Sample records for factor beta superfamily

  1. Intracellular mediators of transforming growth factor beta superfamily signaling localize to endosomes in chicken embryo and mouse lenses in vivo.

    PubMed

    Rajagopal, Ramya; Ishii, Shunsuke; Beebe, David C

    2007-06-25

    Endocytosis is a key regulator of growth factor signaling pathways. Recent studies showed that the localization to endosomes of intracellular mediators of growth factor signaling may be required for their function. Although there is substantial evidence linking endocytosis and growth factor signaling in cultured cells, there has been little study of the endosomal localization of signaling components in intact tissues or organs. Proteins that are downstream of the transforming growth factor-beta superfamily signaling pathway were found on endosomes in chicken embryo and postnatal mouse lenses, which depend on signaling by members of the TGFbeta superfamily for their normal development. Phosphorylated Smad1 (pSmad1), pSmad2, Smad4, Smad7, the transcriptional repressors c-Ski and TGIF and the adapter molecules Smad anchor for receptor activation (SARA) and C184M, localized to EEA-1- and Rab5-positive vesicles in chicken embryo and/or postnatal mouse lenses. pSmad1 and pSmad2 also localized to Rab7-positive late endosomes. Smad7 was found associated with endosomes, but not caveolae. Bmpr1a conditional knock-out lenses showed decreased nuclear and endosomal localization of pSmad1. Many of the effectors in this pathway were distributed differently in vivo from their reported distribution in cultured cells. Based on the findings reported here and data from other signaling systems, we suggest that the localization of activated intracellular mediators of the transforming growth factor-beta superfamily to endosomes is important for the regulation of growth factor signaling.

  2. In vitro treatment with 17,20b-dihydroxy-4-pregnen-3-one regulates mRNA levels of transforming growth factor beta superfamily members in rainbow trout (Oncorhynchus mykiss) ovarian tissue

    USDA-ARS?s Scientific Manuscript database

    Transforming growth factor beta (TGFB) superfamily members are important paracrine/autocrine regulators of ovarian development and steroidogenesis in mammals, but their reproductive role in fishes is not well understood. Our objectives were 3-fold: to determine if key TGFB superfamily transcripts a...

  3. Unveiling the functional diversity of the alpha/beta hydrolase superfamily in the plant kingdom.

    PubMed

    Mindrebo, Jeffrey T; Nartey, Charisse M; Seto, Yoshiya; Burkart, Michael D; Noel, Joseph P

    2016-12-01

    The alpha/beta hydrolase (ABH) superfamily is a widespread and functionally malleable protein fold recognized for its diverse biochemical activities across all three domains of life. ABH enzymes possess unexpected catalytic activity in the green plant lineage through selective alterations in active site architecture and chemistry. Furthermore, the ABH fold serves as the core structure for phytohormone and ligand receptors in the gibberellin, strigolactone, and karrikin signaling pathways in plants. Despite recent discoveries, the ABH family is sparsely characterized in plants, a sessile kingdom known to evolve complex and specialized chemical adaptations as survival responses to widely varying biotic and abiotic ecologies. This review calls attention to the ABH superfamily in the plant kingdom to highlight the functional adaptability of the ABH fold. Copyright © 2016. Published by Elsevier Ltd.

  4. Structural diversity of domain superfamilies in the CATH database.

    PubMed

    Reeves, Gabrielle A; Dallman, Timothy J; Redfern, Oliver C; Akpor, Adrian; Orengo, Christine A

    2006-07-14

    The CATH database of domain structures has been used to explore the structural variation of homologous domains in 294 well populated domain structure superfamilies, each containing at least three sequence diverse relatives. Our analyses confirm some previously detected trends relating sequence divergence to structural variation but for a much larger dataset and in some superfamilies the new data reveal exceptional structural variation. Use of a new algorithm (2DSEC) to analyse variability in secondary structure compositions across a superfamily sheds new light on how structures evolve. 2DSEC detects inserted secondary structures that embellish the core of conserved secondary structures found throughout the superfamily. Analysis showed that for 56% of highly populated superfamilies (>9 sequence diverse relatives), there are twofold or more increases in the numbers of secondary structures in some relatives. In some families fivefold increases occur, sometimes modifying the fold of the domain. Manual inspection of secondary structure insertions or embellishments in 48 particularly variable superfamilies revealed that although these insertions were usually discontiguous in the sequence they were often co-located in 3D resulting in a larger structural motif that often modified the geometry of the active site or the surface conformation promoting diverse domain partnerships and protein interactions. These observations, supported by automatic analysis of all well populated CATH families, suggest that accretion of small secondary structure insertions may provide a simple mechanism for evolving new functions in diverse relatives. Some layered domain architectures (e.g. mainly-beta and alpha-beta sandwiches) that recur highly in the genomes more frequently exploit these types of embellishments to modify function. In these architectures, aggregation occurs most often at the edges, top or bottom of the beta-sheets. Information on structural variability across domain

  5. The aldo-keto reductase superfamily homepage.

    PubMed

    Hyndman, David; Bauman, David R; Heredia, Vladi V; Penning, Trevor M

    2003-02-01

    The aldo-keto reductases (AKRs) are one of the three enzyme superfamilies that perform oxidoreduction on a wide variety of natural and foreign substrates. A systematic nomenclature for the AKR superfamily was adopted in 1996 and was updated in September 2000 (visit www.med.upenn.edu/akr). Investigators have been diligent in submitting sequences of functional proteins to the Web site. With the new additions, the superfamily contains 114 proteins expressed in prokaryotes and eukaryotes that are distributed over 14 families (AKR1-AKR14). The AKR1 family contains the aldose reductases, the aldehyde reductases, the hydroxysteroid dehydrogenases and steroid 5beta-reductases, and is the largest. Other families of interest include AKR6, which includes potassium channel beta-subunits, and AKR7 the aflatoxin aldehyde reductases. Two new families include AKR13 (yeast aldose reductase) and AKR14 (Escherichia coli aldehyde reductase). Crystal structures of many AKRs and their complexes with ligands are available in the PDB and accessible through the Web site. Each structure has the characteristic (alpha/beta)(8)-barrel motif of the superfamily, a conserved cofactor binding site and a catalytic tetrad, and variable loop structures that define substrate specificity. Although the majority of AKRs are monomeric proteins of about 320 amino acids in length, the AKR2, AKR6 and AKR7 family may form multimers. To expand the nomenclature to accommodate multimers, we recommend that the composition and stoichiometry be listed. For example, AKR7A1:AKR7A4 (1:3) would designate a tetramer of the composition indicated. The current nomenclature is recognized by the Human Genome Project (HUGO) and the Web site provides a link to genomic information including chromosomal localization, gene boundaries, human ESTs and SNPs and much more.

  6. A member of the polymerase beta nucleotidyltransferase superfamily is required for RNA interference in C. elegans.

    PubMed

    Chen, Chun-Chieh G; Simard, Martin J; Tabara, Hiroaki; Brownell, Daniel R; McCollough, Jennifer A; Mello, Craig C

    2005-02-22

    RNA interference (RNAi) is an ancient, highly conserved mechanism in which small RNA molecules (siRNAs) guide the sequence-specific silencing of gene expression . Several silencing machinery protein components have been identified, including helicases, RNase-related proteins, double- and single-stranded RNA binding proteins, and RNA-dependent RNA polymerase-related proteins . Work on these factors has led to the revelation that RNAi mechanisms intersect with cellular pathways required for development and fertility . Despite rapid progress in understanding key steps in the RNAi pathway, it is clear that many factors required for both RNAi and related developmental mechanisms have not yet been identified. Here, we report the characterization of the C. elegans gene rde-3. Genetic analysis of presumptive null alleles indicates that rde-3 is required for siRNA accumulation and for efficient RNAi in all tissues, and it is essential for fertility and viability at high temperatures. RDE-3 contains conserved domains found in the polymerase beta nucleotidyltransferase superfamily, which includes conventional poly(A) polymerases, 2'-5' oligoadenylate synthetase (OAS), and yeast Trf4p . These findings implicate a new enzymatic modality in RNAi and suggest possible models for the role of RDE-3 in the RNAi mechanism.

  7. Evolution of Enzymatic Activities in the Enolase Superfamily: D-Mannonate Dhydratase from Novosphingobium aromaticivorans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rakus,J.; Fedorov, A.; Fedorov, E.

    2007-01-01

    The d-mannonate dehydratase (ManD) function was assigned to a group of orthologous proteins in the mechanistically diverse enolase superfamily by screening a library of acid sugars. Structures of the wild type ManD from Novosphingobium aromaticivorans were determined at pH 7.5 in the presence of Mg2+ and also in the presence of Mg2+ and the 2-keto-3-keto-d-gluconate dehydration product; the structure of the catalytically active K271E mutant was determined at pH 5.5 in the presence of the d-mannonate substrate. As previously observed in the structures of other members of the enolase superfamily, ManD contains two domains, an N-terminal a+{beta} capping domain andmore » a ({beta}/a)7{beta}-barrel domain. The barrel domain contains the ligands for the essential Mg2+, Asp 210, Glu 236, and Glu 262, at the ends of the third, fourth, and fifth {beta}-strands of the barrel domain, respectively. However, the barrel domain lacks both the Lys acid/base catalyst at the end of the second {beta}-strand and the His-Asp dyad acid/base catalyst at the ends of the seventh and sixth {beta}-strands, respectively, that are found in many members of the superfamily. Instead, a hydrogen-bonded dyad of Tyr 159 in a loop following the second {beta}-strand and Arg 147 at the end of the second {beta}-strand are positioned to initiate the reaction by abstraction of the 2-proton. Both Tyr 159 and His 212, at the end of the third {beta}-strand, are positioned to facilitate both syn-dehydration and ketonization of the resulting enol intermediate to yield the 2-keto-3-keto-d-gluconate product with the observed retention of configuration. The identities and locations of these acid/base catalysts as well as of cationic amino acid residues that stabilize the enolate anion intermediate define a new structural strategy for catalysis (subgroup) in the mechanistically diverse enolase superfamily. With these differences, we provide additional evidence that the ligands for the essential Mg2+ are the

  8. The intriguing biology of the tumour necrosis factor/tumour necrosis factor receptor superfamily: players, rules and the games.

    PubMed

    Hehlgans, Thomas; Pfeffer, Klaus

    2005-05-01

    The members of the tumour necrosis factor (TNF)/tumour necrosis factor receptor (TNFR) superfamily are critically involved in the maintenance of homeostasis of the immune system. The biological functions of this system encompass beneficial and protective effects in inflammation and host defence as well as a crucial role in organogenesis. At the same time, members of this superfamily are responsible for host damaging effects in sepsis, cachexia, and autoimmune diseases. This review summarizes recent progress in the immunobiology of the TNF/TNFR superfamily focusing on results obtained from animal studies using gene targeted mice. The different modes of signalling pathways affecting cell proliferation, survival, differentiation, apoptosis, and immune organ development as well as host defence are reviewed. Molecular and cellular mechanisms that demonstrate a therapeutic potential by targeting individual receptors or ligands for the treatment of chronic inflammatory or autoimmune diseases are discussed.

  9. TNF superfamily: costimulation and clinical applications

    PubMed Central

    Vinay, Dass S; Kwon, Byoung S

    2009-01-01

    The molecules concerned with costimulation belong either to the immunoglobulin (Ig) or tumor necrosis factor (TNF) superfamilies. The tumor necrosis superfamily comprises molecules capable of providing both costimulation and cell death. In this review we briefly summarize certain TNF superfamily receptor-ligand pairs that are endowed with costimulatory properties and their importance in health and disease. PMID:19230849

  10. Novel actin crosslinker superfamily member identified by a two step degenerate PCR procedure.

    PubMed

    Byers, T J; Beggs, A H; McNally, E M; Kunkel, L M

    1995-07-24

    Actin-crosslinking proteins link F-actin into the bundles and networks that constitute the cytoskeleton. Dystrophin, beta-spectrin, alpha-actinin, ABP-120, ABP-280, and fimbrin share homologous actin-binding domains and comprise an actin crosslinker superfamily. We have identified a novel member of this superfamily (ACF7) using a degenerate primer-mediated PCR strategy that was optimized to resolve less-abundant superfamily sequences. The ACF7 gene is on human chromosome 1 and hybridizes to high molecular weight bands on northern blots. Sequence comparisons argue that ACF7 does not fit into one of the existing families, but represents a new class within the superfamily.

  11. Evolution of Enzymatic Activities in the Enolase Superfamily: L-Rhamnonate Dehydratase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rakus,J.; Fedorov, A.; Fedorov, E.

    2008-01-01

    The l-rhamnonate dehydratase (RhamD) function was assigned to a previously uncharacterized family in the mechanistically diverse enolase superfamily that is encoded by the genome of Escherichia coli K-12. We screened a library of acid sugars to discover that the enzyme displays a promiscuous substrate specificity: l-rhamnonate (6-deoxy-l-mannonate) has the 'best' kinetic constants, with l-mannonate, l-lyxonate, and d-gulonate dehydrated less efficiently. Crystal structures of the RhamDs from both E. coli K-12 and Salmonella typhimurium LT2 (95% sequence identity) were obtained in the presence of Mg2+; the structure of the RhamD from S. typhimurium was also obtained in the presence of 3-deoxy-l-rhamnonatemore » (obtained by reduction of the product with NaBH4). Like other members of the enolase superfamily, RhamD contains an N-terminal a + {beta} capping domain and a C-terminal ({beta}/a)7{beta}-barrel (modified TIM-barrel) catalytic domain with the active site located at the interface between the two domains. In contrast to other members, the specificity-determining '20s loop' in the capping domain is extended in length and the '50s loop' is truncated. The ligands for the Mg2+ are Asp 226, Glu 252 and Glu 280 located at the ends of the third, fourth and fifth {beta}-strands, respectively. The active site of RhamD contains a His 329-Asp 302 dyad at the ends of the seventh and sixth {beta}-strands, respectively, with His 329 positioned to function as the general base responsible for abstraction of the C2 proton of l-rhamnonate to form a Mg2+-stabilized enediolate intermediate. However, the active site does not contain other acid/base catalysts that have been implicated in the reactions catalyzed by other members of the MR subgroup of the enolase superfamily. Based on the structure of the liganded complex, His 329 also is expected to function as the general acid that both facilitates departure of the 3-OH group in a syn-dehydration reaction and delivers a proton to

  12. Historical perspectives on tumor necrosis factor and its superfamily: 25 years later, a golden journey

    PubMed Central

    Gupta, Subash C.; Kim, Ji Hye

    2012-01-01

    Although activity that induced tumor regression was observed and termed tumor necrosis factor (TNF) as early as the 1960s, the true identity of TNF was not clear until 1984, when Aggarwal and coworkers reported, for the first time, the isolation of 2 cytotoxic factors: one, derived from macrophages (molecular mass 17 kDa), was named TNF, and the second, derived from lymphocytes (20 kDa), was named lymphotoxin. Because the 2 cytotoxic factors exhibited 50% amino acid sequence homology and bound to the same receptor, they came to be called TNF-α and TNF-β. Identification of the protein sequences led to cloning of their cDNA. Based on sequence homology to TNF-α, now a total of 19 members of the TNF superfamily have been identified, along with 29 interacting receptors, and several molecules that interact with the cytoplasmic domain of these receptors. The roles of the TNF superfamily in inflammation, apoptosis, proliferation, invasion, angiogenesis, metastasis, and morphogenesis have been documented. Their roles in immunologic, cardiovascular, neurologic, pulmonary, and metabolic diseases are becoming apparent. TNF superfamily members are active targets for drug development, as indicated by the recent approval and expanding market of TNF blockers used to treat rheumatoid arthritis, psoriasis, Crohns disease, and osteoporosis, with a total market of more than US $20 billion. As we learn more about this family, more therapeutics will probably emerge. In this review, we summarize the initial discovery of TNF-α, and the insights gained regarding the roles of this molecule and its related family members in normal physiology and disease. PMID:22053109

  13. Origin and evolution of TNF and TNF receptor superfamilies

    USDA-ARS?s Scientific Manuscript database

    The tumor necrosis factor superfamily (TNFSF) and the TNF receptor superfamily (TNFRSF) have an ancient evolutionary origin that can be traced back to single copy genes within Arthropods. In humans, 18 TNFSF and 29 TNFRSF genes have been identified. Evolutionary models account for the increase in g...

  14. Osteoblast gene expression is differentially regulated by TGF-beta isoforms.

    PubMed

    Fagenholz, P J; Warren, S M; Greenwald, J A; Bouletreau, P J; Spector, J A; Crisera, F E; Longaker, M T

    2001-03-01

    The transforming growth factor beta (TGF-beta) superfamily encompasses a number of important growth factors including several TGF-beta isoforms, the bone morphogenetic proteins, activins, inhibins, and growth and differentiation factors. TGF-beta 1, -beta 2, and -beta 3 are three closely related isoforms that are widely expressed during skeletal morphogenesis and bone repair. Numerous studies suggest that each isoform has unique in vivo functions; however, the effects of these TGF-beta isoforms on osteoblast gene expression and maturation have never been directly compared. In the current study, we treated undifferentiated neonatal rat calvaria osteoblast-enriched cell cultures with 2.5 ng/ml of each TGF-beta isoform and analyzed gene expression at 0, 3, 6, and 24 hours. We demonstrated unique isoform-specific regulation of endogenous TGF-beta 1 and type I collagen mRNA transcription. To assess the effects of extended TGF-beta treatment on osteoblast maturation, we differentiated osteoblast cultures in the presence of 2.5 ng/ml of each TGF-beta isoform. Analysis of collagen I, alkaline phosphatase, and osteocalcin demonstrated that each TGF-beta isoform uniquely suppressed the transcription of these osteoblast differentiation markers. Interestingly, TGF-beta isoform treatment increased osteopontin expression in primary osteoblasts after 4 and 10 days of differentiation. To our knowledge, these data provide the first direct comparison of the effects of the TGF-beta isoforms on osteoblast gene expression in vitro. Furthermore, these data suggest that TGF-beta isoforms may exert their unique in vivo effects by differentially regulating osteoblast cytokine secretion, extracellular matrix production, and the rate of cellular maturation.

  15. The effect of TGF-beta2 on MMP-2 production and activity in highly metastatic human bladder carcinoma cell line 5637.

    PubMed

    Dehnavi, Ehsan; Soheili, Zahra-Soheila; Samiei, Shahram; Ataei, Zahra; Aryan, Hajar

    2009-06-01

    Transforming growth factor-beta (TGF-beta) superfamily regulates matrix metalloproteinases (MMP), which intrinsically regulate various cell behaviors leading to metastasis. We investigated the effect of TGF-beta(2) on MMP-2 regulation in human bladder carcinoma cell line 5637. Zymography, ELISA, and real-time polymerase chain reaction revealed that TGF-beta(2) stimulated MMP-2 production, but the transcription of its gene remained unchanged. Wortmannin could not inhibit MMP-2 secretion and activity and conversely the amount of the protein and its enzymatic activity were increased. These data suggest that TGF-beta(2) increased MMP-2 at the posttranscriptional level and this upregulation was independent of phosphatidylinositol 3-kinase signaling pathway.

  16. Phylogenetic Characterization of Transport Protein Superfamilies: Superiority of SuperfamilyTree Programs over Those Based on Multiple Alignments

    PubMed Central

    Chen, Jonathan S.; Reddy, Vamsee; Chen, Joshua H.; Shlykov, Maksim A.; Zheng, Wei Hao; Cho, Jaehoon; Yen, Ming Ren; Saier, Milton H.

    2012-01-01

    Transport proteins function in the translocation of ions, solutes and macromolecules across cellular and organellar membranes. These integral membrane proteins fall into >600 families as tabulated in the Transporter Classification Database (www.tcdb.org). Recent studies, some of which are reported here, define distant phylogenetic relationships between families with the creation of superfamilies. Several of these are analyzed using a novel set of programs designed to allow reliable prediction of phylogenetic trees when sequence divergence is too great to allow the use of multiple alignments. These new programs, called SuperfamilyTree1 and 2 (SFT1 and 2), allow display of protein and family relationships, respectively, based on thousands of comparative BLAST scores rather than multiple alignments. Superfamilies analyzed include: (1) Aerolysins, (2) RTX Toxins, (3) Defensins, (4) Ion Transporters, (5) Bile/Arsenite/Riboflavin Transporters, (6) Cation: Proton Antiporters, and (7) the Glucose/Fructose/Lactose superfamily within the prokaryotic phosphoenol pyruvate-dependent Phosphotransferase System. In addition to defining the phylogenetic relationships of the proteins and families within these seven superfamilies, evidence is provided showing that the SFT programs outperform programs that are based on multiple alignments whenever sequence divergence of superfamily members is extensive. The SFT programs should be applicable to virtually any superfamily of proteins or nucleic acids. PMID:22286036

  17. Parallel beta/alpha-barrels of alpha-amylase, cyclodextrin glycosyltransferase and oligo-1,6-glucosidase versus the barrel of beta-amylase: evolutionary distance is a reflection of unrelated sequences.

    PubMed

    Janecek, S

    1994-10-17

    The structures of functionally related beta/alpha-barrel starch hydrolases, alpha-amylase, beta-amylase, cyclodextrin glycosyltransferase and oligo-1,6-glucosidase, are discussed, their mutual sequence similarities being emphasized. Since these enzymes (except for beta-amylase) along with the predicted set of more than ten beta/alpha-barrels from the alpha-amylase enzyme superfamily fulfil the criteria characteristic of the products of divergent evolution, their unrooted distance tree is presented.

  18. Orphan nuclear receptor small heterodimer partner inhibits transforming growth factor-beta signaling by repressing SMAD3 transactivation.

    PubMed

    Suh, Ji Ho; Huang, Jiansheng; Park, Yun-Yong; Seong, Hyun-A; Kim, Dongwook; Shong, Minho; Ha, Hyunjung; Lee, In-Kyu; Lee, Keesook; Wang, Li; Choi, Hueng-Sik

    2006-12-22

    Orphan nuclear receptor small heterodimer partner (SHP) is an atypical member of the nuclear receptor superfamily; SHP regulates the nuclear receptor-mediated transcription of target genes but lacks a conventional DNA binding domain. In this study, we demonstrate that SHP represses transforming growth factor-beta (TGF-beta)-induced gene expression through a direct interaction with Smad, a transducer of TGF-beta signaling. Transient transfection studies demonstrate that SHP represses Smad3-induced transcription. In vivo and in vitro protein interaction assays revealed that SHP directly interacts with Smad2 and Smad3 but not with Smad4. Mapping of domains mediating the interaction between SHP and Smad3 showed that the entire N-terminal domain (1-159 amino acids) of SHP and the linker domain of Smad3 are involved in this interaction. In vitro glutathione S-transferase pulldown competition experiments revealed the SHP-mediated repression of Smad3 transactivation through competition with its co-activator p300. SHP also inhibits the activation of endogenous TGF-beta-responsive gene promoters, the p21, Smad7, and plasminogen activator inhibitor-1 (PAI-1) promoters. Moreover, adenovirus-mediated overexpression of SHP decreases PAI-1 mRNA levels, and down-regulation of SHP by a small interfering RNA increases both the transactivation of Smad3 and the PAI-1 mRNA levels. Finally, the PAI-1 gene is expressed in SHP(-/-) mouse hepatocytes at a higher level than in normal hepatocytes. Taken together, these data indicate that SHP is a novel co-regulator of Smad3, and this study provides new insights into regulation of TGF-beta signaling.

  19. The neurotrophins act synergistically with LIF and members of the TGF-beta superfamily to promote the survival of spiral ganglia neurons in vitro.

    PubMed

    Marzella, P L; Gillespie, L N; Clark, G M; Bartlett, P F; Kilpatrick, T J

    1999-12-01

    A number of growth factor families have been implicated in normal inner ear development, auditory neuron survival and protection. Several growth factors, including transforming growth factor-beta5 (TGF-beta5) and TGF-beta3, neurotrophin-3 (NT-3), brain-derived neurotrophic factor (BDNF) and leukemia inhibitory factor (LIF) were tested for their ability, individually or in combination, to promote auditory neuron survival in dissociated cell cultures of early rat post-natal spiral ganglion cells (SGCs). The results indicate that at discrete concentrations all growth factors act in an additive fashion and some in synergy when promoting neuronal survival. These findings support the hypothesis that growth factors from different families may be interdependent when sustaining neuronal integrity.

  20. A Synopsis of Factors Regulating Beta Cell Development and Beta Cell Mass

    PubMed Central

    Prasadan, Krishna; Shiota, Chiyo; Xiangwei, Xiao; Ricks, David; Fusco, Joseph; Gittes, George

    2016-01-01

    The insulin-secreting beta cells in the endocrine pancreas regulate blood glucose levels, and loss of functional beta cells leads to insulin deficiency, hyperglycemia (high blood glucose) and diabetes mellitus. Current treatment strategies for type-1 (autoimmune) diabetes are islet transplantation, which has significant risks and limitations, or normalization of blood glucose with insulin injections, which is clearly not ideal. The type-1 patients can lack insulin counter-regulatory mechanism; therefore, hypoglycemia is a potential risk. Hence, a cell-based therapy offers a better alternative for the treatment of diabetes. Past research was focused on attempting to generate replacement beta cells from stem cells, however, recently there has been an increasing interest in identifying mechanisms that will lead to the conversion of pre-existing differentiated endocrine cells into beta cells. The goal of this review is to provide an overview of several of the key factors that regulate new beta cell formation (neogenesis) and beta cell proliferation. PMID:27105622

  1. Structural Characterization of the Boca/Mesd Maturation Factors for LDL-Receptor-Type beta Propeller Domains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M Collins; W Hendrickson

    2011-12-31

    Folding and trafficking of low-density lipoprotein receptor (LDLR) family members, which play essential roles in development and homeostasis, are mediated by specific chaperones. The Boca/Mesd chaperone family specifically promotes folding and trafficking of the YWTD {beta} propeller-EGF domain pair found in the ectodomain of all LDLR members. Limited proteolysis, NMR spectroscopy, analytical ultracentrifugation, and X-ray crystallography were used to define a conserved core composed of a structured domain that is preceded by a disordered N-terminal region. High-resolution structures of the ordered domain were determined for homologous proteins from three metazoans. Seven independent protomers reveal a novel ferrodoxin-like superfamily fold withmore » two distinct {beta} sheet topologies. A conserved hydrophobic surface forms a dimer interface in each crystal, but these differ substantially at the atomic level, indicative of nonspecific hydrophobic interactions that may play a role in the chaperone activity of the Boca/Mesd family.« less

  2. The SUPERFAMILY database in 2004: additions and improvements.

    PubMed

    Madera, Martin; Vogel, Christine; Kummerfeld, Sarah K; Chothia, Cyrus; Gough, Julian

    2004-01-01

    The SUPERFAMILY database provides structural assignments to protein sequences and a framework for analysis of the results. At the core of the database is a library of profile Hidden Markov Models that represent all proteins of known structure. The library is based on the SCOP classification of proteins: each model corresponds to a SCOP domain and aims to represent an entire superfamily. We have applied the library to predicted proteins from all completely sequenced genomes (currently 154), the Swiss-Prot and TrEMBL databases and other sequence collections. Close to 60% of all proteins have at least one match, and one half of all residues are covered by assignments. All models and full results are available for download and online browsing at http://supfam.org. Users can study the distribution of their superfamily of interest across all completely sequenced genomes, investigate with which other superfamilies it combines and retrieve proteins in which it occurs. Alternatively, concentrating on a particular genome as a whole, it is possible first, to find out its superfamily composition, and secondly, to compare it with that of other genomes to detect superfamilies that are over- or under-represented. In addition, the webserver provides the following standard services: sequence search; keyword search for genomes, superfamilies and sequence identifiers; and multiple alignment of genomic, PDB and custom sequences.

  3. Proinflammatory response during Ebola virus infection of primate models: possible involvement of the tumor necrosis factor receptor superfamily.

    PubMed

    Hensley, Lisa E; Young, Howard A; Jahrling, Peter B; Geisbert, Thomas W

    2002-03-01

    Ebola virus (EBOV) infections are characterized by dysregulation of normal host immune responses. Insight into the mechanism came from recent studies in nonhuman primates, which showed that EBOV infects cells of the mononuclear phagocyte system (MPS), resulting in apoptosis of bystander lymphocytes. In this study, we evaluated serum levels of cytokines/chemokines in EBOV-infected nonhuman primates, as possible correlates of this bystander apoptosis. Increased levels of interferon (IFN)-alpha, IFN-beta, interleukin (IL)-6, IL-18, MIP-1alpha, and MIP-1beta were observed in all EBOV-infected monkeys, indicating the occurrence of a strong proinflammatory response. To investigate the mechanism(s) involved in lymphoid apoptosis, soluble Fas (sFas) and nitrate accumulation were measured. sFas was detected in 4/9 animals, while, elevations of nitrate accumulation occurred in 3/3 animals. To further evaluate the potential role of these factors in the observed bystander apoptosis and intact animals, in vitro cultures were prepared of adherent human monocytes/macrophages (PHM), and monocytes differentiated into immature dendritic cells (DC). These cultures were infected with EBOV and analyzed for cytokine/chemokine induction and expression of apoptosis-related genes. In addition, the in vitro EBOV infection of peripheral blood mononuclear cells (PBMC) resulted in strong cytokine/chemokine induction, a marked increase in lactate dehydrogenase (LDH) activity, and an increase in the number of apoptotic lymphocytes examined by electron microscopy. Increased levels of sFAS were detected in PHM cultures, although, <10% of the cells were positive by immunohistochemistry. In contrast, >90% of EBOV-infected PHM were positive for tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) by immunohistochemistry, RNA analysis, and flow cytometry. Inactivated EBOV also effected increased TRAIL expression in PHM, suggesting that the TNF receptor superfamily may be involved in

  4. Expression of transforming growth factor-beta1, -beta2 and -beta3 in normal and diseased canine mitral valves.

    PubMed

    Aupperle, H; März, I; Thielebein, J; Schoon, H-A

    2008-01-01

    The pathogenesis of chronic valvular disease (CVD) in dogs remains unclear, but activation and proliferation of valvular stromal cells (VSC) and their transdifferentiation into myofibroblast-like cells has been described. These alterations may be influenced by transforming growth factor-beta (TGF-beta), a cytokine involved in extracellular matrix (ECM) regulation and mesenchymal cell differentiation. The present study investigates immunohistochemically the expression of TGF-beta1, -beta2, -beta3 and smooth muscle alpha actin (alpha-SMA) in normal canine mitral valves (MVs) (n=10) and in the valves of dogs with mild (n=7), moderate (n=14) and severe (n=9) CVD. In normal mitral valves there was no expression of alpha-SMA but VSC displayed variable expression of TGF-beta1 (10% of VSC labelled), TGF-beta2 (1-5% labelled) and TGF-beta3 (50% labelled). In mild CVD the affected atrialis contain activated and proliferating alpha-SMA-positive VSC, which strongly expressed TGF-beta1 and -beta3, but only 10% of these cells expressed TGF-beta2. In unaffected areas of the leaflet there was selective increase in expression of TGF-beta1 and -beta3. In advanced CVD the activated subendothelial VSC strongly expressed alpha-SMA, TGF-beta1 and -beta3. Inactive VSC within the centre of the nodules had much less labelling for TGF-beta1 and -beta3. TGF-beta1 labelling was strong within the ECM. These data suggest that TGF-beta plays a role in the pathogenesis of CVD by inducing myofibroblast-like differentiation of VSC and ECM secretion. Changed haemodynamic forces and expression of matrix metalloproteinases (MMPs) may in turn regulate TGF-beta expression.

  5. Conservation of Dynamics Associated with Biological Function in an Enzyme Superfamily.

    PubMed

    Narayanan, Chitra; Bernard, David N; Bafna, Khushboo; Gagné, Donald; Chennubhotla, Chakra S; Doucet, Nicolas; Agarwal, Pratul K

    2018-03-06

    Enzyme superfamily members that share common chemical and/or biological functions also share common features. While the role of structure is well characterized, the link between enzyme function and dynamics is not well understood. We present a systematic characterization of intrinsic dynamics of over 20 members of the pancreatic-type RNase superfamily, which share a common structural fold. This study is motivated by the fact that the range of chemical activity as well as molecular motions of RNase homologs spans over 10 5 folds. Dynamics was characterized using a combination of nuclear magnetic resonance experiments and computer simulations. Phylogenetic clustering led to the grouping of sequences into functionally distinct subfamilies. Detailed characterization of the diverse RNases showed conserved dynamical traits for enzymes within subfamilies. These results suggest that selective pressure for the conservation of dynamical behavior, among other factors, may be linked to the distinct chemical and biological functions in an enzyme superfamily. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Activin- and Nodal-related factors control antero-posterior patterning of the zebrafish embryo.

    PubMed

    Thisse, B; Wright, C V; Thisse, C

    2000-01-27

    Definition of cell fates along the dorso-ventral axis depends on an antagonistic relationship between ventralizing transforming growth factor-beta superfamily members, the bone morphogenetic proteins and factors secreted from the dorsal organizer, such as Noggin and Chordin. The extracellular binding of the last group to the bone morphogenetic proteins prevents them from activating their receptors, and the relative ventralizer:antagonist ratio is thought to specify different dorso-ventral cell fates. Here, by taking advantage of a non-genetic interference method using a specific competitive inhibitor, the Lefty-related gene product Antivin, we provide evidence that cell fate along the antero-posterior axis of the zebrafish embryo is controlled by the morphogenetic activity of another transforming growth factor-beta superfamily subgroup--the Activin and Nodal-related factors. Increasing antivin doses progressively deleted posterior fates within the ectoderm, eventually resulting in the removal of all fates except forebrain and eyes. In contrast, overexpression of activin or nodal-related factors converted ectoderm that was fated to be forebrain into more posterior ectodermal or mesendodermal fates. We propose that modulation of intercellular signalling by Antivin/Activin and Nodal-related factors provides a mechanism for the graded establishment of cell fates along the antero-posterior axis of the zebrafish embryo.

  7. Comprehensive analysis of all triple helical repeats in beta-spectrins reveals patterns of selective evolutionary conservation.

    PubMed

    Baines, Anthony J

    2003-01-01

    The spectrin superfamily (spectrin, alpha-actinin, utrophin and dystrophin) has in common a triple helical repeating unit of ~106 amino acid residues. In spectrin, alpha and beta chains contain multiple copies of this repeat. beta-spectrin chains contain the majority of binding activities in spectrin and are essential for animal life. Canonical beta-spectrins have 17 repeats; beta-heavy spectrins have 30. Here, the repeats of five human beta-spectrins, plus beta-spectrins from several other vertebrates and invertebrates, have been analysed. Repeats 1, 2, 14 and 17 in canonical beta are highly conserved between invertebrates and vertebrates, and repeat 8 in some isoforms. This is consistent with conservation of critical functions, since repeats 1, 2 and 17 bind alpha-spectrin. Repeats 1 of beta-spectrins are not always detected by SMART or Pfam tools. A profile hidden Markov model of beta-spectrin repeat 1 detects alpha-actinins, but not utrophin or dystrophin. Novel examples of repeat 1 were detected in the spectraplakins MACF1, BPAG1 and plectin close to the actin-binding domain. Ankyrin binds to the C-terminal portion of repeat 14; the high conservation of this entire repeat may point to additional, undiscovered ligand-binding activities. This analysis indicates that the basic triple helical repeat pattern was adapted early in the evolution of the spectrin superfamily to encompass essential binding activities, which characterise individual repeats in proteins extant today.

  8. Sequence swapping does not result in conformation swapping for the beta4/beta5 and beta8/beta9 beta-hairpin turns in human acidic fibroblast growth factor.

    PubMed

    Kim, Jaewon; Lee, Jihun; Brych, Stephen R; Logan, Timothy M; Blaber, Michael

    2005-02-01

    The beta-turn is the most common type of nonrepetitive structure in globular proteins, comprising ~25% of all residues; however, a detailed understanding of effects of specific residues upon beta-turn stability and conformation is lacking. Human acidic fibroblast growth factor (FGF-1) is a member of the beta-trefoil superfold and contains a total of five beta-hairpin structures (antiparallel beta-sheets connected by a reverse turn). beta-Turns related by the characteristic threefold structural symmetry of this superfold exhibit different primary structures, and in some cases, different secondary structures. As such, they represent a useful system with which to study the role that turn sequences play in determining structure, stability, and folding of the protein. Two turns related by the threefold structural symmetry, the beta4/beta5 and beta8/beta9 turns, were subjected to both sequence-swapping and poly-glycine substitution mutations, and the effects upon stability, folding, and structure were investigated. In the wild-type protein these turns are of identical length, but exhibit different conformations. These conformations were observed to be retained during sequence-swapping and glycine substitution mutagenesis. The results indicate that the beta-turn structure at these positions is not determined by the turn sequence. Structural analysis suggests that residues flanking the turn are a primary structural determinant of the conformation within the turn.

  9. Insulin-like growth factor binding protein (IGFBP)-3 and IGFBP-5 mediate TGF-{beta}- and myostatin-induced suppression of proliferation in porcine embryonic myogenic cell cultures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamanga-Sollo, E.; Pampusch, M.S.; White, M.E.

    2005-11-15

    We have previously shown that cultured porcine embryonic myogenic cells (PEMC) produce both insulin-like growth factor binding protein (IGFBP)-3 and IGFBP-5 and secrete these proteins into their media. Exogenously added recombinant porcine (rp) IGFBP-3 and rpIGFBP-5 act via IGF-dependent and IGF-independent mechanisms to suppress proliferation of PEMC cultures. Furthermore, immunoneutralization of endogenous IGFBP-3 and IGFBP-5 in the PEMC culture medium results in increased DNA synthesis rate suggesting that endogenous IGFBP-3 and IGFBP-5 suppress PEMC proliferation. TGF-{beta} superfamily members myostatin and TGF-{beta}{sub 1} have also been shown to suppress proliferation of myogenic cells, and treatment of cultured PEMC with either TGF-{beta}{submore » 1} or myostatin significantly (P < 0.01) increases levels of IGFBP-3 and -5 mRNA. We have previously shown that immunoneutralization of IGFBP-3 decreases the proliferation-suppressing activity of TGF-{beta}{sub 1} and myostatin. Here, we show that immunoneutralization of IGFBP-5 also significantly (P < 0.05) decreases the DNA synthesis-suppressing activity of these molecules. Simultaneous immunoneutralization of both IGFBP-3 and IGFBP-5 in TGF-{beta}{sub 1} or myostatin-treated PEMC cultures restores Long-R3-IGF-I-stimulated DNA synthesis rates to 90% of the levels observed in control cultures receiving no TGF-{beta}{sub 1} or myostatin treatment (P < 0.05). Even though immunoneutralization of IGFBP-3 and -5 increased DNA synthesis rates in TGF-{beta}{sub 1} or myostatin-treated PEMC cultures, phosphosmad2 levels in these cultures were not affected. These findings strongly suggest that IGFBP-3 and IGFBP-5 affect processes downstream from receptor-mediated Smad phosphorylation that facilitate the ability of TGF-{beta} and myostatin to suppress proliferation of PEMC.« less

  10. Role of Activin A in Immune Response to Breast Cancer

    DTIC Science & Technology

    2016-12-01

    the response to radiotherapy (RT). 2 KEYWORDS Breast cancer, metastasis, transforming growth factor-beta (TGFβ) superfamily, activin- A, radiotherapy... Transforming Growth Factor-beta (TGFβ) and activin A (actA) are members of the TGFβ superfamily with overlapping as well as distinct functions in many...Vaccination C. Vanpouille-Box, S. Formenti, and S. Demaria; Weill Cornell Medical College, New York, NY Purpose/Objective(s): Transforming Growth

  11. Evolution of Enzyme Superfamilies: Comprehensive Exploration of Sequence-Function Relationships.

    PubMed

    Baier, F; Copp, J N; Tokuriki, N

    2016-11-22

    The sequence and functional diversity of enzyme superfamilies have expanded through billions of years of evolution from a common ancestor. Understanding how protein sequence and functional "space" have expanded, at both the evolutionary and molecular level, is central to biochemistry, molecular biology, and evolutionary biology. Integrative approaches that examine protein sequence, structure, and function have begun to provide comprehensive views of the functional diversity and evolutionary relationships within enzyme superfamilies. In this review, we outline the recent advances in our understanding of enzyme evolution and superfamily functional diversity. We describe the tools that have been used to comprehensively analyze sequence relationships and to characterize sequence and function relationships. We also highlight recent large-scale experimental approaches that systematically determine the activity profiles across enzyme superfamilies. We identify several intriguing insights from this recent body of work. First, promiscuous activities are prevalent among extant enzymes. Second, many divergent proteins retain "function connectivity" via enzyme promiscuity, which can be used to probe the evolutionary potential and history of enzyme superfamilies. Finally, we discuss open questions regarding the intricacies of enzyme divergence, as well as potential research directions that will deepen our understanding of enzyme superfamily evolution.

  12. SUPERFAMILY 1.75 including a domain-centric gene ontology method.

    PubMed

    de Lima Morais, David A; Fang, Hai; Rackham, Owen J L; Wilson, Derek; Pethica, Ralph; Chothia, Cyrus; Gough, Julian

    2011-01-01

    The SUPERFAMILY resource provides protein domain assignments at the structural classification of protein (SCOP) superfamily level for over 1400 completely sequenced genomes, over 120 metagenomes and other gene collections such as UniProt. All models and assignments are available to browse and download at http://supfam.org. A new hidden Markov model library based on SCOP 1.75 has been created and a previously ignored class of SCOP, coiled coils, is now included. Our scoring component now uses HMMER3, which is in orders of magnitude faster and produces superior results. A cloud-based pipeline was implemented and is publicly available at Amazon web services elastic computer cloud. The SUPERFAMILY reference tree of life has been improved allowing the user to highlight a chosen superfamily, family or domain architecture on the tree of life. The most significant advance in SUPERFAMILY is that now it contains a domain-based gene ontology (GO) at the superfamily and family levels. A new methodology was developed to ensure a high quality GO annotation. The new methodology is general purpose and has been used to produce domain-based phenotypic ontologies in addition to GO.

  13. Evolution of plant virus movement proteins from the 30K superfamily and of their homologs integrated in plant genomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mushegian, Arcady R., E-mail: mushegian2@gmail.com; Elena, Santiago F., E-mail: sfelena@ibmcp.upv.es; The Santa Fe Institute, Santa Fe, NM 87501

    Homologs of Tobacco mosaic virus 30K cell-to-cell movement protein are encoded by diverse plant viruses. Mechanisms of action and evolutionary origins of these proteins remain obscure. We expand the picture of conservation and evolution of the 30K proteins, producing sequence alignment of the 30K superfamily with the broadest phylogenetic coverage thus far and illuminating structural features of the core all-beta fold of these proteins. Integrated copies of pararetrovirus 30K movement genes are prevalent in euphyllophytes, with at least one copy intact in nearly every examined species, and mRNAs detected for most of them. Sequence analysis suggests repeated integrations, pseudogenizations, andmore » positive selection in those provirus genes. An unannotated 30K-superfamily gene in Arabidopsis thaliana genome is likely expressed as a fusion with the At1g37113 transcript. This molecular background of endopararetrovirus gene products in plants may change our view of virus infection and pathogenesis, and perhaps of cellular homeostasis in the hosts. - Highlights: • Sequence region shared by plant virus “30K” movement proteins has an all-beta fold. • Most euphyllophyte genomes contain integrated copies of pararetroviruses. • These integrated virus genomes often include intact movement protein genes. • Molecular evidence suggests that these “30K” genes may be selected for function.« less

  14. Beta reduction factors for protective clothing at the Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franklin, G.L.; Gonzalez, P.L.

    1998-12-31

    Beta reduction factors (f{sub {beta}}) for protective clothing (PC) at the Oak Ridge National Laboratory (ORNL) have been determined for a variety of protective clothing combinations. Data was collected to determine the experimental f{sub {beta}} for several combinations of PCs under laboratory conditions. Radiation dose rates were measured with an open window Bicron{reg_sign} RSO-5 ion chamber for two distinct beta energy groups (E{sub max} = 1.218 {times} 10{sup {minus}13} J(0.860 MeV) and 3.653 {times} 10{sup {minus}13} J (2.280 MeV)). Data points determined, as the ratio of unattenuated (no PCs) to attenuated (PCs), were used to derive a set of equationsmore » using the Microsoft{reg_sign} Excel Linet function. Field comparison tests were then conducted to determine the validity of these beta reduction factors. The f{sub {beta}} from the field tests were significantly less than the experimental f{sub {beta}}, indicating that these factors will yield conservative results.« less

  15. Pin1 promotes transforming growth factor-beta-induced migration and invasion.

    PubMed

    Matsuura, Isao; Chiang, Keng-Nan; Lai, Chen-Yu; He, Dongming; Wang, Guannan; Ramkumar, Romila; Uchida, Takafumi; Ryo, Akihide; Lu, Kunping; Liu, Fang

    2010-01-15

    Transforming growth factor-beta (TGF-beta) regulates a wide variety of biological activities. It induces potent growth-inhibitory responses in normal cells but promotes migration and invasion of cancer cells. Smads mediate the TGF-beta responses. TGF-beta binding to the cell surface receptors leads to the phosphorylation of Smad2/3 in their C terminus as well as in the proline-rich linker region. The serine/threonine phosphorylation sites in the linker region are followed by the proline residue. Pin1, a peptidyl-prolyl cis/trans isomerase, recognizes phosphorylated serine/threonine-proline motifs. Here we show that Smad2/3 interacts with Pin1 in a TGF-beta-dependent manner. We further show that the phosphorylated threonine 179-proline motif in the Smad3 linker region is the major binding site for Pin1. Although epidermal growth factor also induces phosphorylation of threonine 179 and other residues in the Smad3 linker region the same as TGF-beta, Pin1 is unable to bind to the epidermal growth factor-stimulated Smad3. Further analysis suggests that phosphorylation of Smad3 in the C terminus is necessary for the interaction with Pin1. Depletion of Pin1 by small hairpin RNA does not significantly affect TGF-beta-induced growth-inhibitory responses and a number of TGF-beta/Smad target genes analyzed. In contrast, knockdown of Pin1 in human PC3 prostate cancer cells strongly inhibited TGF-beta-mediated migration and invasion. Accordingly, TGF-beta induction of N-cadherin, which plays an important role in migration and invasion, is markedly reduced when Pin1 is depleted in PC3 cells. Because Pin1 is overexpressed in many cancers, our findings highlight the importance of Pin1 in TGF-beta-induced migration and invasion of cancer cells.

  16. Transforming growth factor-{beta}-inducible phosphorylation of Smad3.

    PubMed

    Wang, Guannan; Matsuura, Isao; He, Dongming; Liu, Fang

    2009-04-10

    Smad proteins transduce the transforming growth factor-beta (TGF-beta) signal at the cell surface into gene regulation in the nucleus. Upon TGF-beta treatment, the highly homologous Smad2 and Smad3 are phosphorylated by the TGF-beta receptor at the SSXS motif in the C-terminal tail. Here we show that in addition to the C-tail, three (S/T)-P sites in the Smad3 linker region, Ser(208), Ser(204), and Thr(179) are phosphorylated in response to TGF-beta. The linker phosphorylation peaks at 1 h after TGF-beta treatment, behind the peak of the C-tail phosphorylation. We provide evidence suggesting that the C-tail phosphorylation by the TGF-beta receptor is necessary for the TGF-beta-induced linker phosphorylation. Although the TGF-beta receptor is necessary for the linker phosphorylation, the receptor itself does not phosphorylate these sites. We further show that ERK is not responsible for TGF-beta-dependent phosphorylation of these three sites. We show that GSK3 accounts for TGF-beta-inducible Ser(204) phosphorylation. Flavopiridol, a pan-CDK inhibitor, abolishes TGF-beta-induced phosphorylation of Thr(179) and Ser(208), suggesting that the CDK family is responsible for phosphorylation of Thr(179) and Ser(208) in response to TGF-beta. Mutation of the linker phosphorylation sites to nonphosphorylatable residues increases the ability of Smad3 to activate a TGF-beta/Smad-target gene as well as the growth-inhibitory function of Smad3. Thus, these observations suggest that TGF-beta-induced phosphorylation of Smad3 linker sites inhibits its antiproliferative activity.

  17. Two different groups of signal sequence in M-superfamily conotoxins.

    PubMed

    Wang, Qi; Jiang, Hui; Han, Yu-Hong; Yuan, Duo-Duo; Chi, Cheng-Wu

    2008-04-01

    M-superfamily conotoxins can be divided into four branches (M-1, M-2, M-3 and M-4) according to the number of amino acid residues in the third Cys loop. In general, it is widely accepted that the conotoxin signal peptides of each superfamily are strictly conserved. Recently, we cloned six cDNAs of novel M-superfamily conotoxins from Conus leopardus, Conus marmoreus and Conus quercinus, belonging to either M-1 or M-3 branch. These conotoxins, judging from the putative peptide sequences deducted from cDNAs, are rich in acidic residues and share highly conserved signal and pro-peptide region. However, they are quite different from the reported conotoxins of M-2 and M-4 branches even in their signal peptides, which in general are considered highly conserved for each superfamily of conotoxins. The signal sequences of M-1 and M-3 conotoxins composed of 24 residues start with MLKMGVVL-, while those of M-2 and M-4 conotoxins composed of 25 residues start with MMSKLGVL-. It is another example that different types of signal peptides can exist within a superfamily besides the I-conotoxin superfamily. In addition to the different disulfide connectivity of M-1 conotoxins from that of M-4 or M-2 conotoxins, the sequence alignment, preferential Cys codon usage and phylogenetic tree analysis suggest that M-1 and M-3 conotoxins have much closer relationship, being different from the conotoxins of other two branches (M-4 and M-2) of M-superfamily.

  18. Pin1 down-regulates transforming growth factor-beta (TGF-beta) signaling by inducing degradation of Smad proteins.

    PubMed

    Nakano, Ayako; Koinuma, Daizo; Miyazawa, Keiji; Uchida, Takafumi; Saitoh, Masao; Kawabata, Masahiro; Hanai, Jun-ichi; Akiyama, Hirotada; Abe, Masahiro; Miyazono, Kohei; Matsumoto, Toshio; Imamura, Takeshi

    2009-03-06

    Transforming growth factor-beta (TGF-beta) is crucial in numerous cellular processes, such as proliferation, differentiation, migration, and apoptosis. TGF-beta signaling is transduced by intracellular Smad proteins that are regulated by the ubiquitin-proteasome system. Smad ubiquitin regulatory factor 2 (Smurf2) prevents TGF-beta and bone morphogenetic protein signaling by interacting with Smads and inducing their ubiquitin-mediated degradation. Here we identified Pin1, a peptidylprolyl cis-trans isomerase, as a novel protein binding Smads. Pin1 interacted with Smad2 and Smad3 but not Smad4; this interaction was enhanced by the phosphorylation of (S/T)P motifs in the Smad linker region. (S/T)P motif phosphorylation also enhanced the interaction of Smad2/3 with Smurf2. Pin1 reduced Smad2/3 protein levels in a manner dependent on its peptidyl-prolyl cis-trans isomerase activity. Knockdown of Pin1 increased the protein levels of endogenous Smad2/3. In addition, Pin1 both enhanced the interaction of Smurf2 with Smads and enhanced Smad ubiquitination. Pin1 inhibited TGF-beta-induced transcription and gene expression, suggesting that Pin1 negatively regulates TGF-beta signaling by down-regulating Smad2/3 protein levels via induction of Smurf2-mediated ubiquitin-proteasomal degradation.

  19. Genome-wide identification and analysis of the B3 superfamily of transcription factors in Brassicaceae and major crop plants.

    PubMed

    Peng, Fred Y; Weselake, Randall J

    2013-05-01

    The plant-specific B3 superfamily of transcription factors has diverse functions in plant growth and development. Using a genome-wide domain analysis, we identified 92, 187, 58, 90, 81, 55, and 77 B3 transcription factor genes in the sequenced genome of Arabidopsis, Brassica rapa, castor bean (Ricinus communis), cocoa (Theobroma cacao), soybean (Glycine max), maize (Zea mays), and rice (Oryza sativa), respectively. The B3 superfamily has substantially expanded during the evolution in eudicots particularly in Brassicaceae, as compared to monocots in the analysis. We observed domain duplication in some of these B3 proteins, forming more complex domain architectures than currently understood. We found that the length of B3 domains exhibits a large variation, which may affect their exact number of α-helices and β-sheets in the core structure of B3 domains, and possibly have functional implications. Analysis of the public microarray data indicated that most of the B3 gene pairs encoding Arabidopsis-rice orthologs are preferentially expressed in different tissues, suggesting their different roles in these two species. Using ESTs in crops, we identified many B3 genes preferentially expressed in reproductive tissues. In a sequence-based quantitative trait loci analysis in rice and maize, we have found many B3 genes associated with traits such as grain yield, seed weight and number, and protein content. Our results provide a framework for future studies into the function of B3 genes in different phases of plant development, especially the ones related to traits in major crops.

  20. Smad7 induces tumorigenicity by blocking TGF-beta-induced growth inhibition and apoptosis.

    PubMed

    Halder, Sunil K; Beauchamp, R Daniel; Datta, Pran K

    2005-07-01

    Smad proteins play a key role in the intracellular signaling of the transforming growth factor beta (TGF-beta) superfamily of extracellular polypeptides that initiate signaling to regulate a wide variety of biological processes. The inhibitory Smad, Smad7, has been shown to function as intracellular antagonists of TGF-beta family signaling and is upregulated in several cancers. To determine the effect of Smad7-mediated blockade of TGF-beta signaling, we have stably expressed Smad7 in a TGF-beta-sensitive, well-differentiated, and non-tumorigenic cell line, FET, that was derived from human colon adenocarcinoma. Smad7 inhibits TGF-beta-induced transcriptional responses by blocking complex formation between Smad 2/3 and Smad4. While Smad7 has no effect on TGF-beta-induced activation of p38 MAPK and ERK, it blocks the phosphorylation of Akt by TGF-beta and enhances TGF-beta-induced phosphorylation of c-Jun. FET cells expressing Smad7 show anchorage-independent growth and enhance tumorigenicity in athymic nude mice. Smad7 blocks TGF-beta-induced growth inhibition by preventing TGF-beta-induced G1 arrest. Smad7 inhibits TGF-beta-mediated downregulation of c-Myc, CDK4, and Cyclin D1, and suppresses the expression of p21(Cip1). As a result, Smad7 inhibits TGF-beta-mediated downregulation of Rb phosphorylation. Furthermore, Smad7 inhibits the apoptosis of these cells. Together, Smad7 may increase the tumorigenicity of FET cells by blocking TGF-beta-induced growth inhibition and by inhibiting apoptosis. Thus, this study provides a mechanism by which a portion of human colorectal tumors may become refractory to tumor-suppressive actions of TGF-beta that might result in increased tumorigenicity.

  1. MetaSINEs: Broad Distribution of a Novel SINE Superfamily in Animals

    PubMed Central

    Nishihara, Hidenori; Plazzi, Federico; Passamonti, Marco; Okada, Norihiro

    2016-01-01

    SINEs (short interspersed elements) are transposable elements that typically originate independently in each taxonomic clade (order/family). However, some SINE families share a highly similar central sequence and are thus categorized as a SINE superfamily. Although only four SINE superfamilies (CORE-SINEs, V-SINEs, DeuSINEs, and Ceph-SINEs) have been reported so far, it is expected that new SINE superfamilies would be discovered by deep exploration of new SINEs in metazoan genomes. Here we describe 15 SINEs, among which 13 are novel, that have a similar 66-bp central region and therefore constitute a new SINE superfamily, MetaSINEs. MetaSINEs are distributed from fish to cnidarians, suggesting their common evolutionary origin at least 640 Ma. Because the 3′ tails of MetaSINEs are variable, these SINEs most likely survived by changing their partner long interspersed elements for retrotransposition during evolution. Furthermore, we examined the presence of members of other SINE superfamilies in bivalve genomes and characterized eight new SINEs belonging to the CORE-SINEs, V-SINEs, and DeuSINEs, in addition to the MetaSINEs. The broad distribution of bivalve SINEs suggests that at least three SINEs originated in the common ancestor of Bivalvia. Our comparative analysis of the central domains of the SINEs revealed that, in each superfamily, only a restricted region is shared among all of its members. Because the functions of the central domains of the SINE superfamilies remain unknown, such structural information of SINE superfamilies will be useful for future experimental and comparative analyses to reveal why they have been retained in metazoan genomes during evolution. PMID:26872770

  2. Determination of transmission factors in beta radiation beams.

    PubMed

    Polo, Ivón Oramas; Caldas, Linda V E

    2018-06-01

    In beta emitters, in order to evaluate the absorbed dose rate at different tissue depths, it is necessary to determine the transmission factors. In this work, the transmission factors determined in beta secondary standard radiation beams are presented. For this purpose, an extrapolation chamber was used. The results obtained were considered acceptable, and they are within the uncertainties in comparison with the values provided by the source calibration certificate. The maximum differences between the results obtained in this work and those from the calibration certificate were 3.3%, 3.8% and 5.9% for 90 Sr/ 90 Y, 85 Kr and 147 Pm sources respectively. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. MetaSINEs: Broad Distribution of a Novel SINE Superfamily in Animals.

    PubMed

    Nishihara, Hidenori; Plazzi, Federico; Passamonti, Marco; Okada, Norihiro

    2016-02-12

    SINEs (short interspersed elements) are transposable elements that typically originate independently in each taxonomic clade (order/family). However, some SINE families share a highly similar central sequence and are thus categorized as a SINE superfamily. Although only four SINE superfamilies (CORE-SINEs, V-SINEs, DeuSINEs, and Ceph-SINEs) have been reported so far, it is expected that new SINE superfamilies would be discovered by deep exploration of new SINEs in metazoan genomes. Here we describe 15 SINEs, among which 13 are novel, that have a similar 66-bp central region and therefore constitute a new SINE superfamily, MetaSINEs. MetaSINEs are distributed from fish to cnidarians, suggesting their common evolutionary origin at least 640 Ma. Because the 3' tails of MetaSINEs are variable, these SINEs most likely survived by changing their partner long interspersed elements for retrotransposition during evolution. Furthermore, we examined the presence of members of other SINE superfamilies in bivalve genomes and characterized eight new SINEs belonging to the CORE-SINEs, V-SINEs, and DeuSINEs, in addition to the MetaSINEs. The broad distribution of bivalve SINEs suggests that at least three SINEs originated in the common ancestor of Bivalvia. Our comparative analysis of the central domains of the SINEs revealed that, in each superfamily, only a restricted region is shared among all of its members. Because the functions of the central domains of the SINE superfamilies remain unknown, such structural information of SINE superfamilies will be useful for future experimental and comparative analyses to reveal why they have been retained in metazoan genomes during evolution. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  4. Integrin-mediated transforming growth factor-beta activation regulates homeostasis of the pulmonary epithelial-mesenchymal trophic unit.

    PubMed

    Araya, Jun; Cambier, Stephanie; Morris, Alanna; Finkbeiner, Walter; Nishimura, Stephen L

    2006-08-01

    Trophic interactions between pulmonary epithelial and mesenchymal cell types, known as the epithelial-mesenchymal trophic unit (EMTU), are crucial in lung development and lung disease. Transforming growth factor (TGF)-beta is a key factor in mediating these interactions, but it is expressed in a latent form that requires activation to be functional. Using intact fetal tracheal tissue and primary cultures of fetal tracheal epithelial cells and fibroblasts, we demonstrate that a subset of integrins, alpha(v)beta(6) and alpha(v)beta(8), are responsible for almost all of the TGF-beta activation in the EMTU. Both alpha(v)beta(8) and alpha(v)beta(6) contribute to fetal tracheal epithelial activation of TGF-beta, whereas only alpha(v)beta(8) contributes to fetal tracheal fibroblast activation of TGF-beta. Interestingly, fetal tracheal epithelial alpha(v)beta(8)-mediated TGF-beta activation can be enhanced by phorbol esters, likely because of the increased activity of MT1-MMP, an essential co-factor in alpha(v)beta(8)-mediated activation of TGF-beta. Autocrine alpha(v)beta(8)-mediated TGF-beta activation by fetal tracheal fibroblasts results in suppression of both transcription and secretion of hepatocyte growth factor, which is sufficient to affect phosphorylation of the airway epithelial hepatocyte growth factor receptor, c-Met, as well as airway epithelial proliferation in a co-culture model of the EMTU. These findings elucidate the function and complex regulation of integrin-mediated activation of TGF-beta within the EMTU.

  5. Structure and function of PA4872 from Pseudomonas aeruginosa, a novel class of oxaloacetate decarboxylase from the PEP mutase/isocitrate lyase superfamily.

    PubMed

    Narayanan, Buvaneswari C; Niu, Weiling; Han, Ying; Zou, Jiwen; Mariano, Patrick S; Dunaway-Mariano, Debra; Herzberg, Osnat

    2008-01-08

    Pseudomonas aeruginosa PA4872 was identified by sequence analysis as a structurally and functionally novel member of the PEP mutase/isocitrate lyase superfamily and therefore targeted for investigation. Substrate screens ruled out overlap with known catalytic functions of superfamily members. The crystal structure of PA4872 in complex with oxalate (a stable analogue of the shared family alpha-oxyanion carboxylate intermediate/transition state) and Mg2+ was determined at 1.9 A resolution. As with other PEP mutase/isocitrate lyase superfamily members, the protein assembles into a dimer of dimers with each subunit adopting an alpha/beta barrel fold and two subunits swapping their barrel's C-terminal alpha-helices. Mg2+ and oxalate bind in the same manner as observed with other superfamily members. The active site gating loop, known to play a catalytic role in the PEP mutase and lyase branches of the superfamily, adopts an open conformation. The Nepsilon of His235, an invariant residue in the PA4872 sequence family, is oriented toward a C(2) oxygen of oxalate analogous to the C(3) of a pyruvyl moiety. Deuterium exchange into alpha-oxocarboxylate-containing compounds was confirmed by 1H NMR spectroscopy. Having ruled out known activities, the involvement of a pyruvate enolate intermediate suggested a decarboxylase activity of an alpha-oxocarboxylate substrate. Enzymatic assays led to the discovery that PA4872 decarboxylates oxaloacetate (kcat = 7500 s(-1) and Km = 2.2 mM) and 3-methyloxaloacetate (kcat = 250 s(-1) and Km = 0.63 mM). Genome context of the fourteen sequence family members indicates that the enzyme is used by select group of Gram-negative bacteria to maintain cellular concentrations of bicarbonate and pyruvate; however the decarboxylation activity cannot be attributed to a pathway common to the various bacterial species.

  6. Differential catalytic promiscuity of the alkaline phosphatase superfamily bimetallo core reveals mechanistic features underlying enzyme evolution

    DOE PAGES

    Sunden, Fanny; AlSadhan, Ishraq; Lyubimov, Artem; ...

    2017-10-25

    Members of enzyme superfamilies specialize in different reactions but often exhibit catalytic promiscuity for one another's reactions, consistent with catalytic promiscuity as an important driver in the evolution of new enzymes. Wanting to understand how catalytic promiscuity and other factors may influence evolution across a superfamily, we turned to the well-studied alkaline phosphatase (AP) superfamily, comparing three of its members, two evolutionarily distinct phosphatases and a phosphodiesterase. Here, we mutated distinguishing active-site residues to generate enzymes that had a common Zn 2+ bimetallo core but little sequence similarity and different auxiliary domains. We then tested the catalytic capabilities of thesemore » pruned enzymes with a series of substrates. A substantial rate enhancement of ~1011-fold for both phosphate mono- and diester hydrolysis by each enzyme indicated that the Zn 2+ bimetallo core is an effective mono/di-esterase generalist and that the bimetallo cores were not evolutionarily tuned to prefer their cognate reactions. In contrast, our pruned enzymes were ineffective sulfatases, and this limited promiscuity may have provided a driving force for founding the distinct one-metal-ion branch that contains all known AP superfamily sulfatases. Finally, our pruned enzymes exhibited 10 7–10 8-fold phosphotriesterase rate enhancements, despite absence of such enzymes within the AP superfamily. We speculate that the superfamily active-site architecture involved in nucleophile positioning prevents accommodation of the additional triester substituent. Overall, we suggest that catalytic promiscuity, and the ease or difficulty of remodeling and building onto existing protein scaffolds, have greatly influenced the course of enzyme evolution. Uncovering principles and properties of enzyme function, promiscuity, and repurposing provides lessons for engineering new enzymes.« less

  7. Differential catalytic promiscuity of the alkaline phosphatase superfamily bimetallo core reveals mechanistic features underlying enzyme evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunden, Fanny; AlSadhan, Ishraq; Lyubimov, Artem

    Members of enzyme superfamilies specialize in different reactions but often exhibit catalytic promiscuity for one another's reactions, consistent with catalytic promiscuity as an important driver in the evolution of new enzymes. Wanting to understand how catalytic promiscuity and other factors may influence evolution across a superfamily, we turned to the well-studied alkaline phosphatase (AP) superfamily, comparing three of its members, two evolutionarily distinct phosphatases and a phosphodiesterase. Here, we mutated distinguishing active-site residues to generate enzymes that had a common Zn 2+ bimetallo core but little sequence similarity and different auxiliary domains. We then tested the catalytic capabilities of thesemore » pruned enzymes with a series of substrates. A substantial rate enhancement of ~1011-fold for both phosphate mono- and diester hydrolysis by each enzyme indicated that the Zn 2+ bimetallo core is an effective mono/di-esterase generalist and that the bimetallo cores were not evolutionarily tuned to prefer their cognate reactions. In contrast, our pruned enzymes were ineffective sulfatases, and this limited promiscuity may have provided a driving force for founding the distinct one-metal-ion branch that contains all known AP superfamily sulfatases. Finally, our pruned enzymes exhibited 10 7–10 8-fold phosphotriesterase rate enhancements, despite absence of such enzymes within the AP superfamily. We speculate that the superfamily active-site architecture involved in nucleophile positioning prevents accommodation of the additional triester substituent. Overall, we suggest that catalytic promiscuity, and the ease or difficulty of remodeling and building onto existing protein scaffolds, have greatly influenced the course of enzyme evolution. Uncovering principles and properties of enzyme function, promiscuity, and repurposing provides lessons for engineering new enzymes.« less

  8. The effect of TRAIL molecule on cell viability in in vitro beta cell culture.

    PubMed

    Tekmen, I; Ozyurt, D; Pekçetin, C; Buldan, Z

    2007-06-01

    Insulin-dependent diabetes mellitus (IDDM) is an organ-specific autoimmune disorder triggered by autoreactive T cells directed to pancreas beta-cell antigens. In this disorder, more than 90% of beta cells are destroyed. Cell death may be mediated via soluble or membrane-bound cell death ligands. One of these ligands may be tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), a member of the TNF-alpha superfamily. In the present study, we examined whether TRAIL had cytotoxic effects on adult rat pancreas beta cell cultures and INS1-E rat insulinoma cell line cultures or not. In this study, cell destruction models were built with TRAIL concentrations of 10, 100 and 1000 ng. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test was used for evaluating cell viability. It was detected that cell cultures with TRAIL added showed no differences statistically when compared with control cultures containing no toxic additions. These results showed that TRAIL did not have significant cytotoxic effects on pancreas beta cell culture and INS-1E rat insulinoma cell line cultures. Detection of the expression of TRAIL receptors and natural apoptosis inhibitor proteins will be favourable to investigate the resistance mechanisms to TRAIL-induced cell death in this cell culture system.

  9. Redox-mediated activation of latent transforming growth factor-beta 1

    NASA Technical Reports Server (NTRS)

    Barcellos-Hoff, M. H.; Dix, T. A.; Chatterjee, A. (Principal Investigator)

    1996-01-01

    Transforming growth factor beta 1 (TGF beta) is a multifunctional cytokine that orchestrates response to injury via ubiquitous cell surface receptors. The biological activity of TGF beta is restrained by its secretion as a latent complex (LTGF beta) such that activation determines the extent of TGF beta activity during physiological and pathological events. TGF beta action has been implicated in a variety of reactive oxygen-mediated tissue processes, particularly inflammation, and in pathologies such as reperfusion injury, rheumatoid arthritis, and atherosclerosis. It was recently shown to be rapidly activated after in vivo radiation exposure, which also generates reactive oxygen species (ROS). In the present studies, the potential for redox-mediated LTGF beta activation was investigated using a cell-free system in which ROS were generated in solution by ionizing radiation or metal ion-catalyzed ascorbate reaction. Irradiation (100 Gray) of recombinant human LTGF beta in solution induced 26% activation compared with that elicited by standard thermal activation. Metal-catalyzed ascorbate oxidation elicited extremely efficient recombinant LTGF beta activation that matched or exceeded thermal activation. The efficiency of ascorbate activation depended on ascorbate concentrations and the presence of transition metal ions. We postulate that oxidation of specific amino acids in the latency-conferring peptide leads to a conformation change in the latent complex that allows release of TGF beta. Oxidative activation offers a novel route for the involvement of TGF beta in tissue processes in which ROS are implicated and endows LTGF beta with the ability to act as a sensor of oxidative stress and, by releasing TGF beta, to function as a signal for orchestrating the response of multiple cell types. LTGF beta redox sensitivity is presumably directed toward recovery of homeostasis; however, oxidation may also be a mechanism of LTGF beta activation that can be deleterious during

  10. C/EBP beta regulation of the tumor necrosis factor alpha gene.

    PubMed Central

    Pope, R M; Leutz, A; Ness, S A

    1994-01-01

    Activated macrophages contribute to chronic inflammation by the secretion of cytokines and proteinases. Tumor necrosis factor alpha (TNF alpha) is particularly important in this process because of its ability to regulate other inflammatory mediators in an autocrine and paracrine fashion. The mechanism(s) responsible for the cell type-specific regulation of TNF alpha is not known. We present data to show that the expression of TNF alpha is regulated by the transcription factor C/EBP beta (NF-IL6). C/EBP beta activated the TNF alpha gene promoter in cotransfection assays and bound to it at a site which failed to bind the closely related protein C/EBP alpha. Finally, a dominant-negative version of C/EBP beta blocked TNF alpha promoter activation in myeloid cells. Our results implicate C/EBP beta as an important regulator of TNF alpha by myelomonocytic cells. Images PMID:7929820

  11. Unveiling the functional diversity of the Alpha-Beta hydrolase fold in plants

    PubMed Central

    Mindrebo, Jeffrey T.; Nartey, Charisse M.; Seto, Yoshiya; Burkart, Michael D.; Noel, Joseph P.

    2017-01-01

    The alpha/beta hydrolase (ABH) superfamily is a widespread and functionally malleable protein fold recognized for its diverse biochemical activities across all three domains of life. ABH enzymes possess unexpected catalytic activity in the green plant lineage through selective alterations in active site architecture and chemistry. Furthermore, the ABH fold serves as the core structure for phytohormone and ligand receptors in the gibberellin, strigolactone, and karrikin signaling pathways in plants. Despite recent discoveries, the ABH family is sparsely characterized in plants, a sessile kingdom known to evolve complex and specialized chemical adaptations as survival responses to widely varying biotic and abiotic ecologies. This review calls attention to the ABH superfamily in the plant kingdom to highlight the functional adaptability of the ABH fold. PMID:27662376

  12. Prognostic significance of ligands belonging to tumour necrosis factor superfamily in acute lymphoblastic leukaemia.

    PubMed

    Bolkun, L; Lemancewicz, D; Jablonska, E; Szumowska, A; Bolkun-Skornicka, U; Moniuszko, M; Dzieciol, J; Kloczko, J

    2015-03-01

    Altered activities of ligands belonging to tumour necrosis factor (TNF) superfamily, namely B-cell activating factor (BAFF), a proliferation-inducing ligand (APRIL) and apoptosis inducing ligand (TRAIL) were demonstrated in several haematological diseases including acute lymphoblastic leukaemia (ALL). BAFF, APRIL and TRAIL provide crucial survival signals to immature, naive and activated B cells. These ligands are capable of activating a broad spectrum of intracellular signalling cascades that can either induce apoptosis or protect from programmed cell death. BAFF and APRIL, which can directly activate the NF-κB pathway, have been identified as crucial survival factors for ALL cells. Here, we have analyzed serum BAFF, APRIL and TRAIL concentrations in 48 patients with newly diagnosed ALL and 44 healthy volunteers. The levels of APRIL and BAFF were significantly higher in ALL patients as compared to healthy volunteers. In contrast, concentrations of TRAIL were significantly lower in ALL patients. Moreover, following induction, the levels of APRIL, but not BAFF or TRAIL, were significantly lower in a group of patients with complete remission (CR) as compared to non-respondent (NR) ALL patients. Furthermore, we demonstrated statistically significant differences in concentrations of APRIL between CR MRD-negative and CR, MRD-positive ALL patients. Notably detection of higher concentrations of APRIL was associated with shorter leukaemia-free survival and overall survival. Altogether, our data indicate that APRIL can play an important role in the pathogenesis of ALL and the measurement of APRIL levels can improve prognostication in ALL patients. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Delta-catenin/NPRAP: A new member of the glycogen synthase kinase-3beta signaling complex that promotes beta-catenin turnover in neurons.

    PubMed

    Bareiss, Sonja; Kim, Kwonseop; Lu, Qun

    2010-08-15

    Through a multiprotein complex, glycogen synthase kinase-3beta (GSK-3beta) phosphorylates and destabilizes beta-catenin, an important signaling event for neuronal growth and proper synaptic function. delta-Catenin, or NPRAP (CTNND2), is a neural enriched member of the beta-catenin superfamily and is also known to modulate neurite outgrowth and synaptic activity. In this study, we investigated the possibility that delta-catenin expression is also affected by GSK-3beta signaling and participates in the molecular complex regulating beta-catenin turnover in neurons. Immunofluorescent light microscopy revealed colocalization of delta-catenin with members of the molecular destruction complex: GSK-3beta, beta-catenin, and adenomatous polyposis coli proteins in rat primary neurons. GSK-3beta formed a complex with delta-catenin, and its inhibition resulted in increased delta-catenin and beta-catenin expression levels. LY294002 and amyloid peptide, known activators of GSK-3beta signaling, reduced delta-catenin expression levels. Furthermore, delta-catenin immunoreactivity increased and protein turnover decreased when neurons were treated with proteasome inhibitors, suggesting that the stability of delta-catenin, like that of beta-catenin, is regulated by proteasome-mediated degradation. Coimmunoprecipitation experiments showed that delta-catenin overexpression promoted GSK-3beta and beta-catenin interactions. Primary cortical neurons and PC12 cells expressing delta-catenin treated with proteasome inhibitors showed increased ubiquitinated beta-catenin forms. Consistent with the hypothesis that delta-catenin promotes the interaction of the destruction complex molecules, cycloheximide treatment of cells overexpressing delta-catenin showed enhanced beta-catenin turnover. These studies identify delta-catenin as a new member of the GSK-3beta signaling pathway and further suggest that delta-catenin is potentially involved in facilitating the interaction, ubiquitination, and

  14. Evolution of enzymatic activity in the enolase superfamily: structural and mutagenic studies of the mechanism of the reaction catalyzed by o-succinylbenzoate synthase from Escherichia coli.

    PubMed

    Klenchin, Vadim A; Taylor Ringia, Erika A; Gerlt, John A; Rayment, Ivan

    2003-12-16

    o-Succinylbenzoate synthase (OSBS) from Escherichia coli, a member of the enolase superfamily, catalyzes an exergonic dehydration reaction in the menaquinone biosynthetic pathway in which 2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate (SHCHC) is converted to 4-(2'-carboxyphenyl)-4-oxobutyrate (o-succinylbenzoate or OSB). Our previous structural studies of the Mg(2+).OSB complex established that OSBS is a member of the muconate lactonizing enzyme subgroup of the superfamily: the essential Mg(2+) is coordinated to carboxylate ligands at the ends of the third, fourth, and fifth beta-strands of the (beta/alpha)(7)beta-barrel catalytic domain, and the OSB product is located between the Lys 133 at the end of the second beta-strand and the Lys 235 at the end of the sixth beta-strand [Thompson, T. B., Garrett, J. B., Taylor, E. A, Meganathan, R., Gerlt, J. A., and Rayment, I. (2000) Biochemistry 39, 10662-76]. Both Lys 133 and Lys 235 were separately replaced with Ala, Ser, and Arg residues; all six mutants displayed no detectable catalytic activity. The structure of the Mg(2+).SHCHC complex of the K133R mutant has been solved at 1.62 A resolution by molecular replacement starting from the structure of the Mg(2+).OSB complex. This establishes the absolute configuration of SHCHC: the C1-carboxylate and the C6-OH leaving group are in a trans orientation, requiring that the dehydration proceed via a syn stereochemical course. The side chain of Arg 133 is pointed out of the active site so that it cannot function as a general base, whereas in the wild-type enzyme complexed with Mg(2+).OSB, the side chain of Lys 133 is appropriately positioned to function as the only acid/base catalyst in the syn dehydration. The epsilon-ammonium group of Lys 235 forms a cation-pi interaction with the cyclohexadienyl moiety of SHCHC, suggesting that Lys 235 also stabilizes the enediolate anion intermediate in the syn dehydration via a similar interaction.

  15. Induction of myofibroblastic differentiation in vitro by covalently immobilized transforming growth factor-beta(1).

    PubMed

    Metzger, Wolfgang; Grenner, Nadine; Motsch, Sandra E; Strehlow, Rothin; Pohlemann, Tim; Oberringer, Martin

    2007-11-01

    Growth factors are an important tool in tissue engineering. Bone morphogenetic protein-2 and transforming growth factor-beta(1) (TGF-beta(1)) are used to provide bioactivity to surgical implants and tissue substitute materials. Mostly growth factors are used in soluble or adsorbed form. However, simple adsorption of proteins to surfaces is always accompanied by reduced stability and undefined pharmacokinetics. This study aims to prove that TGF-beta(1) can be covalently immobilized to functionalized surfaces, maintaining its ability to induce myofibroblastic differentiation of normal human dermal fibroblasts. In vivo, fibroblasts differentiate to myofibroblasts (MFs) during soft tissue healing by the action of TGF-beta(1). As surfaces for our experiments, we used slides bearing aldehyde, epoxy, or amino groups. For our in vitro cell culture experiments, we used the expression of alpha-smooth muscle actin as a marker for MFs after immunochemical staining. Using the aldehyde and the epoxy slides, we were able to demonstrate the activity of immobilized TGF-beta(1) through a significant increase in MF differentiation rate. A simple immunological test was established to detect TGF-beta(1) on the surfaces. This technology enables the creation of molecular "landscapes" consisting of several factors arranged in a distinct spatial pattern and immobilized on appropriate surfaces.

  16. Structure and Function of PA4872 from Pseudomonas aeruginosa, a Novel Class of Oxaloacetate Decarboxylase from the PEP Mutase/Isocitrate Lyase Superfamily

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narayanan, Buvaneswari C.; Niu, Weiling; Han, Ying

    2008-06-30

    Pseudomonas aeruginosa PA4872 was identified by sequence analysis as a structurally and functionally novel member of the PEP mutase/isocitrate lyase superfamily and therefore targeted for investigation. Substrate screens ruled out overlap with known catalytic functions of superfamily members. The crystal structure of PA4872 in complex with oxalate (a stable analogue of the shared family R-oxyanion carboxylate intermediate/transition state) and Mg{sup 2+} was determined at 1.9 {angstrom} resolution. As with other PEP mutase/isocitrate lyase superfamily members, the protein assembles into a dimer of dimers with each subunit adopting an {alpha}/{beta} barrel fold and two subunits swapping their barrel's C-terminal {alpha}-helices. Mg2+more » and oxalate bind in the same manner as observed with other superfamily members. The active site gating loop, known to play a catalytic role in the PEP mutase and lyase branches of the superfamily, adopts an open conformation. The N{sup {epsilon}} of His235, an invariant residue in the PA4872 sequence family, is oriented toward a C(2) oxygen of oxalate analogous to the C(3) of a pyruvyl moiety. Deuterium exchange into {alpha}-oxocarboxylate-containing compounds was confirmed by {sup 1}H NMR spectroscopy. Having ruled out known activities, the involvement of a pyruvate enolate intermediate suggested a decarboxylase activity of an {alpha}-oxocarboxylate substrate. Enzymatic assays led to the discovery that PA4872 decarboxylates oxaloacetate (k{sub cat}) = 7500 s{sup -1} and K{sub m} = 2.2 mM) and 3-methyloxaloacetate (k{sub cat}) = 250 s{sup -1} and K{sub m} = 0.63 mM). Genome context of the fourteen sequence family members indicates that the enzyme is used by select group of Gram-negative bacteria to maintain cellular concentrations of bicarbonate and pyruvate; however the decarboxylation activity cannot be attributed to a pathway common to the various bacterial species.« less

  17. Loss of c-myc repression coincides with ovarian cancer resistance to transforming growth factor beta growth arrest independent of transforming growth factor beta/Smad signaling.

    PubMed

    Baldwin, Rae Lynn; Tran, Hang; Karlan, Beth Y

    2003-03-15

    Many epithelial carcinomas, including ovarian, are refractory to the antiproliferative effects of transforming growth factor (TGF) beta. In some cancers, TGF-beta resistance has been linked to TGF-beta receptor II (TbetaR-II) and Smad4 mutations; however, in ovarian cancer, the mechanism of resistance remains unclear. Primary ovarian epithelial cell cultures were used as a model system to determine the mechanisms of TGF-beta resistance. To simulate in vivo responses to TGF-beta, primary cultures derived from normal human ovarian surface epithelium (HOSE) and from ovarian carcinomas (CSOC) were grown on collagen I gel, the predominant matrix molecule in the ovarian tumor milieu. When treated with 5 ng/ml TGF-beta for 72 h, HOSE (n = 11) proliferation was inhibited by 20 +/- 21% on average. In contrast, CSOC (n = 10) proliferation was stimulated 5 +/- 10% in response to TGF-beta (a statistically significant difference in response when compared with HOSE; P = 0.001). To dissect the TGF-beta/Smad signaling pathway we used a quantitative RNase protection assay (RPA) for measuring mRNA levels of TGF-beta pathway components in 20 HOSE and 20 CSOC cultures. Basal mRNA levels of TGF-beta receptors I and II, downstream signaling components Smad2, 3, 4, 6, 7, and the transcriptional corepressors Ski and SnoN did not show a statistically significant difference between HOSE and CSOC, and cannot explain their differential susceptibility to TGF-beta-induced cell cycle arrest. To assess functional differences of the TGF-beta pathway in TGF-beta-sensitive HOSE and TGF-beta-resistant CSOC, we measured Smad2/4 and 3/4 complex induction after TGF-beta treatment. HOSE and CSOC showed equivalent Smad2/4 and 3/4 complex induction after TGF-beta exposure for 0, 0.5, 2, and 4 h. It has been proposed that SnoN and Ski are corepressors of the TGF-beta/Smad pathway and undergo TGF-beta-induced degradation followed by reinduction of SnoN mRNA. However, our data show equivalent SnoN degradation

  18. Regulation of pancreatic islet beta-cell mass by growth factor and hormone signaling.

    PubMed

    Huang, Yao; Chang, Yongchang

    2014-01-01

    Dysfunction and destruction of pancreatic islet beta cells is a hallmark of diabetes. Better understanding of cellular signals in beta cells will allow development of therapeutic strategies for diabetes, such as preservation and expansion of beta-cell mass and improvement of beta-cell function. During the past several decades, the number of studies analyzing the molecular mechanisms, including growth factor/hormone signaling pathways that impact islet beta-cell mass and function, has increased exponentially. Notably, somatolactogenic hormones including growth hormone (GH), prolactin (PRL), and insulin-like growth factor-1 (IGF-1) and their receptors (GHR, PRLR, and IGF-1R) are critically involved in beta-cell growth, survival, differentiation, and insulin secretion. In this chapter, we focus more narrowly on GH, PRL, and IGF-1 signaling, and GH-IGF-1 cross talk. We also discuss how these signaling aspects contribute to the regulation of beta-cell proliferation and apoptosis. In particular, our novel findings of GH-induced formation of GHR-JAK2-IGF-1R protein complex and synergistic effects of GH and IGF-1 on beta-cell signaling, proliferation, and antiapoptosis lead to a new concept that IGF-1R may serve as a proximal component of GH/GHR signaling. © 2014 Elsevier Inc. All rights reserved.

  19. Is beta-thalassemia trait a protective factor against ischemic cerebrovascular accidents?

    PubMed

    Karimi, Mehran; Borhani Haghighi, Afshin; Yazdani, Maryam; Raisi, Hamideh; Giti, Rahil; Namazee, Mohammad Reza

    2008-01-01

    In this research, we sought to determine the association between beta-thalassemia trait and ischemic cerebrovascular accident (CVA). In acase-control study, 148 patients with thromboembolic cerebrovascular events were evaluated for the presence of hypertension, diabetes mellitus, hyperlipidemia, and beta-thalassemia trait. A total of 156 age- and sex-matched patients with no cardiac or cerebrovascular diseases, serving as the control group, were also investigated for the above-mentioned risk factors. We found that 6.1% of patients with ischemic CVA and 12.2% of the control group had beta-thalassemia trait (P = .066). In male patients, the negative association between ischemic CVA and presence of beta-thalassemia trait was significant (P = .008). In patients, the prevalence of hypertension was also significantly different between those with and without beta-thalassemia trait (P = .01); those with beta-thalassemia trait had a lower mean blood pressure than those without the trait. beta-Thalassemia trait may have a protective effect against ischemic CVA that might be caused by the lower arterial blood pressure observed in those with this trait.

  20. Functions of the poly(ADP-ribose) polymerase superfamily in plants.

    PubMed

    Lamb, Rebecca S; Citarelli, Matteo; Teotia, Sachin

    2012-01-01

    Poly(ADP-ribosyl)ation is the covalent attachment of ADP-ribose subunits from NAD(+) to target proteins and was first described in plants in the 1970s. This post-translational modification is mediated by poly(ADP-ribose) polymerases (PARPs) and removed by poly(ADP-ribose) glycohydrolases (PARGs). PARPs have important functions in many biological processes including DNA repair, epigenetic regulation and transcription. However, these roles are not always associated with enzymatic activity. The PARP superfamily has been well studied in animals, but remains under-investigated in plants. Although plants lack the variety of PARP superfamily members found in mammals, they do encode three different types of PARP superfamily proteins, including a group of PARP-like proteins, the SRO family, that are plant specific. In plants, members of the PARP family and/or poly(ADP-ribosyl)ation have been linked to DNA repair, mitosis, innate immunity and stress responses. In addition, members of the SRO family have been shown to be necessary for normal sporophytic development. In this review, we summarize the current state of plant research into poly(ADP-ribosyl)ation and the PARP superfamily in plants.

  1. Determination of correction factors in beta radiation beams using Monte Carlo method.

    PubMed

    Polo, Ivón Oramas; Santos, William de Souza; Caldas, Linda V E

    2018-06-15

    The absorbed dose rate is the main characterization quantity for beta radiation. The extrapolation chamber is considered the primary standard instrument. To determine absorbed dose rates in beta radiation beams, it is necessary to establish several correction factors. In this work, the correction factors for the backscatter due to the collecting electrode and to the guard ring, and the correction factor for Bremsstrahlung in beta secondary standard radiation beams are presented. For this purpose, the Monte Carlo method was applied. The results obtained are considered acceptable, and they agree within the uncertainties. The differences between the backscatter factors determined by the Monte Carlo method and those of the ISO standard were 0.6%, 0.9% and 2.04% for 90 Sr/ 90 Y, 85 Kr and 147 Pm sources respectively. The differences between the Bremsstrahlung factors determined by the Monte Carlo method and those of the ISO were 0.25%, 0.6% and 1% for 90 Sr/ 90 Y, 85 Kr and 147 Pm sources respectively. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Mediation of wound-related Rous sarcoma virus tumorigenesis by TFG (transforming growth factor)-. beta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sieweke, M.H.; Bissell, M.J.; Thompson, N.L.

