physical exercise-enhanced hippocampal neurogenesis and cognition. Here we examined whether such running-elicited benefits were accompanied by corresponding changes of peripheral BDNF and IGF-1 levels in a rat model of stress. We examined the effects of acute (5 days) and chronic (4 weeks) treatment with CORT and/or wheel running on (1) hippocampal cell proliferation, (2) spatial learning and memory and (3) plasma levels of BDNF and IGF-1. Acute CORT treatment improved spatial learning without altered cell proliferation compared to vehicle treatment. Acute CORT-treated non-runners showed an increased trend in plasma BDNF levels together with a significant increase in hippocampal BDNF levels. Acute running showed no effect on cognition, cell proliferation and peripheral BDNF and IGF-1 levels. Conversely, chronic CORT treatment in non-runners significantly impaired spatial learning and suppressed cell proliferation in association with a decreased trend in plasma BDNF level and a significant increase in hippocampal BDNF levels. Running counteracted cognitive deficit and restored hippocampal cell proliferation following chronic CORT treatment; but without corresponding changes in plasma BDNF and IGF-1 levels. The results suggest that the beneficial effects of acute stress on cognitive improvement may be mediated by BDNF-enhanced synaptic plasticity that is hippocampal cell proliferation-independent, whereas chronic stress may impair cognition by decreasing hippocampal cell proliferation and BDNF levels. Furthermore, the results indicate a trend in changes of plasma BDNF levels associated with a significant alteration in hippocampal levels, suggesting that treatment with running/CORT for 4 weeks may induce a change in central levels of hippocampal BDNF level, which may not lead to a significant change in peripheral levels. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.
Niimi, Masachika; Hashimoto, Kenji; Kakuda, Wataru; Miyano, Satoshi; Momosaki, Ryo; Ishima, Tamaki; Abo, Masahiro
2016-01-01
Repetitive transcranial magnetic stimulation (rTMS) can improve upper limb hemiparesis after stroke but the mechanism underlying its efficacy remains elusive. rTMS seems to alter brain-derived neurotrophic factor (BDNF) and such effect is influenced by BDNF gene polymorphism. To investigate the molecular effects of rTMS on serum levels of BDNF, its precursor proBDNF and matrix metalloproteinase-9 (MMP-9) in poststroke patients with upper limb hemiparesis. Poststroke patients with upper limb hemiparesis were studied. Sixty-two patients underwent rehabilitation plus rTMS combination therapy and 33 patients underwent rehabilitation monotherapy without rTMS for 14 days at our hospital. One Hz rTMS was applied over the motor representation of the first dorsal interosseous muscle on the non-lesional hemisphere. Fugl-Meyer Assessment and Wolf Motor Function (WMFT) were used to evaluate motor function on the affected upper limb before and after intervention. Blood samples were collected for analysis of BDNF polymorphism and measurement of BDNF, proBDNF and MMP-9 levels. Two-week combination therapy increased BDNF and MMP-9 serum levels, but not serum proBDNF. Serum BDNF and MMP-9 levels did not correlate with motor function improvement, though baseline serum proBDNF levels correlated negatively and significantly with improvement in WMFT (ρ = -0.422, p = 0.002). The outcome of rTMS therapy was not altered by BDNF gene polymorphism. The combination therapy of rehabilitation plus low-frequency rTMS seems to improve motor function in the affected limb, by activating BDNF processing. BDNF and its precursor proBDNF could be potentially suitable biomarkers for poststroke motor recovery.
Ieraci, Alessandro; Madaio, Alessandro I; Mallei, Alessandra; Lee, Francis S; Popoli, Maurizio
2016-12-01
Several studies have shown that exercise improves cognitive functions and emotional behaviors. Positive effects of exercise have been associated with enhanced brain plasticity, adult hippocampal neurogenesis, and increased levels of brain-derived neurotrophic factor (BDNF). However, a substantial variability of individual response to exercise has been described, which may be accounted for by individual genetic variants. Here, we have assessed whether and how the common human BDNF Val66Met polymorphism influences the neurobiological effects modulated by exercise in BDNF Val66Met knock-in male mice. Wild-type (BDNF Val/Val ) and homozygous BDNF Val66Met (BDNF Met/Met ) male mice were housed in cages equipped with or without running wheels for 4 weeks. Changes in behavioral phenotype, hippocampal adult neurogenesis, and gene expression were evaluated in exercised and sedentary control mice. We found that exercise reduced the latency to feed in the novelty suppressed feeding and the immobility time in the forced swimming test in BDNF Val/Val but not in BDNF Met/Met mice. Hippocampal neurogenesis was reduced in BDNF Met/Met mice compared with BDNF Val/Val mice. BDNF Met/Met mice had lower basal BDNF protein levels in the hippocampus, which was not recovered following exercise. Moreover, exercise-induced expression of total BDNF, BDNF splice variants 1, 2, 4, 6 and fibronectin type III domain-containing protein 5 (FNDC5) mRNA levels were absent or reduced in the dentate gyrus of BDNF Met/Met mice. Exercise failed to enhance PGC-1α and FNDC5 mRNA levels in the BDNF Met/Met muscle. Overall these results indicate that, in adult male mice, the BDNF Val66Met polymorphism impairs the beneficial behavioral and neuroplasticity effects induced by physical exercise.
Bazovkina, D V; Kondaurova, E M; Tsybko, A S; Kovetskaya, A I; Ilchibaeva, T V; Naumenko, V S
2017-01-01
Brain-derived neurotropic factor (BDNF) plays an important role in mechanisms of depression. Precursor protein of this factor (proBDNF) can initiate apoptosis in the brain, while the mature form of BDNF is involved in neurogenesis. It is known that chronic alcoholization leads to the activation of apoptotic processes, neurodegeneration, brain injury, and cognitive dysfunction. In this work, we have studied the influence of long-term ethanol exposure on the proBDNF and BDNF protein levels, as well as on the expression of genes that encode these proteins in the brain structures of ASC mice with genetic predisposition to depressive-like behavior and in mice from parental nondepressive CBA strain. It was shown that chronic alcoholization results in a reduction of the BDNF level in the hippocampus and an increase in the amount of TrkB and p75 receptors in the frontal cortex of nondepressive CBA mice. At the same time, the long-term alcoholization of depressive ASC mice results in an increase of the proBDNF level in the frontal cortex and a reduction in the p75 protein level in the hippocampus. It has also been shown that, in depressive ASC mice, proBDNF and BDNF levels are significantly lower in the hippocampus and the frontal cortex compared with nondepressive CBA strain. However, no significant differences in the expression of genes encoding the studied proteins were observed. Thus, changes in the expression patterns of proBDNF, BDNF, and their receptors under the influence of alcoholization in the depressive ASC strain and nondepressive CBA strain mice are different.
Brain-derived neurotrophic factor mediates cognitive improvements following acute exercise.
Borror, Andrew
2017-09-01
The mechanisms causing improved cognition following acute exercise are poorly understood. This article proposes that brain-derived neurotrophic factor (BDNF) is the main factor contributing to improved cognition following exercise. Additionally, it argues that cerebral blood flow (CBF) and oxidative stress explain the release of BDNF from cerebral endothelial cells. One way to test these hypotheses is to block endothelial function and measure the effect on BDNF levels and cognitive performance. The CBF and oxidative stress can also be examined in relationship to BDNF using a multiple linear regression. If these hypotheses are true, there would be a linear relationship between CBF+oxidative stress and BDNF levels as well as between BDNF levels and cognitive performance. The novelty of these hypotheses comes from the emphasis on the cerebral endothelium and the interplay between BDNF, CBF, and oxidative stress. If found to be valid, these hypotheses would draw attention to the cerebral endothelium and provide direction for future research regarding methods to optimize BDNF release and enhance cognition. Elucidating these mechanisms would provide direction for expediting recovery in clinical populations, such as stroke, and maintaining quality of life in the elderly. Copyright © 2017 Elsevier Ltd. All rights reserved.
Astrocyte truncated-TrkB mediates BDNF antiapoptotic effect leading to neuroprotection.
Saba, Julieta; Turati, Juan; Ramírez, Delia; Carniglia, Lila; Durand, Daniela; Lasaga, Mercedes; Caruso, Carla
2018-05-31
Astrocytes are glial cells that help maintain brain homeostasis and become reactive in neurodegenerative processes releasing both harmful and beneficial factors. We have demonstrated that brain-derived neurotrophic factor (BDNF) expression is induced by melanocortins in astrocytes but BDNF actions in astrocytes are largely unknown. We hypothesize that BDNF may prevent astrocyte death resulting in neuroprotection. We found that BDNF increased astrocyte viability, preventing apoptosis induced by serum deprivation by decreasing active caspase-3 and p53 expression. The antiapoptotic action of BDNF was abolished by ANA-12 (a specific TrkB antagonist) and by K252a (a general Trk antagonist). Astrocytes only express the BDNF receptor TrkB truncated isoform 1, TrkB-T1. BDNF induced ERK, Akt and Src (a non-receptor tyrosine kinase) activation in astrocytes. Blocking ERK and Akt pathways abolished BDNF protection in serum deprivation-induced cell death. Moreover, BDNF protected astrocytes from death by 3-nitropropionic acid (3-NP), an effect also blocked by ANA-12, K252a, and inhibitors of ERK, calcium and Src. BDNF reduced reactive oxygen species (ROS) levels induced in astrocytes by 3-NP and increased xCT expression and glutathione levels. Astrocyte conditioned media (ACM) from untreated astrocytes partially protected PC12 neurons whereas ACM from BDNF-treated astrocytes completely protected PC12 neurons from 3-NP-induced apoptosis. Both ACM from control and BDNF-treated astrocytes markedly reduced ROS levels induced by 3-NP in PC12 cells. Our results demonstrate that BDNF protects astrocytes from cell death through TrkB-T1 signaling, exerts an antioxidant action, and induces release of neuroprotective factors from astrocytes. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Increased blood BDNF in healthy individuals with a family history of depression.
Knorr, Ulla; Søndergaard, Mia H Greisen; Koefoed, Pernille; Jørgensen, Anders; Faurholt-Jepsen, Maria; Vinberg, Maj; Kessing, Lars Vedel
2017-10-01
The brain-derive neurotrophic factor (BDNF) may play an important role in the course of depression. We aimed to study the associations between peripheral whole blood BDNF levels in healthy individuals with and without a family history of depression. BDNF levels were significantly increased in healthy individuals with (n = 76), compared with healthy individuals without (n = 39) a family history of depression and persisted after adjustment for age and gender differences. Higher BDNF levels were associated with increasing age and seasonality. A family history of depression may contribute to an elevation of peripheral BDNF levels in healthy individuals. Copyright © 2017 Elsevier B.V. All rights reserved.
Subedi, Lochan; Huang, Hong; Pant, Amrita; Westgate, Philip M; Bada, Henrietta S; Bauer, John A; Giannone, Peter J; Sithisarn, Thitinart
2017-01-01
Brain-derived neurotrophic factor (BDNF) is a type of growth factor that promotes growth and survival of neurons. Fetal exposure to opiates can lead to postnatal withdrawal syndrome, which is referred as neonatal abstinence syndrome (NAS). Preclinical and clinical studies have shown an association between opiates exposure and alteration in BDNF expression in the brain and serum levels in adult. However, to date, there are no data available on the effects of opiate exposure on BDNF levels in infant who are exposed to opiates in utero and whether BDNF level may correlate with the severity of NAS. To compare plasma BDNF levels among NAS and non-NAS infants and to determine the correlation of BDNF levels and the severity of NAS. This is a prospective cohort study with no intervention involved. Infants ≥35 weeks of gestation were enrolled. BDNF level was measured using enzyme-linked immunosorbent assay technique from blood samples drawn within 48 h of life. The severity of NAS was determined by the length of hospital stay, number of medications required to treat NAS. 67 infants were enrolled, 34 NAS and 33 non-NAS. Mean gestational age did not differ between the two groups. Mean birth weight of NAS infants was significantly lower than the non-NAS infants (3,070 ± 523 vs. 3,340 ± 459 g, p = 0.028). Mean BDNF level in NAS group was 252.2 ± 91.6 ng/ml, significantly higher than 211.3 ± 66.3 ng/ml in the non-NAS group ( p = 0.04). There were no differences in BDNF levels between NAS infants that required one medication vs. more than one medication (254 ± 91 vs. 218 ± 106 ng/ml, p = 0.47). There was no correlation between the BDNF levels and length of hospital stay ( p = 0.68) among NAS infants. Overall, there were no significant correlations between BDNF levels and NAS scores except at around 15 h after admission (correlation 0.35, p = 0.045). Plasma BDNF level was significantly increased in NAS infants during the first 48 h when compared to non-NAS infants. The correlations between plasma BDNF levels and the severity of NAS warrant further study. These results suggest that BDNF may play a neuromodulatory role during withdrawal after in utero opiate exposure.
Södersten, Kristoffer; Pålsson, Erik; Ishima, Tamaki; Funa, Keiko; Landén, Mikael; Hashimoto, Kenji; Ågren, Hans
2014-05-01
Early detection and diagnosis of bipolar disorder can be difficult. Tools are needed to help clinicians detect bipolar disorder earlier, which would ameliorate the prognosis. ELISA kits that distinguish between mature brain derived neurotrophic factor (BDNF) and proBDNF, we compared serum levels of mature BDNF, proBDNF, and matrix metalloproteinase-9 (MMP-9) in two independent cohorts (Sahlgrenska cohort and Karolinska cohort) of mood-stabilized bipolar patients and healthy controls. The total sample size in both cohorts consisted of 263 (48+215) bipolar patients and 155 (43+112) healthy controls. Levels of mature BDNF and the ratio mature BDNF/proBDNF were significantly higher in patients than in controls. Serum levels of proBDNF were significantly lower in patients compared to controls. Serum levels of MMP-9 did not differ between the groups but MMP-9 correlated positively and significantly with mature BDNF. Mature BDNF, proBDNF, the ratio of mature BDNF/proBDNF and interactions with MMP-9 explained the diagnostic dichotomy in both cohorts with high significance, using multivariate logistic ANCOVA (gender, age, and BMI were covaried out). The model explained 41% of the diagnostic variance in the Sahlgrenska cohort (p<0.0001) and 15% in the Karolinska cohort (p<0.0001). In both cohorts, the equations provided good power for diagnostic classification. The diagnostic sensitivity was 89% in the Sahlgrenska and 74% in the Karolinska cohort, and specificity 77% and 64%, respectively. The study is cross-sectional with no longitudinal follow up. The cohorts are relatively small with no medication-free patients. There are no "ill patient controls". Abnormalities in the conversion of proBDNF to mature BDNF may be associated with pathogenesis of bipolar disorder. Clinical use of these biomarkers may provide opportunities for earlier detection and correct treatment. Copyright © 2014 Elsevier B.V. All rights reserved.
Fernandes, Brisa S; Molendijk, Marc L; Köhler, Cristiano A; Soares, Jair C; Leite, Cláudio Manuel G S; Machado-Vieira, Rodrigo; Ribeiro, Thamara L; Silva, Jéssica C; Sales, Paulo M G; Quevedo, João; Oertel-Knöchel, Viola; Vieta, Eduard; González-Pinto, Ana; Berk, Michael; Carvalho, André F
2015-11-30
The neurotrophic hypothesis postulates that mood disorders such as bipolar disorder (BD) are associated with a lower expression of brain-derived neurotrophic factor (BDNF). However, its role in peripheral blood as a biomarker of disease activity and of stage for BD, transcending pathophysiology, is still disputed. In the last few years an increasing number of clinical studies assessing BDNF in serum and plasma have been published. Therefore, it is now possible to analyse the association between BDNF levels and the severity of affective symptoms in BD as well as the effects of acute drug treatment of mood episodes on BDNF levels. We conducted a systematic review and meta-analysis of all studies on serum and plasma BDNF levels in bipolar disorder. Through a series of meta-analyses including a total of 52 studies with 6,481 participants, we show that, compared to healthy controls, peripheral BDNF levels are reduced to the same extent in manic (Hedges' g = -0.57, P = 0.010) and depressive (Hedges' g = -0.93, P = 0.001) episodes, while BDNF levels are not significantly altered in euthymia. In meta-regression analyses, BDNF levels additionally negatively correlate with the severity of both manic and depressive symptoms. We found no evidence for a significant impact of illness duration on BDNF levels. In addition, in plasma, but not serum, peripheral BDNF levels increase after the successful treatment of an acute mania episode, but not of a depressive one. In summary, our data suggest that peripheral BDNF levels, more clearly in plasma than in serum, is a potential biomarker of disease activity in BD, but not a biomarker of stage. We suggest that peripheral BDNF may, in future, be used as a part of a blood protein composite measure to assess disease activity in BD.
Nagata, Tomoyuki; Kobayashi, Nobuyuki; Shinagawa, Shunichiro; Yamada, Hisashi; Kondo, Kazuhiro; Nakayama, Kazuhiko
2014-04-01
In the present study, we examined whether neuropsychiatric symptoms were correlated with plasma brain-derived neurotrophic factor (BDNF) levels as a state marker or were associated with the BDNF polymorphism Val66Met in patients with amnestic mild cognitive impairment (A-MCI) or Alzheimer disease (AD). One hundred and seventy-six outpatients with AD (n = 129) or A-MCI (n = 47) were selected and their plasma BDNF concentrations measured. Next, we investigated the correlation between the plasma BDNF level and the Behavioral Pathology in Alzheimer Disease (Behave-AD) subscale scores, which reflect neuropsychiatric symptoms. We also compared the plasma BDNF level and the Behave-AD subscale scores among the BDNF Val66Met genotypic groups. Among the seven Behave-AD subscale scores, aggressiveness was positively correlated with the plasma BDNF level (ρ = 0.237, P < 0.005), but did not differ significantly among the three BDNF Val66Met genotypic groups. The Behave-AD total and other subscale scores did not differ significantly among the BDNF Val66Met genotypic groups and were not associated with the plasma BDNF level. Moreover, the plasma BDNF level did not differ significantly among the three BDNF Val66Met genotypic groups or between patients with A-MCI and those with AD. The plasma BDNF level was robustly correlated with aggressiveness, implying that the plasma BDNF level might be useful as a behavioral state marker in patients with AD or A-MCI.
Borba, Ericksen Mielle; Duarte, Juliana Avila; Bristot, Giovana; Scotton, Ellen; Camozzato, Ana Luiza; Chaves, Márcia Lorena Fagundes
2016-01-01
Hippocampal atrophy is a recognized biomarker of Alzheimer disease (AD) pathology. Serum brain-derived neurotrophic factor (BDNF) reduction has been associated with neurodegeneration. We aimed to evaluate BDNF serum levels and hippocampal volume in clinical AD (dementia and mild cognitive impairment [MCI]). Participants were 10 patients with MCI and 13 with dementia due to AD as well as 10 healthy controls. BDNF serum levels were determined by ELISA and volumetric measures with NeuroQuant®. MCI and dementia patients presented lower BDNF serum levels than healthy participants; dementia patients presented a smaller hippocampal volume than MCI patients and healthy participants. The findings support that the decrease in BDNF might start before the establishment of neuronal injury expressed by the hippocampal reduction.
Iwasa, Takeshi; Matsuzaki, Toshiya; Yano, Kiyohito; Munkhzaya, Munkhsaikhan; Tungalagsuvd, Altankhuu; Yiliyasi, Maira; Kuwahara, Akira; Irahara, Minoru
2016-11-01
The actions and responses of hypothalamic appetite regulatory factors change markedly during the neonatal to pre-pubertal period in order to maintain appropriate metabolic and nutritional conditions. In this study, we examined the developmental changes in the hypothalamic mRNA levels of brain-derived neurotrophic factor (BDNF), which is a potent anorectic factor and the changes in the sensitivity of the hypothalamic expression of this factor to fasting during the neonatal to pre-pubertal period. Under fed conditions, hypothalamic BDNF mRNA expression decreased during development in both male and female rats. Similarly, the serum levels of leptin, which is a positive regulator of hypothalamic BDNF expression, also tended to fall during the developmental period. The serum leptin level and the hypothalamic BDNF mRNA level were found to be positively correlated in both sexes under the fed conditions. Hypothalamic BDNF mRNA expression was decreased by 24h fasting (separating the rats from their mothers) in the early neonatal period (postnatal day 10) in both males and females, but no such changes were seen at postnatal day 20. Twenty-four hours' fasting (food deprivation) did not affect hypothalamic BDNF mRNA expression in the pre-pubertal period (postnatal day 30). On the other hand, the rats' serum leptin levels were decreased by 24h fasting (separating the rats from their mothers at postnatal day 10 and 20, and food deprivation at postnatal day 30) throughout the early neonatal to pre-pubertal period. The correlation between serum leptin and hypothalamic BDNF mRNA levels was not significant under the fasted conditions. It can be speculated that leptin partially regulates hypothalamic BDNF mRNA levels, but only in fed conditions. Such changes in hypothalamic BDNF expression might play a role in maintaining appropriate metabolic and nutritional conditions and promoting normal physical development. In addition, because maternal separation induces a negative energy balance and short- and long-term stress responses, it is also possible that reductions in hypothalamic BDNF mRNA levels in the early neonatal period (postnatal day 10) may be partially induced by stress responses of the maternal deprivation. Copyright © 2016 ISDN. Published by Elsevier Ltd. All rights reserved.
Kononen, J; Soinila, S; Persson, H; Honkaniemi, J; Hökfelt, T; Pelto-Huikko, M
1994-12-01
We studied the expression of messenger ribonucleic acids (mRNAs) for neurotrophins and neurotrophin receptors in the rat pituitary gland and examined the influence of adrenal hormones on their mRNA levels, using in situ hybridization and Northern blot analysis. The only neurotrophin present at detectable levels in the pituitary was brain-derived neurotrophic factor (BDNF), which was observed in the anterior and intermediate lobes. Several transcripts of the putative receptor for BDNF, trkB, were present in the anterior and posterior lobes of the pituitary. A low amount of trkC mRNA was found in both the anterior and the intermediate lobe. Dexamethasone treatment decreased both BDNF and trkB mRNA levels in the anterior lobe of the pituitary. Adrenalectomy had no effect on trkB expression, but it decreased BDNF mRNA levels in comparison to the control animals. This effect could not be reversed by dexamethasone substitution, suggesting that BDNF, mRNA levels may be regulated not only by glucocorticoids but also by other adrenal hormones. These results demonstrate that BDNF, trkB and trkC are expressed in the pituitary gland and that glucocorticoids and possibly other adrenal hormones may modulate pituitary functions by regulating the expression of neurotrophic factors and their receptors. Whether BDNF acts as a secreted hormone, a trophic factor, or has autocrine/paracrine functions within the pituitary through its receptor, trkB, remains to be studied.
Drakopoulos, Panagiotis; Casarosa, Elena; Bucci, Fiorella; Piccinino, Manuela; Wenger, Jean-Marie; Nappi, Rossella Elena; Polyzos, Nicholas; Genazzani, Andrea Riccardo; Pluchino, Nicola
2015-01-01
Brain-derived neurotrophic factor (BDNF) is strongly related to hormonal networks and is modulated by hypothalamic activity. To evaluate plasma BDNF concentration in patients with functional hypothalamic amenorrhea (FHA), with reference to the BDNF circadian rhythm and its relation with the cortisol (F) rhythm, and to assess whether the duration of amenorrhea might influence the BDNF:F ratio in FHA. This was an observational study evaluating 36 amenorrheic and 30 eumenorrheic women. Basal values of BDNF and hormones were examined in blood samples collected from 7:00 to 9:00 h in all the women. Basal BDNF and F levels were determined in blood samples collected in 12 subjects from each group at 8:00, 12:00, 16:00, 20:00, and 24:00 h. BDNF plasma levels are significantly lower in amenorrheic women (p < 0.001) than in the follicular phase of eumenorrheic women. There are no correlations between BDNF values (p > 0.05), sex steroids, and F in FHA. Low plasma BDNF levels in FHA are not significantly correlated with duration of amenorrhea. The 24-hour variation of BDNF in amenorrheic women is significantly lower when compared to the control group, and normal daily variations of BDNF disappeared in FHA patients. F preserved its circadian rhythm in both groups. Interactions between BDNF, the hypothalamus-pituitary-adrenal axis, and sex steroids might be critical in clinical conditions of modified homeostasis/adaptation, such as FHA. © 2015 S. Karger AG, Basel.
A meta-analytic review of the effects of exercise on brain-derived neurotrophic factor.
Szuhany, Kristin L; Bugatti, Matteo; Otto, Michael W
2015-01-01
Consistent evidence indicates that exercise improves cognition and mood, with preliminary evidence suggesting that brain-derived neurotrophic factor (BDNF) may mediate these effects. The aim of the current meta-analysis was to provide an estimate of the strength of the association between exercise and increased BDNF levels in humans across multiple exercise paradigms. We conducted a meta-analysis of 29 studies (N = 1111 participants) examining the effect of exercise on BDNF levels in three exercise paradigms: (1) a single session of exercise, (2) a session of exercise following a program of regular exercise, and (3) resting BDNF levels following a program of regular exercise. Moderators of this effect were also examined. Results demonstrated a moderate effect size for increases in BDNF following a single session of exercise (Hedges' g = 0.46, p < 0.001). Further, regular exercise intensified the effect of a session of exercise on BDNF levels (Hedges' g = 0.59, p = 0.02). Finally, results indicated a small effect of regular exercise on resting BDNF levels (Hedges' g = 0.27, p = 0.005). When analyzing results across paradigms, sex significantly moderated the effect of exercise on BDNF levels, such that studies with more women showed less BDNF change resulting from exercise. Effect size analysis supports the role of exercise as a strategy for enhancing BDNF activity in humans, but indicates that the magnitude of these effects may be lower in females relative to males. Copyright © 2014 Elsevier Ltd. All rights reserved.
A meta-analytic review of the effects of exercise on brain-derived neurotrophic factor
Szuhany, Kristin L.; Bugatti, Matteo; Otto, Michael W.
2014-01-01
Consistent evidence indicates that exercise improves cognition and mood, with preliminary evidence suggesting that brain-derived neurotrophic factor (BDNF) may mediate these effects. The aim of the current meta-analysis was to provide an estimate of the strength of the association between exercise and increased BDNF levels in humans across multiple exercise paradigms. We conducted a meta-analysis of 29 studies (N = 1,111 participants) examining the effect of exercise on BDNF levels in three exercise paradigms: (1) a single session of exercise, (2) a session of exercise following a program of regular exercise, and (3) resting BDNF levels following a program of regular exercise. Moderators of this effect were also examined. Results demonstrated a moderate effect size for increases in BDNF following a single session of exercise (Hedges’ g = 0.46, p < 0.001). Further, regular exercise intensified the effect of a session of exercise on BDNF levels (Hedges’ g = 0.58, p = 0.02). Finally, results indicated a small effect of regular exercise on resting BDNF levels (Hedges’ g = 0.28, p = 0.005). When analyzing results across paradigms, sex significantly moderated the effect of exercise on BDNF levels, such that studies with more women showed less BDNF change resulting from exercise. Effect size analysis supports the role of exercise as a strategy for enhancing BDNF activity in humans, but indicates that the magnitude of these effects may be lower in females relative to males. PMID:25455510
Ozer, A B; Demirel, I; Erhan, O L; Firdolas, F; Ustundag, B
2015-10-01
Serum Brain-Derived Neurotrophic Factor (BDNF) levels are associated with neurotransmission and cognitive functions. The goal of this study was to examine the effect of general anesthesia on BDNF levels. It was also to reveal whether this effect had a relationship with the surgical stress response or not. The study included 50 male patients, age 20-40, who were scheduled to have inguinoscrotal surgery, and who were in the ASA I-II risk group. The patients were divided into two groups according to the anesthesia techniques used: general (GA) and spinal (SA). In order to measure serum BDNF, cortisol, insulin and glucose levels, blood samples were taken at four different times: before and after anesthesia, end of the surgery, and before transferal from the recovery room. Serum BDNF levels were significantly low (p < 0.01), cortisol and glucose levels were higher (p < 0.05 and p < 0.01) in Group GA compared with Group SA. No significant difference was detected between the groups in terms of serum insulin levels. There was no correlation between serum BDNF and the stress hormones. Our findings suggested that general anesthetics had an effect on serum BDNF levels independent of the stress response. In future, BDNF could be used as biochemical parameters of anesthesia levels, but studies with a greater scope should be carried out to present the relationship between anesthesia and neurotrophins.
Ma, Doy Yung; Chang, Wei Hung; Chi, Mei Hung; Tsai, Hsin Chun; Yang, Yen Kuang; Chen, Po See
2016-05-30
In this study, the role of brain derived neurotrophic factor (BDNF) in stress resilience was investigated. With a focus on healthy subjects, we explored whether plasma BDNF levels are correlated with the dexamethasone suppression test (DST) and subjectively perceived social support status. Moreover, we examined the possible interacting effect of DST status and perceived social support on BDNF levels. Seventy-two healthy volunteers, 44 females and 28 males, were recruited from the community and completed the perceived routine support subscale of Measurement of Support Function (PRS_MSF) questionnaire. Plasma BDNF levels and DST suppression rate with the low dose DST were measured. There was a significant positive correlation between BDNF and DST suppression rate in the female subjects. This was also true for the plasma BDNF levels and PRS_MSF in the female subjects. The positive correlation between BDNF and PRS_MSF was significant only in female subjects with low DST suppression rates. Plasma BDNF levels were associated with stress resilience in a sex-specific manner. Subjects' belief in social support might buffer the biological stress reactions. Differences in social perception and the biological stress response between men and women merits further investigation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Johnson, R A; Rhodes, J S; Jeffrey, S L; Garland, T; Mitchell, G S
2003-01-01
Voluntary wheel running in rats increases hippocampal brain-derived neurotrophic factor (BDNF) expression, a neurochemical important for neuronal survival, differentiation, connectivity and synaptic plasticity. Here, we report the effects of wheel running on BDNF and neurotrophin-3 (NT-3) protein levels in normal control mice, and in mice selectively bred (25 generations) for increased voluntary wheel running. We hypothesized that increased voluntary wheel running in selected (S) mice would increase CNS BDNF and NT-3 protein levels more than in control (C) mice. Baseline hippocampal BDNF levels (mice housed without running wheels) were similar in S and C mice. Following seven nights of running, hippocampal BDNF increased significantly more in S versus C mice, and levels were correlated with distance run (considering C and S mice together). Spinal and cerebellar BDNF and hippocampal NT-3 levels were not significantly affected by wheel running in any group, but there was a small, positive correlation between spinal C3-C6 BDNF levels and distance run (considering C and S mice together). This is the first study to demonstrate that mice which choose to run more have greater elevations in hippocampal BDNF, suggesting enhanced potential for exercise-induced hippocampal neuroplasticity.
Brain-Derived Neurotrophic Factor in Patients with Huntington's Disease
Zuccato, Chiara; Mariotti, Caterina; Valenza, Marta; Lahiri, Nayana; Wild, Edward J.; Sassone, Jenny; Ciammola, Andrea; Bachoud-Lèvi, Anne Catherine; Tabrizi, Sarah J.; Di Donato, Stefano; Cattaneo, Elena
2011-01-01
Reduced Brain-Derived Neurotrophic Factor (BDNF) levels have been described in a number of patho-physiological conditions, most notably, in Huntington's disease (HD), a progressive neurodegenerative disorder. Since BDNF is also produced in blood, we have undertaken the measurement of its peripheral levels in the attempt to identify a possible link with HD prognosis and/or its progression. Here we evaluated BDNF level in 398 blood samples including 138 controls, 56 preHD, and 204 HD subjects. We found that BDNF protein levels were not reliably different between groups, whether measured in plasma (52 controls, 26 preHD, 105 HD) or serum (39 controls, 5 preHD, 29 HD). Our experience, and a re-analysis of the literature highlighted that intra-group variability and methodological aspects affect this measurement, especially in serum. We also assessed BDNF mRNA levels in blood samples from 47 controls, 25 preHD, and 70 HD subjects, and found no differences among the groups. We concluded that levels of BDNF in human blood were not informative (mRNA levels or plasma protein level) nor reliable (serum protein levels) as HD biomarkers. We also wish to warn the scientific community in interpreting the significance of changes measured in BDNF protein levels in serum from patients suffering from different conditions. PMID:21857974
Generaal, Ellen; Milaneschi, Yuri; Jansen, Rick; Elzinga, Bernet M; Dekker, Joost; Penninx, Brenda W J H
2016-01-01
Brain-derived neurotrophic factor (BDNF) disturbances and life stress, both independently and in interaction, have been hypothesized to induce chronic pain. We examined whether (a) the BDNF pathway (val(66)met genotype, gene expression, and serum levels), (b) early and recent life stress, and (c) their interaction are associated with the presence and severity of chronic multi-site musculoskeletal pain. Cross-sectional data are from 1646 subjects of the Netherlands Study of Depression and Anxiety. The presence and severity of chronic multi-site musculoskeletal pain were determined using the Chronic Pain Grade (CPG) questionnaire. The BDNF val(66)met polymorphism, BDNF gene expression, and BDNF serum levels were measured. Early life stress before the age of 16 was assessed by calculating a childhood trauma index using the Childhood Trauma Interview. Recent life stress was assessed as the number of recent adverse life events using the List of Threatening Events Questionnaire. Compared to val(66)val, BDNF met carriers more often had chronic pain, whereas no differences were found for BDNF gene expression and serum levels. Higher levels of early and recent stress were both associated with the presence and severity of chronic pain (p < 0.001). No interaction effect was found for the BDNF pathway with life stress in the associations with chronic pain presence and severity. This study suggests that the BDNF gene marks vulnerability for chronic pain. Although life stress did not alter the impact of BDNF on chronic pain, it seems an independent factor in the onset and persistence of chronic pain. © The Author(s) 2016.
Nubukpo, Philippe; Ramoz, Nicolas; Girard, Murielle; Malauzat, Dominique; Gorwood, Philip
2017-07-01
Blood brain-derived neurotrophic factor (BDNF) levels are influenced by both addiction and mood disorders, as well as somatic conditions, gender, and genetic polymorphisms, leading to widely varying results. Depressive symptoms and episodes are frequently observed in patients with alcohol use disorder, and vary widely over time, making it a challenge to determine which aspects are specifically involved in variations of serum BDNF levels in this population. We assessed 227 patients with alcohol dependence involved in a detoxification program, at baseline and after a follow-up of 6 months, for the Alcohol Use Disorders Identification Test score, the length of alcohol dependence, and the number of past detoxification programs. The Beck Depression Inventory and information on current tobacco and alcohol use, suicidal ideation, body mass index, age, gender, and psychotropic treatments were also collected. Serum BDNF (ELISA) and 2 genetic polymorphisms of the BDNF gene (Val33Met and rs962369) were analyzed. The presence of the Met allele, 2 markers of the history of alcohol dependence (gamma glutamyl transferase and the number of past treatments in detoxification programs), and the presence of a depressive episode (but not depressive score) were significantly associated with the 2 blood levels of BDNF at baseline and after 6 months. After controlling for baseline BDNF levels, the presence of the Met allele and an ongoing depressive episode were the only variables associated with changes in BNDF levels after 6 months. Low serum BDNF levels are associated with characteristics related to alcohol consumption and mood disorders, and variants of the BDNF gene in alcohol use disorder patients. The factors that most strongly influenced changes in serum BDNF levels following treatment in an alcohol detoxification program were variants of the BDNF gene and ongoing depression. Copyright © 2017 by the Research Society on Alcoholism.
Turakitwanakan, Wanpen; Mekseepralard, Chantana; Busarakumtragul, Panaree
2015-11-01
Mindfulness meditation is a method to decrease stress and increase memory. So, mindfulness meditation should increase serum brain-derived neurotrophic factor (BDNF). To study the effect of mindfulness meditation on the serum BDNF of medical students. The study group consisted of 30 male and female second-year medical students that volunteered to participate in the study, aged 19.1 ± 0.55 year olds (range 18-20) from Srinakharinwirot University. Their blood was drawn to measure BDNF before and after a four-day mindfulness meditation programme. The comparison of serum BDNF levels before and after meditation were analysed by paired t-test. The subjects were 66.77%female and 33.33% male. The average serum BDNF level before the meditation was 17.67 ng/ml (SD 3.58). After meditation, there was a decrease in serum BDNF to 17.34 ng/ml, which was however not statistically significant (SD 4.04, p > 0.05). The levels of blood BDNF decreases slightly after practising meditation. We plan to investigate the reason in the future.
Brain-Derived Neurotrophic Factor Levels in Autism: A Systematic Review and Meta-Analysis.
Saghazadeh, Amene; Rezaei, Nima
2017-04-01
Brain-derived neurotrophic factor (BDNF) plays an important role in activity-dependent synaptic plasticity. Altered blood BDNF levels have been frequently identified in people with autism spectrum disorders (ASD). There are however wide discrepancies in the evidence. Therefore, we performed the present systematic review and meta-analysis aimed at qualitative and quantitative synthesis of studies that measured blood BDNF levels in ASD and control subjects. Observational studies were identified through electronic database searching and also hand-searching of reference lists of relevant articles. A total of 183 papers were initially identified for review and eventually twenty studies were included in the meta-analysis. A meta-analysis of blood BDNF in 887 patients with ASD and 901 control subjects demonstrated significantly higher BDNF levels in ASD compared to controls with the SMD of 0.47 (95% CI 0.07-0.86, p = 0.02). In addition subgroup meta-analyses were performed based on the BDNF specimen. The present meta-analysis study led to conclusion that BDNF might play role in autism initiation/ propagation and therefore it can be considered as a possible biomarker of ASD.
Borba, Ericksen Mielle; Duarte, Juliana Avila; Bristot, Giovana; Scotton, Ellen; Camozzato, Ana Luiza; Chaves, Márcia Lorena Fagundes
2016-01-01
Background/Aims Hippocampal atrophy is a recognized biomarker of Alzheimer disease (AD) pathology. Serum brain-derived neurotrophic factor (BDNF) reduction has been associated with neurodegeneration. We aimed to evaluate BDNF serum levels and hippocampal volume in clinical AD (dementia and mild cognitive impairment [MCI]). Methods Participants were 10 patients with MCI and 13 with dementia due to AD as well as 10 healthy controls. BDNF serum levels were determined by ELISA and volumetric measures with NeuroQuant®. Results MCI and dementia patients presented lower BDNF serum levels than healthy participants; dementia patients presented a smaller hippocampal volume than MCI patients and healthy participants. Discussion The findings support that the decrease in BDNF might start before the establishment of neuronal injury expressed by the hippocampal reduction. PMID:28101102
Oztasyonar, Yunus
2017-04-01
This study aimed to compare serum brain-derived neurotrophic factor (BDNF) levels "which contributes in both neuron development/regeneration" between combat sport braches, which requires high attention and concentration and can lead micro and macro brain trauma, and athleticism, which requires durability in competition. The study design included 4 groups. Group 1 had sedentary participants, and group 2 athletes (middle and long runners) who exercised for two 2-hour daily training sessions 6 days a week. group 3 included boxers, and group 4 taekwondo fighters. We investigated changes in the blood BDNF levels of taekwondo fighters, boxers, and athletes before and after training and compared them among each other and with measurements of sedentary controls. All athletes had higher basal BDNF levels than sedentary participants. Boxers and taekwondo athletes had especially high basal BDNF levels. When we compared different sports branch each other Pre- and post- training BDNF values are ranked as follows: taekwondo > boxing > athletes > sedentary. In sport branches such as combat sports and athletes, serum BDNF levels have been demonstrated to be higher after training than before. In addition, serum BDNF levels were higher in taekwondo fighters and boxers than athletes. BDNF might have a role in the protection mechanism against brain damage or contributes in occurrence and maintenance of high attention and concentration especially among combat sports.
Buchmann, Arlette F; Hellweg, Rainer; Rietschel, Marcella; Treutlein, Jens; Witt, Stephanie H; Zimmermann, Ulrich S; Schmidt, Martin H; Esser, Günter; Banaschewski, Tobias; Laucht, Manfred; Deuschle, Michael
2013-08-01
Recent studies have emphasized an important role for neurotrophins, such as brain-derived neurotrophic factor (BDNF), in regulating the plasticity of neural circuits involved in the pathophysiology of stress-related diseases. The aim of the present study was to examine the interplay of the BDNF Val⁶⁶Met and the serotonin transporter promoter (5-HTTLPR) polymorphisms in moderating the impact of early-life adversity on BDNF plasma concentration and depressive symptoms. Participants were taken from an epidemiological cohort study following the long-term outcome of early risk factors from birth into young adulthood. In 259 individuals (119 males, 140 females), genotyped for the BDNF Val⁶⁶Met and the 5-HTTLPR polymorphisms, plasma BDNF was assessed at the age of 19 years. In addition, participants completed the Beck Depression Inventory (BDI). Early adversity was determined according to a family adversity index assessed at 3 months of age. Results indicated that individuals homozygous for both the BDNF Val and the 5-HTTLPR L allele showed significantly reduced BDNF levels following exposure to high adversity. In contrast, BDNF levels appeared to be unaffected by early psychosocial adversity in carriers of the BDNF Met or the 5-HTTLPR S allele. While the former group appeared to be most susceptible to depressive symptoms, the impact of early adversity was less pronounced in the latter group. This is the first preliminary evidence indicating that early-life adverse experiences may have lasting sequelae for plasma BDNF levels in humans, highlighting that the susceptibility to this effect is moderated by BDNF Val⁶⁶Met and 5-HTTLPR genotype. Copyright © 2013. Published by Elsevier B.V.
BDNF and its pro-peptide are stored in presynaptic dense core vesicles in brain neurons
Dieni, Sandra; Matsumoto, Tomoya; Dekkers, Martijn; Rauskolb, Stefanie; Ionescu, Mihai S.; Deogracias, Ruben; Gundelfinger, Eckart D.; Kojima, Masami; Nestel, Sigrun; Frotscher, Michael
2012-01-01
Although brain-derived neurotrophic factor (BDNF) regulates numerous and complex biological processes including memory retention, its extremely low levels in the mature central nervous system have greatly complicated attempts to reliably localize it. Using rigorous specificity controls, we found that antibodies reacting either with BDNF or its pro-peptide both stained large dense core vesicles in excitatory presynaptic terminals of the adult mouse hippocampus. Both moieties were ∼10-fold more abundant than pro-BDNF. The lack of postsynaptic localization was confirmed in Bassoon mutants, a seizure-prone mouse line exhibiting markedly elevated levels of BDNF. These findings challenge previous conclusions based on work with cultured neurons, which suggested activity-dependent dendritic synthesis and release of BDNF. They instead provide an ultrastructural basis for an anterograde mode of action of BDNF, contrasting with the long-established retrograde model derived from experiments with nerve growth factor in the peripheral nervous system. PMID:22412021
Suliman, Sharain; Hemmings, Sian M. J.; Seedat, Soraya
2013-01-01
Background: Brain-Derived Neurotrophic Factor (BDNF) is a neurotrophin that is involved in the synaptic plasticity and survival of neurons. BDNF is believed to be involved in the pathogenesis of several neuropsychiatric disorders. As findings of BDNF levels in anxiety disorders have been inconsistent, we undertook to conduct a systematic review and meta-analysis of studies that assessed BDNF protein levels in these disorders. Methods: We conducted the review using electronic databases and searched reference lists of relevant articles for any further studies. Studies that measured BDNF protein levels in any anxiety disorder and compared these to a control group were included. Effect sizes of the differences in BDNF levels between anxiety disorder and control groups were calculated. Results: Eight studies with a total of 1179 participants were included. Initial findings suggested that BDNF levels were lower in individuals with any anxiety disorder compared to those without [Standard Mean Difference (SMD) = −0.94 (−1.75, −0.12), p ≤ 0.05]. This was, however, dependent on source of BDNF protein [plasma: SMD = −1.31 (−1.69, −0.92), p ≤ 0.01; serum: SMD = −1.06 (−2.27, 0.16), p ≥ 0.01] and type of anxiety disorder [PTSD: SMD = −0.05 (−1.66, 1.75), p ≥ 0.01; OCD: SMD = −2.33 (−4.21, −0.45), p ≤ 0.01]. Conclusion: Although BDNF levels appear to be reduced in individuals with an anxiety disorder, this is not consistent across the various anxiety disorders and may largely be explained by the significantly lowered BDNF levels found in OCD. Results further appear to be mediated by differences in sampling methods. Findings are, however, limited by the lack of research in this area, and given the potential for BDNF as a biomarker of anxiety disorders, it would be useful to clarify the relationship further. PMID:23908608
Serum concentrations of brain-derived neurotrophic factor in patients with gender identity disorder.
Fontanari, Anna-Martha V; Andreazza, Tahiana; Costa, Ângelo B; Salvador, Jaqueline; Koff, Walter J; Aguiar, Bianca; Ferrari, Pamela; Massuda, Raffael; Pedrini, Mariana; Silveira, Esalba; Belmonte-de-Abreu, Paulo S; Gama, Clarissa S; Kauer-Sant'Anna, Marcia; Kapczinski, Flavio; Lobato, Maria Ines R
2013-10-01
Gender Identity Disorder (GID) is characterized by a strong and persistent cross-gender identification that affects different aspects of behavior. Brain-derived neurotrophic factor (BDNF) plays a critical role in neurodevelopment and neuroplasticity. Altered BDNF-signaling is thought to contribute to the pathogenesis of psychiatric disordersand is related to traumatic life events. To examine serum BDNF levels, we compared one group of DSM-IV GID patients (n = 45) and one healthy control group (n = 66). Serum BDNF levels were significantly decreased in GID patients (p = 0.013). This data support the hypothesis that the reduction found in serum BDNF levels in GID patients may be related to the psychological abuse that transsexuals are exposed during their life. Copyright © 2013 Elsevier Ltd. All rights reserved.
Regulation of BDNF Release by ARMS/Kidins220 through Modulation of Synaptotagmin-IV Levels.
López-Benito, Saray; Sánchez-Sánchez, Julia; Brito, Verónica; Calvo, Laura; Lisa, Silvia; Torres-Valle, María; Palko, Mary E; Vicente-García, Cristina; Fernández-Fernández, Seila; Bolaños, Juan P; Ginés, Silvia; Tessarollo, Lino; Arévalo, Juan C
2018-06-06
BDNF is a growth factor with important roles in the nervous system in both physiological and pathological conditions, but the mechanisms controlling its secretion are not completely understood. Here, we show that ARMS/Kidins220 negatively regulates BDNF secretion in neurons from the CNS and PNS. Downregulation of the ARMS/Kidins220 protein in the adult mouse brain increases regulated BDNF secretion, leading to its accumulation in the striatum. Interestingly, two mouse models of Huntington's disease (HD) showed increased levels of ARMS/Kidins220 in the hippocampus and regulated BDNF secretion deficits. Importantly, reduction of ARMS/Kidins220 in hippocampal slices from HD mice reversed the impaired regulated BDNF release. Moreover, there are increased levels of ARMS/Kidins220 in the hippocampus and PFC of patients with HD. ARMS/Kidins220 regulates Synaptotagmin-IV levels, which has been previously observed to modulate BDNF secretion. These data indicate that ARMS/Kidins220 controls the regulated secretion of BDNF and might play a crucial role in the pathogenesis of HD. SIGNIFICANCE STATEMENT BDNF is an important growth factor that plays a fundamental role in the correct functioning of the CNS. The secretion of BDNF must be properly controlled to exert its functions, but the proteins regulating its release are not completely known. Using neuronal cultures and a new conditional mouse to modulate ARMS/Kidins220 protein, we report that ARMS/Kidins220 negatively regulates BDNF secretion. Moreover, ARMS/Kidins220 is overexpressed in two mouse models of Huntington's disease (HD), causing an impaired regulation of BDNF secretion. Furthermore, ARMS/Kidins220 levels are increased in brain samples from HD patients. Future studies should address whether ARMS/Kidins220 has any function on the pathophysiology of HD. Copyright © 2018 the authors 0270-6474/18/385415-14$15.00/0.
Association between BDNF levels and suicidal behaviour: a systematic review and meta-analysis.
Eisen, Rebecca B; Perera, Stefan; Banfield, Laura; Anglin, Rebecca; Minuzzi, Luciano; Samaan, Zainab
2015-12-30
Suicidal behaviour is a complex phenomenon with a multitude of risk factors. Brain-derived neurotrophic factor (BDNF), a protein crucial to nervous system function, may be involved in suicide risk. The objective of this systematic review is to evaluate and summarize the literature examining the relationship between BDNF levels and suicidal behaviour. A predefined search strategy was used to search MEDLINE, EMBASE, PsychINFO, and CINAHL from inception to December 2015. Studies were included if they investigated the association between BDNF levels and suicidal behaviours (including completed suicide, attempted suicide, or suicidal ideation) by comparing BDNF levels in groups with and without suicidal behaviour. Only the following observational studies were included: case-control and cohort studies. Both clinical- and community-based samples were included. Screening, data extraction, and risk of bias assessment were conducted in duplicate. Six-hundred thirty-one articles were screened, and 14 were included in the review. Three studies that assessed serum BDNF levels in individuals with suicide attempts and controls were combined in a meta-analysis that showed no significant association between serum BDNF and suicide attempts. The remaining 11 studies were not eligible for the meta-analysis and provided inconsistent findings regarding associations between BDNF and suicidal behaviour. The findings of the meta-analysis indicate that there is no significant association between serum BDNF and attempted suicide. The qualitative review of the literature did not provide consistent support for an association between BDNF levels and suicidal behaviour. The evidence has significant methodological limitations. PROSPERO CRD42015015871.
Chen, Tao; Wu, Yu; Wang, Yuzi; Zhu, Jigao; Chu, Haiying; Kong, Li; Yin, Liangwei; Ma, Haiying
2017-11-01
Brain-derived neurotrophic factor (BDNF) plays an important role in promoting the growth, differentiation, survival and synaptic stability of neurons. Presently, the transplantation of neural stem cells (NSCs) is known to induce neural repair to some extent after injury or disease. In this study, to investigate whether NSCs genetically modified to encode the BDNF gene (BDNF/NSCs) would further enhance synaptogenesis, BDNF/NSCs or naive NSCs were directly engrafted into lesions in a rat model of traumatic brain injury (TBI). Immunohistochemistry, western blotting and RT-PCR were performed to detect synaptic proteins, BDNF-TrkB and its downstream signaling pathways, at 1, 2, 3 or 4 weeks after transplantation. Our results showed that BDNF significantly increased the expression levels of the TrkB receptor gene and the phosphorylation of the TrkB protein in the lesions. The expression levels of Ras, phosphorylated Erk1/2 and postsynaptic density protein-95 were elevated in the BDNF/NSCs-transplanted groups compared with those in the NSCs-transplanted groups throughout the experimental period. Moreover, the nuclear factor (erythroid-derived 2)-like 2/Thioredoxin (Nrf2/Trx) axis, which is a specific therapeutic target for the treatment of injury or cell death, was upregulated by BDNF overexpression. Therefore, we determined that the increased synaptic proteins level implicated in synaptogenesis might be associated with the activation of the MAPK/Erk1/2 signaling pathway and the upregulation of the antioxidant agent Trx modified by BDNF-TrkB following the BDNF/NSCs transplantation after TBI.
Meng, Wei-Dong; Sun, Shao-Jun; Yang, Jie; Chu, Rui-Xue; Tu, Wenjun; Liu, Qiang
2017-03-01
The aim of our study was to illuminate the potential role of brain-derived neurotrophic factor (BDNF) in autism spectrum disorder (ASD). We measured the circulating levels of BDNF in serum and BDNF gene (Val66Met) polymorphisms, in which two indicators were then compared between ASD and normal controls. A total of 82 drug-naïve ASD children and 82 age- and gender-matched normal controls were enrolled in the study. Their serum BDNF levels were detected by the ELISA. BDNF Val66Met polymorphism genotyping was conducted as according to the laboratory's standard protocol in laboratory. The ASD severity assessment was mainly determined by the score of the Childhood Autism Rating Scale (CARS). ELISA assay showed that the mean serum BDNF level of children with ASD was significantly (P < 0.0001) higher than that of the control cases (17.75 ± 5.43 vs. 11.49 ± 2.85 ng/ml; t = 9.236). Besides, the serum BDNF levels and CARS scores (P < 0.0001) were positively related. And, the BDNF genotyping results showed that there was no difference between the ASD cases and the control. Among the children with ASD, the mean serum BDNF level of Met/Met group was lower than other groups. According to the ROC curve generated from our clinical data, the optimal cutoff value of serum BDNF levels, an indicator for diagnosis of ASD, was projected to be 12.50 ng/ml. Thus, it yielded a corresponding sensitivity of 81.7 % and the specificity of 66.9 %. Accordingly, area value under the curve was 0.836 (95 % CI, 0.774-0.897); the positive predictive value (PPV) and the negative predictive value (NPV) were 70.1 and 79.1 %, respectively. These results suggested that rather than Val66Met polymorphism, BDNF was more possible to impact the pathogenesis of ASD.
Freire, Thiago Fernando Vasconcelos; Fleck, Marcelo Pio de Almeida; da Rocha, Neusa Sica
2016-03-01
Research on the association between electroconvulsive therapy (ECT) and increased brain derived neurotrophic factor (BDNF) levels has produced conflicting result. There have been few studies which have evaluated BDNF levels in clinical contexts where there was remission following treatment. The objective of this study was to investigate whether remission of depression following ECT is associated with changes in BDNF levels. Adult inpatients in a psychiatric unit were invited to participate in this naturalistic study. Diagnoses were made using the Mini-International Neuropsychiatric Interview (MINI) and symptoms were evaluated at admission and discharge using the Hamilton Rating Scale for Depression (HDRS-17). Thirty-one patients who received a diagnosis of depression and were subjected to ECT were included retrospectively. Clinical remission was defined as a score of less than eight on the HDRS-17 at discharge. Serum BDNF levels were measured in blood samples collected at admission and discharge with a commercial kit used in accordance with the manufacturer's instructions. Subjects HDRS-17 scores improved following ECT (t = 13.29; p = 0.00). A generalized estimating equation (GEE) model revealed a remission × time interaction with BDNF levels as a dependent variable in a Wald chi-square test [Wald χ(2) = 5.98; p = 0.01]. A post hoc Bonferroni test revealed that non-remitters had lower BDNF levels at admission than remitters (p = 0.03), but there was no difference at discharge (p = 0.16). ECT remitters had higher serum BDNF levels at admission and the level did not vary during treatment. ECT non-remitters had lower serum BDNF levels at admission, but levels increased during treatment and were similar to those of ECT remitters at discharge. Copyright © 2016 Elsevier Inc. All rights reserved.
Choi, Sam-Wook; Shin, Young-Chul; Mok, Jung Yeon; Kim, Dai-Jin; Choi, Jung-Seok; Suk-Hyun Hwang, Samuel
2016-01-01
Background and aims Gambling disorder (GD) shares many similarities with substance use disorders (SUDs) in clinical, neurobiological, and neurocognitive features, including decision-making. We evaluated the relationships among, GD, decision-making, and brain-derived neurotrophic factor (BDNF), as measured by serum BDNF levels. Methods Twenty-one male patients with GD and 21 healthy sex- and age-matched control subjects were evaluated for associations between serum BDNF levels and the Problem Gambling Severity Index (PGSI), as well as between serum BDNF levels and Iowa Gambling Task (IGT) indices. Results The mean serum BDNF levels were significantly increased in patients with GD compared to healthy controls. A significant correlation between serum BDNF levels and PGSI scores was found when controlling for age, depression, and duration of GD. A significant negative correlation was obtained between serum BDNF levels and IGT improvement scores. Discussion These findings support the hypothesis that serum BDNF levels constitute a dual biomarker for the neuroendocrine changes and the severity of GD in patients. Serum BDNF level may serve as an indicator of poor decision-making performance and learning processes in GD and help to identify the common physiological underpinnings between GD and SUDs. PMID:28092195
Genzer, Yoni; Dadon, Maayan; Burg, Chen; Chapnik, Nava; Froy, Oren
2016-07-15
Brain-derived neurotrophic factor (BDNF) is the most abundant neurotrophin in the brain and its decreased levels are associated with the development of obesity and neurodegeneration. Our aim was to test the effect of dietary fat, its timing and the circadian clock on the expression of BDNF and associated signaling pathways in mouse brain and liver. Bdnf mRNA oscillated robustly in brain and liver, but with a 12-h shift between the tissues. Brain and liver Bdnf mRNA showed a 12-h phase shift when fed ketogenic diet (KD) compared with high-fat diet (HFD) or low-fat diet (LFD). Brain or liver Bdnf mRNA did not show the typical phase advance usually seen under time-restricted feeding (RF). Clock knockdown in HT-4 hippocampal neurons led to 86% up-regulation of Bdnf mRNA, whereas it led to 60% down-regulation in AML-12 hepatocytes. Dietary fat in mice or cultured hepatocytes and hippocampal neurons led to increased Bdnf mRNA expression. At the protein level, HFD increased the ratio of the mature BDNF protein (mBDNF) to its precursor (proBDNF). In the liver, RF under LFD or HFD reduced the mBDNF/proBDNF ratio. In the brain, the two signaling pathways related to BDNF, mTOR and AMPK, showed reduced and increased levels, respectively, under timed HFD. In the liver, the reverse was achieved. In summary, Bdnf expression is mediated by the circadian clock and dietary fat. Although RF does not affect its expression phase, in the brain, when combined with high-fat diet, it leads to a unique metabolic state in which AMPK is activated, mTOR is down-regulated and the levels of mBDNF are high. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Yang, B; Ren, Q; Zhang, J-C; Chen, Q-X; Hashimoto, K
2017-05-16
Brain-derived neurotrophic factor (BDNF) has a role in the pathophysiology of psychiatric disorders. The precursor proBDNF is converted to mature BDNF and BDNF pro-peptide, the N-terminal fragment of proBDNF; however, the precise function of these proteins in psychiatric disorders is unknown. We sought to determine whether expression of these proteins is altered in the brain and peripheral tissues from patients with psychiatric disorders. We measured protein expression of proBDNF, mature BDNF and BDNF pro-peptide in the parietal cortex, cerebellum, liver and spleen from control, major depressive disorder (MDD), schizophrenia (SZ) and bipolar disorder (BD) groups. The levels of mature BDNF in the parietal cortex from MDD, SZ and BD groups were significantly lower than the control group, whereas the levels of BDNF pro-peptide in this area were significantly higher than controls. In contrast, the levels of proBDNF and BDNF pro-peptide in the cerebellum of MDD, SZ and BD groups were significantly lower than controls. Moreover, the levels of mature BDNF from the livers of MDD, SZ and BD groups were significantly higher than the control group. The levels of mature BDNF in the spleen did not differ among the four groups. Interestingly, there was a negative correlation between mature BDNF in the parietal cortex and mature BDNF in the liver in all the subjects. These findings suggest that abnormalities in the production of mature BDNF and BDNF pro-peptide in the brain and liver might have a role in the pathophysiology of psychiatric disorders, indicating a brain-liver axis in psychiatric disorders.
Matsuoka, Y; Nishi, D; Tanima, Y; Itakura, M; Kojima, M; Hamazaki, K; Noguchi, H; Hamazaki, T
2015-07-07
Our open-label pilot study showed that supplementation with docosahexaenoic acid (DHA) increased serum brain-derived neurotrophic factor (BDNF) levels and that there might be an association between changes in serum BDNF levels and reduced psychological distress. Animal research has indicated that a DHA-enriched diet increases BDNF in the brain. In this randomized double-blind controlled trial of severely injured patients vulnerable to posttraumatic stress disorder (PTSD) and depression, we examined whether DHA increases serum BDNF levels and whether changes in BDNF levels are associated with subsequent symptoms of PTSD and depression. Patients received 1470 mg per day of DHA plus 147 mg per day of eicosapentaenoic acid (EPA; n = 53) or placebo (n = 57) for 12 weeks. Serum levels of mature BDNF and precursor pro-BDNF at baseline and 12-week follow-up were measured using enzyme-linked immunosorbent assay kits. At 12 weeks, we used the Clinician-Administered PTSD Scale to assess PTSD symptoms and depressive symptoms by the Montgomery-Åsberg Depression Rating Scale. We found a significant increase in serum BDNF levels during the trial in the DHA and placebo groups with no interaction between time and group. Changes in BDNF levels were not associated with PTSD severity but negatively associated with depression severity (Spearman's ρ = -0.257, P = 0.012). Changes in pro-BDNF were also negatively associated with depression severity (Spearman's ρ = -0.253, P = 0.013). We found no specific effects of DHA on increased serum levels of BDNF and pro-BDNF; however, evidence in this study suggests that increased BDNF and pro-BDNF have a protective effect by minimizing depression severity.
Lack of Postprandial Peak in Brain-Derived Neurotrophic Factor in Adults with Prader-Willi Syndrome
Bueno, Marta; Esteba-Castillo, Susanna; Novell, Ramon; Giménez-Palop, Olga; Coronas, Ramon; Gabau, Elisabeth; Corripio, Raquel; Baena, Neus; Viñas-Jornet, Marina; Guitart, Míriam; Torrents-Rodas, David; Deus, Joan; Pujol, Jesús; Rigla, Mercedes
2016-01-01
Context Prader-Willi syndrome (PWS) is characterized by severe hyperphagia. Brain-derived neurotrophic factor (BDNF) and leptin are reciprocally involved in energy homeostasis. Objectives To analyze the role of BDNF and leptin in satiety in genetic subtypes of PWS. Design Experimental study. Setting University hospital. Subjects 90 adults: 30 PWS patients; 30 age-sex-BMI-matched obese controls; and 30 age-sex-matched lean controls. Interventions Subjects ingested a liquid meal after fasting ≥10 hours. Main Outcome Measures Leptin and BDNF levels in plasma extracted before ingestion and 30’, 60’, and 120’ after ingestion. Hunger, measured on a 100-point visual analogue scale before ingestion and 60’ and 120’ after ingestion. Results Fasting BDNF levels were lower in PWS than in controls (p = 0.05). Postprandially, PWS patients showed only a truncated early peak in BDNF, and their BDNF levels at 60' and 120' were lower compared with lean controls (p<0.05). Leptin was higher in PWS patients than in controls at all time points (p<0.001). PWS patients were hungrier than controls before and after eating. The probability of being hungry was associated with baseline BDNF levels: every 50-unit increment in BDNF decreased the odds of being hungry by 22% (OR: 0.78, 95%CI: 0.65–0.94). In uniparental disomy, the odds of being hungry decreased by 66% (OR: 0.34, 90%CI: 0.13–0.9). Postprandial leptin patterns did no differ among genetic subtypes. Conclusions Low baseline BDNF levels and lack of postprandial peak may contribute to persistent hunger after meals. Uniparental disomy is the genetic subtype of PWS least affected by these factors. PMID:27685845
Qin, Xiao-Yan; Feng, Jin-Chao; Cao, Chang; Wu, Huan-Tong; Loh, Y Peng; Cheng, Yong
2016-11-01
Accumulating evidence suggests that brain-derived neurotrophic factor (BDNF) may be implicated in the developmental outcomes of children with autism spectrum disorder (ASD). To use meta-analysis to determine whether children with ASD have altered peripheral blood levels of BDNF. A systematic search of PubMed, PsycINFO, and Web of Science was performed for English-language literature through February 7, 2016. The search terms included brain-derived neurotrophic factor or BDNF in combination with autism, without year restriction. Two additional records were retrieved after a review of the reference lists of selected articles. Studies were included if they provided data on peripheral blood levels of BDNF in children with ASD and healthy control children. Studies that included adults or with overlapping samples were excluded. Data were extracted by 2 independent observers from 19 included studies. Data were pooled using a random-effects model with Comprehensive Meta-analysis software. Blood levels of BDNF in children with ASD compared with healthy controls. Altered levels of BDNF were hypothesized to be related to ASD. This meta-analysis included 19 studies with 2896 unique participants. Random-effects meta-analysis of all 19 studies showed that children with ASD had significantly increased peripheral blood levels of BDNF compared with healthy controls (Hedges g, 0.490; 95% CI, 0.185-0.794; P = .002). Subgroup analyses in 4 studies revealed that neonates diagnosed with ASD later in life had no association with blood levels of BDNF (Hedges g, 0.384; 95% CI, -0.244 to 1.011; P = .23), whereas children in the nonneonate ASD group (15 studies) demonstrated significantly increased BDNF levels compared with healthy controls (Hedges g, 0.524; 95% CI, 0.206 to 0.842; P = .001). Further analysis showed that children in the nonneonate ASD group had increased BDNF levels in serum (10 studies) (Hedges g, 0.564; 95% CI, 0.168 to 0.960; P = .005) but not in plasma (5 studies) (Hedges g, 0.436; 95% CI, -0.176 to 1.048; P = .16). Meta-regression analyses revealed that sample size had a moderating effect on the outcome of the meta-analysis in the nonneonate group. In addition, no publication bias was found in the meta-analysis. Children with ASD have increased peripheral blood levels of BDNF, strengthening the clinical evidence of an abnormal neurotrophic factor profile in this population.
Mercader, J M; Fernández-Aranda, F; Gratacòs, Mònica; Aguera, Zaida; Forcano, Laura; Ribasés, Marta; Villarejo, Cynthia; Estivill, Xavier
2010-04-01
Association studies and rodent models suggest a major role for BDNF (brain-derived neurotrophic factor) in feeding regulation. Altered BDNF blood levels have been associated with eating disorders (ED) and their related psychopathological traits. Since the influence of BDNF on self-reported eating disorder inventory scores (EDI) has not been tested, we investigated the correlation of EDI scales with BDNF plasma levels. BDNF levels were measured by (ELISA), and the EDI questionnaire was administered in a total of 81 ED patients. The relationship between BDNF levels and EDI scores was calculated using a general linear model. After correcting for multiple testing, BDNF plasma levels negatively correlated with the EDI total score (R (2) = 0.26; p = 4.09 x 10(-4)), interoceptive awareness (R (2) = 0.26; p = 1.96 x 10(-4)), and maturity fears (R (2) = 0.13; p = 6.92 x 10(-4)). When subdividing according to the main diagnoses, interoceptive awareness presented significant correlations with BDNF blood levels in both the anorexia nervosa (R (2) = 0.33, p = 0.0026) and bulimia nervosa groups (R (2) = 0.10; p = 0.008). Our data suggest that BDNF levels may influence the severity of the ED by modulating the associated psychopathology, in particular through the impairment of interoceptive awareness.
Jabbari, Masoumeh; Kheirouri, Sorayya; Alizadeh, Mohammad
2018-03-21
We aimed to investigate the association between serum levels of ghrelin and brain-derived neurotrophic factor (BDNF) with MetS and its components in premenopausal women. 43 patients with MetS and 43 healthy controls participated in this study. Participants' body mass index (BMI), waist circumference (WC), systolic and diastolic blood pressure (SBP and DBP) were measured. Serum levels of total cholesterol (TC), triglyceride (TG), low and high density lipoprotein cholesterol (LDL-C and HDL-C), fasting blood sugar (FBS), insulin, BDNF and ghrelin determined. Homeostasis model assessment insulin resistance index (HOMA-IR) was also calculated. Participants in MetS group had higher waist-to-hip ratios, elevated SBP and DBP, and higher serum levels of TG, FBS and insulin when compared with the control group. Serum ghrelin and BDNF levels were significantly lower in participants with MetS than in the healthier control subjects. There was a strong, positive correlation between serum ghrelin and BDNF levels. Both proteins negatively correlated with TG, FBS, HOMA-IR and positively with HDL-C. Furthermore, serum BDNF levels negatively associated with insulin levels. The findings indicate that variations occur in the circulating level of ghrelin and BDNF proteins in MetS patients. A strong correlation between serum ghrelin and BDNF suggests that production, release or practice of these 2 proteins might be related mechanically.
Kuhlmann, Stella L; Tschorn, Mira; Arolt, Volker; Beer, Katja; Brandt, Julia; Grosse, Laura; Haverkamp, Wilhelm; Müller-Nordhorn, Jacqueline; Rieckmann, Nina; Waltenberger, Johannes; Warnke, Katharina; Hellweg, Rainer; Ströhle, Andreas
2017-03-01
Brain-derived neurotrophic factor (BDNF) supports neurogenesis, angiogenesis, and promotes the survival of various cell types in the brain and the coronary system. Moreover, BDNF is associated with both coronary heart disease (CHD) and depression. The current study aims to investigate whether serum BDNF levels are associated with the course of depressive symptoms in CHD patients. At baseline, N=225 CHD patients were enrolled while hospitalized. Of these, N=190 (84%) could be followed up 6 months later. Depressive symptoms were assessed both at baseline and at the 6-months follow-up using the Patient Health Questionnaire (PHQ-9). Serum BDNF concentrations were measured using fluorometric Enzyme-linked immunosorbent assays (ELISA). Logistic regression models showed that lower BDNF levels were associated with persistent depressive symptoms, even after adjustment for age, sex, smoking and potential medical confounders. The incidence of depressive symptoms was not related to lower BDNF levels. However, somatic comorbidity (as measured by the Charlson Comorbidity Index) was significantly associated with the incidence of depressive symptoms. Our findings suggest a role of BDNF in the link between CHD and depressive symptoms. Particularly, low serum BDNF levels could be considered as a valuable biomarker for the persistence of depressive symptoms among depressed CHD patients. Copyright © 2016 Elsevier Ltd. All rights reserved.
Chourbaji, Sabine; Hellweg, Rainer; Brandis, Dorothee; Zörner, Björn; Zacher, Christiane; Lang, Undine E; Henn, Fritz A; Hörtnagl, Heide; Gass, Peter
2004-02-05
The "neurotrophin hypothesis" of depression predicts that depressive disorders in humans coincide with a decreased activity and/or expression of brain-derived neurotrophic factor (BDNF) in the brain. Therefore, we investigated whether mice with a reduced BDNF expression due to heterozygous gene disruption demonstrate depression-like neurochemical changes or behavioral symptoms. BNDF protein levels of adult BDNF(+/-) mice were reduced to about 60% in several brain areas investigated, including the hippocampus, frontal cortex, striatum, and hypothalamus. The content of monoamines (serotonin, norepinephrine, and dopamine) as well as of serotonin and dopamine degradation products was unchanged in these brain regions. By contrast, choline acetyltransferase activity was significantly reduced by 19% in the hippocampus of BDNF(+/-) mice, indicating that the cholinergic system of the basal forebrain is critically dependent on sufficient endogenous BDNF levels in adulthood. Moreover, BDNF(+/-) mice exhibited normal corticosterone and adrenocorticotropic hormone (ACTH) serum levels under baseline conditions and following immobilization stress. In a panel of behavioral tests investigating locomotor activity, exploration, anxiety, fear-associated learning, and behavioral despair, BDNF(+/-) mice were indistinguishable from wild-type littermates. Thus, a chronic reduction of BDNF protein content in adult mice is not sufficient to induce neurochemical or behavioral alterations that are reminiscent of depressive symptoms in humans.
Brain-derived neurotrophic factor, impaired glucose metabolism, and bipolar disorder course.
Mansur, Rodrigo B; Santos, Camila M; Rizzo, Lucas B; Asevedo, Elson; Cunha, Graccielle R; Noto, Mariane N; Pedrini, Mariana; Zeni-Graiff, Maiara; Cordeiro, Quirino; Vinberg, Maj; Kapczinski, Flavio; McIntyre, Roger S; Brietzke, Elisa
2016-06-01
The neurotrophin brain-derived neurotrophic factor (BDNF) has been proposed as a potential biomarker in bipolar disorder (BD). However, current evidence is limited and results have been highly heterogeneous. This study aimed to assess the moderating effect of impaired glucose metabolism (IGM) on plasma levels of BDNF in individuals with BD, and on the relationship between BDNF and variables of illness course. We measured and compared the plasma levels of BDNF in individuals with BD (n=57) and healthy controls (n=26). IGM was operationalized as pre-diabetes or type 2 diabetes mellitus. Information related to current and past psychiatric/medical history, as well as prescription of pharmacological treatments was also captured. Individuals with BD had lower levels of BDNF, relative to healthy controls, after adjustment for age, gender, current medications, smoking, alcohol use, and IGM (P=.046). There was no effect of IGM (P=.860) and no interaction between BD diagnosis and IGM (P=.893). Peripheral BDNF levels were positively correlated with lifetime depressive episodes (P<.001), psychiatric hospitalizations (P=.001) and suicide attempts (P=.021). IGM moderated the association between BDNF and the number of previous mood episodes (P<.001), wherein there was a positive correlation in euglycemic participants and a negative correlation in individuals with IGM. BD is independently associated with lower levels of BDNF; IGM may modify the relationship between BDNF and BD course, suggesting an interactive effect of BDNF with metabolic status on illness progression. © 2016 John Wiley & Sons A/S Published by John Wiley & Sons Ltd.
Jehn, C F; Becker, B; Flath, B; Nogai, H; Vuong, L; Schmid, P; Lüftner, D
2015-10-15
Increased IL-6 and decreased brain-derived neurotrophic factor (BDNF) levels have been implicated in the pathophysiology of depression. The objective was to assess the influence of BDNF and IL-6 on cognitive function and depression in patients with cancer. Serum BDNF and plasma IL-6 were measured in patients with metastatic cancer. Diagnosis of depression was established according to DSM-IV criteria. Cognitive function was assessed by the Verbal Learning and Memory Test (VLMT). A total of 59 patients were recruited in this study. Only IL-6 levels were significantly elevated in patients with clinical depression (35.7 vs. 6.9 pg/ml; p<0.001). There were no differences in hemoglobin levels (p=0.3) or BDNF levels (p=0.16). Patients with clinical depression showed significant impairment of short-term memory (STM) (24.4 vs. 37.5; p=0.01), but not of long-term memory (LTM) (3.9 vs. 2.8; p=0.3). STM was dependent on the level of BDNF and younger age (b=0.60; p=0.001; b= -0.63; p=0.003, respectively). IL-6 was not only strongly associated with depression, but was an independent predictor of BDNF level as well (b= -0.50; p=0.01). LTM was associated only with a good KPS (b=0.47; p=0.037). Hemoglobin levels and the prior number of chemotherapy lines were not predictive of memory performance. Low BDNF is associated with cognitive impairment, STM, in patients with cancer, however no influence on depression could be found. IL-6 is strongly associated with depression and an independent predictor of BDNF levels. Copyright © 2015 Elsevier B.V. All rights reserved.
Na, Kyoung-Sae; Won, Eunsoo; Kang, June; Chang, Hun Soo; Yoon, Ho-Kyoung; Tae, Woo Suk; Kim, Yong-Ku; Lee, Min-Soo; Joe, Sook-Haeng; Kim, Hyun; Ham, Byung-Joo
2016-02-15
Recent studies have reported that methylation of the brain-derived neurotrophic factor (BDNF) gene promoter is associated with major depressive disorder (MDD). This study aimed to investigate the association between cortical thickness and methylation of BDNF promoters as well as serum BDNF levels in MDD. The participants consisted of 65 patients with recurrent MDD and 65 age- and gender-matched healthy controls. Methylation of BDNF promoters and cortical thickness were compared between the groups. The right medial orbitofrontal, right lingual, right lateral occipital, left lateral orbitofrontal, left pars triangularis, and left lingual cortices were thinner in patients with MDD than in healthy controls. Among the MDD group, right pericalcarine, right medical orbitofrontal, right rostral middle frontal, right postcentral, right inferior temporal, right cuneus, right precuneus, left frontal pole, left superior frontal, left superior temporal, left rostral middle frontal and left lingual cortices had inverse correlations with methylation of BDNF promoters. Higher levels of BDNF promoter methylation may be closely associated with the reduced cortical thickness among patients with MDD. Serum BDNF levels were significantly lower in MDD, and showed an inverse relationship with BDNF methylation only in healthy controls. Particularly the prefrontal and occipital cortices seem to indicate key regions in which BDNF methylation has a significant effect on structure.
Chan, Adeline; Yan, Jun; Csurhes, Peter; Greer, Judith; McCombe, Pamela
2015-09-15
The aim of this study was to measure the levels of circulating BDNF and the frequency of BDNF-producing T cells after acute ischaemic stroke. Serum BDNF levels were measured by ELISA. Flow cytometry was used to enumerate peripheral blood leukocytes that were labelled with antibodies against markers of T cells, T regulatory cells (Tregs), and intracellular BDNF. There was a slight increase in serum BDNF levels after stroke. There was no overall difference between stroke patients and controls in the frequency of CD4(+) and CD8(+) BDNF(+) cells, although a subgroup of stroke patients showed high frequencies of these cells. However, there was an increase in the percentage of BDNF(+) Treg cells in the CD4(+) population in stroke patients compared to controls. Patients with high percentages of CD4(+) BDNF(+) Treg cells had a better outcome at 6months than those with lower levels. These groups did not differ in age, gender or initial stroke severity. Enhancement of BDNF production after stroke could be a useful means of improving neuroprotection and recovery after stroke. Copyright © 2015 Elsevier B.V. All rights reserved.
Lotrich, Francis E; Albusaysi, Salwa; Ferrell, Robert E
2013-01-01
Depression has been associated with inflammation, and inflammation may both influence and interact with growth factors such as brain-derived neurotrophic factor (BDNF). Both the functional Val66Met BDNF polymorphism (rs6265) and BDNF levels have been associated with depression. It is thus plausible that decreased BDNF could mediate and/or moderate cytokine-induced depression. We therefore prospectively employed the Beck Depression Inventory-II (BDI-II), the Hospital Anxiety and Depression Scale (HADS), and the Montgomery–Asberg Depression Rating Scale (MADRS) in 124 initially euthymic patients during treatment with interferon-alpha (IFN-α), assessing serum BDNF and rs6265. Using mixed-effect repeated measures, lower pretreatment BDNF was associated with higher depression symptoms during IFN-α treatment (F144,17.2=6.8; P<0.0001). However, although the Met allele was associated with lower BDNF levels (F1,83.0=5.0; P=0.03), it was only associated with increased MADRS scores (F4,8.9=20.3; P<0.001), and not the BDI-II or HADS. An exploratory comparison of individual BDI-II items indicated that the Met allele was associated with suicidal ideation, sadness, and worthlessness, but not neurovegetative symptoms. Conversely, the serotonin transporter promoter polymorphism (5-HTTLPR) short allele was associated with neurovegetative symptoms such as insomnia, poor appetite and fatigue, but not sadness, worthlessness, or suicidal ideation. IFN-α therapy further lowered BDNF serum levels (F4,37.7=5.0; P=0.003), but this decrease occurred regardless of depression development. The findings thus do not support the hypothesis that decreasing BDNF is the primary pathway by which IFN-α worsens depression. Nonetheless, the results support the hypothesis that BDNF levels influence resiliency against developing inflammatory cytokine-associated depression, and specifically to a subset of symptoms distinct from those influenced by 5-HTTLPR. PMID:23303061
Luo, Yong; Peng, Mei; Wei, Hong
2017-01-01
Background Melatonin therapy shows positive effects on neuroprotective factor brain-derived neurotrophic factor (BDNF) expression and neuronal apoptosis in neonatal hemolytic hyperbilirubinemia. We hypothesized that melatonin promotes BDNF expression and anti-apoptotic effects in neonatal hemolytic hyperbilirubinemia through a phospholipase (PLC)-mediated mechanism. Material/Methods A phenylhydrazine hydrochloride (PHZ)-induced neonatal hemolytic hyperbilirubinemia model was constructed in neonatal rats. Four experimental groups – a control group (n=30), a PHZ group (n=30), a PHZ + melatonin group (n=30), and a PHZ + melatonin+U73122 (a PLC inhibitor) group (n=30) – were constructed. Trunk blood was assayed for serum hemoglobin, hematocrit, total and direct bilirubin, BDNF, S100B, and tau protein levels. Brain tissue levels of neuronal apoptosis, BDNF expression, PLC activity, IP3 content, phospho- and total Ca2+/calmodulin-dependent protein kinase type IV (CaMKIV) expression, and phospho- and total cAMP response element binding protein (CREB) expression were also assayed. Results PHZ-induced hemolytic hyperbilirubinemia was validated by significantly decreased serum hemoglobin and hematocrit as well as significantly increased total and direct serum bilirubin (p<0.05). Neonatal bilirubin-induced neurotoxicity was validated by significantly decreased serum BDNF, brain BDNF, and serum S100B, along with significantly increased serum tau protein (p<0.05). PHZ-induced hemolytic hyperbilirubinemia significantly decreased serum BDNF, brain BDNF, and PLC/IP3/Ca2+ pathway activation while increasing neuronal apoptosis levels (p<0.05), all of which were partially rescued by melatonin therapy (p<0.05). Pre-treatment with the PLC inhibitor U73122 largely abolished the positive effects of melatonin on PLC/IP3/Ca2+ pathway activation, downstream BDNF levels, and neuronal apoptosis (p<0.05). Conclusions Promotion of BDNF expression and anti-apoptotic effects in neonatal hemolytic hyperbilirubinemia by melatonin largely operates via a PLC-mediated mechanism. PMID:29247156
Geisel, Olga; Hellweg, Rainer; Müller, Christian A
2016-06-30
The neurotrophin brain-derived neurotrophic factor (BDNF) has been suggested to be involved in the development and maintenance of addictive and other psychiatric disorders. Also, interactions of γ-aminobutyric acid (GABA)-ergic compounds and BDNF have been reported. The objective of this study was to investigate serum levels of BDNF over time in alcohol-dependent patients receiving individually titrated high-dose treatment (30-270mg/d) with the GABA-B receptor agonist baclofen or placebo for up to 20 weeks. Serum levels of BDNF were measured in patients of the baclofen/placebo group at baseline (t0), 2 weeks after reaching individual high-dose of baclofen/placebo treatment (t1) and after termination of study medication (t2) in comparison to carefully matched healthy controls. No significant differences in serum levels of BDNF between the baclofen and the placebo group or healthy controls were found at t0, t1, or at t2. Based on these findings, it seems unlikely that baclofen exerts a direct effect on serum levels of BDNF in alcohol-dependent patients. Future studies are needed to further explore the mechanism of action of baclofen and its possible relationship to BDNF in alcohol use disorders. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Shojaei, Shahla; Ghavami, Saeid; Panjehshahin, Mohammad Reza; Owji, Ali Akbar
2015-01-01
We aimed to compare the effects of oral ethanol (Eth) alone or combined with the phytoestrogen resveratrol (Rsv) on the expression of various brain-derived neurotrophic factor (BDNF) transcripts and the encoded protein pro-BDNF in the hippocampus of pregnant and embryonic rats. A low (0.25 g/kg body weight (BW)/day) dose of Eth produced an increase in the expression of BDNF exons I, III and IV and a decrease in that of the exon IX in embryos, but failed to affect BDNF transcript and pro-BDNF protein expression in adults. However, co-administration of Eth 0.25 g/kg·BW/day and Rsv led to increased expression of BDNF exons I, III and IV and to a small but significant increase in the level of pro-BDNF protein in maternal rats. A high (2.5 g/kg·BW/day) dose of Eth increased the expression of BDNF exons III and IV in embryos, but it decreased the expression of exon IX containing BDNF mRNAs in the maternal rats. While the high dose of Eth alone reduced the level of pro-BDNF in adults, it failed to change the levels of pro-BDNF in embryos. Eth differentially affects the expression pattern of BDNF transcripts and levels of pro-BDNF in the hippocampus of both adult and embryonic rats. PMID:26703578
Karamustafalioglu, Nesrin; Genc, Abdullah; Kalelioglu, Tevfik; Tasdemir, Akif; Umut, Gokhan; Incir, Said; Akkuş, Mustafa; Emul, Murat
2015-08-01
Inconsistent findings concerning brain-derived neurotrophic factor (BDNF) levels across different episodes in bipolar disorder have been reported, which is also in line with the treatment effects on BDNF levels in acute mania. We aimed to compare plasma BDNF level alterations after pure antipsychotic drug or ECT plus antipsychotic drug treatment in acute mania. Sixty-eight patients with mania were divided into two treatment arms: the antipsychotic treatment arm (AP) and electroconvulsive therapy (ECT)+AP arm. In addition, 30 healthy controls were included in the study. There was no significant statistical difference according to mean age, education level, marital and working status between patients and healthy controls. The initial serum BDNF level in patients with acute mania was significantly lower than healthy controls. The initial BDNF level between the ECT arm and AP arm was not significant. The BDNF level decreased significantly after reaching remission in patients with acute mania. The change in BDNF level in the AP arm was not significant while in the ECT arm it was significant after treatment. In this study, for the first time we revealed a significant decrease in BDNF levels after ECT sessions in acute manic patients. Besides clinical remission after treatment in acute mania, the decrement in BDNF levels does not seem to be related to clinical response. Thus cumulative effects of mood episodes for the ongoing decrease in BDNF levels might be borne in mind despite the achievement of remission and/or more time being required for an increase in BDNF levels after treatment. © The Author(s) 2015.
Brain-Derived Neurotrophic Factor in Alzheimer's Disease: Risk, Mechanisms, and Therapy.
Song, Jing-Hui; Yu, Jin-Tai; Tan, Lan
2015-12-01
Brain-derived neurotrophic factor (BDNF) has a neurotrophic support on neuron of central nervous system (CNS) and is a key molecule in the maintenance of synaptic plasticity and memory storage in hippocampus. However, changes of BDNF level and expression have been reported in the CNS as well as blood of Alzheimer's disease (AD) patients in the last decade, which indicates a potential role of BDNF in the pathogenesis of AD. Therefore, this review aims to summarize the latest progress in the field of BDNF and its biological roles in AD pathogenesis. We will discuss the interaction between BDNF and amyloid beta (Aβ) peptide, the effect of BDNF on synaptic repair in AD, and the association between BDNF polymorphism and AD risk. The most important is, enlightening the detailed biological ability and complicated mechanisms of action of BDNF in the context of AD would provide a future BDNF-related remedy for AD, such as increment in the production or release of endogenous BDNF by some drugs or BDNF mimics.
Nosrat, Irina V; Margolskee, Robert F; Nosrat, Christopher A
2012-05-11
Brain-derived neurotrophic factor (BDNF) is the most potent neurotrophic factor in the peripheral taste system during embryonic development. It is also expressed in adult taste buds. There is a lack of understanding of the role of BDNF in the adult taste system. To address this, we generated novel transgenic mice in which transgene expression was driven by an α-gustducin promoter coupling BDNF expression to the postnatal expression of gustducin in taste cells. Immunohistochemistry revealed significantly stronger BDNF labeling in taste cells of high BDNF-expressing mouse lines compared with controls. We show that taste buds in these mice are significantly larger and have a larger number of taste cells compared with controls. To examine whether innervation was affected in Gust-BDNF mice, we used antibodies to neural cell adhesion molecule (NCAM) and ATP receptor P2X3. The total density of general innervation and specifically the gustatory innervation was markedly increased in high BDNF-expressing mice compared with controls. TrkB and NCAM gene expression in laser capture microdissected taste epithelia were significantly up-regulated in these mice. Up-regulation of TrkB transcripts in taste buds and elevated taste cell-specific TrkB phosphorylation in response to increased BDNF levels indicate that BDNF controls the expression and activation of its high affinity receptor in taste cells. This demonstrates a direct taste cell function for BDNF. BDNF also orchestrates and maintains taste bud innervation. We propose that the Gust-BDNF transgenic mouse models can be employed to further dissect the specific roles of BDNF in the adult taste system.
Nosrat, Irina V.; Margolskee, Robert F.; Nosrat, Christopher A.
2012-01-01
Brain-derived neurotrophic factor (BDNF) is the most potent neurotrophic factor in the peripheral taste system during embryonic development. It is also expressed in adult taste buds. There is a lack of understanding of the role of BDNF in the adult taste system. To address this, we generated novel transgenic mice in which transgene expression was driven by an α-gustducin promoter coupling BDNF expression to the postnatal expression of gustducin in taste cells. Immunohistochemistry revealed significantly stronger BDNF labeling in taste cells of high BDNF-expressing mouse lines compared with controls. We show that taste buds in these mice are significantly larger and have a larger number of taste cells compared with controls. To examine whether innervation was affected in Gust-BDNF mice, we used antibodies to neural cell adhesion molecule (NCAM) and ATP receptor P2X3. The total density of general innervation and specifically the gustatory innervation was markedly increased in high BDNF-expressing mice compared with controls. TrkB and NCAM gene expression in laser capture microdissected taste epithelia were significantly up-regulated in these mice. Up-regulation of TrkB transcripts in taste buds and elevated taste cell-specific TrkB phosphorylation in response to increased BDNF levels indicate that BDNF controls the expression and activation of its high affinity receptor in taste cells. This demonstrates a direct taste cell function for BDNF. BDNF also orchestrates and maintains taste bud innervation. We propose that the Gust-BDNF transgenic mouse models can be employed to further dissect the specific roles of BDNF in the adult taste system. PMID:22442142
Brain-derived Neurotrophic Factor (BDNF) and gray matter volume in bipolar disorder.
Poletti, S; Aggio, V; Hoogenboezem, T A; Ambrée, O; de Wit, H; Wijkhuijs, A J M; Locatelli, C; Colombo, C; Arolt, V; Drexhage, H A; Benedetti, F
2017-02-01
Bipolar Disorder (BD) is a severe psychiatric condition characterized by grey matter (GM) volumes reduction. Neurotrophic factors have been suggested to play a role in the neuroprogressive changes during the illness course. In particular peripheral brain-derived neurotrophic factor (BDNF) has been proposed as a potential biomarker related to disease activity and neuroprogression in BD. The aim of our study was to investigate if serum levels of BDNF are associated with GM volumes in BD patients and healthy controls (HC). We studied 36 inpatients affected by a major depressive episode in course of BD type I and 17 HC. Analysis of variance was performed to investigate the effect of diagnosis on GM volumes in the whole brain. Threshold for significance was P<0.05, Family Wise Error (FWE) corrected for multiple comparisons. All the analyses were controlled for the effect of nuisance covariates known to influence GM volumes, such as age, gender and lithium treatment. BD patients showed significantly higher serum BDNF levels compared with HC. Reduced GM volumes in BD patients compared to HC were observed in several brain areas, encompassing the caudate head, superior temporal gyrus, insula, fusiform gyrus, parahippocampal gyrus, and anterior cingulate cortex. The interaction analysis between BDNF levels and diagnosis showed a significant effect in the middle frontal gyrus. HC reported higher BDNF levels associated with higher GM volumes, whereas no association between BDNF and GM volumes was observed in BD. Our study seems to suggest that although the production of BDNF is increased in BD possibly to prevent and repair neural damage, its effects could be hampered by underlying neuroinflammatory processes interfering with the neurodevelopmental role of BDNF. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Hori, Hikaru; Yoshimura, Reiji; Katsuki, Asuka; Atake, Kiyokazu; Igata, Ryohei; Konishi, Yuki; Nakamura, Jun
2017-08-01
Catecholamines, brain-derived neurotrophic factor (BDNF) and cytokines may be involved in the pathophysiology of schizophrenia. The aim of this study was to examine the associations between serum BDNF levels, plasma catecholamine metablolites, cytokines and the cognitive functions of patients with schizophrenia treated with atypical antipsychotic monotherapy. One hundred and forty-six patients with schizophrenia and 51 age- and sex-matched healthy controls were examined for peripheral biological markers and neurocognitive test. There were positive correlations between serum BDNF levels and scores for verbal memory and attention and processing speed as well as between serum BDNF levels and negative symptoms. Furthermore, there was a negative correlation between the plasma homovanillic acid (HVA) level and motor function and a positive correlation between the plasma 3-methoxy-4-hydroxyphenylglycol (MHPG) level and attention and processing speed. There were no significant correlations between interleukin-6 or tumour necrosis factor alpha and cognitive function. Moreover, there were no significant correlations between the plasma levels of HVA, MHPG, cytokines and clinical symptoms. Serum BDNF levels are positively related to the impairment of verbal memory and attention, plasma HVA levels are positively related to motor function, and plasma MHPG levels are positively related to attention in patients with schizophrenia.
Yan, Bo-jing; Wu, Zhi-zhong; Chong, Wei-hua; Li, Gen-lin
2016-01-01
Several studies have investigated the protective functions of brain-derived neurotrophic factor (BDNF) in retinitis pigmentosa. However, a BDNF-based therapy for retinitis pigmentosa is not yet available. To develop an efficient treatment for fundus disease, an eukaryotic expression plasmid was generated and used to transfect human 293T cells to assess the expression and bioactivity of BDNF on acute retinal pigment epithelial-19 (ARPE-19) cells, a human retinal epithelial cell line. After 96 hours of co-culture in a Transwell chamber, ARPE-19 cells exposed to BDNF secreted by 293T cells were more viable than ARPE-19 cells not exposed to secreted BDNF. Western blot assay showed that Bax levels were downregulated and that Bcl-2 levels were upregulated in human ARPE-19 cells exposed to BDNF. Furthermore, 293T cells transfected with the BDNF gene steadily secreted the protein. The powerful anti-apoptotic function of this BDNF may be useful for the treatment of retinitis pigmentosa and other retinal degenerative diseases. PMID:28197196
Akay, Aynur Pekcanlar; Resmi, Halil; Güney, Sevay Alsen; Erkuran, Handan Özek; Özyurt, Gonca; Sargin, Enis; Topuzoglu, Ahmet; Tufan, Ali Evren
2018-01-01
Brain-derived neurotrophic factor (BDNF) is an important neurotrophin in the brain that modulates dopaminergic neurons. In this study, we aimed to investigate the changes in serum BDNF levels of children with attention-deficit/hyperactivity disorder (ADHD) in response to OROS methylphenidate treatment. We also aimed to determine whether there were any pre-post-differences between ADHD subtypes and comorbid psychiatric disorders in serum BDNF levels. Fifty male children with ADHD and 50 male healthy controls within the age range of 6-12 years were recruited to the study. The psychiatric diagnoses were determined by applying a structured interview with Kiddie schedule for affective disorders and schizophrenia for school-age children-present and lifetime version. The symptom severity of ADHD was measured using the Clinical Global Impression ADHD Severity Scale (CGI-S). Physicians completed Du Paul ADHD questionnaires. The levels of serum BDNF were assessed before and after 8 weeks of treatment with effective dosages of OROS methylphenidate. In the present study, the mean serum BDNF levels of boys with ADHD and of the healthy controls were 2626.33 ± 1528.05 and 2989.11 ± 1420.08 pg/mL, respectively. Although there were no statistically significant difference between the ADHD group and healthy controls at baseline (p = 0.22), the increase of serum BDNF was statistically significant from baseline to endpoint in the ADHD group (p = 0.04). The mean serum BDNF levels at baseline and endpoint of the ADHD group were 2626.33 ± 1528.05 and 3255.80 ± 1908.79 pg/mL, respectively. The serum BDNF levels of ADHD-inattentive subtype were significantly lower at baseline (p = 0.02), whereas BDNF levels post-treatment showed no significant difference. The increase of serum BDNF levels with methylphenidate treatment after 8 weeks was significantly higher in the inattentive group (p = 0.005). The increase of serum BDNF levels with methylphenidate treatment after 8 weeks in boys with ADHD may support the potential role of BDNF in the pathophysiology of ADHD. The role of BDNF in ADHD subtypes in particular should be evaluated with further, larger studies.
Plasma BDNF Concentration, Val66Met Genetic Variant, and Depression-Related Personality Traits
Terracciano, Antonio; Martin, Bronwen; Ansari, David; Tanaka, Toshiko; Ferrucci, Luigi; Maudsley, Stuart; Mattson, Mark P.; Costa, Paul T.
2010-01-01
Brain derived neurotrophic factor (BDNF) regulates synaptic plasticity and neurogenesis, and BDNF plasma and serum levels have been associated with depression, Alzheimer's disease, and other psychiatric and neurodegenerative disorders. In a relatively large community sample, drawn from the Baltimore Longitudinal Study of Aging (BLSA), we examine whether BDNF plasma concentration is associated with the Val66Met functional polymorphism of the BDNF gene (n = 335) and with depression-related personality traits assessed with the NEO-PI-R (n = 391). Plasma concentration of BDNF was not associated with the Val66Met variant in either men or women. However, in men, but not in women, BDNF plasma level was associated with personality traits linked to depression. Contrary to the notion that low BDNF is associated with negative outcomes, we found lower plasma levels in men who score lower on depression and vulnerability to stress (two facets of Neuroticism) and higher on Conscientiousness and Extraversion. These findings challenge the prevailing hypothesis that lower peripheral levels of BDNF are a marker of depression. PMID:20345896
Raivio, Noora; Miettinen, Pekka; Kiianmaa, Kalervo
2014-09-04
We have shown recently that acute administration of ethanol modulates the expression of brain-derived neurotrophic factor (BDNF) in several rat brain areas known to be involved in the development of addiction to ethanol and other drugs of abuse, suggesting that BDNF may be a factor contributing to the neuroadaptive changes set in motion by ethanol exposure. The purpose of the present study was to further clarify the role of BDNF in reinforcement from ethanol and in the development of addiction to ethanol by specifying the effect of acute administration of ethanol (1.5 or 3.0 g/kg i.p.) on the expression profile of BDNF mRNA in the ventral tegmental area and in the terminal areas of the mesolimbic dopamine pathway in the brain of alcohol-preferring AA and alcohol-avoiding ANA rats, selected for high and low voluntary ethanol intake, respectively. The level of BDNF mRNA expression was higher in the amygdala and ventral tegmental area of AA than in those of ANA rats, and there was a trend for a higher level in the nucleus accumbens. In the amygdala and hippocampus, a biphasic change in the BDNF mRNA levels was detected: the levels were decreased at 3 and 6h but increased above the basal levels at 24h. Furthermore, there was a difference between the AA and ANA lines in the effect of ethanol, the ANA rats showing an increase in BDNF mRNA levels while such a change was not seen in AA rats. These findings suggest that the innate levels of BDNF expression may play a role in the mediation of the reinforcing effects of ethanol and in the control of ethanol intake. Copyright © 2014 Elsevier B.V. All rights reserved.
Involvement of Brain-Derived Neurotrophic Factor in Late-Life Depression
Dwivedi, Yogesh
2013-01-01
Brain-derived neurotrophic factor (BDNF), one of the major neurotrophic factors, plays an important role in the maintenance and survival of neurons, synaptic integrity, and synaptic plasticity. Evidence suggests that BDNF is involved in major depression, such that the level of BDNF is decreased in depressed patients and that antidepressants reverse this decrease. Stress, a major factor in depression, also modulates BDNF expression. These studies have led to the proposal of the neurotrophin hypothesis of depression. Late-life depression is associated with disturbances in structural and neural plasticity as well as impairments in cognitive behavior. Stress and aging also play a crucial role in late-life depression. Many recent studies have suggested that not only expression of BDNF is decreased in the serum/plasma of patients with late-life depression, but structural abnormalities in the brain of these patients may be associated with a polymorphism in the BDNF gene, and that there is a relationship between a BDNF polymorphism and antidepressant remission rates. This review provides a critical review of the involvement of BDNF in major depression, in general, and in late-life depression, in particular. PMID:23570887
Newton, Dwight F; Naiberg, Melanie R; Andreazza, Ana C; Scola, Gustavo; Dickstein, Daniel P; Goldstein, Benjamin I
2017-02-01
Executive dysfunction is common and impairing in youth bipolar disorder (BD), and oxidative stress (OS) and brain-derived neurotrophic factor (BDNF) have been implicated in executive deficits of adult BD. This study aimed to determine the association between OS and executive dysfunction in BD adolescents and the influence of BDNF on this association. Serum levels of lipid hydroperoxides (LPH) and 4-hydroxy-2-nonenal (4-HNE) and BDNF levels were measured in 29 BD and 25 control adolescents. The intra-extra-dimensional (IED) set-shifting task assessed executive function. Lower IED scores indicated better performance. High and low BDNF subgroups were defined by median split. IED Z-scores were impaired in the BD group compared to controls, whereas biomarker levels were not significantly different between groups. LPH-BDNF correlations were significantly different between BD and controls (Z = 2.046, p = 0.041). In high BDNF BD subjects, LPH was significantly positively correlated with IED completed stage trials (ρ = 0.755, p = 0.001) and pre-extra-dimensional shift errors (ρ = 0.588, p = 0.017). Correlations were opposite in controls. In a linear model, LPH, BDNF, and the LPH-BDNF interaction each significantly explained variance of IED total trials (adjusted) (model r 2 = 0.187, F = 2.811, p = 0.035). There is a negative association between LPH and executive function in BD adolescents, which may be modulated by BDNF. LPH and BDNF may be useful biomarkers of executive function in BD. These findings highlight the importance of examining multiple peripheral biomarkers in relation to cognitive functions in BD adolescents. Future studies should explore these factors in longitudinal designs to determine the directionality of observed associations.
Goltz, Annemarie; Janowitz, Deborah; Hannemann, Anke; Nauck, Matthias; Hoffmann, Johanna; Seyfart, Tom; Völzke, Henry; Terock, Jan; Grabe, Hans Jörgen
2018-06-19
Depression and obesity are widespread and closely linked. Brain-derived neurotrophic factor (BDNF) and vitamin D are both assumed to be associated with depression and obesity. Little is known about the interplay between vitamin D and BDNF. We explored the putative associations and interactions between serum BDNF and vitamin D levels with depressive symptoms and abdominal obesity in a large population-based cohort. Data were obtained from the population-based Study of Health in Pomerania (SHIP)-Trend (n = 3,926). The associations of serum BDNF and vitamin D levels with depressive symptoms (measured using the Patient Health Questionnaire) were assessed with binary and multinomial logistic regression models. The associations of serum BDNF and vitamin D levels with obesity (measured by the waist-to-hip ratio [WHR]) were assessed with binary logistic and linear regression models with restricted cubic splines. Logistic regression models revealed inverse associations of vitamin D with depression (OR = 0.966; 95% CI 0.951-0.981) and obesity (OR = 0.976; 95% CI 0.967-0.985). No linear association of serum BDNF with depression or obesity was found. However, linear regression models revealed a U-shaped association of BDNF with WHR (p < 0.001). Vitamin D was inversely associated with depression and obesity. BDNF was associated with abdominal obesity, but not with depression. At the population level, our results support the relevant roles of vitamin D and BDNF in mental and physical health-related outcomes. © 2018 S. Karger AG, Basel.
Su, Hang; Tao, Jingyan; Zhang, Jie; Xie, Ying; Wang, Yue; Zhang, Yu; Han, Bin; Lu, Yuling; Sun, Haiwei; Wei, Youdan; Zou, Shengzhen; Wu, Wenxiu; Zhang, Jiajia; Xu, Ke; Zhang, Xiangyang; He, Jincai
2015-10-01
Studies suggest that a functional polymorphism of the brain-derived neurotrophic factor gene (BDNF Val66Met) may contribute to methamphetamine dependence. We hypothesized that this polymorphism had a role in cognitive deficits in methamphetamine-dependent patients and in the relationship of serum BDNF with cognitive impairments. We conducted a case-control study by assessing 194 methamphetamine-dependent patients and 378 healthy volunteers without history of drug use on the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) and the presence of the BDNF Val66Met polymorphism and serum BDNF levels. We showed no significant differences in genotype and allele distributions between the methamphetamine-dependent patients and controls. Some aspects of cognitive function significantly differed in the 2 groups. The serum BDNF levels in methamphetamine-dependent patients were significantly higher than those of the healthy controls. In the patients, partial correlation analysis showed a significant positive correlation between serum BDNF and the delayed memory index score. The RBANS scores showed statistically significant BDNF level × genotype interaction. Further regression analyses showed a significant positive association between BDNF levels and the RBANS total score, immediate memory or attention index among Val homozygote patients, whereas a significant negative association of BDNF levels with the RBANS total score, visuospatial/constructional, or language index was found among Met/Val heterozygous patients. We demonstrated significant impairment on some aspects of cognitive function and increased BDNF levels in methamphetamine-dependent patients as well as genotypic differences in the relationships between BDNF levels and RBANS scores on the BDNF Val66Met polymorphism only in these patients.
Russo, Francesco; Chimienti, Guglielmina; Clemente, Caterina; Ferreri, Carla; Orlando, Antonella; Riezzo, Giuseppe
2017-03-01
A gluten-free diet (GFD) has been reported to negatively impact the quality of life (QoL) of coeliac disease (CD) patients. The gut-brain axis hormones ghrelin and leptin, with the brain-derived neurotrophic factor (BDNF), may affect QoL of CD patients undergoing GFD. Our aims were to evaluate whether: (a) the circulating concentrations of leptin, ghrelin and BDNF in CD patients were different from those in healthy subjects; (b) GFD might induce changes in their levels; (c) BDNF Val66Met polymorphism variability might affect BDNF levels; and (d) serum BDNF levels were related to dietary docosahexaenoic acid (DHA) as a neurotrophin modulator. Nineteen adult coeliac patients and 21 healthy controls were included. A QoL questionnaire was administered, and serum concentrations of ghrelin, leptin, BDNF and red blood cell membrane DHA levels were determined at the enrolment and after 1 year of GFD. BDNF Val66Met polymorphism was analysed. Results from the questionnaire indicated a decline in QoL after GFD. Ghrelin and leptin levels were not significantly different between groups. BDNF levels were significantly (p = 0.0213) lower in patients after GFD (22.0 ± 2.4 ng/ml) compared to controls (31.2 ± 2.2 ng/ml) and patients at diagnosis (25.0 ± 2.5 ng/ml). BDNF levels correlated with DHA levels (p = 0.008, r = 0.341) and the questionnaire total score (p = 0.041, r = 0.334). Ghrelin and leptin seem to not be associated with changes in QoL of patients undergoing dietetic treatment. In contrast, a link between BDNF reduction and the vulnerability of CD patients to psychological distress could be proposed, with DHA representing a possible intermediate.
D’Souza, Deepak Cyril; Pittman, Brian; Perry, Edward; Simen, Arthur
2009-01-01
Background Acute and chronic exposure to cannabinoids has been associated with cognitive deficits, a higher risk for schizophrenia and other drug abuse. However, the precise mechanism underlying such effects is not known. Preclinical studies suggest that cannabinoids modulate brain-derived neurotrophic factor (BDNF). Accordingly, we hypothesized that Δ9-tetrahydrocannabinol (Δ9-THC), the principal active component of cannabis, would alter BDNF levels in humans. Materials and methods Healthy control subjects (n=14) and light users of cannabis (n=9) received intravenous administration of (0.0286 mg/kg) Δ9-THC in a double-blind, fixed order, placebo-controlled, laboratory study. Serum sampled at baseline, after placebo administration, and after Δ9-THC administration was assayed for BDNF using ELISA. Results Δ9-THC increased serum BDNF levels in healthy controls but not light users of cannabis. Further, light users of cannabis had lower basal BDNF levels. Δ9-THC produced psychotomimetic effects, perceptual alterations, and “high” and spatial memory impairments. Implications The effects of socially relevant doses of cannabinoids on BDNF suggest a possible mechanism underlying the consequences of exposure to cannabis. This may be of particular importance for the developing brain and also in disorders believed to involve altered neurodevelopment such as schizophrenia. Larger studies to investigate the effects of cannabinoids on BDNF and other neurotrophins are warranted. PMID:18807247
Li, Wensheng; Dou, Zhongling; We, Shuguang; Zhu, Zhiyi; Pan, Dong; Jia, Zhaohui; Liu, Hui; Wang, Xiaobin; Yu, Guoqiang
2018-06-01
The underlying molecular mechanisms of prostate cancer (CaP) are largely unknown. We investigated the expression, prognostic value and functional role of long non-coding RNA (lncRNA) brain-derived neurotrophin factor antisense (BDNF-AS) in CaP. Clinical tumor samples were excised from patients with CaP. Their endogenous BDNF-AS expression levels were evaluated by qRT-PCR. Correlations between CaP patients' endogenous BDNF-AS expression and their clinicopathological factors, overall survival were statistically analyzed. BDNF-AS expression levels were also probed in immortal CaP cell lines. In LNCaP and PC-3 cells, BDNF-AS was ectopically overexpressed through lentiviral transduction. The functions of BDNF-AS upregulation on CaP cell development were evaluated both in vitro and in vivo. BDNF-AS was downregulated in human CaP tumors. Low BDNF-AS expression was correlated with CaP patients' poor prognosis and shorter overall survival. BDNF-AS was also found to be lowly expressed in CaP cell lines. In LNCaP and PC-3 cells, lentivirus-driven BDNF-AS overexpression exerted significantly tumor-suppressing effects on hindering cancer cell proliferation and invasion in vitro, and explant growth in vivo. Downregulated BDNF-AS in CaP patients could be a potential prognostic biomarker for predicating poor prognosis and survival. Upregulating BDNF-AS may be a novel molecular intervening target for CaP treatment. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Plasma BDNF levels following weight recovery in anorexia nervosa.
Phillips, Kathryn E; Jimerson, David C; Pillai, Anilkumar; Wolfe, Barbara E
2016-10-15
Preclinical studies have implicated brain-derived neurotrophic factor (BDNF) in the regulation of eating behavior and body weight. As reviewed in this report, prior studies of BDNF levels in anorexia nervosa have yielded variable results, perhaps reflecting effects of malnutrition and psychiatric comorbidity. The goal of the current report was to assess plasma BDNF as a biomarker in weight-recovered individuals with a history of anorexia nervosa (ANWR). Study groups included women meeting criteria for ANWR and healthy female controls. Participants were in a normal weight range, free of current major psychiatric disorder, and free of medication. Self-ratings included eating disorder symptoms, depression and anxiety. Plasma BDNF levels were measured by enzyme linked immunoassay. Plasma BDNF levels were not significantly different for ANWR and control groups. Plasma BDNF levels were inversely correlated with anxiety ratings in controls (p<0.02) but not in the ANWR group. This report provides new evidence that circulating BDNF concentrations do not differ in healthy controls and ANWR free of psychiatric comorbidity. Additionally, the data provide new information on the relationship between plasma BDNF and anxiety in these two study groups. Copyright © 2016 Elsevier Inc. All rights reserved.
Hamatake, Michiko; Miyazaki, Noriko; Sudo, Kaori; Matsuda, Motoko; Sadakata, Tetsushi; Furuya, Asako; Ichisaka, Satoshi; Hata, Yoshio; Nakagawa, Chiaki; Nagata, Koh-ichi; Furuichi, Teiichi; Katoh-Semba, Ritsuko
2011-01-01
In adult rat brains, brain-derived neurotrophic factor (BDNF) rhythmically oscillates according to the light-dark cycle and exhibits unique functions in particular brain regions. However, little is known of this subject in juvenile rats. Here, we examined diurnal variation in BDNF and neurotrophin-3 (NT-3) levels in 14-day-old rats. BDNF levels were high in the dark phase and low in the light phase in a majority of brain regions. In contrast, NT-3 levels demonstrated an inverse phase relationship that was limited to the cerebral neocortex, including the visual cortex, and was most prominent on postnatal day 14. An 8-h phase advance of the light-dark cycle and sleep deprivation induced an increase in BDNF levels and a decrease in NT-3 levels in the neocortex, and the former treatment reduced synaptophysin expression and the numbers of synaptophysin-positive presynaptic terminals in cortical layer IV and caused abnormal BDNF and NT-3 rhythms 1 week after treatment. A similar reduction of synaptophysin expression was observed in the cortices of Bdnf gene-deficient mice and Ca2+-dependent activator protein for secretion 2 gene-deficient mice with abnormal free-running rhythm and autistic-like phenotypes. In the latter mice, no diurnal variation in BDNF levels was observed. These results indicate that regular rhythms of BDNF and NT-3 are essential for correct cortical network formation in juvenile rodents. PMID:21527636
Hamatake, Michiko; Miyazaki, Noriko; Sudo, Kaori; Matsuda, Motoko; Sadakata, Tetsushi; Furuya, Asako; Ichisaka, Satoshi; Hata, Yoshio; Nakagawa, Chiaki; Nagata, Koh-ichi; Furuichi, Teiichi; Katoh-Semba, Ritsuko
2011-06-17
In adult rat brains, brain-derived neurotrophic factor (BDNF) rhythmically oscillates according to the light-dark cycle and exhibits unique functions in particular brain regions. However, little is known of this subject in juvenile rats. Here, we examined diurnal variation in BDNF and neurotrophin-3 (NT-3) levels in 14-day-old rats. BDNF levels were high in the dark phase and low in the light phase in a majority of brain regions. In contrast, NT-3 levels demonstrated an inverse phase relationship that was limited to the cerebral neocortex, including the visual cortex, and was most prominent on postnatal day 14. An 8-h phase advance of the light-dark cycle and sleep deprivation induced an increase in BDNF levels and a decrease in NT-3 levels in the neocortex, and the former treatment reduced synaptophysin expression and the numbers of synaptophysin-positive presynaptic terminals in cortical layer IV and caused abnormal BDNF and NT-3 rhythms 1 week after treatment. A similar reduction of synaptophysin expression was observed in the cortices of Bdnf gene-deficient mice and Ca(2+)-dependent activator protein for secretion 2 gene-deficient mice with abnormal free-running rhythm and autistic-like phenotypes. In the latter mice, no diurnal variation in BDNF levels was observed. These results indicate that regular rhythms of BDNF and NT-3 are essential for correct cortical network formation in juvenile rodents.
Genetically defined fear-induced aggression: Focus on BDNF and its receptors.
Ilchibaeva, Tatiana V; Tsybko, Anton S; Kozhemyakina, Rimma V; Kondaurova, Elena M; Popova, Nina K; Naumenko, Vladimir S
2018-05-02
Brain-derived neurotrophic factor (BDNF), its precursor proBDNF, BDNF pro-peptide, BDNF mRNA levels, as well as TrkB and p75 NTR receptors mRNA and protein levels, were studied in the brain of rats, selectively bred for more than 85 generations for either the high level or the lack of fear-induced aggressive behavior. Furthermore, we have found that rats of aggressive strain demonstrated both high level of aggression toward humans and increased amplitude of acoustic startle response compared to rats selectively bred for the lack of fear-induced aggression. Significant increase in the BDNF mRNA, mature BDNF and proBDNF protein levels in the raphe nuclei (RN), hippocampus (Hc), nucleus accumbens (NAcc), amygdala, striatum and hypothalamus (Ht) of aggressive rats was revealed. The BDNF/proBDNF ratio was significantly reduced in the Hc and NAcc of highly aggressive rats suggesting prevalence of the proBDNF in these structures. In the Hc and frontal cortex (FC) of aggressive rats, the level of the full-length TrkB (TrkB-FL) receptor form was decreased, whereas the truncated TrkB (TrkB-T) protein level was increased in the RN, FC, substantia nigra and Ht. The TrkB-FL/TrkB-T ratio was significantly decreased in highly aggressive rats suggesting TrkB-T is predominant in highly aggressive rats. The p75 NTR expression was slightly changed in majority of studied brain structures of aggressive rats. The data indicate the BDNF system in the brain of aggressive and nonaggressive animals is extremely different at all levels, from transcription to reception, suggesting significant role of BDNF system in the development of highly aggressive phenotype. Copyright © 2018 Elsevier B.V. All rights reserved.
BDNF mediates improvements in executive function following a 1-year exercise intervention
Leckie, Regina L.; Oberlin, Lauren E.; Voss, Michelle W.; Prakash, Ruchika S.; Szabo-Reed, Amanda; Chaddock-Heyman, Laura; Phillips, Siobhan M.; Gothe, Neha P.; Mailey, Emily; Vieira-Potter, Victoria J.; Martin, Stephen A.; Pence, Brandt D.; Lin, Mingkuan; Parasuraman, Raja; Greenwood, Pamela M.; Fryxell, Karl J.; Woods, Jeffrey A.; McAuley, Edward; Kramer, Arthur F.; Erickson, Kirk I.
2014-01-01
Executive function declines with age, but engaging in aerobic exercise may attenuate decline. One mechanism by which aerobic exercise may preserve executive function is through the up-regulation of brain-derived neurotropic factor (BDNF), which also declines with age. The present study examined BDNF as a mediator of the effects of a 1-year walking intervention on executive function in 90 older adults (mean age = 66.82). Participants were randomized to a stretching and toning control group or a moderate intensity walking intervention group. BDNF serum levels and performance on a task-switching paradigm were collected at baseline and follow-up. We found that age moderated the effect of intervention group on changes in BDNF levels, with those in the highest age quartile showing the greatest increase in BDNF after 1-year of moderate intensity walking exercise (p = 0.036). The mediation analyses revealed that BDNF mediated the effect of the intervention on task-switch accuracy, but did so as a function of age, such that exercise-induced changes in BDNF mediated the effect of exercise on task-switch performance only for individuals over the age of 71. These results demonstrate that both age and BDNF serum levels are important factors to consider when investigating the mechanisms by which exercise interventions influence cognitive outcomes, particularly in elderly populations. PMID:25566019
Naert, G; Zussy, C; Tran Van Ba, C; Chevallier, N; Tang, Y-P; Maurice, T; Givalois, L
2015-11-01
Brain-derived neurotrophic factor (BDNF) appears to be highly involved in hypothalamic-pituitary-adrenal (HPA) axis regulation during adulthood, playing an important role in homeostasis maintenance. The present study aimed to determine the involvement of BDNF in HPA axis activity under basal and stress conditions via partial inhibition of this endogenous neurotrophin. Experiments were conducted in rats and mice with two complementary approaches: (i) BDNF knockdown with stereotaxic delivery of BDNF-specific small interfering RNA (siRNA) into the lateral ventricle of adult male rats and (ii) genetically induced knockdown (KD) of BDNF expression specifically in the central nervous system during the first ontogenesis in mice (KD mice). Delivery of siRNA in the rat brain decreased BDNF levels in the hippocampus (-31%) and hypothalamus (-35%) but not in the amygdala, frontal cortex and pituitary. In addition, siRNA induced no change of the basal HPA axis activity. BDNF siRNA rats exhibited decreased BDNF levels and concomitant altered adrenocortoctrophic hormone (ACTH) and corticosterone responses to restraint stress, suggesting the involvement of BDNF in the HPA axis adaptive response to stress. In KD mice, BDNF levels in the hippocampus and hypothalamus were decreased by 20% in heterozygous and by 60% in homozygous animals compared to wild-type littermates. Although, in heterozygous KD mice, no significant change was observed in the basal levels of plasma ACTH and corticosterone, both hormones were significantly increased in homozygous KD mice, demonstrating that robust cerebral BDNF inhibition (60%) is necessary to affect basal HPA axis activity. All of these results in both rats and mice demonstrate the involvement and importance of a robust endogenous pool of BDNF in basal HPA axis regulation and the pivotal function of de novo BDNF synthesis in the establishment of an adapted response to stress. © 2015 British Society for Neuroendocrinology.
Mouri, Akihiro; Noda, Yukihiro; Niwa, Minae; Matsumoto, Yurie; Mamiya, Takayoshi; Nitta, Atsumi; Yamada, Kiyofumi; Furukawa, Shoei; Iwamura, Tatsunori; Nabeshima, Toshitaka
2017-06-30
3,4-Methylenedioxymethamphetamine (MDMA) is known to induce dependence and psychosis in humans. Brain-derived neurotrophic factor (BDNF) is involved in the synaptic plasticity and neurotrophy in midbrain dopaminergic neurons. This study aimed to investigate the role of BDNF in MDMA-induced dependence and psychosis. A single dose of MDMA (10mg/kg) induced BDNF mRNA expression in the prefrontal cortex, nucleus accumbens, and amygdala, but not in the striatum or the hippocampus. However, repeated MDMA administration for 7 days induced BDNF mRNA expression in the striatum and hippocampus. Both precursor and mature BDNF protein expression increased in the nucleus accumbens, mainly in the neurons. Additionally, rapidly increased extracellular serotonin levels and gradually and modestly increased extracellular dopamine levels were noted within the nucleus accumbens of mice after repeated MDMA administration. Dopamine receptor antagonists attenuated the effect of repeated MDMA administration on BDNF mRNA expression in the nucleus accumbens. To examine the role of endogenous BDNF in the behavioral and neurochemical effects of MDMA, we used mice with heterozygous deletions of the BDNF gene. MDMA-induced place preference, behavioral sensitization, and an increase in the levels of extracellular serotonin and dopamine within the nucleus accumbens, were attenuated in BDNF heterozygous knockout mice. These results suggest that BDNF is implicated in MDMA-induced dependence and psychosis by activating the midbrain serotonergic and dopaminergic neurons. Copyright © 2017 Elsevier B.V. All rights reserved.
Yeh, Shu-Hui; Lin, Li-Wei; Chuang, Yu Kuan; Liu, Cheng-Ling; Tsai, Lu-Jen; Tsuei, Feng-Shiou; Lee, Ming-Tsung; Hsiao, Chiu-Yueh; Yang, Kuender D
2015-01-01
A randomized clinical trial was utilized to compare the improvement of depression and brain-derived neurotrophic factor (BDNF) levels between community women with and without music aerobic exercise (MAE) for 12 weeks. The MAE group involved 47 eligible participants, whereas the comparison group had 59 participants. No significant differences were recorded in the demographic characteristics between the participants in the MAE group and the comparison group. Forty-one participants in the MAE group and 26 in the comparison group completed a pre- and posttest. The MAE group displayed significant improvement in depression scores (p = 0.016), decreased depression symptoms in crying (p = 0.03), appetite (p = 0.006), and fatigue (p = 0.011). The BDNF levels of the participants significantly increased after the 12-week MAE (p = 0.042). The parallel comparison group revealed no significant changes in depression scores or BDNF levels. In summary, the 12-week MAE had a significant impact on the enhancement of BDNF levels and improvement of depression symptoms. Middle-aged community women are encouraged to exercise moderately to improve their depression symptoms and BDNF levels.
Ventskovska, Olena; Porkka-Heiskanen, Tarja; Karpova, Nina N
2015-04-01
Brain-derived neurotrophic factor (Bdnf) regulates neuronal plasticity, slow wave activity and sleep homeostasis. Environmental stimuli control Bdnf expression through epigenetic mechanisms, but there are no data on epigenetic regulation of Bdnf by sleep or sleep deprivation. Here we investigated whether 5-methylcytosine (5mC) DNA modification at Bdnf promoters p1, p4 and p9 influences Bdnf1, Bdnf4 and Bdnf9a expression during the normal inactive phase or after sleep deprivation (SD) (3, 6 and 12 h, end-times being ZT3, ZT6 and ZT12) in rats in two brain areas involved in sleep regulation, the basal forebrain and cortex. We found a daytime variation in cortical Bdnf expression: Bdnf1 expression was highest at ZT6 and Bdnf4 lowest at ZT12. Such variation was not observed in the basal forebrain. Also Bdnf p1 and p9 methylation levels differed only in the cortex, while Bdnf p4 methylation did not vary in either area. Factorial analysis revealed that sleep deprivation significantly induced Bdnf1 and Bdnf4 with the similar pattern for Bdnf9a in both basal forebrain and cortex; 12 h of sleep deprivation decreased 5mC levels at the cortical Bdnf p4 and p9. Regression analysis between the 5mC promoter levels and the corresponding Bdnf transcript expression revealed significant negative correlations for the basal forebrain Bdnf1 and cortical Bdnf9a transcripts in only non-deprived rats, while these correlations were lost after sleep deprivation. Our results suggest that Bdnf transcription during the light phase of undisturbed sleep-wake cycle but not after SD is regulated at least partially by brain site-specific DNA methylation. © 2014 European Sleep Research Society.
Association of testosterone and BDNF serum levels with craving during alcohol withdrawal.
Heberlein, Annemarie; Lenz, Bernd; Opfermann, Birgitt; Gröschl, Michael; Janke, Eva; Stange, Katrin; Groh, Adrian; Kornhuber, Johannes; Frieling, Helge; Bleich, Stefan; Hillemacher, Thomas
2016-08-01
Preclinical and clinical studies show associations between testosterone and brain-derived neurotrophic growth factor (BDNF) serum levels. BDNF and testosterone have been independently reported to influence alcohol consumption. Therefore, we aimed to investigate a possible interplay of testosterone and BDNF contributing to alcohol dependence. Regarding possible interplay of testosterone and BDNF and the activity of the hypothalamic pituitary axis (HPA), we included cortisol serum levels in our research. We investigated testosterone and BDNF serum levels in a sample of 99 male alcohol-dependent patients during alcohol withdrawal (day 1, 7, and 14) and compared them to a healthy male control group (n = 17). The testosterone serum levels were significantly (p < 0.001) higher in the patients' group than in the control group and decreased significantly during alcohol withdrawal (p < 0.001). The decrease of testosterone serum levels during alcohol withdrawal (days 1-7) was significantly associated with the BDNF serum levels (day 1: p = 0.008). In a subgroup of patients showing high cortisol serum levels (putatively mirroring high HPA activity), we found a significant association of BDNF and testosterone as well as with alcohol craving measured by the Obsessive and Compulsive Drinking Scale (OCDS). Our data suggest a possible association of BDNF and testosterone serum levels, which may be relevant for the symptomatology of alcohol dependence. Further studies are needed to clarify our results. Copyright © 2016 Elsevier Inc. All rights reserved.
The interplay of stress and sleep impacts BDNF level.
Giese, Maria; Unternaehrer, Eva; Brand, Serge; Calabrese, Pasquale; Holsboer-Trachsler, Edith; Eckert, Anne
2013-01-01
Sleep plays a pivotal role in normal biological functions. Sleep loss results in higher stress vulnerability and is often found in mental disorders. There is evidence that brain-derived neurotrophic factor (BDNF) could be a central player in this relationship. Recently, we could demonstrate that subjects suffering from current symptoms of insomnia exhibited significantly decreased serum BDNF levels compared with sleep-healthy controls. In accordance with the paradigm indicating a link between sleep and BDNF, we aimed to investigate if the stress system influences the association between sleep and BDNF. Participants with current symptoms of insomnia plus a former diagnosis of Restless Legs Syndrome (RLS) and/or Periodic Limb Movement (PLM) and sleep healthy controls were included in the study. They completed questionnaires on sleep (ISI, Insomnia Severity Index) and stress (PSS, Perceived Stress Scale) and provided a blood sample for determination of serum BDNF. We found a significant interaction between stress and insomnia with an impact on serum BDNF levels. Moreover, insomnia severity groups and score on the PSS each revealed a significant main effect on serum BDNF levels. Insomnia severity was associated with increased stress experience affecting serum BDNF levels. Of note, the association between stress and BDNF was only observed in subjects without insomnia. Using a mediation model, sleep was revealed as a mediator of the association between stress experience and serum BDNF levels. This is the first study to show that the interplay between stress and sleep impacts BDNF levels, suggesting an important role of this relationship in the pathogenesis of stress-associated mental disorders. Hence, we suggest sleep as a key mediator at the connection between stress and BDNF. Whether sleep is maintained or disturbed might explain why some individuals are able to handle a certain stress load while others develop a mental disorder.
Văcăraş, Vitalie; Major, Zoltán Zsigmond; Buzoianu, Anca Dana
Our main purpose was to investigate if the chronic treatment with the disease-modifying drug natalizumab shows quantifiable effect on BDNF levels in multiple sclerosis patients. BDNF plasma concentration was evaluated using enzyme-linked immunosorbent assay in healthy individuals, not treated multiple sclerosis patients and patients treated with natalizumab. Multiple sclerosis patients have a significantly lower amount of peripheral BDNF than healthy individuals. Patients treated with natalizumab have significantly higher BDNF levels than not treated patients. Chronic natalizumab treatment is associated with significantly increased plasma BDNF concentration in multiple sclerosis. Copyright © 2017 Polish Neurological Society. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
Pikula, Aleksandra; Beiser, Alexa S.; Chen, Tai C.; Preis, Sarah R.; Vorgias, Demetrios; DeCarli, Charles; Au, Rhoda; Kelly-Hayes, Margaret; Kase, Carlos S.; Wolf, Philip A.; Vasan, Ramachandran S.; Seshadri, Sudha
2013-01-01
Background and Purpose BDNF, a major neurotrophin and VEGF, an endothelial growth factor have a documented role in neurogenesis, angiogenesis and neuronal survival. In animal experiments they impact infarct size and functional motor recovery after an ischemic brain lesion. We sought to examine the association of serum BDNF and VEGF with the risk of clinical stroke or subclinical vascular brain injury in a community-based sample. Methods In 3440 stroke/TIA-free FHS participants (mean age 65±11yrs, 56%W), we related baseline BDNF and logVEGF to risk of incident stroke/TIA. In a subsample with brain MRI and with neuropsychological (NP) tests available (N=1863 and 2104, respectively; mean age 61±9yrs, 55%W, in each) we related baseline BDNF and logVEGF to log-white matter hyperintensity volume (lWMHV) on brain MRI, and to visuospatial memory and executive function tests. Results During a median follow-up of 10 years, 193 participants experienced incident stroke/TIA. In multivariable analyses adjusted for age-, sex- and traditional stroke risk factors, lower BDNF and higher logVEGF levels were associated with an increased risk of incident stroke/TIA (HR comparing BDNF Q1 versus Q2–4:1.47, 95%CI:1.09–2.00, p=0.012; and HR/SD increase in logVEGF:1.21, 95%CI:1.04–1.40, p=0.012). Persons with higher BDNF levels had less lWMHV (β±SE=−0.05±0.02; p=0.025), and better visual memory (β±SE=0.18±0.07; p=0.005). Conclusions Lower serum BDNF and higher VEGF concentrations were associated with increased risk of incident stroke/TIA. Higher levels of BDNF were also associated with less white matter hyperintensity and better visual memory. Our findings suggest that circulating BDNF and VEGF levels modify risk of clinical and subclinical vascular brain injury. PMID:23929745
Morichi, Shinichiro; Yamanaka, Gaku; Ishida, Yu; Oana, Shingo; Kashiwagi, Yasuyo; Kawashima, Hisashi
2014-11-01
We investigated changes in the brain-derived neurotrophic factor (BDNF) and interleukin (IL)-6 levels in pediatric patients with central nervous system (CNS) infections, particularly viral infection-induced encephalopathy. Over a 5-year study period, 24 children hospitalized with encephalopathy were grouped based on their acute encephalopathy type (the excitotoxicity, cytokine storm, and metabolic error types). Children without CNS infections served as controls. In serum and cerebrospinal fluid (CSF) samples, BDNF and IL-6 levels were increased in all encephalopathy groups, and significant increases were noted in the influenza-associated and cytokine storm encephalopathy groups. Children with sequelae showed higher BDNF and IL-6 levels than those without sequelae. In pediatric patients, changes in serum and CSF BDNF and IL-6 levels may serve as a prognostic index of CNS infections, particularly for the diagnosis of encephalopathy and differentiation of encephalopathy types.
Wang, Long-Wang; Li, Jian-Long; Yu, Yi; Xiao, Rui-Hai; Huang, Hong-Wei; Kuang, Ren-Rui; Hai, Bo
2017-08-01
Urinary brain-derived neurotrophic factor (BDNF), an ubiquitous neurotrophin, was found to rise in patients with benign prostatic hyperplasia (BPH). We hypothesized that the urinary level of BDNF could be a potential biomarker for lower urinary tract symptoms (LUTS) in patients with BPH. Totally, 76 patients with BPH-caused LUTS and 32 male control subjects without BPH were enrolled. International Prostate Symptom Score (IPSS) was applied to assess the symptom severity of LUTS. Urodynamic tests were performed for the diagnosis of underlying detrusor overactivity (DO) in the patients with BPH. Urine samples were collected from all subjects. Urinary BDNF levels were measured using enzyme-linked immunosorbent assays and normalized by urinary creatinine (Cr) levels. Seventy-six BPH patients were divided into moderate LUTS group (n=51, 7
Xiong, Jing; Zhou, L I; Lim, Yoon; Yang, Miao; Zhu, Yu-Hong; Li, Zhi-Wei; Fu, Deng-Li; Zhou, Xin-Fu
2015-07-01
There are two forms of brain-derived neurotrophic factor (BDNF), precursor of BDNF (proBDNF) and mature BDNF, which each exert opposing effects through two different transmembrane receptor signaling systems, consisting of p75 neurotrophin receptor (p75NTR) and tyrosine receptor kinase B (TrkB). Previous studies have demonstrated that proBDNF promotes cell death and inhibits the growth and migration of C6 glioma cells through p75NTR in vitro , while mature BDNF has opposite effects on C6 glioma cells. It is hypothesized that mature BDNF is essential in the development of malignancy in gliomas. However, histological data obtained in previous studies were unable distinguish mature BDNF from proBDNF due to the lack of specific antibodies. The present study investigated the expression of mature BDNF using a specific sheep monoclonal anti-mature BDNF antibody in 42 human glioma tissues of different grades and 10 control tissues. The correlation between mature BDNF and TrkB was analyzed. Mature BDNF expression was significantly increased in high-grade gliomas, and was positively correlated with the malignancy of the tumor and TrkB receptor expression. The present data have demonstrated that increased levels of mature BDNF contribute markedly to the development of malignancy of human gliomas through the primary BDNF receptor TrkB.
Fontanari, Anna Martha Vaitses; Costa, Angelo Brandelli; Aguiar, Bianca; Tusset, Cíntia; Andreazza, Tahiana; Schneider, Maiko; da Rosa, Eduarda Dias; Soll, Bianca Machado Borba; Schwarz, Karine; da Silva, Dhiordan Cardoso; Borba, André Oliveira; Mueller, Andressa; Massuda, Raffael; Lobato, Maria Inês Rodrigues
2016-09-06
Serum BDNF levels are significantly decreased in transsexual Brazilian women when compared to cis-sexual men. Since transsexual men are also exposed to chronic social stress and have a high prevalence of associated psychopathologies, it is plausible to inquire if BDNF serum levels are altered in transsexual men as well. Therefore, our objective was to evaluate differences in BDNF serum level of transsexual men when compared to cis-sexual men and women. Our sample comprises 27 transsexual men, 31 cis-sexual women and 30 cis-sexual men recruited between 2011 and 2015. We observed that BDNF serum concentration is decreased in transsexual men comparing to cis-sexual men and women. Cross-sex hormone treatment, chronic social stress or long-term gender dysphoria (GD) could explain the variation found in BDNF serum levels. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Mondelli, Valeria; Cattaneo, Annamaria; Murri, Martino Belvederi; Di Forti, Marta; Handley, Rowena; Hepgul, Nilay; Miorelli, Ana; Navari, Serena; Papadopoulos, Andrew S; Aitchison, Katherine J; Morgan, Craig; Murray, Robin M; Dazzan, Paola; Pariante, Carmine M
2011-12-01
Reduced brain-derived neurotrophic factor (BDNF) levels have been reported in the serum and plasma of patients with psychosis. The aim of this cross-sectional case-control study was to investigate potential causes and consequences of reduced BDNF expression in these patients by examining the association between BDNF levels and measures of stress, inflammation, and hippocampal volume in first-episode psychosis. Brain-derived neurotrophic factor, interleukin (IL)-6, and tumor necrosis factor (TNF)-α messenger RNA levels were measured in the leukocytes of 49 first-episode psychosis patients (DSM-IV criteria) and 30 healthy controls, all aged 18 to 65 years, recruited between January 2006 and December 2008. Patients were recruited from inpatient and outpatient units of the South London and Maudsley National Health Service Foundation Trust in London, United Kingdom, and the healthy controls were recruited from the same catchment area via advertisement and volunteer databases. In these same subjects, we measured salivary cortisol levels and collected information about psychosocial stressors (number of childhood traumas, number of recent stressors, and perceived stress). Finally, hippocampal volume was measured using brain magnetic resonance imaging in a subsample of 19 patients. Patients had reduced BDNF (effect size, d = 1.3; P < .001) and increased IL-6 (effect size, d = 1.1; P < .001) and TNF-α (effect size, d = 1.7; P < .001) gene expression levels when compared with controls, as well as higher levels of psychosocial stressors. A linear regression analysis in patients showed that a history of childhood trauma and high levels of recent stressors predicted lower BDNF expression through an inflammation-mediated pathway (adjusted R(2) = 0.23, P = .009). In turn, lower BDNF expression, increased IL-6 expression, and increased cortisol levels all significantly and independently predicted a smaller left hippocampal volume (adjusted R(2) = 0.71, P < .001). Biological changes activated by stress represent a significant factor influencing brain structure and function in first-episode psychosis through an effect on BDNF. © Copyright 2011 Physicians Postgraduate Press, Inc.
Yan, Xiaodong; Liu, Juanfang; Zhang, Zhengping; Li, Wenhao; Sun, Siguo; Zhao, Jian; Dong, Xin; Qian, Jixian; Sun, Honghui
2017-01-01
Low-level laser (LLL) irradiation has been reported to promote neuronal differentiation, but the mechanism remains unclear. Brain-derived neurotrophic factor (BDNF) has been confirmed to be one of the most important neurotrophic factors because it is critical for the differentiation and survival of neurons during development. Thus, this study aimed to investigate the effects of LLL irradiation on Bdnf messenger RNA (mRNA) transcription and the molecular pathway involved in LLL-induced Bdnf mRNA transcription in cultured dorsal root ganglion neurons (DRGNs) using Ca 2+ imaging, pharmacological detections, RNA interference, immunocytochemistry assay, Western blot, and qPCR analysis. We show here that LLL induced increases in the [Ca 2+ ] i level, Bdnf mRNA transcription, cAMP-response element-binding protein (CREB) phosphorylation, and extracellular signal-regulated kinase (ERK) phosphorylation, mediated by Ca 2+ release via inositol triphosphate receptor (IP3R)-sensitive calcium (Ca 2+ ) stores. Blockade of Ca 2+ increase suppressed Bdnf mRNA transcription, CREB phosphorylation, and ERK phosphorylation. Downregulation of phosphorylated (p)-CREB reduced Bdnf mRNA transcription triggered by LLL. Furthermore, blockade of ERK using PD98059 inhibitor reduced p-CREB and Bdnf mRNA transcription induced by LLL. Taken together, these findings establish the Ca 2+ -ERK-CREB cascade as a potential signaling pathway involved in LLL-induced Bdnf mRNA transcription. To our knowledge, this is the first report of the mechanisms of Ca 2+ -dependent Bdnf mRNA transcription triggered by LLL. These findings may help further explore the complex molecular signaling networks in LLL-triggered nerve regeneration in vivo and may also provide experimental evidence for the development of LLL for clinical applications.
D’Sa, Carrol; Fox, Helen C.; Hong, Adam K.; Dileone, Ralph J.; Sinha, Rajita
2011-01-01
Background Cocaine dependence is associated with high relapse rates but few biological markers associated with relapse outcomes have been identified. Extending preclinical research showing a role for central Brain Derived Neurotrophic Factor (BDNF) in cocaine seeking, we examined whether serum BDNF is altered in abstinent, early recovering, cocaine-dependent individuals and if it is predictive of subsequent relapse risk. Methods Serum samples were collected across three consecutive mornings from 35 treatment-engaged, 3 week abstinent cocaine-dependent inpatients (17M/18F) and 34 demographically matched hospitalized healthy control participants (17M/17F). Cocaine dependent individuals were prospectively followed on days 14, 30 and 90 post-treatment discharge to assess cocaine relapse outcomes. Time to cocaine relapse, number of days of cocaine use (frequency), and amount of cocaine use (quantity) were the main outcome measures. Results High correlations in serum BDNF across days indicated reliable and stable serum BDNF measurements. Significantly higher mean serum BDNF levels were observed for the cocaine-dependent patients compared to healthy control participants (p<.001). Higher serum BDNF levels predicted shorter subsequent time to cocaine relapse (hazard ratio: HR: 1.09, p<.05), greater number of days (p<.05) and higher total amounts of cocaine used (p = .05). Conclusions High serum BDNF levels in recovering cocaine-dependent individuals are predictive of future cocaine relapse outcomes and may represent a clinically relevant marker of relapse risk. These data suggest that serum BDNF levels may provide an indication of relapse risk during early recovery from cocaine dependence. PMID:21741029
Greenwood, Benjamin N.; Strong, Paul V.; Foley, Teresa E.; Thompson, Robert; Fleshner, Monika
2007-01-01
Reduced levels of brain-derived neurotrophic factor (BDNF) in the hippocampus have been implicated in human affective disorders and behavioral stress responses. The current studies examined the role of BDNF in the behavioral consequences of inescapable stress, or learned helplessness. Inescapable stress decreased BDNF mRNA and protein in the hippocampus of sedentary rats. Rats allowed voluntary access to running wheels for either 3 or 6 weeks prior to exposure to stress were protected against stress-induced reductions of hippocampal BDNF protein. The observed prevention of stress-induced deceases in BDNF, however, occurred in a time course inconsistent with the prevention of learned helplessness by wheel running, which is evident following 6 weeks, but not 3 weeks, of wheel running. BDNF suppression in physically active rats was produced by administering a single injection of the selective serotonin reuptake inhibitor fluoxetine (10 mg/kg) just prior to stress. Despite reduced levels of hippocampal BDNF mRNA following stress, physically active rats given the combination of fluoxetine and stress remained resistant against learned helplessness. Sedentary rats given both fluoxetine and stress still demonstrated typical learned helplessness behaviors. Fluoxetine by itself reduced BDNF mRNA in sedentary rats only, but did not affect freezing or escape learning 24 hours later. Finally, bilateral injections of BDNF (1 μg) into the dentate gyrus prior to stress prevented stress-induced reductions of hippocampal BDNF but did not prevent learned helplessness in sedentary rats. These data indicate that learned helplessness behaviors are independent of the presence or absence of hippocampal BDNF because blocking inescapable stress-induced BDNF suppression does not always prevent learned helplessness, and learned helplessness does not always occur in the presence of reduced BDNF. Results also suggest that the prevention of stress-induced hippocampal BDNF suppression is not necessary for the protective effect of wheel running against learned helplessness. PMID:17161541
Greenwood, B N; Strong, P V; Foley, T E; Thompson, R S; Fleshner, M
2007-02-23
Reduced levels of brain-derived neurotrophic factor (BDNF) in the hippocampus have been implicated in human affective disorders and behavioral stress responses. The current studies examined the role of BDNF in the behavioral consequences of inescapable stress, or learned helplessness. Inescapable stress decreased BDNF mRNA and protein in the hippocampus of sedentary rats. Rats allowed voluntary access to running wheels for either 3 or 6 weeks prior to exposure to stress were protected against stress-induced reductions of hippocampal BDNF protein. The observed prevention of stress-induced deceases in BDNF, however, occurred in a time course inconsistent with the prevention of learned helplessness by wheel running, which is evident following 6 weeks, but not 3 weeks, of wheel running. BDNF suppression in physically active rats was produced by administering a single injection of the selective serotonin reuptake inhibitor fluoxetine (10 mg/kg) just prior to stress. Despite reduced levels of hippocampal BDNF mRNA following stress, physically active rats given the combination of fluoxetine and stress remained resistant against learned helplessness. Sedentary rats given both fluoxetine and stress still demonstrated typical learned helplessness behaviors. Fluoxetine by itself reduced BDNF mRNA in sedentary rats only, but did not affect freezing or escape learning 24 h later. Finally, bilateral injections of BDNF (1 mug) into the dentate gyrus prior to stress prevented stress-induced reductions of hippocampal BDNF but did not prevent learned helplessness in sedentary rats. These data indicate that learned helplessness behaviors are independent of the presence or absence of hippocampal BDNF because blocking inescapable stress-induced BDNF suppression does not always prevent learned helplessness, and learned helplessness does not always occur in the presence of reduced BDNF. Results also suggest that the prevention of stress-induced hippocampal BDNF suppression is not necessary for the protective effect of wheel running against learned helplessness.
Baek, Ji Hyun; Kang, Eun-Suk; Fava, Maurizio; Mischoulon, David; Nierenberg, Andrew A; Lee, Dongsoo; Heo, Jung-Yoon; Jeon, Hong Jin
2014-12-01
Thyroid dysfunction and elevated thyroid stimulating hormone (TSH) are common in patients with depression. TSH might exert its function in the brain through blood levels of brain-derived neurotrophic factor (BDNF). BDNF decreases during depressed states and normalize after treatment. The gap is that the association between TSH and BDNF in patients with major depressive disorder (MDD) is unknown. We studied 105 subjects ≥18 years of age with MDD and measured serum, plasma, and platelet BDNF at baseline, 1 month and 3 months during antidepressant treatment. Other baseline measurements included hypothalamic-pituitary-thyroid axis hormones such as TSH, triiodothyronine (T3) and thyroxine (T4); hypothalamic-pituitary-adrenal (HPA) axis hormones and hypothalamic-pituitary-gonadal (HPG) axis hormones and prolactin. Linear mixed model effect analyses revealed that baseline TSH level was negatively associated with changes of serum BDNF from baseline to 3 months (F=7.58, p=0.007) after adjusting for age, sex, and body mass index, but was not associated with plasma and platelet BDNF. In contrast, T3 and T4, HPA axis hormones, HPG axis hormones, and prolactin were not associated with serum, plasma, or platelet BDNF levels. Patients in the highest quartile of TSH showed significantly lower serum BDNF than in the other quartiles (F=4.54, p=0.038), but no significant differences were found based on T3 and T4 levels. TSH was only measured at baseline. Higher TSH is associated with lower baseline and reduced the increase of serum BDNF levels during antidepressant treatment in patients with MDD. Copyright © 2014 Elsevier B.V. All rights reserved.
Klug, Maren; Hill, Rachel A; Choy, Kwok Ho Christopher; Kyrios, Michael; Hannan, Anthony J; van den Buuse, Maarten
2012-06-01
Psychiatric illnesses, such as schizophrenia, are most likely caused by an interaction between genetic predisposition and environmental factors, including stress during development. The neurotrophin, brain-derived neurotrophic factor (BDNF) has been implicated in this illness as BDNF levels are decreased in the brain of patients with schizophrenia. The aim of the present study was to assess the combined effect of reduced BDNF levels and postnatal stress, simulated by chronic young-adult treatment with the stress hormone, corticosterone. From 6 weeks of age, female and male BDNF heterozygous mice and their wild-type controls were chronically treated with corticosterone in their drinking water for 3 weeks. At 11 weeks of age, male, but not female BDNF heterozygous mice treated with corticosterone exhibited a profound memory deficit in the Y-maze. There were no differences between the groups in baseline prepulse inhibition (PPI), a measure of sensorimotor gating, or its disruption by treatment with MK-801. However, an increase in startle caused by MK-801 treatment was absent in male, but not female BDNF heterozygous mice, irrespective of corticosterone treatment. Analysis of protein levels of the NMDA receptor subunits NR1, NR2A, NR2B and NR2C, showed a marked increase of NR2B levels in the dorsal hippocampus of male BDNF heterozygous mice treated with corticosterone. In the ventral hippocampus, significantly reduced levels of NR2A, NR2B and NR2C were observed in male BDNF heterozygous mice. The NMDA receptor effects in hippocampal sub-regions could be related to the spatial memory deficits and the loss of the effect of MK-801 on startle in these mice, respectively. No significant changes in NMDA receptor subunit levels were observed in any of the female groups. Similarly, no significant changes in levels of BDNF or its receptor, TrkB, were found other than the expected reduced levels of BDNF in heterozygous mice. In conclusion, the data show differential interactive effects of reduced levels of BDNF expression and corticosterone treatment on spatial memory and startle in male and female mice, accompanied by significant, but region-specific changes in NMDA receptor subunit levels in the dorsal and ventral hippocampus. These results could be important for our understanding of the interaction of neurodevelopmental stress and BDNF deficiency in cognitive and anxiety-related symptoms of psychiatric illnesses, such as schizophrenia. Copyright © 2012 Elsevier Inc. All rights reserved.
Şimşek, Şeref; Gençoğlan, Salih; Yüksel, Tuğba; Kaplan, İbrahim; Aktaş, Hüseyin; Alaca, Rümeysa
2016-12-01
Brain-derived neurotropic factor (BDNF) has been suggested to play a role in the pathogenesis of attention-deficit hyperactivity disorder (ADHD). In addition, impairment in executive functions has been reported in children with ADHD. This study investigated the presence of a relationship between Stroop test scores and BDNF levels in children with ADHD. The study was conducted in the Department of Child Psychiatry at Dicle University. The study included 49 children between 6 and 15 years of age (M/F: 42/7), who were diagnosed with ADHD according to DSM-IV, and who did not receive previous therapy. Similar in terms of age and gender to the ADHD group, 40 children were selected in the control group. The Kiddie Schedule for Affective Disorders and Schizophrenia, Present and Lifetime version was administered to all participants. Parents and teachers were administered Turgay DSM-IV-based Child and Adolescent Behavior Disorders Screening and Rating Scale to measure symptom severity in children with ADHD. Children with ADHD underwent the Stroop test. BDNF levels were evaluated in serum by ELISA. The ADHD and control groups did not differ in terms of BDNF levels. BDNF levels did not differ between ADHD subtypes. There was also no relationship between the Stroop test interference scores and BDNF levels. The findings of the present study are in line with those in studies that demonstrated no significant role of BDNF in the pathogenesis of ADHD.
Mice with altered BDNF signaling as models for mood disorders and antidepressant effects
Lindholm, Jesse S. O.; Castrén, Eero
2014-01-01
Brain-derived neurotrophic factor (BDNF) and its receptor tyrosine kinase TrkB support neuronal survival during development and promote connectivity and plasticity in the adult brain. Decreased BDNF signaling is associated with the pathophysiology of depression and the mechanisms underlying the actions of antidepressant drugs (AD). Several transgenic mouse models with decreases or increases in the amount of BDNF or the activity of TrkB signaling have been created. This review summarizes the studies where various mouse models with increased or decreased BDNF levels or TrkB signaling were used to evaluate the role of BDNF signaling in depression-like behavior. Although a large number of models have been employed and several studies have been published, no clear-cut connections between BDNF levels or signaling and depression-like behavior in mice have emerged. However, it is clear that BDNF plays a critical role in the mechanisms underlying the actions of AD. PMID:24817844
Erickson, Kirk I.; Banducci, Sarah E.; Weinstein, Andrea M.; MacDonald, Angus W.; Ferrell, Robert E.; Halder, Indrani; Flory, Janine D.; Manuck, Stephen B.
2014-01-01
Physical activity enhances cognitive performance, yet individual variability in its effectiveness limits its widespread therapeutic application. Genetic differences might be one source of this variation. For example, carriers of the methionine-specifying (Met) allele of the brain-derived neurotrophic factor (BDNF) Val66Met polymorphism have reduced secretion of BDNF and poorer memory, yet physical activity increases BDNF levels. To determine whether the BDNF polymorphism moderated an association of physical activity with cognitive functioning among 1,032 midlife volunteers (mean age = 44.59 years), we evaluated participants’ performance on a battery of tests assessing memory, learning, and executive processes, and evaluated their physical activity with the Paffenbarger Physical Activity Questionnaire. BDNF genotype interacted robustly with physical activity to affect working memory, but not other areas of cognitive functioning. In particular, greater levels of physical activity offset a deleterious effect of the Met allele on working memory performance. These findings suggest that physical activity can modulate domain-specific genetic (BDNF) effects on cognition. PMID:23907543
Saucedo Marquez, Cinthia Maria; Vanaudenaerde, Bart; Troosters, Thierry; Wenderoth, Nicole
2015-12-15
Exercise can have a positive effect on the brain by activating brain-derived neurotrophic factor (BDNF)-related processes. In healthy humans there appears to be a linear relationship between exercise intensity and the positive short-term effect of acute exercise on BDNF levels (i.e., the highest BDNF levels are reported after high-intensity exercise protocols). Here we performed two experiments to test the effectiveness of two high-intensity exercise protocols, both known to improve cardiovascular health, to determine whether they have a similar efficacy in affecting BDNF levels. Participants performed a continuous exercise (CON) protocol at 70% of maximal work rate and a high-intensity interval-training (HIT) protocol at 90% of maximal work rate for periods of 1 min alternating with 1 min of rest (both protocols lasted 20 min). We observed similar BDNF kinetics in both protocols, with maximal BDNF concentrations being reached toward the end of training (experiment 1). We then showed that both exercise protocols significantly increase BDNF levels compared with a rest condition (CON P = 0.04; HIT P < 0.001), with HIT reaching higher BDNF levels than CON (P = 0.035) (experiment 2). These results suggest that shorter bouts of high intensity exercise are slightly more effective than continuous high-intensity exercise for elevating serum BDNF. Additionally, 73% of the participants preferred the HIT protocol (P = 0.02). Therefore, we suggest that the HIT protocol might represent an effective and preferred intervention for elevating BDNF levels and potentially promoting brain health. Copyright © 2015 the American Physiological Society.
Alemi, Razieh; Motassadi Zarandy, Masoud; Joghataei, Mohammad Taghi; Eftekharian, Ali; Zarrindast, Mohammad Reza; Vousooghi, Nasim
2018-02-01
Sensory neural hearing loss could lead to some structural and physiological changes in the auditory pathways, such as alteration in the expression of neurotrophins. These factors, especially Brain-Derived Neurotrophic Factor (BDNF), play an important role in synaptic functions and experience-related plasticity. Restoring cochlear function after hearing loss is possible through cochlear implantation (CI). Evaluation of the blood concentration changes of neurotrophins as prerequisites of plasticity could help scientists to determine the prognosis of CI as in the candidacy procedure or enhancing prosthesis function by adding the exact needed amount of BDNF to the electrode array. Here we have studied the plasma BDNF concentration before CI surgery and 6 months after using CI device in 15 pediatric CI recipients and compared this level with changes of BDNF concentration in 10 children who were using hearing aid (H.A). In addition, we searched for a possible correlation between post-surgery plasma BDNF concentration and electrical compound action potential (ECAP) and comfort-level (C-level) thresholds. Plasma BDNF concentration in children with CI increased significantly after CI surgery, while this difference in H.A group was not significant. Analysis of repeated measures of ECAP and C-level thresholds in CI group showed that there were some kinds of steadiness during follow- up sessions for ECAP thresholds in basal and E16 of middle electrodes, whereas C-level thresholds for all selected electrodes increased significantly up to six months follow-up. Interestingly, we did not find any significant correlation between post-surgery plasma BDNF concentration and ECAP or C-level threshold changes. It is concluded that changes in C-level threshold and steady state of ECAP thresholds and significant changes in BDNF concentration could be regarded as an indicator of experienced-related plasticity after CI stimulation. Copyright © 2017 Elsevier B.V. All rights reserved.
Brain-Derived Neurotrophic Factor Levels in Autism: A Systematic Review and Meta-Analysis
ERIC Educational Resources Information Center
Saghazadeh, Amene; Rezaei, Nima
2017-01-01
Brain-derived neurotrophic factor (BDNF) plays an important role in activity-dependent synaptic plasticity. Altered blood BDNF levels have been frequently identified in people with autism spectrum disorders (ASD). There are however wide discrepancies in the evidence. Therefore, we performed the present systematic review and meta-analysis aimed at…
The influence of aging on the methylation status of brain-derived neurotrophic factor gene in blood.
Ihara, Kazushige; Fuchikami, Manabu; Hashizume, Masahiro; Okada, Satoshi; Kawai, Hisashi; Obuchi, Shuichi; Hirano, Hirohiko; Fujiwara, Yoshinori; Hachisu, Mitsugu; Hongyong, Kim; Morinobu, Shigeru
2018-06-28
Brain-derived neurotrophic factor (BDNF) is involved in the pathophysiology of psychiatric disorders in adults and elderly individuals, and as a result, the DNA methylation (DNAm) of the BDNF gene in peripheral tissues including blood has been extensively examined to develop a useful biomarker for psychiatric disorders. However, studies to date have not previously investigated the effect of age on DNAm of the BDNF gene in blood. In this context, we measured DNAm of 39 CpG units in the CpG island at the promoter of exon I of the BDNF gene. We analyzed genomic DNA from peripheral blood of 105 health Japanese women 20 to 80 years of age to identify aging-associated change in DNAm of the BDNF gene. In addition, we examined the relationship between total MMSE scores, numbers of stressful life events, and serum BDNF levels on DNAm of the BDNF gene. The DNAm rate at each CpG unit was measured using a MassArray ® system (Agena Bioscience), and serum BDNF levels were measured by ELISA. There was a significant correlation between DNAm and age in 13 CpGs. However, there was no significant correlation between DNAm and total MMSE scores, numbers of life events, or serum BDNF levels. Despite the small number of subjects and the inclusion of only female subjects, our results suggest that DNAm of 13 CpGs of the BDNF gene may be an appropriate biomarker for aging and useful for predicting increased susceptibility to age-related psychiatric disorders. © 2018 John Wiley & Sons, Ltd.
Chronic antidepressant administration alleviates frontal and hippocampal BDNF deficits in CUMS rat.
Zhang, Yang; Gu, Fenghua; Chen, Jia; Dong, Wenxin
2010-12-17
Stress activates the hypothalamo-pituitary-adrenal (HPA) axis, regulates the expression of brain-derived neurotrophic factor (BDNF) in the brain, and mediates mood. Antidepressants alleviate stress and up-regulate BDNF gene expression. In this study, we investigated the effect of chronic unpredictable mild stress (CUMS) and the different kinds of antidepressant treatments on the HPA axis and the BDNF expression in the rat brain. Adult Wistar male rats were exposed to a six-week CUMS procedure and received different antidepressant treatments including venlafaxine, mirtazapine, and fluoxetine. Immunohistochemistry and real-time PCR were used to measure BDNF expression levels in the rat brain, and ELISAs were used to investigate the plasma corticosterone (CORT) and adrenocorticotropic hormone (ACTH) levels. CUMS significantly decreased the BDNF protein level in the DG, CA1, and CA3 of the hippocampus and increased plasma CORT level. Chronic antidepressant treatments all significantly increased BDNF protein levels in the hippocampus and the pre-frontal cortex. In addition, venlafaxine and mirtazapine inhibited the increase of plasma CORT level. These results suggested that an increase in the BDNF level in the brain could be a pivotal mechanism of various antidepressants to exert their therapeutic effects. Copyright © 2010 Elsevier B.V. All rights reserved.
Measuring and Validating the Levels of Brain-Derived Neurotrophic Factor in Human Serum
Naegelin, Yvonne; Dingsdale, Hayley; Säuberli, Katharina; Schädelin, Sabine; Kappos, Ludwig
2018-01-01
Brain-derived neurotrophic factor (BDNF) secreted by neurons is a significant component of synaptic plasticity. In humans, it is also present in blood platelets where it accumulates following its biosynthesis in megakaryocytes. BDNF levels are thus readily detectable in human serum and it has been abundantly speculated that they may somehow serve as an indicator of brain function. However, there is a great deal of uncertainty with regard to the range of BDNF levels that can be considered normal, how stable these values are over time and even whether BDNF levels can be reliably measured in serum. Using monoclonal antibodies and a sandwich ELISA, this study reports on BDNF levels in the serum of 259 volunteers with a mean value of 32.69 ± 8.33 ng/ml (SD). The mean value for the same cohort after 12 months was not significantly different (N = 226, 32.97 ± 8.36 ng/ml SD, p = 0.19). Power analysis of these values indicates that relatively large cohorts are necessary to identify significant differences, requiring a group size of 60 to detect a 20% change. The levels determined by ELISA could be validated by Western blot analyses using a BDNF monoclonal antibody. While no association was observed with gender, a weak, positive correlation was found with age. The overall conclusions are that BDNF levels can be reliably measured in human serum, that these levels are quite stable over one year, and that comparisons between two populations may only be meaningful if cohorts of sufficient sizes are assembled. PMID:29662942
Caldwell, Kevin K.; Sheema, S.; Paz, Rodrigo D; Samudio-Ruiz, Sabrina L.; Laughlin, Mary H.; Spence, Nathan E.; Roehlk, Michael J; Alcon, Sara N.; Allan, Andrea M.
2009-01-01
Prenatal ethanol exposure is associated with an increased incidence of depressive disorders in patient populations. However, the mechanisms that link prenatal ethanol exposure and depression are unknown. Several recent studies have implicated reduced brain-derived neurotrophic factor (BDNF) levels in the hippocampal formation and frontal cortex as important contributors to the etiology of depression. In the present studies, we sought to determine whether prenatal ethanol exposure is associated with behaviors that model depression, as well as with reduced BDNF levels in the hippocampal formation and/or medial frontal cortex, in a mouse model of fetal alcohol spectrum disorder (FASD). Compared to control adult mice, prenatal ethanol-exposed adult mice displayed increased learned helplessness behavior and increased immobility in the Porsolt forced swim test. Prenatal ethanol exposure was associated with decreased BDNF protein levels in the medial frontal cortex, but not the hippocampal formation, while total BDNF mRNA and BDNF transcripts containing exon III, IV or VI were reduced in both the medial frontal cortex and the hippocampal formation of prenatal ethanol-exposed mice. These results identify reduced BDNF levels in the medial frontal cortex and hippocampal formation as potential mediators of depressive disorders associated with FASD. PMID:18558427
O'Sullivan, E; Barrett, E; Grenham, S; Fitzgerald, P; Stanton, C; Ross, R P; Quigley, E M M; Cryan, J F; Dinan, T G
2011-09-01
Brain-derived neurotrophic factor (BDNF) is of interest because of its putative role in stress and psychiatric disorders. Maternal separation is used as an animal model of early-life stress and of irritable bowel syndrome (IBS). Animals exposed to the paradigm show altered gut function together with heightened levels of arousal and corticosterone. Some probiotic organisms have been shown to be of benefit in IBS and influence the brain-gut axis. Our objective was to investigate the effects of maternal separation on BDNF under basal conditions and in response to the probiotic Bifidobacterium breve 6330. The study implemented the maternal separation model which we have previously described. Polymerase chain reaction and in situ hybridisation were performed to measure the effect of maternal separation on both BDNF total variants and BDNF splice variant (exon) IV in the hippocampus. Maternally separated and non-separated rats were treated with B. breve 6330, to investigate the effect of this probiotic on BDNF total variant and BDNF exon IV expression. Maternal separation increased BDNF total variants (P<0.01), whilst having no effect on BDNF exon IV. B. breve 6330 increased BDNF total variants (P<0.01), and decreased BDNF splice variant IV, in non-separated rats (P<0.01). B. breve 6330 did not alter BDNF levels in the maternally separated rats. Maternal separation caused a marked increase in BDNF in the hippocampus. While B. breve 6330 influenced BDNF in normal animals, it had no significant effect on BDNF in those which were maternally separated. We have demonstrated that an orally administered probiotic can influence hippocampal BDNF.
[Over-expression of BDNF inhibits angiotensin II-induced apoptosis of cardiomyocytes in SD rats].
Cao, Jingli; Wu, Yingfeng; Liu, Geming; Li, Zhenlong
2018-03-01
Objective To investigate the role and molecular mechanism of brain-derived neurotrophic factor (BDNF) against the process of cardiomyocyte hypertrophy and apoptosis. Methods Cardiomyocyte hypertrophy were estabolished by angiotensin II (Ang II) in neonatal cardiomyocytes in vitro and incomplete ligature of abdominal aorta of SD rats in vivo. BDNF over-expressing recombinant vector pcDNA5-BDNF was transfected into cardiomyocytes by liposomes. Immunofluorescence staining was used to detect the effect of BDNF transfection on the surface area of myocardial cells. The effect of BDNF transfection on the apoptosis of cardiomyocytes was assayed by flow cytometry. Real-time fluorescent quantitative PCR was performed to detect the effect of over-expression of BDNF on the expressions of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) mRNAs in cardiomyocytes. Western blot assay was used to observe the changes of BDNF, ANP and BNP, calmodulin kinase 2 (CaMK2) and phosphorylated calmodulin kinase 2 (p-CaMK2), calcineurin (CaN), p-CaN, nuclear factor of activated T cells 3 (NFATC3) and p-NFATC3 protein expressions in the myocardial tissues and cardiomyocytes. Results The expression of BDNF protein increased significantly in cardiac hypertrophy animal and cell models in a time-dependent manner. Compared with the untransfected control cardiomyocytes, the surface area of cardiomyocytes, the rate of apoptosis, the levels of ANP and BNP mRNA and protein expression, the levels of p-CaMK2 and CaN protein in the BDNF over-expressed cardiomyocytes were remarkably reduced, while the level of p-NFATC3 protein rose significantly. Conclusion BDNF inhibits the apoptosis of cardiomyocytes induced by Ang II, and it plays the role by inhibiting CaMK2 and CaN signaling pathways.
The Role of BDNF in the Development of Fear Learning.
Dincheva, Iva; Lynch, Niccola B; Lee, Francis S
2016-10-01
Brain-derived neurotrophic factor (BDNF) is a growth factor that is dynamically expressed in the brain across postnatal development, regulating neuronal differentiation and synaptic plasticity. The neurotrophic hypothesis of psychiatric mood disorders postulates that in the adult brain, decreased BDNF levels leads to altered neural plasticity, contributing to disease. Although BDNF has been established as a key factor regulating the critical period plasticity in the developing visual system, it has recently been shown to also play a role in fear circuitry maturation, which has implications for the emergence of fear-related mood disorders. This review provides a detailed overview of developmental changes in expression of BDNF isoforms, as well as their receptors across postnatal life. In addition, recent developmental studies utilizing a genetic BDNF single nucleotide polymorphism (Val66Met) knock-in mouse highlight the impact of BDNF on fear learning during a sensitive period spanning the transition into adolescent time frame. We hypothesize that BDNF in the developing brain regulates fear circuit plasticity during a sensitive period in early adolescence, and alterations in BDNF expression (genetic or environmental) have a persistent impact on fear behavior and fear-related disorders. © 2016 Wiley Periodicals, Inc.
Mansur, R B; Brietzke, E; McIntyre, R S; Cao, B; Lee, Y; Japiassú, L; Chen, K; Lu, R; Lu, W; Li, T; Xu, G; Lin, K
2017-12-01
To compare brain-derived neurotrophic factor (BDNF) levels between offspring of individuals with bipolar disorders (BD) and healthy controls (HCs) and investigate the effects of BDNF levels and body mass index (BMI) on brain structures. Sixty-seven bipolar offspring and 45 HCs were included (ages 8-28). Structural images were acquired using 3.0 Tesla magnetic resonance imaging. Serum BDNF levels were measured using enzyme-linked immunosorbent assay. Multivariate and univariate analyses of covariance were conducted. Significantly higher BDNF levels were observed among bipolar offspring, relative to HCs (P > 0.025). Offspring status moderated the association between BDNF and BMI (F 1 =4.636, P = 0.034). After adjustment for relevant covariates, there was a trend for a significant interaction of group and BDNF on neuroimaging parameters (Wilks'λ F 56,94 =1.463, P = 0.052), with significant effects on cerebellar white matter and superior and middle frontal regions. Brain volume and BDNF were positively correlated among HCs and negatively correlated among bipolar offspring. Interactions between BDNF and BMI on brain volumes were non-significant among HCs (Wilks'λ F 28,2 =2.229, P = 0.357), but significant among bipolar offspring (Wilks'λ F 28,12 =2.899, P = 0.028). Offspring status and BMI moderate the association between BDNF levels and brain structures among bipolar offspring, underscoring BDNF regulation and overweight/obesity as key moderators of BD pathogenesis. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Massey, Kerri A.; Zago, Wagner M.; Berg, Darwin K.
2006-01-01
In the hippocampus, brain-derived neurotrophic factor (BDNF) regulates a number of synaptic components. Among these are nicotinic acetylcholine receptors containing α7 subunits (α7-nAChRs), which are interesting because of their relative abundance in the hippocampus and their high relative calcium permeability. We show here that BDNF elevates surface and intracellular pools of α7-nAChRs on cultured hippocampal neurons and that glutamatergic activity is both necessary and sufficient for the effect. Blocking transmission through NMDA receptors with APV blocked the BDNF effect; increasing spontaneous excitatory activity with the GABAA receptor antagonist bicuculline replicated the BDNF effect. BDNF antibodies blocked the BDNF-mediated increase but not the bicuculline one, consistent with enhanced glutamatergic activity acting downstream from BDNF. Increased α7-nAChR clusters were most prominent on interneuron subtypes known to innervate directly excitatory neurons. The results suggest that BDNF, acting through glutamatergic transmission, can modulate hippocampal output in part by controlling α7-nAChR levels. PMID:17029981
Halepoto, Dost Muhammad; Bashir, Shahid; Zeina, Rana; Al-Ayadhi, Laila Y
2015-12-01
To determine the correlation of Sonic Hedgehog (SHH), Indian Hedgehog (IHH), and Brain-Derived Neurotrophic Factor (BDNF) in children with Autism Spectrum Disorder (ASD). An observational, comparative study. Autism Research and Treatment Center, Al-Amodi Autism Research Chair, Department of Physiology, Faculty of Medicine, King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia, from October 2011 to May 2012. Serum levels of SHH, IHH and BDNF were determined in recently diagnosed autistic patients and age-matched healthy children (n=25), using the Enzyme-Linked Immunosorbent Assay (ELISA). Childhood Autism Rating Scale (CARS) was used for the assessment of autistic severity. Spearman correlation co-efficient 'r' was determined. The serum levels of IHH and SHH were significantly higher in autistic subjects than those of control subjects. There was significant correlation between age and IHH (r = 0.176, p = 0.03), BDNF and severe IHH (r = 0.1763, p = 0.003), and severe BDNF and severe SHH (r = 0.143, p < 0.001). However, there were no significant relationships among the serum levels of SHH, IHH and BDNF and the CARS score, age or gender. The findings support a correlation between SHH, IHH and BDNF in autistic children, suggesting their pathological role in autism.
Zhao, Guoqing; Zhang, Chen; Chen, Jun; Su, Yousong; Zhou, Rubai; Wang, Fan; Xia, Weiping; Huang, Jia; Wang, Zuowei; Hu, Yingyan; Cao, Lan; Guo, Xiaoyun; Yuan, Chengmei; Wang, Yong; Yi, Zhenghui; Lu, Weihong; Wu, Yan; Wu, Zhiguo; Hong, Wu; Peng, Daihui; Fang, Yiru
2017-09-01
There is a high rate of misdiagnosis between major depressive disorder (MDD) and bipolar disorder (BD) in clinical practice. Our previous work provided suggestive evidence for brain-derived neurotrophic factor (BDNF) in differentiating BD from MDD. In this study, we aimed to investigate the role of mature BDNF (mBDNF) and its precursor (proBDNF) in distinguishing bipolar depression (BP) from MDD during acute depressive episode. A total of 105 participants, including 44 healthy controls, 37 MDD patients and 24 BP patients, were recruited. Enzyme-linked immunosorbent assay kits were applied to measure plasma mBDNF levels and proBDNF levels of all participants. Plasma mBDNF levels were significantly decreased in BP group than those in MDD group (P = 0.001) and healthy controls (P = 0.002). Significantly higher ratio of mBDNF to proBDNF (M/P) at baseline was showed in MDD group than those in BP group as well as in healthy controls (P = 0.000 and P = 0.000, respectively). The optimal model for discriminating BP was the M/P ratio (area under the ROC curve = 0.858, 95 % CI 0.753-0.963). Furthermore, the M/P ratio was restored to normal levels after antidepressants treatment in MDD group. In summary, our data demonstrated that both plasma mBDNF levels and M/P ratio were lower in BP compared with MDD. These findings further support M/P ratio as a potential differential diagnostic biomarker for BP among patients in depressive episodes.
Williams, John; Finn, Karen; Melvin, Vincent; Meagher, David; McCarthy, Geraldine; Adamis, Dimitrios
2017-01-01
Limited studies of the association between BDNF levels and delirium have given inconclusive results. This prospective, longitudinal study examined the relationship between BDNF levels and the occurrence of and recovery from delirium. Participants were assessed twice weekly using MoCA, DRS-R98, and APACHE II scales. BDNF levels were estimated using an ELISA method. Delirium was defined with DRS-R98 (score > 16) and recovery from delirium as ≥2 consecutive assessments without delirium prior to discharge. We identified no difference in BDNF levels between those with and without delirium. Excluding those who never developed delirium ( n = 140), we examined the association of BDNF levels and other variables with delirium recovery. Of 58 who experienced delirium, 39 remained delirious while 19 recovered. Using Generalized Estimating Equations models we found that BDNF levels (Wald χ 2 = 7.155; df: 1, p = 0.007) and MoCA (Wald χ 2 = 4.933; df: 1, p = 0.026) were associated with recovery. No significant association was found for APACHE II, dementia, age, or gender. BDNF levels do not appear to be directly linked to the occurrence of delirium but recovery was less likely in those with continuously lower levels. No previous study has investigated the role of BDNF in delirium recovery and these findings warrant replication in other populations.
2017-01-01
Brain-derived neurotrophic factor (BDNF) is a neurotrophin that is vital to the survival, growth, and maintenance of neurons in key brain circuits involved in emotional and cognitive function. Convergent evidence indicates that neuroplastic mechanisms involving BDNF are deleteriously altered in major depressive disorder (MDD) and animal models of stress. Herein, clinical and preclinical evidence provided that stress-induced depressive pathology contributes to altered BDNF level and function in persons with MDD and, thereby, disruptions in neuroplasticity at the regional and circuit level. Conversely, effective therapeutics that mitigate depressive-related symptoms (e.g., antidepressants and physical activity) optimize BDNF in key brain regions, promote neuronal health and recovery of function in MDD-related circuits, and enhance pharmacotherapeutic response. A greater knowledge of the interrelationship between BDNF, depression, therapeutic mechanisms of action, and neuroplasticity is important as it necessarily precedes the derivation and deployment of more efficacious treatments. PMID:28928987
Phillips, Cristy
2017-01-01
Brain-derived neurotrophic factor (BDNF) is a neurotrophin that is vital to the survival, growth, and maintenance of neurons in key brain circuits involved in emotional and cognitive function. Convergent evidence indicates that neuroplastic mechanisms involving BDNF are deleteriously altered in major depressive disorder (MDD) and animal models of stress. Herein, clinical and preclinical evidence provided that stress-induced depressive pathology contributes to altered BDNF level and function in persons with MDD and, thereby, disruptions in neuroplasticity at the regional and circuit level. Conversely, effective therapeutics that mitigate depressive-related symptoms (e.g., antidepressants and physical activity) optimize BDNF in key brain regions, promote neuronal health and recovery of function in MDD-related circuits, and enhance pharmacotherapeutic response. A greater knowledge of the interrelationship between BDNF, depression, therapeutic mechanisms of action, and neuroplasticity is important as it necessarily precedes the derivation and deployment of more efficacious treatments.
Şimşek, Şeref; Gençoğlan, Salih; Yüksel, Tuğba; Kaplan, İbrahim; Alaca, Rümeysa
2016-07-01
In this study, we investigated serum brain-derived neurotrophic factor (BDNF), adrenocorticotropic hormone (ACTH), and cortisol levels between children with obsessive-compulsive disorder (OCD) prior to treatment and healthy controls. In addition, the study aimed to assess any correlations between OCD symptom severity and BDNF, ACTH, and cortisol levels. Twenty-nine children, aged from 7 to 17 years (male/female: 21/8) and diagnosed with OCD according to DSM-IV prior to treatment, were compared with 25 healthy control subjects (male/female: 16/9). The study was conducted between December 2012 and December 2013. The Kiddie Schedule for Affective Disorders and Schizophrenia, Present and Lifetime Version (K-SADS-PL), Children's Yale-Brown Obsessive Compulsive Scale, and Children's Depression Inventory (CDI) were administered to the children. BDNF, ACTH, and cortisol levels were detected using a prepared kit with the enzyme-linked immunosorbent assay method. BDNF, ACTH, and cortisol levels in the OCD group were significantly higher when compared with the control group (P = .02, P = .03, and P = .046, respectively). No association was detected between the severity and duration of OCD symptoms and BDNF, ACTH, and cortisol levels. CDI scores in both groups were similar. The mean (SD) duration of OCD symptoms was 17.9 (18.5) months. Our findings suggest that BDNF levels adaptively increase as a result of the damaging effects of the hypothalamic-pituitary-adrenal (HPA) axis hyperactivity on brain tissue in the early stages of OCD. HPA axis abnormalities and BDNF may play a role in the pathogenesis of the disease. © Copyright 2016 Physicians Postgraduate Press, Inc.
Allard, Joanne S; Ntekim, Oyonumo; Johnson, Steven P; Ngwa, Julius S; Bond, Vernon; Pinder, Dynell; Gillum, Richard F; Fungwe, Thomas V; Kwagyan, John; Obisesan, Thomas O
2017-01-01
Possession of the Apolipoprotein E (APOE) gene ε4 allele is the most prevalent genetic risk factor for late onset Alzheimer's disease (AD). Recent evidence suggests that APOE genotype differentially affects the expression of brain-derived neurotrophic factor (BDNF). Notably, aerobic exercise-induced upregulation of BDNF is well documented; and exercise has been shown to improve cognitive function. As BDNF is known for its role in neuroplasticity and survival, its upregulation is a proposed mechanism for the neuroprotective effects of physical exercise. In this pilot study designed to analyze exercise-induced BDNF upregulation in an understudied population, we examined the effects of APOEε4 (ε4) carrier status on changes in BDNF expression after a standardized exercise program. African Americans, age 55years and older, diagnosed with mild cognitive impairment participated in a six-month, supervised program of either stretch (control treatment) or aerobic (experimental treatment) exercise. An exercise-induced increase in VO 2 Max was detected only in male participants. BDNF levels in serum were measured using ELISA. Age, screening MMSE scores and baseline measures of BMI, VO 2 Max, and BDNF did not differ between ε4 carriers and non-ε4 carriers. A significant association between ε4 status and serum BDNF levels was detected. Non-ε4 carriers showed a significant increase in BDNF levels at the 6month time point while ε4 carriers did not. We believe we have identified a relationship between the ε4 allele and BDNF response to physiologic adaptation which likely impacts the extent of neuroprotective benefit gained from engagement in physical exercise. Replication of our results with inclusion of diverse racial cohorts, and a no-exercise control group will be necessary to determine the scope of this association in the general population. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Yeh, Shu-Hui; Lin, Li-Wei; Chuang, Yu Kuan; Liu, Cheng-Ling; Tsai, Lu-Jen; Tsuei, Feng-Shiou; Lee, Ming-Tsung; Hsiao, Chiu-Yueh; Yang, Kuender D.
2015-01-01
A randomized clinical trial was utilized to compare the improvement of depression and brain-derived neurotrophic factor (BDNF) levels between community women with and without music aerobic exercise (MAE) for 12 weeks. The MAE group involved 47 eligible participants, whereas the comparison group had 59 participants. No significant differences were recorded in the demographic characteristics between the participants in the MAE group and the comparison group. Forty-one participants in the MAE group and 26 in the comparison group completed a pre- and posttest. The MAE group displayed significant improvement in depression scores (p = 0.016), decreased depression symptoms in crying (p = 0.03), appetite (p = 0.006), and fatigue (p = 0.011). The BDNF levels of the participants significantly increased after the 12-week MAE (p = 0.042). The parallel comparison group revealed no significant changes in depression scores or BDNF levels. In summary, the 12-week MAE had a significant impact on the enhancement of BDNF levels and improvement of depression symptoms. Middle-aged community women are encouraged to exercise moderately to improve their depression symptoms and BDNF levels. PMID:26075212
Scaini, Giselli; Comim, Clarissa M; Oliveira, Giovanna M T; Pasquali, Matheus A B; Quevedo, João; Gelain, Daniel P; Moreira, José Cláudio F; Schuck, Patrícia F; Ferreira, Gustavo C; Bogo, Maurício R; Streck, Emilio L
2013-09-01
Maple syrup urine disease (MSUD) is a neurometabolic disorder that leads to the accumulation of branched-chain amino acids (BCAAs) and their α-keto branched-chain by-products. Because the neurotoxic mechanisms of MSUD are poorly understood, this study aimed to evaluate the effects of chronic administration of a BCAA pool (leucine, isoleucine and valine). This study examined the effects of BCAA administration on spatial memory and the levels of brain-derived neurotrophic factor (BNDF). We examined both pro-BDNF and bdnf mRNA expression levels after administration of BCAAs. Furthermore, this study examined whether antioxidant treatment prevented the alterations induced by BCAA administration. Our results demonstrated an increase in BDNF in the hippocampus and cerebral cortex, accompanied by memory impairment in spatial memory tasks. Additionally, chronic administration of BCAAs did not induce a detectable change in pro-BDNF levels. Treatment with N-acetylcysteine and deferoxamine prevented both the memory deficit and the increase in the BDNF levels induced by BCAA administration. In conclusion, these results suggest that when the brain is chronically exposed to high concentrations of BCAA (at millimolar concentrations) an increase in BDNF levels occurs. This increase in BDNF may be related to the impairment of spatial memory. In addition, we demonstrated that antioxidant treatment prevented the negative consequences related to BCAA administration, suggesting that oxidative stress might be involved in the pathophysiological mechanism(s) underlying the brain damage observed in MSUD.
[BRAIN-DERIVED NEUROTROPHIC FACTOR (BDNF): NEUROBIOLOGY AND MARKER VALUE IN NEUROPSYCHIATRY].
Levada, O A; Cherednichenko, N V
2015-01-01
In this review current publications about neurobiology and marker value of brain derived neurotrophic factor (BDNF) in neuropsychiatry are analyzed. It is shown that BDNF is an important member of the family of neurotrophins which widely represented in various structures of the CNS. In prenatal period BDNF is involved in all stages of neuronal networks formation, and in the postnatal period its main role is maintaining the normal brain architectonics, involvement in the processes of neurogenesis and realization of neuroprotective functions. BDNF plays an important role in learning and memory organization, food and motor behavior. BDNF brain expression decreases with age, as well as in degenerative and vascular dementias, affective, anxiety, and behavioral disorders. The reducing of BDNF serum, level reflects the decreasing of its cerebral expression and could be used as a neurobiological marker of these pathological processes but the rising of its concentration could indicate the therapy effectiveness.
Rojas, Paulina Soledad; Fritsch, Rosemarie; Rojas, Romina Andrea; Jara, Pablo; Fiedler, Jenny Lucy
2011-09-30
Depressive patients often have altered cortisol secretion, an effect that likely derives from impaired activity of the glucocorticoid receptor (GR), the main regulator of the hypothalamus-pituitary-adrenal (HPA) axis. Glucocorticoids reduce the levels of brain-derived neurotrophic factor (BDNF), a downstream target of antidepressants. Antidepressants promote the transcriptional activity of cyclic adenosine monophosphate (cAMP) response element binding protein (CREB), a regulator of BDNF expression. To identify potential biomarkers for the onset of antidepressant action in depressive patients, GR and phospho-CREB (pCREB) levels in lymphocytes and serum BDNF levels were repeatedly measured during the course of antidepressant treatment. Thirty-four depressed outpatients (10 male and 24 female) were treated with venlafaxine (75mg/day), and individuals exhibiting a 50% reduction in their baseline 17-Item Hamilton Depression Rating Scale score by the 6th week of treatment were considered responders. Responders showed an early improvement in parallel with a rise in BDNF levels during the first two weeks of treatment. Non-responders showed increased GR levels by the third week and reduced serum BDNF by the sixth week of treatment. In contrast, venlafaxine did not affect levels of pCREB. We conclude that levels of BDNF in serum and GR levels in lymphocytes may represent biomarkers that could be used to predict responses to venlafaxine treatment. Copyright © 2011 Elsevier Ltd. All rights reserved.