    1990-06-29

    In Rous sarcoma virus (RSV)-infected chickens, wounding leads to tumor formation with nearly 100% frequency in tissues that would otherwise remain tumor-free. Identifying molecular mediators of this phenomenon should yield important clues to the mechanisms involved in RSV tumorigenesis. Immunohistochemical staining showed that TGF-{beta} is present locally shortly after wounding, but not in unwounded controls. In addition, subcutaneous administration of recombinant transforming growth factor {beta}1 (TGF-{beta}1) could substitute completely for wounding in tumor induction. A treatment protocol of four doses of 800 nanograms of TGF-{beta} resulted in v-src-expressing tumors with 100% frequency; four doses of only 10 nanograms still ledmore » to tumor formation in 80% of the animals. This effect was specific, as other growth factors with suggested roles in would healing did not elicit the same response. Epidermal growth factor (EGF) or TGF-{alpha} had no effect, and platelet-derived growth factor (PDGF) or insulin-like growth factor-1 (IGF-1) yielded only occasional tumors after longer latency. TGF-{beta} release during the would-healing response may thus be a critical event that creates a conducive environment for RSV tumorigenesis and may act as a cofactor for transformation in this system. 31 refs., 3 figs., 2 tabs.« less

  3. Characterization of the intronic portion of cadherin superfamily members, common cancer orchestrators

    PubMed Central

    Oliveira, Patrícia; Sanges, Remo; Huntsman, David; Stupka, Elia; Oliveira, Carla

    2012-01-01

    Cadherins are cell–cell adhesion proteins essential for the maintenance of tissue architecture and integrity, and their impairment is often associated with human cancer. Knowledge regarding regulatory mechanisms associated with cadherin misexpression in cancer is scarce. Specific features of the intronic-structure and intronic-based regulatory mechanisms in the cadherin superfamily are unidentified. This study aims at systematically characterizing the intronic portion of cadherin superfamily members and the identification of intronic regions constituting putative targets/triggers of regulation, using a bioinformatic approach and biological data mining. Our study demonstrates that the cadherin superfamily genes harbour specific characteristics in comparison to all non-cadherin genes, both from the genomic and transcriptional standpoints. Cadherin superfamily genes display higher average total intron number and significantly longer introns than other genes and across the entire vertebrate lineage. Moreover, in the human genome, we observed an uncommon high frequency of MIR (mammalian-wide interspersed repeats) and MaLR (mammalian-wide interspersed repeats, a subtype of LTR) regulatory-associated repetitive elements at 5′-located introns, concomitantly with increased de novo intronic transcription. Using this approach, we identified cadherin intronic-specific sites that may constitute novel targets/triggers of cadherin superfamily expression regulation. These findings pinpoint the need to identify mechanisms affecting particularly MIR and MaLR elements located in introns 2 and 3 of human cadherin genes, possibly important in the expression modulation of this superfamily in homeostasis and cancer. PMID:22317972

  4. Role of Conserved Glycine in Zinc-dependent Medium Chain Dehydrogenase/Reductase Superfamily*

    PubMed Central

    Tiwari, Manish Kumar; Singh, Raushan Kumar; Singh, Ranjitha; Jeya, Marimuthu; Zhao, Huimin; Lee, Jung-Kul

    2012-01-01

    The medium-chain dehydrogenase/reductase (MDR) superfamily consists of a large group of enzymes with a broad range of activities. Members of this superfamily are currently the subject of intensive investigation, but many aspects, including the zinc dependence of MDR superfamily proteins, have not yet have been adequately investigated. Using a density functional theory-based screening strategy, we have identified a strictly conserved glycine residue (Gly) in the zinc-dependent MDR superfamily. To elucidate the role of this conserved Gly in MDR, we carried out a comprehensive structural, functional, and computational analysis of four MDR enzymes through a series of studies including site-directed mutagenesis, isothermal titration calorimetry, electron paramagnetic resonance (EPR), quantum mechanics, and molecular mechanics analysis. Gly substitution by other amino acids posed a significant threat to the metal binding affinity and activity of MDR superfamily enzymes. Mutagenesis at the conserved Gly resulted in alterations in the coordination of the catalytic zinc ion, with concomitant changes in metal-ligand bond length, bond angle, and the affinity (Kd) toward the zinc ion. The Gly mutants also showed different spectroscopic properties in EPR compared with those of the wild type, indicating that the binding geometries of the zinc to the zinc binding ligands were changed by the mutation. The present results demonstrate that the conserved Gly in the GHE motif plays a role in maintaining the metal binding affinity and the electronic state of the catalytic zinc ion during catalysis of the MDR superfamily enzymes. PMID:22500022

  5. Molecular biology of the 3beta-hydroxysteroid dehydrogenase/delta5-delta4 isomerase gene family.

    PubMed

    Simard, Jacques; Ricketts, Marie-Louise; Gingras, Sébastien; Soucy, Penny; Feltus, F Alex; Melner, Michael H

    2005-06-01

    The 3beta-hydroxysteroid dehydrogenase/Delta(5)-Delta(4) isomerase (3beta-HSD) isoenzymes are responsible for the oxidation and isomerization of Delta(5)-3beta-hydroxysteroid precursors into Delta(4)-ketosteroids, thus catalyzing an essential step in the formation of all classes of active steroid hormones. In humans, expression of the type I isoenzyme accounts for the 3beta-HSD activity found in placenta and peripheral tissues, whereas the type II 3beta-HSD isoenzyme is predominantly expressed in the adrenal gland, ovary, and testis, and its deficiency is responsible for a rare form of congenital adrenal hyperplasia. Phylogeny analyses of the 3beta-HSD gene family strongly suggest that the need for different 3beta-HSD genes occurred very late in mammals, with subsequent evolution in a similar manner in other lineages. Therefore, to a large extent, the 3beta-HSD gene family should have evolved to facilitate differential patterns of tissue- and cell-specific expression and regulation involving multiple signal transduction pathways, which are activated by several growth factors, steroids, and cytokines. Recent studies indicate that HSD3B2 gene regulation involves the orphan nuclear receptors steroidogenic factor-1 and dosage-sensitive sex reversal adrenal hypoplasia congenita critical region on the X chromosome gene 1 (DAX-1). Other findings suggest a potential regulatory role for STAT5 and STAT6 in transcriptional activation of HSD3B2 promoter. It was shown that epidermal growth factor (EGF) requires intact STAT5; on the other hand IL-4 induces HSD3B1 gene expression, along with IL-13, through STAT 6 activation. However, evidence suggests that multiple signal transduction pathways are involved in IL-4 mediated HSD3B1 gene expression. Indeed, a better understanding of the transcriptional factors responsible for the fine control of 3beta-HSD gene expression may provide insight into mechanisms involved in the functional cooperation between STATs and nuclear receptors as

  6. Phylogenomic evolutionary surveys of subtilase superfamily genes in fungi.

    PubMed

    Li, Juan; Gu, Fei; Wu, Runian; Yang, JinKui; Zhang, Ke-Qin

    2017-03-30

    Subtilases belong to a superfamily of serine proteases which are ubiquitous in fungi and are suspected to have developed distinct functional properties to help fungi adapt to different ecological niches. In this study, we conducted a large-scale phylogenomic survey of subtilase protease genes in 83 whole genome sequenced fungal species in order to identify the evolutionary patterns and subsequent functional divergences of different subtilase families among the main lineages of the fungal kingdom. Our comparative genomic analyses of the subtilase superfamily indicated that extensive gene duplications, losses and functional diversifications have occurred in fungi, and that the four families of subtilase enzymes in fungi, including proteinase K-like, Pyrolisin, kexin and S53, have distinct evolutionary histories which may have facilitated the adaptation of fungi to a broad array of life strategies. Our study provides new insights into the evolution of the subtilase superfamily in fungi and expands our understanding of the evolution of fungi with different lifestyles.

  7. Large-Scale Analysis Exploring Evolution of Catalytic Machineries and Mechanisms in Enzyme Superfamilies.

    PubMed

    Furnham, Nicholas; Dawson, Natalie L; Rahman, Syed A; Thornton, Janet M; Orengo, Christine A

    2016-01-29

    Enzymes, as biological catalysts, form the basis of all forms of life. How these proteins have evolved their functions remains a fundamental question in biology. Over 100 years of detailed biochemistry studies, combined with the large volumes of sequence and protein structural data now available, means that we are able to perform large-scale analyses to address this question. Using a range of computational tools and resources, we have compiled information on all experimentally annotated changes in enzyme function within 379 structurally defined protein domain superfamilies, linking the changes observed in functions during evolution to changes in reaction chemistry. Many superfamilies show changes in function at some level, although one function often dominates one superfamily. We use quantitative measures of changes in reaction chemistry to reveal the various types of chemical changes occurring during evolution and to exemplify these by detailed examples. Additionally, we use structural information of the enzymes active site to examine how different superfamilies have changed their catalytic machinery during evolution. Some superfamilies have changed the reactions they perform without changing catalytic machinery. In others, large changes of enzyme function, in terms of both overall chemistry and substrate specificity, have been brought about by significant changes in catalytic machinery. Interestingly, in some superfamilies, relatives perform similar functions but with different catalytic machineries. This analysis highlights characteristics of functional evolution across a wide range of superfamilies, providing insights that will be useful in predicting the function of uncharacterised sequences and the design of new synthetic enzymes. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Transforming growth factor-beta and nitrates in epithelial ovarian cancer.

    PubMed

    Khalifa, A; Kassim, S K; Ahmed, M I; Fayed, S T

    1999-12-01

    The role of transforming growth factor-beta (TGF-beta) and nitric oxide (NO) in ovarian neoplasia is still not clear. We studied the expression of TGF-beta by enzyme immunoassay, and nitrates (as a stable end product of NO) in 127 ovarian tissues (36 normal, 37 benign, and 54 malignant). Ploidy status and synthetic phase fraction (SPF) were also assessed by flow cytometry. Mean ranks of TGF-beta, nitrate, and SPF were significant among different groups (X2 = 12.01, P = 0.0025, X2 = 67.42, P = 0.000, X2 = 9.06, P = 0.011 respectively). Nitrate mean ranks were significant among different FIGO stages of the disease (X2 = 17.6, P = 0.000). A significant correlation was shown between TGF-beta, and nitrate levels in all tissues (r = 0.24, P = 0.01), as well as in malignant tissues (r = 0.3, P = 0.026). Cutoff values were determined for both TGF-beta (290 pg/mg protein), and nitrates (310 nmole/mg non protein nitrogenous substances). At these cut-offs, nitrates showed a sensitivity of 93% and 84% specificity for malignant versus normal cases, while TGF-beta had 76% sensitivity, and 82.4% specificity for poor versus good outcome. Patients with epithelial ovarian cancer were followed up for a total of 40 months. Survival analysis showed that patients with TGF-beta above the cut-off had worse prognosis (X2 = 12.69, P = 0.004). The present results suggest that malignant transformation of ovarian tissues is associated with increased TGF-beta and NO production. NO level is related to the development and progression of epithelial ovarian cancer, while high levels of TGF-beta could be of prognostic significance.

  9. P-type ATPase superfamily: evidence for critical roles for kingdom evolution.

    PubMed

    Okamura, Hideyuki; Denawa, Masatsugu; Ohniwa, Ryosuke; Takeyasu, Kunio

    2003-04-01

    The P-type ATPase has become a protein superfamily. On the basis of sequence similarities, the phylogenetic analyses, and substrate specificities, this superfamily can be classified into 5 families and 11 subfamilies. A comparative phylogenetic analysis demonstrates the relationship between the molecular evolution of these subfamilies and the establishment of the kingdoms of living things.

  10. PASS2: an automated database of protein alignments organised as structural superfamilies.

    PubMed

    Bhaduri, Anirban; Pugalenthi, Ganesan; Sowdhamini, Ramanathan

    2004-04-02

    The functional selection and three-dimensional structural constraints of proteins in nature often relates to the retention of significant sequence similarity between proteins of similar fold and function despite poor sequence identity. Organization of structure-based sequence alignments for distantly related proteins, provides a map of the conserved and critical regions of the protein universe that is useful for the analysis of folding principles, for the evolutionary unification of protein families and for maximizing the information return from experimental structure determination. The Protein Alignment organised as Structural Superfamily (PASS2) database represents continuously updated, structural alignments for evolutionary related, sequentially distant proteins. An automated and updated version of PASS2 is, in direct correspondence with SCOP 1.63, consisting of sequences having identity below 40% among themselves. Protein domains have been grouped into 628 multi-member superfamilies and 566 single member superfamilies. Structure-based sequence alignments for the superfamilies have been obtained using COMPARER, while initial equivalencies have been derived from a preliminary superposition using LSQMAN or STAMP 4.0. The final sequence alignments have been annotated for structural features using JOY4.0. The database is supplemented with sequence relatives belonging to different genomes, conserved spatially interacting and structural motifs, probabilistic hidden markov models of superfamilies based on the alignments and useful links to other databases. Probabilistic models and sensitive position specific profiles obtained from reliable superfamily alignments aid annotation of remote homologues and are useful tools in structural and functional genomics. PASS2 presents the phylogeny of its members both based on sequence and structural dissimilarities. Clustering of members allows us to understand diversification of the family members. The search engine has been

  11. Immunocytochemical localization of latent transforming growth factor-beta1 activation by stimulated macrophages

    NASA Technical Reports Server (NTRS)

    Chong, H.; Vodovotz, Y.; Cox, G. W.; Barcellos-Hoff, M. H.; Chatterjee, A. (Principal Investigator)

    1999-01-01

    Transforming growth factor-beta1 (TGF-beta) is secreted in a latent form consisting of mature TGF-beta noncovalently associated with its amino-terminal propeptide, which is called latency associated peptide (LAP). Biological activity depends upon the release of TGF-beta from the latent complex following extracellular activation, which appears to be the key regulatory mechanism controlling TGF-beta action. We have identified two events associated with latent TGF-beta (LTGF-beta) activation in vivo: increased immunoreactivity of certain antibodies that specifically detect TGF-beta concomitant with decreased immunoreactivity of antibodies to LAP. Macrophages stimulated in vitro with interferon-gamma and lipopolysaccharide reportedly activate LTGF-beta via cell membrane-bound protease activity. We show through dual immunostaining of paraformaldehyde-fixed macrophages that such physiological TGF-beta activation is accompanied by a loss of LAP immunoreactivity with concomitant revelation of TGF-beta epitopes. The induction of TGF-beta immunoreactivity colocalized with immunoreactive betaglycan/RIII in activated macrophages, suggesting that LTGF-beta activation occurs on the cell surface. Confocal microscopy of metabolically active macrophages incubated with antibodies to TGF-beta and betaglycan/RIII prior to fixation supported the localization of activation to the cell surface. The ability to specifically detect and localize LTGF-beta activation provides an important tool for studies of its regulation.

  12. Beyond TNF: TNF superfamily cytokines as targets for the treatment of rheumatic diseases.

    PubMed

    Croft, Michael; Siegel, Richard M

    2017-04-01

    TNF blockers are highly efficacious at dampening inflammation and reducing symptoms in rheumatic diseases such as rheumatoid arthritis, psoriatic arthritis and ankylosing spondylitis, and also in nonrheumatic syndromes such as inflammatory bowel disease. As TNF belongs to a superfamily of 19 structurally related proteins that have both proinflammatory and anti-inflammatory activity, reagents that disrupt the interaction between proinflammatory TNF family cytokines and their receptors, or agonize the anti-inflammatory receptors, are being considered for the treatment of rheumatic diseases. Biologic agents that block B cell activating factor (BAFF) and receptor activator of nuclear factor-κB ligand (RANKL) have been approved for the treatment of systemic lupus erythematosus and osteoporosis, respectively. In this Review, we focus on additional members of the TNF superfamily that could be relevant for the pathogenesis of rheumatic disease, including those that can strongly promote activity of immune cells or increase activity of tissue cells, as well as those that promote death pathways and might limit inflammation. We examine preclinical mouse and human data linking these molecules to the control of damage in the joints, muscle, bone or other tissues, and discuss their potential as targets for future therapy of rheumatic diseases.

  13. Asporin and transforming growth factor-beta gene expression in osteoblasts from subchondral bone and osteophytes in osteoarthritis.

    PubMed

    Sakao, Kei; Takahashi, Kenji A; Arai, Yuji; Saito, Masazumi; Honjyo, Kuniaki; Hiraoka, Nobuyuki; Kishida, Tsunao; Mazda, Osam; Imanishi, Jiro; Kubo, Toshikazu

    2009-11-01

    To clarify the significance of subchondral bone and osteophytes in the pathology of osteoarthritis (OA), we investigated the expression of asporin (ASPN), transforming growth factor-beta1 (TGF-beta1), TGF-beta2, TGF-beta3, and runt-related transcription factor-2 (Runx2) genes involved in bone metabolism. Osteoblasts were isolated from 19 patients diagnosed with knee OA and from 4 patients diagnosed with femoral neck fracture. Osteoblast expression of mRNA encoding ASPN, TGF-beta1, TGF-beta2, TGF-beta3, and Runx2 was analyzed using real-time RT-PCR. Expression of ASPN, TGF-beta1, and TGF-beta3 mRNA in the subchondral bone and osteophytes of OA patients increased compared with that of non-OA patients. The ratio of ASPN to TGF-beta1 mRNA in patients with severe cartilage damage was higher than that in patients with mild cartilage damage. The increased ratio of ASPN mRNA to TGF-beta1 mRNA in patients with severe relative to mild cartilage damage indicates that increased ASPN mRNA expression was significantly associated with the severity of cartilage degeneration. This finding suggests that ASPN may regulate TGF-beta1-mediated factors in the development of OA, which may provide clues as to the underlying pathology of OA.

  14. Connective tissue growth factor/CCN2-null mouse embryonic fibroblasts retain intact transforming growth factor-{beta} responsiveness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mori, Yasuji; Hinchcliff, Monique; Wu, Minghua

    2008-03-10

    Background: The matricellular protein connective tissue growth factor (CCN2) has been implicated in pathological fibrosis, but its physiologic role remains elusive. In vitro, transforming growth factor-{beta} (TGF-{beta}) induces CCN2 expression in mesenchymal cells. Because CCN2 can enhance profibrotic responses elicited by TGF-{beta}, it has been proposed that CCN2 functions as an essential downstream signaling mediator for TGF-{beta}. To explore this notion, we characterized TGF-{beta}-induced activation of fibroblasts from CCN2-null (CCN2{sup -/-}) mouse embryos. Methods: The regulation of CCN2 expression was examined in vivo in a model of fibrosis induced by bleomycin. Cellular TGF-{beta} signal transduction and regulation of collagen genemore » expression were examined in CCN2{sup -/-} MEFs by immunohistochemistry, Northern, Western and RT-PCR analysis, immunocytochemistry and transient transfection assays. Results: Bleomycin-induced skin fibrosis in the mouse was associated with substantial CCN2 up-regulation in lesional fibroblasts. Whereas in vitro proliferation rate of CCN2{sup -/-} MEFs was markedly reduced compared to wild type MEFs, TGF-{beta}-induced activation of the Smad pathways, including Smad2 phosphorylation, Smad2/3 and Smad4 nuclear accumulation and Smad-dependent transcriptional responses, were unaffected by loss of CCN2. The stimulation of COL1A2 and fibronectin mRNA expression and promoter activity, and of corresponding protein levels, showed comparable time and dose-response in wild type and CCN2{sup -/-} MEFs, whereas stimulation of alpha smooth muscle actin and myofibroblast transdifferentiation showed subtle impairment in MEFs lacking CCN2. Conclusion: Whereas endogenous CCN2 plays a role in regulation of proliferation and TGF-{beta}-induced myofibroblast transdifferentiation, it appears to be dispensable for Smad-dependent stimulation of collagen and extracellular matrix synthesis in murine embryonic fibroblasts.« less

  15. Low dose radiation interactions with the transformation growth factor (TFG)-beta pathway

    NASA Astrophysics Data System (ADS)

    Maslowski, Amy Jesse

    A major limiting factor for long-term, deep-space missions is the radiation dose to astronauts. Because the dose to the astronauts is a mixed field of low- and high-LET radiation, there is a need to understand the effects of both radiation types on whole tissue; however, there are limited published data on the effects of high-LET (linear-energy-transfer) radiation on tissue. Thus, we designed a perfusion chamber system for rat trachea in order to mimic in vivo respiratory tissue. We successfully maintained the perfused tracheal tissue ex vivo in a healthy and viable condition for up to three days. In addition, this project studied the effects of high-LET Fe particles on the overall transformation growth factor (TGF)-beta response after TGF-beta inactivation and compared the results to the TGF-beta response post x-ray irradiation. It was found that a TGF-beta response could be measured in the perfused tracheal tissue, for x-ray and Fe particle irradiations, despite the high autofluorescent background intrinsic to tissue. However, after comparing the TGF-beta response of x-ray irradiation to High-Z-High-energy (HZE) irradiation, there was not a significant difference in radiation types. The TGF-beta response in x-ray and HZE irradiated perfusion chambers was also measured over time post irradiation. It was found that for 6 hour and 8 hour post irradiation, the TGF-beta response was higher for lower doses of radiation than for higher doses. This is in contrast to the 0 hour fixation which found the TGF-beta response to increase with increased dose. The inverse relationship found for 6 hour and 8 hour fixation times may indicate a threshold response for TGF-beta response; i.e., for low doses, a threshold of dose must be reached for an immediate TGF-beta response, otherwise the tissue responds more slowly to the irradiation damage. This result was unexpected and will require further investigation to determine if the threshold can be determined for the 250 kVp x-rays and

  16. Ancient expansion of the ribonuclease A superfamily revealed by genomic analysis of placental and marsupial mammals.

    PubMed

    Cho, Soochin; Zhang, Jianzhi

    2006-05-24

    Members of the ribonuclease (RNase) A superfamily participate in a diverse array of biological processes, including digestion, angiogenesis, innate immunity, and possibly male reproduction. The superfamily is vertebrate-specific, with 13-20 highly divergent members in primates and rodents, but only a few members in chicken and fish. This has led to the proposal that the superfamily started off from a progenitor with structural similarities to angiogenin and that the superfamily underwent a dramatic expansion during mammalian evolution. To date this evolutionary expansion and understand the functional diversification of the superfamily, we here determine its entire repertoire in the sequenced genomes of dog, cow, and opossum. We identified 7, 20, and 21 putatively functional RNase genes from these three species, respectively. Many of the identified genes are highly divergent from all previously known RNase genes, thus representing new lineages within the superfamily. Phylogenetic analysis indicates that the superfamily expansion predated the separation of placental and marsupial mammals and that differential gene loss and duplication occurred in different species, generating a great variation in gene number and content among extant mammals.

  17. alpha1B-Adrenergic receptor phosphorylation and desensitization induced by transforming growth factor-beta.

    PubMed Central

    Romero-Avila, M Teresa; Flores-Jasso, C Fabián; García-Sáinz, J Adolfo

    2002-01-01

    Transforming growth factor-beta (TGF-beta) induced alpha(1B)-adrenergic receptor phosphorylation in Rat-1 fibroblasts stably expressing these adrenoceptors. This effect of TGF-beta was rapid, reaching a maximum within 30 min and decreasing thereafter, and concentration-dependent (EC(50) 0.3 pM). The phosphoinositide 3-kinase inhibitors wortmannin and LY294002, and the protein kinase C inhibitors staurosporine, Ro 318220 and bisindolylmaleimide, blocked the effect of this growth factor. alpha(1B)-Adrenergic receptor phosphorylation was associated with desensitization, as indicated by a reduction in the adrenergic-mediated production of [(3)H]inositol phosphates. Phosphorylation of alpha(1B)-adrenergic receptors by TGF-beta was also observed in Cos-1 cells transfected with the receptor. Co-transfection of the dominant-negative mutant of the regulatory subunit of phosphoinositide 3-kinase (Deltap85) inhibited the phosphorylation of alpha(1B)-adrenergic receptors induced by TGF-beta. Our results indicate that activation of TGF-beta receptors induces alpha(1B)-adrenergic receptor phosphorylation and desensitization. The data suggest that phosphoinositide 3-kinase and protein kinase C play key roles in this effect of TGF-beta. PMID:12234252

  18. alpha1B-Adrenergic receptor phosphorylation and desensitization induced by transforming growth factor-beta.

    PubMed

    Romero-Avila, M Teresa; Flores-Jasso, C Fabián; García-Sáinz, J Adolfo

    2002-12-01

    Transforming growth factor-beta (TGF-beta) induced alpha(1B)-adrenergic receptor phosphorylation in Rat-1 fibroblasts stably expressing these adrenoceptors. This effect of TGF-beta was rapid, reaching a maximum within 30 min and decreasing thereafter, and concentration-dependent (EC(50) 0.3 pM). The phosphoinositide 3-kinase inhibitors wortmannin and LY294002, and the protein kinase C inhibitors staurosporine, Ro 318220 and bisindolylmaleimide, blocked the effect of this growth factor. alpha(1B)-Adrenergic receptor phosphorylation was associated with desensitization, as indicated by a reduction in the adrenergic-mediated production of [(3)H]inositol phosphates. Phosphorylation of alpha(1B)-adrenergic receptors by TGF-beta was also observed in Cos-1 cells transfected with the receptor. Co-transfection of the dominant-negative mutant of the regulatory subunit of phosphoinositide 3-kinase (Deltap85) inhibited the phosphorylation of alpha(1B)-adrenergic receptors induced by TGF-beta. Our results indicate that activation of TGF-beta receptors induces alpha(1B)-adrenergic receptor phosphorylation and desensitization. The data suggest that phosphoinositide 3-kinase and protein kinase C play key roles in this effect of TGF-beta.

  19. Maternal breast milk transforming growth factor beta and feeding intolerance in preterm infants

    PubMed Central

    Frost, Brandy L.; Jilling, Tamas; Lapin, Brittany; Maheshwari, Akhil; Caplan, Michael S.

    2015-01-01

    Background Feeding intolerance occurs commonly in the NICU. Breast milk contains a large pool of transforming growth factor-beta (TGF-beta). Few studies describe TGF-beta levels in preterm milk, and the relationship to feeding intolerance (FI) remains unexplored. We measured TGF-beta levels in preterm breast milk to investigate a correlation with FI in preterm infants. Methods Prospective observational trial of 100 mother-infant pairs, enrolling infants born below 32 weeks gestation and less than 1500 grams, and mothers who planned to provide breast milk. TGF-beta levels were measured using ELISA. Infant charts were reviewed for outcomes. Results TGF-beta declined postnatally, most elevated in colostrum (p<0.01). TGF-beta 2 levels were higher than TGF-beta 1 at all time points (p<0.01). Colostrum TGF-beta levels correlated inversely with birth weight (p<0.01) and gestational age (p<0.05). One week TGF-beta 2 levels were reduced in growth-restricted infants with FI (p<0.01). Of infants with NEC, TGF-beta 2 levels appeared low, but small sample size precluded meaningful statistical comparisons. Conclusions TGF-beta levels decline temporally in preterm milk. TGF-beta 1 colostrum levels correlate inversely with birth weight and gestational age. TGF-beta 2 may play a role in FI in growth-restricted infants. The relationship of TGF-beta 2 and NEC merits future investigation. PMID:24995914

  20. A global view of structure–function relationships in the tautomerase superfamily

    PubMed Central

    Davidson, Rebecca; Baas, Bert-Jan; Akiva, Eyal; Holliday, Gemma L.; Polacco, Benjamin J.; LeVieux, Jake A.; Pullara, Collin R.; Zhang, Yan Jessie; Whitman, Christian P.

    2018-01-01

    The tautomerase superfamily (TSF) consists of more than 11,000 nonredundant sequences present throughout the biosphere. Characterized members have attracted much attention because of the unusual and key catalytic role of an N-terminal proline. These few characterized members catalyze a diverse range of chemical reactions, but the full scale of their chemical capabilities and biological functions remains unknown. To gain new insight into TSF structure–function relationships, we performed a global analysis of similarities across the entire superfamily and computed a sequence similarity network to guide classification into distinct subgroups. Our results indicate that TSF members are found in all domains of life, with most being present in bacteria. The eukaryotic members of the cis-3-chloroacrylic acid dehalogenase subgroup are limited to fungal species, whereas the macrophage migration inhibitory factor subgroup has wide eukaryotic representation (including mammals). Unexpectedly, we found that 346 TSF sequences lack Pro-1, of which 85% are present in the malonate semialdehyde decarboxylase subgroup. The computed network also enabled the identification of similarity paths, namely sequences that link functionally diverse subgroups and exhibit transitional structural features that may help explain reaction divergence. A structure-guided comparison of these linker proteins identified conserved transitions between them, and kinetic analysis paralleled these observations. Phylogenetic reconstruction of the linker set was consistent with these findings. Our results also suggest that contemporary TSF members may have evolved from a short 4-oxalocrotonate tautomerase–like ancestor followed by gene duplication and fusion. Our new linker-guided strategy can be used to enrich the discovery of sequence/structure/function transitions in other enzyme superfamilies. PMID:29184004

  1. Comparison of molecular dynamics and superfamily spaces of protein domain deformation.

    PubMed

    Velázquez-Muriel, Javier A; Rueda, Manuel; Cuesta, Isabel; Pascual-Montano, Alberto; Orozco, Modesto; Carazo, José-María

    2009-02-17

    It is well known the strong relationship between protein structure and flexibility, on one hand, and biological protein function, on the other hand. Technically, protein flexibility exploration is an essential task in many applications, such as protein structure prediction and modeling. In this contribution we have compared two different approaches to explore the flexibility space of protein domains: i) molecular dynamics (MD-space), and ii) the study of the structural changes within superfamily (SF-space). Our analysis indicates that the MD-space and the SF-space display a significant overlap, but are still different enough to be considered as complementary. The SF-space space is wider but less complex than the MD-space, irrespective of the number of members in the superfamily. Also, the SF-space does not sample all possibilities offered by the MD-space, but often introduces very large changes along just a few deformation modes, whose number tend to a plateau as the number of related folds in the superfamily increases. Theoretically, we obtained two conclusions. First, that function restricts the access to some flexibility patterns to evolution, as we observe that when a superfamily member changes to become another, the path does not completely overlap with the physical deformability. Second, that conformational changes from variation in a superfamily are larger and much simpler than those allowed by physical deformability. Methodologically, the conclusion is that both spaces studied are complementary, and have different size and complexity. We expect this fact to have application in fields as 3D-EM/X-ray hybrid models or ab initio protein folding.

  2. Implications of Mycobacterium Major Facilitator Superfamily for Novel Measures against Tuberculosis.

    PubMed

    Wang, Rui; Zhang, Zhen; Xie, Longxiang; Xie, Jianping

    2015-01-01

    Major facilitator superfamily (MFS) is an important secondary membrane transport protein superfamily conserved from prokaryotes to eukaryotes. The MFS proteins are widespread among bacteria and are responsible for the transfer of substrates. Pathogenic Mycobacterium MFS transporters, their distribution, function, phylogeny, and predicted crystal structures were studied to better understand the function of MFS and to discover specific inhibitors of MFS for better tuberculosis control.

  3. Analysis of interleukin (IL)-1 beta and transforming growth factor (TGF)-beta-induced signal transduction pathways in IL-2 and TGF-beta secretion and proliferation in the thymoma cell line EL4.NOB-1.

    PubMed

    Siese, A; Jaros, P P; Willig, A

    1999-02-01

    In the present study we investigated the interleukin (IL)-1beta and transforming growth factor-beta1 (TGF-beta1)-mediated proliferation, and production of IL-2 and TGF-beta, in the murine T-cell line, EL4.NOB-1. This cell line is resistant to TGF-beta concerning growth arrest but not autoinduction or suppression of IL-1-induced IL-2 production. When cocultured with IL-1beta, TGF-beta showed growth-promoting activity that could be antagonized by adding the phosphatidyl choline-dependent phospholipase C (PC-PLC) inhibitor, D609. Using specific enzyme inhibitors of protein kinases (PK) C and A, mitogen-activated protein kinase (MAPK), phospholipase A2 (PLA2), phosphatidylinositol-dependent (PI)-PLC and PC-PLC, we showed that IL-1beta-induced IL-2 synthesis was dependent on all investigated kinases and phospholipases, except PC-PLC. TGF-beta1 was able to inhibit IL-2 synthesis by the activation of PKA and MAPK. The same kinases are involved in TGF-beta autoinduction that is accompanied by a secretion of the active but not the latent growth factor and is antagonized by IL-1beta. Addition of the PI-PLC inhibitor, ET 18OCH3, or the PLA2 inhibitor (quinacrine) alone, resulted in secretion of latent TGF-beta and, in the case of ET 18OCH3, active TGF-beta. These data implicate a role for PI-PLC and PLA2 in the control of latency and secretion. Analysis of specific tyrosine activity and c-Fos expression showed synergistic but no antagonistic effects. These events are therefore not involved in IL- and TGF-beta-regulated IL-2 and TGF-beta production, but might participate in IL-1/TGF-beta-induced growth promotion.

  4. [Factors causing damage and destruction of beta-cells of the islets of Langerhans in the pancreas].

    PubMed

    Anděl, Michal; Němcová, Vlasta; Pavlíková, Nela; Urbanová, Jana; Cecháková, Marie; Havlová, Andrea; Straková, Radka; Večeřová, Livia; Mandys, Václav; Kovář, Jan; Heneberg, Petr; Trnka, Jan; Polák, Jan

    2014-09-01

    Insulin secretion in patients with manifested diabetes mellitus tends to disappear months to decades after the diagnosis, which is a clear sign of a gradual loss of pancreatic islet beta-cells. In our sample of 30 type 2 diabetic patients, whose disease manifested between 30 and 45 years of age, about a half have retained or even increased insulin secretion 30 years later, while the other half exhibit a much diminished or lost insulin secretion. Factors that can damage or destroy beta-cells can be divided into the following groups: Metabolic factors: hyperglycemia and glucotoxicity, lipotoxicity, hypoxia, reactive oxygen species; Pharmacological factors: antimicrobial medication pentamidine, SSRI antidepressants; Factors related to impaired insulin secretion: MODY type diabetes; Environmental toxic factors: rat poison Vacor, streptozotocin, polychlorinated and polybrominated hydrocarbons; Disorders of the exocrine pancreas: tumor infiltration, fibrous infiltration, chronic pancreatitis, cystic fibrosis; Infections, inflammation, autoimmunity, viral factors: Coxsackie viruses, H1N1 influenza, enteroviruses. We are currently working on finding other factors leading to beta-cell damage, studying their effect on apoptosis and necrosis and looking for possible protective factors to prevent this damage. We our increasing knowledge about the mechanisms of beta-cell damage and destruction we come ever closer to suggest measures for their prevention. In this review we offer a brief and simplified summary of some of the findings related to this area.Key words: pancreatic islet beta-cells of Langerhans - factors damaging or destroying beta-cells - insulin secretion.

  5. Are genetic variants in the platelet-derived growth factor [beta] gene associated with chronic pancreatitis?

    PubMed

    Muddana, Venkata; Park, James; Lamb, Janette; Yadav, Dhiraj; Papachristou, Georgios I; Hawes, Robert H; Brand, Randall; Slivka, Adam; Whitcomb, David C

    2010-11-01

    Platelet-derived growth factor [beta] (PDGF-[beta]) is a major signal in proliferation and matrix synthesis through activated pancreatic stellate cells, leading to fibrosis of the pancreas. Recurrent acute pancreatitis (RAP) seems to predispose to chronic pancreatitis (CP) in some patients but not others. We tested the hypothesis that 2 known PDGF-[beta] polymorphisms are associated with progression from RAP to CP. We also tested the hypothesis that PDGF-[beta] polymorphisms in combination with environmental risk factors such as alcohol and smoking are associated with CP. Three hundred eighty-two patients with CP (n = 176) and RAP (n = 206) and 251 controls were evaluated. Platelet-derived growth factor [beta] polymorphisms +286 A/G (rs#1800818) seen in 5'-UTR and +1135 A/C (rs#1800817) in first intron were genotyped using single-nucleotide polymorphism polymerase chain reaction approach and confirmed by DNA sequencing. The genotypic frequencies for PDGF-[beta] polymorphisms in positions +286 and +1135 were found to be similar in controls and patients with RAP and CP. There was no difference in genotypic frequencies among RAP, CP, and controls in subjects in the alcohol and smoking subgroups. Known variations in the PDGF-[beta] gene do not have a significant effect on promoting or preventing fibrogenesis in pancreatitis. Further evaluation of this important pathway is warranted.

  6. Monocyte production of transforming growth factor beta in long-term hemodialysis: modulation by hemodialysis membranes.

    PubMed

    Mege, J L; Capo, C; Purgus, R; Olmer, M

    1996-09-01

    Cytokines are likely involved in hemodialysis-associated complications such as immunodeficiency and beta 2 microglobulin amyloidosis. Because transforming growth factors beta (TGF beta) exert immunosuppressive effects on lymphocytes, down-modulate monocyte functions, and promote fibrosis, we hypothesize that they participate in the deleterious effects of hemodialysis. We investigated the production of TGF beta 1 and TGF beta 2 by monocytes from controls and patients dialyzed with high-flux cellulose triacetate (CT) and polyacrylonitrile (PAN) membranes. The detection of both TGF beta s required an acidification step, suggesting that they are secreted as latent complexes. The spontaneous production of TGF beta 1 and TGF beta 2 was significantly higher in patients dialyzed with CT or PAN than in controls, but the oversecretion of TGF beta 1 was more sustained in CT-treated patients than in PAN-dialyzed patients. The production of interleukin-6 (IL-6) was increased in both patient groups as compared with controls. In contrast to TGF beta 1, the increase was greater in PAN-treated patients than in CT-treated patients, and the release of tumor necrosis factor alpha (TNF alpha) was increased only in PAN-treated patients. Taken together, our results show that hemodialysis is associated with the oversecretion of monocyte cytokines. Moreover, the type of dialysis membrane specifically affects the balance between the secretion of suppressive cytokines such as TGF beta and that of inflammatory cytokines such as IL-6 and TNF alpha.

  7. Evolutionary and molecular foundations of multiple contemporary functions of the nitroreductase superfamily

    PubMed Central

    Akiva, Eyal; Copp, Janine N.; Tokuriki, Nobuhiko; Babbitt, Patricia C.

    2017-01-01

    Insight regarding how diverse enzymatic functions and reactions have evolved from ancestral scaffolds is fundamental to understanding chemical and evolutionary biology, and for the exploitation of enzymes for biotechnology. We undertook an extensive computational analysis using a unique and comprehensive combination of tools that include large-scale phylogenetic reconstruction to determine the sequence, structural, and functional relationships of the functionally diverse flavin mononucleotide-dependent nitroreductase (NTR) superfamily (>24,000 sequences from all domains of life, 54 structures, and >10 enzymatic functions). Our results suggest an evolutionary model in which contemporary subgroups of the superfamily have diverged in a radial manner from a minimal flavin-binding scaffold. We identified the structural design principle for this divergence: Insertions at key positions in the minimal scaffold that, combined with the fixation of key residues, have led to functional specialization. These results will aid future efforts to delineate the emergence of functional diversity in enzyme superfamilies, provide clues for functional inference for superfamily members of unknown function, and facilitate rational redesign of the NTR scaffold. PMID:29078300

  8. A strategy for detecting the conservation of folding-nucleus residues in protein superfamilies.

    PubMed

    Michnick, S W; Shakhnovich, E

    1998-01-01

    Nucleation-growth theory predicts that fast-folding peptide sequences fold to their native structure via structures in a transition-state ensemble that share a small number of native contacts (the folding nucleus). Experimental and theoretical studies of proteins suggest that residues participating in folding nuclei are conserved among homologs. We attempted to determine if this is true in proteins with highly diverged sequences but identical folds (superfamilies). We describe a strategy based on comparisons of residue conservation in natural superfamily sequences with simulated sequences (generated with a Monte-Carlo sequence design strategy) for the same proteins. The basic assumptions of the strategy were that natural sequences will conserve residues needed for folding and stability plus function, the simulated sequences contain no functional conservation, and nucleus residues make native contacts with each other. Based on these assumptions, we identified seven potential nucleus residues in ubiquitin superfamily members. Non-nucleus conserved residues were also identified; these are proposed to be involved in stabilizing native interactions. We found that all superfamily members conserved the same potential nucleus residue positions, except those for which the structural topology is significantly different. Our results suggest that the conservation of the nucleus of a specific fold can be predicted by comparing designed simulated sequences with natural highly diverged sequences that fold to the same structure. We suggest that such a strategy could be used to help plan protein folding and design experiments, to identify new superfamily members, and to subdivide superfamilies further into classes having a similar folding mechanism.

  9. The pleiotropic roles of transforming growth factor beta inhomeostasis and carcinogenesis of endocrine organs.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleisch, Markus C.; Maxwell, Christopher A.; Barcellos-Hoff,Mary-Helen

    2006-01-13

    Transforming growth factor beta (TGF-beta) is a ubiquitous cytokine that plays a critical role in numerous pathways regulating cellular and tissue homeostasis. TGF-beta is regulated by hormones and is a primary mediator of hormone response in uterus, prostate and mammary gland. This review will address the role of TGF-beta in regulating hormone dependent proliferation and morphogenesis. The subversion of TGF-beta regulation during the processes of carcinogenesis, with particular emphasis on its effects on genetic stability and epithelial to mesenchymal transition (EMT), will also be examined. An understanding of the multiple and complex mechanisms of TGF-beta regulation of epithelial function, andmore » the ultimate loss of TGF-beta function during carcinogenesis, will be critical in the design of novel therapeutic interventions for endocrine-related cancers.« less

  10. Comparison of molecular dynamics and superfamily spaces of protein domain deformation

    PubMed Central

    Velázquez-Muriel, Javier A; Rueda, Manuel; Cuesta, Isabel; Pascual-Montano, Alberto; Orozco, Modesto; Carazo, José-María

    2009-01-01

    Background It is well known the strong relationship between protein structure and flexibility, on one hand, and biological protein function, on the other hand. Technically, protein flexibility exploration is an essential task in many applications, such as protein structure prediction and modeling. In this contribution we have compared two different approaches to explore the flexibility space of protein domains: i) molecular dynamics (MD-space), and ii) the study of the structural changes within superfamily (SF-space). Results Our analysis indicates that the MD-space and the SF-space display a significant overlap, but are still different enough to be considered as complementary. The SF-space space is wider but less complex than the MD-space, irrespective of the number of members in the superfamily. Also, the SF-space does not sample all possibilities offered by the MD-space, but often introduces very large changes along just a few deformation modes, whose number tend to a plateau as the number of related folds in the superfamily increases. Conclusion Theoretically, we obtained two conclusions. First, that function restricts the access to some flexibility patterns to evolution, as we observe that when a superfamily member changes to become another, the path does not completely overlap with the physical deformability. Second, that conformational changes from variation in a superfamily are larger and much simpler than those allowed by physical deformability. Methodologically, the conclusion is that both spaces studied are complementary, and have different size and complexity. We expect this fact to have application in fields as 3D-EM/X-ray hybrid models or ab initio protein folding. PMID:19220918

  11. NFI-Ski interactions mediate transforming growth factor beta modulation of human papillomavirus type 16 early gene expression.

    PubMed

    Baldwin, Amy; Pirisi, Lucia; Creek, Kim E

    2004-04-01

    Human papillomaviruses (HPVs) are present in virtually all cervical cancers. An important step in the development of malignant disease, including cervical cancer, involves a loss of sensitivity to transforming growth factor beta (TGF-beta). HPV type 16 (HPV16) early gene expression, including that of the E6 and E7 oncoprotein genes, is under the control of the upstream regulatory region (URR), and E6 and E7 expression in HPV16-immortalized human epithelial cells is inhibited at the transcriptional level by TGF-beta. While the URR contains a myriad of transcription factor binding sites, including seven binding sites for nuclear factor I (NFI), the specific sequences within the URR or the transcription factors responsible for TGF-beta modulation of the URR remain unknown. To identify potential transcription factors and binding sites involved in TGF-beta modulation of the URR, we performed DNase I footprint analysis on the HPV16 URR using nuclear extracts from TGF-beta-sensitive HPV16-immortalized human keratinocytes (HKc/HPV16) treated with and without TGF-beta. Differentially protected regions were found to be located around NFI binding sites. Electrophoretic mobility shift assays, using the NFI binding sites as probes, showed decreased binding upon TGF-beta treatment. This decrease in binding was not due to reduced NFI protein or NFI mRNA levels. Mutational analysis of individual and multiple NFI binding sites in the URR defined their role in TGF-beta sensitivity of the promoter. Overexpression of the NFI family members in HKc/HPV16 decreased the ability of TGF-beta to inhibit the URR. Since the oncoprotein Ski has been shown to interact with and increase the transcriptional activity of NFI and since cellular Ski levels are decreased by TGF-beta treatment, we explored the possibility that Ski may provide a link between TGF-beta signaling and NFI activity. Anti-NFI antibodies coimmunoprecipitated endogenous Ski in nuclear extracts from HKc/HPV16, confirming that NFI

  12. Beta-type transforming growth factor specifies organizational behavior in vascular smooth muscle cell cultures

    PubMed Central

    1987-01-01

    In culture, vascular smooth muscle cells (SMC) grow in a "hill-and- valley" (multilayered) pattern of organization. We have studied the growth, behavioral organization, and biosynthetic phenotype of rat aortic SMC exposed to purified platelet-derived growth regulatory molecules. We show that multilayered growth is not a constitutive feature of cultured SMC, and that beta-type transforming growth factor (TGF-beta) is the primary determinant of multilayered growth and the hill-and-valley pattern of organization diagnostic for SMC in culture. TGF-beta inhibited, in a dose-dependent manner, the serum- or platelet- derived growth factor-mediated proliferation of these cells in two- dimensional culture, but only when cells were plated at subconfluent densities. The ability of TGF-beta to inhibit SMC growth was inversely correlated to plating cell density. When SMC were plated at monolayer density (5 X 10(4) cells/cm2) to allow maximal cell-to-cell contact, TGF-beta potentiated cell growth. This differential response of SMC to TGF-beta may contribute to the hill-and-valley pattern of organization. Unlike its effect on other cell types, TGF-beta did not enhance the synthesis of fibronectin or its incorporation into the extracellular matrix. However, the synthesis of a number of other secreted proteins was altered by TGF-beta treatment. SMC treated with TGF-beta for 4 or 8 h secreted markedly enhanced amounts of an Mr 38,000-D protein doublet whose synthesis is known to be increased by heparin (another inhibitor of SMC growth), suggesting metabolic similarities between heparin- and TGF-beta-mediated SMC growth inhibition. The data suggest that TGF-beta may play an important and complex regulatory role in SMC proliferation and organization during development and after vascular injury. PMID:3475277

  13. Kinetic and Structural Characterization of a Heterohexamer 4-Oxalocrotonate Tautomerase from Chloroflexus aurantiacus J-10-fl: Implications for Functional and Structural Diversity in the Tautomerase Superfamily

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burks, Elizabeth A.; Fleming, Christopher D.; Mesecar, Andrew D.

    2010-09-30

    4-Oxalocrotonate tautomerase (4-OT) isozymes play prominent roles in the bacterial utilization of aromatic hydrocarbons as sole carbon sources. These enzymes catalyze the conversion of 2-hydroxy-2,4-hexadienedioate (or 2-hydroxymuconate) to 2-oxo-3-hexenedioate, where Pro-1 functions as a general base and shuttles a proton from the 2-hydroxyl group of the substrate to the C-5 position of the product. 4-OT, a homohexamer from Pseudomonas putida mt-2, is the most extensively studied 4-OT isozyme and the founding member of the tautomerase superfamily. A search of five thermophilic bacterial genomes identified a coded amino acid sequence in each that had been annotated as a tautomerase-like protein butmore » lacked Pro-1. However, a nearby sequence has Pro-1, but the sequence is not annotated as a tautomerase-like protein. To characterize this group of proteins, two genes from Chloroflexus aurantiacus J-10-fl were cloned, and the corresponding proteins were expressed. Kinetic, biochemical, and X-ray structural analyses show that the two expressed proteins form a functional heterohexamer 4-OT (hh4-OT), composed of three {alpha}{beta} dimers. Like the P. putida enzyme, hh4-OT requires the amino-terminal proline and two arginines for the conversion of 2-hydroxymuconate to the product, implicating an analogous mechanism. In contrast to 4-OT, hh4-OT does not exhibit the low-level activity of another tautomerase superfamily member, the heterohexamer trans-3-chloroacrylic acid dehalogenase (CaaD). Characterization of hh4-OT enables functional assignment of the related enzymes, highlights the diverse ways the {beta}-{alpha}-{beta} building block can be assembled into an active enzyme, and provides further insight into the molecular basis of the low-level CaaD activity in 4-OT.« less

  14. Transforming growth factor-beta1 mediates cellular response to DNA damage in situ

    NASA Technical Reports Server (NTRS)

    Ewan, Kenneth B.; Henshall-Powell, Rhonda L.; Ravani, Shraddha A.; Pajares, Maria Jose; Arteaga, Carlos; Warters, Ray; Akhurst, Rosemary J.; Barcellos-Hoff, Mary Helen

    2002-01-01

    Transforming growth factor (TGF)-beta1 is rapidly activated after ionizing radiation, but its specific role in cellular responses to DNA damage is not known. Here we use Tgfbeta1 knockout mice to show that radiation-induced apoptotic response is TGF-beta1 dependent in the mammary epithelium, and that both apoptosis and inhibition of proliferation in response to DNA damage decrease as a function of TGF-beta1 gene dose in embryonic epithelial tissues. Because apoptosis in these tissues has been shown previously to be p53 dependent, we then examined p53 protein activation. TGF-beta1 depletion, by either gene knockout or by using TGF-beta neutralizing antibodies, resulted in decreased p53 Ser-18 phosphorylation in irradiated mammary gland. These data indicate that TGF-beta1 is essential for rapid p53-mediated cellular responses that mediate cell fate decisions in situ.

  15. Opposite Smad and chicken ovalbumin upstream promoter transcription factor inputs in the regulation of the collagen VII gene promoter by transforming growth factor-beta.

    PubMed

    Calonge, María Julia; Seoane, Joan; Massagué, Joan

    2004-05-28

    A critical component of the epidermal basement membrane, collagen type VII, is produced by keratinocytes and fibroblasts, and its production is stimulated by the cytokine transforming growth factor-beta (TGF-beta). The gene, COL7A1, is activated by TGF-beta via Smad transcription factors in cooperation with AP1. Here we report a previously unsuspected level of complexity in this regulatory process. We provide evidence that TGF-beta may activate the COL7A1 promoter by two distinct inputs operating through a common region of the promoter. One input is provided by TGF-beta-induced Smad complexes via two Smad binding elements that function redundantly depending on the cell type. The second input is provided by relieving the COL7A1 promoter from chicken ovalbumin upstream promoter transcription factor (COUP-TF)-mediated transcriptional repression. We identified COUP-TFI and -TFII as factors that bind to the TGF-beta-responsive region of the COL7A1 promoter in an expression library screening. COUP-TFs bind to a site between the two Smad binding elements independently of Smad or AP1 and repress the basal and TGF-beta-stimulated activities of this promoter. We provide evidence that endogenous COUP-TF activity represses the COL7A1 promoter. Furthermore, we show that TGF-beta addition causes a rapid and profound down-regulation of COUP-TF expression in keratinocytes and fibroblasts. The results suggest that TGF-beta signaling may exert tight control over COL7A1 by offsetting the balance between opposing Smad and COUP-TFs.

  16. The effect of pasteurization on transforming growth factor alpha and transforming growth factor beta 2 concentrations in human milk.

    PubMed

    McPherson, R J; Wagner, C L

    2001-01-01

    Transforming growth factor alpha (TGF-alpha) and beta 2 (TGF-beta2) are present in human milk and are involved in growth differentiation and repair of neonatal intestinal epithelia. Heat treatment at 56 degrees C has been shown effective for providing safe banked donor milk, with good retention of other biologically active factors. The purpose of our study was to determine the effect of heat sterilization on TGF-alpha and TGF-beta2 concentrations in human milk. Twenty milk samples were collected from 20 lactating mothers in polypropylene containers and frozen at -20 degrees C for transport or storage. Before heat treatment by holder pasteurization, the frozen milk was thawed and divided into 1-mL aliquots. All samples were heated in an accurately regulated water bath until a holding temperature was achieved, then held for 30 minutes using constant agitation. Holding temperature ranged from 56.5 degrees C to 56.9 degrees C. The milk was then stored at 4 degrees C overnight for analysis the following day. The concentration of TGF-alpha was measured by radioimmunoassay. Mean concentration +/- SD of TGF-alpha in raw milk samples was 119+/-50 pg/mL, range 57 to 234. The mean concentration +/- SD of TGF-alpha in heat treated samples was 113+/-50 pg/mL, range 51 to 227. TGF-alpha concentration was minimally affected by pasteurization, with an overall loss of 6.1%. Of 19 samples, 4 had increased and 15 had decreased concentrations after pasteurization (mean percent SEM: 94%+/-7% of raw milk, range 72%+/-107%). The concentration of acid-activated TGF-beta2 was measured by enzyme-linked immunosorbent assay. Mean concentration +/- SD of TGF-beta2 in raw milk samples was 5624+/-5038 pg/mL, range 195 to 15480. The mean concentration +/- SD of TGF-beta2 in heat-treated samples was 5073+/-4646 pg/mL, range 181 to 15140. TGF-beta2 survived with relatively little loss (0.6%): of 18 samples, 11 had increased and 7 had decreased concentrations after pasteurization (mean percent

  17. Phospholipase C-mediated hydrolysis of phosphatidylcholine is a target of transforming growth factor beta 1 inhibitory signals.

    PubMed Central

    Diaz-Meco, M T; Dominguez, I; Sanz, L; Municio, M M; Berra, E; Cornet, M E; Garcia de Herreros, A; Johansen, T; Moscat, J

    1992-01-01

    Cell growth and tumor transformation can be restrained in certain cell systems by the action of transforming growth factor beta (TGF-beta). It has been established that the mechanism whereby TGF-beta 1 inhibits cell growth does not interfere with the triggering of early mitogenic signal transduction mechanisms. Phospholipase C-catalyzed hydrolysis of phosphatidylcholine (PC) is a relatively late step in the cascade activated by growth factors. Therefore, conceivably activation of phospholipase C-catalyzed hydrolysis of PC could be the target of TGF-beta 1 action. In the study reported here, we demonstrate that TGF-beta 1 inhibits the coupling of ras p21 to the activation of PC hydrolysis, which appears to be critical for the antiproliferative effects of TGF-beta 1. Images PMID:1309592

  18. New insights into potential functions for the protein 4.1superfamily of proteins in kidney epithelium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calinisan, Venice; Gravem, Dana; Chen, Ray Ping-Hsu

    2005-06-17

    Members of the protein 4.1 family of adapter proteins are expressed in a broad panel of tissues including various epithelia where they likely play an important role in maintenance of cell architecture and polarity and in control of cell proliferation. We have recently characterized the structure and distribution of three members of the protein 4.1 family, 4.1B, 4.1R and 4.1N, in mouse kidney. We describe here binding partners for renal 4.1 proteins, identified through the screening of a rat kidney yeast two-hybrid system cDNA library. The identification of putative protein 4.1-based complexes enables us to envision potential functions for 4.1more » proteins in kidney: organization of signaling complexes, response to osmotic stress, protein trafficking, and control of cell proliferation. We discuss the relevance of these protein 4.1-based interactions in kidney physio-pathology in the context of their previously identified functions in other cells and tissues. Specifically, we will focus on renal 4.1 protein interactions with beta amyloid precursor protein (beta-APP), 14-3-3 proteins, and the cell swelling-activated chloride channel pICln. We also discuss the functional relevance of another member of the protein 4.1 superfamily, ezrin, in kidney physiopathology.« less

  19. Rosiglitazone stimulates the release and synthesis of insulin by enhancing GLUT-2, glucokinase and BETA2/NeuroD expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hyo-Sup; Noh, Jung-Hyun; Hong, Seung-Hyun

    2008-03-14

    Peroxisome proliferator-activated receptor (PPAR)-{gamma} is a member of the nuclear receptor superfamily, and its ligands, the thiazolidinediones, might directly stimulate insulin release and insulin synthesis in pancreatic {beta}-cells. In the present study, we examined the effects of rosiglitazone (RGZ) on insulin release and synthesis in pancreatic {beta}-cell (INS-1). Insulin release and synthesis were stimulated by treatment with RGZ for 24 h. RGZ upregulated the expressions of GLUT-2 and glucokinase (GCK). Moreover, it was found that RGZ increased the expression of BETA2/NeuroD gene which could regulate insulin gene expression. These results suggest that RGZ could stimulate the release and synthesis ofmore » insulin through the upregulation of GLUT-2, GCK, and BETA2/NeuroD gene expression.« less

  20. Transient receptor potential channel superfamily: Role in lower urinary tract function.

    PubMed

    Ogawa, Teruyuki; Imamura, Tetsuya; Nakazawa, Masaki; Hiragata, Shiro; Nagai, Takashi; Minagawa, Tomonori; Yokoyama, Hitoshi; Ishikawa, Masakuni; Domen, Takahisa; Ishizuka, Osamu

    2015-11-01

    Lower urinary tract symptoms associated with neurogenic bladder and overactive bladder syndrome are mediated in part by members of the transient receptor potential channel superfamily. The best studied member of this superfamily is the vanilloid receptor. Other transient receptor potential channels, such as the melastatin receptor and the ankyrin receptor, are also active in the pathogenesis of lower urinary tract dysfunction. However, the detailed mechanisms by which the transient receptor potential channels contribute to lower urinary tract symptoms are still not clear, and the therapeutic benefits of modulating transient receptor potential channel activity have not been proved in the clinical setting. In the present review, to better understand the pathophysiology and therapeutic potential for lower urinary tract symptoms, we summarize the presence and role of different members of the transient receptor potential channel superfamily in the lower urinary tract. © 2015 The Japanese Urological Association.

  1. A comprehensive analysis of the Omp85/TpsB protein superfamily structural diversity, taxonomic occurrence, and evolution

    PubMed Central

    Heinz, Eva; Lithgow, Trevor

    2014-01-01

    Members of the Omp85/TpsB protein superfamily are ubiquitously distributed in Gram-negative bacteria, and function in protein translocation (e.g., FhaC) or the assembly of outer membrane proteins (e.g., BamA). Several recent findings are suggestive of a further level of variation in the superfamily, including the identification of the novel membrane protein assembly factor TamA and protein translocase PlpD. To investigate the diversity and the causal evolutionary events, we undertook a comprehensive comparative sequence analysis of the Omp85/TpsB proteins. A total of 10 protein subfamilies were apparent, distinguished in their domain structure and sequence signatures. In addition to the proteins FhaC, BamA, and TamA, for which structural and functional information is available, are families of proteins with so far undescribed domain architectures linked to the Omp85 β-barrel domain. This study brings a classification structure to a dynamic protein superfamily of high interest given its essential function for Gram-negative bacteria as well as its diverse domain architecture, and we discuss several scenarios of putative functions of these so far undescribed proteins. PMID:25101071

  2. Immunohistochemical detection of active transforming growth factor-beta in situ using engineered tissue

    NASA Technical Reports Server (NTRS)

    Barcellos-Hoff, M. H.; Ehrhart, E. J.; Kalia, M.; Jirtle, R.; Flanders, K.; Tsang, M. L.; Chatterjee, A. (Principal Investigator)

    1995-01-01

    The biological activity of transforming growth factor-beta 1 (TGF-beta) is governed by dissociation from its latent complex. Immunohistochemical discrimination of active and latent TGF-beta could provide insight into TGF-beta activation in physiological and pathological processes. However, evaluation of immunoreactivity specificity in situ has been hindered by the lack of tissue in which TGF-beta status is known. To provide in situ analysis of antibodies to differentiate between these functional forms, we used xenografts of human tumor cells modified by transfection to overexpress latent TGF-beta or constitutively active TGF-beta. This comparison revealed that, whereas most antibodies did not differentiate between TGF-beta activation status, the immunoreactivity of some antibodies was activation dependent. Two widely used peptide antibodies to the amino-terminus of TGF-beta, LC(1-30) and CC(1-30) showed marked preferential immunoreactivity with active TGF-beta versus latent TGF-beta in cryosections. However, in formalin-fixed, paraffin-embedded tissue, discrimination of active TGF-beta by CC(1-30) was lost and immunoreactivity was distinctly extracellular, as previously reported for this antibody. Similar processing-dependent extracellular localization was found with a neutralizing antibody raised to recombinant TGF-beta. Antigen retrieval recovered cell-associated immunoreactivity of both antibodies. Two antibodies to peptides 78-109 showed mild to moderate preferential immunoreactivity with active TGF-beta only in paraffin sections. LC(1-30) was the only antibody tested that discriminated active from latent TGF-beta in both frozen and paraffin-embedded tissue. Thus, in situ discrimination of active versus latent TGF-beta depends on both the antibody and tissue preparation. We propose that tissues engineered to express a specific form of a given protein provide a physiological setting in which to evaluate antibody reactivity with specific functional forms of a

  3. Evolution of genes and repeats in the Nimrod superfamily.

    PubMed

    Somogyi, Kálmán; Sipos, Botond; Pénzes, Zsolt; Kurucz, Eva; Zsámboki, János; Hultmark, Dan; Andó, István

    2008-11-01

    The recently identified Nimrod superfamily is characterized by the presence of a special type of EGF repeat, the NIM repeat, located right after a typical CCXGY/W amino acid motif. On the basis of structural features, nimrod genes can be divided into three types. The proteins encoded by Draper-type genes have an EMI domain at the N-terminal part and only one copy of the NIM motif, followed by a variable number of EGF-like repeats. The products of Nimrod B-type and Nimrod C-type genes (including the eater gene) have different kinds of N-terminal domains, and lack EGF-like repeats but contain a variable number of NIM repeats. Draper and Nimrod C-type (but not Nimrod B-type) proteins carry a transmembrane domain. Several members of the superfamily were claimed to function as receptors in phagocytosis and/or binding of bacteria, which indicates an important role in the cellular immunity and the elimination of apoptotic cells. In this paper, the evolution of the Nimrod superfamily is studied with various methods on the level of genes and repeats. A hypothesis is presented in which the NIM repeat, along with the EMI domain, emerged by structural reorganizations at the end of an EGF-like repeat chain, suggesting a mechanism for the formation of novel types of repeats. The analyses revealed diverse evolutionary patterns in the sequences containing multiple NIM repeats. Although in the Nimrod B and Nimrod C proteins show characteristics of independent evolution, many internal NIM repeats in Eater sequences seem to have undergone concerted evolution. An analysis of the nimrod genes has been performed using phylogenetic and other methods and an evolutionary scenario of the origin and diversification of the Nimrod superfamily is proposed. Our study presents an intriguing example how the evolution of multigene families may contribute to the complexity of the innate immune response.

  4. Functional cloning of the proto-oncogene brain factor-1 (BF-1) as a Smad-binding antagonist of transforming growth factor-beta signaling.

    PubMed

    Rodriguez, C; Huang, L J; Son, J K; McKee, A; Xiao, Z; Lodish, H F

    2001-08-10

    Using the plasminogen activator inhibitor (PAI) promoter to drive the expression of a reporter gene (mouse CD2), we devised a system to clone negative regulators of the transforming growth factor-beta (TGF-beta) signaling pathway. We infected a TGF-beta-responsive cell line (MvLu1) with a retroviral cDNA library, selecting by fluorescence-activated cell sorter single cells displaying low PAI promoter activity in response to TGF-beta. Using this strategy we cloned the proto-oncogene brain factor-1 (BF-1). BF-1 represses the PAI promoter in part by associating with both unphosphorylated Smad3 (in the cytoplasm) and phosphorylated Smad3 (in the nucleus), thus preventing its binding to DNA. BF-1 also associates with Smad1, -2, and -4; the Smad MH2 domain binds to BF-1, and the C-terminal segment of BF-1 is uniquely and solely required for binding to Smads. Further, BF-1 represses another TGF-beta-induced promoter (p15), it up-regulates a TGF-beta-repressed promoter (Cyclin A), and it reverses the growth arrest caused by TGF-beta. Our results suggest that BF-1 is a general inhibitor of TGF-beta signaling and as such may play a key role during brain development.

  5. Inhibitory effects of hepatocyte growth factor and interleukin-6 on transforming growth factor-beta1 mediated vocal fold fibroblast-myofibroblast differentiation.

    PubMed

    Vyas, Bimal; Ishikawa, Keiko; Duflo, Suzy; Chen, Xia; Thibeault, Susan L

    2010-05-01

    The role of myofibroblasts in vocal fold scarring has not been extensively studied, partly because of the lack of a robust in vitro model. The objective of this investigation was to develop and characterize a myofibroblast in vitro model that could be utilized to investigate the molecular mechanism of myofibroblast differentiation and function in injured vocal fold tissue. Differentiation of human primary vocal fold fibroblasts (hVFFs) to myofibroblasts was stimulated with 5, 10, or 20 ng/mL of recombinant transforming growth factor-beta1 (TGF-beta1). Cultures were analyzed by immunofluorescence and Western blotting, with an alpha-smooth muscle actin (alpha-SMA) antibody used as a myofibroblast marker. Normal rabbit vocal folds were treated with 10 ng/mL of TGF-beta1 for 7 days for in vivo corroboration. The effects of interleukin-6 (IL-6) and hepatocyte growth factor (HGF) on myofibroblast differentiation were studied with Western blots. The hVFFs demonstrated positive alpha-SMA labeling in cells stimulated by 10 and 20 ng/mL TGF-beta1, indicating that hVFFs were capable of differentiation to myofibroblasts. Transforming growth factor-beta1 induced the largest increase in alpha-SMA at 10 ng/mL on day 5 of treatment. Both HGF and IL-6 suppressed the expression of TGF-beta1-induced alpha-SMA. Our work characterizes a useful in vitro model of TGF-beta1-mediated vocal fold fibroblast-myofibroblast differentiation. The extent of differentiation appears to be attenuated by HGF, suggesting a potential mechanism to support prior work indicating that HGF plays a protective role in reducing scar formation in vocal fold injuries. Paradoxically, IL-6, which has been shown to play a profibrotic role in dermal studies, also attenuated the TGF-beta1 response.

  6. Molecular evolution of miraculin-like proteins in soybean Kunitz super-family.

    PubMed

    Selvakumar, Purushotham; Gahloth, Deepankar; Tomar, Prabhat Pratap Singh; Sharma, Nidhi; Sharma, Ashwani Kumar

    2011-12-01

    Miraculin-like proteins (MLPs) belong to soybean Kunitz super-family and have been characterized from many plant families like Rutaceae, Solanaceae, Rubiaceae, etc. Many of them possess trypsin inhibitory activity and are involved in plant defense. MLPs exhibit significant sequence identity (~30-95%) to native miraculin protein, also belonging to Kunitz super-family compared with a typical Kunitz family member (~30%). The sequence and structure-function comparison of MLPs with that of a classical Kunitz inhibitor have demonstrated that MLPs have evolved to form a distinct group within Kunitz super-family. Sequence analysis of new genes along with available MLP sequences in the literature revealed three major groups for these proteins. A significant feature of Rutaceae MLP type 2 sequences is the presence of phosphorylation motif. Subtle changes are seen in putative reactive loop residues among different MLPs suggesting altered specificities to specific proteases. In phylogenetic analysis, Rutaceae MLP type 1 and type 2 proteins clustered together on separate branches, whereas native miraculin along with other MLPs formed distinct clusters. Site-specific positive Darwinian selection was observed at many sites in both the groups of Rutaceae MLP sequences with most of the residues undergoing positive selection located in loop regions. The results demonstrate the sequence and thereby the structure-function divergence of MLPs as a distinct group within soybean Kunitz super-family due to biotic and abiotic stresses of local environment.

  7. Transforming growth factor-beta1 accelerates resorption of a calcium carbonate biomaterial in periodontal defects.

    PubMed

    Koo, Ki-Tae; Susin, Cristiano; Wikesjö, Ulf M E; Choi, Seong-Ho; Kim, Chong-Kwan

    2007-04-01

    In a previous study, recombinant human transforming growth factor-beta1 (rhTGF-beta(1)) in a calcium carbonate carrier was implanted into critical-size, supraalveolar periodontal defects under conditions for guided tissue regeneration (GTR) to study whether rhTGF-beta(1) would enhance or accelerate periodontal regeneration. The results showed minimal benefits of rhTGF-beta(1), and a clear account for this could not be offered. One potential cause may be that the rhTGF-beta(1) formulation was biologically inactive. Several growth or differentiation factors have been suggested to accelerate degradation of biomaterials used as carriers. The objective of this study was to evaluate possible activity of rhTGF-beta(1) on biodegradation of the calcium carbonate carrier. rhTGF-beta(1) in a putty-formulated particulate calcium carbonate carrier was implanted into critical-size, supraalveolar periodontal defects under conditions for GTR in five beagle dogs. Contralateral defects received the calcium carbonate carrier combined with GTR without rhTGF-beta(1) (control). The animals were euthanized at week 4 post-surgery and block biopsies of the defect sites were collected for histologic and histometric analysis. Radiographs were obtained at defect creation and weeks 2 and 4 after defect creation. No statistically significant differences were observed in new bone formation (bone height and area) among the treatments. However, total residual carrier was significantly reduced in sites receiving rhTGF-beta(1) compared to control (P = 0.04). Similarly, carrier density was considerably reduced in sites receiving rhTGF-beta(1) compared to control; the difference was borderline statistically significant (P = 0.06). Within the limitations of the study, it may be concluded that rhTGF-beta(1) accelerates biodegradation of a particulate calcium carbonate biomaterial, indicating a biologic activity of the rhTGF-beta(1) formulation apparently not encompassing enhanced or accelerated

  8. Lectins of beneficial microbes: system organisation, functioning and functional superfamily.

    PubMed

    Lakhtin, M; Lakhtin, V; Alyoshkin, V; Afanasyev, S

    2011-06-01

    In this review our last results and proposals with respect to general aspects of lectin studies are summarised and compared. System presence, organisation and functioning of lectins are proposed, and accents on beneficial symbiotic microbial lectins studies are presented. The proposed general principles of lectin functioning allows for a comparison of lectins with other carbohydrate-recognition systems. A new structure-functional superfamily of symbiotic microbial lectins is proposed and its main properties are described. The proposed superfamily allows for extended searches of the biological activities of any microbial member. Prospects of lectins of beneficial symbiotic microorganisms are discussed.

  9. Immunoglobulin superfamily proteins in Caenorhabditis elegans.

    PubMed

    Teichmann, S A; Chothia, C

    2000-03-10

    The predicted proteins of the genome of Caenorhabditis elegans were analysed by various sequence comparison methods to identify the repertoire of proteins that are members of the immunoglobulin superfamily (IgSF). The IgSF is one of the largest families of protein domain in this genome and likely to be one of the major families in other multicellular eukaryotes too. This is because members of the superfamily are involved in a variety of functions including cell-cell recognition, cell-surface receptors, muscle structure and, in higher organisms, the immune system. Sixty-four proteins with 488 I set IgSF domains were identified largely by using Hidden Markov models. The domain architectures of the protein products of these 64 genes are described. Twenty-one of these had been characterised previously. We show that another 25 are related to proteins of known function. The C. elegans IgSF proteins can be classified into five broad categories: muscle proteins, protein kinases and phosphatases, three categories of proteins involved in the development of the nervous system, leucine-rich repeat containing proteins and proteins without homologues of known function, of which there are 18. The 19 proteins involved in nervous system development that are not kinases or phosphatases are homologues of neuroglian, axonin, NCAM, wrapper, klingon, ICCR and nephrin or belong to the recently identified zig gene family. Out of the set of 64 genes, 22 are on the X chromosome. This study should be seen as an initial description of the IgSF repertoire in C. elegans, because the current gene definitions may contain a number of errors, especially in the case of long sequences, and there may be IgSF genes that have not yet been detected. However, the proteins described here do provide an overview of the bulk of the repertoire of immunoglobulin superfamily members in C. elegans, a framework for refinement and extension of the repertoire as gene and protein definitions improve, and the basis

  10. The TNF receptor and Ig superfamily members form an integrated signaling circuit controlling dendritic cell homeostasis

    PubMed Central

    De Trez, Carl; Ware, Carl F.

    2008-01-01

    Dendritic cells (DC) constitute the most potent antigen presenting cells of the immune system, playing a key role bridging innate and adaptive immune responses. Specialized DC subsets differ depending on their origin, tissue location and the influence of trophic factors, the latter remain to be fully understood. Stromal cell and myeloid-associated Lymphotoxin-β receptor (LTβR) signaling is required for the local proliferation of lymphoid tissue DC. This review focuses the LTβR signaling cascade as a crucial positive trophic signal in the homeostasis of DC subsets. The noncanonical coreceptor pathway comprised of the Immunoglobulin (Ig) superfamily member, B and T lymphocyte attenuator (BTLA) and TNFR superfamily member, Herpesvirus entry mediator (HVEM) counter regulates the trophic signaling by LTβR. Together both pathways form an integrated signaling circuit achieving homeostasis of DC subsets. PMID:18511331

  11. Functional diversity of the superfamily of K⁺ transporters to meet various requirements.

    PubMed

    Diskowski, Marina; Mikusevic, Vedrana; Stock, Charlott; Hänelt, Inga

    2015-09-01

    The superfamily of K+ transporters unites proteins from plants, fungi, bacteria, and archaea that translocate K+ and/or Na+ across membranes. These proteins are key components in osmotic regulation, pH homeostasis, and resistance to high salinity and dryness. The members of the superfamily are closely related to K+ channels such as KcsA but also show several striking differences that are attributed to their altered functions. This review highlights these functional differences, focusing on the bacterial superfamily members KtrB, TrkH, and KdpA. The functional variations within the family and comparison to MPM-type K+ channels are discussed in light of the recently solved structures of the Ktr and Trk systems.

  12. A polymorphic region in the human transcription factor AP-2beta gene is associated with specific personality traits.

    PubMed

    Damberg, M; Garpenstrand, H; Alfredsson, J; Ekblom, J; Forslund, K; Rylander, G; Oreland, L

    2000-03-01

    Transcription factor AP-2beta is implicated in playing an important role during embryonic development of different parts of the brain, eg, midbrain, hindbrain, spinal cord, dorsal and cranial root ganglia.1,2 The gene encoding AP-2beta contains a polymorphic region which includes a tetranucleotide repeat of [CAAA] four or five times, located in intron 2 between nucleotides 12593 and 12612.3 Since the midbrain contains structures important for variables such as mood and personality, we have investigated if the AP-2beta genotype is associated with personality traits estimated by the Karolinska Scales of Personality (KSP). Identification of transcription factor genes as candidate genes in psychiatric disorders is a novel approach to further elucidate the genetic factors that, together with environmental factors, are involved in the expression of specific psychiatric phenotypes. The AP-2beta genotype and KSP scores were determined for 137 Caucasian volunteers (73 females and 64 males). The personality traits muscular tension, guilt, somatic anxiety, psychastenia and indirect aggression were significantly associated with the specific AP-2beta genotype, albeit with significant difference between genders. Based on this result the human AP-2beta gene seems to be an important candidate gene for personality disorders. Moreover, the present results suggest that the structure of the intron 2 region of the AP-2beta gene is one factor that contributes to development of the constitutional component of specific personality traits.

  13. Expression and structural features of endoglin (CD105), a transforming growth factor beta1 and beta3 binding protein, in human melanoma.

    PubMed Central

    Altomonte, M.; Montagner, R.; Fonsatti, E.; Colizzi, F.; Cattarossi, I.; Brasoveanu, L. I.; Nicotra, M. R.; Cattelan, A.; Natali, P. G.; Maio, M.

    1996-01-01

    Human endoglin (CD105) is a member of the transforming growth factor beta (TGF-beta) receptor family that binds TGF-beta1 and -beta3, but not TGF-beta2, on human endothelial cells. Immunohistochemical analyses demonstrated that CD105 is expressed on normal and neoplastic cells of the melanocytic lineage. The anti-CD105 MAb, MAEND3, stained 50, 25 and 34% of intradermal naevi, primary and metastatic melanomas investigated, respectively, and nine out of 12 melanoma cell lines. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis revealed that CD105 expressed by melanoma cells consists of a homodimeric protein with an apparent molecular weight of 180 and 95 kDa under non-reducing and reducing conditions. Cross-linking of 125I-labelled TGF-beta1 to melanoma cells, Mel 97, by disuccinimidyl suberate (DSS) demonstrated that CD105 expressed on pigmented cells binds TGF-beta1; the pattern of binding of TGF-beta1 to melanoma cells was found to be similar to that of human umbilical vein endothelial cells. The addition of exogenous, bioactive TGF-beta1 significantly (P<0.05) inhibited the growth of CD105-positive melanoma cells, Mel 97, but did not affect that of CD105-negative melanoma cells, F0-1. These data, altogether, demonstrate that CD105 is expressed on pigmented cells and might play a functionally relevant role in the biology of human melanoma cells by regulating their sensitivity to TGF-betas. Images Figure 1 Figure 3 Figure 4 PMID:8932339

  14. Murine c-mpl: a member of the hematopoietic growth factor receptor superfamily that transduces a proliferative signal.

    PubMed Central

    Skoda, R C; Seldin, D C; Chiang, M K; Peichel, C L; Vogt, T F; Leder, P

    1993-01-01

    The murine myeloproliferative leukemia virus has previously been shown to contain a fragment of the coding region of the c-mpl gene, a member of the cytokine receptor superfamily. We have isolated cDNA and genomic clones encoding murine c-mpl and localized the c-mpl gene to mouse chromosome 4. Since some members of this superfamily function by transducing a proliferative signal and since the putative ligand of mpl is unknown, we have generated a chimeric receptor to test the functional potential of mpl. The chimera consists of the extracellular domain of the human interleukin-4 receptor and the cytoplasmic domain of mpl. A mouse hematopoietic cell line transfected with this construct proliferates in response to human interleukin-4, thereby demonstrating that the cytoplasmic domain of mpl contains all elements necessary to transmit a growth stimulatory signal. In addition, we show that 25-40% of mpl mRNA found in the spleen corresponds to a novel truncated and potentially soluble isoform of mpl and that both full-length and truncated forms of mpl protein can be immunoprecipitated from lysates of transfected COS cells. Interestingly, however, although the truncated form of the receptor possesses a functional signal sequence and lacks a transmembrane domain, it is not detected in the culture media of transfected cells. Images PMID:8334987

  15. Interferon beta 2/B-cell stimulatory factor type 2 shares identity with monocyte-derived hepatocyte-stimulating factor and regulates the major acute phase protein response in liver cells.

    PubMed Central

    Gauldie, J; Richards, C; Harnish, D; Lansdorp, P; Baumann, H

    1987-01-01

    One of the oldest and most preserved of the homeostatic responses of the body to injury is the acute phase protein response associated with inflammation. The liver responds to hormone-like mediators by the increased synthesis of a series of plasma proteins called acute phase reactants. In these studies, we examined the relationship of hepatocyte-stimulating factor derived from peripheral blood monocytes to interferon beta 2 (IFN-beta 2), which has been cloned. Antibodies raised against fibroblast-derived IFN-beta having neutralizing activity against both IFN-beta 1 and -beta 2 inhibited the major hepatocyte-stimulating activity derived from monocytes. Fibroblast-derived mediator elicited the identical stimulated response in human HepG2 cells and primary rat hepatocytes as the monocyte cytokine. Finally, recombinant-derived human B-cell stimulatory factor type 2 (IFN-beta 2) from Escherichia coli induced the synthesis of all major acute phase proteins studied in human hepatoma HepG2 and primary rat hepatocyte cultures. These data demonstrate that monocyte-derived hepatocyte-stimulating factor and IFN-beta 2 share immunological and functional identity and that IFN-beta 2, also known as B-cell stimulatory factor and hybridoma plasmacytoma growth factor, has the hepatocyte as a major physiologic target and thereby is essential in controlling the hepatic acute phase response. Images PMID:2444978

  16. Tumor-induced anorexia and weight loss are mediated by the TGF-beta superfamily cytokine MIC-1.

    PubMed

    Johnen, Heiko; Lin, Shu; Kuffner, Tamara; Brown, David A; Tsai, Vicky Wang-Wei; Bauskin, Asne R; Wu, Liyun; Pankhurst, Greg; Jiang, Lele; Junankar, Simon; Hunter, Mark; Fairlie, W Douglas; Lee, Nicola J; Enriquez, Ronaldo F; Baldock, Paul A; Corey, Eva; Apple, Fred S; Murakami, Maryann M; Lin, En-Ju; Wang, Chuansong; During, Matthew J; Sainsbury, Amanda; Herzog, Herbert; Breit, Samuel N

    2007-11-01

    Anorexia and weight loss are part of the wasting syndrome of late-stage cancer, are a major cause of morbidity and mortality in cancer, and are thought to be cytokine mediated. Macrophage inhibitory cytokine-1 (MIC-1) is produced by many cancers. Examination of sera from individuals with advanced prostate cancer showed a direct relationship between MIC-1 abundance and cancer-associated weight loss. In mice with xenografted prostate tumors, elevated MIC-1 levels were also associated with marked weight, fat and lean tissue loss that was mediated by decreased food intake and was reversed by administration of antibody to MIC-1. Additionally, normal mice given systemic MIC-1 and transgenic mice overexpressing MIC-1 showed hypophagia and reduced body weight. MIC-1 mediates its effects by central mechanisms that implicate the hypothalamic transforming growth factor-beta receptor II, extracellular signal-regulated kinases 1 and 2, signal transducer and activator of transcription-3, neuropeptide Y and pro-opiomelanocortin. Thus, MIC-1 is a newly defined central regulator of appetite and a potential target for the treatment of both cancer anorexia and weight loss, as well as of obesity.

  17. CACTA-superfamily transposable element is inserted in MYB transcription factor gene of soybean line producing variegated seeds.

    PubMed

    Yan, Fan; Di, Shaokang; Takahashi, Ryoji

    2015-08-01

    The R gene of soybean, presumably encoding a MYB transcription factor, controls seed coat color. The gene consists of multiple alleles, R (black), r-m (black spots and (or) concentric streaks on brown seed), and r (brown seed). This study was conducted to determine the structure of the MYB transcription factor gene in a near-isogenic line (NIL) having r-m allele. PCR amplification of a fragment of the candidate gene Glyma.09G235100 generated a fragment of about 1 kb in the soybean cultivar Clark, whereas a fragment of about 14 kb in addition to fragments of 1 and 1.4 kb were produced in L72-2040, a Clark 63 NIL with the r-m allele. Clark 63 is a NIL of Clark with the rxp and Rps1 alleles. A DNA fragment of 13 060 bp was inserted in the intron of Glyma.09G235100 in L72-2040. The fragment had the CACTA motif at both ends, imperfect terminal inverted repeats (TIR), inverse repetition of short sequence motifs close to the 5' and 3' ends, and a duplication of three nucleotides at the site of integration, indicating that it belongs to a CACTA-superfamily transposable element. We designated the element as Tgm11. Overall nucleotide sequence, motifs of TIR, and subterminal repeats were similar to those of Tgm1 and Tgs1, suggesting that these elements comprise a family.

  18. Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster.

    PubMed

    Robertson, Hugh M; Warr, Coral G; Carlson, John R

    2003-11-25

    The insect chemoreceptor superfamily in Drosophila melanogaster is predicted to consist of 62 odorant receptor (Or) and 68 gustatory receptor (Gr) proteins, encoded by families of 60 Or and 60 Gr genes through alternative splicing. We include two previously undescribed Or genes and two previously undescribed Gr genes; two previously predicted Or genes are shown to be alternative splice forms. Three polymorphic pseudogenes and one highly defective pseudogene are recognized. Phylogenetic analysis reveals deep branches connecting multiple highly divergent clades within the Gr family, and the Or family appears to be a single highly expanded lineage within the superfamily. The genes are spread throughout the Drosophila genome, with some relatively recently diverged genes still clustered in the genome. The Gr5a gene on the X chromosome, which encodes a receptor for the sugar trehalose, has transposed from one such tandem cluster of six genes at cytological location 64, as has Gr61a, and all eight of these receptors might bind sugars. Analysis of intron evolution suggests that the common ancestor consisted of a long N-terminal exon encoding transmembrane domains 1-5 followed by three exons encoding transmembrane domains 6-7. As many as 57 additional introns have been acquired idiosyncratically during the evolution of the superfamily, whereas the ancestral introns and some of the older idiosyncratic introns have been lost at least 48 times independently. Altogether, these patterns of molecular evolution suggest that this is an ancient superfamily of chemoreceptors, probably dating back at least to the origin of the arthropods.

  19. Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster

    PubMed Central

    Robertson, Hugh M.; Warr, Coral G.; Carlson, John R.

    2003-01-01

    The insect chemoreceptor superfamily in Drosophila melanogaster is predicted to consist of 62 odorant receptor (Or) and 68 gustatory receptor (Gr) proteins, encoded by families of 60 Or and 60 Gr genes through alternative splicing. We include two previously undescribed Or genes and two previously undescribed Gr genes; two previously predicted Or genes are shown to be alternative splice forms. Three polymorphic pseudogenes and one highly defective pseudogene are recognized. Phylogenetic analysis reveals deep branches connecting multiple highly divergent clades within the Gr family, and the Or family appears to be a single highly expanded lineage within the superfamily. The genes are spread throughout the Drosophila genome, with some relatively recently diverged genes still clustered in the genome. The Gr5a gene on the X chromosome, which encodes a receptor for the sugar trehalose, has transposed from one such tandem cluster of six genes at cytological location 64, as has Gr61a, and all eight of these receptors might bind sugars. Analysis of intron evolution suggests that the common ancestor consisted of a long N-terminal exon encoding transmembrane domains 1-5 followed by three exons encoding transmembrane domains 6-7. As many as 57 additional introns have been acquired idiosyncratically during the evolution of the superfamily, whereas the ancestral introns and some of the older idiosyncratic introns have been lost at least 48 times independently. Altogether, these patterns of molecular evolution suggest that this is an ancient superfamily of chemoreceptors, probably dating back at least to the origin of the arthropods. PMID:14608037

  20. Increased T cell recruitment to the CNS after amyloid beta 1-42 immunization in Alzheimer's mice overproducing transforming growth factor-beta 1.

    PubMed

    Buckwalter, Marion S; Coleman, Bronwen S; Buttini, Manuel; Barbour, Robin; Schenk, Dale; Games, Dora; Seubert, Peter; Wyss-Coray, Tony

    2006-11-01

    Immunotherapy targeting the amyloid beta (Abeta) peptide is a novel therapy under investigation for the treatment of Alzheimer's disease (AD). A clinical trial using Abeta(1-42) (AN1792) as the immunogen was halted as a result of development of meningoencephalitis in a small number of patients. The cytokine TGF-beta1 is a key modulator of immune responses that is increased in the brain in AD. We show here that local overexpression of TGF-beta1 in the brain increases both meningeal and parenchymal T lymphocyte number. Furthermore, TGF-beta1 overexpression in a mouse model for AD [amyloid precursor protein (APP) mice] leads to development of additional T cell infiltrates when mice were immunized at a young but not old age with AN1792. Notably, only mice overproducing both Abeta (APP mice) and TGF-beta1 experienced a rise in T lymphocyte number after immunization. One-third of infiltrating T cells were CD4 positive. We did not observe significant differences in B lymphocyte numbers in any of the genotypes or treatment groups. These results demonstrate that TGF-beta1 overproduction in the brain can promote T cell infiltration, in particular after Abeta(1-42) immunization. Likewise, levels of TGF-beta1 or other immune factors in brains of AD patients may influence the response to Abeta(1-42) immunization.

  1. Thalidomide suppressed IL-1beta while enhancing TNF-alpha and IL-10, when cells in whole blood were stimulated with lipopolysaccharide.

    PubMed

    Shannon, Edward; Noveck, Robert; Sandoval, Felipe; Kamath, Burde

    2008-01-01

    Thalidomide is used to treat erythema nodosum leprosum (ENL). The events that precipitate this inflammatory reaction, which may occur in multibacillary leprosy patients, and the mechanism by which thalidomide arrest ENL, are not known. Thalidomide's ability to inhibit tumor necrosis factor alpha (TNF-alpha) in vitro has been proposed as a partial explanation of its effective treatment of ENL. In in vitro assays, thalidomide can enhance or suppress TNF-alpha. This is dependent on the stimulant used to evoke TNF-alpha; the procedure used to isolate the mononuclear cells from blood, and the predominant mononuclear cell type in the culture. To avoid artifacts that may occur during isolation of mononuclear cells from blood, we stimulated normal human blood with LPS and evaluated the effect of thalidomide and dexamethasone on TNF-alpha, and other inflammatory cytokines and biomarkers. Thalidomide suppressed interleukin 1 beta (IL-1beta) (p = 0.007), and it enhanced TNF-alpha (p = 0.007) and interleukin 10 (IL-10) (p = 0.031). Dexamethasone enhanced IL-10 (p = 0.013) and suppressed IL-1beta, TNF-alpha, interleukin 6 (IL-6), and interleukin 8 (IL-8) (p = 0.013). The two drugs did not suppress: C-reactive protein (CRP), Ig-superfamily cell-adhesion molecule 1 (ICAM 1), tumor necrosis factor receptor 1 (TNFR1), tumor necrosis factor receptor 2 (TNFR2), or amyloid A. In vitro and in vivo evidence is accumulating that TNF-alpha is not the primary cytokine targeted by thalidomide in ENL and other inflammatory conditions.

  2. Inverse expression of estrogen receptor-beta and nuclear factor-kappaB in urinary bladder carcinogenesis.

    PubMed

    Kontos, Stylianos; Kominea, Athina; Melachrinou, Maria; Balampani, Eleni; Sotiropoulou-Bonikou, Georgia

    2010-09-01

    To investigate the expression of nuclear factor-kappaB (NF-kappaB) and estrogen receptor-beta (ER-beta) signalling pathways in bladder urothelial carcinoma according to clinicopathological features, in order to elucidate their role during carcinogenesis. Immunohistochemical methodology was carried out on formalin-fixed, paraffin-embedded sections from urinary bladder carcinomas of 140 patients (94 males and 46 females) who underwent transurethral resection of bladder neoplasms. Correlations between ER-beta and NF-kappaB, and tumor grade and T-stage were evaluated, along with demographic data, sex and age. A significant decrease in ER-beta expression in the nucleus of bladder cells during loss of cell differentiation (r(s) = -0.61, P-value < 0.001, test of trend P-value = 0.003) and in muscle invasive carcinomas (T2-T4; test of trend P-value < 0.001) was found. p65 Subunit of NF-kappaB was expressed in the nucleus and in the cytoplasm of bladder epithelial cells. A strong positive association between tumor grade and nuclear expression of NF-kappaB was shown. No correlation between NF-kappaB, nuclear or cytoplasmic staining, with T-stage was observed. An inverse correlation between ER-beta and nuclear p65 immunoreactivity was observed (r(s) = -0.45, P-value < 0.001). There was no correlation with demographic data. Our immunohistochemical study suggests the possible inverse regulation of NF-kappaB and ER-beta transcription factor during bladder carcinogenesis. Selective ER-beta agonists and agents, inhibitors of NF-kappaB, might represent a possible new treatment strategy for bladder urothelial tumors.

  3. Reversal of acute and chronic synovial inflammation by anti-transforming growth factor beta.

    PubMed

    Wahl, S M; Allen, J B; Costa, G L; Wong, H L; Dasch, J R

    1993-01-01

    Transforming growth factor beta (TGF-beta) induces leukocyte recruitment and activation, events central to an inflammatory response. In this study, we demonstrate that antagonism of TGF-beta with a neutralizing antibody not only blocks inflammatory cell accumulation, but also tissue pathology in an experimental model of chronic erosive polyarthritis. Intraarticular injection of monoclonal antibody 1D11.16, which inhibits both TGF-beta 1 and TGF-beta 2 bioactivity, into animals receiving an arthropathic dose of bacterial cell walls significantly inhibits arthritis. Inhibition was observed with a single injection of 50 micrograms antibody, and a 1-mg injection blocked acute inflammation > 75% compared with the contralateral joints injected with an irrelevant isotype control antibody (MOPC21) as quantitated by an articular index (AI = 0.93 +/- 0.23 for 1D11.16, and AI = 4.0 +/- 0 on day 4; p < 0.001). Moreover, suppression of the acute arthritis achieved with a single injection of antibody was sustained into the chronic, destructive phase of the disease (on day 18, AI = 0.93 +/- 0.07 vs. AI = 2.6 +/- 0.5; p < 0.01). The decreased inflammatory index associated with anti-TGF-beta treatment was consistent with histopathologic and radiologic evidence of a therapeutic response. These data implicate TGF-beta as a profound agonist not only in the early events responsible for synovial inflammation, but also in the chronicity of streptococcal cell wall fragment-induced inflammation culminating in destructive pathology. Interrupting the cycle of leukocyte recruitment and activation with TGF-beta antagonists may provide a mechanism for resolution of chronic destructive lesions.

  4. Reversal of acute and chronic synovial inflammation by anti- transforming growth factor beta

    PubMed Central

    1993-01-01

    Transforming growth factor beta (TGF-beta) induces leukocyte recruitment and activation, events central to an inflammatory response. In this study, we demonstrate that antagonism of TGF-beta with a neutralizing antibody not only blocks inflammatory cell accumulation, but also tissue pathology in an experimental model of chronic erosive polyarthritis. Intraarticular injection of monoclonal antibody 1D11.16, which inhibits both TGF-beta 1 and TGF-beta 2 bioactivity, into animals receiving an arthropathic dose of bacterial cell walls significantly inhibits arthritis. Inhibition was observed with a single injection of 50 micrograms antibody, and a 1-mg injection blocked acute inflammation > 75% compared with the contralateral joints injected with an irrelevant isotype control antibody (MOPC21) as quantitated by an articular index (AI = 0.93 +/- 0.23 for 1D11.16, and AI = 4.0 +/- 0 on day 4; p < 0.001). Moreover, suppression of the acute arthritis achieved with a single injection of antibody was sustained into the chronic, destructive phase of the disease (on day 18, AI = 0.93 +/- 0.07 vs. AI = 2.6 +/- 0.5; p < 0.01). The decreased inflammatory index associated with anti-TGF-beta treatment was consistent with histopathologic and radiologic evidence of a therapeutic response. These data implicate TGF-beta as a profound agonist not only in the early events responsible for synovial inflammation, but also in the chronicity of streptococcal cell wall fragment-induced inflammation culminating in destructive pathology. Interrupting the cycle of leukocyte recruitment and activation with TGF-beta antagonists may provide a mechanism for resolution of chronic destructive lesions. PMID:8418203

  5. Transforming growth factor-beta in the chicken fundal layers: an immunohistochemical study.

    PubMed

    Mathis, Ute; Schaeffel, Frank

    2010-06-01

    In the chicken model of myopia, it has first been shown that imposing defocus to the retina results in active remodelling of the sclera which, in turn, results in axial length changes of the eye. Transforming growth factor-beta (TGF-beta) is one of the scleral growth modulators but its cellular localization in the fundal layers, colocalization and function are not well known. The aim of the current study was to investigate the cellular distribution of the three isoforms TGF-beta1, 2 and 3 by immunohistochemical labelling. Furthermore, the effects of visual experience that induces refractive errors on TGF-beta2 labelling were examined. Transversal cryostat sections of the fundal layers were analyzed by indirect immunofluorescent labelling and cell counts. Visual experience was changed by having the chicks wear either diffusers, or positive or negative lenses of 7D power in front of the right eyes for various periods of time. Left eyes served as uncovered controls. All TGF-beta isoforms were localized in both scleral layers. In choroid, diffuse labelling of all isoforms was found. In retina, TGF-beta1 and 3 were detected in bipolar, amacrine and ganglion cells and TGF-beta2 in amacrine and ganglion cells. To further characterize these cells, double-labelling with known amacrine and bipolar cell markers was performed (calbindin, cellular retinoic acid binding protein (CRABP), Islet1, Lim3 and protein kinase C (PKC)). TGF-beta1, 2 and 3 could be colocalized with calbindin and CRABP in single amacrine cells. TGF-beta1-positive bipolar cells were immunoreactive to Lim3. TGF-beta1 and 3 were never colocalized with PKC in bipolar cells. Also, colocalization with peptides known to be involved in myopia development in chicks, such as glucagon, or vasointestinal polypeptide and the key enzyme for dopamine synthesis, tyrosine hydroxylase, was not observed. Lenses or diffusers, worn by the chicks for various periods of time, had no effect on TGF-beta2 immunoreactivity in

  6. Transcription factor EGR-1 suppresses the growth and transformation of human HT-1080 fibrosarcoma cells by induction of transforming growth factor beta 1.

    PubMed Central

    Liu, C; Adamson, E; Mercola, D

    1996-01-01

    The early growth response 1 (EGR-1) gene product is a transcription factor with role in differentiation and growth. We have previously shown that expression of exogenous EGR-1 in various human tumor cells unexpectedly and markedly reduces growth and tumorigenicity and, conversely, that suppression of endogenous Egr-1 expression by antisense RNA eliminates protein expression, enhances growth, and promotes phenotypic transformation. However, the mechanism of these effects remained unknown. The promoter of human transforming growth factor beta 1 (TGF-beta 1) contains two GC-rich EGR-1 binding sites. We show that expression of EGR-1 in human HT-1080 fibrosarcoma cells uses increased secretion of biologically active TGF-beta 1 in direct proportion (rPearson = 0.96) to the amount of EGR-1 expressed and addition of recombinant human TGF-beta 1 is strongly growth-suppressive for these cells. Addition of monoclonal anti-TGF-beta 1 antibodies to EGR-1-expressing HT-1080 cells completely reverses the growth inhibitory effects of EGR-1. Reporter constructs bearing the EGR-1 binding segment of the TGF-beta 1 promoter was activated 4- to 6-fold relative to a control reporter in either HT-1080 cells that stably expressed or parental cells cotransfected with an EGR-1 expression vector. Expression of delta EGR-1, a mutant that cannot interact with the corepressors, nerve growth factor-activated factor binding proteins NAB1 and NAB2, due to deletion of the repressor domain, exhibited enhanced transactivation of 2- to 3.5-fold over that of wild-type EGR-1 showing that the reporter construct reflected the appropriate in vivo regulatory context. The EGR-1-stimulated transactivation was inhibited by expression of the Wilms tumor suppressor, a known specific DNA-binding competitor. These results indicate that EGR-1 suppresses growth of human HT-1080 fibrosarcoma cells by induction of TGF-beta 1. Images Fig. 1 Fig. 5 PMID:8876223

  7. Role for transforming growth factor-beta1 in alport renal disease progression.

    PubMed

    Sayers, R; Kalluri, R; Rodgers, K D; Shield, C F; Meehan, D T; Cosgrove, D

    1999-11-01

    Alport syndrome results from mutations in either the alpha3(IV), alpha4(IV), or alpha5(IV) collagen genes. The disease is characterized by a progressive glomerulonephritis usually associated with a high-frequency sensorineural hearing loss. A mouse model for an autosomal form of Alport syndrome [collagen alpha3(IV) knockout] was produced and characterized. In this study, the model was exploited to demonstrate a potential role for transforming growth factor-beta1 (TGF-beta1) in Alport renal disease pathogenesis. Kidneys from normal and Alport mice, taken at different stages during the course of renal disease progression, were analyzed by Northern blot, in situ hybridization, and immunohistology for expression of TGF-beta1 and components of the extracellular matrix. Normal and Alport human kidney was examined for TGF-beta1 expression using RNase protection. The mRNAs encoding TGF-beta1 (in both mouse and human), entactin, fibronectin, and the collagen alpha1(IV) and alpha2(IV) chains were significantly induced in total kidney as a function of Alport renal disease progression. The induction of these specific mRNAs was observed in the glomerular podocytes of animals with advanced disease. Type IV collagen, laminin-1, and fibronectin were markedly elevated in the tubulointerstitium at 10 weeks, but not at 6 weeks, suggesting that elevated expression of specific mRNAs on Northern blots reflects events associated with tubulointerstitial fibrosis. The concomitant accumulation of mRNAs encoding TGF-beta1 and extracellular matrix components in the podocytes of diseased kidneys may reflect key events in Alport renal disease progression. These data suggest a role for TGF-beta1 in both glomerular and tubulointerstitial damage associated with Alport syndrome.

  8. Improvement of macrophage dysfunction by administration of anti-transforming growth factor-beta antibody in EL4-bearing hosts.

    PubMed

    Maeda, H; Tsuru, S; Shiraishi, A

    1994-11-01

    An experimental therapy for improvement of macrophage dysfunction caused by transforming growth factor-beta (TGF-beta) was tried in EL4 tumor-bearing mice. TGF-beta was detected in cell-free ascitic fluid from EL4-bearers, but not in that from normal mice, by western blot analysis. The ascites also showed growth-suppressive activity against Mv1Lu cells, and the suppressive activity was potentiated by transient acidification. To investigate whether the functions of peritoneal macrophages were suppressed in EL4-bearers, the abilities to produce nitric oxide and tumor necrosis factor-alpha (TNF-alpha) upon lipopolysaccharide (LPS) stimulation were measured. Both abilities of macrophages in EL4-bearing mice were suppressed remarkably on day 9, and decreased further by day 14, compared with non-tumor-bearing controls. TGF-beta activity was abrogated by administration of anti-TGF-beta antibody to EL4-bearing mice. While a large amount of TGF-beta was detected in ascitic fluid from control EL4-bearers, little TGF-beta was detectable in ascites from EL4-bearers given anti-TGF-beta antibody. Furthermore, while control macrophages exhibited little or no production of nitric oxide and TNF-alpha on LPS stimulation in vitro, macrophages from EL4-bearers administered with anti-TGF-beta antibody showed the same ability as normal macrophages. These results clearly indicate that TGF-beta contributes to macrophage dysfunction and that the administration of specific antibody for TGF-beta reverses macrophage dysfunction in EL4-bearing hosts.

  9. Transforming growth factor-beta inhibits human antigen-specific CD4+ T cell proliferation without modulating the cytokine response.

    PubMed

    Tiemessen, Machteld M; Kunzmann, Steffen; Schmidt-Weber, Carsten B; Garssen, Johan; Bruijnzeel-Koomen, Carla A F M; Knol, Edward F; van Hoffen, Els

    2003-12-01

    Transforming growth factor (TGF)-beta has been demonstrated to play a key role in the regulation of the immune response, mainly by its suppressive function towards cells of the immune system. In humans, the effect of TGF-beta on antigen-specific established memory T cells has not been investigated yet. In this study antigen-specific CD4(+) T cell clones (TCC) were used to determine the effect of TGF-beta on antigen-specific proliferation, the activation status of the T cells and their cytokine production. This study demonstrates that TGF-beta is an adequate suppressor of antigen-specific T cell proliferation, by reducing the cell-cycle rate rather than induction of apoptosis. Addition of TGF-beta resulted in increased CD69 expression and decreased CD25 expression on T cells, indicating that TGF-beta is able to modulate the activation status of in vivo differentiated T cells. On the contrary, the antigen-specific cytokine production was not affected by TGF-beta. Although TGF-beta was suppressive towards the majority of the T cells, insensitivity of a few TCC towards TGF-beta was also observed. This could not be correlated to differential expression of TGF-beta signaling molecules such as Smad3, Smad7, SARA (Smad anchor for receptor activation) and Hgs (hepatocyte growth factor-regulated tyrosine kinase substrate). In summary, TGF-beta has a pronounced inhibitory effect on antigen-specific T cell proliferation without modulating their cytokine production.

  10. Determination of transmission factors for beta radiation using Al 2O 3:C commercial OSL dosimeters

    NASA Astrophysics Data System (ADS)

    Pinto, T. N. O.; Caldas, L. V. E.

    2010-07-01

    In recent years, the optically stimulated luminescence (OSL) technique has been used in personal dosimetry, and aluminum oxide (Al 2O 3:C) has become a very useful material for this technique. The objective of this work was the determination of the transmission factors for beta radiation using Al 2O 3:C commercial dosimeters and the OSL method. The obtained results were similar to the transmission factors reported in the beta source calibration certificates.

  11. Transforming growth factor-beta 1 (TGF-beta1) promotes IL-2 mRNA expression through the up-regulation of NF-kappaB, AP-1 and NF-AT in EL4 cells.

    PubMed

    Han, S H; Yea, S S; Jeon, Y J; Yang, K H; Kaminski, N E

    1998-12-01

    Transforming growth factor beta1 (TGF-beta1) has been previously shown to modulate interleukin 2 (IL-2) secretion by activated T-cells. In the present studies, we determined that TGF-beta1 induced IL-2 mRNA expression in the murine T-cell line EL4, in the absence of other stimuli. IL-2 mRNA expression was significantly induced by TGF-beta1 (0.1-1 ng/ml) over a relatively narrow concentration range, which led to the induction of IL-2 secretion. Under identical condition, we examined the effect of TGF-beta1 on the activity of nuclear factor AT (NF-AT), nuclear factor kappaB (NF-kappaB), activator protein-1 (AP-1) and octamer, all of which contribute to the regulation of IL-2 gene expression. Electrophoretic mobility shift assays showed that TGF-beta1 markedly increased NF-AT, NF-kappaB and AP-1 binding to their respective cognate DNA binding sites, whereas octamer binding remained constant, as compared with untreated cells. Employing a reporter gene expression system with p(NF-kappaB)3-CAT, p(NF-AT)3-CAT and p(AP-1)3-CAT, TGF-beta1 treatment of transfected EL4 cells induced a dose-related increase in chloramphenicol acetyltransferase activity that correlated well with the DNA binding profile found in the electrophoretic mobility shift assay studies. These results show that TGF-beta1, in the absence of any additional stimuli, up-regulates the activity of key transcription factors involved in IL-2 gene expression, including NF-AT, NF-kappaB and AP-1, to help promote IL-2 mRNA expression by EL4 cells.

  12. 17-Beta-estradiol inhibits transforming growth factor-beta signaling and function in breast cancer cells via activation of extracellular signal-regulated kinase through the G protein-coupled receptor 30.

    PubMed

    Kleuser, Burkhard; Malek, Daniela; Gust, Ronald; Pertz, Heinz H; Potteck, Henrik

    2008-12-01

    Breast cancer development and breast cancer progression involves the deregulation of growth factors leading to uncontrolled cellular proliferation, invasion and metastasis. Transforming growth factor (TGF)-beta plays a crucial role in breast cancer because it has the potential to act as either a tumor suppressor or a pro-oncogenic chemokine. A cross-communication between the TGF-beta signaling network and estrogens has been postulated, which is important for breast tumorigenesis. Here, we provide evidence that inhibition of TGF-beta signaling is associated with a rapid estrogen-dependent nongenomic action. Moreover, we were able to demonstrate that estrogens disrupt the TGF-beta signaling network as well as TGF-beta functions in breast cancer cells via the G protein-coupled receptor 30 (GPR30). Silencing of GPR30 in MCF-7 cells completely reduced the ability of 17-beta-estradiol (E2) to inhibit the TGF-beta pathway. Likewise, in GPR30-deficient MDA-MB-231 breast cancer cells, E2 achieved the ability to suppress TGF-beta signaling only after transfection with GPR30-encoding plasmids. It is most interesting that the antiestrogen fulvestrant (ICI 182,780), which possesses agonistic activity at the GPR30, also diminished TGF-beta signaling. Further experiments attempted to characterize the molecular mechanism by which activated GPR30 inhibits the TGF-beta pathway. Our results indicate that GPR30 induces the stimulation of the mitogen-activated protein kinases (MAPKs), which interferes with the activation of Smad proteins. Inhibition of MAPK activity prevented the ability of E2 from suppressing TGF-beta signaling. These findings are of great clinical relevance, because down-regulation of TGF-beta signaling is associated with the development of breast cancer resistance in response to antiestrogens.

  13. Density-dependent induction of apoptosis by transforming growth factor-beta 1 in a human ovarian carcinoma cell line.

    PubMed

    Mathieu, C; Jozan, S; Mazars, P; Côme, M G; Moisand, A; Valette, A

    1995-01-01

    Transforming growth factor-beta 1 inhibited proliferation of a human ovarian carcinoma cell line (NIH-OVCAR-3). The inhibition of NIH-OVCAR-3 cell proliferation was accompanied by a decrease in clonogenic potential, evidenced by the reduced ability of TGF-beta 1-treated NIH-OVCAR-3 cells to form colonies on a plastic substratum. This rapid decrease of clonogenic potential, which was detected 6 h after addition of TGF-beta 1 was dose-dependent (IC50 = 4 pM). Fluorescence microscopy of DAPI-stained cells supported by electron-microscopic examination showed that TGF-beta 1 induced chromatin condensation and nuclear fragmentation. In addition, oligonucleosomal-sized fragments were detected in the TGF-beta 1-treated cells. These features indicated that TGF-beta 1 induced NIH-OVCAR-3 cell death by an apoptosis-like mechanism. This TGF-beta 1 apoptotic effect was subject to modulation by cell density. It was observed that an increase in cell density (up to 20 x 10(3) cells/cm2) protected NIH-OVCAR-3 cells against apoptosis induced by TGF-beta 1. Conditioned medium from high-density cultures of NIH-OVCAR-3 cells did not inhibit apoptosis induced by TGF-beta 1 on NIH-OVCAR-3 cells cultured at low density, suggesting that the protective effect of cell density was not related to the cell secretion of a soluble survival factor.

  14. Homologues of insulinase, a new superfamily of metalloendopeptidases.

    PubMed Central

    Rawlings, N D; Barrett, A J

    1991-01-01

    On the basis of a statistical analysis of an alignment of the amino acid sequences, a new superfamily of metalloendopeptidases is proposed, consisting of human insulinase, Escherichia coli protease III and mitochondrial processing endopeptidases from Saccharomyces and Neurospora. These enzymes do not contain the 'HEXXH' consensus sequence found in all previously recognized zinc metalloendopeptidases. PMID:2025223

  15. Genome-wide identification and phylogenetic analysis of the AP2/ERF gene superfamily in sweet orange (Citrus sinensis).

    PubMed

    Ito, T M; Polido, P B; Rampim, M C; Kaschuk, G; Souza, S G H

    2014-09-26

    Sweet orange (Citrus sinensis) plays an important role in the economy of more than 140 countries, but it is grown in areas with intermittent stressful soil and climatic conditions. The stress tolerance could be addressed by manipulating the ethylene response factor (ERF) transcription factors because they orchestrate plant responses to environmental stress. We performed an in silico study on the ERFs in the expressed sequence tag database of C. sinensis to identify potential genes that regulate plant responses to stress. We identified 108 putative genes encoding protein sequences of the AP2/ERF superfamily distributed within 10 groups of amino acid sequences. Ninety-one genes were assembled from the ERF family containing only one AP2/ERF domain, 13 genes were assembled from the AP2 family containing two AP2/ERF domains, and four other genes were assembled from the RAV family containing one AP2/ERF domain and a B3 domain. Some conserved domains of the ERF family genes were disrupted into a few segments by introns. This irregular distribution of genes in the AP2/ERF superfamily in different plant species could be a result of genomic losses or duplication events in a common ancestor. The in silico gene expression revealed that 67% of AP2/ERF genes are expressed in tissues with usual plant development, and 14% were expressed in stressed tissues. Because the AP2/ERF superfamily is expressed in an orchestrated way, it is possible that the manipulation of only one gene may result in changes in the whole plant function, which could result in more tolerant crops.

  16. DACH1 inhibits transforming growth factor-beta signaling through binding Smad4.

    PubMed

    Wu, Kongming; Yang, Ying; Wang, Chenguang; Davoli, Maria A; D'Amico, Mark; Li, Anping; Cveklova, Kveta; Kozmik, Zbynek; Lisanti, Michael P; Russell, Robert G; Cvekl, Ales; Pestell, Richard G

    2003-12-19

    The vertebrate homologues of Drosophila dachsund, DACH1 and DACH2, have been implicated as important regulatory genes in development. DACH1 plays a role in retinal and pituitary precursor cell proliferation and DACH2 plays a specific role in myogenesis. DACH proteins contain a domain (DS domain) that is conserved with the proto-oncogenes Ski and Sno. Since the Ski/Sno proto-oncogenes repress AP-1 and SMAD signaling, we hypothesized that DACH1 might play a similar cellular function. Herein, DACH1 was found to be expressed in breast cancer cell lines and to inhibit transforming growth factor-beta (TGF-beta)-induced apoptosis. DACH1 repressed TGF-beta induction of AP-1 and Smad signaling in gene reporter assays and repressed endogenous TGF-beta-responsive genes by microarray analyses. DACH1 bound to endogenous NCoR and Smad4 in cultured cells and DACH1 co-localized with NCoR in nuclear dotlike structures. NCoR enhanced DACH1 repression, and the repression of TGF-beta-induced AP-1 or Smad signaling by DACH1 required the DACH1 DS domain. The DS domain of DACH was sufficient for NCoR binding at a Smad4-binding site. Smad4 was required for DACH1 repression of Smad signaling. In Smad4 null HTB-134 cells, DACH1 inhibited the activation of SBE-4 reporter activity induced by Smad2 or Smad3 only in the presence of Smad4. DACH1 participates in the negative regulation of TGF-beta signaling by interacting with NCoR and Smad4.

  17. Cellular and molecular mechanisms of chronic rhinosinusitis and potential therapeutic strategies: review on cytokines, nuclear factor kappa B and transforming growth factor beta.

    PubMed

    Phan, N T; Cabot, P J; Wallwork, B D; Cervin, A U; Panizza, B J

    2015-07-01

    Chronic rhinosinusitis is characterised by persistent inflammation of the sinonasal mucosa. Multiple pathophysiological mechanisms are likely to exist. Previous research has focused predominantly on T-helper type cytokines to highlight the inflammatory mechanisms. However, proteins such as nuclear factor kappa B and transforming growth factor beta are increasingly recognised to have important roles in sinonasal inflammation and tissue remodelling. This review article explores the roles of T-helper type cytokines, nuclear factor kappa B and transforming growth factor beta in the pathophysiological mechanisms of chronic rhinosinusitis. An understanding of these mechanisms will allow for better identification and classification of chronic rhinosinusitis endotypes, and, ultimately, improved therapeutic strategies.

  18. Phospholipid Regulation of the Nuclear Receptor Superfamily

    PubMed Central

    Crowder, Mark K.; Seacrist, Corey D.; Blind, Raymond D.

    2016-01-01

    Nuclear receptors are ligand-activated transcription factors whose diverse biological functions are classically regulated by cholesterol-based small molecules. Over the past few decades, a growing body of evidence has demonstrated that phospholipids and other similar amphipathic molecules can also specifically bind and functionally regulate the activity of certain nuclear receptors, suggesting a critical role for these non-cholesterol-based molecules in transcriptional regulation. Phosphatidylcholines, phosphoinositides and sphingolipids are a few of the many phospholipid like molecules shown to quite specifically regulate nuclear receptors in mouse models, cell lines and in vitro. More recent evidence has also shown that certain nuclear receptors can “present” a bound phospholipid headgroup to key lipid signaling enzymes, which can then modify the phospholipid headgroup with very unique kinetic properties. Here, we review the broad array of phospholipid / nuclear receptor interactions, from the perspective of the chemical nature of the phospholipid, and the cellular abundance of the phospholipid. We also view the data in the light of well established paradigms for phospholipid mediated transcriptional regulation, as well as newer models of how phospholipids might effect transcription in the acute regulation of complex nuclear signaling pathways. Thus, this review provides novel insight into the new, non-membrane associated roles nuclear phospholipids play in regulating complex nuclear events, centered on the nuclear receptor superfamily of transcription factors. PMID:27838257

  19. Diversification of a single ancestral gene into a successful toxin superfamily in highly venomous Australian funnel-web spiders.

    PubMed

    Pineda, Sandy S; Sollod, Brianna L; Wilson, David; Darling, Aaron; Sunagar, Kartik; Undheim, Eivind A B; Kely, Laurence; Antunes, Agostinho; Fry, Bryan G; King, Glenn F

    2014-03-05

    Spiders have evolved pharmacologically complex venoms that serve to rapidly subdue prey and deter predators. The major toxic factors in most spider venoms are small, disulfide-rich peptides. While there is abundant evidence that snake venoms evolved by recruitment of genes encoding normal body proteins followed by extensive gene duplication accompanied by explosive structural and functional diversification, the evolutionary trajectory of spider-venom peptides is less clear. Here we present evidence of a spider-toxin superfamily encoding a high degree of sequence and functional diversity that has evolved via accelerated duplication and diversification of a single ancestral gene. The peptides within this toxin superfamily are translated as prepropeptides that are posttranslationally processed to yield the mature toxin. The N-terminal signal sequence, as well as the protease recognition site at the junction of the propeptide and mature toxin are conserved, whereas the remainder of the propeptide and mature toxin sequences are variable. All toxin transcripts within this superfamily exhibit a striking cysteine codon bias. We show that different pharmacological classes of toxins within this peptide superfamily evolved under different evolutionary selection pressures. Overall, this study reinforces the hypothesis that spiders use a combinatorial peptide library strategy to evolve a complex cocktail of peptide toxins that target neuronal receptors and ion channels in prey and predators. We show that the ω-hexatoxins that target insect voltage-gated calcium channels evolved under the influence of positive Darwinian selection in an episodic fashion, whereas the κ-hexatoxins that target insect calcium-activated potassium channels appear to be under negative selection. A majority of the diversifying sites in the ω-hexatoxins are concentrated on the molecular surface of the toxins, thereby facilitating neofunctionalisation leading to new toxin pharmacology.

  20. Self-assembly in the ferritin nano-cage protein superfamily.

    PubMed

    Zhang, Yu; Orner, Brendan P

    2011-01-01

    Protein self-assembly, through specific, high affinity, and geometrically constraining protein-protein interactions, can control and lead to complex cellular nano-structures. Establishing an understanding of the underlying principles that govern protein self-assembly is not only essential to appreciate the fundamental biological functions of these structures, but could also provide a basis for their enhancement for nano-material applications. The ferritins are a superfamily of well studied proteins that self-assemble into hollow cage-like structures which are ubiquitously found in both prokaryotes and eukaryotes. Structural studies have revealed that many members of the ferritin family can self-assemble into nano-cages of two types. Maxi-ferritins form hollow spheres with octahedral symmetry composed of twenty-four monomers. Mini-ferritins, on the other hand, are tetrahedrally symmetric, hollow assemblies composed of twelve monomers. This review will focus on the structure of members of the ferritin superfamily, the mechanism of ferritin self-assembly and the structure-function relations of these proteins.

  1. Transcriptional activation of mouse mast cell Protease-7 by activin and transforming growth factor-beta is inhibited by microphthalmia-associated transcription factor.

    PubMed

    Funaba, Masayuki; Ikeda, Teruo; Murakami, Masaru; Ogawa, Kenji; Tsuchida, Kunihiro; Sugino, Hiromu; Abe, Matanobu

    2003-12-26

    Previous studies have revealed that activin A and transforming growth factor-beta1 (TGF-beta1) induced migration and morphological changes toward differentiation in bone marrow-derived cultured mast cell progenitors (BMCMCs). Here we show up-regulation of mouse mast cell protease-7 (mMCP-7), which is expressed in differentiated mast cells, by activin A and TGF-beta1 in BMCMCs, and the molecular mechanism of the gene induction of mmcp-7. Smad3, a signal mediator of the activin/TGF-beta pathway, transcriptionally activated mmcp-7. Microphthalmia-associated transcription factor (MITF), a tissue-specific transcription factor predominantly expressed in mast cells, melanocytes, and heart and skeletal muscle, inhibited Smad3-mediated mmcp-7 transcription. MITF associated with Smad3, and the C terminus of MITF and the MH1 and linker region of Smad3 were required for this association. Complex formation between Smad3 and MITF was neither necessary nor sufficient for the inhibition of Smad3 signaling by MITF. MITF inhibited the transcriptional activation induced by the MH2 domain of Smad3. In addition, MITF-truncated N-terminal amino acids could associate with Smad3 but did not inhibit Smad3-mediated transcription. The level of Smad3 was decreased by co-expression of MITF but not of dominant-negative MITF, which resulted from proteasomal protein degradation. The changes in the level of Smad3 protein were paralleled by those in Smad3-mediated signaling activity. These findings suggest that MITF negatively regulates Smad-dependent activin/TGF-beta signaling in a tissue-specific manner.

  2. Factors that influence the beta-diversity of spider communities in northwestern Argentinean Grasslands

    PubMed Central

    Rodriguez-Artigas, Sandra M.; Ballester, Rodrigo

    2016-01-01

    Beta-diversity, defined as spatial replacement in species composition, is crucial to the understanding of how local communities assemble. These changes can be driven by environmental or geographic factors (such as geographic distance), or a combination of the two. Spiders have been shown to be good indicators of environmental quality. Accordingly, spiders are used in this work as model taxa to establish whether there is a decrease in community similarity that corresponds to geographic distance in the grasslands of the Campos & Malezales ecoregion (Corrientes). Furthermore, the influence of climactic factors and local vegetation heterogeneity (environmental factors) on assemblage composition was evaluated. Finally, this study evaluated whether the differential dispersal capacity of spider families is a factor that influences their community structure at a regional scale. Spiders were collected with a G-Vac from vegetation in six grassland sites in the Campos & Malezales ecoregion that were separated by a minimum of 13 km. With this data, the impact of alpha-diversity and different environmental variables on the beta-diversity of spider communities was analysed. Likewise, the importance of species replacement and nesting on beta-diversity and their contribution to the regional diversity of spider families with different dispersion capacities was evaluated. The regional and site-specific inventories obtained were complete. The similarity between spider communities declined as the geographic distance between sites increased. Environmental variables also influenced community composition; stochastic events and abiotic forces were the principal intervening factors in assembly structure. The differential dispersal capacity of spider groups also influenced community structure at a regional scale. The regional beta-diversity, as well as species replacement, was greater in high and intermediate vagility spiders; while nesting was greater in spiders with low dispersion

  3. Transforming growth factor-beta production in anti-glomerular basement membrane disease in the rabbit.

    PubMed Central

    Coimbra, T.; Wiggins, R.; Noh, J. W.; Merritt, S.; Phan, S. H.

    1991-01-01

    The purpose of this study was to assay for the presence of collagen synthesis stimulatory activity in the kidney during immune-induced renal injury that results in severe fibrosis in both glomerular and interstitial compartments. A model of antiglomerular basement (anti-GBM) disease in the rabbit was induced on day 0 by the injection of anti-GBM antibody and renal cortex tissues were then sampled at various time points. Only conditioned media prepared from diseased renal cortical samples showed collagen synthesis stimulatory activity when tested on rabbit mesangial cells. The activity had an estimated molecular weight range of 16 to 25 kd and was neutralized by antibody to transforming growth factor-beta (TGF-beta). A standard assay for TGF-beta using a mink lung epithelial cell line confirmed the increase in TGF-beta activity in conditioned media of diseased cortex from day 7 and day 14 animals, which was not significantly activated by previous acidification. This suggests that most of the TGF-beta present in renal conditioned media was in the active form. The increase in renal cortical secretion of active TGF-beta was accompanied by increases in renal cortical TGF-beta mRNA content on days 4 and 7 after induction, with subsequent return to control levels. A similar increase in TGF-beta activity was present in nonacidified conditioned media of purified glomeruli from diseased days 7 and 14 animals, which was also accompanied by significant increases in TGF-beta mRNA. However with acidification no significant differences were noted between control and diseased samples, suggesting the presence of substantial latent TGF-beta activity in control glomerular conditioned media. These same control-conditioned media contained inhibitor activity for added exogenous TGF-beta. These results support the conclusion that the association between increased TGF-beta secretion and increased renal cortical collagen synthesis in this model is consistent with a role for this cytokine

  4. Caveolae are negative regulators of transforming growth factor-beta1 signaling in ureteral smooth muscle cells.

    PubMed

    Stehr, Maximilian; Estrada, Carlos R; Khoury, Joseph; Danciu, Theodora E; Sullivan, Maryrose P; Peters, Craig A; Solomon, Keith R; Freeman, Michael R; Adam, Rosalyn M

    2004-12-01

    The mechanisms underlying ureteral cell regulation are largely unknown. Previous studies have identified lipid rafts/caveolae as regulators of growth stimulatory signals in ureteral smooth muscle cells (USMCs). In this study we determined whether growth inhibitory signaling by transforming growth factor-beta1 (TGF-beta1) is also regulated by caveolae in USMC. Expression of components of the TGF-beta1 signaling axis in USMCs was determined by immunoblot and mRNA analyses. Growth regulatory activity of TGF-beta1 was assessed by H-thymidine incorporation. In select experiments caveolae were disrupted reversibly by cholesterol depletion and replenishment prior to TGF-beta1 treatment. TGF-beta1-responsive gene expression was evaluated using the TGF-beta1 responsive promoter-reporter construct 3TP-Lux. USMCs expressed TGF-beta1, types I and II TGF-beta1 receptors, and the effector Smad-2. TGF-beta1 potently inhibited DNA synthesis in USMCs (IC50 60 pM). TGF-beta1 mediated DNA synthesis inhibition was potentiated following the disruption of caveolae by cholesterol depletion. This effect was reversible with membrane cholesterol restoration. TGF-beta1 stimulated gene activity was augmented by caveolae disruption, while caveolae reformation returned promoter activity to baseline levels. TGF-beta1 is a potent growth inhibitor of USMCs and its activity can be enhanced by caveolae ablation. These findings suggest a role for TGF-beta1 in the growth regulation of normal ureteral cells and implicate caveolar membrane domains in the negative regulation of TGF-beta1 signaling. These studies may be relevant to ureteral pathologies that are characterized by smooth muscle dysplasia.

  5. The corepressor CtBP interacts with Evi-1 to repress transforming growth factor beta signaling.

    PubMed

    Izutsu, K; Kurokawa, M; Imai, Y; Maki, K; Mitani, K; Hirai, H

    2001-05-01

    Evi-1 is a zinc finger nuclear protein whose inappropriate expression leads to leukemic transformation of hematopoietic cells in mice and humans. This was previously shown to block the antiproliferative effect of transforming growth factor beta (TGF-beta). Evi-1 represses TGF-beta signaling by direct interaction with Smad3 through its first zinc finger motif. Here, it is demonstrated that Evi-1 represses Smad-induced transcription by recruiting C-terminal binding protein (CtBP) as a corepressor. Evi-1 associates with CtBP1 through one of the consensus binding motifs, and this association is required for efficient inhibition of TGF-beta signaling. A specific inhibitor for histone deacetylase (HDAc) alleviates Evi-1-mediated repression of TGF-beta signaling, suggesting that HDAc is involved in the transcriptional repression by Evi-1. This identifies a novel function of Evi-1 as a member of corepressor complexes and suggests that aberrant recruitment of corepressors is one of the mechanisms for Evi-1-induced leukemogenesis.

  6. Evolutionary history, structural features and biochemical diversity of the NlpC/P60 superfamily of enzymes.

    PubMed

    Anantharaman, Vivek; Aravind, L

    2003-01-01

    Peptidoglycan is hydrolyzed by a diverse set of enzymes during bacterial growth, development and cell division. The N1pC/P60 proteins define a family of cell-wall peptidases that are widely represented in various bacterial lineages. Currently characterized members are known to hydrolyze D-gamma-glutamyl-meso-diaminopimelate or N-acetylmuramate-L-alanine linkages. Detailed analysis of the N1pC/P60 peptidases showed that these proteins define a large superfamily encompassing several diverse groups of proteins. In addition to the well characterized P60-like proteins, this superfamily includes the AcmB/LytN and YaeF/YiiX families of bacterial proteins, the amidase domain of bacterial and kinetoplastid glutathionylspermidine synthases (GSPSs), and several proteins from eukaryotes, phages, poxviruses, positive-strand RNA viruses, and certain archaea. The eukaryotic members include lecithin retinol acyltransferase (LRAT), nematode developmental regulator Egl-26, and candidate tumor suppressor H-rev107. These eukaryotic proteins, along with the bacterial YaeF/poxviral G6R family, show a circular permutation of the catalytic domain. We identified three conserved residues, namely a cysteine, a histidine and a polar residue, that are involved in the catalytic activities of this superfamily. Evolutionary analysis of this superfamily shows that it comprises four major families, with diverse domain architectures in each of them. Several related, but distinct, catalytic activities, such as murein degradation, acyl transfer and amide hydrolysis, have emerged in the N1pC/P60 superfamily. The three conserved catalytic residues of this superfamily are shown to be equivalent to the catalytic triad of the papain-like thiol peptidases. The predicted structural features indicate that the N1pC/P60 enzymes contain a fold similar to the papain-like peptidases, transglutaminases and arylamine acetyltransferases.

  7. Bioactive molecules in milk and their role in health and disease: the role of transforming growth factor-beta.

    PubMed

    Donnet-Hughes, A; Duc, N; Serrant, P; Vidal, K; Schiffrin, E J

    2000-02-01

    Human breast milk is rich in nutrients, hormones, growth factors and immunoactive molecules, which influence the growth, development and immune status of the newborn infant. Although several of these factors are also present in bovine milk, the greater susceptibility of the formula-fed infant to infection and disease and the development of allergy is often attributed to the reduced level of protective factors in milk formulas. Nevertheless, modifying manufacturing processes may preserve the biological activity of some bioactive molecules in end products. Transforming growth factor (TGF)-beta is one such molecule. TGF-beta is a polypeptide, which has been described in both human and bovine milk. It is implicated in many processes, including epithelial cell growth and differentiation, development, carcinogenesis and immune regulation. The present article discusses the biological activity of TGF-beta2 that has been preserved and activated in a cow's milk-based product. More specifically, it addresses possible mechanisms of action in the intestinal lumen and speculates on how milk products containing naturally occurring TGF-beta2 could be exploited in functional foods for the infant or as therapies for specific intestinal diseases.

  8. Transforming growth factor-beta regulates mammary carcinoma cell survival and interaction with the adjacent microenvironment.

    PubMed

    Bierie, Brian; Stover, Daniel G; Abel, Ty W; Chytil, Anna; Gorska, Agnieszka E; Aakre, Mary; Forrester, Elizabeth; Yang, Li; Wagner, Kay-Uwe; Moses, Harold L

    2008-03-15

    Transforming growth factor (TGF)-beta signaling has been associated with early tumor suppression and late tumor progression; however, many of the mechanisms that mediate these processes are not known. Using Cre/LoxP technology, with the whey acidic protein promoter driving transgenic expression of Cre recombinase (WAP-Cre), we have now ablated the type II TGF-beta receptor (T beta RII) expression specifically within mouse mammary alveolar progenitors. Transgenic expression of the polyoma virus middle T antigen, under control of the mouse mammary tumor virus enhancer/promoter, was used to produce mammary tumors in the absence or presence of Cre (T beta RII((fl/fl);PY) and T beta RII((fl/fl);PY;WC), respectively). The loss of TGF-beta signaling significantly decreased tumor latency and increased the rate of pulmonary metastasis. The loss of TGF-beta signaling was significantly correlated with increased tumor size and enhanced carcinoma cell survival. In addition, we observed significant differences in stromal fibrovascular abundance and composition accompanied by increased recruitment of F4/80(+) cell populations in T beta RII((fl/fl);PY;WC) mice when compared with T beta RII((fl/fl);PY) controls. The recruitment of F4/80(+) cells correlated with increased expression of known inflammatory genes including Cxcl1, Cxcl5, and Ptgs2 (cyclooxygenase-2). Notably, we also identified an enriched K5(+) dNp63(+) cell population in primary T beta RII((fl/fl);PY;WC) tumors and corresponding pulmonary metastases, suggesting that loss of TGF-beta signaling in this subset of carcinoma cells can contribute to metastasis. Together, our current results indicate that loss of TGF-beta signaling in mammary alveolar progenitors may affect tumor initiation, progression, and metastasis through regulation of both intrinsic cell signaling and adjacent stromal-epithelial interactions in vivo.

  9. Cyclic stretching force selectively up-regulates transforming growth factor-beta isoforms in cultured rat mesangial cells.

    PubMed Central

    Riser, B. L.; Cortes, P.; Heilig, C.; Grondin, J.; Ladson-Wofford, S.; Patterson, D.; Narins, R. G.

    1996-01-01

    Glomerular distention from increased intraglomerular pressure stretches mesangial cells (MCs). Stretching MCs in culture stimulates extracellular matrix accumulation, suggesting that this may be a mechanism for glomerular hypertension-associated glomerulosclerosis. We examined whether mechanical stretching serves as a stimulus for the synthesis and activation of the prosclerotic molecule transforming growth factor (TGF)-beta, thus providing a potential system for auto-induction of extracellular matrix. Rat MCs cultured on flexible-bottom plates were subjected to cyclic stretching for up to 3 days and then assayed for TGF-beta mRNA, secretion of TGF-beta, and localization of active TGF-beta by immunostaining. MCs contained mRNA for all three mammalian isoforms of TGF-beta. Cyclic stretching for 36 hours increased TGF-beta1 and TGF-beta3 mRNA levels approximately twofold, without altering the levels of TGF-beta2 mRNA. This was followed at 48 to 72 hours by the increased secretion of both latent and active TGF-beta1. Latent, but not active, TGF-beta3 secretion also increased whereas the levels of TGF-beta2 were unaffected by mechanical force. The stretching force in this system is unequally distributed over the culture membrane. Localization of active TGF-beta by immunostaining demonstrated that the quantity of cell-associated cytokine across the culture was directly proportional to the zonal amplitude of the stretching force. These results demonstrate that stretching force stimulates MCs to selectively release and activate TGF-beta1. This mechanical induction of TGF-beta1 may help explain the increased extracellular matrix associated with intraglomerular hypertension. Images Figure 1 Figure 3 PMID:8669477

  10. Regeneration of hyaline articular cartilage with irradiated transforming growth factor beta1-producing fibroblasts.

    PubMed

    Song, Sun U; Hong, Young-Jin; Oh, In-Suk; Yi, Youngsuk; Choi, Kyoung Baek; Lee, Jung Woo; Park, Kwang-Won; Han, Jeoung-Uk; Suh, Jun-Kyu; Lee, Kwan Hee

    2004-01-01

    The regeneration of hyaline articular cartilage by cell-mediated gene therapy using transforming growth factor beta(1) (TGF-beta(1))-producing fibroblasts (NIH 3T3-TGF-beta(1)) has been reported previously. In this study, we investigated whether TGF-beta(1)-producing fibroblasts irradiated with a lethal dose of radiation are still capable of inducing the regeneration of hyaline articular cartilage. NIH 3T3TGF-beta(1) fibroblasts were exposed to doses of 20, 40, or 80 Gy, using a irradiator, and then injected into artificially made partial defects on the femoral condyle of rabbit knee joints. The rabbits were killed 3 or 6 weeks postinjection and hyaline articular cartilage regeneration was evaluated by histological and immunohistochemical staining (n = 5 per each group). Irradiated NIH 3T3-TGFbeta(1) fibroblasts started to die rapidly 3 days after irradiation; moreover, the kinetics of their viability were similar regardless of the radiation intensity. TGF-beta1 expression, measured by ELISA, showed that the TGF-beta(1) protein produced from the irradiated cells peaked 5 days after irradiation and thereafter declined rapidly. Complete filling of the defect with reparative tissue occurred in all the groups, although variations were observed in terms of the nature of the repair tissue. Histological and immunohistochemical staining of the repair tissue showed that the tissue newly formed by irradiated NIH 3T3-TGF-beta(1) fibroblasts after exposure to 20 Gy had hyaline cartilage-like characteristics, as was observed in the nonirradiated controls. On the other hand, the repair tissue formed by NIH 3T3-TGF-beta(1) fibroblasts irradiated with 40 or 80 Gy showed more fibrous cartilage-like tissue. These results suggest that TGF-beta(1)-producing fibroblasts irradiated up to a certain level of lethal dose (i.e., 20 Gy) are able to induce normal-appearing articular cartilage in vivo. Therefore, irradiated heterologous cell-mediated TGF-beta(1) gene therapy may be clinically

  11. Hind limb scaling of kangaroos and wallabies (superfamily Macropodoidea): implications for hopping performance, safety factor and elastic savings

    PubMed Central

    McGowan, C P; Skinner, J; Biewener, A A

    2008-01-01

    The aim of this study was to examine hind limb scaling of the musculoskeletal system in the Macropodoidea, the superfamily containing wallabies and kangaroos, to re-examine the effect of size on the locomotor mechanics and physiology of marsupial hopping. Morphometric musculoskeletal analyses were conducted of 15 species and skeletal specimens of 21 species spanning a size range from 0.8 to 80 kg that included representatives of 12 of the 16 extant genera of macropodoids. We found that unlike other groups, macropodoids are able to match force demands associated with increasing body size primarily through a combination of positive allometry in muscle area and muscle moment arms. Isometric scaling of primary hind limb bones suggests, however, that larger species experience relatively greater bone stresses. Muscle to tendon area ratios of the ankle extensors scale with strong positive allometry, indicating that peak tendon stresses also increase with increasing body size but to a lesser degree than previously reported. Consistent with previous morphological and experimental studies, large macropodoids are therefore better suited for elastic strain energy recovery but operate at lower safety factors, which likely poses an upper limit to body size. Scaling patterns for extant macropodoids suggest that extinct giant kangaroos (∼250 kg) were likely limited in locomotor capacity. PMID:18086129

  12. Novel Computational Protocols for Functionally Classifying and Characterising Serine Beta-Lactamases

    PubMed Central

    Das, Sayoni; Dawson, Natalie L.; Dobrijevic, Dragana; Orengo, Christine

    2016-01-01

    Beta-lactamases represent the main bacterial mechanism of resistance to beta-lactam antibiotics and are a significant challenge to modern medicine. We have developed an automated classification and analysis protocol that exploits structure- and sequence-based approaches and which allows us to propose a grouping of serine beta-lactamases that more consistently captures and rationalizes the existing three classification schemes: Classes, (A, C and D, which vary in their implementation of the mechanism of action); Types (that largely reflect evolutionary distance measured by sequence similarity); and Variant groups (which largely correspond with the Bush-Jacoby clinical groups). Our analysis platform exploits a suite of in-house and public tools to identify Functional Determinants (FDs), i.e. residue sites, responsible for conferring different phenotypes between different classes, different types and different variants. We focused on Class A beta-lactamases, the most highly populated and clinically relevant class, to identify FDs implicated in the distinct phenotypes associated with different Class A Types and Variants. We show that our FunFHMMer method can separate the known beta-lactamase classes and identify those positions likely to be responsible for the different implementations of the mechanism of action in these enzymes. Two novel algorithms, ASSP and SSPA, allow detection of FD sites likely to contribute to the broadening of the substrate profiles. Using our approaches, we recognise 151 Class A types in UniProt. Finally, we used our beta-lactamase FunFams and ASSP profiles to detect 4 novel Class A types in microbiome samples. Our platforms have been validated by literature studies, in silico analysis and some targeted experimental verification. Although developed for the serine beta-lactamases they could be used to classify and analyse any diverse protein superfamily where sub-families have diverged over both long and short evolutionary timescales. PMID

  13. Soybean (Glycine max) expansin gene superfamily origins: segmental and tandem duplication events followed by divergent selection among subfamilies

    PubMed Central

    2014-01-01

    Background Expansins are plant cell wall loosening proteins that are involved in cell enlargement and a variety of other developmental processes. The expansin superfamily contains four subfamilies; namely, α-expansin (EXPA), β-expansin (EXPB), expansin-like A (EXLA), and expansin-like B (EXLB). Although the genome sequencing of soybeans is complete, our knowledge about the pattern of expansion and evolutionary history of soybean expansin genes remains limited. Results A total of 75 expansin genes were identified in the soybean genome, and grouped into four subfamilies based on their phylogenetic relationships. Structural analysis revealed that the expansin genes are conserved in each subfamily, but are divergent among subfamilies. Furthermore, in soybean and Arabidopsis, the expansin gene family has been mainly expanded through tandem and segmental duplications; however, in rice, segmental duplication appears to be the dominant process that generates this superfamily. The transcriptome atlas revealed notable differential expression in either transcript abundance or expression patterns under normal growth conditions. This finding was consistent with the differential distribution of the cis-elements in the promoter region, and indicated wide functional divergence in this superfamily. Moreover, some critical amino acids that contribute to functional divergence and positive selection were detected. Finally, site model and branch-site model analysis of positive selection indicated that the soybean expansin gene superfamily is under strong positive selection, and that divergent selection constraints might have influenced the evolution of the four subfamilies. Conclusion This study demonstrated that the soybean expansin gene superfamily has expanded through tandem and segmental duplication. Differential expression indicated wide functional divergence in this superfamily. Furthermore, positive selection analysis revealed that divergent selection constraints might have

  14. External pH modulates EAG superfamily K+ channels through EAG-specific acidic residues in the voltage sensor

    PubMed Central

    Kazmierczak, Marcin; Zhang, Xiaofei; Chen, Bihan; Mulkey, Daniel K.; Shi, Yingtang; Wagner, Paul G.; Pivaroff-Ward, Kendra; Sassic, Jessica K.; Bayliss, Douglas A.

    2013-01-01

    The Ether-a-go-go (EAG) superfamily of voltage-gated K+ channels consists of three functionally distinct gene families (Eag, Elk, and Erg) encoding a diverse set of low-threshold K+ currents that regulate excitability in neurons and muscle. Previous studies indicate that external acidification inhibits activation of three EAG superfamily K+ channels, Kv10.1 (Eag1), Kv11.1 (Erg1), and Kv12.1 (Elk1). We show here that Kv10.2, Kv12.2, and Kv12.3 are similarly inhibited by external protons, suggesting that high sensitivity to physiological pH changes is a general property of EAG superfamily channels. External acidification depolarizes the conductance–voltage (GV) curves of these channels, reducing low threshold activation. We explored the mechanism of this high pH sensitivity in Kv12.1, Kv10.2, and Kv11.1. We first examined the role of acidic voltage sensor residues that mediate divalent cation block of voltage activation in EAG superfamily channels because protons reduce the sensitivity of Kv12.1 to Zn2+. Low pH similarly reduces Mg2+ sensitivity of Kv10.1, and we found that the pH sensitivity of Kv11.1 was greatly attenuated at 1 mM Ca2+. Individual neutralizations of a pair of EAG-specific acidic residues that have previously been implicated in divalent block of diverse EAG superfamily channels greatly reduced the pH response in Kv12.1, Kv10.2, and Kv11.1. Our results therefore suggest a common mechanism for pH-sensitive voltage activation in EAG superfamily channels. The EAG-specific acidic residues may form the proton-binding site or alternatively are required to hold the voltage sensor in a pH-sensitive conformation. The high pH sensitivity of EAG superfamily channels suggests that they could contribute to pH-sensitive K+ currents observed in vivo. PMID:23712551

  15. External pH modulates EAG superfamily K+ channels through EAG-specific acidic residues in the voltage sensor.

    PubMed

    Kazmierczak, Marcin; Zhang, Xiaofei; Chen, Bihan; Mulkey, Daniel K; Shi, Yingtang; Wagner, Paul G; Pivaroff-Ward, Kendra; Sassic, Jessica K; Bayliss, Douglas A; Jegla, Timothy

    2013-06-01

    The Ether-a-go-go (EAG) superfamily of voltage-gated K(+) channels consists of three functionally distinct gene families (Eag, Elk, and Erg) encoding a diverse set of low-threshold K(+) currents that regulate excitability in neurons and muscle. Previous studies indicate that external acidification inhibits activation of three EAG superfamily K(+) channels, Kv10.1 (Eag1), Kv11.1 (Erg1), and Kv12.1 (Elk1). We show here that Kv10.2, Kv12.2, and Kv12.3 are similarly inhibited by external protons, suggesting that high sensitivity to physiological pH changes is a general property of EAG superfamily channels. External acidification depolarizes the conductance-voltage (GV) curves of these channels, reducing low threshold activation. We explored the mechanism of this high pH sensitivity in Kv12.1, Kv10.2, and Kv11.1. We first examined the role of acidic voltage sensor residues that mediate divalent cation block of voltage activation in EAG superfamily channels because protons reduce the sensitivity of Kv12.1 to Zn(2+). Low pH similarly reduces Mg(2+) sensitivity of Kv10.1, and we found that the pH sensitivity of Kv11.1 was greatly attenuated at 1 mM Ca(2+). Individual neutralizations of a pair of EAG-specific acidic residues that have previously been implicated in divalent block of diverse EAG superfamily channels greatly reduced the pH response in Kv12.1, Kv10.2, and Kv11.1. Our results therefore suggest a common mechanism for pH-sensitive voltage activation in EAG superfamily channels. The EAG-specific acidic residues may form the proton-binding site or alternatively are required to hold the voltage sensor in a pH-sensitive conformation. The high pH sensitivity of EAG superfamily channels suggests that they could contribute to pH-sensitive K(+) currents observed in vivo.

  16. Effects of sex steroids on expression of genes regulating growth-related mechanisms in rainbow trout (Oncorhynchus mykiss)

    USDA-ARS?s Scientific Manuscript database

    Effects of a single injection of 17-estradiol (E2), testosterone (T), or 5a-dihydrotestosterone (DHT) on expression of genes central to the growth hormone (GH)/insulin-like growth factor (IGF) axis, muscle-regulatory factors, TGF-beta superfamily signaling cascade, and estrogen receptors were determ...

  17. Exploring and Expanding the Fatty-Acid-Binding Protein Superfamily in Fasciola Species.

    PubMed

    Morphew, Russell M; Wilkinson, Toby J; Mackintosh, Neil; Jahndel, Veronika; Paterson, Steve; McVeigh, Paul; Abbas Abidi, Syed M; Saifullah, Khalid; Raman, Muthusamy; Ravikumar, Gopalakrishnan; LaCourse, James; Maule, Aaron; Brophy, Peter M

    2016-09-02

    The liver flukes Fasciola hepatica and F. gigantica infect livestock worldwide and threaten food security with climate change and problematic control measures spreading disease. Fascioliasis is also a foodborne disease with up to 17 million humans infected. In the absence of vaccines, treatment depends on triclabendazole (TCBZ), and overuse has led to widespread resistance, compromising future TCBZ control. Reductionist biology from many laboratories has predicted new therapeutic targets. To this end, the fatty-acid-binding protein (FABP) superfamily has proposed multifunctional roles, including functions intersecting vaccine and drug therapy, such as immune modulation and anthelmintic sequestration. Research is hindered by a lack of understanding of the full FABP superfamily complement. Although discovery studies predicted FABPs as promising vaccine candidates, it is unclear if uncharacterized FABPs are more relevant for vaccine formulations. We have coupled genome, transcriptome, and EST data mining with proteomics and phylogenetics to reveal a liver fluke FABP superfamily of seven clades: previously identified clades I-III and newly identified clades IV-VII. All new clade FABPs were analyzed using bioinformatics and cloned from both liver flukes. The extended FABP data set will provide new study tools to research the role of FABPs in parasite biology and as therapy targets.

  18. CCAAT-binding factor regulates expression of the beta1 subunit of soluble guanylyl cyclase gene in the BE2 human neuroblastoma cell line

    NASA Technical Reports Server (NTRS)

    Sharina, Iraida G.; Martin, Emil; Thomas, Anthony; Uray, Karen L.; Murad, Ferid

    2003-01-01

    Soluble guanylyl cyclase (sGC) is a cytosolic enzyme producing the intracellular messenger cyclic guanosine monophosphate (cGMP) on activation with nitric oxide (NO). sGC is an obligatory heterodimer composed of alpha and beta subunits. We investigated human beta1 sGC transcriptional regulation in BE2 human neuroblastoma cells. The 5' upstream region of the beta1 sGC gene was isolated and analyzed for promoter activity by using luciferase reporter constructs. The transcriptional start site of the beta1 sGC gene in BE2 cells was identified. The functional significance of consensus transcriptional factor binding sites proximal to the transcriptional start site was investigated by site deletions in the 800-bp promoter fragment. The elimination of CCAAT-binding factor (CBF) and growth factor independence 1 (GFI1) binding cores significantly diminished whereas deletion of the NF1 core elevated the transcription. Electrophoretic mobility-shift assay (EMSA) and Western analysis of proteins bound to biotinated EMSA probes confirmed the interaction of GFI1, CBF, and NF1 factors with the beta1 sGC promoter. Treatment of BE2 cells with genistein, known to inhibit the CBF binding to DNA, significantly reduced protein levels of beta1 sGC by inhibiting transcription. In summary, our study represents an analysis of the human beta1 sGC promoter regulation in human neuroblastoma BE2 cells and identifies CBF as a critically important factor in beta1 sGC expression.

  19. A critical role for transcription factor Smad4 in T cell function independent of transforming growth factor beta receptor signaling

    PubMed Central

    Gu, Ai-Di; Zhang, Song; Wang, Yunqi; Xiong, Hui; Curtis, Thomas A.; Wan, Yisong Y.

    2014-01-01

    Summary Transforming growth factor-beta (TGF-β) suppresses T cell function to maintain self-tolerance and to promote tumor immune evasion. Yet how Smad4, a transcription factor component of TGF-β signaling, regulates T cell function remains unclear. Here we have demonstrated an essential role for Smad4 in promoting T cell function during autoimmunity and anti-tumor immunity. Smad4 deletion rescued the lethal autoimmunity resulting from transforming growth factor-beta receptor (TGF-βR) deletion and compromised T-cell-mediated tumor rejection. While Smad4 was dispensable for T cell generation, homeostasis and effector function, it was essential for T cell proliferation following activation in vitro and in vivo. The transcription factor Myc was identified to mediate Smad4-controlled T cell proliferation. This study thus reveals a requirement of Smad4 for T-cell-mediated autoimmunity and tumor rejection, which is beyond the current paradigm. It highlights a TGF-βR-independent role for Smad4 in promoting T cell function, autoimmunity and anti-tumor immunity. PMID:25577439

  20. SNP analyses of growth factor genes EGF, TGF{beta}-1, and HGF reveal haplotypic association of EGF with autism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toyoda, Takao; Thanseem, Ismail; Kawai, Masayoshi

    Autism is a pervasive neurodevelopmental disorder diagnosed in early childhood. Growth factors have been found to play a key role in the cellular differentiation and proliferation of the central and peripheral nervous systems. Epidermal growth factor (EGF) is detected in several regions of the developing and adult brain, where, it enhances the differentiation, maturation, and survival of a variety of neurons. Transforming growth factor-{beta} (TGF{beta}) isoforms play an important role in neuronal survival, and the hepatocyte growth factor (HGF) has been shown to exhibit neurotrophic activity. We examined the association of EGF, TGF{beta}1, and HGF genes with autism, in amore » trio association study, using DNA samples from families recruited to the Autism Genetic Resource Exchange; 252 trios with a male offspring scored for autism were selected for the study. Transmission disequilibrium test revealed significant haplotypic association of EGF with autism. No significant SNP or haplotypic associations were observed for TGF{beta}1 or HGF. Given the role of EGF in brain and neuronal development, we suggest a possible role of EGF in the pathogenesis of autism.« less

  1. Transforming growth factor beta-independent shuttling of Smad4 between the cytoplasm and nucleus.

    PubMed

    Pierreux, C E; Nicolás, F J; Hill, C S

    2000-12-01

    Smad4 plays a pivotal role in all transforming growth factor beta (TGF-beta) signaling pathways. Here we describe six widely expressed alternatively spliced variants of human Smad4 with deletions of different exons in the linker, the region of Smad4 that separates the two well-conserved MH1 and MH2 domains. All these Smad4 variants form complexes with activated Smad2 and Smad3 and are incorporated into DNA-binding complexes with the transcription factor Fast-1, regardless of the amount of linker they contain. However, sequences encoded by exons 5 to 7 in the linker are essential for transcriptional activation. Most importantly, our observation that different Smad4 isoforms have different subcellular localizations has led us to the identification of a functional CRM1-dependent nuclear export signal in the Smad4 linker and a constitutively active nuclear localization signal in the N-terminal MH1 domain. In the absence of TGF-beta signaling, we conclude that Smad4 is rapidly and continuously shuttling between the nucleus and the cytoplasm, the distribution of Smad4 between the nucleus and the cytoplasm being dictated by the relative strengths of the nuclear import and export signals. We demonstrate that inhibition of CRM1-mediated nuclear export by treatment of cells with leptomycin B results in endogenous Smad4 accumulating very rapidly in the nucleus. Endogenous Smad2 and Smad3 are completely unaffected by leptomycin B treatment, indicating that the nucleocytoplasmic shuttling is specific for Smad4. We propose that, upon TGF-beta signaling, complex formation between Smad4 and activated Smad2 or -3 leads to nuclear accumulation of Smad4 through inhibition of its nuclear export. We demonstrate that after prolonged TGF-beta signaling Smad2 becomes dephosphorylated and Smad2 and Smad4 accumulate back in the cytoplasm.

  2. Hepatocyte growth factor and transforming growth factor beta regulate 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene expression in rat hepatocyte primary cultures.

    PubMed Central

    Joaquin, M; Rosa, J L; Salvadó, C; López, S; Nakamura, T; Bartrons, R; Gil, J; Tauler, A

    1996-01-01

    Hepatocyte growth factor (HGF) and transforming growth factor beta (TGF-beta) are believed to be of major importance for hepatic regeneration after liver damage. We have studied the effect of these growth factors on fructose 2,6-bisphosphate (Fru-2,6-P2) levels and the expression of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (6PF2K/Fru-2,6-BPase) in rat hepatocyte primary cultures. Our results demonstrate that HGF activates the expression of the 6PF2K/Fru-2,6-BPase gene by increasing the levels of its mRNA. As a consequence of this activation, the amount of 6PF2K/Fru-2,6-BPase protein and 6-phosphofructo-2-kinase activity increased, which was reflected by a rise in Fru-2,6-P2 levels. In contrast, TGF-beta decreased the levels of 6PF2K/Fru-2,6-BPase mRNA, which led to a decrease in the amount of 6PF2K/Fru-2,6-BPase protein and Fru-2,6-P2. The different actions of HGF and TGF-beta on 6PF2K/Fru-2,6-BPase gene expression are concomitant with their effect on cell proliferation. Here we show that, in the absence of hormones, primary cultures of hepatocytes express the F-type isoenzyme. In addition, HGF increases the expression of this isoenzyme, and dexamethasone activates the L-type isoform. HGF and TGF-beta were able to inhibit this activation. PMID:8660288

  3. Inhibition of GSK-3beta ameliorates hepatic ischemia-reperfusion injury through GSK-3beta/beta-catenin signaling pathway in mice.

    PubMed

    Xia, Yong-Xiang; Lu, Ling; Wu, Zheng-Shan; Pu, Li-Yong; Sun, Bei-Cheng; Wang, Xue-Hao

    2012-06-01

    Glycogen synthase kinase (GSK)-3beta/beta-catenin signaling regulates ischemia-reperfusion (I/R)-induced apoptosis and proliferation, and inhibition of GSK-3beta has beneficial effects on I/R injury in the heart and the central nervous system. However, the role of this signaling in hepatic I/R injury remains unclear. The present study aimed to investigate the effects and mechanism of GSK-3beta/beta-catenin signaling in hepatic I/R injury. Male C57BL/6 mice (weighing 22-25 g) were pretreated with either SB216763, an inhibitor of GSK-3beta, or vehicle. These mice were subjected to partial hepatic I/R. Blood was collected for test of alanine aminotransferase (ALT), and liver specimen for assays of phosphorylation at the Ser9 residue of GSK-3beta, GSK-3beta activity, axin 2 and the anti-apoptotic factors Bcl-2 and survivin, as well as the proliferative factors cyclin D1 and proliferating cell nuclear antigen, and apoptotic index (TUNEL). Real-time PCR, Western blotting and immunohistochemical staining were used. SB216763 increased phospho-GSK-3beta levels and suppressed GSK-3beta activity (1880+/-229 vs 3280+/-272 cpm, P<0.01). ALT peaked at 6 hours after reperfusion. Compared with control, SB216763 decreased ALT after 6 hours of reperfusion (4451+/-424 vs 7868+/-845 IU/L, P<0.01), and alleviated hepatocyte necrosis and vacuolization. GSK-3beta inhibition led to the accumulation of beta-catenin in the cytosol (0.40+/-0.05 vs 1.31+/-0.11, P<0.05) and nucleus (0.62+/-0.14 vs 1.73+/-0.12, P<0.05), beta-catenin further upregulated the expression of axin 2. Upregulation of GSK-3beta/beta-catenin signaling increased Bcl-2, survivin and cyclin D1. Serological and histological analyses showed that SB216763 alleviated hepatic I/R-induced injury by reducing apoptosis (1.4+/-0.2% vs 3.6+/-0.4%, P<0.05) and enhanced liver proliferation (56+/-8% vs 19+/-4%, P<0.05). Inhibition of GSK-3beta ameliorates hepatic I/R injury through the GSK-3beta/beta-catenin signaling pathway.

  4. Mouse Balb/c3T3 cell mutant with low epidermal growth factor receptor activity: induction of stable anchorage-independent growth by transforming growth factor. beta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuratomi, Y.; Ono, M.; Yasutake, C.

    1987-01-01

    A mutant clone (MO-5) was originally isolated as a clone resistant to Na/sup +//K/sup +/ ionophoric antibiotic monensin from mouse Balb/c3T3 cells. MO-5 was found to show low receptor-endocytosis activity for epidermal growth factor (EGF):binding activity for EGF in MO-5 was less than one tenth of that in Balb/c3T3. Anchorage-independent growth of MO-5 was compared to that of Balb/c3T3 when assayed by colony formation capacity in soft agar. Coadministration of EGF and TGF-..beta.. efficiently enhanced anchorage-independent growth of normal rat kidney (NRK) cells, but neither factor alone was competent to promote the anchorage-independent growth. The frequency of colonies appearing inmore » soft agar of MO-5 or Balb/c3T3 was significantly enhanced by TGF-..beta.. while EGF did not further enhance that of MO-5 or Balb/c3T3. Colonies of Balb/c3T3 formed in soft agar in the presence of TGF-..beta.. showed low colony formation capacity in soft agar in the absence of TGF-..beta... Colonies of MO-5 formed by TGF-..beta.. in soft agar, however, showed high colony formation capacity in soft agar in the absence of TGF-..beta... Pretreatment of MO-5 with TGF-..beta.. induced secretion of TGF-..beta..-like activity from the cells, while the treatment of Balb/c3T3 did not induce the secretion of a significant amount of TGF-..beta..-like activity. The loss of EGF-receptor activity in the stable expression and maintenance of the transformed phenotype in MO-5 is discussed.« less

  5. Experiment Pamir-2. Fianit: A giant super-family with halo (Epsilon sub 0 at approximately 10(17) eV)

    NASA Technical Reports Server (NTRS)

    Zatsepin, G. T.

    1985-01-01

    A superfamily with halo of extremely high energy named Fianit was recorded in X-ray emulsion chamber (XEC) at the Pamirs (atmospheric depth 600 g/sq.cm.). Detailed description of the superfamily and results of its analysis are presented.

  6. Effects of concomitant use of fibroblast growth factor (FGF)-2 with beta-tricalcium phosphate ({beta}-TCP) on the beagle dog 1-wall periodontal defect model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anzai, Jun, E-mail: anzai_jun@kaken.co.jp; Department of Periodontology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871; Kitamura, Masahiro, E-mail: kitamura@dent.osaka-u.ac.jp

    Research highlights: {yields} Concomitant use of FGF-2 and {beta}-TCP (an osteo-conductive scaffold) significantly promotes periodontal regeneration in the severe periodontitis model (1-wall defect model) of beagle dog. {yields} FGF-2 enhanced new bone formation via {beta}-TCP at the defects. {yields} In particular, FGF-2 dramatically regenerated new periodontal ligament and cementum formations at the defects, that is one of the most important healing outcomes during the process of periodontal regeneration. {yields} Epithelial downgrowth (undesirable wound healing) was decreased by administration of FGF-2. {yields} This manuscript indicates for the first time that concomitant use of FGF-2 and {beta}-TCP is efficacious in regenerating periodontalmore » tissue following severe destruction of the tissue by progression of periodontitis. -- Abstract: The effects of concomitant use of fibroblast growth factor-2 (FGF-2) and beta-tricalcium phosphate ({beta}-TCP) on periodontal regeneration were investigated in the beagle dog 1-wall periodontal defect model. One-wall periodontal defects were created in the mesial portion of both sides of the mandibular first molars, and 0.3% FGF-2 plus {beta}-TCP or {beta}-TCP alone was administered. Radiographic evaluation was performed at 0, 3, and 6 weeks. At 6 weeks, the periodontium with the defect site was removed and histologically analyzed. Radiographic findings showed that co-administration of FGF-2 significantly increased bone mineral contents of the defect sites compared with {beta}-TCP alone. Histologic analysis revealed that the length of the regenerated periodontal ligament, the cementum, distance to the junctional epithelium, new bone height, and area of newly formed bone were significantly increased in the FGF-2 group. No abnormal inflammatory response or ankylosis was observed in either group. These findings indicate the efficacy of concomitant use of FGF-2 and {beta}-TCP as an osteoconductive material for periodontal

  7. Functional Diversity of Haloacid Dehalogenase Superfamily Phosphatases from Saccharomyces cerevisiae: BIOCHEMICAL, STRUCTURAL, AND EVOLUTIONARY INSIGHTS.

    PubMed

    Kuznetsova, Ekaterina; Nocek, Boguslaw; Brown, Greg; Makarova, Kira S; Flick, Robert; Wolf, Yuri I; Khusnutdinova, Anna; Evdokimova, Elena; Jin, Ke; Tan, Kemin; Hanson, Andrew D; Hasnain, Ghulam; Zallot, Rémi; de Crécy-Lagard, Valérie; Babu, Mohan; Savchenko, Alexei; Joachimiak, Andrzej; Edwards, Aled M; Koonin, Eugene V; Yakunin, Alexander F

    2015-07-24

    The haloacid dehalogenase (HAD)-like enzymes comprise a large superfamily of phosphohydrolases present in all organisms. The Saccharomyces cerevisiae genome encodes at least 19 soluble HADs, including 10 uncharacterized proteins. Here, we biochemically characterized 13 yeast phosphatases from the HAD superfamily, which includes both specific and promiscuous enzymes active against various phosphorylated metabolites and peptides with several HADs implicated in detoxification of phosphorylated compounds and pseudouridine. The crystal structures of four yeast HADs provided insight into their active sites, whereas the structure of the YKR070W dimer in complex with substrate revealed a composite substrate-binding site. Although the S. cerevisiae and Escherichia coli HADs share low sequence similarities, the comparison of their substrate profiles revealed seven phosphatases with common preferred substrates. The cluster of secondary substrates supporting significant activity of both S. cerevisiae and E. coli HADs includes 28 common metabolites that appear to represent the pool of potential activities for the evolution of novel HAD phosphatases. Evolution of novel substrate specificities of HAD phosphatases shows no strict correlation with sequence divergence. Thus, evolution of the HAD superfamily combines the conservation of the overall substrate pool and the substrate profiles of some enzymes with remarkable biochemical and structural flexibility of other superfamily members. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Cross-talk between Smad and p38 MAPK signalling in transforming growth factor {beta} signal transduction in human glioblastoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dziembowska, Magdalena; Danilkiewicz, Malgorzata; Wesolowska, Aleksandra

    2007-03-23

    Transforming growth factor-beta (TGF-{beta}) is a multifunctional cytokine involved in the regulation of cell proliferation, differentiation, and survival. Malignant tumour cells often do not respond to TGF-{beta} by growth inhibition, but retain responsiveness to cytokine in regulating extracellular matrix deposition, cell adhesion, and migration. We demonstrated that TGF-{beta}1 does not affect viability or proliferation of human glioblastoma T98G, but increases transcriptional responses exemplified by induction of MMP-9 expression. TGF-{beta} receptors were functional in T98G glioblastoma cells leading to SMAD3/SMAD4 nuclear translocation and activation of SMAD-dependent promoter. In parallel, a selective activation of p38 MAPK, and phosphorylation of its substrates: ATF2more » and c-Jun proteins were followed by a transient activation of AP-1 transcription factor. Surprisingly, an inhibition of p38 MAPK with a specific inhibitor, SB202190, abolished TGF-inducible activation of Smad-dependent promoter and decreased Smad2 phosphorylation. It suggests an unexpected interaction between Smad and p38 MAPK pathways in TGF-{beta}1-induced signalling.« less

  9. Gonadal Identity in the Absence of Pro-Testis Factor SOX9 and Pro-Ovary Factor Beta-Catenin in Mice1

    PubMed Central

    Nicol, Barbara; Yao, Humphrey H.-C.

    2015-01-01

    Sex-reversal cases in humans and genetic models in mice have revealed that the fate of the bipotential gonad hinges upon the balance between pro-testis SOX9 and pro-ovary beta-catenin pathways. Our central query was: if SOX9 and beta-catenin define the gonad's identity, then what do the gonads become when both factors are absent? To answer this question, we developed mouse models that lack either Sox9, beta-catenin, or both in the somatic cells of the fetal gonads and examined the morphological outcomes and transcriptome profiles. In the absence of Sox9 and beta-catenin, both XX and XY gonads progressively lean toward the testis fate, indicating that expression of certain pro-testis genes requires the repression of the beta-catenin pathway, rather than a direct activation by SOX9. We also observed that XY double knockout gonads were more masculinized than their XX counterpart. To identify the genes responsible for the initial events of masculinization and to determine how the genetic context (XX vs. XY) affects this process, we compared the transcriptomes of Sox9/beta-catenin mutant gonads and found that early molecular changes underlying the XY-specific masculinization involve the expression of Sry and 21 SRY direct target genes, such as Sox8 and Cyp26b1. These results imply that when both Sox9 and beta-catenin are absent, Sry is capable of activating other pro-testis genes and drive testis differentiation. Our findings not only provide insight into the mechanism of sex determination, but also identify candidate genes that are potentially involved in disorders of sex development. PMID:26108792

  10. The oncoprotein Ski acts as an antagonist of transforming growth factor-beta signaling by suppressing Smad2 phosphorylation.

    PubMed

    Prunier, Celine; Pessah, Marcia; Ferrand, Nathalie; Seo, Su Ryeon; Howe, Philip; Atfi, Azeddine

    2003-07-11

    The phosphorylation of Smad2 and Smad3 by the transforming growth factor (TGF)-beta-activated receptor kinases and their subsequent heterodimerization with Smad4 and translocation to the nucleus form the basis for a model how Smad proteins work to transmit TGF-beta signals. The transcriptional activity of Smad2-Smad4 or Smad3-Smad4 complexes can be limited by the corepressor Ski, which is believed to interact with Smad complexes on TGF-beta-responsive promoters and represses their ability to activate TGF-beta target genes by assembling on DNA a repressor complex containing histone deacetylase. Here we show that Ski can block TGF-beta signaling by interfering with the phosphorylation of Smad2 and Smad3 by the activated TGF-beta type I receptor. Furthermore, we demonstrate that overexpression of Ski induces the assembly of Smad2-Smad4 and Smad3-Smad4 complexes independent of TGF-beta signaling. The ability of Ski to engage Smad proteins in nonproductive complexes provides new insights into the molecular mechanism used by Ski for disabling TGF-beta signaling.

  11. Extending the family table: insights into the FGF superfamily from beyond vertebrates

    PubMed Central

    2014-01-01

    Since the discovery of Fibroblast Growth Factors much focus has been placed on elucidating the roles for each vertebrate FGF ligand, receptor, and regulating molecules in the context of vertebrate development, human disorders and cancer. Studies in human, mouse, Xenopus, chick, and zebrafish have gone a long way to help us understand [AS1]which FGFs are involved in which processes. However, in recent years, as more genomes are sequenced, more information is becoming available from many non-vertebrate models and a more complete picture of the FGF superfamily as a whole is emerging. In some cases less redundancy in the FGF signaling system in invertebrate models may allow for more mechanistic insights. Studies in cnidaria have highlighted how ancient FGF signaling is, and helped provide insight into the evolution of the FGF gene family. Work in C. elegans has shown that different splice forms can be used for functional specificity in invertebrate FGF signaling. Comparing FGFs from Ciona to those in vertebrates and FGFs from Tribolium to Drosophila reveals some important clues as to the process of gene loss, duplication and subfunctionalization of FGFs throughout evolution. Finally, comparing all members of the FGF ligand superfamily reveals variability in many properties, which may point to a feature of FGFs as being highly adaptable with regards to protein structure and mechanism. Further studies on FGF signaling outside of vertebrates is likely to complement work in vertebrates by contributing many insights to the FGF field as a whole and providing unexpected information that could be used for medical applications. PMID:20860061

  12. An orphan viral TNF receptor superfamily member identified in lymphocystis disease virus.

    PubMed

    Pontejo, Sergio M; Sánchez, Carolina; Martín, Rocío; Mulero, Victoriano; Alcami, Antonio; Alejo, Alí

    2013-06-07

    Lymphocystis disease virus (LCDV) is a large icosahedral dsDNA-containing virus of the Lymphocystivirus genus within the Iridoviridae family that can cause disease in more than 140 marine and freshwater fish species. While several isolates have been charcaterized and classified into distinct genotypes the complete genomic sequence is currently only available from two species, the LCDV-1, isolated from flounder (Platichtys flesus) in Europe and the LCDV-C, isolated from Japanese cultured flounder (Paralichthys olivaceus) in China. Analysis of the genome of LCDV-C showed it to encode a protein named LDVICp016 with similarities to the Tumour necrosis factor receptor (TNFR) superfamily with immunomodulatory potential. We have expressed and purified the recombinant protein LDVICp016 and screened for potential interaction partners using surface plasmon resonance. Commercially available human and mouse members of the TNF superfamily (TNFSF), along with a representative set of fish-derived TNFSF were tested.We have found the LDVICp016 protein to be secreted and we have identified a second viral TNFR encoded by ORF 095 of the same virus. None of the 42 tested proteins were found to interact with LDVICp016. We show that LDVICp016 is a secreted protein belonging to the TNF receptor family that may be part of a larger gene family in Lymphocystiviruses. While the ligand of this protein remains unknown, possibly due to the species specific nature of this interaction, further investigations into the potential role of this protein in the blockade of immune responses in its fish host are required.

  13. An orphan viral TNF receptor superfamily member identified in lymphocystis disease virus

    PubMed Central

    2013-01-01

    Background Lymphocystis disease virus (LCDV) is a large icosahedral dsDNA-containing virus of the Lymphocystivirus genus within the Iridoviridae family that can cause disease in more than 140 marine and freshwater fish species. While several isolates have been charcaterized and classified into distinct genotypes the complete genomic sequence is currently only available from two species, the LCDV-1, isolated from flounder (Platichtys flesus) in Europe and the LCDV-C, isolated from Japanese cultured flounder (Paralichthys olivaceus) in China. Analysis of the genome of LCDV-C showed it to encode a protein named LDVICp016 with similarities to the Tumour necrosis factor receptor (TNFR) superfamily with immunomodulatory potential. Findings We have expressed and purified the recombinant protein LDVICp016 and screened for potential interaction partners using surface plasmon resonance. Commercially available human and mouse members of the TNF superfamily (TNFSF), along with a representative set of fish-derived TNFSF were tested. We have found the LDVICp016 protein to be secreted and we have identified a second viral TNFR encoded by ORF 095 of the same virus. None of the 42 tested proteins were found to interact with LDVICp016. Conclusions We show that LDVICp016 is a secreted protein belonging to the TNF receptor family that may be part of a larger gene family in Lymphocystiviruses. While the ligand of this protein remains unknown, possibly due to the species specific nature of this interaction, further investigations into the potential role of this protein in the blockade of immune responses in its fish host are required. PMID:23758704

  14. Relationship between subclinical rejection and genotype, renal messenger RNA, and plasma protein transforming growth factor-beta1 levels.

    PubMed

    Hueso, Miguel; Navarro, Estanis; Moreso, Francesc; Beltrán-Sastre, Violeta; Ventura, Francesc; Grinyó, Josep M; Serón, Daniel

    2006-05-27

    Transforming growth factor (TGF)-beta(1) is increased in allograft rejection and its production is associated with single nucleotide polymorphisms (SNPs). The contribution of SNPs at codons 10 and 25 of the TGF-beta(1) gene to renal allograft damage was assessed in 6-month protocol biopsies and their association with TGF-beta(1) production. TGF-beta(1) genotypes were evaluated by polymerase chain reaction (PCR)/restriction fragment length polymorphism. Intragraft TGF-beta(1) messenger RNA (mRNA) was measured by real-time PCR and TGF-beta(1) plasma levels were assessed by enzyme-linked immunosorbent assay. Eighty consecutive patients were included. Allele T at codon 10 (risk ratio, 6.7; P = 0.02) and an episode of acute rejection before protocol biopsy (risk ratio, 6.2; P = 0.01) were independent predictors of subclinical rejection (SCR). TGF-beta(1) plasma levels, but not those of TGF-beta(1) mRNA, were increased in patients with SCR (2.59 ng/mL +/- 0.91 [n = 22] vs. 2.05 ng/mL +/- 0.76 [n = 43]; P = 0.01). There was no association between allele T and TGF-beta(1) plasma or intragraft levels. Allele T at codon 10 of the TGF-beta(1) gene is associated with a higher incidence of SCR.

  15. Identification of an essential active-site residue in the α-D-phosphohexomutase enzyme superfamily.

    PubMed

    Lee, Yingying; Mehra-Chaudhary, Ritcha; Furdui, Cristina; Beamer, Lesa J

    2013-06-01

    Enzymes in the α-d-phosphohexomutase superfamily catalyze the conversion of 1-phosphosugars to their 6-phospho counterparts. Their phosphoryl transfer reaction has long been proposed to require general acid-base catalysts, but candidate residues for these key roles have not been identified. In this study, we show through mutagenesis and kinetic studies that a histidine (His329) in the active site is critical for enzyme activity in a well-studied member of the superfamily, phosphomannomutase/phosphoglucomutase from Pseudomonas aeruginosa. Crystallographic characterization of an H329A mutant protein showed no significant changes from the wild-type enzyme, excluding structural disruption as the source of its compromised activity. Mutation of the structurally analogous lysine residue in a related protein, phosphoglucomutase from Salmonella typhimurium, also results in significant catalytic impairment. Analyses of protein-ligand complexes of the P. aeruginosa enzyme show that His329 is appropriately positioned to abstract a proton from the O1/O6 hydroxyl of the phosphosugar substrates, and thus may serve as the general base in the reaction. Histidine is strongly conserved at this position in many proteins in the superfamily, and lysine is also often conserved at a structurally corresponding position, particularly in the phosphoglucomutase enzyme sub-group. These studies shed light on the mechanism of this important enzyme superfamily, and may facilitate the design of mechanism-based inhibitors. Structural data have been deposited in the Protein Data Bank with accession number 4IL8. © 2013 The Authors Journal compilation © 2013 FEBS.

  16. Association between Plasma Levels of Transforming Growth Factor-beta1, IL-23 and IL-17 and the Severity of Autism in Egyptian Children

    ERIC Educational Resources Information Center

    Hashim, Haitham; Abdelrahman, Hadeel; Mohammed, Doaa; Karam, Rehab

    2013-01-01

    It has been recently shown that dysregulation of transforming growth factor-beta1 (TGF-beta1), IL-23 and IL-17 has been identified as a major factor involved in autoimmune disorders. Based on the increasing evidence of immune dysfunction in autism the aim of this study was to measure serum levels of TGF-beta1, IL-23 and IL-17 in relation to the…

  17. Transforming growth factor-{beta} inhibits CCAAT/enhancer-binding protein expression and PPAR{gamma} activity in unloaded bone marrow stromal cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahdjoudj, S.; Kaabeche, K.; Holy, X.

    2005-02-01

    The molecular mechanisms regulating the adipogenic differentiation of bone marrow stromal cells in vivo remain largely unknown. In this study, we investigated the regulatory effects of transforming growth factor beta-2 (TGF-{beta}2) on transcription factors involved in adipogenic differentiation induced by hind limb suspension in rat bone marrow stromal cells in vivo. Time course real-time quantitative reverse-transcription polymerase chain reaction (RT-PCR) analysis of gene expression showed that skeletal unloading progressively increases the expression of CCAAT/enhancer-binding protein (C/EBP){alpha} and C/EBP{beta} {alpha} at 5 days in bone marrow stromal cells resulting in increased peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}2) transcripts at 7 days. TGF-{beta}2more » administration in unloaded rats corrected the rise in C/EBP{alpha} and C/EBP{beta} transcripts induced by unloading in bone marrow stromal cells. This resulted in inhibition of PPAR{gamma}2 expression that was associated with increased Runx2 expression. Additionally, the inhibition of C/EBP{alpha} and C/EBP{beta} expression by TGF-{beta}2 was associated with increased PPAR{gamma} serine phosphorylation in bone marrow stromal cells, a mechanism that inhibits PPAR{gamma} transactivating activity. The sequential inhibitory effect of TGF-{beta}2 on C/EBP{alpha}, C/EBP{beta}, and PPAR{gamma}2 resulted in reduced LPL expression and abolition of bone marrow stromal cell adipogenic differentiation, which contributed to prevent bone loss induced by skeletal unloading. We conclude that TGF-{beta}2 inhibits the excessive adipogenic differentiation of bone marrow stromal cells induced by skeletal unloading by inhibiting C/EBP{alpha}, C/EBP{beta}, and PPAR{gamma} expression and activity, which provides a sequential mechanism by which TGF-{beta}2 regulates adipogenic differentiation of bone marrow stromal cells in vivo.« less

  18. CYP3A induction and inhibition by different antiretroviral regimens reflected by changes in plasma 4beta-hydroxycholesterol levels.