Different levels of brain-derived neurotrophic factor and cortisol in healthy heavy smokers.
Neves, C D C; Lacerda, A C R; Lima, L P; Lage, V K S; Balthazar, C H; Leite, H R; Mendonça, V A
2017-10-19
Studies suggest that brain-derived neurotrophic factor (BDNF) and the hypothalamic-pituitary-adrenal (HPA) axis modulate dopaminergic activity in response to nicotine and that the concentrations of BDNF and cortisol seem to be dependent on the amount and duration of smoking. Therefore, we investigated BDNF and cortisol levels in smokers ranked by daily cigarette consumption. Twenty-seven adult males (13 non-smokers and 14 smokers) participated in the study. The smokers were divided in two groups: light (n=7) and heavy smokers (n=7). Anthropometric parameters and age were paired between the groups, and plasma BDNF and salivary cortisol levels were measured. Saliva samples were collected on awakening, 30 min after awakening, at 10:00 and 12:00 am, 5:00 and 10:00 pm. Additionally, cotinine serum levels were measured in smokers. Heavy smokers had higher mean values of BDNF compared to the control group (P=0.01), whereas no difference was observed in light smokers. Moreover, heavy smokers presented lower cortisol levels in the last collection (10:00 pm) than the control group (P=0.02) and presented statically higher values of cotinine than the light smokers (P=0.002). In conclusion, changes in BDNF and cortisol levels (10:00 pm) appear to be dependent on heavy cigarette smoking and can be involved in activation and in the relationship between the mesolimbic system and the HPA axis.
Different levels of brain-derived neurotrophic factor and cortisol in healthy heavy smokers
Neves, C.D.C.; Lacerda, A.C.R.; Lima, L.P.; Lage, V.K.S.; Balthazar, C.H.; Leite, H.R.; Mendonça, V.A.
2017-01-01
Studies suggest that brain-derived neurotrophic factor (BDNF) and the hypothalamic-pituitary-adrenal (HPA) axis modulate dopaminergic activity in response to nicotine and that the concentrations of BDNF and cortisol seem to be dependent on the amount and duration of smoking. Therefore, we investigated BDNF and cortisol levels in smokers ranked by daily cigarette consumption. Twenty-seven adult males (13 non-smokers and 14 smokers) participated in the study. The smokers were divided in two groups: light (n=7) and heavy smokers (n=7). Anthropometric parameters and age were paired between the groups, and plasma BDNF and salivary cortisol levels were measured. Saliva samples were collected on awakening, 30 min after awakening, at 10:00 and 12:00 am, 5:00 and 10:00 pm. Additionally, cotinine serum levels were measured in smokers. Heavy smokers had higher mean values of BDNF compared to the control group (P=0.01), whereas no difference was observed in light smokers. Moreover, heavy smokers presented lower cortisol levels in the last collection (10:00 pm) than the control group (P=0.02) and presented statically higher values of cotinine than the light smokers (P=0.002). In conclusion, changes in BDNF and cortisol levels (10:00 pm) appear to be dependent on heavy cigarette smoking and can be involved in activation and in the relationship between the mesolimbic system and the HPA axis. PMID:29069228
Tsai, Meng-Chang; Huang, Tiao-Lai
2017-03-01
Brain-derived neurotrophic factor (BDNF) and oxidative stress may play a role in patients with heroin dependence. The aim of this study was to investigate the serum levels and activities of BDNF and oxidative stress markers, such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), thiobarbituric acid reactive substances (TBARS), protein carbonyl content (PCC), and 8-hydroxy 2'-deoxyguanosine (8-OHdG), in heroin-dependent patients undergoing methadone maintenance treatment (MMT). 60 heroin-dependent male MMT patients and 30 healthy males were recruited for this study. The serum BDNF and oxidative stress markers of these subjects were measured with assay kits. Analyses of covariance (ANCOVAs) with age and body mass index adjustments indicated that the serum levels of BDNF in the MMT patients were significantly higher than those in the healthy controls (F=5.169; p=0.026). However, there were no significant differences between the heroin-dependent patients and the healthy controls in the serum levels or activities of oxidative stress markers (p>0.05). In conclusion, our results suggest that MMT increases BDNF levels in heroin-dependent patients, and that patients undergoing MMT might be in a balanced state of reduced oxidation. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
Murillo Ortíz, Blanca; Ramírez Emiliano, Joel; Ramos-Rodríguez, Edna; Martínez-Garza, Sandra; Macías-Cervantes, Hilda; Solorio-Meza, Sergio; Pereyra-Nobara, Texar Alfonso
2016-01-01
AIM To assess the relationship of brain-derived neurotrophic factor (BDNF) with cognitive impairment in patients with type 2 diabetes. METHODS The study included 40 patients with diabetes mellitus type 2 (DM2), 37 patients with chronic kidney disease in hem dialysis hemodialysis therapy (HD) and 40 healthy subjects. BDNF in serum was quantified by ELISA. The Folstein Mini-Mental State Examination was used to evaluate cognitive impairment. RESULTS The patients with DM2 and the patients in HD were categorized into two groups, with cognitive impairment and without cognitive impairment. The levels of BDNF showed significant differences between patients with DM2 (43.78 ± 9.05 vs 31.55 ± 10.24, P = 0.005). There were no differences between patients in HD (11.39 ± 8.87 vs 11.11 ± 10.64 P = 0.77); interestingly, ferritin levels were higher in patients with cognitive impairment (1564 ± 1335 vs 664 ± 484 P = 0.001). The comparison of BDNF values, using a Kruskal Wallis test, between patients with DM2, in HD and healthy controls showed statistical differences (P < 0.001). CONCLUSION Low levels of BDNF are associated with cognitive impairment in patients with DM2. The decrease of BDNF occurs early and progressively in patients in HD. PMID:28031779
Murillo Ortíz, Blanca; Ramírez Emiliano, Joel; Ramos-Rodríguez, Edna; Martínez-Garza, Sandra; Macías-Cervantes, Hilda; Solorio-Meza, Sergio; Pereyra-Nobara, Texar Alfonso
2016-12-15
To assess the relationship of brain-derived neurotrophic factor (BDNF) with cognitive impairment in patients with type 2 diabetes. The study included 40 patients with diabetes mellitus type 2 (DM2), 37 patients with chronic kidney disease in hem dialysis hemodialysis therapy (HD) and 40 healthy subjects. BDNF in serum was quantified by ELISA. The Folstein Mini-Mental State Examination was used to evaluate cognitive impairment. The patients with DM2 and the patients in HD were categorized into two groups, with cognitive impairment and without cognitive impairment. The levels of BDNF showed significant differences between patients with DM2 (43.78 ± 9.05 vs 31.55 ± 10.24, P = 0.005). There were no differences between patients in HD (11.39 ± 8.87 vs 11.11 ± 10.64 P = 0.77); interestingly, ferritin levels were higher in patients with cognitive impairment (1564 ± 1335 vs 664 ± 484 P = 0.001). The comparison of BDNF values, using a Kruskal Wallis test, between patients with DM2, in HD and healthy controls showed statistical differences ( P < 0.001). Low levels of BDNF are associated with cognitive impairment in patients with DM2. The decrease of BDNF occurs early and progressively in patients in HD.
BDNF levels in adipose tissue and hypothalamus were reduced in mice with MSG-induced obesity.
Jin, Yong Jun; Cao, Peng Juan; Bian, Wei Hua; Li, Ming E; Zhou, Rong; Zhang, Ling Yun; Yang, Mei Zi
2015-01-01
To observe the expression of brain-derived neurotrophic factor (BDNF) in hypothalamic and adipose tissue in mice with monosodium glutamate (MSG)-induced obesity. The effects of hypothalamic lesions, specifically arcuate nucleus (ARC) lesions, induced by MSG injection were studied in male ICR mice at the neonatal stage. The following parameters were compared: body weight, body length, Lee's index, food intake, body temperature, fat weight, and levels of total cholesterol (CHOL), triglyceride (TG), low-density lipoprotein (LDL), high-density lipoprotein (HDL), and blood glucose (GLU). The BDNF expression levels in hypothalamic and adipose tissue were measured using western blotting. Results Compared with the control group, the model group body had significantly higher weight, Lee's index, food intake, fat weight, CHOL, TG, LDL, HDL, and GLU levels. BDNF expression levels in hypothalamic and adipose tissue were markedly down-regulated in the model group. BDNF may be closely associated with MSG-induced hypothalamic obesity.
On the quest for a biomechanism of transsexualism: is there a role for BDNF?
Fuss, Johannes; Biedermann, Sarah V; Stalla, Günter K; Auer, Matthias K
2013-12-01
Previous studies hypothesized a neurobiological mechanism for gender identity disorder (GID). Recently a possible role for serum brain-derived neurotrophic factor (BDNF) was suggested on the basis of reduced serum BDNF levels in male-to-female individuals. Here we review the question whether there is indeed a role of BDNF in the development of transsexualism. Copyright © 2013 Elsevier Ltd. All rights reserved.
Haile, C N; Murrough, J W; Iosifescu, D V; Chang, L C; Al Jurdi, R K; Foulkes, A; Iqbal, S; Mahoney, J J; De La Garza, R; Charney, D S; Newton, T F; Mathew, S J
2014-02-01
Ketamine produces rapid antidepressant effects in treatment-resistant depression (TRD), but the magnitude of response varies considerably between individual patients. Brain-derived neurotrophic factor (BDNF) has been investigated as a biomarker of treatment response in depression and has been implicated in the mechanism of action of ketamine. We evaluated plasma BDNF and associations with symptoms in 22 patients with TRD enrolled in a randomized controlled trial of ketamine compared to an anaesthetic control (midazolam). Ketamine significantly increased plasma BDNF levels in responders compared to non-responders 240 min post-infusion, and Montgomery-Åsberg Depression Rating Scale (MADRS) scores were negatively correlated with BDNF (r=-0.701, p = 0.008). Plasma BDNF levels at 240 min post-infusion were highly negatively associated with MADRS scores at 240 min (r = -0.897, p=.002), 24 h (r = -0.791, p = 0.038), 48 h (r = -0.944, p = 0.001) and 72 h (r = -0.977, p = 0.010). No associations with BDNF were found for patients receiving midazolam. These data support plasma BDNF as a peripheral biomarker relevant to ketamine antidepressant response.
Braun, David J; Kalinin, Sergey; Feinstein, Douglas L
2017-01-01
Damage occurring to noradrenergic neurons in the locus coeruleus (LC) contributes to the evolution of neuroinflammation and neurodegeneration in a variety of conditions and diseases. One cause of LC damage may be loss of neurotrophic support from LC target regions. We tested this hypothesis by conditional unilateral knockout of brain-derived neurotrophic factor (BDNF) in adult mice. To evaluate the consequences of BDNF loss in the context of neurodegeneration, the mice harbored familial mutations for human amyloid precursor protein and presenilin-1. In these mice, BDNF depletion reduced tyrosine hydroxylase staining, a marker of noradrenergic neurons, in the rostral LC. BDNF depletion also reduced noradrenergic innervation in the hippocampus, the frontal cortex, and molecular layer of the cerebellum, assessed by staining for dopamine beta hydroxylase. BDNF depletion led to an increase in cortical amyloid plaque numbers and size but was without effect on plaque numbers in the striatum, a site with minimal innervation from the LC. Interestingly, cortical Iba1 staining for microglia was reduced by BDNF depletion and was correlated with reduced dopamine beta hydroxylase staining. These data demonstrate that reduction of BDNF levels in an LC target region can cause retrograde damage to LC neurons, leading to exacerbation of neuropathology in distinct LC target areas. Methods to reduce BDNF loss or supplement BDNF levels may be of value to reduce neurodegenerative processes normally limited by LC noradrenergic activities.
Benekareddy, Madhurima; Nair, Amrita R; Dias, Brian G; Suri, Deepika; Autry, Anita E; Monteggia, Lisa M; Vaidya, Vidita A
2013-03-01
Exposure to stress and hallucinogens in adulthood evokes persistent alterations in neurocircuitry and emotional behaviour. The structural and functional changes induced by stress and hallucinogen exposure are thought to involve transcriptional alterations in specific effector immediate early genes. The immediate early gene, activity regulated cytoskeletal-associated protein (Arc), is important for both activity and experience dependent plasticity. We sought to examine whether trophic factor signalling through brain-derived neurotrophic factor (BDNF) contributes to the neocortical regulation of Arc mRNA in response to distinct stimuli such as immobilization stress and the hallucinogen 2,5-dimethoxy-4-iodoamphetamine (DOI). Acute exposure to either immobilization stress or DOI induced Arc mRNA levels within the neocortex. BDNF infusion into the neocortex led to a robust up-regulation of local Arc transcript expression. Further, baseline Arc mRNA expression in the neocortex was significantly decreased in inducible BDNF knockout mice with an adult-onset, forebrain specific BDNF loss. The induction of Arc mRNA levels in response to both acute immobilization stress or a single administration of DOI was significantly attenuated in the inducible BDNF knockout mice. Taken together, our results implicate trophic factor signalling through BDNF in the regulation of cortical Arc mRNA expression, both under baseline conditions and following stress and hallucinogen exposure. These findings suggest the possibility that the regulation of Arc expression via BDNF provides a molecular substrate for the structural and synaptic plasticity observed following stimuli such as stress and hallucinogens.
Bierlein De la Rosa, Metzere; Sharma, Anup D; Mallapragada, Surya K; Sakaguchi, Donald S
2017-11-01
The use of genetically modified mesenchymal stem cells (MSCs) is a rapidly growing area of research targeting delivery of therapeutic factors for neuro-repair. Cells can be programmed to hypersecrete various growth/trophic factors such as brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), and nerve growth factor (NGF) to promote regenerative neurite outgrowth. In addition to genetic modifications, MSCs can be subjected to transdifferentiation protocols to generate neural cell types to physically and biologically support nerve regeneration. In this study, we have taken a novel approach by combining these two unique strategies and evaluated the impact of transdifferentiating genetically modified MSCs into a Schwann cell-like phenotype. After 8 days in transdifferentiation media, approximately 30-50% of transdifferentiated BDNF-secreting cells immunolabeled for Schwann cell markers such as S100β, S100, and p75 NTR . An enhancement was observed 20 days after inducing transdifferentiation with minimal decreases in expression levels. BDNF production was quantified by ELISA, and its biological activity tested via the PC12-TrkB cell assay. Importantly, the bioactivity of secreted BDNF was verified by the increased neurite outgrowth of PC12-TrkB cells. These findings demonstrate that not only is BDNF actively secreted by the transdifferentiated BDNF-MSCs, but also that it has the capacity to promote neurite sprouting and regeneration. Given the fact that BDNF production remained stable for over 20 days, we believe that these cells have the capacity to produce sustainable, effective, BDNF concentrations over prolonged time periods and should be tested within an in vivo system for future experiments. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Leech, Kristan A; Hornby, T George
2017-03-15
High-intensity locomotor exercise is suggested to contribute to improved recovery of locomotor function after neurological injury. This may be secondary to exercise-intensity-dependent increases in neurotrophin expression demonstrated previously in control subjects. However, rigorous examination of intensity-dependent changes in neurotrophin levels is lacking in individuals with motor incomplete spinal cord injury (SCI). Therefore, the primary aim of this study was to evaluate the effect of locomotor exercise intensity on peripheral levels of brain-derived neurotrophic factor (BDNF) in individuals with incomplete SCI. We also explored the impact of the Val66Met single-nucleotide polymorphism (SNP) on the BDNF gene on intensity-dependent changes. Serum concentrations of BDNF and insulin-like growth factor-1 (IGF-1), as well as measures of cardiorespiratory dynamics, were evaluated across different levels of exercise intensity achieved during a graded-intensity, locomotor exercise paradigm in 11 individuals with incomplete SCI. Our results demonstrate a significant increase in serum BDNF at high, as compared to moderate, exercise intensities (p = 0.01) and 15 and 30 min post-exercise (p < 0.01 for both), with comparison to changes at low intensity approaching significance (p = 0.05). Serum IGF-1 demonstrated no intensity-dependent changes. Significant correlations were observed between changes in BDNF and specific indicators of exercise intensity (e.g., rating of perceived exertion; R = 0.43; p = 0.02). Additionally, the data suggest that Val66Met SNP carriers may not exhibit intensity-dependent changes in serum BDNF concentration. Given the known role of BDNF in experience-dependent neuroplasticity, these preliminary results suggest that exercise intensity modulates serum BDNF concentrations and may be an important parameter of physical rehabilitation interventions after neurological injury.
Leech, Kristan A.
2017-01-01
Abstract High-intensity locomotor exercise is suggested to contribute to improved recovery of locomotor function after neurological injury. This may be secondary to exercise-intensity–dependent increases in neurotrophin expression demonstrated previously in control subjects. However, rigorous examination of intensity-dependent changes in neurotrophin levels is lacking in individuals with motor incomplete spinal cord injury (SCI). Therefore, the primary aim of this study was to evaluate the effect of locomotor exercise intensity on peripheral levels of brain-derived neurotrophic factor (BDNF) in individuals with incomplete SCI. We also explored the impact of the Val66Met single-nucleotide polymorphism (SNP) on the BDNF gene on intensity-dependent changes. Serum concentrations of BDNF and insulin-like growth factor-1 (IGF-1), as well as measures of cardiorespiratory dynamics, were evaluated across different levels of exercise intensity achieved during a graded-intensity, locomotor exercise paradigm in 11 individuals with incomplete SCI. Our results demonstrate a significant increase in serum BDNF at high, as compared to moderate, exercise intensities (p = 0.01) and 15 and 30 min post-exercise (p < 0.01 for both), with comparison to changes at low intensity approaching significance (p = 0.05). Serum IGF-1 demonstrated no intensity-dependent changes. Significant correlations were observed between changes in BDNF and specific indicators of exercise intensity (e.g., rating of perceived exertion; R = 0.43; p = 0.02). Additionally, the data suggest that Val66Met SNP carriers may not exhibit intensity-dependent changes in serum BDNF concentration. Given the known role of BDNF in experience-dependent neuroplasticity, these preliminary results suggest that exercise intensity modulates serum BDNF concentrations and may be an important parameter of physical rehabilitation interventions after neurological injury. PMID:27526567
Rössing, K; Novak, N; Mommert, S; Pfab, F; Gehring, M; Wedi, B; Kapp, A; Raap, U
2011-10-01
Chronic spontaneous urticaria is triggered by many direct and indirect aggravating factors including autoreactive/autoimmune mechanisms, infections, non-allergic and pseudoallergic intolerance reactions. However, the role of neuroimmune mechanisms in chronic spontaneous urticaria so far is unclear. Thus, we wanted to address the regulation of the neurotrophin brain-derived neurotrophic factor (BDNF) in serum and inflammatory skin of patients with chronic spontaneous urticaria in comparison to subjects with healthy skin. Fifty adult patients with chronic spontaneous urticaria and 23 skin-healthy subjects were studied. Chronic spontaneous urticaria was defined as recurrent weals for more than 6 weeks. Autologous serum skin test was performed in all patients with chronic spontaneous urticaria and BDNF serum levels were analysed by enzyme immunoassay in all subjects. Furthermore, skin biopsies were taken from weals of eight patients with chronic spontaneous urticaria as well as from healthy skin of eight controls to evaluate the expression of BDNF and its receptors including tyrosine kinase (trk) B and pan-neurotrophin receptor p75(NTR) by immunohistochemistry. BDNF serum levels were detectable in all subjects studied. However, BDNF levels were significantly higher in patients with chronic spontaneous urticaria compared to non-atopic skin-healthy controls (P<0.001). Furthermore, epidermal and dermal expression of BDNF and epidermal expression of p75(NTR) was significantly higher in patients with chronic spontaneous urticaria compared with controls (P<0.05-0.001). There was no difference with regard to the expression of trkB between chronic spontaneous urticaria and controls and no difference in BDNF serum levels between autologous serum skin test-positive (n=23) and -negative (n=27) patients with chronic spontaneous urticaria. This study shows that BDNF is increased in serum and diseased skin of patients with chronic spontaneous urticaria, suggesting a role for neurotrophins in the pathophysiology of this chronic inflammatory skin disease. Further studies are needed to address the functional role of BDNF on key target effector cells in chronic spontaneous urticaria to establish new therapeutic implications. © 2011 Blackwell Publishing Ltd.
Dooley, Larissa N.; Ganz, Patricia A.; Cole, Steve W.; Crespi, Catherine M.; Bower, Julienne E.
2016-01-01
Background Inflammation contributes to the development of depression in a subset of individuals, but risk factors that render certain individuals vulnerable to inflammation-associated depression are undetermined. Drawing from animal studies showing that reduced neuroplasticity mediates effects of inflammation on depression, we hypothesized that individuals genetically predisposed to lower levels of neuroplasticity would be more susceptible to inflammation-associated depression. The current study examined whether the Met allele of the BDNF Val66met polymorphism, which predisposes individuals to reduced levels of brain-derived neurotrophic factor (BDNF), a protein vital for neuroplasticity, moderates the association between inflammation and depressive symptoms. Methods Our sample was 112 women with early-stage breast cancer who had recently completed cancer treatment, which can activate inflammation. Participants provided blood for genotyping and assessment of circulating inflammatory markers, and completed a questionnaire assessing depressive symptoms, including somatic, affective, and cognitive dimensions. Results There was a significant interaction between C-reactive protein (CRP) and the BDNF Val66met polymorphism in predicting cognitive depressive symptoms (p=.004), such that higher CRP was related to more cognitive depressive symptoms among Met allele carriers, but not among Val/Val homozygotes. Post-hoc longitudinal analyses suggested that, for Met carriers, higher CRP at baseline predicted higher cognitive depressive symptoms across a one-year follow-up period (p<.001). Conclusion The BDNF Met allele may be a risk factor for inflammation-associated cognitive depressive symptoms among breast cancer survivors. Women with breast cancer who carry this genotype may benefit from early identification and treatment. Limitation BDNF genotype is an indirect measure of BDNF protein levels. PMID:26967918
Wang, Yuan; Zhang, Haiyin; Li, Ying; Wang, Zhen; Fan, Qing; Yu, Shunying; Lin, Zhiguang; Xiao, Zeping
2015-11-01
Anxiety disorders are a category of mental disorders characterized by feelings of anxiety and fear, which include generalized anxiety disorder (GAD). Obsessive-Compulsive Disorder (OCD) used to be categorized as anxiety disorder in DSM-IV. However OCD was no longer included in anxiety disorders and came into its own category titled as Obsessive-Compulsive and Related Disorders (OCRD) in DSM-5. It will be interesting to explore is there any different biological characteristics between OCD and anxiety disorders. Brain-derived neurotrophic factor (BDNF) was a potential candidate gene in both OCD and GAD. The results of genetic association studies between BDNF and OCD have been inconsistent. BDNF plasma/serum levels in OCD have been found lower than those in healthy controls. However the heritable reason of the lowered BDNF levels was not well elucidated. The amount of studies about BDNF and GAD were relatively small. The aims of this study were to determine whether single nucleotide polymorphism Val66Met of BDNF was associated with OCD and GAD, to examine BDNF plasma levels in OCD and GAD, and to explore whether Val66Met variation influences BDNF plasma levels. We genotyped Val66Met variation in 148 OCD patients, 108 GAD patients and 99 healthy controls. Within the same sample, BDNF plasma levels were determined in 113 OCD patients, 102 GAD patients and 63 healthy controls. Val66Met variation was not associated with OCD or GAD. BDNF plasma levels in OCD and GAD patients were significant lower than those in healthy controls. Val66Met variation had no influence on BDNF plasma levels. No difference was found between OCD and GAD. Results do not change no matter taking OCD and GAD as one group or separated two. First, the sample size for genotyping was relatively small, which leaded to a low statistical power of the genetic part in this study. Second, we genotyped just one SNP in BDNF gene. Third, parts of the participants did not be assayed for BDNF plasma levels. Our findings support the hypothesis that BDNF is involved in the pathophysiology of mental disorders, not only OCD but also GAD. OCD and GAD patients both show lower BDNF plasma levels compared to healthy controls. The BDNF plasma levels are not associated with Val66Met variation. Copyright © 2015 Elsevier B.V. All rights reserved.
Zhang, Jingmiao; Mu, Xiali; Breker, Dane A; Li, Ying; Gao, Zongliang; Huang, Yonglu
2017-01-01
Statins have a positive impact on ischemic stroke outcome. It has been reported that statin have neuroprotective function after ischemic stroke in addition to lipid-lowering effect in animal model. However, the neuroprotective function of statin after stroke has not been confirmed in clinical studies. The aim of this study was to evaluate in a clinical model if statins induce neuroprotection after stroke. We, therefore, assessed serum brain-derived neurotrophic factor (BDNF) levels and functional recovery in atherothrombotic stroke patients and investigated their relationship with atorvastatin treatment. Seventy-eight patients with atherothrombotic stroke were enrolled and randomly assigned to atorvastatin treatment group or placebo control group. Neurological function after stroke was assessed with the National Institutes of Health Stroke Scale, modified Rankin Scale (mRS) and Barthel Index (BI). The serum BDNF levels were both measured at 1 day and 6 weeks after stroke. Linear regression was used to assess the association between BDNF levels and neurological function scores. The mRS and BI were markedly improved in the atorvastatin group when compared to placebo at 6 weeks after stroke. The serum BDNF levels in atorvastatin group were significantly elevated by 6 weeks after stroke and higher than the BDNF levels in controls. In addition, the serum BDNF levels significantly correlated with mRS and BI after stroke. Our results demonstrated that atorvastatin treatment was associated with the increased BDNF level and improved functional recovery after atherothrombotic stroke. This study indicates that atorvastatin-related elevation in the BDNF level may promote functional recovery in stroke patients.
Bakirhan, Abdurrahim; Yalcin Sahiner, Safak; Sahiner, Ismail Volkan; Safak, Yasir; Goka, Erol
2017-01-01
The aim of this study was to compare the serum brain derived neurotropic factor (BNDF) levels of patients with schizophrenia who had never received an antipsychotic treatment with those of a control group. Also, to analyze the relationship between the Positive and Negative Symptom Scale (PANSS) scores and BDNF levels of the patients during the period they were drug-naive. The sample of the study comprised patients who presentedto the Psychiatry Clinic and were admitted after a distinctive schizophrenia diagnosis was made in accordance with the fourth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV-TR) diagnosis classification and who were not using and never had any antipsychotic medicine. A total of 160 participants were included in the study, 80 of whom had schizophrenia patients and 80 constituted the age- and sex-matched healthy control group. Before the start of the treatment, the serum samples to be checked for the BDNF levels were collected from the patients. The difference between the average BDNF levels of the groups were statistically significant (t = -5.25; p˂.001). An analysis as to whether there was a relation between the BDNF levels and the drug-naïve duration indicated no correlations. An examination of the relationship between PANSS scores and BDNF levels of the patients yielded no correlations. Serum BDNF levels seem to be one of the indicators of schizophrenia and its progress; nevertheless, we still do not have sufficient information about this neurotropic factor. In light of our study, the neurodevelopmental changes that occur at disease onset of the illness prominently affect the progress of the illness, which highlights the importance of the treatment in the early stages.
Vinberg, Maj; Miskowiak, Kamilla; Hoejman, Pernille; Pedersen, Maria; Kessing, Lars Vedel
2015-01-01
The study aims to investigate the effect of repeated infusions of recombinant erythropoietin (EPO) on plasma brain derived neurotrophic factor (BDNF) levels in patients with affective disorders. In total, 83 patients were recruited: 40 currently depressed patients with treatment-resistant depression (TRD) (Hamilton Depression Rating Scale-17 items (HDRS-17) score >17) (study 1) and 43 patients with bipolar disorder (BD) in partial remission (HDRS-17 and Young Mania Rating Scale (YMRS) ≤ 14) (study 2). In both studies, patients were randomised to receive eight weekly EPO (Eprex; 40,000 IU) or saline (0.9% NaCl) infusions in a double-blind, placebo-controlled, parallel—group design. Plasma BDNF levels were measured at baseline and at weeks 5, 9 and at follow up, week 14. In contrast with our hypothesis, EPO down regulated plasma BDNF levels in patients with TRD (mean reduction at week 9 (95% CI): EPO 10.94 ng/l (4.51-21.41 ng/l); mean increase at week 9: Saline 0.52 ng/l, p=0.04 (-5.88-4.48 ng/l) p=0.04, partial ŋ2=0.12). No significant effects were found on BDNF levels in partially remitted patients with BD (p=0.35). The present effects of EPO on BDNF levels in patients with TRD point to a role of neurotrophic factors in the potential effects of EPO seen in TRD and BD. The neurobiological mechanisms underlying these effects and the interaction between EPO and peripheral levels on BDNF need to be further elucidated in human studies including a broad range of biomarkers. Trial Registration ClinicalTrials.gov: NCT00916552. PMID:26011424
The role of neurotrophins related to stress in saliva and salivary glands.
Saruta, Juri; Sato, Sadao; Tsukinoki, Keiichi
2010-10-01
Nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) are well-studied neurotrophins involved in neurogenesis, differentiation, growth, and maintenance of selected peripheral and central populations of neuronal cells during development and adulthood. Neurotrophins, in concert with the hypothalamic-pituitary-adrenal (HPA) axis, play key roles in modulating brain plasticity and behavioral coping, especially during ontogenetic critical periods, when the developing brain is particularly sensitive to external stimuli. Early life events, such as psychophysical stress, affect NGF and BDNF levels and induce dysregulation of the HPA axis, thereby affecting brain development and contributing to inter-individual differences in vulnerability to stress or psychiatric disorders. Immobilization stress modifies BDNF mRNA expression in some organs. We studied the effect of immobilization stress on BDNF and its receptor tyrosine receptor kinase B (TrkB) in rat submandibular glands, and found increased BDNF expression in duct cells under immobilization stress. Upon further investigation on the influence of salivary glands on plasma BDNF using an acute immobilization stress model, we found that acute immobilization stress lasting 60 min significantly increases the plasma BDNF level. However, plasma BDNF elevation is markedly suppressed in bilaterally sialoadenectomized rats. This suggests that salivary glands may be the primary source of plasma BDNF under acute immobilization stress. This report reviews the structure of salivary glands, the role of neurotrophins in salivary glands, and the significance of BDNF in saliva and salivary glands, followed by a summary of the evidence that indicates the relationship between immobilization stress and BDNF expression within salivary glands.
Tripp, Adam; Oh, Hyunjung; Guilloux, Jean-Philippe; Martinowich, Keri; Lewis, David A; Sibille, Etienne
2012-11-01
The subgenual anterior cingulate cortex is implicated in the pathology and treatment response of major depressive disorder. Low levels of brain-derived neurotrophic factor (BDNF) and reduced markers for GABA function, including in the amygdala, are reported in major depression, but their contribution to subgenual anterior cingulate cortex dysfunction is not known. Using polymerase chain reaction, we first assessed the degree to which BDNF controls mRNA expression (defined as BDNF dependency) of 15 genes relating to GABA and neuropeptide functions in the cingulate cortex of mice with reduced BDNF function (BDNF-heterozygous [Bdnf(+/-)] mice and BDNF exon-IV knockout [Bdnf(KIV)] mice). Gene expression was then quantified in the subgenual anterior cingulate cortex of 51 postmortem subjects with major depressive disorder and comparison subjects (total subjects, N=102; 49% were women) and compared with previous amygdala results. Based on the results in Bdnf(+/-) and Bdnf(KIV) mice, genes were sorted into high, intermediate, and no BDNF dependency sets. In postmortem human subjects with major depression, BDNF receptor (TRKB) expression, but not BDNF, was reduced. Postmortem depressed subjects exhibited down-regulation in genes with high and intermediate BDNF dependency, including markers of dendritic targeting interneurons (SST, NPY, and CORT) and a GABA synthesizing enzyme (GAD2). Changes extended to BDNF-independent genes (PVALB and GAD1). Changes were greater in men (potentially because of low baseline expression in women), displayed notable differences from prior amygdala results, and were not explained by demographic or clinical factors other than sex. These parallel human/mouse analyses provide direct (low TRKB) and indirect (low expression of BDNF-dependent genes) evidence in support of decreased BDNF signaling in the subgenual anterior cingulate cortex in individuals with major depressive disorder, implicate dendritic targeting GABA neurons and GABA synthesis, and, together, suggest a common BDNF-/GABA-related pathology in major depression with sex- and brain region-specific features.
Amadio, Patrizia; Baldassarre, Damiano; Sandrini, Leonardo; Weksler, Babette B; Tremoli, Elena; Barbieri, Silvia S
2017-01-01
Cigarette smoke (CS) activates platelets, promotes vascular dysfunction, and enhances Tissue Factor (TF) expression in blood monocytes favoring pro-thrombotic states. Brain-derived neurotrophic factor (BDNF), a member of the family of neurotrophins involved in survival, growth, and maturation of neurons, is released by activated platelets (APLTs) and plays a role in the cardiovascular system. The effect of CS on circulating levels of BDNF is controversial and the function of circulating BDNF in atherothrombosis is not fully understood. Here, we have shown that human platelets, treated with an aqueous extract of CS (CSE), released BDNF in a dose-dependent manner. In addition, incubation of human monocytes with BDNF or with the supernatant of platelets activated with CSE increased TF activity by a Tropomyosin receptor kinase B (TrkB)-dependent mechanism. Finally, comparing serum and plasma samples of 12 male never smokers (NS) and 29 male active smokers (AS) we observed a significant increase in microparticle-associated TF activity (MP-TF) as well as BDNF in AS, while in serum, BDNF behaved oppositely. Taken together these findings suggest that platelet-derived BDNF is involved in the regulation of TF activity and that CS plays a role in this pathway by favoring a pro-atherothrombotic state.
Zheng, Zhen; Zhang, Li; Zhu, Tingting; Huang, Jichong; Qu, Yi; Mu, Dezhi
2016-08-10
Brain-derived neurotrophic factor (BDNF) regulates neuronal survival and growth and promotes synaptic plasticity. Recently, researchers have begun to explore the relationship between peripheral BDNF levels and autism spectrum disorder (ASD), but the findings are inconsistent. We undertook the first systematic review and meta-analysis of studies examining peripheral BDNF levels in ASD compared with healthy controls. The PubMed, Embase, and Cochrane Library databases were searched for studies published before February 2016. Fourteen studies involving 2,707 participants and 1,131 incident cases were included. The meta-analysis provided evidence of higher peripheral BDNF levels in ASD compared with controls [standardized mean difference (SMD) = 0.63, 95% confidence interval (95% CI) = 0.18-1.08; P = 0.006]. Subgroup analyses revealed higher BDNF levels in ASD compared with controls for both serum [SMD = 0.58, 95% CI = 0.11-1.04; P = 0.02] and plasma [SMD = 1.27, 95% CI = 0.92-1.61; P < 0.001]. Studies of childhood yielded similar cumulative effect size [SMD = 0.78, 95% CI = 0.31-1.26; P = 0.001], while this was not true for the studies of adulthood [SMD = 0.04, 95% CI = -1.72-1.80; P = 0.97]. This meta-analysis suggests that peripheral BDNF levels are a potential biomarker of ASD.
Kerling, A; Kück, M; Tegtbur, U; Grams, L; Weber-Spickschen, S; Hanke, A; Stubbs, B; Kahl, K G
2017-06-01
Brain derived neurotrophic factor (BDNF) has been implicated in the pathogenesis of major depressive disorder (MDD). Existing data on exercise treatment in people with MDD are inconsistent concerning the effect of exercise on BDNF pointing either to increased or unaltered BDNF concentrations. However, studies in non-depressed persons demonstrated a significant effect on resting peripheral BDNF concentrations in aerobic training interventions. Given the lack of clarity mentioned above, the current study aimed at examining the effect of adjunctive exercise on serum BDNF levels in guideline based treated patients with MDD. 42 depressed inpatients were included, and randomized either to a 6 week structured and supervised exercise intervention plus treatment as usual (EXERCISE, n=22), or to treatment as usual (TAU, n=20). BDNF serum concentrations were assessed before and after the intervention in both study groups with established immunoassays. Serum BDNF slightly decreased in the TAU group, whilst there was an increase in BDNF levels in the exercise group. There was a significant time x group effect concerning sBDNF (p=0.030) with repeated ANOVA measures with age and BMI as covariates, suggesting an increase in BDNF concentrations in the EXERCISE group compared to TAU. Though there was no statistic difference in the antidepressant medication between EXERCISE and TAU potential interactions between exercise and medication on the effects of exercise in BDNF cannot be excluded. Gender was not considered as a covariate in ANOVA due to the small number of objects. Exercise training given as adjunct to standard guideline based treatment appears to have additional effects on BDNF serum concentrations in people with MDD. Our results add further evidence to the beneficial effects of exercise in the treatment of MDD. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.
Determinants of brain-derived neurotrophic factor (BDNF) in umbilical cord and maternal serum.
Flöck, A; Weber, S K; Ferrari, N; Fietz, C; Graf, C; Fimmers, R; Gembruch, U; Merz, W M
2016-01-01
Brain-derived neurotrophic factor (BDNF) plays a fundamental role in brain development; additionally, it is involved in various aspects of cerebral function, including neurodegenerative and psychiatric diseases. Involvement of BDNF in parturition has not been investigated. The aim of our study was to analyze determinants of umbilical cord BDNF (UC-BDNF) concentrations of healthy, term newborns and their respective mothers. This cross-sectional prospective study was performed at a tertiary referral center. Maternal venous blood samples were taken on admission to labor ward; newborn venous blood samples were drawn from the umbilical cord (UC), before delivery of the placenta. Analysis was performed with a commercially available immunoassay. Univariate analyses and stepwise multivariate regression models were applied. 120 patients were recruited. UC-BDNF levels were lower than maternal serum concentrations (median 641 ng/mL, IQR 506 vs. median 780 ng/mL, IQR 602). Correlation between UC- and maternal BDNF was low (R=0.251, p=0.01). In univariate analysis, mode of delivery (MoD), gestational age (GA), body mass index at delivery, and gestational diabetes were determinants of UC-BDNF (MoD and smoking for maternal BDNF, respectively). Stepwise multivariate regression analysis revealed a model with MoD and GA as determinants for UC-BDNF (MoD for maternal BDNF). MoD and GA at delivery are determinants of circulating BDNF in the mother and newborn. We hypothesize that BDNF, like other neuroendocrine factors, is involved in the neuroendocrine cascade of delivery. Timing and mode of delivery may exert BDNF-induced effects on the cerebral function of newborns and their mothers. Copyright © 2015 Elsevier Ltd. All rights reserved.
Schneider, Maiko A; Andreazza, Tahiana; Fontanari, Anna Martha V; Costa, Angelo B; Silva, Dhiordan C da; Aguiar, Bianca W de; Massuda, Raffael; Pedrini, Mariana; Gama, Clarissa S; Schwarz, Karine; Kauer-Sant'Anna, Marcia; Lobato, Maria Ines R
2017-01-01
Transsexualism (ICD-10) is a condition characterized by a strong and persistent dissociation with one's assigned gender. Sex reassignment surgery (SRS) and hormone therapy provide a means of allowing transsexual individuals to feel more congruent with their gender and have played a major role in treatment over the past 70 years. Brain-derived neurotrophic factor (BDNF) appears to play a key role in recovery from acute surgical trauma and environmentally mediated vulnerability to psychopathology. We hypothesize that BDNF may be a biomarker of alleviation of gender incongruence suffering. To measure preoperative and postoperative serum BDNF levels in transsexual individuals as a biomarker of alleviation of stress related to gender incongruence after SRS. Thirty-two male-to-female transsexual people who underwent both surgery and hormonal treatment were selected from our initial sample. BDNF serum levels were assessed before and after SRS with sandwich enzyme linked immunosorbent assay (ELISA). The time elapsed between the pre-SRS and post-SRS blood collections was also measured. No significant difference was found in pre-SRS or post-SRS BDNF levels or with relation to the time elapsed after SRS when BDNF levels were measured. Alleviation of the suffering related to gender incongruence after SRS cannot be assessed by BDNF alone. Surgical solutions may not provide a quick fix for psychological distress associated with transsexualism and SRS may serve as one step toward, rather than as the conclusion of, construction of a person's gender identity.
Solati, Zahra; Jazayeri, Shima; Tehrani-Doost, Mehdi; Mahmoodianfard, Salma; Gohari, Mahmood Reza
2015-05-01
Previous studies have shown a positive effect of zinc as an adjunctive therapy on reducing depressive symptoms. However, to our knowledge, no study has examined the effect of zinc monotherapy on mood. The aim of the present study was to determine the effects of zinc monotherapy on depressive symptoms and serum brain-derived neurotrophic factor (BDNF) levels in overweight or obese subjects. Fifty overweight or obese subjects were randomly assigned into two groups and received either 30 mg zinc or placebo daily for 12 weeks. At baseline and post-intervention, depression severity was assessed using Beck depression inventory II (BDI II), and serum BDNF and zinc levels were determined by enzyme-linked immunosorbent assay and atomic absorption spectrophotometry, respectively. The trial was completed with 46 subjects. After a 12-week supplementation, serum zinc and BDNF levels increased significantly in the zinc-supplemented group compared with the placebo group. BDI scores declined in both the groups at the end of the study, but reduction in the zinc-supplemented group was significantly higher than the placebo group. More analysis revealed that following supplementation, BDI scores decreased in subgroup of subjects with depressive symptoms (BDI ≥ 10) (n = 30), but did not change in the subgroup of non-depressed subjects (BDI < 10) (n = 16). Moreover, a significant inverse correlation was observed between serum BDNF levels and depression severity in all participants. Interestingly, a significant positive correlation was found between serum BDNF and zinc levels at baseline. Zinc monotherapy improves mood in overweight or obese subjects most likely through increasing BDNF levels.
Naert, Gaëlle; Maurice, Tangui; Tapia-Arancibia, Lucia; Givalois, Laurent
2007-01-01
Depression is characterized by hypothalamo-pituitary-adrenocortical (HPA) axis hyperactivity. In this major mood disorder, neurosteroids and neurotrophins, particularly brain-derived neurotrophic factor (BDNF), seem to be implicated and have some antidepressant effects. BDNF is highly involved in regulation of the HPA axis, whereas neurosteroids effects have never been clearly established. In this systematic in vivo study, we showed that the principal neuroactive steroids, namely dehydroepiandrosterone (DHEA), pregnenolone (PREG) and their sulfate esters (DHEA-S and PREG-S), along with allopregnanolone (ALLO), stimulated HPA axis activity, while also modulating central BDNF contents. In detail, DHEA, DHEA-S, PREG, PREG-S and ALLO induced corticotropin-releasing hormone (CRH) and/or arginine vasopressin (AVP) synthesis and release at the hypothalamic level, thus enhancing plasma adrenocorticotropin hormone (ACTH) and corticosterone (CORT) concentrations. This stimulation of the HPA axis occurred concomitantly with BDNF modifications at the hippocampus, amygdala and hypothalamus levels. We showed that these neurosteroids induced rapid effects, probably via neurotransmitter receptors and delayed effects perhaps after metabolization in other neuroactive steroids. We highlighted that they had peripheral effects directly at the adrenal level by inducing CORT release, certainly after estrogenic metabolization. In addition, we showed that, at the dose used, only DHEA, DHEA-S and PREG-S had antidepressant effects. In conclusion, these results highly suggest that part of the HPA axis and antidepressant effects of neuroactive steroids could be mediated by BDNF, particularly at the amygdala level. They also suggest that neurosteroids effects on central BDNF could partially explain the trophic properties of these molecules.
Tarp, Jakob; Andersen, Lars Bo; Gejl, Anne Kær; Huang, Tao; Peijs, Lone; Bugge, Anna
2017-01-01
Background and objective Cardiovascular disease and type 2 diabetes pose a global health burden. Therefore, clarifying the pathology of these risk factors is essential. Previous studies have found positive and negative associations between one or more cardiovascular risk factors and brain-derived neurotrophic factor (BDNF) probably due to diverse methodological approaches when analysing peripheral BDNF levels. Moreover, only a few studies have been performed in youth populations. Consequently, the main objective of this study was to examine the association between serum BDNF and a composite z-score consisting of six cardiovascular risk factors. A secondary aim was to examine the associations between serum BDNF and each of the six risk factors. Methods Four hundred and forty-seven apparently healthy adolescents between 11–17 years of age participated in this cross-sectional study. Cardiorespiratory fitness (CRF), anthropometrics, pubertal status, blood pressure (BP), serum BDNF, high-density lipoprotein cholesterol (HDL-C), triglyceride (TG), blood glucose and insulin were measured. Information about alcohol consumption and socio-economic status was collected via questionnaires. Associations were modelled using linear regression analysis. Results Serum BDNF was positively associated with the composite z-score in the total study sample (standardized beta coefficient (std.β) = 0.10, P = 0.037). In males, serum BDNF was positively associated with the composite z-score (Std. β = 0.14, P = 0.034) and HOMA-IR (Std. β = 0.19, P = 0.004), and negatively associated with CRF (Std. β = -0.15, P = 0.026). In females, BDNF was positively associated with TG (Std. β = 0.14, P = 0.030) and negatively associated with waist circumference (WC) (Std. β = -0.16, P = 0.012). Conclusion Serum BDNF was positively associated with a composite z-score of cardiovascular risk factors. This association seems to be mainly driven by the association between TG, HOMA-IR and serum BDNF, and particularly for males. Further longitudinal research is warranted to determine the temporal relationship between BDNF and cardiovascular risk factors. PMID:29028824
More inflammation but less brain-derived neurotrophic factor in antisocial personality disorder.
Wang, Tzu-Yun; Lee, Sheng-Yu; Hu, Ming-Chuan; Chen, Shiou-Lan; Chang, Yun-Hsuan; Chu, Chun-Hsien; Lin, Shih-Hsien; Li, Chia-Ling; Wang, Liang-Jen; Chen, Po See; Chen, Shih-Heng; Huang, San-Yuan; Tzeng, Nian-Sheng; Lee, I Hui; Chen, Kao Chin; Yang, Yen Kuang; Hong, Jau-Shyong; Lu, Ru-Band
2017-11-01
Antisocial personality disorder (ASPD) is highly comorbid with substance use disorders (SUDs). We hypothesize that chronic neuroinflammation and the loss of neurotrophic factors prompts the pathogenesis of both disorders. We used ELISA to measure plasma levels of proinflammatory (tumor necrosis factor-α [TNF-α], C-reactive protein [CRP]) and anti-inflammatory factors (transforming growth factor-β1 [TGF-β1] and interleukin-10 [IL-10]), and brain-derived neurotrophic factor (BDNF) in male patients with ASPD (n=74), SUDs (n=168), ASPD comorbid with SUDs (ASPD+SUDs) (n=438), and Healthy Controls (HCs) (n=81). A multivariate analysis of covariance (MANCOVA) controlled for possible confounders was used to compare cytokines and BDNF levels between groups. The results of MANCOVA adjusted for age showed a significant (p<0.001) main effect of diagnosis on inflammatory factors and BDNF expression in these groups. ASPD, SUDs, and ASPD+SUDs patients had significantly (p<0.001) higher TNF-α levels but lower TGF-β1 and BDNF levels. SUDs and ASPD+SUDs patients had higher IL-10 levels than did ASPD patients and HCs. There was no difference in IL-10 levels between HCs and ASPD. Moreover, subgrouping SUDs and ASPD±SUDs into opioid use disorder (OUD) and other SUDs groups showed that the IL-10 levels were specifically higher in OUD and ASPD±OUD groups than other SUDs (P≤0.001). We conclude that uncontrolled inflammation and losing neurotrophic factors, with or without comorbid SUDs, underlies ASPD. IL-10 expression might be more specifically associated with OUD. Copyright © 2017 Elsevier Ltd. All rights reserved.
Neurotrophins in the ventral tegmental area: Role in social stress, mood disorders and drug abuse.
Nikulina, E M; Johnston, C E; Wang, J; Hammer, R P
2014-12-12
This review discusses the impact of neurotrophins and other trophic factors, including fibroblast growth factor and glial cell line-derived neurotrophic factor, on mood disorders, weight regulation and drug abuse, with an emphasis on stress- and drug-induced changes in the ventral tegmental area (VTA). Neurotrophins, comprising nerve growth factor, brain-derived neurotrophic factor (BDNF), and neurotrophins 3 and 4/5 play important roles in neuronal plasticity and the development of different psychopathologies. In the VTA, most research has focused on the role of BDNF, because other neurotrophins are not found there in significant quantities. BDNF originating in the VTA provides trophic support to dopamine neurons. The diverse intracellular signaling pathways activated by BDNF may underlie precise physiological functions specific to the VTA. In general, VTA BDNF expression increases after psychostimulant exposures, and enhanced BDNF level in the VTA facilitates psychostimulant effects. The impact of VTA BDNF on the behavioral effects of psychostimulants relies primarily on its action within the mesocorticolimbic circuit. In the case of opiates, VTA BDNF expression and effects seem to be dependent on whether an animal is drug-naïve or has a history of drug use, only the latter of which is related to dopamine mechanisms. Social defeat stress that is continuous in mice or intermittent in rats increases VTA BDNF expression, and is associated with depressive and social avoidance behaviors. Intermittent social defeat stress induces persistent VTA BDNF expression that triggers psychostimulant cross-sensitization. Understanding the cellular and molecular substrates of neurotrophin effects may lead to novel therapeutic approaches for the prevention and treatment of substance use and mood disorders. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Time-Dependent Serum Brain-Derived Neurotrophic Factor Decline During Methamphetamine Withdrawal.
Ren, Wenwei; Tao, Jingyan; Wei, Youdan; Su, Hang; Zhang, Jie; Xie, Ying; Guo, Jun; Zhang, Xiangyang; Zhang, Hailing; He, Jincai
2016-02-01
Methamphetamine (METH) is a widely abused illegal psychostimulant, which is confirmed to be neurotoxic and of great damage to human. Studies on the role of brain-derived neurotrophic factor (BDNF) in human METH addicts are limited and inconsistent. The purposes of this study are to compare the serum BDNF levels between METH addicts and healthy controls during early withdrawal, and explore the changes of serum BDNF levels during the first month after METH withdrawal.179 METH addicts and 90 age- and gender-matched healthy controls were recruited in this study. We measured serum BDNF levels at baseline (both METH addicts and healthy controls) and at 1 month after abstinence of METH (METH addicts only).Serum BDNF levels of METH addicts at baseline were significantly higher than controls (1460.28 ± 490.69 vs 1241.27 ± 335.52 pg/mL; F = 14.51, P < 0.001). The serum BDNF levels of 40 METH addicts were re-examined after 1 month of METH abstinence, which were significantly lower than that at baseline (1363.70 ± 580.59 vs 1621.41 ± 591.07 pg/mL; t = 2.26, P = .03), but showed no differences to the controls (1363.70 ± 580.59 vs 1241.27 ± 335.52 pg/mL; F = 2.29, P = 0.13).Our study demonstrated that serum BDNF levels were higher in METH addicts than controls during early withdrawal, and were time dependent decreased during the first month of abstinence. These findings may provide further evidence that increased serum BDNF levels may be associated with the pathophysiology of METH addiction and withdrawal and may be a protective response against the subsequent METH-induced neurotoxicity. Besides, these findings may also promote the development of medicine in the treatment of METH addiction and withdrawal.
Epigenetic regulation of BDNF gene transcription in the consolidation of fear memory.
Lubin, Farah D; Roth, Tania L; Sweatt, J David
2008-10-15
Long-term memory formation requires selective changes in gene expression. Here, we determined the contribution of chromatin remodeling to learning-induced changes in brain-derived neurotrophic factor (bdnf) gene expression in the adult hippocampus. Contextual fear learning induced differential regulation of exon-specific bdnf mRNAs (I, IV, VI, IX) that was associated with changes in bdnf DNA methylation and altered local chromatin structure. Infusions of zebularine (a DNA methyltransferase inhibitor) significantly altered bdnf DNA methylation and triggered changes in exon-specific bdnf mRNA levels, indicating that altered DNA methylation is sufficient to drive differential bdnf transcript regulation in the hippocampus. In addition, NMDA receptor blockade prevented memory-associated alterations in bdnf DNA methylation, resulting in a block of altered bdnf gene expression in hippocampus and a deficit in memory formation. These results suggest epigenetic modification of the bdnf gene as a mechanism for isoform-specific gene readout during memory consolidation.
Tsiperson, Vladislav; Huang, Yangyang; Bagayogo, Issa; Song, Yeri; VonDran, Melissa W; DiCicco-Bloom, Emanuel
2015-01-01
Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family of growth factors that through its neurotrophic tyrosine kinase, receptor, type 2 (TrkB) receptor, increases 5-bromo-2-deoxyuridine incorporation in oligodendrocyte progenitor cells (OPCs) in culture. Roles in vivo are less well understood; however, increases in numbers of OPCs are restricted in BDNF+/− mice following cuprizone-elicited demyelination. Here, we investigate whether these blunted increases in OPCs are associated with changes in proliferation. BDNF+/+ and BDNF+/− mice were fed cuprizone-containing or control feed. To assess effects on OPC numbers, platelet-derived growth factor receptor alpha (PDGFRα)+ or NG2+ cells were counted. To monitor DNA synthesis, 5-ethynyl-2′-deoxyuridine (EdU) was injected intraperitoneally and colocalized with PDGFRα+ cells. Alternatively, proliferating cell nuclear antigen (PCNA) was colocalized with PDGFRα or NG2. Labeling indices were determined in the BDNF+/+ and BDNF+/− animals. After 4 or 5 weeks of control feed, BDNF+/− mice exhibit similar numbers of OPCs compared with BDNF+/+ animals. The labeling indices for EdU and PCNA also were not significantly different, suggesting that neither the DNA synthesis phase (S phase) nor the proliferative pool size was different between genotypes. In contrast, when mice were challenged by cuprizone for 4 or 5 weeks, increases in OPCs observed in BDNF+/+ mice were reduced in the BDNF+/− mice. This difference in elevations in cell number was accompanied by decreases in EdU labeling and PCNA labeling without changes in cell death, indicating a reduction in the DNA synthesis and the proliferative pool. Therefore, levels of BDNF influence the proliferation of OPCs resulting from a demyelinating lesion. PMID:25586993
Decreased Plasma BDNF Levels of Patients with Somatization Disorder
Kang, Nam-In; Park, Jong-Il
2016-01-01
Objective Brain-derived neurotrophic factor (BDNF), one of the most abundant and important neurotrophins, is known to be involved in the development, survival, maintenance, and plasticity of neurons in the nervous system. Some studies have suggested that BDNF may play a role in the pathophysiology of several psychiatric illnesses such as depression and schizophrenia. Similarly, it is likely that the alteration of BDNF may be associated with the neuro-modulation that contributes to the development of somatization disorder. Methods The purpose of this study was to determine whether there is an abnormality of plasma BDNF levels in patients with somatization disorder, and to analyze the nature of the alteration after pharmacotherapy using an enzyme-linked immunosorbent assay (ELISA). Results The plasma BDNF levels of the patients with a somatization disorder were significantly lower compared with those of the control volunteers (83.61±89.97 pg/mL vs. 771.36±562.14 pg/mL); moreover, the plasma BDNF levels of those patients who received an antidepressant were significantly increased after the treatment (118.13±91.45 pg/mL vs. 72.92±88.21 pg/mL). Conclusion These results suggest that BDNF may play a role in the pathophysiology of somatization disorder. PMID:27757131
NASA Astrophysics Data System (ADS)
Meng, Chengbo; He, Zhiyong; Xing, Da
2014-09-01
Downregulation of brain-derived neurotrophic factor (BDNF) in the hippocampus occurs early in the progression of Alzheimer's disease (AD). Since BDNF plays a critical role in neuronal survival and dendrite growth, BDNF upregulation may contribute to rescue dendrite atrophy and cell loss in AD. Low-level laser therapy (LLLT) has been demonstrated to regulate neuronal function both in vitro and in vivo. In the present study, we found that LLLT rescued neurons loss and dendritic atrophy via the increase of both BDNF mRNA and protein expression. In addition, dendrite growth was improved after LLLT, characterized by upregulation of PSD95 expression, and the increase in length, branching, and spine density of dendrites in hippocampal neurons. Together, these studies suggest that upregulation of BDNF with LLLT can ameliorate Aβ-induced neurons loss and dendritic atrophy, thus identifying a novel pathway by which LLLT protects against Aβ-induced neurotoxicity. Our research may provide a feasible therapeutic approach to control the progression of Alzheimer's disease.
Ieraci, Alessandro; Madaio, Alessandro I; Mallei, Alessandra; Lee, Francis S; Popoli, Maurizio
2016-01-01
Several studies have shown that exercise improves cognitive functions and emotional behaviors. Positive effects of exercise have been associated with enhanced brain plasticity, adult hippocampal neurogenesis, and increased levels of brain-derived neurotrophic factor (BDNF). However, a substantial variability of individual response to exercise has been described, which may be accounted for by individual genetic variants. Here, we have assessed whether and how the common human BDNF Val66Met polymorphism influences the neurobiological effects modulated by exercise in BDNF Val66Met knock-in male mice. Wild-type (BDNFVal/Val) and homozygous BDNF Val66Met (BDNFMet/Met) male mice were housed in cages equipped with or without running wheels for 4 weeks. Changes in behavioral phenotype, hippocampal adult neurogenesis, and gene expression were evaluated in exercised and sedentary control mice. We found that exercise reduced the latency to feed in the novelty suppressed feeding and the immobility time in the forced swimming test in BDNFVal/Val but not in BDNFMet/Met mice. Hippocampal neurogenesis was reduced in BDNFMet/Met mice compared with BDNFVal/Val mice. BDNFMet/Met mice had lower basal BDNF protein levels in the hippocampus, which was not recovered following exercise. Moreover, exercise-induced expression of total BDNF, BDNF splice variants 1, 2, 4, 6 and fibronectin type III domain-containing protein 5 (FNDC5) mRNA levels were absent or reduced in the dentate gyrus of BDNFMet/Met mice. Exercise failed to enhance PGC-1α and FNDC5 mRNA levels in the BDNFMet/Met muscle. Overall these results indicate that, in adult male mice, the BDNF Val66Met polymorphism impairs the beneficial behavioral and neuroplasticity effects induced by physical exercise. PMID:27388329
Epigenetic alterations of the BDNF gene in combat-related post-traumatic stress disorder.
Kim, T Y; Kim, S J; Chung, H G; Choi, J H; Kim, S H; Kang, J I
2017-02-01
Brain-derived neurotrophic factor (BDNF) plays a crucial role in modulating resilience and vulnerability to stress. The aim of this study was to investigate whether epigenetic regulation of the BDNF gene is a biomarker of post-traumatic stress disorder (PTSD) development among veterans exposed to combat in the Vietnam War. Using the Clinician-Administered PTSD Scale, combat veterans were grouped into those with (n = 126) and without (n = 122) PTSD. DNA methylation levels at four CpG sites within the BDNF promoter I region were quantified in the peripheral blood using pyrosequencing. The effects of BDNF DNA methylation levels and clinical variables on the diagnosis of PTSD were tested using binary logistic regression analysis. Subjects with PTSD showed a higher DNA methylation of four CpG sites at the BDNF promoter compared with those without PTSD. High methylation levels at the BDNF promoter CpG site, high combat exposure, and alcohol problems were significantly associated with PTSD diagnosis. This study demonstrated an association between higher DNA methylation of the BDNF promoter and PTSD diagnosis in combat-exposed individuals. Our findings suggest that altered BDNF methylation may be a valuable biomarker of PTSD after trauma exposure. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Braun, David J.; Kalinin, Sergey
2017-01-01
Damage occurring to noradrenergic neurons in the locus coeruleus (LC) contributes to the evolution of neuroinflammation and neurodegeneration in a variety of conditions and diseases. One cause of LC damage may be loss of neurotrophic support from LC target regions. We tested this hypothesis by conditional unilateral knockout of brain-derived neurotrophic factor (BDNF) in adult mice. To evaluate the consequences of BDNF loss in the context of neurodegeneration, the mice harbored familial mutations for human amyloid precursor protein and presenilin-1. In these mice, BDNF depletion reduced tyrosine hydroxylase staining, a marker of noradrenergic neurons, in the rostral LC. BDNF depletion also reduced noradrenergic innervation in the hippocampus, the frontal cortex, and molecular layer of the cerebellum, assessed by staining for dopamine beta hydroxylase. BDNF depletion led to an increase in cortical amyloid plaque numbers and size but was without effect on plaque numbers in the striatum, a site with minimal innervation from the LC. Interestingly, cortical Iba1 staining for microglia was reduced by BDNF depletion and was correlated with reduced dopamine beta hydroxylase staining. These data demonstrate that reduction of BDNF levels in an LC target region can cause retrograde damage to LC neurons, leading to exacerbation of neuropathology in distinct LC target areas. Methods to reduce BDNF loss or supplement BDNF levels may be of value to reduce neurodegenerative processes normally limited by LC noradrenergic activities. PMID:28266222
Harb, H; González-de-la-Vara, M; Thalheimer, L; Klein, U; Renz, H; Rose, M; Kruse, J; Potaczek, D P; Peters, E M J
2017-12-01
To study pathogenic stress-effects in health and disease, it is paramount to define easy access parameters for non-invasive analysis of biological change in response to stress. Hair samples successfully provide this access for the study of hypothalamus-pituitary-adrenal axis (HPA) changes. In this study, we assess the hair expression and corresponding epigenetic changes of a neurotrophin essential for autonomic nervous system function and mental health: brain derived neurotrophic factor (BDNF). In three independent studies in healthy academic volunteers (study I: German students, N=36; study II, German academic population sample, N=28; study III: Mexican students, N=115), BDNF protein expression or BDNF gene (BDNF) histone acetylation was determined. Simultaneously, mental distress and distress-associated somatic complaints were assessed by self-report. In study I, we found a negative correlation between hair-BDNF protein level and hair-cortisol as well as between hair-BDNF and somatic complaints, while hair-cortisol correlated positively with mental distress. In study II, we found a negative correlation between H4 histone acetylation at the BDNF gene P4-promoter and somatic complaints. Regression analysis confirmed confounder stability of associations in both studies. In study III, we confirmed study I and found lower hair-BDNF protein level in volunteers with high somatic complaints, who also reported higher mental distress during the end of term exams. The results indicate that BDNF protein levels can be detected in clipped hair and are associated with somatic complaints and stress in life. In addition, we concluded that plucked hair can provide material for the study of epigenetic changes in stress-affected tissues. These tools can prove valuable for future studies on distress, both under experimental and field conditions. Copyright © 2017. Published by Elsevier Ltd.
2017-07-29
exercise prescription and training. 15. SUBJECT TERMS cognitive, physical training, BDNF, Val66Val, Val66Met, VO2Max 16. SECURITY CLASSIFICATION...Key Words: Functional agility training, physical training, cognitive upregulation, brain-derived neurotrophic factor, BDNF, Val66Val, Val66Met...cognitive output [21,29,30]. Met carriers may also experience better physical function recovery post-brain injury event [31]. Importantly, exercise may
Huang, Weidong; Meng, Facai; Cao, Jie; Liu, Xiaobin; Zhang, Jie; Li, Min
2017-05-01
Hypoxic-ischemic brain injury is an important cause of neonatal mortality and morbidity. Brain-derived neurotrophic factor (BDNF) has been reported to play a neuroprotective role in hypoxic-ischemic brain injury; however, the specific effects and mechanism of BDNF on hypoxic-hypoglycemic hippocampal neuron injury remains unknown. The current study investigated the action of BDNF in regulating cerebral hypoxic-ischemic injury by simulating hippocampal neuron ischemia and hypoxia. We found that BDNF, p-Trkb, and miR-134 expression levels decreased, and that exogenous BDNF increased survival and reduced apoptosis in hypoxic-hypoglycemic hippocampal neurons. The results also show that BDNF inhibits MiR-134 expression by activating the TrkB pathway. Transfection with TrkB siRNA and pre-miR-134 abrogated the neuroprotective role of BDNF in hypoxic-hypoglycemic hippocampal neurons. Our results suggest that exogenous BDNF alleviates hypoxic-ischemic brain injury through the Trkb/MiR-134 pathway. These findings may help to identify a potential therapeutic agent for the treatment of hypoxic-ischemic brain injury.
Sanada, Kenji; Zorrilla, Iñaki; Iwata, Yusuke; Bermúdez-Ampudia, Cristina; Graff-Guerrero, Ariel; Martínez-Cengotitabengoa, Mónica; González-Pinto, Ana
2016-10-24
Several studies have investigated the relationship between non-pharmacological interventions (NPIs) and peripheral brain-derived neurotrophic factor (BDNF) in schizophrenia patients. We conducted a systematic review and meta-analysis to review the efficacy of NPIs on peripheral serum and plasma BDNF in subjects with schizophrenia (including schizoaffective disorder). Meta-analyses were conducted to examine the effects of NPIs on blood BDNF levels by using the standardized mean differences (SMDs) between the intervention groups and controls. In total, six randomized controlled trials with 289 participants were included. Of them, five studies used exercise, physical training or diet products. One study used cognitive training. Overall, the BDNF levels in the NPI group increased significantly compared with the control groups (SMD = 0.95, 95% confidence interval (CI) = 0.07 to 1.83, p = 0.03). Subgroup analyses indicated beneficial effects of a non-exercise intervention on peripheral BDNF levels (SMD = 0.41, 95% CI = 0.08 to 0.74, p = 0.01). Meta-regression analyses showed that the completion rate influenced the variation in SMD ( p = 0.01). Despite insufficient evidence to draw a conclusion, our results suggest that use of NPIs as adjunctive treatments, specifically non-exercise interventions, may affect positively serum or plasma BDNF in patients with schizophrenia.
Prenatal exposure to polycyclic aromatic hydrocarbons/aromatics, BDNF and child development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perera, Frederica, E-mail: fpp1@columbia.edu; Columbia Center for Children's Environmental Health, Columbia University, 722 W. 168th St., New York, NY 10032; Phillips, David H.
Objectives: Within a New York City (NYC) birth cohort, we assessed the associations between polycyclic aromatic hydrocarbon (PAH) and other aromatic DNA adducts and brain derived neurotrophic factor (BDNF) concentrations in umbilical cord blood, and neurodevelopment at age 2 years and whether BDNF is a mediator of the associations between PAH/aromatic-DNA adducts and neurodevelopment. Methods: PAH/aromatic-DNA adduct concentrations in cord blood were measured in 505 children born to nonsmoking African-American and Dominican women residing in NYC, and a subset was assessed for neurodevelopment at 2 years using the Bayley Scales of Infant Development Mental Development Index (MDI). A spectrum ofmore » PAH/aromatic-DNA adducts was measured using the {sup 32}P-postlabeling assay; DNA adducts formed by benzo[a]pyrene (B[a]P), a representative PAH, were measured by High Performance Liquid Chromatography (HPLC)/fluorescence. BDNF mature protein in cord blood plasma was quantified by an ELISA. Multivariate regression analysis, adjusting for potential confounders, was conducted. Results: PAH/aromatic-DNA adduct concentration measured by postlabeling was inversely associated with BDNF concentration (p=0.02) and with MDI scores at 2 years (p=0.04). BDNF level was positively associated with MDI scores (p=0.003). Restricting to subjects having all three measures (PAH/aromatic-DNA adducts by postlabeling, MDI, and BDNF), results were similar but attenuated (p=0.13, p=0.05, p=0.01, respectively). Associations between B[a]P-DNA adducts and BDNF and B[a]P-DNA adducts and MDI at age 2 years were not significant. At age 3 years, the positive association of BDNF with MDI was not observed. Conclusions: The results at age 2 suggest that prenatal exposure to a spectrum of PAH/aromatic pollutants may adversely affect early neurodevelopment, in part by reducing BDNF levels during the fetal period. However, the same relationship was not seen at age 3. - Highlights: • Cord blood Polycyclic Aromatic Hydrocarbon (PAH)/aromatic-DNA adducts were assayed. • Brain Derived Neurotrophic Factor (BDNF) concentration was measured concurrently. • Associations between biomarkers and neurodevelopment at age 2 years were assessed. • Adduct level was inversely associated with BDNF concentration and neurodevelopment. • BDNF level was positively associated with neurodevelopment scores at age 2 years.« less
Brain-derived neurotrophic factor and its clinical implications
Bathina, Siresha
2015-01-01
Brain-derived neurotrophic factor (BDNF) plays an important role in neuronal survival and growth, serves as a neurotransmitter modulator, and participates in neuronal plasticity, which is essential for learning and memory. It is widely expressed in the CNS, gut and other tissues. BDNF binds to its high affinity receptor TrkB (tyrosine kinase B) and activates signal transduction cascades (IRS1/2, PI3K, Akt), crucial for CREB and CBP production, that encode proteins involved in β cell survival. BDNF and insulin-like growth factor-1 have similar downstream signaling mechanisms incorporating both p-CAMK and MAPK that increase the expression of pro-survival genes. Brain-derived neurotrophic factor regulates glucose and energy metabolism and prevents exhaustion of β cells. Decreased levels of BDNF are associated with neurodegenerative diseases with neuronal loss, such as Parkinson's disease, Alzheimer's disease, multiple sclerosis and Huntington's disease. Thus, BDNF may be useful in the prevention and management of several diseases including diabetes mellitus. PMID:26788077
Bathina, Siresha; Srinivas, Nanduri; Das, Undurti N
2017-04-29
Neurodegenerative disorders, such as deficits in learning, memory and cognition and Alzheimer's disease are associated with diabetes mellitus. Brain-derived neurotrophic factor (BDNF) is a neurotrophic factor and is known to possess anti-obesity, anti-diabetic actions and is believed to have a role in memory and Alzheimer's disease. To investigate whether STZ can reduce BDNF production by rat insulinoma (RIN5F) cells in vitro and decrease BDNF levels in the pancreas, liver and brain in vivo. Streptozotocin (STZ)-induced cytotoxicity to RIN5F cells in vitro and type 2 DM in Wistar rats was employed in the present study. Cell viability, activities of various anti-oxidants and secretion of BDNF by RIN5F cells in vitro were measured using MTT assay, biochemical methods and ELISA respectively. In STZ-induced type 2 DM rats: plasma glucose, interleukin-6 and tumor necrosis factor-α levels and BDNF protein expression in the pancreas, liver and brain tissues were measured. In addition, neuronal count and morphology in the hippocampus and hypothalamus areas was assessed. STZ-induced suppression of RIN5F cell viability was abrogated by BDNF. STZ suppressed BDNF secretion by RIN5F cells in vitro. STZ-induced type 2 DM rats showed hyperglycemia, enhanced plasma IL-6 and TNF-αlevels and reduced plasma and pancreas, liver and brain tissues (P < 0.001) and increased oxidative stress compared to untreated control. Hypothalamic and hippocampal neuron in STZ-treated animals showed a decrease in the number of neurons and morphological changes suggesting of STZ cytotoxicity. The results of the present study suggest that STZ is not only cytotoxic to pancreatic beta cells but also to hypothalamic and hippocampal neurons by inducing oxidative stress. STZ ability to suppress BDNF production by pancreas, liver and brain tissues suggests that impaired memory, learning, and cognitive dysfunction seen in diabetes mellitus could be due to BDNF deficiency. Copyright © 2017 Elsevier Inc. All rights reserved.
Lee, Seung Hwan; Kim, In Gul; Jung, Ae Ryang; Shrestha, Kshitiz Raj; Lee, Jin Ho; Park, Ki Dong; Chung, Byung Ha; Kim, Sae Woong; Kim, Ki Hean
2014-01-01
Erectile dysfunction (ED) is the most frequent long-term problem after radical prostatectomy. We aimed to evaluate whether the use of combination therapy with basic fibroblast growth factor (bFGF)-hydrogel on corpus cavernosum and with adipose-derived stem cells (ADSCs) and brain-derived neurotrophic factor (BDNF)-immobilized poly-lactic-co-glycolic acid (PLGA) membrane on the cavernous nerve (CN) could improve erectile function in a rat model of bilateral cavernous nerve crush injury (BCNI). Rats were randomly divided into five groups (n=15 per group): a normal group (N group), a group receiving saline application after bilateral cavernous nerve crush injury (BCNI), a group undergoing bFGF-hydrogel injection in the corpus cavernosum after BCNI (bFGF), a group receiving ADSC application covered with BDNF-membrane after BCNI (ADSC/BDNF), and a group undergoing coadministration of bFGF-hydrogel injection and BDNF-membrane with ADSCs after BDNF (bFGF+ADSC/BDNF). Four weeks postoperatively, the erectile function was assessed by detecting the ratio of intracavernous pressure (ICP) to mean arterial pressure (MAP). Smooth muscle and collagen contents were measured using Masson's trichrome staining. Neuronal nitric oxide synthase (nNOS) expression in the dorsal penile nerve was detected by immunostaining. The protein expression of the α-smooth muscle actin (α-SMA) and the cyclic guanosine monophosphate (cGMP) level of the corpus cavernosum were quantified by western blot and cGMP assay, respectively. In the bFGF+ADSC/BDNF group, the erectile function was significantly elevated compared with the BCNI and other treated groups and showed a significantly increased smooth muscle/collagen ratio, nNOS content, α-SMA expression, and cGMP level. In particular, there were no statistical differences in the ICP/MAP ratio, smooth muscle/collagen ratio, and α-SMA and cGMP levels between the bFGF+ADSC/BDNF group and normal group. Application of the BDNF-immobilized PLGA membrane with human ADSC into the CN and bFGF-incorporated hydrogel into the corpus carvernosum improved nearly normal erectile function in a rat model of postprostatectomy ED. This result suggests that a combined application of bFGF+ADSC/BDNF might be a promising treatment for postprostatectomy ED. PMID:24673637
Lein, E S; Shatz, C J
2000-02-15
The neurotrophin brain-derived neurotrophic factor (BDNF) has emerged as a candidate retrograde signaling molecule for geniculocortical axons during the formation of ocular dominance columns. Here we examined whether neuronal activity can regulate BDNF mRNA in eye-specific circuits in the developing cat visual system. Dark-rearing throughout the critical period for ocular dominance column formation decreases levels of BDNF mRNA within primary visual cortex, whereas short-term (2 d) binocular blockade of retinal activity with tetrodotoxin (TTX) downregulates BDNF mRNA within the lateral geniculate nucleus (LGN) and visual cortical areas. Brief (6 hr to 2 d) monocular TTX blockade during the critical period and also in adulthood causes downregulation in appropriate eye-specific laminae in the LGN and ocular dominance columns within primary visual cortex. Monocular TTX blockade at postnatal day 23 also downregulates BDNF mRNA in a periodic fashion, consistent with recent observations that ocular dominance columns can be detected at these early ages by physiological methods. In contrast, 10 d monocular TTX during the critical period does not cause a lasting decrease in BDNF mRNA expression in columns pertaining to the treated eye, consistent with the nearly complete shift in physiological response properties of cortical neurons in favor of the unmanipulated eye known to result from long-term monocular deprivation. These observations demonstrate that BDNF mRNA levels can provide an accurate "molecular readout" of the activity levels of cortical neurons and are consistent with a highly local action of BDNF in strengthening and maintaining active synapses during ocular dominance column formation.
Anxiolytic effect of music exposure on BDNFMet/Met transgenic mice.
Li, Wen-Jing; Yu, Hui; Yang, Jian-Min; Gao, Jing; Jiang, Hong; Feng, Min; Zhao, Yu-Xia; Chen, Zhe-Yu
2010-08-06
Brain-derived neurotrophic factor (BDNF) has been reported to play important roles in the modulation of anxiety, mood stabilizers, and pathophysiology of affective disorders. Recently, a single nucleotide polymorphism (SNP) in the BDNF gene (Val66Met) has been found to be associated with depression and anxiety disorders. The humanized BDNF(Met/Met) knock-in transgenic mice exhibited increased anxiety-related behaviors that were unresponsive to serotonin reuptake inhibitors, fluoxetine. Music is known to be able to elicit emotional changes, including anxiolytic effects. In this study, we found that music treatment could significantly decrease anxiety state in BDNF(Met/Met) mice, but not in BDNF(+/)(-), mice compared with white noise exposure in open field and elevated plus maze test. Moreover, in contrast to white noise exposure, BDNF expression levels in the prefrontal cortex (PFC), amygdala and hippocampus were significantly increased in music-exposed adult BDNF(Met/Met) mice. However, music treatment could not upregulate BDNF levels in the PFC, amygdala, and hippocampus in BDNF(+/)(-) mice, which suggests the essential role of BDNF in the anxiolytic effect of music. Together, our results imply that music may provide an effective therapeutic intervention for anxiety disorders in humans with this genetic BDNF(Met) variant. Copyright 2010 Elsevier B.V. All rights reserved.
Eyileten, Ceren; Zaremba, Małgorzata; Janicki, Piotr K; Rosiak, Marek; Cudna, Agnieszka; Kapłon-Cieślicka, Agnieszka; Opolski, Grzegorz; Filipiak, Krzysztof J; Kosior, Dariusz A; Mirowska-Guzel, Dagmara; Postula, Marek
2016-01-07
The aim of this study was to investigate the association between serum concentrations of the brain-derived neurotrophic factor (BDNF), platelet reactivity and inflammatory markers, as well as its association with BDNF encoding gene variants in type 2 diabetic patients (T2DM) during acetylsalicylic acid (ASA) therapy. This retrospective, open-label study enrolled 91 patients. Serum BDNF, genotype variants, hematological, biochemical, and inflammatory markers were measured. Blood samples were taken in the morning 2-3 h after the last ASA dose. The BDNF genotypes for selected variants were analyzed by use of the iPLEX Sequenom assay. In multivariate linear regression analysis, CADP-CT >74 sec (p<0.001) and sP-selectin concentration (p=0.03) were predictive of high serum BDNF. In multivariate logistic regression analysis, CADP-CT >74 sec (p=0.02) and IL-6 concentration (p=0.03) were risk factors for serum BDNF above the median. Non-significant differences were observed between intronic SNP rs925946, missense SNP rs6265, and intronic SNP rs4923463 allelic groups and BDNF concentrations in the investigated cohort. Chronic inflammatory condition and enhanced immune system are associated with the production of BDNF, which may be why the serum BDNF level in T2DM patients with high platelet reactivity was higher compared to subjects with normal platelet reactivity in this study.
Gupta, Keshav; Gupta, Rachna; Bhatia, M S; Tripathi, A K; Gupta, Lalit K
2017-12-01
Evidence suggests that neurotrophic factors, inflammatory markers, and circadian rhythm dysfunctions could be involved in pathophysiology of major depressive disorder. This study evaluated the efficacy and tolerability of agomelatine, a melatonergic drug, and fluoxetine (positive comparator) and their effect on serum brain-derived neurotrophic factor (BDNF) and tumor necrosis factor (TNF)-α level in patients having major depressive disorder with severe depression. In the present study, we chose TNF-α and BDNF because reduction of TNF-α and rise in BDNF levels are linked with improvement in major depressive disorder. Patients with Hamilton Rating Scale for Depression (HAM-D) score ≥25 were treated with agomelatine or fluoxetine and followed up for 12 weeks. In the agomelatine group, the HAM-D score, BDNF level, and TNF-α level at the start of treatment were 31.1 ± 1.88 ng/mL, 2.44 ± 0.38 ng/mL, and 512.5 ± 86.2 pg/mL, respectively, which significantly changed to 13.67 ± 2.22 ng/mL, 2.87 ± 0.44 ng/mL, and 391.64 ± 104.8 pg/mL, respectively (P < .05 for all 3 measures), at 12 weeks. In the fluoxetine group, the HAM-D score, BDNF level, and TNF-α level at the start of treatment were 30.83 ± 2.60 ng/mL, 2.54 ± 0.37 ng/mL, and 554.14 ± 46.8 pg/mL, respectively, which significantly changed to 13.67 ± 1.79 ng/mL, 3.07 ± 0.33 ng/mL, and 484.15 ± 49.9 pg/mL, respectively (P < .05 for all 3 measures) at 12 weeks. The BDNF level was significantly increased posttreatment with both drugs, and TNF-α level fell significantly more with agomelatine compared to fluoxetine. Thus, chronic neuroinflammatory biomarkers contribute to circuitry dysregulation in depression. Trophic factors repair dysfunctional circuits in depression. Both treatments were found to be safe and well tolerated. © 2017, The American College of Clinical Pharmacology.
Explore the Features of Brain-Derived Neurotrophic Factor in Mood Disorders
Yeh, Fan-Chi; Kao, Chung-Feng; Kuo, Po-Hsiu
2015-01-01
Objectives Brain-derived neurotrophic factor (BDNF) plays important roles in neuronal survival and differentiation; however, the effects of BDNF on mood disorders remain unclear. We investigated BDNF from the perspective of various aspects of systems biology, including its molecular evolution, genomic studies, protein functions, and pathway analysis. Methods We conducted analyses examining sequences, multiple alignments, phylogenetic trees and positive selection across 12 species and several human populations. We summarized the results of previous genomic and functional studies of pro-BDNF and mature-BDNF (m-BDNF) found in a literature review. We identified proteins that interact with BDNF and performed pathway-based analysis using large genome-wide association (GWA) datasets obtained for mood disorders. Results BDNF is encoded by a highly conserved gene. The chordate BDNF genes exhibit an average of 75% identity with the human gene, while vertebrate orthologues are 85.9%-100% identical to human BDNF. No signs of recent positive selection were found. Associations between BDNF and mood disorders were not significant in most of the genomic studies (e.g., linkage, association, gene expression, GWA), while relationships between serum/plasma BDNF level and mood disorders were consistently reported. Pro-BDNF is important in the response to stress; the literature review suggests the necessity of studying both pro- and m-BDNF with regard to mood disorders. In addition to conventional pathway analysis, we further considered proteins that interact with BDNF (I-Genes) and identified several biological pathways involved with BDNF or I-Genes to be significantly associated with mood disorders. Conclusions Systematically examining the features and biological pathways of BDNF may provide opportunities to deepen our understanding of the mechanisms underlying mood disorders. PMID:26091093
Jin, Peng; Andiappan, Anand Kumar; Quek, Jia Min; Lee, Bernett; Au, Bijin; Sio, Yang Yie; Irwanto, Astrid; Schurmann, Claudia; Grabe, Hans Jörgen; Suri, Bani Kaur; Matta, Sri Anusha; Westra, Harm-Jan; Franke, Lude; Esko, Tonu; Sun, Liangdan; Zhang, Xuejun; Liu, Hong; Zhang, Furen; Larbi, Anis; Xu, Xin; Poidinger, Michael; Liu, Jianjun; Chew, Fook Tim; Rotzschke, Olaf; Shi, Li; Wang, De Yun
2015-06-01
Brain-derived neurotrophic factor (BDNF) is a secretory protein that has been implicated in the pathogenesis of allergic rhinitis (AR), atopic asthma, and eczema, but it is currently unknown whether BDNF polymorphisms influence susceptibility to moderate-to-severe AR. We sought to identify disease associations and the functional effect of BDNF genetic variants in patients with moderate-to-severe AR. Tagging single nucleotide polymorphisms (SNPs) spanning the BDNF gene were selected from the human HapMap Han Chinese from Beijing (CHB) data set, and associations with moderate-to-severe AR were assessed in 2 independent cohorts of Chinese patients (2216 from Shandong province and 1239 living in Singapore). The functional effects of the BDNF genetic variants were determined by using both in vitro and ex vivo assays. The tagging SNP rs10767664 was significantly associated with the risk of moderate-to-severe AR in both Singapore Chinese (P = .0017; odds ratio, 1.324) and Shandong Chinese populations (P = .039; odds ratio, 1.180). The coding nonsynonymous SNP rs6265 was in perfect linkage with rs10767664 and conferred increased BDNF protein secretion by a human cell line in vitro. Subjects bearing the AA genotype of rs10767664 exhibited increased risk of moderate-to-severe AR and displayed increased BDNF protein and total IgE levels in plasma. Using a large-scale expression quantitative trait locus study, we demonstrated that BDNF SNPs are significantly associated with altered BDNF concentrations in peripheral blood. A common genetic variant of the BDNF gene is associated with increased risk of moderate-to-severe AR, and the AA genotype is associated with increased BDNF mRNA levels in peripheral blood. Together, these data indicate that functional BDNF gene variants increase the risk of moderate-to-severe AR. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Serum cortisol and BDNF in patients with major depression-effect of yoga.
Naveen, G H; Varambally, Shivarama; Thirthalli, Jagadisha; Rao, Mukund; Christopher, Rita; Gangadhar, B N
2016-06-01
Depression is associated with low serum Brain Derived Neurotrophic Factor (BDNF) and elevated levels of serum cortisol. Yoga practices have been associated with antidepressant effects, increase in serum BDNF, and reduction in serum cortisol. This study examined the association between serum BDNF and cortisol levels in drug-naïve patients with depression treated with antidepressants, yoga therapy, and both. Fifty-four drug-naïve consenting adult outpatients with Major Depression (32 males) received antidepressants only (n = 16), yoga therapy only (n = 19), or yoga with antidepressants (n = 19). Serum BDNF andcortisol levels were obtained before and after 3 months using a sandwich ELISA method. One-way ANOVA, Chi-square test, and Pearson's correlation tests were used for analysis. The groups were comparable at baseline on most parameters. Significant improvement in depression scores and serum BDNF levels, and reduction in serum cortisol in the yoga groups, have been described in previous reports. A significant negative correlation was observed between change in BDNF (pre-post) and cortisol (pre-post) levels in the yoga-only group (r = -0.59, p = 0.008). In conclusion, yoga may facilitate neuroplasticity through stress reduction in depressed patients. Further studies are needed to confirm the findings and delineate the pathways for these effects.
Su, Bo; Ji, Yun-Song; Sun, Xu-lu; Liu, Xiang-Hua; Chen, Zhe-Yu
2014-01-17
Appropriate mitochondrial transport and distribution are essential for neurons because of the high energy and Ca(2+) buffering requirements at synapses. Brain-derived neurotrophic factor (BDNF) plays an essential role in regulating synaptic transmission and plasticity. However, whether and how BDNF can regulate mitochondrial transport and distribution are still unclear. Here, we find that in cultured hippocampal neurons, application of BDNF for 15 min decreased the percentage of moving mitochondria in axons, a process dependent on the activation of the TrkB receptor and its downstream PI3K and phospholipase-Cγ signaling pathways. Moreover, the BDNF-induced mitochondrial stopping requires the activation of transient receptor potential canonical 3 and 6 (TRPC3 and TRPC6) channels and elevated intracellular Ca(2+) levels. The Ca(2+) sensor Miro1 plays an important role in this process. Finally, the BDNF-induced mitochondrial stopping leads to the accumulation of more mitochondria at presynaptic sites. Mutant Miro1 lacking the ability to bind Ca(2+) prevents BDNF-induced mitochondrial presynaptic accumulation and synaptic transmission, suggesting that Miro1-mediated mitochondrial motility is involved in BDNF-induced mitochondrial presynaptic docking and neurotransmission. Together, these data suggest that mitochondrial transport and distribution play essential roles in BDNF-mediated synaptic transmission.
2010-01-01
Background Stress involves alterations of brain functioning that may precipitate to mood disorders. The neurotrophin Brain Derived Neurotrophic Factor (BDNF) has recently been involved in stress-induced adaptation. BDNF is a key regulator of neuronal plasticity and adaptive processes. Regulation of BDNF is complex and may reflect not only stress-specific mechanisms but also hormonal and emotional responses. For this reason we used, as an animal model of stress, a fish whose brain organization is very similar to that of higher vertebrates, but is generally considered free of emotional reactions. Results We provide a comprehensive characterization of BDNF gene in the Dicentrarchus labrax and its transcriptional, translational and post-translational regulation following acute stress. While total BDNF mRNA levels are unchanged, BDNF transcripts 1c and 1d resulted down regulated after acute stress. Acute stress induces also a significant increase in proBDNF levels and reduction in mature BDNF suggesting altered regulation of proBDNF proteolytic processing. Notably, we provide here the first evidence that fishes possess a simplified proteolytic regulation of BDNF since the pro28Kda form, generated by the SKI-1 protease in mammals, is absent in fishes because the cleavage site has first emerged in reptilians. Finally, we show that the proBDNF/totBDNF ratio is a highly predictive novel quantitative biomarker to detect stress in fishes with sensitivity = 100%, specificity = 87%, and Negative Predictive Value = 100%. Conclusion The high predictivity of proBDNF/totBDNF ratio for stress in lower vertebrates indicates that processing of BDNF is a central mechanism in adaptation to stress and predicts that a similar regulation of pro/mature BDNF has likely been conserved throughout evolution of vertebrates from fish to man. PMID:20074340
Tognoli, Chiara; Rossi, Federica; Di Cola, Francesco; Baj, Gabriele; Tongiorgi, Enrico; Terova, Genciana; Saroglia, Marco; Bernardini, Giovanni; Gornati, Rosalba
2010-01-14
Stress involves alterations of brain functioning that may precipitate to mood disorders. The neurotrophin Brain Derived Neurotrophic Factor (BDNF) has recently been involved in stress-induced adaptation. BDNF is a key regulator of neuronal plasticity and adaptive processes. Regulation of BDNF is complex and may reflect not only stress-specific mechanisms but also hormonal and emotional responses. For this reason we used, as an animal model of stress, a fish whose brain organization is very similar to that of higher vertebrates, but is generally considered free of emotional reactions. We provide a comprehensive characterization of BDNF gene in the Dicentrarchus labrax and its transcriptional, translational and post-translational regulation following acute stress. While total BDNF mRNA levels are unchanged, BDNF transcripts 1c and 1d resulted down regulated after acute stress. Acute stress induces also a significant increase in proBDNF levels and reduction in mature BDNF suggesting altered regulation of proBDNF proteolytic processing. Notably, we provide here the first evidence that fishes possess a simplified proteolytic regulation of BDNF since the pro28Kda form, generated by the SKI-1 protease in mammals, is absent in fishes because the cleavage site has first emerged in reptilians. Finally, we show that the proBDNF/totBDNF ratio is a highly predictive novel quantitative biomarker to detect stress in fishes with sensitivity = 100%, specificity = 87%, and Negative Predictive Value = 100%. The high predictivity of proBDNF/totBDNF ratio for stress in lower vertebrates indicates that processing of BDNF is a central mechanism in adaptation to stress and predicts that a similar regulation of pro/mature BDNF has likely been conserved throughout evolution of vertebrates from fish to man.
Verbickas, Vaidas; Kamandulis, Sigitas; Snieckus, Audrius; Venckunas, Tomas; Baranauskiene, Neringa; Brazaitis, Marius; Satkunskiene, Danguole; Unikauskas, Alvydas; Skurvydas, Albertas
2018-01-01
The aim of this study was to follow circulating brain-derived neurotrophic factor (BDNF) and interleukin-6 (IL-6) levels in response to severe muscle-damaging exercise. Young healthy men (N = 10) performed a bout of mechanically demanding stretch-shortening cycle exercise consisting of 200 drop jumps. Voluntary and electrically induced knee extension torque, serum BDNF levels, and IL-6 levels were measured before and for up to 7 days after exercise. Muscle force decreased by up to 40% and did not recover by 24 hours after exercise. Serum BDNF was decreased 1 hour and 24 hours after exercise, whereas IL-6 increased immediately and 1 hour after but recovered to baseline by 24 hours after exercise. IL-6 and 100-Hz stimulation torque were correlated (r = -0.64, P < 0.05) 24 hours after exercise. In response to acute, severe muscle-damaging exercise, serum BDNF levels decrease, whereas IL-6 levels increase and are associated with peripheral fatigue. Muscle Nerve 57: E46-E51, 2018. © 2017 Wiley Periodicals, Inc.
Effect of childhood maltreatment and brain-derived neurotrophic factor on brain morphology
Schmaal, Lianne; Jansen, Rick; Milaneschi, Yuri; Opmeer, Esther M.; Elzinga, Bernet M.; van der Wee, Nic J. A.; Veltman, Dick J.; Penninx, Brenda W. J. H.
2016-01-01
Childhood maltreatment (CM) has been associated with altered brain morphology, which may partly be due to a direct impact on neural growth, e.g. through the brain-derived neurotrophic factor (BDNF) pathway. Findings on CM, BDNF and brain volume are inconsistent and have never accounted for the entire BDNF pathway. We examined the effects of CM, BDNF (genotype, gene expression and protein level) and their interactions on hippocampus, amygdala and anterior cingulate cortex (ACC) morphology. Data were collected from patients with depression and/or an anxiety disorder and healthy subjects within the Netherlands Study of Depression and Anxiety (NESDA) (N = 289). CM was assessed using the Childhood Trauma Interview. BDNF Val66Met genotype, gene expression and serum protein levels were determined in blood and T1 MRI scans were acquired at 3T. Regional brain morphology was assessed using FreeSurfer. Covariate-adjusted linear regression analyses were performed. Amygdala volume was lower in maltreated individuals. This was more pronounced in maltreated met-allele carriers. The expected positive relationship between BDNF gene expression and volume of the amygdala is attenuated in maltreated subjects. Finally, decreased cortical thickness of the ACC was identified in maltreated subjects with the val/val genotype. CM was associated with altered brain morphology, partly in interaction with multiple levels of the BNDF pathway. Our results suggest that CM has different effects on brain morphology in met-carriers and val-homozygotes and that CM may disrupt the neuroprotective effect of BDNF. PMID:27405617
Murawska-Cialowicz, E; Wojna, J; Zuwala-Jagiello, J
2015-12-01
Brain-derived neurotrophic factor (BDNF) is a protein that stimulates processes of neurogenesis, the survival of neurons and microglia, stimulates neuroplasticity, and takes part in the differentiation of cells developed in the hippocampus. BDNF is also released from skeletal muscles during exercise and can facilitate cross-talk between the nervous and muscular system. Irisin, the exercise hormone, is also released from skeletal muscles and is involved in oxidation processes in the organism. It is a vital issue from the point of view of prophylaxis and treatment through exercise of age-related diseases (e.g. senile dementia), obesity, type-2 diabetes. The aim of the study was to assess the changes in BDNF and irisin levels in young people after a 3-month CrossFit training program. At baseline and after the training, levels of BDNF and irisin were assayed before and after Wingate and progressive tests. Physical performance, body mass and composition, and muscle circumferences were also measured. There were noted: an improvement in aerobic capacity, an increase in VO2max, a reduction in adipose tissue percentage in women and an increase in LBM in all subjects. After CrossFit training the resting BDNF level increased significantly in all subjects while the resting level of irisin decreased in women, without changes in men. The resting level of BDNF at baseline was higher in men than in women. At baseline we observed an increased level of BDNF in women after Wingate and progressive tests, but in men only after the progressive test. After 3 months of CrossFit training the level of BDNF increased in all subjects, and also was higher in men than in women. In women we did not observe significant differences after both tests in comparison to rest. After the training BDNF was lower in men after Wingate and progressive tests than at rest. At baseline irisin level decreased in women after the Wingate and progressive tests. Changes in men were not observed after both tests. There were no differences in irisin levels between the baseline and 3 months after the training after Wingate and progressive tests. A beneficial influence of CrossFit training on the subjects' body composition, anaerobic capacity and cardiovascular fitness as well as an increase in BDNF makes it possible to assume that this type of training could have a very high application value, especially in a therapeutic process leading to improving a patient's wellbeing.
Chao, Yu-Chieh; Xie, Fang; Li, Xueyang; Guo, Ruijuan; Yang, Ning; Zhang, Chen; Shi, Rong; Guan, Yun; Yue, Yun; Wang, Yun
2016-07-01
Repeated administration of morphine may result in opioid-induced hypersensitivity (OIH), which involves altered expression of numerous genes, including brain-derived neurotrophic factor (BDNF) in dorsal root ganglion (DRG) neurons. Yet, it remains unclear how BDNF expression is increased in DRG neurons after repeated morphine treatment. DNA methylation is an important mechanism of epigenetic control of gene expression. In the current study, we hypothesized that the demethylation regulation of certain BDNF gene promoters in DRG neurons may contribute to the development of OIH. Real-time RT-PCR was used to assess changes in the mRNA transcription levels of major BDNF exons including exon I, II, IV, VI, as well as total BDNF mRNA in DRGs from rats after repeated morphine administration. The levels of exon IV and total BDNF mRNA were significantly upregulated by repeated morphine administration, as compared to that in saline control group. Further, ELISA array and immunocytochemistry study revealed a robust upregulation of BDNF protein expression in DRG neurons after repeated morphine exposure. Correspondingly, the methylation levels of BDNF exon IV promoter showed a significant downregulation by morphine treatment. Importantly, intrathecal administration of a BDNF antibody, but not control IgG, significantly inhibited mechanical hypersensitivity that developed in rats after repeated morphine treatment. Conversely, intrathecal administration of an inhibitor of DNA methylation, 5-aza-2'-deoxycytidine (5-aza-dC) markedly upregulated the BDNF protein expression in DRG neurons and enhanced the mechanical allodynia after repeated morphine exposure. Together, our findings suggest that demethylation regulation of BDNF gene promoter may be implicated in the development of OIH through epigenetic control of BDNF expression in DRG neurons. Copyright © 2016 Elsevier Ltd. All rights reserved.
Prince, Calais S; Maloyan, Alina; Myatt, Leslie
2017-01-01
Obesity is a major clinical problem in obstetrics being associated with adverse pregnancy outcomes and fetal programming. Brain derived neurotrophic factor (BDNF), a validated miR-210 target, is necessary for placental development, fetal growth, glucose metabolism, and energy homeostasis. Plasma BDNF levels are reduced in obese individuals; however, placental BDNF has yet to be studied in the context of maternal obesity. In this study, we investigated the effect of maternal obesity and sexual dimorphism on placental BDNF signaling. BDNF signaling was measured in placentas from lean (pre-pregnancy BMI < 25) and obese (pre-pregnancy BMI>30) women at term without medical complications that delivered via cesarean section without labor. MiRNA-210, BDNF mRNA, proBDNF, and mature BDNF were measured by RT - PCR, ELISA, and Western blot. Downstream signaling via TRKB (BDNF receptor) was measured using Western blot. Maternal obesity was associated with increased miRNA-210 and decreased BDNF mRNA in placentas from female fetuses, and decreased proBDNF in placentas from male fetuses. We also identified decreased mature BDNF in placentas from male fetuses when compared to female fetuses. Mir-210 expression was negatively correlated with mature BDNF protein. TRKB phosphorylated at tyrosine 817, not tyrosine 515, was increased in placentas from obese women. Maternal obesity was associated with increased phosphorylation of MAPK p38 in placentas from male fetuses, but not phosphorylation of ERK p42/44. BDNF regulation is complex and highly regulated. Pre-pregnancy/early maternal obesity adversely affects BDNF/TRKB signaling in the placenta in a sexually dimorphic manner. These data collectively suggest that induction of placental TRKB signaling could ameliorate the placental OB phenotype, thus improving perinatal outcome. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lambert, W. Marcus; Xu, Chong-Feng; Neubert, Thomas A.; Chao, Moses V.
2013-01-01
Abnormal glucocorticoid and neurotrophin signaling has been implicated in numerous psychiatric disorders. However, the impact of neurotrophic signaling on glucocorticoid receptor (GR)-dependent gene expression is not understood. We therefore examined the impact of brain-derived neurotrophic factor (BDNF) signaling on GR transcriptional regulatory function by gene expression profiling in primary rat cortical neurons stimulated with the selective GR agonist dexamethasone (Dex) and BDNF, alone or in combination. Simultaneous treatment with BDNF and Dex elicited a unique set of GR-responsive genes associated with neuronal growth and differentiation and also enhanced the induction of a large number of Dex-sensitive genes. BDNF via its receptor TrkB enhanced the transcriptional activity of a synthetic GR reporter, suggesting a direct effect of BDNF signaling on GR function. Indeed, BDNF treatment induces the phosphorylation of GR at serine 155 (S155) and serine 287 (S287). Expression of a nonphosphorylatable mutant (GR S155A/S287A) impaired the induction of a subset of BDNF- and Dex-regulated genes. Mechanistically, BDNF-induced GR phosphorylation increased GR occupancy and cofactor recruitment at the promoter of a BDNF-enhanced gene. GR phosphorylation in vivo is sensitive to changes in the levels of BDNF and TrkB as well as stress. Therefore, BDNF signaling specifies and amplifies the GR transcriptome through a coordinated GR phosphorylation-dependent detection mechanism. PMID:23878391
Plasma brain-derived neurotrophic factor in women after bariatric surgery: a pilot study.
Merhi, Zaher O; Minkoff, Howard; Lambert-Messerlian, Geralyn M; Macura, Jerzy; Feldman, Joseph; Seifer, David B
2009-04-01
Eighteen morbidly obese women had plasma brain-derived neurotrophic factor (BDNF) measured before bariatric surgery and 3 months postoperatively. We analyzed plasma BDNF levels in all the participants then subdivided according to menopausal status and type of surgery. Brain-derived neurotrophic factor decreased significantly in all the participants and in the premenopausal group when looked at in isolation.
Gender difference in association of cognition with BDNF in chronic schizophrenia.
Zhang, Xiang Yang; Chen, Da-Chun; Tan, Yun-Long; Tan, Shu-Ping; Wang, Zhi-Ren; Yang, Fu-De; Xiu, Mei-Hong; Hui, Li; Lv, Meng-Han; Zunta-Soares, Giovana B; Soares, Jair C
2014-10-01
While numerous studies have reported that brain-derived neurotrophic factor (BDNF) may be involved in the pathophysiology of schizophrenia, very few studies have explored its association with cognitive impairment or gender differences in schizophrenia which we explored. We compared gender differences in 248 chronic schizophrenic patients (male/female=185/63) to 188 healthy controls (male/female=98/90) on the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) and serum BDNF. Schizophrenic symptoms were assessed using the Positive and Negative Syndrome Scale (PANSS). Our results showed that schizophrenic patients performed worse than normals on most of the cognitive tasks, and male patients had significantly lower immediate memory and delayed memory scores than female patients. BDNF levels were significantly lower in patients than controls, and male patients had significantly lower BDNF levels than female patients. For the patients, BDNF was positively associated with immediate memory and the RBANS total score. Furthermore, these associations were only observed in female not male patients. Among healthy controls, no gender difference was observed in cognitive domains and BDNF levels, or in the association between BDNF and cognition. Our results suggest gender differences in cognitive impairments, BDNF levels and their association in chronic patients with schizophrenia. However, the findings should be regarded as preliminary due to the cross-sectional design and our chronic patients, which need replication in a first-episode and drug naïve patients using a longitudinal study. Copyright © 2014 Elsevier Ltd. All rights reserved.
Reduced cortical BDNF expression and aberrant memory in Carf knockout mice
McDowell, Kelli A.; Hutchinson, Ashley N.; Wong-Goodrich, Sarah J.E.; Presby, Matthew M.; Su, Dan; Rodriguiz, Ramona M.; Law, Krystal C.; Williams, Christina L.; Wetsel, William C.; West, Anne E.
2010-01-01
Transcription factors are a key point of convergence between the cell-intrinsic and extracellular signals that guide synaptic development and brain plasticity. Calcium-Response Factor (CaRF) is a unique transcription factor first identified as a binding protein for a calcium-response element in the gene encoding Brain-Derived Neurotrophic Factor (Bdnf). We have now generated Carf knockout (KO) mice to characterize the function of this factor in vivo. Intriguingly, Carf KO mice have selectively reduced expression of Bdnf exon IV-containing mRNA transcripts and BDNF protein in the cerebral cortex while BDNF levels in the hippocampus and striatum remain unchanged, implicating CaRF as a brain region-selective regulator of BDNF expression. At the cellular level, Carf KO mice show altered expression of GABAergic proteins at striatal synapses, raising the possibility that CaRF may contribute to aspects of inhibitory synapse development. Carf KO mice show normal spatial learning in the Morris water maze and normal context-dependent fear conditioning. However they have an enhanced ability to find a new platform location on the first day of reversal training in the water maze and they extinguish conditioned fear more slowly than their wildtype (WT) littermates. Finally, Carf KO mice show normal short-term and long-term memory in a novel object recognition task, but exhibit impairments during the remote memory phase of testing. Taken together these data reveal novel roles for CaRF in the organization and/or function of neural circuits that underlie essential aspects of learning and memory. PMID:20519520
NASA Astrophysics Data System (ADS)
Utami, N.; Effendy, E.; Amin, M. M.
2018-03-01
Schizophrenia is a complex neurodevelopmental disorder with cognitive impairment as the main part. BDNF regulates aspects of developmental plasticity in the brain and is involved in cognitive function. Cognitive functions include capabilities such as attention, executive functioning, assessing, monitoring and evaluating. The aim of the study was to know the BDNF levels in schizophrenic patients with cognitive deficits. The study was held in October 2016 - March 2017, and was the first in Indonesia, especially in North Sumatra. The study was approved by the medical ethics committee of the University of North Sumatera. The study is descriptive based on a retrospective method with cross-sectional approach. The subject is 40 male schizophrenia. Cognitive deficits were assessed by MoCA-Ina. BDNF serum levels were analyzed using the quantitative sandwich enzyme immunoassay. The average MoCA-Ina score is 21.03±5.21. This suggests that there is a cognitive function deficit in schizophrenic patients. The mean serum BDNF level was 26629±6762. MoCA-Ina scores in schizophrenic patients <26 who experienced a deficit of 77.5% and serum BDNF levels with normal values ranging from 6.186 to 42.580pg/ml.
Kavurma, Canem; Varol Tas, Fatma; Serim Demirgoren, Burcu; Demirci, Ferhat; Akan, Pınar; Eyuboglu, Damla; Guvenir, Taner
2017-12-01
The aim of this study was to compare serum brain-derived neurotrophic factor (BDNF) levels between adolescents that harm themselves, those that receive psychiatric treatment but do not harm themselves, healthy adolescents, and childhood traumas and to investigate the relationship between traumatic experiences and serum BDNF levels. The cases were divided into two groups of 40 adolescents exhibiting self-harm behavior (self-harm/diagnosed group) and 30 adolescents receiving psychiatric treatment but not exhibiting self-harm behaviors (non self-harm/diagnosed group). The control group (healthy control group) consisted of 35 healthy adolescents with no psychiatric disorders or self-harm behaviors. The adolescents were asked to fill in the Inventory of Statements About Self Injury (ISAS) and Childhood Trauma Questionnaire (CTQ). For BDNF measurement, blood samples were taken from the cases and controls. The serum BDNF level of self-harming adolescents who used the self-cutting method was significantly lower than that of other groups, and serum BDNF levels decreased with the increase in the emotional neglect and abuse severity of self-harming adolescents during childhood. In our study, serum BDNF levels decreased with the increase in emotional abuse in self-harming adolescents. This finding may indicate that neuroplasticity can be affected by a negative emotional environment during the early period. Copyright © 2017 Elsevier B.V. All rights reserved.
Rocha, Renan Boeira; Dondossola, Eduardo Ronconi; Grande, Antônio José; Colonetti, Tamy; Ceretta, Luciane Bisognin; Passos, Ives C; Quevedo, Joao; da Rosa, Maria Inês
2016-12-01
We performed a systematic review and meta-analysis to estimate brain-derived neurotrophic factor (BDNF) level in patients with major depressive disorder (MDD) after electroconvulsive therapy (ECT). A comprehensive search of the Cochrane Library, MEDLINE, LILACS, Grey literature, and EMBASE was performed for papers published from January 1990 to April 2016. The following key terms were searched: "major depressive disorder", "unipolar depression", "brain-derived neurotrophic factor", and "electroconvulsive therapy". A total of 252 citations were identified by the search strategy, and nine studies met the inclusion criteria of the meta-analysis. BDNF levels were increased among patients with MDD after ECT (P value = 0.006). The standardized mean difference was 0.56 (95% CI: 0.17-0.96). Additionally, we found significant heterogeneity between studies (I 2 = 73%). Our findings suggest a potential role of BDNF as a marker of treatment response after ECT in patients with MDD. Copyright © 2016 Elsevier Ltd. All rights reserved.
Focus on ECT seizure quality: serum BDNF as a peripheral biomarker in depressed patients.
Bumb, Jan Malte; Aksay, Suna Su; Janke, Christoph; Kranaster, Laura; Geisel, Olga; Gass, Peter; Hellweg, Rainer; Sartorius, Alexander
2015-04-01
Electroconvulsive therapy (ECT) is a well-established, safe and effective treatment in severest or drug-resistant affective disorders. The potential relation between any peripheral biological marker and the seizure quality as a surrogate for treatment efficacy has not been investigated so far. We prospectively examined serum brain-derived neurotrophic factor (BDNF) levels in 20 patients with major depression before and after electroconvulsive therapy. A seizure quality sum score for every ECT session was build up on the basis of the seizure duration, seizure amplitude, central inhibition, interhemispheric coherence and sympathetic activation. Serum BDNF levels were significantly higher after ECT (P = 0.036). In the linear regression analysis, a significant correlation of the serum BDNF levels and the time between the last ECT and the blood withdrawal (P = 0.01) was observed. The ANOVA revealed a significant influence of the interval between the last ECT and the blood withdrawal (P = 0.0017) as well as the seizure quality (P = 0.038) on the variance of BDNF serum levels. Our data corroborate the neurotrophin hypothesis suggesting an ECT-induced central BDNF rise leading to a delayed (>6 days) and increased equilibrium of the peripheral BDNF. The association of seizure adequacy with a BDNF rise might underline the importance of monitoring seizure quality markers in daily practice.
Whiteman, Andrew; Young, Daniel E.; He, Xuemei; Chen, Tai C.; Wagenaar, Robert C.; Stern, Chantal; Schon, Karin
2013-01-01
Convergent evidence from human and non-human animal studies suggests aerobic exercise and increased aerobic capacity may be beneficial for brain health and cognition. It is thought growth factors may mediate this putative relationship, particularly by augmenting plasticity mechanisms in the hippocampus, a brain region critical for learning and memory. Among these factors, glucocorticoids, brain derived neurotrophic factor (BDNF), insulin-like growth factor-1 (IGF-1), and vascular endothelial growth factor (VEGF), hormones that have considerable and diverse physiological importance, are thought to effect normal and exercise-induced hippocampal plasticity. Despite these predictions, relatively few published human studies have tested hypotheses that relate exercise and fitness to the hippocampus, and none have considered the potential links to all of these hormonal components. Here we present cross-sectional data from a study of recognition memory; serum BDNF, cortisol, IGF-1, and VEGF levels; and aerobic capacity in healthy young adults. We measured circulating levels of these hormones together with performance on a recognition memory task, and a standard graded treadmill test of aerobic fitness. Regression analyses demonstrated BDNF and aerobic fitness predict recognition memory in an interactive manner. In addition, IGF-1 was positively associated with aerobic fitness, but not with recognition memory. Our results may suggest an exercise adaptation-related change in the BDNF dose-response curve that relates to hippocampal memory. PMID:24269495
Park, Young-Min; Lee, Bun-Hee; Um, Tae Hyun; Kim, Sollip
2014-01-01
The aim of this study was to test the hypothesis that serum levels of brain-derived neurotrophic factor (BDNF) are correlated with the loudness dependence of auditory evoked potentials (LDAEP). The question of whether there is a difference in BDNF levels between depressive patients according to their illness severity, history of suicide attempts, and central serotonin activity was also addressed. A sample of 51 patients who met the criteria for major depressive disorder following diagnosis using axis I of the fourth edition of the Diagnostic and Statistical Manual of Mental Disorders - text revision comprised the study subjects. The patients were stratified into two subgroups based on their illness severity, history of suicide attempts, and their LDAEP values. The LDAEP was evaluated by measuring the auditory event-related potentials, and serum BDNF was measured using blood sampling before beginning medication with serotonergic agents. There was no difference in serum BDNF levels between the two patient subgroups. The subgroup with moderate-to-severe depression (n = 16) was reanalyzed after stratifying it into two subgroups according to LDAEP and BDNF values (dichotomized at the medians into low and high). The high-LDAEP subgroup had higher serum BDNF levels and total Barratt Impulsiveness Scale score than the low-LDAEP subgroup (p = 0.03 and 0.036, respectively). Serum BDNF levels were positively correlated with LDAEP and total Beck Hopelessness Scale (BHS) score (r = 0.56, p = 0.025, and r = 0.59, p = 0.016, respectively). The high-BDNF subgroup had a higher LDAEP and total BHS score than the low-BDNF subgroup (p = 0.046 and p = 0.011, respectively). This is the first study to demonstrate a relationship between the BDNF level and LDAEP in Asian depressive patients. Intriguingly, the high-BDNF subgroup (divided according to illness severity) exhibited a more severe psychopathology on some psychometric rating scales, a finding that conflicts with previous results.
Impaired fear extinction learning in adult heterozygous BDNF knock-out mice.
Psotta, Laura; Lessmann, Volkmar; Endres, Thomas
2013-07-01
Brain-derived neurotrophic factor (BDNF) is a crucial regulator of neuroplasticity, which underlies learning and memory processes in different brain areas. To investigate the role of BDNF in the extinction of amygdala-dependent cued fear memories, we analyzed fear extinction learning in heterozygous BDNF knock-out mice, which possess a reduction of endogenous BDNF protein levels to ~50% of wild-type animals. Since BDNF expression has been shown to decline with aging of animals, we tested the performance in extinction learning of these mice at 2 months (young adults) and 7 months (older adults) of age. The present study shows that older adult heterozygous BDNF knock-out mice, which have a chronic 50% lack of BDNF, also possess a deficit in the acquisition of extinction memory, while extinction learning remains unaffected in young adult heterozygous BDNF knock-out mice. This deficit in extinction learning is accompanied by a reduction of BDNF protein in the hippocampus, amygdala and the prefrontal cortex. Copyright © 2013 Elsevier Inc. All rights reserved.
Diniz, Cassiano R A F; Casarotto, Plinio C; Resstel, Leonardo; Joca, Sâmia R L
2018-04-04
Depression and posttraumatic stress disorder are assumed to be maladaptive responses to stress and antidepressants are thought to counteract such responses by increasing BDNF (brain-derived neurotrophic factor) levels. BDNF acts through TrkB (tropomyosin-related receptor kinase B) and plays a central role in neuroplasticity. In contrast, both precursor proBDNF and BDNF propeptide (another metabolic product from proBDNF cleavage) have a high affinity to p75 receptor (p75R) and usually convey apoptosis and neuronal shrinkage. Although BDNF and proBDNF/propeptide apparently act in opposite ways, neuronal turnover and remodeling might be a final common way that both act to promote more effective neuronal networking, avoiding neuronal redundancy and the misleading effects of environmental contingencies. This review aims to provide a brief overview about the BDNF functional role in antidepressant action and about p75R and TrkB signaling to introduce the "continuum-sorting hypothesis." The resulting hypothesis suggests that both BDNF/proBDNF and BDNF/propeptide act as protagonists to fine-tune antidepressant-dependent neuroplasticity in crucial brain structures to modulate behavioral responses to stress. Copyright © 2018 Elsevier Ltd. All rights reserved.
Tsai, Yi-Fang; Hsu, Chih-Yi; Yang, Muh-Hwa; Shyr, Yi-Ming
2017-01-01
Aims There is good evidence that the tumor microenvironment plays an important role in cancer metastasis and progression. Our previous studies have shown that brain-derived neurotrophic factor (BDNF) participates in the process of metastasis and in the migration of cancer cells. The aim of this study was to investigate the role of BDNF on the tumor cell microenvironment, namely, the cancer cell-endothelial cell interaction of TNBC cells. Methods We conducted oligoneucleotide microarray analysis of potential biomarkers that are able to differentiate recurrent TNBC from non-recurrent TNBC. The MDA-MB-231 and human endothelial HUVEC lines were used for this study and our approaches included functional studies, such as migration assay, as well as Western blot and real-time PCR analysis of migration and angiogenic signaling. In addition, we analyzed the survival outcome of TNBC breast cancer patients according to their expression level of BDNF using clinical samples. Results The results demonstrated that BDNF was able to bring about autocrinal (MDA-MB-231) and paracrinal (HUVECs) regulation of BDNF-TrkB gene expression and this affected cell migratory activity. The BDNF-induced migratory activity was blocked by inhibitors of ERK, PI3K and TrkB when MDA-MB-231 cells were examined, but only an inhibitor of ERK blocked this activity when HUVEC cells were used. Furthermore, decreased migratory activity was found for △BDNF and △TrkB cell lines. Ingenuity pathway analysis (IPA) of MDA-MB-231 cells showed that BDNF is a key factor that is able to regulate a network made up of metalloproteases and calmodulin. Protein expression levels in a tissue array of tumor slices were found to be correlated with patient prognosis and the results showed that there was significant correlation of TrkB expression, but not of BDNF. expressionwith patient DFS and OS. Conclusion Our study demonstrates that up-regulation of the BDNF signaling pathway seems tobe involved in the mechanism associated with early recurrence in triple negative breast cancer cell. In addition, BDNF can function in either an autocrine or a paracrine manner to increase the migration ability of both MDA-MB-231 cells and HUVEC cells. Finally, overexpression of TrkB, but not of BDNF, is significantly associated with a poor survival outcome for TNBC patients. PMID:28604807
Tsai, Yi-Fang; Tseng, Ling-Ming; Hsu, Chih-Yi; Yang, Muh-Hwa; Chiu, Jen-Hwey; Shyr, Yi-Ming
2017-01-01
There is good evidence that the tumor microenvironment plays an important role in cancer metastasis and progression. Our previous studies have shown that brain-derived neurotrophic factor (BDNF) participates in the process of metastasis and in the migration of cancer cells. The aim of this study was to investigate the role of BDNF on the tumor cell microenvironment, namely, the cancer cell-endothelial cell interaction of TNBC cells. We conducted oligoneucleotide microarray analysis of potential biomarkers that are able to differentiate recurrent TNBC from non-recurrent TNBC. The MDA-MB-231 and human endothelial HUVEC lines were used for this study and our approaches included functional studies, such as migration assay, as well as Western blot and real-time PCR analysis of migration and angiogenic signaling. In addition, we analyzed the survival outcome of TNBC breast cancer patients according to their expression level of BDNF using clinical samples. The results demonstrated that BDNF was able to bring about autocrinal (MDA-MB-231) and paracrinal (HUVECs) regulation of BDNF-TrkB gene expression and this affected cell migratory activity. The BDNF-induced migratory activity was blocked by inhibitors of ERK, PI3K and TrkB when MDA-MB-231 cells were examined, but only an inhibitor of ERK blocked this activity when HUVEC cells were used. Furthermore, decreased migratory activity was found for △BDNF and △TrkB cell lines. Ingenuity pathway analysis (IPA) of MDA-MB-231 cells showed that BDNF is a key factor that is able to regulate a network made up of metalloproteases and calmodulin. Protein expression levels in a tissue array of tumor slices were found to be correlated with patient prognosis and the results showed that there was significant correlation of TrkB expression, but not of BDNF. expressionwith patient DFS and OS. Our study demonstrates that up-regulation of the BDNF signaling pathway seems tobe involved in the mechanism associated with early recurrence in triple negative breast cancer cell. In addition, BDNF can function in either an autocrine or a paracrine manner to increase the migration ability of both MDA-MB-231 cells and HUVEC cells. Finally, overexpression of TrkB, but not of BDNF, is significantly associated with a poor survival outcome for TNBC patients.
Differential effects of BDNF and neurotrophin 4 (NT4) on endocytic sorting of TrkB receptors.
Proenca, Catia C; Song, Minseok; Lee, Francis S
2016-08-01
Neurotrophins are a family of growth factors playing key roles in the survival, development, and function of neurons. The neurotrophins brain-derived neurotrophic factor (BDNF) and NT4 both bind to and activate TrkB receptors, however, they mediate distinct neuronal functions. The molecular mechanism of how TrkB activation by BDNF and NT4 leads to diverse outcomes is unknown. Here, we report that BDNF and NT4 lead to differential endocytic sorting of TrkB receptors resulting in diverse biological functions in cultured cortical neurons. Fluorescent microscopy and surface biotinylation experiments showed that both neurotrophins stimulate internalization of TrkB with similar kinetics. Exposure to BDNF for 2-3 h reduced the surface pool of TrkB receptors to half, whereas a longer treatment (4-5 h) with NT4 was necessary to achieve a similar level of down-regulation. Although BDNF and NT4 induced TrkB phosphorylation with similar intensities, BDNF induced more rapid ubiquitination and degradation of TrkB than NT4. Interestingly, TrkB receptor ubiquitination by these ligands have substantially different pH sensitivities, resulting in varying degrees of receptor ubiquitination at lower pH levels. Consequently, NT4 was capable of maintaining longer sustained downstream signaling activation that correlated with reduced TrkB ubiquitination at endosomal pH. Thus, by leading to altered endocytic trafficking itineraries for TrkB receptors, BDNF and NT4 elicit differential TrkB signaling in terms of duration, intensity, and specificity, which may contribute to their functional differences in vivo. The neurotrophins, brain-derived neurotrophic factor (BDNF) and neurotrophin-4 (NT4), both bind to and activate TrkB receptors, however, they mediate distinct neuronal functions. Here, we propose that BDNF and NT4 lead to differential endocytic sorting of TrkB receptors resulting in diverse biological functions. BDNF induces more rapid ubiquitination and degradation of TrkB than NT4. Consequently, NT4 is capable of maintaining more sustained signaling downstream of TrkB receptors. © 2016 International Society for Neurochemistry.
Yoshimura, Reiji; Kishi, Taro; Hori, Hikaru; Atake, Kiyokazu; Katsuki, Asuka; Nakano-Umene, Wakako; Ikenouchi-Sugita, Atsuko; Iwata, Nakao; Nakamura, Jun
2014-01-01
We investigated the association between serum proBDNF, a precursor of brain-derived neurotrophic factor (BDNF), and response to fluvoxamine in patients with major depressive disorder (MDD) using the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision (DSM-IV-TR): physically healthy and free of current alcohol or drug abuse, comorbid anxiety, or personality disorders. Fifty-one patients with MDD (M/F, 19:32; age, 38 ± 19 years) and 51 healthy controls (M/F, 22:29; age, 34 ± 17 years) were studied using DSM-IV-TR: physically healthy and free of current alcohol or drug abuse, comorbid anxiety, or personality disorders. Serum levels of proBDNF and MDNF were measured by sandwich enzyme-linked immunosorbent assay (ELISA). Serum mature BDNF levels in the MDD patients were significantly lower than those in the healthy controls (t = 3.046, p = 0.0018). On the other hand, no difference was found in serum proBDNF between the MDD patients and the healthy controls (t = -0.979, p = 0.833). A trend of negative correlation was found between baseline serum BDNF and baseline scores of the 17 items of the Hamilton Rating Scale for Depression (HAMD17) (r = -0.183, p = 0.071). No correlation was however found between HAMD17 scores and proBDNF at baseline (r = 0.092, p = 0.421). Furthermore, no correlation was observed between baseline HAMD17 scores and baseline proBDNF/BDNF (r = -0.130, p = 0.190). No changes were observed in serum levels of proBDNF and BDNF during the treatment periods. These results suggest that there is no association between serum proBDNF/BDNF and fluvoxamine response in MDD patients at least within 4 weeks of the treatment.
Tackling Glaucoma from within the Brain: An Unfortunate Interplay of BDNF and TrkB
Dekeyster, Eline; Geeraerts, Emiel; Buyens, Tom; Van den Haute, Chris; Baekelandt, Veerle; De Groef, Lies; Salinas-Navarro, Manuel; Moons, Lieve
2015-01-01
According to the neurotrophin deprivation hypothesis, diminished retrograde delivery of neurotrophic support during an early stage of glaucoma pathogenesis is one of the main triggers that induce retinal ganglion cell (RGC) degeneration. Therefore, interfering with neurotrophic signaling seems an attractive strategy to achieve neuroprotection. Indeed, exogenous neurotrophin administration to the eye has been shown to reduce loss of RGCs in animal models of glaucoma; however, the neuroprotective effect was mostly insufficient for sustained RGC survival. We hypothesized that treatment at the level of neurotrophin-releasing brain areas might be beneficial, as signaling pathways activated by target-derived neurotrophins are suggested to differ from pathways that are initiated at the soma membrane. In our study, first, the spatiotemporal course of RGC degeneration was characterized in mice subjected to optic nerve crush (ONC) or laser induced ocular hypertension (OHT). Subsequently, the well-known neurotrophin brain-derived neurotrophic factor (BDNF) was chosen as the lead molecule, and the levels of BDNF and its high-affinity receptor, tropomyosin receptor kinase B (TrkB), were examined in the mouse retina and superior colliculus (SC) upon ONC and OHT. Both models differentially influenced BDNF and TrkB levels. Next, we aimed for RGC protection through viral vector-mediated upregulation of collicular BDNF, thought to boost the retrograde neurotrophin delivery. Although the previously reported temporary neuroprotective effect of intravitreally delivered recombinant BDNF was confirmed, viral vector-induced BDNF overexpression in the SC did not result in protection of the RGCs in the glaucoma models used. These findings most likely relate to decreased neurotrophin responsiveness upon vector-mediated BDNF overexpression. Our results highlight important insights concerning the complexity of neurotrophic factor treatments that should surely be considered in future neuroprotective strategies. PMID:26560713
Lim, Yen Ying; Rainey-Smith, Stephanie; Lim, Yoon; Laws, Simon M; Gupta, Veer; Porter, Tenielle; Bourgeat, Pierrick; Ames, David; Fowler, Christopher; Salvado, Olivier; Villemagne, Victor L; Rowe, Christopher C; Masters, Colin L; Zhou, Xin Fu; Martins, Ralph N; Maruff, Paul
2017-11-01
The brain-derived neurotrophic factor (BDNF) Val66Met polymorphism Met allele exacerbates amyloid (Aβ) related decline in episodic memory (EM) and hippocampal volume (HV) over 36-54 months in preclinical Alzheimer's disease (AD). However, the extent to which Aβ+ and BDNF Val66Met is related to circulating markers of BDNF (e.g. serum) is unknown. We aimed to determine the effect of Aβ and the BDNF Val66Met polymorphism on levels of serum mBDNF, EM, and HV at baseline and over 18-months. Non-demented older adults (n = 446) underwent Aβ neuroimaging and BDNF Val66Met genotyping. EM and HV were assessed at baseline and 18 months later. Fasted blood samples were obtained from each participant at baseline and at 18-month follow-up. Aβ PET neuroimaging was used to classify participants as Aβ- or Aβ+. At baseline, Aβ+ adults showed worse EM impairment and lower serum mBDNF levels relative to Aβ- adults. BDNF Val66Met polymorphism did not affect serum mBDNF, EM, or HV at baseline. When considered over 18-months, compared to Aβ- Val homozygotes, Aβ+ Val homozygotes showed significant decline in EM and HV but not serum mBDNF. Similarly, compared to Aβ+ Val homozygotes, Aβ+ Met carriers showed significant decline in EM and HV over 18-months but showed no change in serum mBDNF. While allelic variation in BDNF Val66Met may influence Aβ+ related neurodegeneration and memory loss over the short term, this is not related to serum mBDNF. Longer follow-up intervals may be required to further determine any relationships between serum mBDNF, EM, and HV in preclinical AD.
Glucocorticoid receptor represses brain-derived neurotrophic factor expression in neuron-like cells.
Chen, Hui; Lombès, Marc; Le Menuet, Damien
2017-04-12
Brain-derived neurotrophic factor (BDNF) is involved in many functions such as neuronal growth, survival, synaptic plasticity and memorization. Altered expression levels are associated with many pathological situations such as depression, epilepsy, Alzheimer's, Huntington's and Parkinson's diseases. Glucocorticoid receptor (GR) is also crucial for neuron functions, via binding of glucocorticoid hormones (GCs). GR actions largely overlap those of BDNF. It has been proposed that GR could be a regulator of BDNF expression, however the molecular mechanisms involved have not been clearly defined yet. Herein, we analyzed the effect of a GC agonist dexamethasone (DEX) on BDNF expression in mouse neuronal primary cultures and in the newly characterized, mouse hippocampal BZ cell line established by targeted oncogenesis. Mouse Bdnf gene exhibits a complex genomic structure with 8 untranslated exons (I to VIII) splicing onto one common and unique coding exon IX. We found that DEX significantly downregulated total BDNF mRNA expression by around 30%. Expression of the highly expressed exon IV and VI containing transcripts was also reduced by DEX. The GR antagonist RU486 abolished this effect, which is consistent with specific GR-mediated action. Transient transfection assays allowed us to define a short 275 bp region within exon IV promoter responsible for GR-mediated Bdnf repression. Chromatin immunoprecipitation experiments demonstrated GR recruitment onto this fragment, through unidentified transcription factor tethering. Altogether, GR downregulates Bdnf expression through direct binding to Bdnf regulatory sequences. These findings bring new insights into the crosstalk between GR and BDNF signaling pathways both playing a major role in physiology and pathology of the central nervous system.
Rosche, Berit; Werner, Jonas; Benzel, Friderike Joëlle; Harms, Lutz; Danker-Hopfe, Heidi; Hellweg, Rainer
2013-01-01
We previously analysed clinical and immunological parameters under Trichuris suis ova (TSO) therapy in four patients with secondary progressive multiple sclerosis. The serum Brain-derived neurotrophic factor (BDNF) levels of these four patients were assessed before, during and after therapy with TSO and showed significant decrease of BDNF during TSO therapy (p < 0.05). © B. Rosche et al., published by EDP Sciences, 2013.
Takeda, Yosuke; Oue, Hiroshi; Okada, Shinsuke; Kawano, Akira; Koretake, Katsunori; Michikawa, Makoto; Akagawa, Yasumasa; Tsuga, Kazuhiro
2016-12-05
It is known that tooth loss is known to be a risk factor for Alzheimer's disease and soft diet feeding induces memory impairment. Recent studies have shown that brain-derived neurotrophic factor (BDNF) is associated with tooth loss or soft diet in young animal model, and that BDNF expression is decreased in patients with Alzheimer's disease. However, single or combined effect of tooth loss and/or soft diet on brain function has not fully understood. Here we examined the effect of molar loss and powder diet on memory ability and the expression of BDNF mRNA in the hippocampus of adult C57BL/6J mice. Twenty eight-weeks-old C57BL/6J mice were divided into intact molar group and extracted molar group. They were randomly divided into the I/S group (Intact upper molar teeth/Solid diet feeding), the E/S group (Extracted upper molar teeth/Solid diet feeding), the I/P group (Intact upper molar teeth/Powder diet feeding), and the E/P group (Extracted upper molar teeth/Powder diet feeding). The observation periods were 4 and 16-week. To analyze the memory ability, the step-through passive avoidance test was conducted. BDNF-related mRNA in the hippocampus was analyzed by real-time polymerase chain reaction (RT-PCR). At 4 weeks later, we performed memory test and isolated brains to analyze. There were no differences in memory function and BDNF mRNA level between these four groups. However, at 16 weeks later, E/S and E/P group showed memory impairment, and decreased level of BDNF mRNA. Whereas, the powder diet had no effect on memory function and BDNF mRNA level even at 16 weeks later. These results suggest that the effect of molar loss and powder diet on memory function and BDNF mRNA levels were different, molar loss may have a greater long-term effect on memory ability than powder diet does.
Jevtović, Saša; Karlović, Dalibor; Mihaljević-Peleš, Alma; Šerić, Vesna; Vrkić, Nada; Jakšić, Nenad
2011-12-01
The aim of this study was to compare the concentration of serum Brain-derived neurotrophic factor (BDNF) in patients suffering from major depressive disorder (MDD) considering the severity of MDD episode defined by the Hamilton rating scale for depression (HAMD-17). The other aim was to research the connection between serum BDNF and the symptomatic dimensions of MDD. The study includes 139 participants with major depressive disorder (MDD). Diagnosis of MDD was set by DSM-IV-TR criteria. The severity of MDD was estimated with HAM-D-17 in the manner that mild episode was diagnosed if the score on HAMD-17 was up to 18, moderately severe 18-25 and severe over 25. Concentration of BDNF was determined by the ELISA method. This research could not find a difference in BDNF concentration considering the severity of the depressive disorder in groups suffering from mild, moderately severe and severe episodes of MDD (F=1.816; p=0.169). Factor analysis of HAMD-17 extracted four dimensions of depressive symptoms. None of the symptomatic dimensions was significantly related to BDNF concentration. Results of this study indicate that serum BDNF levels are not related to the severity of depression and its specific symptomatic dimensions. These findings support the idea of a complex relationship between BDNF concentration at the periphery and in the CNS.
Wysokiński, Adam
2016-01-01
Brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) are neurotrophins-proteins that induce the survival, development, and function of neurons. Their role in the development of schizophrenia and mood disorders is widely studied. This study was aimed to determine whether depression affects levels of BDNF and NT-3 in patients with schizophrenia. Data for 53 Caucasian adult hospitalized patients with chronic paranoid schizophrenia was compared with 27 healthy subjects. Clinical symptoms were assessed using the Positive and Negative Syndrome Scale (PANSS) and positive, negative and general sub-scores, the Calgary Depression Scale for Schizophrenia (CDSS), the Hamilton Depression Rating Scale (HDRS), and the Clinical Global Impressions scale (CGI). Patients were defined as depressed (SHZ-DEP) with scores CDSS > 6 and HDRS > 7, otherwise they were included into the non-depressed group (SHZ-nonDEP). In total, 17 patients (32.1%) with schizophrenia met criteria for depression. SHZ-DEP patients had higher scores in HDRS, CDSS, PANSS total, PANSS negative, PANSS general and CGI (p < 0.001 for all comparisons). There were no differences in BDNF or NT-3 levels between patients with schizophrenia and controls. BDNF levels were lower in SHZ-DEP compared to SHZ-nonDEP: 18.82 ± 5.95 versus 22.10 ± 5.31 ng/mL, p = 0.045. NT-3 levels were higher in SHZ-DEP compared to SHZ-nonDEP: 133.31 ± 222.19 versus 56.04 ± 201.28 pg/mL, p = 0.033. There were no differences in neurotrophin levels between patients with schizophrenia and controls. We found lower BDNF and higher NT-3 serum levels in depressed patients with schizophrenia.
Sigma-1 receptor chaperones regulate the secretion of brain-derived neurotrophic factor
Fujimoto, Michiko; Hayashi, Teruo; Urfer, Roman; Mita, Shiro; Su, Tsung-Ping
2013-01-01
The sigma-1 receptor (Sig-1R) is a novel endoplasmic reticulum (ER) molecular chaperone that regulates protein folding and degradation. The Sig-1R activation by agonists is known to improve memory, promote cell survival, and exert an antidepressant-like action in animals. Cutamesine (SA4503), a selective Sig-1R ligand, was shown to increase BDNF in the hippocampus of rats. How exactly the intracellular chaperone Sig-1R or associated ligand causes the increase of BDNF or any other neurotrophins is unknown. We examined here whether the action of Sig-1Rs may relate to the post-translational processing and release of BDNF in neuroblastoma cell lines. We used in vitro assays and confirmed that cutamesine possesses the bona fide Sig-1R agonist property by causing the dissociation of BiP from Sig-1Rs. The C-terminus of Sig-1Rs exerted robust chaperone activity by completely blocking the aggregation of BDNF and GDNF in vitro. Chronic treatment with cutamesine in rat B104 neuroblastoma caused a time- and dose-dependent potentiation of the secretion of BDNF without affecting the mRNA level of BDNF. Cutamesine decreased the intracellular level of pro-BDNF and mature BDNF whereas increased the extracellular level of mature BDNF. The pulse-chase experiment indicated that the knockdown of Sig-1Rs decreased the secreted mature BDNF in B104 cells without affecting the synthesis of BDNF. Our findings indicate that, in contrast to clinically used antidepressants that promote the transcriptional upregulation of BDNF, the Sig-1R agonist cutamesine potentiates the post-translational processing of neurotrophins. This unique pharmacological profile may provide a novel therapeutic opportunity for the treatment of neuropsychiatric disorders. PMID:22337473
Higher brain BDNF gene expression is associated with slower cognitive decline in older adults.
Buchman, Aron S; Yu, Lei; Boyle, Patricia A; Schneider, Julie A; De Jager, Philip L; Bennett, David A
2016-02-23
We tested whether brain-derived neurotrophic factor (BDNF) gene expression levels are associated with cognitive decline in older adults. Five hundred thirty-five older participants underwent annual cognitive assessments and brain autopsy at death. BDNF gene expression was measured in the dorsolateral prefrontal cortex. Linear mixed models were used to examine whether BDNF expression was associated with cognitive decline adjusting for age, sex, and education. An interaction term was added to determine whether this association varied with clinical diagnosis proximate to death (no cognitive impairment, mild cognitive impairment, or dementia). Finally, we examined the extent to which the association of Alzheimer disease (AD) pathology with cognitive decline varied by BDNF expression. Higher brain BDNF expression was associated with slower cognitive decline (p < 0.001); cognitive decline was about 50% slower with the 90th percentile BDNF expression vs 10th. This association was strongest in individuals with dementia. The level of BDNF expression was lower in individuals with pathologic AD (p = 0.006), but was not associated with macroscopic infarcts, Lewy body disease, or hippocampal sclerosis. BDNF expression remained associated with cognitive decline in a model adjusting for age, sex, education, and neuropathologies (p < 0.001). Furthermore, the effect of AD pathology on cognitive decline varied by BDNF expression such that the effect was strongest for high levels of AD pathology (p = 0.015); thus, in individuals with high AD pathology (90th percentile), cognitive decline was about 40% slower with the 90th percentile BDNF expression vs 10th. Higher brain BDNF expression is associated with slower cognitive decline and may also reduce the deleterious effects of AD pathology on cognitive decline. © 2016 American Academy of Neurology.
Fawzi, Mounir H; Kira, Ibrahim A; Fawzi, Mohab M; Mohamed, Hanan E; Fawzi, Maggie M
2013-01-01
We aimed to investigate the relation of trauma profile to schizophrenia psychopathology in a sample of Egyptian drug-naïve adolescent patients with first-episode schizophrenia. In addition, a hypothesized mediating effect of brain-derived neurotrophic factor (BDNF) in this relation was formally tested. We assessed 74 eligible outpatients using the Positive and Negative Syndrome Scale (PANSS) for measuring psychopathology. Trauma histories were recorded with the help of the Cumulative Trauma Measure. Serum BDNF levels were estimated by enzyme-linked immunosorbent assay. Total cumulative trauma, personal identity trauma, and survival trauma were found to be the significant predictors for schizophrenia psychopathology. BDNF fully mediated the associations between total cumulative trauma and overall schizophrenia psychopathology. BDNF also mediated the associations between some types of trauma and both PANSS-positive and PANSS-negative symptom factors. We concluded that total cumulative trauma and certain trauma types are linked with schizophrenia psychopathology. BDNF appears to mediate these links.
Kim, Hyun Jun; Lee, Sang Yeoup; Lee, Hwa Gyeong; Cho, Yang Hee; Ko, Eun Mi
2018-03-01
Few studies have been undertaken to develop cognitive functional improvement-focused exercise programs and determine their effect. The objectives of this study were to evaluate the effects of a cognitive enhancement fitness program (CEFP) on short-term memory and serum brain-derived neurotrophic factor (BDNF) levels according to the cognitive state in middle-aged women. A total of 30 healthy volunteers aged 40-59 years were divided into two groups, that is, a mild cognitive impairment (MCI) group and a non-MCI group based on results from the Korean Dementia Screening Questionnaire. A single-session CEFP was conducted over 50 min and consisted of four parts: warm-up, low intensity interval circulation dance exercises, moderate intensity resistance exercises using elastic bands, and cool-down. Serum BDNF levels were measured by ELISA and short-term memory determined by forward digit/word span test was assessed before and after CEFP. After CEFP, forward digit/word span test scores and BDNF levels increased to median 119.2%/115.1% and 118.7%, respectively. After CEFP, the MCI and non-MCI groups produced higher forward digit span test scores (from 6.7 ± 1.5 to 7.5 ± 1.4 points, p = 0.023 and from 6.2 ± 2.0 to 7.0 ± 2.1 points, P =0.011, respectively). After CEFP, forward word span scores and BDNF levels increased (from 3.5 ± 1.7 to 4.6 ± 1.8 points, p = 0.029 and from 610.8 ± 221.1 to 757.9 ± 267.9 pg/ml, p = 0.017, respectively) in non-MCI group only. No group differences were observed between change in short-term memory and change in BDNF. Short-term memory and BDNF levels after CEFP were found to be negatively correlated with age, but pre- to post-intervention changes in short-term memory and BDNF were not. The present study shows that a single, 50-minute CEFP improved short-term memory and increased serum BDNF levels in healthy middle-aged women, especially those without MCI.
Effects of acute voluntary loaded wheel running on BDNF expression in the rat hippocampus.
Lee, Minchul; Soya, Hideaki
2017-12-31
Voluntary loaded wheel running involves the use of a load during a voluntary running activity. A muscle-strength or power-type activity performed at a relatively high intensity and a short duration may cause fewer apparent metabolic adaptations but may still elicit muscle fiber hypertrophy. This study aimed to determine the effects of acute voluntary wheel running with an additional load on brain-derived neurotrophic factor (BDNF) expression in the rat hippocampus. Ten-week old male Wistar rats were assigned randomly to a (1) sedentary (Control) group; (2) voluntary exercise with no load (No-load) group; or (3) voluntary exercise with an additional load (Load) group for 1-week (acute period). The expression of BDNF genes was quantified by real-time PCR. The average distance levels were not significantly different in the No-load and Load groups. However, the average work levels significantly increased in the Load group. The relative soleus weights were greater in the No-load group. Furthermore, loaded wheel running up-regulated the BDNF mRNA level compared with that in the Control group. The BDNF mRNA levels showed a positive correlation with workload levels (r=0.75), suggesting that the availability of multiple workload levels contributes to the BDNF-related benefits of loaded wheel running noted in this study. This novel approach yielded the first set of findings showing that acute voluntary loaded wheel running, which causes muscular adaptation, enhanced BDNF expression, suggesting a possible role of high-intensity short-term exercise in hippocampal BDNF activity. ©2017 The Korean Society for Exercise Nutrition
da Silva Moreira, Sônia Fátima; Medeiros, Liciane Fernandes; de Souza, Andressa; de Oliveira, Carla; Scarabelot, Vanessa Leal; Fregni, Felipe; Caumo, Wolnei; Torres, Iraci L S
2016-01-15
Epidemiological studies show that painful disorders are more prevalent in women than in men, and the transcranial direct current stimulation (tDCS) technique has been tested in chronic pain states. We explored the effect of tDCS on pain behavior and brain-derived neurotrophic factor (BDNF) levels in ovariectomized rats. Forty-five female Wistar adult rats were distributed into five groups: control (CT), ovariectomy + tDCS (OT), ovariectomy + sham tDCS (OS), sham ovariectomy + tDCS (ST), and sham ovariectomy+shamtDCS (SS). The rats were subjected to cathodal tDCS. The vaginal cytology and the estradiol levels confirmed the hormonal status. In addition, nociceptive behavior was evaluated using the tail-flick, von Frey, and hot-plate tests, as well as the BDNF levels in the serum, hypothalamus, hippocampus, spinal cord, and cerebral cortex. One-way analysis of variance (ANOVA) or two-way ANOVA was used for statistical analysis, followed by the Bonferroni, and P-value b 0.05 was considered significant. The ovariectomized animals presented a hypersensitivity response in the hot-plate (P b 0.01) and von Frey (P b 0.05) tests, as well as increased serum BDNF (P b 0.05) and decreased hypothalamic BDNF (P b 0.01) levels. The OT, OS, ST, and SS groups showed decreased hippocampal BDNF levels as compared with the control group (P b 0.001). The interaction between tDCS and ovariectomy on the cortical BDNF levels (P b 0.01) was observed. The ovariectomy induced nociceptive hypersensitivity and altered serum and hypothalamic BDNF levels. The cathodal tDCS partially reversed nociceptive hypersensitivity.
Synapsins Are Downstream Players of the BDNF-Mediated Axonal Growth.
Marte, Antonella; Messa, Mirko; Benfenati, Fabio; Onofri, Franco
2017-01-01
Synapsins (Syns) are synaptic vesicle-associated phosphoproteins involved in neuronal development and neurotransmitter release. While Syns are implicated in the regulation of brain-derived neurotrophic factor (BDNF)-induced neurotransmitter release, their role in the BDNF developmental effects has not been fully elucidated. By using primary cortical neurons from Syn I knockout (KO) and Syn I/II/III KO mice, we studied the effects of BDNF and nerve growth factor (NGF) on axonal growth. While NGF had similar effects in all genotypes, BDNF induced significant differences in Syn KO axonal outgrowth compared to wild type (WT), an effect that was rescued by the re-expression of Syn I. Moreover, the significant increase of axonal branching induced by BDNF in WT neurons was not detectable in Syn KO neurons. The expression analysis of BDNF receptors in Syn KO neurons revealed a significant decrease of the full length TrkB receptor and an increase in the levels of the truncated TrkB.t1 isoform and p75 NTR associated with a marked reduction of the BDNF-induced MAPK/Erk activation. By using the Trk inhibitor K252a, we demonstrated that these differences in BDNF effects were dependent on a TrkB/p75 NTR imbalance. The data indicate that Syn I plays a pivotal role in the BDNF signal transduction during axonal growth.
Effect of childhood maltreatment and brain-derived neurotrophic factor on brain morphology.
van Velzen, Laura S; Schmaal, Lianne; Jansen, Rick; Milaneschi, Yuri; Opmeer, Esther M; Elzinga, Bernet M; van der Wee, Nic J A; Veltman, Dick J; Penninx, Brenda W J H
2016-11-01
Childhood maltreatment (CM) has been associated with altered brain morphology, which may partly be due to a direct impact on neural growth, e.g. through the brain-derived neurotrophic factor (BDNF) pathway. Findings on CM, BDNF and brain volume are inconsistent and have never accounted for the entire BDNF pathway. We examined the effects of CM, BDNF (genotype, gene expression and protein level) and their interactions on hippocampus, amygdala and anterior cingulate cortex (ACC) morphology. Data were collected from patients with depression and/or an anxiety disorder and healthy subjects within the Netherlands Study of Depression and Anxiety (NESDA) (N = 289). CM was assessed using the Childhood Trauma Interview. BDNF Val66Met genotype, gene expression and serum protein levels were determined in blood and T1 MRI scans were acquired at 3T. Regional brain morphology was assessed using FreeSurfer. Covariate-adjusted linear regression analyses were performed. Amygdala volume was lower in maltreated individuals. This was more pronounced in maltreated met-allele carriers. The expected positive relationship between BDNF gene expression and volume of the amygdala is attenuated in maltreated subjects. Finally, decreased cortical thickness of the ACC was identified in maltreated subjects with the val/val genotype. CM was associated with altered brain morphology, partly in interaction with multiple levels of the BNDF pathway. Our results suggest that CM has different effects on brain morphology in met-carriers and val-homozygotes and that CM may disrupt the neuroprotective effect of BDNF. © The Author (2016). Published by Oxford University Press.
Vaghi, Valentina; Polacchini, Alessio; Baj, Gabriele; Pinheiro, Vera L M; Vicario, Annalisa; Tongiorgi, Enrico
2014-10-03
The neurotrophin brain-derived neurotrophic factor (BDNF) is a key regulator of neuronal development and plasticity. BDNF is a major pharmaceutical target in neurodevelopmental and psychiatric disorders. However, pharmacological modulation of this neurotrophin is challenging because BDNF is generated by multiple, alternatively spliced transcripts with different 5'- and 3'UTRs. Each BDNF mRNA variant is transcribed independently, but translation regulation is unknown. To evaluate the translatability of BDNF transcripts, we developed an in vitro luciferase assay in human neuroblastoma cells. In unstimulated cells, each BDNF 5'- and 3'UTR determined a different basal translation level of the luciferase reporter gene. However, constructs with either a 5'UTR or a 3'UTR alone showed poor translation modulation by BDNF, KCl, dihydroxyphenylglycine, AMPA, NMDA, dopamine, acetylcholine, norepinephrine, or serotonin. Constructs consisting of the luciferase reporter gene flanked by the 5'UTR of one of the most abundant BDNF transcripts in the brain (exons 1, 2c, 4, and 6) and the long 3'UTR responded selectively to stimulation with the different receptor agonists, and only transcripts 2c and 6 were increased by the antidepressants desipramine and mirtazapine. We propose that BDNF mRNA variants represent "a quantitative code" for regulated expression of the protein. Thus, to discriminate the efficacy of drugs in stimulating BDNF synthesis, it is appropriate to use variant-specific in vitro screening tests. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Wu, Li-Min; Hu, Mei-Hong; Tong, Xian-Hong; Han, Hui; Shen, Ni; Jin, Ren-Tao; Wang, Wei; Zhou, Gui-Xiang; He, Guo-Ping; Liu, Yu-Sheng
2012-01-01
Brain-derived neurotropic factor (BDNF) was originally described in the nervous system but has been shown to be expressed in ovary tissues recently, acting as a paracrine/autocrine regulator required for developments of follicles and oocytes. Although it is generally accepted that chronic stress impairs female reproduction and decreases the expression of BDNF in limbic structures of central nervous system, which contributes to mood disorder. However, it is not known whether chronic stress affects oocytes developments, nor whether it affects expression of BDNF in ovary. Mice were randomly assigned into control group, stressed group, BDNF-treated group and BDNF-treated stressed group. The chronic unpredictable mild stress model was used to produce psychosocial stress in mice, and the model was verified by open field test and hypothalamic-pituitary-adrenal (HPA) axis activity. The methods of immunohistochemistry and western blotting were used to detect BDNF protein level and distribution. The number of retrieved oocytes, oocyte maturation, embryo cleavage and the rates of blastocyst formation after parthenogenetic activation were evaluated. Chronic unpredictable stress decreased the BDNF expression in antral follicles, but didn't affect the BDNF expression in primordial, primary and secondary follicles. Chronic unpredictable stress also decreased the number of retrieved oocytes and the rate of blastocyst formation, which was rescued by exogenous BDNF treatment. BDNF in mouse ovaries may be related to the decreased number of retrieved oocytes and impaired oocytes developmental potential induced by chronic unpredictable stress.
Tong, Xian-Hong; Han, Hui; Shen, Ni; Jin, Ren-Tao; Wang, Wei; Zhou, Gui-Xiang; He, Guo-Ping; Liu, Yu-Sheng
2012-01-01
Background Brain-derived neurotropic factor (BDNF) was originally described in the nervous system but has been shown to be expressed in ovary tissues recently, acting as a paracrine/autocrine regulator required for developments of follicles and oocytes. Although it is generally accepted that chronic stress impairs female reproduction and decreases the expression of BDNF in limbic structures of central nervous system, which contributes to mood disorder. However, it is not known whether chronic stress affects oocytes developments, nor whether it affects expression of BDNF in ovary. Methods Mice were randomly assigned into control group, stressed group, BDNF-treated group and BDNF-treated stressed group. The chronic unpredictable mild stress model was used to produce psychosocial stress in mice, and the model was verified by open field test and hypothalamic-pituitary-adrenal (HPA) axis activity. The methods of immunohistochemistry and western blotting were used to detect BDNF protein level and distribution. The number of retrieved oocytes, oocyte maturation, embryo cleavage and the rates of blastocyst formation after parthenogenetic activation were evaluated. Results Chronic unpredictable stress decreased the BDNF expression in antral follicles, but didn’t affect the BDNF expression in primordial, primary and secondary follicles. Chronic unpredictable stress also decreased the number of retrieved oocytes and the rate of blastocyst formation, which was rescued by exogenous BDNF treatment. Conclusion BDNF in mouse ovaries may be related to the decreased number of retrieved oocytes and impaired oocytes developmental potential induced by chronic unpredictable stress. PMID:23284991
Angelucci, Francesco; Ricci, Enzo; Padua, Luca; Sabino, Andrea; Tonali, Pietro Attilio
2007-12-18
It has been reported that music may have physiological effects on blood pressure, cardiac heartbeat, respiration, and improve mood state in people affected by anxiety, depression and other psychiatric disorders. However, the physiological bases of these phenomena are not clear. Hypothalamus is a brain region involved in the regulation of body homeostasis and in the pathophysiology of anxiety and depression through the modulation of hypothalamic-pituitary-adrenal (HPA) axis. Hypothalamic functions are also influenced by the presence of the neurotrophins brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), which are proteins involved in the growth, survival and function of neurons in the central nervous system. The aim of this study was to investigate the effect of music exposure in mice on hypothalamic levels of BDNF and NGF. We exposed young adult mice to slow rhythm music (6h per day; mild sound pressure levels, between 50 and 60 dB) for 21 consecutive days. At the end of the treatment mice were sacrificed and BDNF and NGF levels in the hypothalamus were measured by enzyme-linked immunosorbent assay (ELISA). We found that music exposure significantly enhanced BDNF levels in the hypothalamus. Furthermore, we observed that music-exposed mice had decreased NGF hypothalamic levels. Our results demonstrate that exposure to music in mice can influence neurotrophin production in the hypothalamus. Our findings also suggest that physiological effects of music might be in part mediated by modulation of neurotrophins.
Qiao, Hui; An, Shu-Cheng; Xu, Chang; Ma, Xin-Ming
2017-05-15
Major depressive disorder (MDD) is one of the most common psychiatric disorder, but the underlying mechanisms are largely unknown. Increasing evidence shows that brain-derived neurotrophic factor (BDNF) plays an important role in the structural plasticity induced by depression. Considering the opposite effects of BDNF and its precursor proBDNF on neural plasticity, we hypothesized that the balance of BDNF and proBDNF plays a critical role in chronic unpredicted mild stress (CUMS)-induced depressive-like behaviors and structural plasticity in the rodent hippocampus. The aims of this study were to compare the functions of BDNF and proBDNF in the CUMS-induced depressive-like behaviors, and determine the effects of BDNF and proBDNF on expressions of kalirin-7, postsynaptic density protein 95 (PSD95) and NMDA receptor subunit NR2B in the hippocampus of stressed and naïve control rats, respectively. Our results showed that CUMS induced depressive-like behaviors, caused a decrease in the ratio of BDNF/proBDNF in the hippocampus and resulted in a reduction in spine density in hippocampal CA1 pyramidal neurons; these alterations were accompanied by a decrease in the levels of kalirin-7, PSD95 and NR2B in the hippocampus. Injection of exogenous BDNF into the CA1 area of stressed rats reversed CUMS-induced depressive-like behaviors and prevented CUMS-induced spine loss and decrease in kalirin-7, NR2B and PSD95 levels. In contrast, injection of exogenous proBDNF into the CA1 region of naïve rats caused depressive-like behavior and an accompanying decrease in both spine density and the levels of kalirin-7, NR2B and PSD95. Taken together, our results suggest that the ratio of BDNF to proBDNF in the hippocampus plays a key role in CUMS-induced depressive-like behaviors and alterations of dendritic spines in hippocampal CA1 pyramidal neurons. Kalirin-7 may play an important role during this process. Copyright © 2017 Elsevier B.V. All rights reserved.
Simsek, Seref; Uysal, Cem; Kaplan, Ibrahim; Yuksel, Tugba; Aktas, Huseyin
2015-06-01
There are studies reporting that cortisol and brain-derived neurotropic factor (BDNF) play a role in the pathophysiology of post-traumatic stress disorder (PTSD). However, up-to-date no study evaluated the relationship between PTSD and the levels of cortisol and BDNF in children and adolescents who have sustained trauma. The aim of this study was to investigate whether BDNF, cortisol and adrenocorticotropine (ACTH) levels differ between individuals who developed PTSD or not following a sexual trauma. The study included 55 children aged between 6 and 17 years who sustained sexual assault (M/F: 13/42). The patients were divided into two groups, with or without PTSD based on the results of a structured psychiatric interview (K-SADS-PL and CAPS-CA). Of the participants, 49% (n=27) were diagnosed with PTSD. Cortisol, ACTH, and BDNF levels were evaluated using the ELISA method. There were no significant differences between patients with or without PTSD in terms of cortisol, ACTH, BDNF levels. There were no correlations between CAPS-CA scores and cortisol, ACTH, and BDNF levels in patients with or without PTSD. In patients with PTSD, decreased cortisol levels were found with increasing time after trauma, and no significant correlation was found with the cortisol levels in patients without PTSD. Although no significant association was found between biochemical parameters and the presence or severity of PTSD; decreasing cortisol levels with increasing time after trauma in patients with PTSD suggest that cortisol might have played a role in the pathophysiology of this disorder. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hashimoto, Kenji
2013-01-01
Epidemiological studies have demonstrated a close relationship between depression and cardiovascular disease (CVD). Although it is known that the central nervous system (CNS) contributes to this relationship, the detailed mechanisms involved in this process remain unclear. Recent studies suggest that the endoplasmic reticulum (ER) molecular chaperone sigma-1 receptor and brain-derived neurotrophic factor (BDNF) play a role in the pathophysiology of CVD and depression. Several meta-analysis studies have showed that levels of BDNF in the blood of patients with major depressive disorder (MDD) are lower than normal controls, indicating that blood BDNF might be a biomarker for depression. Furthermore, blood levels of BDNF in patients with CVD are also lower than normal controls. A recent study using conditional BDNF knock-out mice in animal models of myocardial infarction highlighted the role of CNS-mediated mechanisms in the cardioprotective effects of BDNF. In addition, a recent study shows that decreased levels of sigma-1 receptor in the mouse brain contribute to the association between heart failure and depression. Moreover, sigma-1 receptor agonists, including the endogenous neurosteroid dehydroepiandosterone (DHEA) and the selective serotonin reuptake inhibitor (SSRI) fluvoxamine, show potent cardioprotective and antidepressive effects in rodents, via sigma-1 receptor stimulation. Interestingly, agonist activation of sigma-1 receptors increased the secretion of mature BDNF from its precursor proBDNF via chaperone activity in the ER. Given the role of ER stress in the pathophysiology of CVD and MDD, the author will discuss the potential link between sigma-1 receptors and BDNF-TrkB pathway in the pathophysiology of these two diseases. Finally, the author will make a case for potent sigma-1 receptor agonists and TrkB agonists as new potential therapeutic drugs for depressive patients with CVD. Copyright © 2012 Elsevier Ltd. All rights reserved.
The role of BDNF, leptin, and catecholamines in reward learning in bulimia nervosa.
Homan, Philipp; Grob, Simona; Milos, Gabriella; Schnyder, Ulrich; Eckert, Anne; Lang, Undine; Hasler, Gregor
2014-12-07
A relationship between bulimia nervosa and reward-related behavior is supported by several lines of evidence. The dopaminergic dysfunctions in the processing of reward-related stimuli have been shown to be modulated by the neurotrophin brain derived neurotrophic factor (BDNF) and the hormone leptin. Using a randomized, double-blind, placebo-controlled, crossover design, a reward learning task was applied to study the behavior of 20 female subjects with remitted bulimia nervosa and 27 female healthy controls under placebo and catecholamine depletion with alpha-methyl-para-tyrosine (AMPT). The plasma levels of BDNF and leptin were measured twice during the placebo and the AMPT condition, immediately before and 1 hour after a standardized breakfast. AMPT-induced differences in plasma BDNF levels were positively correlated with the AMPT-induced differences in reward learning in the whole sample (P=.05). Across conditions, plasma brain derived neurotrophic factor levels were higher in remitted bulimia nervosa subjects compared with controls (diagnosis effect; P=.001). Plasma BDNF and leptin levels were higher in the morning before compared with after a standardized breakfast across groups and conditions (time effect; P<.0001). The plasma leptin levels were higher under catecholamine depletion compared with placebo in the whole sample (treatment effect; P=.0004). This study reports on preliminary findings that suggest a catecholamine-dependent association of plasma BDNF and reward learning in subjects with remitted bulimia nervosa and controls. A role of leptin in reward learning is not supported by this study. However, leptin levels were sensitive to a depletion of catecholamine stores in both remitted bulimia nervosa and controls. © The Author 2015. Published by Oxford University Press on behalf of CINP.
Podda, Maria Vittoria; Cocco, Sara; Mastrodonato, Alessia; Fusco, Salvatore; Leone, Lucia; Barbati, Saviana Antonella; Colussi, Claudia; Ripoli, Cristian; Grassi, Claudio
2016-01-01
The effects of transcranial direct current stimulation (tDCS) on brain functions and the underlying molecular mechanisms are yet largely unknown. Here we report that mice subjected to 20-min anodal tDCS exhibited one-week lasting increases in hippocampal LTP, learning and memory. These effects were associated with enhanced: i) acetylation of brain-derived neurotrophic factor (Bdnf) promoter I; ii) expression of Bdnf exons I and IX; iii) Bdnf protein levels. The hippocampi of stimulated mice also exhibited enhanced CREB phosphorylation, pCREB binding to Bdnf promoter I and recruitment of CBP on the same regulatory sequence. Inhibition of acetylation and blockade of TrkB receptors hindered tDCS effects at molecular, electrophysiological and behavioral levels. Collectively, our findings suggest that anodal tDCS increases hippocampal LTP and memory via chromatin remodeling of Bdnf regulatory sequences leading to increased expression of this gene, and support the therapeutic potential of tDCS for brain diseases associated with impaired neuroplasticity. PMID:26908001
Bagge, J; Gaida, J E; Danielson, P; Alfredson, H; Forsgren, S
2011-12-01
Physical activity affects the pain symptoms for Achilles tendinosis patients. Brain-derived neurotrophic factor (BDNF), tumor necrosis factor-alpha (TNF-α) and their receptors have been detected in human Achilles tendon. This pilot study aimed to compare serum BDNF and soluble tumor necrosis factor receptor I (sTNFRI) levels in Achilles tendinosis patients and healthy controls and to examine the influence of physical activity, and BMI and gender, on these levels. Physical activity was measured with a validated questionnaire, total physical activity being the parameter analyzed. Physical activity was strongly correlated with BDNF among tendinosis women [Spearman's rho (ρ)=0.90, P<0.01] but not among control women (ρ=-0.08, P=0.83), or among tendinosis and control men. Physical activity was significantly correlated with sTNFRI in the entire tendinosis group and among tendinosis men (ρ=0.65, P=0.01), but not in the entire control group or among control men (ρ=0.04, P=0.91). Thus, the physical activity pattern is related to the TNF and BDNF systems for tendinosis patients but not controls, the relationship being gender dependent. This is new information concerning the relationship between physical activity and Achilles tendinosis, which may be related to pain for the patients. This aspect should be further evaluated using larger patient materials. © 2011 John Wiley & Sons A/S.
Brierley, G V; Priebe, I K; Purins, L; Fung, K Y C; Tabor, B; Lockett, T; Nice, E; Gibbs, P; Tie, J; McMurrick, P; Moore, J; Ruszkiewicz, A; Burgess, A; Cosgrove, L J
2013-01-01
To determine the usefulness of brain-derived neurotrophic factor (BDNF) as a diagnostic biomarker for colorectal cancer (CRC). ELISA immunoassay was used to examine BDNF concentrations in the sera of two different retrospective cohorts consisting of CRC patients and age/gender matched controls. Cohort 1 consisted of 99 controls and 97 CRC patients, whereas cohort 2 consisted of 47 controls and 91 CRC patients. In cohort 1, the median concentration of BDNF was significantly (p< 0.0001) lower in CRC patient samples (18.8 ng/mL, range 4.0-56.5 ng/mL) than control samples (23.4 ng/mL, range 3.0-43.1 ng/mL). This finding was validated in an independent patient cohort (CRC patients: 23.0 ng/mL, range 6.0-45.9 ng/mL; control patients: 32.3 ng/mL, range 14.2-62.4 ng/mL). BDNF concentrations did not differ significantly between Dukes' staging in the patient cohort, however patients with Stages A, B, C and D (p< 0.01 for each stage) tumours had significantly reduced BDNF levels compared to healthy controls. Receiver operating characteristic analysis was performed to determine the ability of BDNF to discriminate between healthy controls and those with CRC. At 95% specificity, BDNF concentrations distinguished CRC patients with 25% and 18% sensitivity, respectively, in cohorts 1 and 2 (cohort 1: AUC=0.79, 95% CI 0.70-0.87; cohort 2: AUC =0.69, 95% CI 0.61-0.76). The serum levels of BDNF were significantly lower in colorectal cancer patients when compared to a control population, and this did not differ between different Dukes' stages.
Dalle Molle, R; Portella, A K; Goldani, M Z; Kapczinski, F P; Leistner-Segala, S; Salum, G A; Manfro, G G; Silveira, P P
2012-01-01
Adverse early-life environment is associated with anxiety-like behaviors and disorders. Brain-derived neurotrophic factor (BDNF) is sensitive to this environment and could be a marker of underlying brain changes. We aimed at evaluating the development of anxiety-like behaviors in a rat model of early adversity, as well as the possible association with BDNF levels. Similar associations were investigated in a sample of adolescent humans. For the rat study, Wistar rat litters were divided into: early-life stress (ELS, limited access to nesting material) and control groups. Maternal behavior was observed from days 1 to 9 of life and, as adults, rats were subjected to behavioral testing and BDNF measurements in plasma, hippocampus, amygdala and periaqueductal gray. For the human study, 129 adolescents were evaluated for anxiety symptoms and perceived parental care. Serum BDNF levels and the Val66Met polymorphism of the BDNF gene were investigated. We found that ELS dams showed more pure contact, that is, contact with low care and high control, toward pups, and their adult offspring demonstrated higher anxiety-like behaviors and plasma BDNF. Also the pure contact correlated positively with adult peripheral BDNF. Similarly in humans, there was a positive correlation between maternal overprotection and serum BDNF only in Met carriers. We also found negative correlations between maternal warmth and separation anxiety, social phobia and school phobia. Finally, our translational approach revealed that ELS, mediated through variations in maternal care, is associated with anxiety in both rats and humans and increased peripheral BDNF may be marking these phenomena. PMID:23168995
Li, Gongying; Jing, Ping; Liu, Zhidong; Li, Zhiruo; Ma, Hongxia; Tu, Wenzhen; Zhang, Wei; Zhuo, Chuanjun
2017-01-01
SSRI antidepressant fluoxetine is widely used to treat psychological stress related disorders, however the underlying working mechanisms is not fully understood, as SSRIs can rapidly increase the extracellular serotonin levels but it normally takes weeks to reveal their therapeutic effect in the stress-related psychological disorders. Our previous study demonstrated that purely psychological stress without any physic stimuli induces a biphasic change in the expression of brain-derived neurotrophic factor (BDNF), which immediately decrease and then gradually increase after the stress; and that the latter BDNF increase in response to the psychological stress involves the activation of serotonin system. To investigate the role of BDNF in the fluoxetine treatment for stress-related psychological disorders, we examined the mRNA and protein levels of BDNF in the brain of Sprague-Dawley (SD) rats, which were pretreated with fluoxetine at 10 mg/kg or vehicle solution for 14 days, over 24 hour after an acute psychological stress exposure. In situ hybridization and immunohistochemistry were performed to detect the expression of BDNF at different time points in various brain regions after the psychological stress. We found that fluoxetine treatment completely blocked the BDNF decrease induced by the psychological stress, and also enhanced the gradual increase in the expression of BDNF in most of the brain regions except VTA after the psychological stress. The results suggest that the enhancement in BDNF levels induced by chronic fluoxetine treatment mediates the therapeutic effect against psychological stress. PMID:29050222
Chen, Fenghua; Danladi, Jibrin; Ardalan, Maryam; Elfving, Betina; Müller, Heidi K; Wegener, Gregers; Sanchez, Connie; Nyengaard, Jens R
2018-06-01
Preclinical studies have indicated that antidepressant effect of vortioxetine involves increased synaptic plasticity and promotion of spine maturation. Mitochondria dysfunction may contribute to the pathophysiological basis of major depressive disorder. Taking into consideration that vortioxetine increases spine number and dendritic branching in hippocampus CA1 faster than fluoxetine, we hypothesize that new spines induced by vortioxetine can rapidly form functional synapses by mitochondrial support, accompanied by increased brain-derived neurotrophic factor signaling. Rats were treated for 1 week with vortioxetine or fluoxetine at pharmacologically relevant doses. Number of synapses and mitochondria in hippocampus CA1 were quantified by electron microscopy. Brain-derived neurotrophic factor protein levels were visualized with immunohistochemistry. Gene and protein expression of synapse and mitochondria-related markers were investigated with real-time quantitative polymerase chain reaction and immunoblotting. Vortioxetine increased number of synapses and mitochondria significantly, whereas fluoxetine had no effect after 1-week dosing. BDNF levels in hippocampus DG and CA1 were significantly higher after vortioxetine treatment. Gene expression levels of Rac1 after vortioxetine treatment were significantly increased. There was a tendency towards increased gene expression levels of Drp1 and protein levels of Rac1. However, both gene and protein levels of c-Fos were significantly decreased. Furthermore, there was a significant positive correlation between BDNF levels and mitochondria and synapse numbers. Our results imply that mitochondria play a critical role in synaptic plasticity accompanied by increased BDNF levels. Rapid changes in BDNF levels and synaptic/mitochondria plasticity of hippocampus following vortioxetine compared with fluoxetine may be ascribed to vortioxetine's modulation of serotonin receptors.
Yang, Jenq-Lin; Lin, Yu-Ting; Chuang, Pei-Chin; Bohr, Vilhelm A; Mattson, Mark P
2014-03-01
Brain-derived neurotrophic factor (BDNF) promotes the survival and growth of neurons during brain development and mediates activity-dependent synaptic plasticity and associated learning and memory in the adult. BDNF levels are reduced in brain regions affected in Alzheimer's, Parkinson's, and Huntington's diseases, and elevation of BDNF levels can ameliorate neuronal dysfunction and degeneration in experimental models of these diseases. Because neurons accumulate oxidative lesions in their DNA during normal activity and in neurodegenerative disorders, we determined whether and how BDNF affects the ability of neurons to cope with oxidative DNA damage. We found that BDNF protects cerebral cortical neurons against oxidative DNA damage-induced death by a mechanism involving enhanced DNA repair. BDNF stimulates DNA repair by activating cyclic AMP response element-binding protein (CREB), which, in turn, induces the expression of apurinic/apyrimidinic endonuclease 1 (APE1), a key enzyme in the base excision DNA repair pathway. Suppression of either APE1 or TrkB by RNA interference abolishes the ability of BDNF to protect neurons against oxidized DNA damage-induced death. The ability of BDNF to activate CREB and upregulate APE1 expression is abolished by shRNA of TrkB as well as inhibitors of TrkB, PI3 kinase, and Akt kinase. Voluntary running wheel exercise significantly increases levels of BDNF, activates CREB, and upregulates APE1 in the cerebral cortex and hippocampus of mice, suggesting a novel mechanism whereby exercise may protect neurons from oxidative DNA damage. Our findings reveal a previously unknown ability of BDNF to enhance DNA repair by inducing the expression of the DNA repair enzyme APE1.
Zhu, Wenjun; Frost, Emma E; Begum, Farhana; Vora, Parvez; Au, Kelvin; Gong, Yuewen; MacNeil, Brian; Pillai, Prakash; Namaka, Mike
2012-01-01
Abstract Multiple sclerosis (MS) is characterized by focal destruction of the white matter of the brain and spinal cord. The exact mechanisms underlying the pathophysiology of the disease are unknown. Many studies have shown that MS is predominantly an autoimmune disease with an inflammatory phase followed by a demyelinating phase. Recent studies alongside current treatment strategies, including glatiramer acetate, have revealed a potential role for brain-derived neurotrophic factor (BDNF) in MS. However, the exact role of BDNF is not fully understood. We used the experimental autoimmune encephalomyelitis (EAE) model of MS in adolescent female Lewis rats to identify the role of BDNF in disease progression. Dorsal root ganglia (DRG) and spinal cords were harvested for protein and gene expression analysis every 3 days post-disease induction (pdi) up to 15 days. We show significant increases in BDNF protein and gene expression in the DRG of EAE animals at 12 dpi, which correlates with peak neurological disability. BDNF protein expression in the spinal cord was significantly increased at 12 dpi, and maintained at 15 dpi. However, there was no significant change in mRNA levels. We show evidence for the anterograde transport of BDNF protein from the DRG to the dorsal horn of the spinal cord via the dorsal roots. Increased levels of BDNF within the DRG and spinal cord in EAE may facilitate myelin repair and neuroprotection in the CNS. The anterograde transport of DRG-derived BDNF to the spinal cord may have potential implications in facilitating central myelin repair and neuroprotection. PMID:22050733
ProBDNF Signaling Regulates Depression-Like Behaviors in Rodents under Chronic Stress.
Bai, Yin-Yin; Ruan, Chun-Sheng; Yang, Chun-Rui; Li, Jia-Yi; Kang, Zhi-Long; Zhou, Li; Liu, Dennis; Zeng, Yue-Qing; Wang, Ting-Hua; Tian, Chang-Fu; Liao, Hong; Bobrovskaya, Larisa; Zhou, Xin-Fu
2016-11-01
Chronic exposure to stressful environment is a key risk factor contributing to the development of depression. However, the mechanisms involved in this process are still unclear. Brain-derived neurotropic factor (BDNF) has long been investigated for its positive role in regulation of mood, although the role of its precursor, proBDNF, in regulation of mood is not known. In this study, using an unpredictable chronic mild stress (UCMS) paradigm we found that the protein levels of proBDNF were increased in the neocortex and hippocampus of stressed mice and this UCMS-induced upregulation of proBDNF was abolished by chronic administration of fluoxetine. We then established a rat model of UCMS and found that the expression of proBDNF/p75 NTR /sortilin was upregulated, whereas the expression of mature BDNF and TrkB was downregulated in both neocortex and hippocampus of chronically stressed rats. Finally, we found that the injection of anti-proBDNF antibody via intracerebroventricular (i.c.v.) and intraperitoneal (i.p.) approaches into the UCMS rats significantly reversed the stress-induced depression-like behavior and restored the exploratory activity and spine growth. Although intramuscular injection of AAV-proBDNF did not exacerbate the UCMS-elicited rat mood-related behavioral or pathological abnormalities, i.c.v. injection of AAV-proBDNF increased the depression-like behavior in naive rats. Our findings suggest that proBDNF plays a role in the development of chronic stress-induced mood disturbances in rodents. Central (i.c.v.) or peripheral (i.p.) inhibition of proBDNF by injecting specific anti-proBDNF antibodies may provide a novel therapeutic approach for the treatment of stress-related mood disorders.
Rakofsky, JJ; Ressler, KJ; Dunlop, BW
2013-01-01
Bipolar disorder (BD) and post-traumatic stress disorder (PTSD) frequently co-occur among psychiatric patients, leading to increased morbidity and mortality. Brain-derived neurotrophic factor (BDNF) function is associated with core characteristics of both BD and PTSD. We propose a neurobiological model that underscores the role of reduced BDNF function resulting from several contributing sources, including the met variant of the BDNF val66met (rs6265) single-nucleotide polymorphism, trauma-induced epigenetic regulation and current stress, as a contributor to the onset of both illnesses within the same person. Further studies are needed to evaluate the genetic association between the val66met allele and the BD-PTSD population, along with central/peripheral BDNF levels and epigenetic patterns of BDNF gene regulation within these patients. PMID:21931317
ERIC Educational Resources Information Center
Pandey, Ghanshyam N.; Rizavi, Hooriyah S.; Dwivedi, Yogesh; Pavuluri, Mani N.
2008-01-01
The study determines the gene expression of brain-derived neurotrophic factor (BDNF) in the lymphocytes of subjects with pediatric bipolar disorder (PBD) before and during treatment with mood stabilizers and in drug-free normal control subjects. Results indicate the potential of BDNF levels as a biomarker for PBD and as a treatment predictor and…
Shabani, Sahreh; Farbood, Yaghoob; Mard, Seyyed Ali; Sarkaki, Alireza; Ahangarpour, Akram; Khorsandi, Layasadat
2018-03-01
Alzheimer's disease (AD) is associated with decreased serum levels of thyroid hormones (THs), increased levels of thyroid-stimulating hormone (TSH), and decreased protein expression of brain-derived neurotrophic factor (BDNF) and reelin in the hippocampus. In this study, we have evaluated the effect of subcutaneous administration of levothyroxine (L-T 4 ) on levels of THs and TSH as well as protein expression of BDNF and reelin in AD rats. To make an animal model of AD, amyloid-beta peptide (Aβ) plus ibotenic acid were infused intrahippocampally, and rats were treated with L-T 4 and (or) saline for 10 days. The levels of THs and TSH were measured by ELISA kits. Protein synthesis was detected by Western blotting method. Results have been shown that serum level of THs, BDNF, and reelin protein expression in the hippocampus were significantly decreased (P < 0.001) in AD animals and elevated significantly in AD rats treated with L-T 4 (P < 0.01). Data showed that TSH level significantly decreased in AD rats treated with L-T 4 (P < 0.05). These findings indicated that L-T 4 increased BDNF and reelin protein expression by regulation of serum THs and TSH level in Aβ-induced AD rats.
Wu, Ruiyong; Song, Zhenzhen; Wang, Siyang; Shui, Li; Tai, Fadao; Qiao, Xufeng; He, Fengqin
2014-01-01
In monogamous mammals, fathers play an important role in the development of the brain and typical behavior in offspring, but the exact nature of this process is not well understood. In particular, little research has addressed whether the presence or absence of paternal care alters levels of hippocampal glucocorticoid receptor (GR) and brain-derived neurotrophic factor (BDNF), and basal levels of serum corticosterone (CORT) and adrenocorticotropin (ACTH). Here, we explored this concept using socially monogamous mandarin voles (Microtus mandarinus), a species in which fathers display high levels of paternal care toward their pups. Our immunohistochemical study shows that paternal deprivation (PD) significantly decreased levels of GR and BDNF protein in the CA1 and CA2/3 of the hippocampus. In the dental gyrus, decreases in GR and BDNF induced by PD were evident in females but not in males. Additionally, enzyme-linked immunosorbent assay results show that PD significantly upregulated levels of serum CORT and ACTH in females, but not males. These findings demonstrate that PD alters HPA axis activity in a sex-specific way. The changes in stress hormones documented here may be associated with alteration in hippocampal BDNF and GR levels. © 2014 S. Karger AG, Basel.
Promoter Methylation and BDNF and DAT1 Gene Expression Profiles in Patients with Drug Addiction.
Kordi-Tamandani, Dor Mohammad; Tajoddini, Shahrad; Salimi, Farzaneh
2015-01-01
Drug addiction is a brain disorder that has negative consequences for individuals and society. Addictions are chronic relapsing diseases of the brain that are caused by direct drug-induced effects and persevering neuroadaptations at the epigenetic, neuropeptide and neurotransmitter levels. Because the dopaminergic system has a significant role in drug abuse, the purpose of this study was to analyze the methylation and expression profile of brain-derived neurotrophic factor (BDNF) and dopamine transporter (DAT1) genes in individuals with drug addiction. BDNF and DAT1 promoter methylation were investigated with a methylation-specific polymerase chain reaction (PCR) technique in blood samples from 75 individuals with drug addiction and 65 healthy controls. The expression levels of BDNF and DAT1 were assessed in 12 mRNA samples from the blood of patients and compared to the samples of healthy controls (n = 12) with real-time quantitative reverse transcription PCR. No significant differences were found in the methylation of BDNF and DAT1 between patients and controls, but the relative levels of expression of BDNF and DAT1 mRNA differed significantly in the patients compared to controls (p < 0.0001). These results showed that the methylation status of the BDNF and DAT1 genes had no significant function in the processes of drug addiction.
Dalwadi, Dhwanil A.; Kim, Seongcheol; Schetz, John A.
2017-01-01
Glial cells play a critical role in neuronal support which includes the production and release of the neurotrophin brain-derived neurotrophic factor (BDNF). Activation of the sigma-1 receptor (S1R) has been shown to attenuate inflammatory stress-mediated brain injuries, and there is emerging evidence that this may involve a BDNF-dependent mechanism. In this report we studied S1R-mediated BDNF release from human astrocytic glial cells. Astrocytes express the S1R, which mediates BDNF release when stimulated with the prototypical S1R agonists 4-PPBP and (+)-SKF10047. This effect could be antagonized by a selective concentration of the S1R antagonist BD1063. Haloperidol is known to have high affinity interactions with the S1R, yet it was unable to facilitate BDNF release. Remarkably, however, two metabolites of haloperidol, haloperidol I and haloperidol II (reduced haloperidol), were discovered to facilitate BDNF secretion and this effect was antagonized by BD1063. Neither 4-PPBP, nor either of the haloperidol metabolites affected the level of BDNF mRNA as assessed by qPCR. These results demonstrate for the first time that haloperidol metabolites I and II facilitate the secretion of BDNF from astrocytes by acting as functionally selective S1R agonists. PMID:28188803
Yu, Hui; Wang, Dong-Dong; Wang, Yue; Liu, Ting; Lee, Francis S.; Chen, Zhe-Yu
2012-01-01
Brain-derived neurotrophic factor (BDNF) plays important roles in cell survival, neural plasticity, learning, and stress regulation. However, whether the recently found human BDNF Val66Met (BDNFMet) polymorphism could alter stress vulnerability remains controversial. More importantly, the molecular and structural mechanisms underlying the interaction between the BDNFMet polymorphism and stress are unclear. We found that heterozygous BDNF+/Met mice displayed hypothalamic-pituitary-adrenal axis hyperreactivity, increased depressive-like and anxiety-like behaviors, and impaired working memory compared with WT mice after 7 d restraint stress. Moreover, BDNF+/Met miceexhibited more prominent changes in BDNF levels and apical dendritic spine density in the prefrontal cortex and amygdala after stress, which correlated with the impaired working memory and elevated anxiety-like behaviors. Finally, the depressive-like behaviors in BDNF+/Met mice could be selectively rescued by acute administration of desipramine but not fluoxetine. These data indicate selective behavioral, molecular, and structural deficits resulting from the interaction between stress and the human genetic BDNFMet polymorphism. Importantly, desipramine but not fluoxetine has antidepressant effects on BDNF+/Met mice, suggesting that specific classes of antidepressant may be a more effective treatment option for depressive symptoms in humans with this genetic variant BDNF. PMID:22442074
Progressive loss of BDNF in a mouse model of Huntington's disease and rescue by BDNF delivery.