    PubMed

    Josephson, F; Bertilsson, L; Böttiger, Y; Flamholc, L; Gisslén, M; Ormaasen, V; Sönnerborg, A; Diczfalusy, U

    2008-08-01

    A member of the major human cytochrome P450 superfamily of hemoproteins, CYP3A4/5, converts cholesterol into 4beta-hydroxycholesterol. We studied plasma 4beta-hydroxycholesterol levels prior to and 4 weeks after initiating antiretroviral therapy that included efavirenz, ritonavir-boosted atazanavir or ritonavir-boosted lopinavir with the aim of exploring the usefulness of plasma 4beta-hydroxycholesterol levels as an endogenous biomarker of CYP3A activity. Efavirenz is an inducer of CYP3A, whereas the ritonavir-boosted regimens are net inhibitors of CYP3A. In patients treated with efavirenz, the median plasma 4beta-hydroxycholesterol level increased by 46 ng/mL (p = 0.004; n = 11). In contrast, patients given ritonavir-boosted atazanavir showed a median decrease in plasma 4beta-hydroxycholesterol of -9.4 ng/mL (p = 0.0003; n = 22), and those given ritonavir-boosted lopinavir showed a median change from baseline of -5.8 ng/mL (p = 0.38; n = 19). There were significant between-group differences in the effects of antiretroviral treatment on plasma 4beta-hydroxycholesterol levels (p < 0.0001). Changes in plasma 4beta-hydroxycholesterol following the initiation of efavirenz- or atazanavir/ritonavir-based antiretroviral therapy reflected the respective net increase and decrease of CYP3A activity of these regimens. The plasma 4beta-hydroxycholesterol level did not indicate a net CYP3A inhibition in the lopinavir/ritonavir arm, possibly because of concomitant enzyme induction.

  19. N-terminal tyrosine phosphorylation of caveolin-2 negates anti-proliferative effect of transforming growth factor beta in endothelial cells

    PubMed Central

    Abel, Britain; Willoughby, Cara; Jang, Sungchan; Cooper, Laura; Xie, Leike; Vo-Ransdell, Chi; Sowa, Grzegorz

    2012-01-01

    Here we show that tyrosine phosphorylation of caveolin-2 (Cav-2) negatively regulates the anti-proliferative function of transforming growth factor beta (TGF-beta) in endothelial cells. In contrast to wild-type-Cav-2, retroviral re-expression of Y19/27F-Cav-2 in Cav-2 knockout endothelial cells did not affect anti-proliferative effect of TGF-beta compared to empty vector. Conversely, although less effective than wild-type, re-expression of S23/36A-Cav-2 reduced the effect of TGF-beta compared to empty vector. This differential effect of tyrosine and serine phosphorylation mutants of Cav-2 correlated with TGF-beta-induced Smad3 phosphorylation and transcriptional activation of plasminogen activator inhibitor-1. Thus tyrosine-phosphorylated Cav-2 counteracts anti-proliferative effect of TGF-beta in endothelial cells. PMID:22819829

  20. Transforming growth factor-beta stimulates wound healing and modulates extracellular matrix gene expression in pig skin. I. Excisional wound model.

    PubMed

    Quaglino, D; Nanney, L B; Kennedy, R; Davidson, J M

    1990-09-01

    The effect of transforming growth factor-beta 1 (TGF-beta 1) on matrix gene expression has been investigated during the process of wound repair, where the formation of new connective tissue represents a critical step in restoring tissue integrity. Split-thickness excisional wounds in the pig were studied by in situ hybridization in order to obtain subjective findings on the activity and location of cells involved in matrix gene expression after the administration of recombinant TGF-beta 1. Data focus on the stimulatory role of this growth factor in granulation tissue formation, on the enhanced mRNA content of collagen types I and III, fibronectin, TGF-beta 1 itself, and on the reduction in stromelysin mRNA, suggesting that increased matrix formation measured after treatment with TGF-beta 1 is due to fibroplasia regulated by the abundance of mRNAs for several different structural, matrix proteins as well as inhibition of proteolytic phenomena elicited by metalloproteinases. These studies reveal elastin mRNA early in the repair process, and elastin mRNA expression is enhanced by administration of TGF-beta 1. Moreover, we show that TGF-beta 1 was auto-stimulating in wounds, accounting, at least in part, for the persistent effects of single doses of this multipotential cytokine.

  1. Application of factor analysis of infrared spectra for quantitative determination of beta-tricalcium phosphate in calcium hydroxylapatite.

    PubMed

    Arsenyev, P A; Trezvov, V V; Saratovskaya, N V

    1997-01-01

    This work represents a method, which allows to determine phase composition of calcium hydroxylapatite basing on its infrared spectrum. The method uses factor analysis of the spectral data of calibration set of samples to determine minimal number of factors required to reproduce the spectra within experimental error. Multiple linear regression is applied to establish correlation between factor scores of calibration standards and their properties. The regression equations can be used to predict the property value of unknown sample. The regression model was built for determination of beta-tricalcium phosphate content in hydroxylapatite. Statistical estimation of quality of the model was carried out. Application of the factor analysis on spectral data allows to increase accuracy of beta-tricalcium phosphate determination and expand the range of determination towards its less concentration. Reproducibility of results is retained.

  2. Exploring Fold Space Preferences of New-born and Ancient Protein Superfamilies

    PubMed Central

    Edwards, Hannah; Abeln, Sanne; Deane, Charlotte M.

    2013-01-01

    The evolution of proteins is one of the fundamental processes that has delivered the diversity and complexity of life we see around ourselves today. While we tend to define protein evolution in terms of sequence level mutations, insertions and deletions, it is hard to translate these processes to a more complete picture incorporating a polypeptide's structure and function. By considering how protein structures change over time we can gain an entirely new appreciation of their long-term evolutionary dynamics. In this work we seek to identify how populations of proteins at different stages of evolution explore their possible structure space. We use an annotation of superfamily age to this space and explore the relationship between these ages and a diverse set of properties pertaining to a superfamily's sequence, structure and function. We note several marked differences between the populations of newly evolved and ancient structures, such as in their length distributions, secondary structure content and tertiary packing arrangements. In particular, many of these differences suggest a less elaborate structure for newly evolved superfamilies when compared with their ancient counterparts. We show that the structural preferences we report are not a residual effect of a more fundamental relationship with function. Furthermore, we demonstrate the robustness of our results, using significant variation in the algorithm used to estimate the ages. We present these age estimates as a useful tool to analyse protein populations. In particularly, we apply this in a comparison of domains containing greek key or jelly roll motifs. PMID:24244135

  3. Structure-Based Phylogenetic Analysis of the Lipocalin Superfamily.

    PubMed

    Lakshmi, Balasubramanian; Mishra, Madhulika; Srinivasan, Narayanaswamy; Archunan, Govindaraju

    2015-01-01

    Lipocalins constitute a superfamily of extracellular proteins that are found in all three kingdoms of life. Although very divergent in their sequences and functions, they show remarkable similarity in 3-D structures. Lipocalins bind and transport small hydrophobic molecules. Earlier sequence-based phylogenetic studies of lipocalins highlighted that they have a long evolutionary history. However the molecular and structural basis of their functional diversity is not completely understood. The main objective of the present study is to understand functional diversity of the lipocalins using a structure-based phylogenetic approach. The present study with 39 protein domains from the lipocalin superfamily suggests that the clusters of lipocalins obtained by structure-based phylogeny correspond well with the functional diversity. The detailed analysis on each of the clusters and sub-clusters reveals that the 39 lipocalin domains cluster based on their mode of ligand binding though the clustering was performed on the basis of gross domain structure. The outliers in the phylogenetic tree are often from single member families. Also structure-based phylogenetic approach has provided pointers to assign putative function for the domains of unknown function in lipocalin family. The approach employed in the present study can be used in the future for the functional identification of new lipocalin proteins and may be extended to other protein families where members show poor sequence similarity but high structural similarity.

  4. Role of transforming growth factor-beta (TGF) beta in the physiopathology of rheumatoid arthritis.

    PubMed

    Gonzalo-Gil, Elena; Galindo-Izquierdo, María

    2014-01-01

    Transforming growth factor-beta (TGF-β) is a cytokine with pleiotropic functions in hematopoiesis, angiogenesis, cell proliferation, differentiation, migration and apoptosis. Although its role in rheumatoid arthritis is not well defined, TGF-β activation leads to functional immunomodulatory effects according to environmental conditions. The function of TGF-β in the development of arthritis in murine models has been extensively studied with controversial results. Recent findings point to a non-relevant role for TGF-β in a mice model of collagen-induced arthritis. The study of TGF-β on T-cell responses has shown controversial results as an inhibitor or promoter of the inflammatory response. This paper presents a review of the role of TGF-β in animal models of arthritis. Copyright © 2013 Elsevier España, S.L. All rights reserved.

  5. Up-regulated transcriptional repressors SnoN and Ski bind Smad proteins to antagonize transforming growth factor-beta signals during liver regeneration.

    PubMed

    Macias-Silva, Marina; Li, Wei; Leu, Julia I; Crissey, Mary Ann S; Taub, Rebecca

    2002-08-09

    Transforming growth factor-beta (TGF-beta) functions as an antiproliferative factor for hepatocytes. However, for unexplained reasons, hepatocytes become resistant to TGF-beta signals and can proliferate despite the presence of TGF-beta during liver regeneration. TGF-beta is up-regulated during liver regeneration, although it is not known whether it is active or latent. TGF-beta activity may be examined by assessing Smad activation, a downstream signaling pathway. Smad pathway activation during liver regeneration induced by partial hepatectomy or CC4 injury was examined by assessing the levels of phospho-Smad2 and Smad2-Smad4 complexes. We found that Smad proteins were slightly activated in quiescent liver, but that their activation was further enhanced in regenerating liver. Interestingly, TGF-beta/Smad pathway inhibitors (SnoN and Ski) were up-regulated during regeneration, and notably, SnoN was induced mainly in hepatocytes. SnoN and Ski are transcriptional repressors that may render some cells resistant to TGF-beta via binding Smad proteins. Complexes between SnoN, Ski, and the activated Smad proteins were detected from 2 to 120 h during the major proliferative phase in regenerating liver. Inhibitory complexes decreased after liver mass restitution (5-15 days), suggesting that persistently activated Smad proteins might participate in returning the liver to a quiescent state. Our data show that active TGF-beta/Smad signals are present during regeneration and suggest that SnoN/Ski induction might explain hepatocyte resistance to TGF-beta during the proliferative phase.

  6. The transforming growth factor-ss superfamily cytokine macrophage inhibitory cytokine-1 is present in high concentrations in the serum of pregnant women.

    PubMed

    Moore, A G; Brown, D A; Fairlie, W D; Bauskin, A R; Brown, P K; Munier, M L; Russell, P K; Salamonsen, L A; Wallace, E M; Breit, S N

    2000-12-01

    Macrophage inhibitory cytokine-1 (MIC-1) is a recently described divergent member of the transforming growth factor-ss superfamily. MIC-1 transcription up-regulation is associated with macrophage activation, and this observation led to its cloning. Northern blots indicate that MIC-1 is also present in human placenta. A sensitive sandwich enzyme-linked immunosorbent assay for the quantification of MIC-1 was developed and used to examine the role of this cytokine in pregnancy. High levels of MIC-1 are present in the sera of pregnant women. The level rises substantially with progress of gestation. MIC-1 can also be detected, in large amounts, in amniotic fluid and placental extracts. In addition, the BeWo placental trophoblastic cell line was found to constitutively express the MIC-1 transcript and secrete large amounts of MIC-1. These findings suggest that the placental trophoblast is a major source of the MIC-1 present in maternal serum and amniotic fluid. We suggest that MIC-1 may promote fetal survival by suppressing the production of maternally derived proinflammatory cytokines within the uterus.

  7. '2TM proteins': an antigenically diverse superfamily with variable functions and export pathways.

    PubMed

    Kaur, Jasweer; Hora, Rachna

    2018-01-01

    Malaria is a disease that affects millions of people annually. An intracellular habitat and lack of protein synthesizing machinery in erythrocytes pose numerous difficulties for survival of the human pathogen Plasmodium falciparum . The parasite refurbishes the infected red blood cell (iRBC) by synthesis and export of several proteins in an attempt to suffice its metabolic needs and evade the host immune response. Immune evasion is largely mediated by surface display of highly polymorphic protein families known as variable surface antigens. These include the two trans-membrane (2TM) superfamily constituted by multicopy repetitive interspersed family (RIFINs), subtelomeric variable open reading frame (STEVORs) and Plasmodium falciparum Maurer's cleft two trans-membrane proteins present only in P. falciparum and some simian infecting Plasmodium species. Their hypervariable region flanked by 2TM domains exposed on the iRBC surface is believed to generate antigenic diversity. Though historically named "2TM superfamily," several A-type RIFINs and some STEVORs assume one trans-membrane topology. RIFINs and STEVORs share varied functions in different parasite life cycle stages like rosetting, alteration of iRBC rigidity and immune evasion. Additionally, a member of the STEVOR family has been implicated in merozoite invasion. Differential expression of these families in laboratory strains and clinical isolates propose them to be important for host cell survival and defense. The role of RIFINs in modulation of host immune response and presence of protective antibodies against these surface exposed molecules in patient sera highlights them as attractive targets of antimalarial therapies and vaccines. 2TM proteins are Plasmodium export elements positive, and several of these are exported to the infected erythrocyte surface after exiting through the classical secretory pathway within parasites. Cleaved and modified proteins are trafficked after packaging in vesicles to reach

  8. [Effects of Valeriana officinalis var. latifolia on expression of transforming growth factor beta 1 in hypercholesterolemic rats].

    PubMed

    Si, Xiao-yun; Jia, Ru-han; Huang, Cong-xin; Ding, Guo-hua; Liu, Hong-yan

    2003-09-01

    To evaluate the effect of Valeriana officinalis var latifolia(VOL) on expression of transforming growth factor beta 1 (TGF-beta 1) in hypercholesterolemic rats and study its possible mechanisms. Dietary-induced hypercholesterolemia was induced in male Wistar rats by given 4% cholesterol and 1% cholic acid diet for 16 weeks. Changes of serum lipid, urinary albumin, renal function and Mesangial matrix index were assessed. Moreover, immunohistochemical stain for TGF-beta 1 and type IV collagen were performed. VOL could reduce the serum levels of total cholesterol, low density lipoprotein, urinary albumin and serum creatinine. Light microscopy and immunohistochemical stain revealed that in the same time of lowing serum lipid, Mesangial matrix index was significantly reduced, accompanied by decreased expression of TGF-beta 1 and type IV collagen. VOL has the protective effect on lipid-induced nephropathy, and the inhibition of TGF-beta 1 expression might be the mechanism of VOL on renal protection.

  9. Regeneration of hyaline cartilage by cell-mediated gene therapy using transforming growth factor beta 1-producing fibroblasts.

    PubMed

    Lee, K H; Song, S U; Hwang, T S; Yi, Y; Oh, I S; Lee, J Y; Choi, K B; Choi, M S; Kim, S J

    2001-09-20

    Transforming growth factor beta (TGF-beta) has been considered as a candidate for gene therapy of orthopedic diseases. The possible application of cell-mediated TGF-beta gene therapy as a new treatment regimen for degenerative arthritis was investigated. In this study, fibroblasts expressing active TGF-beta 1 were injected into the knee joints of rabbits with artificially made cartilage defects to evaluate the feasibility of this therapy for orthopedic diseases. Two to 3 weeks after the injection there was evidence of cartilage regeneration, and at 4 to 6 weeks the cartilage defect was completely filled with newly grown hyaline cartilage. Histological analyses of the regenerated cartilage suggested that it was well integrated with the adjacent normal cartilage at the sides of the defect and that the newly formed tissue was indeed hyaline cartilage. Our findings suggest that cell-mediated TGF-beta 1 gene therapy may be a novel treatment for orthopedic diseases in which hyaline cartilage damage has occurred.

  10. Inhibition of Transforming Growth Factor-Beta1 SignalingAttenuates Ataxia Telangiectasia Mutated Activity in Response toGenotoxic Stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirshner, Julia; Jobling, Michael F.; Pajares, Maria Jose

    2006-01-01

    Ionizing radiation causes DNA damage that elicits a cellular program of damage control coordinated by the kinase activity of ataxia telangiectasia mutated protein (ATM). Transforming growth factor {beta} (TGF{beta})-1, which is activated by radiation, is a potent and pleiotropic mediator of physiologic and pathologic processes. Here we show that TGF{beta} inhibition impedes the canonical cellular DNA damage stress response. Irradiated Tgf{beta}I null murine epithelial cells or human epithelial cells treated with a small-molecule inhibitor of TGF{beta} type I receptor kinase exhibit decreased phosphorylation of Chk2, Rad17, and p53; reduced H2AX radiation-induced foci; and increased radiosensitivity compared with TGF{beta} competent cells.more » We determined that loss of TGF{beta} signaling in epithelial cells truncated ATM autophosphorylation and significantly reduced its kinase activity, without affecting protein abundance. Addition of TGF{beta} restored functional ATM and downstream DNA damage responses. These data reveal a heretofore undetected critical link between the microenvironment and ATM, which directs epithelial cell stress responses, cell fate, and tissue integrity. Thus, Tgf{beta}I, in addition to its role in homoeostatic growth control, plays a complex role in regulating responses to genotoxic stress, the failure of which would contribute to the development of cancer; conversely, inhibiting TGF{beta} may be used to advantage in cancer therapy.« less

  11. Transforming growth factor (TGF. beta. ) decreases the proliferation of human bone marrow fibroblasts by inhibiting the platelet-derived growth factor (PDGF) binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryckaert, M.C.; Tobelem, G.; Lindroth, M.

    1988-12-01

    Human bone marrow fibroblasts were cultivated and characterized by immunofluorescent staining and electron microscopy. Their interactions with PDGF and TGF{beta} were studied. While a positive intracellular antifibronectin staining was observed, the cultured cells were not labeled with specific antibodies toward factor VIII von Willebrand factor (F VIII/vWF), desmin, and macrophage antigen. The binding of pure human PDGF to the cultured bone marrow fibroblasts was investigated. Addition of an excess of unlabeled PDGF decreased the binding to 75 and 80%, which means that the nonspecific binding represented 20-25% of total binding, whereas epidermal growth factor (EGF) had no effect. Two classesmore » of sites were detected by Scatchard analysis. The stimulation of DNA synthesis of PDGF was quantified by ({sup 3}H)thymidine incorporation. The results suggested that PDGF and TGF{beta} could modulate the growth of bone marrow fibroblasts.« less

  12. Effect of transforming growth factor-beta1 on decorin expression and muscle morphology during chicken embryonic and posthatch growth and development.

    PubMed

    Li, X; Velleman, S G

    2009-02-01

    During skeletal muscle development, transforming growth factor-beta1 (TGF-beta1) is a potent inhibitor of muscle cell proliferation and differentiation, as well as a regulator of extracellular matrix (ECM) production. Decorin, a member of the small leucine-rich ECM proteoglycans, binds to TGF-beta1 and modulates TGF-beta1-dependent cell growth stimulation or inhibition. The expression of decorin can be regulated by TGF-beta1 during muscle proliferation and differentiation. How TGF-beta1 affects decorin and muscle growth, however, has not been well documented in vivo. The present study investigated the effect of TGF-beta1 on decorin expression and intracellular connective tissue development during skeletal muscle growth. Exogenous TGF-beta1 significantly decreased the number of myofibers in a given area at both 1 d and 6 wk posthatch. The TGF-beta1-treated muscle had a significant decrease in decorin mRNA expression at embryonic day (ED) 10, whereas protein amounts decreased at 17 ED and 1 d posthatch compared to the control muscle. Decorin was localized in both the endomysium and perimysium in the control pectoralis major muscle. Transforming growth factor-beta1 reduced decorin in both the endomysium and perimysium from 17 ED to 6 wk posthatch. Compared to the control muscle, the perimysium space in the pectoralis major muscle was dramatically decreased by TGF-beta1 during embryonic development through posthatch growth. Because decorin regulates collagen fibrillogenesis, a major component of the ECM, the reduction of decorin by TGF-beta1 treatment may cause the irregular formation of collagen fibrils, leading to the decrease in endomysium and perimysium space. The results from the current study suggest that the effect of TGF-beta1 on decorin expression and localization was likely associated with altered development of the perimysium and the regulation of muscle fiber development.

  13. Down-regulation of connective tissue growth factor by inhibition of transforming growth factor beta blocks the tumor-stroma cross-talk and tumor progression in hepatocellular carcinoma.

    PubMed

    Mazzocca, Antonio; Fransvea, Emilia; Dituri, Francesco; Lupo, Luigi; Antonaci, Salvatore; Giannelli, Gianluigi

    2010-02-01

    Tumor-stroma interactions in hepatocellular carcinoma (HCC) are of key importance to tumor progression. In this study, we show that HCC invasive cells produce high levels of connective tissue growth factor (CTGF) and generate tumors with a high stromal component in a xenograft model. A transforming growth factor beta (TGF-beta) receptor inhibitor, LY2109761, inhibited the synthesis and release of CTGF, as well as reducing the stromal component of the tumors. In addition, the TGF-beta-dependent down-regulation of CTGF diminished tumor growth, intravasation, and metastatic dissemination of HCC cells by inhibiting cancer-associated fibroblast proliferation. By contrast, noninvasive HCC cells were found to produce low levels of CTGF. Upon TGF-beta1 stimulation, noninvasive HCC cells form tumors with a high stromal content and CTGF expression, which is inhibited by treatment with LY2109761. In addition, the acquired intravasation and metastatic spread of noninvasive HCC cells after TGF-beta1 stimulation was blocked by LY2109761. LY2109761 interrupts the cross-talk between cancer cells and cancer-associated fibroblasts, leading to a significant reduction of HCC growth and dissemination. Interestingly, patients with high CTGF expression had poor prognosis, suggesting that treatment aimed at reducing TGF-beta-dependent CTGF expression may offer clinical benefits. Taken together, our preclinical results indicate that LY2109761 targets the cross-talk between HCC and the stroma and provide a rationale for future clinical trials.

  14. Evolution of Enzymatic Activities int he Enolase Superfamily: L-Talarate/Galactarate Dehydratase from Salmonella typhimurium LT2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yew,W.; Fedorov, A.; Fedorov, E.

    2007-01-01

    We assigned L-talarate dehydratase (TalrD) and galactarate dehydratase (GalrD) functions to a group of orthologous proteins in the mechanistically diverse enolase superfamily, focusing our characterization on the protein encoded by the Salmonella typhimurium LT2 genome (GI:16766982; STM3697). Like the homologous mandelate racemase, L-fuconate dehydratase, and D-tartrate dehydratase, the active site of TalrD/GalrD contains a general acid/base Lys 197 at the end of the second {beta}-strand in the ({beta}/{alpha}){sub 7}{beta}-barrel domain, Asp 226, Glu 252, and Glu 278 as ligands for the essential Mg{sup 2+} at the ends of the third, fourth, and fifth {sup {beta}}-strands, a general acid/base His 328-Aspmore » 301 dyad at the ends of the seventh and sixth {beta}-strands, and an electrophilic Glu 348 at the end of the eighth {beta}-strand. We discovered the function of STM3697 by screening a library of acid sugars; it catalyzes the efficient dehydration of both L-talarate (k{sub cat} = 2.1 s{sup -1}, k{sub cat}/K{sub m} = 9.1 x 10{sup 3} M{sup -1} s{sup -1}) and galactarate (k{sub cat} = 3.5 s{sup -1}, k{sub cat}/K{sub m} = 1.1 x 10{sup 4} M{sup -1} s{sup -1}). Because L-talarate is a previously unknown metabolite, we demonstrated that S. typhimurium LT2 can utilize L-talarate as carbon source. Insertional disruption of the gene encoding STM3697 abolishes this phenotype; this disruption also diminishes, but does not eliminate, the ability of the organism to utilize galactarate as carbon source. The dehydration of L-talarate is accompanied by competing epimerization to galactarate; little epimerization to L-talarate is observed in the dehydration of galactarate. On the basis of (1) structures of the wild type enzyme complexed with L-lyxarohydroxamate, an analogue of the enolate intermediate, and of the K197A mutant complexed with L-glucarate, a substrate for exchange of the {alpha}-proton, and (2) incorporation of solvent deuterium into galactarate in competition

  15. Checklist of the Diptera superfamilies Tephritoidea and Sciomyzoidea of Finland (Insecta)

    PubMed Central

    Kahanpää, Jere; Winqvist, Kaj

    2014-01-01

    Abstract A revised checklist of the flies of superfamilies Tephritoidea and Sciomyzoidea of Finland is provided. The following families are covered: Eurygnathomyiidae, Lonchaeidae, Neottiophilidae, Pallopteridae, Piophilidae, Platystomatidae, Tephritidae, Ulidiidae (Tephritoidea); Coelopidae, Dryomyzidae, Heterocheilidae, Phaeomyiidae, Sciomyzidae, Sepsidae (Sciomyzoidea). PMID:25337022

  16. Mechanisms of stimulation of interleukin-1 beta and tumor necrosis factor-alpha by Mycobacterium tuberculosis components.

    PubMed Central

    Zhang, Y; Doerfler, M; Lee, T C; Guillemin, B; Rom, W N

    1993-01-01

    The granulomatous immune response in tuberculosis is characterized by delayed hypersensitivity and is mediated by various cytokines released by the stimulated mononuclear phagocytes, including tumor necrosis factor-alpha (TNF alpha) and IL-1 beta. We have demonstrated that Mycobacterium tuberculosis cell wall component lipoarabinomannan (LAM), mycobacterial heat shock protein-65 kD, and M. tuberculosis culture filtrate, devoid of LPS as assessed by the Amebocyte Lysate assay, stimulate the production of TNF alpha and IL-1 beta proteins and mRNA from mononuclear phagocytes (THP-1 cells). The effect of LAM on the release of these cytokines was specific, as only LAM stimulation was inhibited by anti-LAM monoclonal antibody. Interestingly, we found that LAM and Gram-negative bacterial cell wall-associated endotoxin LPS may share a similar mechanism in their stimulatory action as demonstrated by inhibition of TNF alpha and IL-1 beta release by monoclonal antibodies to CD14. Anti-CD14 monoclonal antibody MY4 inhibited both TNF alpha and IL-1 beta release with LAM and LPS but no effect was observed with other mycobacterial proteins. An isotype antibody control did not inhibit release of cytokines under the same experimental conditions. M. tuberculosis and its components upregulated IL-1 beta and TNF alpha mRNAs in THP-1 cells. Nuclear run-on assay for IL-1 beta demonstrated that LAM increased the transcription rate. The induction of IL-1 beta was regulated at the transcriptional level, in which these stimuli acted through cis-acting element(s) on the 5' flanking region of the IL-1 beta genomic DNA. M. tuberculosis cell wall component LAM acts similarly to LPS in activating mononuclear phagocyte cytokine TNF alpha and IL-1 beta release through CD14 and synthesis at the transcriptional level; both cytokines are key participants in the host immune response to tuberculosis. Images PMID:7683696

  17. Suppression of transforming growth factor-beta-induced apoptosis through a phosphatidylinositol 3-kinase/Akt-dependent pathway.

    PubMed

    Chen, R H; Su, Y H; Chuang, R L; Chang, T Y

    1998-10-15

    Insulin and insulin receptor substrate 1 (IRS-1) are capable of protecting liver cells from apoptosis induced by transforming growth factor-beta1 (TGF-beta). The Ras/mitogen-activated protein kinase (MAP kinase) and the phosphatidylinositol 3-kinase (PI 3-kinase)/Akt pathways are both activated upon insulin stimulation and can protect against apoptosis under certain circumstances. We investigated which of these pathways is responsible for the protective effect of insulin on TGF-beta-induced apoptosis. An activated Ras, although elicited a strong mitogenic effect, could not protect Hep3B cells from TGF-beta-induced apoptosis. Furthermore, PD98059, a selective inhibitor of MEK, did not suppress the antiapoptotic effect of insulin. In contrast, the PI 3-kinase inhibitor, LY294002, efficiently blocked the effect of insulin. Protection against TGF-beta-induced apoptosis conferred by PI 3-kinase was further verified by stable transfection of an activated PI 3-kinase. Downstream targets of PI 3-kinase involved in this protection was further investigated. An activated Akt mimicked the antiapoptotic effect of insulin, whereas a dominant-negative Akt inhibited such effect. However, rapamycin, the p70S6 kinase inhibitor, had no effect on the protectivity of insulin against TGF-beta-induced apoptosis, suggesting that the antiapoptotic target of PI 3-kinase/Akt pathway is independent or lies upstream of the p70S6 kinase. The mechanism by which PI 3-kinase/Akt pathway interferes with the apoptotic signaling of TGF-beta was explored. Activation of PI 3-kinase did not lead to a suppression of Smad hetero-oligomerization or nuclear translocation but blocked TGF-beta-induced caspase-3-like activity. In summary, the PI 3-kinase/Akt pathway, but not the Ras/MAP kinase pathway, protects against TGF-beta-induced apoptosis by inhibiting a step downstream of Smad but upstream of caspase-3.

  18. Transforming growth factor-beta controls T helper type 1 cell development through regulation of natural killer cell interferon-gamma.

    PubMed

    Laouar, Yasmina; Sutterwala, Fayyaz S; Gorelik, Leonid; Flavell, Richard A

    2005-06-01

    Interferon-gamma and interleukin 12 produced by the innate arm of the immune system are important regulators of T helper type 1 (T(H)1) cell development, but signals that negatively regulate their expression remain controversial. Here we show that transforming growth factor-beta (TGF-beta) controlled T(H)1 differentiation through the regulation of interferon-gamma produced by natural killer (NK) cells. Blockade of TGF-beta signaling in NK cells caused the accumulation of a large pool of NK cells secreting copious interferon-gamma, responsible for T(H)1 differentiation and protection from leishmania infection. In contrast, blockade of TGF-beta signaling in dendritic cells did not affect dendritic cell homeostasis or interleukin 12 production, thus indicating a previously undescribed demarcation of the function of TGF-beta in NK cells versus dendritic cells.

  19. Molecular cloning and characterization of beluga whale (Delphinapterus leucas) interleukin-1beta and tumor necrosis factor-alpha.

    PubMed Central

    Denis, F; Archambault, D

    2001-01-01

    Interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha) are cytokines produced primarily by monocytes and macrophages with regulatory effects in inflammation and multiple aspects of the immune response. As yet, no molecular data have been reported for IL-1beta and TNF-alpha of the beluga whale. In this study, we cloned and determined the entire cDNA sequence encoding beluga whale IL-1beta and TNF-alpha. The genetic relationship of the cytokine sequences was then analyzed with those from several mammalian species, including the human and the pig. The homology of beluga whale IL-1beta nucleic acid and deduced amino acid sequences with those from these mammalian species ranged from 74.6 to 86.0% and 62.7 to 77.1%, respectively, whereas that of TNF-alpha varied from 79.3 to 90.8% and 75.3 to 87.7%, respectively. Phylogenetic analyses based on deduced amino acid sequences showed that the beluga whale IL-1beta and TNF-alpha were most closely related to those of the ruminant species (cattle, sheep, and deer). The beluga whale IL-1beta- and TNF-alpha-encoding sequences were thereafter successfully expressed in Escherichia coli as fusion proteins by using procaryotic expression vectors. The fusion proteins were used to produce beluga whale IL-1beta- and TNF-alpha-specific rabbit antisera. Images Figure 3. Figure 4. Figure 5. PMID:11768130

  20. Functional properties of an isolated. cap alpha beta. heterodimeric human placenta insulin-like growth factor 1 receptor complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feltz, S.M.; Swanson, M.L.; Wemmie, J.A.

    1988-05-03

    Treatment of human placenta membranes at pH 8.5 in the presence of 2.0 mM dithiothreitol (DTT) for 5 min, followed by the simultaneous removal of the DTT and pH adjustment of pH 7.6, resulted in the formation of a functional ..cap alpha beta.. heterodimeric insulin-like growth factor 1 (IGF-1) receptor complex from the native ..cap alpha../sub 2/..beta../sub 2/ heterotetrameric disulfide-linked state. The membrane-bound ..cap alpha beta.. heterodimeric complex displayed similar curvilinear /sup 125/I-IGF-1 equilibrium binding compared to the ..cap alpha../sub 2/..beta../sub 2/ heterotetrameric complex. /sup 125/I-IGF-1 binding to both the isolated ..cap alpha../sub 2/..beta../sub 2/ heterotetrameric and ..cap alpha beta..more » heterodimeric complexes demonstrated a marked straightening of the Scatchard plots, compared to the placenta membrane-bound IGF-1 receptors, with a 2-fold increase in the high-affinity binding component. IGF-1 stimulation of IGF-1 receptor autophosphorylation indicated that the ligand-dependent activation of ..cap alpha beta.. heterodimeric protein kinase activity occurred concomitant with the reassociation into a covalent ..cap alpha../sub 2/..beta../sub 2/ heterotetrameric state. These data demonstrate that (i) a combination of alkaline pH and DTT treatment of human placenta membranes results in the formation of an ..cap alpha beta.. heterodimeric IGF-1 receptor complex, (ii) unlike the insulin receptor, high-affinity homogeneous IGF-1 binding occurs in both the ..cap alpha../sub 2/..beta../sub 2/ heterotetrameric and ..cap alpha beta.. heterodimeric complexes, and (iii) IGF-1-dependent autophosphorylation of the ..cap alpha beta.. heterodimeric IGF-1 receptor complex correlates wit an IGF-1 dependent covalent reassociation into an ..cap alpha../sub 2/..beta../sub 2/ heterotetrameric disulfide-linked state.« less

  1. Exposure to Organophosphates Reduces the Expression of Neurotrophic Factors in Neonatal Rat Brain Regions: Similarities and Differences in the Effects of Chlorpyrifos and Diazinon on the Fibroblast Growth Factor Superfamily

    PubMed Central

    Slotkin, Theodore A.; Seidler, Frederic J.; Fumagalli, Fabio

    2007-01-01

    Background The fibroblast growth factor (FGF) superfamily of neurotrophic factors plays critical roles in neural cell development, brain assembly, and recovery from neuronal injury. Objectives We administered two organophosphate pesticides, chlorpyrifos and diazinon, to neonatal rats on postnatal days 1–4, using doses below the threshold for systemic toxicity or growth impairment, and spanning the threshold for barely detectable cholinesterase inhibition: 1 mg/kg/day chlorpyrifos and 1 or 2 mg/kg/day diazinon. Methods Using microarrays, we then examined the regional expression of mRNAs encoding the FGFs and their receptors (FGFRs) in the forebrain and brain stem. Results Chlorpyrifos and diazinon both markedly suppressed fgf20 expression in the forebrain and fgf2 in the brain stem, while elevating brain stem fgfr4 and evoking a small deficit in brain stem fgf22. However, they differed in that the effects on fgf2 and fgfr4 were significantly larger for diazinon, and the two agents also showed dissimilar, smaller effects on fgf11, fgf14, and fgfr1. Conclusions The fact that there are similarities but also notable disparities in the responses to chlorpyrifos and diazinon, and that robust effects were seen even at doses that do not inhibit cholinesterase, supports the idea that organophosphates differ in their propensity to elicit developmental neurotoxicity, unrelated to their anticholinesterase activity. Effects on neurotrophic factors provide a mechanistic link between organophosphate injury to developing neurons and the eventual, adverse neurodevelopmental outcomes. PMID:17589599

  2. Tumor necrosis factor receptor-1 can function through a G alpha q/11-beta-arrestin-1 signaling complex.

    PubMed

    Kawamata, Yuji; Imamura, Takeshi; Babendure, Jennie L; Lu, Juu-Chin; Yoshizaki, Takeshi; Olefsky, Jerrold M

    2007-09-28

    Tumor necrosis factor-alpha (TNFalpha) is a proinflammatory cytokine secreted from macrophages and adipocytes. It is well known that chronic TNFalpha exposure can lead to insulin resistance both in vitro and in vivo and that elevated blood levels of TNFalpha are observed in obese and/or diabetic individuals. TNFalpha has many acute biologic effects, mediated by a complex intracellular signaling pathway. In these studies we have identified new G-protein signaling components to this pathway in 3T3-L1 adipocytes. We found that beta-arrestin-1 is associated with TRAF2 (TNF receptor-associated factor 2), an adaptor protein of TNF receptors, and that TNFalpha acutely stimulates tyrosine phosphorylation of G alpha(q/11) with an increase in G alpha(q/11) activity. Small interfering RNA-mediated knockdown of beta-arrestin-1 inhibits TNFalpha-induced tyrosine phosphorylation of G alpha(q/11) by interruption of Src kinase activation. TNFalpha stimulates lipolysis in 3T3-L1 adipocytes, and beta-arrestin-1 knockdown blocks the effects of TNFalpha to stimulate ERK activation and glycerol release. TNFalpha also led to activation of JNK with increased expression of the proinflammatory gene, monocyte chemoattractant protein-1 and matrix metalloproteinase 3, and beta-arrestin-1 knockdown inhibited both of these effects. Taken together these results reveal novel elements of TNFalpha action; 1) the trimeric G-protein component G alpha(q/11) and the adapter protein beta-arrestin-1 can function as signaling molecules in the TNFalpha action cascade; 2) beta-arrestin-1 can couple TNFalpha stimulation to ERK activation and lipolysis; 3) beta-arrestin-1 and G alpha(q/11) can mediate TNFalpha-induced phosphatidylinositol 3-kinase activation and inflammatory gene expression.

  3. Values of the phase space factors for double beta decay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoica, Sabin, E-mail: stoica@theory.nipne.ro; Mirea, Mihai; Horia Hulubei National Institute of Physics and Nuclear Engineering, 30 Reactorului street, P.O. Box MG6, Magurele

    2015-10-28

    We report an up-date list of the experimentally most interesting phase space factors for double beta decay (DBD). The electron/positron wave functions are obtained by solving the Dirac equations with a Coulomb potential derived from a realistic proton density distribution in nucleus and with inclusion of the finite nuclear size (FNS) and electron screening (ES) effects. We build up new numerical routines which allow us a good control of the accuracy of calculations. We found several notable differences as compared with previous results reported in literature and possible sources of these discrepancies are discussed.

  4. Regulation of adhesion and growth of fibrosarcoma cells by NF-kappa B RelA involves transforming growth factor beta.

    PubMed Central

    Perez, J R; Higgins-Sochaski, K A; Maltese, J Y; Narayanan, R

    1994-01-01

    The NF-kappa B transcription factor is a pleiotropic activator that participates in the induction of a wide variety of cellular genes. Antisense oligomer inhibition of the RelA subunit of NF-kappa B results in a block of cellular adhesion and inhibition of tumor cell growth. Investigation of the molecular basis for these effects showed that in vitro inhibition of the growth of transformed fibroblasts by relA antisense oligonucleotides can be reversed by the parental-cell-conditioned medium. Cytokine profile analysis of these cells treated with relA antisense oligonucleotides revealed inhibition of transforming growth factor beta 1 (TGF-beta 1 to the transformed fibroblasts reversed the inhibitory effects of relA antisense oligomers on soft agar colony formation and cell adhesion to the substratum. Direct inhibition of TGF-beta 1 expression by antisense phosphorothioates to TGF-beta 1 mimicked the in vitro effects of blocking cell adhesion that are elicited by antisense relA oligomers. These results may explain the in vitro effects of relA antisense oligomers on fibrosarcoma cell growth and adhesion. Images PMID:8035811

  5. Bone sialoprotein mediates the tumor cell-targeted prometastatic activity of transforming growth factor beta in a mouse model of breast cancer.

    PubMed

    Nam, Jeong-Seok; Suchar, Adam M; Kang, Mi-Jin; Stuelten, Christina H; Tang, Binwu; Michalowska, Aleksandra M; Fisher, Larry W; Fedarko, Neal S; Jain, Alka; Pinkas, Jan; Lonning, Scott; Wakefield, Lalage M

    2006-06-15

    Transforming growth factor betas (TGF-beta) play a dual role in carcinogenesis, functioning as tumor suppressors early in the process, and then switching to act as prometastatic factors in late-stage disease. We have previously shown that high molecular weight TGF-beta antagonists can suppress metastasis without the predicted toxicities. To address the underlying mechanisms, we have used the 4T1 syngeneic mouse model of metastatic breast cancer. Treatment of mice with a monoclonal anti-TGF-beta antibody (1D11) significantly suppressed metastasis of 4T1 cells to the lungs. When metastatic 4T1 cells were recovered from lungs of 1D11-treated and control mice, the most differentially expressed gene was found to be bone sialoprotein (Bsp). Immunostaining confirmed the loss of Bsp protein in 1D11-treated lung metastases, and TGF-beta was shown to regulate and correlate with Bsp expression in vitro. Functionally, knockdown of Bsp in 4T1 cells reduced the ability of TGF-beta to induce local collagen degradation and invasion in vitro, and treatment with recombinant Bsp protected 4T1 cells from complement-mediated lysis. Finally, suppression of Bsp in 4T1 cells reduced metastasis in vivo. We conclude that Bsp is a plausible mediator of at least some of the tumor cell-targeted prometastatic activity of TGF-beta in this model and that Bsp expression in metastases can be successfully suppressed by systemic treatment with anti-TGF-beta antibodies.

  6. Chemokines, macrophage inflammatory protein-2 and stromal cell-derived factor-1{alpha}, suppress amyloid {beta}-induced neurotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raman, Dayanidhi; Milatovic, Snjezana-Zaja; Milatovic, Dejan

    2011-11-15

    Alzheimer's disease (AD) is characterized by a progressive cognitive decline and accumulation of neurotoxic oligomeric peptides amyloid-{beta} (A{beta}). Although the molecular events are not entirely known, it has become evident that inflammation, environmental and other risk factors may play a causal, disruptive and/or protective role in the development of AD. The present study investigated the ability of the chemokines, macrophage inflammatory protein-2 (MIP-2) and stromal cell-derived factor-1{alpha} (SDF-1{alpha}), the respective ligands for chemokine receptors CXCR2 and CXCR4, to suppress A{beta}-induced neurotoxicity in vitro and in vivo. Pretreatment with MIP-2 or SDF-1{alpha} significantly protected neurons from A{beta}-induced dendritic regression and apoptosismore » in vitro through activation of Akt, ERK1/2 and maintenance of metalloproteinase ADAM17 especially with SDF-1{alpha}. Intra-cerebroventricular (ICV) injection of A{beta} led to reduction in dendritic length and spine density of pyramidal neurons in the CA1 area of the hippocampus and increased oxidative damage 24 h following the exposure. The A{beta}-induced morphometric changes of neurons and increase in biomarkers of oxidative damage, F{sub 2}-isoprostanes, were significantly inhibited by pretreatment with the chemokines MIP-2 or SDF-1{alpha}. Additionally, MIP-2 or SDF-1{alpha} was able to suppress the aberrant mislocalization of p21-activated kinase (PAK), one of the proteins involved in the maintenance of dendritic spines. Furthermore, MIP-2 also protected neurons against A{beta} neurotoxicity in CXCR2-/- mice, potentially through observed up regulation of CXCR1 mRNA. Understanding the neuroprotective potential of chemokines is crucial in defining the role for their employment during the early stages of neurodegeneration. -- Research highlights: Black-Right-Pointing-Pointer Neuroprotective ability of the chemokines MIP2 and CXCL12 against A{beta} toxicity. Black

  7. Protective effects of melittin on transforming growth factor-{beta}1 injury to hepatocytes via anti-apoptotic mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Woo-Ram; Park, Ji-Hyun; Kim, Kyung-Hyun

    Melittin is a cationic, hemolytic peptide that is the main toxic component in the venom of the honey bee (Apis mellifera). Melittin has multiple effects, including anti-bacterial, anti-viral and anti-inflammatory, in various cell types. However, the anti-apoptotic mechanisms of melittin have not been fully elucidated in hepatocytes. Apoptosis contributes to liver inflammation and fibrosis. Knowledge of the apoptotic mechanisms is important to develop new and effective therapies for treatment of cirrhosis, portal hypertension, liver cancer, and other liver diseases. In the present study, we investigated the anti-apoptotic effect of melittin on transforming growth factor (TGF)-{beta}1-induced apoptosis in hepatocytes. TGF-{beta}1-treated hepatocytesmore » were exposed to low doses (0.5 and 1 {mu}g/mL) and high dose (2 {mu}g/mL) of melittin. The low doses significantly protected these cells from DNA damage in TGF-{beta}1-induced apoptosis compared to the high dose. Also, melittin suppressed TGF-{beta}1-induced apoptotic activation of the Bcl-2 family and caspase family of proteins, which resulted in the inhibition of poly-ADP-ribose polymerase (PARP) cleavage. These results demonstrate that TGF-{beta}1 induces hepatocyte apoptosis and that an optimal dose of melittin exerts anti-apoptotic effects against TGF-{beta}1-induced injury to hepatocytes via the mitochondrial pathway. These results suggest that an optimal dose of melittin can serve to protect cells against TGF-{beta}1-mediated injury. - Highlights: > We investigated the anti-apoptotic effect of melittin on TGF-{beta}1-induced hepatocyte. > TGF-{beta}1 induces hepatocyte apoptosis. > TGF-{beta}1-treated hepatocytes were exposed to low doses and high dose of melittin. > Optimal dose of melittin exerts anti-apoptotic effects to hepatocytes.« less

  8. Evolution and Diversity of the Ras Superfamily of Small GTPases in Prokaryotes

    PubMed Central

    Wuichet, Kristin; Søgaard-Andersen, Lotte

    2015-01-01

    The Ras superfamily of small GTPases are single domain nucleotide-dependent molecular switches that act as highly tuned regulators of complex signal transduction pathways. Originally identified in eukaryotes for their roles in fundamental cellular processes including proliferation, motility, polarity, nuclear transport, and vesicle transport, recent studies have revealed that single domain GTPases also control complex functions such as cell polarity, motility, predation, development and antibiotic resistance in bacteria. Here, we used a computational genomics approach to understand the abundance, diversity, and evolution of small GTPases in prokaryotes. We collected 520 small GTPase sequences present in 17% of 1,611 prokaryotic genomes analyzed that cover diverse lineages. We identified two discrete families of small GTPases in prokaryotes that show evidence of three distinct catalytic mechanisms. The MglA family includes MglA homologs, which are typically associated with the MglB GTPase activating protein, whereas members of the Rup (Ras superfamily GTPase of unknown function in prokaryotes) family are not predicted to interact with MglB homologs. System classification and genome context analyses support the involvement of small GTPases in diverse prokaryotic signal transduction pathways including two component systems, laying the foundation for future experimental characterization of these proteins. Phylogenetic analysis of prokaryotic and eukaryotic GTPases supports that the last universal common ancestor contained ancestral MglA and Rup family members. We propose that the MglA family was lost from the ancestral eukaryote and that the Ras superfamily members in extant eukaryotes are the result of vertical and horizontal gene transfer events of ancestral Rup GTPases. PMID:25480683

  9. Extracellular heat shock protein HSP90{beta} secreted by MG63 osteosarcoma cells inhibits activation of latent TGF-{beta}1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Shigeki; Kulkarni, Ashok B., E-mail: ak40m@nih.gov

    2010-07-30

    Transforming growth factor-beta 1 (TGF-{beta}1) is secreted as a latent complex, which consists of latency-associated peptide (LAP) and the mature ligand. The release of the mature ligand from LAP usually occurs through conformational change of the latent complex and is therefore considered to be the first step in the activation of the TGF-{beta} signaling pathway. So far, factors such as heat, pH changes, and proteolytic cleavage are reportedly involved in this activation process, but the precise molecular mechanism is still far from clear. Identification and characterization of the cell surface proteins that bind to LAP are important to our understandingmore » of the latent TGF-{beta} activation process. In this study, we have identified heat shock protein 90 {beta} (HSP90{beta}) from the cell surface of the MG63 osteosarcoma cell line as a LAP binding protein. We have also found that MG63 cells secrete HSP90{beta} into extracellular space which inhibits the activation of latent TGF-{beta}1, and that there is a subsequent decrease in cell proliferation. TGF-{beta}1-mediated stimulation of MG63 cells resulted in the increased cell surface expression of HSP90{beta}. Thus, extracellular HSP90{beta} is a negative regulator for the activation of latent TGF-{beta}1 modulating TGF-{beta} signaling in the extracellular domain. -- Research highlights: {yields} Transforming growth factor-beta 1 (TGF-{beta}1) is secreted as a latent complex. {yields} This complex consists of latency-associated peptide (LAP) and the mature ligand. {yields} The release of the mature ligand from LAP is the first step in TGF-{beta} activation. {yields} We identified for the first time a novel mechanism for this activation process. {yields} Heat shock protein 90 {beta} is discovered as a negative regulator for this process.« less

  10. Regulation of cell growth by redox-mediated extracellular proteolysis of platelet-derived growth factor receptor beta.

    PubMed

    Okuyama, H; Shimahara, Y; Kawada, N; Seki, S; Kristensen, D B; Yoshizato, K; Uyama, N; Yamaoka, Y

    2001-07-27

    Redox-regulated processes are important elements in various cellular functions. Reducing agents, such as N-acetyl-l-cysteine (NAC), are known to regulate signal transduction and cell growth through their radical scavenging action. However, recent studies have shown that reactive oxygen species are not always involved in ligand-stimulated intracellular signaling. Here, we report a novel mechanism by which NAC blocks platelet-derived growth factor (PDGF)-induced signaling pathways in hepatic stellate cells, a fibrogenic player in the liver. Unlike in vascular smooth muscle cells, we found that reducing agents, including NAC, triggered extracellular proteolysis of PDGF receptor-beta, leading to desensitization of hepatic stellate cells toward PDGF-BB. This effect was mediated by secreted mature cathepsin B. In addition, type II transforming growth factor-beta receptor was also down-regulated. Furthermore, these events seemed to cause a dramatic improvement of rat liver fibrosis. These results indicated that redox processes impact the cell's response to growth factors by regulating the turnover of growth factor receptors and that "redox therapy" is promising for fibrosis-related disease.

  11. Functional Identification and Structure Determination of Two Novel Prolidases from cog1228 in the Amidohydrolase Superfamily

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiang, Dao Feng; Patskovsky, Yury; Xu, Chengfu

    2010-12-07

    Two uncharacterized enzymes from the amidohydrolase superfamily belonging to cog1228 were cloned, expressed, and purified to homogeneity. The two proteins, Sgx9260c (gi|44242006) and Sgx9260b (gi|44479596), were derived from environmental DNA samples originating from the Sargasso Sea. The catalytic function and substrate profiles for Sgx9260c and Sgx9260b were determined using a comprehensive library of dipeptides and N-acyl derivative of L-amino acids. Sgx9260c catalyzes the hydrolysis of Gly-L-Pro, L-Ala-L-Pro, and N-acyl derivatives of L-Pro. The best substrate identified to date is N-acetyl-L-Pro with a value of k{sub cat}/K{sub m} of 3 x 10{sup 5} M{sup -1} s{sup -1}. Sgx9260b catalyzes the hydrolysismore » of L-hydrophobic L-Pro dipeptides and N-acyl derivatives of L-Pro. The best substrate identified to date is N-propionyl-L-Pro with a value of k{sub cat}/K{sub m} of 1 x 10{sup 5} M{sup -1} s{sup -1}. Three-dimensional structures of both proteins were determined by X-ray diffraction methods (PDB codes 3MKV and 3FEQ). These proteins fold as distorted ({beta}/{alpha})8-barrels with two divalent cations in the active site. The structure of Sgx9260c was also determined as a complex with the N-methylphosphonate derivative of L-Pro (PDB code 3N2C). In this structure the phosphonate moiety bridges the binuclear metal center, and one oxygen atom interacts with His-140. The {alpha}-carboxylate of the inhibitor interacts with Tyr-231. The proline side chain occupies a small substrate binding cavity formed by residues contributed from the loop that follows {beta}-strand 7 within the ({beta}/{alpha})8-barrel. A total of 38 other proteins from cog1228 are predicted to have the same substrate profile based on conservation of the substrate binding residues. The structure of an evolutionarily related protein, Cc2672 from Caulobacter crecentus, was determined as a complex with the N-methylphosphonate derivative of L-arginine (PDB code 3MTW).« less

  12. Ensembler: Enabling High-Throughput Molecular Simulations at the Superfamily Scale.

    PubMed

    Parton, Daniel L; Grinaway, Patrick B; Hanson, Sonya M; Beauchamp, Kyle A; Chodera, John D

    2016-06-01

    The rapidly expanding body of available genomic and protein structural data provides a rich resource for understanding protein dynamics with biomolecular simulation. While computational infrastructure has grown rapidly, simulations on an omics scale are not yet widespread, primarily because software infrastructure to enable simulations at this scale has not kept pace. It should now be possible to study protein dynamics across entire (super)families, exploiting both available structural biology data and conformational similarities across homologous proteins. Here, we present a new tool for enabling high-throughput simulation in the genomics era. Ensembler takes any set of sequences-from a single sequence to an entire superfamily-and shepherds them through various stages of modeling and refinement to produce simulation-ready structures. This includes comparative modeling to all relevant PDB structures (which may span multiple conformational states of interest), reconstruction of missing loops, addition of missing atoms, culling of nearly identical structures, assignment of appropriate protonation states, solvation in explicit solvent, and refinement and filtering with molecular simulation to ensure stable simulation. The output of this pipeline is an ensemble of structures ready for subsequent molecular simulations using computer clusters, supercomputers, or distributed computing projects like Folding@home. Ensembler thus automates much of the time-consuming process of preparing protein models suitable for simulation, while allowing scalability up to entire superfamilies. A particular advantage of this approach can be found in the construction of kinetic models of conformational dynamics-such as Markov state models (MSMs)-which benefit from a diverse array of initial configurations that span the accessible conformational states to aid sampling. We demonstrate the power of this approach by constructing models for all catalytic domains in the human tyrosine kinase

  13. Structure and function of POTRA domains of Omp85/TPS superfamily.

    PubMed

    Simmerman, Richard F; Dave, Ashita M; Bruce, Barry D

    2014-01-01

    The Omp85/TPS (outer-membrane protein of 85 kDa/two-partner secretion) superfamily is a ubiquitous and major class of β-barrel proteins. This superfamily is restricted to the outer membranes of gram-negative bacteria, mitochondria, and chloroplasts. The common architecture, with an N-terminus consisting of repeats of soluble polypeptide-transport-associated (POTRA) domains and a C-terminal β-barrel pore is highly conserved. The structures of multiple POTRA domains and one full-length TPS protein have been solved, yet discovering roles of individual POTRA domains has been difficult. This review focuses on similarities and differences between POTRA structures, emphasizing POTRA domains in autotrophic organisms including plants and cyanobacteria. Unique roles, specific for certain POTRA domains, are examined in the context of POTRA location with respect to their attachment to the β-barrel pore, and their degree of biological dispensability. Finally, because many POTRA domains may have the ability to interact with thousands of partner proteins, possible modes of these interactions are also explored. © 2014 Elsevier Inc. All rights reserved.

  14. The role of peroxisome proliferator-activated receptor-{beta}/{delta} in epidermal growth factor-induced HaCaT cell proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang Pengfei; Jiang Bimei; Yang Xinghua

    2008-10-15

    Epidermal growth factor (EGF) has been shown to be a potent mitogen for epidermal cells both in vitro and in vivo, thus contributing to the development of an organism. It has recently become clear that peroxisome proliferator-activated receptor-{beta}/{delta} (PPAR{beta}/{delta}) expression and activation is involved in the cell proliferation. However, little is known about the role of PPAR{beta}/{delta} in EGF-induced proliferation of HaCaT keratinocytes. In this study, HaCaT cells were cultured in the presence and absence of EGF and we identified that EGF induced an increase of PPAR{beta}/{delta} mRNA and protein level expression in time-dependent and dose-dependent manner, and AG1487, anmore » EGF receptor (EGFR) special inhibitor, caused attenuation of PPAR{beta}/{delta} protein expression. Electrophoretic mobility shift assay (EMSA) revealed that EGF significantly increased PPAR{beta}/{delta} binding activity in HaCaT keratinocytes. Antisense phosphorothioate oligonucleotides (asODNs) against PPAR{beta}/{delta} caused selectively inhibition of PPAR{beta}/{delta} protein content induced by EGF and significantly attenuated EGF-mediated cell proliferation. Treatment of the cells with L165041, a specific synthetic ligand for PPAR{beta}/{delta}, significantly enhanced EGF-mediated cell proliferation. Finally, c-Jun ablation inhibited PPAR{beta}/{delta} up-regulation induced by EGF, and chromatin immunoprecipitation (ChIP) showed that c-Jun bound to the PPAR{beta}/{delta} promoter and the binding increased in EGF-stimulated cells. These results demonstrate that EGF induces PPAR{beta}/{delta} expression in a c-Jun-dependent manner and PPAR{beta}/{delta} plays a vital role in EGF-stimulated proliferation of HaCaT cells.« less

  15. Evolution of Enzymatic Activities in the Enolase Superfamily: D-Tartrate Dehydratase from Bradyrhizobium japonicum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yew,W.; Fedorov, A.; Fedorov, E.

    2006-01-01

    We focus on the assignment of function to and elucidation of structure-function relationships for a member of the mechanistically diverse enolase superfamily encoded by the Bradyrhizobium japonicum genome (bll6730; GI:27381841). As suggested by sequence alignments, the active site contains the same functional groups found in the active site of mandelate racemase (MR) that catalyzes a 1,1-proton transfer reaction: two acid/base catalysts, Lys 184 at the end of the second {beta}-strand, and a His 322-Asp 292 dyad at the ends of the seventh and sixth -strands, respectively, as well as ligands for an essential Mg{sup 2+}, Asp 213, Glu 239, andmore » Glu 265 at the ends of the third, fourth, and fifth {beta}-strands, respectively. We screened a library of 46 acid sugars and discovered that only D-tartrate is dehydrated, yielding oxaloacetate as product. The kinetic constants (k{sub cat} = 7.3 s{sup -1}; k{sub cat}/K{sub M} = 8.5 x 10{sup 4} M{sup -1} s{sup -1}) are consistent with assignment of the D-tartrate dehydratase (TarD) function. The kinetic phenotypes of mutants as well as the structures of liganded complexes are consistent with a mechanism in which Lys 184 initiates the reaction by abstraction of the {alpha}-proton to generate a Mg{sup 2+}-stabilized enediolate intermediate, and the vinylogous -elimination of the 3-OH group is general acid-catalyzed by the His 322, accomplishing the anti-elimination of water. The replacement of the leaving group by solvent-derived hydrogen is stereorandom, suggesting that the enol tautomer of oxaloacetate is the product; this expectation was confirmed by its observation by {sup 1}H NMR spectroscopy. Thus, the TarD-catalyzed reaction is a 'simple' extension of the two-step reaction catalyzed by MR: base-catalyzed proton abstraction to generate a Mg{sup 2+}-stabilized enediolate intermediate followed by acid-catalyzed decomposition of that intermediate to yield the product.« less

  16. Comparative analysis of cation/proton antiporter superfamily in plants.

    PubMed

    Ye, Chu-Yu; Yang, Xiaohan; Xia, Xinli; Yin, Weilun

    2013-06-01

    The cation/proton antiporter superfamily is associated with the transport of monovalent cations across membranes. This superfamily was annotated in the Arabidopsis genome and some members were functionally characterized. In the present study, a systematic analysis of the cation/proton antiporter genes in diverse plant species was reported. We identified 240 cation/proton antiporters in alga, moss, and angiosperm. A phylogenetic tree was constructed showing these 240 members are separated into three families, i.e., Na(+)/H(+) exchangers, K(+) efflux antiporters, and cation/H(+) exchangers. Our analysis revealed that tandem and/or segmental duplications contribute to the expansion of cation/H(+) exchangers in the examined angiosperm species. Sliding window analysis of the nonsynonymous/synonymous substitution ratios showed some differences in the evolutionary fate of cation/proton antiporter paralogs. Furthermore, we identified over-represented motifs among these 240 proteins and found most motifs are family specific, demonstrating diverse evolution of the cation/proton antiporters among three families. In addition, we investigated the co-expressed genes of the cation/proton antiporters in Arabidopsis thaliana. The results showed some biological processes are enriched in the co-expressed genes, suggesting the cation/proton antiporters may be involved in these biological processes. Taken together, this study furthers our knowledge on cation/proton antiporters in plants. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Granulocyte-macrophage colony-stimulating factor amplification of interleukin-1beta and tumor necrosis factor alpha production in THP-1 human monocytic cells stimulated with lipopolysaccharide of oral microorganisms.

    PubMed

    Baqui, A A; Meiller, T F; Chon, J J; Turng, B F; Falkler, W A

    1998-05-01

    Cytokines, including granulocyte-macrophage colony-stimulating factor (GM-CSF), are used to assist in bone marrow recovery during cancer chemotherapy. Interleukin-1beta (IL-1beta) and tumor necrosis factor alpha (TNF-alpha) play important roles in inflammatory processes, including exacerbation of periodontal diseases, one of the most common complications in patients who undergo this therapy. A human monocyte cell line (THP-1) was utilized to investigate IL-1beta and TNF-alpha production following GM-CSF supplementation with lipopolysaccharide (LPS) from two oral microorganisms, Porphyromonas gingivalis and Fusobacterium nucleatum. LPS of P. gingivalis or F. nucleatum was prepared by a phenol-water extraction method and characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and determination of total protein and endotoxin contents. Resting THP-1 cells were treated with LPS of P. gingivalis or F. nucleatum and/or GM-CSF (50 IU/ml) by using different concentrations for various time periods. Production of IL-1beta and TNF-alpha in THP-1 cells was measured by solid-phase enzyme-linked immunosorbent assay. Reverse transcription (RT)-PCR was used to evaluate the gene expression of resting and treated THP-1 cells. IL-1beta was not detected in untreated THP-1 cells. IL-1beta production was, however, stimulated sharply at 4 h. GM-CSF amplified IL-1beta production in THP-1 cells treated with LPS from both oral anaerobes. No IL-1beta-specific mRNA transcript was detected in untreated THP-1 cells. However, IL-1beta mRNA was detected by RT-PCR 2 h after stimulation of THP-1 cells with LPS from both organisms. GM-CSF did not shorten the IL-1beta transcriptional activation time. GM-CSF plus F. nucleatum or P. gingivalis LPS activated THP-1 cells to produce a 1.6-fold increase in TNF-alpha production at 4 h over LPS stimulation alone. These investigations with the in vitro THP-1 model indicate that there may be an increase in the cellular immune response to oral

  18. Evaluation of thrombogenicity of beta-propiolactone/ultraviolet (beta-PL/UV) treated PPSB in chimpanzees

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kotitschke, R.; Stephan, W.; Prince, A.M.

    1983-05-01

    The thrombogenicity of beta-PL/UV-treated PPSB (factor IX concentrate) was evaluated in chimpanzees. PPSB isolated from beta-propiolactone-treated and UV-irradiated plasma was injected into chimpanzees at a dose of approximately 100 units/kg body weight. An FDA licensed PPSB preparation served as the negative control, and a preparation containing activated as well as precursor clotting factors served as the positive control. 15 minutes, 1 h, 4 h, and 24 h after the PPSB application the following parameters were determined in the chimpanzee blood: factors II, VII, IX, X, VIII, fibrinogen, AT III, thrombin coagulase, Quick value, APTT and platelet count. Neither the untreatedmore » control preparation, nor the PPSB isolated from beta-propiolactone-treated and UV-irradiated plasma, showed signs of thrombogenicity in the chimpanzee model. The positive control indicated that the chimpanzee is a suitable model for the thrombogenicity testing of activated clotting factors.« less

  19. Evolution of enzymatic activity in the enolase superfamily: structure of o-succinylbenzoate synthase from Escherichia coli in complex with Mg2+ and o-succinylbenzoate.

    PubMed

    Thompson, T B; Garrett, J B; Taylor, E A; Meganathan, R; Gerlt, J A; Rayment, I

    2000-09-05

    The X-ray structures of the ligand free (apo) and the Mg(2+)*o-succinylbenzoate (OSB) product complex of o-succinylbenzoate synthase (OSBS) from Escherichia coli have been solved to 1.65 and 1.77 A resolution, respectively. The structure of apo OSBS was solved by multiple isomorphous replacement in space group P2(1)2(1)2(1); the structure of the complex with Mg(2+)*OSB was solved by molecular replacement in space group P2(1)2(1)2. The two domain fold found for OSBS is similar to those found for other members of the enolase superfamily: a mixed alpha/beta capping domain formed from segments at the N- and C-termini of the polypeptide and a larger (beta/alpha)(7)beta barrel domain. Two regions of disorder were found in the structure of apo OSBS: (i) the loop between the first two beta-strands in the alpha/beta domain; and (ii) the first sheet-helix pair in the barrel domain. These regions are ordered in the product complex with Mg(2+)*OSB. As expected, the Mg(2+)*OSB pair is bound at the C-terminal end of the barrel domain. The electron density for the phenyl succinate component of the product is well-defined; however, the 1-carboxylate appears to adopt multiple conformations. The metal is octahedrally coordinated by Asp(161), Glu(190), and Asp(213), two water molecules, and one oxygen of the benzoate carboxylate group of OSB. The loop between the first two beta-strands in the alpha/beta motif interacts with the aromatic ring of OSB. Lys(133) and Lys(235) are positioned to function as acid/base catalysts in the dehydration reaction. Few hydrogen bonding or electrostatic interactions are involved in the binding of OSB to the active site; instead, most of the interactions between OSB and the protein are either indirect via water molecules or via hydrophobic interactions. As a result, evolution of both the shape and the volume of the active site should be subject to few structural constraints. This would provide a structural strategy for the evolution of new catalytic

  20. Targeting Transforming Growth Factor Beta to Enhance the Fracture Resistance of Bone

    DTIC Science & Technology

    2013-01-01

    Transforming Growth Factor Beta to Enhance the Fracture Resistance of Bone is to determine whether the suppression of TGF-β activity improves the fracture...effect primarily occurred in the old rats. Effect of TGF-β suppression on fracture resistance in female mice Since the suppression of TGF-β activity by...treated mice. This suggests that 1D11 treatment depleted the osteoprogenitor pool to some extent as inhibition of TGF-β activity in vivo may favor

  1. Inhibitory effect of transforming growth factor-. beta. (TGF-. beta. ) on insulin-like growth factor 1 (IGF-1)-induced proliferation and differentiation in primary cultures of pig preadipocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richardson, R.L.; Hausman, G.J.; Gaskins, H.R.

    1990-02-26

    The influence of serum, IGF-1 and TGF-{beta} on the differentiation of preadipocytes was examined in primary cultures of porcine adipose tissue cells. In serum-supplemented or serum-free, IGF-1 (1 and 10 nM) had no effect on total cell number. However, IGF-1 (10nM) increased adipocyte number only in serum-supplemented (1% pig serum) cultures, whereas TGF-{beta} (15 pm) reduced the adipocyte number in the presence and absence of IGF-1. Replication of preadipocytes was analyzed with a ({sup 3}H) thymidine assay. Preadipocyte proliferation (cpm in adipocyte fraction) was increased by IGF-1 (10nM) only in cultures containing pig serum. TGF-{beta} had no effect on preadipocytemore » proliferation specifically, but slightly increased total ({sup 3}H) thymidine incorporation in cultures with serum. Glycerol phosphate dehydrogenase (GPDH) specific activity was decreased by adding TGF-{beta} to serum-free cultures but TGF-{beta} had little effect in serum-supplemented cultures. Cellular secretion of IGF-1 was decreased when TGF-{beta} was added to serum-free or serum-supplemented cultures. These studies indicate that TGF-{beta} does not inhibit adipocyte development in the initial growth phase, but may inhibit differentiation and/or hypertrophy at a later stage of development.« less

  2. Sinorhizobium meliloti Phage ΦM9 Defines a New Group of T4 Superfamily Phages with Unusual Genomic Features but a Common T=16 Capsid

    PubMed Central

    Johnson, Matthew C.; Tatum, Kelsey B.; Lynn, Jason S.; Brewer, Tess E.; Lu, Stephen; Washburn, Brian K.

    2015-01-01

    , contractile tail through which the DNA is delivered to host cells. This phylogenetic and structural study of S. meliloti-infecting T4 superfamily phage ΦM9 provides new insight into the diversity of this family. The comparison of structure-related genes in both ΦM9 and S. meliloti-infecting T4 superfamily phage ΦM12, which comes from a completely different lineage of these phages, allows the identification of host infection-related factors. PMID:26311868

  3. MicroRNA-26a modulates transforming growth factor beta-1-induced proliferation in human fetal lung fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xiaoou; Department of Respiratory Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan; Liu, Lian

    2014-11-28

    Highlights: • Endogenous miR-26a inhibits TGF-beta 1 induced proliferation of lung fibroblasts. • miR-26a induces G1 arrest through directly targeting 3′-UTR of CCND2. • TGF indispensable receptor, TGF-beta R I, is regulated by miR-26a. • miR-26a acts through inhibiting TGF-beta 2 feedback loop to reduce TGF-beta 1. • Collagen type I and connective tissue growth factor are suppressed by miR-26a. - Abstract: MicroRNA-26a is a newly discovered microRNA that has a strong anti-tumorigenic capacity and is capable of suppressing cell proliferation and activating tumor-specific apoptosis. However, whether miR-26a can inhibit the over-growth of lung fibroblasts remains unclear. The relationship betweenmore » miR-26a and lung fibrosis was explored in the current study. We first investigated the effect of miR-26a on the proliferative activity of human lung fibroblasts with or without TGF-beta1 treatment. We found that the inhibition of endogenous miR-26a promoted proliferation and restoration of mature miR-26a inhibited the proliferation of human lung fibroblasts. We also examined that miR-26a can block the G1/S phase transition via directly targeting 3′-UTR of CCND2, degrading mRNA and decreasing protein expression of Cyclin D2. Furthermore, we showed that miR-26a mediated a TGF-beta 2-TGF-beta 1 feedback loop and inhibited TGF-beta R I activation. In addition, the overexpression of miR-26a also significantly suppressed the TGF-beta 1-interacting-CTGF–collagen fibrotic pathway. In summary, our studies indicated an essential role of miR-26a in the anti-fibrotic mechanism in TGF-beta1-induced proliferation in human lung fibroblasts, by directly targeting Cyclin D2, regulating TGF-beta R I as well as TGF-beta 2, and suggested the therapeutic potential of miR-26a in ameliorating lung fibrosis.« less

  4. Membrane and Protein Interactions of the Pleckstrin Homology Domain Superfamily

    PubMed Central

    Lenoir, Marc; Kufareva, Irina; Abagyan, Ruben; Overduin, Michael

    2015-01-01

    The human genome encodes about 285 proteins that contain at least one annotated pleckstrin homology (PH) domain. As the first phosphoinositide binding module domain to be discovered, the PH domain recruits diverse protein architectures to cellular membranes. PH domains constitute one of the largest protein superfamilies, and have diverged to regulate many different signaling proteins and modules such as Dbl homology (DH) and Tec homology (TH) domains. The ligands of approximately 70 PH domains have been validated by binding assays and complexed structures, allowing meaningful extrapolation across the entire superfamily. Here the Membrane Optimal Docking Area (MODA) program is used at a genome-wide level to identify all membrane docking PH structures and map their lipid-binding determinants. In addition to the linear sequence motifs which are employed for phosphoinositide recognition, the three dimensional structural features that allow peripheral membrane domains to approach and insert into the bilayer are pinpointed and can be predicted ab initio. The analysis shows that conserved structural surfaces distinguish which PH domains associate with membrane from those that do not. Moreover, the results indicate that lipid-binding PH domains can be classified into different functional subgroups based on the type of membrane insertion elements they project towards the bilayer. PMID:26512702

  5. Diversity, classification and function of the plant protein kinase superfamily

    PubMed Central

    Lehti-Shiu, Melissa D.; Shiu, Shin-Han

    2012-01-01

    Eukaryotic protein kinases belong to a large superfamily with hundreds to thousands of copies and are components of essentially all cellular functions. The goals of this study are to classify protein kinases from 25 plant species and to assess their evolutionary history in conjunction with consideration of their molecular functions. The protein kinase superfamily has expanded in the flowering plant lineage, in part through recent duplications. As a result, the flowering plant protein kinase repertoire, or kinome, is in general significantly larger than other eukaryotes, ranging in size from 600 to 2500 members. This large variation in kinome size is mainly due to the expansion and contraction of a few families, particularly the receptor-like kinase/Pelle family. A number of protein kinases reside in highly conserved, low copy number families and often play broadly conserved regulatory roles in metabolism and cell division, although functions of plant homologues have often diverged from their metazoan counterparts. Members of expanded plant kinase families often have roles in plant-specific processes and some may have contributed to adaptive evolution. Nonetheless, non-adaptive explanations, such as kinase duplicate subfunctionalization and insufficient time for pseudogenization, may also contribute to the large number of seemingly functional protein kinases in plants. PMID:22889912

  6. Hydrological and environmental variables outperform spatial factors in structuring species, trait composition, and beta diversity of pelagic algae.

    PubMed

    Wu, Naicheng; Qu, Yueming; Guse, Björn; Makarevičiūtė, Kristė; To, Szewing; Riis, Tenna; Fohrer, Nicola

    2018-03-01

    There has been increasing interest in algae-based bioassessment, particularly, trait-based approaches are increasingly suggested. However, the main drivers, especially the contribution of hydrological variables, of species composition, trait composition, and beta diversity of algae communities are less studied. To link species and trait composition to multiple factors (i.e., hydrological variables, local environmental variables, and spatial factors) that potentially control species occurrence/abundance and to determine their relative roles in shaping species composition, trait composition, and beta diversities of pelagic algae communities, samples were collected from a German lowland catchment, where a well-proven ecohydrological modeling enabled to predict long-term discharges at each sampling site. Both trait and species composition showed significant correlations with hydrological, environmental, and spatial variables, and variation partitioning revealed that the hydrological and local environmental variables outperformed spatial variables. A higher variation of trait composition (57.0%) than species composition (37.5%) could be explained by abiotic factors. Mantel tests showed that both species and trait-based beta diversities were mostly related to hydrological and environmental heterogeneity with hydrological contributing more than environmental variables, while purely spatial impact was less important. Our findings revealed the relative importance of hydrological variables in shaping pelagic algae community and their spatial patterns of beta diversities, emphasizing the need to include hydrological variables in long-term biomonitoring campaigns and biodiversity conservation or restoration. A key implication for biodiversity conservation was that maintaining the instream flow regime and keeping various habitats among rivers are of vital importance. However, further investigations at multispatial and temporal scales are greatly needed.

  7. Effect of transforming growth factor-beta1 on embryonic and posthatch muscle growth and development in normal and low score normal chicken.

    PubMed

    Li, X; Velleman, S G

    2009-02-01

    During skeletal muscle development, transforming growth factor-beta1 (TGF-beta1) is a potent inhibitor of muscle cell proliferation and differentiation. The TGF-beta1 signal is carried by Smad proteins into the cell nucleus, inhibiting the expression of key myogenic regulatory factors including MyoD and myogenin. However, the molecular mechanism by which TGF-beta1 inhibits muscle cell proliferation and differentiation has not been well documented in vivo. The present study investigated the effect of TGF-beta1 on in vivo skeletal muscle growth and development. A chicken line, Low Score Normal (LSN) with reduced muscling and upregulated TGF-beta1 expression, was used and compared to a normal chicken line. The injection of TGF-beta1 at embryonic day (ED) 3 significantly reduced the pectoralis major (p. major) muscle weight in the normal birds at 1 wk posthatch, whereas no significant difference was observed in the LSN birds. The difference between normal and LSN birds in response to TGF-beta1 is likely due to different levels of endogenous TGF-beta1 where the LSN birds have increased TGF-beta1 expression in their p. major muscle at both 17 ED and 6 wk posthatch. Smad3 expression was reduced by TGF-beta1 from 10 ED to 1 wk posthatch in normal p. major muscle. Unlike Smad3, Smad7 expression was not significantly affected by TGF-beta1 until posthatch in both normal and LSN p. major muscle. Expression of MyoD was reduced 35% by TGF-beta1 during embryonic development in normal p. major muscle, whereas LSN p. major muscle showed a delayed decrease at 1 d posthatch in MyoD expression in response to the TGF-beta1 treatment. Myogenin expression was reduced 29% by TGF-beta1 after hatch in normal p. major muscle. In LSN p. major muscle, TGF-beta1 treatment significantly decreased myogenin expression by 43% at 1 d posthatch and 32% at 1 wk posthatch. These data suggested that TGF-beta1 reduced p. major muscle growth by inhibiting MyoD and myogenin expression during both embryonic

  8. Inhibiting platelet-derived growth factor beta reduces Ewing's sarcoma growth and metastasis in a novel orthotopic human xenograft model.

    PubMed

    Wang, Yong Xin; Mandal, Deendayal; Wang, Suizhau; Hughes, Dennis; Pollock, Raphael E; Lev, Dina; Kleinerman, Eugenie; Hayes-Jordan, Andrea

    2009-01-01

    Despite aggressive therapy, Ewing's sarcoma (ES) patients have a poor five-year overall survival of only 20-40%. Pulmonary metastasis is the most common form of demise in these patients. The pathogenesis of pulmonary metastasis is poorly understood and few orthotopic models exist that allow study of spontaneous pulmonary metastasis in ES. We have developed a novel orthotopic xenograft model in which spontaneous pulmonary metastases develop. While the underlying biology of ES is incompletely understood, in addition to the EWS-FLI-1 mutation, it is known that platelet-derived growth factor receptor beta (PDGFR-beta) is highly expressed in ES. Hypothesizing that PDGFR-beta expression is indicative of a specific role for this receptor protein in ES progression, the effect of PDGFR-beta inhibition on ES growth and metastasis was assessed in this novel orthotopic ES model. Silencing PDGFR-beta reduced spontaneous growth and metastasis in ES. Preclinical therapeutically relevant findings such as these may ultimately lead to new treatment initiatives in ES.

  9. Identification of gonadal soma-derived factor involvement in Monopterus albus (protogynous rice field eel) sex change.

    PubMed

    Zhu, Yefei; Wang, Chunlei; Chen, Xiaowu; Guan, Guijun

    2016-07-01

    We studied molecular events and potential mechanisms underlying the process of female-to-male sex transformation in the rice field eel (Monopterus albus), a protogynous hermaphrodite fish in which the gonad is initially a female ovary and transforms into male testes. We cloned and identified a novel gonadal soma derived factor (GSDF), which encodes a member of the transforming growth factor-beta superfamily. gsdf expression was measured in gonads of female, intersex and male with reverse transcription-PCR and gsdf's role in sex transformation was studied with qPCR, histological analysis and dual-color in situ hybridization assays and compared to other sex-related genes. gsdf was correlated to Sertoli cell differentiation, indicating involvement in testicular differentiation and sex transformation from female to male in this species. A unique expression pattern reveals a potential role of gsdf essential for the sex transformation of rice field eels.

  10. Taxonomic distribution and origins of the extended LHC (light-harvesting complex) antenna protein superfamily

    PubMed Central

    2010-01-01

    Background The extended light-harvesting complex (LHC) protein superfamily is a centerpiece of eukaryotic photosynthesis, comprising the LHC family and several families involved in photoprotection, like the LHC-like and the photosystem II subunit S (PSBS). The evolution of this complex superfamily has long remained elusive, partially due to previously missing families. Results In this study we present a meticulous search for LHC-like sequences in public genome and expressed sequence tag databases covering twelve representative photosynthetic eukaryotes from the three primary lineages of plants (Plantae): glaucophytes, red algae and green plants (Viridiplantae). By introducing a coherent classification of the different protein families based on both, hidden Markov model analyses and structural predictions, numerous new LHC-like sequences were identified and several new families were described, including the red lineage chlorophyll a/b-binding-like protein (RedCAP) family from red algae and diatoms. The test of alternative topologies of sequences of the highly conserved chlorophyll-binding core structure of LHC and PSBS proteins significantly supports the independent origins of LHC and PSBS families via two unrelated internal gene duplication events. This result was confirmed by the application of cluster likelihood mapping. Conclusions The independent evolution of LHC and PSBS families is supported by strong phylogenetic evidence. In addition, a possible origin of LHC and PSBS families from different homologous members of the stress-enhanced protein subfamily, a diverse and anciently paralogous group of two-helix proteins, seems likely. The new hypothesis for the evolution of the extended LHC protein superfamily proposed here is in agreement with the character evolution analysis that incorporates the distribution of families and subfamilies across taxonomic lineages. Intriguingly, stress-enhanced proteins, which are universally found in the genomes of green plants

  11. Assembly of Q{beta} viral RNA polymerase with host translational elongation factors EF-Tu and -Ts.

    PubMed

    Takeshita, Daijiro; Tomita, Kozo

    2010-09-07

    Replication and transcription of viral RNA genomes rely on host-donated proteins. Qbeta virus infects Escherichia coli and replicates and transcribes its own genomic RNA by Qbeta replicase. Qbeta replicase requires the virus-encoded RNA-dependent RNA polymerase (beta-subunit), and the host-donated translational elongation factors EF-Tu and -Ts, as active core subunits for its RNA polymerization activity. Here, we present the crystal structure of the core Qbeta replicase, comprising the beta-subunit, EF-Tu and -Ts. The beta-subunit has a right-handed structure, and the EF-Tu:Ts binary complex maintains the structure of the catalytic core crevasse of the beta-subunit through hydrophobic interactions, between the finger and thumb domains of the beta-subunit and domain-2 of EF-Tu and the coiled-coil motif of EF-Ts, respectively. These hydrophobic interactions are required for the expression and assembly of the Qbeta replicase complex. Thus, EF-Tu and -Ts have chaperone-like functions in the maintenance of the structure of the active Qbeta replicase. Modeling of the template RNA and the growing RNA in the catalytic site of the Qbeta replicase structure also suggests that structural changes of the RNAs and EF-Tu:Ts should accompany processive RNA polymerization and that EF-Tu:Ts in the Qbeta replicase could function to modulate the RNA folding and structure.

  12. The association of GSK3 beta with E2F1 facilitates nerve growth factor-induced neural cell differentiation.

    PubMed

    Zhou, Fangfang; Zhang, Long; Wang, Aijun; Song, Bo; Gong, Kai; Zhang, Lihai; Hu, Min; Zhang, Xiufang; Zhao, Nanming; Gong, Yandao

    2008-05-23

    It is widely acknowledged that E2F1 and GSK3beta are both involved in the process of cell differentiation. However, the relationship between E2F1 and GSK3beta in cell differentiation has yet to be discovered. Here, we provide evidence that in the differentiation of PC12 cells induced by nerve growth factor (NGF), GSK3beta was increased at both the mRNA and protein levels, whereas E2F1 at these two levels was decreased. Both wild-type GSK3beta and its kinase-defective mutant GSK3beta KM can inhibit E2F1 by promoting its ubiquitination through physical interaction. In addition, the colocalization of GSK3beta and E2F1 and their subcellular distribution, regulated by NGF, were observed in the process of PC12 differentiation. At the tissue level, GSK3beta colocalized and interacted with E2F1 in mouse hippocampus. Furthermore, GSK3beta facilitated neurite outgrowth by rescuing the promoter activities of Cdk inhibitors p21 and p15 from the inhibition caused by E2F1. To summarize, our findings suggest that GSK3beta can promote the ubiquitination of E2F1 via physical interaction and thus inhibit its transcription activity in a kinase activity independent manner, which plays an important role in the NGF-induced PC12 differentiation.

  13. The role of transforming growth factor-beta in PEG-rHuMGDF-induced reversible myelofibrosis in rats.

    PubMed

    Yanagida, M; Ide, Y; Imai, A; Toriyama, M; Aoki, T; Harada, K; Izumi, H; Uzumaki, H; Kusaka, M; Tokiwa, T

    1997-12-01

    Pegylated recombinant human megakaryocyte growth and development factor (PEG-rHuMGDF) injected at a suprapharmacologic dose (100 microg/kg) daily for 5 d in normal rats caused marked increases in marrow megakaryocytes and platelet counts at 6-8 d followed by gradual decreases to control levels at 10-20 d. Interestingly, in addition to the expected thrombopoiesis, PEG-rHuMGDF was associated with myelofibrosis with a predominance of reticulin fibres at day 10 followed by complete normalization by day 20. At 6-8 d, the levels of transforming growth factor-beta1 (TGF-beta1) in the extracellular fluid of the marrow, the platelet poor plasma, and the platelet extract were increased 23-, 7- and 2-fold, respectively. The elevated levels of TGF-beta1 were gradually reduced to baseline levels at 13-20 d in accordance with the normalization of myelofibrosis and thrombopoiesis. An ultrastructural analysis showed that large fragments of megakaryocytes were deposited in the marrow parenchyma of PEG-rHuMGDF-treated rats at day 6. PEG-rHuMGDF administration at pharmacologic doses (1 and 10 microg/kg) did not induce the deposition of reticulin fibres in the marrow. These findings suggest that TGF-beta1 leaked from megakaryocytes is involved in the development of the PEG-rHuMGDF-induced myelofibrosis and that this is a reversible process related to the regulation of the excess production of platelets.

  14. TGF-beta inhibits IL-1beta-activated PAR-2 expression through multiple pathways in human primary synovial cells.

    PubMed

    Tsai, Shin-Han; Sheu, Ming-Thau; Liang, Yu-Chih; Cheng, Hsiu-Tan; Fang, Sheng-Shiung; Chen, Chien-Ho

    2009-10-23

    To investigate the mechanism how Transforming growth factor-beta(TGF-beta) represses Interleukin-1beta (IL-1beta)-induced Proteinase-Activated Receptor-2 (PAR-2) expression in human primary synovial cells (hPSCs). Human chondrocytes and hPSCs isolated from cartilages and synovium of Osteoarthritis (OA) patients were cultured with 10% fetal bovine serum media or serum free media before treatment with IL-1beta, TGF-beta1, or Connective tissue growth factor (CTGF). The expression of PAR-2 was detected using reverse transcriptase-polymerase chain reaction (RT-PCR) and western blotting. Collagen zymography was performed to assess the activity of Matrix metalloproteinases-13 (MMP-13). It was demonstrated that IL-1beta induces PAR-2 expression via p38 pathway in hPSCs. This induction can be repressed by TGF-beta and was observed to persist for at least 48 hrs, suggesting that TGF-beta inhibits PAR-2 expression through multiple pathways. First of all, TGF-beta was able to inhibit PAR-2 activity by inhibiting IL-1beta-induced p38 signal transduction and secondly the inhibition was also indirectly due to MMP-13 inactivation. Finally, TGF-beta was able to induce CTGF, and in turn CTGF represses PAR-2 expression by inhibiting IL-1beta-induced phospho-p38 level. TGF-beta could prevent OA from progression with the anabolic ability to induce CTGF production to maintain extracellular matrix (ECM) integrity and to down regulate PAR-2 expression, and the anti-catabolic ability to induce Tissue inhibitors of metalloproteinase-3 (TIMP-3) production to inhibit MMPs leading to avoid PAR-2 over-expression. Because IL-1beta-induced PAR-2 expressed in hPSCs might play a significantly important role in early phase of OA, PAR-2 repression by exogenous TGF-beta or other agents might be an ideal therapeutic target to prevent OA from progression.

  15. c-Ski overexpression promotes tumor growth and angiogenesis through inhibition of transforming growth factor-beta signaling in diffuse-type gastric carcinoma.

    PubMed

    Kiyono, Kunihiko; Suzuki, Hiroshi I; Morishita, Yasuyuki; Komuro, Akiyoshi; Iwata, Caname; Yashiro, Masakazu; Hirakawa, Kosei; Kano, Mitsunobu R; Miyazono, Kohei

    2009-10-01

    c-Ski, originally identified as a proto-oncogene product, is an important negative regulator of transforming growth factor (TGF)-beta family signaling through interaction with Smad2, Smad3, and Smad4. High expression of c-Ski has been found in some cancers, including gastric cancer. We previously showed that disruption of TGF-beta signaling by dominant-negative TGF-beta type II receptor in a diffuse-type gastric carcinoma model accelerated tumor growth through induction of tumor angiogenesis by decreased expression of the anti-angiogenic factor thrombospondin (TSP)-1. Here, we examined the function of c-Ski in human diffuse-type gastric carcinoma OCUM-2MLN cells. Overexpression of c-Ski inhibited TGF-beta signaling in OCUM-2MLN cells. Interestingly, c-Ski overexpression resulted in extensive acceleration of the growth of subcutaneous xenografts in BALB/c nu/nu female mice (6 weeks of age). Similar to tumors expressing dominant-negative TGF-beta type II receptor, histochemical studies revealed less fibrosis and increased angiogenesis in xenografted tumors expressing c-Ski compared to control tumors. Induction of TSP-1 mRNA by TGF-beta was attenuated by c-Ski in vitro, and expression of TSP-1 mRNA was decreased in tumors expressing c-Ski in vivo. These findings suggest that c-Ski overexpression promotes the growth of diffuse-type gastric carcinoma through induction of angiogenesis.