Zuccato, Chiara; Liber, Daniel; Ramos, Catarina; Tarditi, Alessia; Rigamonti, Dorotea; Tartari, Marzia; Valenza, Marta; Cattaneo, Elena
2005-08-01
Huntingtin is a protein of 348 kDa that is mutated in Huntington's disease (HD), a dominantly inherited neurodegenerative disorder. Previous data have led us to propose that aspects of the disease arise from both a loss of the neuroprotective function of the wild-type protein, and a toxic activity gained by the mutant protein. In particular, we have shown that wild-type huntingtin stimulates the production of brain-derived neurotrophic factor (BDNF), a pro-survival factor for the striatal neurons that die in the pathology. Wild-type huntingtin controls BDNF gene transcription in cerebral cortex, which is then delivered to its striatal targets. In the disease state, supply of cortical BDNF to the striatum is strongly reduced, possibly leading to striatal vulnerability. Here we show that a reduction in cortical BDNF messenger level correlates with the progression of the disease in a mouse model of HD. In particular, we show that the progressive loss of mRNAs transcribed from BDNF exon II, III and IV follows a different pattern that may reflect different upstream mechanisms impaired by mutation in huntingtin. On this basis, we also discuss the possibility that delivery of BDNF may represent an useful strategy for Huntington's disease treatment.
Torma, Ferenc; Bori, Zoltan; Koltai, Erika; Felszeghy, Klara; Vacz, Gabriella; Koch, Lauren; Britton, Steven; Boldogh, Istvan; Radak, Zsolt
2014-08-01
Exercise capacity and dietary restriction (DR) are linked to improved quality of life, including enhanced brain function and neuro-protection. Brain derived neurotrophic factor (BDNF) is one of the key proteins involved in the beneficial effects of exercise on brain. Low capacity runner (LCR) and high capacity runner (HCR) rats were subjected to DR in order to investigate the regulation of BDNF. HCR-DR rats out-performed other groups in a passive avoidance test. BDNF content increased significantly in the hippocampus of HCR-DR groups compared to control groups (p<0.05). The acetylation of H3 increased significantly only in the LCR-DR group. However, chip-assay revealed that the specific binding between acetylated histone H3 and BNDF promoter was increased in both LCR-DR and HCR-DR groups. In spite of these increases in binding, at the transcriptional level only, the LCR-DR group showed an increase in BDNF mRNA content. Additionally, DR also induced the activity of cAMP response element-binding protein (CREB), while the content of SIRT1 was not altered. Peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) was elevated in HCR-DR groups. But, based on the levels of nuclear respiratory factor-1 and cytocrome c oxidase, it appears that DR did not cause mitochondrial biogenesis. The data suggest that DR-mediated induction of BDNF levels includes chromatin remodeling. Moreover, DR does not induce mitochondrial biogenesis in the hippocampus of LCR/HCR rats. DR results in different responses to a passive avoidance test, and BDNF regulation in LCR and HCR rats. Copyright © 2014 Elsevier Inc. All rights reserved.
BDNF is required for taste axon regeneration following unilateral chorda tympani nerve section.
Meng, Lingbin; Huang, Tao; Sun, Chengsan; Hill, David L; Krimm, Robin
2017-07-01
Taste nerves readily regenerate to reinnervate denervated taste buds; however, factors required for regeneration have not yet been identified. When the chorda tympani nerve is sectioned, expression of brain-derived neurotrophic factor (BDNF) remains high in the geniculate ganglion and lingual epithelium, despite the loss of taste buds. These observations suggest that BDNF is present in the taste system after nerve section and may support taste nerve regeneration. To test this hypothesis, we inducibly deleted Bdnf during adulthood in mice. Shortly after Bdnf gene recombination, the chorda tympani nerve was unilaterally sectioned causing a loss of both taste buds and neurons, irrespective of BDNF levels. Eight weeks after nerve section, however, regeneration was differentially affected by Bdnf deletion. In control mice, there was regeneration of the chorda tympani nerve and taste buds reappeared with innervation. In contrast, few taste buds were reinnervated in mice lacking normal Bdnf expression such that taste bud number remained low. In all genotypes, taste buds that were reinnervated were normal-sized, but non-innervated taste buds remained small and atrophic. On the side of the tongue contralateral to the nerve section, taste buds for some genotypes became larger and all taste buds remained innervated. Our findings suggest that BDNF is required for nerve regeneration following gustatory nerve section. Copyright © 2017 Elsevier Inc. All rights reserved.
Hurtado, Erica; Cilleros, Víctor; Nadal, Laura; Simó, Anna; Obis, Teresa; Garcia, Neus; Santafé, Manel M; Tomàs, Marta; Halievski, Katherine; Jordan, Cynthia L; Lanuza, Maria A; Tomàs, Josep
2017-01-01
The neurotrophin brain-derived neurotrophic factor (BDNF) acts via tropomyosin-related kinase B receptor (TrkB) to regulate synapse maintenance and function in the neuromuscular system. The potentiation of acetylcholine (ACh) release by BDNF requires TrkB phosphorylation and Protein Kinase C (PKC) activation. BDNF is secreted in an activity-dependent manner but it is not known if pre- and/or postsynaptic activities enhance BDNF expression in vivo at the neuromuscular junction (NMJ). Here, we investigated whether nerve and muscle cell activities regulate presynaptic conventional PKC (cPKCα and βI) via BDNF/TrkB signaling to modulate synaptic strength at the NMJ. To differentiate the effects of presynaptic activity from that of muscle contraction, we stimulated the phrenic nerve of rat diaphragms (1 Hz, 30 min) with or without contraction (abolished by μ-conotoxin GIIIB). Then, we performed ELISA, Western blotting, qRT-PCR, immunofluorescence and electrophysiological techniques. We found that nerve-induced muscle contraction: (1) increases the levels of mature BDNF protein without affecting pro-BDNF protein or BDNF mRNA levels; (2) downregulates TrkB.T1 without affecting TrkB.FL or p75 neurotrophin receptor (p75) levels; (3) increases presynaptic cPKCα and cPKCβI protein level through TrkB signaling; and (4) enhances phosphorylation of cPKCα and cPKCβI. Furthermore, we demonstrate that cPKCβI, which is exclusively located in the motor nerve terminals, increases activity-induced acetylcholine release. Together, these results show that nerve-induced muscle contraction is a key regulator of BDNF/TrkB signaling pathway, retrogradely activating presynaptic cPKC isoforms (in particular cPKCβI) to modulate synaptic function. These results indicate that a decrease in neuromuscular activity, as occurs in several neuromuscular disorders, could affect the BDNF/TrkB/PKC pathway that links pre- and postsynaptic activity to maintain neuromuscular function.
Hurtado, Erica; Cilleros, Víctor; Nadal, Laura; Simó, Anna; Obis, Teresa; Garcia, Neus; Santafé, Manel M.; Tomàs, Marta; Halievski, Katherine; Jordan, Cynthia L.; Lanuza, Maria A.; Tomàs, Josep
2017-01-01
The neurotrophin brain-derived neurotrophic factor (BDNF) acts via tropomyosin-related kinase B receptor (TrkB) to regulate synapse maintenance and function in the neuromuscular system. The potentiation of acetylcholine (ACh) release by BDNF requires TrkB phosphorylation and Protein Kinase C (PKC) activation. BDNF is secreted in an activity-dependent manner but it is not known if pre- and/or postsynaptic activities enhance BDNF expression in vivo at the neuromuscular junction (NMJ). Here, we investigated whether nerve and muscle cell activities regulate presynaptic conventional PKC (cPKCα and βI) via BDNF/TrkB signaling to modulate synaptic strength at the NMJ. To differentiate the effects of presynaptic activity from that of muscle contraction, we stimulated the phrenic nerve of rat diaphragms (1 Hz, 30 min) with or without contraction (abolished by μ-conotoxin GIIIB). Then, we performed ELISA, Western blotting, qRT-PCR, immunofluorescence and electrophysiological techniques. We found that nerve-induced muscle contraction: (1) increases the levels of mature BDNF protein without affecting pro-BDNF protein or BDNF mRNA levels; (2) downregulates TrkB.T1 without affecting TrkB.FL or p75 neurotrophin receptor (p75) levels; (3) increases presynaptic cPKCα and cPKCβI protein level through TrkB signaling; and (4) enhances phosphorylation of cPKCα and cPKCβI. Furthermore, we demonstrate that cPKCβI, which is exclusively located in the motor nerve terminals, increases activity-induced acetylcholine release. Together, these results show that nerve-induced muscle contraction is a key regulator of BDNF/TrkB signaling pathway, retrogradely activating presynaptic cPKC isoforms (in particular cPKCβI) to modulate synaptic function. These results indicate that a decrease in neuromuscular activity, as occurs in several neuromuscular disorders, could affect the BDNF/TrkB/PKC pathway that links pre- and postsynaptic activity to maintain neuromuscular function. PMID:28572757
Chourbaji, Sabine; Brandwein, Christiane; Gass, Peter
2011-01-01
According to the "neurotrophin hypothesis", brain-derived neurotrophic factor (BDNF) is an important candidate gene in depression. Moreover, environmental stress is known to represent a risk factor in the pathophysiology and treatment of this disease. To elucidate, whether changes of BDNF availability signify cause or consequence of depressive-like alterations, it is essential to look for endophenotypes under distinct genetic conditions (e.g. altered BDNF expression). Furthermore it is crucial to examine environment-driven BDNF regulation and its effect on depressive-linked features. Consequently, gene × environment studies investigating prospective genetic mouse models of depression in different environmental contexts become increasingly important. The present review summarizes recent findings in BDNF-mutant mice, which have been controversially discussed as models of depression and anxiety. It furthermore illustrates the potential of environment to serve as naturalistic stressor with the potential to modulate the phenotype in wildtype and mutant mice. Moreover, environment may exert protective effects by regulating BDNF levels as attributed to "environmental enrichment". The effect of this beneficial condition will also be discussed with regard to probable "curative/therapeutic" approaches. Copyright © 2010 Elsevier Ltd. All rights reserved.
Huang, Tao; Gejl, Anne Kær; Tarp, Jakob; Andersen, Lars Bo; Peijs, Lone; Bugge, Anna
2017-03-15
The purpose of this study was to examine the associations between objectively measured physical activity and serum brain-derived neurotrophic factor (BDNF) in adolescents. Cross-sectional analyses were performed using data from 415 adolescents who participated in the 2015 follow-up of the Childhood Health Activity and Motor Performance School Study Denmark (the CHAMPS-study DK). Physical activity was objectively measured by accelerometry monitors. Serum BDNF levels were analyzed using the Enzyme-linked immunosorbent assay (ELISA). Anthropometrics and pubertal status were measured using standardized procedures. With adjustment for age, pubertal status and body mass index, mean physical activity (counts per minute) was negatively associated with serum BDNF in boys (P=0.013). Similarly, moderate-to-vigorous physical activity (MVPA) was negatively associated with serum BDNF in boys (P=0.035). In girls, mean physical activity and MVPA were not associated with serum BDNF. Without adjustment for wear time, sedentary time was not associated with serum BDNF in either sex. These findings indicate that higher physical activity is associated with lower serum BDNF in boys, but not in girls. Copyright © 2016 Elsevier Inc. All rights reserved.
A significant association between BDNF promoter methylation and the risk of drug addiction.
Xu, Xuting; Ji, Huihui; Liu, Guili; Wang, Qinwen; Liu, Huifen; Shen, Wenwen; Li, Longhui; Xie, Xiaohu; Zhou, Wenhua; Duan, Shiwei
2016-06-10
As a member of the neurotrophic factor family, brain derived neurotrophic factor (BDNF) plays an important role in the survival and differentiation of neurons. The aim of our work was to evaluate the role of BDNF promoter methylation in drug addiction. A total of 60 drug abusers (30 heroin and 30 methylamphetamine addicts) and 52 healthy age- and gender-matched controls were recruited for the current case control study. Bisulfite pyrosequencing technology was used to determine the methylation levels of five CpGs (CpG1-5) on the BDNF promoter. Among the five CpGs, CpG5 methylation was significantly lower in drug abusers than controls. Moreover, significant associations were found between CpG5 methylation and addictive phenotypes including tension-anxiety, anger-hostility, fatigue-inertia, and depression-dejection. In addition, luciferase assay showed that the DNA fragment of BDNF promoter played a key role in the regulation of gene expression. Our results suggest that BDNF promoter methylation is associated with drug addiction, although further studies are needed to understand the mechanisms by which BDNF promoter methylation contributes to the pathophysiology of drug addiction. Copyright © 2016. Published by Elsevier B.V.
Motaghinejad, Majid; Motevalian, Manijeh; Fatima, Sulail; Faraji, Fahimeh; Mozaffari, Shiva
2017-10-01
Nicotine abuse adversely affects brain and causes apoptotic neurodegeneration. Curcumin- a bright yellow chemical compound found in turmeric is associated with neuroprotective properties. The current study was designed to evaluate the role of CREB-BDNF signaling in mediating the neuroprotective effects of curcumin against nicotine-induced apoptosis, oxidative stress and inflammation in rats. Sixty adult male rats were divided randomly into six groups. Group 1 received 0.7 ml/rat normal saline, group 2 received 6 mg/kg nicotine. Groups 3, 4, 5 and 6 were treated concurrently with nicotine (6 mg/kg) and curcumin (10, 20, 40 and 60 mg/kg i.p. respectively) for 21 days. Open Field Test (OFT) was used to evaluate the motor activity. Hippocampal oxidative, anti-oxidant, inflammatory and apoptotic factors were evaluated. Furthermore, phosphorylated brain cyclic adenosine monophosphate (cAMP) response element binding protein (P-CREB) and brain derived neurotrophic factor (BDNF) levels were studied at gene and protein levels. We found that nicotine disturbed the motor activity in OFT and simultaneous treatment with curcumin (40 and 60 mg/kg) reduced the nicotine-induced motor activity disturbances. In addition, nicotine treatment increased lipid peroxidation and the levels of GSH, IL-1β, TNF-α and Bax, while reducing Bcl-2, P-CREB and BDNF levels in the hippocampus. Nicotine also reduced the activity of superoxide dismutase, glutathione peroxidase and glutathione reductase in hippocampus. In contrast, various doses of curcumin attenuated nicotine-induced apoptosis, oxidative stress and inflammation; while elevating P-CREB and BDNF levels. Thus, curcumin via activation of P-CREB/BDNF signaling pathway, confers neuroprotection against nicotine-induced inflammation, apoptosis and oxidative stress.
Jiang, Huili; Zhang, Xuhui; Lu, Jun; Meng, Hong; Sun, Yang; Yang, Xinjing; Zhao, Bingcong; Bao, Tuya
2018-01-01
Sensitive and stable biomarkers that facilitate depression detection and monitor the antidepressant efficiency are currently unavailable. Thus, the objective is to investigate the potential of DNA methylation and histone modifications of brain-derived neurotrophic factor (BDNF) in monitoring severity and antidepressive effects of acupuncture. The depression rat model was imitated by social isolation and chronic unpredicted mild stress (CUMS). The expression of serum BDNF was detected by enzyme-linked immunosorbent assay (ELISA), the hippocampal BDNF, acetylation levels in histone H3 lysine 9 (acH3K9), and HDAC2 by Western blot, the hippocampal mRNA of BDNF by RT-polymerase chain reaction (PCR). The DNA methylation patterns of the promoter I of BDNF was detected by MS-PCR. We investigated that the expression of BDNF in serum and hippocampus were significantly downregulated compared with controls. The same trend was found in mRNA of BDNF. Notably, acupuncture reversed the downregulation of BDNF in serum and hippocampus and mRNA of BDNF compared with model group. Acupuncture reversed the CUMS-induced downregulation of hippocampal acH3K9. On the contrary, the CUMS-induced upregulation of hippocampal HDAC2 in model group was significantly reversed by acupuncture. Collectively, the antidepressant effect of acupuncture might be mediated by regulating the DNA methylation and histone modifications of BDNF, which may represent novel biomaker for detection of depression and monitoring severity and antidepressive effects.
BDNF/TrkB signaling protects HT-29 human colon cancer cells from EGFR inhibition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brunetto de Farias, Caroline; Children's Cancer Institute, 90420-140 Porto Alegre, RS; Laboratory of Neuropharmacology and Neural Tumor Biology, Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, 90050-170 Porto Alegre, RS
2012-08-24
Highlights: Black-Right-Pointing-Pointer BDNF protected HT-29 colorectal cancer cells from the antitumor effect of cetuximab. Black-Right-Pointing-Pointer TrkB inhibition potentiated the antitumor effect of cetuximab. Black-Right-Pointing-Pointer BDNF/TrkB signaling might be involved in resistance to anti-EGFR therapy. -- Abstract: The clinical success of targeted treatment of colorectal cancer (CRC) is often limited by resistance to anti-epidermal growth factor receptor (EGFR) therapy. The neurotrophin brain-derived neurotrophic factor (BDNF) and its receptor TrkB have recently emerged as anticancer targets, and we have previously shown increased BDNF levels in CRC tumor samples. Here we report the findings from in vitro experiments suggesting that BDNF/TrkB signaling canmore » protect CRC cells from the antitumor effects of EGFR blockade. The anti-EGFR monoclonal antibody cetuximab reduced both cell proliferation and the mRNA expression of BDNF and TrkB in human HT-29 CRC cells. The inhibitory effect of cetuximab on cell proliferation and survival was counteracted by the addition of human recombinant BDNF. Finally, the Trk inhibitor K252a synergistically enhanced the effect of cetuximab on cell proliferation, and this effect was blocked by BDNF. These results provide the first evidence that increased BDNF/TrkB signaling might play a role in resistance to EGFR blockade. Moreover, it is possible that targeting TrkB could potentiate the anticancer effects of anti-EGFR therapy.« less
Effect of brain-derived neurotrophic factor (BDNF) on hepatocyte metabolism.
Genzer, Yoni; Chapnik, Nava; Froy, Oren
2017-07-01
Brain-derived neurotrophic factor (BDNF) plays crucial roles in the development, maintenance, plasticity and homeostasis of the central and peripheral nervous systems. Perturbing BDNF signaling in mouse brain results in hyperphagia, obesity, hyperinsulinemia and hyperglycemia. Currently, little is known whether BDNF affects liver tissue directly. Our aim was to determine the metabolic signaling pathways activated after BDNF treatment in hepatocytes. Unlike its effect in the brain, BDNF did not lead to activation of the liver AKT pathway. However, AMP protein activated kinase (AMPK) was ∼3 times more active and fatty acid synthase (FAS) ∼2-fold less active, suggesting increased fatty acid oxidation and reduced fatty acid synthesis. In addition, cAMP response element binding protein (CREB) was ∼3.5-fold less active together with its output the gluconeogenic transcript phosphoenolpyruvate carboxykinase (Pepck), suggesting reduced gluconeogenesis. The levels of glycogen synthase kinase 3b (GSK3b) was ∼3-fold higher suggesting increased glycogen synthesis. In parallel, the expression levels of the clock genes Bmal1 and Cry1, whose protein products play also a metabolic role, were ∼2-fold increased and decreased, respectively. In conclusion, BDNF binding to hepatocytes leads to activation of catabolic pathways, such as fatty acid oxidation. In parallel gluconeogenesis is inhibited, while glycogen storage is triggered. This metabolic state mimics that of after breakfast, in which the liver continues to oxidize fat, stops gluconeogenesis and replenishes glycogen stores. Copyright © 2017 Elsevier Ltd. All rights reserved.
Yi, Bin; Wu, Cong; Shi, Runjie; Han, Kun; Sheng, Haibin; Li, Bei; Mei, Ling; Wang, Xueling; Huang, Zhiwu; Wu, Hao
2018-01-01
Hypothesis: We investigated whether salicylate induces tinnitus through alteration of the expression levels of brain-derived neurotrophic factor (BDNF), proBDNF, tyrosine kinase receptor B (TrkB), cAMP-responsive element-binding protein (CREB), and phosphorylated CREB (p-CREB) in the auditory cortex (AC). Background: Salicylate medication is frequently used for long-term treatment in clinical settings, but it may cause reversible tinnitus. Salicylate-induced tinnitus is associated with changes related to central auditory neuroplasticity. Our previous studies revealed enhanced neural activity and ultrastructural synaptic changes in the central auditory system after long-term salicylate administration. However, the underlying mechanisms remained unclear. Methods: Salicylate-induced tinnitus-like behavior in rats was confirmed using gap prepulse inhibition of acoustic startle and prepulse inhibition testing, followed by comparison of the expression levels of BDNF, proBDNF, TrkB, CREB, and p-CREB. Synaptic ultrastructure was observed under a transmission electron microscope. Results: BDNF and p-CREB were upregulated along with ultrastructural changes at the synapses in the AC of rats treated chronically with salicylate (p < 0.05, compared with control group). These changes returned to normal after 14 days of recovery (p > 0.05). Conclusion: Long-term administration of salicylate increased BDNF expression and CREB activation, upregulated synaptic efficacy, and changed synaptic ultrastructure in the AC. There may be a relationship between these factors and the mechanism of tinnitus. PMID:29342042
Resilience to chronic stress is mediated by hippocampal brain-derived neurotrophic factor.
Taliaz, Dekel; Loya, Assaf; Gersner, Roman; Haramati, Sharon; Chen, Alon; Zangen, Abraham
2011-03-23
Chronic stress is a trigger for several psychiatric disorders, including depression; however, critical individual differences in resilience to both the behavioral and the neurochemical effects of stress have been reported. A prominent mechanism by which the brain reacts to acute and chronic stress is activation of the hypothalamic-pituitary-adrenal (HPA) axis, which is inhibited by the hippocampus via a polysynaptic circuit. Alterations in secretion of stress hormones and levels of brain-derived neurotrophic factor (BDNF) in the hippocampus were implicated in depression and the effects of antidepressant medications. However, the potential role of hippocampal BDNF in behavioral resilience to chronic stress and in the regulation of the HPA axis has not been evaluated. In the present study, Sprague Dawley rats were subjected to 4 weeks of chronic mild stress (CMS) to induce depressive-like behaviors after lentiviral vectors were used to induce localized BDNF overexpression or knockdown in the hippocampus. The behavioral outcome was measured during 3 weeks after the CMS procedure, then plasma samples were taken for measurements of corticosterone levels, and finally hippocampal tissue was taken for BDNF measurements. We found that hippocampal BDNF expression plays a critical role in resilience to chronic stress and that reduction of hippocampal BDNF expression in young, but not adult, rats induces prolonged elevations in corticosterone secretion. The present study describes a mechanism for individual differences in responses to chronic stress and implicates hippocampal BDNF in the development of neural circuits that control adequate stress adaptations.
The importance of neuronal growth factors in the ovary.
Streiter, S; Fisch, B; Sabbah, B; Ao, A; Abir, R
2016-01-01
The neurotrophin family consists of nerve growth factor (NGF), neurotrophin 3 (NT3) and neurotrophin 4/5 (NT4/5), in addition to brain-derived neurotrophic factor (BDNF) and the neuronal growth factors, glial cell line-derived neurotrophic factor (GDNF) and vasointestinal peptide (VIP). Although there are a few literature reviews, mainly of animal studies, on the importance of neurotrophins in the ovary, we aimed to provide a complete review of neurotrophins as well as neuronal growth factors and their important roles in normal and pathological processes in the ovary. Follicular assembly is probably stimulated by complementary effects of NGF, NT4/5 and BDNF and their receptors. The neurotrophins, GDNF and VIP and their receptors have all been identified in preantral and antral follicles of mammalian species, including humans. Transgenic mice with mutations in the genes encoding for Ngf, Nt4/5 and Bdnf and their tropomyosin-related kinase β receptor showed a reduction in preantral follicles and an abnormal ovarian morphology, whereas NGF, NT3, GDNF and VIP increased the in vitro activation of primordial follicles in rats and goats. Additionally, NGF, NT3 and GDNF promoted follicular cell proliferation; NGF, BDNF and VIP were shown to be involved in ovulation; VIP inhibited follicular apoptosis; NT4/5, BDNF and GDNF promoted oocyte maturation and NGF, NT3 and VIP stimulated steroidogenesis. NGF may also exert a stimulatory effect in ovarian cancer and polycystic ovarian syndrome (PCOS). Low levels of NGF and BDNF in follicular fluid may be associated with diminished ovarian reserve and high levels with endometriosis. More knowledge of the roles of neuronal growth factors in the ovary has important implications for the development of new therapeutic drugs (such as anti-NGF agents) for ovarian cancer and PCOS as well as various infertility problems, warranting further research. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Mechanism of Hyperphagia Contributing to Obesity in Brain-Derived Neurotrophic Factor Knockout Mice
Fox, Edward A.; Biddinger, Jessica E.; Jones, Kevin R.; McAdams, Jennifer; Worman, Amber
2012-01-01
Global-heterozygous and brain-specific homozygous knockouts (KO's) of brain-derived neurotrophic factor (BDNF) cause late- and early-onset obesity, respectively, both involving hyperphagia. Little is known about the mechanism underlying this hyperphagia or whether BDNF loss from peripheral tissues could contribute to overeating. Since global-homozygous BDNF-KO is perinatal lethal, a BDNF-KO that spared sufficient brainstem BDNF to support normal health was utilized to begin to address these issues. Meal pattern and microstructure analyses suggested overeating of BDNF-KO mice was mediated by deficits in both satiation and satiety that resulted in increased meal size and frequency and implicated a reduction of vagal signaling from gut-to-brain. Meal-induced c-Fos activation in the nucleus of the solitary tract, a more direct measure of vagal afferent signaling, however, was not decreased in BDNF-KO mice, and thus was not consistent with a vagal afferent role. Interestingly though, meal-induced c-Fos activation was increased in the dorsal vagal motor nucleus (DMV) of BDNF-KO mice. This could imply that augmentation of vago-vagal digestive reflexes occurred (e.g., accommodation), which would support increased meal size and possibly increased meal number by reducing the increase in intragastric pressure produced by a given amount of ingesta. Additionally, vagal sensory neuron number in BDNF-KO mice was altered in a manner consistent with the increased meal-induced activation of the DMV. These results suggest reduced BDNF causes satiety and satiation deficits that support hyperphagia, possibly involving augmentation of vago-vagal reflexes mediated by central pathways or vagal afferents regulated by BDNF levels. PMID:23069761
Stratta, Paolo; Sanità, Patrizia; Bonanni, Roberto L; de Cataldo, Stefano; Angelucci, Adriano; Rossi, Rodolfo; Origlia, Nicola; Domenici, Luciano; Carmassi, Claudia; Piccinni, Armando; Dell'Osso, Liliana; Rossi, Alessandro
2016-10-30
Clinical correlates of plasma Brain-Derived Neurotrophic Factor (BDNF) have been investigated in a clinical population with Post Traumatic Stress Disorder (PTSD) symptoms and healthy control subjects who survived to the L'Aquila 2009 earthquake. Twenty-six outpatients and 14 control subjects were recruited. Assessments included: Structured Clinical Interview for DSM-IV Axis-I disorders Patient Version, Trauma and Loss Spectrum-Self Report (TALS-SR) for post-traumatic spectrum symptoms. Thirteen patients were diagnosed as Full PTSD and 13 as Partial PTSD. The subjects with full-blown PTSD showed lower BDNF level than subjects with partial PTSD and controls. Different relationship patterns of BDNF with post-traumatic stress spectrum symptoms have been reported in the three samples. Our findings add more insight on the mechanisms regulating BDNF levels in response to stress and further proofs of the utility of the distinction of PTSD into full and partial categories. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Age-modulated association between prefrontal NAA and the BDNF gene.
Salehi, Basira; Preuss, Nora; van der Veen, Jan Willem; Shen, Jun; Neumeister, Alexander; Drevets, Wayne C; Hodgkinson, Colin; Goldman, David; Wendland, Jens R; Singleton, Andrew; Gibbs, Jesse R; Cookson, Mark R; Hasler, Gregor
2013-07-01
Brain-derived neurotrophic factor (BDNF) has been implicated in the pathophysiology of psychiatric and neurological disorders and in the mechanisms of antidepressant pharmacotherapy. Psychiatric and neurological conditions have also been associated with reduced brain levels of N-acetyl-aspartate (NAA), which has been used as a putative marker of neural integrity. However, few studies have explored the relationship between BDNF polymorphisms and NAA levels directly. Here, we present data from a single-voxel proton magnetic resonance spectroscopy study of 64 individuals and explore the relationship between BDNF polymorphisms and prefrontal NAA level. Our results indicate an association between a single nucleotide polymorphism (SNP) within BDNF, known as rs1519480, and reduced NAA level (p = 0.023). NAA levels were further predicted by age and Asian ancestry. There was a significant rs1519480 × age interaction on NAA level (p = 0.031). Specifically, the effect of rs1519480 on NAA level became significant at age ⩾34.17 yr. NAA level decreased with advancing age for genotype TT (p = 0.001) but not for genotype CT (p = 0.82) or CC (p = 0.34). Additional in silico analysis of 142 post-mortem brain samples revealed an association between the same SNP and reduced BDNF mRNA expression in the prefrontal cortex. The rs1519480 SNP influences BDNF mRNA expression and has an impact on prefrontal NAA level over time. This genetic mechanism may contribute to inter-individual variation in cognitive performance seen during normal ageing, as well as contributing to the risk for developing psychiatric and neurological conditions.
Sungur, A Özge; Jochner, Magdalena C E; Harb, Hani; Kılıç, Ayşe; Garn, Holger; Schwarting, Rainer K W; Wöhr, Markus
2017-08-01
Autism spectrum disorder (ASD) is a class of neurodevelopmental disorders characterized by persistent deficits in social communication/interaction, together with restricted/repetitive patterns of behavior. ASD is among the most heritable neuropsychiatric conditions, and while available evidence points to a complex set of genetic factors, the SHANK gene family has emerged as one of the most promising candidates. Here, we assessed ASD-related phenotypes with particular emphasis on social behavior and cognition in Shank1 mouse mutants in comparison to heterozygous and wildtype littermate controls across development in both sexes. While social approach behavior was evident in all experimental conditions and social recognition was only mildly affected by genotype, Shank1 -/- null mutant mice were severely impaired in object recognition memory. This effect was particularly prominent in juveniles, not due to impairments in object discrimination, and replicated in independent mouse cohorts. At the neurobiological level, object recognition deficits were paralleled by increased brain-derived neurotrophic factor (BDNF) protein expression in the hippocampus of Shank1 -/- mice; yet BDNF levels did not differ under baseline conditions. We therefore investigated changes in the epigenetic regulation of hippocampal BDNF expression and detected an enrichment of histone H3 acetylation at the Bdnf promoter1 in Shank1 -/- mice, consistent with increased learning-associated BDNF. Together, our findings indicate that Shank1 deletions lead to an aberrant cognitive phenotype characterized by severe impairments in object recognition memory and increased hippocampal BDNF levels, possibly due to epigenetic modifications. This result supports the link between ASD and intellectual disability, and suggests epigenetic regulation as a potential therapeutic target. © 2017 Wiley Periodicals, Inc.
Gomez-Pinilla, F; Zhuang, Y; Feng, J; Ying, Z; Fan, G
2011-02-01
We have evaluated the possibility that the action of voluntary exercise on the regulation of brain-derived neurotrophic factor (BDNF), a molecule important for rat hippocampal learning, could involve mechanisms of epigenetic regulation. We focused the studies on the Bdnf promoter IV, as this region is highly responsive to neuronal activity. We have found that exercise stimulates DNA demethylation in Bdnf promoter IV, and elevates levels of activated methyl-CpG-binding protein 2, as well as BDNF mRNA and protein in the rat hippocampus. Chromatin immunoprecipitation assay showed that exercise increases acetylation of histone H3, and protein assessment showed that exercise elevates the ratio of acetylated :total for histone H3 but had no effects on histone H4 levels. Exercise also reduces levels of the histone deacetylase 5 mRNA and protein implicated in the regulation of the Bdnf gene [N.M. Tsankova et al. (2006)Nat. Neurosci., 9, 519-525], but did not affect histone deacetylase 9. Exercise elevated the phosphorylated forms of calcium/calmodulin-dependent protein kinase II and cAMP response element binding protein, implicated in the pathways by which neural activity influences the epigenetic regulation of gene transcription, i.e. Bdnf. These results showing the influence of exercise on the remodeling of chromatin containing the Bdnf gene emphasize the importance of exercise on the control of gene transcription in the context of brain function and plasticity. Reported information about the impact of a behavior, inherently involved in the daily human routine, on the epigenome opens exciting new directions and therapeutic opportunities in the war against neurological and psychiatric disorders. © 2010 The Authors. European Journal of Neuroscience © 2010 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Bakos, J; Hlavacova, N; Rajman, M; Ondicova, K; Koros, C; Kitraki, E; Steinbusch, H W M; Jezova, D
2009-12-01
The present study is aimed at testing the hypothesis that an enriched environment (EE) induces sex-dependent changes in stress hormone release and in markers of increased brain plasticity. The focus was on hypothalamic-pituitary-adrenocortical (HPA) axis activity, plasma levels of stress hormones, gene expression of glutamate receptor subunits and concentrations of brain-derived neurotrophic factor (BDNF) in selected brain regions. Rats exposed to EE were housed in groups of 12 in large cages with various objects, which were frequently changed, for 6 weeks. Control animals were housed four per cage under standard conditions. In females the EE-induced rise in hippocampal BDNF, a neurotrophic factor associated with increased neural plasticity, was more pronounced than in males. Similar sex-specific changes were observed in BDNF concentrations in the hypothalamus. EE also significantly attenuated oxytocin and aldosterone levels only in female but not male rats. Plasma testosterone positively correlated with hippocampal BDNF in female but not male rats housed in EE. In male rats housing in EE led to enhanced levels of testosterone and adrenocorticotropic hormone (ACTH), this was not seen in females. Hippocampal glucocorticoid but not mineralocorticoid receptor levels decreased in rats housed in EE irrespective of sex. Housing conditions failed to modify mRNA levels of glutamate receptor type 1 (Glur1) and metabotropic glutamate receptor subtype 5 (mGlur5) subunits of glutamate receptors in the forebrain. Moreover, a negative association between corticosterone and BDNF was observed in both sexes. The results demonstrate that the association between hormones and changes in brain plasticity is sex related. In particular, testosterone seems to be involved in the regulatory processes related to neuroplasticity in females.
Shpak, Alexander A; Guekht, Alla B; Druzhkova, Tatiana A; Kozlova, Ksenia I; Gulyaeva, Natalia V
2018-02-01
To study brain-derived neurotrophic factor (BDNF) content in aqueous humor (AH), lacrimal fluid (LF), and blood serum (BS) in patients with age-related cataract and primary open-angle glaucoma (POAG). BDNF was studied in 57 patients with age-related cataract, 55 patients with POAG combined with cataract, and 29 healthy controls (one eye in each person). AH was sampled during cataract surgery. The levels of BDNF in LF and BS did not differ in cataract patients and controls. The concentration of BDNF (pg/mL) in patients with POAG and cataract was lower than in cataract patients in AH (35.2 ± 14.2 vs. 54.6 ± 29.6, P < 0.001), LF (78.0 ± 25.1 vs. 116.2 ± 43.1, P < 0.001), and BS (19230 ± 5960 vs. 22440 ± 7580, P < 0.02), while the AH/LF ratio was similar (0.46 ± 0.18 vs. 0.48 ± 0.19). The AH level of BDNF declined in early POAG and relatively increased in the next stages of the disease, inversely correlating with visual field index (Pearson's correlation coefficient r = -0.404, P = 0.002) and average retinal nerve fiber layer thickness (r = -0.322, P = 0.018). BDNF contents in LF and BS were also the lowest in early POAG. BDNF in AH strongly correlated with its content in LF (r = 0.66, P < 0.000). A formula was suggested to calculate the AH concentration of BDNF basing on its content in LF. BDNF contents are decreased in AH, LF, and BS of patients with POAG demonstrating a significant decrease in the early POAG and relative increase in the next stages of the disease. A strong correlation exists between BDNF contents in AH and LF.
Aznar, Susana; Klein, Anders B; Santini, Martin A; Knudsen, Gitte M; Henn, Fritz; Gass, Peter; Vollmayr, Barbara
2010-07-01
Epidemiological studies have revealed a strong genetic contribution to the risk for depression. Both reduced hippocampal serotonin neurotransmission and brain-derived neurotrophic factor (BDNF) levels have been associated with increased depression vulnerability and are also regulated during aging. Brains from young (5 months old) and old (13 months old) congenital Learned Helplessness rats (cLH), and congenital Non Learned Helplessness rats (cNLH) were immunohistochemically stained for the serotonin transporter and subsequently stereologically quantified for estimating hippocampal serotonin fiber density. Hippocampal BDNF protein levels were measured by ELISA. An exacerbated age-related loss of serotonin fiber density specific for the CA1 area was observed in the cLH animals, whereas reduced hippocampal BDNF levels were seen in young and old cLH when compared with age-matched cNLH controls. These observations indicate that aging should be taken into account when studying the neurobiological factors behind the vulnerability for depression and that understanding the effect of aging on genetically predisposed individuals may contribute to a better understanding of the pathophysiology behind depression, particularly in the elderly.
2013-01-01
Background Brain-derived neurotrophic factor (BDNF) has been shown to control microglial responses in neuropathic pain. Since adenosine A2A receptors (A2ARs) control neuroinflammation, as well as the production and function of BDNF, we tested to see if A2AR controls the microglia-dependent secretion of BDNF and the proliferation of microglial cells, a crucial event in neuroinflammation. Methods Murine N9 microglial cells were challenged with lipopolysaccharide (LPS, 100 ng/mL) in the absence or in the presence of the A2AR antagonist, SCH58261 (50 nM), as well as other modulators of A2AR signaling. The BDNF cellular content and secretion were quantified by Western blotting and ELISA, A2AR density was probed by Western blotting and immunocytochemistry and cell proliferation was assessed by BrdU incorporation. Additionally, the A2AR modulation of LPS-driven cell proliferation was also tested in primary cultures of mouse microglia. Results LPS induced time-dependent changes of the intra- and extracellular levels of BDNF and increased microglial proliferation. The maximal LPS-induced BDNF release was time-coincident with an LPS-induced increase of the A2AR density. Notably, removing endogenous extracellular adenosine or blocking A2AR prevented the LPS-mediated increase of both BDNF secretion and proliferation, as well as exogenous BDNF-induced proliferation. Conclusions We conclude that A2AR activation plays a mandatory role controlling the release of BDNF from activated microglia, as well as the autocrine/paracrine proliferative role of BDNF. PMID:23363775
Han, Joan C; Thurm, Audrey; Golden Williams, Christine; Joseph, Lisa A; Zein, Wadih M; Brooks, Brian P; Butman, John A; Brady, Sheila M; Fuhr, Shannon R; Hicks, Melanie D; Huey, Amanda E; Hanish, Alyson E; Danley, Kristen M; Raygada, Margarita J; Rennert, Owen M; Martinowich, Keri; Sharp, Stephen J; Tsao, Jack W; Swedo, Susan E
2013-01-01
In animal studies, brain-derived neurotrophic factor (BDNF) is an important regulator of central nervous system development and synaptic plasticity. WAGR (Wilms tumour, Aniridia, Genitourinary anomalies, and mental Retardation) syndrome is caused by 11p13 deletions of variable size near the BDNF locus and can serve as a model for studying human BDNF haploinsufficiency (+/-). We hypothesized that BDNF+/- would be associated with more severe cognitive impairment in subjects with WAGR syndrome. Twenty-eight subjects with WAGR syndrome (6-28 years), 12 subjects with isolated aniridia due to PAX6 mutations/microdeletions (7-54 years), and 20 healthy controls (4-32 years) received neurocognitive assessments. Deletion boundaries for the subjects in the WAGR group were determined by high-resolution oligonucleotide array comparative genomic hybridization. Within the WAGR group, BDNF+/- subjects (n = 15), compared with BDNF intact (+/+) subjects (n = 13), had lower adaptive behaviour (p = .02), reduced cognitive functioning (p = .04), higher levels of reported historical (p = .02) and current (p = .02) social impairment, and higher percentage meeting cut-off score for autism (p = .047) on Autism Diagnostic Interview-Revised. These differences remained nominally significant after adjusting for visual acuity. Using diagnostic measures and clinical judgement, 3 subjects (2 BDNF+/- and 1 BDNF+/+) in the WAGR group (10.7%) were classified with autism spectrum disorder. A comparison group of visually impaired subjects with isolated aniridia had cognitive functioning comparable to that of healthy controls. In summary, among subjects with WAGR syndrome, BDNF+/- subjects had a mean Vineland Adaptive Behaviour Compose score that was 14-points lower and a mean intelligence quotient (IQ) that was 20-points lower than BDNF+/+ subjects. Our findings support the hypothesis that BDNF plays an important role in human neurocognitive development. Published by Elsevier Ltd.
Gupta, Rachna; Gupta, Keshav; Tripathi, A K; Bhatia, M S; Gupta, Lalit K
2016-01-01
This study evaluated the clinical efficacy of mirtazapine and its effect on serum brain-derived neurotrophic factor (BDNF) and tumor necrosis factor-α (TNF-α) levels in patients of major-depressive disorder (MDD) with severe depression. Patients (aged 18-60) with MDD diagnosed by DSM-IV criteria, and Hamilton Rating Scale for Depression (HAM-D) score ≥25 were included (n = 30). Mirtazapine was given in the doses of 30 mg/day. All patients were followed up for 12 weeks for the evaluation of clinical efficacy, safety along with serum BDNF and TNF-α levels. HAM-D score at the start of treatment was 30.1 ± 1.92, which significantly (p < 0.05) reduced to 13.47 ± 1.77 at 12 weeks of treatment. In responders, mean serum BDNF levels at the start of treatment were 2.32 ± 0.3 ng/ml, which significantly (p < 0.05) increased to 2.79 ± 0.33 ng/ml at 12 weeks of treatment and mean serum TNF-α levels at the start were 5.18 ± 0.67 pg/ml, which significantly decreased to 4.36 ± 0.72 pg/ml (p < 0.05) at 12 weeks of treatment. Our results suggest that mirtazapine is effective and well tolerated in severely depressed patients and treatment response is associated with an increase in serum BDNF and a decrease in serum TNF-α levels. © 2016 S. Karger AG, Basel.
Multiple faces of BDNF in cocaine addiction
Li, Xuan; Wolf, Marina E.
2014-01-01
Brain-derived neurotrophic factor (BDNF) has been found to play roles in many types of plasticity including drug addiction. Here we focus on rodent studies over the past two decades that have demonstrated diverse roles of BDNF in models of cocaine addiction. First, we will provide an overview of studies showing that cocaine exposure alters (and generally increases) BDNF levels in reward-related regions including the ventral tegmental area, nucleus accumbens, prefrontal cortex, and amygdala. Then we will review evidence that BDNF contributes to behavioral changes in animal models of cocaine addiction, focusing on conditioned place preference, behavioral sensitization, maintenance and reinstatement of self-administration, and incubation of cocaine craving. Last, we will review the role of BDNF in synaptic plasticity, particularly as it relates to plasticity of AMPA receptor transmission after cocaine exposure. We conclude that BDNF regulates cocaine-induced behaviors in a highly complex manner that varies depending on the brain region (and even among different cell types within the same brain region), the nature of cocaine exposure, and the “addiction phase” examined (e.g., acquisition vs maintenance; early vs late withdrawal). These complexities make BDNF a daunting therapeutic target for treating cocaine addiction. However, recent clinical evidence suggests that the serum BDNF level may serve as a biomarker in cocaine addicts to predict future relapse, providing an alternative direction for exploring BDNF’s potential relevance to treating cocaine addiction. PMID:25449839
Methionine increases BDNF DNA methylation and improves memory in epilepsy.
Parrish, R Ryley; Buckingham, Susan C; Mascia, Katherine L; Johnson, Jarvis J; Matyjasik, Michal M; Lockhart, Roxanne M; Lubin, Farah D
2015-04-01
Temporal lobe epilepsy (TLE) patients exhibit signs of memory impairments even when seizures are pharmacologically controlled. Surprisingly, the underlying molecular mechanisms involved in TLE-associated memory impairments remain elusive. Memory consolidation requires epigenetic transcriptional regulation of genes in the hippocampus; therefore, we aimed to determine how epigenetic DNA methylation mechanisms affect learning-induced transcription of memory-permissive genes in the epileptic hippocampus. Using the kainate rodent model of TLE and focusing on the brain-derived neurotrophic factor (Bdnf) gene as a candidate of DNA methylation-mediated transcription, we analyzed DNA methylation levels in epileptic rats following learning. After detection of aberrant DNA methylation at the Bdnf gene, we investigated functional effects of altered DNA methylation on hippocampus-dependent memory formation in our TLE rodent model. We found that behaviorally driven BdnfDNA methylation was associated with hippocampus-dependent memory deficits. Bisulfite sequencing revealed that decreased BdnfDNA methylation levels strongly correlated with abnormally high levels of BdnfmRNA in the epileptic hippocampus during memory consolidation. Methyl supplementation via methionine (Met) increased BdnfDNA methylation and reduced BdnfmRNA levels in the epileptic hippocampus during memory consolidation. Met administration reduced interictal spike activity, increased theta rhythm power, and reversed memory deficits in epileptic animals. The rescue effect of Met treatment on learning-induced BdnfDNA methylation, Bdnf gene expression, and hippocampus-dependent memory, were attenuated by DNA methyltransferase blockade. Our findings suggest that manipulation of DNA methylation in the epileptic hippocampus should be considered as a viable treatment option to ameliorate memory impairments associated with TLE.
Xing, Yingshou; Chen, Wenxi; Wang, Yanran; Jing, Wei; Gao, Shan; Guo, Daqing; Xia, Yang; Yao, Dezhong
2016-03-01
Previous research has shown that dorsal hippocampus plays an important role in spatial memory process. Music exposure can enhance brain-derived neurotrophic factor (BDNF) expression level in dorsal hippocampus (DH) and thus enhance spatial cognition ability. But whether music experience may affect different subregions of DH in the same degree remains unclear. Here, we studied the effects of exposure to Mozart K.448 on learning behavior in developing rats using the classical Morris water maze task. The results showed that early music exposure could enhance significantly learning performance of the rats in the water maze test. Meanwhile, the BDNF/TrkB level of dorsal hippocampus CA3 (dCA3) and dentate gyrus (dDG) was significantly enhanced in rats exposed to Mozart music as compared to those without music exposure. In contrast, the BDNF/TrkB level of dorsal hippocampus CA1 (dCA1) was not affected. The results suggest that the spatial memory improvement by music exposure in rats may be associated with the enhanced BDNF/TrkB level of dCA3 and dDG. Copyright © 2016 Elsevier Inc. All rights reserved.
Hill, Ximena López; Richeri, Analía; Scorza, Cecilia
2015-08-01
Non-competitive N-methyl-d-aspartate receptor (NMDA-R) antagonists impair rodent cognition. Specifically, MK-801, the most potent NMDA-R antagonist, induces an amnesic effect on the modified elevated plus maze (mEPM) learning test in rodents, which reflects spatial long-term memory. However, alterations in anxiety-related behaviors could overlap this amnesic effect. Accumulated evidence supports the role of brain-derived neurotrophic factor (BDNF) in learning and memory processes and deficits in hippocampal BDNF function, which underlie cognitive impairments, have been extensively reported. Therefore, we investigated if changes in anxiety-related behaviors and hippocampal BDNF levels are related with the amnesic effect induced by MK-801 in the mEPM.Transfer latency (TL) as an index of spatial memory in the mEPM was used. TL1 was evaluated 30 min after saline/MK-801 injection (day 1, acquisition session) while learning/memory performance was measured 24 h later at TL2 (day 2, retention session). Also at TL2, two other experimental groups were added to measure the anxiety-related behaviors using the classic EPM and BDNF protein levels by ELISA. To evaluate if amnesia endures, an additional session was recorded on day 3 (TL3) and BDNF levels were measured.While TL1 was not significantly modified by MK-801, TL2 was increased compared to the control group indicating an amnesic effect. This effect was not mimicked by anxiety-related behaviors and it was associated to a significant attenuation of BDNF levels. During the third post-training day, the cognitive performance of MK-801-treated animals was improved and an increased BDNF protein expression in the hippocampus accompanied this change
Christian, Lisa M; Mitchell, Amanda M; Gillespie, Shannon L; Palettas, Marilly
2016-12-01
Brain-derived neurotrophic factor (BDNF) is implicated as a causal factor in major depression and is critical to placental development during pregnancy. Longitudinal data on BDNF across the perinatal period are lacking. These data are of interest given the potential implications for maternal mood and fetal growth, particularly among Black women who show ∼2-fold greater risk for delivering low birth weight infants. Serum BDNF, serum cortisol, and depressive symptoms (per CES-D) were assessed during each trimester and 4-11 weeks postpartum among 139 women (77 Black, 62 White). Low birth weight (<2500g) was determined via medical record. Serum BDNF declined considerably from 1st through 3rd trimesters (ps≤0.008) and subsequently increased at postpartum (p<0.001). Black women exhibited significantly higher serum BDNF during the 1st trimester, 2nd trimester, and postpartum (ps≤0.032) as well as lower serum cortisol during the 2nd and 3rd trimester (ps≤0.01). Higher serum cortisol was concurrently associated with lower serum BDNF in the 2nd trimester only (p<0.05). Controlling for race, serum BDNF at both the 2nd and 3rd trimester was negatively associated with 3rd trimester depressive symptoms (ps≤0.02). In addition, women delivering low versus healthy weight infants showed significantly lower serum BDNF in the 3rd trimester (p=0.004). Women delivering low versus healthy weight infants did not differ in depressive symptoms at any time point during pregnancy (ps≥0.34). Serum BDNF declines considerably across pregnancy in Black and White women, with overall higher levels in Blacks. Lower serum BDNF in late pregnancy corresponds with higher depressive symptoms and risk for low birth weight in Black and White women. However, the predictive value of serum BDNF in pregnancy is specific to within-race comparisons. Potential links between racial differences in serum BDNF and differential pregnancy-related cortisol adaptation require further investigation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Chen, Fenghua; Danladi, Jibrin; Ardalan, Maryam; Elfving, Betina; Müller, Heidi K; Sanchez, Connie; Nyengaard, Jens R
2018-01-01
Abstract Background Preclinical studies have indicated that antidepressant effect of vortioxetine involves increased synaptic plasticity and promotion of spine maturation. Mitochondria dysfunction may contribute to the pathophysiological basis of major depressive disorder. Taking into consideration that vortioxetine increases spine number and dendritic branching in hippocampus CA1 faster than fluoxetine, we hypothesize that new spines induced by vortioxetine can rapidly form functional synapses by mitochondrial support, accompanied by increased brain-derived neurotrophic factor signaling. Methods Rats were treated for 1 week with vortioxetine or fluoxetine at pharmacologically relevant doses. Number of synapses and mitochondria in hippocampus CA1 were quantified by electron microscopy. Brain-derived neurotrophic factor protein levels were visualized with immunohistochemistry. Gene and protein expression of synapse and mitochondria-related markers were investigated with real-time quantitative polymerase chain reaction and immunoblotting. Results Vortioxetine increased number of synapses and mitochondria significantly, whereas fluoxetine had no effect after 1-week dosing. BDNF levels in hippocampus DG and CA1 were significantly higher after vortioxetine treatment. Gene expression levels of Rac1 after vortioxetine treatment were significantly increased. There was a tendency towards increased gene expression levels of Drp1 and protein levels of Rac1. However, both gene and protein levels of c-Fos were significantly decreased. Furthermore, there was a significant positive correlation between BDNF levels and mitochondria and synapse numbers. Conclusion Our results imply that mitochondria play a critical role in synaptic plasticity accompanied by increased BDNF levels. Rapid changes in BDNF levels and synaptic/mitochondria plasticity of hippocampus following vortioxetine compared with fluoxetine may be ascribed to vortioxetine’s modulation of serotonin receptors. PMID:29514282
Schnydrig, Sabine; Korner, Lukas; Landweer, Svenja; Ernst, Beat; Walker, Gaby; Otten, Uwe; Kunz, Dieter
2007-12-11
Peripheral inflammation induced by intraperitoneal (i.p.) injection of Lipopolysaccharide (LPS) is known to cause functional impairments in the brain affecting memory and learning. One of mechanisms may be the interference with neurotrophin (NT) expression and function. In the current study we administered a single, high dose of LPS (3mg/kg, i.p.) into mice and investigated changes in brain-derived neurotrophic factor (BDNF) gene expression within 1-6 days after LPS injection. Crude synaptosomes were isolated from brain tissue and subjected to Western-blot analyses. We found transient reductions in synaptosomal proBDNF- and BDNF protein expression, with a maximal decrease at day 3 as compared to saline injected controls. The time course of reduction of BDNF mRNA in whole brain extracts parallels the decrease in protein levels in synaptosomes. LPS effects in the central nervous system (CNS) are known to crucially involve the activation of the hypothalamic-pituitary-adrenal (HPA) axis. We analysed the time course of corticotropin releasing hormone (CRH)- and proopiomelanocortin (POMC) mRNA expression. As observed for BDNF-, CRH- and POMC mRNA levels are also significantly reduced on day 3 indicating a comparable time course. These results suggest that peripheral inflammation causes a reduction of trophic supply in the brain, including BDNF at synaptic sites. The mechanisms involved could be a negative feedback of the activated HPA axis.
Primavera, Diego; Deriu, Luca; Collu, Roberto; Scherma, Maria; Fadda, Paola; Fratta, Walter; Carpiniello, Bernardo
2017-01-01
Introduction Brain-derived neurotrophic factor (BDNF) plays a crucial role in neurodevelopment, synaptic plasticity and neuronal function and survival. Serum and plasma BDNF levels are moderately, but consistently, decreased in patients with schizophrenia (SCZ) compared with healthy controls. There is a lack of knowledge, however, on the temporal manifestation of this decline. Clinical, illness course and treatment factors might influence the variation of BDNF serum levels in patients with psychosis. In this context, we propose a longitudinal study of a cohort of SCZ and schizophrenic and schizoaffective disorder (SAD) Sardinian patients with the aim of disentangling the relationship between peripheral BDNF serum levels and changes of psychopathology, cognition and drug treatments. Methods and analysis Longitudinal assessment of BDNF in Sardinian psychotic patients (LABSP) is a 24-month observational prospective cohort study. Patients with SAD will be recruited at the Psychiatry Research Unit of the Department of Medical Science and Public Health, University of Cagliari and University of Cagliari Health Agency, Cagliari, Italy. We will collect BDNF serum levels as well as sociodemographic, psychopathological and neurocognitive measures. Structured, semistructured and self-rating assessment tools, such as the Positive and Negative Syndrome Scale for psychopathological measures and the Brief Assessment of Cognition in Schizophrenia for cognitive function, will be used. Ethics and dissemination This study protocol was approved by the University of Cagliari Health Agency Ethics Committee (NP2016/5491). The study will be conducted in accordance with the principles of good clinical practice, in the Declaration of Helsinki in compliance with the regulations. Participation will be voluntary and written informed consent will be obtained for each participant upon entry into the study. We plan to disseminate the results of our study through conference presentations and publication in international peer-reviewed journals. Access to raw data will be available in anonymised form upon request to the corresponding author. PMID:28550022
Winker, Robert; Lukas, Ina; Perkmann, Thomas; Haslacher, Helmut; Ponocny, Elisabeth; Lehrner, Johann; Tscholakoff, Dimiter; Dal-Bianco, Peter
2010-12-01
Cognitive impairment of the elderly contributes to morbidity, loss of quality of life, and impairment of work ability in aging western societies. Thus strategies to maintain cognitive function at an advanced age imply a great challenge to Occupational Medicine. To study whether intensive endurance exercise training is associated with better cognitive performance and increases brain-derived neurotrophic factor (BDNF) and insulin-like growth factor (IGF). Active elderly marathon runners or bicyclists older than 60 years were recruited and matched with an inactive control group according to age, sex, and education years. After exclusion of various diseases according to the study protocol 56 athletes and 58 controls could be selected for follow-up studies. The influence of endurance training on cognitive function was assessed by the use of the Vienna Neuropsychological Test Battery and the CERAD test battery. Other relevant outcomes were the levels of BDNF, IGF-1, Apo e4 carrier state, and self-ratings. The elderly marathon group performed better only in one specific cognitive task (the Five Point Test, p = 0.04) and almost significantly better in one additional test (the NAI Stroop Test, p = 0.08). Neither BDNF nor IGF-1 was related to the duration of daily exercise and no differences in the basal levels of these humoral growth factors in the exercise and the control cohort were found. Interestingly, we also found significantly decreased BDNF levels in subjects with Alzheimer's disease in the family in spite of the maintained normal cognitive performance (p = 0.01). These results suggest that extensive endurance exercise training might be beneficial for maintaining cognitive function in elderly persons. Our data demonstrate that beneficial endurance training effects are not linked to the upregulation of the examined neurotrophins. Since we found reduced BDNF-levels in subjects with a positive family history of Alzheimer's disease, we speculate that BDNF-reduction might precede cognitive impairment.
Meek, Thomas H; Wisse, Brent E; Thaler, Joshua P; Guyenet, Stephan J; Matsen, Miles E; Fischer, Jonathan D; Taborsky, Gerald J; Schwartz, Michael W; Morton, Gregory J
2013-05-01
Recent evidence suggests that central leptin administration fully normalizes hyperglycemia in a rodent model of uncontrolled insulin-deficient diabetes by reducing hepatic glucose production (HGP) and by increasing glucose uptake. The current studies were undertaken to determine whether brain-derived neurotrophic factor (BDNF) action in the brain lowers blood glucose in uncontrolled insulin-deficient diabetes and to investigate the mechanisms mediating this effect. Adult male rats implanted with cannulas to either the lateral cerebral ventricle or the ventromedial hypothalamic nucleus (VMN) received either vehicle or streptozotocin to induce uncontrolled insulin-deficient diabetes. Three days later, animals received daily intracerebroventricular or intra-VMN injections of either BDNF or its vehicle. We found that repeated daily intracerebroventricular administration of BDNF attenuated diabetic hyperglycemia independent of changes in food intake. Instead, using tracer dilution techniques during a basal clamp, we found that BDNF lowered blood glucose levels by potently suppressing HGP, without affecting tissue glucose uptake, an effect associated with normalization of both plasma glucagon levels and hepatic expression of gluconeogenic genes. Moreover, BDNF microinjection directly into the VMN also lowered fasting blood glucose levels in uncontrolled insulin-deficient diabetes, but this effect was modest compared with intracerebroventricular administration. We conclude that central nervous system BDNF attenuates diabetic hyperglycemia via an insulin-independent mechanism. This action of BDNF likely involves the VMN and is associated with inhibition of glucagon secretion and a decrease in the rate of HGP.
Pedard, Martin; Quirié, Aurore; Totoson, Perle; Verhoeven, Frank; Garnier, Philippe; Tessier, Anne; Demougeot, Céline; Marie, Christine
2018-05-02
In rheumatoid arthritis, the control of both disease activity and standard cardiovascular (CV) risk factors is expected to attenuate the increased CV risk. Evidence that brain-derived neurotrophic factor (BDNF) plays a role in vascular biology led us to investigate the vascular BDNF pathway in arthritis rats as well as the interaction between endothelial nitric oxide (NO) and BDNF production. The aortic BDNF pathway was studied in rats with adjuvant-induced arthritis, (AIA) using Western blot and immunohistochemical analysis. Control of arthritis score was achieved by administration (for 3 weeks) of an equipotent dosage of etanercept, prednisolone, methotrexate, celecoxib or diclofenac. Aortas were exposed to an NO donor or an NO synthase inhibitor and vasoreactivity experiments were performed using LM22A-4 as a TrkB agonist. Vascular BDNF and full length tropomyosin-related kinase B receptor (TrkB-FL) were higher in AIA than in control rats. These changes coincided with decreased endothelial immunoreactivity in BDNF and pTrkB tyr816 and were disconnected from arthritis score. Among anti-rheumatic drugs, only prednisolone and methotrexate prevented AIA-induced vascular BDNF loss. The effect of AIA on aortic BDNF levels was reversed by an NO donor and reproduced by an NOS inhibitor. Finally, LM22A-4 induced both NO-dependent vasodilation and phosphorylation of endothelial NO synthase at serine 1177. Our study identified changes in the BDNF/TrkB pathway as a disease activity-independent component of AIA-associated changes in endothelial phenotype. It provides new perspectives in the understanding and management of the high CV risk reported in rheumatoid arthritis. Copyright © 2018 Elsevier B.V. All rights reserved.
Dos Santos, Manuel Alves; Escudeiro, Sarah Sousa; Vasconcelos, Germana Silva; Matos, Natália Castelo Branco; de Souza, Marcos Romário Matos; Patrocínio, Manoel Cláudio Azevedo; Dantas, Leonardo Pimentel; Macêdo, Danielle; Vasconcelos, Silvânia Maria Mendes
2017-11-01
Alcohol addiction is a chronic, relapsing and progressive brain disease with serious consequences for health. Compulsive use of alcohol is associated with the capacity to change brain structures involved with the reward pathway, such as ventral striatum. Recent evidence suggests a role of chromatin remodeling in the pathophysiology of alcohol dependence and addictive-like behaviors. In addition, neuroadaptive changes mediated by the brain-derived neurotrophic factor (BDNF) seems to be an interesting pharmacological target for alcoholism treatment. In the present study, we evaluated the effects of the deacetylase inhibitor valproic acid (VPA) (300mg/kg) on the conditioned rewarding effects of ethanol using conditioned place preference (CPP) (15% v/v; 2g/kg). Ethanol rewarding effect was investigated using a biased protocol of CPP. BDNF levels were measured in the ventral striatum. Ethanol administration induced CPP. VPA pretreatment did not reduce ethanol-CPP acquisition. VPA pretreatment increased BDNF levels when compared to ethanol induced-CPP. VPA pretreatment increased BDNF levels even in saline conditioned mice. Taken together, our results indicate a modulatory effect of VPA on the BDNF levels in the ventral striatum. Overall, this study brings initial insights into the involvement of neurotrophic mechanisms in the ventral striatum in ethanol-induced addictive-like behavior. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhu, Shun-Wei; Pham, Therese M; Aberg, Elin; Brené, Stefan; Winblad, Bengt; Mohammed, Abdul H; Baumans, Vera
2006-02-15
This study assessed the effects of intermittent individual housing on behaviour and brain neurotrophins, and whether physical exercise could influence alternate individual-housing-induced effects. Five-week-old BALB/c mice were either housed in enhanced social (E) or standard social (S) housing conditions for 2 weeks. Thereafter they were divided into six groups and for 6 weeks remained in the following experimental conditions: Control groups remained in their respective housing conditions (E-control, S-control); enhanced individual (E-individual) and standard individual (S-individual) groups were exposed every other day to individual cages without running-wheels; enhanced running-wheel (E-wheel) and standard running-wheel (S-wheel) groups were put on alternate days in individual running-wheel cages. Animals were assessed for activity in an automated individual cage system (LABORAS) and brain neurotrophins analysed. Intermittent individual housing increased behavioural activity and reduced nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) levels in frontal cortex; while it increased BDNF level in the amygdala and BDNF protein and mRNA in hippocampus. Besides normalizing motor activity and regulating BDNF and NGF levels in hippocampus, amygdala and cerebellum, physical exercise did not attenuate reduction of cortical NGF and BDNF induced by intermittent individual housing. This study demonstrates that alternate individual housing has significant impact on behaviour and brain neurotrophin levels in mice, which can be partially altered by voluntary physical exercise. Our results also suggest that some changes in neurotrophin levels induced by intermittent individual housing are not similar to those caused by continuous individual housing.
Yang, Bangkun; Yang, Chun; Ren, Qian; Zhang, Ji-Chun; Chen, Qian-Xue; Shirayama, Yukihiko; Hashimoto, Kenji
2016-12-01
Using learned helplessness (LH) model of depression, we measured protein expression of brain-derived neurotrophic factor (BDNF) pro-peptide, BDNF precursors (proBDNF and preproBDNF) in the brain regions of LH (susceptible) and non-LH rats (resilience). Expression of preproBDNF, proBDNF and BDNF pro-peptide in the medial prefrontal cortex of LH rats, but not non-LH rats, was significantly higher than control rats, although expression of these proteins in the nucleus accumbens of LH rats was significantly lower than control rats. This study suggests that regional differences in conversion of BDNF precursors into BDNF and BDNF pro-peptide by proteolytic cleavage may contribute to stress resilience.
Hei, Wei-Hong; Almansoori, Akram A; Sung, Mi-Ae; Ju, Kyung-Won; Seo, Nari; Lee, Sung-Ho; Kim, Bong-Ju; Kim, Soung-Min; Jahng, Jeong Won; He, Hong; Lee, Jong-Ho
2017-03-16
This study was designed toinvestigate the efficacy of adenovirus vector-mediated brain-derived neurotrophic factor (BDNF) ex vivo gene transfer to human umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) in a rat sciatic nerve crush injury model. BDNF protein and mRNA expression after infection was checked through an enzyme-linked immunosorbent assay (ELISA) and quantitative real-time polymerase chain reaction (qRT-PCR). Male Sprague-Dawley rats (200-250g, 6 weeks old) were distributed into threegroups (n=20 each): the control group, UCB-MSC group, and BDNF-adenovirus infected UCB-MSC (BDNF-Ad+UCB-MSC) group. UCB-MSCs (1×10 6 cells/10μl/rat) or BDNF-Ad+UCB-MSCs (1×10 6 cells/10μl/rat)were transplantedinto the rats at the crush site immediately after sciatic nerve injury. Cell tracking was done with PKH26-labeled UCB-MSCs and BDNF-Ad+UCB-MSCs (1×10 6 cells/10μl/rat). The rats were monitored for 4 weeks post-surgery. Results showed that expression of BDNF at both the protein and mRNA levels was higher inthe BDNF-Ad+UCB-MSC group compared to theUCB-MSC group in vitro.Moreover, BDNF mRNA expression was higher in both UCB-MSC group and BDNF-Ad+ UCB-MSC group compared tothe control group, and BDNF mRNA expression in theBDNF-Ad+UCB-MSC group was higher than inboth other groups 5days after surgeryin vivo. Labeled neurons in the dorsal root ganglia (DRG), axon counts, axon density, and sciatic function index were significantly increased in the UCB-MSC and BDNF-Ad+ UCB-MSCgroupscompared to the controlgroup four weeksaftercell transplantation. Importantly,the BDNF-Ad+UCB-MSCgroup exhibited more peripheral nerve regeneration than the other two groups.Our results indicate thatboth UCB-MSCs and BDNF-Ad+UCB-MSCscan improve rat sciatic nerve regeneration, with BDNF-Ad+UCB-MSCsshowing a greater effectthan UCB-MSCs. Copyright © 2017 Elsevier B.V. All rights reserved.
The effect of enriched environment across ages: A study of anhedonia and BDNF gene induction.
Dong, B E; Xue, Y; Sakata, K
2018-05-02
Enriched environment treatment (EET) is a potential intervention for depression by inducing brain-derived neurotrophic factor (BDNF). However, its age dependency remains unclear. We recently found that EET during early-life development (ED) was effective in increasing exploratory activity and anti-despair behavior, particularly in promoter IV-driven BDNF deficient mice (KIV), with the largest BDNF protein induction in the hippocampus and frontal cortex. Here, we further determined age dependency of EET effects on anhedonia and promoter-specific BDNF transcription, by using the sucrose preference test and qRT-PCR. Wild-type (WT) and KIV mice received 2 months of EET during ED, young-adulthood and old-adulthood (0-2, 2-4 and 12-14 months, respectively). All KIV groups showed reduced sucrose preference, which EET equally reversed regardless of age. EET increased hippocampal BDNF mRNA levels for all ages and genotypes, but increased frontal cortex BDNF mRNA levels only in ED KIV and old WT mice. Transcription by promoters I and IV was age-dependent in the hippocampus of WT mice: more effective induction of exon IV or I during ED or old-adulthood, respectively. Transcription by almost all 9 promoters was age-specific in the frontal cortex, mostly observed in ED KIV mice. After discontinuance of EET, the EET effects on anti-anhedonia and BDNF transcription in both regions persisted only in ED KIV mice. These results suggested that EET was equally effective in reversing anhedonia and inducing hippocampal BDNF transcription, but was more effective during ED in inducing frontal cortex BDNF transcription and for lasting anti-anhedonic and BDNF effects particularly in promoter IV-BDNF deficiency. © 2018 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
Serum neurotrophin concentrations in polish adolescent girls with anorexia nervosa.
Dmitrzak-Weglarz, Monika; Skibinska, Maria; Slopien, Agnieszka; Tyszkiewicz, Marta; Pawlak, Joanna; Maciukiewicz, Małgorzata; Zaremba, Dorota; Rajewski, Andrzej; Hauser, Joanna
2013-01-01
Several lines of evidence suggest that brain-derived neurotrophic factor (BDNF) plays an important role in weight regulation and eating behaviors as well as in the activity-dependent neuroplasticity underlying learning and memory behaviors involving the hippocampus. In anorexia nervosa (AN) patients, abnormal serum BDNF concentrations, cognitive impairments and specific personality traits have been traditionally observed. This study explores the levels of four serum neurotrophins [BDNF, neurotrophin 3 (NTF3), neurotrophin 4 (NTF4) and glial cell line-derived neurotrophic factor (GDNF)] with respect to their use as potential biomarkers for AN. This study also investigates any associations that might exist between serum neurotrophin levels and neurocognitive impairment or personality traits. Serum neurotrophin concentrations were measured in 60 AN patients (AN group) and 45 healthy controls (HC group). We correlated the serum levels of the four neurotrophins BDNF, NTF3, NTF4 and GDNF and the clinical type of anorexia. We also analyzed the relationship between serum neurotrophin levels and the Beck Depression Inventory, body mass index, executive functions by the Wisconsin Card Sorting test (WCST) and personality dimensions by the Temperament and Character Inventory (TCI) test. Serum NTF4 concentrations were significantly lower when comparing all AN patients (34.7 ± 72.5 pg/ml) or restriction type AN patients (29.1 ± 62.5 pg/ml) with the HC group (58.4 ± 135.8 pg/ml; p = 0.004 and p = 0.005, respectively). A significant correlation (p < 0.005) between BDNF serum levels and patient personality dimensions as measured by the TCI test was observed. Furthermore, significant correlations were observed between NTF4 and GDNF serum levels and executive function as measured by the WCST. These data suggest that NTF4 might serve as a biomarker for AN. Furthermore, BDNF and GDNF serum levels appear to be associated with personality traits and executive function. Copyright © 2012 S. Karger AG, Basel.
Pedrotti Moreira, Fernanda; Borges, Cristiane Jackson; Wiener, Carolina David; da Silva, Paula Moraes; Portela, Luis Valmor; Lara, Diogo R; da Silva, Ricardo Azevedo; de Mattos Souza, Luciano Dias; Jansen, Karen; Oses, Jean Pierre
2018-04-01
Major depressive disorders (MDD) and suicide are significant public health concerns. Recent studies have been demonstrated that alterations in Brain Derived Neurotrophic Factor (BDNF) can be associated with this psychiatric disorders, MDD and suicide. Thus, the aim of this study was to evaluate differences in serum levels in individuals with MDD and with or without suicide attempt (SA), from a population-based sample. This was a paired cross-sectional study nested in a population-based study. The psychopathology screen was performed with the Mini-International Neuropsychiatric Interview (MINI). The total population of the sample consisted of 147 subjects distributed in three groups: 49 healthy controls, 49 subjects with MDD and 49 subjects with MDD and SA (MDD + SA). The BDNF serum levels were significantly reduced in subjects with MDD and MDD + SA compared to the healthy controls. However, there were no significant differences between the MDD and MDD + SA groups with respect to BDNF serum levels. These results suggest that SA did not interfere in the serum levels of BDNF, indicating that this neurotrophin may be related to the diagnosis of MDD and not to suicide attempt. Copyright © 2017 Elsevier B.V. All rights reserved.
Islam, Farhana; Mulsant, Benoit H; Voineskos, Aristotle N; Rajji, Tarek K
2017-07-01
Schizophrenia has been hypothesized to be a syndrome of accelerated aging. Brain plasticity is vulnerable to the normal aging process and affected in schizophrenia: brain-derived neurotrophic factor (BDNF) is an important neuroplasticity molecule. The present review explores the accelerated aging hypothesis of schizophrenia by comparing changes in BDNF expression in schizophrenia with aging-associated changes. Individuals with schizophrenia show patterns of increased overall mortality, metabolic abnormalities, and cognitive decline normally observed later in life in the healthy population. An overall decrease is observed in BDNF expression in schizophrenia compared to healthy controls and in older individuals compared to a younger cohort. There is a marked decrease in BDNF levels in the frontal regions and in the periphery among older individuals and those with schizophrenia; however, data for BDNF expression in the occipital, parietal, and temporal cortices and the hippocampus is inconclusive. Accelerated aging hypothesis is supported based on frontal regions and peripheral studies; however, further studies are needed in other brain regions.
ERIC Educational Resources Information Center
Gomes da Silva, Sérgio; de Almeida, Alexandre Aparecido; Fernandes, Jansen; Lopim, Glauber Menezes; Cabral, Francisco Romero; Scerni, Débora Amado; de Oliveira-Pinto, Ana Virgínia; Lent, Roberto; Arida, Ricardo Mario
2016-01-01
Clinical evidence has shown that physical exercise during pregnancy may alter brain development and improve cognitive function of offspring. However, the mechanisms through which maternal exercise might promote such effects are not well understood. The present study examined levels of brain-derived neurotrophic factor (BDNF) and absolute cell…
Montagud-Romero, Sandra; Nuñez, Cristina; Blanco-Gandia, M Carmen; Martínez-Laorden, Elena; Aguilar, María A; Navarro-Zaragoza, Javier; Almela, Pilar; Milanés, Maria-Victoria; Laorden, María-Luisa; Miñarro, José; Rodríguez-Arias, Marta
2017-07-01
Repeated social defeat (RSD) increases the rewarding effects of cocaine in adolescent and adult rodents. The aim of the present study was to compare the long-term effects of RSD on the conditioned rewarding effects of cocaine and levels of the transcription factors Pitx3 and Nurr1 in the ventral tegmental area (VTA), the dopamine transporter (DAT), the D2 dopamine receptor (D2DR) and precursor of brain-derived neurotrophic factor (proBDNF) signaling pathways, and the tropomyosin-related kinase B (TrkB) receptor in the nucleus accumbens (NAc) in adult and adolescent mice. Male adolescent and young adult OF1 mice were exposed to four episodes of social defeat and were conditioned 3 weeks later with 1 mg/kg of cocaine. In a second set of mice, the expressions of the abovementioned dopaminergic and proBDNF and TrkB receptor were measured in VTA and NAc, respectively. Adolescent mice experienced social defeats less intensely than their adult counterparts and produced lower levels of corticosterone. However, both adult and adolescent defeated mice developed conditioned place preference for the compartment associated with this low dose of cocaine. Furthermore, only adolescent defeated mice displayed diminished levels of the transcription factors Pitx3 in the VTA, without changes in the expression of DAT and D2DR in the NAc. In addition, stressed adult mice showed a decreased expression of proBDNF and the TrkB receptor, while stressed adolescent mice exhibited increased expression of latter without changes in the former. Our findings suggest that dopaminergic pathways and proBDNF signaling and TrkB receptors play different roles in social defeat-stressed mice exposed to cocaine.
Sulforaphane epigenetically enhances neuronal BDNF expression and TrkB signaling pathways.
Kim, Jisung; Lee, Siyoung; Choi, Bo-Ryoung; Yang, Hee; Hwang, Youjin; Park, Jung Han Yoon; LaFerla, Frank M; Han, Jung-Soo; Lee, Ki Won; Kim, Jiyoung
2017-02-01
Brain-derived neurotrophic factor (BDNF) is a neurotrophin that supports the survival of existing neurons and encourages the growth and differentiation of new neurons and synapses. We investigated the effect of sulforaphane, a hydrolysis product of glucoraphanin present in Brassica vegetables, on neuronal BDNF expression and its synaptic signaling pathways. Mouse primary cortical neurons and a triple-transgenic mouse model of Alzheimer's disease (3 × Tg-AD) were used to study the effect of sulforaphane. Sulforaphane enhanced neuronal BDNF expression and increased levels of neuronal and synaptic molecules such as MAP2, synaptophysin, and PSD-95 in primary cortical neurons and 3 × Tg-AD mice. Sulforaphane elevated levels of synaptic TrkB signaling pathway components, including CREB, CaMKII, ERK, and Akt in both primary cortical neurons and 3 × Tg-AD mice. Sulforaphane increased global acetylation of histone 3 (H3) and H4, inhibited HDAC activity, and decreased the level of HDAC2 in primary cortical neurons. Chromatin immunoprecipitation analysis revealed that sulforaphane increased acetylated H3 and H4 at BDNF promoters, suggesting that sulforaphane regulates BDNF expression via HDAC inhibition. These findings suggest that sulforaphane has the potential to prevent neuronal disorders such as Alzheimer's disease by epigenetically enhancing neuronal BDNF expression and its TrkB signaling pathways. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chung, Chiu-Yen; Lin, Martin Hsiu-Chu; Lee, I-Neng; Lee, Tsong-Hai; Lee, Ming-Hsueh; Yang, Jen-Tsung
2017-01-01
Brain derived neurotrophic factor (BDNF) can induce neural differentiation in stem cells and has the potential for repair of the nervous system. In this study, a polysorbate 80-coated polybutylcyanoacrylate nanocarrier (PS80 PBCA NC) was constructed to deliver plasmid DNAs (pDNAs) containing BDNF gene attached to a hypoxia-responsive element (HRE-cmvBDNF). The hypoxia-sensing mechanism of BDNF expression and inductiveness of the nano-formulation on mouse induced pluripotent stem cells (iPSCs) to differentiate into neurons following hypoxia was tested in vitro with immunofluorescent staining and Western blotting. The HRE-cmvBDNF appeared to adsorb onto the surface of PS80 PBCA NC, with a resultant mean diameter of 92.6 ± 1.0 nm and zeta potential of −14.1 ± 1.1 mV. HIF-1α level in iPSCs was significantly higher in hypoxia, which resulted in a 51% greater BDNF expression when transfected with PS80 PBCA NC/HRE-cmvBDNF than those without hypoxia. TrkB and phospho-Akt were also elevated which correlated with neural differentiation. The findings suggest that PS80 PBCA NC too can be endocytosed to serve as an efficient vector for genes coupled to the HRE in hypoxia-sensitive cells, and activation of the PI3/Akt pathway in iPSCs by BDNF is capable of neural lineage specification. PMID:28335495
Dalwadi, Dhwanil A; Kim, Seongcheol; Schetz, John A
2017-05-01
Glial cells play a critical role in neuronal support which includes the production and release of the neurotrophin brain-derived neurotrophic factor (BDNF). Activation of the sigma-1 receptor (S1R) has been shown to attenuate inflammatory stress-mediated brain injuries, and there is emerging evidence that this may involve a BDNF-dependent mechanism. In this report we studied S1R-mediated BDNF release from human astrocytic glial cells. Astrocytes express the S1R, which mediates BDNF release when stimulated with the prototypical S1R agonists 4-PPBP and (+)-SKF10047. This effect could be antagonized by a selective concentration of the S1R antagonist BD1063. Haloperidol is known to have high affinity interactions with the S1R, yet it was unable to facilitate BDNF release. Remarkably, however, two metabolites of haloperidol, haloperidol I and haloperidol II (reduced haloperidol), were discovered to facilitate BDNF secretion and this effect was antagonized by BD1063. Neither 4-PPBP, nor either of the haloperidol metabolites affected the level of BDNF mRNA as assessed by qPCR. These results demonstrate for the first time that haloperidol metabolites I and II facilitate the secretion of BDNF from astrocytes by acting as functionally selective S1R agonists. Copyright © 2017 Elsevier Ltd. All rights reserved.
BDNF and TNF-α polymorphisms in memory.
Yogeetha, B S; Haupt, L M; McKenzie, K; Sutherland, H G; Okolicsyani, R K; Lea, R A; Maher, B H; Chan, R C K; Shum, D H K; Griffiths, L R
2013-09-01
Here, we investigate the genetic basis of human memory in healthy individuals and the potential role of two polymorphisms, previously implicated in memory function. We have explored aspects of retrospective and prospective memory including semantic, short term, working and long-term memory in conjunction with brain derived neurotrophic factor (BDNF) and tumor necrosis factor-alpha (TNF-α). The memory scores for healthy individuals in the population were obtained for each memory type and the population was genotyped via restriction fragment length polymorphism for the BDNF rs6265 (Val66Met) SNP and via pyrosequencing for the TNF-α rs113325588 SNP. Using univariate ANOVA, a significant association of the BDNF polymorphism with visual and spatial memory retention and a significant association of the TNF-α polymorphism was observed with spatial memory retention. In addition, a significant interactive effect between BDNF and TNF-α polymorphisms was observed in spatial memory retention. In practice visual memory involves spatial information and the two memory systems work together, however our data demonstrate that individuals with the Val/Val BDNF genotype have poorer visual memory but higher spatial memory retention, indicating a level of interaction between TNF-α and BDNF in spatial memory retention. This is the first study to use genetic analysis to determine the interaction between BDNF and TNF-α in relation to memory in normal adults and provides important information regarding the effect of genetic determinants and gene interactions on human memory.
Mechanism of hyperphagia contributing to obesity in brain-derived neurotrophic factor knockout mice.
Fox, E A; Biddinger, J E; Jones, K R; McAdams, J; Worman, A
2013-01-15
Global-heterozygous and brain-specific homozygous knockouts (KOs) of brain-derived neurotrophic factor (BDNF) cause late- and early-onset obesity, respectively, both involving hyperphagia. Little is known about the mechanism underlying this hyperphagia or whether BDNF loss from peripheral tissues could contribute to overeating. Since global-homozygous BDNF-KO is perinatal lethal, a BDNF-KO that spared sufficient brainstem BDNF to support normal health was utilized to begin to address these issues. Meal pattern and microstructure analyses suggested overeating of BDNF-KO mice was mediated by deficits in both satiation and satiety that resulted in increased meal size and frequency and implicated a reduction of vagal signaling from the gut to the brain. Meal-induced c-Fos activation in the nucleus of the solitary tract, a more direct measure of vagal afferent signaling, however, was not decreased in BDNF-KO mice, and thus was not consistent with a vagal afferent role. Interestingly though, meal-induced c-Fos activation was increased in the dorsal motor nucleus of the vagus nerve (DMV) of BDNF-KO mice. This could imply that augmentation of vago-vagal digestive reflexes occurred (e.g., accommodation), which would support increased meal size and possibly increased meal number by reducing the increase in intragastric pressure produced by a given amount of ingesta. Additionally, vagal sensory neuron number in BDNF-KO mice was altered in a manner consistent with the increased meal-induced activation of the DMV. These results suggest reduced BDNF causes satiety and satiation deficits that support hyperphagia, possibly involving augmentation of vago-vagal reflexes mediated by central pathways or vagal afferents regulated by BDNF levels. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.
Ambrus, Livia; Lindqvist, Daniel; Träskman-Bendz, Lil; Westrin, Åsa
2016-11-01
Both decreased levels of brain-derived neurotrophic factor (BDNF) and hypothalamic-pituitary-adrenal (HPA) axis dysregulation may be involved in the pathophysiology of suicidal behaviour, as well as cognitive symptoms of depression. Pre-clinical and clinical studies have shown interactions between HPA-axis activity and BDNF, but this has not been studied in a clinical cohort of suicidal subjects. The purpose of this study was, therefore, to investigate associations between HPA-axis activity and BDNF in suicide attempters. Furthermore, this study examined the relationship between the HPA-axis, BDNF, and cognitive symptoms in suicidal patients. Since previous data indicate gender-related differences in BDNF and the HPA axis, males and females were examined separately. Seventy-five recent suicide attempters (n = 41 females; n = 34 males) were enrolled in the study. The Dexamethasone Suppression Test (DST) was performed and BDNF in plasma were analysed. Patients were evaluated with the Comprehensive Psychopathological Rating Scale (CPRS) from which items 'Concentration difficulties' and 'Failing memory' were extracted. Only among females, DST non-suppressors had significantly lower BDNF compared to DST suppressors (p = 0.022), and there was a significant correlation between post-DST serum cortisol at 8 a.m. and BDNF (rs = -0.437, p = 0.003). Concentration difficulties correlated significantly with post-DST cortisol in all patients (rs = 0.256, p = 0.035), in females (rs = 0.396, p = 0.015), and with BDNF in females (rs = -0.372, p = 0.020). The findings suggest an inverse relationship between the HPA-axis and BDNF in female suicide attempters. Moreover, concentration difficulties may be associated with low BDNF and DST non-suppression in female suicide attempters.
Groves-Chapman, Jessica L.; Murray, Patrick S.; Stevens, Kristin L.; Monroe, Derek; Koch, Lauren G.; Britton, Steven L.; Holmes, Philip V.
2012-01-01
We evaluated levels of exercise-induced brain-derived neurotrophic factor (BDNF) messenger RNA (mRNA) within the hippocampal formation in rats selectively bred for 1) high intrinsic (i.e., untrained) aerobic capacity (High Capacity Runners, HCR), 2) low intrinsic aerobic capacity (Low Capacity Runners, LCR), and 3) unselected Sprague-Dawley (SD) rats with or without free access to running wheels for three weeks. The specific aim of the study was to determine whether a dose-response relationship exists between cumulative running distance and levels of BDNF mRNA. No additional treatments or behavioral manipulations were used. HCR, LCR, and SD rats were grouped by strain and randomly assigned to sedentary or activity (voluntary access to activity wheel) conditions. Animals were killed after 21 days of exposure to the assigned conditions. Daily running distances (mean ± standard deviation meters/d) during week three were: HCR (4726 ± 3220), SD (2293 ± 3461), LCR (672 ± 323). Regardless of strain, levels of BDNF mRNA in CA1 were elevated in wheel runners compared to sedentary rats and this difference persisted after adjustment for age (p=0.040). BDNF mRNA was not affected by intrinsic aerobic capacity and was not related to total running distance. The results support that BDNF mRNA expression is increased by unlimited access to activity wheel running for 3 weeks but is not dependent upon accumulated running distance. PMID:22024546
Lee, Min Chul; Okamoto, Masahiro; Liu, Yu Fan; Inoue, Koshiro; Matsui, Takashi; Nogami, Haruo; Soya, Hideaki
2012-10-15
Although voluntary running has beneficial effects on hippocampal cognitive functions if done abundantly, it is still uncertain whether resistance running would be the same. For this purpose, voluntary resistance wheel running (RWR) with a load is a suitable model, since it allows increased work levels and resultant muscular adaptation in fast-twitch muscle. Here, we examined whether RWR would have potential effects on hippocampal cognitive functions with enhanced hippocampal brain-derived neurotrophic factor (BDNF), as does wheel running without a load (WR). Ten-week-old male Wistar rats were assigned randomly to sedentary (Sed), WR, and RWR (to a maximum load of 30% of body weight) groups for 4 wk. We found that in RWR, work levels increased with load, but running distance decreased by about half, which elicited muscular adaptation for fast-twitch plantaris muscle without causing any negative stress effects. Both RWR and WR led to improved spatial learning and memory as well as gene expressions of hippocampal BDNF signaling-related molecules. RWR increased hippocampal BDNF, tyrosine-related kinase B (TrkB), and cAMP response element-binding (CREB) protein levels, whereas WR increased only BDNF. With both exercise groups, there were correlations between spatial memory and BDNF protein (r = 0.41), p-CREB protein (r = 0.44), and work levels (r = 0.77). These results suggest that RWR plays a beneficial role in hippocampus-related cognitive functions associated with hippocampal BDNF signaling, even with short distances, and that work levels rather than running distance are more determinant of exercise-induced beneficial effects in wheel running with and without a load.
Jiang, H; Chen, S; Li, C; Lu, N; Yue, Y; Yin, Y; Zhang, Y; Zhi, X; Zhang, D; Yuan, Y
2017-04-04
Evidence demonstrates that brain-derived neurotrophic factor (BDNF) has a pivotal role in the pathogenesis of major depressive disorder (MDD). Precursor-BDNF (proBDNF) and mature BDNF (mBDNF) have opposing biological effects in neuroplasticity, and the tissue-type plasminogen activator (tPA)/plasmin system is crucial in the cleavage processing of proBDNF to mBDNF. However, very little is known about the role of the tPA-BDNF pathway in MDD. We examined serum protein concentrations in the tPA-BDNF pathway, including tPA, BDNF, tropomyosin receptor kinase B (TrkB), proBDNF and p75NTR, obtained from 35 drug-free depressed patients before and after 8 weeks of escitalopram (mean 12.5 mg per day) or duloxetine (mean 64 mg per day) treatment and 35 healthy controls using sandwich ELISA (enzyme-linked immunosorbent assay) methods. Serum tPA and BDNF and the ratio of BDNF/proBDNF were significantly lower in the MDD patients than in controls, whereas TrkB, proBDNF and its receptor p75NTR were higher. After 8 weeks of treatment, tPA, BDNF and proBDNF and the BDNF/proBDNF ratio were reversed, but p75NTR was higher than baseline, and TrkB was not significantly changed. tPA, BDNF, TrkB, proBDNF and p75NTR all yielded fairly good or excellent diagnostic performance (area under the receiver operating characteristic curve (AUC) >0.8 or 0.9). Combination of these five proteins demonstrated much better diagnostic effectiveness (AUC: 0.977) and adequate sensitivity and specificity of 88.1% and 92.7%, respectively. Our results suggest that the tPA-BDNF lysis pathway may be implicated in the pathogenesis of MDD and the mechanisms underlying antidepressant therapeutic action. The combination of tPA, BDNF, TrkB, proBDNF and p75NTR may provide a diagnostic biomarker panel for MDD.
Razavi, Bibi Marjan; Sadeghi, Mahdieh; Abnous, Khalil; Vahdati Hasani, Faezeh; Hosseinzadeh, Hossein
2017-01-01
Antidepressant activity of crocin, saffron main component, has been established before. Based on previous study, it is suggested that elevation in the levels of BDNF (brain-derived neurotrophic factor), CREB (cAMP response element binding) and VGF neuropeptide could be considered as one probable molecular mechanisms involved in antidepressant activity of long term crocin administration in the rat hippocampus. In this study we further investigated whether the antidepressant activity of crocin in long term administration was associated with alteration in these factors in the rat cerebellum. Crocin (12.5, 25 and 50 mg/kg/day) and imipramine (10 mg/kg/day) were administered interaperitoneally for 21 days to rats. At the end of experiment, animals were sacrificed and cerebellums were dissected. BDNF, VGF, CREB, and phospho-CREB (P-CREB) protein and mRNA levels in the rat cerebellum were evaluated using Western blot and quantitative reverse transcription-polymerase chain reaction (qRT-PCR). In the current study significant increases in mRNA and protein levels of VGF, CREB and (BDNF) in long term crocin treatment were not observed in the rat cerebellum. Although a slight increase was observed in protein level of P-CREB compared to normal saline, but it was not significant. It is concluded that antidepressant activity of crocin might be partially mediated to CREB. Moreover, other factors rather than BDNF and VGF neuropeptides may alter following long term crocin treatment in the cerebellum. To understand the precise mechanism of crocin antidepressant effects in the cerebellum, longer duration of crocin treatment in further studies is recommended. PMID:29552054
Nakamura, Tomoe Y; Nakao, Shu; Nakajo, Yukako; Takahashi, Jun C; Wakabayashi, Shigeo; Yanamoto, Hiroji
2017-01-01
Intracellular Ca2+ signaling regulates diverse functions of the nervous system. Many of these neuronal functions, including learning and memory, are regulated by neuronal calcium sensor-1 (NCS-1). However, the pathways by which NCS-1 regulates these functions remain poorly understood. Consistent with the findings of previous reports, we revealed that NCS-1 deficient (Ncs1-/-) mice exhibit impaired spatial learning and memory function in the Morris water maze test, although there was little change in their exercise activity, as determined via treadmill-analysis. Expression of brain-derived neurotrophic factor (BDNF; a key regulator of memory function) and dopamine was significantly reduced in the Ncs1-/- mouse brain, without changes in the levels of glial cell-line derived neurotrophic factor or nerve growth factor. Although there were no gross structural abnormalities in the hippocampi of Ncs1-/- mice, electron microscopy analysis revealed that the density of large dense core vesicles in CA1 presynaptic neurons, which release BDNF and dopamine, was decreased. Phosphorylation of Ca2+/calmodulin-dependent protein kinase II-α (CaMKII-α, which is known to trigger long-term potentiation and increase BDNF levels, was significantly reduced in the Ncs1-/- mouse brain. Furthermore, high voltage electric potential stimulation, which increases the levels of BDNF and promotes spatial learning, significantly increased the levels of NCS-1 concomitant with phosphorylated CaMKII-α in the hippocampus; suggesting a close relationship between NCS-1 and CaMKII-α. Our findings indicate that NCS-1 may regulate spatial learning and memory function at least in part through activation of CaMKII-α signaling, which may directly or indirectly increase BDNF production.
Kim, Hyun Jun; Lee, Sang Yeoup; Lee, Hwa Gyeong; Cho, Yang Hee; Ko, Eun Mi
2018-01-01
Few studies have been undertaken to develop cognitive functional improvement-focused exercise programs and determine their effect. The objectives of this study were to evaluate the effects of a cognitive enhancement fitness program (CEFP) on short-term memory and serum brain-derived neurotrophic factor (BDNF) levels according to the cognitive state in middle-aged women. A total of 30 healthy volunteers aged 40–59 years were divided into two groups, that is, a mild cognitive impairment (MCI) group and a non-MCI group based on results from the Korean Dementia Screening Questionnaire. A single-session CEFP was conducted over 50 min and consisted of four parts: warm-up, low intensity interval circulation dance exercises, moderate intensity resistance exercises using elastic bands, and cool-down. Serum BDNF levels were measured by ELISA and short-term memory determined by forward digit/word span test was assessed before and after CEFP. After CEFP, forward digit/word span test scores and BDNF levels increased to median 119.2%/115.1% and 118.7%, respectively. After CEFP, the MCI and non-MCI groups produced higher forward digit span test scores (from 6.7 ± 1.5 to 7.5 ± 1.4 points, p = 0.023 and from 6.2 ± 2.0 to 7.0 ± 2.1 points, P=0.011, respectively). After CEFP, forward word span scores and BDNF levels increased (from 3.5 ± 1.7 to 4.6 ± 1.8 points, p = 0.029 and from 610.8 ± 221.1 to 757.9 ± 267.9 pg/ml, p = 0.017, respectively) in non-MCI group only. No group differences were observed between change in short-term memory and change in BDNF. Short-term memory and BDNF levels after CEFP were found to be negatively correlated with age, but pre- to post-intervention changes in short-term memory and BDNF were not. The present study shows that a single, 50-minute CEFP improved short-term memory and increased serum BDNF levels in healthy middle-aged women, especially those without MCI. Key points A single 50-minute CEFP comprised 5 minutes of general warm up and mat stretching, 20 minutes of low intensity activities with 8 dance exercises (RPE 11-12), another 20 minutes of moderate intensity activities including 8 resistance exercises using elastic bands ((RPE 13-15), and finally a 5-minute general cool down with yoga. Both MCI and non-MCI groups produced higher forward digit span test scores and had higher serum BDNF levels after CEFP but forward word span scores were increased only in non-MCI. A single 50-minute brain fitness program improved short-term memory and increased serum BDNF levels in healthy middle-aged women, especially those without MCI. PMID:29535584
Cicek, Ismet Esra; Cicek, Erdinc; Kayhan, Fatih; Uguz, Faruk; Erayman, Ibrahim; Kurban, Sevil; Yerlikaya, F Hümeyra; Kaya, Nazmiye
2014-03-01
The aim of the study was to research the relationship between interferon (IFN) induced depression and sociodemographic characteristics, neurotrophic factors and oxidative stress. Sixty four cases, 34 with Chronic Hepatitis B (CHB) and 30 with Chronic Hepatitis C (CHC), were included in the study. The patients were assessed with Structured Clinical Interview for DSM-IV (SCID-I), Hamilton Anxiety Rating Scale (HARS) and Hamilton Depression Rating Scale (HDRS) at baseline on the 2nd and 6th weeks of treatment. S100 calcium binding protein B (S100B), brain-derived neurotrophic factor (BDNF), total antioxidant status (TAS) and total oxidative stress (TOS) levels were measured at the same visits. In total, 20 patients were diagnosed with major depression (MD) on the sixth week. A significant relationship was found between depression developed after IFN therapy and baseline HARS scores and the type of IFN-α. When the pretreatment levels of HDRS, HARS, S100B, BDNF, TAS, and TOS were compared to those after treatment on the 2nd week, there was a significant increase in HDRS and HARS levels and a significant decrease in the levels of S100B and BDNF. No significant change was determined for TAS and TOS levels. Our study suggests that the pathogenesis of IFN induced depression may involve neurotrophic factors. Copyright © 2014 Elsevier Inc. All rights reserved.
Lee, Sheng-Yu; Wang, Tzu-Yun; Chen, Shiou-Lan; Chang, Yun-Hsuan; Chen, Po-See; Huang, San-Yuan; Tzeng, Nian-Sheng; Wang, Liang-Jen; Lee, I Hui; Chen, Kao Ching; Yang, Yen Kuang; Hong, Jau-Shyong; Lu, Ru-Band
2018-06-01
Bipolar disorder (BD), especially BD-II, is frequently comorbid with alcohol dependence. Because BD-II and alcohol dependence are neurodegenerative disorders, agents with anti-inflammatory and neurotrophic effects might provide effective therapy. We investigated whether add-on memantine to regular valproic acid treatment ameliorated clinical symptoms, reduced alcohol use, and cytokine levels, and increased plasma brain-derived neurotrophic factor (BDNF) in BD-II patients with comorbid alcohol dependence. In a single-arm 12-week clinical trial, BD-II patients with comorbid alcohol dependence (n = 45) undergoing regular valproic acid treatments were given add-on memantine (5 mg/d). Symptom severity, alcohol use, cytokine (plasma tumor necrosis factor-α and C-reactive protein [CRP], transforming growth factor-β1 [TGF-β1], interleukin-8 [IL-8], IL-10), and plasma BDNF levels were regularly assessed. Mean within-group decreases in Hamilton Depression Rating Scale (HDRS) and Young Mania Rating Scale (YMRS) scores, alcohol use, CRP, BDNF, and IL-8 levels were significantly different from baseline after 12 weeks of treatment. We found no significant correlation between alcohol use levels and changes in HDRS or YMRS scores. The correlation between reduced alcohol use and reduced TGF-β1 level was significant (B = 0.003, p = 0.019). BD-II comorbid with alcohol dependence might benefit from add-on memantine treatment, which significantly reduced clinical severity, alcohol use, and plasma cytokine levels, and increased BDNF levels. Copyright © 2018 by the Research Society on Alcoholism.
Lee, I-Te; Fu, Chia-Po; Lee, Wen-Jane; Liang, Kae-Woei; Lin, Shih-Yi; Wan, Chu-Jen; Sheu, Wayne Huey-Herng
2014-02-13
Obesity, a critical component of metabolic syndrome (MetS), is associated with depression. Deficiency of brain-derived neurotrophic factor (BDNF) is involved in the mechanism of depression. We hypothesized that weight reduction would improve depressive symptoms via increasing BDNF levels in obese men. Male adults with obesity were enrolled in a weight-reduction program for twelve weeks. All subjects underwent daily caloric restriction and an exercise program which was regularly assessed in group classes. Fasting blood samples and Zung Self-Rating Depression Scale (Zung SDS) scores were collected for assessments before and after the study. A total of 36 subjects completed this program. The average reduction in body weight was 8.4 ± 5.1 kg (8.8 ± 5.1%, P < 0.001). Fasting serum BDNF significantly increased after the study (from 40.4 ± 7.8 to 46.9 ± 8.9 ng/ml, P < 0.001). However, the depression symptoms, as assessed by the Zung Self-Rating Depression Scale (Zung SDS), did not reduce significantly (P = 0.486). Divided into subgroups based on changes in BDNF, Zung SDS scores were significantly reduced in subjects with greater BDNF increase than in those with minor BDNF change (-3.9 ± 6.2 vs. 2.3 ± 6.7, P = 0.009). The increased percentage of BDNF was inversely correlated with the change in Zung SDS (r = -0.380, P = 0.022). Multivariate regression analysis showed that reduction in BDNF was independently associated with change in Zung SDS (95% confidence interval -0.315 to -0.052, P = 0.008). Zung SDS only significantly improved in men with increased fasting BDNF levels after a lifestyle intervention. (NCT01065753, ClinicalTrials.gov).
Fernandez, Gina M.; Lew, Brandon J.; Vedder, Lindsey C.; Savage, Lisa M
2017-01-01
Chronic intermittent exposure to ethanol (EtOH; CIE) that produces binge-like levels of intoxication has been associated with age-dependent deficits in cognitive functioning. Male Sprague-Dawley rats were exposed to CIE (5 g/kg, 25% EtOH, 13 intragastric gavages) beginning at three ages: early adolescence (postnatal day [PD] 28), mid-adolescence (PD35) and adulthood (PD72). In experiment 1, rats were behaviorally tested following CIE. Spatial memory was not affected by CIE, but adult CIE rats were impaired at acquiring a non-spatial discrimination task and subsequent reversal tasks. Rats exposed to CIE during early or mid-adolescence were impaired on the first reversal, demonstrating transient impairment in behavioral flexibility. Blood EtOH concentrations negatively correlated with performance on reversal tasks. Experiment 2 examined changes in brain derived neurotrophic factor (BNDF) levels within the frontal cortex (FC) and hippocampus (HPC) at four time points: during intoxication, 24-hrs after the final EtOH exposure (acute abstinence), 3-weeks following abstinence (recovery) and after behavioral testing. HPC BDNF levels were not affected by CIE at any time point. During intoxication, BDNF was suppressed in the FC, regardless of the age of exposure. However, during acute abstinence, reduced FC BDNF levels persisted in early adolescent CIE rats, whereas adult CIE rats displayed an increase in BDNF levels. Following recovery, neurotrophin levels in all CIE rats recovered. Our results indicate that intermittent binge-like EtOH exposure leads to acute disruptions in FC BDNF levels and long-lasting behavioral deficits. However, the type of cognitive impairment and its duration differ depending on the age of exposure. PMID:28257889
Benn, Kiesha; Passos, Mariana; Jayaram, Aswathi; Harris, Mary; Bongiovanni, Ann Marie; Skupski, Daniel; Witkin, Steven S
2014-11-01
The omega-3 long-chain polyunsaturated fatty acid (LCPUFA) docosahexaenoic acid (DHA) and the omega-6 LCPUFA arachidonic acid (AA) are essential nervous system components that increase in concentration throughout gestation. The neurotrophins, brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), neurotrophin 3 (NT3), and neurotrophin 4 (NT4) are small basic peptides crucial for fetal brain development. The DHA supplementation during pregnancy has been suggested to enhance neural development. We evaluated whether amniotic fluid DHA and AA concentrations correlated with intra-amniotic neurotrophin levels. Amniotic fluid, obtained at 15 to 19 weeks gestation from 62 women, was tested for BDNF, NGF, NT3, and NT4 by enzyme-linked immunosorbent assay. Concentrations of DHA and AA, and saturated and monounsaturated fatty acids, were determined by gas chromatography. Associations were analyzed by the Spearman rank correlation test. Median levels of AA and DHA were 2.3% and 1.3% of the total intra-amniotic fatty acids, respectively. Median neurotrophin levels (pg/mL) were 36.7 for NT3, 26.8 for BDNF, 5.2 for NT4, and 0.8 for NGF. Intra-amniotic NT4 and BDNF levels were correlated (P = .0016), while NT3 and NGF levels were unrelated to each other or to BDNF or NT4. Only NT4 was positively correlated with amniotic fluid DHA (P < .0001) and AA (P = .0003) concentrations. There were no associations between DHA, AA, or any neurotrophin and maternal age, gestational age at time of amniocentesis, amniocentesis indication, parity, or gestational age at delivery. Elevations in intra-amniotic NT4 with increasing levels of DHA and AA suggest that these LCPUFAs may specifically influence the extent of NT4-mediated fetal brain neurogenesis. © The Author(s) 2014.
Onakomaiya, Marie M.; Porter, Donna M.; Oberlander, Joseph G.; Henderson, Leslie P.
2014-01-01
Anabolic androgenic steroids (AAS) are taken by both sexes to enhance athletic performance and body image, nearly always in conjunction with an exercise regime. Although taken to improve physical attributes, chronic AAS use can promote negative behavior, including anxiety. Few studies have directly compared the impact of AAS use in males versus females or assessed the interaction of exercise and AAS. We show that AAS increase anxiety-like behaviors in female but not male mice and that voluntary exercise accentuates these sex-specific differences. We also show that levels of the anxiogenic peptide corticotrophin releasing factor (CRF) are significantly greater in males, but that AAS selectively increase CRF levels in females, thus abrogating this sex-specific difference. Exercise did not ameliorate AAS-induced anxiety or alter CRF levels in females. Exercise was anxiolytic in males, but this behavioral outcome did not correlate with CRF levels. Brain-derived neurotrophic factor (BDNF) has also been implicated in the expression of anxiety. As with CRF, levels of hippocampal BDNF mRNA were significantly greater in males than females. AAS and exercise were without effect on BDNF mRNA in females. In males, anxiolytic effects of exercise correlated with increased BDNF mRNA, however AAS-induced changes in BDNF mRNA and anxiety did not. In sum, we find that AAS elicit sex-specific differences in anxiety and that voluntary exercise accentuates these differences. In addition, our data suggest that these behavioral outcomes may reflect convergent actions of AAS and exercise on a sexually differentiated CRF signaling system within the extended amygdala. PMID:24768711
Lin, Chih-Yang; Wang, Shih-Wei; Chen, Yen-Ling; Chou, Wen-Yi; Lin, Ting-Yi; Chen, Wei-Cheng; Yang, Chen-Yu; Liu, Shih-Chia; Hsieh, Chia-Chu; Fong, Yi-Chin; Wang, Po-Chuan; Tang, Chih-Hsin
2017-08-03
Chondrosarcoma is the second most common primary malignancy of bone, and one of the most difficult bone tumors to diagnose and treat. It is well known that increased levels of vascular endothelial growth factor-C (VEGF-C) promote active tumor lymphangiogenesis and lymphatic tumor spread to regional lymph nodes. Brain-derived neurotrophic factor (BDNF) is known to promote metastasis in human chondrosarcoma cells. Knowing more about the mechanism of BDNF in VEGF-C expression and lymphangiogenesis in human chondrosarcoma would improve our understanding as how to prevent chondrosarcoma angiogenesis and metastasis, which currently lacks effective adjuvant treatment. Here, we found that BDNF expression was at least 2.5-fold higher in the highly migratory JJ012(S10) cell line as compared with the primordial cell line (JJ012). In addition, VEGF-C expression and secretion was markedly increased in JJ012(S10) cells. Conditioned medium from JJ012(S10) cells significantly promoted migration and tube formation of human lymphatic endothelial cells (LECs), whereas knockdown of BDNF attenuated LEC migration and tube formation by suppressing VEGF-C production in JJ012(S10) cells. Mechanistic investigations indicated that BDNF facilitated VEGF-C-dependent lymphangiogenesis through the MEK/ERK/mTOR signaling pathway. We also showed that microRNA (miR)-624-3p expression was negatively regulated by BDNF via the MEK/ERK/mTOR cascade. Importantly, BDNF knockdown profoundly inhibited tumor-associated lymphangiogenesis in vivo. Further analyses identified that BDNF promoted tumor lymphangiogenesis by downregulating miR-624-3p in human chondrosarcoma tissues. In conclusion, this study is the first to reveal the mechanism underlying BDNF-induced lymphangiogenesis. We suggest that BDNF may serve as a promising therapeutic target for the restriction of VEGF-C-mediated tumor lymphangiogenesis and lymphatic metastasis.
Lin, Chih-Yang; Wang, Shih-Wei; Chen, Yen-Ling; Chou, Wen-Yi; Lin, Ting-Yi; Chen, Wei-Cheng; Yang, Chen-Yu; Liu, Shih-Chia; Hsieh, Chia-Chu; Fong, Yi-Chin; Wang, Po-Chuan; Tang, Chih-Hsin
2017-01-01
Chondrosarcoma is the second most common primary malignancy of bone, and one of the most difficult bone tumors to diagnose and treat. It is well known that increased levels of vascular endothelial growth factor-C (VEGF-C) promote active tumor lymphangiogenesis and lymphatic tumor spread to regional lymph nodes. Brain-derived neurotrophic factor (BDNF) is known to promote metastasis in human chondrosarcoma cells. Knowing more about the mechanism of BDNF in VEGF-C expression and lymphangiogenesis in human chondrosarcoma would improve our understanding as how to prevent chondrosarcoma angiogenesis and metastasis, which currently lacks effective adjuvant treatment. Here, we found that BDNF expression was at least 2.5-fold higher in the highly migratory JJ012(S10) cell line as compared with the primordial cell line (JJ012). In addition, VEGF-C expression and secretion was markedly increased in JJ012(S10) cells. Conditioned medium from JJ012(S10) cells significantly promoted migration and tube formation of human lymphatic endothelial cells (LECs), whereas knockdown of BDNF attenuated LEC migration and tube formation by suppressing VEGF-C production in JJ012(S10) cells. Mechanistic investigations indicated that BDNF facilitated VEGF-C-dependent lymphangiogenesis through the MEK/ERK/mTOR signaling pathway. We also showed that microRNA (miR)-624-3p expression was negatively regulated by BDNF via the MEK/ERK/mTOR cascade. Importantly, BDNF knockdown profoundly inhibited tumor-associated lymphangiogenesis in vivo. Further analyses identified that BDNF promoted tumor lymphangiogenesis by downregulating miR-624-3p in human chondrosarcoma tissues. In conclusion, this study is the first to reveal the mechanism underlying BDNF-induced lymphangiogenesis. We suggest that BDNF may serve as a promising therapeutic target for the restriction of VEGF-C-mediated tumor lymphangiogenesis and lymphatic metastasis. PMID:28771226
Are BDNF and glucocorticoid activities calibrated?
Jeanneteau, Freddy; Chao, Moses V.
2012-01-01
One hypothesis to account for the onset and severity of neurological disorders is the loss of trophic support. Indeed, changes in the levels and activities of brain-derived neurotrophic factor (BDNF) occur in numerous neurodegenerative and neuropsychiatric diseases. A deficit promotes vulnerability whereas a gain of function facilitates recovery by enhancing survival, synapse formation and synaptic plasticity. Implementation of ‘BDNF therapies’, however, faces numerous methodological and pharmacokinetic issues. Identifying BDNF mimetics that activate the BDNF receptor or downstream targets of BDNF signaling represent an alternative approach. One mechanism that shows great promise is to study the interplay of BDNF and glucocorticoid hormones, a major class of natural steroid secreted during stress reactions and in synchrony with circadian rhythms. While small amounts of glucocorticoids support normal brain function, excess stimulation by these steroid hormones precipitate stress-related affective disorders. To date, however, because of the paucity of knowledge of underlying cellular mechanisms, deleterious effects of glucocorticoids are not prevented following extreme stress. In the present review, we will discuss the complementary roles share by BDNF and glucocorticoids in synaptic plasticity, and delineate possible signaling mechanisms mediating these effects. PMID:23022538
Lemos, José R; Alves, Cleber R; de Souza, Sílvia B C; Marsiglia, Julia D C; Silva, Michelle S M; Pereira, Alexandre C; Teixeira, Antônio L; Vieira, Erica L M; Krieger, José E; Negrão, Carlos E; Alves, Guilherme B; de Oliveira, Edilamar M; Bolani, Wladimir; Dias, Rodrigo G; Trombetta, Ivani C
2016-02-01
Besides neuronal plasticity, the neurotrophin brain-derived neurotrophic factor (BDNF) is also important in vascular function. The BDNF has been associated with angiogenesis through its specific receptor tropomyosin-related kinase B (TrkB). Additionally, Val66Met polymorphism decreases activity-induced BDNF. Since BDNF and TrkB are expressed in vascular endothelial cells and aerobic exercise training can increase serum BDNF, this study aimed to test the hypotheses: 1) Serum BDNF levels modulate peripheral blood flow; 2) The Val66Met BDNF polymorphism impairs exercise training-induced vasodilation. We genotyped 304 healthy male volunteers (Val66Val, n = 221; Val66Met, n = 83) who underwent intense aerobic exercise training on a running track three times/wk for 4 mo. We evaluated pre- and post-exercise training serum BDNF and proBDNF concentration, heart rate (HR), mean blood pressure (MBP), forearm blood flow (FBF), and forearm vascular resistance (FVR). In the pre-exercise training, BDNF, proBDNF, BDNF/proBDNF ratio, FBF, and FVR were similar between genotypes. After exercise training, functional capacity (V̇o2 peak) increased and HR decreased similarly in both groups. Val66Val, but not Val66Met, increased BDNF (interaction, P = 0.04) and BDNF/proBDNF ratio (interaction, P < 0.001). Interestingly, FBF (interaction, P = 0.04) and the FVR (interaction, P = 0.01) responses during handgrip exercise (HG) improved in Val66Val compared with Val66Met, even with similar responses of HR and MBP. There were association between BDNF/proBDNF ratio and FBF (r = 0.64, P < 0.001) and FVR (r = -0.58, P < 0.001) during HG exercise. These results show that peripheral vascular reactivity and serum BDNF responses to exercise training are impaired by the BDNF Val66Met polymorphism and such responsiveness is associated with serum BDNF concentrations in healthy subjects. Copyright © 2016 the American Physiological Society.
Rex, Christopher S; Lauterborn, Julie C; Lin, Ching-Yi; Kramár, Eniko A; Rogers, Gary A; Gall, Christine M; Lynch, Gary
2006-08-01
Restoration of neuronal viability and synaptic plasticity through increased trophic support is widely regarded as a potential therapy for the cognitive declines that characterize aging. Previous studies have shown that in the hippocampal CA1 basal dendritic field deficits in the stabilization of long-term potentiation (LTP) are evident by middle age. The present study tested whether increasing endogenous brain-derived neurotrophic factor (BDNF) could reverse this age-related change. We report here that in middle-aged (8- to 10-mo-old) rats, in vivo treatments with a positive AMPA-type glutamate receptor modulator both increase BDNF protein levels in the cortical telencephalon and restore stabilization of basal dendritic LTP as assessed in acute hippocampal slices 18 h after the last drug treatment. These effects were not attributed to enhanced synaptic transmission or to facilitation of burst responses used to induce LTP. Increasing extracellular levels of BDNF by exogenous application to slices of middle-aged rats was also sufficient to rescue the stabilization of basal dendritic LTP. Finally, otherwise stable LTP in ampakine-treated middle-aged rats can be eliminated by infusion of the extracellular BDNF scavenger TrkB-Fc. Together these results indicate that increases in endogenous BDNF signaling can offset deficits in the postinduction processes that stabilize LTP.
Lee, Namju; Park, Sok; Kim, Jongkyu
2017-09-30
The purpose of this study was to investigate the effect of hippotherapy and electroencephalography (EEG) neurofeedback on brain function and blood brain-derived neurotrophic factor (BDNF) level in children with attention-deficit or/and hyperactivity disorder (ADHD). Sixteen children with ADHD participated in this study and were randomly divided into 2 groups, a 1-time hippotherapy group (W1G, n = 8) and a 2-time hippotherapy group (W2G, n = 8). All the participants attended 8 weeks of hippotherapy program in the primary training, and then 7 children with ADHD attended 8 weeks of hippotherapy program combined with neurofeedback training in the secondary training. Blood BDNF levels were measured, and functional magnetic resonance imaging (fMRI) was performed. The EEG neurofeedback training program was used to train and measure psychological factors. The combined effect of hippotherapy and neurofeedback on BDNF level showed a decreased tendency in W1G (pretraining, 1766.03 ± 362.54 pg/ml; posttraining, 1630.65 ± 276.70 pg/ml). However, the BDNF level of W2G showed an increased tendency (pretraining, 1968.28 ± 429.08 pg/ml; posttraining, 1976.28 ± 425.35 pg/ml). Moreover, combined training showed a significant group x repetition interaction in W1G (pretraining, 1436.57 ± 368.76 pg/ml; posttraining, 1525.23 ± 346.22 pg/ml; F = 3.870, p = 0.039). fMRI results showed that the left thalamus activity in both groups had a decreased tendency and a significantly lower change in W2G than in W1G (p < 0.05). This study confirmed a significant increase in blood BDNF level after combined training, which may induce brain function improvement in children with ADHD. ©2017 The Korean Society for Exercise Nutrition
Lee, Namju; Park, Sok; Kim, Jongkyu
2017-01-01
[Purpose] The purpose of this study was to investigate the effect of hippotherapy and electroencephalography (EEG) neurofeedback on brain function and blood brain-derived neurotrophic factor (BDNF) level in children with attention-deficit or/and hyperactivity disorder (ADHD). [Methods] Sixteen children with ADHD participated in this study and were randomly divided into 2 groups, a 1-time hippotherapy group (W1G, n = 8) and a 2-time hippotherapy group (W2G, n = 8). All the participants attended 8 weeks of hippotherapy program in the primary training, and then 7 children with ADHD attended 8 weeks of hippotherapy program combined with neurofeedback training in the secondary training. Blood BDNF levels were measured, and functional magnetic resonance imaging (fMRI) was performed. The EEG neurofeedback training program was used to train and measure psychological factors. [Results] The combined effect of hippotherapy and neurofeedback on BDNF level showed a decreased tendency in W1G (pretraining, 1766.03 ± 362.54 pg/ml; posttraining, 1630.65 ± 276.70 pg/ml). However, the BDNF level of W2G showed an increased tendency (pretraining, 1968.28 ± 429.08 pg/ml; posttraining, 1976.28 ± 425.35 pg/ml). Moreover, combined training showed a significant group x repetition interaction in W1G (pretraining, 1436.57 ± 368.76 pg/ml; posttraining, 1525.23 ± 346.22 pg/ml; F = 3.870, p = 0.039). fMRI results showed that the left thalamus activity in both groups had a decreased tendency and a significantly lower change in W2G than in W1G (p < 0.05). [Conclusion] This study confirmed a significant increase in blood BDNF level after combined training, which may induce brain function improvement in children with ADHD. PMID:29036764
Di Liberto, Valentina; Frinchi, Monica; Verdi, Vincenzo; Vitale, Angela; Plescia, Fulvio; Cannizzaro, Carla; Massenti, Maria F; Belluardo, Natale; Mudò, Giuseppa
2017-02-01
In depressive disorders, one of the mechanisms proposed for antidepressant drugs is the enhancement of synaptic plasticity in the hippocampus and cerebral cortex. Previously, we showed that the muscarinic acetylcholine receptor (mAChR) agonist oxotremorine (Oxo) increases neuronal plasticity in hippocampal neurons via FGFR1 transactivation. Here, we aimed to explore (a) whether Oxo exerts anxiolytic effect in the rat model of anxiety-depression-like behavior induced by chronic restraint stress (CRS), and (b) if the anxiolytic effect of Oxo is associated with the modulation of neurotrophic factors, brain-derived neurotrophic factor (BDNF) and fibroblast growth factor-2 (FGF2), and phosphorylated Erk1/2 (p-Erk1/2) levels in the dorsal or ventral hippocampus and in the medial prefrontal cortex. The rats were randomly divided into four groups: control unstressed, CRS group, CRS group treated with 0.2 mg/kg Oxo, and unstressed group treated with Oxo. After 21 days of CRS, the groups were treated for 10 days with Oxo or saline. The anxiolytic role of Oxo was tested by using the following: forced swimming test, novelty suppressed feeding test, elevated plus maze test, and light/dark box test. The hippocampi and prefrontal cortex were used to evaluate BDNF and FGF2 protein levels and p-Erk1/2 levels. Oxo treatment significantly attenuated anxiety induced by CRS. Moreover, Oxo treatment counteracted the CRS-induced reduction of BDNF and FGF2 levels in the ventral hippocampus and medial prefrontal cerebral cortex CONCLUSIONS: The present study showed that Oxo treatment ameliorates the stress-induced anxiety-like behavior and rescues FGF2 and BDNF levels in two brain regions involved in CRS-induced anxiety, ventral hippocampal formation, and medial prefrontal cortex.
Zhang, Fan; Luo, Jie; Min, Su; Ren, Li; Qin, Peipei
2016-07-01
This study investigated the effects of propofol and electroconvulsive shock (ECS), the analogue of electroconvulsive therapy (ECT) in animals, on tissue plasminogen activator (tPA) and its inhibitor (PAI-1) as well as the precursor of brain-derived neurotrophic factor (proBDNF)/mature BDNF (mBDNF) ratio in depressive rats. ECT is an effective treatment for depression, but can cause cognitive deficit. Some studies have indicated that propofol can ameliorate cognitive decline induced by ECT, but the underlying molecular mechanism is still unclear. Recent evidence has found that mBDNF and its precursor proBDNF are related to depression and cognitive function; they elicit opposite effects on cellular functions. Chronic unpredicted mild stress is widely used to induce depressive behaviors in rodents. This study found that the depression resulted in an increased expression of PAI-1 and upregulation of the proBDNF/mBDNF ratio, together with a decreased level of tPA, long-term potentiation (LTP) impairment, and cognitive decline. The proBDNF/mBDNF ratio was further upregulated after the ECS treatment in depressive rats, resulting in the deterioration of cognitive function and hippocampal LTP. Propofol alone did not reverse the changes in depressive rats, but when co-administered with ECS, it improved the cognitive function, alleviated the impairment of LTP, downregulated the proBDNF/mBDNF ratio, and increased the tPA expression. The results of this study suggest that propofol ameliorates cognitive decline induced by ECT, which was partly by modulating the proBDNF/mBDNF ratio and reversing the excessive changes in hippocampal synaptic plasticity, providing a new evidence for involving the proBDNF/mBDNF system in the progression and treatment of depression. Copyright © 2016 Elsevier B.V. All rights reserved.
Naert, Gaelle; Ixart, Guy; Maurice, Tangui; Tapia-Arancibia, Lucia; Givalois, Laurent
2011-01-01
Depression is potentially life-threatening. The most important neuroendocrine abnormality in this disorder is hypothalamo-pituitary-adrenocortical (HPA) axis hyperactivity. Recent findings suggest that all depression treatments may boost the neurotrophin production especially brain-derived neurotrophic factor (BDNF). Moreover, BDNF is highly involved in the regulation of HPA axis activity. The aim of this study was to determine the impact of chronic stress (restraint 3h/day for 3 weeks) on animal behavior and HPA axis activity in parallel with hippocampus, hypothalamus and pituitary BDNF levels. Chronic stress induced changes in anxiety (light/dark box test) and anhedonic states (sucrose preference test) and in depressive-like behavior (forced swimming test); general locomotor activity and body temperature were modified and animal body weight gain was reduced by 17%. HPA axis activity was highly modified by chronic stress, since basal levels of mRNA and peptide hypothalamic contents in CRH and AVP and plasma concentrations in ACTH and corticosterone were significantly increased. The HPA axis response to novel acute stress was also modified in chronically stressed rats, suggesting adaptive mechanisms. Basal BDNF contents were increased in the hippocampus, hypothalamus and pituitary in chronically stressed rats and the BDNF response to novel acute stress was also modified. This multiparametric study showed that chronic restraint stress induced a depressive-like state that was sustained by mechanisms associated with BDNF regulation. Copyright © 2010 Elsevier Inc. All rights reserved.
Engineered BDNF producing cells as a potential treatment for neurologic disease
Deng, Peter; Anderson, Johnathon D.; Yu, Abigail S.; Annett, Geralyn; Fink, Kyle D.; Nolta, Jan A.
2018-01-01
Introduction Brain-derived neurotrophic factor (BDNF) has been implicated in wide range of neurological diseases and injury. This neurotrophic factor is vital for neuronal health, survival, and synaptic connectivity. Many therapies focus on the restoration or enhancement of BDNF following injury or disease progression. Areas covered The present review will focus on the mechanisms in which BDNF exerts its beneficial functioning, current BDNF therapies, issues and potential solutions for delivery of neurotrophic factors to the central nervous system, and other disease indications that may benefit from overexpression or restoration of BDNF. Expert opinion Due to the role of BDNF in neuronal development, maturation, and health, BDNF is implicated in numerous neurological diseases making it a prime therapeutic agent. Numerous studies have shown the therapeutic potential of BDNF in a number of neurodegenerative disease models and in acute CNS injury, however clinical translation has fallen short due to issues in delivering this molecule. The use of MSC as a delivery platform for BDNF holds great promise for clinical advancement of neurotrophic factor restoration. The ease with which MSC can be engineered opens the door to the possibility of using this cell-based delivery system to advance a BDNF therapy to the clinic. PMID:27159050
Xiao, Yangming; Russell, I Jon; Liu, Ya-Guang
2012-08-01
A common single nucleotide polymorphism (SNP) in the gene of brain-derived neurotrophic factor (BDNF) results from a substitution at position 66 from valine (Val) to methionine (Met) and may predispose to human neuropsychiatric disorders. We proposed to determine whether these BDNF gene SNPs were associated with fibromyalgia syndrome (FMS) and/or any of its typical phenotypes. Patients with FMS (N = 95) and healthy normal controls (HNC, N = 58) were studied. Serum high-sensitivity C-reactive protein (hsCRP) levels were measured using an enzyme-linked immunosorbent assay (ELISA). The BDNF SNPs were determined using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP).The BDNF SNP distribution was 65 (68%) Val/Val, 28 (30%) Val/Met, and 2 (2%) Met/Met for FMS and 40 (69%), 17(29%), and 1 (2%) for HNC, respectively. The serum high-sensitivity C-reactive protein (hsCRP)and body mass index (BMI) in FMS were higher than in HNC. The FMS with BDNF Val66Val had significantly higher mean BMI (P = 0.0001) and hsCRP (P = 0.02) than did FMS carrying the Val66Met genotype. This pattern was not found in HNC. Phenotypic measures of subjective pain, pain threshold, depression, or insomnia did not relate to either of the BDNF SNPs in FMS. The relative distribution BDNF SNPs did not differ between FMS and HNC. The BDNF Val66Met polymorphism is not selective for FMS. The BDNF Val66Val SNP identifies a subgroup of FMS with elevated hsCRP and higher BMI. This is the first study to associate a BDNF polymorphism with a FMS subgroup phenotype.
Filho, C B; Jesse, C R; Donato, F; Giacomeli, R; Del Fabbro, L; da Silva Antunes, M; de Gomes, M G; Goes, A T R; Boeira, S P; Prigol, M; Souza, L C
2015-03-19
Our working hypothesis is that brain neurotrophins and brain Na(+),K(+)-ATPase may be strongly associated with the occurrence of depression in animals subjected to chronic unpredictable mild stress (CUMS). Still, we believe that chrysin, a natural and bioactive flavonoid found in honey and some plants, can provide satisfactory effects on antidepressant therapy. Thus, we aimed to evaluate the effect of CUMS on brain-derived neurotropic factor (BDNF) and nerve growth factor (NGF) levels as well as the Na(+),K(+)-ATPase activity in the hippocampus and prefrontal cortex of female mice. We also aimed to examine the effect of a 28-day oral treatment with chrysin (5 or 20mg/kg) in female mice subjected to CUMS, comparing to the effect of fluoxetine. Results showed that CUMS applied for 28days induced a decrease in BDNF and NGF levels as well as in the Na(+),K(+)-ATPase activity. CUMS also promoted a depressive status in the swimming forced test (FST), in the sucrose preference test, and in corticosterone levels. Chrysin (20mg/kg) and fluoxetine also occasioned the up-regulation of BDNF and NGF levels in non-stressed mice and in mice subjected to CUMS. CUMS decreased non-protein thiol (NPSH) levels and increased reactive oxygen species (ROS) levels. In response to these changes, the glutathione reductase (GR), glutathione peroxidase (GPx) and catalase (CAT) activities were increased in mice exposed to CUMS. Chrysin and fluoxetine treatments protected against all these alterations, suggesting the involvement of the antioxidant function in the antidepressant effect of chrysin and fluoxetine. In conclusion, CUMS decreased BDNF and NGF levels as well as the Na(+),K(+)-ATPase activity in mice. Chrysin presented antidepressant effect in mice on behavioral, neurotrophic and biochemistry parameters equivalent to fluoxetine. Furthermore, we suggest that the up-regulation of BDNF and NGF levels is a mechanism possibly involved in the antidepressant effect of chrysin in mice. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Kirsten, Thiago B; Queiroz-Hazarbassanov, Nicolle; Bernardi, Maria M; Felicio, Luciano F
2015-06-01
Aims: Previous investigations by our group have shown that prenatal exposure to lipopolysaccharide (LPS),which mimics infections by Gram-negative bacteria, induced autistic-like behavior. No effective treatment yet exists for autism. Therefore, we used our rat model to test a possible treatment for autism.We selected zinc as the prenatal treatment to prevent or ease the impairments induced by LPS because LPS induces hypozincaemia.Materials and methods:We evaluated the effects of LPS and zinc on female reproductive performance. Communication,which is impaired in autism,was tested in pups by ultrasonic vocalizations. Plasma levels of brain-derived neurotrophic factor (BDNF) were determined because it has been considered an autism important biomarker.Key findings: Prenatal LPS exposure reduced offspring number and treatment with zinc prevented this reduction.Moreover, pups that were prenatally exposed to LPS spent longer periods without calling their mothers, and posttreatment with zinc prevented this impairment induced by LPS to the same levels as controls. Prenatal LPS also increased BDNF levels in adult offspring, and posttreatment with zinc reduced the elevation of BDNF to the same levels as controls.Significance: BDNF hyperactivity was also found in several studies of autistic patients. Together with our previous studies, our model of prenatal LPS induced autistic-like behavioral, brain, and immune disturbances. This suggests that it is a valid rat model of autism. Prenatal zinc prevented reproductive, communication, and BDNF impairments.The present study revealed a potential beneficial effect of prenatal zinc administration for the prevention of autism with regard to the BDNF pathway.
Meng, Min; Zhao, Xinhan; Dang, Yonghui; Ma, Jingyuan; Li, Lixu; Gu, Shanzhi
2013-06-26
It is well established that brain-derived neurotrophic factor (BDNF) plays a pivotal role in brain plasticity-related processes, such as learning, memory and drug addiction. However, changes in expression of BDNF splice variants after acquisition, extinction and reinstatement of cue-elicited morphine seeking behavior have not yet been investigated. Real-time PCR was used to assess BDNF splice variants (I, II, IV and VI) in various brain regions during acquisition, extinction and reinstatement of morphine-conditioned place preference (CPP) in mice. Repeated morphine injections (10mg/kg, i.p.) increased expression of BDNF splice variants II, IV and VI in the hippocampus, caudate putamen (CPu) and nucleus accumbens (NAcc). Levels of BDNF splice variants decreased after extinction training and continued to decrease during reinstatement induced by a morphine priming injection (10mg/kg, i.p.). However, after reinstatement induced by exposure to 6 min of forced swimming (FS), expression of BDNF splice variants II, IV and VI was increased in the hippocampus, CPu, NAcc and prefrontal cortex (PFC). After reinstatement induced by 40 min of restraint, expression of BDNF splice variants was increased in PFC. These results show that exposure to either morphine or acute stress can induce reinstatement of drug-seeking, but expression of BDNF splice variants is differentially affected by chronic morphine and acute stress. Furthermore, BDNF splice variants II, IV and VI may play a role in learning and memory for morphine addiction in the hippocampus, CPu and NAcc. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.
Yang, Chunxia; Sun, Ning; Liu, Zhifen; Li, Xinrong; Xu, Yong; Zhang, Kerang
2016-03-30
Major depressive disorder (MDD) is a mental disorder that results from complex interplay between multiple and partially overlapping sets of susceptibility genes and environmental factors. The brain derived neurotrophic factor (BDNF) and Protein kinase C gamma type (PRKCG) are logical candidate genes in MDD. Among diverse environmental factors, negative life events have been suggested to exert a crucial impact on brain development. In the present study, we hypothesized that interactions between genetic variants in BDNF and PRKCG and negative life events may play an important role in the development of MDD. We recruited a total of 406 patients with MDD and 391 age- and gender-matched control subjects. Gene-environment interactions were analyzed using generalized multifactor dimensionality reduction (GMDR). Under a dominant model, we observed a significant three-way interaction among BDNF rs6265, PRKCG rs3745406, and negative life events. The gene-environment combination of PRKCG rs3745406 C allele, BDNF rs6265 G allele and high level of negative life events (C-G-HN) was significantly associated with MDD (OR, 5.97; 95% CI, 2.71-13.15). To our knowledge, this is the first report of evidence that the BDNF-PRKCG interaction may modify the relationship between negative life events and MDD in the Chinese population. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Failla, Michelle D.; Juengst, Shannon B.; Arenth, Patricia; Wagner, Amy K.
2015-01-01
Background Traumatic brain injury (TBI) often leads to mood and cognitive complications, impacting functional recovery. Understanding neurobiological alterations common in post-TBI depression (PTD) and cognition may identify novel biomarkers for TBI complications. Brain-derived neurotrophic factor (BDNF) is a likely target based on evidence of reduced BDNF signaling in experimental TBI and depression models and its role in learning and memory. Objective Evaluate BDNF as a biomarker for PTD, cognitive impairment, and functional cognition in a prospective cohort with severe TBI. Methods Participants with TBI (n=113) were evaluated for PTD (Patient Health Questionnaire-9), cognitive impairment (cognitive composite score) and functional cognition (Functional Independence Measure–Cognition, FIM-Cog). BDNF levels were measured in cerebrospinal fluid (CSF) and serum 0–6 days post-injury and in serum at 6 and 12 months post-injury. Results Serum BDNF was reduced after TBI versus controls at all time-points. Acute serum BDNF positively correlated with Memory composites (6 months: r=0.43, p=0.019, n=30; 12 months: r=0.53, p=0.005, n=26) and FIM-Memory scores (6 months: r=0.35, p=0.019, n=45; 12 months: r=0.38, p=0.018, n=38). Acute serum BDNF negatively correlated with 12 month PHQ-9 scores (r=−0.38, p=0.044, n=29). At 12 months, chronic serum BDNF tended to be lower in participants with PTD (p=0.07) and correlated with PHQ-9 scores (r=−0.41, p=0.019, n=32). Conclusions Acute BDNF associations with memory recovery may implicate hippocampal damage/degeneration. Comparatively, BDNF associations with PTD status were not as strong as associations with PTD severity. Further investigation may delineate longitudinal BDNF patterns, and BDNF responsive treatments, reflecting mood and cognitive recovery following TBI. PMID:26276123
Rajab, Nor Fadilah; Shahar, Suzana
2017-01-01
The increase of ageing population has raised public attention on the concept of successful ageing. Studies have shown that vitamin D, telomere length, and brain-derived neurotrophic factor (BDNF) have been associated with cognitive function. Therefore, this study aimed to identify neuroprotective factors for cognitive decline in different ageing groups. A total of 300 older adults aged 60 years and above were recruited in this population based cross-sectional study. Participants were categorized into three groups: mild cognitive impairment (MCI) (n = 100), usual ageing (UA) (n = 100), and successful ageing (SA) (n = 100). Dietary vitamin D intake was assessed through Diet History Questionnaire (DHQ). Out of the 300 participants, only 150 were subjected to fasting blood sample collection. These samples were used for serum vitamin D and plasma BDNF measurements. Whole blood telomere length was measured using RT-PCR method. The results show that the reduction of the risk of MCI was achieved by higher serum vitamin D level (OR: 0.96, 95% CI: 0.92–0.99, p < 0.05), higher plasma BDNF level (OR: 0.51, 95% CI: 0.30–0.88, p < 0.05), and longer telomere (OR: 0.97, 95% CI: 0.95–0.99, p < 0.001). In conclusion, participants with higher vitamin D level, higher BDNF level, and longer telomere length were more likely to age successfully. PMID:29109736
Vinberg, Maj; Trajkovska, Viktorija; Bennike, Bente; Knorr, Ulla; Knudsen, Gitte M; Kessing, Lars V
2009-10-01
Brain-derived neurotrophic factor (BDNF) and the hypothalamic-pituitary-adrenal (HPA) axis are considered to play an important role in the pathophysiology of affective disorders. The aim of the present study was to investigate whether the BDNF Val66Met polymorphism is associated with a familiar risk of affective disorder and whether these genotypes affect whole blood BDNF level and salivary cortisol. In a high-risk study, healthy monozygotic and dizygotic twins with and without a co-twin (high- and low-risk twins, respectively) history of affective disorder were identified through nationwide registers. Familiar predisposition to unipolar and bipolar disorder was not associated with any specific genotype pattern of the BDNF Val66Met polymorphism, not in this sample of 124 val/val, 58 val/met and 8 met/met individuals. However, the combination of having a high familiar risk of affective disorder and the met allele was associated with a higher whole blood BDNF (p=0.02) and a higher evening cortisol level (p=0.01), but not with awakening cortisol. Individuals at high risk of affective disorders and who are carriers of the met allele of the Val66Met polymorphism may present with an enhanced stress response. The presence of a specific genotype alone may not enhance the risk of developing an affective episode. Rather, the altered stress response may be expressed only in combination with other risk variants through interactions with the environment.
Abdelwahed, O M; Tork, O M; Gamal El Din, M M; Rashed, L; Zickri, M
2018-05-01
Brain derived neurotrophic factor (BDNF) is one of the most essential neurotrophic factors in the brain. BDNF is involved in learning, memory and locomotion suggesting it as a target in type 2 diabetes mellitus (T2DM) associated cognitive changes. Visfatin; an adipokine discovered to be expressed in the brain; was found to have multiple effects including its participation in keeping energy supply to the cell and is consequentially involved in cell survival. Its role in cognitive functions in T2DM was not studied before. Recent studies point to the possible neuro-protective mechanisms of glucagon-like peptide 1 analogue: Exendin-4 (Ex-4) in many cognitive disorders, but whether BDNF or Visfatin are involved or not in its neuro-protective mechanisms; is still unknown. to study the changes in cognitive functions in T2DM, either not treated or treated with Glucagon-like peptide 1 (GLP-1) analogue: Ex-4, and to identify the possible underlying mechanisms of these changes and whether BDNF and brain Visfatin are involved. A total of 36 adult male wistar albino rats were divided into 4 groups; Control, Exendin-4 control, Diabetic and Exendin-4 treated groups. At the end of the study, Y-maze and open field tests were done the day before scarification to assess spatial working memory and locomotion, respectively. Fasting glucose and insulin, lipid profile and tumor necrosis factor- alpha (TNF-α) were measured in the serum. Homeostasis model assessment insulin resistance was calculated. In the brain tissue, malondialdehyde (MDA) level, gene expression and protein levels of BDNF and Visfatin, area of degenerated neurons, area of glial cells and area % of synaptophysin immunoexpression were assessed. Compared with the control, the untreated diabetic rats showed insulin resistance, dyslipidemia and elevation of serum TNF-α. The brain tissue showed down-regulation of BDNF gene expression and reduction of its protein level, up-regulation of Visfatin gene expression and elevation of its protein level, increase in MDA, area of degenerated neurons and area of glial cells and reduction in area % of synaptophysin immunoexpression. These changes were paralleled with significant deterioration in spatial working memory and locomotion. Treatment of diabetic rats with Ex-4 reversed all these changes. T2DM has a negative impact on cognitive functions through different pathological and subcellular mechanisms. The current study provides evidence for involvement of BDNF and brain Visfatin in T2DM- associated cognitive dysfunction. BDNF and brain Visfatin were also found to contribute to the neuro-protective effect of Ex-4 via modulation of inflammation, oxidative stress, neuro-degeneration and synaptic function. Copyright © 2018 Elsevier Inc. All rights reserved.
Jamal, Mostofa; Ameno, Kiyoshi; Ruby, Mostofa; Miki, Takanori; Tanaka, Naoko; Nakamura, Yu; Kinoshita, Hiroshi
2013-11-20
Neurotrophins, including nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), play an important role in the maintenance of cholinergic-neuron function. The objective of this study was to investigate whether ethanol (EtOH)- and acetaldehyde (AcH)- induced cholinergic effects would cause neurotrophic alterations in the hippocampus of mice. We used Aldh2 knockout (Aldh2-KO) mice, a model of aldehyde dehydrogenase 2 (ALDH2)-deficiency in humans, to examine the effects of acute administration of EtOH and the role of AcH. Hippocampal slices were collected and the mRNA and protein levels of choline acetyltransferase (ChAT), acetylcholinesterase (AChE), NGF and BDNF were analyzed 30 min after the i.p. administration of EtOH (0.5, 1.0, or 2.0 g/kg). We show that treatment with 2.0 g/kg of EtOH decreased ChAT mRNA and protein levels in Aldh2-KO mice but not in wild-type (WT) mice, which suggests a role for AcH in the mechanism of action of EtOH. The administration of 2.0 g/kg of EtOH increased AChE mRNA in both strains of mice. EtOH failed to change the levels of NGF or BDNF at any dose. Aldh2-KO mice exhibited a distinctly lower expression of ChAT and a higher expression of NGF both at mRNA and protein levels in the hippocampus compared with WT mice. Our observations suggest that administration of EtOH and elevated AcH can alter cholinergic markers in the hippocampus of mice, and this effect did not change the levels of NGF or BDNF. © 2013 Elsevier B.V. All rights reserved.
Xin, Jian; Ma, Ling; Zhang, Tian-Yi; Yu, Hui; Wang, Yue; Kong, Liang; Chen, Zhe-Yu
2014-05-21
Brain-derived neurotrophic factor (BDNF) and its receptor, tropomyosin-related kinase receptor B (TrkB), play a critical role in memory extinction. However, the detailed role of BDNF in memory extinction on the basis of neural circuit has not been fully understood. Here, we aim to investigate the role of BDNF signaling circuit in mediating conditioned taste aversion (CTA) memory extinction of the rats. We found region-specific changes in BDNF gene expression during CTA extinction. CTA extinction led to increased BDNF gene expression in the basolateral amygdala (BLA) and infralimbic prefrontal cortex (IL) but not in the central amygdaloid nucleus (CeA) and hippocampus (HIP). Moreover, blocking BDNF signaling or exogenous microinjection of BDNF into the BLA or IL could disrupt or enhance CTA extinction, which suggested that BDNF signaling in the BLA and IL is necessary and sufficient for CTA extinction. Interestingly, we found that microinjection of BDNF-neutralizing antibody into the BLA could abolish the extinction training-induced BDNF mRNA level increase in the IL, but not vice versa, demonstrating that BDNF signaling is transmitted from the BLA to IL during extinction. Finally, the accelerated extinction learning by infusion of exogenous BDNF in the BLA could also be blocked by IL infusion of BDNF-neutralizing antibody rather than vice versa, indicating that the IL, but not BLA, is the primary action site of BDNF in CTA extinction. Together, these data suggest that BLA-IL circuit regulates CTA memory extinction by identifying BDNF as a key regulator. Copyright © 2014 the authors 0270-6474/14/347302-12$15.00/0.
Gao, Xiu-ping; Liu, Qiuli; Nair, Bindu; Wong-Riley, Margaret T.T.
2014-01-01
Previously, our electrophysiological studies revealed a transient imbalance between suppressed excitation and enhanced inhibition in hypoglossal motoneurons of rats on postnatal days (P) 12–13, a critical period when abrupt neurochemical, metabolic, ventilatory, and physiological changes occur in the respiratory system. The mechanism underlying the imbalance is poorly understood. We hypothesized that the imbalance was contributed by a reduced expression of brain-derived neurotrophic factor (BDNF), which normally enhances excitation and suppresses inhibition. We also hypothesized that exogenous BDNF would partially reverse this synaptic imbalance. Immunohistochemistry/single neuron optical densitometry, real-time quantitative polymerase chain reaction, and whole-cell patch-clamp recordings were done on hypoglossal motoneurons in brain stem slices of rats during the first three postnatal weeks. Our results indicated that: 1) the levels of BDNF and its high-affinity TrkB receptor mRNAs and proteins were relatively high during the first 1-1½ postnatal weeks, but dropped precipitously at P12–13 before rising again afterwards; 2) exogenous BDNF significantly increased the normally lowered frequency of spontaneous excitatory postsynaptic currents (sEPSCs) but decreased the normally heightened amplitude and frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) during the critical period; 3) exogenous BDNF also decreased the normally heightened frequency of miniature IPSCs (mIPSCs) at P12–13; and 4) the effect of exogenous BDNF was partially blocked by K252a, a TrkB receptor antagonist. Thus, our results are consistent with our hypothesis that BDNF and TrkB play an important role in the synaptic imbalance during the critical period. This may have significant implications for the mechanism underlying Sudden Infant Death Syndrome (SIDS). PMID:24666389
Yoneda, Mitsugu; Sugimoto, Naotoshi; Katakura, Masanori; Matsuzaki, Kentaro; Tanigami, Hayate; Yachie, Akihiro; Ohno-Shosaku, Takako; Shido, Osamu
2017-01-01
Theobromine, which is a caffeine derivative, is the primary methylxanthine produced by Theobroma cacao. Theobromine works as a phosphodiesterase (PDE) inhibitor to increase intracellular cyclic adenosine monophosphate (cAMP). cAMP activates the cAMP-response element-binding protein (CREB), which is involved in a large variety of brain processes, including the induction of the brain-derived neurotrophic factor (BDNF). BDNF supports cell survival and neuronal functions, including learning and memory. Thus, cAMP/CREB/BDNF pathways play an important role in learning and memory. Here, we investigated whether orally administered theobromine could act as a PDE inhibitor centrally and affect cAMP/CREB/BDNF pathways and learning behavior in mice. The mice were divided into two groups. The control group (CN) was fed a normal diet, whereas the theobromine group (TB) was fed a diet supplemented with 0.05% theobromine for 30 days. We measured the levels of theobromine, phosphorylated vasodilator-stimulated phosphoprotein (p-VASP), phosphorylated CREB (p-CREB), and BDNF in the brain. p-VASP was used as an index of cAMP increases. Moreover, we analyzed the performance of the mice on a three-lever motor learning task. Theobromine was detectable in the brains of TB mice. The brain levels of p-VASP, p-CREB, and BDNF were higher in the TB mice compared with those in the CN mice. In addition, the TB mice performed better on the three-lever task than the CN mice did. These results strongly suggested that orally administered theobromine acted as a PDE inhibitor in the brain, and it augmented the cAMP/CREB/BDNF pathways and motor learning in mice. Copyright © 2016 Elsevier Inc. All rights reserved.
Rothman, S. M.; Mattson, M. P.
2013-01-01
During development of the nervous system, the formation of connections (synapses) between neurons is dependent upon electrical activity in those neurons, and neurotrophic factors produced by target cells play a pivotal role in such activity-dependent sculpting of the neural networks. A similar interplay between neurotransmitter and neurotrophic factor signaling pathways mediates adaptive responses of neural networks to environmental demands in adult mammals, with the excitatory neurotransmitter glutamate and brain-derived neurotrophic factor (BDNF) being particularly prominent regulators of synaptic plasticity throughout the central nervous system. Optimal brain health throughout the lifespan is promoted by intermittent challenges such as exercise, cognitive stimulation and dietary energy restriction, that subject neurons to activity-related metabolic stress. At the molecular level, such challenges to neurons result in the production of proteins involved in neurogenesis, learning and memory and neuronal survival; examples include proteins that regulate mitochondrial biogenesis, protein quality control, and resistance of cells to oxidative, metabolic and proteotoxic stress. BDNF signaling mediates up-regulation of several such proteins including the protein chaperone GRP-78, antioxidant enzymes, the cell survival protein Bcl-2, and the DNA repair enzyme APE1. Insufficient exposure to such challenges, genetic factors may conspire to impair BDNF production and/or signaling resulting in the vulnerability of the brain to injury and neurodegenerative disorders including Alzheimer’s, Parkinson’s and Huntington’s diseases. Further, BDNF signaling is negatively regulated by glucocorticoids. Glucocorticoids impair synaptic plasticity in the brain by negatively regulating spine density, neurogenesis and long-term potentiation, effects that are potentially linked to glucocorticoid regulation of BDNF. Findings suggest that BDNF signaling in specific brain regions mediates some of the beneficial effects of exercise and energy restriction on peripheral energy metabolism and the cardiovascular system. Collectively, the findings described in this article suggest the possibility of developing prescriptions for optimal brain health based on activity-dependent BDNF signaling. PMID:23079624
Xu, Danfeng; Lian, Di; Wu, Jing; Liu, Ying; Zhu, Mingjie; Sun, Jiaming; He, Dake; Li, Ling
2017-08-04
Streptococcus pneumoniae meningitis is a serious inflammatory disease of the central nervous system (CNS) and is associated with high morbidity and mortality rates. The inflammatory processes initiated by recognition of bacterial components contribute to apoptosis in the hippocampal dentate gyrus. Brain-derived neurotrophic factor (BDNF) has long been recommended for the treatment of CNS diseases due to its powerful neuro-survival properties, as well as its recently reported anti-inflammatory and anti-apoptotic effects in vitro and in vivo. In this study, we investigated the effects of BDNF-related signaling on the inflammatory response and hippocampal apoptosis in experimental models of pneumococcal meningitis. Pretreatment with exogenous BDNF or the tropomyosin-receptor kinase B (TrkB) inhibitor k252a was performed to assess the activation or inhibition of the BDNF/TrkB-signaling axis prior to intracisternal infection with live S. pneumoniae. At 24 h post-infection, rats were assessed for clinical severity and sacrificed to harvest the brains. Paraffin-embedded brain sections underwent hematoxylin and eosin staining to evaluate pathological severity, and cytokine and chemokine levels in the hippocampus and cortex were evaluated by enzyme-linked immunosorbent assay. Additionally, apoptotic neurons were detected in the hippocampal dentate gyrus by terminal deoxynucleotidyl transferase dUTP-nick-end labeling, key molecules associated with the related signaling pathway were analyzed by real-time polymerase chain reaction and western blot, and the DNA-binding activity of nuclear factor kappa B (NF-κB) was measured by electrophoretic mobility shift assay. Rats administered BDNF exhibited reduced clinical impairment, pathological severity, and hippocampal apoptosis. Furthermore, BDNF pretreatment suppressed the expression of inflammatory factors, including tumor necrosis factor α, interleukin (IL)-1β, and IL-6, and increased the expression of the anti-inflammatory factor IL-10. Moreover, BDNF pretreatment increased TrkB expression, activated downstream phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling, and inhibited the myeloid differentiation primary response gene 88 (MyD88)/NF-κB-signaling pathway. These data suggested that BDNF administration exerted anti-inflammatory and anti-apoptotic effects on an experimental pneumococcal meningitis model via modulation of MyD88/NF-κB- and PI3K/AKT-signaling pathways. Our results indicated that treatment with exogenous BDNF might constitute a potential therapeutic strategy for the treatment of bacterial meningitis.
The Neuroprotective Role of Acupuncture and Activation of the BDNF Signaling Pathway
Lin, Dong; De La Pena, Ike; Lin, Lili; Zhou, Shu-Feng; Borlongan, Cesar V.; Cao, Chuanhai
2014-01-01
Recent studies have been conducted to examine the neuroprotective effects of acupuncture in many neurological disorders. Although the neuroprotective effects of acupuncture has been linked to changes in signaling pathways, accumulating evidence suggest the participation of endogenous biological mediators, such as the neurotrophin (NT) family of proteins, specifically, the brain derived neurotrophic factor (BDNF). Accordingly, acupuncture can inhibit neurodegeneration via expression and activation of BDNF. Moreover, recent studies have reported that acupuncture can increase ATP levels at local stimulated points. We have also demonstrated that acupuncture could activate monocytes and increase the expression of BDNF via the stimulation of ATP. The purpose of this article is to review the recent findings and ongoing studies on the neuroprotective roles of acupuncture and therapeutic implications of acupuncture-induced activation of BDNF and its signaling pathway. PMID:24566146
Corominas-Roso, Margarida; Roncero, Carlos; Daigre, Constanza; Grau-Lopez, Lara; Ros-Cucurull, Elena; Rodríguez-Cintas, Laia; Sanchez-Mora, Cristina; Lopez, Maria Victoria; Ribases, Marta; Casas, Miguel
2015-02-28
Brain-derived neurotrophic factor (BDNF) is involved in cocaine craving in humans and drug seeking in rodents. Based on this, the aim of this study was to explore the possible role of serum BDNF in cocaine relapse in abstinent addicts. Forty cocaine dependent subjects (DSM-IV criteria) were included in an inpatient 2 weeks abstinence program. Organic and psychiatric co-morbidities were excluded. Two serum samples were collected for each subject at baseline and at after 14 abstinence days. After discharge, all cocaine addicts underwent a 22 weeks follow-up, after which they were classified into early relapsers (ER) (resumed during the first 14 days after discharge,) or late relapsers (LR) (resumed beyond 14 days after discharge). The only clinical differences between groups were the number of consumption days during the last month before detoxification. Serum BDNF levels increased significantly across the 12 days of abstinence in the LR group (p=0.02), whereas in the ER group BDNF remained unchanged. In the ER group, the change of serum BDNF during abstinence negatively correlated with the improvement in depressive symptoms (p=0.02). These results suggest that BDNF has a role in relapse to cocaine consumption in abstinent addicts, although the underlying neurobiological mechanisms remain to be clarified. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
ProBDNF inhibits collective migration and chemotaxis of rat Schwann cells.
Ding, You-Quan; Li, Xuan-Yang; Xia, Guan-Nan; Ren, Hong-Yi; Zhou, Xin-Fu; Su, Bing-Yin; Qi, Jian-Guo
2016-10-01
Schwann cell migration, including collective migration and chemotaxis, is essential for the formation of coordinate interactions between Schwann cells and axons during peripheral nerve development and regeneration. Moreover, limited migration of Schwann cells imposed a serious obstacle on Schwann cell-astrocytes intermingling and spinal cord repair after Schwann cell transplantation into injured spinal cords. Recent studies have shown that mature brain-derived neurotrophic factor, a member of the neurotrophin family, inhibits Schwann cell migration. The precursor form of brain-derived neurotrophic factor, proBDNF, was expressed in the developing or degenerating peripheral nerves and the injured spinal cords. Since "the yin and yang of neurotrophin action" has been established as a common sense, proBDNF would be expected to promote Schwann cell migration. However, we found, in the present study, that exogenous proBDNF also inhibited in vitro collective migration and chemotaxis of RSC 96 cells, a spontaneously immortalized rat Schwann cell line. Moreover, proBDNF suppressed adhesion and spreading of those cells. At molecular level, proBDNF inhibits F-actin polymerization and focal adhesion dynamics in cultured RSC 96 cells. Therefore, our results suggested a special case against the classical opinion of "the yin and yang of neurotrophin action" and implied that proBDNF might modulate peripheral nerve development or regeneration and spinal cord repair through perturbing native or transplanted Schwann cell migration. Copyright © 2016 Elsevier Ltd. All rights reserved.
Liu, Xuemei; Qian, Xin; Xing, Jing; Wang, Jinhua; Sun, Yixuan; Wang, Qin'geng; Li, Huiming
2018-04-23
Particulate matter (PM) exposure may contribute to depressive-like response in mice. However, few studies have evaluated the adaptive impacts of long-term PM exposure on depressive-like response associated with systemic inflammation and brain-derived neurotrophic factor (BDNF) signaling pathway. We studied the association among depressive-like behaviors, mRNA levels of pro- and anti-inflammatory cytokines, and the expression of BDNF signaling pathway in mice by long-term PM exposure. C57BL/6 male mice were exposed to ambient air alongside control mice breathing air filtered through a high-efficiency air PM (HEPA) filter. Depressive-like behaviors were assessed together with pro-inflammatory, anti-inflammatory cytokine mRNA levels and the modulation of BDNF pathway in hippocampus and olfactory-bulb of mice exposed to PM for 4, 8, and 12 weeks. Exposure to HEPA filtered air for 4 weeks may exert antidepressant like effects in mice. Pro-inflammatory cytokines were up-regulated while the expression of BDNF, its high-affinity receptor tropomyosin-related kinase B (TrkB), and the transcription factor cAMP-response-element binding protein (CREB) were down-regulated in ambient air mice. However, after 8 weeks, there was no significant difference in the rate of depressive-like behaviors between the two groups. After 12 weeks, mice exposed to ambient air again had a higher rate of depressive-like behaviors, significant up-regulation of pro-inflammatory cytokines, down-regulation of interleukin-10 (IL-10), BDNF, TrkB, and CREB than HEPA mice. Ultrafine PM in brain tissues of mice exposed to ambient air was observed. Our results suggest continuous high-level PM exposure alters the depressive-like response in mice and induces a damage-repair-imbalance reaction.
Alomari, Mahmoud A; Khabour, Omar F; Alzoubi, Karem H; Alzubi, Mohammad A
2013-06-15
Multiple evidence suggest the importance of exercise for cognitive and brain functions. Few studies however, compared the behavioral and neural adaptations to force versus voluntary exercise training. Therefore, spatial learning and memory formation and brain-derived neurotrophic factor (BDNF) were examined in Wister male rats after 6 weeks of either daily forced swimming, voluntary running exercises, or sedentary. Learning capabilities and short, 5-hour, and long term memories improved (p<0.05) similarly in the exercise groups, without changes (p>0.05) in the sedentary. Likewise, both exercises resulted in increased (p<0.05) hippocampal BDNF level. The results suggest that forced and voluntary exercises can similarly enhance cognitive- and brain-related tasks, seemingly vie the BDNF pathway. These data further confirm the health benefits of exercise and advocate both exercise modalities to enhance behavioral and neural functions. Copyright © 2013 Elsevier B.V. All rights reserved.
Taste Bud-Derived BDNF Is Required to Maintain Normal Amounts of Innervation to Adult Taste Buds123
Meng, Lingbin; Ohman-Gault, Lisa; Ma, Liqun
2015-01-01
Abstract Gustatory neurons transmit chemical information from taste receptor cells, which reside in taste buds in the oral cavity, to the brain. As adult taste receptor cells are renewed at a constant rate, nerve fibers must reconnect with new taste receptor cells as they arise. Therefore, the maintenance of gustatory innervation to the taste bud is an active process. Understanding how this process is regulated is a fundamental concern of gustatory system biology. We speculated that because brain-derived neurotrophic factor (BDNF) is required for taste bud innervation during development, it might function to maintain innervation during adulthood. If so, taste buds should lose innervation when Bdnf is deleted in adult mice. To test this idea, we first removed Bdnf from all cells in adulthood using transgenic mice with inducible CreERT2 under the control of the Ubiquitin promoter. When Bdnf was removed, approximately one-half of the innervation to taste buds was lost, and taste buds became smaller because of the loss of taste bud cells. Individual taste buds varied in the amount of innervation each lost, and those that lost the most innervation also lost the most taste bud cells. We then tested the idea that that the taste bud was the source of this BDNF by reducing Bdnf levels specifically in the lingual epithelium and taste buds. Taste buds were confirmed as the source of BDNF regulating innervation. We conclude that BDNF expressed in taste receptor cells is required to maintain normal levels of innervation in adulthood. PMID:26730405
Taste Bud-Derived BDNF Is Required to Maintain Normal Amounts of Innervation to Adult Taste Buds.
Meng, Lingbin; Ohman-Gault, Lisa; Ma, Liqun; Krimm, Robin F
2015-01-01
Gustatory neurons transmit chemical information from taste receptor cells, which reside in taste buds in the oral cavity, to the brain. As adult taste receptor cells are renewed at a constant rate, nerve fibers must reconnect with new taste receptor cells as they arise. Therefore, the maintenance of gustatory innervation to the taste bud is an active process. Understanding how this process is regulated is a fundamental concern of gustatory system biology. We speculated that because brain-derived neurotrophic factor (BDNF) is required for taste bud innervation during development, it might function to maintain innervation during adulthood. If so, taste buds should lose innervation when Bdnf is deleted in adult mice. To test this idea, we first removed Bdnf from all cells in adulthood using transgenic mice with inducible CreERT2 under the control of the Ubiquitin promoter. When Bdnf was removed, approximately one-half of the innervation to taste buds was lost, and taste buds became smaller because of the loss of taste bud cells. Individual taste buds varied in the amount of innervation each lost, and those that lost the most innervation also lost the most taste bud cells. We then tested the idea that that the taste bud was the source of this BDNF by reducing Bdnf levels specifically in the lingual epithelium and taste buds. Taste buds were confirmed as the source of BDNF regulating innervation. We conclude that BDNF expressed in taste receptor cells is required to maintain normal levels of innervation in adulthood.
Fumagalli, Fabio; Calabrese, Francesca; Luoni, Alessia; Shahid, Mohammed; Racagni, Giorgio; Riva, Marco A
2012-02-01
Brain derived neurotrophic factor (BDNF) is a key mediator of brain plasticity. The modulation of its expression and function is important for cognition and represents a key strategy to enhance neuronal resilience. Within this context, there exists a close interaction between glutamatergic neurotransmission and BDNF activity towards regulating cellular homeostasis and plasticity. The aim of the current study was to investigate the ability of the AMPA receptor potentiator Org 26576 to modulate BDNF expression in selected brain regions under basal conditions or in response to an acute swim stress. Rats subjected to a single intraperitoneal injection with Org 26576 (10mg/kg) or saline were exposed to a swim stress session (5 min) and sacrificed 15 min after the end of stress. Real-time PCR assay was used to determine changes in BDNF transcription in different brain regions. Total BDNF mRNA levels were significantly increased in the hippocampus of animals exposed to the combination of Org 26576 and stress whereas, in prefrontal and frontal cortices, BDNF mRNA levels were modulated by the acute stress, independently from drug treatment. The analysis of BDNF transcripts in the hippocampus revealed a major contribution of exons I and IV. Our results suggest that AMPA receptor potentiation by Org 26576 exerts a positive modulatory influence on BDNF expression during ongoing neuronal activity. Given that these mechanisms are critical for neuronal plasticity, we hypothesized that such changes may facilitate learning/coping mechanisms associated with a mild stressful experience. Copyright © 2011 Elsevier Ltd. All rights reserved.
Bazak, Noam; Kozlovsky, Nitsan; Kaplan, Zeev; Matar, Michael; Golan, Hava; Zohar, Joseph; Richter-Levin, Gal; Cohen, Hagit
2009-07-01
Early-life stress produces a cascade of neurobiological events that cause enduring changes in neural plasticity and synaptic efficacy that appear to play pivotal roles in the pathophysiology of post-traumatic stress disorder (PTSD). Brain-derived neurotrophic factor (BDNF) has been implicated in the neurobiological mechanisms of these changes, in interaction with components of the stress response, such as corticosterone. This study examined the consequences of juvenile stress for behavior during adulthood in association with circulating corticosterone levels and BDNF expression. The experiments examined single exposure to predator scent stress (soiled cat litter for 10 min) as compared to repeated exposure, early in life and later on. Behavioral responses were assessed in the elevated plus maze and the acoustic startle response paradigms at 28, 60 and 90 days of age. Plasma corticosterone was measured and brain areas analyzed for BDNF levels. The results show that juvenile stress exposure increased anxiety-like behavior and startle amplitude and decreased plasma corticosterone. This response was seen immediately after exposure and also long term. Adult stress exposure increased anxiety-like behavior, startle amplitude and plasma corticosterone. Exposure to both early and later life trauma elicited reduced levels of corticosterone following the initial exposure, which were not raised by re-exposure, and elicited significant downregulation of BDNF mRNA and protein levels in the hippocampus CA1 subregion. The consequences of adult stress exposure were more severe in rats were exposed to the same stressor as juveniles, indicated increased vulnerability. The results suggest that juvenile stress has resounding effects in adulthood reflected in behavioral responses. The concomitant changes in BDNF and corticosterone levels may mediate the changes in neural plasticity and synaptic functioning underlying clinical manifestations of PTSD.
Wu, Chia-Lin; Chen, Chien-Hui; Hwang, Chi-Shin; Chen, Shang-Der; Hwang, Wei-Chao; Yang, Ding-I
2017-03-01
Previously, we have reported that pre-conditioning of primary rat cortical neurons with brain-derived neurotrophic factor (BDNF) may exert neuroprotective effects against 3-nitropropionic acid (3-NP), a mitochondrial complex II inhibitor. However, the underlying mechanisms, especially potential involvements of autophagy, remain elusive. In this work, we tested the hypothesis that BDNF may suppress 3-NP-induced autophagy to exert its neuroprotective effects by inducing the expression of p62/sequestosome-1 in primary cortical neurons. We found that 3-NP increased total level of microtubule-associated protein 1A/1B-light chain (LC)-3 as well as the LC3-II/LC3-I ratio, an index of autophagy, in primary cortical neurons. BDNF decreased LC3-II/LC3-I ratio and time-dependently induced expression of p62. Knockdown of p62 by siRNA restored LC3-II/LC3-I ratio and increased total LC3 levels associated with BDNF exposure; p62 knockdown also abolished BDNF-dependent neuroprotection against 3-NP. Upstream of p62, we found that BDNF triggered phosphorylation of mammalian target of rapamycin (mTOR) and its downstream mediator p70S6K; importantly, the mTOR inhibitor rapamycin reduced both BDNF-dependent p62 induction as well as 3-NP resistance. BDNF is known to induce c-Jun in cortical neurons. We found that c-Jun knockdown in part attenuated BDNF-mediated p62 induction, whereas p62 knockdown had no significant effects on c-Jun expression. In addition to suppressing p62 induction, rapamycin also partially suppressed BDNF-induced c-Jun expression, but c-Jun knockdown failed to affect mTOR activation. Together, our results suggested that BDNF inhibits 3-NP-induced autophagy via, at least in part, mTOR/c-Jun-dependent induction of p62 expression, together contributing to neuroprotection against mitochondrial inhibition. © 2016 International Society for Neurochemistry.
Neurobiology of suicidal behaviour.
Pjevac, Milica; Pregelj, Peter
2012-10-01
It is known that suicidal behaviour has multiple causes. If triggers could be mainly attributed to environmental factors, predisposition could be associated with early stressors on one side such as childhood adversities and genetic predisposition. No convincing animal model of suicide has been produced to date. The study of endophenotypes has been proposed as a good strategy to overcome the methodological difficulties. However, research in suicidal behaviours using endophenotypes entrails important methodological problems. Further, serotoninergic system was studied in patients with suicidal behaviour primary due to its involvement of serotonin in impulsive-aggressive behaviour, which has been shown to be a major risk factor in suicidal behaviour. Not only on the level of neurotransmitters but also the regulation of neurotropic factors could be impaired in suicide victims. Multiple lines of evidence including studies of levels of BDNF in blood cells and plasma of suicidal patients, postmortem brain studies in suicidal subjects with or without depression, and genetic association studies linking BDNF to suicide suggest that suicidal behaviour may be associated with a decrease in BDNF functioning. It seems that especially specific gene variants regulating the serotoninergic system and other neuronal systems involved in stress response are associated with suicidal behaviour. Most genetic studies on suicidal behaviour have considered a small set of functional polymorphisms relevant mostly to monoaminergic neurotransmission. However, genes and epigenetic mechanisms involved in regulation of other factors such as BDNF seem to be even more relevant for further research.
Maass, Anne; Düzel, Sandra; Brigadski, Tanja; Goerke, Monique; Becke, Andreas; Sobieray, Uwe; Neumann, Katja; Lövdén, Martin; Lindenberger, Ulman; Bäckman, Lars; Braun-Dullaeus, Rüdiger; Ahrens, Dörte; Heinze, Hans-Jochen; Müller, Notger G; Lessmann, Volkmar; Sendtner, Michael; Düzel, Emrah
2016-05-01
Animal models point towards a key role of brain-derived neurotrophic factor (BDNF), insulin-like growth factor-I (IGF-I) and vascular endothelial growth factor (VEGF) in mediating exercise-induced structural and functional changes in the hippocampus. Recently, also platelet derived growth factor-C (PDGF-C) has been shown to promote blood vessel growth and neuronal survival. Moreover, reductions of these neurotrophic and angiogenic factors in old age have been related to hippocampal atrophy, decreased vascularization and cognitive decline. In a 3-month aerobic exercise study, forty healthy older humans (60 to 77years) were pseudo-randomly assigned to either an aerobic exercise group (indoor treadmill, n=21) or to a control group (indoor progressive-muscle relaxation/stretching, n=19). As reported recently, we found evidence for fitness-related perfusion changes of the aged human hippocampus that were closely linked to changes in episodic memory function. Here, we test whether peripheral levels of BDNF, IGF-I, VEGF or PDGF-C are related to changes in hippocampal blood flow, volume and memory performance. Growth factor levels were not significantly affected by exercise, and their changes were not related to changes in fitness or perfusion. However, changes in IGF-I levels were positively correlated with hippocampal volume changes (derived by manual volumetry and voxel-based morphometry) and late verbal recall performance, a relationship that seemed to be independent of fitness, perfusion or their changes over time. These preliminary findings link IGF-I levels to hippocampal volume changes and putatively hippocampus-dependent memory changes that seem to occur over time independently of exercise. We discuss methodological shortcomings of our study and potential differences in the temporal dynamics of how IGF-1, VEGF and BDNF may be affected by exercise and to what extent these differences may have led to the negative findings reported here. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Griesbach, Grace S; Tio, Delia L; Vincelli, Jennifer; McArthur, David L; Taylor, Anna N
2012-05-01
Voluntary exercise increases levels of brain-derived neurotrophic factor (BDNF) after traumatic brain injury (TBI) when it occurs during a delayed time window. In contrast, acute post-TBI exercise does not increase BDNF. It is well known that increases in glucocorticoids suppress levels of BDNF. Moreover, recent work from our laboratory showed that there is a heightened stress response after fluid percussion injury (FPI). In order to determine if a heightened stress response is also observed with acute exercise, at post-injury days 0-4 and 7-11, corticosterone (CORT) and adrenocorticotropic hormone (ACTH) release were measured in rats running voluntarily or exposed to two daily 20-min periods of forced running wheel exercise. Forced, but not voluntary exercise, continuously elevated CORT. ACTH levels were initially elevated with forced exercise, but decreased by post-injury day 7 in the control, but not the FPI animals. As previously reported, voluntary exercise did not increase BDNF in the FPI group as it did in the control animals. Forced exercise did not increase levels of BDNF in any group. It did, however, decrease hippocampal glucocorticoid receptors in the control group. The results suggest that exercise regimens with strong stress responses may not be beneficial during the early post-injury period.
Gupta, S K; Mishra, R; Kusum, S; Spedding, M; Meiri, K F; Gressens, P; Mani, S
2009-04-01
Positive alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor modulators include benzamide compounds that allosterically modulate AMPA glutamate receptors. These small molecules that cross the blood-brain barrier have been shown to act as a neuroprotectant by increasing the levels of endogenous brain-derived neurotrophic factor (BDNF). Positive AMPA receptor modulators have also been shown to increase the levels of growth-associated protein-43 (GAP-43). GAP-43 plays a major role in many aspects of neuronal function in vertebrates. The goal of this study was to determine whether GAP-43 was important in mediating the actions of positive AMPA receptor modulator (S18986) and BDNF. Using cortical cultures from GAP-43 knockout and control mice, we show that (1) GAP-43 is upregulated in response to S18986 and BDNF in control cultures; (2) this upregulation of GAP-43 is essential for mediating the neuroprotective effects of S18986 and BDNF; (3) administration of S18986 and BDNF leads to an increase in the expression of the glutamate transporters GLT-1 and GLAST that are key to limiting excitotoxic cell death and this increase in GLT-1 and GLAST expression is completely blocked in the absence of GAP-43. Taken together this study concludes that GAP-43 is an important mediator of the neurotrophic effects of S18986 and BDNF on neuronal survival and plasticity, and is essential for the success of positive AMPA receptor modulator-BDNF-based neurotrophin therapy.
Adachi, Naoki; Yoshimura, Aya; Chiba, Shuichi; Ogawa, Shintaro; Kunugi, Hiroshi
2018-01-01
Brain-derived neurotrophic factor (BDNF) critically controls the fate and function of the neuronal network and has received much attention as a target of many brain diseases. Dopaminergic system dysfunction has also been implicated in a variety of neuropsychiatric diseases. Rotigotine, a non-ergot dopamine receptor agonist, is used in the treatment of Parkinson's disease and restless legs syndrome. To investigate the effects of rotigotine on neuronal functions both in vivo and in vitro, rats and primary cortical neurons were administered rotigotine, and the mRNA and protein expression levels of BDNF, its receptor TrkB and downstream signaling molecules, and synaptic proteins were determined. We found that BDNF protein was increased in the cortex and hippocampus of rats after 7days of rotigotine treatment. In contrast, BDNF mRNAs were reduced 6h after rotigotine treatment in cultured neurons presumably through the transient suppression of neuronal activity. We identified differential expression of D1, D2, and D3 receptors in the rat brain and cultured neurons. The observed increase in the expression of BDNF protein in the cortex and hippocampus after subchronic administration of rotigotine suggests that it may exert its medical effect in part through improving BDNF function in the brain. In addition, our results highlight the complex relationships between rotigotine and BDNF expression, which depend on the brain region, time course, and dose of the drug. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Kaess, Bernhard M; Preis, Sarah R; Lieb, Wolfgang; Beiser, Alexa S; Yang, Qiong; Chen, Tai C; Hengstenberg, Christian; Erdmann, Jeanette; Schunkert, Heribert; Seshadri, Sudha; Vasan, Ramachandran S; Assimes, Themistocles L; Deloukas, Panos; Holm, Hilma; Kathiresan, Sekar; König, Inke R; McPherson, Ruth; Reilly, Muredach P; Roberts, Robert; Samani, Nilesh J; Stewart, Alexandre F R
2015-03-11
Brain-derived neurotrophic factor (BDNF) is a pleiotropic peptide involved in maintaining endothelial integrity. It is unknown if circulating BDNF levels are associated with risk of cardiovascular disease (CVD). We prospectively investigated the association of circulating BDNF levels with cardiovascular events and mortality in 3687 participants (mean age 65 years, 2068 women) from the Framingham Heart Study (FHS). Using a common nonsynonomous single nucleotide polymorphism (SNP) in the BDNF gene (rs6265), we then performed a Mendelian randomization experiment in the CARDIoGRAM (Coronary ARtery DIsease Genome-Wide Replication And Meta-Analysis) consortium (>22,000 coronary artery disease [CAD] cases, >60,000 controls) to investigate whether SNP rs6265 was associated with CAD in CARDIoGRAM and, if so, whether the effect estimate differed from that predicted based on FHS data. On follow-up (median 8.9 years), 467 individuals (261 women) in FHS experienced a CVD event, and 835 (430 women) died. In multivariable-adjusted Cox regression, serum BDNF was associated inversely with CVD risk (hazard ratio [HR] per 1-SD increase 0.88, 95% CI 0.80 to 0.97, P=0.01) and with mortality (HR 0.87, 95% CI 0.80 to 0.93, P=0.0002). SNP rs6265 was associated with BDNF concentrations (0.772 ng/mL increase per minor allele copy) in FHS. In CARDIoGRAM, SNP rs6265 was associated with CAD (odds ratio 0.957, 95% CI 0.923 to 0.992), a magnitude consistent with the predicted effect (HR per minor allele copy 0.99, 95% CI 0.98 to 1.0; P=0.06 for difference between predicted and observed effect). Higher serum BDNF is associated with a decreased risk of CVD and mortality. Mendelian randomization suggests a causal protective role of BDNF in the pathogenesis of CVD. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
Macedo, I C; Rozisky, J R; Oliveira, C; Oliveira, C M; Laste, G; Nonose, Y; Santos, V S; Marques, P R; Ribeiro, M F M; Caumo, W; Torres, I L S
2015-06-01
Chronic stress, whether associated with obesity or not, leads to different neuroendocrine and psychological changes. Obesity or being overweight has become one of the most serious worldwide public health problems. Additionally, it is related to a substantial increase in daily energy intake, which results in substituting nutritionally adequate meals for snacks. This metabolic disorder can lead to morbidity, mortality, and reduced quality of life. On the other hand, brain-derived neurotrophic factor (BDNF) is widely expressed in all brain regions, particularly in the hypothalamus, where it has important effects on neuroprotection, synaptic plasticity, mammalian food intake-behavior, and energy metabolism. BDNF is involved in many activities modulated by the hypothalamic-pituitary-adrenal (HPA) axis. Therefore, this study aims to evaluate the effect of obesity associated with chronic stress on the BDNF central levels of rats. Obesity was controlled by analyzing the animals' caloric intake and changes in body weight. As a stress parameter, we analyzed the relative adrenal gland weight. We found that exposure to chronic restraint stress during 12 weeks increases the adrenal gland weight, decreases the BDNF levels in the hippocampus and is associated with a decrease in the calorie and sucrose intake, characterizing anhedonia. These effects can be related stress, a phenomenon that induces depression-like behavior. On the other hand, the rats that received the hypercaloric diet had an increase in calorie intake and became obese, which was associated with a decrease in hypothalamus BDNF levels. Copyright © 2015. Published by Elsevier Ltd.
Mueller, Karsten; Arelin, Katrin; Möller, Harald E; Sacher, Julia; Kratzsch, Jürgen; Luck, Tobias; Riedel-Heller, Steffi; Villringer, Arno; Schroeter, Matthias L
2016-02-01
Brain-derived neurotrophic factor (BDNF) has been discussed to be involved in plasticity processes in the human brain, in particular during aging. Recently, aging and its (neurodegenerative) diseases have increasingly been conceptualized as disconnection syndromes. Here, connectivity changes in neural networks (the connectome) are suggested to be the most relevant and characteristic features for such processes or diseases. To further elucidate the impact of aging on neural networks, we investigated the interaction between plasticity processes, brain connectivity, and healthy aging by measuring levels of serum BDNF and resting-state fMRI data in 25 young (mean age 24.8 ± 2.7 (SD) years) and 23 old healthy participants (mean age, 68.6 ± 4.1 years). To identify neural hubs most essentially related to serum BDNF, we applied graph theory approaches, namely the new data-driven and parameter-free approach eigenvector centrality (EC) mapping. The analysis revealed a positive correlation between serum BDNF and EC in the premotor and motor cortex in older participants in contrast to young volunteers, where we did not detect any association. This positive relationship between serum BDNF and EC appears to be specific for older adults. Our results might indicate that the amount of physical activity and learning capacities, leading to higher BDNF levels, increases brain connectivity in (pre)motor areas in healthy aging in agreement with rodent animal studies. Pilot results have to be replicated in a larger sample including behavioral data to disentangle the cause for the relationship between BDNF levels and connectivity. Copyright © 2016 Elsevier Inc. All rights reserved.
Salehi, Iraj; Hosseini, Seyed Mohammad; Haghighi, Mohammad; Jahangard, Leila; Bajoghli, Hafez; Gerber, Markus; Pühse, Uwe; Holsboer-Trachsler, Edith; Brand, Serge
2016-05-01
To treat patients suffering from major depressive disorder (MDD), research has focused on electroconvulsive therapy (ECT) and aerobic exercise training (AET). Brain derived neurotrophic factor (BDNF) seems to be key in MDD. The aims of the present study were therefore two-fold, to investigate in a three-arm interventional study the differential effects of ECT, ECT plus AET, and AET alone in patients suffering from TR-MDD on 1. depressive symptoms and 2. plasma BDNF (pBDNF). 60 patients with MDD (mean age: 31 years; 31.6% female patients) were randomly assigned either to the ECT, ECT + AET, or AET condition. The AET condition consisted of treadmill exercise for 45 min, three times a week. Both depression severity and pBDNF levels were assessed at baseline and 4 weeks later. All patients were further treated with an SSRI standard medication. pBDNF levels increased over time in all three study conditions, though, highest increase was observed in the ECT + EAT condition, and lowest increase was observed in the AET condition. Depressive symptoms decreased in all three conditions over time, though, strongest decrease was observed in the ECT + AET condition. The combination of ECT + AET led to significantly greater remission rates than in either the ECT or AET alone conditions. BDNF levels were not associated with symptoms of depression. The pattern of results suggests that ECT, AET and particularly their combination are promising directions for the treatment of patients suffering from MDD, and that it remains unclear to what extent pBDNF is key and a reliable biomarker for MDD. Copyright © 2016 Elsevier Ltd. All rights reserved.
Firstova, Iu Iu; Dolotov, O V; Kondrakhin, e A; Dubynina, E V; Grivennikov, I A; Kovalev, G I
2009-01-01
The influence of subchronic administration of nootropic drugs (piracetam, phenotropil, meclophenoxate, pantocalcine, semax, nooglutil) on the brain-derived neurotrophic factor (BDNF) content in hippocampal and cortical tissues in mice with different exploratory behavior--high efficacy (HE) against low efficacy (LE)--in cross-maze test has been studied. The initial BDNF concentration in hippocamp (but not in cortex) of control HE mice was higher than that in LE mice (LE, 0.091 +/- 0.005 pg/microg; HE, 0.177 +/- 0.005 pg/microg; p < 0.0005). After drug administration, changes in the BDNF level were only observed in the hippocamp of LE mice, where it reached (pg/microg) 0.115 +/- 0.004 (for piracetam); 0.119 +/- 0.006 (for phenotropil); 0.123 +/- 0.007 (for semax); and 0.122 +/- 0.009 (for meclophenoxate). In the LE mice cortex, the BDNF content increased only after piracetam and semax injections (to 0.083 +/- 0.003 and 0.093 +/- 0.008, respectively, vs. 0.071 +/- 0.003 pg/microg in the control group; p < 0.0005). No changes were observed in the cortex of HE mice. Thus, the obtained results demonstrate that clinically used drugs piracetam, phenotropil, meclophenoxate, and semax realize their nootrope effects, at least partially, via increase in hippocampal BDNF level, which is achieved only under conditions of cognitive deficiency.
Serum BDNF Is Positively Associated With Negative Symptoms in Older Adults With Schizophrenia.