  16. The First Mitochondrial Genome for the Superfamily Hagloidea and Implications for Its Systematic Status in Ensifera

    PubMed Central

    Zhou, Zhijun; Shi, Fuming; Zhao, Ling

    2014-01-01

    Hagloidea Handlirsch, 1906 was an ancient group of Ensifera, that was much more diverse in the past extending at least into the Triassic, apparently diminishing in diversity through the Cretaceous, and now only represented by a few extant species. In this paper, we report the complete mitochondrial genome (mitogenome) of Tarragoilus diuturnus Gorochov, 2001, representing the first mitogenome of the superfamily Hagloidea. The size of the entire mitogenome of T. diuturnus is 16144 bp, containing 13 protein-coding genes (PCGs), 2 ribosomal RNA (rRNA) genes, 22 transfer RNA (tRNA) genes and one control region. The order and orientation of the gene arrangement pattern is identical to that of D. yakuba and most ensiferans species. A phylogenomic analysis was carried out based on the concatenated dataset of 13 PCGs and 2 rRNA genes from mitogenome sequences of 15 ensiferan species, comprising four superfamilies Grylloidea, Tettigonioidae, Rhaphidophoroidea and Hagloidea. Both maximum likelihood and Bayesian inference analyses strongly support Hagloidea T. diuturnus and Rhaphidophoroidea Troglophilus neglectus as forming a monophyletic group, sister to the Tettigonioidea. The relationships among four superfamilies of Ensifera were (Grylloidea, (Tettigonioidea, (Hagloidea, Rhaphidophoroidea))). PMID:24465850

  17. The three-dimensional structure of the N-acetylglucosamine-6-phosphate deacetylase, NagA, from Bacillus subtilis: a member of the urease superfamily.

    PubMed

    Vincent, Florence; Yates, David; Garman, Elspeth; Davies, Gideon J; Brannigan, James A

    2004-01-23

    The enzyme N-acetylglucosamine-6-phosphate deacetylase, NagA, catalyzes the hydrolysis of the N-acetyl group of GlcNAc-6-P to yield glucosamine 6-phosphate and acetate, the first committed step in the biosynthetic pathway to amino-sugar-nucleotides. It is classified into carbohydrate esterase family CE-9 (see afmb.cnrs-mrs.fr/CAZY/). Here we report the cloning, expression, and three-dimensional structure (Protein Data Bank code 1un7) determination by x-ray crystallography of the Bacillus subtilis NagA at a resolution of 2.0 A. The structure presents two domains, a (beta/alpha)(8) barrel enclosing the active center and a small beta barrel domain. The structure is dimeric, and the substrate phosphate coordination at the active center is provided by an Arg/His pair contributed from the second molecule of the dimer. Both the overall structure and the active center bear a striking similarity to the urease superfamily with two metals involved in substrate binding and catalysis. PIXE (Proton-Induced x-ray Emission) data show that iron is the predominant metal in the purified protein. We propose a catalytic mechanism involving proton donation to the leaving group by aspartate, nucleophilic attack by an Fe-bridged hydroxide, and stabilization of the carbonyl oxygen by one of the two Fe atoms of the pair. We believe that this is the first sugar deacetylase to utilize this fold and catalytic mechanism.

  18. Transforming growth factor-beta and platelet-derived growth factor signal via c-Jun N-terminal kinase-dependent Smad2/3 phosphorylation in rat hepatic stellate cells after acute liver injury.

    PubMed

    Yoshida, Katsunori; Matsuzaki, Koichi; Mori, Shigeo; Tahashi, Yoshiya; Yamagata, Hideo; Furukawa, Fukiko; Seki, Toshihito; Nishizawa, Mikio; Fujisawa, Junichi; Okazaki, Kazuichi

    2005-04-01

    After liver injury, transforming growth factor-beta (TGF-beta) and platelet-derived growth factor (PDGF) regulate the activation of hepatic stellate cells (HSCs) and tissue remodeling. Mechanisms of PDGF signaling in the TGF-beta-triggered cascade are not completely understood. TGF-beta signaling involves phosphorylation of Smad2 and Smad3 at linker and C-terminal regions. Using antibodies to distinguish Smad2/3 phosphorylated at linker regions from those phosphorylated at C-terminal regions, we investigated Smad2/3-mediated signaling in rat liver injured by CCl(4) administration and in cultured HSCs. In acute liver injury, Smad2/3 were transiently phosphorylated at both regions. Although linker-phosphorylated Smad2 remained in the cytoplasm of alpha-smooth muscle actin-immunoreactive mesenchymal cells adjacent to necrotic hepatocytes in centrilobular areas, linker-phosphorylated Smad3 accumulated in the nuclei. c-Jun N-terminal kinase (JNK) in the activated HSCs directly phosphorylated Smad2/3 at linker regions. Co-treatment of primary cultured HSCs with TGF-beta and PDGF activated the JNK pathway, subsequently inducing endogenous linker phosphorylation of Smad2/3. The JNK pathway may be involved in migration of resident HSCs within the space of Disse to the sites of tissue damage because the JNK inhibitor SP600125 inhibited HSC migration induced by TGF-beta and PDGF signals. Moreover, treatment of HSCs with both TGF-beta and PDGF increased transcriptional activity of plasminogen activator inhibitor-1 through linker phosphorylation of Smad3. In conclusion, TGF-beta and PDGF activate HSCs by transmitting their signals through JNK-mediated Smad2/3 phosphorylation at linker regions, both in vivo and in vitro.

  19. Peroxisome proliferator-activated receptor gamma and transforming growth factor-beta pathways inhibit intestinal epithelial cell growth by regulating levels of TSC-22.

    PubMed

    Gupta, Rajnish A; Sarraf, Pasha; Brockman, Jeffrey A; Shappell, Scott B; Raftery, Laurel A; Willson, Timothy M; DuBois, Raymond N

    2003-02-28

    Peroxisome proliferator-activated receptor gamma (PPARgamma) and transforming growth factor-beta (TGF-beta) are key regulators of epithelial cell biology. However, the molecular mechanisms by which either pathway induces growth inhibition and differentiation are incompletely understood. We have identified transforming growth factor-simulated clone-22 (TSC-22) as a target gene of both pathways in intestinal epithelial cells. TSC-22 is member of a family of leucine zipper containing transcription factors with repressor activity. Although little is known regarding its function in mammals, the Drosophila homolog of TSC-22, bunched, plays an essential role in fly development. The ability of PPARgamma to induce TSC-22 was not dependent on an intact TGF-beta1 signaling pathway and was specific for the gamma isoform. Localization studies revealed that TSC-22 mRNA is enriched in the postmitotic epithelial compartment of the normal human colon. Cells transfected with wild-type TSC-22 exhibited reduced growth rates and increased levels of p21 compared with vector-transfected cells. Furthermore, transfection with a dominant negative TSC-22 in which both repressor domains were deleted was able to reverse the p21 induction and growth inhibition caused by activation of either the PPARgamma or TGF-beta pathways. These results place TSC-22 as an important downstream component of PPARgamma and TGF-beta signaling during intestinal epithelial cell differentiation.

  20. Latent transforming growth factor beta1 activation in situ: quantitative and functional evidence after low-dose gamma-irradiation

    NASA Technical Reports Server (NTRS)

    Ehrhart, E. J.; Segarini, P.; Tsang, M. L.; Carroll, A. G.; Barcellos-Hoff, M. H.; Chatterjee, A. (Principal Investigator)

    1997-01-01

    The biological activity of transforming growth factor beta1 (TGF-beta) is controlled by its secretion as a latent complex in which it is noncovalently associated with latency-associated peptide (LAP). Activation is the extracellular process in which TGF-beta is released from LAP, and is considered to be a primary regulatory control. We recently reported rapid and persistent changes in TGF-beta immunoreactivity in conjunction with extracellular matrix remodeling in gamma-irradiated mouse mammary gland. Our hypothesis is that these specific changes in immunoreactivity are indicative of latent TGF-beta activation. In the present study, we determined the radiation dose response and tested whether a functional relationship exists between radiation-induced TGF-beta and collagen type III remodeling. After radiation exposures as low as 0.1 Gy, we detected increased TGF-beta immunoreactivity in the mammary epithelium concomitant with decreased LAP immunostaining, which are events consistent with activation. Quantitative image analysis demonstrated a significant (P=0.0005) response at 0.1 Gy without an apparent threshold and a linear dose response to 5 Gy. However, in the adipose stroma, loss of LAP demonstrated a qualitative threshold at 0.5 Gy. Loss of LAP paralleled induction of collagen III immunoreactivity in this tissue compartment. We tested whether TGF-beta mediates collagen III expression by treating animals with TGF-beta panspecific monoclonal antibody, 1D11.16, administered i.p. shortly before irradiation. Radiation-induced collagen III staining in the adipose stroma was blocked in an antibody dose-dependent manner, which persisted through 7 days postirradiation. RNase protection assay revealed that radiation-induced elevation of total gland collagen III mRNA was also blocked by neutralizing antibody treatment. These data provide functional confirmation of the hypothesis that radiation exposure leads to latent TGF-beta activation, support our interpretation of the

  1. Platelet-derived growth factor-DD targeting arrests pathological angiogenesis by modulating glycogen synthase kinase-3beta phosphorylation.

    PubMed

    Kumar, Anil; Hou, Xu; Lee, Chunsik; Li, Yang; Maminishkis, Arvydas; Tang, Zhongshu; Zhang, Fan; Langer, Harald F; Arjunan, Pachiappan; Dong, Lijin; Wu, Zhijian; Zhu, Linda Y; Wang, Lianchun; Min, Wang; Colosi, Peter; Chavakis, Triantafyllos; Li, Xuri

    2010-05-14

    Platelet-derived growth factor-DD (PDGF-DD) is a recently discovered member of the PDGF family. The role of PDGF-DD in pathological angiogenesis and the underlying cellular and molecular mechanisms remain largely unexplored. In this study, using different animal models, we showed that PDGF-DD expression was up-regulated during pathological angiogenesis, and inhibition of PDGF-DD suppressed both choroidal and retinal neovascularization. We also demonstrated a novel mechanism mediating the function of PDGF-DD. PDGF-DD induced glycogen synthase kinase-3beta (GSK3beta) Ser(9) phosphorylation and Tyr(216) dephosphorylation in vitro and in vivo, leading to increased cell survival. Consistently, GSK3beta activity was required for the antiangiogenic effect of PDGF-DD targeting. Moreover, PDGF-DD regulated the expression of GSK3beta and many other genes important for angiogenesis and apoptosis. Thus, we identified PDGF-DD as an important target gene for antiangiogenic therapy due to its pleiotropic effects on vascular and non-vascular cells. PDGF-DD inhibition may offer new therapeutic options to treat neovascular diseases.

  2. Dexamethasone potently enhances phorbol ester-induced IL-1beta gene expression and nuclear factor NF-kappaB activation.

    PubMed

    Wang, Y; Zhang, J J; Dai, W; Lei, K Y; Pike, J W

    1997-07-15

    The synthetic glucocorticoid dexamethasone, an immunosuppressive and anti-inflammatory agent, was investigated for its effect on PMA-mediated expression of the inflammatory cytokine IL-1beta in the human monocytic leukemic cell line THP-1. PMA alone induced the production of low levels of IL-1beta in THP-1 cells, whereas dexamethasone alone had no effect. However, dexamethasone potently enhanced PMA-mediated IL-1beta production. Using a selective and potent inhibitor of protein kinase C, we found that synergistic interaction between PMA and dexamethasone requires protein kinase C activation. PMA has been known to activate nuclear factor NF-kappaB in THP-1 cells. Using an oligonucleotide probe corresponding to an NF-kappaB DNA-binding motif of the IL-1beta gene promoter in gel electrophoresis mobility shift assays, we demonstrated that PMA-induced NF-kappaB activation was greatly potentiated by dexamethasone. Our results indicate that glucocorticoids can be positive regulators of inflammatory cytokine gene expression during monocytic cell differentiation.

  3. The Glutathione-S-Transferase, Cytochrome P450 and Carboxyl/Cholinesterase Gene Superfamilies in Predatory Mite Metaseiulus occidentalis

    PubMed Central

    Hoy, Marjorie A.

    2016-01-01

    Pesticide-resistant populations of the predatory mite Metaseiulus (= Typhlodromus or Galendromus) occidentalis (Arthropoda: Chelicerata: Acari: Phytoseiidae) have been used in the biological control of pest mites such as phytophagous Tetranychus urticae. However, the pesticide resistance mechanisms in M. occidentalis remain largely unknown. In other arthropods, members of the glutathione-S-transferase (GST), cytochrome P450 (CYP) and carboxyl/cholinesterase (CCE) gene superfamilies are involved in the diverse biological pathways such as the metabolism of xenobiotics (e.g. pesticides) in addition to hormonal and chemosensory processes. In the current study, we report the identification and initial characterization of 123 genes in the GST, CYP and CCE superfamilies in the recently sequenced M. occidentalis genome. The gene count represents a reduction of 35% compared to T. urticae. The distribution of genes in the GST and CCE superfamilies in M. occidentalis differs significantly from those of insects and resembles that of T. urticae. Specifically, we report the presence of the Mu class GSTs, and the J’ and J” clade CCEs that, within the Arthropoda, appear unique to Acari. Interestingly, the majority of CCEs in the J’ and J” clades contain a catalytic triad, suggesting that they are catalytically active. They likely represent two Acari-specific CCE clades that may participate in detoxification of xenobiotics. The current study of genes in these superfamilies provides preliminary insights into the potential molecular components that may be involved in pesticide metabolism as well as hormonal/chemosensory processes in the agriculturally important M. occidentalis. PMID:27467523

  4. B1-Metallo-beta-Lactamases: Where do we stand?

    PubMed Central

    Mojica, Maria F.; Bonomo, Robert A.; Fast, Walter

    2015-01-01

    Metallo-beta-Lactamases (MBLs) are class B β-lactamases that hydrolyze almost all clinically-available β-lactam antibiotics. MBLs feature the distinctive αβ/βα sandwich fold of the metallo-hydrolase / oxidoreductase superfamily and possess a shallow active-site groove containing one or two divalent zinc ions, flanked by flexible loops. According to sequence identity and zinc ion dependence, MBLs are classified into three subclasses (B1, B2 and B3), of which the B1 subclass enzymes have emerged as the most clinically significant. Differences among the active site architectures, the nature of zinc ligands, and the catalytic mechanisms have limited the development of a common inhibitor. In this review, we will describe the molecular epidemiology and structural studies of the most prominent representatives of class B1 MBLs (NDM-1, IMP-1 and VIM-2) and describe the implications for inhibitor design to counter this growing clinical threat. PMID:26424398

  5. Ski acts as a co-repressor with Smad2 and Smad3 to regulate the response to type beta transforming growth factor.

    PubMed

    Xu, W; Angelis, K; Danielpour, D; Haddad, M M; Bischof, O; Campisi, J; Stavnezer, E; Medrano, E E

    2000-05-23

    The c-ski protooncogene encodes a transcription factor that binds DNA only in association with other proteins. To identify co-binding proteins, we performed a yeast two-hybrid screen. The results of the screen and subsequent co-immunoprecipitation studies identified Smad2 and Smad3, two transcriptional activators that mediate the type beta transforming growth factor (TGF-beta) response, as Ski-interacting proteins. In Ski-transformed cells, all of the Ski protein was found in Smad3-containing complexes that accumulated in the nucleus in the absence of added TGF-beta. DNA binding assays showed that Ski, Smad2, Smad3, and Smad4 form a complex with the Smad/Ski binding element GTCTAGAC (SBE). Ski repressed TGF-beta-induced expression of 3TP-Lux, the natural plasminogen activator inhibitor 1 promoter and of reporter genes driven by the SBE and the related CAGA element. In addition, Ski repressed a TGF-beta-inducible promoter containing AP-1 (TRE) elements activated by a combination of Smads, Fos, and/or Jun proteins. Ski also repressed synergistic activation of promoters by combinations of Smad proteins but failed to repress in the absence of Smad4. Thus, Ski acts in opposition to TGF-beta-induced transcriptional activation by functioning as a Smad-dependent co-repressor. The biological relevance of this transcriptional repression was established by showing that overexpression of Ski abolished TGF-beta-mediated growth inhibition in a prostate-derived epithelial cell line.

  6. Increased expression of transforming growth factor beta s after acute oedematous pancreatitis in rats suggests a role in pancreatic repair.

    PubMed Central

    Riesle, E; Friess, H; Zhao, L; Wagner, M; Uhl, W; Baczako, K; Gold, L I; Korc, M; Büchler, M W

    1997-01-01

    BACKGROUND: Transforming growth factor beta isoforms (TGF beta s) belong to a family of multifunctional regulators of cellular growth and differentiation. They are mitogenic and chemotactic for fibroblasts and are potent stimulators of extracellular matrix production (collagen) and deposition. Upregulation of TGF beta transcription has been reported for several in vivo systems during repair after injury. AIMS: To study the expression of the three mammalian isoforms of TGF beta (TGF beta 1-3) and their relation to collagen expression as a marker for fibroblast response in acute oedematous pancreatitis in rats. METHODS: Using northern blot analysis and immunohistochemistry, the expression and localisation of TGF beta isoforms, collagen, and amylase were analysed during the course of acute oedematous pancreatitis in rats, experimentally induced by intravenous caerulein infusion. RESULTS: Induction of acute pancreatitis resulted in a biphasic peak pattern of expression of TGF beta 1, beta 2, and beta 3 mRNA, with a pronounced increase from day 1 to day 3 (sixfold, 2.5-fold, fivefold, respectively) and again from day 5 to day 7 (three-fold, 2.3-fold, 3.5-fold, respectively). The temporal changes in TGF beta mRNA identically paralleled the expression in collagen mRNA. In contrast, amylase mRNA expression, used as a general indicator of acinar cell integrity, was slightly decreased after induction of acute pancreatitis. Immunohistochemical analysis of pancreatitis tissue showed that increased expression of TGF beta s was mainly present in the pancreatic acinar and ductal cells; this was evident within one day after pancreatitis induction. CONCLUSION: Overexpression of TGF beta s after induction of acute pancreatitis suggests a role for these proteins in pancreatic repair and remodelling. The increased levels of TGF beta s may help suppress immune activation, and may contribute to the increase in the extracellular matrix including collagen and to the repair of the

  7. SMURFLite: combining simplified Markov random fields with simulated evolution improves remote homology detection for beta-structural proteins into the twilight zone.

    PubMed

    Daniels, Noah M; Hosur, Raghavendra; Berger, Bonnie; Cowen, Lenore J

    2012-05-01

    One of the most successful methods to date for recognizing protein sequences that are evolutionarily related has been profile hidden Markov models (HMMs). However, these models do not capture pairwise statistical preferences of residues that are hydrogen bonded in beta sheets. These dependencies have been partially captured in the HMM setting by simulated evolution in the training phase and can be fully captured by Markov random fields (MRFs). However, the MRFs can be computationally prohibitive when beta strands are interleaved in complex topologies. We introduce SMURFLite, a method that combines both simplified MRFs and simulated evolution to substantially improve remote homology detection for beta structures. Unlike previous MRF-based methods, SMURFLite is computationally feasible on any beta-structural motif. We test SMURFLite on all propeller and barrel folds in the mainly-beta class of the SCOP hierarchy in stringent cross-validation experiments. We show a mean 26% (median 16%) improvement in area under curve (AUC) for beta-structural motif recognition as compared with HMMER (a well-known HMM method) and a mean 33% (median 19%) improvement as compared with RAPTOR (a well-known threading method) and even a mean 18% (median 10%) improvement in AUC over HHPred (a profile-profile HMM method), despite HHpred's use of extensive additional training data. We demonstrate SMURFLite's ability to scale to whole genomes by running a SMURFLite library of 207 beta-structural SCOP superfamilies against the entire genome of Thermotoga maritima, and make over a 100 new fold predictions. Availability and implementaion: A webserver that runs SMURFLite is available at: http://smurf.cs.tufts.edu/smurflite/

  8. Productive interaction between transmembrane mutants of the bovine papillomavirus E5 protein and the platelet-derived growth factor beta receptor.

    PubMed

    Lai, Char-Chang; Edwards, Anne P B; DiMaio, Daniel

    2005-02-01

    The bovine papillomavirus E5 protein is a 44-amino-acid transmembrane protein that transforms cells by binding to the transmembrane region of the cellular platelet-derived growth factor (PDGF) beta receptor, resulting in sustained receptor signaling. However, there are published reports that certain mutants with amino acid substitutions in the membrane-spanning segment of the E5 protein transform cells without activating the PDGF beta receptor. We re-examined several of these transmembrane mutants, and here we present five lines of evidence that these mutants do in fact activate the PDGF beta receptor, resulting in cellular signaling and transformation.

  9. A negative feedback control of transforming growth factor-beta signaling by glycogen synthase kinase 3-mediated Smad3 linker phosphorylation at Ser-204.

    PubMed

    Millet, Caroline; Yamashita, Motozo; Heller, Mary; Yu, Li-Rong; Veenstra, Timothy D; Zhang, Ying E

    2009-07-24

    Through the action of its membrane-bound type I receptor, transforming growth factor-beta (TGF-beta) elicits a wide range of cellular responses that regulate cell proliferation, differentiation, and apo ptosis. Many of these signaling responses are mediated by Smad proteins. As such, controlling Smad activity is crucial for proper signaling by TGF-beta and its related factors. Here, we show that TGF-beta induces phosphorylation at three sites in the Smad3 linker region in addition to the two C-terminal residues, and glycogen synthase kinase 3 is responsible for phosphorylation at one of these sites, namely Ser-204. Alanine substitution at Ser-204 and/or the neighboring Ser-208, the priming site for glycogen synthase kinase 3 in vivo activity, strengthened the affinity of Smad3 to CREB-binding protein, suggesting that linker phosphorylation may be part of a negative feedback loop that modulates Smad3 transcriptional activity. Thus, our findings reveal a novel aspect of the Smad3 signaling mechanism that controls the final amplitude of cellular responses to TGF-beta.

  10. Stonefish toxin defines an ancient branch of the perforin-like superfamily

    PubMed Central

    Ellisdon, Andrew M.; Reboul, Cyril F.; Huynh, Kitmun; Oellig, Christine A.; Winter, Kelly L.; Hodgson, Wayne C.; Seymour, Jamie; Dearden, Peter K.; Tweten, Rodney K.; Whisstock, James C.; McGowan, Sheena

    2015-01-01

    The lethal factor in stonefish venom is stonustoxin (SNTX), a heterodimeric cytolytic protein that induces cardiovascular collapse in humans and native predators. Here, using X-ray crystallography, we make the unexpected finding that SNTX is a pore-forming member of an ancient branch of the Membrane Attack Complex-Perforin/Cholesterol-Dependent Cytolysin (MACPF/CDC) superfamily. SNTX comprises two homologous subunits (α and β), each of which comprises an N-terminal pore-forming MACPF/CDC domain, a central focal adhesion-targeting domain, a thioredoxin domain, and a C-terminal tripartite motif family-like PRY SPla and the RYanodine Receptor immune recognition domain. Crucially, the structure reveals that the two MACPF domains are in complex with one another and arranged into a stable early prepore-like assembly. These data provide long sought after near-atomic resolution insights into how MACPF/CDC proteins assemble into prepores on the surface of membranes. Furthermore, our analyses reveal that SNTX-like MACPF/CDCs are distributed throughout eukaryotic life and play a broader, possibly immune-related function outside venom. PMID:26627714

  11. ICU Acquisition Rate, Risk Factors, and Clinical Significance of Digestive Tract Colonization With Extended-Spectrum Beta-Lactamase-Producing Enterobacteriaceae: A Systematic Review and Meta-Analysis.

    PubMed

    Detsis, Marios; Karanika, Styliani; Mylonakis, Eleftherios

    2017-04-01

    To evaluate the acquisition rate, identify risk factors, and estimate the risk for subsequent infection, associated with the colonization of the digestive tract with extended-spectrum beta-lactamase-producing Enterobacteriaceae during ICU-hospitalization. PubMed, EMBASE, and reference lists of all eligible articles. Included studies provided data on ICU-acquired colonization with extended-spectrum beta-lactamase-producing Enterobacteriaceae in previously noncolonized and noninfected patients and used the double disk synergy test for extended-spectrum beta-lactamase-producing Enterobacteriaceae phenotypic confirmation. Studies reporting extended-spectrum beta-lactamase-producing Enterobacteriaceae outbreaks or data on pediatric population were excluded. Two authors independently assessed study eligibility and performed data extraction. Thirteen studies (with 15,045 ICUs-patients) were evaluated using a random-effect model and a meta-regression analysis. The acquisition rate of digestive tract colonization during ICU stay was 7% (95% CI, 5-10) and it varies from 3% (95% CI, 2-4) and 4% (95% CI, 2-6) in the Americas and Europe to 21% (95% CI, 9-35) in the Western Pacific region. Previous hospitalization (risk ratio, 1.57 [95% CI, 1.07-2.31]) or antibiotic use (risk ratio, 1.65 [95% CI, 1.15-2.37]) and exposure to beta-lactams/beta-lactamase inhibitors (risk ratio, 1.78 [95% CI, 1.24-2.56]) and carbapenems (risk ratio, 2.13 [95% CI, 1.49-3.06]) during the ICU stay were independent risk factors for ICU-acquired colonization. Importantly, colonized patients were more likely to develop an extended-spectrum beta-lactamase-producing Enterobacteriaceae infection (risk ratio, 49.62 [95% CI, 20.42-120.58]). The sensitivity and specificity of prior colonization to predict subsequent extended-spectrum beta-lactamase-producing Enterobacteriaceae infection were 95.1% (95% CI, 54.7-99.7) and 89.2% (95% CI, 77.2-95.3), respectively. The ICU acquisition rate of extended-spectrum beta

  12. Mechanistic and Evolutionary Insights from Comparative Enzymology of Phosphomonoesterases and Phosphodiesterases across the Alkaline Phosphatase Superfamily

    PubMed Central

    2016-01-01

    Naively one might have expected an early division between phosphate monoesterases and diesterases of the alkaline phosphatase (AP) superfamily. On the contrary, prior results and our structural and biochemical analyses of phosphate monoesterase PafA, from Chryseobacterium meningosepticum, indicate similarities to a superfamily phosphate diesterase [Xanthomonas citri nucleotide pyrophosphatase/phosphodiesterase (NPP)] and distinct differences from the three metal ion AP superfamily monoesterase, from Escherichia coli AP (EcAP). We carried out a series of experiments to map out and learn from the differences and similarities between these enzymes. First, we asked why there would be independent instances of monoesterases in the AP superfamily? PafA has a much weaker product inhibition and slightly higher activity relative to EcAP, suggesting that different metabolic evolutionary pressures favored distinct active-site architectures. Next, we addressed the preferential phosphate monoester and diester catalysis of PafA and NPP, respectively. We asked whether the >80% sequence differences throughout these scaffolds provide functional specialization for each enzyme’s cognate reaction. In contrast to expectations from this model, PafA and NPP mutants with the common subset of active-site groups embedded in each native scaffold had the same monoesterase:diesterase specificities; thus, the >107-fold difference in native specificities appears to arise from distinct interactions at a single phosphoryl substituent. We also uncovered striking mechanistic similarities between the PafA and EcAP monoesterases, including evidence for ground-state destabilization and functional active-site networks that involve different active-site groups but may play analogous catalytic roles. Discovering common network functions may reveal active-site architectural connections that are critical for function, and identifying regions of functional modularity may facilitate the design of new enzymes

  13. Anorexia-cachexia and obesity treatment may be two sides of the same coin: role of the TGF-b superfamily cytokine MIC-1/GDF15.

    PubMed

    Tsai, V W W; Lin, S; Brown, D A; Salis, A; Breit, S N

    2016-02-01

    Anorexia-cachexia associated with cancer and other diseases is a common and often fatal condition representing a large area of unmet medical need. It occurs most commonly in advanced cancer and is probably a consequence of molecules released by tumour cells, or tumour-associated interstitial or immune cells. These may then act directly on muscle to cause atrophy and/or may cause anorexia, which then leads to loss of both fat and lean mass. Although the aetiological triggers for this syndrome are not well characterized, recent data suggest that MIC-1/GDF15, a transforming growth factor-beta superfamily cytokine produced in large amounts by cancer cells and as a part of other disease processes, may be an important trigger. This cytokine acts on feeding centres in the hypothalamus and brainstem to cause anorexia leading to loss of lean and fat mass and eventually cachexia. In animal studies, the circulating concentrations of MIC-1/GDF15 required to cause this syndrome are similar to those seen in patients with advanced cancer, and at least some epidemiological studies support an association between MIC-1/GDF15 serum levels and measures of nutrition. This article will discuss its mechanisms of central appetite regulation, and the available data linking this action to anorexia-cachexia syndromes that suggest it is a potential target for therapy of cancer anorexia-cachexia and conversely may also be useful for the treatment of severe obesity.

  14. Differential role of Sloan–Kettering Institute (Ski) protein in Nodal and transforming growth factor-beta (TGF-β)-induced Smad signaling in prostate cancer cells

    PubMed Central

    Khan, Shafiq A.

    2012-01-01

    Transforming growth factor-beta (TGF-β) signaling pathways contain both tumor suppressor and tumor promoting activities. We have demonstrated that Nodal, another member of the TGF-β superfamily, and its receptors are expressed in prostate cancer cells. Nodal and TGF-β exerted similar biological effects on prostate cells; both inhibited proliferation in WPE, RWPE1 and DU145 cells, whereas neither had any effect on the proliferation of LNCaP or PC3 cells. Interestingly, Nodal and TGF-β induced migration in PC3 cells, but not in DU145 cells. TGF-β induced predominantly phosphorylation of Smad3, whereas Nodal induced phosphorylation of only Smad2. We also determined the expression and differential role of Ski, a corepressor of Smad2/3, in Nodal and TGF-β signaling in prostate cancer cells. Similar levels of Ski mRNA were found in several established prostate cell lines; however, high levels of Ski protein were only detected in prostate cancer cells and prostate cancer tissue samples. Exogenous Nodal and TGF-β had no effects on Ski mRNA levels. On the other hand, TGF-β induced a rapid degradation of Ski protein mediated by the proteasomal pathway, whereas Nodal had no effect on Ski protein. Reduced Ski levels correlated with increased basal and TGF-β-induced Smad2/3 phosphorylation. Knockdown of endogenous Ski reduced proliferation in DU145 cells and enhanced migration of PC3 cells. We conclude that high levels of Ski expression in prostate cancer cells may be responsible for repression of TGF-β and Smad3 signaling, but Ski protein levels do not influence Nodal and Smad2 signaling. PMID:22843506

  15. High-Fluence Light-Emitting Diode-Generated Red Light Modulates the Transforming Growth Factor-Beta Pathway in Human Skin Fibroblasts.

    PubMed

    Mamalis, Andrew; Jagdeo, Jared

    2018-05-24

    Skin fibrosis is a significant medical problem with limited available treatment modalities. The key cellular characteristics include increased fibroblast proliferation, collagen production, and transforming growth factor-beta (TGF-B)/SMAD pathway signaling. The authors have previously shown that high-fluence light-emitting diode red light (HF-LED-RL) decreases cellular proliferation and collagen production. Herein, the authors investigate the ability of HF-LED-RL to modulate the TGF-B/SMAD pathway. Normal human dermal fibroblasts were cultured and irradiated with a commercially available hand-held LED array. After irradiation, cell lysates were collected and levels of pSMAD2, TGF-Beta 1, and TGF-Beta I receptor were measured using Western blot. High-fluence light-emitting diode red light decreased TGF-Beta 1 ligand (TGF-B1) levels after irradiation. 320 J/cm HF-LED-RL resulted in 59% TGF-B1 and 640 J/cm HF-LED-RL resulted in 54% TGF-B1, relative to controls. 640 J/cm HF-LED-RL resulted in 62% pSMAD2 0 hours after irradiation, 65% pSMAD2 2 hours after irradiation, and 95% 4 hours after irradiation, compared with matched controls. High-fluence light-emitting diode red light resulted in no significant difference in transforming growth factor-beta receptor I levels compared with matched controls. Skin fibrosis is a significant medical problem with limited available treatment modalities. Light-emitting diode-generated red light is a safe, economic, and noninvasive modality that has a body of in vitro evidence supporting the reduction of key cellular characteristics associated with skin fibrosis.

  16. Evaluation of the transforming growth factor-beta activity in normal and dry eye human tears by CCL-185 cell bioassay.

    PubMed

    Zheng, Xiaofen; De Paiva, Cintia S; Rao, Kavita; Li, De-Quan; Farley, William J; Stern, Michael; Pflugfelder, Stephen C

    2010-09-01

    To develop a new bioassay method using human lung epithelial cells (CCL-185) to assess activity of transforming growth factor beta (TGF-beta) in human tear fluid from normal subjects and patients with dry eye. Two epithelial cell lines, mink lung cells (CCL-64) and human lung cells (CCL-185), were compared to detect the active form of TGF-beta by BrdU incorporation (quantitation of cell DNA synthesis) and WST assay (metabolic activity of viable cells). The effect of TGF-beta on the growth of CCL-185 cells was observed microscopically. Human tears from normal control subjects and patients with dry eye (DE) with and without Sjögren syndrome were evaluated for TGF-beta concentration by Luminex microbead assay, and TGF-beta activity by the CCL-185 cell growth inhibition bioassay. The metabolic activity of viable CCL-185 cells, measured by WST, was shown to be proportional to the TGF-beta1 concentration (R = 0.919) and confirmed by BrdU assay (R = 0.969). Compared with CCL-185, metabolic activity of viable cells and DNA synthesis, measured by WST and BrdU incorporation assays, were shown to be less proportional to the TGF-beta1 concentration in the CCL-64 line (R = 0.42 and 0.17, respectively). Coincubation with human anti-TGF-beta1 antibody (MAB-240) yielded a dose-dependent inhibition of TGF-beta1 (0.3 ng/mL) activity. CCL-185 cell growth observed microscopically was noted to decrease in response to increasing TGF-beta1 concentrations. Levels of immuodetectable TGF-beta1 and TGF-beta2 were similar in normal and DE tears. TGF-beta bioactivity in DE human tears measured by the CCL-185 cells assay was found to be higher (9777.5 +/- 10481.9 pg/mL) than those in normal controls (4129.3 +/- 1342.9 pg/mL) (P < 0.05). Among patients with DE, TGF-beta bioactivity was highest in those with Sjögren syndrome. Approximately, 79.1% of TGF-beta in DE tears and 37.6% TGF-beta in normal tears were found to be biologically active. The CCL-185 cell assay was found to be a suitable

  17. MOON for neutrino-less {beta}{beta} decays and {beta}{beta} nuclear matrix elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ejiri, H.

    2009-11-09

    The MOON project aims at spectroscopic 0v{beta}{beta} studies with the v-mass sensitivity of 100-30 meV by measuring two beta rays from {sup 100}Mo and/or {sup 82}Se. The detector is a compact super-module of multi-layer PL scintillator plates. R and D works made by the pro to-type MOON-1 and the small PL plate show the possible energy resolution of around {sigma}{approx}2.2%, as required for the mass sensitivity. Nuclear matrix elements M{sup 2v} for 2v{beta}{beta} are shown to be given by the sum {sigma}{sub L}M{sub k} of the 2v{beta}{beta} matrix elements M{sub k} through intermediate quasi-particle states in the Fermi-surface, where Mimore » is obtained experimentally by using the GT(J{sup {pi}} = 1{sup +}) matrix elements of M{sub i}(k) and M{sub f}(k) for the successive single-{beta} transitions through the k-th intermediate state.« less

  18. Transforming growth factor beta induced FoxP3+ regulatory T cells suppress Th1 mediated experimental colitis.

    PubMed

    Fantini, M C; Becker, C; Tubbe, I; Nikolaev, A; Lehr, H A; Galle, P; Neurath, M F

    2006-05-01

    The imbalance between effector and regulatory T cells plays a central role in the pathogenesis of inflammatory bowel diseases. In addition to the thymus, CD4+CD25+ regulatory T cells can be induced in the periphery from a population of CD25- T cells by treatment with transforming growth factor beta (TGF-beta). Here, we analysed the in vivo function of TGF-beta induced regulatory T (Ti-Treg) cells in experimental colitis. Ti-Treg cells were generated in cell culture in the presence or absence of TGF-beta and tested for their regulatory potential in experimental colitis using the CD4+CD62L+ T cell transfer model. Ti-Treg cells significantly suppressed Th1 mediated colitis on CD4+CD62L+ T cell transfer in vivo, as shown by high resolution endoscopy, histology, immunohistochemistry, and cytokine analysis. Further analysis of in vivo and in vitro expanded Ti-Treg cells showed that exogenous interleukin 2 (IL-2) was crucial for survival and expansion of these cells. Our data suggest that regulatory Ti-Treg cells expand by TGF-beta and exogenous IL-2 derived from effector T cells at the site of inflammation. In addition to Tr1 and thymic CD4+CD25+ T cells, peripheral Ti-Treg cells emerge as a class of regulatory T cells with therapeutic potential in T cell mediated chronic intestinal inflammation.

  19. SVM-Fold: a tool for discriminative multi-class protein fold and superfamily recognition

    PubMed Central

    Melvin, Iain; Ie, Eugene; Kuang, Rui; Weston, Jason; Stafford, William Noble; Leslie, Christina

    2007-01-01

    Background Predicting a protein's structural class from its amino acid sequence is a fundamental problem in computational biology. Much recent work has focused on developing new representations for protein sequences, called string kernels, for use with support vector machine (SVM) classifiers. However, while some of these approaches exhibit state-of-the-art performance at the binary protein classification problem, i.e. discriminating between a particular protein class and all other classes, few of these studies have addressed the real problem of multi-class superfamily or fold recognition. Moreover, there are only limited software tools and systems for SVM-based protein classification available to the bioinformatics community. Results We present a new multi-class SVM-based protein fold and superfamily recognition system and web server called SVM-Fold, which can be found at . Our system uses an efficient implementation of a state-of-the-art string kernel for sequence profiles, called the profile kernel, where the underlying feature representation is a histogram of inexact matching k-mer frequencies. We also employ a novel machine learning approach to solve the difficult multi-class problem of classifying a sequence of amino acids into one of many known protein structural classes. Binary one-vs-the-rest SVM classifiers that are trained to recognize individual structural classes yield prediction scores that are not comparable, so that standard "one-vs-all" classification fails to perform well. Moreover, SVMs for classes at different levels of the protein structural hierarchy may make useful predictions, but one-vs-all does not try to combine these multiple predictions. To deal with these problems, our method learns relative weights between one-vs-the-rest classifiers and encodes information about the protein structural hierarchy for multi-class prediction. In large-scale benchmark results based on the SCOP database, our code weighting approach significantly improves

  20. A comparative analysis reveals weak relationships between ecological factors and beta diversity of stream insect metacommunities at two spatial levels.

    PubMed

    Heino, Jani; Melo, Adriano S; Bini, Luis Mauricio; Altermatt, Florian; Al-Shami, Salman A; Angeler, David G; Bonada, Núria; Brand, Cecilia; Callisto, Marcos; Cottenie, Karl; Dangles, Olivier; Dudgeon, David; Encalada, Andrea; Göthe, Emma; Grönroos, Mira; Hamada, Neusa; Jacobsen, Dean; Landeiro, Victor L; Ligeiro, Raphael; Martins, Renato T; Miserendino, María Laura; Md Rawi, Che Salmah; Rodrigues, Marciel E; Roque, Fabio de Oliveira; Sandin, Leonard; Schmera, Denes; Sgarbi, Luciano F; Simaika, John P; Siqueira, Tadeu; Thompson, Ross M; Townsend, Colin R

    2015-03-01

    The hypotheses that beta diversity should increase with decreasing latitude and increase with spatial extent of a region have rarely been tested based on a comparative analysis of multiple datasets, and no such study has focused on stream insects. We first assessed how well variability in beta diversity of stream insect metacommunities is predicted by insect group, latitude, spatial extent, altitudinal range, and dataset properties across multiple drainage basins throughout the world. Second, we assessed the relative roles of environmental and spatial factors in driving variation in assemblage composition within each drainage basin. Our analyses were based on a dataset of 95 stream insect metacommunities from 31 drainage basins distributed around the world. We used dissimilarity-based indices to quantify beta diversity for each metacommunity and, subsequently, regressed beta diversity on insect group, latitude, spatial extent, altitudinal range, and dataset properties (e.g., number of sites and percentage of presences). Within each metacommunity, we used a combination of spatial eigenfunction analyses and partial redundancy analysis to partition variation in assemblage structure into environmental, shared, spatial, and unexplained fractions. We found that dataset properties were more important predictors of beta diversity than ecological and geographical factors across multiple drainage basins. In the within-basin analyses, environmental and spatial variables were generally poor predictors of variation in assemblage composition. Our results revealed deviation from general biodiversity patterns because beta diversity did not show the expected decreasing trend with latitude. Our results also call for reconsideration of just how predictable stream assemblages are along ecological gradients, with implications for environmental assessment and conservation decisions. Our findings may also be applicable to other dynamic systems where predictability is low.

  1. Genetic polymorphisms in glutathione S-transferase (GST) superfamily and arsenic metabolism in residents of the Red River Delta, Vietnam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agusa, Tetsuro; Center for Marine Environmental Studies; Iwata, Hisato, E-mail: iwatah@agr.ehime-u.ac.j

    To elucidate the role of genetic factors in arsenic metabolism, we investigated associations of genetic polymorphisms in the members of glutathione S-transferase (GST) superfamily with the arsenic concentrations in hair and urine, and urinary arsenic profile in residents in the Red River Delta, Vietnam. Genotyping was conducted for GST omega1 (GSTO1) Ala140Asp, Glu155del, Glu208Lys, Thr217Asn, and Ala236Val, GST omega2 (GSTO2) Asn142Asp, GST pi1 (GSTP1) Ile105Val, GST mu1 (GSTM1) wild/null, and GST theta1 (GSTT1) wild/null. There were no mutation alleles for GSTO1 Glu208Lys, Thr217Asn, and Ala236Val in this population. GSTO1 Glu155del hetero type showed higher urinary concentration of As{sup V} thanmore » the wild homo type. Higher percentage of DMA{sup V} in urine of GSTM1 wild type was observed compared with that of the null type. Strong correlations between GSTP1 Ile105Val and arsenic exposure level and profile were observed in this study. Especially, heterozygote of GSTP1 Ile105Val had a higher metabolic capacity from inorganic arsenic to monomethyl arsenic, while the opposite trend was observed for ability of metabolism from As{sup V} to As{sup III}. Furthermore, other factors including sex, age, body mass index, arsenic level in drinking water, and genotypes of As (+ 3 oxidation state) methyltransferase (AS3MT) were also significantly co-associated with arsenic level and profile in the Vietnamese. To our knowledge, this is the first study indicating the associations of genetic factors of GST superfamily with arsenic metabolism in a Vietnamese population.« less

  2. Genetic polymorphisms in glutathione S-transferase (GST) superfamily and arsenic metabolism in residents of the Red River Delta, Vietnam.

    PubMed

    Agusa, Tetsuro; Iwata, Hisato; Fujihara, Junko; Kunito, Takashi; Takeshita, Haruo; Minh, Tu Binh; Trang, Pham Thi Kim; Viet, Pham Hung; Tanabe, Shinsuke

    2010-02-01

    To elucidate the role of genetic factors in arsenic metabolism, we investigated associations of genetic polymorphisms in the members of glutathione S-transferase (GST) superfamily with the arsenic concentrations in hair and urine, and urinary arsenic profile in residents in the Red River Delta, Vietnam. Genotyping was conducted for GST omega1 (GSTO1) Ala140Asp, Glu155del, Glu208Lys, Thr217Asn, and Ala236Val, GST omega2 (GSTO2) Asn142Asp, GST pi1 (GSTP1) Ile105Val, GST mu1 (GSTM1) wild/null, and GST theta1 (GSTT1) wild/null. There were no mutation alleles for GSTO1 Glu208Lys, Thr217Asn, and Ala236Val in this population. GSTO1 Glu155del hetero type showed higher urinary concentration of As(V) than the wild homo type. Higher percentage of DMA(V) in urine of GSTM1 wild type was observed compared with that of the null type. Strong correlations between GSTP1 Ile105Val and arsenic exposure level and profile were observed in this study. Especially, heterozygote of GSTP1 Ile105Val had a higher metabolic capacity from inorganic arsenic to monomethyl arsenic, while the opposite trend was observed for ability of metabolism from As(V) to As(III). Furthermore, other factors including sex, age, body mass index, arsenic level in drinking water, and genotypes of As (+3 oxidation state) methyltransferase (AS3MT) were also significantly co-associated with arsenic level and profile in the Vietnamese. To our knowledge, this is the first study indicating the associations of genetic factors of GST superfamily with arsenic metabolism in a Vietnamese population. Copyright 2009 Elsevier Inc. All rights reserved.

  3. Microvascular pericytes express platelet-derived growth factor-beta receptors in human healing wounds and colorectal adenocarcinoma.

    PubMed Central

    Sundberg, C.; Ljungström, M.; Lindmark, G.; Gerdin, B.; Rubin, K.

    1993-01-01

    The expression of platelet-derived growth factor- beta (PDGF-beta) receptors in the microvasculature of human healing wounds and colorectal adenocarcinoma was investigated. Frozen sections were subjected to double immunofluorescence staining using monoclonal antibodies (MAbs) specific for pericytes (MAb 225.28 recognizing the high-molecular weight-melanoma-associated antigen, expressed by activated pericytes during angiogenesis), endothelial cells (MAb PAL-E), laminin, as well as PDGF-beta receptors (MAb PDGFR-B2) and its ligand PDGF-B chain (MAb PDGF 007). Stained sections were analyzed by computer-aided imaging processing that allowed for a numerical quantification of the degree of colocalization of the investigated antigens. An apparent background colocalization, varying between 23 and 35%, between markers for cells not expected to co-localize was recorded. This background could be due to limitations of camera resolution, to out-of-focus fluorescence, and to interdigitations of the investigated structures. In all six tumor specimens, co-localization of PDGF-beta receptors and PAL-E was not different from the background co-localization, whereas that of PDGF-beta receptors and high-molecular weight-melanoma-associated antigen was significantly higher with mean values between 57 and 71%. Qualitatively, the same pattern was obtained in the two investigated healing wounds. PDGF-B chain did not co-localize with either PAL-E or high-molecular weight-melanoma-associated antigen, but PDGF-B chain-expressing cells were, however, frequently found juxtaposed to the microvasculature. The expression of PDGF-beta receptors on pericytes in activated microvessels and the presence of PDGF-B chain-expressing cells in close proximity to the microvasculature of healing wounds and colorectal adenocarcinoma is compatible with a role for PDGF in the physiology of the microvasculature in these conditions. Images Figure 1 p1381-a Figure 3 Figure 4 PMID:8238254

  4. Stretch and interleukin 1 beta: pro-labour factors with similar mitogen-activated protein kinase effects but differential patterns of transcription factor activation and gene expression.

    PubMed

    Sooranna, S R; Engineer, N; Liang, Z; Bennett, P R; Johnson, M R

    2007-07-01

    IL-1beta and stretch increase uterine smooth muscle cell (USMC) prostaglandin H synthase 2 (PGHS-2) and interleukin (IL)-8 mRNA expression in a mitogen-activated protein kinase (MAPK) dependent mechanism. We have tested our hypothesis that stretch and IL-1beta activate different components of the MAPK cascade in USMC and investigated the effects of specific MAPK inhibitors on these components. Further, we have used a Jun N-terminal kinase (JNK) and p38 activator, anisomycin, to compare the effect of differential MAPK activation on the expression of PGHS-2, IL-8 and oxytocin receptor (OTR) mRNA with that seen in response to stretch and IL-1beta. Stretch, IL-1beta and anisomycin activated similar components of the MAPK cascade and specific inhibitors of MAPK altered phosphorylation of MAPK and downstream cascade components as expected. Expression of OTR mRNA was increased by stretch and anisomycin in a MAPK-independent manner. All three stimuli increased PGHS-2 and IL-8 mRNA expression in a MAPK-dependent manner, but while the MAPK inhibitors reduced the IL-1beta-induced activation of activating transcription factor (ATF)-2, liver activating protein (LAP) and c-jun, the stretch-induced increase in LAP was unaffected by MAPK-inhibition and only JNK inhibition appeared to reduce c-jun activation. These observations show that stretch, IL-1beta and anisomycin activate the same components of the MAPK cascade, but differentially activate LAP and liver inhibitory protein (LIP) perhaps accounting for the increase in OTR by stretch and anisomycin but not IL-1beta observed in this study.

  5. Discovery and characterization of two Nimrod superfamily members in Anopheles gambiae.

    PubMed

    Midega, Janet; Blight, Joshua; Lombardo, Fabrizio; Povelones, Michael; Kafatos, Fotis; Christophides, George K

    2013-12-01

    Anti-bacterial proteins in mosquitoes are known to play an important modulatory role on immune responses to infections with human pathogens including malaria parasites. In this study we characterized two members of the Anopheles gambiae Nimrod superfamily, namely AgNimB2 and AgEater. We confirm that current annotation of the An. gambiae genome incorrectly identifies AgNimB2 and AgEater as a single gene, AGAP009762. Through in silico and experimental approaches, it has been shown that AgNimB2 is a secreted protein that mediates phagocytosis of Staphylococcus aureus but not of Escherichia coli bacteria. We also reveal that this function does not involve a direct interaction of AgNimB2 with S. aureus. Therefore, AgNimB2 may act downstream of complement-like pathway activation, first requiring bacterial opsonization. In addition, it has been shown that AgNimB2 has an anti-Plasmodium effect. Conversely, AgEater is a membrane-bound protein that either functions redundantly or is dispensable for phagocytosis of E. coli or S. aureus. Our study provides insights into the role of members of the complex Nimrod superfamily in An. gambiae, the most important African vector of human malaria.

  6. Discovery and characterization of two Nimrod superfamily members in Anopheles gambiae

    PubMed Central

    Midega, Janet; Blight, Joshua; Lombardo, Fabrizio; Povelones, Michael; Kafatos, Fotis; Christophides, George K

    2013-01-01

    Anti-bacterial proteins in mosquitoes are known to play an important modulatory role on immune responses to infections with human pathogens including malaria parasites. In this study we characterized two members of the Anopheles gambiae Nimrod superfamily, namely AgNimB2 and AgEater. We confirm that current annotation of the An. gambiae genome incorrectly identifies AgNimB2 and AgEater as a single gene, AGAP009762. Through in silico and experimental approaches, it has been shown that AgNimB2 is a secreted protein that mediates phagocytosis of Staphylococcus aureus but not of Escherichia coli bacteria. We also reveal that this function does not involve a direct interaction of AgNimB2 with S. aureus. Therefore, AgNimB2 may act downstream of complement-like pathway activation, first requiring bacterial opsonization. In addition, it has been shown that AgNimB2 has an anti-Plasmodium effect. Conversely, AgEater is a membrane-bound protein that either functions redundantly or is dispensable for phagocytosis of E. coli or S. aureus. Our study provides insights into the role of members of the complex Nimrod superfamily in An. gambiae, the most important African vector of human malaria. PMID:24428830

  7. Transforming growth factor beta mediates the progesterone suppression of an epithelial metalloproteinase by adjacent stroma in the human endometrium.

    PubMed Central

    Bruner, K L; Rodgers, W H; Gold, L I; Korc, M; Hargrove, J T; Matrisian, L M; Osteen, K G

    1995-01-01

    Unlike most normal adult tissues, cyclic growth and tissue remodeling occur within the uterine endometrium throughout the reproductive years. The matrix metalloproteinases (MMPs), a family of structurally related enzymes that degrade specific components of the extracellular matrix are thought to be the physiologically relevant mediators of extracellular matrix composition and turnover. Our laboratory has identified MMPs of the stromelysin family in the cycling human endometrium, implicating these enzymes in mediating the extensive remodeling that occurs in this tissue. While the stromelysins are expressed in vivo during proliferation-associated remodeling and menstruation-associated endometrial breakdown, none of the stromelysins are expressed during the progesterone-dominated secretory phase of the cycle. Our in vitro studies of isolated cell types have confirmed progesterone suppression of stromal MMPs, but a stromal-derived paracrine factor was found necessary for suppression of the epithelial-specific MMP matrilysin. In this report, we demonstrate that transforming growth factor beta (TGF-beta) is produced by endometrial stroma in response to progesterone and can suppress expression of epithelial matrilysin independent of progesterone. Additionally, we find that an antibody directed against the mammalian isoforms of TGF-beta abolishes progesterone suppression of matrilysin in stromal-epithelial cocultures, implicating TGF-beta as the principal mediator of matrilysin suppression in the human endometrium. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:7638197

  8. Chemical factors determine olfactory system beta oscillations in waking rats.

    PubMed

    Lowry, Catherine A; Kay, Leslie M

    2007-07-01

    Recent studies have pointed to olfactory system beta oscillations of the local field potential (15-30 Hz) and their roles both in learning and as specific responses to predator odors. To describe odorant physical properties, resultant behavioral responses and changes in the central olfactory system that may induce these oscillations without associative learning, we tested rats with 26 monomolecular odorants spanning 6 log units of theoretical vapor pressure (estimate of relative vapor phase concentration) and 10 different odor mixtures. We found odorant vapor phase concentration to be inversely correlated with investigation time on the first presentation, after which investigation times were brief and not different across odorants. Analysis of local field potentials from the olfactory bulb and anterior piriform cortex shows that beta oscillations in waking rats occur specifically in response to the class of volatile organic compounds with vapor pressures of 1-120 mmHg. Beta oscillations develop over the first three to four presentations and are weakly present for some odorants in anesthetized rats. Gamma oscillations show a smaller effect that is not restricted to the same range of odorants. Olfactory bulb theta oscillations were also examined as a measure of effective afferent input strength, and the power of these oscillations did not vary systematically with vapor pressure, suggesting that it is not olfactory bulb drive strength that determines the presence of beta oscillations. Theta band coherence analysis shows that coupling strength between the olfactory bulb and piriform cortex increases linearly with vapor phase concentration, which may facilitate beta oscillations above a threshold.

  9. Arsenic Exposure and Calpain-10 Polymorphisms Impair the Function of Pancreatic Beta-Cells in Humans: A Pilot Study of Risk Factors for T2DM

    PubMed Central

    Díaz-Villaseñor, Andrea; Cruz, Laura; Cebrián, Arturo; Hernández-Ramírez, Raúl U.; Hiriart, Marcia; García-Vargas, Gonzálo; Bassol, Susana; Sordo, Monserrat; Gandolfi, A. Jay; Klimecki, Walter T.; López-Carillo, Lizbeth; Cebrián, Mariano E.; Ostrosky-Wegman, Patricia

    2013-01-01

    The incidence of type 2 diabetes mellitus (T2DM) is increasing worldwide and diverse environmental and genetic risk factors are well recognized. Single nucleotide polymorphisms (SNPs) in the calpain-10 gene (CAPN-10), which encodes a protein involved in the secretion and action of insulin, and chronic exposure to inorganic arsenic (iAs) through drinking water have been independently associated with an increase in the risk for T2DM. In the present work we evaluated if CAPN-10 SNPs and iAs exposure jointly contribute to the outcome of T2DM. Insulin secretion (beta-cell function) and insulin sensitivity were evaluated indirectly through validated indexes (HOMA2) in subjects with and without T2DM who have been exposed to a gradient of iAs in their drinking water in northern Mexico. The results were analyzed taking into account the presence of the risk factor SNPs SNP-43 and -44 in CAPN-10. Subjects with T2DM had significantly lower beta-cell function and insulin sensitivity. An inverse association was found between beta-cell function and iAs exposure, the association being more pronounced in subjects with T2DM. Subjects without T2DM who were carriers of the at-risk genotype SNP-43 or -44, also had significantly lower beta-cell function. The association of SNP-43 with beta-cell function was dependent on iAs exposure, age, gender and BMI, whereas the association with SNP-44 was independent of all of these factors. Chronic exposure to iAs seems to be a risk factor for T2DM in humans through the reduction of beta-cell function, with an enhanced effect seen in the presence of the at-risk genotype of SNP-43 in CAPN-10. Carriers of CAPN-10 SNP-44 have also shown reduced beta-cell function. PMID:23349674

  10. Transforming growth factor-beta inhibits the expression of clock genes.

    PubMed

    Gast, Heidemarie; Gordic, Sonja; Petrzilka, Saskia; Lopez, Martin; Müller, Andreas; Gietl, Anton; Hock, Christoph; Birchler, Thomas; Fontana, Adriano

    2012-07-01

    Disturbances of sleep-wake rhythms are an important problem in Alzheimer's disease (AD). Circadian rhythms are regulated by clock genes. Transforming growth factor-beta (TGF-β) is overexpressed in neurons in AD and is the only cytokine that is increased in cerebrospinal fluid (CSF). Our data show that TGF-β2 inhibits the expression of the clock genes Period (Per)1, Per2, and Rev-erbα, and of the clock-controlled genes D-site albumin promoter binding protein (Dbp) and thyrotroph embryonic factor (Tef). However, our results showed that TGF-β2 did not alter the expression of brain and muscle Arnt-like protein-1 (Bmal1). The concentrations of TGF-β2 in the CSF of 2 of 16 AD patients and of 1 of 7 patients with mild cognitive impairment were in the dose range required to suppress the expression of clock genes. TGF-β2-induced dysregulation of clock genes may alter neuronal pathways, which may be causally related to abnormal sleep-wake rhythms in AD patients. © 2012 New York Academy of Sciences.

  11. Glycosaminoglycan and transforming growth factor beta1 changes in human plasma and urine during the menstrual cycle, in vitro fertilization treatment, and pregnancy.

    PubMed

    De Muro, Pierina; Capobianco, Giampiero; Formato, Marilena; Lepedda, Antonio Junior; Cherchi, Gian Mario; Gordini, Laila; Dessole, Salvatore

    2009-07-01

    To evaluate transforming growth factor beta1 (TGF-beta1) and glycosaminoglycans (GAG) changes in human plasma and urine during the menstrual cycle, IVF-ET, and pregnancy. Prospective clinical study. University hospital. Thirteen women with apparently normal menstrual cycle (group 1); 18 women undergoing IVF-ET (group 2); and 14 low-risk pregnant women (group 3). We assayed plasma and urine concentrations of TGF-beta1, urine content, and distribution of GAG. Blood and urine samples were collected during days 2 to 3, 12 to 13, and 23 to 24 in group 1; in group 2, samples were obtained at menstrual phase, oocyte pick-up day, and 15 days after ET; in group 3, samples were obtained during gestational weeks 10-12, 22-24, and 30-32 and 1 month after delivery. Changes in TGF-beta1 and GAG content. The mean value of total urinary trypsin inhibitor/chondroitin sulfate (UTI/CS) showed a distinct peak at day 12 of the menstrual cycle in the fertile women in whom we monitored the ovulatory period. In the IVF-ET group, GAG distribution and TGF-beta1 levels showed significant differences during the cycle. We observed increased levels of plasma TGF-beta1 15 days after ET. A significant increase of total UTI/CS value with increasing gestation was detected. Transforming growth factor beta1 and GAG levels could represent an additional tool to monitor reproductive events and could be useful, noninvasive markers of ovulation and ongoing pregnancy.

  12. HMMER Cut-off Threshold Tool (HMMERCTTER): Supervised classification of superfamily protein sequences with a reliable cut-off threshold.

    PubMed

    Pagnuco, Inti Anabela; Revuelta, María Victoria; Bondino, Hernán Gabriel; Brun, Marcel; Ten Have, Arjen

    2018-01-01

    Protein superfamilies can be divided into subfamilies of proteins with different functional characteristics. Their sequences can be classified hierarchically, which is part of sequence function assignation. Typically, there are no clear subfamily hallmarks that would allow pattern-based function assignation by which this task is mostly achieved based on the similarity principle. This is hampered by the lack of a score cut-off that is both sensitive and specific. HMMER Cut-off Threshold Tool (HMMERCTTER) adds a reliable cut-off threshold to the popular HMMER. Using a high quality superfamily phylogeny, it clusters a set of training sequences such that the cluster-specific HMMER profiles show cluster or subfamily member detection with 100% precision and recall (P&R), thereby generating a specific threshold as inclusion cut-off. Profiles and thresholds are then used as classifiers to screen a target dataset. Iterative inclusion of novel sequences to groups and the corresponding HMMER profiles results in high sensitivity while specificity is maintained by imposing 100% P&R self detection. In three presented case studies of protein superfamilies, classification of large datasets with 100% precision was achieved with over 95% recall. Limits and caveats are presented and explained. HMMERCTTER is a promising protein superfamily sequence classifier provided high quality training datasets are used. It provides a decision support system that aids in the difficult task of sequence function assignation in the twilight zone of sequence similarity. All relevant data and source codes are available from the Github repository at the following URL: https://github.com/BBCMdP/HMMERCTTER.

  13. HMMER Cut-off Threshold Tool (HMMERCTTER): Supervised classification of superfamily protein sequences with a reliable cut-off threshold

    PubMed Central

    Pagnuco, Inti Anabela; Revuelta, María Victoria; Bondino, Hernán Gabriel; Brun, Marcel

    2018-01-01

    Background Protein superfamilies can be divided into subfamilies of proteins with different functional characteristics. Their sequences can be classified hierarchically, which is part of sequence function assignation. Typically, there are no clear subfamily hallmarks that would allow pattern-based function assignation by which this task is mostly achieved based on the similarity principle. This is hampered by the lack of a score cut-off that is both sensitive and specific. Results HMMER Cut-off Threshold Tool (HMMERCTTER) adds a reliable cut-off threshold to the popular HMMER. Using a high quality superfamily phylogeny, it clusters a set of training sequences such that the cluster-specific HMMER profiles show cluster or subfamily member detection with 100% precision and recall (P&R), thereby generating a specific threshold as inclusion cut-off. Profiles and thresholds are then used as classifiers to screen a target dataset. Iterative inclusion of novel sequences to groups and the corresponding HMMER profiles results in high sensitivity while specificity is maintained by imposing 100% P&R self detection. In three presented case studies of protein superfamilies, classification of large datasets with 100% precision was achieved with over 95% recall. Limits and caveats are presented and explained. Conclusions HMMERCTTER is a promising protein superfamily sequence classifier provided high quality training datasets are used. It provides a decision support system that aids in the difficult task of sequence function assignation in the twilight zone of sequence similarity. All relevant data and source codes are available from the Github repository at the following URL: https://github.com/BBCMdP/HMMERCTTER. PMID:29579071

  14. Requirement for the SnoN oncoprotein in transforming growth factor beta-induced oncogenic transformation of fibroblast cells.

    PubMed

    Zhu, Qingwei; Pearson-White, Sonia; Luo, Kunxin

    2005-12-01

    Transforming growth factor beta (TGF-beta) was originally identified by virtue of its ability to induce transformation of the AKR-2B and NRK fibroblasts but was later found to be a potent inhibitor of the growth of epithelial, endothelial, and lymphoid cells. Although the growth-inhibitory pathway of TGF-beta mediated by the Smad proteins is well studied, the signaling pathway leading to the transforming activity of TGF-beta in fibroblasts is not well understood. Here we show that SnoN, a member of the Ski family of oncoproteins, is required for TGF-beta-induced proliferation and transformation of AKR-2B and NRK fibroblasts. TGF-beta induces upregulation of snoN expression in both epithelial cells and fibroblasts through a common Smad-dependent mechanism. However, a strong and prolonged activation of snoN transcription that lasts for 8 to 24 h is detected only in these two fibroblast lines. This prolonged induction is mediated by Smad2 and appears to play an important role in the transformation of both AKR-2B and NRK cells. Reduction of snoN expression by small interfering RNA or shortening of the duration of snoN induction by a pharmacological inhibitor impaired TGF-beta-induced anchorage-independent growth of AKR-2B cells. Interestingly, Smad2 and Smad3 play opposite roles in regulating snoN expression in both fibroblasts and epithelial cells. The Smad2/Smad4 complex activates snoN transcription by direct binding to the TGF-beta-responsive element in the snoN promoter, while the Smad3/Smad4 complex inhibits it through a novel Smad inhibitory site. Mutations of Smad4 that render it defective in heterodimerization with Smad3, which are found in many human cancers, convert the activity of Smad3 on the snoN promoter from inhibitory to stimulatory, resulting in increased snoN expression in cancer cells. Thus, we demonstrate a novel role of SnoN in the transforming activity of TGF-beta in fibroblasts and also uncovered a mechanism for the elevated SnoN expression in

  15. The structure of the human interferon alpha/beta receptor gene.

    PubMed

    Lutfalla, G; Gardiner, K; Proudhon, D; Vielh, E; Uzé, G

    1992-02-05

    Using the cDNA coding for the human interferon alpha/beta receptor (IFNAR), the IFNAR gene has been physically mapped relative to the other loci of the chromosome 21q22.1 region. 32,906 base pairs covering the IFNAR gene have been cloned and sequenced. Primer extension and solution hybridization-ribonuclease protection have been used to determine that the transcription of the gene is initiated in a broad region of 20 base pairs. Some aspects of the polymorphism of the gene, including noncoding sequences, have been analyzed; some are allelic differences in the coding sequence that induce amino acid variations in the resulting protein. The exon structure of the IFNAR gene and of that of the available genes for the receptors of the cytokine/growth hormone/prolactin/interferon receptor family have been compared with the predictions for the secondary structure of those receptors. From this analysis, we postulate a common origin and propose an hypothesis for the divergence from the immunoglobulin superfamily.

  16. Structural basis for amino acid export by DMT superfamily transporter YddG.

    PubMed

    Tsuchiya, Hirotoshi; Doki, Shintaro; Takemoto, Mizuki; Ikuta, Tatsuya; Higuchi, Takashi; Fukui, Keita; Usuda, Yoshihiro; Tabuchi, Eri; Nagatoishi, Satoru; Tsumoto, Kouhei; Nishizawa, Tomohiro; Ito, Koichi; Dohmae, Naoshi; Ishitani, Ryuichiro; Nureki, Osamu

    2016-06-16

    The drug/metabolite transporter (DMT) superfamily is a large group of membrane transporters ubiquitously found in eukaryotes, bacteria and archaea, and includes exporters for a remarkably wide range of substrates, such as toxic compounds and metabolites. YddG is a bacterial DMT protein that expels aromatic amino acids and exogenous toxic compounds, thereby contributing to cellular homeostasis. Here we present structural and functional analyses of YddG. Using liposome-based analyses, we show that Escherichia coli and Starkeya novella YddG export various amino acids. The crystal structure of S. novella YddG at 2.4 Å resolution reveals a new membrane transporter topology, with ten transmembrane segments in an outward-facing state. The overall structure is basket-shaped, with a large substrate-binding cavity at the centre of the molecule, and is composed of inverted structural repeats related by two-fold pseudo-symmetry. On the basis of this intramolecular symmetry, we propose a structural model for the inward-facing state and a mechanism of the conformational change for substrate transport, which we confirmed by biochemical analyses. These findings provide a structural basis for the mechanism of transport of DMT superfamily proteins.

  17. Age-related changes in expression of transforming growth factor-beta and receptors in cells of intervertebral discs.

    PubMed

    Matsunaga, Shunji; Nagano, Satoshi; Onishi, Toshiyuki; Morimoto, Norio; Suzuki, Shusaku; Komiya, Setsuro

    2003-01-01

    The authors conducted a study to determine age-related changes in expression of transforming growth factor (TGF)-beta1, -beta2, -beta3, and Type I and Type II receptors in various cells in the nucleus pulposus and anulus fibrosus. Immunolocalization of TGFbetas and Type I and II receptors was examined during the aging process of cervical intervertebral discs in senescence-accelerated mice (SAM). The TGFbeta family has important roles for cellular function of various tissues. Its role in disc aging, however, is unknown. Detailed information on the temporal and spatial localization of TGFbetas and their receptors in discs is required before discussing introduction of them clinically into the intervertebral disc. Three groups of five SAM each were used. The groups of SAM were age 8, 24, and 50 weeks, respectively. Hematoxylin and eosin staining and immunohistochemical study involving specific antibodies for TGFbeta1, -beta2, -beta3, and Types I and II TGF receptors were performed. Intervertebral discs exhibited degenerative change with advancing age. The TGFbetas and their receptors were present in the fibrocartilaginous cells within the anulus fibrosus and notochord-like cells within the nucleus pulposus of young mice. Expression of TGFbetas and Type I and Type II receptors changed markedly in the cells within the anulus fibrosus during the aging process. The TGFbetas and their receptors were present in cells within the nucleus pulposus and the anulus fibrosus of young mice, and their expression decreased with age.

  18. Neuroligin trafficking deficiencies arising from mutations in the alpha/beta-hydrolase fold protein family.

    PubMed

    De Jaco, Antonella; Lin, Michael Z; Dubi, Noga; Comoletti, Davide; Miller, Meghan T; Camp, Shelley; Ellisman, Mark; Butko, Margaret T; Tsien, Roger Y; Taylor, Palmer

    2010-09-10

    Despite great functional diversity, characterization of the alpha/beta-hydrolase fold proteins that encompass a superfamily of hydrolases, heterophilic adhesion proteins, and chaperone domains reveals a common structural motif. By incorporating the R451C mutation found in neuroligin (NLGN) and associated with autism and the thyroglobulin G2320R (G221R in NLGN) mutation responsible for congenital hypothyroidism into NLGN3, we show that mutations in the alpha/beta-hydrolase fold domain influence folding and biosynthetic processing of neuroligin3 as determined by in vitro susceptibility to proteases, glycosylation processing, turnover, and processing rates. We also show altered interactions of the mutant proteins with chaperones in the endoplasmic reticulum and arrest of transport along the secretory pathway with diversion to the proteasome. Time-controlled expression of a fluorescently tagged neuroligin in hippocampal neurons shows that these mutations compromise neuronal trafficking of the protein, with the R451C mutation reducing and the G221R mutation virtually abolishing the export of NLGN3 from the soma to the dendritic spines. Although the R451C mutation causes a local folding defect, the G221R mutation appears responsible for more global misfolding of the protein, reflecting their sequence positions in the structure of the protein. Our results suggest that disease-related mutations in the alpha/beta-hydrolase fold domain share common trafficking deficiencies yet lead to discrete congenital disorders of differing severity in the endocrine and nervous systems.

  19. Beta-blocking agents in patients with insulin resistance: effects of vasodilating beta-blockers.

    PubMed

    Jacob, S; Balletshofer, B; Henriksen, E J; Volk, A; Mehnert, B; Löblein, K; Häring, H U; Rett, K

    1999-01-01

    Essential hypertension is--at least in many subjects--associated with a decrease in insulin sensitivity, while glycaemic control is (still) normal. It seems that in hypertensive patients, two major functions of insulin are impaired: there is insulin resistance of peripheral glucose uptake (primarily skeletal muscle) and insulin resistance of insulin-stimulated vasodilation. In view of some retrospective data and meta-analyses, which showed a less than expected reduction in coronary events (coronary paradox), the metabolic side effects of the antihypertensive treatment have received more attention. Many groups have shown that conventional antihypertensive treatment, both with beta-blockers and/or diuretics, decreases insulin sensitivity by various mechanisms. While low-dose diuretics seem to be free of these metabolic effects, there is no evidence for this in the beta-adrenergic blockers. However, recent metabolic studies evaluated the effects of vasodilating beta-blockers, such as dilevalol, carvedilol and celiprolol, on insulin sensitivity and the atherogenic risk factors. None of them decreased insulin sensitivity, as has been described for the beta-blockers with and without beta1 selectivity. This supports the idea that peripheral vascular resistance and peripheral blood flow play a central role in mediating the metabolic side effects of the beta-blocking agents, as the vasodilating action (either via beta2 stimulation or alpha1-blockade) seems to more than offset the detrimental effects of the blockade of beta (or beta1) receptors. Further studies are needed to elucidate the relevance of the radical scavenging properties of these agents and their connection to their metabolic effects. Therefore, the beneficial characteristics of these newer beta-adrenoreceptor blockers suggest that the vasodilating beta-blocking agents could be advantageous for hypertensive patients with insulin resistance or type 2 diabetes.

  20. Method for protecting bone marrow against chemotherapeutic drugs and radiation therapy using transforming growth factor beta 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, J.R.; Ruscetti, F.W.; Wiltrout, R.

    1989-06-29

    Presented is a method for protecting hematopoietic stem cells from the myelotoxicity of chemotherapeutic drugs or radiation therapy, which comprises administering to a subject a therapeutically effective amount of transforming growth factor beta 1 for protecting bone marrow from the myelotoxicity of chemotherapeutic drugs or radiation therapy.

  1. Effect of transforming growth factor-beta and growth differentiation factor-5 on proliferation and matrix production by human bone marrow stromal cells cultured on braided poly lactic-co-glycolic acid scaffolds for ligament tissue engineering.

    PubMed

    Jenner, J M G Th; van Eijk, F; Saris, D B F; Willems, W J; Dhert, W J A; Creemers, Laura B

    2007-07-01

    Tissue engineering of ligaments based on biomechanically suitable biomaterials combined with autologous cells may provide a solution for the drawbacks associated with conventional graft material. The aim of the present study was to investigate the contribution of recombinant human transforming growth factor beta 1 (rhTGF-beta1) and growth differentiation factor (GDF)-5, known for their role in connective tissue regeneration, to proliferation and matrix production by human bone marrow stromal cells (BMSCs) cultured onto woven, bioabsorbable, 3-dimensional (3D) poly(lactic-co-glycolic acid) scaffolds. Cells were cultured for 12 days in the presence or absence of these growth factors at different concentrations. Human BMSCs attached to the suture material, proliferated, and synthesized extracellular matrix rich in collagen type I and collagen III. No differentiation was demonstrated toward cartilage or bone tissue. The addition of rhTGF-beta1 (1-10 ng/mL) and GDF-5 (10-100 ng/mL) increased cell content (p < 0.05), but only TGF-beta1 also increased total collagen production (p < 0.05) and collagen production per cell, which is a parameter indicating differentiation. In conclusion, stimulation with rhTGF-beta1, and to a lesser extent with GDF-5, can modulate human BMSCs toward collagenous soft tissue when applied to a 3D hybrid construct. The use of growth factors could play an important role in the improvement of ligament tissue engineering.

  2. Short interspersed elements (SINEs) of the Geomyoidea superfamily rodents.

    PubMed

    Gogolevsky, Konstantin P; Kramerov, Dmitri A

    2006-05-24

    A new short interspersed element (SINE) was isolated from the genome of desert kangaroo rat (Dipodomys deserti) using single-primer PCR. This SINE consists of two monomers: the left monomer (IDL) resembles rodent ID element and other tRNAAla(CGC)-derived SINEs, whereas the right one (Geo) shows no similarity with known SINE sequences. PCR and hybridization analyses demonstrated that IDL-Geo SINE is restricted to the rodent superfamily Geomyoidea (families Geomyidea and Heteromyidea). Isolation and analysis of IDL-Geo from California pocket mouse (Chaetodipus californicus) and Botta's pocket gopher (Thomomys bottae) revealed some species-specific features of this SINE family. The structure and evolution of known dimeric SINEs are discussed.

  3. Effects of hydrostatic pressure and transforming growth factor-beta 3 on adult human mesenchymal stem cell chondrogenesis in vitro.

    PubMed

    Miyanishi, Keita; Trindade, Michael C D; Lindsey, Derek P; Beaupré, Gary S; Carter, Dennis R; Goodman, Stuart B; Schurman, David J; Smith, R Lane

    2006-06-01

    This study examined the effects of intermittent hydrostatic pressure (IHP) and transforming growth factor-beta 3 on chondrogenesis of adult human mesenchymal stem cells (hMSCs) in vitro. Chondrogenic gene expression was determined by quantifying mRNA signal levels for SOX9, a transcription factor critical for cartilage development and the cartilage matrix proteins, aggrecan and type II collagen. Extracellular matrix production was determined by weight and histology. IHP was applied to hMSCs in pellet culture at a level of 10 MPa and a frequency of 1 Hz for 4 h per day for periods of 3, 7, and 14 days. hMSCs responded to addition of TGF-beta 3 (10 ng/mL) with a greater than 10-fold increase (p < 0.01) in mRNA levels for each, SOX9, type II collagen, and aggrecan during a 14-day culture period. Applying IHP in the presence of TGF-beta 3 further increased the mRNA levels for these proteins by 1.9-, 3.3-, and 1.6-fold, respectively, by day 14. Chondrogenic mRNA levels were increased with just exposure to IHP. Extracellular matrix deposition of type II collagen and aggrecan increased in the pellets as a function of treatment conditions and time of culture. This study demonstrated adjunctive effects of IHP on TGF-beta 3-induced chondrogenesis and suggests that mechanical loading can facilitate articular cartilage tissue engineering.

  4. Aldehyde Dehydrogenase Gene Superfamily in Populus: Organization and Expression Divergence between Paralogous Gene Pairs.

    PubMed

    Tian, Feng-Xia; Zang, Jian-Lei; Wang, Tan; Xie, Yu-Li; Zhang, Jin; Hu, Jian-Jun

    2015-01-01

    Aldehyde dehydrogenases (ALDHs) constitute a superfamily of NAD(P)+-dependent enzymes that catalyze the irreversible oxidation of a wide range of reactive aldehydes to their corresponding nontoxic carboxylic acids. ALDHs have been studied in many organisms from bacteria to mammals; however, no systematic analyses incorporating genome organization, gene structure, expression profiles, and cis-acting elements have been conducted in the model tree species Populus trichocarpa thus far. In this study, a comprehensive analysis of the Populus ALDH gene superfamily was performed. A total of 26 Populus ALDH genes were found to be distributed across 12 chromosomes. Genomic organization analysis indicated that purifying selection may have played a pivotal role in the retention and maintenance of PtALDH gene families. The exon-intron organizations of PtALDHs were highly conserved within the same family, suggesting that the members of the same family also may have conserved functionalities. Microarray data and qRT-PCR analysis indicated that most PtALDHs had distinct tissue-specific expression patterns. The specificity of cis-acting elements in the promoter regions of the PtALDHs and the divergence of expression patterns between nine paralogous PtALDH gene pairs suggested that gene duplications may have freed the duplicate genes from the functional constraints. The expression levels of some ALDHs were up- or down-regulated by various abiotic stresses, implying that the products of these genes may be involved in the adaptation of Populus to abiotic stresses. Overall, the data obtained from our investigation contribute to a better understanding of the complexity of the Populus ALDH gene superfamily and provide insights into the function and evolution of ALDH gene families in vascular plants.

  5. ALK and TGF-Beta Resistance in Breast Cancer

    DTIC Science & Technology

    2017-10-01

    and H.F. Lodish, Role of transforming growth factor beta in human disease. N Engl J Med, 2000. 342(18): p. 1350-8. 3. Massague, J., S.W. Blain, and... Transforming growth factor-beta signaling in normal and malignant hematopoiesis. Leukemia, 2003. 17(9): p. 1731-7. 5. Lehman, H.L., et al., Modeling and

  6. Lymphotoxin-beta receptor signaling regulates hepatic stellate cell function and wound healing in a murine model of chronic liver injury.

    PubMed

    Ruddell, Richard G; Knight, Belinda; Tirnitz-Parker, Janina E E; Akhurst, Barbara; Summerville, Lesa; Subramaniam, V Nathan; Olynyk, John K; Ramm, Grant A

    2009-01-01

    Lymphotoxin-beta (LTbeta) is a proinflammatory cytokine and a member of the tumor necrosis factor (TNF) superfamily known for its role in mediating lymph node development and homeostasis. Our recent studies suggest a role for LTbeta in mediating the pathogenesis of human chronic liver disease. We hypothesize that LTbeta co-ordinates the wound healing response in liver injury via direct effects on hepatic stellate cells. This study used the choline-deficient, ethionine-supplemented (CDE) dietary model of chronic liver injury, which induces inflammation, liver progenitor cell proliferation, and portal fibrosis, to assess (1) the cellular expression of LTbeta, and (2) the role of LTbeta receptor (LTbetaR) in mediating wound healing, in LTbetaR(-/-) versus wild-type mice. In addition, primary isolates of hepatic stellate cells were treated with LTbetaR-ligands LTbeta and LTbeta-related inducible ligand competing for glycoprotein D binding to herpesvirus entry mediator on T cells (LIGHT), and mediators of hepatic stellate cell function and fibrogenesis were assessed. LTbeta was localized to progenitor cells immediately adjacent to activated hepatic stellate cells in the periportal region of the liver in wild-type mice fed the CDE diet. LTbetaR(-/-) mice fed the CDE diet showed significantly reduced fibrosis and a dysregulated immune response. LTbetaR was demonstrated on isolated hepatic stellate cells, which when stimulated by LTbeta and LIGHT, activated the nuclear factor kappa B (NF-kappaB) signaling pathway. Neither LTbeta nor LIGHT had any effect on alpha-smooth muscle actin, tissue inhibitor of metalloproteinase 1, transforming growth factor beta, or procollagen alpha(1)(I) expression; however, leukocyte recruitment-associated factors intercellular adhesion molecule 1 and regulated upon activation T cells expressed and secreted (RANTES) were markedly up-regulated. RANTES caused the chemotaxis of a liver progenitor cell line expressing CCR5. This study suggests that

  7. The Evolutionary Ecology of Biotic Association in a Megadiverse Bivalve Superfamily: Sponsorship Required for Permanent Residency in Sediment

    PubMed Central

    Li, Jingchun; Ó Foighil, Diarmaid; Middelfart, Peter

    2012-01-01

    Background Marine lineage diversification is shaped by the interaction of biotic and abiotic factors but our understanding of their relative roles is underdeveloped. The megadiverse bivalve superfamily Galeommatoidea represents a promising study system to address this issue. It is composed of small-bodied clams that are either free-living or have commensal associations with invertebrate hosts. To test if the evolution of this lifestyle dichotomy is correlated with specific ecologies, we have performed a statistical analysis on the lifestyle and habitat preference of 121 species based on 90 source documents. Methodology/Principal Findings Galeommatoidea has significant diversity in the two primary benthic habitats: hard- and soft-bottoms. Hard-bottom dwellers are overwhelmingly free-living, typically hidden within crevices of rocks/coral heads/encrusting epifauna. In contrast, species in soft-bottom habitats are almost exclusively infaunal commensals. These infaunal biotic associations may involve direct attachment to a host, or clustering around its tube/burrow, but all commensals locate within the oxygenated sediment envelope produced by the host’s bioturbation. Conclusions/Significance The formation of commensal associations by galeommatoidean clams is robustly correlated with an abiotic environmental setting: living in sediments (). Sediment-dwelling bivalves are exposed to intense predation pressure that drops markedly with depth of burial. Commensal galeommatoideans routinely attain depth refuges many times their body lengths, independent of siphonal investment, by virtue of their host’s burrowing and bioturbation. In effect, they use their much larger hosts as giant auto-irrigating siphon substitutes. The evolution of biotic associations with infaunal bioturbating hosts may have been a prerequisite for the diversification of Galeommatoidea in sediments and has likely been a key factor in the success of this exceptionally diverse bivalve superfamily. PMID

  8. Analysis of common transforming growth factor beta-1 gene polymorphisms in gastric and duodenal ulcer disease: pilot study.

    PubMed

    Polonikov, Alexey V; Ivanov, Vladimir P; Belugin, Dmitry A; Khoroshaya, Irina V; Kolchanova, Inessa O; Solodilova, Mariya A; Tutochkina, Margarita P; Stepchenko, Alexander A

    2007-04-01

    Transforming growth factor-beta1 (TGF-beta1) has been shown to be an important cytokine that plays a role in cell proliferation, differentiation, tissue injury repair and ulcer healing. The purpose of this pilot study was to investigate if common polymorphisms Leu10Pro, Arg25Pro and C-509T within the TGF-beta1 gene are associated with susceptibility to gastric and duodenal ulcer disease in Russians. Blood samples from 377 unrelated patients with gastric and duodenal ulcer disease and 226 sex- and age-matched healthy controls were used to determine TGF-beta1 gene polymorphisms by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Leu10Pro substitution in the signal peptide of TGF-beta1 has been found to be associated with susceptibility to gastric ulcer (odds ratio [OR] 1.76, 95% confidence interval [CI] 1.12-2.77). A genotype combination of 10Leu/Leu x 25Arg/Arg x -509C/C was also associated with susceptibility to gastric ulcer disease (OR 1.81, P = 0.01). In addition, the frequency of a combination of genotypes 10Pro/Pro x 25Arg/Pro x -509C/T was statistically lower in patients with duodenal ulcer than in controls (OR 0.42, P = 0.05). A significant difference (P = 0.04) in the distribution of rare haplotypes of the TGF-beta1 gene between patients with duodenal ulcer and healthy controls has been found. Polymorphism Leu10Pro was in positive linkage disequilibrium with C-509T polymorphism (coefficient D = 0.191; P < 0.0001). These findings indicate that the Leu10Pro and C-509T polymorphisms may be involved in the modulation of expression of the TGF-beta1 gene, and therefore a predisposition to peptic ulcer disease could be linked to particular alleles of this gene. In particular, a possible role of TGF-beta1 in the pathogenesis of gastric ulcer disease is discussed.

  9. Determination of the efficiency of commercially available dose calibrators for beta-emitters.

    PubMed

    Valley, Jean-François; Bulling, Shelley; Leresche, Michel; Wastiel, Claude

    2003-03-01

    The goals of this investigation are to determine whether commercially available dose calibrators can be used to measure the activity of beta-emitting radionuclides used in pain palliation and to establish whether manufacturer-supplied calibration factors are appropriate for this purpose. Six types of commercially available dose calibrators were studied. Dose calibrator response was controlled for 5 gamma-emitters used for calibration or typically encountered in routine use. For the 4 most commonly used beta-emitters ((32)P, (90)Sr, (90)Y, and (169)Er) dose calibrator efficiency was determined in the syringe geometry used for clinical applications. Efficiency of the calibrators was also measured for (153)Sm and (186)Re, 2 beta-emitters with significant gamma-contributions. Source activities were traceable to national standards. All calibrators measured gamma-emitters with a precision of +/-10%, in compliance with Swiss regulatory requirements. For beta-emitters, dose calibrator intrinsic efficiency depends strongly on the maximal energy of the beta-spectrum and is notably low for (169)Er. Manufacturer-supplied calibration factors give accurate results for beta-emitters with maximal beta-energy in the middle-energy range (1 MeV) but are not appropriate for use with low-energy ((169)Er) or high-energy ((90)Y) beta-emitters. beta-emitters with significant gamma-contributions behave like gamma-emitters. Commercially available dose calibrators have an intrinsic efficiency that is sufficient for the measurement of beta-emitters, including beta-emitters with a low maximum beta-energy. Manufacturer-supplied calibration factors are reliable for gamma-emitters and beta-emitters in the middle-energy range. For low- and high-energy beta-emitters, the use of manufacturer-supplied calibration factors introduces significant measurement inaccuracy.

  10. [Molecular cloning of the DNA sequence of activin beta A subunit gene mature peptides from panda and related species and its application in the research of phylogeny and taxonomy].

    PubMed

    Wang, Xiao-Jing; Wang, Xiao-Xing; Wang, Ya-Jun; Wang, Xi-Zhong; He, Guang-Xin; Chen, Hong-Wei; Fei, Li-Song

    2002-09-01

    Activin, which is included in the transforming growth factor-beta (TGF beta) superfamily of proteins and receptors, is known to have broad-ranging effects in the creatures. The mature peptide of beta A subunit of this gene, one of the most highly conserved sequence, can elevate the basal secretion of follicle-stimulating hormone (FSH) in the pituitary and FSH is pivotal to organism's reproduction. Reproduction block is one of the main reasons which cause giant panda to extinct. The sequence of Activin beta A subunit gene mature peptides has been successfully amplified from giant panda, red panda and malayan sun bear's genomic DNA by using polymerase chain reaction (PCR) with a pair of degenerate primers. The PCR products were cloned into the vector pBlueScript+ of Esherichia coli. Sequence analysis of Activin beta A subunit gene mature peptides shows that the length of this gene segment is the same (359 bp) and there is no intron in all three species. The sequence encodes a peptide of 119 amino acid residues. The homology comparison demonstrates 93.9% DNA homology and 99% homology in amino acid among these three species. Both GenBank blast search result and restriction enzyme map reveal that the sequences of Activin beta A subunit gene mature peptides of different species are highly conserved during the evolution process. Phylogeny analysis is performed with PHYLIP software package. A consistent phylogeny tree has been drawn with three different methods. The software analysis outcome accords with the academic view that giant panda has a closer relationship to the malayan sun bear than the red panda. Giant panda should be grouped into the bear family (Uersidae) with the malayan sun bear. As to the red panda, it would be better that this animal be grouped into the unique family (red panda family) because of great difference between the red panda and the bears (Uersidae).