Binford, Sasha S; Hubbard, Erin M; Flowers, Elena; Miller, Bruce L; Leutwyler, Heather
2018-01-01
Older adults with chronic schizophrenia are at greater risk for functional disability and poorer health outcomes than those without serious mental illness. These individuals comprise 1-2% of the elderly population in the United States and are projected to number approximately 15 million by 2030. The symptoms of schizophrenia can be disabling for individuals, significantly reducing quality of life. Often, the negative symptoms (NS) are the most resistant to treatment and are considered a marker of illness severity, though they are challenging to measure objectively. Biomarkers can serve as objective indicators of health status. Brain-derived neurotrophic factor (BDNF) is a potential biomarker for schizophrenia and may serve as an important indicator of illness severity. A cross-sectional study with 30 older adults with chronic schizophrenia. Participants were assessed on serum levels of BDNF and psychiatric symptoms (Positive and Negative Syndrome Scale). Pearson's bivariate correlations (two-tailed) and linear regression models were used. A significant positive association ( p < .05) was found between higher serum levels of BDNF and greater severity for the NS items of passive, apathetic, social withdrawal, and emotional withdrawal. In multivariate analyses, the association remained significant. Although the association between BDNF and NS was not in the expected direction, the data corroborate findings from previous work in patients with schizophrenia. It is possible that higher serum levels of BDNF reflect compensatory neuronal mechanisms resulting from neurodevelopmental dysfunction.
Ameliorative effect of Noni fruit extract on streptozotocin-induced memory impairment in mice.
Pachauri, Shakti D; Verma, Priya Ranjan P; Dwivedi, Anil K; Tota, Santoshkumar; Khandelwal, Kiran; Saxena, Jitendra K; Nath, Chandishwar
2013-08-01
This study evaluated the effects of a standardized ethyl acetate extract of Morinda citrifolia L. (Noni) fruit on impairment of memory, brain energy metabolism, and cholinergic function in intracerebral streptozotocin (STZ)-treated mice. STZ (0.5 mg/kg) was administered twice at an interval of 48 h. Noni (50 and 100 mg/kg, postoperatively) was administered for 21 days following STZ administration. Memory function was evaluated using Morris Water Maze and passive avoidance tests, and brain levels of cholinergic function, oxidative stress, energy metabolism, and brain-derived neurotrophic factor (BDNF) were estimated. STZ caused memory impairment in Morris Water Maze and passive avoidance tests along with reduced brain levels of ATP, BDNF, and acetylcholine and increased acetylcholinesterase activity and oxidative stress. Treatment with Noni extract (100 mg/kg) prevented the STZ-induced memory impairment in both behavioral tests along with reduced oxidative stress and acetylcholinesterase activity, and increased brain levels of BDNF, acetylcholine, and ATP level. The study shows the beneficial effects of Noni fruit against STZ-induced memory impairment, which may be attributed to improved brain energy metabolism, cholinergic neurotransmission, BDNF, and antioxidative action.
Moclobemide up-regulates proliferation of hippocampal progenitor cells in chronically stressed mice.
Li, Yun-feng; Zhang, You-zhi; Liu, Yan-qin; Wang, Heng-lin; Yuan, Li; Luo, Zhi-pu
2004-11-01
To explore the action mechanism of antidepressants. The PC12 cell proliferation was detected by flow cytometry. The proliferation of hippocampal progenitor cells and level of brain-derived neurotrophic factor (BDNF) were measured by immunohistochemistry. Treatment with N-methylaspartate (NMDA) 600 micromol/L for 3 d significantly decreased the percentage of S-phase in PC12 cells, while in the presence of classical antidepressant, moclobemide (MOC) 2 and 10 micromol/L, the percentage in S-phase increased. Furthermore, the proliferation of progenitor cells in hippocampal dentate gyrus (subgranular zone), as well as the level of BDNF in hippocampus significantly decreased in chronically stressed mice, while chronic administration with MOC 40 mg/kg (ip) up-regulated the progenitor cell proliferation and BDNF level in the same time course. Up-regulation of the proliferation of hippocampal progenitor cells is one of the action mechanisms for MOC, which may be closely related to the elevation of BDNF level at the same time. These results also extend evidence for our hypothesis that up-regulation of the hippocampal neurogenesis is one of the common mechanisms for antidepressants.
Li, Yixin; Xia, Baijuan; Li, Rongrong; Yin, Dan; Wang, Yanlin; Liang, Wenmei
2017-08-02
Neurotrophins, brain-derived neurotrophic factors (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4), have been implicated in the modulation of heroin dependency. This study was designed to explore the expression alterations of BDNF, NT-3, and NT-4 in the context of heroin dependence and withdrawal in the rat nucleus accumbens (NAc). Heroin dependence was induced by a progressive intraperitoneal treatment of heroin. The results showed that the expression levels of BDNF and NT-4 were significantly decreased in the NAc of rats with heroin addiction in comparison with the control group, whereas there was a significant increase in BDNF and NT-4 expressions in the groups of rats with both naloxone-induced and spontaneous withdrawal. Moreover, NT-3 expression was markedly increased in the NAc of rats with heroin addiction and spontaneous withdrawal in comparison with the control group, but decreased in the NAc of rats with naloxone-induced withdrawal. These results indicated that chronic administration of heroin results in the alterations of BDNF, NT-3, and NT-4 expressions in the rat NAc. BDNF, NT-3, and NT-4 may play a critical role in the development of heroin dependency and withdrawal.
Li, Yixin; Xia, Baijuan; Li, Rongrong; Yin, Dan; Wang, Yanlin
2017-01-01
Neurotrophins, brain-derived neurotrophic factors (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4), have been implicated in the modulation of heroin dependency. This study was designed to explore the expression alterations of BDNF, NT-3, and NT-4 in the context of heroin dependence and withdrawal in the rat nucleus accumbens (NAc). Heroin dependence was induced by a progressive intraperitoneal treatment of heroin. The results showed that the expression levels of BDNF and NT-4 were significantly decreased in the NAc of rats with heroin addiction in comparison with the control group, whereas there was a significant increase in BDNF and NT-4 expressions in the groups of rats with both naloxone-induced and spontaneous withdrawal. Moreover, NT-3 expression was markedly increased in the NAc of rats with heroin addiction and spontaneous withdrawal in comparison with the control group, but decreased in the NAc of rats with naloxone-induced withdrawal. These results indicated that chronic administration of heroin results in the alterations of BDNF, NT-3, and NT-4 expressions in the rat NAc. BDNF, NT-3, and NT-4 may play a critical role in the development of heroin dependency and withdrawal. PMID:28538519
Jeanneteau, Freddy D; Lambert, W Marcus; Ismaili, Naima; Bath, Kevin G; Lee, Francis S; Garabedian, Michael J; Chao, Moses V
2012-01-24
Regulation of the hypothalamic-pituitary-adrenal (HPA) axis is critical for adaptation to environmental changes. The principle regulator of the HPA axis is corticotrophin-releasing hormone (CRH), which is made in the parventricular nucleus and is an important target of negative feedback by glucocorticoids. However, the molecular mechanisms that regulate CRH are not fully understood. Disruption of normal HPA axis activity is a major risk factor of neuropsychiatric disorders in which decreased expression of the glucocorticoid receptor (GR) has been documented. To investigate the role of the GR in CRH neurons, we have targeted the deletion of the GR, specifically in the parventricular nucleus. Impairment of GR function in the parventricular nucleus resulted in an enhancement of CRH expression and an up-regulation of hypothalamic levels of BDNF and disinhibition of the HPA axis. BDNF is a stress and activity-dependent factor involved in many activities modulated by the HPA axis. Significantly, ectopic expression of BDNF in vivo increased CRH, whereas reduced expression of BDNF, or its receptor TrkB, decreased CRH expression and normal HPA functions. We find the differential regulation of CRH relies upon the cAMP response-element binding protein coactivator CRTC2, which serves as a switch for BDNF and glucocorticoids to direct the expression of CRH.
Backes, Iara; McCowan, Michael L.; Hayward, Linda F.; Scheuer, Deborah A.
2015-01-01
Brain-derived neurotrophic factor (BDNF) expression increases in the paraventricular nucleus of the hypothalamus (PVN) in response to hypertensive stimuli including stress and hyperosmolarity. However, it is unclear whether BDNF in the PVN contributes to increases in blood pressure (BP). We tested the hypothesis that increased BDNF levels within the PVN would elevate baseline BP and heart rate (HR) and cardiovascular stress responses by altering central angiotensin signaling. BP was recorded using radiotelemetry in male Sprague-Dawley rats after bilateral PVN injections of adeno-associated viral vectors expressing green fluorescent protein (GFP) or myc epitope-tagged BDNF fusion protein. Cardiovascular responses to acute stress were evaluated 3 to 4 wk after injections. Additional GFP and BDNF-treated animals were equipped with osmotic pumps for intracerebroventricular infusion of saline or the angiotensin type-1 receptor (AT1R) inhibitor losartan (15 μg·0.5 μl−1·h−1). BDNF treatment significantly increased baseline BP (121 ± 3 mmHg vs. 99 ± 2 mmHg in GFP), HR (394 ± 9 beats/min vs. 314 ± 4 beats/min in GFP), and sympathetic tone indicated by HR- and BP-variability analysis and adrenomedullary tyrosine hydroxylase protein expression. In contrast, body weight and BP elevations to acute stressors decreased. BDNF upregulated AT1R mRNA by ∼80% and downregulated Mas receptor mRNA by ∼50% in the PVN, and losartan infusion partially inhibited weight loss and increases in BP and HR in BDNF-treated animals without any effect in GFP rats. Our results demonstrate that BDNF overexpression in the PVN results in sympathoexcitation, BP and HR elevations, and weight loss that are mediated, at least in part, by modulating angiotensin signaling in the PVN. PMID:25576628
Lim, Whasun; Bae, Hyocheol; Bazer, Fuller W; Song, Gwonhwa
2017-12-01
Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family binds to two transmembrane receptors; neurotrophic receptor tyrosine kinase 2 (NTRK2) with high affinity and p75 with low affinity. Although BDNF-NTRK2 signaling in the central nervous system is known, signaling in the female reproductive system is unknown. Therefore, we determined effects of BDNF on porcine endometrial luminal epithelial (pLE) cells isolated from Day 12 of pregnancy, as well as expression of BDNF and NTRK2 in endometria of cyclic and pregnant pigs. BDNF-NTRK2 genes were expressed in uterine glandular (GE) and luminal (LE) epithelia during early pregnancy. In addition, their expression in uterine GE and LE decreased with increasing parity of sows. Recombinant BDNF increased proliferation in pLE cells in a dose-dependent, as well as expression of PCNA and Cyclin D1 in nuclei of pLE cells. BDNF also activated phosphorylation of AKT, P70S6K, S6, ERK1/2, JNK, P38 proteins in pLE cells. In addition, cell death resulting from tunicamycin-induced ER stress was prevented when pLE cells were treated with the combination of tunicamycin and BDNF which also decreased cells in the Sub-G 1 phase of the cell cycle. Furthermore, tunicamycin-induced unfolded protein response genes were mostly down-regulated to the basal levels as compared to non-treated pLE cells. Our finding suggests that BDNF acts via NTRK2 to induce development of pLE cells for maintenance of implantation and pregnancy by activating cell signaling via the PI3K and MAPK pathways and by inhibiting ER stress. © 2017 Wiley Periodicals, Inc.
Naumenko, V S; Kondaurova, E M; Bazovkina, D V; Tsybko, A S; Tikhonova, M A; Kulikov, A V; Popova, N K
2012-07-12
The effect of brain-derived neurotrophic factor (BDNF) on depressive-like behavior and serotonin (5-HT) system in the brain of antidepressant sensitive cataleptics (ASC)/Icg mouse strain, characterized by depressive-like behavior, in comparison with the parental nondepressive CBA/Lac mouse strain was examined. Significant decrease of catalepsy and tail suspension test (TST) immobility was shown 17days after acute central BDNF administration (300ng i.c.v.) in ASC mice. In CBA mouse strain, BDNF moderately decreased catalepsy without any effect on TST immobility time. Significant difference between ASC and CBA mice in the effect of BDNF on 5-HT system was revealed. It was shown that central administration of BDNF led to increase of 5-HT(1A) receptor gene expression but not 5-HT(1A) functional activity in ASC mice. Increased tryptophan hydroxylase-2 (Tph-2) and 5-HT(2A) receptor genes expression accompanied by 5-HT(2A) receptor sensitization was shown in BDNF-treated ASC but not in CBA mouse strain, suggesting BDNF-induced increase of the brain 5-HT system functional activity and activation of neurogenesis in "depressive" ASC mice. There were no changes found in the 5-HT transporter mRNA level in BDNF-treated ASC and CBA mice. In conclusion, central administration of BDNF produced prolonged ameliorative effect on depressive-like behavior accompanied by increase of the Tph-2, 5-HT(1A) and 5-HT(2A) genes expression and 5-HT(2A) receptor functional activity in animal model of hereditary behavior disorders. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.
Teixeira, Antonio L.; Machado-Vieira, Rodrigo; Talib, Leda L.; Radanovic, Marcia; Gattaz, Wagner F.; Forlenza, Orestes V.
2014-01-01
Objectives. Late-life depression (LLD) is associated with reduced neurotrophic support and abnormalities in neurodegenerative cascades. The aim of the present study is to determine the concentrations of brain-derived neurotrophic factor (BDNF), amyloid-β42, total Tau, and phosphorylated Tau in the cerebrospinal fluid (CSF) of patients with LLD and cognitive impairment compared to healthy older adults. Method. We included 25 antidepressant-free patients with LLD (10 with mild cognitive impairment [LLD + MCI] and 15 with no cognitive decline [LLD + NCD]) and 25 healthy older adults as a comparison group. Depressive symptoms were assessed by the 21-item Hamilton Depression Rating Scale (HDRS-21) and cognitive performance by a comprehensive cognitive battery. Results. Patients with LLD + MCI showed significantly lower CSF BDNF levels compared to LLD + NCD and healthy controls (p = .003). There were no significant differences in Alzheimer’s disease–related CSF biomarkers between groups. CSF BDNF concentrations were positively correlated with Cambridge Cognitive Test (CAMCOG) scores (r = .36, p = .02). Discussion. The present study adds to the growing body of evidence that abnormalities in the BDNF system are involved in the pathophysiology of LLD. The reduction of the availability of BDNF in the central nervous system may indicate increased vulnerability to the development of several age-related neuropsychiatric disorders as well as to adverse cognitive outcomes. PMID:25149921
Head-out immersion in hot water increases serum BDNF in healthy males.
Kojima, Daisuke; Nakamura, Takeshi; Banno, Motohiko; Umemoto, Yasunori; Kinoshita, Tokio; Ishida, Yuko; Tajima, Fumihiro
2017-11-20
Brain-derived neurotrophic factor (BDNF) is an important neurotrophin. The present study investigated the effects of head-out water immersion (HOI) on serum BDNF concentrations. Eight healthy men performed 20 min head-out water immersion at 42 °C (hot-HOI) and 35 °C (neutral-HOI). These experimental trials were administered in a randomised order separated by at least 7 days. Venous blood samples were withdrawn at rest, immediately after the 20-min HOI, as well as at 15 and 30 min after the end of the HOI. Serum BDNF and S100β, plasma cortisol, platelet and monocyte counts, and core body temperature (T cb ) were measured. T cb was higher at the end of the hot-HOI and 15 min after hot-HOI (p < 0.01), but recovered to pre-HOI level at 30 min after hot-HOI. No change in T cb was recorded during neutral-HOI. BDNF level was higher (p < 0.05) at the end of the hot-HOI and at 15 min after the end of hot-HOI, and returned to the baseline at 30 min after hot-HOI. S100β, platelet count and monocyte count remained stable throughout the study. Cortisol level was lower at the end of the hot-HOI and returned to pre-HOI level during the recovery period. BDNF and S100β, cortisol, and platelet and monocyte counts did not change throughout the neutral-HOI study. The present findings suggested that the increase in BDNF during 20-min hot-HOI was induced by hyperthermia through enhanced production, rather than by changes in permeability of the blood-brain barrier (BBB), platelet clotting mechanisms or secretion from monocytes.
Salehi, Iraj; Hosseini, Seyed Mohammad; Haghighi, Mohammad; Jahangard, Leila; Bajoghli, Hafez; Gerber, Markus; Pühse, Uwe; Kirov, Roumen; Holsboer-Trachsler, Edith; Brand, Serge
2014-10-01
To treat patients suffering from treatment-resistant major depressive disorder (TR-MDD), research has focused on electroconvulsive therapy (ECT) and aerobic exercise training (AET). Brain derived neurotrophic factor (BDNF) seems to be key in MDD. The aims of the present study were therefore two-fold, to investigate in a three-arm interventional study the differential effects of ECT, ECT plus AET, and AET alone in patients suffering from TR-MDD on 1. depressive symptoms and 2. 60 patients with TR-MDD (mean age: 31 years; 31.6% female patients) were randomly assigned either to the ECT, ECT + AET, or AET condition. The AET condition consisted of treadmill exercise for 30 min, three times a week. Both depression severity and BDNF levels were assessed at baseline and 4 weeks later. All patients were further treated with an SSRI standard medication. BDNF levels increased over time in all three study conditions. After completion of the intervention program, the ECT group showed significantly higher BDNF levels compared to the ECT + AET and the AET conditions. Depressive symptoms decreased in all three conditions over time. The combination of ECT + AET led to a significantly greater decrease than in either the ECT or AET alone conditions. BDNF levels were not associated with symptoms of depression. The pattern of results suggests that ECT, AET and particularly their combination are promising directions for treatment patients suffering from TR-MDD, and that it remains unclear to what extent BDNF is key and a reliable biomarker for TR-MDD. Copyright © 2014 Elsevier Ltd. All rights reserved.
Brain-Derived Neurotrophic Factor in the Airways
Prakash, Y.S.; Martin, Richard J.
2014-01-01
In addition to their well-known roles in the nervous system, there is increasing recognition that neurotrophins such as brain derived neurotrophic factor (BDNF) as well as their receptors are expressed in peripheral tissues including the lung, and can thus potentially contribute to both normal physiology and pathophysiology of several diseases. The relevance of this family of growth factors lies in emerging clinical data indicating altered neurotrophin levels and function in a range of diseases including neonatal and adult asthma, sinusitis, influenza, and lung cancer. The current review focuses on 1) the importance of BDNF expression and signaling mechanisms in early airway and lung development, critical to both normal neonatal lung function and also its disruption in prematurity and insults such as inflammation and infection; 2) how BDNF, potentially derived from airway nerves modulate neurogenic control of airway tone, a key aspect of airway reflexes as well as dysfunctional responses to allergic inflammation; 3) the emerging idea that local BDNF production by resident airway cells such as epithelium and airway smooth muscle can contribute to normal airway structure and function, and to airway hyperreactivity and remodeling in diseases such as asthma. Furthermore, given its pleiotropic effects in the airway, BDNF may be a novel and appealing therapeutic target. PMID:24560686
Comasco, Erika; Hodgins, Sheilagh; Oreland, Lars; Åslund, Cecilia
2015-01-01
Background: Previous evidence of gene-by-environment interactions associated with emotional and behavioral disorders is contradictory. Differences in findings may result from variation in valence and dose of the environmental factor, and/or failure to take account of gene-by-gene interactions. The present study investigated interactions between the brain-derived neurotrophic factor gene (BDNF Val66Met), the serotonin transporter gene-linked polymorphic region (5-HTTLPR), the monoamine oxidase A (MAOA-uVNTR) polymorphisms, family conflict, sexual abuse, the quality of the child-parent relationship, and teenage delinquency. Methods: In 2006, as part of the Survey of Adolescent Life in Västmanland, Sweden, 1 337 high-school students, aged 17–18 years, anonymously completed questionnaires and provided saliva samples for DNA analyses. Results: Teenage delinquency was associated with two-, three-, and four-way interactions of each of the genotypes and the three environmental factors. Significant four-way interactions were found for BDNF Val66Met × 5-HTTLPR×MAOA-uVNTR × family conflicts and for BDNF Val66Met × 5-HTTLPR×MAOA-uVNTR × sexual abuse. Further, the two genotype combinations that differed the most in expression levels (BDNF Val66Met Val, 5-HTTLPR LL, MAOA-uVNTR LL [girls] and L [boys] vs BDNF Val66Met Val/Met, 5-HTTLPR S/LS, MAOA-uVNTR S/SS/LS) in interaction with family conflict and sexual abuse were associated with the highest delinquency scores. The genetic variants previously shown to confer vulnerability for delinquency (BDNF Val66Met Val/Met × 5-HTTLPR S × MAOA-uVNTR S) were associated with the lowest delinquency scores in interaction with a positive child-parent relationship. Conclusions: Functional variants of the MAOA-uVNTR, 5-HTTLPR, and BDNF Val66Met, either alone or in interaction with each other, may be best conceptualized as modifying sensitivity to environmental factors that confer either risk or protection for teenage delinquency. PMID:25522433
Nilsson, Kent W; Comasco, Erika; Hodgins, Sheilagh; Oreland, Lars; Åslund, Cecilia
2014-12-10
Previous evidence of gene-by-environment interactions associated with emotional and behavioral disorders is contradictory. Differences in findings may result from variation in valence and dose of the environmental factor, and/or failure to take account of gene-by-gene interactions. The present study investigated interactions between the brain-derived neurotrophic factor gene (BDNF Val66Met), the serotonin transporter gene-linked polymorphic region (5-HTTLPR), the monoamine oxidase A (MAOA-uVNTR) polymorphisms, family conflict, sexual abuse, the quality of the child-parent relationship, and teenage delinquency. In 2006, as part of the Survey of Adolescent Life in Västmanland, Sweden, 1 337 high-school students, aged 17-18 years, anonymously completed questionnaires and provided saliva samples for DNA analyses. Teenage delinquency was associated with two-, three-, and four-way interactions of each of the genotypes and the three environmental factors. Significant four-way interactions were found for BDNF Val66Met × 5-HTTLPR×MAOA-uVNTR × family conflicts and for BDNF Val66Met × 5-HTTLPR×MAOA-uVNTR × sexual abuse. Further, the two genotype combinations that differed the most in expression levels (BDNF Val66Met Val, 5-HTTLPR LL, MAOA-uVNTR LL [girls] and L [boys] vs BDNF Val66Met Val/Met, 5-HTTLPR S/LS, MAOA-uVNTR S/SS/LS) in interaction with family conflict and sexual abuse were associated with the highest delinquency scores. The genetic variants previously shown to confer vulnerability for delinquency (BDNF Val66Met Val/Met × 5-HTTLPR S × MAOA-uVNTR S) were associated with the lowest delinquency scores in interaction with a positive child-parent relationship. Functional variants of the MAOA-uVNTR, 5-HTTLPR, and BDNF Val66Met, either alone or in interaction with each other, may be best conceptualized as modifying sensitivity to environmental factors that confer either risk or protection for teenage delinquency. © The Author 2015. Published by Oxford University Press on behalf of CINP.
Mesman, Esther; Hillegers, Manon Hj; Ambree, Oliver; Arolt, Volker; Nolen, Willem A; Drexhage, Hemmo A
2015-02-01
There is increasing evidence that both immune and neurochemical alterations are involved in the pathogenesis of bipolar disorder; however, their precise role remains unclear. In this study, we aimed to evaluate neuro-immune changes in a prospective study on children of patients with bipolar disorder. Bipolar offspring, from the prospective Dutch bipolar offspring study (n = 140), were evaluated cross-sectionally within a longitudinal context at adolescence, young adulthood, and adulthood. We examined the expression of 44 inflammation-related genes in monocytes, the cytokines pentraxin 3 (PTX3), chemokine ligand 2 (CCL2), and interleukin-1β (IL-1β), and brain-derived neurotrophic factor (BDNF) and S100 calcium binding protein B (S100B) in the serum of bipolar offspring and healthy controls. During adolescence, bipolar offspring showed increased inflammatory gene expression in monocytes, high serum PTX3 levels, but normal CCL2 levels. BDNF levels were decreased, while S100B levels were normal. During young adulthood, monocyte activation remained, although to a lesser degree. Serum PTX3 levels remained high, and signs of monocyte migration became apparent through increased CCL2 levels. BDNF and S100B levels were not measured. At adulthood, circulating monocytes had lost their activation state, but CCL2 levels remained increased. Both BDNF and S100B were now increased. Abnormalities were independent of psychopathology state at all stages. This study suggests an aberrant neuro-immune state in bipolar offspring, which followed a dynamic course from adolescence into adulthood and was present irrespective of lifetime or future mood disorders. We therefore assumed that the aberrant neuro-immune state reflects a general state of vulnerability for mood disorders rather than being of direct predictive value. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Koh, Jae-Young; Lim, Joon Seo; Byun, Hyae-Ran; Yoo, Min-Heui
2014-09-03
Whereas aberrant brain connectivity is likely the core pathology of autism-spectrum disorder (ASD), studies do not agree as to whether hypo- or hyper-connectivity is the main underlying problem. Recent functional imaging studies have shown that, in most young ASD patients, cerebral cortical regions appear hyperconnected, and cortical thickness/brain size is increased. Collectively, these findings indicate that developing ASD brains may exist in an altered neurotrophic milieu. Consistently, some ASD patients, as well as some animal models of ASD, show increased levels of brain-derived neurotrophic factor (BDNF). However, how BDNF is upregulated in ASD is unknown. To address this question, we propose the novel hypothesis that a putative zinc-metalloprotease-BDNF (ZMB) axis in the forebrain plays a pivotal role in the development of hyperconnectivity and megalencephaly in ASD. We have previously demonstrated that extracellular zinc at micromolar concentrations can rapidly increase BDNF levels and phosphorylate the receptor tyrosine kinase TrkB via the activation of metalloproteases. The role of metalloproteases in ASD is still uncertain, but in fragile X syndrome, a monogenic disease with an autistic phenotype, the levels of MMP are increased. Early exposure to lipopolysaccharides (LPS) and other MMP activators such as organic mercurials also have been implicated in ASD pathogenesis. The resultant increases in BDNF levels at synapses, especially those involved in the zinc-containing, associative glutamatergic system may produce abnormal brain circuit development. Various genetic mutations that lead to ASD are also known to affect BDNF signaling: some down-regulate, and others up-regulate it. We hypothesize that, although both up- and down-regulation of BDNF may induce autism symptoms, only BDNF up-regulation is associated with the hyperconnectivity and large brain size observed in most young idiopathic ASD patients. To test this hypothesis, we propose to examine the ZMB axis in animal models of ASD. Synaptic zinc can be examined by fluorescence zinc staining. MMP activation can be measured by in situ zymography and Western blot analysis. Finally, regional levels of BDNF can be measured. Validating this hypothesis may shed light on the central pathogenic mechanism of ASD and aid in the identification of useful biomarkers and the development of preventive/therapeutic strategies.
2014-01-01
Whereas aberrant brain connectivity is likely the core pathology of autism-spectrum disorder (ASD), studies do not agree as to whether hypo- or hyper-connectivity is the main underlying problem. Recent functional imaging studies have shown that, in most young ASD patients, cerebral cortical regions appear hyperconnected, and cortical thickness/brain size is increased. Collectively, these findings indicate that developing ASD brains may exist in an altered neurotrophic milieu. Consistently, some ASD patients, as well as some animal models of ASD, show increased levels of brain-derived neurotrophic factor (BDNF). However, how BDNF is upregulated in ASD is unknown. To address this question, we propose the novel hypothesis that a putative zinc-metalloprotease-BDNF (ZMB) axis in the forebrain plays a pivotal role in the development of hyperconnectivity and megalencephaly in ASD. We have previously demonstrated that extracellular zinc at micromolar concentrations can rapidly increase BDNF levels and phosphorylate the receptor tyrosine kinase TrkB via the activation of metalloproteases. The role of metalloproteases in ASD is still uncertain, but in fragile X syndrome, a monogenic disease with an autistic phenotype, the levels of MMP are increased. Early exposure to lipopolysaccharides (LPS) and other MMP activators such as organic mercurials also have been implicated in ASD pathogenesis. The resultant increases in BDNF levels at synapses, especially those involved in the zinc-containing, associative glutamatergic system may produce abnormal brain circuit development. Various genetic mutations that lead to ASD are also known to affect BDNF signaling: some down-regulate, and others up-regulate it. We hypothesize that, although both up- and down-regulation of BDNF may induce autism symptoms, only BDNF up-regulation is associated with the hyperconnectivity and large brain size observed in most young idiopathic ASD patients. To test this hypothesis, we propose to examine the ZMB axis in animal models of ASD. Synaptic zinc can be examined by fluorescence zinc staining. MMP activation can be measured by in situ zymography and Western blot analysis. Finally, regional levels of BDNF can be measured. Validating this hypothesis may shed light on the central pathogenic mechanism of ASD and aid in the identification of useful biomarkers and the development of preventive/therapeutic strategies. PMID:25182223
Kartha, Sonia; Zeeman, Martha E; Baig, Hassam A; Guarino, Benjamin B; Winkelstein, Beth A
2014-09-01
In vivo study defining expression of the neurotrophins, brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), in cervical intervertebral discs after painful whole-body vibration (WBV). The goal of this study is to determine if BDNF and NGF are expressed in cervical discs after painful WBV in a rat model. WBV is a possible source of neck pain and has been implicated as increasing the risk for disc disorders. Typically, aneural regions of painful human lumbar discs exhibit hyperinnervation, suggesting nerve ingrowth as potentially contributing to disc degeneration and pain. BDNF and NGF are upregulated in painfully degenerate lumbar discs and hypothesized to contribute to this pathology. Male Holtzman rats underwent 7 days of repeated WBV (15 Hz, 30 min/d) or sham exposures, followed by 7 days of rest. Cervical discs were collected for analysis of BDNF and NGF expression through RT-qPCR and Western blot analysis. Immunohistochemistry also evaluated their regional expression in the disc. Vibration significantly increases BDNF messenger ribonucleic acid (mRNA) levels (P=0.036), as well as total-NGF mRNA (P=0.035). Protein expression of both BDNF (P=0.006) and the 75-kDa NGF (P=0.045) increase by nearly 4- and 10-fold, respectively. Both BDNF mRNA (R=0.396; P=0.012) and protein (R=0.280; P=0.035) levels are significantly correlated with the degree of behavioral sensitivity (i.e., pain) at day 14. Total-NGF mRNA is also significantly correlated with the extent of behavioral sensitivity (R=0.276; P=0.044). Both neurotrophins are most increased in the inner annulus fibrosus and nucleus pulposus. The increases in BDNF and NGF in the cervical discs after painful vibration are observed in typically aneural regions of the disc, consistent with reports of its hyperinnervation. Yet, the induction of nerve ingrowth into the disc was not explicitly investigated. Neurotrophin expression also correlates with behavioral sensitivity, suggesting a role for both neurotrophins in the development of disc pain. N/A.
Zhong, Jian-Bin; Li, Xie; Zhong, Si-Ming; Liu, Jiu-Di; Chen, Chi-Bang; Wu, Xiao-Yan
2017-09-27
Brain-derived neurotrophic factor (BDNF) plays an important role in neuronal cell apoptosis. The antisense RNA of brain-derived neurotrophic factor (BDNF-AS) is a natural antisense transcript that is transcribed opposite the gene that encodes BDNF. The aim of this study was to determine whether knockdown of BDNF-AS can suppress hypoxia/reoxygenation (H/R)-induced neuronal cell apoptosis and whether this is mediated by the BDNF-TrkB-PI3K/Akt pathway. We detected the expression of BDNF and BDNF-AS in brain tissue from 20 patients with cerebral infarction and five patients with other diseases (but no cerebral ischemia). We found that BDNF expression was significantly downregulated in patients with cerebral infarction, whereas the expression of BDNF-AS was significantly upregulated. In both human cortical neurons (HCN2) and human astrocytes, H/R significantly induced the expression of BDNF-AS, but significantly decreased BDNF expression. H/R also significantly induced apoptosis and reduced the mitochondrial membrane potential in these cells. Following downregulation of BDNF-AS by siRNA in human cortical neurons and human astrocyte cells, BDNF expression was significantly upregulated and the H/R-induced upregulation of BDNF-AS was significantly attenuated. BDNF-AS siRNA inhibited H/R-induced cell apoptosis and ameliorated the H/R-induced suppression of mitochondrial membrane potential. H/R inhibited the expression of BDNF, p-AKT/AKT, and TrKB, and this inhibition was recovered by BDNF-AS siRNA. In summary, this study indicates that BDNF-AS siRNA induces activation of the BDNF-TrkB-PI3K/Akt pathway following H/R-induced neurotoxicity. These findings will be useful toward the application of BDNF-AS siRNA for the treatment of neurodegenerative diseases.
Zhang, X; Zhu, J; Zhang, K; Liu, T; Zhang, Z
2016-12-30
This study was aimed at investigating the expression of brain-derived neurotrophic factor (BDNF) in mesenchymal stem cells (MSCs) modified with recombinant lentivirus bearing BDNF gene. Lentivirus vectors bearing BDNF gene were constructed. MSCs were isolated from rats and cultured. The lentiviral vectors containing BDNF gene were transfected into the MSCs, and BDNF gene and protein expressions were monitored with enhanced green fluorescent protein (EGFP). RT-PCR and Western blot were used to measure gene and protein expressions, respectibvely in MSCs, MSCs-EGFP and MSCs-EGFP-BDNF groups. Green fluorescence assay confirmed successful transfection of BDNF gene recombinant lentivirus into MSCs. RT-PCR and Western blot revealed that BDNF gene and protein expressions in the MSCs-EGFP-BDNF group were significantly higher than that in MSCs group and MSCs-EGFP group. There were no statistically significant differences in gene expression between MSCs and MSCs-EGFP groups. MSCs can over-express BDNF when transfected with recombinant lentivirus bearing BDNF gene.
Ho, Emily V; Klenotich, Stephanie J; McMurray, Matthew S; Dulawa, Stephanie C
2016-01-01
Anorexia nervosa (AN) is a complex eating disorder with severe dysregulation of appetitive behavior. The activity-based anorexia (ABA) paradigm is an animal model in which rodents exposed to both running wheels and scheduled feeding develop aspects of AN including paradoxical hypophagia, dramatic weight loss, and hyperactivity, while animals exposed to only one condition maintain normal body weight. Brain-derived neurotrophic factor (BDNF), an activity-dependent modulator of neuronal plasticity, is reduced in the serum of AN patients, and is a known regulator of feeding and weight maintenance. We assessed the effects of scheduled feeding, running wheel access, or both on the expression of BDNF transcripts within the mesocorticolimbic pathway. We also assessed the expression of neuronal cell adhesion molecule 1 (NCAM1) to explore the specificity of effects on BDNF within the mesocorticolimbic pathway. Scheduled feeding increased the levels of both transcripts in the hippocampus (HPC), increased NCAM1 mRNA expression in the ventral tegmental area (VTA), and decreased BDNF mRNA levels in the medial prefrontal cortex (mPFC). In addition, wheel running increased BDNF mRNA expression in the VTA. No changes in either transcript were observed in the nucleus accumbens (NAc). Furthermore, no changes in either transcript were induced by the combined scheduled feeding and wheel access condition. These data indicate that scheduled feeding or wheel running alter BDNF and NCAM1 expression levels in specific regions of the mesocorticolimbic pathway. These findings contribute to our current knowledge of the molecular alterations induced by ABA and may help elucidate possible mechanisms of AN pathology.
Aydemir, Omer; Deveci, Artuner; Taskin, Oryal E; Taneli, Fatma; Esen-Danaci, Aysen
2007-06-30
In this present work, it is aimed to demonstrate BDNF serum concentrations in patients with dysthymia and to compare them with BDNF serum concentrations in patients with major depressive disorder and healthy subjects. The study was carried out in Celal Bayar University Hospital, Manisa, Turkey. Seventeen patients with dysthymia, 24 patients with major depressive disorder and 26 subjects without any psychiatric diagnosis and any psychiatric treatment were included in the study. The severity of depression was assessed with 17-item HAM-D. All subjects were asked to give their written consent. Blood samples were collected at baseline. Serum BDNF was kept at -70 degrees C before testing, and assayed with an ELISA Kit (Promega; Madison, WI, USA), after dilution with the Block and Sample solution provided with the kit. The data were subjected to the analysis of variance. The BDNF serum concentrations of the dysthymia group (mean=28.9+/-9.2 ng/ml) were significantly higher than that of the major depressive disorder group (21.2+/-11.3 ng/ml) (p=0.002), and it was not different from the level of the control group (31.4+/-8.8 ng/ml). BDNF serum concentrations and HAM-D score did not have any significant correlation in the dysthymia and major depression groups (r=-0.276, p=0.086). The low level of BDNF in patients with dysthymic disorder seems to point out that BDNF changes in mood disorders are state-dependent and vary according to the severity of depressive episodes.
Canivet, Anne; Albinet, Cédric T; André, Nathalie; Pylouster, Jean; Rodríguez-Ballesteros, Montserrat; Kitzis, Alain; Audiffren, Michel
2015-01-01
The brain-derived neurotrophic factor (BDNF) concentration is highest in the hippocampus compared with that in other brain structures and affects episodic memory, a cognitive function that is impaired in older adults. According to the neurotrophic hypothesis, BDNF released during physical activity enhances brain plasticity and consequently brain health. However, even if the physical activity level is involved in the secretion of neurotrophin, this protein is also under the control of a specific gene. The aim of the present study was to examine the effect of the interaction between physical activity and BDNF Val66Met (rs6265), a genetic polymorphism, on episodic memory. Two hundred and five volunteers aged 55 and older with a Mini Mental State Examination score ≥ 24 participated in this study. Four groups of participants were established according to their physical activity level and polymorphism BDNF profile (Active Val homozygous, Inactive Val homozygous, Active Met carriers, Inactive Met carriers). Episodic memory was evaluated based on the delayed recall of the Logical Memory test of the MEM III battery. As expected, the physical activity level interacted with BDNF polymorphism to affect episodic memory performance (p < .05). The active Val homozygous participants significantly outperformed the active Met carriers and inactive Val homozygous participants. This study clearly demonstrates an interaction between physical activity and BDNF Val66Met polymorphism that affects episodic memory in the elderly and confirms that physical activity contributes to the neurotrophic mechanism implicated in cognitive health. The interaction shows that only participants with Val/Val polymorphism benefited from physical activity.
Gudasheva, T A; Koliasnikova, K N; Antipova, T A; Seredenin, S B
2016-07-01
It was shown for the first time that the endogenous cyclic dipeptide cycloprolylglycine (CPG) at concentrations of 10(-7) and 10(-3) M and piracetam at a concentration of 10(-3) M increased the content of brainderived neurotrophic factor (BDNF) in the culture of neuronal cells in normal state and under conditions of glutamate and 6-oxydopamine neurotoxicity. This may indicate the possible involvement of BDNF in the mechanism of action of neuropeptide CPG and piracetam.
Ostrovskaia, R U; Vakhitova, Iu V; Salimgareeva, M Kh; Iamidanov, R S; Sadovnikov, S V; Kapitsa, I G; Seredenin, S B
2010-12-01
The influence of noopept (N-phenylacetyl-L-prolylglycine ethyl ester, GVS-111)--a drug combining the nootrope and neuroprotector properties--on the activity of mitogen-activated protein kinases (MAPKs) and the level of NGF and BDNF gene and protein expression in the frontal cortex, hippocampus, and hypothalamus has been studied in rats. Under conditions of chronic administration (28 days, 0.5 mg/day, i.p.), noopept decreased the activity of stress-induced kinases (SAPK/JNK 46/54 and pERK1/2) in rat hippocampus and increases the level of mRNA of the BDNF gene in both hypothalamus and hippocampus. The content of BDNF protein in the hypothalamus was also somewhat increased. In the context of notions about the activation of stress-induced kinases, as an important factor of amyloidogenesis and tau-protein deposition in brain tissue, and the role of deficiency of the neurotrophic factors in the development of neurodegenerative processes, the observed decrease in the activity of stress-activated MAPKs and increased expression of BDNF as a result of noopept administration suggest thatthis drug hasaspecific activity withrespect to some pathogenetic mechanisms involved in the Alzheimer disease.
Jung, Kyu-In; Ju, Anes; Lee, Hee-Mi; Lee, Seong-Su; Song, Chan-Hee; Won, Wang-Youn; Jeong, Jae-Seung; Hong, Oak-Kee; Kim, Jae-Hwa; Kim, Dai-Jin
2011-01-07
Chronic alcohol consumption contributes to the development of type 2 diabetes mellitus (T2DM) while decreasing the level of brain-derived neurotrophic factor (BDNF). BDNF may be an important regulator of glucose metabolism, so it may be associated with an increased risk for T2DM in alcoholism. We evaluated the association of chronic heavy alcohol exposure, T2DM and BDNF level. Ten week-old type 2 diabetic OLETF rats and non-diabetic LETO rats of similar weight were used. The rats were randomized by weight into four treatment groups: (1) OLETF-Ethanol (O-E, n=13), (2) OLETF-Control (O-C, n=15), (3) LETO-Ethanol (L-E, n=11), and (4) LETO-Control (L-C, n=14). The ethanol groups were fed an isocaloric liquid diet containing ethanol while the control groups were fed with the same diet containing maltose-dextran over a 6-week period using a pair-feeding control model in order to regulate different caloric ingestion. After 6 weeks of feeding, an Intraperitoneal Glucose Tolerance Test (IP-GTT) was performed and BDNF levels were analyzed. Prior to IP-GTT, the mean glucose levels in the O-E, O-C, L-E, and L-C groups were 90.38±12.84, 102.13±5.04, 95.18±6.43, and 102.36±4.43mg/dL, respectively. Thirty minutes after intraperitoneal injection, the mean glucose levels were 262.62±63.77, 229.07±51.30, 163.45±26.63, and 156.64±34.42mg/dL, respectively; the increased amount of the mean glucose level in the O-E group was significantly higher than that in the O-C group (p<0.05). One hundred twenty minutes after intraperitoneal injection, the mean glucose levels were 167.38±45.37, 121.20±18.54, 106.73±6.94, and 104.57±9.49mg/dL, respectively; the increased amount of the mean glucose level in the O-E group was significantly higher than that in the O-C group (p<0.01). The difference in mean glucose levels between the O-E group and O-C group was still significant even after adjusting for time (p<0.05). Mean BDNF levels were 405.95±326.16, 618.23±462.15, 749.18±599.93, and 1172.00±839.17pg/mL, respectively; mean BDNF level in the O-E group was significantly lower than the L-C group (p<0.05). In conclusion, the results of the present study suggest that chronic heavy alcohol ingestion may aggravate T2DM and may possibly lower BDNF level. Copyright © 2010. Published by Elsevier Ireland Ltd.
Zhong, Liang; Luo, Foquan; Zhao, Weilu; Feng, Yunlin; Wu, Liuqin; Lin, Jiamei; Liu, Tianyin; Wang, Shengqiang; You, Xuexue; Zhang, Wei
2016-10-01
The brain-derived neurotrophic factor (BDNF)-tyrosine kinase B (TrkB) (BDNF-TrkB) signalling pathway plays a crucial role in regulating learning and memory. Synaptophysin provides the structural basis for synaptic plasticity and depends on BDNF processing and subsequent TrkB signalling. Our previous studies demonstrated that maternal exposure to propofol during late stages of pregnancy impaired learning and memory in rat offspring. The purpose of this study is to investigate whether the BDNF-TrkB signalling pathway is involved in propofol-induced learning and memory impairments. Propofol was intravenously infused into pregnant rats for 4 hrs on gestational day 18 (E18). Thirty days after birth, learning and memory of offspring was assessed by the Morris water maze (MWM) test. After the MWM test, BDNF and TrkB transcript and protein levels were measured in rat offspring hippocampus tissues using real-time PCR (RT-PCR) and immunohistochemistry (IHC), respectively. The levels of phosphorylated-TrkB (phospho-TrkB) and synaptophysin were measured by western blot. It was discovered that maternal exposure to propofol on day E18 impaired spatial learning and memory of rat offspring, decreased mRNA and protein levels of BDNF and TrkB, and decreased the levels of both phospho-TrkB and synaptophysin in the hippocampus. Furthermore, the TrkB agonist 7,8-dihydroxyflavone (7,8-DHF) reversed all of the observed changes. Treatment with 7,8-DHF had no significant effects on the offspring that were not exposed to propofol. The results herein indicate that maternal exposure to propofol during the late stages of pregnancy impairs spatial learning and memory of offspring by disturbing the BDNF-TrkB signalling pathway. The TrkB agonist 7,8-DHF might be a potential therapy for learning and memory impairments induced by maternal propofol exposure. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
ERIC Educational Resources Information Center
Dulka, Brooke N.; Ford, Ellen C.; Lee, Melissa A.; Donnell, Nathaniel J.; Goode, Travis D.; Prosser, Rebecca; Cooper, Matthew A.
2016-01-01
Brain-derived neurotrophic factor (BDNF) is essential for memory processes. The present study tested whether proteolytic cleavage of proBDNF into mature BDNF (mBDNF) within the basolateral amygdala (BLA) regulates the consolidation of defeat-related memories. We found that acute social defeat increases the expression of mBDNF, but not proBDNF, in…
Motaghinejad, Majid; Motevalian, Manijeh; Fatima, Sulail; Hashemi, Hajar; Gholami, Mina
2017-03-01
Alcohol abuse causes severe damage to the brain neurons. Studies have reported the neuroprotective effects of curcumin against alcohol-induced neurodegeneration. However, the precise mechanism of action remains unclear. Seventy rats were equally divided into 7 groups (10 rats per group). Group 1 received normal saline (0.7ml/rat) and group 2 received alcohol (2g/kg/day) for 21days. Groups 3, 4, 5 and 6 concurrently received alcohol (2g/kg/day) and curcumin (10, 20, 40 and 60mg/kg, respectively) for 21days. Animals in group 7 self- administered alcohol for 21days. Group 8 treated with curcumin (60mg/kg, i.p.) alone for 21days. Open Field Test (OFT) was used to investigate motor activity in rats. Hippocampal oxidative, antioxidative and inflammatory factors were evaluated. Furthermore, brain cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) and brain derived neurotrophic factor (BDNF) levels were studied at gene level by reverse transcriptase polymerase chain reaction (RT-PCR). In addition, protein expression for BDNF, CREB, phosphorylated CREB (CREB-P), Bax and Bcl-2 was determined by western blotting. Voluntary and involuntary administration of alcohol altered motor activity in OFT, and curcumin treatment inhibited this alcohol-induced motor disturbance. Also, alcohol administration augmented lipid peroxidation, mitochondrial oxidized glutathione (GSSG), interleukin-1 beta (IL-1β), tumor necrosis factor-alpha (TNF-α) and Bax levels in isolated hippocampal tissues. Furthermore, alcohol-induced significant reduction were observed in reduced form of glutathione (GSH), superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione reductase (GR) activities and CREB, BDNF and Bcl-2 levels. Also curcumin alone did not change the behavior and biochemical and molecular parameters. Curcumin can act as a neuroprotective agent against neurodegenerative effects of alcohol abuse, probably via activation of CREB-BDNF signaling pathway. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Taliyan, Rajeev; Ramagiri, Sruthi
2016-08-01
Numerous studies have demonstrated the possible neuroprotective role of lithium treatment against neurological disorders. However, the role of lithium in delayed phase of neuronal death against focal ischemia has not been explored. Therefore, the present study was designed to investigate the effect and molecular mechanisms of post-lithium treatment against cerebral ischemic reperfusion (I/R) injury and associated cognitive deficits in rats. I/R injury was induced by right middle cerebral artery occlusion and lithium (40 and 60 mg/kg) were given intraperitoneally, 24 h after the insult and continued for 1 week with 24-h interval. Using Lasser Doppler, cerebral blood flow was monitored before, during and after MCAO induction. Besides behavioral, biochemical, and histological evaluation, levels of tumor necrosis factor alpha (TNF-α) and brain-derived neurotrophic factor (BDNF) were also estimated. I/R injury resulted in significant elevation of neurological deficits, oxidative stress, neuroinflammation, and cognitive impairments. We found that lithium injection, 24 h after I/R-injury continued for 1 week, dose dependently prevented behavioral abnormality and cognitive impairments. Moreover, lithium attenuated the levels of oxidative stress and pro-inflammatory-cytokines TNF-α level. Further, lithium treatments significantly reduced neuronal damage and augmented healthy neuronal count and improved neuronal density in hippocampus. These neuroprotective effects of delayed lithium treatment were associated with upregulation of neurotrophic factor BDNF levels. Delayed lithium treatment provides neuroprotection against cerebral I/R injury and associated cognitive deficits by upregulating BDNF expression that opens a new avenue to treat I/R injury even after active cell death.
Yuan, Qiang; Yang, Feng; Xiao, Yixin; Tan, Shawn; Husain, Nilofer; Ren, Ming; Hu, Zhonghua; Martinowich, Keri; Ng, Julia S; Kim, Paul J; Han, Weiping; Nagata, Koh-Ichi; Weinberger, Daniel R; Je, H Shawn
2016-08-15
Genetic variations in dystrobrevin binding protein 1 (DTNBP1 or dysbindin-1) have been implicated as risk factors in the pathogenesis of schizophrenia. The encoded protein dysbindin-1 functions in the regulation of synaptic activity and synapse development. Intriguingly, a loss of function mutation in Dtnbp1 in mice disrupted both glutamatergic and gamma-aminobutyric acidergic transmission in the cerebral cortex; pyramidal neurons displayed enhanced excitability due to reductions in inhibitory synaptic inputs. However, the mechanism by which reduced dysbindin-1 activity causes inhibitory synaptic deficits remains unknown. We investigated the role of dysbindin-1 in the exocytosis of brain-derived neurotrophic factor (BDNF) from cortical excitatory neurons, organotypic brain slices, and acute slices from dysbindin-1 mutant mice and determined how this change in BDNF exocytosis transsynaptically affected the number of inhibitory synapses formed on excitatory neurons via whole-cell recordings, immunohistochemistry, and live-cell imaging using total internal reflection fluorescence microscopy. A decrease in dysbindin-1 reduces the exocytosis of BDNF from cortical excitatory neurons, and this reduction in BDNF exocytosis transsynaptically resulted in reduced inhibitory synapse numbers formed on excitatory neurons. Furthermore, application of exogenous BDNF rescued the inhibitory synaptic deficits caused by the reduced dysbindin-1 level in both cultured cortical neurons and slice cultures. Taken together, our results demonstrate that these two genes linked to risk for schizophrenia (BDNF and dysbindin-1) function together to regulate interneuron development and cortical network activity. This evidence supports the investigation of the association between dysbindin-1 and BDNF in humans with schizophrenia. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
The antidepressant effect of running is associated with increased hippocampal cell proliferation.
Bjørnebekk, Astrid; Mathé, Aleksander A; Brené, Stefan
2005-09-01
A common trait of antidepressant drugs, electroconvulsive treatment and physical exercise is that they relieve depression and up-regulate neurotrophic factors as well as cell proliferation and neurogenesis in the hippocampus. In order to identify possible biological underpinnings of depression and the antidepressant effect of running, we analysed cell proliferation, the level of the neurotrophic factor BDNF in hippocampus and dynorphin in striatum/accumbens in 'depressed' Flinders Sensitive Line rats (FSL) and Flinders Resistant Line (FRL) rats with and without access to running-wheels. The FRL strain exhibited a higher daily running activity than the FSL strain. Wheel-running had an antidepressant effect in the 'depressed' FSL rats, as indicated by the forced swim test. In the hippocampus, cell proliferation was lower in the 'depressed' rats compared to the control FRL rats but there was no difference in BDNF or dynorphin levels in striatum/accumbens. After 5 wk of running, cell proliferation increased in FSL but not in FRL rats. BDNF and dynorphin mRNA levels were increased in FRL but not to the same extent in the in FSL rats; thus, increased BDNF and dynorphin levels were correlated to the running activity but not to the antidepressant effect of running. The only parameter that was associated to basal level of 'depression' and to the antidepressant effect was cell proliferation in the hippocampus. Thus, suppression of cell proliferation in the hippocampus could constitute one of the mechanisms that underlie depression, and physical activity might be an efficient antidepressant.
Kalayci, Fatma; Ozdemir, Armagan; Saribas, Suat; Yuksel, Pelin; Ergin, Sevgi; Kuskucu, Ali Mert; Poyraz, Cana Aksoy; Balcioglu, Ibrahim; Alpay, Nihat; Kurt, Aykut; Sezgin, Zeynep; Kocak, Banu Tufan; Icel, Rana Sucu; Can, Gunay; Tokman, Hrisi Bahar; Kocazeybek, Bekir
Several pathogens have been suspected of playing a role in the pathogenesis of schizophrenia. Chronic inflammation has been proposed to occur as a result of persistent infection caused by Chlamydophila pneumoniae cells that reside in brain endothelial cells for many years. It was recently hypothesized that brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) may play prominent roles in the development of schizophrenia. NT-3 and BDNF levels have been suggested to change in response to various manifestations of infection. Therefore, we aimed to elucidate the roles of BDNF and NT3 in the schizophrenia-C. pneumoniae infection relationship. RT-PCR, immunofluorescence and ELISA methods were used. Fifty patients suffering from schizophrenia and 35 healthy individuals were included as the patient group (PG) and the healthy control group (HCG), respectively. We detected persistent infection in 14 of the 50 individuals in the PG and in 1 of the 35 individuals in the HCG. A significant difference was found between the two groups (p<0.05). Twenty-two individuals in the PG and 13 in the HCG showed seropositivity for past C. pneumoniae infection, and no difference was observed between the groups (p>0.05). C. pneumoniae DNA was not detected in any group. A significant difference in NT-3 levels was observed between the groups, with very low levels in the PG (p<0.001). A significant difference in BDNF levels was also found, with lower levels in the PG (p<0.05). The mean serum NT-3 level was higher in the PG cases with C. pneumoniae seropositivity than in seronegative cases; however, this difference was not statistically significant (p>0.05). In conclusion, we suggest that NT-3 levels during persistent C. pneumoniae infection may play a role in this relationship. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.
Wang, Bohan; Ning, Hongxiu; Reed-Maldonado, Amanda B; Zhou, Jun; Ruan, Yajun; Zhou, Tie; Wang, Hsun Shuan; Oh, Byung Seok; Banie, Lia; Lin, Guiting; Lue, Tom F
2017-02-16
Low-intensity extracorporeal shock wave therapy (Li-ESWT) is used in the treatment of erectile dysfunction, but its mechanisms are not well understood. Previously, we found that Li-ESWT increased the expression of brain-derived neurotrophic factor (BDNF). Here we assessed the underlying signaling pathways in Schwann cells in vitro and in penis tissue in vivo after nerve injury. The result indicated that BDNF were significantly increased by the Li-ESWT after nerve injury, as well as the expression of BDNF in Schwann cells (SCs, RT4-D6P2T) in vitro. Li-ESWT activated the protein kinase RNA-like endoplasmic reticulum (ER) kinase (PERK) pathway by increasing the phosphorylation levels of PERK and eukaryotic initiation factor 2a (eIF2α), and enhanced activating transcription factor 4 (ATF4) in an energy-dependent manner. In addition, GSK2656157-an inhibitor of PERK-effectively inhibited the effect of Li-ESWT on the phosphorylation of PERK, eIF2α, and the expression of ATF4. Furthermore, silencing ATF4 dramatically attenuated the effect of Li-ESWT on the expression of BDNF, but had no effect on hypoxia-inducible factor (HIF)1α or glial cell-derived neurotrophic factor (GDNF) in Schwann cells. In conclusion, our findings shed new light on the underlying mechanisms by which Li-ESWT may stimulate the expression of BDNF through activation of PERK/ATF4 signaling pathway. This information may help to refine the use of Li-ESWT to further improve its clinical efficacy.
Wang, Bohan; Ning, Hongxiu; Reed-Maldonado, Amanda B.; Zhou, Jun; Ruan, Yajun; Zhou, Tie; Wang, Hsun Shuan; Oh, Byung Seok; Banie, Lia; Lin, Guiting; Lue, Tom F.
2017-01-01
Low-intensity extracorporeal shock wave therapy (Li-ESWT) is used in the treatment of erectile dysfunction, but its mechanisms are not well understood. Previously, we found that Li-ESWT increased the expression of brain-derived neurotrophic factor (BDNF). Here we assessed the underlying signaling pathways in Schwann cells in vitro and in penis tissue in vivo after nerve injury. The result indicated that BDNF were significantly increased by the Li-ESWT after nerve injury, as well as the expression of BDNF in Schwann cells (SCs, RT4-D6P2T) in vitro. Li-ESWT activated the protein kinase RNA-like endoplasmic reticulum (ER) kinase (PERK) pathway by increasing the phosphorylation levels of PERK and eukaryotic initiation factor 2a (eIF2α), and enhanced activating transcription factor 4 (ATF4) in an energy-dependent manner. In addition, GSK2656157—an inhibitor of PERK—effectively inhibited the effect of Li-ESWT on the phosphorylation of PERK, eIF2α, and the expression of ATF4. Furthermore, silencing ATF4 dramatically attenuated the effect of Li-ESWT on the expression of BDNF, but had no effect on hypoxia-inducible factor (HIF)1α or glial cell-derived neurotrophic factor (GDNF) in Schwann cells. In conclusion, our findings shed new light on the underlying mechanisms by which Li-ESWT may stimulate the expression of BDNF through activation of PERK/ATF4 signaling pathway. This information may help to refine the use of Li-ESWT to further improve its clinical efficacy. PMID:28212323
Marlatt, Michael W.; Potter, Michelle C.; Lucassen, Paul J.; van Praag, Henriette
2012-01-01
Age-related memory loss is considered to commence at middle-age and coincides with reduced adult hippocampal neurogenesis and neurotrophin levels. Consistent physical activity at midlife may preserve brain-derived neurotrophic factor (BDNF) levels, new cell genesis and learning. In the present study, 9-month-old female C57Bl/6J mice were housed with or without a running wheel and injected with bromodeoxyuridine (BrdU) to label newborn cells. Morris water maze learning, open field activity and rotarod behavior were tested 1 and 6 months after exercise onset. Here we show that long-term running improved retention of spatial memory and modestly enhanced rotarod performance at 15 months of age. Both hippocampal neurogenesis and mature BDNF peptide levels were elevated after long-term running. Thus, regular exercise from the onset and during middle-age may maintain brain function. PMID:22252978
Rousseaud, Audrey; Delépine, Chloé; Nectoux, Juliette; Billuart, Pierre; Bienvenu, Thierry
2015-08-01
Rett syndrome (RTT) is a severe neurodevelopmental disease caused by mutations in methyl-CpG-binding protein 2 (MECP2), which encodes a transcriptional modulator of many genes including BDNF. BDNF comprises nine distinct promoter regions, each triggering the expression of a specific transcript. The role of this diversity of transcripts remains unknown. MeCP2 being highly expressed in neurons, RTT was initially considered as a neuronal disease. However, recent studies have shown that MeCP2 was also expressed in astrocytes. Though several studies explored Bdnf IV expression in Mecp2-deficient mice, the differential expression of Bdnf isoforms in Mecp2-deficient neurons and astrocytes was never studied. By using TaqMan technology and a mouse model expressing a truncated Mecp2 (Mecp2(308/y)), we firstly showed in neurons that Bdnf transcripts containing exon I, IIb, IIc, IV, and VI are prominently expressed, whereas in astrocytes, Bdnf transcript containing exon VI is preferentially expressed, suggesting a specific regulation of Bdnf expression at the cellular level. Secondly, we confirmed the repressive role of Mecp2 only on the expression of Bdnf VI in neurons. Our data suggested that the truncated Mecp2 protein maintains its function on Bdnf expression regulation in neurons and in astrocytes. Interestingly, we observed that Bdnf transcripts (I and IXA), regulated by neural activity induced by bicuculline in Mecp2(308/y) neurons, were not affected by histone deacetylase inhibition. In contrast, Bdnf transcripts (IIb, IIc, and VI), regulated by histone deacetylation, were not affected by bicuculline treatment in wild-type and Mecp2(308/y) neurons. All these results reflect the complexity of regulation of Bdnf gene.
Shirayama, Yukihiko; Yang, Chun; Zhang, Ji-chun; Ren, Qian; Yao, Wei; Hashimoto, Kenji
2015-12-01
Role of brain-derived neurotrophic factor (BDNF)-TrkB signaling in a learned helplessness (LH) model of depression was investigated. LH rats showed a reduction of BDNF in the medial prefrontal cortex (mPFC), CA3, and dentate gyrus (DG) of the hippocampus, whereas LH rats showed an increase in BDNF in the nucleus accumbens (NAc). Furthermore, levels of proBDNF, a BDNF precursor, were higher in the mPFC, but lower in the NAc, of LH rats. A single bilateral infusion of a TrkB agonist 7,8-DHF, but not a TrkB antagonist ANA-12, into the infralimbic (IL) of mPFC, DG, and CA3, but not the prelimbic (PrL) of mPFC, exerted antidepressant effects in LH rats. In contrast, a single bilateral infusion of ANA-12, but not 7,8-DHF, into the core and shell of NAc exerted antidepressant-like effects in LH rats, with more potent effects observed for the NAc core than for NAc shell. Interestingly, a single administration of 7,8-DHF (10mg/kg, i.p.) significantly improved a decreased phosphorylation of TrkB in the mPFC, CA3, and DG of LH rats. Additionally, ANA-12 (0.5mg/kg, i.p.) significantly improved an increased phosphorylation of TrkB in the NAc of LH rats. In conclusion, these results suggest that LH causes depression-like behavior by altering BDNF in the brain regions, and that proBDNF-BDNF processing and transport may be altered in the mPFC-NAc circuit of LH rats. Therefore, TrkB agonists might exert antidepressant effects by stimulating TrkB in the IL, CA3, and DG, while TrkB antagonists might exert antidepressant effects by blocking TrkB in the NAc. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.
Muñoz, Pablo C; Aspé, Mauricio A; Contreras, Luis S; Palacios, Adrián G
2010-01-01
Object recognition memory allows discrimination between novel and familiar objects. This kind of memory consists of two components: recollection, which depends on the hippocampus, and familiarity, which depends on the perirhinal cortex (Pcx). The importance of brain-derived neurotrophic factor (BDNF) for recognition memory has already been recognized. Recent evidence suggests that DNA methylation regulates the expression of BDNF and memory. Behavioral and molecular approaches were used to understand the potential contribution of DNA methylation to recognition memory. To that end, rats were tested for their ability to distinguish novel from familiar objects by using a spontaneous object recognition task. Furthermore, the level of DNA methylation was estimated after trials with a methyl-sensitive PCR. We found a significant correlation between performance on the novel object task and the expression of BDNF, negatively in hippocampal slices and positively in perirhinal cortical slices. By contrast, methylation of DNA in CpG island 1 in the promoter of exon 1 in BDNF only correlated in hippocampal slices, but not in the Pxc cortical slices from trained animals. These results suggest that DNA methylation may be involved in the regulation of the BDNF gene during recognition memory, at least in the hippocampus.
Obuchowicz, Ewa; Nowacka, Marta; Paul-Samojedny, Monika; Bielecka-Wajdman, Anna M; Małecki, Andrzej
2017-02-01
The present study was designed to evaluate, for the first time, the potential sex differences in BDNF and VEGF systems under normal conditions and in response to IL-1β given ip. Peripheral overproduction of this cytokine mediates the pathophysiology of various acute neuroinflammatory states. Until now, the effect of IL-1β on VEGF expression in rat brain structures and its serum level has not been examined. In male and female rats, the BDNF and VEGF mRNA expression, and BDNF level were evaluated in the amygdala, hippocampus, hypothalamus and pituitary gland. The VEGF levels were determined in the pituitary. Serum BDNF and VEGF levels were also measured. The pituitary BDNF mRNA, and BDNF and VEGF levels were higher in females than in male rats whereas in males, the BDNF levels were higher in the other brain structures. The serum BDNF concentration was similar in both groups but VEGF levels were enhanced in females. Following IL-1β (50μg/kg ip.) administration, a higher serum IL-1β level was detected in females than in males. In male rats, IL-1β decreased BDNF mRNA in all the brain structures, except for the pituitary, and VEGF mRNA in the amygdala. In opposite, IL-1β challenge in females increased the pituitary VEGF mRNA and serum BDNF and VEGF levels. These results suggest that in females BDNF and VEGF may play a more important role in the pituitary function. In males, amygdala trophic system seems to be especially sensitive to the enhanced peripheral IL-1β production. Our findings point to the need to consider sex-related differences to be able to draw reliable conclusions about changes in BDNF and VEGF levels during inflammation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Yang, Jin-Wei; Ru, Jin; Ma, Wei; Gao, Yan; Liang, Zhang; Liu, Jia; Guo, Jian-Hui; Li, Li-Yan
2015-12-01
Brain-derived neurotrophic factor (BDNF) plays an important role in neuronal growth; however, the downstream regulatory mechanisms remain unclear. In this study, we investigated whether BDNF exerts its neurotrophic effects through the Wnt/β-catenin signaling pathway in human embryonic spinal cord neurons in vitro. We found that neuronal growth (soma size and average neurite length) was increased by transfection with a BDNF overexpression plasmid. Western blotting and real-time quantitative PCR showed that expression of the BDNF pathway components TrkB, PI3K, Akt and PLC-γ was increased by BDNF overexpression. Furthermore, the Wnt signaling factors Wnt, Frizzled and Dsh and the downstream target β-catenin were upregulated, whereas GSK-3β was downregulated. In contrast, when BDNF signaling was downregulated with BDNF siRNA, the growth of neurons was decreased. Furthermore, BDNF signaling factors, Wnt pathway components and β-catenin were all downregulated, whereas GSK-3β was upregulated. This suggests that BDNF affects the growth of neurons in vitro through crosstalk with Wnt signaling, and that GSK-3β may be a critical factor linking these two pathways. To evaluate this possibility, we treated neurons with 6-bromoindirubin-3'-oxime (BIO), a small molecule GSK-3β inhibitor. BIO reduced the effects of BDNF upregulation/downregulation on soma size and average neurite length, and suppressed the impact of BDNF modulation on the Wnt signaling pathway. Taken together, our findings suggest that BDNF promotes the growth of neurons in vitro through crosstalk with the Wnt/β-catenin signaling pathway, and that this interaction may be mediated by GSK-3β. Copyright © 2015 Elsevier Ltd. All rights reserved.
Pettorruso, Mauro; De Berardis, Domenico; Varasano, Paola Annunziata; Lucidi Pressanti, Gabriella; De Remigis, Valeria; Valchera, Alessandro; Ricci, Valerio; Di Nicola, Marco; Janiri, Luigi; Biggio, Giovanni; Di Giannantonio, Massimo
2016-01-01
Background: Agomelatine modulates brain-derived neurotrophic factor expression via its interaction with melatonergic and serotonergic receptors and has shown promising results in terms of brain-derived neurotrophic factor increase in animal models. Methods: Twenty-seven patients were started on agomelatine (25mg/d). Venous blood was collected and brain-derived neurotrophic factor serum levels were measured at baseline and after 2 and 8 weeks along with a clinical assessment, including Hamilton Depression Rating Scale and Snaith-Hamilton Pleasure Scale. Results: Brain-derived neurotrophic factor serum concentration increased after agomelatine treatment. Responders showed a significant increase in brain-derived neurotrophic factor levels after 2 weeks of agomelatine treatment; no difference was observed in nonresponders. Linear regression analysis showed that more prominent brain-derived neurotrophic factor level variation was associated with lower baseline BDNF levels and greater anhedonic features at baseline. Conclusions: Patients affected by depressive disorders showed an increase of brain-derived neurotrophic factor serum concentration after a 2-week treatment with agomelatine. The increase of brain-derived neurotrophic factor levels was found to be greater in patients with lower brain-derived neurotrophic factor levels and marked anhedonia at baseline. PMID:26775293
Marangolo, Paola; Fiori, Valentina; Gelfo, Francesca; Shofany, Jacob; Razzano, Carmelina; Caltagirone, Carlo; Angelucci, Francesco
2014-01-01
Several studies have shown that transcranial direct current stimulation (tDCS) is a useful tool to enhance language recovery in aphasia. It has also been suggested that modulation of the neurotrophin brain-derived neurotrophic factor (BDNF) might be part of the mechanisms involved in tDCS effects on synaptic connectivity. However, all language studies have previously investigated the effects using unihemispheric stimulation. The purpose of the present study is to investigate the role of bihemispheric tDCS on language recovery and BDNF serum levels. Seven aphasic persons underwent an intensive language therapy in two different conditions: real bihemispheric stimulation over the left and right Broca's areas and a sham condition. After the stimulation, patients exibited a significant recovery in three language tasks (picture description, noun and verb naming) compared to the sham condition which persisted in the follow-up session. No significant differences were found in BDNF serum levels after tDCS stimulation and in the follow-up session. However, a significant positive correlation was present for the real stimulation condition between percent changes in BDNF levels and in the verb naming task. The data suggest that this novel approach may potentiate the recovery of language in chronic aphasia. They also emphasize the importance to further investigate the role of possible biomarkers associated with tDCS treatment response in language recovery.
Mao, Qing-Qiu; Huang, Zhen; Ip, Siu-Po; Xian, Yan-Fang; Che, Chun-Tao
2012-02-01
Repeated injections of corticosterone (CORT) induce the dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, resulting in depressive-like behavior. This study aimed to examine the antidepressant-like effect and the possible mechanisms of total glycosides of peony (TGP) in the CORT-induced depression model in rats. The results showed that the 3-week CORT injections induced the significant increase in serum CORT levels in rats. Repeated CORT injections also caused depression-like behavior in rats, as indicated by the significant decrease in sucrose consumption and increase in immobility time in the forced swim test. Moreover, it was found that brain-derived neurotrophic factor (BDNF) protein levels in the hippocampus and frontal cortex were significantly decreased in CORT-treated rats. Treatment of the rats with TGP significantly suppressed the depression-like behavior and increased brain BDNF levels in CORT-treated rats. The results suggest that TGP produces an antidepressant-like effect in CORT-treated rats, which is possibly mediated by increasing BDNF expression in the hippocampus and frontal cortex. Copyright © 2011 Elsevier B.V. All rights reserved.
Wichers, Marieke; Kenis, Gunter; Jacobs, Nele; Myin-Germeys, Inez; Schruers, Koen; Mengelers, Ron; Delespaul, Philippe; Derom, Catherine; Vlietinck, Robert; van Os, Jim
2008-08-01
Previous work indicated protective effects of positive emotions on genetically influenced stress sensitivity. Given the fact that expression of brain-derived-neurotrophic-factor (BDNF) is associated with stress-induced behavioral changes, it was hypothesized that the BDNF Val-sup-6-sup-6Met genotype may mediate genetic effects on stress sensitivity, conditional on the level of concurrent positive emotions. Subjects (n=446) participated in a momentary assessment study, collecting appraisals of stress and affect in the flow of daily life. Multilevel regression analyses examined moderation of daily life stress-induced negative affect (NA) by BDNF genotype, and to what degree this was conditional on concurrent positive emotions. Results showed that heterozygous BDNF "Met" carriers exhibited an increased NA response to social stress compared with "Val/Val" subjects. Positive emotions at the time of the stressor decreased BDNF genetic moderation of the NA response to social stress in a dose-response fashion. This effect was most pronounced in BDNF Met carriers. Thus, the impact of BDNF genotype on stress sensitivity is conditional on the experience of positive emotions. Interdisciplinary research in psychology and psychiatric genetics may lead to the improvement of treatment choices in stress-related disorders. Copyright (c) 2008 APA, all rights reserved.
Wang, Peng; Chen, Fei-Xue; Du, Chao; Li, Chang-Qing; Yu, Yan-Bo; Zuo, Xiu-Li; Li, Yan-Qing
2015-05-22
Colonic brain-derived neurotrophic factor (BDNF) plays an essential role in pathogenesis of abdominal pain in diarrhea-predominant irritable bowel syndrome (IBS-D), but regulation on its expression remains unclear. We investigated the role of fecal supernatants (FSN) from IBS-D patients on regulating BDNF expression in colonic epithelial cells of human and mice. Using human Caco-2 cells, we found that IBS-D FSN significantly increased BDNF mRNA and protein levels compared to control FSN, which were remarkably suppressed by the serine protease inhibitor. To further explore the potential mechanisms, we investigated the impact of protease-activated receptor-2 (PAR-2) on BDNF expression. We found a significant increase in PAR-2 expression in Caco-2 after IBS-D FSN stimulation. Knockdown of PAR-2 significantly inhibited IBS-D FSN-induced upregulation of BDNF. Moreover, we found that phosphorylation of p38 MAPK, not NF-κB p65, contributed to PAR-2-mediated BDNF overexpression. To confirm these results, we intracolonically infused IBS-D or control FSN in mice and found that IBS-D FSN significantly elevated colonic BDNF and visceral hypersensitivity in mice, which were both suppressed by the inhibitor of serine protease or antagonist of PAR-2. Together, our data indicate that activation of PAR-2 signaling by IBS-D FSN promotes expression of colonic BDNF, thereby contributing to IBS-like visceral hypersensitivity.
Conway, Christopher C.; Slavich, George M.; Hammen, Constance
2016-01-01
Despite decades of research examining diathesis-stress models of emotional disorders, it remains unclear whether dysfunctional attitudes interact with stressful experiences to shape affect on a daily basis and, if so, how clinical and genetic factors influence these associations. To address these issues, we conducted a multi-level daily diary study that examined how dysfunctional attitudes and stressful events relate to daily fluctuations in negative and positive affect in 104 young adults. Given evidence that clinical and genetic factors underlie stress sensitivity, we also examined how daily affect is influenced by internalizing and externalizing symptoms and brain-derived neurotrophic factor (BDNF) genotype, which have been shown to influence neural, endocrine, and affective responses to stress. In multivariate models, internalizing symptoms and BDNF Val66Met genotype independently predicted heightened negative affect on stressful days, but dysfunctional attitudes did not. Specifically, the BDNF Met allele and elevated baseline internalizing symptomatology predicted greater increases in negative affect in stressful circumstances. These data are the first to demonstrate that BDNF genotype and stress are jointly associated with daily fluctuations in negative affect, and they challenge the assumption that maladaptive beliefs play a strong independent role in determining affective responses to everyday stressors. The results may thus inform the development of new multi-level theories of psychopathology and guide future research on predictors of affective lability. PMID:27041782
Montero, Sergio; Cuéllar, Ricardo; Lemus, Mónica; Avalos, Reyes; Ramírez, Gladys; de Álvarez-Buylla, Elena Roces
2012-01-01
Neuronal systems, which regulate energy intake, energy expenditure and endogenous glucose production, sense and respond to input from hormonal related signals that convey information from body energy availability. Carotid chemoreceptors (CChr) function as sensors for circulating glucose levels and contribute to glycemic counterregulatory responses. Brain-derived neurotrophic factor (BDNF) that plays an important role in the endocrine system to regulate glucose metabolism could play a role in hyperglycemic glucose reflex with brain glucose retention (BGR) evoked by anoxic CChr stimulation. Infusing BDNF into the nucleus tractus solitarii (NTS) before CChr stimulation, showed that this neurotrophin increased arterial glucose and BGR. In contrast, BDNF receptor (TrkB) antagonist (K252a) infusions in NTS resulted in a decrease in both glucose variables.
Maghsoudi, Nader; Ghasemi, Rasoul; Ghaempanah, Zahra; Ardekani, Ali M; Nooshinfar, Elahe; Tahzibi, Abbas
2014-01-01
Brain-Derived Neurotrophic Factor (BDNF) and its receptor, TrkB, in the hippocampus are targets for adverse effects of stress paradigms; in addition, BDNF and its receptor play key role in the pathology of brain diseases like depression. In the present study, we evaluated the possible role of hippocampal BDNF in depression during pregnancy. To achieve the purpose, repeated restrain stress (1 or 3 hours daily for 7 days) during the last week of pregnancy was used and alteration in the gene expression of hippocampal BDNF and TrkB evaluated by semi-quantitative PCR. The results showed that in stress group the level of ACTH and Corticosterone is increased showing that our model was efficient in inducing psychological stress; we also found that BDNF and TrkB expression are decreased in 3 hours stress group but not in 1 hour stress compared to control group. Our results imply that decrease in BDNF and its receptor could contribute in some adverse effects of stress during pregnancy such as elevation of depressive like behavior.
de Luis, Daniel Antonio; Aller, Rocío; Izaola, Olatz; Primo, David; Romero, Enrique
2017-01-01
The role of brain-derived neurotrophic factor (BDNF) variants on diabetes prevalence, basal adipokine levels, body weight, and cardiovascular risk factors remains unclear in obese patients. This study is aimed at analyzing the effects of rs10767664 BDNF gene polymorphism on diabetes mellitus prevalence, body weight, cardiovascular risk factors, and serum adipokine levels in obese female patients. A total of 507 obese women were enrolled in a prospective way. Biochemical evaluation and anthropometric measures were recorded. The frequency of diabetes mellitus in the group of patients with non-T allele was 20.1 and 28.3% in T-allele carriers. Logistic regression showed a risk of diabetes mellitus of 1.33 (95% CI 1.17-2.08) in subjects with T allele adjusted by age and body mass index (BMI). T-allele carriers with diabetes mellitus have a higher weight, BMI, waist circumference, blood pressure, glucose, homeostasis model assessment insulin resistance (HOMA-IR), insulin, and C-reactive protein (CRP) levels than non-T-allele carriers. rs10767664 polymorphism of BDNF gene is associated with prevalence of diabetes mellitus in obese female patients. T-allele carriers with diabetes mellitus have a higher weight, fat mass, blood pressure, level of insulin, glucose, HOMA-IR, and CRP than non-T-allele carriers. © 2017 S. Karger AG, Basel.
Frias, Bárbara; Santos, João; Morgado, Marlene; Sousa, Mónica Mendes; Gray, Susannah M.Y.; McCloskey, Karen D.; Allen, Shelley; Cruz, Francisco
2015-01-01
Neurogenic detrusor overactivity (NDO) is a well known consequence of spinal cord injury (SCI), recognizable after spinal shock, during which the bladder is areflexic. NDO emergence and maintenance depend on profound plastic changes of the spinal neuronal pathways regulating bladder function. It is well known that neurotrophins (NTs) are major regulators of such changes. NGF is the best-studied NT in the bladder and its role in NDO has already been established. Another very abundant neurotrophin is BDNF. Despite being shown that, acting at the spinal cord level, BDNF is a key mediator of bladder dysfunction and pain during cystitis, it is presently unclear if it is also important for NDO. This study aimed to clarify this issue. Results obtained pinpoint BDNF as an important regulator of NDO appearance and maintenance. Spinal BDNF expression increased in a time-dependent manner together with NDO emergence. In chronic SCI rats, BDNF sequestration improved bladder function, indicating that, at later stages, BDNF contributes NDO maintenance. During spinal shock, BDNF sequestration resulted in early development of bladder hyperactivity, accompanied by increased axonal growth of calcitonin gene-related peptide-labeled fibers in the dorsal horn. Chronic BDNF administration inhibited the emergence of NDO, together with reduction of axonal growth, suggesting that BDNF may have a crucial role in bladder function after SCI via inhibition of neuronal sprouting. These findings highlight the role of BDNF in NDO and may provide a significant contribution to create more efficient therapies to manage SCI patients. PMID:25653370
Nguyen, Linda; Lucke-Wold, Brandon P.; Logsdon, Aric F.; Scandinaro, Anna L.; Huber, Jason D.; Matsumoto, Rae R.
2016-01-01
Ketamine has been shown to produce rapid and robust antidepressant effects in depressed individuals, however its abuse potential and adverse psychotomimetic effects limit its widespread use. Dextromethorphan may serve as a safer alternative based on pharmacodynamic similarities to ketamine. In this proof of concept study, behavioral and biochemical analyses were undertaken to evaluate the potential involvement of brain derived neurotrophic factor (BDNF) in the antidepressant-like effects of dextromethorphan in mice, with comparisons to ketamine and imipramine. Male Swiss, Webster mice were injected with dextromethorphan, ketamine or imipramine and their behaviors evaluated in the forced swim test (FST) and open field test. Western blots were used to measure brain derived neurotrophic factor (BDNF) and its precursor, pro-BDNF, protein expression in the hippocampus and frontal cortex of these mice. Our results show dextromethorphan and imipramine each reduced immobility time in the FST without affecting locomotor activity, whereas ketamine reduced immobility time and increased locomotor activity. Ketamine also rapidly (within 40 min) increased pro-BDNF expression in an AMPA receptor-dependent manner in the hippocampus, while DM and imipramine did not alter pro-BDNF or BDNF levels in either the hippocampus or frontal cortex within this timeframe. These data demonstrate that dextromethorphan shares some features with both ketamine and imipramine. Additional studies looking at dextromethorphan may aid in the development of more rapid, safe, and efficacious antidepressant treatment. PMID:27580401
Lee, Bridgin G; Anastasia, Agustin; Hempstead, Barbara L; Lee, Francis S; Blendy, Julie A
2015-12-01
Nicotine withdrawal is characterized by both affective and cognitive symptoms. Identifying genetic polymorphisms that could affect the symptoms associated with nicotine withdrawal are important in predicting withdrawal sensitivity and identifying personalized cessation therapies. In the current study we used a mouse model of a non-synonymous single nucleotide polymorphism in the translated region of the brain-derived neurotrophic factor (BDNF) gene that substitutes a valine (Val) for a methionine (Met) amino acid (Val66Met) to examine the relationship between the Val66Met single nucleotide polymorphism and nicotine dependence. This study measured proBDNF and the BDNF prodomain levels following nicotine and nicotine withdrawal and examined a mouse model of a common polymorphism in this protein (BDNF(Met/Met)) in three behavioral paradigms: novelty-induced hypophagia, marble burying, and the open-field test. Using the BDNF knock-in mouse containing the BDNF Val66Met polymorphism we found: (1) blunted anxiety-like behavior in BDNF(Met/Met) mice following withdrawal in three behavioral paradigms: novelty-induced hypophagia, marble burying, and the open-field test; (2) the anxiolytic effects of chronic nicotine are absent in BDNF(Met/Met) mice; and (3) an increase in BDNF prodomain in BDNF(Met/Met) mice following nicotine withdrawal. Our study is the first to examine the effect of the BDNF Val66Met polymorphism on the affective symptoms of withdrawal from nicotine in mice. In these mice, a single-nucleotide polymorphism in the translated region of the BDNF gene can result in a blunted withdrawal, as measured by decreased anxiety-like behavior. The significant increase in the BDNF prodomain in BDNF(Met/Met) mice following nicotine cessation suggests a possible role of this ligand in the circuitry remodeling after withdrawal. © The Author 2015. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Hu, Yuan; Tang, Jin-Shu; Hou, Shu-Xun; Shi, Xiu-Xiu; Qin, Jiang; Zhang, Tie-Song; Wang, Xiao-Jing
2017-11-01
Curcumin is a natural product with antimutagenic, antitumor, antioxidant and neuroprotective properties. However, to the best of our knowledge, curcumin has yet to be investigated for the treatment of lumbar intervertebral disc degeneration LIDD). The aim of the present study was to investigate whether curcumin can alleviate LIDD through regulating the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)‑2, transforming growth factor (TGF)‑β1/2, matrix metalloproteinase (MMP)‑9 and brain‑derived neurotrophic factor (BDNF) in a rat model of LIDD. The results of the present study suggest that pretreatment with curcumin can prevent the development of LIDD in rats. It was revealed that treatment with curcumin significantly reduced interleukin (IL)‑1β and IL‑6, iNOS, COX‑2 and MMP‑9 levels in rats with LIDD. In addition, treatment with curcumin reduced the mRNA expression levels of TGF‑β1 and TGF‑β2, whereas it increased the mRNA expression levels of BDNF in rats with LIDD. In conclusion, the present findings indicate that curcumin may exert protective effects on LIDD development, exerting its action through the regulation of iNOS, COX‑2, TGF‑β1/2, MMP‑9 and BDNF.
Jiang, De-guo; Jin, Shi-li; Li, Gong-ying; Li, Qing-qing; Li, Zhi-ruo; Ma, Hong-xia; Zhuo, Chuan-jun; Jiang, Rong-huan; Ye, Min-jie
2016-01-01
Previous studies suggest that serotonin (5-HT) might interact with brain-derived neurotrophic factor (BDNF) during the stress response. However, the relationship between 5-HT and BDNF expression under purely psychological stress is unclear. In this study, one hour before psychological stress exposure, the 5-HT1A receptor agonist 8-OH-DPAT or antagonist MDL73005, or the 5-HT2A receptor agonist DOI or antagonist ketanserin were administered to rats exposed to psychological stress. Immunohistochemistry and in situ hybridization revealed that after psychological stress, with the exception of the ventral tegmental area, BDNF protein and mRNA expression levels were higher in the 5-HT1A and the 5-HT2A receptor agonist groups compared with the solvent control no-stress or psychological stress group in the CA1 and CA3 of the hippocampus, prefrontal cortex, central amygdaloid nucleus, dorsomedial hypothalamic nucleus, dentate gyrus, shell of the nucleus accumbens and the midbrain periaqueductal gray. There was no significant difference between the two agonist groups. In contrast, after stress exposure, BDNF protein and mRNA expression levels were lower in the 5-HT1A and 5-HT2A receptor antagonist groups than in the solvent control non-stress group, with the exception of the ventral tegmental area. Our findings suggest that 5-HT regulates BDNF expression in a rat model of acute psychological stress. PMID:27857753
Forti, Louis Nuvagah; Van Roie, Evelien; Njemini, Rose; Coudyzer, Walter; Beyer, Ingo; Delecluse, Christophe; Bautmans, Ivan
2015-10-01
BDNF is known to induce neuroplasticity and low circulating levels have been related to neuronal loss in older persons. Physical exercise is thought to trigger BDNF-induced neuroplasticity, but conflicting observations have been reported regarding the effects of resistance training on circulating BDNF in the elderly. These conflicting observations might reflect dose-and gender-specific differences. Fifty-six apparently healthy elderly (68 ± 5 years) participants were randomized to 12 weeks of resistance training (3×/week) at either high-resistance (HIGH, 8 Males, 10 Females, 2 × 10-15 repetitions at 80% 1 RM), low-resistance (LOW, 9 Males, 10 Females, 1 × 80-100 repetitions at 20% 1 RM), or mixed low-resistance (LOW+, 9 Males, 10 Females, 1 × 60 repetitions at 20% 1 RM followed by 1 × 10-20 repetitions at 40% 1 RM). Serum was collected for BDNF assay at baseline and after 12 weeks (24 h-48 h after the last training). 12 weeks of LOW+ exercise significantly increased BDNF levels in male (from 34.9 ± 10.7 ng/mL to 42.9 ± 11.9 ng/mL, time × group interaction p=0.013), but not in female participants. No significant change was observed in HIGH or LOW, neither in male nor female subjects. Our results show that only the mixed-low-resistance training program with a very high number of repetitions at a sufficiently high external resistance was able to increase circulating BDNF in older male participants. Training to volitional fatigue might be necessary to obtain optimal results. Additional studies are needed to unravel the underlying mechanisms, as well as to confirm the observed gender difference. Copyright © 2015 Elsevier Inc. All rights reserved.
Kyeremanteng, C; MacKay, J C; James, J S; Kent, P; Cayer, C; Anisman, H; Merali, Z
2014-10-03
Investigations in healthy outbred rat strains have shown a potential role for brain-derived neurotrophic factor (BDNF) and the hypothalamic-pituitary-adrenal (HPA) axis in the antidepressant and memory side effects of electroconvulsive therapy (ECT, or ECS in animals). The Wistar-Kyoto (WKY) rat strain is used as a genetic model of depression yet no studies to date have directly compared the impact of ECS on the WKY strain to its healthy outbred control (Wistar). The objective of this study is to examine behavioral (antidepressant and retrograde memory) and neurochemical (BDNF and HPA axis) changes immediately (1day) and at a longer delay (7days) after repeated ECS (5 daily administrations) in WKY and Wistar rats. Male Wistar and WKY rats received 5days of repeated ECS or sham treatment and were assessed 1 and 7days later for 1) depression-like behavior and mobility; 2) retrograde memory; and 3) brain BDNF protein, brain corticotropin-releasing factor (CRF) and plasma corticosterone levels. Both strains showed the expected antidepressant response and retrograde memory impairments at 1day following ECS, which were sustained at 7days. In addition, at 1day after ECS, Wistar and WKY rats showed similar elevations in brain BDNF and extra-hypothalamic CRF and no change in plasma corticosterone. At 7days after ECS, Wistar rats showed sustained elevations of brain BDNF and CRF, whereas WKY rats showed a normalization of brain BDNF, despite sustained elevations of brain CRF. The model of 5 daily ECS was effective at eliciting behavioral and neurochemical changes in both strains. A temporal association was observed between brain CRF levels, but not BDNF, and measures of antidepressant effectiveness of ECS and retrograde memory impairments suggesting that extra-hypothalamic CRF may be a potential important contributor to these behavioral effects after repeated ECS/ECT. Copyright © 2014 Elsevier Inc. All rights reserved.
Li, Yixin; Xia, Baijuan; Li, Rongrong; Yin, Dan; Liang, Wenmei
2017-06-09
BACKGROUND The aim of this study was to explore how changes in the expression of BDNF in MLDS change the effect of BDNF on dopamine (DA) neurons, which may have therapeutic implications for heroin addiction. MATERIAL AND METHODS We established a rat model of heroin addiction and observed changes in the expression of BDNF, DA, dopamine receptor (DRD), dopamine transporter (DAT), and other relevant pathways in NAc. We also assessed the effect of BDNF overexpression in the NAc, behavioral changes of heroin-conditioned place preference (CPP), and naloxone withdrawal in rats with high levels of BDNF. We established 5 adult male rat groups: heroin addiction, lentivirus transfection, blank virus, sham operation, and control. The PCR gene chip was used to study gene expression changes. BDNF lentivirus transfection was used for BDNF overexpression. A heroin CPP model and a naloxone withdrawal model of rats were established. RESULTS Expression changes were found in 20 of the 84 DA-associated genes in the NAc of heroin-addicted rats. Weight loss and withdrawal symptoms in the lentivirus group for naloxone withdrawal was less than in the blank virus and the sham operation group. These 2 latter groups also showed significant behavioral changes, but such changes were not observed in the BDNF lentivirus group before or after training. DRD3 and DAT increased in the NAc of the lentivirus group. CONCLUSIONS BDNF and DA in the NAc are involved in heroin addiction. BDNF overexpression in NAc reduces withdrawal symptoms and craving behavior for medicine induced by environmental cues for heroin-addicted rats. BDNF participates in the regulation of the dopamine system by acting on DRD3 and DAT.