  11. IFN-beta1b augments glucocorticoid-induced suppression of tumor necrosis factor-alpha production by increasing the number of glucocorticoid receptors on a human monocytic cell line.

    PubMed

    Uitdehaag, B M; Hoekstra, K; Koper, J W; Polman, C H; Dijkstra, C D

    2001-03-01

    We studied the effect of recombinant interferon-beta1b (IFN-beta1b) on the sensitivity to glucocorticoids (GC) and on the number of GC receptors (GCR) in the human monocytic cell line THP-1. We found that IFN-beta1b augments the suppressive effect that dexamethasone has on the stimulated production of tumor necrosis factor-alpha (TNF-alpha), most likely related to the increased number of GCR observed after exposure to IFN-beta1b. This provides a possible clue to the mechanism of action of IFN-beta in multiple sclerosis.

  12. Can transforming growth factor-beta1 and retinoids modify the activity of estradiol and antiestrogens in MCF-7 breast cancer cells?.

    PubMed

    Czeczuga-Semeniuk, Ewa; Anchim, Tomasz; Dziecioł, Janusz; Dabrowska, Milena; Wołczyński, Sławomir

    2004-01-01

    Retinoic acid and transforming growth factor-beta (TGF-beta) affect differentiation, proliferation and carcinogenesis of epithelial cells. The effect of both compounds on the proliferation of cells of the hormone sensitive human breast cancer cell line (ER+) MCF-7 was assessed in the presence of estradiol and tamoxifen. The assay was based on [3H]thymidine incorporation and the proliferative activity of PCNA- and Ki 67-positive cells. The apoptotic index and expression of the Bcl-2 and p53 antigens in MCF-7 cells were also determined. Exogenous TGF-beta1 added to the cell culture showed antiproliferative activity within the concentration range of 0.003-30 ng/ml. Irrespective of TGF-beta1 concentrations, a marked reduction in the stimulatory action of estradiol (10(-9) and 10(-8) M) was observed whereas in combination with tamoxifen (10(-7) and 10(-6) M) only 30 ng/ml TGF-beta1 caused a statistically significant reduction to approximately 30% of the proliferative cells. In further experiments we examined the effect of exposure of breast cancer cells to retinoids in combination with TGF-beta1. The incorporation of [3H]thymidine into MCF-7 cells was inhibited to 52 +/- 19% (control =100%) by 3 ng/ml TGF-beta1, and this dose was used throughout. It was found that addition of TGF-beta1 and isotretinoin to the culture did not decrease proliferation, while TGF-beta1 and tretinoin at low concentrations (3 x 10(-8) and 3 x 10(-7) M) reduced the percentage of proliferating cells by approximately 30% (67+/-8% and 67+/-5%, P<0.05 compared to values in the tretinoin group). Both retinoids also led to a statistically significant decrease in the stimulatory effect of 10(-9) M estradiol, attenuated by TGF-beta1. In addition, the retinoids in combination with TGF-beta1 and tamoxifen (10(-6) M) caused a further reduction in the percentage of proliferating cells. Immunocytochemical analysis showed that all the examined compounds gave a statistically significant reduction in the

  13. Tyrosine residues 654 and 670 in {beta}-cat enin are crucial in regulation of Met-{beta}-catenin interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Gang; Apte, Udayan; Micsenyi, Amanda

    2006-11-01

    {beta}-catenin, a key component of the canonical Wnt pathway, is also regulated by tyrosine phosphorylation that regulates its association to E-cadherin. Previously, we reported its association with the hepatocyte growth factor (HGF) receptor Met at the membrane. HGF induced Met-{beta}-catenin dissociation and nuclear translocation of {beta}-catenin, which was tyrosine-phosphorylation-dependent. Here, we further investigate the Met-{beta}-catenin interaction by selectively mutating several tyrosine residues, alone or in combination, in {beta}-catenin. The mutants were subcloned into FLAG-CMV vector and stably transfected into rat hepatoma cells, which were treated with HGF. All single or double-mutant-transfected cells continued to show HGF-induced nuclear translocation of FLAG-{beta}-cateninmore » except the mutations affecting 654 and 670 simultaneously (Y654/670F), which coincided with the lack of formation of {beta}-catenin-TCF complex and DNA synthesis, in response to the HGF treatment. In addition, the Y654/670F-transfected cells also showed no phosphorylation of {beta}-catenin or dissociation from Met in response to HGF. Thus, intact 654 and 670 tyrosine residues in {beta}-catenin are crucial in HGF-mediated {beta}-catenin translocation, activation and mitogenesis.« less

  14. Factors of transforming growth factor beta signalling are co-regulated in human hepatocellular carcinoma.

    PubMed

    Longerich, Thomas; Breuhahn, Kai; Odenthal, Margarete; Petmecky, Katharina; Schirmacher, Peter

    2004-12-01

    Transforming growth factor beta (TGFbeta) is a central mitoinhibitory factor for epithelial cells, and alterations of TGFbeta signalling have been demonstrated in many different human cancers. We have analysed human hepatocellular carcinomas (HCCs) for potential pro-tumourigenic alterations in regard to expression of Smad4 and mutations and expression changes of the pro-oncogenic transcriptional co-repressors Ski and SnoN, as well as mRNA levels of matrix metalloproteinase-2 (MMP2), which is transcriptionally regulated by TGFbeta. Smad4 mRNA was detected in all HCCs; while, using immunohistology, loss of Smad4 expression was found in 10% of HCCs. Neither mutations in the transformation-relevant sequences nor significant pro-tumourigenic expression changes of the Ski and SnoN genes were detected. In HCC cell lines, expression of both genes was regulated, potentially involving phosphorylation. Ski showed a distinct nuclear speckled pattern, indicating recruitment to active transcription complexes. MMP2 mRNA levels were increased in 19% of HCCs, whereas MMP2 mRNA was not detectable in HCC cell lines, suggesting that MMP2 was derived only from tumour stroma cells. Transcript levels of Smad4, Ski, SnoN and MMP2 correlated well. These data argue against a significant role of Ski and SnoN in human hepatocarcinogenesis and suggest that, in the majority of HCCs, the analysed factors are co-regulated by an upstream mechanism, potentially by TGFbeta itself.

  15. Transforming Growth Factor Beta-2 Mutations in Barlow's Disease and Aortic Dilatation.

    PubMed

    Disha, Kushtrim; Schulz, Solveig; Kuntze, Thomas; Girdauskas, Evaldas

    2017-07-01

    We report on a patient operated on for degenerative myxomatous mitral and tricuspid valve disease (Barlow's disease) and aortic root dilatation. A valve repair operation and the postoperative course were uneventful. Multigenerational genetic analyses revealed two different mutations in the transforming growth factor beta-2 gene in the same patient. The two mutations in different exons were inherited from both parents each. None of the parents presented with either valve dysfunction or aortic root dilatation. This rare case illustrates potentially common genetic and signaling pathways of concomitant myxomatous valve disease and aortic root dilatation. Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  16. Small C-terminal domain phosphatases dephosphorylate the regulatory linker regions of Smad2 and Smad3 to enhance transforming growth factor-beta signaling.

    PubMed

    Wrighton, Katharine H; Willis, Danielle; Long, Jianyin; Liu, Fang; Lin, Xia; Feng, Xin-Hua

    2006-12-15

    Transforming growth factor-beta (TGF-beta) controls a diverse set of cellular processes, and its canonical signaling is mediated via TGF-beta-induced phosphorylation of receptor-activated Smads (2 and 3) at the C-terminal SXS motif. We recently discovered that PPM1A can dephosphorylate Smad2/3 at the C-terminal SXS motif, implicating a critical role for phosphatases in regulating TGF-beta signaling. Smad2/3 activity is also regulated by phosphorylation in the linker region (and N terminus) by a variety of intracellular kinases, making it a critical platform for cross-talk between TGF-beta and other signaling pathways. Using a functional genomic approach, we identified the small C-terminal domain phosphatase 1 (SCP1) as a specific phosphatase for Smad2/3 dephosphorylation in the linker and N terminus. A catalytically inactive SCP1 mutant (dnSCP1) had no effect on Smad2/3 phosphorylation in vitro or in vivo. Of the other FCP/SCP family members SCP2 and SCP3, but not FCP1, could also dephosphorylate Smad2/3 in the linker/N terminus. Depletion of SCP1/2/3 enhanced Smad2/3 linker phosphorylation. SCP1 increased TGF-beta-induced transcriptional activity in agreement with the idea that phosphorylation in the Smad2/3 linker must be removed for a full transcriptional response. SCP1 overexpression also counteracts the inhibitory effect of epidermal growth factor on TGF-beta-induced p15 expression. Taken together, this work identifies the first example of a Smad2/3 linker phosphatase(s) and reveals an important new substrate for SCPs.

  17. Effect of doxycycline on transforming growth factor-beta-1-induced matrix metalloproteinase 2 expression, migration, and collagen contraction in nasal polyp-derived fibroblasts.

    PubMed

    Shin, Jae-Min; Park, Joo-Hoo; Kang, Byungjin; Lee, Seoung-Ae; Park, Il-Ho; Lee, Heung-Man

    2016-11-01

    It is well known that doxycycline has antibacterial and anti-inflammatory effects. In this study, we aimed to investigate the effects of doxycycline on the transforming growth factor (TGF) beta 1-induced matrix metalloproteinase (MMP) 2 expression, migration, and collagen contraction, and to determine its molecular mechanism on nasal polyp-derived fibroblasts (NPDF). NPDFs were isolated from the nasal polyps of six patients. Doxycycline was used to pretreat TGF-beta-1-induced NPDFs and ex vivo organ cultures of nasal polyps. Cytotoxicity was evaluated by using a 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyl-tetrazolium bromide assay. Smad2/3 is one of the major transcription factors of TGF-beta signaling. The expression levels of MMP2 and Smad2/3 were measured by using Western blotting, reverse transcription-polymerase chain reaction, and immunofluorescence staining. The enzymic activity of MMP2 was analyzed by using gelatin zymography. Fibroblast migration was evaluated by using transwell migration assays. Contractile activity was measured by a collagen gel contraction assay. The expression level of MMP2 in nasal polyp tissues increased in comparison with inferior turbinate tissues. TGF-beta-1-induced NPDFs were not affected by doxycycline (0-40 μg/mL). The expression levels of MMP2 and activation of Smad2/3 in TGF-beta-1-induced NPDFs and in organ cultures of nasal polyps were significantly downregulated with doxycycline pretreatment. Doxycycline also reduced TGF-beta-1-induced fibroblast migration and collagen contraction in NPDFs. Doxycycline inhibited TGF-beta-1-induced MMP2 expression, migration, and collagen contraction via the Smad2/3 signal pathways in NPDFs.

  18. A SNARE-Like Superfamily Protein SbSLSP from the Halophyte Salicornia brachiata Confers Salt and Drought Tolerance by Maintaining Membrane Stability, K+/Na+ Ratio, and Antioxidant Machinery

    PubMed Central

    Singh, Dinkar; Yadav, Narendra Singh; Tiwari, Vivekanand; Agarwal, Pradeep K.; Jha, Bhavanath

    2016-01-01

    About 1000 salt-responsive ESTs were identified from an extreme halophyte Salicornia brachiata. Among these, a novel salt-inducible gene SbSLSP (Salicornia brachiata SNARE-like superfamily protein), showed up-regulation upon salinity and dehydration stress. The presence of cis-regulatory motifs related to abiotic stress in the putative promoter region supports our finding that SbSLSP gene is inducible by abiotic stress. The SbSLSP protein showed a high sequence identity to hypothetical/uncharacterized proteins from Beta vulgaris, Spinacia oleracea, Eucalyptus grandis, and Prunus persica and with SNARE-like superfamily proteins from Zostera marina and Arabidopsis thaliana. Bioinformatics analysis predicted a clathrin adaptor complex small-chain domain and N-myristoylation site in the SbSLSP protein. Subcellular localization studies indicated that the SbSLSP protein is mainly localized in the plasma membrane. Using transgenic tobacco lines, we establish that overexpression of SbSLSP resulted in elevated tolerance to salt and drought stress. The improved tolerance was confirmed by alterations in a range of physiological parameters, including high germination and survival rate, higher leaf chlorophyll contents, and reduced accumulation of Na+ ion and reactive oxygen species (ROS). Furthermore, overexpressing lines also showed lower water loss, higher cell membrane stability, and increased accumulation of proline and ROS-scavenging enzymes. Overexpression of SbSLSP also enhanced the transcript levels of ROS-scavenging and signaling enzyme genes. This study is the first investigation of the function of the SbSLSP gene as a novel determinant of salinity/drought tolerance. The results suggest that SbSLSP could be a potential candidate to increase salinity and drought tolerance in crop plants for sustainable agriculture in semi-arid saline soil. PMID:27313584

  19. Selective inhibition of sheep kidney 11 beta-hydroxysteroid dehydrogenase isoform 2 activity by 5 alpha-reduced (but not 5 beta) derivatives of adrenocorticosteroids.

    PubMed

    Latif, S A; Sheff, M F; Ribeiro, C E; Morris, D J

    1997-02-01

    We have previously reported that 5 alpha and 5 beta pathways of steroid metabolism are controlled in vivo by dietary Na+ and glycyrrhetinic acid, see Gorsline et al. 1988; Latif et al. 1990. The present investigations provide evidence supporting the suggestion that endogenous substances may regulate the glucocorticoid inactivating isoenzymes, 11 beta-HSD (hydroxysteroid dehydrogenase) 1 (liver) and 11 beta-HSD2 (kidney). The activity of 11 beta-HSD is impaired in essential hypertension, following licorice ingestion, and in patients with apparent mineralocorticoid excess where 11 beta-HSD2 is particularly affected. In all three conditions, excretion of the less common 5 alpha metabolites is elevated in urine. We now report on the differential abilities of a series of Ring A reduced (5 alpha and 5 beta) adrenocorticosteroid and progesterone metabolites to inhibit these isoenzymes. Using liver microsomes with NADP+ as co-factor (11 beta-HSD1), and sheep kidney microsomes with NAD+ as co-factor (11 beta-HSD2), we have systematically investigated the abilities of a number of adrenocorticosteroids and their derivatives to inhibit the individual isoforms of 11 beta-HSD. A striking feature is the differential sensitivity of the two isoenzymes to inhibition by 5 alpha and 5 beta derivatives. 11 beta-HSD1 is inhibited by both 5 alpha and certain 5 beta derivatives. 11 beta-HSD-2 was selectively inhibited only by 5 alpha derivatives: 5 beta derivatives were without inhibitory activity toward this isoform of 11 beta-HSD. These results indicate the importance of the structural conformation of the A and B Rings in conferring specific inhibitory properties on these compounds. In addition, we discuss the effects of additions or substitutions of other functional groups on the inhibitory potency of these steroid molecules against 11 beta-HSD1 and 11 beta-HSD2.

  20. ConoDictor: a tool for prediction of conopeptide superfamilies.

    PubMed

    Koua, Dominique; Brauer, Age; Laht, Silja; Kaplinski, Lauris; Favreau, Philippe; Remm, Maido; Lisacek, Frédérique; Stöcklin, Reto

    2012-07-01

    ConoDictor is a tool that enables fast and accurate classification of conopeptides into superfamilies based on their amino acid sequence. ConoDictor combines predictions from two complementary approaches-profile hidden Markov models and generalized profiles. Results appear in a browser as tables that can be downloaded in various formats. This application is particularly valuable in view of the exponentially increasing number of conopeptides that are being identified. ConoDictor was written in Perl using the common gateway interface module with a php submission page. Sequence matching is performed with hmmsearch from HMMER 3 and ps_scan.pl from the pftools 2.3 package. ConoDictor is freely accessible at http://conco.ebc.ee.

  1. An elevated serum beta-2-microglobulin level is an adverse prognostic factor for overall survival in patients with early-stage Hodgkin disease.

    PubMed

    Chronowski, Gregory M; Wilder, Richard B; Tucker, Susan L; Ha, Chul S; Sarris, Andreas H; Hagemeister, Fredrick B; Barista, Ibrahim; Hess, Mark A; Cabanillas, Fernando; Cox, James D

    2002-12-15

    The relative importance of prognostic factors in patients with early-stage Hodgkin disease remains controversial. The purpose of this study was to evaluate prognostic factors among patients who received chemotherapy before radiotherapy. From 1987 to 1995, 217 consecutive patients ranging in age from 16 to 88 years (median, 28 years) with Ann Arbor Stage I (n = 55) or II (n = 162) Hodgkin disease underwent chemotherapy before radiotherapy at a single center. Most were treated on prospective studies. Patients received a median of three cycles of induction chemotherapy. Mitoxantrone, vincristine, vinblastine, and prednisone (NOVP), doxorubicin, bleomycin, vinblastine, and dacarbazine (ABVD), mechlorethamine, vincristine, procarbazine, and prednisone (MOPP), cyclophosphamide, vinblastine, procarbazine, prednisone, doxorubicin, bleomycin, dacarbazine, and CCNU (CVPP/ABDIC), or other chemotherapeutic regimens were given to 160, 18, 15, 10, and 14 patients, respectively. The median radiotherapy dose was 40 Gy. Serum beta-2-microglobulin (beta-2M) levels ranged from 1.0 to 4.1 mg/L (median, 1.7 mg/L; upper limit of normal, 2.0 mg/L). We studied univariate and multivariate associations between survival and the following clinical features: serum beta-2M level above 1.25 times the upper limit of normal (n = 12), male gender (n = 113), hypoalbuminemia (n = 11), and bulky mediastinal disease (n = 94). Follow-up of surviving patients ranged from 0.9 to 13.4 years (median, 6.6 years) and 92% were observed for 3.0 or more years. Nineteen patients have died. Only elevation of the serum beta-2M level was an independent adverse prognostic factor for overall survival (P = 0.0009). The prognostic significance of a simple, widely available, and inexpensive blood test, beta-2M, has not been studied routinely in patients with Hodgkin disease and should be tested prospectively in large, cooperative group trials. Copyright 2002 American Cancer Society.DOI 10.1002/cncr.10998

  2. Targeting expression of a transforming growth factor beta 1 transgene to the pregnant mammary gland inhibits alveolar development and lactation.

    PubMed Central

    Jhappan, C; Geiser, A G; Kordon, E C; Bagheri, D; Hennighausen, L; Roberts, A B; Smith, G H; Merlino, G

    1993-01-01

    Transforming growth factor-beta 1 (TGF-beta 1) possesses highly potent, diverse and often opposing cell-specific activities, and has been implicated in the regulation of a variety of physiologic and developmental processes. To determine the effects of in vivo overexpression of TGF-beta 1 on mammary gland function, transgenic mice were generated harboring a fusion gene consisting of the porcine TGF-beta 1 cDNA placed under the control of regulatory elements of the pregnancy-responsive mouse whey-acidic protein (WAP) gene. Females from two of four transgenic lines were unable to lactate due to inhibition of the formation of lobuloalveolar structures and suppression of production of endogenous milk protein. In contrast, ductal development of the mammary glands was not overtly impaired. There was a complete concordance in transgenic mice between manifestation of the lactation-deficient phenotype and expression of RNA from the WAP/TGF-beta 1 transgene, which was present at low levels in the virgin gland, but was greatly induced at mid-pregnancy. TGF-beta 1 was localized to numerous alveoli and to the periductal extracellular matrix in the mammary gland of transgenic females late in pregnancy by immunohistochemical analysis. Glands reconstituted from cultured transgenic mammary epithelial cells duplicated the inhibition of lobuloalveolar development observed in situ in the mammary glands of pregnant transgenic mice. Results from this transgenic model strongly support the hypothesis that TGF-beta 1 plays an important in vivo role in regulating the development and function of the mammary gland. Images PMID:8491177

  3. Mesenchymal stem cells derived from human exocrine pancreas express transcription factors implicated in beta-cell development.

    PubMed

    Baertschiger, Reto M; Bosco, Domenico; Morel, Philippe; Serre-Beinier, Veronique; Berney, Thierry; Buhler, Leo H; Gonelle-Gispert, Carmen

    2008-07-01

    Transplantation of in vitro generated islets or insulin-producing cells represents an attractive option to overcome organ shortage. The aim of this study was to isolate, expand, and characterize cells from human exocrine pancreas and analyze their potential to differentiate into beta cells. Fibroblast-like cells growing out of human exocrine tissue were characterized by flow cytometry and by their capacity to differentiate into mesenchymal cell lineages. During cell expansion and after differentiation toward beta cells, expression of transcription factors of endocrine pancreatic progenitors was analyzed by reverse transcription polymerase chain reaction. Cells emerged from 14/18 human pancreatic exocrine fractions and were expanded up to 40 population doublings. These cells displayed surface antigens similar to mesenchymal stem cells from bone marrow. A culture of these cells in adipogenic and chondrogenic differentiation media allowed differentiation into adipocyte- and chondrocyte-like cells. During expansion, cells expressed transcription factors implicated in islet development such as Isl1, Nkx2.2, Nkx6.1, nestin, Ngn3, Pdx1, and NeuroD. Activin A and hepatocyte growth factor induced an expression of insulin, glucagon, and glucokinase. Proliferating cells with characteristics of mesenchymal stem cells and endocrine progenitors were isolated from exocrine tissue. Under specific conditions, these cells expressed little insulin. Human pancreatic exocrine tissue might thus be a source of endocrine cell progenitors.

  4. Betaglycan expression is transcriptionally up-regulated during skeletal muscle differentiation. Cloning of murine betaglycan gene promoter and its modulation by MyoD, retinoic acid, and transforming growth factor-beta.

    PubMed

    Lopez-Casillas, Fernando; Riquelme, Cecilia; Perez-Kato, Yoshiaki; Ponce-Castaneda, M Veronica; Osses, Nelson; Esparza-Lopez, Jose; Gonzalez-Nunez, Gerardo; Cabello-Verrugio, Claudio; Mendoza, Valentin; Troncoso, Victor; Brandan, Enrique

    2003-01-03

    Betaglycan is a membrane-anchored proteoglycan co-receptor that binds transforming growth factor beta (TGF-beta) via its core protein and basic fibroblast growth factor through its glycosaminoglycan chains. In this study we evaluated the expression of betaglycan during the C(2)C(12) skeletal muscle differentiation. Betaglycan expression, as determined by Northern and Western blot, was up-regulated during the conversion of myoblasts to myotubes. The mouse betaglycan gene promoter was cloned, and its sequence showed putative binding sites for SP1, Smad3, Smad4, muscle regulatory factor elements such as MyoD and MEF2, and retinoic acid receptor. Transcriptional activity of the mouse betaglycan promoter reporter was also up-regulated in differentiating C(2)C(12) cells. We found that MyoD, but not myogenin, stimulated this transcriptional activity even in the presence of high serum. Betaglycan promoter activity was increased by RA and inhibited by the three isoforms of TGF-beta. On the other hand, basic fibroblast growth factor, BMP-2, and hepatocyte growth factor/scatter factor, which are inhibitors of myogenesis, had little effect. In myotubes, up-regulated betaglycan was also detectable by TGF-beta affinity labeling and immunofluorescence microscopy studies. The latter indicated that betaglycan was localized both on the cell surface and in the ECM. Forced expression of betaglycan in C(2)C(12) myoblasts increases their responsiveness to TGF-beta2, suggesting that it performs a TGF-beta presentation function in this cell lineage. These results indicate that betaglycan expression is up-regulated during myogenesis and that MyoD and RA modulate its expression by a mechanism that is independent of myogenin.

  5. Involvement of H- and N-Ras isoforms in transforming growth factor-{beta}1-induced proliferation and in collagen and fibronectin synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez-Salgado, Carlos; Fuentes-Calvo, Isabel; Instituto 'Reina Sofia' de Investigacion Nefrologica, Universidad de Salamanca, 37007 Salamanca

    2006-07-01

    Transforming growth factor {beta}1 (TGF-{beta}1) has a relevant role in the origin and maintenance of glomerulosclerosis and tubule-interstitial fibrosis. TGF-{beta} and Ras signaling pathways are closely related: TGF-{beta}1 overcomes Ras mitogenic effects and Ras counteracts TGF-{beta} signaling. Tubule-interstitial fibrosis is associated to increases in Ras, Erk, and Akt activation in a renal fibrosis model. We study the role of N- and H-Ras isoforms, and the involvement of the Ras effectors Erk and Akt, in TGF-{beta}1-mediated extracellular matrix (ECM) synthesis and proliferation, using embrionary fibroblasts from double knockout (KO) mice for H- and N-Ras (H-ras {sup -/-}/N-ras {sup -/-}) isoforms andmore » from heterozygote mice (H-ras {sup +/-}/N-ras {sup +/-}). ECM synthesis is increased in basal conditions in H-ras {sup -/-}/N-ras {sup -/-} fibroblasts, this increase being higher after stimulation with TGF-{beta}1. TGF-{beta}1-induced fibroblast proliferation is smaller in H-ras {sup -/-}/N-ras {sup -/-} than in H-ras {sup +/-}/N-ras {sup +/-} fibroblasts. Erk activation is decreased in H-ras {sup -/-}/N-ras {sup -/-} fibroblasts; inhibition of Erk activation reduces fibroblast proliferation. Akt activation is higher in double KO fibroblasts than in heterozygotes; inhibition of Akt activation also inhibits ECM synthesis. We suggest that H- and N-Ras isoforms downregulate ECM synthesis, and mediate proliferation, in part through MEK/Erk activation. PI3K-Akt pathway activation may be involved in the increase in ECM synthesis observed in the absence of H- and N-Ras.« less

  6. Stage-specific control of connective tissue growth factor (CTGF/CCN2) expression in chondrocytes by Sox9 and beta-catenin.

    PubMed

    Huang, Bau-Lin; Brugger, Sean M; Lyons, Karen M

    2010-09-03

    CCN2/connective tissue growth factor is highly expressed in hypertrophic chondrocytes and is required for chondrogenesis. However, the transcriptional mechanisms controlling its expression in cartilage are largely unknown. The activity of the Ccn2 promoter was, therefore, investigated in osteochondro-progenitor cells and hypertrophic chondrocytes to ascertain these mechanisms. Sox9 and T-cell factor (TCF) x lymphoid enhancer factor (LEF) factors contain HMG domains and bind to related consensus sites. TCF x LEF factors are normally repressive but when bound to DNA in a complex with beta-catenin become activators of gene expression. In silico analysis of the Ccn2 proximal promoter identified multiple consensus TCF x LEF elements, one of which was also a consensus binding site for Sox9. Using luciferase reporter constructs, the TCF x LEF x Sox9 site was found to be involved in stage-specific expression of Ccn2. Luciferase, electrophoretic mobility shift assay (EMSA), and ChIP analysis revealed that Sox9 represses Ccn2 expression by binding to the consensus TCF x LEF x Sox9 site. On the other hand, the same assays showed that in hypertrophic chondrocytes, TCF x LEF x beta-catenin complexes occupy the consensus TCF x LEF x Sox9 site and activate Ccn2 expression. Furthermore, transgenic mice in which lacZ expression is driven under the control of the proximal Ccn2 promoter revealed that the proximal Ccn2 promoter responded to Wnt signaling in cartilage. Hence, we propose that differential occupancy of the TCF x LEF x Sox9 site by Sox9 versus beta-catenin restricts high levels of Ccn2 expression to hypertrophic chondrocytes.

  7. The PYRIN domain: A member of the death domain-fold superfamily

    PubMed Central

    Fairbrother, Wayne J.; Gordon, Nathaniel C.; Humke, Eric W.; O'Rourke, Karen M.; Starovasnik, Melissa A.; Yin, Jian-Ping; Dixit, Vishva M.

    2001-01-01

    PYRIN domains were identified recently as putative protein–protein interaction domains at the N-termini of several proteins thought to function in apoptotic and inflammatory signaling pathways. The ∼95 residue PYRIN domains have no statistically significant sequence homology to proteins with known three-dimensional structure. Using secondary structure prediction and potential-based fold recognition methods, however, the PYRIN domain is predicted to be a member of the six-helix bundle death domain-fold superfamily that includes death domains (DDs), death effector domains (DEDs), and caspase recruitment domains (CARDs). Members of the death domain-fold superfamily are well established mediators of protein–protein interactions found in many proteins involved in apoptosis and inflammation, indicating further that the PYRIN domains serve a similar function. An homology model of the PYRIN domain of CARD7/DEFCAP/NAC/NALP1, a member of the Apaf-1/Ced-4 family of proteins, was constructed using the three-dimensional structures of the FADD and p75 neurotrophin receptor DDs, and of the Apaf-1 and caspase-9 CARDs, as templates. Validation of the model using a variety of computational techniques indicates that the fold prediction is consistent with the sequence. Comparison of a circular dichroism spectrum of the PYRIN domain of CARD7/DEFCAP/NAC/NALP1 with spectra of several proteins known to adopt the death domain-fold provides experimental support for the structure prediction. PMID:11514682

  8. Transforming growth factor beta-3 and environmental factors and cleft lip with/without cleft palate.

    PubMed

    Guo, Zeqiang; Huang, Chengle; Ding, Kaihong; Lin, Jianyan; Gong, Binzhong

    2010-07-01

    To identify the interactions among two loci (C641A and G15572-) of transforming growth factor beta 3 (TGFbeta3), and exposures in pregnancy with cleft lip with/without cleft palate (CL/P), a hospital-based case-control study was conducted. Associations among offspring polymorphisms of TGFbeta3 C641A and G15572-, paternal smoking, paternal high-risk drinking, maternal passive smoking, and maternal multivitamin supplement with CL/P were analyzed by logistic regression analysis, and the results showed that maternal passive smoking exposures and maternal multivitamin use were associated with the risk of CL/P but offspring polymorphisms of TGFbeta3 C641A and G15572-, paternal smoking, and paternal high-risk drinking were not. Interactions among these variables were analyzed using the multifactor dimensionality reduction method, and the results showed that the two-factor model, including maternal passive smoking and TGFbeta3 C641A, among all models evaluated had the best ability to predict CL/P risk with a maximum cross-validation consistency (9/10) and a maximum average testing accuracy (0.5892; p = 0.0010). These findings suggested that maternal passive smoking exposure is a risk factor for CL/P, whereas maternal multivitamin supplement is a protective factor. The polymorphism of TGFbeta3 C641A participates in interaction effect for CL/P with environmental exposures, although the polymorphism was not associated with CL/P in single-locus analysis, and synergistic effect of TGFbeta3 C641A and maternal passive smoking could provide a new tool for identifying high-risk individuals of CL/P and also an additional evidence that CL/P is determined by both genetic and environmental factors.

  9. Characterization of human DHRS4: an inducible short-chain dehydrogenase/reductase enzyme with 3beta-hydroxysteroid dehydrogenase activity.

    PubMed

    Matsunaga, Toshiyuki; Endo, Satoshi; Maeda, Satoshi; Ishikura, Shuhei; Tajima, Kazuo; Tanaka, Nobutada; Nakamura, Kazuo T; Imamura, Yorishige; Hara, Akira

    2008-09-15

    Human DHRS4 is a peroxisomal member of the short-chain dehydrogenase/reductase superfamily, but its enzymatic properties, except for displaying NADP(H)-dependent retinol dehydrogenase/reductase activity, are unknown. We show that the human enzyme, a tetramer composed of 27kDa subunits, is inactivated at low temperature without dissociation into subunits. The cold inactivation was prevented by a mutation of Thr177 with the corresponding residue, Asn, in cold-stable pig DHRS4, where this residue is hydrogen-bonded to Asn165 in a substrate-binding loop of other subunit. Human DHRS4 reduced various aromatic ketones and alpha-dicarbonyl compounds including cytotoxic 9,10-phenanthrenequinone. The overexpression of the peroxisomal enzyme in cultured cells did not increase the cytotoxicity of 9,10-phenanthrenequinone. While its activity towards all-trans-retinal was low, human DHRS4 efficiently reduced 3-keto-C(19)/C(21)-steroids into 3beta-hydroxysteroids. The stereospecific conversion to 3beta-hydroxysteroids was observed in endothelial cells transfected with vectors expressing the enzyme. The mRNA for the enzyme was ubiquitously expressed in human tissues and several cancer cells, and the enzyme in HepG2 cells was induced by peroxisome-proliferator-activated receptor alpha ligands. The results suggest a novel mechanism of cold inactivation and role of the inducible human DHRS4 in 3beta-hydroxysteroid synthesis and xenobiotic carbonyl metabolism.

  10. Expression of 6-Cys gene superfamily defines babesia bovis sexual stage development within rhipicephalus microplus

    USDA-ARS?s Scientific Manuscript database

    Babesia bovis, an intra-erythrocytic tick-borne apicomplexan protozoan, is one of the agents of bovine babesiosis. Its life cycle includes sexual reproduction within cattle fever ticks, Rhipicephalus spp. Six B. bovis 6-Cys gene superfamily members were previously identified (A, B, C, D, E, F) and t...

  11. Smad signaling pathway is a pivotal component of tissue inhibitor of metalloproteinases-3 regulation by transforming growth factor beta in human chondrocytes.

    PubMed

    Qureshi, Hamid Yaqoob; Ricci, Gemma; Zafarullah, Muhammad

    2008-09-01

    Transforming growth factor beta (TGF-beta1) promotes cartilage matrix synthesis and induces tissue inhibitor of metalloproteinases-3 (TIMP-3), which inhibits matrix metalloproteinases, aggrecanases and TNF-alpha-converting enzyme implicated in articular cartilage degradation and joint inflammation. TGF-beta1 activates Akt, ERK and Smad2 pathways in chondrocytes. Here we investigated previously unexplored roles of specific Smads in TGF-beta1 induction of TIMP-3 gene by pharmacological and genetic knockdown approaches. TGF-beta1-induced Smad2 phosphorylation and TIMP-3 protein expression could be inhibited by the Smad2/3 phosphorylation inhibitors, PD169316 and SB203580 and by Smad2-specific siRNA. Specific inhibitor of Smad3 (SIS3) and Smad3 siRNA abolished TGF-beta induction of TIMP-3. Smad2/3 siRNAs also down regulated TIMP-3 promoter-driven luciferase activities, suggesting transcriptional regulation. SiRNA-driven co-Smad4 knockdown abrogated TIMP-3 augmentation by TGF-beta. TIMP-3 promoter deletion analysis revealed that -828 deletion retains the original promoter activity while -333 and -167 deletions display somewhat reduced activity suggesting that most of the TGF-beta-responsive, cis-acting elements are found in the -333 fragment. Chromatin Immunoprecipitation (ChIP) analysis confirmed binding of Smad2 and Smad4 with the -940 and -333 promoter sequences. These results suggest that receptor-activated Smad2 and Smad3 and co-Smad4 critically mediate TGF-beta-stimulated TIMP-3 expression in human chondrocytes and TIMP-3 gene is a target of Smad signaling pathway.

  12. Significance of the interleukin-1 receptor antagonist/interleukin-1 beta ratio as a prognostic factor in patients with pulmonary sarcoidosis.

    PubMed

    Mikuniya, T; Nagai, S; Takeuchi, M; Mio, T; Hoshino, Y; Miki, H; Shigematsu, M; Hamada, K; Izumi, T

    2000-01-01

    Various factors such as serum angiotensin-converting enzyme (sACE) activity, bronchoalveolar lavage (BAL) fluid lymphocyte percent, CD4/CD8 ratio, and shadows on chest radiograph have been identified as indexes of disease activity in patients with sarcoidosis. However, it remains to be confirmed whether these factors can predict clinical outcomes. To examine whether the interleukin-1 receptor antagonist (IL-1ra)/IL-1 beta ratio can predict the clinical course, we prospectively followed the clinical courses of 30 patients with pulmonary sarcoidosis 4 years after measurement of immunoreactive amounts of IL-1ra or IL-1 beta in the culture supernatants obtained from BAL fluid macrophages. Immunoreactive amounts of IL-1ra or IL-1 beta were measured using ELISA. Changes in pulmonary function, sACE activity, and shadows on chest radiographs during observation periods were evaluated as markers of changes in disease activity. We found that the patients whose shadows on chest radiographs showed improvement had a higher molar IL-1ra/IL-1 beta ratio than the patients whose shadows persistently remained 4 years after BAL examination (p < 0.05). The molar ratio was found to be positively correlated with improvement of percent vital capacity (p < 0.05) and negatively correlated with the ratio of sACE activity at the time of the last observation to sACE activity at the time of BAL (sACE(LAST)/sACE(BAL), p < 0.01). The sACE(LAST)/sACE(BAL) ratio was significantly lower in patients whose shadows on chest radiographs decreased than in those whose shadows remained unchanged (p < 0.005). The IL-1ra/IL-1 beta ratio in the BAL fluid macrophage culture supernatants in patients with pulmonary sarcoidosis could be a useful marker in predicting the persistence of granulomatous lesions (chronicity). Copyright 2000 S. Karger AG, Basel

  13. Cloning the promoter for transforming growth factor-beta type III receptor. Basal and conditional expression in fetal rat osteoblasts

    NASA Technical Reports Server (NTRS)

    Ji, C.; Chen, Y.; McCarthy, T. L.; Centrella, M.

    1999-01-01

    Transforming growth factor-beta binds to three high affinity cell surface molecules that directly or indirectly regulate its biological effects. The type III receptor (TRIII) is a proteoglycan that lacks significant intracellular signaling or enzymatic motifs but may facilitate transforming growth factor-beta binding to other receptors, stabilize multimeric receptor complexes, or segregate growth factor from activating receptors. Because various agents or events that regulate osteoblast function rapidly modulate TRIII expression, we cloned the 5' region of the rat TRIII gene to assess possible control elements. DNA fragments from this region directed high reporter gene expression in osteoblasts. Sequencing showed no consensus TATA or CCAAT boxes, whereas several nuclear factors binding sequences within the 3' region of the promoter co-mapped with multiple transcription initiation sites, DNase I footprints, gel mobility shift analysis, or loss of activity by deletion or mutation. An upstream enhancer was evident 5' proximal to nucleotide -979, and a silencer region occurred between nucleotides -2014 and -2194. Glucocorticoid sensitivity mapped between nucleotides -687 and -253, whereas bone morphogenetic protein 2 sensitivity co-mapped within the silencer region. Thus, the TRIII promoter contains cooperative basal elements and dispersed growth factor- and hormone-sensitive regulatory regions that can control TRIII expression by osteoblasts.

  14. Interferon-gamma interferes with transforming growth factor-beta signaling through direct interaction of YB-1 with Smad3.

    PubMed

    Higashi, Kiyoshi; Inagaki, Yutaka; Fujimori, Ko; Nakao, Atsuhito; Kaneko, Hideo; Nakatsuka, Iwao

    2003-10-31

    Transforming growth factor-beta (TGF-beta) and interferon-gamma (IFN-gamma) exert antagonistic effects on collagen synthesis in human dermal fibroblasts. We have recently shown that Y box-binding protein YB-1 mediates the inhibitory effects of IFN-gamma on alpha2(I) procollagen gene (COL1A2) transcription through the IFN-gamma response element located between -161 and -150. Here we report that YB-1 counter-represses TGF-beta-stimulated COL1A2 transcription by interfering with Smad3 bound to the upstream sequence around -265 and subsequently by interrupting the Smad3-p300 interaction. Western blot and immunofluorescence analyses using inhibitors for Janus kinases or casein kinase II suggested that the casein kinase II-dependent signaling pathway mediates IFN-gamma-induced nuclear translocation of YB-1. Down-regulation of endogenous YB-1 expression by double-stranded YB-1-specific RNA abrogated the transcriptional repression of COL1A2 by IFN-gamma in the absence and presence of TGF-beta. In transient transfection assays, overexpression of YB-1 in human dermal fibroblasts exhibited antagonistic actions against TGF-beta and Smad3. Physical interaction between Smad3 and YB-1 was demonstrated by immunoprecipitation-Western blot analyses, and electrophoretic mobility shift assays using the recombinant Smad3 and YB-1 proteins indicated that YB-1 forms a complex with Smad3 bound to the Smad-binding element. Glutathione S-transferase pull-down assays showed that YB-1 binds to the MH1 domain of Smad3, whereas the central and carboxyl-terminal regions of YB-1 were required for its interaction with Smad3. YB-1 also interferes with the Smad3-p300 interaction by its preferential binding to p300. Altogether, the results provide a novel insight into the mechanism by which IFN-gamma/YB-1 counteracts TGF-beta/Smad3. They also indicate that IFN-gamma/YB-1 inhibits COL1A2 transcription by dual actions: via the IFN-gamma response element and through a cross-talk with the TGF-beta

  15. SIRT1 inhibits proliferation of pancreatic cancer cells expressing pancreatic adenocarcinoma up-regulated factor (PAUF), a novel oncogene, by suppression of {beta}-catenin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Il-Rae; Koh, Sang Seok; Department of Functional Genomics, University of Science and Technology, Daejeon 305-333

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer SIRT1 inhibits protein levels of {beta}-catenin and its transcriptional activity. Black-Right-Pointing-Pointer Nuclear localization of SIRT1 is not required for the decrease of {beta}-catenin expression. Black-Right-Pointing-Pointer SIRT1-mediated degradation of {beta}-catenin is not required for GSK-3{beta} and Siah-1 but for proteosome. Black-Right-Pointing-Pointer SIRT1 activation inhibits proliferation of pancreatic cancer cells expressing PAUF. -- Abstract: Because we found in a recent study that pancreatic adenocarcinoma up-regulated factor (PAUF), a novel oncogene, induces a rapid proliferation of pancreatic cells by up-regulation of {beta}-catenin, we postulated that {beta}-catenin might be a target molecule for pancreatic cancer treatment. We thus speculated whether SIRT1, knownmore » to target {beta}-catenin in a colon cancer model, suppresses {beta}-catenin in those pancreatic cancer cells that express PAUF (Panc-PAUF). We further evaluated whether such suppression would lead to inhibition of the proliferation of these cells. The ectopic expression of either SIRT1 or resveratrol (an activator of SIRT1) suppressed levels of {beta}-catenin protein and its transcriptional activity in Panc-PAUF cells. Conversely, suppression of SIRT1 expression by siRNA enhanced {beta}-catenin expression and transcriptional activity. SIRT1 mutant analysis showed that nuclear localization of SIRT1 is not required for reduction of {beta}-catenin. Treatment with MG132, a proteasomal inhibitor, restored {beta}-catenin protein levels, suggesting that SIRT1-mediated degradation of {beta}-catenin requires proteasomal activity. It was reported that inhibition of GSK-3{beta} or Siah-1 stabilizes {beta}-catenin in colon cancer cells, but suppression of GSK-3{beta} or Siah-1 using siRNA in the presence of resveratrol instead diminished {beta}-catenin protein levels in Panc-PAUF cells. This suggests that GSK-3{beta} and Siah-1 are not involved

  16. Both conditional ablation and overexpression of E2 SUMO-conjugating enzyme (UBC9) in mouse pancreatic beta cells result in impaired beta cell function.

    PubMed

    He, Xiaoyu; Lai, Qiaohong; Chen, Cai; Li, Na; Sun, Fei; Huang, Wenting; Zhang, Shu; Yu, Qilin; Yang, Ping; Xiong, Fei; Chen, Zhishui; Gong, Quan; Ren, Boxu; Weng, Jianping; Eizirik, Décio L; Zhou, Zhiguang; Wang, Cong-Yi

    2018-04-01

    Post-translational attachment of a small ubiquitin-like modifier (SUMO) to the lysine (K) residue(s) of target proteins (SUMOylation) is an evolutionary conserved regulatory mechanism. This modification has previously been demonstrated to be implicated in the control of a remarkably versatile regulatory mechanism of cellular processes. However, the exact regulatory role and biological actions of the E2 SUMO-conjugating enzyme (UBC9)-mediated SUMOylation function in pancreatic beta cells has remained elusive. Inducible beta cell-specific Ubc9 (also known as Ube2i) knockout (KO; Ubc9 Δbeta ) and transgenic (Ubc9 Tg ) mice were employed to address the impact of SUMOylation on beta cell viability and functionality. Ubc9 deficiency or overexpression was induced at 8 weeks of age using tamoxifen. To study the mechanism involved, we closely examined the regulation of the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) through SUMOylation in beta cells. Upon induction of Ubc9 deficiency, Ubc9 Δbeta islets exhibited a 3.5-fold higher accumulation of reactive oxygen species (ROS) than Ubc9 f/f control islets. Islets from Ubc9 Δbeta mice also had decreased insulin content and loss of beta cell mass after tamoxifen treatment. Specifically, at day 45 after Ubc9 deletion only 40% of beta cell mass remained in Ubc9 Δbeta mice, while 90% of beta cell mass was lost by day 75. Diabetes onset was noted in some Ubc9 Δbeta mice 8 weeks after induction of Ubc9 deficiency and all mice developed diabetes by 10 weeks following tamoxifen treatment. In contrast, Ubc9 Tg beta cells displayed an increased antioxidant ability but impaired insulin secretion. Unlike Ubc9 Δbeta mice, which spontaneously developed diabetes, Ubc9 Tg mice preserved normal non-fasting blood glucose levels without developing diabetes. It was noted that SUMOylation of NRF2 promoted its nuclear expression along with enhanced transcriptional activity, thereby preventing ROS accumulation in

  17. Neutrophil chemotaxis in response to TGF-beta isoforms (TGF-beta 1, TGF-beta 2, TGF-beta 3) is mediated by fibronectin.

    PubMed

    Parekh, T; Saxena, B; Reibman, J; Cronstein, B N; Gold, L I

    1994-03-01

    TGF-beta isoforms regulate numerous cellular functions including cell growth and differentiation, the cellular synthesis and secretion of extracellular matrix proteins, such as fibronectin (Fn), and the immune response. We have previously shown that TGF-beta 1 is the most potent chemoattractant described for human peripheral blood neutrophils (PMNs), suggesting that TGF-beta s may play a role in the recruitment of PMNs during the initial phase of the inflammatory response. In our current studies, we demonstrate that the maximal chemotactic response was attained near 40 fM for all mammalian TGF-beta isoforms. However, there was a statistically significant difference in migratory distance of the PMNs: TGF-beta 2 (556 microM) > TGF-beta 3 (463 microM) > TGF-beta 1 (380 microM) (beta 2: beta 3, p < or = 0.010; beta 3: beta 1, p < or = 0.04; beta 2: beta 1, p < or = 0.0012). A mAb to the cell binding domain (CBD) of Fn inhibited the chemotactic response to TGF-beta 1 and TGF-beta 3 by 63% and to TGF-beta 2 by 70%, whereas the response to FMLP, a classic chemoattractant, was only inhibited by 18%. In contrast, a mAb to a C-terminal epitope of Fn did not retard migration (< 1.5%). The Arg-gly-Asp-ser tetrapeptide inhibited chemotaxis by approximately the same extent as the anti-CBD (52 to 83%). Furthermore, a mAb against the VLA-5 integrin (VLA-5; Fn receptor) also inhibited TGF-beta-induced chemotaxis. These results indicate that chemotaxis of PMNs in response to TGF-beta isoforms is mediated by the interaction of the Arg-gly-Asp-ser sequence in the CBD of Fn with an integrin on the PMN cell surface, primarily the VLA-5 integrin. TGF-beta isoforms also elicited the release of cellular Fn from PMNs; we observed a 2.3-fold increase in Fn (389 to 401 ng/ml) in the supernatants of TGF-beta-stimulated PMNs compared with unstimulated cells (173.6 ng/ml). The concentration of TGF-beta required to cause maximal release of Fn from PMNs (4000 fM) is a concentration at which TGF-beta

  18. Activation of the canonical beta-catenin pathway by histamine.

    PubMed

    Diks, Sander H; Hardwick, James C; Diab, Remco M; van Santen, Marije M; Versteeg, Henri H; van Deventer, Sander J H; Richel, Dick J; Peppelenbosch, Maikel P

    2003-12-26

    Histamine signaling is a principal regulator in a variety of pathophysiological processes including inflammation, gastric acid secretion, neurotransmission, and tumor growth. We report that histamine stimulation causes transactivation of a T cell factor/beta-catenin-responsive construct in HeLa cells and in the SW-480 colon cell line, whereas histamine did not effect transactivation of a construct containing the mutated response construct FOP. On the protein level, histamine treatment increases phosphorylation of glycogen synthase kinase 3-beta in HeLa cells, murine macrophages, and DLD-1, HT-29, and SW-480 colon cell lines. Furthermore, histamine also decreases the phosphorylated beta-catenin content in HeLa cells and murine macrophages. Finally, pharmacological inhibitors of the histamine H1 receptor counteracted histamine-induced T cell factor/beta-catenin-responsive construct transactivation and the dephosphorylation of beta-catenin in HeLa cells and in macrophages. We conclude that the canonical beta-catenin pathway acts downstream of the histamine receptor H1 in a variety of cell types. The observation that inflammatory molecules, like histamine, activate the beta-catenin pathway may provide a molecular explanation for a possible link between inflammation and cancer.

  19. Core-binding factor beta interacts with Runx2 and is required for skeletal development.

    PubMed

    Yoshida, Carolina A; Furuichi, Tatsuya; Fujita, Takashi; Fukuyama, Ryo; Kanatani, Naoko; Kobayashi, Shinji; Satake, Masanobu; Takada, Kenji; Komori, Toshihisa

    2002-12-01

    Core-binding factor beta (CBFbeta, also called polyomavirus enhancer binding protein 2beta (PEBP2B)) is associated with an inversion of chromosome 16 and is associated with acute myeloid leukemia in humans. CBFbeta forms a heterodimer with RUNX1 (runt-related transcription factor 1), which has a DNA binding domain homologous to the pair-rule protein runt in Drosophila melanogaster. Both RUNX1 and CBFbeta are essential for hematopoiesis. Haploinsufficiency of another runt-related protein, RUNX2 (also called CBFA1), causes cleidocranial dysplasia in humans and is essential in skeletal development by regulating osteoblast differentiation and chondrocyte maturation. Mice deficient in Cbfb (Cbfb(-/-)) die at midgestation, so the function of Cbfbeta in skeletal development has yet to be ascertained. To investigate this issue, we rescued hematopoiesis of Cbfb(-/-) mice by introducing Cbfb using the Gata1 promoter. The rescued Cbfb(-/-) mice recapitulated fetal liver hematopoiesis in erythroid and megakaryocytic lineages and survived until birth, but showed severely delayed bone formation. Although mesenchymal cells differentiated into immature osteoblasts, intramembranous bones were poorly formed. The maturation of chondrocytes into hypertrophic cells was markedly delayed, and no endochondral bones were formed. Electrophoretic mobility shift assays and reporter assays showed that Cbfbeta was necessary for the efficient DNA binding of Runx2 and for Runx2-dependent transcriptional activation. These findings indicate that Cbfbeta is required for the function of Runx2 in skeletal development.

  20. Beta-structures in fibrous proteins.

    PubMed

    Kajava, Andrey V; Squire, John M; Parry, David A D

    2006-01-01

    The beta-form of protein folding, one of the earliest protein structures to be defined, was originally observed in studies of silks. It was then seen in early studies of synthetic polypeptides and, of course, is now known to be present in a variety of guises as an essential component of globular protein structures. However, in the last decade or so it has become clear that the beta-conformation of chains is present not only in many of the amyloid structures associated with, for example, Alzheimer's Disease, but also in the prion structures associated with the spongiform encephalopathies. Furthermore, X-ray crystallography studies have revealed the high incidence of the beta-fibrous proteins among virulence factors of pathogenic bacteria and viruses. Here we describe the basic forms of the beta-fold, summarize the many different new forms of beta-structural fibrous arrangements that have been discovered, and review advances in structural studies of amyloid and prion fibrils. These and other issues are described in detail in later chapters.

  1. Phospholipase C-{delta}{sub 1} regulates interleukin-1{beta} and tumor necrosis factor-{alpha} mRNA expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Eric; Jakinovich, Paul; Bae, Aekyung

    Phospholipase C-{delta}{sub 1} (PLC{delta}{sub 1}) is a widely expressed highly active PLC isoform, modulated by Ca{sup 2+} that appears to operate downstream from receptor signaling and has been linked to regulation of cytokine production. Here we investigated whether PLC{delta}{sub 1} modulated expression of the pro-inflammatory cytokines interleukin-1{beta} (IL-1{beta}), tumor necrosis factor-{alpha} (TNF-{alpha}) and interleukin-6 (IL-6) in rat C6 glioma cells. Expression of PLC{delta}{sub 1} was specifically suppressed by small interfering RNA (siRNA) and the effects on cytokine mRNA expression, stimulated by the Toll-like receptor (TLR) agonist, lipopolysaccharide (LPS), were examined. Real-time polymerase chain reaction (RT-PCR) results showed that PLC{delta}{sub 1}more » knockdown enhanced expression IL-1{beta} and tumor necrosis factor-{alpha} (TNF-{alpha}) mRNA by at least 100 fold after 4 h of LPS stimulation compared to control siRNA treatment. PLC{delta}{sub 1} knock down caused persistently high Nf{kappa}b levels at 4 h of LPS stimulation compared to control siRNA-treated cells. PLC{delta}{sub 1} knockdown was also associated with elevated nuclear levels of c-Jun after 30 min of LPS stimulation, but did not affect LPS-stimulated p38 or p42/44 MAPK phosphorylation, normally associated with TLR activation of cytokine gene expression; rather, enhanced protein kinase C (PKC) phosphorylation of cellular proteins was observed in the absence of LPS stimulation. An inhibitor of PKC, bisindolylmaleimide II (BIM), reversed phosphorylation, prevented elevation of nuclear c-Jun levels, and inhibited LPS-induced increases of IL-1{beta} and TNF-{alpha} mRNA's induced by PLC{delta}{sub 1} knockdown. Our results show that loss of PLC{delta}{sub 1} enhances PKC/c-Jun signaling and up-modulates pro-inflammatory cytokine gene transcription in concert with the TLR-stimulated p38MAPK/Nf{kappa}b pathway. Our findings are consistent with the idea that PLC{delta}{sub 1} is

  2. [S632A3 promotes LPS-induced IFN-beta production through inhibiting the activation of GSK-3beta].

    PubMed

    Zhang, Na; Yang, Xin; Xu, Rong; Wang, Zhen; Song, Dan-Qing; Li, Dian-Dong; Deng, Hong-Bin

    2013-07-01

    LPS stimulation of macrophages production of IFN-beta plays a key role in innate immunity defending the microbial invasion. In this study, the effect of S632A3 promoting LPS-induced IFN-beta production and the underlying mechanism were investigated, mRNA level was measured by real-time PCR, cytokine production was determined by ELISA, GSK-3beta activity was investigated by kinase assay, protein phosphorylation and expression were evaluated by Western blotting. The results revealed that S632A3 significantly augmented IFN-beta production by LPS-stimulated macrophages. S632A3 inhibition of the activation of GSK-3beta, reduced the threonine 239 phosphorylation of transcription factor c-Jun but increased the total level of c-Jun in LPS-stimulated macrophages. Moreover, small interfering RNA-mediated knockdown of c-Jun level abrogated the ability of S632A3 to augment IFN-beta. The study thus demonstrates S632A3 being a new anti-inflammation lead compound and provides a molecular mechanism by which S632A3 promoted LPS-induced IFN-beta production in macrophages through inhibiting the activation of GSK-3beta.

  3. Analysis of betaS and betaA genes in a Mexican population with African roots.

    PubMed

    Magaña, María Teresa; Ongay, Zoyla; Tagle, Juan; Bentura, Gilberto; Cobián, José G; Perea, F Javier; Casas-Castañeda, Maricela; Sánchez-López, Yoaly J; Ibarra, Bertha

    2002-01-01

    To investigate the origin of the beta(A) and beta(S) genes in a Mexican population with African roots and a high frequency of hemoglobin S, we analyzed 467 individuals (288 unrelated) from different towns in the states of Guerrero and Oaxaca in the Costa Chica region. The frequency of the sickle-cell trait was 12.8%, which may represent a public health problem. The frequencies of the beta-haplotypes were determined from 350 nonrelated chromosomes (313 beta(A) and 37 beta(S)). We observed 15 different beta(A) haplotypes, the most common of which were haplotypes 1 (48.9%), 2 (13.4%), and 3 (13.4%). The calculation of pairwise distributions and Nei's genetic distance analysis using 32 worldwide populations showed that the beta(A) genes are more closely related to those of Mexican Mestizos and North Africans. Bantu and Benin haplotypes and haplotype 9 were related to the beta(S) genes, with frequencies of 78.8, 18.2, and 3.0%, respectively. Comparison of these haplotypes with 17 other populations revealed a high similitude with the population of the Central African Republic. These data suggest distinct origins for the beta(A) and beta(S) genes in Mexican individuals from the Costa Chica region.

  4. Interaction with beta-arrestin determines the difference in internalization behavor between beta1- and beta2-adrenergic receptors.

    PubMed

    Shiina, T; Kawasaki, A; Nagao, T; Kurose, H

    2000-09-15

    The beta(1)-adrenergic receptor (beta(1)AR) shows the resistance to agonist-induced internalization. As beta-arrestin is important for internalization, we examine the interaction of beta-arrestin with beta(1)AR with three different methods: intracellular trafficking of beta-arrestin, binding of in vitro translated beta-arrestin to intracellular domains of beta(1)- and beta(2)ARs, and inhibition of betaAR-stimulated adenylyl cyclase activities by beta-arrestin. The green fluorescent protein-tagged beta-arrestin 2 translocates to and stays at the plasma membrane by beta(2)AR stimulation. Although green fluorescent protein-tagged beta-arrestin 2 also translocates to the plasma membrane, it returns to the cytoplasm 10-30 min after beta(1)AR stimulation. The binding of in vitro translated beta-arrestin 1 and beta-arrestin 2 to the third intracellular loop and the carboxyl tail of beta(1)AR is lower than that of beta(2)AR. The fusion protein of beta-arrestin 1 with glutathione S-transferase inhibits the beta(1)- and beta(2)AR-stimulated adenylyl cyclase activities, although inhibition of the beta(1)AR-stimulated activity requires a higher concentration of the fusion protein than that of the beta(2)AR-stimulated activity. These results suggest that weak interaction of beta(1)AR with beta-arrestins explains the resistance to agonist-induced internalization. This is further supported by the finding that beta-arrestin can induce internalization of beta(1)AR when beta-arrestin 1 does not dissociate from beta(1)AR by fusing to the carboxyl tail of beta(1)AR.

  5. Revised phylogeny of the Cellulose Synthase gene superfamily: insights into cell wall evolution.

    PubMed

    Little, Alan; Schwerdt, Julian G; Shirley, Neil J; Khor, Shi F; Neumann, Kylie; O'Donovan, Lisa A; Lahnstein, Jelle; Collins, Helen M; Henderson, Marilyn; Fincher, Geoffrey B; Burton, Rachel A

    2018-05-20

    Cell walls are crucial for the integrity and function of all land plants, and are of central importance in human health, livestock production, and as a source of renewable bioenergy. Many enzymes that mediate the biosynthesis of cell wall polysaccharides are encoded by members of the large cellulose synthase (CesA) gene superfamily. Here, we analyzed 29 sequenced genomes and 17 transcriptomes to revise the phylogeny of the CesA gene superfamily in angiosperms. Our results identify ancestral gene clusters that predate the monocot-eudicot divergence and reveal several novel evolutionary observations, including the expansion of the Poaceae-specific cellulose synthase-like CslF family to the graminids and restiids and the characterisation of a previously unreported eudicot lineage, CslM, that forms a reciprocally monophyletic eudicot-monocot grouping with the CslJ clade. The CslM lineage is widely distributed in eudicots, and the CslJ clade, which was previously thought to be restricted to the Poales, is widely distributed in monocots. Our analyses show that some members of the CslJ lineage, but not the newly identified CslM genes, are capable of directing (1,3;1,4)-β-glucan biosynthesis, which, contrary to current dogma, is not restricted to Poaceae. {copyright, serif} 2018 American Society of Plant Biologists. All rights reserved.

  6. The pathogen-related yeast protein Pry1, a member of the CAP protein superfamily, is a fatty acid-binding protein

    PubMed Central

    Darwiche, Rabih; Mène-Saffrané, Laurent; Gfeller, David; Asojo, Oluwatoyin A.; Schneiter, Roger

    2017-01-01

    Members of the CAP superfamily (cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins), also known as SCP superfamily (sperm-coating proteins), have been implicated in many physiological processes, including immune defenses, venom toxicity, and sperm maturation. Their mode of action, however, remains poorly understood. Three proteins of the CAP superfamily, Pry1, -2, and -3 (pathogen related in yeast), are encoded in the Saccharomyces cerevisiae genome. We have shown previously that Pry1 binds cholesterol in vitro and that Pry function is required for sterol secretion in yeast cells, indicating that members of this superfamily may generally bind sterols or related small hydrophobic compounds. On the other hand, tablysin-15, a CAP protein from the horsefly Tabanus yao, has been shown to bind leukotrienes and free fatty acids in vitro. Therefore, here we assessed whether the yeast Pry1 protein binds fatty acids. Computational modeling and site-directed mutagenesis indicated that the mode of fatty acid binding is conserved between tablysin-15 and Pry1. Pry1 bound fatty acids with micromolar affinity in vitro, and its function was essential for fatty acid export in cells lacking the acyl-CoA synthetases Faa1 and Faa4. Fatty acid binding of Pry1 is independent of its capacity to bind sterols, and the two sterol- and fatty acid-binding sites are nonoverlapping. These results indicate that some CAP family members, such as Pry1, can bind different lipids, particularly sterols and fatty acids, at distinct binding sites, suggesting that the CAP domain may serve as a stable, secreted protein domain that can accommodate multiple ligand-binding sites. PMID:28365570

  7. Evolution of Enzymatic Activities in the Enolase Superfamily: Stereochemically Distinct Mechanisms in Two Families of cis,cis-Muconate Lactonizing Enzymes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakai, A.; Fedorov, A; Fedorov, E

    2009-01-01

    The mechanistically diverse enolase superfamily is a paradigm for elucidating Nature's strategies for divergent evolution of enzyme function. Each of the different reactions catalyzed by members of the superfamily is initiated by abstraction of the a-proton of a carboxylate substrate that is coordinated to an essential Mg2+. The muconate lactonizing enzyme (MLE) from Pseudomonas putida, a member of a family that catalyzes the syn-cycloisomerization of cis,cis-muconate to (4S)-muconolactone in the e-ketoadipate pathway, has provided critical insights into the structural bases for evolution of function within the superfamily. A second, divergent family of homologous MLEs that catalyzes anti-cycloisomerization has been identified.more » Structures of members of both families liganded with the common (4S)-muconolactone product (syn, Pseudomonas fluorescens, gi 70731221; anti, Mycobacterium smegmatis, gi 118470554) document that the conserved Lys at the end of the second e-strand in the (e/a)7e-barrel domain serves as the acid catalyst in both reactions. The different stereochemical courses (syn and anti) result from different structural strategies for determining substrate specificity: although the distal carboxylate group of the cis,cis-muconate substrate attacks the same face of the proximal double bond, opposite faces of the resulting enolate anion intermediate are presented to the conserved Lys acid catalyst. The discovery of two families of homologous, but stereochemically distinct, MLEs likely provides an example of 'pseudoconvergent' evolution of the same function from different homologous progenitors within the enolase superfamily, in which different spatial arrangements of active site functional groups and substrate specificity determinants support catalysis of the same reaction.« less

  8. Growth differentiation factor 3 is induced by bone morphogenetic protein 6 (BMP-6) and BMP-7 and increases luteinizing hormone receptor messenger RNA expression in human granulosa cells.

    PubMed

    Shi, Jia; Yoshino, Osamu; Osuga, Yutaka; Akiyama, Ikumi; Harada, Miyuki; Koga, Kaori; Fujimoto, Akihisa; Yano, Tetsu; Taketani, Yuji

    2012-04-01

    To examine the relevance of growth differentiation factor 3 (GDF-3) and bone morphogenetic protein (BMP) cytokines in human ovary. Molecular studies. Research laboratory. Eight women undergoing salpingo-oophorectomy and 30 women undergoing ovarian stimulation for in vitro fertilization. Localizing GDF-3 protein in human ovaries; granulosa cells (GC) cultured with GDF-3, BMP-6, or BMP-7 followed by RNA extraction. The localization of GDF-3 protein in normal human ovaries via immunohistochemical analysis, GDF-3 messenger RNA (mRNA) expression evaluation via quantitative real-time reverse transcription and polymerase chain reaction (RT-PCR), and evaluation of the effect of GDF-3 on leuteinizing hormone (LH) receptor mRNA expression via quantitative real-time RT-PCR. In the ovary, BMP cytokines, of the transforming growth factor beta (TGF-β) superfamily, are known as a luteinization inhibitor by suppressing LH receptor expression in GC. Growth differentiation factor 3, a TGF-β superfamily cytokine, is recognized as an inhibitor of BMP cytokines in other cells. Immunohistochemical analysis showed that GDF-3 was strongly detected in the GC of antral follicles. An in vitro assay revealed that BMP-6 or BMP-7 induced GDF-3 mRNA in GC. Also, GDF-3 increased LH receptor mRNA expression and inhibited the effect of BMP-7, which suppressed the LH receptor mRNA expression in GC. GDF-3, induced with BMP-6 and BMP-7, might play a role in folliculogenesis by inhibiting the effect of BMP cytokines. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  9. Opposite effects of dihydrosphingosine 1-phosphate and sphingosine 1-phosphate on transforming growth factor-beta/Smad signaling are mediated through the PTEN/PPM1A-dependent pathway.

    PubMed

    Bu, Shizhong; Kapanadze, Bagrat; Hsu, Tien; Trojanowska, Maria

    2008-07-11

    Transforming growth factor-beta (TGF-beta) is an important regulator of physiological connective tissue biosynthesis and plays a central role in pathological tissue fibrosis. Previous studies have established that a biologically active lipid mediator, sphingosine 1-phosphate (S1P), mimics some of the profibrotic functions of TGF-beta through cross-activation of Smad signaling. Here we report that another product of sphingosine kinase, dihydrosphingosine 1-phosphate (dhS1P), has an opposite role in the regulation of TGF-beta signaling. In contrast to S1P, dhS1P inhibits TGF-beta-induced Smad2/3 phosphorylation and up-regulation of collagen synthesis. The effects of dhS1P require a lipid phosphatase, PTEN, a key modulator of cell growth and survival. dhS1P stimulates phosphorylation of the C-terminal domain of PTEN and its subsequent translocation into the nucleus. We demonstrate a novel function of nuclear PTEN as a co-factor of the Smad2/3 phosphatase, PPM1A. Complex formation of PTEN with PPM1A does not require the lipid phosphatase activity but depends on phosphorylation of the serine/threonine residues located in the C-terminal domain of PTEN. Upon complex formation with PTEN, PPM1A is protected from degradation induced by the TGF-beta signaling. Consequently, overexpression of PTEN abrogates TGF-beta-induced Smad2/3 phosphorylation. This study establishes a novel role for nuclear PTEN in the stabilization of PPM1A. PTEN-mediated cross-talk between the sphingolipid and TGF-beta signaling pathways may play an important role in physiological and pathological TGF-beta signaling.

  10. Aldehyde dehydrogenase (ALDH) superfamily in plants: gene nomenclature and comparative genomics.

    PubMed

    Brocker, Chad; Vasiliou, Melpomene; Carpenter, Sarah; Carpenter, Christopher; Zhang, Yucheng; Wang, Xiping; Kotchoni, Simeon O; Wood, Andrew J; Kirch, Hans-Hubert; Kopečný, David; Nebert, Daniel W; Vasiliou, Vasilis

    2013-01-01

    In recent years, there has been a significant increase in the number of completely sequenced plant genomes. The comparison of fully sequenced genomes allows for identification of new gene family members, as well as comprehensive analysis of gene family evolution. The aldehyde dehydrogenase (ALDH) gene superfamily comprises a group of enzymes involved in the NAD(+)- or NADP(+)-dependent conversion of various aldehydes to their corresponding carboxylic acids. ALDH enzymes are involved in processing many aldehydes that serve as biogenic intermediates in a wide range of metabolic pathways. In addition, many of these enzymes function as 'aldehyde scavengers' by removing reactive aldehydes generated during the oxidative degradation of lipid membranes, also known as lipid peroxidation. Plants and animals share many ALDH families, and many genes are highly conserved between these two evolutionarily distinct groups. Conversely, both plants and animals also contain unique ALDH genes and families. Herein we carried out genome-wide identification of ALDH genes in a number of plant species-including Arabidopsis thaliana (thale crest), Chlamydomonas reinhardtii (unicellular algae), Oryza sativa (rice), Physcomitrella patens (moss), Vitis vinifera (grapevine) and Zea mays (maize). These data were then combined with previous analysis of Populus trichocarpa (poplar tree), Selaginella moellindorffii (gemmiferous spikemoss), Sorghum bicolor (sorghum) and Volvox carteri (colonial algae) for a comprehensive evolutionary comparison of the plant ALDH superfamily. As a result, newly identified genes can be more easily analyzed and gene names can be assigned according to current nomenclature guidelines; our goal is to clarify previously confusing and conflicting names and classifications that might confound results and prevent accurate comparisons between studies.

  11. Cloning of a new member of the insulin gene superfamily (INSL4) expressed in human placenta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chassin, D.; Laurent, A.; Janneau, J.L.

    1995-09-20

    A new member of the insulin gene superfamily was identified by screening a subtracted cDNA library of first-trimester human placenta and, hence, was tentatively named early placenta insulin-like peptide (EPIL). In this paper, we report the cloning and sequencing of the EPIL cDNA and the EPIL gene (INSL4). Comparison of the deduced amino acid sequence of the early placenta insulin-like peptide revealed significant overall and structural homologies with members of the insulin-like hormone superfamily. Moreover, the organization of the early placenta insulin-like gene, which is composed of two exons and one intron, is similiar to that of insulin and relaxin.more » By in situ hybridization, the INSL4 gene was assigned to band p24 of the short arm of chromosome 9. RT-PCR analysis of EPIL tissue distribution revealed that its transcripts are expressed in the placenta and uterus. 22 refs., 3 figs.« less

  12. GFP-like proteins as ubiquitous metazoan superfamily: evolution of functional features and structural complexity.

    PubMed

    Shagin, Dmitry A; Barsova, Ekaterina V; Yanushevich, Yurii G; Fradkov, Arkady F; Lukyanov, Konstantin A; Labas, Yulii A; Semenova, Tatiana N; Ugalde, Juan A; Meyers, Ann; Nunez, Jose M; Widder, Edith A; Lukyanov, Sergey A; Matz, Mikhail V

    2004-05-01

    Homologs of the green fluorescent protein (GFP), including the recently described GFP-like domains of certain extracellular matrix proteins in Bilaterian organisms, are remarkably similar at the protein structure level, yet they often perform totally unrelated functions, thereby warranting recognition as a superfamily. Here we describe diverse GFP-like proteins from previously undersampled and completely new sources, including hydromedusae and planktonic Copepoda. In hydromedusae, yellow and nonfluorescent purple proteins were found in addition to greens. Notably, the new yellow protein seems to follow exactly the same structural solution to achieving the yellow color of fluorescence as YFP, an engineered yellow-emitting mutant variant of GFP. The addition of these new sequences made it possible to resolve deep-level phylogenetic relationships within the superfamily. Fluorescence (most likely green) must have already existed in the common ancestor of Cnidaria and Bilateria, and therefore GFP-like proteins may be responsible for fluorescence and/or coloration in virtually any animal. At least 15 color diversification events can be inferred following the maximum parsimony principle in Cnidaria. Origination of red fluorescence and nonfluorescent purple-blue colors on several independent occasions provides a remarkable example of convergent evolution of complex features at the molecular level.

  13. Progressive loss of sensitivity to growth control by retinoic acid and transforming growth factor-beta at late stages of human papillomavirus type 16-initiated transformation of human keratinocytes.

    PubMed

    Creek, K E; Geslani, G; Batova, A; Pirisi, L

    1995-01-01

    Retinoids (vitamin A and its natural and synthetic derivatives) have shown potential as chemopreventive agents, and diets poor in vitamin A and/or its precursor beta-carotene have been linked to an increased risk of cancer at several sites including the cervix. Human papillomavirus (HPV) plays an important role in the etiology of cervical cancer. We have developed an in vitro model of cancer progression using human keratinocytes (HKc) immortalized by HPV16 DNA (HKc/HPV16). Although immortal, early passage HKc/HPV16, like normal HKc, require epidermal growth factor (EGF) and bovine pituitary extract (BPE) for proliferation and undergo terminal differentiation in response to serum and calcium. However, following prolonged culture, growth factor independent HKc/HPV16 lines that no longer require EGF and BPE can be selected (HKc/GFI). Further selection of HKc/GFI produces lines that are resistant to serum- and calcium- induced terminal differentiation (HKc/DR). HKc/DR, but not early passage HKc/HPV16, are susceptible to malignant conversion following transfection with viral Harvey ras or Herpes simplex virus type II DNA. We have investigated the sensitivity of low to high passage HKc/HPV16 and HKc/GFI to growth control by all-trans-retinoic acid (RA, an active metabolite of vitamin A). Early passage HKc/HPV16 are very sensitive to growth inhibition by RA, and in these cells RA decreases the expression of the HPV16 oncogenes E6 and E7. However, as the cells progress in culture they lose their sensitivity to RA. Growth inhibition by RA may be mediated through the cytokine transforming growth factor-beta (TGF-beta), a potent inhibitor of epithelial cell proliferation. RA treatment of HKc/HPV16 and HKc/GFI results in a dose-and time-dependent induction (maximal of 3-fold) in secreted levels of TGF-beta. Also, Northern blot analysis of mRNA isolated from HKc/HPV16 demonstrated that RA treatment induced TGF-beta 1 and TGF-beta 2 expression about 3- and 50-fold, respectively

  14. Building a Phylogenetic Tree of the Human and Ape Superfamily Using DNA-DNA Hybridization Data

    ERIC Educational Resources Information Center

    Maier, Caroline Alexander

    2004-01-01

    The study describes the process of DNA-DNA hybridization and the history of its use by Sibley and Alquist in simple, straightforward, and interesting language that students easily understand to create their own phylogenetic tree of the hominoid superfamily. They calibrate the DNA clock and use it to estimate the divergence dates of the various…

  15. In vitro effects of beta-lactams combined with beta-lactamase inhibitors against methicillin-resistant Staphylococcus aureus.

    PubMed Central

    Kobayashi, S; Arai, S; Hayashi, S; Sakaguchi, T

    1989-01-01

    The effects of combinations of beta-lactams with two beta-lactamase inhibitors, sulbactam and clavulanic acid, were determined in vitro against 22 clinical isolates of methicillin-resistant Staphylococcus aureus. Combinations of cefpirome, cefotaxime, and cefazolin with sulbactam (10 micrograms/ml) showed synergistic effects against more than 70% of the strains. Combinations of methicillin and penicillin G with sulbactam also showed synergistic effects against 50 and 68% of the strains, respectively, while cefotiam, moxalactam, flomoxef, and cefmetazole in combination with sulbactam showed such effects against only 40% or fewer. Clavulanic acid was synergistic only when combined with penicillin G, the effect probably being due to the beta-lactamase inhibition by the inhibitor. Sulbactam did not improve the antimicrobial activities of the beta-lactams against methicillin-susceptible S. aureus strains. At 42 degrees C the MICs of cefotaxime, methicillin, and flomoxef alone were markedly decreased from the values at 35 degrees C, and no synergy between these beta-lactams and sulbactam appeared. The resistance to penicillin G was not inhibited by incubation at 42 degrees C, and combinations of penicillin G with sulbactam and clavulanic acid showed synergy. The amounts of beta-lactamase produced were not related to the decreases in the MICs of the beta-lactams, except for penicillin G combined with sulbactam. Clavulanic acid showed slightly stronger beta-lactamase-inhibiting activity than sulbactam did. These results suggest that the synergy between sulbactam and the beta-lactams, except for penicillin G, may not be due to beta-lactamase inhibition but to suppression of the methicillin-resistant S. aureus-specific resistance based on other factors. PMID:2786369

  16. Polypeptides having beta-glucosidase activity, beta-xylosidase activity, or beta-glucosidase and beta-xylosidase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morant, Marc

    The present invention relates to isolated polypeptides having beta-glucosidase activity, beta-xylosidase activity, or beta-glucosidase and beta-xylosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  17. Inhibition of transforming growth factor-beta1-induced signaling and epithelial-to-mesenchymal transition by the Smad-binding peptide aptamer Trx-SARA.

    PubMed

    Zhao, Bryan M; Hoffmann, F Michael

    2006-09-01

    Overexpression of the inhibitory Smad, Smad7, is used frequently to implicate the Smad pathway in cellular responses to transforming growth factor beta (TGF-beta) signaling; however, Smad7 regulates several other proteins, including Cdc42, p38MAPK, and beta-catenin. We report an alternative approach for more specifically disrupting Smad-dependent signaling using a peptide aptamer, Trx-SARA, which comprises a rigid scaffold, the Escherichia coli thioredoxin A protein (Trx), displaying a constrained 56-amino acid Smad-binding motif from the Smad anchor for receptor activation (SARA) protein. Trx-SARA bound specifically to Smad2 and Smad3 and inhibited both TGF-beta-induced reporter gene expression and epithelial-to-mesenchymal transition in NMuMG murine mammary epithelial cells. In contrast to Smad7, Trx-SARA had no effect on the Smad2 or 3 phosphorylation levels induced by TGF-beta1. Trx-SARA was primarily localized to the nucleus and perturbed the normal cytoplasmic localization of Smad2 and 3 to a nuclear localization in the absence of TGF-beta1, consistent with reduced Smad nuclear export. The key mode of action of Trx-SARA was to reduce the level of Smad2 and Smad3 in complex with Smad4 after TGF-beta1 stimulation, a mechanism of action consistent with the preferential binding of SARA to monomeric Smad protein and Trx-SARA-mediated disruption of active Smad complexes.

  18. Competition between Ski and CREB-binding protein for binding to Smad proteins in transforming growth factor-beta signaling.

    PubMed

    Chen, Weijun; Lam, Suvana S; Srinath, Hema; Schiffer, Celia A; Royer, William E; Lin, Kai

    2007-04-13

    The family of Smad proteins mediates transforming growth factor-beta (TGF-beta) signaling in cell growth and differentiation. Smads repress or activate TGF-beta signaling by interacting with corepressors (e.g. Ski) or coactivators (e.g. CREB-binding protein (CBP)), respectively. Specifically, Ski has been shown to interfere with the interaction between Smad3 and CBP. However, it is unclear whether Ski competes with CBP for binding to Smads and whether they can interact with Smad3 at the same binding surface on Smad3. We investigated the interactions among purified constructs of Smad, Ski, and CBP in vitro by size-exclusion chromatography, isothermal titration calorimetry, and mutational studies. Here, we show that Ski-(16-192) interacted directly with a homotrimer of receptor-regulated Smad protein (R-Smad), e.g. Smad2 or Smad3, to form a hexamer; Ski-(16-192) interacted with an R-Smad.Smad4 heterotrimer to form a pentamer. CBP-(1941-1992) was also found to interact directly with an R-Smad homotrimer to form a hexamer and with an R-Smad.Smad4 heterotrimer to form a pentamer. Moreover, these domains of Ski and CBP competed with each other for binding to Smad3. Our mutational studies revealed that domains of Ski and CBP interacted with Smad3 at a portion of the binding surface of the Smad anchor for receptor activation. Our results suggest that Ski negatively regulates TGF-beta signaling by replacing CBP in R-Smad complexes. Our working model suggests that Smad protein activity is delicately balanced by Ski and CBP in the TGF-beta pathway.

  19. Crystal Structure of Homoserine Transacetylase from Haemophilus Influenzae Reveals a New Family of alpha/beta-Hydrolases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mirza,I.; Nazi, I.; Korczynska, M.

    2005-01-01

    Homoserine transacetylase catalyzes one of the required steps in the biosynthesis of methionine in fungi and several bacteria. We have determined the crystal structure of homoserine transacetylase from Haemophilus influenzae to a resolution of 1.65 A. The structure identifies this enzyme to be a member of the alpha/beta-hydrolase structural superfamily. The active site of the enzyme is located near the end of a deep tunnel formed by the juxtaposition of two domains and incorporates a catalytic triad involving Ser143, His337, and Asp304. A structural basis is given for the observed double displacement kinetic mechanism of homoserine transacetylase. Furthermore, the propertiesmore » of the tunnel provide a rationale for how homoserine transacetylase catalyzes a transferase reaction vs. hydrolysis, despite extensive similarity in active site architecture to hydrolytic enzymes.« less

  20. Norrin mediates neuroprotective effects on retinal ganglion cells via activation of the Wnt/beta-catenin signaling pathway and the induction of neuroprotective growth factors in Muller cells.

    PubMed

    Seitz, Roswitha; Hackl, Simon; Seibuchner, Thomas; Tamm, Ernst R; Ohlmann, Andreas

    2010-04-28

    Norrin is a secreted protein that binds to frizzled 4 and controls development of capillaries in retina and inner ear. We provide evidence that Norrin has distinct neuroprotective properties that are independent from its effects on vascular development. The function of Norrin was investigated in a mouse model of excitotoxic retinal ganglion cell (RGC) damage after intravitreal injection of NMDA, and in cultured Müller glia or immortalized RGC-5 cells. Intravitreal injection of Norrin significantly increased the number of surviving RGC axons in the optic nerve and decreased apoptotic death of retinal neurons following NMDA-mediated damage. This effect could be blocked by adding dickkopf (DKK)-1, an inhibitor of the Wnt/beta-catenin signaling pathway. Treatment of eyes with combined Norrin/NMDA activated Wnt/beta-catenin signaling and increased the retinal expression of leukemia inhibitory factor and endothelin-2, as well as that of neurotrophic growth factors such as fibroblast growth factor-2, brain-derived neurotrophic factor, lens epithelium-derived growth factor, and ciliary neurotrophic factor. A similar activation of Wnt/beta-catenin signaling and an increased expression of neurotrophic factors was observed in cultured Müller cells after treatment with Norrin, effects that again could be blocked by adding DKK-1. In addition, conditioned cell culture medium of Norrin-treated Müller cells increased survival of differentiated RGC-5 cells. We conclude that Norrin has pronounced neuroprotective properties on retinal neurons with the distinct potential to decrease the damaging effects of NMDA-induced RGC loss. The effects of Norrin involve activation of Wnt/beta-catenin signaling and subsequent induction of neurotrophic growth factors in Müller cells.

  1. Beta Factors for Collinear Asymmetrical Cracks Emanating from an Offset Circular Hole in a Rectangular Plate

    DTIC Science & Technology

    2016-05-01

    Lorimer Street Fishermans Bend, Victoria 3207, Australia Telephone: 1300 333 362 © Commonwealth of Australia 2016 AR-016-732 May 2016...multiple through cracks in plates with and without holes (Final Report for 25 August 1997 – 31 July 2002). AFRL-VA-WP-TR-2004-3112, October 2004. 11. J...remote tension stress. UNCLASSIFIED DST-Group-RR-0437 25 UNCLASSIFIED Figure 15: Beta factors FcR for the right-hand crack of two collinear

  2. beta-catenin mediates insulin-like growth factor-I actions to promote cyclin D1 mRNA expression, cell proliferation and survival in oligodendroglial cultures.

    PubMed

    Ye, Ping; Hu, Qichen; Liu, Hedi; Yan, Yun; D'ercole, A Joseph

    2010-07-01

    By promoting cell proliferation, survival and maturation insulin-like growth factor (IGF)-I is essential to the normal growth and development of the central nervous system. It is clear that IGF-I actions are primarily mediated by the type I IGF receptor (IGF1R), and that phosphoinositide 3 (PI3)-Akt kinases and MAP kinases signal many of IGF-I-IGF1R actions in neural cells, including oligodendrocyte lineage cells. The precise downstream targets of these signaling pathways, however, remain to be defined. We studied oligodendroglial cells to determine whether beta-catenin, a molecule that is a downstream target of glycogen synthase kinase-3beta (GSK3beta) and plays a key role in the Wnt canonical signaling pathway, mediates IGF-I actions. We found that IGF-I increases beta-catenin protein abundance within an hour after IGF-I-induced phosphorylation of Akt and GSK3beta. Inhibiting the PI3-Akt pathway suppressed IGF-I-induced increases in beta-catenin and cyclin D1 mRNA, while suppression of GSK3beta activity simulated IGF-I actions. Knocking-down beta-catenin mRNA by RNA interference suppressed IGF-I-stimulated increases in the abundance of cyclin D1 mRNA, cell proliferation, and cell survival. Our data suggest that beta-catenin is an important downstream molecule in the PI3-Akt-GSK3beta pathway, and as such it mediates IGF-I upregulation of cyclin D1 mRNA and promotion of cell proliferation and survival in oligodendroglial cells. Copyright 2010 Wiley-Liss, Inc.

  3. Cleavage of beta,beta-carotene to flavor compounds by fungi.

    PubMed

    Zorn, H; Langhoff, S; Scheibner, M; Berger, R G

    2003-09-01

    More than 50 filamentous fungi and yeasts, known for de novo synthesis or biotransformation of mono-, sesqui-, tri-, or tetraterpenes, were screened for their ability to cleave beta,beta-carotene to flavor compounds. Ten strains discolored a beta,beta-carotene-containing growth agar, indicating efficient degradation of beta,beta-carotene. Dihydroactinidiolide was formed as the sole conversion product of beta,beta-carotene in submerged cultures of Ganoderma applanatum, Hypomyces odoratus, Kuehneromyces mutabilis, and Trametes suaveolens. When mycelium-free culture supernatants from five species were applied for the conversions, nearly complete degradation of beta,beta-carotene was observed after 12 h. Carotenoid-derived volatile products were detected in the media of Ischnoderma benzoinum, Marasmius scorodonius, and Trametes versicolor. beta-Ionone proved to be the main metabolite in each case, whereas beta-cyclocitral, dihydroactinidiolide, and 2-hydroxy-2,6,6-trimethylcyclohexanone were formed in minor quantities. Using a photometric bleaching test, the beta,beta-carotene cleaving enzyme activities of M. scorodonius were partially characterized.

  4. Inhibition of liver fibrosis by solubilized coenzyme Q10: Role of Nrf2 activation in inhibiting transforming growth factor-beta1 expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Hoo-Kyun; Pokharel, Yuba Raj; Lim, Sung Chul

    2009-11-01

    Coenzyme Q10 (CoQ10), an endogenous antioxidant, is important in oxidative phosphorylation in mitochondria. It has anti-diabetic and anti-cardiovascular disease effects, but its ability to protect against liver fibrosis has not been studied. Here, we assessed the ability of solubilized CoQ10 to improve dimethylnitrosamine (DMN)-induced liver fibrogenesis in mice. DMN treatments for 3 weeks produced a marked liver fibrosis as assessed by histopathological examination and tissue 4-hydroxyproline content. Solubilized CoQ10 (10 and 30 mg/kg) significantly inhibited both the increases in fibrosis score and 4-hydroxyproline content induced by DMN. Reverse transcription-polymerase chain reaction and Western blot analyses revealed that solubilized CoQ10 inhibitedmore » increases in the transforming growth factor-beta1 (TGF-beta1) mRNA and alpha-smooth muscle actin (alpha-SMA) protein by DMN. Interestingly, hepatic glutamate-cysteine ligase (GCL) and glutathione S-transferase A2 (GSTA2) were up-regulated in mice treated with CoQ10. Solubilized CoQ10 also up-regulated antioxidant enzymes such as catalytic subunits of GCL and GSTA2 via activating NF-E2 related factor2 (Nrf2)/antioxidant response element (ARE) in H4IIE hepatoma cells. Moreover, CoQ10's inhibition of alpha-SMA and TGF-beta1 expressions disappeared in Nrf2-null MEF cells. In contrast, Nrf2 overexpression significantly decreased the basal expression levels of alpha-SMA and TGF-beta1 in Nrf2-null MEF cells. These results demonstrated that solubilized CoQ10 inhibited DMN-induced liver fibrosis through suppression of TGF-beta1 expression via Nrf2/ARE activation.« less

  5. Regulatory T cells protect mice against coxsackievirus-induced myocarditis through the transforming growth factor beta-coxsackie-adenovirus receptor pathway.