Koh, Eun-Jeong; Kim, Kui-Jin; Choi, Jia; Kang, Do-Hyung; Lee, Boo-Yong
2018-04-23
Spirulina maxima is a blue-green micro alga that contains abundant amounts of proteins (60-70%), vitamins, chlorophyll a, and C-phycocyanin (C-PC). It has been shown to reduce oxidative stress, and prevent diabetes and non-alcoholic fatty liver disease. However, it is unclear whether Spirulina maxima 70% ethanol extract (SM70EE), chlorophyll a, and C-PC prevent Aβ 1-42 -induced neurotoxicity in PC12 cells. The aim of this study was to investigate whether SM70EE, chlorophyll a, and C-PC prevent Aβ 1-42 -induced cell death. SM70EE, chlorophyll a, and C-PC suppressed the Aβ 1-42 -induced increase in poly-ADP ribose polymerase-1 (PARP-1) cleavage and reduced Aβ 1-42 -induced decreases in glutathione and its associated factors. The level of brain-derived neurotrophic factor (BDNF), which plays a critical role in neuronal survival and neuroprotection, was increased by SM70EE, chlorophyll a, and C-PC in Aβ 1-42 -treated cells. SM70EE treatment decreased oxidative stress and cell death in response to Aβ 1-42 treatment, while simultaneously suppressing PARP cleavage and increasing the levels of glutathione (GSH) and its associated factors. Moreover, SM70EE lowered the levels of APP and BACE1, two major factors involved in APP processing, and increased BDNF expression during Aβ 1-42 -induced neurotoxicity in PC12 cells. We suggest that SM70EE prevents cell death caused by Aβ 1-42 -induced neurotoxicity via the activation of BDNF signaling. Copyright © 2018 Elsevier B.V. All rights reserved.
Rex, Christopher S.; Lauterborn, Julie C.; Lin, Ching-Yi; Kramár, Eniko A.; Rogers, Gary A.; Gall, Christine M.; Lynch, Gary
2006-01-01
Rex, Christopher S., Julie C. Lauterborn, Ching-Yi Lin, Eniko A. Kramár, Gary A. Rogers, Christine M. Gall, and Gary Lynch. Restoration of long-term potentiation in middle-aged hippocampus after induction of brain-derived neurotrophic factor. J Neurophysiol 96: 677-685, 2006. First published May 17, 2006; doi:10.1152/jn.00336.2006. Restoration of neuronal viability and synaptic plasticity through increased trophic support is widely regarded as a potential therapy for the cognitive declines that characterize aging. Previous studies have shown that in the hippocampal CA1 basal dendritic field deficits in the stabilization of long-term potentiation (LTP) are evident by middle age. The present study tested whether increasing endogenous brain-derived neurotrophic factor (BDNF) could reverse this age-related change. We report here that in middle-aged (8- to 10-mo-old) rats, in vivo treatments with a positive AMPA-type glutamate receptor modulator both increase BDNF protein levels in the cortical telencephalon and restore stabilization of basal dendritic LTP as assessed in acute hippocampal slices 18 h after the last drug treatment. These effects were not attributed to enhanced synaptic transmission or to facilitation of burst responses used to induce LTP. Increasing extracellular levels of BDNF by exogenous application to slices of middle-aged rats was also sufficient to rescue the stabilization of basal dendritic LTP. Finally, otherwise stable LTP in ampakine-treated middle-aged rats can be eliminated by infusion of the extracellular BDNF scavenger TrkB-Fc. Together these results indicate that increases in endogenous BDNF signaling can offset deficits in the postinduction processes that stabilize LTP. PMID:16707719
Saligan, L N; Lukkahatai, N; Holder, G; Walitt, B; Machado-Vieira, R
2016-12-01
Fatigue during cancer treatment is associated with depression. Neurotrophic factors play a major role in depression and stress and might provide insight into mechanisms of fatigue. This study investigated the association between plasma concentrations of three neurotrophic factors (BDNF, brain-derived neurotrophic factor; GDNF, glial-derived neurotrophic factor; and SNAPIN, soluble N-ethylmaleimide sensitive fusion attachment receptor-associated protein) and initial fatigue intensification during external beam radiation therapy (EBRT) in euthymic non-metastatic prostate cancer men. Fatigue, as measured by the 13-item Functional Assessment of Cancer Therapy-Fatigue (FACT-F), and plasma neurotrophic factors were collected at baseline (prior to EBRT) and mid-EBRT. Subjects were categorized into fatigue and no fatigue groups using a > 3-point change in FACT-F scores between the two time points. Multiple linear regressions analysed the associations between fatigue and neurotrophic factors. FACT-F scores of 47 subjects decreased from baseline (43.95 ± 1.3) to mid-EBRT (38.36 ± 1.5, P < 0.001), indicating worsening fatigue. SNAPIN levels were associated with fatigue scores (r s = 0.43, P = 0.005) at baseline. A significant decrease of BDNF concentration (P = 0.008) was found in fatigued subjects during EBRT (n = 39). Baseline SNAPIN and decreasing BDNF levels may influence worsening fatigue during EBRT. Further investigations are warranted to confirm their role in the pathophysiology and therapeutics of fatigue.
BDNF-mediates Down-regulation of MicroRNA-195 Inhibits Ischemic Cardiac Apoptosis in Rats
Hang, Pengzhou; Sun, Chuan; Guo, Jing; Zhao, Jing; Du, Zhimin
2016-01-01
Background: Our previous studies suggested that brain-derived neurotrophic factor (BDNF)/tropomyosin-related kinase B (TrkB) axis inhibited cardiomyocyte apoptosis in myocardial infarction (MI). However, the relationship between BDNF and microRNA (miRNA) in cardiomyocytes are unclear. The present study was performed to investigate the role of miR-195 and the interplay between BDNF and miR-195 in ischemic cardiomyocyte apoptosis. Methods: Male Wistar rats were subjected to coronary artery ligation, and primary neonatal rat ventricular myocytes were treated with hypoxia or hydrogen peroxide (H2O2). BDNF level in rat ventricles was measured by enzyme linked immunosorbent assay (ELISA). miR-195 mimic, inhibitor or negative control was transfected into the cardiomyocytes. Cell viability and apoptosis were detected by MTT assay and TdT-mediated dUTP nick end labeling (TUNEL) staining, respectively. Cardiac function and apoptosis were detected in MI rats intravenously injected with antagomiR-195. Luciferase assay, Western blot and Real-time RT-PCR were employed to clarify the interplay between miR-195 and BDNF. Results: miR-195 level was dynamically regulated in response to MI and significantly increased in ischemic regions 24 h post-MI as well as in hypoxic or H2O2-treated cardiomyocytes. Meanwhile, BDNF protein level was rapidly increased in MI rats and H2O2-treated cardiomyocytes. Apoptosis in both hypoxic and H2O2-treated cardiomyocytes were markedly reduced and cell viability was increased by miR-195 inhibitor. Moreover, inhibition of miR-195 significantly improved cardiac function of MI rats. Bcl-2 but not BDNF was validated as the direct target of miR-195. Furthermore, BDNF abolished the pro-apoptotic role of miR-195, which was reversed by its scavenger TrkB-Fc. Conclusion: Up-regulation of miR-195 in ischemic cardiomyocytes promotes ischemic apoptosis by targeting Bcl-2. BDNF mitigated the pro-apoptotic effect of miR-195 in rat cardiomyocytes. These findings may provide better understanding of the pro-apoptotic role of miR-195 in MI and suggest that BDNF/miR-195/Bcl-2 axis may be beneficial for limiting myocardial ischemic injury. PMID:27489501
Cahn, B Rael; Goodman, Matthew S; Peterson, Christine T; Maturi, Raj; Mills, Paul J
2017-01-01
Thirty-eight individuals (mean age: 34.8 years old) participating in a 3-month yoga and meditation retreat were assessed before and after the intervention for psychometric measures, brain derived neurotrophic factor (BDNF), circadian salivary cortisol levels, and pro- and anti-inflammatory cytokines. Participation in the retreat was found to be associated with decreases in self-reported anxiety and depression as well as increases in mindfulness. As hypothesized, increases in the plasma levels of BDNF and increases in the magnitude of the cortisol awakening response (CAR) were also observed. The normalized change in BDNF levels was inversely correlated with BSI-18 anxiety scores at both the pre-retreat ( r = 0.40, p < 0.05) and post-retreat ( r = 0.52, p < 0.005) such that those with greater anxiety scores tended to exhibit smaller pre- to post-retreat increases in plasma BDNF levels. In line with a hypothesized decrease in inflammatory processes resulting from the yoga and meditation practices, we found that the plasma level of the anti-inflammatory cytokine Interleukin-10 was increased and the pro-inflammatory cytokine Interleukin-12 was reduced after the retreat. Contrary to our initial hypotheses, plasma levels of other pro-inflammatory cytokines, including Interferon Gamma (IFN-γ), Tumor Necrosis Factor (TNF-α), Interleukin-1β (IL-1β), Interleukin-6 (IL-6), and Interleukin-8 (IL-8) were increased after the retreat. Given evidence from previous studies of the positive effects of meditative practices on mental fitness, autonomic homeostasis and inflammatory status, we hypothesize that these findings are related to the meditative practices throughout the retreat; however, some of the observed changes may also be related to other aspects of the retreat such as physical exercise-related components of the yoga practice and diet. We hypothesize that the patterns of change observed here reflect mind-body integration and well-being. The increased BDNF levels observed is a potential mediator between meditative practices and brain health, the increased CAR is likely a reflection of increased dynamic physiological arousal, and the relationship of the dual enhancement of pro- and anti-inflammatory cytokine changes to healthy immunologic functioning is discussed.
Role of Hypoxia-Induced Brain Derived Neurotrophic Factor in Human Pulmonary Artery Smooth Muscle
Hartman, William; Helan, Martin; Smelter, Dan; Sathish, Venkatachalem; Thompson, Michael; Pabelick, Christina M.; Johnson, Bruce; Prakash, Y. S.
2015-01-01
Background Hypoxia effects on pulmonary artery structure and function are key to diseases such as pulmonary hypertension. Recent studies suggest that growth factors called neurotrophins, particularly brain-derived neurotrophic factor (BDNF), can influence lung structure and function, and their role in the pulmonary artery warrants further investigation. In this study, we examined the effect of hypoxia on BDNF in humans, and the influence of hypoxia-enhanced BDNF expression and signaling in human pulmonary artery smooth muscle cells (PASMCs). Methods and Results 48h of 1% hypoxia enhanced BDNF and TrkB expression, as well as release of BDNF. In arteries of patients with pulmonary hypertension, BDNF expression and release was higher at baseline. In isolated PASMCs, hypoxia-induced BDNF increased intracellular Ca2+ responses to serotonin: an effect altered by HIF1α inhibition or by neutralization of extracellular BDNF via chimeric TrkB-Fc. Enhanced BDNF/TrkB signaling increased PASMC survival and proliferation, and decreased apoptosis following hypoxia. Conclusions Enhanced expression and signaling of the BDNF-TrkB system in PASMCs is a potential mechanism by which hypoxia can promote changes in pulmonary artery structure and function. Accordingly, the BDNF-TrkB system could be a key player in the pathogenesis of hypoxia-induced pulmonary vascular diseases, and thus a potential target for therapy. PMID:26192455
Aerobic exercise upregulates the BDNF-Serotonin systems and improves the cognitive function in rats.
Pietrelli, A; Matković, L; Vacotto, M; Lopez-Costa, J J; Basso, N; Brusco, A
2018-05-23
Aerobic exercise (AE) benefits brain health and behavior. Serotonin (5-HT) and brain-derived neurotrophic factor (BDNF) are known to mediate and shape cognitive processes. Both systems share some actions: BDNF is involved in the maturation and function of 5-HT neurons. In turn, 5-HT is involved in neuroplasticity phenomena mediated by BDNF and stimulated by exercise. The aim of this work was to study the long-term effects of AE on BDNF- 5-HT systems and cognitive function in rats at different ages. A lifelong moderate-intensity aerobic training program was designed, in which aerobically exercised (E) and sedentary control (C) rats were studied at middle (8 months) and old age (18 months) by means of biochemical, immunohistochemical and behavioral assays. The levels and expression of BDNF, 5-HT, serotonin transporter (SERT) and 5-HT 1A receptor were determined in selected brain areas involved in memory and learning. Immunopositive cells to neuronal nuclear protein (NeuN) in the hippocampus CA1 area were also quantified. The cognitive function was evaluated by the object recognition test (ORT). Results indicate that AE enhanced spatial and non-spatial memory systems, modulated by age. This outcome temporarily correlated with a significant upregulation of cortical, hippocampal and striatal BDNF levels in parallel with an increase in the number of hippocampal CA1-mature neurons. AE also increased brain and raphe 5-HT levels, as well as the expression of SERT and 5-HT 1A receptor in the cortex and hippocampus. Old AE rats showed a highly conserved response, indicating a remarkable protective effect of exercise on both systems. In summary, lifelong AE positively affects BDNF-5-HT systems, improves cognitive function and protects the brain against the deleterious effects of sedentary life and aging. Copyright © 2018 Elsevier Inc. All rights reserved.
Suelves, Nuria; Miguez, Andrés; López-Benito, Saray; Barriga, Gerardo García-Díaz; Giralt, Albert; Alvarez-Periel, Elena; Arévalo, Juan Carlos; Alberch, Jordi; Ginés, Silvia; Brito, Verónica
2018-05-27
Deficits in striatal brain-derived neurotrophic factor (BDNF) delivery and/or BDNF/tropomyosin receptor kinase B (TrkB) signaling may contribute to neurotrophic support reduction and selective early degeneration of striatal medium spiny neurons in Huntington's disease (HD). Furthermore, we and others have demonstrated that TrkB/p75 NTR imbalance in vitro increases the vulnerability of striatal neurons to excitotoxic insults and induces corticostriatal synaptic alterations. We have now expanded these studies by analyzing the consequences of BDNF/TrkB/p75 NTR imbalance in the onset of motor behavior and striatal neuropathology in HD mice. Our findings demonstrate for the first time that the onset of motor coordination abnormalities, in a full-length knock-in HD mouse model (KI), correlates with the reduction of BDNF and TrkB levels, along with an increase in p75 NTR expression. Genetic normalization of p75 NTR expression in KI mutant mice delayed the onset of motor deficits and striatal neuropathology, as shown by restored levels of striatal-enriched proteins and dendritic spine density and reduced huntingtin aggregation. We found that the BDNF/TrkB/p75 NTR imbalance led to abnormal BDNF signaling, manifested as a diminished activation of TrkB-phospholipase C-gamma pathway but upregulation of c-Jun kinase pathway. Moreover, we confirmed the contribution of the proper balance of BDNF/TrkB/p75 NTR on HD pathology by a pharmacological approach using fingolimod. We observed that chronic infusion of fingolimod normalizes p75 NTR levels, which is likely to improve motor coordination and striatal neuropathology in HD transgenic mice. We conclude that downregulation of p75 NTR expression can delay disease progression suggesting that therapeutic approaches aimed to restore the balance between BDNF, TrkB, and p75 NTR could be promising to prevent motor deficits in HD.
Janel, N; Alexopoulos, P; Badel, A; Lamari, F; Camproux, A C; Lagarde, J; Simon, S; Feraudet-Tarisse, C; Lamourette, P; Arbones, M; Paul, J L; Dubois, B; Potier, M C; Sarazin, M; Delabar, J M
2017-06-20
Early identification of Alzheimer's disease (AD) risk factors would aid development of interventions to delay the onset of dementia, but current biomarkers are invasive and/or costly to assess. Validated plasma biomarkers would circumvent these challenges. We previously identified the kinase DYRK1A in plasma. To validate DYRK1A as a biomarker for AD diagnosis, we assessed the levels of DYRK1A and the related markers brain-derived neurotrophic factor (BDNF) and homocysteine in two unrelated AD patient cohorts with age-matched controls. Receiver-operating characteristic curves and logistic regression analyses showed that combined assessment of DYRK1A, BDNF and homocysteine has a sensitivity of 0.952, a specificity of 0.889 and an accuracy of 0.933 in testing for AD. The blood levels of these markers provide a diagnosis assessment profile. Combined assessment of these three markers outperforms most of the previous markers and could become a useful substitute to the current panel of AD biomarkers. These results associate a decreased level of DYRK1A with AD and challenge the use of DYRK1A inhibitors in peripheral tissues as treatment. These measures will be useful for diagnosis purposes.
Kim, Jae-Min; Stewart, Robert; Bae, Kyung-Yeol; Kim, Sung-Wan; Yang, Su-Jin; Park, Kee-Hyung; Shin, Il-Seon; Yoon, Jin-Sang
2011-03-01
Increased physical activity may have beneficial effects on cognitive outcomes; a role of brain-derived neurotrophic factor (BDNF) has been suggested in animal models but not yet tested in humans. This study investigated modification by BDNF val66met polymorphism of the association between physical activity, incident dementia and other cognitive outcomes. Of 732 community elders, 107 had dementia at baseline, and 518 (83%) of the remainder were followed over 2.4 years. Cognitive impairment and decline were defined from Mini-Mental State Examination scores. Self-reported level of physical activity was recorded on a 4-point scale. BDNF val66met and apolipoprotein E genotypes were ascertained. Covariates included age, sex, education, depression, vascular risk factors, and instrumental activities of daily living. Baseline lower physical activity was significantly associated with incident dementia as well as with baseline dementia and cognitive impairment and incident cognitive decline. BDNF val66met polymorphism itself was not associated with any cognitive outcome. However, the strength of association between lower activity and all cognitive outcomes increased incrementally with the number of met alleles, and was strongest in those with the met/met genotype. BDNF×activity interaction terms were stronger for prospective outcomes (incident dementia, cognitive decline) compared to cross-sectional outcomes (prevalent dementia, cognitive impairment no dementia). This study supports a previously suggested neurobiological basis for the effects of physical activity on dementia involving the BDNF system since the met allele is recognised to be associated with lower activity-dependent secretion of BDNF. Copyright © 2010. Published by Elsevier Inc.
Shishmanova-Doseva, Michaela; Peychev, Lyudmil; Koeva, Yvetta; Terzieva, Dora; Georgieva, Katerina; Peychev, Zhivko
2018-06-01
Cognitive impairment is considered a frequent side effect in the drug treatment of epilepsy. The objective of the present study was to investigate the effects of lacosamide (LCM) on learning and memory processes in rats, on the serum level of brain-derived neurotrophic factor (BDNF) and BDNF/TrkB ligand receptor system expression in the hippocampal formation. Male Wistar rats underwent long-term treatment with three different doses of lacosamide - 3 mg/kg (LCM 3), 10 mg/kg (LCM 10) and 30 mg/kg (LCM 30). All rats were subjected to one active and one passive avoidance tests. The BDNF/TrkB immunohistochemical expression in the hippocampus was measured and serum BDNF was determined. The LCM-treated rats made fewer avoidance responses than controls during acquisition training and in the memory retention test. The number of escapes in the LCM 10 and LCM 30 groups decreased throughout the test, while the rats in the LCM 3 group showed fewer escapes only in the memory test in the active avoidance task. In the step-down test, the latency time of the LCM-30 treated rats was reduced as compared with the controls during the learning session and the short- and long-term memory retention tests. Lacosamide induced a dose-dependent reduction of the hippocampal expression of BDNF and its receptor TrkB. We found no significant difference between BDNF serum levels in the test animals and controls. The results of the study suggest that LCM suppresses the learning and memory processes in rats, with the inhibition of hippocampal BDNF/TrkB ligand receptor system being one of the possible mechanisms causing this effect. Copyright © 2018 Elsevier Inc. All rights reserved.
Canivet, Anne; Albinet, Cédric T; Rodríguez-Ballesteros, Montserrat; Chicherio, Christian; Fagot, Delphine; André, Nathalie; Audiffren, Michel
2017-01-01
Background: In the elderly, physical activity (PA) enhances cognitive performances, increases brain plasticity and improves brain health. The neurotrophic hypothesis is that the release of brain-derived neurotrophic factor (BDNF), which is implicated in brain plasticity and cognition, is triggered by PA because motoneurons secrete BDNF into the bloodstream during exercise. Individual differences in cognitive performance may be explained by individual differences in genetic predisposition. A single nucleotide polymorphism on the BDNF gene, BDNF Val66Met, affects activity-dependent BDNF secretion. This study investigated the influence of the BDNFVal66Met polymorphism on the relationship between PA and controlled inhibition performance in older adults. Methods: A total of 114 healthy elderly volunteers (mean age = 71.53 years old) were evaluated. Participants were genotyped for the BDNFVal66Met polymorphism. We evaluated inhibitory performance using choice reaction times (RT) and error rates from a Simon-like task and estimated their PA using two self-reported questionnaires. We established four groups according to PA level (active vs. inactive) and BDNFVal66Met genotype (Met carriers vs. Val-homozygous). The results were analyzed using ANOVA and ANCOVA, including age, gender and body mass index as covariates. Results: The BDNFVal66Met polymorphism interacted with PA on controlled inhibition performance. More specifically, inactive Val-homozygous participants exhibited a lower inhibition performance than active Val homozygotes and inactive Met carriers; the former had a higher error rate without differences in RT. Conclusion: Differences between individuals on inhibitory performance may be partially understood by the interaction between genetic influence in BDNF secretion and PA level. The results of this study clearly support the neurotrophic hypothesis that BDNF synthesis is an important mechanism underlying the influence of physical activity on brain structure and functions.
Epigenetic regulation of BDNF in the learned helplessness-induced animal model of depression.
Su, Chun-Lin; Su, Chun-Wei; Hsiao, Ya-Hsin; Gean, Po-Wu
2016-05-01
Major depressive disorder (MDD), one of the most common mental disorders, is a significant risk factor for suicide and causes a low quality of life for many people. However, the causes and underlying mechanism of depression remain elusive. In the current work, we investigated epigenetic regulation of BDNF in the learned helplessness-induced animal model of depression. Mice were exposed to inescapable stress and divided into learned helplessness (LH) and resilient (LH-R) groups depending on the number they failed to escape. We found that the LH group had longer immobility duration in the forced swimming test (FST) and tail suspension tests (TST), which is consistent with a depression-related phenotype. Western blotting analysis and enzyme-linked immunosorbent assay (ELISA) revealed that the LH group had lower BDNF expression than that of the LH-R group. The LH group consistently had lower BDNF mRNA levels, as detected by qPCR assay. In addition, we found BDNF exon IV was down-regulated in the LH group. Intraperitoneal injection of imipramine or histone deacetylase inhibitors (HDACi) to the LH mice for 14 consecutive days ameliorated depression-like behaviors and reversed the decrease in BDNF. The expression of HDAC5 was up-regulated in the LH mice, and a ChIP assay revealed that the level of HDAC5 binding to the promoter region of BDNF exon IV was higher than that seen in other groups. Knockdown of HDAC5 reduced depression-like behaviors in the LH mice. Taken together, these results suggest that epigenetic regulation of BDNF by HDAC5 plays an important role in the learned helplessness model of depression. Copyright © 2016 Elsevier Ltd. All rights reserved.
Li, Meng; Fu, Qiang; Li, Ying; Li, Shanshan; Xue, Jinsong; Ma, Shiping
2014-10-01
Emodin, the major active component of Rhubarb, has shown neuroprotective activity. This study is attempted to investigate whether emodin possesses beneficial effects on chronic unpredictable mild stress (CUMS)-induced behavioral deficits (depression-like behaviors) and explore the possible mechanisms. ICR mice were subjected to chronic unpredictable mild stress for 42 consecutive days. Then, emodin and fluoxetine (positive control drug) were administered for 21 consecutive days at the last three weeks of CUMS procedure. The classical behavioral tests: open field test (OFT), sucrose preference test (SPT), tail suspension test (TST) and forced swimming test (FST) were applied to evaluate the antidepressant effects of emodin. Then plasma corticosterone concentration, hippocampal glucocorticoid receptor (GR) and brain-derived neurotrophic factor (BDNF) levels were tested to probe the mechanisms. Our results indicated that 6 weeks of CUMS exposure induced significant depression-like behavior, with high, plasma corticosterone concentration and low hippocampal GR and BDNF expression levels. Whereas, chronic emodin (20, 40 and 80 mg/kg) treatments reversed the behavioral deficiency induced by CUMS exposure. Treatment with emodin normalized the change of plasma corticosterone level, which demonstrated that emodin could partially restore CUMS-induced HPA axis impairments. Besides, hippocampal GR (mRNA and protein) and BDNF (mRNA) expressions were also up-regulated after emodin treatments. In conclusion, emodin remarkably improved depression-like behavior in CUMS mice and its antidepressant activity is mediated, at least in part, by the up-regulating GR and BDNF levels in hippocampus. Copyright © 2014 Elsevier B.V. All rights reserved.
Gelfo, Francesca; Tirassa, Paola; De Bartolo, Paola; Croce, Nicoletta; Bernardini, Sergio; Caltagirone, Carlo; Petrosini, Laura; Angelucci, Francesco
2012-06-01
Several studies have documented an involvement of Neuropeptide Y (NPY) in stress-related disorders. Stress-related disorders are also characterized by changes in brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), neurotrophins implicated in the survival and function of neurons. Thus the aim of this study was to investigate whether an NPY intraperitoneal treatment has antidepressant-like effects in rats subjected to a classical stress paradigm, the Forced Swim Test (FST), in association with changes in local brain neurotrophin production. Rats were intraperitoneally injected with either NPY (60 μg/kg) or a vehicle for three consecutive days between two FST sessions and then tested for time spent (or delay onset) in immobile posture. Moreover, we measured by enzyme-linked immunosorbent assay (ELISA) neurotrophin levels in the hypothalamus and corticosterone levels in plasma. The data showed that NPY induced a significant delay in the onset and a significant reduction in the duration of the immobility posture in FST. We also found that NPY decreased BDNF levels in the hypothalamus and corticosterone levels in plasma. Immobility posture in FST can be reduced by antidepressant drugs. Thus, our data show an antidepressant-like effect of NPY associated with changes in BDNF levels in the hypothalamus and reduced activity of hypothalamic-pituitary-adrenal (HPA) axis. These findings, while confirming the involvement of the NPY system in stress-related disorders, suggest that a less invasive route of administration, such as an intraperitoneal injection, may be instrumental in coping with stressful events in animal models and perhaps in humans. © 2012 Blackwell Publishing Ltd.
Jana, Arundhati; Modi, Khushbu K; Roy, Avik; Anderson, John A; van Breemen, Richard B; Pahan, Kalipada
2013-06-01
This study underlines the importance of cinnamon, a widely-used food spice and flavoring material, and its metabolite sodium benzoate (NaB), a widely-used food preservative and a FDA-approved drug against urea cycle disorders in humans, in increasing the levels of neurotrophic factors [e.g., brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3)] in the CNS. NaB, but not sodium formate (NaFO), dose-dependently induced the expression of BDNF and NT-3 in primary human neurons and astrocytes. Interestingly, oral administration of ground cinnamon increased the level of NaB in serum and brain and upregulated the levels of these neurotrophic factors in vivo in mouse CNS. Accordingly, oral feeding of NaB, but not NaFO, also increased the level of these neurotrophic factors in vivo in the CNS of mice. NaB induced the activation of protein kinase A (PKA), but not protein kinase C (PKC), and H-89, an inhibitor of PKA, abrogated NaB-induced increase in neurotrophic factors. Furthermore, activation of cAMP response element binding (CREB) protein, but not NF-κB, by NaB, abrogation of NaB-induced expression of neurotrophic factors by siRNA knockdown of CREB and the recruitment of CREB and CREB-binding protein to the BDNF promoter by NaB suggest that NaB exerts its neurotrophic effect through the activation of CREB. Accordingly, cinnamon feeding also increased the activity of PKA and the level of phospho-CREB in vivo in the CNS. These results highlight a novel neutrophic property of cinnamon and its metabolite NaB via PKA - CREB pathway, which may be of benefit for various neurodegenerative disorders.
McIsaac, W; Ferguson, A V
2017-04-01
The hypothalamic paraventricular nucleus (PVN) is critical for normal energy balance and has been shown to contain high levels of both brain-derived neurotrophic factor (BDNF) and tropomyosin-receptor kinase B mRNA. Microinjections of BDNF into the PVN increase energy expenditure, suggesting that BDNF plays an important role in energy homeostasis through direct actions in this nucleus. The present study aimed to examine the postsynaptic effects of BDNF on the membrane potential of PVN neurones, and also to determine whether extracellular glucose concentrations modulated these effects. We used hypothalamic PVN slices from male Sprague-Dawley rats to perform whole cell current-clamp recordings from PVN neurones. BDNF was bath applied at a concentration of 2 nmol L -1 and the effects on membrane potential determined. BDNF caused depolarisations in 54% of neurones (n=25; mean±SEM, 8.9±1.2 mV) and hyperpolarisations in 23% (n=11; -6.7±1.4 mV), whereas the remaining cells were unaffected. These effects were maintained in the presence of tetrodotoxin (n=9; 56% depolarised, 22% hyperpolarised, 22% nonresponders), or the GABA a antagonist bicuculline (n=12; 42% depolarised, 17% hyperpolarised, 41% nonresponders), supporting the conclusion that these effects on membrane potential were postsynaptic. Current-clamp recordings from PVN neurones next examined the effects of BDNF on these neurones at varying extracellular glucose concentrations. Larger proportions of PVN neurones hyperpolarised in response to BDNF as the glucose concentrations decreased [10 mmol L -1 glucose 23% (n=11) of neurones hyperpolarised, whereas, at 0.2 mmol L -1 glucose, 71% showed hyperpolarising effects (n=12)]. Our findings reveal that BDNF has direct GABA A independent effects on PVN neurones, which are modulated by local glucose concentrations. The latter observation further emphasises the critical importance of using physiologically relevant conditions in an investigation of the central pathways involved in the regulation of energy homeostasis. © 2017 British Society for Neuroendocrinology.
Ren, L H; Mu, X Y; Chen, H Y; Yang, H L; Qi, W
2016-06-01
To explore the relationship between umbilical cord blood brain-derived neurotrophic factor (BDNF) and neonatal neurobehavioral development in lead exposure infants. All infants and their mother were randomly selected during 2011 to 2012, subjects were selected according to the umbilical cord blood lead concentrations, which contcentration of lead was higher than 0.48 μmol/L were taken into high lead exposure group, about 60 subjects included. Comparing to the high lead exposure group, according to gender, weight, pregnant week, length and head circumferenece, the level of cord blood lead concentration under 0.48 μmol/L were taken into control group, 60 cases included. Lead content was determined by graphite furnace atomic absorption spectrometry. Neonatal behavioral neurological assessment (NBNA) was used to determine the development of neonatal neuronal behavior. The content of BDNF was detected by ELISA. Comparing the BDNF and the NBNA score between two groups, and linear correlation was given on analysis the correlation between lead concentration in cord blood and BDNF, BDNF and the NBNA score. Lead content in high exposure group was (0.613±0.139) μmol/L, and higher than (0.336±0.142) μmol/L in low exposure group (t=3.21, P<0.001) . NBNA summary score (36.35±1.86), active muscle tension score (6.90±0.27) and general assessment score (5.93±0.32) in high exposure group were lower than those (38.13±0.96, 7.79±0.35, 6.00±0.00) in low exposure group (t values were 8.21, 10.23, 2.32, respectively, P values were <0.001, <0.001 and 0.037) . BDNF content in high exposure group which was (3.538±1.203) ng/ml was higher than low exposure group (2.464±0.918) ng/ml (t=7.60, P<0.001). The correlation analysis found that the cord blood BDNF content was negatively correlated with NBNA summary score, passive muscle tension and active muscle tone score (r was -0.27, -0.29, -0.30, respectively, P values were <0.001, respectively) . Prenatal lead exposure results poor neonatal neurobehavioral development and cord blood BDNF was negatively correlated with neonatal neurodevelopment, may serve as a useful biomarker.
Spinal Plasticity and Behavior: BDNF-Induced Neuromodulation in Uninjured and Injured Spinal Cord
Huie, J. Russell
2016-01-01
Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophic factor family of signaling molecules. Since its discovery over three decades ago, BDNF has been identified as an important regulator of neuronal development, synaptic transmission, and cellular and synaptic plasticity and has been shown to function in the formation and maintenance of certain forms of memory. Neural plasticity that underlies learning and memory in the hippocampus shares distinct characteristics with spinal cord nociceptive plasticity. Research examining the role BDNF plays in spinal nociception and pain overwhelmingly suggests that BDNF promotes pronociceptive effects. BDNF induces synaptic facilitation and engages central sensitization-like mechanisms. Also, peripheral injury-induced neuropathic pain is often accompanied with increased spinal expression of BDNF. Research has extended to examine how spinal cord injury (SCI) influences BDNF plasticity and the effects BDNF has on sensory and motor functions after SCI. Functional recovery and adaptive plasticity after SCI are typically associated with upregulation of BDNF. Although neuropathic pain is a common consequence of SCI, the relation between BDNF and pain after SCI remains elusive. This article reviews recent literature and discusses the diverse actions of BDNF. We also highlight similarities and differences in BDNF-induced nociceptive plasticity in naïve and SCI conditions. PMID:27721996
Gaub, Perrine; de Léon, Andrès; Gibon, Julien; Soubannier, Vincent; Dorval, Geneviève; Séguéla, Philippe; Barker, Philip A
2016-01-01
Neurotrophins activate intracellular signaling pathways necessary for neuronal survival, growth and apoptosis. The most abundant neurotrophin in the adult brain, brain-derived neurotrophic factor (BDNF), is first synthesized as a proBDNF precursor and recent studies have demonstrated that proBDNF can be secreted and that it functions as a ligand for a receptor complex containing p75NTR and sortilin. Activation of proBDNF receptors mediates growth cone collapse, reduces synaptic activity, and facilitates developmental apoptosis of motoneurons but the precise signaling cascades have been difficult to discern. To address this, we have engineered, expressed and purified HBpF-proBDNF, an expression construct containing a 6X-HIS tag, a biotin acceptor peptide (BAP) sequence, a PreScission™ Protease cleavage site and a FLAG-tag attached to the N-terminal part of murine proBDNF. Intact HBpF-proBDNF has activities indistinguishable from its wild-type counterpart and can be used to purify proBDNF signaling complexes or to monitor proBDNF endocytosis and retrograde transport. HBpF-proBDNF will be useful for characterizing proBDNF signaling complexes and for deciphering the role of proBDNF in neuronal development, synapse function and neurodegenerative disease.
Tong, Taishan; Pei, Chunqin; Chen, Jun; Lv, Qing; Zhang, Fuquan; Cheng, Zaohuo
2018-05-08
BACKGROUND Chemotherapy can cause adverse effects such as chemotherapy-related cognitive impairment (CRCI). In this prospective study, the efficacy of traditional Chinese medicine acupuncture therapy in relieving CRCI and its impact on serum brain-derived neurotrophic factor (BDNF) are evaluated. MATERIAL AND METHODS Eighty patients were randomly divided into a treatment group and a control group with 40 patients in each group. The treatment group was treated at the following acupuncture points: Baihui (DU20), Sishencong (EX-HN1), Shenting (DU24), Zusanli (ST36), Taixi (K13), Dazhong (K14), and Juegu (GB39). Cognitive function was assessed using the functional assessment of cancer treatment cognition test (FACT-COG, version 3), the auditory-verbal learning test (AVLT), the verbal fluency test (VFT), the symbol digit modality test (SDMT), the clock-drawing test (CDT), and the trail-making test part B (TMT-B). In addition, blood serum levels of BDNF were measured before and after treatment. Correlations between change in BDNF levels and cognitive function were also analyzed. RESULTS CRCI was ameliorated in the acupuncture treatment group, with scores on FACT-COG, AVLT-recognition and CDT assessments all significantly increased (P<0.05 in all cases). In addition, serum BDNF levels after acupuncture treatment were significantly higher than before treatment ([i]t[/i]=3.242, [i]P[/i]<0.01). Moreover, the level of BDNF was positively correlated with the total score of FACT-COG, AVLT-recognition, and CDT ([i]r[/i]=0.694, 0.628, and 0.532, respectively; all P<0.05). The control group showed no statistically significant difference in any measures over the same period. CONCLUSIONS Acupuncture therapy is effective in the treatment of CRCI in breast cancer patients through a mechanism that may be related to an increase of BDNF.
Locally Produced BDNF Promotes Sclerotic Change in Alveolar Bone after Nerve Injury
Ida-Yonemochi, Hiroko; Yamada, Yurie; Yoshikawa, Hiroyuki
2017-01-01
Brain-derived neurotrophic factor (BDNF), which is released due to nerve injury, is known to promote the natural healing of injured nerves. It is often observed that damage of mandibular canal induces local sclerotic changes in alveolar bone. We reported that peripheral nerve injury promotes the local production of BDNF; therefore, it was possible to hypothesize that peripheral nerve injury affects sclerotic changes in the alveolar bone. This study aimed to evaluate the effect of BDNF on osteogenesis using in vitro osteoblast-lineage cell culture and an in vivo rat osteotomy model. MC3T3-E1 cells were cultured with BDNF and were examined for cell proliferative activity, chemotaxis and mRNA expression levels of osteoblast differentiation markers. For in vivo study, inferior alveolar nerve (IAN) injury experiments and mandibular cortical osteotomy were performed using a rat model. In the osteotomy model, exogenous BDNF was applied to bone surfaces after corticotomy of the mandible, and we morphologically analyzed the new bone formation. As a result, mRNA expression of osteoblast differentiation marker, osteocalcin, was significantly increased by BDNF, although cell proliferation and migration were not affected. In the in vivo study, osteopontin-positive new bone formation was significantly accelerated in the BDNF-grafted groups, and active bone remodeling, involving trkB-positive osteoblasts and osteocytes, continued after 28 days. In conclusion, BDNF stimulated the differentiation of MC3T3-E1 cells and it promoted new bone formation and maturation. These results suggested that local BDNF produced by peripheral nerve injury contributes to accelerating sclerotic changes in the alveolar bone. PMID:28072837
Pizarro, Jose M; Chang, Wenling E; Bah, Mariama J; Wright, Linnzi K M; Saviolakis, George A; Alagappan, Arun; Robison, Christopher L; Shah, Jinesh D; Meyerhoff, James L; Cerasoli, Douglas M; Midboe, Eric G; Lumley, Lucille A
2012-04-01
The highly toxic organophosphorus compound VX [O-ethyl S-[2-(diisopropylamino)ethyl]methylphosphonate] is an irreversible inhibitor of the enzyme acetylcholinesterase (AChE). Prolonged inhibition of AChE increases endogenous levels of acetylcholine and is toxic at nerve synapses and neuromuscular junctions. We hypothesized that repeated exposure to sublethal doses of VX would affect genes associated with cell survival, neuronal plasticity, and neuronal remodeling, including brain-derived neurotrophic factor (BDNF). We examined the time course of BDNF expression in C57BL/6 mouse brain following repeated exposure (1/day × 5 days/week × 2 weeks) to sublethal doses of VX (0.2 LD(50) and 0.4 LD(50)). BDNF messenger RNA expression was significantly (p < 0.05) elevated in multiple brain regions, including the dentate gyrus, CA3, and CA1 regions of the hippocampal formation, as well as the piriform cortex, hypothalamus, amygdala, and thalamus, 72 h after the last 0.4 LD(50) VX exposure. BDNF protein expression, however, was only increased in the CA3 region of the hippocampus. Whether increased BDNF in response to sublethal doses of VX exposure is an adaptive response to prevent cellular damage or a precursor to impending brain damage remains to be determined. If elevated BDNF is an adaptive response, exogenous BDNF may be a potential therapeutic target to reduce the toxic effects of nerve agent exposure.
Localization of BDNF expression in the developing brain of zebrafish
De Felice, E; Porreca, I; Alleva, E; De Girolamo, P; Ambrosino, C; Ciriaco, E; Germanà, A; Sordino, P
2014-01-01
The brain-derived neurotrophic factor (BDNF) gene is expressed in differentiating and post-mitotic neurons of the zebrafish embryo, where it has been implicated in Huntington's disease. Little is known, however, about the full complement of neuronal cell types that express BDNF in this important vertebrate model. Here, we further explored the transcriptional profiles during the first week of development using real-time quantitative polymerase chain reaction (RT-qPCR) and whole-mount in situ hybridization (WISH). RT-qPCR results revealed a high level of maternal contribution followed by a steady increase of zygotic transcription, consistent with the notion of a prominent role of BDNF in neuronal maturation and maintenance. Based on WISH, we demonstrate for the first time that BDNF expression in the developing brain of zebrafish is structure specific. Anatomical criteria and co-staining with genetic markers (shh, pax2a, emx1, krox20, lhx2b and lhx9) visualized major topological domains of BDNF-positive cells in the pallium, hypothalamus, posterior tuberculum and optic tectum. Moreover, the relative timing of BDNF transcription in the eye and tectum may illustrate a mechanism for coordinated development of the retinotectal system. Taken together, our results are compatible with a local delivery and early role of BDNF in the developing brain of zebrafish, adding basic knowledge to the study of neurotrophin functions in neural development and disease. PMID:24588510
Localization of BDNF expression in the developing brain of zebrafish.
De Felice, E; Porreca, I; Alleva, E; De Girolamo, P; Ambrosino, C; Ciriaco, E; Germanà, A; Sordino, P
2014-05-01
The brain-derived neurotrophic factor (BDNF) gene is expressed in differentiating and post-mitotic neurons of the zebrafish embryo, where it has been implicated in Huntington's disease. Little is known, however, about the full complement of neuronal cell types that express BDNF in this important vertebrate model. Here, we further explored the transcriptional profiles during the first week of development using real-time quantitative polymerase chain reaction (RT-qPCR) and whole-mount in situ hybridization (WISH). RT-qPCR results revealed a high level of maternal contribution followed by a steady increase of zygotic transcription, consistent with the notion of a prominent role of BDNF in neuronal maturation and maintenance. Based on WISH, we demonstrate for the first time that BDNF expression in the developing brain of zebrafish is structure specific. Anatomical criteria and co-staining with genetic markers (shh, pax2a, emx1, krox20, lhx2b and lhx9) visualized major topological domains of BDNF-positive cells in the pallium, hypothalamus, posterior tuberculum and optic tectum. Moreover, the relative timing of BDNF transcription in the eye and tectum may illustrate a mechanism for coordinated development of the retinotectal system. Taken together, our results are compatible with a local delivery and early role of BDNF in the developing brain of zebrafish, adding basic knowledge to the study of neurotrophin functions in neural development and disease. © 2014 Anatomical Society.
Cochlear implants and ex vivo BDNF gene therapy protect spiral ganglion neurons.
Rejali, Darius; Lee, Valerie A; Abrashkin, Karen A; Humayun, Nousheen; Swiderski, Donald L; Raphael, Yehoash
2007-06-01
Spiral ganglion neurons often degenerate in the deaf ear, compromising the function of cochlear implants. Cochlear implant function can be improved by good preservation of the spiral ganglion neurons, which are the target of electrical stimulation by the implant. Brain derived neurotrophic factor (BDNF) has previously been shown to enhance spiral ganglion survival in experimentally deafened ears. Providing enhanced levels of BDNF in human ears may be accomplished by one of several different methods. The goal of these experiments was to test a modified design of the cochlear implant electrode that includes a coating of fibroblast cells transduced by a viral vector with a BDNF gene insert. To accomplish this type of ex vivo gene transfer, we transduced guinea pig fibroblasts with an adenovirus with a BDNF gene cassette insert, and determined that these cells secreted BDNF. We then attached BDNF-secreting cells to the cochlear implant electrode via an agarose gel, and implanted the electrode in the scala tympani. We determined that the BDNF expressing electrodes were able to preserve significantly more spiral ganglion neurons in the basal turns of the cochlea after 48 days of implantation when compared to control electrodes. This protective effect decreased in the higher cochlear turns. The data demonstrate the feasibility of combining cochlear implant therapy with ex vivo gene transfer for enhancing spiral ganglion neuron survival.
Brain-derived-neurotrophic-factor (BDNF) stress response in rats bred for learned helplessness.
Vollmayr, B; Faust, H; Lewicka, S; Henn, F A
2001-07-01
Stress-induced elevation of glucocorticoids is accompanied by structural changes and neuronal damage in certain brain areas. This includes reduced expression of brain-derived neurotrophic factor (BDNF) in the hippocampus which can be prevented by chronic electroconvulsive seizures and antidepressant drug treatment. In the last years we have bred two strains of rats, one which reacts with congenital helplessness to stress (cLH), and one which congenitally does not acquire helplessness when stressed (cNLH). After being selectively bred for more than 40 generations these strains have lost their behavioural plasticity including their sensitivity to antidepressant treatment. We show here that in cLH rats, acute immobilization stress does not induce a reduction of BDNF expression in the hippocampus which is observed in Sprague--Dawley and cNLH rats. All animals tested exhibited elevated corticosterone levels when stressed, an indication, that in cLH rats regulation of BDNF expression in the hippocampal formation is uncoupled from corticosterone increase induced through stress. This may explain the lack of adaptive responses in this strain.
Mice over-expressing BDNF in forebrain neurons develop an altered behavioral phenotype with age.
Weidner, Kate L; Buenaventura, Diego F; Chadman, Kathryn K
2014-07-15
Evidence from clinical studies suggests that abnormal activity of brain derived neurotrophic factor (BDNF) contributes to the pathogenesis of autism spectrum disorders (ASDs). A genetically modified line of mice over-expressing a BDNF transgene in forebrain neurons was used to investigate if this mutation leads to changes in behavior consistent with ASD. The mice used in these experiments were behaviorally tested past 5 months of age when spontaneous seizures were evident. These seizures were not observed in age-matched wildtype (WT) mice or younger mice from this transgenic line. The BDNF mice in these experiments weighed less than their WT littermates. The BDNF transgenic (BDNF-tg) mice demonstrated similar levels of sociability in the social approach test. Conversely, the BDNF-tg mice demonstrated less obsessive compulsive-like behavior in the marble burying test, less anxiety-like behavior in the elevated plus maze test, and less depressive-like behavior in the forced swim test. Changes in behavior were found in these older mice that have not been observed in younger mice from this transgenic line, which may be due to the development of seizures as the mice age. These mice do not have an ASD phenotype but may be useful to study adult onset epilepsy. Copyright © 2014 Elsevier B.V. All rights reserved.
Makhathini, Khayelihle B; Abboussi, Oualid; Stein, Dan J; Mabandla, Musa V; Daniels, William M U
2017-08-01
Exposure to repetitive stress has a negative influence on cognitive-affective functioning, with growing evidence that these effects may be mediated by a dysregulated hypothalamic-pituitary-adrenal (HPA) axis, abnormal neurotrophic factor levels and its subsequent impact on hippocampal function. However, there are few data about the effect of repetitive stressors on epigenetic changes in the hippocampus. In the present study, we examine how repetitive restrain stress (RRS) affects cognitive-affective functioning, HPA axis regulation, brain-derived neurotrophic factor (BDNF) levels, and global hippocampal DNA methylation. RRS was induced in rats by restraining the animals for 6h per day for 28 days. The novel object recognition test (NORT) was used to assess cognitive functioning and the open field test (OFT) was performed to assess anxiety-like behavior during the last week of stress. Hippocampal BDNF levels, glucocorticoid (GR) and mineralocorticoid (MR) receptor mRNA were assessed using real-time PCR and confirmed with Western blot, while ELISAs were used to determine plasma corticosterone levels and the global methylation status of the hippocampus. Animals exposed to repetitive stress demonstrated significant alterations in the NORT and OFT, had significantly increased plasma corticosterone and significantly decreased hippocampal BDNF concentrations. The expression levels of GR and MR mRNA and protein levels of these genes were significantly decreased in the stressed group compared to control animals. The global DNA methylation of the hippocampal genome of stressed animals was also significantly decreased compared to controls. The data here are consistent with previous work emphasizing the role of the HPA axis and neurotrophic factors in mediating cognitive-affective changes after exposure to repetitive stressors. Our findings, however, extend the literature by indicating that epigenetic alterations in the hippocampal genome may also play an important role in the development of hippocampus-associated behavioral abnormalities. Copyright © 2017 ISDN. Published by Elsevier Ltd. All rights reserved.
Xie, Jin; Jin, Bin; Li, Da-Wei; Shen, Bin; Gong, Ning; Zhang, Tian-Zhen; Dong, Pin
2015-01-01
Recurrent laryngeal nerve injury is a common severe complication in neck surgery, which can cause varying degrees of vocal fold paralysis and respiratory tract problems. In present study, the effects of laminin-binding brain derived neurotrophic factor (LBD-BDNF) on recurrent laryngeal nerve regeneration were explored and its possible mechanism was investigated. LBD-BDNF or NAT-BDNF (BDNF without LBD binding) treatment was performed in laryngeal nerve injured rabbits for sixteen weeks. The laryngeal nerve was removed, and histological examination as well as laryngeal electromyography was employed to evaluate its morphology and function of conduction. PC12 cells were cultured to investigate the mechanisms underlying the effects of LBD-BDNF. Neurite outgrowth, proliferation and migration were determined in nerve cells. The expression of miRNAs and protein of mTOR was quantified by real-time PCR and western blotting respectively. In vivo experiments, LBD-BDNF significantly improved the histological structure and function of recurrent laryngeal nerve compared with NAT-BDNF. LBD-BDNF also markedly promoted neurite outgrowth, proliferation and migration in PC12 cells in vitro experiments. The levels of miR-222 and p-mTOR were up-regulated by LBD-BDNF treatment in both in vivo and in vitro experiments. miR-222 inhibitor attenuated the expression of phosphorylated mTOR and miR-222 mimic enhanced its expression in PC12 cells. In addition, the improved nerve conduction by LBD-BDNF was canceled by miR-222 inhibitor, and the mTOR inhibitor reversed the effects of miR-222 inhibitor on LBD-BDNF treated cells. The present study revealed that LBD-BDNF promoted the recurrent laryngeal nerve regeneration in laryngeal nerve injured rabbits. The underlying mechanism was closely related to activation of p-mTOR by miR-222.
Xie, Jin; Jin, Bin; Li, Da-Wei; Shen, Bin; Gong, Ning; Zhang, Tian-Zhen; Dong, Pin
2015-01-01
Background and Aim: Recurrent laryngeal nerve injury is a common severe complication in neck surgery, which can cause varying degrees of vocal fold paralysis and respiratory tract problems. In present study, the effects of laminin-binding brain derived neurotrophic factor (LBD-BDNF) on recurrent laryngeal nerve regeneration were explored and its possible mechanism was investigated. Methods: LBD-BDNF or NAT-BDNF (BDNF without LBD binding) treatment was performed in laryngeal nerve injured rabbits for sixteen weeks. The laryngeal nerve was removed, and histological examination as well as laryngeal electromyography was employed to evaluate its morphology and function of conduction. PC12 cells were cultured to investigate the mechanisms underlying the effects of LBD-BDNF. Neurite outgrowth, proliferation and migration were determined in nerve cells. The expression of miRNAs and protein of mTOR was quantified by real-time PCR and western blotting respectively. Results: In vivo experiments, LBD-BDNF significantly improved the histological structure and function of recurrent laryngeal nerve compared with NAT-BDNF. LBD-BDNF also markedly promoted neurite outgrowth, proliferation and migration in PC12 cells in vitro experiments. The levels of miR-222 and p-mTOR were up-regulated by LBD-BDNF treatment in both in vivo and in vitro experiments. miR-222 inhibitor attenuated the expression of phosphorylated mTOR and miR-222 mimic enhanced its expression in PC12 cells. In addition, the improved nerve conduction by LBD-BDNF was canceled by miR-222 inhibitor, and the mTOR inhibitor reversed the effects of miR-222 inhibitor on LBD-BDNF treated cells. Conclusions: The present study revealed that LBD-BDNF promoted the recurrent laryngeal nerve regeneration in laryngeal nerve injured rabbits. The underlying mechanism was closely related to activation of p-mTOR by miR-222. PMID:26279751
Adachi, Naoki; Numakawa, Tadahiro; Richards, Misty; Nakajima, Shingo; Kunugi, Hiroshi
2014-01-01
Brain-derived neurotrophic factor (BDNF) attracts increasing attention from both research and clinical fields because of its important functions in the central nervous system. An adequate amount of BDNF is critical to develop and maintain normal neuronal circuits in the brain. Given that loss of BDNF function has been reported in the brains of patients with neurodegenerative or psychiatric diseases, understanding basic properties of BDNF and associated intracellular processes is imperative. In this review, we revisit the gene structure, transcription, translation, transport and secretion mechanisms of BDNF. We also introduce implications of BDNF in several brain-related diseases including Alzheimer’s disease, Huntington’s disease, depression and schizophrenia. PMID:25426265
Nuvagah Forti, L; Van Roie, E; Njemini, R; Coudyzer, W; Beyer, I; Delecluse, C; Bautmans, I
2017-01-01
Previously we showed that 12 weeks of mixed-low resistance training (LOW+) significantly increased circulating BDNF in older male individuals. To examine the impact of 24 weeks detraining on circulating BDNF. Randomized intervention study. Community-dwelling older adults. Forty-seven out of 56 participants stopped training (detraining) after 12 weeks of resistance exercise (3x/week) at either HIGH-resistance (5 Males, 5 Females, 2x10-15 repetitions at 80%1RM), LOW-resistance (6 Males, 7 Females, 1x80-100 repetitions at 20%1RM), or mixed-low LOW+-resistance (6 Males, 8 Females, 1x60 repetitions at 20%1RM followed by 1x10-20 repetitions at 40%1RM), of whom 37 (aged 68±5 years) provided sufficient serum samples for BDNF analysis at baseline, 12 week and at 36 weeks (24 weeks detraining). BDNF had initially increased by 31% (from 33.4±10.9 ng/mL to 44.5±13.2 ng/mL, p=0.005) after 12 weeks in the LOW+ exercise group in males and decreased by 26% (from 44.5±13.2 ng/mL to 32.9±10.7 ng/mL) after detraining, though not statistically significant (p=0.082). In females, no significant change in BDNF was found in any of the intervention groups (p>0.05), neither after training, nor detraining. At 36 weeks all of the subgroups showed BDNF levels comparable (all p>0.10) to baseline (before the exercise intervention). Our results show that a 12-weeks LOW+ resistance exercise increases circulating BDNF in older male subjects but that this reduces back to baseline levels after 24 weeks of detraining. Continuous exercise adherence seems to be needed to sustain the training-induced effects on BDNF in older persons. Additional studies are needed to unravel the underlying mechanisms, as well as to confirm the observed sex difference.
Levels of BDNF Impact Oligodendrocyte Lineage Cells Following a Cuprizone Lesion
VonDran, Melissa W.; Singh, Harmandeep; Honeywell, Jean Z.; Dreyfus, Cheryl F.
2011-01-01
Previous work in culture has shown that basal forebrain (BF) oligodendrocyte (OLG) lineage cells respond to BDNF by increasing DNA synthesis and differentiation. Further, in the BF in vivo, reduced levels of BDNF as seen in BDNF +/− mice result in reduced numbers of NG2+ cells and deficits in myelin proteins throughout development and in the adult, suggesting that BDNF impacts the proliferating population of OLGs as well as differentiation in vivo. In this study, to investigate roles BDNF may play in the repair of a demyelinating lesion, the cuprizone model was used and the corpus callosum was examined. BDNF protein levels were reduced after cuprizone, suggesting that the demyelinating lesion, itself, elicits a decrease in BDNF. To analyze effects of a further reduction of BDNF on OLG lineage cells following cuprizone, BDNF +/− mice were evaluated. These mice exhibited a blunted increase in the NG2 response at 4 and 5 weeks of cuprizone. In addition, BDNF +/− mice exhibited decreased levels of myelin proteins during the demyelination and remyelination processes with no change in the total number of OLGs. These effects appear to be relatively specific to OLG lineage cells as comparable changes in CD11b+ microglia, GFAP+ astrocytes, and SMI32+ injured axons were not observed. These data indicate that BDNF may play a role following a demyelinating lesion, by regulating numbers of progenitors and the abilities of demyelinating and differentiating cells to express myelin proteins. PMID:21976503
Barker, Jacqueline M.; Taylor, Jane R.; De Vries, Taco J.; Peters, Jamie
2015-01-01
Many abused drugs lead to changes in endogenous brain-derived neurotrophic factor (BDNF) expression in neural circuits responsible for addictive behaviors. BDNF is a known molecular mediator of memory consolidation processes, evident at both behavioral and neurophysiological levels. Specific neural circuits are responsible for storing and executing drug-procuring motor programs, whereas other neural circuits are responsible for the active suppression of these “seeking” systems. These seeking-circuits are established as associations are formed between drug-associated cues and the conditioned responses they elicit. Such conditioned responses (e.g. drug seeking) can be diminished either through a passive weakening of seeking-circuits or an active suppression of those circuits through extinction. Extinction learning occurs when the association between cues and drug are violated, for example, by cue exposure without the drug present. Cue exposure therapy has been proposed as a therapeutic avenue for the treatment of addictions. Here we explore the role of BDNF in extinction circuits, compared to seeking-circuits that “incubate” over prolonged withdrawal periods. We begin by discussing the role of BDNF in extinction memory for fear and cocaine-seeking behaviors, where extinction circuits overlap in infralimbic prefrontal cortex (PFC). We highlight the ability of estrogen to promote BDNF-like effects in hippocampal–prefrontal circuits and consider the role of sex differences in extinction and incubation of drug-seeking behaviors. Finally, we examine how opiates and alcohol “break the mold” in terms of BDNF function in extinction circuits. PMID:25451116
Martínez-Levy, G A; Rocha, L; Rodríguez-Pineda, F; Alonso-Vanegas, M A; Nani, A; Buentello-García, R M; Briones-Velasco, M; San-Juan, D; Cienfuegos, J; Cruz-Fuentes, C S
2018-05-01
A body of evidence supports a relevant role of brain-derived neurotrophic factor (BDNF) in temporal lobe epilepsy (TLE). Magnetic resonance data reveal that the cerebral atrophy extends to regions that are functionally and anatomically connected with the hippocampus, especially the temporal cortex. We previously reported an increased expression of BDNF messenger for the exon VI in the hippocampus of temporal lobe epilepsy patients compared to an autopsy control group. Altered levels of this particular transcript were also associated with pre-surgical use of certain psychotropic. We extended here our analysis of transcripts I, II, IV, and VI to the temporal cortex since this cerebral region holds intrinsic communication with the hippocampus and is structurally affected in patients with TLE. We also assayed the cyclic adenosine monophosphate response element-binding (CREB) and glucocorticoid receptor (GR) genes as there is experimental evidence of changes in their expression associated with BDNF and epilepsy. TLE and pre-surgical pharmacological treatment were considered as the primary clinical independent variables. Transcripts BDNF I and BDNF VI increased in the temporal cortex of patients with pharmacoresistant TLE. The expression of CREB and GR expression follow the same direction. Pre-surgical use of selective serotonin reuptake inhibitors, carbamazepine (CBZ) and valproate (VPA), was associated with the differential expression of specific BDNF transcripts and CREB and GR genes. These changes could have functional implication in the plasticity mechanisms related to temporal lobe epilepsy.
Ramku, Emina; Ramku, Refik; Spanca, Dugagjin; Zhjeqi, Valbona
2017-04-15
As previously various studies have suggested application of brain-derived neurotrophic factor (BDNF) may be considered as a promising future therapy for hearing deficits, in particular for the improvement of cochlear neurone loss during cochlear implantation. The present study's aim was to establish the upper threshold of the concentration of BDNF in Naval Medical Research Institute (NMRI) mice spiral ganglion outgrowth. Spiral ganglion explants were prepared from post-natal day 4 (p4) (NMRI) mice of both sexes under the approval and guidelines of the regional council of Hearing Research Institute Tubingen. Spiral ganglion explants were cultured at postnatal days 4 in the presence of different concentrations of BDNF as described under methods. We chose an age of postnatal day (P4) and concentrations of BDNF 0; 6; 12.5; 25 and 50 ƞg/ml. Averaged neurite outgrowth is measured in 4 different cultures that were treated with different concentrations. Results show that with increasing concentrations of BDNF, the neurite density increases. The present finding show evidence that BDNF has a clear incremental effect on the number of neurites of spiral ganglia in the prehearing organ, but less on the neurite length. The upper threshold of exogenous BNDF concentration on spiral ganglion explant is 25 ƞg/ml. This means that concentration beyond this level has no further incremental impact. Therefore our suggestion for hydrogel concentration in NMRA mice in future research should be 25 ƞg/ml.
Kunugi, Hiroshi; Hori, Hiroaki; Adachi, Naoki; Numakawa, Tadahiro
2010-10-01
Although the pathophysiology of depressive disorder remains elusive, two hypothetical frameworks seem to be promising: the involvement of hypothalamic pituitary-adrenal (HPA) axis abnormalities and brain-derived neurotrophic factor (BDNF) in the pathogenesis and in the mechanism of action of antidepressant treatments. In this review, we focused on research based on these two frameworks in relation to depression and related conditions and tried to formulate an integrated theory of the disorder. Hormonal challenge tests, such as the dexamethasone/corticotropin-releasing hormone test, have revealed elevated HPA activity (hypercortisolism) in at least a portion of patients with depression, although growing evidence has suggested that abnormally low HPA axis (hypocortisolism) has also been implicated in a variety of stress-related conditions. Several lines of evidence from postmortem studies, animal studies, blood levels, and genetic studies have suggested that BDNF is involved in the pathogenesis of depression and in the mechanism of action of biological treatments for depression. Considerable evidence has suggested that stress reduces the expression of BDNF and that antidepressant treatments increase it. Moreover, the glucocorticoid receptor interacts with the specific receptor of BDNF, TrkB, and excessive glucocorticoid interferes with BDNF signaling. Altered BDNF function is involved in the structural changes and possibly impaired neurogenesis in the brain of depressed patients. Based on these findings, an integrated schema of the pathological and recovery processes of depression is illustrated. © 2010 The Authors. Psychiatry and Clinical Neurosciences © 2010 Japanese Society of Psychiatry and Neurology.
Rawson, Kerri S.; Dixon, David; Nowotny, Petra; Ricci, William M.; Binder, Ellen F.; Rodebaugh, Thomas L.; Wendleton, Leah; Doré, Peter; Lenze, Eric J.
2015-01-01
Depressive symptoms are common in older adults after a disabling medical event and interfere with rehabilitation and recovery from the disability. This prospective study examined the role of genetic polymorphisms implicated in synaptic integrity and stress-associated depression as predictors of depressive symptoms after hip fracture. We recruited healthy comparisons from the community and participants with hip fracture after surgical fixation from Saint Louis, Missouri hospitals. We examined the valine (Val) to methionine (Met) polymorphism in brain-derived neurotrophic factor (BDNF), serotonin 1A receptor (5HT1a-rs6295) polymorphism, and the serotonin transporter-linked polymorphic region (5HTTLPR) interaction with the rs25531 A to G single nucleotide polymorphism (5HTTLPR-rs25531) as predictors of depressive symptoms. We also examined whether depressive symptoms mediate the influence of BDNF genotype on functional recovery. Among 429 participants with hip fracture, BDNF Met/Met carriers developed significantly more depressive symptoms than Val/Val carriers during a four-week period after the fracture (p=.012). BDNF genotype also predicted functional recovery over the ensuing year, mediated by its effects on depressive symptoms (CI: 0.07-3.37). Unlike prior studies of stressful life events, the S′ 5HTTLPR-rs25531 variant did not predict higher levels of depressive symptoms; instead, we report an exploratory finding of an epistatic effect between BDNF and 5HTTLPR-rs25531 whereby the compounded effects of two LA alleles and BDNF Met/Met genotype elevate risk of depressive symptoms after hip fracture (p=.006). No differences between 5HT1a genotypes were found. Our findings suggest plasticity-related genetic factors contribute to the neural mechanisms of mental and functional well-being after a disabling medical stressor. PMID:25781924
Metrifonate, like acetylcholine, up-regulates neurotrophic activity of cultured rat astrocytes.
Mele, Tina; Jurič, Damijana Mojca
2014-08-01
Metrifonate is an inhibitor of acetylcholinesterase (AChE). Several studies confirmed its positive effects on cognitive impairment in Alzheimer's disease but it was due to adverse events withdrawn from clinical trials. Based on the importance of astrocytes in physiological and pathological brain activities we investigated the impact of metrifonate and, for comparison, acetylcholine on intrinsic neurotrophic activity in these cells. Metabolic activity, intracellular adenosine 5'-triphosphate (ATP) levels and lactate dehydrogenase (LDH) release was measured to examine the impact of metrifonate on viability and integrity of cultured rat cortical astrocytes. The influence of metrifonate, acetylcholine and selective cholinergic ligands on nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) synthesis and secretion was determined by specific two-site enzyme immunoassays. Exposure of cultured astrocytes to metrifonate displayed no toxic effects on cell viability. Metrifonate and acetylcholine potently and transiently elevated NGF and BDNF, but not NT-3, protein levels and secretion with different intensity and time frame of their maximal response. Stimulatory effect on NGF was mimicked by selective nicotinic receptor agonist nicotine and completely blocked by nicotinic antagonist mecamylamine. The impact on BDNF synthesis was mimicked by muscarinic receptor agonist pilocarpine and abolished by selective muscarinic antagonist scopolamine. Metrifonate up-regulates astrocytic NGF and BDNF synthesis in the same manner as acetylcholine, their effect depends on different cholinergic pathways. These results suggest a trophic role of metrifonate, based on a well-known neurotrophic activity of NGF and BDNF in vivo. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
Golini, Rebeca S.; Delgado, Silvia M.; Navigatore Fonzo, Lorena S.; Ponce, Ivana T.; Lacoste, María G.; Anzulovich, Ana C.
2012-01-01
The circadian expression of clock and clock-controlled cognition-related genes in the hippocampus would be essential to achieve an optimal daily cognitive performance. There is some evidence that retinoid nuclear receptors (RARs and RXRs) can regulate circadian gene expression in different tissues. In this study, Holtzman male rats from control and vitamin A-deficient groups were sacrificed throughout a 24-h period and hippocampus samples were isolated every 4 or 5 h. RARα and RXRβ expression level was quantified and daily expression patterns of clock BMAL1, PER1, RORα and REVERB genes, RORα and REVERB proteins, as well as temporal expression of cognition-related RC3 and BDNF genes were determined in the hippocampus of the two groups of rats. Our results show significant daily variations of BMAL1, PER1, RORα and REVERB genes, RORα and REVERB proteins and, consequently, daily oscillating expression of RC3 and BDNF genes in the rat hippocampus. Vitamin A deficiency reduced RXRβ mRNA level as well as the amplitude of PER1, REVERB gene and REVERB protein rhythms, and phase-shifted the daily peaks of BMAL1 and RORα mRNA, RORα protein and RC3 and BDNF mRNA levels. Thus, nutritional factors, such as vitamin A and its derivatives the retinoids, might modulate daily patterns of BDNF and RC3 expression in the hippocampus and they could be essential to maintain an optimal daily performance at molecular level in this learning-and-memory-related brain area. PMID:22434687
Amidfar, Meysam; Réus, Gislaine Z; Quevedo, João; Kim, Yong-Ku; Arbabi, Mohammad
2017-01-01
A developing body of data has drawn attention to the N-methyl-d-aspartate (NMDA) receptor antagonists as potential drugs for the treatment of major depressive disorder (MDD). We investigated the possibility of synergistic interactions between the antidepressant sertraline with the uncompetitive NMDA receptor antagonist, memantine. The present study was aimed to evaluate behavioural and molecular effects of the chronic treatment with memantine and sertraline alone or in combination in rats. To this aim, rats were chronically treated with memantine (2.5 and 5mg/kg) and sertraline (5mg/kg) for 14days once a day, and then exposed to the forced swimming test. The brain-derived neurotrophic factor (BDNF) levels were assessed in the hippocampus and prefrontal cortex in all groups by ELISA sandwich assay. Sertraline and memantine (2.5mg/kg) alone did not have effect on the immobility time; however, the effect of sertraline was enhanced by both doses of memantine. Combined treatment with memantine and sertraline produced stronger increases in the BDNF protein levels in the hippocampus and prefrontal cortex. Our results indicate that co-administration of antidepressant memantine with sertraline may induce a more pronounced antidepressant activity than treatment with each antidepressant alone. Antidepressant properties using the combination of memantine and sertraline could be attributed to increased levels of BDNF. This finding may be of particular importance in the case of drug-resistant patients and could suggest a method of obtaining significant antidepressant actions whereas limiting side effects. Copyright © 2016 Elsevier Inc. All rights reserved.
Chen, Lin; Xie, Wenji; Xie, Wenqin; Zhuang, Weiqiang; Jiang, Changcheng; Liu, Naizhen
2017-11-01
Post operational cognitive dysfunction (POCD) occurs in patients after anesthesia and surgery. Abnormal histone acetylation and neuroinflammation are key factors in the pathogenesis of cognitive impairment. Apigenin not only has an anti-inflammatory activity but also modifies histone acetylation. We aimed to investigate whether apigenin can attenuate isoflurane exposure-induced cognitive decline by regulating histone acetylation and inflammatory signaling. Spatial learning and memory were assessed by Morris water maze test. Levels of histone acetylation, BDNF and downstream signaling, and inflammatory components were analyzed. Isoflurane exposure in aged rats lead to impaired spatial learning and memory. These rats exhibited dysregulated histone H3K9 and H4K12 acetylation, which was accompanied by reduced BDNF expression and suppressed BDNF downstream signaling pathway. Apigenin restored histone acetylation and BDNF signaling. Apigenin also suppressed isoflurane exposure induced upregulation of proinflammatory cytokines and NFκB signaling pathway. Memory impairment induced by isoflurane exposure is associated with dysregulated histone acetylation in the hippocampus, which affects BDNF expression and hence BDNF downstream signaling pathway. Apigenin recovers cognitive function by restoring histone acetylation and suppressing neuroinflammation. Copyright © 2017 Elsevier B.V. All rights reserved.
Role of neurotrophic factors in attention deficit hyperactivity disorder.
Tsai, Shih-Jen
2017-04-01
Neurotrophins (NTs), a family of proteins including nerve growth factor, brain-derived neurotrophic factor (BDNF), neurotrophin-3, and neurotrophin-4, are essential for neural growth, survival, and differentiation, and are therefore crucial for brain development. Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by problems of inattention and/or hyperactivity-impulsivity. ADHD is one of the most common childhood onset psychiatric disorders. Studies have suggested that both genetic and environmental factors influence the development of the disorder, although the precise causes of ADHD have not yet been identified. In this review, we assess the role of NTs in the pathophysiology of ADHD. Preclinical evidence indicates that BDNF knockout mice are hyperactive, and an ADHD rodent model exhibited decreased cerebral BDNF levels. Several lines of evidence from clinical studies, including blood level and genetic studies, have suggested that NTs are involved in the pathogenesis of ADHD and in the mechanism of biological treatments for ADHD. Future directions for research are proposed, such as using blood NTs as ADHD biomarkers, optimizing NT genetic studies in ADHD, considering NTs as a link between ADHD and other comorbid mental disorders, and investigating methods for optimally modulating NT signaling to discover novel therapeutics for treating ADHD. Copyright © 2016 Elsevier Ltd. All rights reserved.
Liu, Qiuli; Wong-Riley, Margaret T.T.
2013-01-01
Previously, we found a transient imbalance between suppressed excitation and enhanced inhibition in the respiratory network of the rat around postnatal days (P) 12–13, a critical period when the hypoxic ventilatory response is at its weakest. The mechanism underlying the imbalance is poorly understood. Brain-derived neurotrophic factor (BDNF) and its tyrosine protein kinase B (TrkB) receptors are known to potentiate glutamatergic and attenuate gamma-aminobutyric acid (GABA)ergic neurotransmission, and BDNF is essential for respiratory development. We hypothesized that the excitation-inhibition imbalance during the critical period stemmed from a reduced expression of BDNF and TrkB at that time within respiratory-related nuclei of the brain stem. An in-depth, semiquantitative immunohistochemical study was undertaken in seven respiratory-related brain stem nuclei and one nonrespiratory nucleus in P0–21 rats. The results indicate that the expressions of BDNF and TrkB: 1) in the pre-Bötzinger complex, nucleus ambiguus, commissural and ventrolateral subnuclei of solitary tract nucleus, and retrotrapezoid nucleus/parafacial respiratory group were significantly reduced at P12, but returned to P11 levels by P14; 2) in the lateral paragigantocellular nucleus and parapyramidal region were increased from P0 to P7, but were strikingly reduced at P10 and plateaued thereafter; and 3) in the nonrespiratory cuneate nucleus showed a gentle plateau throughout the first 3 post-natal weeks, with only a slight decline of BDNF expression after P11. Thus, the significant downregulation of both BDNF and TrkB in respiratory-related nuclei during the critical period may form the basis of, or at least contribute to, the inhibitory-excitatory imbalance within the respiratory network during this time. PMID:22678720
Kabir, Zeeba D; Katzman, Aaron C; Kosofsky, Barry E
2013-01-01
Prenatal cocaine exposure has been shown to alter cognitive processes of exposed individuals, presumed to be a result of long-lasting molecular alterations in the brain. In adult prenatal cocaine exposed (PCOC) mice we have identified a deficit in recall of fear extinction, a behavior that is dependent on the medial prefrontal cortex (mPFC) and the hippocampus. While we observed no change in the constitutive expression of brain derived neurotrophic factor (BDNF) protein and mRNA in the mPFC and hippocampus of adult PCOC mice, we observed blunted BDNF signaling in the mPFC of adult PCOC mice after fear extinction compared to the control animals. Specifically, during the consolidation phase of the extinction memory, we observed a decrease in BDNF protein and it's phospho-TrkB receptor expression. Interestingly, at this same time point there was a significant increase in total Bdnf mRNA levels in the mPFC of PCOC mice as compared with controls. In the Bdnf gene, we identified decreased constitutive binding of the transcription factors, MeCP2 and P-CREB at the promoters of Bdnf exons I and IV in the mPFC of PCOC mice, that unlike control mice remained unchanged when measured during the behavior. Finally, bilateral infusion of recombinant BDNF protein into the infralimbic subdivision of the mPFC during the consolidation phase of the extinction memory rescued the behavioral deficit in PCOC mice. In conclusion, these findings extend our knowledge of the neurobiologic impact of prenatal cocaine exposure on the mPFC of mice, which may lead to improved clinical recognition and treatment of exposed individuals.
Shim, Sehwan; Kim, Sokho; Kwon, Young-Bae; Kwon, Jungkee
2012-03-01
[6]-Shogaol has beneficial effects in spinal neuronal regeneration, but associated molecules and mechanisms are not identified. Neurotrophic factors, including brain-derived neurotrophic factor (BDNF), are associated with proliferation and differentiation of neuronal cells and exert a neuroprotective effect in neurodegenerative models. We investigated whether treatment with [6]-shogaol increases BDNF expression in lipopolysaccharide (LPS)-treated astrocytes, and examined the effect of [6]-shogaol on neuronal protection. [6]-Shogaol significantly attenuated the cell death induced by LPS. Western blotting showed that [6]-shogaol treatment reduced Bax expression and increased B-cell lymphoma (Bcl)-2 and BclxL expression in LPS-treated cells, consistent with the effects of BDNF treatment. Furthermore, K252a, a blocker of neurotrophic factors, attenuated the cellular protective effects of [6]-shogaol and BDNF. This study provides the first evidence that [6]-shogaol increases the expression of BDNF in LPS-treated astrocytes. Furthermore, these experimental results indicate that production of BDNF in astrocytes might be related to altered cell viability following [6]-shogaol treatment. Thus, the neuroprotective effects of [6]-shogaol is mediated by up-regulation of BDNF. Copyright © 2011 Elsevier Ltd. All rights reserved.
Brain-Derived Neurotrophic Factor and Neuropsychiatric Disorders
Autry, Anita E.
2012-01-01
Brain derived neurotrophic factor (BDNF) is the most prevalent growth factor in the central nervous system (CNS). It is essential for the development of the CNS and for neuronal plasticity. Because BDNF plays a crucial role in development and plasticity of the brain, it is widely implicated in psychiatric diseases. This review provides a summary of clinical and preclinical evidence for the involvement of this ubiquitous growth factor in major depressive disorder, schizophrenia, addiction, Rett syndrome, as well as other psychiatric and neurodevelopmental diseases. In addition, the review includes a discussion of the role of BDNF in the mechanism of action of pharmacological therapies currently used to treat these diseases, such antidepressants and antipsychotics. The review also covers a critique of experimental therapies such as BDNF mimetics and discusses the value of BDNF as a target for future drug development. PMID:22407616
Ahmadalipour, A; Sadeghzadeh, J; Vafaei, A A; Bandegi, A R; Mohammadkhani, R; Rashidy-Pour, A
2015-10-01
Prenatal morphine exposure throughout pregnancy can induce a series of neurobehavioral and neurochemical disturbances by affecting central nervous system development. This study was designed to investigate the effects of an enriched environment on behavioral deficits and changes in hippocampal brain-derived neurotrophic factor (BDNF) levels induced by prenatal morphine in rats. On pregnancy days 11-18, female Wistar rats were randomly injected twice daily with saline or morphine. Offspring were weaned on postnatal day (PND) 21. They were subjected to a standard rearing environment or an enriched environment on PNDs 22-50. On PNDs 51-57, the behavioral responses including anxiety and depression-like behaviors, and passive avoidance memory as well as hippocampal BDNF levels were investigated. The light/dark (L/D) box and elevated plus maze (EPM) were used for the study of anxiety, forced swimming test (FST) was used to assess depression-like behavior and passive avoidance task was used to evaluate learning and memory. Prenatal morphine exposure caused a reduction in time spent in the EPM open arms and a reduction in time spent in the lit side of the L/D box. It also decreased step-through latency and increased time spent in the dark side of passive avoidance task. Prenatal morphine exposure also reduced immobility time and increased swimming time in FST. Postnatal rearing in an enriched environment counteracted with behavioral deficits in the EPM and passive avoidance task, but not in the L/D box. This suggests that exposure to an enriched environment during adolescence period alters anxiety profile in a task-specific manner. Prenatal morphine exposure reduced hippocampal BDNF levels, but enriched environment significantly increased BDNF levels in both saline- and morphine-exposed groups. Our results demonstrate that exposure to an enriched environment alleviates behavioral deficits induced by prenatal morphine exposure and up-regulates the decreased levels of BDNF. BDNF may contribute to the beneficial effects of an enriched environment on prenatal morphine-exposed to rats. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
TBARS and BDNF levels in newborns exposed to crack/cocaine during pregnancy: a comparative study.
Mardini, Victor; Rohde, Luis A; Ceresér, Keila M; Gubert, Carolina M; Silva, Emily G da; Xavier, Fernando; Parcianello, Rodrigo; Röhsig, Liane M; Pechansky, Flávio; Szobot, Claudia M
2017-01-01
To compare levels of a marker of lipid peroxidation (thiobarbituric acid reactive substances, TBARS) and brain-derived neurotrophic factor (BDNF) in umbilical cord blood (UCB) between newborns exposed to crack/cocaine in utero (exposed newborns [EN], n=57) and non-exposed newborns (NEN, n=99), as well as in maternal peripheral blood at delivery. This was a cross-sectional study. Potential confounders, including perinatal parameters, psychopathology, and use of other substances, were assessed. After adjusting for potential confounders, adjusted mean BDNF was significantly higher in EN (3.86 ng/mL, 95% confidence interval [95%CI] 2.29-5.43) than in NEN (0.85 ng/mL, 95%CI 0.47-1.23; p < 0.001; Cohen effect size: 1.12), and significantly lower in crack/cocaine mothers than in control mothers (4.03 ng/mL, 95%CI 2.87-5.18 vs. 6.67 ng/mL, 95%CI 5.60-7.74; p = 0.006). The adjusted mean TBARS level was significantly lower in EN (63.97 µM MDA, 95%CI 39.43-88.50) than NEN (177.04 µM MDA, 95%CI 140.93-213.14; p < 0.001; effect size = 0.84), with no difference between mother groups (p = 0.86). The changes in TBARS levels observed in EN suggest that fetuses exposed to cocaine mobilize endogenous antioxidant routes since very early stages of development. The increase in BDNF levels in EN might indicate changes in fetal development, whereas the changes in BDNF levels in mothers provide evidence of the complex metabolic processes involved in drug use during pregnancy.
BDNF Expression in Larval and Adult Zebrafish Brain: Distribution and Cell Identification
Cacialli, Pietro; Gueguen, Marie-Madeleine; Coumailleau, Pascal; D’Angelo, Livia; Kah, Olivier; Lucini, Carla; Pellegrini, Elisabeth
2016-01-01
Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, has emerged as an active mediator in many essential functions in the central nervous system of mammals. BDNF plays significant roles in neurogenesis, neuronal maturation and/or synaptic plasticity and is involved in cognitive functions such as learning and memory. Despite the vast literature present in mammals, studies devoted to BDNF in the brain of other animal models are scarse. Zebrafish is a teleost fish widely known for developmental genetic studies and is emerging as model for translational neuroscience research. In addition, its brain shows many sites of adult neurogenesis allowing higher regenerative properties after traumatic injuries. To add further knowledge on neurotrophic factors in vertebrate brain models, we decided to determine the distribution of bdnf mRNAs in the larval and adult zebrafish brain and to characterize the phenotype of cells expressing bdnf mRNAs by means of double staining studies. Our results showed that bdnf mRNAs were widely expressed in the brain of 7 days old larvae and throughout the whole brain of mature female and male zebrafish. In adults, bdnf mRNAs were mainly observed in the dorsal telencephalon, preoptic area, dorsal thalamus, posterior tuberculum, hypothalamus, synencephalon, optic tectum and medulla oblongata. By combining immunohistochemistry with in situ hybridization, we showed that bdnf mRNAs were never expressed by radial glial cells or proliferating cells. By contrast, bdnf transcripts were expressed in cells with neuronal phenotype in all brain regions investigated. Our results provide the first demonstration that the brain of zebrafish expresses bdnf mRNAs in neurons and open new fields of research on the role of the BDNF factor in brain mechanisms in normal and brain repairs situations. PMID:27336917
Yamaguchi, Shinji; Aoki, Naoya; Kobayashi, Daisuke; Kitajima, Takaaki; Iikubo, Eiji; Katagiri, Sachiko; Matsushima, Toshiya; Homma, Koichi J
2011-12-07
Newly hatched domestic chicks serve as an important model for experimental studies of neural and behavioral plasticity. Brain-derived neurotrophic factor (BDNF) has been shown to play a critical role in synaptic plasticity, including long-term potentiation, which underlies learning and memory in rodents. Here we show that BDNF mRNA levels increased in the intermediate medial hyperpallium apicale (IMHA), which is the caudal area of the visual Wulst, of imprinted chick brains, and the upregulation of gene expression correlated with the strength of the learned preference to the training object. In addition, activation of tropomyosin-related kinase B (TrkB)/phosphatidylinositol 3-kinase signaling was associated with filial imprinting. However, pharmacological deprivation of TrkB phosphorylation in IMHA did not impair memory formation, suggesting that activation of BDNF/TrkB signaling in IMHA is not involved in memory acquisition in filial imprinting.
Colzato, Lorenza S.; van Muijden, Jesse; Band, Guido P. H.; Hommel, Bernhard
2011-01-01
Western society has an increasing proportion of older adults. Increasing age is associated with a general decrease in the control over task-relevant mental processes. In the present study we investigated the possibility that successful transfer of game-based cognitive improvements to untrained tasks in elderly people is modulated by preexisting neuro-developmental factors as genetic variability related to levels of the brain-derived neurotrophic factor (BDNF), an important neuromodulator underlying cognitive processes. We trained participants, genotyped for the BDNF Val66Met polymorphism, on cognitive tasks developed to improve dynamic attention. Pre-training (baseline) and post-training measures of attentional processes (divided and selective attention) were acquired by means of the useful field of view task. As expected, Val/Val homozygous individuals showed larger beneficial transfer effects than Met/-carriers. Our findings support the idea that genetic predisposition modulates transfer effects. PMID:21909331
Zinc Interactions With Brain-Derived Neurotrophic Factor and Related Peptide Fragments.
Travaglia, A; La Mendola, D
2017-01-01
Brain-derived neurotrophic factor (BDNF) is a neurotrophin essential for neuronal development and survival, synaptic plasticity, and cognitive function. Dysregulation of BDNF signaling is involved in several neurodegenerative disorders, including Alzheimer's disease. Alteration of metal ion homeostasis is observed both in normal aging and in many neurodegenerative diseases. Interestingly, there is a significant overlap between brain areas characterized by metal ion dyshomeostasis and those where BDNF exerts its biological activity. Therefore, it is reasonable to speculate that metal ions, especially zinc, can modulate the activity of BDNF. The synthesis of BDNF peptidomimetic can be helpful both to understand the molecular interaction of BDNF with metal ions and to develop new drugs for neurodegenerative diseases. © 2017 Elsevier Inc. All rights reserved.
Xu, Hang; Wang, Jiesi; Zhang, Ke; Zhao, Mei; Ellenbroek, Bart; Shao, Feng; Wang, Weiwen
2018-02-01
Adolescent social stress (ASS) can increase susceptibility to depression in adulthood. However, the underlying psychological and neural mechanisms remain unclear. Cortically mediated cognitive dysfunctions are increasingly recognized as an independent and important risk factor of depression. Using social defeat stress, a classical animal model of depression, our previous studies found that mice subjected to this form of stress during early adolescence displayed cognitive inflexibility (CI) in adulthood. This change was accompanied by a down-regulation of Bdnf gene expression in the medial prefrontal cortex (mPFC); this gene encodes a key molecule involved in depression and antidepressant action. In the present paper, we identified epigenetic modification of Bdnf as a possible mechanism underlying the behavioral and molecular changes. ASS induced a set of depressive phenotypes, including increased social avoidance and CI, as well as reduced levels of total Bdnf and isoform IV but not isoform I or VI transcripts in the mPFC. In parallel with changes in Bdnf gene expression, previously stressed adult mice showed increased levels of dimethylation of histone H3 at lysine K9 (H3K9me2) immediately downstream of the Bdnf IV promoter. On the other hand, no differences were found in trimethylation of histone H3 at lysine K4 (H3K4me3) or in acetylation of histone H3 at lysine K9 (H3K9ac) or at K4 (H3K4ac) in the Bdnf IV promoter. Likewise, no alterations were found in DNA methylation of the Bdnf IV promoter. Additionally, treatment with the chronic antidepressant tranylcypromine reversed Bdnf epigenetic changes and related gene transcription while also reversing CI, but not social avoidance, in previously stressed adult mice. These results suggest that epigenetic changes to the Bdnf gene in the mPFC after adolescent social adversity may be involved in the regulation of cognitive dysfunction in depression and antidepressant action in adulthood. Copyright © 2017 Elsevier Ltd. All rights reserved.
Harper, Matthew M.; Grozdanic, Sinisa D.; Blits, Bas; Kuehn, Markus H.; Zamzow, Daniel; Buss, Janice E.; Kardon, Randy H.; Sakaguchi, Donald S.
2011-01-01
Purpose. To evaluate the ability of mesenchymal stem cells (MSCs) engineered to produce and secrete brain-derived neurotrophic factor (BDNF) to protect retinal function and structure after intravitreal transplantation in a rat model of chronic ocular hypertension (COH). Methods. COH was induced by laser cauterization of trabecular meshwork and episcleral veins in rat eyes. COH eyes received an intravitreal transplant of MSCs engineered to express BDNF and green fluorescent protein (BDNF-MSCs) or just GFP (GFP-MSCs). Computerized pupillometry and electroretinography (ERG) were performed to assess optic nerve and retinal function. Quantification of optic nerve damage was performed by counting retinal ganglion cells (RGCs) and evaluating optic nerve cross-sections. Results. After transplantation into COH eyes, BDNF-MSCs preserved significantly more retina and optic nerve function than GFP-MSC–treated eyes when pupil light reflex (PLR) and ERG function were evaluated. PLR analysis showed significantly better function (P = 0.03) in BDNF-MSC–treated eyes (operated/control ratio = 63.00% ± 11.39%) than GFP-MSC–treated eyes (operated/control ratio = 31.81% ± 9.63%) at 42 days after surgery. The BDNF-MSC–transplanted eyes also displayed a greater level of RGC preservation than eyes that received the GFP-MSCs only (RGC cell counts: BDNF-MSC–treated COH eyes, 112.2 ± 19.39 cells/section; GFP-MSC–treated COH eyes, 52.21 ± 11.54 cells/section; P = 0.01). Conclusions. The authors have demonstrated that lentiviral-transduced BDNF-producing MSCs can survive in eyes with chronic hypertension and can provide retina and optic nerve functional and structural protection. Transplantation of BDNF-producing stem cells may be a viable treatment strategy for glaucoma. PMID:21498611
Lee, Bridgin G.; Anastasia, Agustin; Hempstead, Barbara L.; Lee, Francis S.
2015-01-01
Introduction: Nicotine withdrawal is characterized by both affective and cognitive symptoms. Identifying genetic polymorphisms that could affect the symptoms associated with nicotine withdrawal are important in predicting withdrawal sensitivity and identifying personalized cessation therapies. In the current study we used a mouse model of a non-synonymous single nucleotide polymorphism in the translated region of the brain-derived neurotrophic factor (BDNF) gene that substitutes a valine (Val) for a methionine (Met) amino acid (Val66Met) to examine the relationship between the Val66Met single nucleotide polymorphism and nicotine dependence. Methods: This study measured proBDNF and the BDNF prodomain levels following nicotine and nicotine withdrawal and examined a mouse model of a common polymorphism in this protein (BDNFMet/Met) in three behavioral paradigms: novelty-induced hypophagia, marble burying, and the open-field test. Results: Using the BDNF knock-in mouse containing the BDNF Val66Met polymorphism we found: (1) blunted anxiety-like behavior in BDNFMet/Met mice following withdrawal in three behavioral paradigms: novelty-induced hypophagia, marble burying, and the open-field test; (2) the anxiolytic effects of chronic nicotine are absent in BDNFMet/Met mice; and (3) an increase in BDNF prodomain in BDNFMet/Met mice following nicotine withdrawal. Conclusions: Our study is the first to examine the effect of the BDNF Val66Met polymorphism on the affective symptoms of withdrawal from nicotine in mice. In these mice, a single-nucleotide polymorphism in the translated region of the BDNF gene can result in a blunted withdrawal, as measured by decreased anxiety-like behavior. The significant increase in the BDNF prodomain in BDNFMet/Met mice following nicotine cessation suggests a possible role of this ligand in the circuitry remodeling after withdrawal. PMID:25744957
Franco-Robles, Elena; López, Mercedes G
2016-08-02
Fructans obtained from agave, called agavins, have recently shown significant benefits for human health including obesity. Therefore, we evaluated the potential of agavins as neuroprotectors and antioxidants by determining their effect on brain-derived neurotrophic factor (BDNF) and glial-derived neurotrophic factor (GDNF) as well as oxidative brain damage in of obese mice. Male C57BL/6J mice were fed a high-fat diet (HFD) and treated daily with 5% (HFD/A5) or 10% (HFD/A10) of agavins or a standard diet (SD) for 10 weeks. The levels of BDNF and GDNF were evaluated by ELISA. The oxidative stress was evaluated by lipid peroxidation (TBARS) and carbonyls. SCFAs were also measured with GC-FID. Differences between groups were assessed using ANOVA and by Tukey's test considering p < 0.05. The body weight gain and food intake of mice HFD/A10 group were significantly lower than those in the HFD group. Agavins restored BDNF levels in HFD/A5 group and GDNF levels of HFD/A5 and HFD/A10 groups in cerebellum. Interestingly, agavins decreased TBARS levels in HFD/A5 and HFD/A10 groups in the hippocampus, frontal cortex and cerebellum. Carbonyl levels were also lower in HFD/A5 and HFD/A10 for only the hippocampus and cerebellum. It was also found that agavins enhanced SCFAs production in feces. Agavins may act as bioactive ingredients with antioxidant and protective roles in the brain.