    PubMed

    Shi, Yu; Fukuoka, Masahiro; Li, Guohua; Liu, Youan; Chen, Manyin; Konviser, Michael; Chen, Xin; Opavsky, Mary Anne; Liu, Peter P

    2010-06-22

    Coxsackievirus B3 infection is an excellent model of human myocarditis and dilated cardiomyopathy. Cardiac injury is caused either by a direct cytopathic effect of the virus or through immune-mediated mechanisms. Regulatory T cells (Tregs) play an important role in the negative modulation of host immune responses and set the threshold of autoimmune activation. This study was designed to test the protective effects of Tregs and to determine the underlying mechanisms. Carboxyfluorescein diacetate succinimidyl ester-labeled Tregs or naïve CD4(+) T cells were injected intravenously once every 2 weeks 3 times into mice. The mice were then challenged with intraperitoneal coxsackievirus B3 immediately after the last cell transfer. Transfer of Tregs showed higher survival rates than transfer of CD4(+) T cells (P=0.0136) but not compared with the PBS injection group (P=0.0589). Interestingly, Tregs also significantly decreased virus titers and inflammatory scores in the heart. Transforming growth factor-beta and phosphorylated AKT were upregulated in Tregs-transferred mice and coxsackie-adenovirus receptor expression was decreased in the heart compared with control groups. Transforming growth factor-beta decreased coxsackie-adenovirus receptor expression and inhibited coxsackievirus B3 infection in HL-1 cells and neonatal cardiac myocytes. Splenocytes collected from Treg-, CD4(+) T-cell-, and PBS-treated mice proliferated equally when stimulated with heat-inactivated virus, whereas in the Treg group, the proliferation rate was reduced significantly when stimulated with noninfected heart tissue homogenate. Adoptive transfer of Tregs protected mice from coxsackievirus B3-induced myocarditis through the transforming growth factor beta-coxsackie-adenovirus receptor pathway and thus suppresses the immune response to cardiac tissue, maintaining the antiviral immune response.

  6. 17 beta-estradiol and tamoxifen upregulate estrogen receptor beta expression and control podocyte signaling pathways in a model of type 2 diabetes.

    PubMed

    Catanuto, Paola; Doublier, Sophie; Lupia, Enrico; Fornoni, Alessia; Berho, Mariana; Karl, Michael; Striker, Gary E; Xia, Xiaomei; Elliot, Sharon

    2009-06-01

    Diabetic nephropathy remains one of the most important causes of end-stage renal disease. This is particularly true for women from racial/ethnic minorities. Although administration of 17beta-estradiol to diabetic animals has been shown to reduce extracellular matrix deposition in glomeruli and mesangial cells, effects on podocytes are lacking. Given that podocyte injury has been implicated as a factor leading to the progression of proteinuria and diabetic nephropathy, we treated db/db mice, a model of type 2 diabetic glomerulosclerosis, with 17beta-estradiol or tamoxifen to determine whether these treatments reduce podocyte injury and decrease glomerulosclerosis. We found that albumin excretion, glomerular volume, and extracellular matrix accumulation were decreased in these mice compared to placebo treatment. Podocytes isolated from all treatment groups were immortalized and these cell lines were found to express the podocyte markers WT-1, nephrin, and the TRPC6 cation channel. Tamoxifen and 17beta-estradiol treatment decreased podocyte transforming growth factor-beta mRNA expression but increased that of the estrogen receptor subtype beta protein. 17beta-estradiol, but not tamoxifen, treatment decreased extracellular-regulated kinase phosphorylation. These data, combined with improved albumin excretion, reduced glomerular size, and decreased matrix accumulation, suggest that both 17beta-estradiol and tamoxifen may protect podocytes against injury and therefore ameliorate diabetic nephropathy.

  7. beta-Hexachlorocyclohexane (beta-HCH)

    Integrated Risk Information System (IRIS)

    beta - Hexachlorocyclohexane ( beta - HCH ) ; CASRN 319 - 85 - 7 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Asses

  8. TGF-{beta}-stimulated aberrant expression of class III {beta}-tubulin via the ERK signaling pathway in cultured retinal pigment epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Eun Jee; Chun, Ji Na; Jung, Sun-Ah

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer TGF-{beta} induces aberrant expression of {beta}III in RPE cells via the ERK pathway. Black-Right-Pointing-Pointer TGF-{beta} increases O-GlcNAc modification of {beta}III in RPE cells. Black-Right-Pointing-Pointer Mature RPE cells have the capacity to express a neuron-associated gene by TGF-{beta}. -- Abstract: The class III {beta}-tubulin isotype ({beta}{sub III}) is expressed exclusively by neurons within the normal human retina and is not present in normal retinal pigment epithelial (RPE) cells in situ or in the early phase of primary cultures. However, aberrant expression of class III {beta}-tubulin has been observed in passaged RPE cells and RPE cells with dedifferentiated morphology inmore » pathologic epiretinal membranes from idiopathic macular pucker, proliferative vitreoretinopathy (PVR) and proliferative diabetic retinopathy (PDR). Transforming growth factor-{beta} (TGF-{beta}) has been implicated in dedifferentiation of RPE cells and has a critical role in the development of proliferative vitreoretinal diseases. Here, we investigated the potential effects of TGF-{beta} on the aberrant expression of class III {beta}-tubulin and the intracellular signaling pathway mediating these changes. TGF-{beta}-induced aberrant expression and O-linked-{beta}-N-acetylglucosamine (O-GlcNac) modification of class III {beta}-tubulin in cultured RPE cells as determined using Western blotting, RT-PCR and immunocytochemistry. TGF-{beta} also stimulated phosphorylation of ERK. TGF-{beta}-induced aberrant expression of class III {beta}-tubulin was significantly reduced by pretreatment with U0126, an inhibitor of ERK phosphorylation. Our findings indicate that TGF-{beta} stimulated aberrant expression of class III {beta}-tubulin via activation of the ERK signaling pathway. These data demonstrate that mature RPE cells have the capacity to express a neuron-associated gene in response to TGF-{beta} stimulation and provide useful

  9. Disruption of transforming growth factor-beta signaling by curcumin induces gene expression of peroxisome proliferator-activated receptor-gamma in rat hepatic stellate cells.

    PubMed

    Zheng, Shizhong; Chen, Anping

    2007-01-01

    Activation of hepatic stellate cells (HSC), the major effectors of hepatic fibrogenesis, is coupled with sequential alterations in gene expression, including an increase in receptors for transforming growth factor-beta (TGF-beta) and a dramatic reduction in the peroxisome proliferator-activated receptor-gamma (PPAR-gamma). The relationship between them remains obscure. We previously demonstrated that curcumin induced gene expression of PPAR-gamma in activated HSC, leading to reducing cell proliferation, inducing apoptosis and suppressing expression of extracellular matrix genes. The underlying molecular mechanisms are largely unknown. We recently observed that stimulation of PPAR-gamma activation suppressed gene expression of TGF-beta receptors in activated HSC, leading to the interruption of TGF-beta signaling. This observation supported our assumption of an antagonistic relationship between PPAR-gamma activation and TGF-beta signaling in HSC. In this study, we further hypothesize that TGF-beta signaling might negatively regulate gene expression of PPAR-gamma in activated HSC. The present report demonstrates that exogenous TGF-beta1 inhibits gene expression of PPAR-gamma in activated HSC, which is eliminated by the pretreatment with curcumin likely by interrupting TGF-beta signaling. Transfection assays further indicate that blocking TGF-beta signaling by dominant negative type II TGF-beta receptor increases the promoter activity of PPAR-gamma gene. Promoter deletion assays, site-directed mutageneses, and gel shift assays localize two Smad binding elements (SBEs) in the PPAR-gamma gene promoter, acting as curcumin response elements and negatively regulating the promoter activity in passaged HSC. The Smad3/4 protein complex specifically binds to the SBEs. Overexpression of Smad4 dose dependently eliminates the inhibitory effects of curcumin on the PPAR-gamma gene promoter and TGF-beta signaling. Taken together, these results demonstrate that the interruption of TGF-beta

  10. Role of activator protein-1 on the effect of arginine-glycine-aspartic acid containing peptides on transforming growth factor-beta1 promoter activity.

    PubMed

    Ruiz-Torres, M P; Perez-Rivero, G; Diez-Marques, M L; Griera, M; Ortega, R; Rodriguez-Puyol, M; Rodríguez-Puyol, D

    2007-01-01

    While arginine-glycine-aspartic acid-based peptidomimetics have been employed for the treatment of cardiovascular disorders and cancer, their use in other contexts remains to be explored. Arginine-glycine-aspartic acid-serine induces Transforming growth factor-beta1 transcription in human mesangial cells, but the molecular mechanisms involved have not been studied extensively. We explored whether this effect could be due to Activator protein-1 activation and studied the potential pathways involved. Addition of arginine-glycine-aspartic acid-serine promoted Activator protein-1 binding to its cognate sequence within the Transforming growth factor-beta1 promoter as well as c-jun and c-fos protein abundance. Moreover, this effect was suppressed by curcumin, a c-Jun N terminal kinase inhibitor, and was absent when the Activator protein-1 cis-regulatory element was deleted. Activator protein-1 binding was dependent on the activity of integrin linked kinase, as transfection with a dominant negative mutant suppressed both Activator protein-1 binding and c-jun and c-fos protein increment. Integrin linked kinase was, in turn, dependent on Phosphoinositol-3 kinase activity. Arginine-glycine-aspartic acid-serine stimulated Phosphoinositol-3 kinase activity, and Transforming growth factor-beta1 promoter activation was abrogated by the use of Phosphoinositol-3 kinase specific inhibitors. In summary, we propose that arginine-glycine-aspartic acid-serine activates Integrin linked kinase via the Phosphoinositol-3 kinase pathway and this leads to activation of c-jun and c-fos and increased Activator protein-1 binding and Transforming growth factor-beta1 promoter activity. These data may contribute to understand the molecular mechanisms involved in the cellular actions of arginine-glycine-aspartic acid-related peptides and enhance their relevance as these products evolve into clinical therapeutic use.

  11. PKB/Akt modulates TGF-beta signalling through a direct interaction with Smad3.

    PubMed

    Remy, Ingrid; Montmarquette, Annie; Michnick, Stephen W

    2004-04-01

    Transforming growth factor beta (TGF-beta) has a major role in cell proliferation, differentiation and apoptosis in many cell types. Integration of the TGF-beta pathway with other signalling cascades that control the same cellular processes may modulate TGF-beta responses. Here we report the discovery of a new functional link between TGF-beta and growth factor signalling pathways, mediated by a physical interaction between the serine-threonine kinase PKB (protein kinase B)/Akt and the transcriptional activator Smad3. Formation of the complex is induced by insulin, but inhibited by TGF-beta stimulation, placing PKB-Smad3 at a point of convergence between these two pathways. PKB inhibits Smad3 by preventing its phosphorylation, binding to Smad4 and nuclear translocation. In contrast, Smad3 does not inhibit PKB. Inhibition of Smad3 by PKB occurs through a kinase-activity-independent mechanism, resulting in a decrease in Smad3-mediated transcription and protection of cells against TGF-beta-induced apoptosis. Consistently, knockdown of the endogenous PKB gene with small-interfering RNA (siRNA) has the opposite effect. Our results suggest a very simple mechanism for the integration of signals arising from growth-factor- and TGF-beta-mediated pathways.

  12. [Changes of interlukin-1beta and tumor necrosis factor-alpha levels in gingival crevicular fluid during orthodontic tooth movement].

    PubMed

    Tian, Yu-Lou; Xie, Jiang-Chun; Zhao, Zhen-Jin; Zhang, Yang

    2006-06-01

    To investigate the dynamic changes of interlukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha) in gingival crevicular fluid (GCF) during orthodontic tooth movement, and to discuss the biological significance. Fifteen patients were chosen as subjects. For each patient, upper and lower canines at one side having one treatment for distal movement by elastic chain served as the experimental teeth, whereas the contralateral ones were used as controls. The GCF were taken before activation and at 1, 24, 48, 72, 168 hours respectively after initiation of the experiment. The levels of IL-1beta and TNF-alpha in GCF were determined by radioimmunoassay. The levels of IL-1beta and TNF-alpha in experimental group began to increase at 24 hours and reached to its peak value at 72 hours after initiation of the experiment, but their levels returned to baseline at 168 hours. Both of them, however, remained at the baseline level in control group. The changes of the two cytokines level were found statistically significant at 48 and 72 hours (P<0.05) between experimental and control group. No statistically significant were observed before activation and at 1, 168 hours after application of orthodontic forces (P>0.05) between experimental and control group. The levels of IL-1beta and TNF-alpha in gingival crevicular fluid experience dynamic changes during the early phase of orthodontic treatment, indicate that they might play an important role in the process of alveolar regeneration and tooth movement.

  13. Polymorphisms of the IL-1beta and IL-1beta-inducible genes in ulcerative colitis.

    PubMed

    Nohara, Hiroaki; Saito, Yuki; Higaki, Singo; Okayama, Naoko; Hamanaka, Yuichiro; Okita, Kiwamu; Hinoda, Yuji

    2002-11-01

    Ulcerative colitis (UC) is a chronic disorder of undetermined etiology, but a genetic predisposition to UC is well recognized. Among cytokines induced in UC, interleukin 1 (IL-1) appears to have a central role because of its immunological upregulatory and proinflammatory activities. The aim of this study was to assess whether UC is associated with polymorphisms of the IL-1beta gene and three additional genes inducible with IL-1beta in Japanese subjects. A total of 96 patients with UC and 106 ethnically matched controls were genotyped at polymorphic sites in IL-1beta, matrix metalloproteinase 1 (MMP-1), matrix metalloproteinase 3 (MMP-3), and inducible nitric oxide synthase (iNOS) genes, using polymerase chain reaction (PCR)-based methods. There was no significant difference in genotype distributions of IL-1beta, MMP-1, MMP-3, and iNOS genes between controls and UC patients in a Japanese population. Also, no significant association of those polymorphisms with various clinical parameters of the patients was found. However, concerning association of age at onset with clinical factors in UC, the frequency of pancolitis was significantly higher in UC patients with age at onset being less than 30 years than in those more than 30 years of age (P = 0.049). No association of the IL-1beta and three IL-1beta-inducible gene polymorphisms with UC was observed in a Japanese population.

  14. Risk Factor Analysis of Ciprofloxacin-Resistant and Extended Spectrum Beta-Lactamases Pathogen-Induced Acute Bacterial Prostatitis in Korea.

    PubMed

    Lee, Young; Lee, Dong Gi; Lee, Sang Hyub; Yoo, Koo Han

    2016-11-01

    The objectives of this study were to investigate risk factors and the incidence of ciprofloxacin resistance and extended-spectrum beta-lactamases (ESBL) in patients with acute bacterial prostatitis (ABP). We reviewed the medical records of 307 patients who were diagnosed with ABP between January 2006 and December 2015. The etiologic pathogens and risk factors for ciprofloxacin-resistant E. coli and ESBL-producing microbes, susceptibility to ciprofloxacin, and the incidence of ESBL in patients with ABP were described. History of prior urologic manipulation was an independent risk factor for ciprofloxacin-resistant (P = 0.005) and ESBL-producing microbes (P = 0.005). Advanced age (over 60 years) was an independent risk factor for ciprofloxacin-resistant microbes (P = 0.022). The ciprofloxacin susceptibility for Escherichia coli in groups without prior manipulation was documented 85.7%. For groups with prior manipulation, the susceptibility was 10.0%. Incidence of ESBL-producing microbes by pathogen was 3.8% for E. coli and 1.0% for Klebsiella pneumonia in the absence of manipulation group, and 20% and 33.3% in the presence of manipulation group, respectively. Initial treatment of ABP must consider patient's age and the possibility of prior manipulation to optimize patient treatment. With the high rate of resistance to fluoroquinolone, cephalosporins with amikacin, or carbapenems, or extended-spectrum penicillin with beta lactamase inhibitor should be considered as the preferred empirical ABP treatment in the patients with history of prior urologic manipulation.

  15. Immunoglobulin superfamily members encoded by viruses and their multiple roles in immune evasion.

    PubMed

    Farré, Domènec; Martínez-Vicente, Pablo; Engel, Pablo; Angulo, Ana

    2017-05-01

    Pathogens have developed a plethora of strategies to undermine host immune defenses in order to guarantee their survival. For large DNA viruses, these immune evasion mechanisms frequently rely on the expression of genes acquired from host genomes. Horizontally transferred genes include members of the immunoglobulin superfamily, whose products constitute the most diverse group of proteins of vertebrate genomes. Their promiscuous immunoglobulin domains, which comprise the building blocks of these molecules, are involved in a large variety of functions mediated by ligand-binding interactions. The flexible structural nature of the immunoglobulin domains makes them appealing targets for viral capture due to their capacity to generate high functional diversity. Here, we present an up-to-date review of immunoglobulin superfamily gene homologs encoded by herpesviruses, poxviruses, and adenoviruses, that include CD200, CD47, Fc receptors, interleukin-1 receptor 2, interleukin-18 binding protein, CD80, carcinoembryonic antigen-related cell adhesion molecules, and signaling lymphocyte activation molecules. We discuss their distinct structural attributes, binding properties, and functions, shaped by evolutionary pressures to disarm specific immune pathways. We include several novel genes identified from extensive genome database surveys. An understanding of the properties and modes of action of these viral proteins may guide the development of novel immune-modulatory therapeutic tools. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Aldehyde dehydrogenase (ALDH) superfamily in plants: gene nomenclature and comparative genomics

    PubMed Central

    Brocker, Chad; Vasiliou, Melpomene; Carpenter, Sarah; Carpenter, Christopher; Zhang, Yucheng; Wang, Xiping; Kotchoni, Simeon O.; Wood, Andrew J.; Kirch, Hans-Hubert; Kopečný, David; Nebert, Daniel W.

    2012-01-01

    In recent years, there has been a significant increase in the number of completely sequenced plant genomes. The comparison of fully sequenced genomes allows for identification of new gene family members, as well as comprehensive analysis of gene family evolution. The aldehyde dehydrogenase (ALDH) gene superfamily comprises a group of enzymes involved in the NAD+- or NADP+-dependent conversion of various aldehydes to their corresponding carboxylic acids. ALDH enzymes are involved in processing many aldehydes that serve as biogenic intermediates in a wide range of metabolic pathways. In addition, many of these enzymes function as ‘aldehyde scavengers’ by removing reactive aldehydes generated during the oxidative degradation of lipid membranes, also known as lipid peroxidation. Plants and animals share many ALDH families, and many genes are highly conserved between these two evolutionarily distinct groups. Conversely, both plants and animals also contain unique ALDH genes and families. Herein we carried outgenome-wide identification of ALDH genes in a number of plant species—including Arabidopsis thaliana (thale crest), Chlamydomonas reinhardtii (unicellular algae), Oryza sativa (rice), Physcomitrella patens (moss), Vitis vinifera (grapevine) and Zea mays (maize). These data were then combined with previous analysis of Populus trichocarpa (poplar tree), Selaginella moellindorffii (gemmiferous spikemoss), Sorghum bicolor (sorghum) and Volvox carteri (colonial algae) for a comprehensive evolutionary comparison of the plant ALDH superfamily. As a result, newly identified genes can be more easily analyzed and gene names can be assigned according to current nomenclature guidelines; our goal is to clarify previously confusing and conflicting names and classifications that might confound results and prevent accurate comparisons between studies. PMID:23007552

  17. Small Molecular Inhibitor of Transforming Growth Factor-{beta} Protects Against Development of Radiation-Induced Lung Injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anscher, Mitchell S.; Thrasher, Bradley; Zgonjanin, Larisa

    2008-07-01

    Purpose: To determine whether an anti-transforming growth factor-{beta} (TGF-{beta}) type 1 receptor inhibitor (SM16) can prevent radiation-induced lung injury. Methods and Materials: One fraction of 28 Gy or sham radiotherapy (RT) was administered to the right hemithorax of Sprague-Dawley rats. SM16 was administered in the rat chow (0.07 g/kg or 0.15 g/kg) beginning 7 days before RT. The rats were divided into eight groups: group 1, control chow; group 2, SM16, 0.07 g/kg; group 3, SM16, 0.15 g/kg; group 4, RT plus control chow; group 5, RT plus SM16, 0.07 g/kg; group 6, RT plus SM16, 0.15 g/kg; group 7,more » RT plus 3 weeks of SM16 0.07 g/kg followed by control chow; and group 8, RT plus 3 weeks of SM16 0.15 g/kg followed by control chow. The breathing frequencies, presence of inflammation/fibrosis, activation of macrophages, and expression/activation of TGF-{beta} were assessed. Results: The breathing frequencies in the RT plus SM16 0.15 g/kg were significantly lower than the RT plus control chow from Weeks 10-22 (p <0.05). The breathing frequencies in the RT plus SM16 0.07 g/kg group were significantly lower only at Weeks 10, 14, and 20. At 26 weeks after RT, the RT plus SM16 0.15 g/kg group experienced a significant decrease in lung fibrosis (p = 0.016), inflammatory response (p = 0.006), and TGF-{beta}1 activity (p = 0.011). No significant reduction was found in these measures of lung injury in the group that received SM16 0.7g/kg nor for the short-course (3 weeks) SM16 at either dose level. Conclusion: SM16 at a dose of 0.15 g/kg reduced functional lung damage, morphologic changes, inflammatory response, and activation of TGF-{beta} at 26 weeks after RT. The data suggest a dose response and also suggest the superiority of long-term vs. short-term dosing.« less

  18. Increased mature interleukin-1beta (IL-1beta) secretion from THP-1 cells induced by nigericin is a result of activation of p45 IL-1beta-converting enzyme processing.

    PubMed

    Cheneval, D; Ramage, P; Kastelic, T; Szelestenyi, T; Niggli, H; Hemmig, R; Bachmann, M; MacKenzie, A

    1998-07-10

    Perregaux and Gabel (Perregaux, D., and Gabel, C. A. (1994) J. Biol. Chem. 269, 15195-15203) reported that potassium depletion of lipopolysaccharide-stimulated mouse macrophages induced by the potassium ionophore, nigericin, leads to the rapid release of mature interleukin-1beta (IL-1beta). We have now shown a similar phenomenon in lipopolysaccharide-stimulated human monocytic leukemia THP-1 cells. Rapid secretion of mature, 17-kDa IL-1beta occurred, in the presence of nigericin (4-16 microM). No effects on the release of tumor necrosis factor-alpha, IL-6, or proIL-1beta were seen. Addition of the irreversible interleukin-1beta-converting enzyme (ICE) inhibitor, Z-Val-Ala-Asp-dichlorobenzoate, or a radicicol analog, inhibited nigericin-induced mature IL-1beta release and activation of p45 ICE precursor. The radicicol analog itself did not inhibit ICE, but markedly, and very rapidly depleted intracellular levels of 31-kDa proIL-1beta. By contrast, dexamethasone, cycloheximide, and the Na+/H+ antiporter inhibitor, 5-(N-ethyl-N-isopropyl)amiloride, had no effect on nigericin-induced release of IL-1beta. We have therefore shown conclusively, for the first time, that nigericin-induced release of IL-1beta is dependent upon activation of p45 ICE processing. So far, the mechanism by which reduced intracellular potassium ion concentration triggers p45 ICE processing is not known, but further investigation in this area could lead to the discovery of novel molecular targets whereby control of IL-1beta production might be effected.

  19. Dynamics of beta-cell turnover: evidence for beta-cell turnover and regeneration from sources of beta-cells other than beta-cell replication in the HIP rat.

    PubMed

    Manesso, Erica; Toffolo, Gianna M; Saisho, Yoshifumi; Butler, Alexandra E; Matveyenko, Aleksey V; Cobelli, Claudio; Butler, Peter C

    2009-08-01

    Type 2 diabetes is characterized by hyperglycemia, a deficit in beta-cells, increased beta-cell apoptosis, and islet amyloid derived from islet amyloid polypeptide (IAPP). These characteristics are recapitulated in the human IAPP transgenic (HIP) rat. We developed a mathematical model to quantify beta-cell turnover and applied it to nondiabetic wild type (WT) vs. HIP rats from age 2 days to 10 mo to establish 1) whether beta-cell formation is derived exclusively from beta-cell replication, or whether other sources of beta-cells (OSB) are present, and 2) to what extent, if any, there is attempted beta-cell regeneration in the HIP rat and if this is through beta-cell replication or OSB. We conclude that formation and maintenance of adult beta-cells depends largely ( approximately 80%) on formation of beta-cells independent from beta-cell duplication. Moreover, this source adaptively increases in the HIP rat, implying attempted beta-cell regeneration that substantially slows loss of beta-cell mass.

  20. Metabolic Stress and Compromised Identity of Pancreatic Beta Cells.

    PubMed

    Swisa, Avital; Glaser, Benjamin; Dor, Yuval

    2017-01-01

    Beta cell failure is a central feature of type 2 diabetes (T2D), but the molecular underpinnings of the process remain only partly understood. It has been suggested that beta cell failure in T2D involves massive cell death. Other studies ascribe beta cell failure to cell exhaustion, due to chronic oxidative or endoplasmic reticulum stress leading to cellular dysfunction. More recently it was proposed that beta cells in T2D may lose their differentiated identity, possibly even gaining features of other islet cell types. The loss of beta cell identity appears to be driven by glucotoxicity inhibiting the activity of key beta cell transcription factors including Pdx1, Nkx6.1, MafA and Pax6, thereby silencing beta cell genes and derepressing alternative islet cell genes. The loss of beta cell identity is at least partly reversible upon normalization of glycemia, with implications for the reversibility of T2D, although it is not known if beta cell failure reaches eventually a point of no return. In this review we discuss current evidence for metabolism-driven compromised beta cell identity, key knowledge gaps and opportunities for utility in the treatment of T2D.

  1. Inhibin/activin-betaC and -betaE subunits in the Ishikawa human endometrial adenocarcinoma cell line.

    PubMed

    Kimmich, Tanja; Brüning, Ansgar; Käufl, Stephanie D; Makovitzky, Josef; Kuhn, Christina; Jeschke, Udo; Friese, Klaus; Mylonas, Ioannis

    2010-08-01

    Inhibins and activins are important regulators of the female reproductive system. Recently, two novel inhibin subunits, named betaC and betaE, have been identified and shown to be expressed in several human tissues. However, only limited data on the expression of these novel inhibin subunits in normal human endometrial tissue and endometrial adenocarcinoma cell lines exist. Samples of proliferative and secretory human endometrium were obtained from five premenopausal, non-pregnant patients undergoing gynecological surgery for benign diseases. Normal endometrial tissue and Ishikawa endometrial adenocarcinoma cell lines were analyzed by immunohistochemistry, immunofluorescence and RT-PCR. Expression of the inhibin betaC and betaE subunits could be demonstrated at the protein level by means of immunohistochemical evaluation and at the transcriptional level by establishing a betaC- and betaE-specific RT-PCR analysis in normal human endometrial tissue and the parental Ishikawa cell line. Interestingly, in a highly de-differentiated subclone of the Ishikawa cell line lacking estrogen receptor expression, the expression of the inhibin-betaC subunit appeared strongly reduced. Here, we show for the first time that the novel inhibin/activin-betaC and -betaE subunits are expressed in normal human endometrium and the estrogen receptor positive human endometrial carcinoma cell line Ishikawa using RT-PCR and immunohistochemical detection methods. Interestingly, the Ishikawa minus cell line (lacking estrogen receptor expression) demonstrated no to minimal expression of the betaC subunit as observed with immunofluorescence and RT-PCR, suggesting a possible hormone- dependency of this subunit in human endometrial cancer cells. Moreover, because the Ishikawa cell line minus is thought to be a more malignant endometrial cell line than its estrogen receptor positive counterpart, inhibin-betaC subunit might be substantially involved in the pathogenesis and malignant transformation in

  2. Androgen Stimulates Growth of Mouse Preantral Follicles In Vitro: Interaction With Follicle-Stimulating Hormone and With Growth Factors of the TGFβ Superfamily

    PubMed Central

    Laird, Mhairi; Thomson, Kacie; Fenwick, Mark; Mora, Jocelyn; Hardy, Kate

    2017-01-01

    Androgens are essential for the normal function of mature antral follicles but also have a role in the early stages of follicle development. Polycystic ovary syndrome (PCOS), the most common cause of anovulatory infertility, is characterized by androgen excess and aberrant follicle development that includes accelerated early follicle growth. We have examined the effects of testosterone and dihydrotestosterone (DHT) on development of isolated mouse preantral follicles in culture with the specific aim of investigating interaction with follicle-stimulating hormone (FSH), the steroidogenic pathway, and growth factors of the TGFβ superfamily that are known to have a role in early follicle development. Both testosterone and DHT stimulated follicle growth and augmented FSH-induced growth and increased the incidence of antrum formation among the granulosa cell layers of these preantral follicles after 72 hours in culture. Effects of both androgens were reversed by the androgen receptor antagonist flutamide. FSH receptor expression was increased in response to both testosterone and DHT, as was that of Star, whereas Cyp11a1 was down-regulated. The key androgen-induced changes in the TGFβ signaling pathway were down-regulation of Amh, Bmp15, and their receptors. Inhibition of Alk6 (Bmpr1b), a putative partner for Amhr2 and Bmpr2, by dorsomorphin resulted in augmentation of androgen-stimulated growth and modification of androgen-induced gene expression. Our findings point to varied effects of androgen on preantral follicle growth and function, including interaction with FSH-activated growth and steroidogenesis, and, importantly, implicate the intrafollicular TGFβ system as a key mediator of androgen action. These findings provide insight into abnormal early follicle development in PCOS. PMID:28324051

  3. Androgen Stimulates Growth of Mouse Preantral Follicles In Vitro: Interaction With Follicle-Stimulating Hormone and With Growth Factors of the TGFβ Superfamily.

    PubMed

    Laird, Mhairi; Thomson, Kacie; Fenwick, Mark; Mora, Jocelyn; Franks, Stephen; Hardy, Kate

    2017-04-01

    Androgens are essential for the normal function of mature antral follicles but also have a role in the early stages of follicle development. Polycystic ovary syndrome (PCOS), the most common cause of anovulatory infertility, is characterized by androgen excess and aberrant follicle development that includes accelerated early follicle growth. We have examined the effects of testosterone and dihydrotestosterone (DHT) on development of isolated mouse preantral follicles in culture with the specific aim of investigating interaction with follicle-stimulating hormone (FSH), the steroidogenic pathway, and growth factors of the TGFβ superfamily that are known to have a role in early follicle development. Both testosterone and DHT stimulated follicle growth and augmented FSH-induced growth and increased the incidence of antrum formation among the granulosa cell layers of these preantral follicles after 72 hours in culture. Effects of both androgens were reversed by the androgen receptor antagonist flutamide. FSH receptor expression was increased in response to both testosterone and DHT, as was that of Star, whereas Cyp11a1 was down-regulated. The key androgen-induced changes in the TGFβ signaling pathway were down-regulation of Amh, Bmp15, and their receptors. Inhibition of Alk6 (Bmpr1b), a putative partner for Amhr2 and Bmpr2, by dorsomorphin resulted in augmentation of androgen-stimulated growth and modification of androgen-induced gene expression. Our findings point to varied effects of androgen on preantral follicle growth and function, including interaction with FSH-activated growth and steroidogenesis, and, importantly, implicate the intrafollicular TGFβ system as a key mediator of androgen action. These findings provide insight into abnormal early follicle development in PCOS.

  4. [Enterobacteriaceae producing extended spectrum beta-lactamase: epidemiology, risk factors, and prevention].

    PubMed

    Vodovar, D; Marcadé, G; Raskine, L; Malissin, I; Mégarbane, B

    2013-11-01

    Multidrug-resistant bacteria are a major worldwide health public concern. It results from the growing increase in antibiotic prescriptions, which are responsible for selection pressure on bacteria. In France like in other countries, enterobacteriaceae producing extended spectrum beta-lactamase (EESBL) are the predominant multidrug-resistant bacteria. EESBL may be responsible for severe infections and require prescription of broad-spectrum antibacterial agents. The current EESBL outbreak is different from methicillin-resistant Staphylococcus aureus outbreak that occurred in the early 1980. Consistently, EESBL are isolated both in hospital and community. Moreover, standard hygiene measures appear ineffective since EESBL prevalence is still increasing. The current inability to contain EESBL outbreak is due to several factors, including the existence of a wide community- and hospital-acquired tank of EESBL, failure to follow strict rules for hygiene, and the current irrational prescription of antibiotics. Copyright © 2012 Société nationale française de médecine interne (SNFMI). Published by Elsevier SAS. All rights reserved.

  5. Chronic inflammation associated with hepatitis C virus infection perturbs hepatic transforming growth factor beta signaling, promoting cirrhosis and hepatocellular carcinoma.

    PubMed

    Matsuzaki, Koichi; Murata, Miki; Yoshida, Katsunori; Sekimoto, Go; Uemura, Yoshiko; Sakaida, Noriko; Kaibori, Masaki; Kamiyama, Yasuo; Nishizawa, Mikio; Fujisawa, Junichi; Okazaki, Kazuichi; Seki, Toshihito

    2007-07-01

    Many patients with chronic hepatitis caused by hepatitis C virus (HCV) infection develop liver fibrosis with high risk for hepatocellular carcinoma (HCC), but the mechanism underling this process is unclear. Conversely, transforming growth factor beta (TGF-beta) activates not only TGF-beta type I receptor (TbetaRI) but also c-Jun N-terminal kinase (JNK), which convert the mediator Smad3 into two distinctive phosphoisoforms: C-terminally phosphorylated Smad3 (pSmad3C) and linker-phosphorylated Smad3 (pSmad3L). Whereas the TbetaRI/pSmad3C pathway suppresses epithelial cell growth by upregulating p21(WAF1) transcription, JNK/pSmad3L-mediated signaling promotes extracellular matrix deposition, partly, by upregulating plasminogen activator inhibitor 1 (PAI-1). We studied the domain-specific Smad3 phosphorylation in biopsy specimens representing chronic hepatitis, cirrhosis, or HCC from 100 patients chronically infected with HCV, and correlated Smad3 phosphorylation with clinical course. As HCV-infected livers progressed from chronic hepatitis through cirrhosis to HCC, hepatocytic pSmad3L/PAI-1 increased with fibrotic stage and necroinflammatory grade, and pSmad3C/p21(WAF1) decreased. Of 14 patients with chronic hepatitis C with strong hepatocytic pSmad3L positivity, 8 developed HCC within 12 years; only 1 of 12 showing little pSmad3L positivity developed HCC. We further sought molecular mechanisms in vitro. JNK activation by the pro-inflammatory cytokine interleukin-1beta stimulated the pSmad3L/PAI-1 pathway in facilitating hepatocytic invasion, in the meantime reducing TGF-beta-dependent tumor-suppressive activity by the pSmad3C/p21(WAF1) pathway. These results indicate that chronic inflammation associated with HCV infection shifts hepatocytic TGF-beta signaling from tumor-suppression to fibrogenesis, accelerating liver fibrosis and increasing risk for HCC.

  6. Treatment with unsaponifiable extracts of avocado and soybean increases TGF-beta1 and TGF-beta2 levels in canine joint fluid.

    PubMed

    Altinel, Levent; Saritas, Z Kadir; Kose, Kamil Cagri; Pamuk, Kamuran; Aksoy, Yusuf; Serteser, Mustafa

    2007-02-01

    Avocado and soya unsaponifiables (ASU) are plant extracts used as a slow-acting antiarthritic agent. ASU stimulate the synthesis of matrix components by chondrocytes, probably by increasing the production of transforming growth factor-beta (TGF-beta). TGF-beta is expressed by chondrocytes and osteoblasts and is present in cartilage matrix. This study investigates the effect of ASU treatment on the levels of two isoforms of TGFbeta, TGF-beta1 and TGF-beta2, in the knee joint fluid using a canine model. Twenty-four outbred dogs were divided into three groups. The control animals were given a normal diet, while the treated animals were given 300 mg ASU every three days or every day. Joint fluid samples were obtained prior to treatment, and at the end of every month (up to three months). TGF-beta1 and TGF-beta2 levels were measured using a quantitative sandwich enzyme immunoassay technique. ASU treatment caused an increase in TGF-beta1 and TGF-beta2 levels in the joint fluid when compared to controls. The different doses did not cause a significant difference in joint fluid TGF levels. TGF-beta1 levels in the treated animals reached maximum values at the end of the second month and then decreased after the third month, while TGF-beta2 levels showed a marginal increase during the first two months, followed by a marked increase at the end of the third month. In conclusion, ASU increased both TGF-beta1 and TGF-beta2 levels in knee joint fluid.

  7. Impact of transforming growth factor-beta1 on atrioventricular node conduction modification by injected autologous fibroblasts in the canine heart.

    PubMed

    Bunch, T Jared; Mahapatra, Srijoy; Bruce, G Keith; Johnson, Susan B; Miller, Dylan V; Horne, Benjamin D; Wang, Xiao-Li; Lee, Hon-Chi; Caplice, Noel M; Packer, Douglas L

    2006-05-30

    Atrioventricular (AV) nodal ablation for management of atrial fibrillation (AF) is irreversible and requires permanent pacemaker implantation. We hypothesized that as an alternative, implantation of autologous fibroblasts in the perinodal region would focally modify AV nodal conduction and that this modulation would be enhanced by pretreatment with transforming growth factor-beta1 (TGF-beta1), a stimulant of fibroblasts. Skin biopsies were taken from 12 mongrel dogs, and derived fibroblasts were dissociated and grown in culture for 2 weeks. Multiple injections (0.25 mL) were made through an 8F NOGA catheter along the fast/slow AV nodal pathways as guided by an electroanatomic mapping system. Seven dogs received fibroblasts alone (1x10(6) cells/mL), 7 dogs received TGF-beta1 (5 microg), 4 dogs received fibroblasts and TGF-beta1 (1x10(6) cells/mL+5 microg), and 4 dogs received saline only. AV node function was assessed at baseline and after 4 weeks. Saline (80 mL) with assigned therapy (0.25 mL per injection) was injected into the peri-AV nodal region in each dog. At baseline, the AH interval (66+/-3 ms) and the average RR interval (331+/-17 ms) in pacing-induced AF were similar in each cohort. The increase in AH interval in normal sinus rhythm was longer after fibroblast (23+/-4 versus 5+/-5 ms; P=0.05) and fibroblast plus TGF-beta1 (50+/-5 versus 5+/-5 ms; P<0.001) injections than with saline alone, with similar findings during high right atrium and distal coronary sinus pacing. The AH interval was not significantly increased after TGF-beta1 injections. The AH interval was significantly longer after fibroblast plus TGF-beta1 injections than with either therapy (TGF-beta1 or fibroblasts) alone. The RR interval during AF was increased in dogs that received fibroblasts alone (110+/-36 versus -41+/-34 ms) and to a greater extent with the addition of TGF-beta1 (294+/-108 versus -41+/-34 ms). No AV block was seen in any cohort at 4 weeks. Labeled fibroblasts that

  8. Selective regulation of beta 1- and beta 2-adrenoceptors in the human heart by chronic beta-adrenoceptor antagonist treatment.

    PubMed Central

    Michel, M. C.; Pingsmann, A.; Beckeringh, J. J.; Zerkowski, H. R.; Doetsch, N.; Brodde, O. E.

    1988-01-01

    1. In 44 patients undergoing coronary artery bypass grafting, the effect of chronic administration of the beta-adrenoceptor antagonists sotalol, propranolol, pindolol, metoprolol and atenolol on beta-adrenoceptor density in right atria (containing 70% beta 1- and 30% beta 2-adrenoceptors) and in lymphocytes (having only beta 2-adrenoceptors) was studied. 2. beta-Adrenoceptor density in right atrial membranes and in intact lymphocytes was assessed by (-)-[125I]-iodocyanopindolol (ICYP) binding; the relative amount of right atrial beta 1- and beta 2-adrenoceptors was determined by inhibition of ICYP binding by the selective beta 2-adrenoceptor antagonist ICI 118,551 and analysis of the resulting competition curves by the iterative curve fitting programme LIGAND. 3. With the exception of pindolol, all beta-adrenoceptor antagonists increased right atrial beta-adrenoceptor density compared to that observed in atria from patients not treated with beta-adrenoceptor antagonists. 4. All beta-adrenoceptor antagonists increased right atrial beta 1-adrenoceptor density; on the other hand, only sotalol and propranolol also increased right atrial beta 2-adrenoceptor density, whereas metoprolol and atenolol did not affect it and pindolol decreased it. 5. Similarly, in corresponding lymphocytes, only sotalol or propranolol increased beta 2-adrenoceptor density, while metoprolol and atenolol did not affect it and pindolol decreased it. 6. It is concluded that beta-adrenoceptor antagonists subtype-selectively regulate cardiac and lymphocyte beta-adrenoceptor subtypes. The selective increase in cardiac beta 1-adrenoceptor density evoked by metoprolol and atenolol may be one of the reasons for the beneficial effects observed in patients with end-stage congestive cardiomyopathy following intermittent treatment with low doses of selective beta 1-adrenoceptor antagonists. PMID:2902891

  9. Increased expression of c-Ski as a co-repressor in transforming growth factor-beta signaling correlates with progression of esophageal squamous cell carcinoma.

    PubMed

    Fukuchi, Minoru; Nakajima, Masanobu; Fukai, Yasuyuki; Miyazaki, Tatsuya; Masuda, Norihiro; Sohda, Makoto; Manda, Ryokuhei; Tsukada, Katsuhiko; Kato, Hiroyuki; Kuwano, Hiroyuki

    2004-03-01

    Transforming growth factor-beta (TGF-beta) regulates cell growth inhibition, and inactivation of the TGF-beta signaling pathway contributes to tumor development. In our previous study, altered expression of TGF-beta, TGF-beta-specific receptors and Smad4 was shown to correlate with tumor progression in esophageal squamous cell carcinoma (SCC). These components, however, were maintained normally in some patients with esophageal SCC. In our study, the mechanism by which aggressive esophageal SCC maintains these components was investigated, with particular emphasis on the participation of c-Ski and SnoN as transcriptional co-repressors in TGF-beta signaling. Immunohistochemistry for c-Ski and SnoN was carried out on surgical specimens obtained from 80 patients with esophageal SCC. The expression of c-Ski and SnoN was also studied in 6 established cell lines derived from esophageal SCC and compared to an immortalized human esophageal cell line by Western blotting. High levels of expression of c-Ski, detected immunohistologically, were found to correlate with depth of invasion (p = 0.0080) and pathologic stage (p = 0.0447). There was, however, no significant correlation between expression of SnoN and clinicopathologic characteristics. A significant correlation between c-Ski and TGF-beta expression was observed. Moreover, in patients with TGF-beta negative expression, the survival rates of patients with c-Ski positive expression were significantly lower than those of patients with c-Ski negative expression (p = 0.0486). c-Ski was expressed at a high level in 5 of 6 cell lines derived from esophageal SCC compared to immortalized esophageal keratinocytes. Furthermore, the cyclin-dependent kinase (CDK) inhibitor, p21 that was up-regulated by TGF-beta signaling was expressed at a low level in the 5 cell lines. The expression of c-Ski protein as a transcriptional co-repressor in TGF-beta signaling seems to be correlated with tumor progression of esophageal SCC. Copyright 2003

  10. Activity-based proteomics of enzyme superfamilies: serine hydrolases as a case study.

    PubMed

    Simon, Gabriel M; Cravatt, Benjamin F

    2010-04-09

    Genome sequencing projects have uncovered thousands of uncharacterized enzymes in eukaryotic and prokaryotic organisms. Deciphering the physiological functions of enzymes requires tools to profile and perturb their activities in native biological systems. Activity-based protein profiling has emerged as a powerful chemoproteomic strategy to achieve these objectives through the use of chemical probes that target large swaths of enzymes that share active-site features. Here, we review activity-based protein profiling and its implementation to annotate the enzymatic proteome, with particular attention given to probes that target serine hydrolases, a diverse superfamily of enzymes replete with many uncharacterized members.

  11. 14-3-3 sigma and 14-3-3 zeta plays an opposite role in cell growth inhibition mediated by transforming growth factor-beta 1.

    PubMed

    Hong, Hye-Young; Jeon, Woo-Kwang; Bae, Eun-Jin; Kim, Shin-Tae; Lee, Ho-Jae; Kim, Seong-Jin; Kim, Byung-Chul

    2010-03-01

    The expression of 14-3-3 proteins is dysregulated in various types of cancer. This study was undertaken to investigate the effects of 14-3-3 zeta and 14-3-3 sigma on cell growth inhibition mediated by transforming growth factor-beta 1 (TGF-beta1). Mouse mammary epithelial cells (Eph4) that are transformed with oncogenic c-H-Ras (EpRas) and no longer sensitive to TGF-beta1-mediated growth inhibition displayed increased expression of 14-3-3 zeta and decreased expression of 14-3-3 sigma compared with parental Eph4 cells. Using small interfering RNA-mediated knockdown and overexpression of 14-3-3 sigma or 14-3-3 zeta, we showed that 14-3-3 sigma is required for TGF-beta1-mediated growth inhibition whereas 14-3-3 zeta negatively modulates this growth inhibitory response. Notably, overexpression of 14-3-3 zeta increased the level of Smad3 protein that is phosphorylated at linker regions and cannot mediate the TGF-beta1 growth inhibitory response. Consistent with this finding, mutation of the 14-3-3 zeta phosphorylation sites in Smad3 markedly reduced the 14-3-3 zeta-mediated inhibition of TGF-beta1-induced p15 promoter-reporter activity and cell cycle arrest, suggesting that these residues are critical targets of 14-3-3 zeta in the suppression of TGF-beta1-mediated growth. Taken together, our findings indicate that dysregulation of 14-3-3 sigma or 14-3-3 zeta contributes to TGF-beta1 resistance in cancer cells.

  12. Evolutionary insight into the ionotropic glutamate receptor superfamily of photosynthetic organisms.

    PubMed

    De Bortoli, Sara; Teardo, Enrico; Szabò, Ildikò; Morosinotto, Tomas; Alboresi, Alessandro

    2016-11-01

    Photosynthetic eukaryotes have a complex evolutionary history shaped by multiple endosymbiosis events that required a tight coordination between the organelles and the rest of the cell. Plant ionotropic glutamate receptors (iGLRs) form a large superfamily of proteins with a predicted or proven non-selective cation channel activity regulated by a broad range of amino acids. They are involved in different physiological processes such as C/N sensing, resistance against fungal infection, root and pollen tube growth and response to wounding and pathogens. Most of the present knowledge is limited to iGLRs located in plasma membranes. However, recent studies localized different iGLR isoforms to mitochondria and/or chloroplasts, suggesting the possibility that they play a specific role in bioenergetic processes. In this work, we performed a comparative analysis of GLR sequences from bacteria and various photosynthetic eukaryotes. In particular, novel types of selectivity filters of bacteria are reported adding new examples of the great diversity of the GLR superfamily. The highest variability in GLR sequences was found among the algal sequences (cryptophytes, diatoms, brown and green algae). GLRs of land plants are not closely related to the GLRs of green algae analyzed in this work. The GLR family underwent a great expansion in vascular plants. Among plant GLRs, Clade III includes sequences from Physcomitrella patens, Marchantia polymorpha and gymnosperms and can be considered the most ancient, while other clades likely emerged later. In silico analysis allowed the identification of sequences with a putative target to organelles. Sequences with a predicted localization to mitochondria and chloroplasts are randomly distributed among different type of GLRs, suggesting that no compartment-related specific function has been maintained across the species. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. The role of estrogen receptor {beta} (ER{beta}) in malignant diseases-A new potential target for antiproliferative drugs in prevention and treatment of cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warner, Margaret; Center for Nuclear Receptors and Cell Signaling, Department of Biochemistry and Cell Biology, University of Houston, Houston, TX; Gustafsson, Jan-Ake, E-mail: jan-ake.gustafsson@mednut.ki.se

    2010-05-21

    The discovery of ER{beta} in the middle of the 1990s represents a paradigm shift in our understanding of estrogen signaling. It has turned out that estrogen action is not mediated by one receptor, ER{alpha}, but by two balancing factors, ER{alpha} and ER{beta}, which are often antagonistic to one another. Excitingly, ER{beta} has been shown to be widespread in the body and to be involved in a multitude of physiological and pathophysiological events. This has led to a strong interest of the pharmaceutical industry to target ER{beta} by drugs against various diseases. In this review, focus is on the role ofmore » ER{beta} in malignant diseases where the anti proliferative activity of ER{beta} gives hope of new therapeutic approaches.« less

  14. Effect of botulinum toxin type A on transforming growth factor beta1 in fibroblasts derived from hypertrophic scar: a preliminary report.

    PubMed

    Xiao, Zhibo; Zhang, Fengmin; Lin, Weibin; Zhang, Miaobo; Liu, Ying

    2010-08-01

    Hypertrophic scar is a common dermal disease. Numerous treatments are currently available but they do not always yield excellent therapeutic results. Hence, alternatives are needed. Recent basic and clinical research has shown that botulinum toxin type A (BTXA) has antihypertrophic scar properties but the molecular mechanism for this action is unknown. The aim of this study was to explore the effect of BTXA on transforming growth factor beta1 (TGF-beta1) in fibroblasts derived from hypertrophic scar and further elucidate its actual mechanism. Fibroblasts were isolated from tissue specimens of hypertrophic scar. Fibroblasts were treated with BTXA and the difference in proliferation between treated and nontreated cells was analyzed through the MTT method from the first to the fifth day after treatment. Proteins of TGF-beta1 were checked using ELISA in fibroblasts with BTXA and without BTXA from the first to the fifth day. The growth of the fibroblast treated with BTXA was obviously slower than that of the fibroblast without BTXA treatment (p < 0.01), which showed that BTXA effectively inhibited the growth of fibroblasts. Proteins of TGF-beta1 between fibroblasts with BTXA and fibroblasts without BTXA are statistically significant (p < 0.01). These results suggest that BTXA effectively inhibited the growth of fibroblasts derived from hypertrophic scar and in turn caused a decrease in TGF-beta1 protein, indicating that BTXA-based therapies for hypertrophic scar are promising and worth investigating further.

  15. Role of transcription factor KLF11 and its diabetes-associated gene variants in pancreatic beta cell function

    PubMed Central

    Neve, Bernadette; Fernandez-Zapico, Martin E.; Ashkenazi-Katalan, Vered; Dina, Christian; Hamid, Yasmin H.; Joly, Erik; Vaillant, Emmanuel; Benmezroua, Yamina; Durand, Emmanuelle; Bakaher, Nicolas; Delannoy, Valerie; Vaxillaire, Martine; Cook, Tiffany; Dallinga-Thie, Geesje M.; Jansen, Hans; Charles, Marie-Aline; Clément, Karine; Galan, Pilar; Hercberg, Serge; Helbecque, Nicole; Charpentier, Guillaume; Prentki, Marc; Hansen, Torben; Pedersen, Oluf; Urrutia, Raul; Melloul, Danielle; Froguel, Philippe

    2005-01-01

    KLF11 (TIEG2) is a pancreas-enriched transcription factor that has elicited significant attention because of its role as negative regulator of exocrine cell growth in vitro and in vivo. However, its functional role in the endocrine pancreas remains to be established. Here, we report, for the first time, to our knowledge, the characterization of KLF11 as a glucose-inducible regulator of the insulin gene. A combination of random oligonucleotide binding, EMSA, luciferase reporter, and chromatin immunoprecipitation assays shows that KLF11 binds to the insulin promoter and regulates its activity in beta cells. Genetic analysis of the KLF11 gene revealed two rare variants (Ala347Ser and Thr220Met) that segregate with diabetes in families with early-onset type 2 diabetes, and significantly impair its transcriptional activity. In addition, analysis of 1,696 type 2 diabetes mellitus and 1,776 normoglycemic subjects show a frequent polymorphic Gln62Arg variant that significantly associates with type 2 diabetes mellitus in North European populations (OR = 1.29, P = 0.00033). Moreover, this variant alters the corepressor mSin3A-binding activity of KLF11, impairs the activation of the insulin promoter and shows lower levels of insulin expression in pancreatic beta cells. In addition, subjects carrying the Gln62Arg allele show decreased plasma insulin after an oral glucose challenge. Interestingly, all three nonsynonymous KLF11 variants show increased repression of the catalase 1 promoter, suggesting a role in free radical clearance that may render beta cells more sensitive to oxidative stress. Thus, both functional and genetic analyses reveal that KLF11 plays a role in the regulation of pancreatic beta cell physiology, and its variants may contribute to the development of diabetes. PMID:15774581

  16. Inhibition of glycogen synthase kinase 3beta during heart failure is protective.

    PubMed

    Hirotani, Shinichi; Zhai, Peiyong; Tomita, Hideharu; Galeotti, Jonathan; Marquez, Juan Pablo; Gao, Shumin; Hong, Chull; Yatani, Atsuko; Avila, Jesús; Sadoshima, Junichi

    2007-11-26

    Glycogen synthase kinase (GSK)-3, a negative regulator of cardiac hypertrophy, is inactivated in failing hearts. To examine the histopathological and functional consequence of the persistent inhibition of GSK-3beta in the heart in vivo, we generated transgenic mice with cardiac-specific overexpression of dominant negative GSK-3beta (Tg-GSK-3beta-DN) and tetracycline-regulatable wild-type GSK-3beta. GSK-3beta-DN significantly reduced the kinase activity of endogenous GSK-3beta, inhibited phosphorylation of eukaryotic translation initiation factor 2B epsilon, and induced accumulation of beta-catenin and myeloid cell leukemia-1, confirming that GSK-3beta-DN acts as a dominant negative in vivo. Tg-GSK-3beta-DN exhibited concentric hypertrophy at baseline, accompanied by upregulation of the alpha-myosin heavy chain gene and increases in cardiac function, as evidenced by a significantly greater Emax after dobutamine infusion and percentage of contraction in isolated cardiac myocytes, indicating that inhibition of GSK-3beta induces well-compensated hypertrophy. Although transverse aortic constriction induced a similar increase in hypertrophy in both Tg-GSK-3beta-DN and nontransgenic mice, Tg-GSK-3beta-DN exhibited better left ventricular function and less fibrosis and apoptosis than nontransgenic mice. Induction of the GSK-3beta transgene in tetracycline-regulatable wild-type GSK-3beta mice induced left ventricular dysfunction and premature death, accompanied by increases in apoptosis and fibrosis. Overexpression of GSK-3beta-DN in cardiac myocytes inhibited tumor necrosis factor-alpha-induced apoptosis, and the antiapoptotic effect of GSK-3beta-DN was abrogated in the absence of myeloid cell leukemia-1. These results suggest that persistent inhibition of GSK-3beta induces compensatory hypertrophy, inhibits apoptosis and fibrosis, and increases cardiac contractility and that the antiapoptotic effect of GSK-3beta inhibition is mediated by myeloid cell leukemia-1. Thus

  17. 17betaE2 promotes cell proliferation in endometriosis by decreasing PTEN via NFkappaB-dependent pathway.

    PubMed

    Zhang, Hui; Zhao, Xingbo; Liu, Shu; Li, Jijun; Wen, Zeqing; Li, Mingjiang

    2010-04-12

    The objective of this study was to explore the mechanism of phosphatase and tensin homolog (PTEN) loss in endometriosis. We found that aberrant PTEN expression and mitogen-activated protein kinases (MAPK)/ERK, phosphoinositide 3-kinase (PI3K)/AKt, and nuclear factor-kappaB (NFkappaB) signaling overactivities coexisted in endometriosis. In vitro, 17beta-estradiol rapidly activated the 3 pathways in endometriotic cells and specific inhibitions on the 3 pathways respectively blocked 17beta-estradiol-induced cell proliferation. 17beta-estradiol suppressed PTEN transcription and expression in endometriotic cells which was abolished by specific NFkappaB inhibition. Total/nuclear PTEN-loss and MAPK/ERK, PI3K/AKt, and NFkappaB signal overactivities coexist in endometriosis. In vitro, 17beta-estradiol can promotes cell proliferation in endometriosis by activating PI3K/AKt pathway via an NFkappaB/PTEN-dependent pathway. For the first time we propose the possibility of the presence of a positive feedback-loop: 17beta-estradiol-->high NFkappaB-->low PTEN-->high PI3K-->high NFkappaB, in endometriosis, which may finally promote the proliferation of ectopic endometrial epithelial cells and in turn contributes to the progression of the disease.

  18. Metabolic Stress and Compromised Identity of Pancreatic Beta Cells

    PubMed Central

    Swisa, Avital; Glaser, Benjamin; Dor, Yuval

    2017-01-01

    Beta cell failure is a central feature of type 2 diabetes (T2D), but the molecular underpinnings of the process remain only partly understood. It has been suggested that beta cell failure in T2D involves massive cell death. Other studies ascribe beta cell failure to cell exhaustion, due to chronic oxidative or endoplasmic reticulum stress leading to cellular dysfunction. More recently it was proposed that beta cells in T2D may lose their differentiated identity, possibly even gaining features of other islet cell types. The loss of beta cell identity appears to be driven by glucotoxicity inhibiting the activity of key beta cell transcription factors including Pdx1, Nkx6.1, MafA and Pax6, thereby silencing beta cell genes and derepressing alternative islet cell genes. The loss of beta cell identity is at least partly reversible upon normalization of glycemia, with implications for the reversibility of T2D, although it is not known if beta cell failure reaches eventually a point of no return. In this review we discuss current evidence for metabolism-driven compromised beta cell identity, key knowledge gaps and opportunities for utility in the treatment of T2D. PMID:28270834

  19. Critical Role of Transforming Growth Factor Beta in Different Phases of Wound Healing

    PubMed Central

    Pakyari, Mohammadreza; Farrokhi, Ali; Maharlooei, Mohsen Khosravi; Ghahary, Aziz

    2013-01-01

    Significance This review highlights the critical role of transforming growth factor beta (TGF-β)1–3 within different phases of wound healing, in particular, late-stage wound healing. It is also very important to identify the TGF-β1–controlling factors involved in slowing down the healing process upon wound epithelialization. Recent Advances TGF-β1, as a growth factor, is a known proponent of dermal fibrosis. Several strategies to modulate or regulate TGF's actions have been thoroughly investigated in an effort to create successful therapies. This study reviews current discourse regarding the many roles of TGF-β1 in wound healing by modulating infiltrated immune cells and the extracellular matrix. Critical Issues It is well established that TGF-β1 functions as a wound-healing promoting factor, and thereby if in excess it may lead to overhealing outcomes, such as hypertrophic scarring and keloid. Thus, the regulation of TGF-β1 in the later stages of the healing process remains as critical issue of which to better understand. Future Directions One hypothesis is that cell communication is the key to regulate later stages of wound healing. To elucidate the role of keratinocyte/fibroblast cross talk in controlling the later stages of wound healing we need to: (1) identify those keratinocyte-released factors which would function as wound-healing stop signals, (2) evaluate the functionality of these factors in controlling the outcome of the healing process, and (3) formulate topical vehicles for these antifibrogenic factors to improve or even prevent the development of hypertrophic scarring and keloids as a result of deep trauma, burn injuries, and any type of surgical incision. PMID:24527344

  20. Evolution of the Ferric Reductase Domain (FRD) Superfamily: Modularity, Functional Diversification, and Signature Motifs

    PubMed Central

    Zhang, Xuezhi; Krause, Karl-Heinz; Xenarios, Ioannis; Soldati, Thierry; Boeckmann, Brigitte

    2013-01-01

    A heme-containing transmembrane ferric reductase domain (FRD) is found in bacterial and eukaryotic protein families, including ferric reductases (FRE), and NADPH oxidases (NOX). The aim of this study was to understand the phylogeny of the FRD superfamily. Bacteria contain FRD proteins consisting only of the ferric reductase domain, such as YedZ and short bFRE proteins. Full length FRE and NOX enzymes are mostly found in eukaryotic cells and all possess a dehydrogenase domain, allowing them to catalyze electron transfer from cytosolic NADPH to extracellular metal ions (FRE) or oxygen (NOX). Metazoa possess YedZ-related STEAP proteins, possibly derived from bacteria through horizontal gene transfer. Phylogenetic analyses suggests that FRE enzymes appeared early in evolution, followed by a transition towards EF-hand containing NOX enzymes (NOX5- and DUOX-like). An ancestral gene of the NOX(1-4) family probably lost the EF-hands and new regulatory mechanisms of increasing complexity evolved in this clade. Two signature motifs were identified: NOX enzymes are distinguished from FRE enzymes through a four amino acid motif spanning from transmembrane domain 3 (TM3) to TM4, and YedZ/STEAP proteins are identified by the replacement of the first canonical heme-spanning histidine by a highly conserved arginine. The FRD superfamily most likely originated in bacteria. PMID:23505460

  1. Evolution of the ferric reductase domain (FRD) superfamily: modularity, functional diversification, and signature motifs.

    PubMed

    Zhang, Xuezhi; Krause, Karl-Heinz; Xenarios, Ioannis; Soldati, Thierry; Boeckmann, Brigitte

    2013-01-01

    A heme-containing transmembrane ferric reductase domain (FRD) is found in bacterial and eukaryotic protein families, including ferric reductases (FRE), and NADPH oxidases (NOX). The aim of this study was to understand the phylogeny of the FRD superfamily. Bacteria contain FRD proteins consisting only of the ferric reductase domain, such as YedZ and short bFRE proteins. Full length FRE and NOX enzymes are mostly found in eukaryotic cells and all possess a dehydrogenase domain, allowing them to catalyze electron transfer from cytosolic NADPH to extracellular metal ions (FRE) or oxygen (NOX). Metazoa possess YedZ-related STEAP proteins, possibly derived from bacteria through horizontal gene transfer. Phylogenetic analyses suggests that FRE enzymes appeared early in evolution, followed by a transition towards EF-hand containing NOX enzymes (NOX5- and DUOX-like). An ancestral gene of the NOX(1-4) family probably lost the EF-hands and new regulatory mechanisms of increasing complexity evolved in this clade. Two signature motifs were identified: NOX enzymes are distinguished from FRE enzymes through a four amino acid motif spanning from transmembrane domain 3 (TM3) to TM4, and YedZ/STEAP proteins are identified by the replacement of the first canonical heme-spanning histidine by a highly conserved arginine. The FRD superfamily most likely originated in bacteria.

  2. Effects of sequential artificial tear and cyclosporine emulsion therapy on conjunctival goblet cell density and transforming growth factor-beta2 production.

    PubMed

    Pflugfelder, Stephen C; De Paiva, Cintia S; Villarreal, Arturo L; Stern, Michael E

    2008-01-01

    To evaluate the effects of sequential treatment with artificial tears and cyclosporine emulsion on conjunctival goblet cell density and production of transforming growth factor (TGF)-beta2 in patients with dry eye disease. Patients with dry eye disease (N = 6) defined by an Ocular Surface Disease Index symptom score >or=25, Schirmer test 1 <10 mm, and corneal fluorescein and conjunctival lissamine green staining scores >or=3 were treated with artificial tears (Refresh Plus; Allergan, Irvine, CA) 4 times a day for 4 weeks, followed by 0.05% cyclosporine emulsion (Restasis; Allergan) twice a day for 12 weeks. Impression cytology was performed on the bulbar conjunctiva of both eyes at baseline, after artificial tear therapy, and after 6 and 12 weeks of cyclosporine therapy. Goblet cells were counted in 5 representative microscopic fields per membrane in those taken from the temporal and inferior bulbar conjunctiva of the worse eye, and membranes taken from the fellow eye were immunostained for TGF-beta2. There were no differences in mean goblet cell density between baseline and 4 weeks of artificial tears in the temporal and inferior bulbar specimens. After 6 weeks of cyclosporine emulsion, goblet cell density was significantly greater than baseline and artificial tears in the inferior bulbar conjunctiva (P < 0.01). After 12 weeks of cyclosporine emulsion, goblet cell density was significantly greater than baseline and artificial tears in both temporal and inferior bulbar sites (P < 0.01). The number of TGF-beta2-positive goblet cells was also noted to increase after 6 and 12 weeks of cyclosporine therapy (P < 0.001). Cyclosporine emulsion, but not artificial tears, increases goblet cell density and production of the immunoregulatory factor TGF-beta2 in the bulbar conjunctiva in patients with dry eye.

  3. Identification, immunolocalization, and characterization analyses of an exopeptidase of papain superfamily, (cathepsin C) from Clonorchis sinensis.

    PubMed

    Liang, Pei; He, Lei; Xu, Yanquan; Chen, Xueqing; Huang, Yan; Ren, Mengyu; Liang, Chi; Li, Xuerong; Xu, Jin; Lu, Gang; Yu, Xinbing

    2014-10-01

    Cathepsin C is an important exopeptidase of papain superfamily and plays a number of great important roles during the parasitic life cycle. The amino acid sequence of cathepsin C from Clonorchis sinensis (C. sinensis) showed 54, 53, and 49% identities to that of Schistosoma japonicum, Schistosoma mansoni, and Homo sapiens, respectively. Phylogenetic analysis utilizing the sequences of papain superfamily of C. sinensis demonstrated that cathepsin C and cathepsin Bs came from a common ancestry. Cathepsin C of C. sinensis (Cscathepsin C) was identified as an excretory/secretory product by Western blot analysis. The results of transcriptional level and translational level of Cscathepsin C at metacercaria stage were higher than that at adult worms. Immunolocalization analysis indicated that Cscathepsin C was specifically distributed in the suckers (oral sucker and ventral sucker), eggs, vitellarium, intestines, and testis of adult worms. In the metacercaria, it was mainly detected on the cyst wall and excretory bladder. Combining with the results mentioned above, it implies that Cscathepsin C may be an essential proteolytic enzyme for proteins digestion of hosts, nutrition assimilation, and immune invasion of C. sinensis. Furthermore, it may be a potential diagnostic antigen and drug target against C. sinensis infection.

  4. Role of glutamine 17 of the bovine papillomavirus E5 protein in platelet-derived growth factor beta receptor activation and cell transformation.

    PubMed

    Klein, O; Polack, G W; Surti, T; Kegler-Ebo, D; Smith, S O; DiMaio, D

    1998-11-01

    The bovine papillomavirus E5 protein is a small, homodimeric transmembrane protein that forms a stable complex with the cellular platelet-derived growth factor (PDGF) beta receptor through transmembrane and juxtamembrane interactions, resulting in receptor activation and cell transformation. Glutamine 17 in the transmembrane domain of the 44-amino-acid E5 protein is critical for complex formation and receptor activation, and we previously proposed that glutamine 17 forms a hydrogen bond with threonine 513 of the PDGF beta receptor. We have constructed and analyzed mutant E5 proteins containing all possible amino acids at position 17 and examined the ability of these proteins to transform C127 fibroblasts, which express endogenous PDGF beta receptor. Although several position 17 mutants were able to transform cells, mutants containing amino acids with side groups that were unable to participate in hydrogen bonding interactions did not form a stable complex with the PDGF beta receptor or transform cells, in agreement with the proposed interaction between position 17 of the E5 protein and threonine 513 of the receptor. The nature of the residue at position 17 also affected the ability of the E5 proteins to dimerize. Overall, there was an excellent correlation between the ability of the various E5 mutant proteins to bind the PDGF beta receptor, lead to receptor tyrosine phosphorylation, and transform cells. Similar results were obtained in Ba/F3 hematopoietic cells expressing exogenous PDGF beta receptor. In addition, treatment of E5-transformed cells with a specific inhibitor of the PDGF receptor tyrosine kinase reversed the transformed phenotype. These results confirm the central importance of the PDGF beta receptor in mediating E5 transformation and highlight the critical role of the residue at position 17 of the E5 protein in the productive interaction with the PDGF beta receptor. On the basis of molecular modeling analysis and the known chemical properties of the

  5. Negative feedback regulation of TGF-beta signaling by the SnoN oncoprotein.

    PubMed

    Stroschein, S L; Wang, W; Zhou, S; Zhou, Q; Luo, K

    1999-10-22

    Smad proteins mediate transforming growth factor-beta (TGF-beta) signaling to regulate cell growth and differentiation. The SnoN oncoprotein was found to interact with Smad2 and Smad4 and to repress their abilities to activate transcription through recruitment of the transcriptional corepressor N-CoR. Immediately after TGF-beta stimulation, SnoN is rapidly degraded by the nuclear accumulation of Smad3, allowing the activation of TGF-beta target genes. By 2 hours, TGF-beta induces a marked increase in SnoN expression, resulting in termination of Smad-mediated transactivation. Thus, SnoN maintains the repressed state of TGF-beta-responsive genes in the absence of ligand and participates in negative feedback regulation of TGF-beta signaling.

  6. {beta}-Catenin regulates airway smooth muscle contraction.

    PubMed

    Jansen, Sepp R; Van Ziel, Anna M; Baarsma, Hoeke A; Gosens, Reinoud

    2010-08-01

    beta-Catenin is an 88-kDa member of the armadillo family of proteins that is associated with the cadherin-catenin complex in the plasma membrane. This complex interacts dynamically with the actin cytoskeleton to stabilize adherens junctions, which play a central role in force transmission by smooth muscle cells. Therefore, in the present study, we hypothesized a role for beta-catenin in the regulation of smooth muscle force production. beta-Catenin colocalized with smooth muscle alpha-actin (sm-alpha-actin) and N-cadherin in plasma membrane fractions and coimmunoprecipitated with sm-alpha-actin and N-cadherin in lysates of bovine tracheal smooth muscle (BTSM) strips. Moreover, immunocytochemistry of cultured BTSM cells revealed clear and specific colocalization of sm-alpha-actin and beta-catenin at the sites of cell-cell contact. Treatment of BTSM strips with the pharmacological beta-catenin/T cell factor-4 (TCF4) inhibitor PKF115-584 (100 nM) reduced beta-catenin expression in BTSM whole tissue lysates and in plasma membrane fractions and reduced maximal KCl- and methacholine-induced force production. These changes in force production were not accompanied by changes in the expression of sm-alpha-actin or sm-myosin heavy chain (MHC). Likewise, small interfering RNA (siRNA) knockdown of beta-catenin in BTSM strips reduced beta-catenin expression and attenuated maximal KCl- and methacholine-induced contractions without affecting sm-alpha-actin or sm-MHC expression. Conversely, pharmacological (SB-216763, LiCl) or insulin-induced inhibition of glycogen synthase kinase-3 (GSK-3) enhanced the expression of beta-catenin and augmented maximal KCl- and methacholine-induced contractions. We conclude that beta-catenin is a plasma membrane-associated protein in airway smooth muscle that regulates active tension development, presumably by stabilizing cell-cell contacts and thereby supporting force transmission between neighboring cells.

  7. 5Beta,6beta-epoxy-17-oxoandrostan-3beta-yl acetate and 5beta,6beta-epoxy-20-oxopregnan-3beta-yl acetate.

    PubMed

    Pinto, Rui M A; Salvador, Jorge A R; Paixão, José A

    2008-05-01

    In the title compounds, C(21)H(30)O(4), (I), and C(23)H(34)O(4), (II), respectively, which are valuable intermediates in the synthesis of important steroid derivatives, rings A and B are cis-(5beta,10beta)-fused. The two molecules have similar conformations of rings A, B and C. The presence of the 5beta,6beta-epoxide group induces a significant twist of the steroid nucleus and a strong flattening of the B ring. The different C17 substituents result in different conformations for ring D. Cohesion of the molecular packing is achieved in both compounds only by weak intermolecular interactions. The geometries of the molecules in the crystalline environment are compared with those of the free molecules as given by ab initio Roothan Hartree-Fock calculations. We show in this work that quantum mechanical ab initio methods reproduce well the details of the conformation of these molecules, including a large twist of the steroid nucleus. The calculated twist values are comparable, but are larger than the observed values, indicating a possible small effect of the crystal packing on the twist angles.

  8. Pregnancy outcome in dairy and beef cattle after artificial insemination and treatment with seminal plasma or transforming growth factor beta-1.

    PubMed

    Odhiambo, J F; Poole, D H; Hughes, L; Dejarnette, J M; Inskeep, E K; Dailey, R A

    2009-09-01

    Reduced capability of the uterus to support pregnancy in the absence of its interaction with secretions from male accessory glands has been demonstrated in rodents and to some extent in pigs. However, in cattle, the role of postmating inflammatory response on pregnancy success has not been studied. The current study examined the influence of uterine presensitization with seminal antigens at breeding on pregnancy outcome in cows. Lactating beef (n=1090) and dairy (n=800) cows received 0.5 mL seminal plasma (SP), 40 ng recombinant human transforming growth factor-beta1 (rhTGF-beta1), or 0.5 mL bovine serum albumin (BSA), or were left untreated before or at insemination. Semen was deposited into the anterior cervix using a second insemination gun. Pregnancy was diagnosed at 35 to 40 d postinsemination by transrectal ultrasonography or from records of calves born the subsequent calving season. Pregnancy rates in beef cows did not differ among treatments but differed among trials (69.8%, 52.5% vs. 40.3%; P<0.05). In trials where average pregnancy rates were below 50%, treatments with TGF-beta1 but not SP tended (P<0.07) to increase pregnancy rates in beef cows. In dairy cows, SP and TGF-beta1 improved pregnancy outcome by 10 percentage points, but these increments did not achieve statistical significance. In conclusion, this study did not find any conclusive evidence for the effect of TGF-beta1 or seminal plasma on pregnancy outcome in lactating dairy or beef cows but realized marginal improvements when pregnancy rates were below 50% (compromised fertility).

  9. Association of transforming growth factor-beta1 gene polymorphism in the development of Epstein-Barr virus-related hematologic diseases.

    PubMed

    Hatta, Kanako; Morimoto, Akira; Ishii, Eiichi; Kimura, Hiroshi; Ueda, Ikuyo; Hibi, Shigeyoshi; Todo, Shinjiro; Sugimoto, Tohru; Imashuku, Shinsaku

    2007-11-01

    Epstein-Barr virus (EBV) is etiologically associated with various hematologic disorders, including primary acute infectious mononucleosis (IM), hemophagocytic lymphohistiocytosis (EBV-HLH), chronic active EBV infection (CAEBV) and malignant lymphomas. Although cytokines play a central role in EBV-related immune responses, the exact mechanisms causing different clinical responses remain unclear. In this study, the pattern of cytokine gene polymorphisms was comparatively analyzed in EBV-related diseases. Eighty-nine patients with EBV-related disease were analyzed; 30 with IM, 28 with EBV-HLH and 31 with CAEBV. Eighty-one EBV-seropositive healthy adults were also used as controls. Associations with polymorphisms of various cytokines, including interleukin (IL)-1 alpha and IL-1 beta were evaluated. The gene polymorphisms were typed by polymerase chain reaction with sequence-specific primers. A significant difference of polymorphisms was found for transforming growth factor (TGF)-beta1; the frequency of TGF-beta1 codon 10 C allele was significantly higher in patients with EBV-related diseases than in controls (p<0.001). The difference was significant in patients with IM or HLH (p<0.001), but not in those with CAEBV (p=0.127), compared with controls. As regards other cytokines, the frequency of the IL-1 alpha -889 C allele was significantly lower in patients with IM than in controls (p<0.05). Our results suggests that TGF-beta1 codon 10 C allele plays a role in the development of EBV-related diseases and that the IL-1 alpha -889 C allele may be involved in response failure and sequential progression into the development of HLH.

  10. Spleen tyrosine kinase mediates high glucose-induced transforming growth factor-{beta}1 up-regulation in proximal tubular epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Won Seok; Chang, Jai Won; Han, Nam Jeong

    The role of spleen tyrosine kinase (Syk) in high glucose-induced intracellular signal transduction has yet to be elucidated. We investigated whether Syk is implicated in high glucose-induced transforming growth factor-{beta}1 (TGF-{beta}1) up-regulation in cultured human proximal tubular epithelial cells (HK-2 cell). High glucose increased TGF-{beta}1 gene expression through Syk, extracellular signal-regulated kinase (ERK), AP-1 and NF-{kappa}B. High glucose-induced AP-1 DNA binding activity was decreased by Syk inhibitors and U0126 (an ERK inhibitor). Syk inhibitors suppressed high glucose-induced ERK activation, whereas U0126 had no effect on Syk activation. High glucose-induced NF-{kappa}B DNA binding activity was also decreased by Syk inhibitors. Highmore » glucose increased nuclear translocation of p65 without serine phosphorylation of I{kappa}B{alpha} and without degradation of I{kappa}B{alpha}, but with an increase in tyrosine phosphorylation of I{kappa}B{alpha} that may account for the activation of NF-{kappa}B. Both Syk inhibitors and Syk-siRNA attenuated high glucose-induced I{kappa}B{alpha} tyrosine phosphorylation and p65 nuclear translocation. Depletion of p21-activated kinase 2 (Pak2) by transfection of Pak2-siRNA abolished high glucose-induced Syk activation. In summary, high glucose-induced TGF-{beta}1 gene transcription occurred through Pak2, Syk and subsequent ERK/AP-1 and NF-{kappa}B pathways. This suggests that Syk might be implicated in the diabetic kidney disease.« less

  11. Galatheoidea are not monophyletic - molecular and morphological phylogeny of the squat lobsters (Decapoda: Anomura) with recognition of a new superfamily.

    PubMed

    Schnabel, K E; Ahyong, S T; Maas, E W

    2011-02-01

    The monophyletic status of the squat lobster superfamily Galatheoidea has come under increasing doubt by studies using evidence as diverse as larval and adult somatic morphology, sperm ultrastructure, and molecular data. Here we synthesize phylogenetic data from these diverse strands, with the addition of new molecular and morphological data to examine the phylogeny of the squat lobsters and assess the status of the Galatheoidea. A total of 64 species from 16 of the 17 currently recognised anomuran families are included. Results support previous work pointing towards polyphyly in the superfamily Galatheoidea and Paguroidea, specifically, suggesting independent origins of the Galatheidae+Porcellanidae and the Chirostylidae+Kiwaidae. Morphological characters are selected that support clades resolved in the combined analysis and the taxonomic status of Galatheoidea sensu lato is revised. Results indicate that Chirostylidae are more closely related to an assemblage including Aegloidea, Lomisoidea and Paguroidea than to the remaining Galatheoidea and are referred to the superfamily Chirostyloidea to include the Chirostylidae and Kiwaidae. A considerable amount of research highlighting morphological differences supporting this split is discussed. The Galatheoidea sensu stricto is restricted to the families Galatheidae and Porcellanidae, and diagnoses for both Chirostyloidea and Galatheoidea are provided. Present results highlight the need for a detailed revision of a number of taxa, challenge some currently used morphological synapomorphies, and emphasise the need for integrated studies with wide taxon sampling and multiple data sources to resolve complex phylogenetic questions. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. Structure of a group A streptococcal phage-encoded virulence factor reveals a catalytically active triple-stranded beta-helix.

    PubMed

    Smith, Nicola L; Taylor, Edward J; Lindsay, Anna-Marie; Charnock, Simon J; Turkenburg, Johan P; Dodson, Eleanor J; Davies, Gideon J; Black, Gary W

    2005-12-06

    Streptococcus pyogenes (group A Streptococcus) causes severe invasive infections including scarlet fever, pharyngitis (streptococcal sore throat), skin infections, necrotizing fasciitis (flesh-eating disease), septicemia, erysipelas, cellulitis, acute rheumatic fever, and toxic shock. The conversion from nonpathogenic to toxigenic strains of S. pyogenes is frequently mediated by bacteriophage infection. One of the key bacteriophage-encoded virulence factors is a putative "hyaluronidase," HylP1, a phage tail-fiber protein responsible for the digestion of the S. pyogenes hyaluronan capsule during phage infection. Here we demonstrate that HylP1 is a hyaluronate lyase. The 3D structure, at 1.8-angstroms resolution, reveals an unusual triple-stranded beta-helical structure and provides insight into the structural basis for phage tail assembly and the role of phage tail proteins in virulence. Unlike the triple-stranded beta-helix assemblies of the bacteriophage T4 injection machinery and the tailspike endosialidase of the Escherichia coli K1 bacteriophage K1F, HylP1 possesses three copies of the active center on the triple-helical fiber itself without the need for an accessory catalytic domain. The triple-stranded beta-helix is not simply a structural scaffold, as previously envisaged; it is harnessed to provide a 200-angstroms-long substrate-binding groove for the optimal reduction in hyaluronan viscosity to aid phage penetration of the capsule.

  13. Microbial nitrilases: versatile, spiral forming, industrial enzymes.

    PubMed

    Thuku, R N; Brady, D; Benedik, M J; Sewell, B T

    2009-03-01

    The nitrilases are enzymes that convert nitriles to the corresponding acid and ammonia. They are members of a superfamily, which includes amidases and occur in both prokaryotes and eukaryotes. The superfamily is characterized by having a homodimeric building block with a alpha beta beta alpha-alpha beta beta alpha sandwich fold and an active site containing four positionally conserved residues: cys, glu, glu and lys. Their high chemical specificity and frequent enantioselectivity makes them attractive biocatalysts for the production of fine chemicals and pharmaceutical intermediates. Nitrilases are also used in the treatment of toxic industrial effluent and cyanide remediation. The superfamily enzymes have been visualized as dimers, tetramers, hexamers, octamers, tetradecamers, octadecamers and variable length helices, but all nitrilase oligomers have the same basic dimer interface. Moreover, in the case of the octamers, tetradecamers, octadecamers and the helices, common principles of subunit association apply. While the range of industrially interesting reactions catalysed by this enzyme class continues to increase, research efforts are still hampered by the lack of a high resolution microbial nitrilase structure which can provide insights into their specificity, enantioselectivity and the mechanism of catalysis. This review provides an overview of the current progress in elucidation of structure and function in this enzyme class and emphasizes insights that may lead to further biotechnological applications.

  14. Cytokine-induced (interleukins-3, -6 and -8 and tumour necrosis factor-beta) activation and deactivation of human neutrophils.

    PubMed Central

    Brom, J; König, W

    1992-01-01

    The effect of various cytokines [interleukin-3(IL-3), IL-6, IL-8, tumour necrosis factor-beta (TNF-beta)] on human neutrophils (PMN) was analysed with regard to the generation of leukotrienes and the involvement of guanosine triphosphate (GTP)-binding proteins (G proteins). Incubation of cytochalasin B-pretreated PMN with cytokines alone did not lead to a generation of leukotrienes. However, the cytokines affected the formyl-methionyl-leucyl-phenylalanine-(FMLP)-induced formation of leukotrienes in a time-dependent manner. Preincubation of the cells with the different cytokines for short periods (15 seconds at 37 degrees) enhanced the subsequent FMLP-induced leukotriene generation, whereas preincubation for prolonged times resulted in a reduced formation of leukotrienes. These results correlated with the respective G protein-associated guanosine triphosphatase (GTPase) activities within isolated membrane fractions. The present study indicates a modulation of the FMLP-induced leukotriene formation by diverse cytokines via interaction with the GTP-binding proteins. PMID:1312995

  15. Geomorphology Drives Amphibian Beta Diversity in Atlantic Forest Lowlands of Southeastern Brazil

    PubMed Central

    Luiz, Amom Mendes; Leão-Pires, Thiago Augusto; Sawaya, Ricardo J.

    2016-01-01

    Beta diversity patterns are the outcome of multiple processes operating at different scales. Amphibian assemblages seem to be affected by contemporary climate and dispersal-based processes. However, historical processes involved in present patterns of beta diversity remain poorly understood. We assess and disentangle geomorphological, climatic and spatial drivers of amphibian beta diversity in coastal lowlands of the Atlantic Forest, southeastern Brazil. We tested the hypothesis that geomorphological factors are more important in structuring anuran beta diversity than climatic and spatial factors. We obtained species composition via field survey (N = 766 individuals), museum specimens (N = 9,730) and literature records (N = 4,763). Sampling area was divided in four spatially explicit geomorphological units, representing historical predictors. Climatic descriptors were represented by the first two axis of a Principal Component Analysis. Spatial predictors in different spatial scales were described by Moran Eigenvector Maps. Redundancy Analysis was implemented to partition the explained variation of species composition by geomorphological, climatic and spatial predictors. Moreover, spatial autocorrelation analyses were used to test neutral theory predictions. Beta diversity was spatially structured in broader scales. Shared fraction between climatic and geomorphological variables was an important predictor of species composition (13%), as well as broad scale spatial predictors (13%). However, geomorphological variables alone were the most important predictor of beta diversity (42%). Historical factors related to geomorphology must have played a crucial role in structuring amphibian beta diversity. The complex relationships between geomorphological history and climatic gradients generated by the Serra do Mar Precambrian basements were also important. We highlight the importance of combining spatially explicit historical and contemporary predictors for understanding

  16. Geomorphology Drives Amphibian Beta Diversity in Atlantic Forest Lowlands of Southeastern Brazil.

    PubMed

    Luiz, Amom Mendes; Leão-Pires, Thiago Augusto; Sawaya, Ricardo J

    2016-01-01

    Beta diversity patterns are the outcome of multiple processes operating at different scales. Amphibian assemblages seem to be affected by contemporary climate and dispersal-based processes. However, historical processes involved in present patterns of beta diversity remain poorly understood. We assess and disentangle geomorphological, climatic and spatial drivers of amphibian beta diversity in coastal lowlands of the Atlantic Forest, southeastern Brazil. We tested the hypothesis that geomorphological factors are more important in structuring anuran beta diversity than climatic and spatial factors. We obtained species composition via field survey (N = 766 individuals), museum specimens (N = 9,730) and literature records (N = 4,763). Sampling area was divided in four spatially explicit geomorphological units, representing historical predictors. Climatic descriptors were represented by the first two axis of a Principal Component Analysis. Spatial predictors in different spatial scales were described by Moran Eigenvector Maps. Redundancy Analysis was implemented to partition the explained variation of species composition by geomorphological, climatic and spatial predictors. Moreover, spatial autocorrelation analyses were used to test neutral theory predictions. Beta diversity was spatially structured in broader scales. Shared fraction between climatic and geomorphological variables was an important predictor of species composition (13%), as well as broad scale spatial predictors (13%). However, geomorphological variables alone were the most important predictor of beta diversity (42%). Historical factors related to geomorphology must have played a crucial role in structuring amphibian beta diversity. The complex relationships between geomorphological history and climatic gradients generated by the Serra do Mar Precambrian basements were also important. We highlight the importance of combining spatially explicit historical and contemporary predictors for understanding

  17. Identification of the S-transferase like superfamily bacillithiol transferases encoded by Bacillus subtilis

    PubMed Central

    Perera, Varahenage R.; Lapek, John D.; Newton, Gerald L.; Gonzalez, David J.; Pogliano, Kit

    2018-01-01

    Bacillithiol is a low molecular weight thiol found in Firmicutes that is analogous to glutathione, which is absent in these bacteria. Bacillithiol transferases catalyze the transfer of bacillithiol to various substrates. The S-transferase-like (STL) superfamily contains over 30,000 putative members, including bacillithiol transferases. Proteins in this family are extremely divergent and are related by structural rather than sequence similarity, leaving it unclear if all share the same biochemical activity. Bacillus subtilis encodes eight predicted STL superfamily members, only one of which has been shown to be a bacillithiol transferase. Here we find that the seven remaining proteins show varying levels of metal dependent bacillithiol transferase activity. We have renamed the eight enzymes BstA-H. Mass spectrometry and gene expression studies revealed that all of the enzymes are produced to varying levels during growth and sporulation, with BstB and BstE being the most abundant and BstF and BstH being the least abundant. Interestingly, several bacillithiol transferases are induced in the mother cell during sporulation. A strain lacking all eight bacillithiol transferases showed normal growth in the presence of stressors that adversely affect growth of bacillithiol-deficient strains, such as paraquat and CdCl2. Thus, the STL bacillithiol transferases represent a new group of proteins that play currently unknown, but potentially significant roles in bacillithiol-dependent reactions. We conclude that these enzymes are highly divergent, perhaps to cope with an equally diverse array of endogenous or exogenous toxic metabolites and oxidants. PMID:29451913

  18. 3-Phosphoinositide-dependent PDK1 negatively regulates transforming growth factor-beta-induced signaling in a kinase-dependent manner through physical interaction with Smad proteins.

    PubMed

    Seong, Hyun-A; Jung, Haiyoung; Kim, Kyong-Tai; Ha, Hyunjung

    2007-04-20

    We have reported previously that PDK1 physically interacts with STRAP, a transforming growth factor-beta (TGF-beta) receptor-interacting protein, and enhances STRAP-induced inhibition of TGF-beta signaling. In this study we show that PDK1 coimmunoprecipitates with Smad proteins, including Smad2, Smad3, Smad4, and Smad7, and that this association is mediated by the pleckstrin homology domain of PDK1. The association between PDK1 and Smad proteins is increased by insulin treatment but decreased by TGF-beta treatment. Analysis of the interacting proteins shows that Smad proteins enhance PDK1 kinase activity by removing 14-3-3, a negative regulator of PDK1, from the PDK1-14-3-3 complex. Knockdown of endogenous Smad proteins, including Smad3 and Smad7, by transfection with small interfering RNA produced the opposite trend and decreased PDK1 activity, protein kinase B/Akt phosphorylation, and Bad phosphorylation. Moreover, coexpression of Smad proteins and wild-type PDK1 inhibits TGF-beta-induced transcription, as well as TGF-beta-mediated biological functions, such as apoptosis and cell growth arrest. Inhibition was dose-dependent on PDK1, but no inhibition was observed in the presence of an inactive kinase-dead PDK1 mutant. In addition, confocal microscopy showed that wild-type PDK1 prevents translocation of Smad3 and Smad4 from the cytoplasm to the nucleus, as well as the redistribution of Smad7 from the nucleus to the cytoplasm in response to TGF-beta. Taken together, our results suggest that PDK1 negatively regulates TGF-beta-mediated signaling in a PDK1 kinase-dependent manner via a direct physical interaction with Smad proteins and that Smad proteins can act as potential positive regulators of PDK1.

  19. The emergence of non-cytolytic NK1.1+ T cells in the long-term culture of murine tumour-infiltrating lymphocytes: a possible role of transforming growth factor-beta.

    PubMed

    Tamada, K; Harada, M; Ito, O; Takenoyama, M; Mori, T; Matsuzaki, G; Nomoto, K

    1996-12-01

    The mechanism by which murine tumour-infiltrating lymphocytes (TIL) decreased their anti-tumour activity during an in vitro culture with interleukin-2 (IL-2) was investigated. A phenotype analysis revealed that the TIL cultured for 7 days (TIL-d7) were exclusively NKI.1- CD4- CD8+ CD3+ cells and that this population was replaced by natural killer (NK)1.1+ CD4- CD8 CD3+ cells by day 27 (TIL-d27) during the culture of TIL. The TIL-d7 cells showed a cytolytic activity against B16 melanoma, whereas the TIL-d27 cells had lost this activity, suggesting that the decrease in the anti tumour effect of TIL during the culture with IL-2 was due to their populational change. Analysis on the characteristics of the TIL-d27 cells revealed that they expressed skewed T-cell receptor (TCR) V beta 5 and increased mRNA expression of V alpha 14. In addition, they expressed transforming growth factor beta (TGF-beta) mRNA. Interestingly, TGF-beta augmented the proliferation of TIL-d27 cells under the presence of IL-2, but suppressed that of TIL-d7 cells. Moreover, the proliferation of TIL-d27 cells was suppressed by anti-TGF-beta monoclonal antibody. Collectively, these results suggest that, in contrast to its suppressive effect on anti-tumour effector T cells. TGF-beta could be an autocrine growth factor for NKL1.1+ T cells and thereby induce non-cytolytic NK1.1+ T cells in the long-term culture of TIL.

  20. mRNA Expression of Platelet-Derived Growth Factor Receptor-{beta} and C-KIT: Correlation With Pathologic Response to Cetuximab-Based Chemoradiotherapy in Patients With Rectal Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erben, Philipp; Horisberger, Karoline; Muessle, Benjamin

    2008-12-01

    Purpose: Deviant expression of platelet-derived growth factor receptor-{beta} (PDGFR{beta}) and c-kit was shown in patients with colorectal cancer. In the present study, mRNA expression of PDGFR{beta} and c-kit in 33 patients with locally advanced rectal cancer undergoing preoperative chemoradiotherapy with cetuximab/capecitabine/irinotecan in correlation with the tumor regression rate was investigated. Methods and Materials: Pretherapeutic biopsy cores and tumor material from the resected specimens were collected in parallel with normal rectal mucosa. The expression levels of PDGFR{beta} and c-kit were measured by quantitative polymerase chain reaction. Tumors were classified as good responders (tumor regression grade [TRG], 2-3) or poor responders (TRG,more » 0-1). Results: The TRG evaluation of the resected specimen was TRG 0-1 in 11 and TRG 2-3 in 22. The median normalized ratios in the pretreatment mucosa vs. tumor biopsy cores was as follows: PDGFR{beta} ratio of 15.2 vs. 49.5 (p <0.0001) and c-kit ratio of 0.94 vs. 0.67 (p = 0.014). The same tendency was observed for the median PDGFR{beta} ratios after chemoradiotherapy completion: 34.2 vs. 170.0 (p <0.0001). The PDGFR{beta} and c-kit mRNA expression values in the pretreatment tumor biopsy cores were lower than the values in the resected specimens: PDGFR{beta} ratio 49.5 vs. 170.0 (p = 0.0002) and c-kit ratio 0.67 vs. 1.1 (p = 0.0003). Nevertheless, no correlation was seen between the pretherapeutic PDGFR{beta} and c-kit mRNA expression and the pathologic regression rate. Conclusion: Cetuximab-based chemoradiotherapy increased PDGFR{beta} levels even further compared with the pretreatment samples and deserves further investigation.« less

  1. The Aldo-Keto Reductase Superfamily and its Role in Drug Metabolism and Detoxification

    PubMed Central

    Barski, Oleg A.; Tipparaju, Srinivas M.; Bhatnagar, Aruni

    2008-01-01

    The Aldo-Keto Reductase (AKR) superfamily comprises of several enzymes that catalyze redox transformations involved in biosynthesis, intermediary metabolism and detoxification. Substrates of the family include glucose, steroids, glycosylation end products, lipid peroxidation products, and environmental pollutants. These proteins adopt a (β/α)8 barrel structural motif interrupted by a number of extraneous loops and helixes that vary between proteins and bring structural identity to individual families. The human AKR family differs from the rodent families. Due to their broad substrate specificity, AKRs play an important role in the Phase II detoxification of a large number of pharmaceuticals, drugs, and xenobiotics. PMID:18949601

  2. Giant mini-clusters as possible origin of halo phenomena observed in super-families

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Among 91 mini-clusters from 30 high energy Chiron-type families in Chacaltaya emulsion chambers, there were observed several extremely large multiplicity clusters in the highest energy range, far beyond the average of ordinary type clusters. Some details of microscopic observation of those giant mini-clusters in nuclear emulsion plates and some phenomenological regularity found in common among them are described. Such giant mini-clusters are possible candidates for the origin of narrow symmetric single halo phenomena in X-ray films which are frequently observed in super-families of visible energy greater than 1,000 TeV.

  3. Evaluation of serum levels of C3 and C4 complement factors in patients with beta thalassemia major in Khuzestan Province, Southwest Iran.

    PubMed

    Ghafourian, Mehri; Esmaeili, Mehrnosh; Dashti-Gerdabi, Nader; Sadeghi, Alireza; Malekei Naseri, Ali; Kazemi, Akhtar

    2017-01-01

    Thalassemia syndrome is the most common genetic disorder in the world and infection is the second cause of death in these patients. Measurement of serum C3 and C4 complement factors in serum was done in 60 patients with beta thalassemia major in comparison with 30 healthy subjects as control group. The serum level of C3 and C4 complement factors in 60 patients with beta thalassemia major who were randomly selected from among the patients referred to Shafa Hospital of Ahvaz was evaluated and compared with 30 samples from healthy individuals with no history of recent infectious or autoimmune diseases. It should be noted that single-radial-immunodiffusion assay was used in this study. This study has shown a significant reduction in serum levels of C3 and C4 in patients compared to controls (P value < 0.05). Decreased synthesis or increased consumption of complement factors in patients receiving multiple blood transfusions might lead to continuous contact between the immune system and various antigens, causing nonstop use of complement factors, recurrent infections, changes in parameters of the immune system due to iron overload as well as exposure to infectious factors such as HBV, HCV, HIV, and HTLV through blood transfusion.

  4. A Pdx-1-Regulated Soluble Factor Activates Rat and Human Islet Cell Proliferation

    PubMed Central

    Hayes, Heather L.; Zhang, Lu; Becker, Thomas C.; Haldeman, Jonathan M.; Stephens, Samuel B.; Arlotto, Michelle; Moss, Larry G.; Newgard, Christopher B.

    2016-01-01

    The homeodomain transcription factor Pdx-1 has important roles in pancreas and islet development as well as in β-cell function and survival. We previously reported that Pdx-1 overexpression stimulates islet cell proliferation, but the mechanism remains unclear. Here, we demonstrate that overexpression of Pdx-1 triggers proliferation largely by a non-cell-autonomous mechanism mediated by soluble factors. Consistent with this idea, overexpression of Pdx-1 under the control of a β-cell-specific promoter (rat insulin promoter [RIP]) stimulates proliferation of both α and β cells, and overexpression of Pdx-1 in islets separated by a Transwell membrane from islets lacking Pdx-1 overexpression activates proliferation in the untreated islets. Microarray and gene ontology (GO) analysis identified inhibin beta-B (Inhbb), an activin subunit and member of the transforming growth factor β (TGF-β) superfamily, as a Pdx-1-responsive gene. Overexpression of Inhbb or addition of activin B stimulates rat islet cell and β-cell proliferation, and the activin receptors RIIA and RIIB are required for the full proliferative effects of Pdx-1 in rat islets. In human islets, Inhbb overexpression stimulates total islet cell proliferation and potentiates Pdx-1-stimulated proliferation of total islet cells and β cells. In sum, this study identifies a mechanism by which Pdx-1 induces a soluble factor that is sufficient to stimulate both rat and human islet cell proliferation. PMID:27620967

  5. Macrophage colony-stimulating factor accelerates wound healing and upregulates TGF-beta1 mRNA levels through tissue macrophages.

    PubMed

    Wu, L; Yu, Y L; Galiano, R D; Roth, S I; Mustoe, T A

    1997-10-01

    Macrophage colony-stimulating factor (M-CSF) is produced by many cell types involved in wound repair, yet it acts specifically on monocytes and macrophages. The monocyte-derived cell is thought to be important in wound healing, but the importance of the role of tissue macrophages in wound healing has not been well defined. Dermal ulcers were created in normal and ischemic ears of young rabbits. Either rhM-CSF (17 microg/wound) or buffer was applied to each wound. Wounds were bisected and analyzed histologically at Days 7 and 10 postwounding. The amounts of epithelial growth and granulation tissue deposition were measured in all wounds. The level of increase of TGF-beta1 mRNA level in M-CSF-treated wounds was examined using competitive RT-PCR. M-CSF increased new granulation tissue formation by 37% (N = 21, P < 0.01) and 50% (P < 0.01) after single and multiple treatments, respectively, in nonischemic wounds. TGF-beta1 mRNA levels in rhM-CSF-treated wounds increased 5.01-fold (N = 8) over vehicle-treated wounds under nonischemic conditions. In contrast, no effect could be detected in ischemic wounds treated with rhM-CSF, and these wounds only showed a 1.66-fold increase in TGF-beta1 mRNA levels when compared to ischemic wounds treated with vehicle alone. GAPDH, a housekeeping gene, showed no change. As mesenchymal cells lack receptors for M-CSF, the improved healing of wounds treated with topical rhM-CSF must reflect a generalized enhancement of activation and function of tissue macrophages, as demonstrated by upregulation of TGF-beta. The lack of effect under ischemic conditions suggests that either macrophage activity and/or response to M-CSF is adversely affected under those conditions; this may suggest the pathogenesis of impaired wound healing at the cellular level. Copyright 1997 Academic Press.

  6. Integrin {alpha}{beta}1, {alpha}{sub v}{beta}, {alpha}{sub 6}{beta} effectors p130Cas, Src and talin regulate carcinoma invasion and chemoresistance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sansing, Hope A.; Sarkeshik, Ali; Yates, John R.

    2011-03-11

    Research highlights: {yields} Proteomics of clustered integrin {alpha}{beta}1, {alpha}{sub v}{beta}, {alpha}{sub 6}{beta} receptors in oral carcinoma. {yields} p130Cas, Dek, Src and talin regulate oral carcinoma invasion. {yields} p130Cas, talin, Src and zyxin regulate oral carcinoma resistance to cisplatin. -- Abstract: Ligand engagement by integrins induces receptor clustering and formation of complexes at the integrin cytoplasmic face that controls cell signaling and cytoskeletal dynamics critical for adhesion-dependent processes. This study searches for a subset of integrin effectors that coordinates both tumor cell invasion and resistance to the chemotherapeutic drug cisplatin in oral carcinomas. Candidate integrin effectors were identified in a proteomicsmore » screen of proteins recruited to clustered integrin {alpha}{beta}1, {alpha}{sub v}{beta} or {alpha}{sub 6}{beta} receptors in oral carcinomas. Proteins with diverse functions including microtubule and actin binding proteins, and factors involved in trafficking, transcription and translation were identified in oral carcinoma integrin complexes. Knockdown of effectors in the oral carcinoma HN12 cells revealed that p130Cas, Dek, Src and talin were required for invasion through Matrigel. Disruption of talin or p130Cas by RNA interference increased resistance to cisplatin, whereas targeting Dek, Src or zyxin reduced HN12 resistance to cisplatin. Analysis of the spreading of HN12 cells on collagen I and laminin I revealed that a decrease in p130Cas or talin expression inhibited spreading on both matrices. Interestingly, a reduction in zyxin expression enhanced spreading on laminin I and inhibited spreading on collagen I. Reduction of Dek, Src, talin or zyxin expression reduced HN12 proliferation by 30%. Proliferation was not affected by a reduction in p130Cas expression. We conclude that p130Cas, Src and talin function in both oral carcinoma invasion and resistance to cisplatin.« less

  7. beta-Endorphin-induced analgesia is inhibited by synthetic analogs of beta-endorphin.

    PubMed

    Nicolas, P; Hammonds, R G; Li, C H

    1984-05-01

    Competitive antagonism of human beta-endorphin (beta h-EP)-induced analgesia by synthetic beta h-EP analogs with high in vitro opiate receptor binding to in vivo analgesic potency ratio has been demonstrated. A parallel shift of the dose-response curve for analgesia to the right was observed when either beta h-EP or [ Trp27 ] -beta h-EP was coinjected with various doses of [Gln8, Gly31 ]-beta h-EP-Gly-Gly-NH2, [Arg9,19,24,28,29]-beta h-EP, or [ Cys11 ,26, Phe27 , Gly31 ]-beta h-EP. It was estimated that the most potent antagonist, [Gln8, Gly31 ]-beta h-EP-Gly-NH2, is at least 200 times more potent than naloxone.

  8. beta-Endorphin-induced analgesia is inhibited by synthetic analogs of beta-endorphin.

    PubMed Central

    Nicolas, P; Hammonds, R G; Li, C H

    1984-01-01

    Competitive antagonism of human beta-endorphin (beta h-EP)-induced analgesia by synthetic beta h-EP analogs with high in vitro opiate receptor binding to in vivo analgesic potency ratio has been demonstrated. A parallel shift of the dose-response curve for analgesia to the right was observed when either beta h-EP or [ Trp27 ] -beta h-EP was coinjected with various doses of [Gln8, Gly31 ]-beta h-EP-Gly-Gly-NH2, [Arg9,19,24,28,29]-beta h-EP, or [ Cys11 ,26, Phe27 , Gly31 ]-beta h-EP. It was estimated that the most potent antagonist, [Gln8, Gly31 ]-beta h-EP-Gly-NH2, is at least 200 times more potent than naloxone. PMID:6328494

  9. Angiotensin II increases CTGF expression via MAPKs/TGF-{beta}1/TRAF6 pathway in atrial fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Jun; Liu, Xu, E-mail: xkliuxu@yahoo.cn; Wang, Quan-xing, E-mail: shmywqx@126.com

    2012-10-01

    The activation of transforming growth factor-{beta}1(TGF-{beta}1)/Smad signaling pathway and increased expression of connective tissue growth factor (CTGF) induced by angiotensin II (AngII) have been proposed as a mechanism for atrial fibrosis. However, whether TGF{beta}1/non-Smad signaling pathways involved in AngII-induced fibrogenetic factor expression remained unknown. Recently tumor necrosis factor receptor associated factor 6 (TRAF6)/TGF{beta}-associated kinase 1 (TAK1) has been shown to be crucial for the activation of TGF-{beta}1/non-Smad signaling pathways. In the present study, we explored the role of TGF-{beta}1/TRAF6 pathway in AngII-induced CTGF expression in cultured adult atrial fibroblasts. AngII (1 {mu}M) provoked the activation of P38 mitogen activated proteinmore » kinase (P38 MAPK), extracellular signal-regulated kinase 1/2(ERK1/2) and c-Jun NH(2)-terminal kinase (JNK). AngII (1 {mu}M) also promoted TGF{beta}1, TRAF6, CTGF expression and TAK1 phosphorylation, which were suppressed by angiotensin type I receptor antagonist (Losartan) as well as p38 MAPK inhibitor (SB202190), ERK1/2 inhibitor (PD98059) and JNK inhibitor (SP600125). Meanwhile, both TGF{beta}1 antibody and TRAF6 siRNA decreased the stimulatory effect of AngII on TRAF6, CTGF expression and TAK1 phosphorylation, which also attenuated AngII-induced atrial fibroblasts proliferation. In summary, the MAPKs/TGF{beta}1/TRAF6 pathway is an important signaling pathway in AngII-induced CTGF expression, and inhibition of TRAF6 may therefore represent a new target for reversing Ang II-induced atrial fibrosis. -- Highlights: Black-Right-Pointing-Pointer MAPKs/TGF{beta}1/TRAF6 participates in AngII-induced CTGF expression in atrial fibroblasts. Black-Right-Pointing-Pointer TGF{beta}1/TRAF6 participates in AngII-induced atrial fibroblasts proliferation. Black-Right-Pointing-Pointer TRAF6 may represent a new target for reversing Ang II-induced atrial fibrosis.« less

  10. RACK1 binds to Smad3 to modulate transforming growth factor-beta1-stimulated alpha2(I) collagen transcription in renal tubular epithelial cells.

    PubMed

    Okano, Kazuhiro; Schnaper, H William; Bomsztyk, Karol; Hayashida, Tomoko

    2006-09-08

    Although it is clear that transforming growth factor-beta1 (TGF-beta1) is critical for renal fibrogenesis, the complexity of the involved mechanisms is increasingly apparent. TGF-beta1 stimulates phosphorylation of Smad2/3 and activates other signaling molecules as well. The molecular link between these other kinases and Smads is not known. We sought new binding partners for Smad3 in renal cells and identified receptor for activated protein kinase C 1 (RACK1) as a novel binding partner of Smad3. The linker region of Smad3 and the tryptophan-aspartic acid repeat 6 and 7 of RACK1 are sufficient for the association. RACK1 also interacts with Smad3 in the human kidney epithelial cell line, HKC. Silencing RACK1 increases transcriptional activity of TGF-beta1-responsive promoter sequences of the Smad binding element (SBE), p3TP-Lux, and alpha2(I) collagen. Conversely, overexpressed RACK1 negatively modulates alpha2(I) collagen transcriptional activity in TGF-beta1-stimulated cells. RACK1 did not affect phosphorylation of Smad3 at the C terminus or in the linker region. However, RACK1 reduced direct binding of Smad3 to the SBE motif. Mutating a RACK1 tyrosine at residue 246, but not at 228, decreased the inhibitory effect of RACK1 on both alpha2(I) collagen promoter activity and Smad binding to SBE induced by TGF-beta1. These results suggest that RACK1 modulates transcription of alpha2(I) collagen by TGF-beta1 through interference with Smad3 binding to the gene promoter.

  11. Phospholipase A2 superfamily members play divergent roles after spinal cord injury

    PubMed Central

    López-Vales, Rubèn; Ghasemlou, Nader; Redensek, Adriana; Kerr, Bradley J.; Barbayianni, Efrosini; Antonopoulou, Georgia; Baskakis, Constantinos; Rathore, Khizr I.; Constantinou-Kokotou, Violetta; Stephens, Daren; Shimizu, Takao; Dennis, Edward A.; Kokotos, George; David, Samuel

    2011-01-01

    Spinal cord injury (SCI) results in permanent loss of motor functions. A significant aspect of the tissue damage and functional loss may be preventable as it occurs, secondary to the trauma. We show that the phospholipase A2 (PLA2) superfamily plays important roles in SCI. PLA2 enzymes hydrolyze membrane glycerophospholipids to yield a free fatty acid and lysophospholipid. Some free fatty acids (arachidonic acid) give rise to eicosanoids that promote inflammation, while some lysophospholipids (lysophosphatidylcholine) cause demyelination. We show in a mouse model of SCI that two cytosolic forms [calcium-dependent PLA2 group IVA (cPLA2 GIVA) and calcium-independent PLA2 group VIA (iPLA2 GVIA)], and a secreted form [secreted PLA2 group IIA (sPLA2 GIIA)] are up-regulated. Using selective inhibitors and null mice, we show that these PLA2s play differing roles. cPLA2 GIVA mediates protection, whereas sPLA2 GIIA and, to a lesser extent, iPLA2 GVIA are detrimental. Furthermore, completely blocking all three PLA2s worsens outcome, while the most beneficial effects are seen by partial inhibition of all three. The partial inhibitor enhances expression of cPLA2 and mediates its beneficial effects via the prostaglandin EP1 receptor. These findings indicate that drugs that inhibit detrimental forms of PLA2 (sPLA2 and iPLA2) and up-regulate the protective form (cPLA2) may be useful for the treatment of SCI.—López-Vales, R., Ghasemlou, N., Redensek, A., Kerr, B. J., Barbayianni, E., Antonopoulou, G., Baskakis, C., Rathore, K. I., Constantinou-Kokotou, V., Stephens, D., Shimizu, T., Dennis, E. A., Kokotos, G., David, S. Phospholipase A2 superfamily members play divergent roles after spinal cord injury. PMID:21868473

  12. Transforming growth factor-beta1 transcriptionally activates CD34 and prevents induced differentiation of TF-1 cells in the absence of any cell-cycle effects.

    PubMed

    Marone, M; Scambia, G; Bonanno, G; Rutella, S; de Ritis, D; Guidi, F; Leone, G; Pierelli, L

    2002-01-01

    A number of cytokines modulate self-renewal and differentiation of hematopoietic elements. Among these is transforming growth factor beta1 (TGF-beta1), which regulates cell cycle and differentiation of hematopoietic cells, but has pleiotropic activities depending on the state of responsiveness of the target cells. It has been previously shown by us and other authors that TGF-beta1 maintains human CD34(+) hematopoietic progenitors in an undifferentiated state, independently of any cell cycle effects, and that depletion of TGF-beta1 triggers differentiation accompanied by a decrease in CD34 antigen expression. In the present work, we show that exogenous TGF-beta1 upregulates the human CD34 antigen in the CD34(+) cell lines TF-1 and KG-1a, but not in the more differentiated CD34(-) cell lines HL-60 and K-562. We further studied this effect in the pluripotent erythroleukemia cell line TF-1. Here, TGF-beta1 did not effect cell growth, but induced transcriptional activation of full-length CD34 and prevented differentiation induced by differentiating agents. This effect was associated with nuclear translocation of Smad-2, activation of TAK-1, and with a dramatic decrease in p38 phosphorylation. In other systems TGF-beta1 has been shown to activate a TGF-beta-activated kinase 1 (TAK1), which in turn, activates p38. The specific inhibitor of p38 phosphorylation, SB202190, also increased CD34 RNA expression, indicating the existence of a link between p-38 inhibition by TGF-beta1 and CD34 overexpression. Our data demonstrate that TGF-beta1 transcriptionally activates CD34 and prevents differentiation of TF-1 cells by acting independently through the Smad, TAK1 and p38 pathways, and thus provide important clues for the understanding of hematopoietic development and a potential tool to modify response of hematopoietic cells to mitogens or differentiating agents.

  13. AE activity during transient beta drops in high poloidal beta discharges

    NASA Astrophysics Data System (ADS)

    Huang, J.; Gong, X. Z.; Ren, Q. L.; Ding, S. Y.; Qian, J. P.; Pan, C. K.; Li, G. Q.; Heidbrink, W. W.; Garofalo, A. M.; McClenaghan, J.

    2016-10-01

    Enhanced AE activity has been observed during transient beta drops in high poloidal beta DIII-D discharges with internal transport barriers (ITBs). These drops in beta are believed to be caused by n=1 external kink modes. In some discharges, beta recovers within 200 ms but, in others, beta stays suppressed. A typical discharge has βP 3, qmin 3, and q95 12. The drop in beta affects both fast ions and thermal particles, and a drop is also observed in the density and rotation. The enhanced AE activity follows the instability that causes the beta drop, is largest at the lowest beta, and subsides as beta recovers. MHD stability analysis is planned. A database study of the plasma conditions associated with the collapse will be also presented. Supported in part by the US Department of Energy under DE-FC02-04ER54698, DE-AC05-06OR23100, and by the National Natural Science Foundation of China 11575249, and the National Magnetic Confinement Fusion Program of China No. 2015GB110005.

  14. Periodontal wound healing/regeneration following implantation of recombinant human growth/differentiation factor-5 in a beta-tricalcium phosphate carrier into one-wall intrabony defects in dogs.

    PubMed

    Lee, Jung-Seok; Wikesjö, Ulf M E; Jung, Ui-Won; Choi, Seong-Ho; Pippig, Susanne; Siedler, Michael; Kim, Chong-Kwan

    2010-04-01

    Recombinant human growth/differentiation factor-5 (rhGDF-5) is being evaluated as a candidate therapy in support of periodontal regeneration. The objective of this study was to evaluate periodontal wound healing/regeneration following the application of rhGDF-5 on a particulate beta-tricalcium phosphate (beta-TCP) carrier using an established defect model. Bilateral 4 x 5 mm (width x depth), one-wall, critical-size, intrabony periodontal defects were surgically created at the mandibular second and fourth pre-molar teeth in 15 Beagle dogs. Unilateral defects in five animals received rhGDF-5/beta-TCP (Scil Technology GmbH); five animals received beta-TCP solo; and five animals served as sham-surgery controls. Contralateral sites received treatments reported elsewhere. The animals were sacrificed following an 8-week healing interval for histological examination. Clinical healing was generally uneventful. Sites implanted with rhGDF-5/beta-TCP exhibited greater enhanced cementum and bone formation compared with beta-TCP and sham-surgery controls; cementum regeneration averaged (+/- SD) 3.83 +/- 0.73 versus 1.65 +/- 0.82 and 2.48 +/- 1.28 mm for the controls (p<0.05). Corresponding values for bone regeneration height averaged 3.26 +/- 0.30 versus 1.70 +/- 0.66 and 1.68 +/- 0.49 mm (p<0.05), and bone area 10.45 +/- 2.26 versus 6.31 +/- 2.41 and 3.00 +/- 1.97 mm(2) (p<0.05). Cementum regeneration included cellular/acellular cementum with or without a functionally oriented periodontal ligament. A non-specific connective tissue attachment was evident in the sham-surgery control. Controls exhibited mostly woven bone with primary osteons, whereas rhGDF-5/beta-TCP sites showed a noticeable extent of lamellar bone. Sites receiving rhGDF-5/beta-TCP or beta-TCP showed some residual beta-TCP granules apparently undergoing biodegradation without obvious differences between the sites. Sites receiving beta-TCP alone commonly showed residual beta-TCP granules sequestered in the

  15. The AvrE superfamily: ancestral type III effectors involved in suppression of pathogen-associated molecular pattern-triggered immunity.

    PubMed

    Degrave, Alexandre; Siamer, Sabrina; Boureau, Tristan; Barny, Marie-Anne

    2015-10-01

    The AvrE superfamily of type III effectors (T3Es) is widespread among type III-dependent phytobacteria and plays a crucial role during bacterial pathogenesis. Members of the AvrE superfamily are vertically inherited core effectors, indicating an ancestral acquisition of these effectors in bacterial plant pathogens. AvrE-T3Es contribute significantly to virulence by suppressing pathogen-associated molecular pattern (PAMP)-triggered immunity. They inhibit salicylic acid-mediated plant defences, interfere with vesicular trafficking and promote bacterial growth in planta. AvrE-T3Es elicit cell death in both host and non-host plants independent of any known plant resistance protein, suggesting an original interaction with the plant immune system. Recent studies in yeast have indicated that they activate protein phosphatase 2A and inhibit serine palmitoyl transferase, the first enzyme of the sphingolipid biosynthesis pathway. In this review, we describe the current picture that has emerged from studies of the different members of this fascinating large family. © 2015 BSPP AND JOHN WILEY & SONS LTD.

  16. The UDP-glycosyltransferase (UGT) superfamily expressed in humans, insects and plants: Animal-plant arms-race and co-evolution.

    PubMed

    Bock, Karl Walter

    2016-01-01

    UDP-glycosyltransferases (UGTs) are major phase II enzymes of a detoxification system evolved in all kingdoms of life. Lipophilic endobiotics such as hormones and xenobiotics including phytoalexins and drugs are conjugated by vertebrates mainly with glucuronic acid, by invertebrates and plants mainly with glucose. Plant-herbivore arms-race has been the major driving force for evolution of large UGT and other enzyme superfamilies. The UGT superfamily is defined by a common protein structure and signature sequence of 44 amino acids responsible for binding the UDP moiety of the sugar donor. Plants developed toxic phytoalexins stored as glucosides. Upon herbivore attack these conjugates are converted to highly reactive compounds. In turn, animals developed large families of UGTs in their intestine and liver to detoxify these phytoalexins. Interestingly, phytoalexins, exemplified by quercetin glucuronides and glucosinolate-derived isocyanates, are known insect attractant pigments in plants, and antioxidants, anti-inflammatory and chemopreventive compounds of humans. It is to be anticipated that phytochemicals may provide a rich source in beneficial drugs. Copyright © 2015. Published by Elsevier Inc.

  17. Beta-glycerophosphate accelerates RANKL-induced osteoclast formation in the presence of ascorbic acid.

    PubMed

    Noh, A Long Sae Mi; Yim, Mijung

    2011-03-01

    Despite numerous reports of the synergistic effects of beta-glycerophosphate and ascorbic acid in inducing the differentiation of osteoblasts, little is known about their roles in osteoclastic differentiation. Therefore, we investigated the effect of beta-glycerophosphate on osteoclastogenesis in the presence of ascorbic acid using primary mouse bone marrow cultures treated with macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor (NF)-kappaB ligand (RANKL). Beta-Glycerophosphate dose-dependently increased RANKL-induced osteoclast formation in the presence of ascorbic acid. This stimulatory effect was apparent when beta-glycerophosphate and ascorbic acid were only added during the late stages of the culture period, indicating that they influence later events in osteoclastic differentiation. While the combination of beta-glycerophosphate and ascorbic acid inhibited RANKL-stimulated activation of ERK and p38, and degradation of IkappaB, it increased the induction of c-Fos and NFATc1. In addition, beta-glycerophosphate and ascorbic acid together enhanced the induction of COX-2 following RANKL stimulation. Taken together, our data suggest that beta-glycerophosphate and ascorbic acid have synergistic effects on osteoclast formation, increasing RANKL-mediated induction of c-Fos, NFATc1 and COX-2 in osteoclast precursors.

  18. Cache domains that are homologous to, but different from PAS domains comprise the largest superfamily of extracellular sensors in prokaryotes

    DOE PAGES

    Upadhyay, Amit A.; Fleetwood, Aaron D.; Adebali, Ogun; ...

    2016-04-06

    Cellular receptors usually contain a designated sensory domain that recognizes the signal. Per/Arnt/Sim (PAS) domains are ubiquitous sensors in thousands of species ranging from bacteria to humans. Although PAS domains were described as intracellular sensors, recent structural studies revealed PAS-like domains in extracytoplasmic regions in several transmembrane receptors. However, these structurally defined extracellular PAS-like domains do not match sequence-derived PAS domain models, and thus their distribution across the genomic landscape remains largely unknown. Here we show that structurally defined extracellular PAS-like domains belong to the Cache superfamily, which is homologous to, but distinct from the PAS superfamily. Our newly builtmore » computational models enabled identification of Cache domains in tens of thousands of signal transduction proteins including those from important pathogens and model organisms.Moreover, we show that Cache domains comprise the dominant mode of extracellular sensing in prokaryotes.« less

  19. Cache domains that are homologous to, but different from PAS domains comprise the largest superfamily of extracellular sensors in prokaryotes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upadhyay, Amit A.; Fleetwood, Aaron D.; Adebali, Ogun

    Cellular receptors usually contain a designated sensory domain that recognizes the signal. Per/Arnt/Sim (PAS) domains are ubiquitous sensors in thousands of species ranging from bacteria to humans. Although PAS domains were described as intracellular sensors, recent structural studies revealed PAS-like domains in extracytoplasmic regions in several transmembrane receptors. However, these structurally defined extracellular PAS-like domains do not match sequence-derived PAS domain models, and thus their distribution across the genomic landscape remains largely unknown. Here we show that structurally defined extracellular PAS-like domains belong to the Cache superfamily, which is homologous to, but distinct from the PAS superfamily. Our newly builtmore » computational models enabled identification of Cache domains in tens of thousands of signal transduction proteins including those from important pathogens and model organisms.Moreover, we show that Cache domains comprise the dominant mode of extracellular sensing in prokaryotes.« less

  20. Functional characterisation and cell specificity of BvSUT1, the transporter that loads sucrose into the phloem of sugar beet (Beta vulgaris L.) source leaves.

    PubMed

    Nieberl, P; Ehrl, C; Pommerrenig, B; Graus, D; Marten, I; Jung, B; Ludewig, F; Koch, W; Harms, K; Flügge, U-I; Neuhaus, H E; Hedrich, R; Sauer, N

    2017-05-01

    Sugar beet (Beta vulgaris L.) is one of the most important sugar-producing plants worldwide and provides about one third of the sugar consumed by humans. Here we report on molecular characterisation of the BvSUT1 gene and on the functional characterisation of the encoded transporter. In contrast to the recently identified tonoplast-localised sucrose transporter BvTST2.1 from sugar beet taproots, which evolved within the monosaccharide transporter (MST) superfamily, BvSUT1 represents a classical sucrose transporter and is a typical member of the disaccharide transporter (DST) superfamily. Transgenic Arabidopsis plants expressing the β-GLUCURONIDASE (GUS) reporter gene under control of the BvSUT1-promoter showed GUS histochemical staining of their phloem; an anti-BvSUT1-antiserum identified the BvSUT1 transporter specifically in phloem companion cells. After expression of BvSUT1 cDNA in bakers' yeasts (Saccharomyces cerevisiae) uptake characteristics of the BvSUT1 protein were studied. Moreover, the sugar beet transporter was characterised as a proton-coupled sucrose symporter in Xenopus laevis oocytes. Our findings indicate that BvSUT1 is the sucrose transporter that is responsible for loading of sucrose into the phloem of sugar beet source leaves delivering sucrose to the storage tissue in sugar beet taproot sinks. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.

  1. Crystal structure and potential physiological role of zebra fish thioesterase superfamily member 2 (fTHEM2)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Shanshan; Li, Han; Gao, Feng

    2015-08-07

    Thioesterase superfamily member 2 (THEM2) is an essential protein for mammalian cell proliferation. It belongs to the hotdog-fold thioesterase superfamily and catalyzes hydrolysis of thioester bonds of acyl-CoA in vitro, while its in vivo function remains unrevealed. In this study, Zebra fish was selected as a model organism to facilitate the investigations on THEM2. First, we solved the crystal structure of recombinant fTHEM2 at the resolution of 1.80 Å, which displayed a similar scaffolding as hTHEM2. Second, functional studies demonstrated that fTHEM2 is capable of hydrolyzing palmitoyl-CoA in vitro. In addition, injection of morpholino against fTHEM2 at one-cell stage resulted in distorted early embryomore » development, including delayed cell division, retarded development and increased death rate. The above findings validated our hypothesis that fTHEM2 could serve as an ideal surrogate for studying the physiological functions of THEM2. - Highlights: • The crystal structure of recombinant fTHEM2 is presented. • fTHEM2 is capable of hydrolyzing palmitoyl-CoA. • The influence of fTHEM2 on early embryo development is demonstrated.« less

  2. Classification of Rhizomonas suberifaciens, an unnamed Rhizomonas species, and Sphingomonas spp. in rRNA superfamily IV.

    PubMed

    van Bruggen, A H; Jochimsen, K N; Steinberger, E M; Segers, P; Gillis, M

    1993-01-01

    Thermal melting profiles of hybrids between 3H-labeled rRNA of Rhizomonas suberifaciens, the causal agent of corky root of lettuce, and chromosomal DNAs from 27 species of gram-negative bacteria indicated that the genus Rhizomonas belongs to superfamily IV of De Ley. On the basis of the melting temperatures of DNA hybrids with rRNAs from the type strains of R. suberifaciens, Sphingomonas paucimobilis, and Sphingomonas capsulata, Rhizomonas strains constitute a separate branch in superfamily IV, which is closely related to but separate from branches containing Zymomonas mobilis, Sphingomonas spp., and S. capsulata. Sphingomonas yanoikuyae and Rhizomonas sp. strain WI4 are located toward the base of the Rhizomonas rRNA branch. DNA-DNA hybridization indicated that S. yanoikuyae is equidistant from Rhizomonas sp. strain WI4 and S. paucimobilis. Sequences of 270 bp of 16S ribosomal DNAs from eight strains of Rhizomonas spp., eight strains of Sphingomonas spp., and Agrobacterium tumefaciens indicated that S. yanoikuyae and Rhizomonas sp. strains WI4 and CA16 are genetically more closely related to R. suberifaciens than to Sphingomonas spp. Thus, S. yanoikuyae may need to be transferred to the genus Rhizomonas on the basis of the results of further study.

  3. Intracellular Transport and Kinesin Superfamily Proteins: Structure, Function and Dynamics

    NASA Astrophysics Data System (ADS)

    Hirokawa, N.; Takemura, R.

    Using various molecular cell biological and molecular genetic approaches, we identified kinesin superfamily proteins (KIFs) and characterized their significant functions in intracellular transport, which is fundamental for cellular morphogenesis, functioning, and survival. We showed that KIFs not only transport various membranous organelles, proteins complexes and mRNAs fundamental for cellular functions but also play significant roles in higher brain functions such as memory and learning, determination of important developmental processes such as left-right asymmetry formation and brain wiring. We also elucidated that KIFs recognize and bind to their specific cargoes using scaffolding or adaptor protein complexes. Concerning the mechanism of motility, we discovered the simplest unique monomeric motor KIF1A and determined by molecular biophysics, cryoelectron microscopy and X-ray crystallography that KIF1A can move on a microtubule processively as a monomer by biased Brownian motion and by hydolyzing ATP.

  4. Effect of interlukin-1beta on proliferation of gastric epithelial cells in culture.

    PubMed

    Beales, Ian L P

    2002-04-05

    Helicobacter pylori is the main risk factor for the development of non-cardia gastric cancer. Increased proliferation of the gastric mucosa is a feature of H. pylori infection. Mucosal interkeukin-1beta production is increased in H. pylori infection and IL-1beta genotypes associated with increased pro-inflammatory activity are risk factors for the development of gastric cancer. The effect of IL-1beta on gastric epithelial cell proliferation has been examined in this study. AGS cells were cultured with IL-1beta. DNA synthesis was assed by [3H]thymidine incorporation and total viable cell numbers by MTT assay. IL-1beta dose dependently increased DNA synthesis and cell numbers. The enhanced proliferation was blocked by interleukin-1 receptor antagonist. Addition of neutralising antibody to GM-CSF reduced IL-1beta-stimulated proliferation by 31 +/- 4 %. GM-CSF alone significantly stimulated proliferation. Addition or neutralisation of IL-8 had no effect on basal or IL-1beta-stimulated proliferation. The tyrosine kinase inhibitor genistein completely blocked IL-1beta-stimulated proliferation and inhibition of the extracellular signal related kinase pathway with PD 98059 inhibited IL-1beta stimulated proliferation by 58 +/- 5 %. IL-1beta stimulates proliferation in gastric epithelial cells. Autocrine stimulation by GM-CSF contributes to this proliferative response. Signalling via tyrosine kinase activity is essential to the mitogenic response to IL-1beta. The extracellular signal related kinase pathway is involved in, but not essential to downstream signalling. IL-1beta may contribute to the hyperproliferation seen in H. pylori- infected gastric mucosa, and be involved in the carcinogenic process.

  5. The emergence of non-cytolytic NK1.1+ T cells in the long-term culture of murine tumour-infiltrating lymphocytes: a possible role of transforming growth factor-beta.

    PubMed Central

    Tamada, K; Harada, M; Ito, O; Takenoyama, M; Mori, T; Matsuzaki, G; Nomoto, K

    1996-01-01

    The mechanism by which murine tumour-infiltrating lymphocytes (TIL) decreased their anti-tumour activity during an in vitro culture with interleukin-2 (IL-2) was investigated. A phenotype analysis revealed that the TIL cultured for 7 days (TIL-d7) were exclusively NKI.1- CD4- CD8+ CD3+ cells and that this population was replaced by natural killer (NK)1.1+ CD4- CD8 CD3+ cells by day 27 (TIL-d27) during the culture of TIL. The TIL-d7 cells showed a cytolytic activity against B16 melanoma, whereas the TIL-d27 cells had lost this activity, suggesting that the decrease in the anti tumour effect of TIL during the culture with IL-2 was due to their populational change. Analysis on the characteristics of the TIL-d27 cells revealed that they expressed skewed T-cell receptor (TCR) V beta 5 and increased mRNA expression of V alpha 14. In addition, they expressed transforming growth factor beta (TGF-beta) mRNA. Interestingly, TGF-beta augmented the proliferation of TIL-d27 cells under the presence of IL-2, but suppressed that of TIL-d7 cells. Moreover, the proliferation of TIL-d27 cells was suppressed by anti-TGF-beta monoclonal antibody. Collectively, these results suggest that, in contrast to its suppressive effect on anti-tumour effector T cells. TGF-beta could be an autocrine growth factor for NKL1.1+ T cells and thereby induce non-cytolytic NK1.1+ T cells in the long-term culture of TIL. Images Figure 4 Figure 6 PMID:9014832

  6. TGFβ Superfamily Members Mediate Androgen Deprivation Therapy-Induced Obese Frailty in Male Mice

    PubMed Central

    Pan, Chunliu; Singh, Shalini; Sahasrabudhe, Deepak M.; Chakkalakal, Joe V.; Krolewski, John J.

    2016-01-01

    First line treatment for recurrent and metastatic prostate cancer is androgen deprivation therapy (ADT). Use of ADT has been increasing in frequency and duration, such that side effects increasingly impact patient quality of life. One of the most significant side effects of ADT is sarcopenia, which leads to a loss of skeletal muscle mass and function, resulting in a clinical disability syndrome known as obese frailty. Using aged mice, we developed a mouse model of ADT-induced sarcopenia that closely resembles the phenotype seen in patients, including loss of skeletal muscle strength, reduced lean muscle mass, and increased adipose tissue. Sarcopenia onset occurred about 6 weeks after castration and was blocked by a soluble receptor (ActRIIB-Fc) that binds multiple TGFβ superfamily members, including myostatin, growth differentiation factor 11, activin A, activin B, and activin AB. Analysis of ligand expression in both gastrocnemius and triceps brachii muscles demonstrates that each of these proteins is induced in response to ADT, in 1 of 3 temporal patterns. Specifically, activin A and activin AB levels increase and decline before onset of strength loss at 6 weeks after castration, and myostatin levels increase coincident with the onset of strength loss and then decline. In contrast, activin B and growth differentiation factor 11 levels increase after the onset of strength loss, 8–10 weeks after castration. The observed patterns of ligand induction may represent differential contributions to the development and/or maintenance of sarcopenia. We hypothesize that some or all of these ligands are targets for therapy to ameliorate ADT-induced sarcopenia in prostate cancer patients. PMID:27611336

  7. Calculating Capstone Depleted Uranium Aerosol Concentrations from Beta Activity Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szrom, Fran; Falo, Gerald A.; Parkhurst, MaryAnn

    2009-03-01

    Beta activity measurements were used as surrogate measurements of uranium mass in aerosol samples collected during the field testing phase of the Capstone Depleted Uranium (DU) Aerosol Study. These aerosol samples generated by the perforation of armored combat vehicles were used to characterize the depleted uranium (DU) source term for the subsequent human health risk assessment (HHRA) of Capstone aerosols. Establishing a calibration curve between beta activity measurements and uranium mass measurements is straightforward if the uranium isotopes are in equilibrium with their immediate short-lived, beta-emitting progeny. For DU samples collected during the Capstone study, it was determined that themore » equilibrium between the uranium isotopes and their immediate short lived, beta-emitting progeny had been disrupted when penetrators had perforated target vehicles. Adjustments were made to account for the disrupted equilibrium and for wall losses in the aerosol samplers. Correction factors for the disrupted equilibrium ranged from 0.16 to 1, and the wall loss correction factors ranged from 1 to 1.92.« less

  8. Down-regulation of transforming growth factor beta-2 expression is associated with the reduction of cyclosporin induced gingival overgrowth in rats treated with roxithromycin: an experimental study

    PubMed Central

    2009-01-01

    Background Gingival overgrowth (GO) is a common side effect of the chronic use of cyclosporine (CsA), an immunosuppressant widely used to prevent rejection in transplant patients. Recent studies have reported elevated levels of specific cytokines in gingival overgrowth tissue, particularly TGF-beta, suggesting that this growth factor plays a role in the accumulation of extracellular matrix materials. The effectiveness of azithromycin, a macrolide antibiotic, in the regression of this undesirable side effect has also been demonstrated. Methods In this study, we created an experimental model for assessing the therapeutic effect of roxithromycin in GO and the expression of transforming growth factor beta (TGF-beta2) through immunohistochemistry. We used four groups of rats totaling 32 individuals. GO was induced during five weeks and drug treatment was given on the 6th week as follows: group 1 received saline; group 2 received CsA and was treated with saline on the 6th week; group 3 received CsA and, on the 6th week, ampicilin; and group 4 received CsA during 5 weeks and, on the 6th week, was treated with roxithromycin. Results The results demonstrated that roxithromycin treatment was effective in reducing cyclosporine-induced GO in rats. Both epithelial and connective tissue showed a decrease in thickness and a significant reduction in TGF-beta2 expression, with a lower number of fibroblasts, reduction in fibrotic areas and decrease in inflammatory infiltrate. Conclusion The present data suggest that the down-regulation of TGF-beta2 expression may be an important mechanism of action by which roxithromycin inhibits GO. PMID:19995419

  9. The major facilitator superfamily transporter Knq1p modulates boron homeostasis in Kluyveromyces lactis.

    PubMed

    Svrbicka, Alexandra; Toth Hervay, Nora; Gbelska, Yvetta

    2016-03-01

    Boron is an essential micronutrient for living cells, yet its excess causes toxicity. To date, the mechanisms of boron toxicity are poorly understood. Recently, the ScATR1 gene has been identified encoding the main boron efflux pump in Saccharomyces cerevisiae. In this study, we analyzed the ScATR1 ortholog in Kluyveromyces lactis--the KNQ1 gene, to understand whether it participates in boron stress tolerance. We found that the KNQ1 gene, encoding a permease belonging to the major facilitator superfamily, is required for K. lactis boron tolerance. Deletion of the KNQ1 gene led to boron sensitivity and its overexpression increased K. lactis boron tolerance. The KNQ1 expression was induced by boron and the intracellular boron concentration was controlled by Knq1p. The KNQ1 promoter contains two putative binding motifs for the AP-1-like transcription factor KlYap1p playing a central role in oxidative stress defense. Our results indicate that the induction of the KNQ1 expression requires the presence of KlYap1p and that Knq1p like its ortholog ScAtr1p in S. cerevisiae functions as a boron efflux pump providing boron resistance in K. lactis.

  10. Correction factors for the ISO rod phantom, a cylinder phantom, and the ICRU sphere for reference beta radiation fields of the BSS 2

    NASA Astrophysics Data System (ADS)

    Behrens, R.

    2015-03-01

    The International Organization for Standardization (ISO) requires in its standard ISO 6980 that beta reference radiation fields for radiation protection be calibrated in terms of absorbed dose to tissue at a depth of 0.07 mm in a slab phantom (30 cm x 30 cm x 15 cm). However, many beta dosemeters are ring dosemeters and are, therefore, irradiated on a rod phantom (1.9 cm in diameter and 30 cm long), or they are eye dosemeters possibly irradiated on a cylinder phantom (20 cm in diameter and 20 cm high), or area dosemeters irradiated free in air with the conventional quantity value (true value) being defined in a sphere (30 cm in diameter, made of ICRU tissue (International Commission on Radiation Units and Measurements)). Therefore, the correction factors for the conventional quantity value in the rod, the cylinder, and the sphere instead of the slab (all made of ICRU tissue) were calculated for the radiation fields of 147Pm, 85Kr, 90Sr/90Y, and, 106Ru/106Rh sources of the beta secondary standard BSS 2 developed at PTB. All correction factors were calculated for 0° up to 75° (in steps of 15°) radiation incidence. The results are ready for implementation in ISO 6980-3 and have recently been (partly) implemented in the software of the BSS 2.

  11. Doses from beta radiation in sensitive layers of human lung and dose conversion factors due to 222Rn/220Rn progeny.

    PubMed

    Markovic, V M; Stevanovic, N; Nikezic, D

    2011-08-01

    Great deal of work has been devoted to determine doses from alpha particles emitted by (222)Rn and (220)Rn progeny. In contrast, contribution of beta particles to total dose has been neglected by most of the authors. The present work describes a study of the detriment of (222)Rn and (220)Rn progeny to the human lung due to beta particles. The dose conversion factor (DCF) was introduced to relate effective dose and exposure to radon progeny; it is defined as effective dose per unit exposure to inhaled radon or thoron progeny. Doses and DCFs were determined for beta radiation in sensitive layers of bronchi (BB) and bronchioles (bb), taking into account inhaled (222)Rn and (220)Rn progeny deposited in mucus and cilia layer. The nuclei columnar secretory and short basal cells were considered to be sensitive target layers. For dose calculation, electron-absorbed fractions (AFs) in the sensitive layers of the BB and bb regions were used. Activities in the fast and slow mucus of the BB and bb regions were obtained using the LUNGDOSE software developed earlier. Calculated DCFs due to beta radiation were 0.21 mSv/WLM for (222)Rn and 0.06 mSv/WLM for (220)Rn progeny. In addition, the influence of Jacobi room parameters on DCFs was investigated, and it was shown that DCFs vary with these parameters by up to 50%.

  12. Formulary considerations in selection of beta-blockers.

    PubMed

    Yedinak, K C

    1993-08-01

    dosage interval. In addition, beta-blockers with a long duration of action can often be administered once or twice daily, potentially leading to increased compliance and thereby improved effectiveness and economic efficiency. The presence of ISA is an important consideration because certain beta-blockers with ISA may be less effective than those without ISA for certain indications. Factors considered to be less important when making formulary decisions of choice of beta-blockers include the route of elimination, lipophilicity and presence of membrane stabilising activity.

  13. Characterization of a Commercial Silicon Beta Cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foxe, Michael P.; Hayes, James C.; Mayer, Michael F.

    Silicon detectors are of interest for the verification of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) due to their enhanced energy resolution compared to plastic scintillators beta cells. Previous work developing a figure-of-merit (FOM) for comparison of beta cells suggests that the minimum detectable activity (MDA) could be reduced by a factor of two to three with the use of silicon detectors. Silicon beta cells have been developed by CEA (France) and Lares Ltd. (Russia), with the PIPSBox developed by CEA being commercially available from Canberra for approximately $35k, but there is still uncertainty about the reproducibility of the capabilities in themore » field. PNNL is developing a high-resolution beta-gamma detector system in the shallow underground laboratory, which will utilize and characterize the operation of the PIPSBox detector. Throughout this report, we examine the capabilities of the PIPSBox as developed by CEA. The lessons learned through the testing and use of the PIPSBox will allow PNNL to strategically develop a silicon detector optimized to better suit the communities needs in the future.« less

  14. Supramolecular self-assemblies of beta-cyclodextrins with aromatic tethers: factors governing the helical columnar versus linear channel superstructures.

    PubMed

    Liu, Yu; Fan, Zhi; Zhang, Heng-Yi; Yang, Ying-Wei; Ding, Fei; Liu, Shuang-Xi; Wu, Xue; Wada, Takehiko; Inoue, Yoshihisa

    2003-10-31

    A series of 6-O-(p-substituted phenyl)-modified beta-cyclodextrin derivatives, i.e., 6-O-(4-bromophenyl)-beta-CD (1), 6-O-(4-nitrophenyl)-beta-CD (2), 6-O-(4-formylphenyl)-beta-CD (3), 6-phenylselenyl-6-deoxy-beta-CD (4), and 6-O-(4-hydroxybenzoyl)-beta-CD (5), were synthesized, and their inclusion complexation behavior in aqueous solution and self-assembling behavior in the solid state were comparatively studied by NMR spectroscopy, microcalorimetry, crystallography, and scanning tunneling microscopy. Interestingly, (seleno)ethers 1-4 and ester 5 displayed distinctly different self-assembling behavior in the solid state, affording a successively threading head-to-tail polymeric helical structure for the (seleno)ethers or a mutually penetrating tail-to-tail dimeric columnar channel structure for the ester. Combining the present and previous structures reported for the relevant beta-CD derivatives, we further deduce that the pivot heteroatom, through which the aromatic substituent is tethered to beta-CD, plays a critical role in determining the helix structure, endowing the 2-fold and 4-fold axes to the N/O- and S/Se-pivoted beta-CD aggregates, respectively. This means that one can control the self-assembling orientation, alignment, and helicity in the solid state by finely tuning the pivot atom and the tether length. Further NMR and calorimetric studies on the self-assembling behavior in aqueous solution revealed that the dimerization step is the key to the formation of linear polymeric supramolecular architecture, which is driven by favorable entropic contributions.

  15. New insights into the phylogeny of the TMBIM superfamily across the three of life: Comparative genomics and synteny networks reveal independent evolution of the BI and LFG families in plants.

    PubMed

    Gamboa-Tuz, Samuel D; Pereira-Santana, Alejandro; Zhao, Tao; Schranz, M Eric; Castano, Enrique; Rodriguez-Zapata, Luis C

    2018-04-25

    The Transmembrane BAX Inhibitor Motif containing (TMBIM) superfamily, divided into BAX Inhibitor (BI) and Lifeguard (LFG) families, comprises a group of cytoprotective cell death regulators conserved in prokaryotes and eukaryotes. However, no research has focused on the evolution of this superfamily in plants. We identified 685 TMBIM proteins in 171 organisms from Archaea, Bacteria, and Eukarya, and provided a phylogenetic overview of the whole TMBIM superfamily. Then, we used orthology and synteny network analyses to further investigate the evolution and expansion of the BI and LFG families in 48 plants from diverse taxa. Plant BI family forms a single monophyletic group; however, monocot BI sequences transposed to another genomic context during evolution. Plant LFG family, which expanded trough whole genome and tandem duplications, is subdivided in LFG I, LFG IIA, and LFG IIB major phylogenetic groups, and retains synteny in angiosperms. Moreover, two orthologous groups (OGs) are shared between bryophytes and seed plants. Other several lineage-specific OGs are present in plants. This work clarifies the phylogenetic classification of the TMBIM superfamily across the three domains of life. Furthermore, it sheds new light on the evolution of the BI and LFG families in plants providing a benchmark for future research. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Activin Plays a Key Role in the Maintenance of Long-Term Memory and Late-LTP

    ERIC Educational Resources Information Center

    Ageta, Hiroshi; Ikegami, Shiro; Miura, Masami; Masuda, Masao; Migishima, Rika; Hino, Toshiaki; Takashima, Noriko; Murayama, Akiko; Sugino, Hiromu; Setou, Mitsutoshi; Kida, Satoshi; Yokoyama, Minesuke; Hasegawa, Yoshihisa; Tsuchida, Kunihiro; Aosaki, Toshihiko; Inokuchi, Kaoru

    2010-01-01

    A recent study has revealed that fear memory may be vulnerable following retrieval, and is then reconsolidated in a protein synthesis-dependent manner. However, little is known about the molecular mechanisms of these processes. Activin [beta]A, a member of the TGF-[beta] superfamily, is increased in activated neuronal circuits and regulates…

  17. Induction and contribution of beta platelet-derived growth factor signalling by hepatic stellate cells to liver regeneration after partial hepatectomy in mice.

    PubMed

    Kocabayoglu, Peri; Zhang, David Y; Kojima, Kensuke; Hoshida, Yujin; Friedman, Scott L

    2016-06-01

    Hepatic stellate cells (HSCs) activate during injury to orchestrate the liver's inflammatory and fibrogenic responses. A critical feature of HSC activation is the rapid induction of beta platelet-derived growth factor (β-PDGFR), which drives cellular fibrogenesis and proliferation; in contrast, normal liver has minimal β-PDGFR expression. While the role of β-PDGFR is well established in liver injury, its expression and contribution during liver regeneration are unknown. The aim of this study was to determine whether β-PDGFR is induced during liver regeneration following partial hepatectomy (pHx), and to define its contribution to the regenerative response. Control mice or animals with HSC-specific β-PDGFR-depletion underwent two-thirds pHx followed by assessment of hepatocyte proliferation and expression of β-PDGFR. RNA-sequencing from whole liver tissue of both groups after pHx was used to uncover pathways regulated by β-PDGFR signalling in HSCs. Beta platelet-derived growth factor expression on HSCs was up-regulated within 24 h following pHx in control mice, whereas absence of β-PDGFR blunted the expansion of HSCs. Mice lacking β-PDGFR displayed prolonged increases of transaminase levels within 72 h following pHx. Hepatocyte proliferation was impaired within the first 24 h based on Ki-67 and PCNA expression in β-PDGFR-deficient mice. This was associated with dysregulated growth in the β-PDGFR-deficient mice based on RNAseq with pathway analysis, and real-time quantitative PCR, which demonstrated reduced expression of Hgf, Igfbp1, Mapk and Il-6. Beta platelet-derived growth factor is induced in HSCs following surgical pHx and its deletion in HSCs leads to prolonged liver injury. However, there is no significant difference in liver regeneration. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. The TULIP superfamily of eukaryotic lipid-binding proteins as a mediator of lipid sensing and transport.

    PubMed

    Alva, Vikram; Lupas, Andrei N

    2016-08-01

    The tubular lipid-binding (TULIP) superfamily has emerged in recent years as a major mediator of lipid sensing and transport in eukaryotes. It currently encompasses three protein families, SMP-like, BPI-like, and Takeout-like, which share a common fold. This fold consists of a long helix wrapped in a highly curved anti-parallel β-sheet, enclosing a central, lipophilic cavity. The SMP-like proteins, which include subunits of the ERMES complex and the extended synaptotagmins (E-Syts), appear to be mainly located at membrane contacts sites (MCSs) between organelles, mediating inter-organelle lipid exchange. The BPI-like proteins, which include the bactericidal/permeability-increasing protein (BPI), the LPS (lipopolysaccharide)-binding protein (LBP), the cholesteryl ester transfer protein (CETP), and the phospholipid transfer protein (PLTP), are either involved in innate immunity against bacteria through their ability to sense lipopolysaccharides, as is the case for BPI and LBP, or in lipid exchange between lipoprotein particles, as is the case for CETP and PLTP. The Takeout-like proteins, which are comprised of insect juvenile hormone-binding proteins and arthropod allergens, transport, where known, lipid hormones to target tissues during insect development. In all cases, the activity of these proteins is underpinned by their ability to bind large, hydrophobic ligands in their central cavity and segregate them away from the aqueous environment. Furthermore, where they are involved in lipid exchange, recent structural studies have highlighted their ability to establish lipophilic, tubular channels, either between organelles in the case of SMP domains or between lipoprotein particles in the case of CETP. Here, we review the current knowledge on the structure, versatile functions, and evolution of the TULIP superfamily. We propose a deep evolutionary split in this superfamily, predating the Last Eukaryotic Common Ancestor, between the SMP-like proteins, which act on

  19. Dominant expression of interleukin-10 and transforming growth factor-beta genes in activated T-cells of chronic active Epstein-Barr virus infection.

    PubMed

    Ohga, Shouichi; Nomura, Akihiko; Takada, Hidetoshi; Tanaka, Tamami; Furuno, Kenji; Takahata, Yasushi; Kinukawa, Naoko; Fukushima, Noriyasu; Imai, Shosuke; Hara, Toshiro

    2004-11-01

    Chronic active Epstein-Barr virus (EBV) infection is a chronic mononucleosis syndrome associated with clonal proliferation of EBV-carrying T-/natural killer (NK)-cells. High levels of circulating EBV and activated T-cells are sustained during the prolonged disease course, whereas it is not clear how ectopic EBV infection in T-/NK-cells has been established and maintained. To assess the biological role of activated T-cells in chronic active EBV infection (CAEBV), EBV DNA and cellular gene expressions in peripheral T-cells were quantified in CAEBV and infectious mononucleosis (IM) patients. In CAEBV, HLA-DR(+) T-cells had higher viral load and larger amounts of IFN gamma, IL-10, transforming growth factor-beta (TGF beta), and cytotoxic T lymphocyte antigen-4 (CTLA4) mRNA than HLA-DR(-)T-cells. HLA-DR(+) T cells of IM patients transcribed more IFN gamma and IL-10 than their HLA-DR(-)T cells. Expression levels of IFN gamma and forkhead box p3 (Foxp3) in CAEBV HLA-DR(+) T-cells were higher than in IM HLA-DR(+) T-cells. The effective variables to discriminate the positivity of HLA-DR were IL-10, IFN gamma, CTLA4, TGF beta, and IL-2 in the order of statistical weight. EBV load in CAEBV T-cells correlated with the expression levels of only IL-10 and TGF beta. These results suggest that CAEBV T-cells are activated to transcribe IFN gamma, IL-10, and TGF beta excessively, and the latter two genes are expressed preferentially in the EBV-infected subsets. The dominant expression of regulatory cytokines in T-cells may imply a viral evasion mechanism in the disease.

  20. Beta-adrenoceptor dysfunction after inhibition of NO synthesis

    NASA Technical Reports Server (NTRS)

    Whalen, E. J.; Johnson, A. K.; Lewis, S. J.

    2000-01-01

    G(s) protein-coupled beta-adrenoceptors rapidly desensitize on exposure to agonists in reconstituted membrane preparations, whereas rapid tachyphylaxis to beta-adrenoceptor-mediated vasodilation does not readily occur in vivo. This study examined the possibility that endothelium-derived nitrosyl factors prevent the rapid desensitization of beta-adrenoceptors in the vascular smooth muscle of resistance arteries in pentobarbital-anesthetized rats. The fall in mean arterial blood pressure and in hindquarter vascular resistance produced by the beta-adrenoceptor agonist isoproterenol (ISO, 0.1 to 10 microg/kg IV) was slightly but significantly smaller in rats treated with the NO synthase inhibitor N:(G)-nitro-L-arginine methyl ester (L-NAME, 100 micromol/kg IV) than in saline-treated rats. The ISO-induced fall in mesenteric resistance was similar in L-NAME-treated and in saline-treated rats. The fall in hindquarter vascular resistance and in mesenteric resistance produced by ISO (8 x 10 microg/kg IV) was subject to tachyphylaxis on repeated injection in rats treated with L-NAME (100 micromol/kg IV) but not in rats treated with saline. Injections of L-S:-nitrosocysteine (1200 nmol/kg IV), a lipophobic S:-nitrosothiol, before each injection of ISO (10 microg/kg IV) prevented tachyphylaxis to ISO in L-NAME-treated rats. The vasodilator effects of ISO (0.1 to 10 microg/kg IV) in L-NAME-treated rats that received 8 injections of ISO (10 microg/kg IV) were markedly smaller than in L-NAME-treated rats that received 8 injections of saline. These results indicate that (1) the vasodilator actions of ISO in pentobarbital-anesthetized rats only minimally involve the release of endothelium-derived nitrosyl factors, (2) the effects of ISO are subject to development of tachyphylaxis in L-NAME-treated rats, and (3) tachyphylaxis to ISO is prevented by L-S:-nitrosocysteine. These findings suggest that endothelium-derived nitrosyl factors may prevent desensitization of beta

  1. Temporally variable environments maintain more beta-diversity in Mediterranean landscapes

    NASA Astrophysics Data System (ADS)

    Martin, Beatriz; Ferrer, Miguel

    2015-10-01

    We examined the relationships between different environmental factors and the alpha and beta-diversity of terrestrial vertebrates (birds, mammals, amphibians and reptiles) in a Mediterranean region at the landscape level. We investigated whether the mechanisms underlying alpha and beta-diversity patterns are influenced by energy availability, habitat heterogeneity and temporal variability and if the drivers of the diversity patterns differed between both components of diversity. We defined alpha-diversity as synonym of species richness whereas beta-diversity was measured as distinctiveness. We evaluated a total of 13 different predictors using generalized linear mixed model (GLMM) analysis. Habitat spatial heterogeneity increased alpha-diversity, but contrastingly, it did not significantly affect beta-diversity among sites. Disturbed landscapes may show higher habitat spatial variation and higher alpha-diversity due to the contribution of highly generalist species that are wide-distributed and do not differ in composition (beta-diversity) among different sites within the region. Contrastingly, higher beta-diversity levels were negatively related to more stable sites in terms of temporal environmental variation. This negative relationship between environmental stability and beta-diversity levels is explained in terms of species adaptation to the local environmental conditions. Our study highlights the importance of temporal environmental variability in maintaining beta-diversity patterns under highly variable environmental conditions.

  2. Beta experiment

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A focused laser doppler velocimeter (LDV) system was developed for the measurement of atmospheric backscatter (beta) from aerosols at infrared wavelengths. A Doppler signal generator was used in mapping the coherent sensitive focal volume of a focused LDV system. System calibration data was analyzed during the flight test activity scheduled for the Beta system. These analyses were performed to determine the acceptability of the Beta measurement system's performance.

  3. General survey of hAT transposon superfamily with highlight on hobo element in Drosophila.

    PubMed

    Ladevèze, Véronique; Chaminade, Nicole; Lemeunier, Françoise; Periquet, Georges; Aulard, Sylvie

    2012-09-01

    The hAT transposons, very abundant in all kingdoms, have a common evolutionary origin probably predating the plant-fungi-animal divergence. In this paper we present their general characteristics. Members of this superfamily belong to Class II transposable elements. hAT elements share transposase, short terminal inverted repeats and eight base-pairs duplication of genomic target. We focus on hAT elements in Drosophila, especially hobo. Its distribution, dynamics and impact on genome restructuring in laboratory strains as well as in natural populations are reported. Finally, the evolutionary history of hAT elements, their domestication and use as transgenic tools are discussed.

  4. Synergy between TGF-beta 3 and NT-3 to promote the survival of spiral ganglia neurones in vitro.

    PubMed

    Marzella, P L; Clark, G M; Shepherd, R K; Bartlett, P F; Kilpatrick, T J

    1998-01-09

    Transforming growth factor-betas (TGF-betas) have been implicated in normal inner ear development and in promoting neuronal survival. Early rat post-natal spiral ganglion cells (SGC) in dissociated cell culture were used as a model of auditory innervation to test the trophic factors TGF-beta3 and neurotrophin-3 (NT-3) for their ability, individually or in combination, to promote neuronal survival. The findings from this study suggest that TGF-beta3 supports neuronal survival in a concentration-dependent manner. Moreover TGF-beta3 and NT-3-potentiated spiral ganglion neuronal survival in a synergistic fashion.

  5. Mass spectrometry analysis and transcriptome sequencing reveal glowing squid crystal proteins are in the same superfamily as firefly luciferase

    PubMed Central

    Gimenez, Gregory; Metcalf, Peter; Paterson, Neil G.; Sharpe, Miriam L.

    2016-01-01

    The Japanese firefly squid Hotaru-ika (Watasenia scintillans) produces intense blue light from photophores at the tips of two arms. These photophores are densely packed with protein microcrystals that catalyse the bioluminescent reaction using ATP and the substrate coelenterazine disulfate. The squid is the only organism known to produce light using protein crystals. We extracted microcrystals from arm tip photophores and identified the constituent proteins using mass spectrometry and transcriptome libraries prepared from arm tip tissue. The crystals contain three proteins, wsluc1–3, all members of the ANL superfamily of adenylating enzymes. They share 19 to 21% sequence identity with firefly luciferases, which produce light using ATP and the unrelated firefly luciferin substrate. We propose that wsluc1–3 form a complex that crystallises inside the squid photophores, and that in the crystal one or more of the proteins catalyses the production of light using coelenterazine disulfate and ATP. These results suggest that ANL superfamily enzymes have independently evolved in distant species to produce light using unrelated substrates. PMID:27279452

  6. Binding of TEM-1 beta-lactamase to beta-lactam antibiotics by frontal affinity chromatography.

    PubMed

    Chen, Xiu; Li, Yuhua; Zhang, Yan; Yang, Jianting; Bian, Liujiao

    2017-04-15

    TEM-1 beta-lactamases can accurately catalyze the hydrolysis of the beta-lactam rings in beta-lactam antibiotics, which make beta-lactam antibiotics lose its activity, and the prerequisite for the hydrolysis procedure in the binding interaction of TEM-1 beta-lactamases with beta-lactam antibiotics is the beta-lactam rings in beta-lactam antibiotics. Therefore, the binding of TEM-1 beta-lactamase to three beta-lactam antibiotics including penicillin G, cefalexin as well as cefoxitin was explored here by frontal affinity chromatography in combination with fluorescence spectra, adsorption and thermodynamic data in the temperature range of 278-288K under simulated physiological conditions. The results showed that all the binding of TEM-1 beta-lactamase to the three antibiotics were spontaneously exothermic processes with the binding constants of 8.718×10 3 , 6.624×10 3 and 2.244×10 3 (mol/L), respectively at 288K. All the TEM-1 beta-lactamases were immobilized on the surface of the stationary phase in the mode of monolayer and there existed only one type of binding sites on them. Each TEM-1 beta-lactamase bound with only one beta-lactam antibiotic and hydrogen bond interaction and Van der Waals force were the main forces between them. This work provided an insight into the binding interactions between TEM-1 beta-lactamases and beta-lactam antibiotics, which may be beneficial for the designing and developing of new substrates resistant to TEM-1 beta-lactamases. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. BetaTPred: prediction of beta-TURNS in a protein using statistical algorithms.

    PubMed

    Kaur, Harpreet; Raghava, G P S

    2002-03-01

    beta-turns play an important role from a structural and functional point of view. beta-turns are the most common type of non-repetitive structures in proteins and comprise on average, 25% of the residues. In the past numerous methods have been developed to predict beta-turns in a protein. Most of these prediction methods are based on statistical approaches. In order to utilize the full potential of these methods, there is a need to develop a web server. This paper describes a web server called BetaTPred, developed for predicting beta-TURNS in a protein from its amino acid sequence. BetaTPred allows the user to predict turns in a protein using existing statistical algorithms. It also allows to predict different types of beta-TURNS e.g. type I, I', II, II', VI, VIII and non-specific. This server assists the users in predicting the consensus beta-TURNS in a protein. The server is accessible from http://imtech.res.in/raghava/betatpred/

  8. Essential role of mitochondrial antiviral signaling, IFN regulatory factor (IRF)3, and IRF7 in Chlamydophila pneumoniae-mediated IFN-beta response and control of bacterial replication in human endothelial cells.

    PubMed

    Buss, Claudia; Opitz, Bastian; Hocke, Andreas C; Lippmann, Juliane; van Laak, Vincent; Hippenstiel, Stefan; Krüll, Matthias; Suttorp, Norbert; Eitel, Julia

    2010-03-15

    Chlamydophila pneumoniae infection of the vascular wall as well as activation of the transcription factor IFN regulatory factor (IRF)3 have been linked to development of chronic vascular lesions and atherosclerosis. The innate immune system detects invading pathogens by use of pattern recognition receptors, some of which are able to stimulate IRF3/7 activation and subsequent type I IFN production (e. g., IFN-beta). In this study, we show that infection of human endothelial cells with C. pneumoniae-induced production of IFN-beta, a cytokine that so far has been mainly associated with antiviral immunity. Moreover, C. pneumoniae infection led to IRF3 and IRF7 nuclear translocation in HUVECs and RNA interference experiments showed that IRF3 and IRF7 as well as the mitochondrial antiviral signaling (MAVS) were essential for IFN-beta induction. Finally, C. pneumoniae replication was enhanced in endothelial cells in which IRF3, IRF7, or MAVS expression was inhibited by small interfering RNA and attenuated by IFN-beta treatment. In conclusion, C. pneumoniae infection of endothelial cells activates an MAVS-, IRF3-, and IRF7-dependent signaling, which controls bacterial growth and might modulate development of vascular lesions.

  9. Gene encoding the human. beta. -hexosaminidase. beta. chain: Extensive homology of intron placement in the. alpha. - and. beta. -chain genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Proia, R.L.

    1988-03-01

    Lysosomal {beta}-hexosaminidase is composed of two structurally similar chains, {alpha} and {beta}, that are the products of different genes. Mutations in either gene causing {beta}-hexosaminidase deficiency result in the lysosomal storage disease GM2-gangliosidosis. To enable the investigation of the molecular lesions in this disorder and to study the evolutionary relationship between the {alpha} and {beta} chains, the {beta}-chain gene was isolated, and its organization was characterized. The {beta}-chain coding region is divided into 14 exons distributed over {approx}40 kilobases of DNA. Comparison with the {alpha}-chain gene revealed that 12 of the 13 introns interrupt the coding regions at homologous positions.more » This extensive sharing of intron placement demonstrates that the {alpha} and {beta} chains evolved by way of the duplication of a common ancestor.« less

  10. Sequencing of T-superfamily conotoxins from Conus virgo: pyroglutamic acid identification and disulfide arrangement by MALDI mass spectrometry.

    PubMed

    Mandal, Amit Kumar; Ramasamy, Mani Ramakrishnan Santhana; Sabareesh, Varatharajan; Openshaw, Matthew E; Krishnan, Kozhalmannom S; Balaram, Padmanabhan

    2007-08-01

    De novo mass spectrometric sequencing of two Conus peptides, Vi1359 and Vi1361, from the vermivorous cone snail Conus virgo, found off the southern Indian coast, is presented. The peptides, whose masses differ only by 2 Da, possess two disulfide bonds and an amidated C-terminus. Simple chemical modifications and enzymatic cleavage coupled with matrix assisted laser desorption ionization (MALDI) mass spectrometric analysis aided in establishing the sequences of Vi1359, ZCCITIPECCRI-NH(2), and Vi1361, ZCCPTMPECCRI-NH(2), which differ only at residues 4 and 6 (Z = pyroglutamic acid). The presence of the pyroglutamyl residue at the N-terminus was unambiguously identified by chemical hydrolysis of the cyclic amide, followed by esterification. The presence of Ile residues in both the peptides was confirmed from high-energy collision induced dissociation (CID) studies, using the observation of w(n)- and d(n)-ions as a diagnostic. Differential cysteine labeling, in conjunction with MALDI-MS/MS, permitted establishment of disulfide connectivity in both peptides as Cys2-Cys9 and Cys3-Cys10. The cysteine pattern clearly reveals that the peptides belong to the class of T-superfamily conotoxins, in particular the T-1 superfamily.

  11. TED, an autonomous and rare maize transposon of the mutator superfamily with a high gametophytic excision frequency.

    PubMed

    Li, Yubin; Harris, Linda; Dooner, Hugo K

    2013-09-01

    Mutator (Mu) elements, one of the most diverse superfamilies of DNA transposons, are found in all eukaryotic kingdoms, but are particularly numerous in plants. Most of the present knowledge on the transposition behavior of this superfamily comes from studies of the maize (Zea mays) Mu elements, whose transposition is mediated by the autonomous Mutator-Don Robertson (MuDR) element. Here, we describe the maize element TED (for Transposon Ellen Dempsey), an autonomous cousin that differs significantly from MuDR. Element excision and reinsertion appear to require both proteins encoded by MuDR, but only the single protein encoded by TED. Germinal excisions, rare with MuDR, are common with TED, but arise in one of the mitotic divisions of the gametophyte, rather than at meiosis. Instead, transposition-deficient elements arise at meiosis, suggesting that the double-strand breaks produced by element excision are repaired differently in mitosis and meiosis. Unlike MuDR, TED is a very low-copy transposon whose number and activity do not undergo dramatic changes upon inbreeding or outcrossing. Like MuDR, TED transposes mostly to unlinked sites and can form circular transposition products. Sequences closer to TED than to MuDR were detected only in the grasses, suggesting a rather recent evolutionary split from a common ancestor.

  12. Contrasting species and functional beta diversity in montane ant assemblages.

    PubMed

    Bishop, Tom R; Robertson, Mark P; van Rensburg, Berndt J; Parr, Catherine L

    2015-09-01

    Beta diversity describes the variation in species composition between sites and can be used to infer why different species occupy different parts of the globe. It can be viewed in a number of ways. First, it can be partitioned into two distinct patterns: turnover and nestedness. Second, it can be investigated from either a species identity or a functional-trait point of view. We aim to document for the first time how these two aspects of beta diversity vary in response to a large environmental gradient. Maloti-Drakensberg Mountains, southern Africa. We sampled ant assemblages along an extensive elevational gradient (900-3000 m a.s.l.) twice yearly for 7 years, and collected functional-trait information related to the species' dietary and habitat-structure preferences. We used recently developed methods to partition species and functional beta diversity into their turnover and nestedness components. A series of null models were used to test whether the observed beta diversity patterns differed from random expectations. Species beta diversity was driven by turnover, but functional beta diversity was composed of both turnover and nestedness patterns at different parts of the gradient. Null models revealed that deterministic processes were likely to be responsible for the species patterns but that the functional changes were indistinguishable from stochasticity. Different ant species are found with increasing elevation, but they tend to represent an increasingly nested subset of the available functional strategies. This finding is unique and narrows down the list of possible factors that control ant existence across elevation. We conclude that diet and habitat preferences have little role in structuring ant assemblages in montane environments and that some other factor must be driving the non-random patterns of species turnover. This finding also highlights the importance of distinguishing between different kinds of beta diversity.

  13. Plasma beta-endorphin, beta-lipotropin and corticotropin in polycystic ovarian disease.

    PubMed

    Laatikainen, T; Salminen, K; Virtanen, T; Apter, D

    1987-04-01

    In 9 women with polycystic ovarian disease (PCOD) and in 11 control subjects at the follicular phase of the normal cycle, blood samples were collected at 15-min intervals during a 2 h period of bed rest for the assay of beta-endorphin, beta-lipotropin, corticotropin, cortisol and prolactin. During the study period, the plasma levels of these hormones decreased more significantly in the PCOD than in the control group, suggesting that the PCOD patients had a more significant stress response to the puncture of the vein than the control subjects. The second hour of the study period was considered to represent resting levels of hormones. The mean resting levels (+/- S.E.) of the hormones between the PCOD and control groups, respectively, were as follows: beta-E, 2.0 +/- 0.4 vs. 1.1 +/- 0.1 pmol/l, p less than 0.05; beta-LPH, 3.4 +/- 0.6 vs. 2.1 +/- 0.5 pmol/l, N.S.; corticotropin, 2.0 +/- 0.3 vs. 1.1 +/- 0.5 pmol/l, p less than 0.05; cortisol, 176 +/- 24 vs. 128 +/- 16, N.S.; and prolactin; 3.9 +/- 0.6 vs. 5.6 +/- 1.2 ng/ml, N.S. These results confirm the previous findings on increased circulating levels of beta-E in PCOD. A concomitant increase of the plasma level of corticotropin suggests that the basal secretion of both beta-E and corticotropin from the anterior pituitary gland is increased in women with PCOD.

  14. Factors affecting the outcome of trabeculectomy: an analysis based on combined data from two phase III studies of an antibody to transforming growth factor beta2, CAT-152.

    PubMed

    Grehn, Franz; Holló, Gábor; Khaw, Peng; Overton, Barry; Wilson, Rosamund; Vogel, Roger; Smith, Zaid

    2007-10-01

    To determine the factors affecting trabeculectomy success. Retrospective analysis of 2 randomized controlled trials comparing an antibody against transforming growth factor beta2 (TGF-beta2) with vehicle (placebo) for prevention of fibrosis after trabeculectomy, in which there was no significant difference between the treatment groups. Data were from patients (n = 726) with a diagnosis of primary open-angle glaucoma, chronic angle-closure glaucoma, pseudoexfoliative glaucoma, or pigmentary glaucoma (PG) who had an intraocular pressure (IOP) > 21 mmHg and visual field or optic disc changes characteristic of glaucoma and were taking the maximum tolerated dose of medication before trabeculectomy. Patients had trabeculectomy and 4 subconjunctival injections of a human monoclonal antibody to TGF-beta2 (CAT-152) or a placebo. The definition of trabeculectomy success in the protocols was an IOP between 6 and 16 mmHg inclusive at months 6 and 12. Analyses of success used factors identified by ophthalmic experts. Covariates analyzed included patient age, black race, gender, time since diagnosis, primary diagnosis, country, diabetes, mean defect, cup-to-disc (C/D) ratio, suture type, anesthetic, flap type, IOP at listing for surgery, suture release/lysis, needling, reformed anterior chamber, wound leak, severe bleb vascularity, and bleb microcysts. A stepwise logistic regression model found the following predictors of treatment success: PG (odds ratio [OR], 4.11; 95% confidence interval [CI], 1.41-11.99), high C/D ratio (OR, 2.84; 95% CI, 1.15-6.99), and use of a corneal traction suture (OR, 1.67; 95% CI, 1.09-2.56). A negative relationship was found for black race (OR, 0.28; 95% CI, 0.13-0.62); treatment in France (OR, 0.35; 95% CI, 0.17-0.70), Sweden (OR, 0.17; 95% CI, 0.05-0.58), Spain (OR, 0.37; 95% CI, 0.21-0.68), Poland (OR, 0.53; 95% CI, 0.32-0.88), or Hungary (OR, 0.14; 95% CI, 0.06-0.34); and suture release/lysis (OR, 0.34; 95% CI, 0.22-0.53). The effect of needling

  15. Polypeptides having beta-glucosidase and beta-xylosidase activity and polynucleotides encoding same

    DOEpatents

    Morant, Marc Dominique

    2014-05-06

    The present invention relates to isolated polypeptides having beta-glucosidase activity, beta-xylosidase activity, or beta-glucosidase and beta-xylosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  16. The anti-fibrotic effect of liver growth factor is associated with decreased intrahepatic levels of matrix metalloproteinases 2 and 9 and transforming growth factor beta 1 in bile duct-ligated rats.

    PubMed

    Díaz-Gil, Juan J; García-Monzón, Carmelo; Rúa, Carmen; Martín-Sanz, Paloma; Cereceda, Rosa M; Miquilena-Colina, María E; Machín, Celia; Fernández-Martínez, Amalia; García-Cañero, Rarael

    2008-05-01

    Liver growth factor (LGF), a mitogen for liver cells, behaves as an anti-fibrotic agent even in extrahepatic sites, but its mechanistic basis is unknown. We aimed to determine the intrahepatic expression pattern of key modulators of liver fibrosis in bile duct-ligated rats (BDL) after injection of LGF. BDL rats received either LGF (4.5 microg/ratXdose, two doses/week, at time 0 or 2 or 5w after operation, depending on the group (BDL+LGF groups, n=20) or saline (BDL+S groups, n=20). Groups were compared in terms of fibrosis (histomorphometry), liver function (aminopyrine breath test), matrix metalloproteinases MMP-2 and MMP-9, transforming growth factor beta 1 (TGF-beta1) and liver endoglin content (Western blotting), and serum tissue inhibitor of metalloproteinases 1 (TIMP-1) levels (ELISA). In BDL+LGF rats, the fibrotic index was significantly lower at 5w, p=0.006, and at 8w, p=0.04, than in BDL+S rats. Liver function values in BDL+LGF rats were higher than those obtained in BDL+S rats (80% at 5w and 79% at 8w, versus 38% and 29%, p<0.01, taking healthy controls as 100%). Notably, in BDL+LGF rats the intrahepatic expression levels of both MMPs were lower at 2w (MMP-2, p=0.03; MMP-9, p=0.05) and 5w (MMP-2, p=0.05, MMP-9, p=0.04). In addition, the hepatic TGF-beta1 level in BDL+LGF rats was lower at 2w (36%, p=0.008), 5w (50%) and 8wk (37%), whereas intrahepatic endoglin expression remained constant in all BDL rats studied. LGF ameliorates liver fibrosis and improves liver function in BDL rats. The LGF-induced anti-fibrotic effect is associated with a decreased hepatic level of MMP-2, MMP-9 and TGF-beta1 in fibrotic rats.

  17. In vitro and in vivo gene therapy with CMV vector-mediated presumed dog beta-nerve growth factor in pyridoxine-induced neuropathy dogs.

    PubMed

    Chung, Jin Young; Choi, Jung Hoon; Shin, Il Seob; Choi, Eun Wha; Hwang, Cheol Yong; Lee, Sang Koo; Youn, Hwa Young

    2008-12-01

    Due to the therapeutic potential of gene therapy for neuronal injury, many studies of neurotrophic factors, vectors, and animal models have been performed. The presumed dog beta-nerve growth factor (pdbeta-NGF) was generated and cloned and its expression was confirmed in CHO cells. The recombinant pdbeta-NGF protein reacted with a human beta-NGF antibody and showed bioactivity in PC12 cells. The pdbeta-NGF was shown to have similar bioactivity to the dog beta-NGF. The recombinant pdbeta-NGF plasmid was administrated into the intrathecal space in the gene therapy group. Twenty-four hours after the vector inoculation, the gene therapy group and the positive control group were intoxicated with excess pyridoxine for seven days. Each morning throughout the test period, the dogs' body weight was taken and postural reaction assessments were made. Electrophysiological recordings were performed twice, once before the experiment and once after the test period. After the experimental period, histological analysis was performed. Dogs in the gene therapy group had no weight change and were normal in postural reaction assessments. Electrophysiological recordings were also normal for the gene therapy group. Histological analysis showed that neither the axons nor the myelin of the dorsal funiculus of L4 were severely damaged in the gene therapy group. In addition, the dorsal root ganglia of L4 and the peripheral nerves (sciatic nerve) did not experience severe degenerative changes in the gene therapy group. This study is the first to show the protective effect of NGF gene therapy in a dog model.

  18. Dual role for the latent transforming growth factor-beta binding protein in storage of latent TGF-beta in the extracellular matrix and as a structural matrix protein

    PubMed Central

    1995-01-01

    The role of the latent TGF-beta binding protein (LTBP) is unclear. In cultures of fetal rat calvarial cells, which form mineralized bonelike nodules, both LTBP and the TGF-beta 1 precursor localized to large fibrillar structures in the extracellular matrix. The appearance of these fibrillar structures preceded the appearance of type I collagen fibers. Plasmin treatment abolished the fibrillar staining pattern for LTBP and released a complex containing both LTBP and TGF-beta. Antibodies and antisense oligonucleotides against LTBP inhibited the formation of mineralized bonelike nodules in long-term fetal rat calvarial cultures. Immunohistochemistry of fetal and adult rat bone confirmed a fibrillar staining pattern for LTBP in vivo. These findings, together with the known homology of LTBP to the fibrillin family of proteins, suggest a novel function for LTBP, in addition to its role in matrix storage of latent TGF-beta, as a structural matrix protein that may play a role in bone formation. PMID:7593177

  19. Nicergoline, a drug used for age-dependent cognitive impairment, protects cultured neurons against beta-amyloid toxicity.

    PubMed

    Caraci, Filippo; Chisari, Mariangela; Frasca, Giuseppina; Canonico, Pier Luigi; Battaglia, Angelo; Calafiore, Marco; Battaglia, Giuseppe; Bosco, Paolo; Nicoletti, Ferdinando; Copani, Agata; Sortino, Maria Angela

    2005-06-14

    Nicergoline, a drug used for the treatment of Alzheimer's disease and other types of dementia, was tested for its ability to protect neurons against beta-amyloid toxicity. Pure cultures of rat cortical neurons were challenged with a toxic fragment of beta-amyloid peptide (betaAP(25-35)) and toxicity was assessed after 24 h. Micromolar concentrations of nicergoline or its metabolite, MDL, attenuated betaAP(25-35)-induced neuronal death, whereas MMDL (another metabolite of nicergoline), the alpha1-adrenergic receptor antagonist, prazosin, or the serotonin 5HT-2 receptor antagonist, methysergide, were inactive. Nicergoline increased the basal levels of Bcl-2 and reduced the increase in Bax levels induced by beta-amyloid, indicating that the drug inhibits the execution of an apoptotic program in cortical neurons. In mixed cultures of rat cortical cells containing both neurons and astrocytes, nicergoline and MDL were more efficacious than in pure neuronal cultures in reducing beta-amyloid neurotoxicity. Experiments carried out in pure cultures of astrocytes showed that a component of neuroprotection was mediated by a mechanism of glial-neuronal interaction. The conditioned medium of cultured astrocytes treated with nicergoline or MDL for 72-96 h (collected 24 h after drug withdrawal) was neuroprotective when transferred to pure neuronal cultures challenged with beta-amyloid. In cultured astrocytes, nicergoline increased the intracellular levels of transforming-growth factor-beta and glial-derived neurotrophic factor, two trophic factors that are known to protect neurons against beta-amyloid toxicity. These results raise the possibility that nicergoline reduces neurodegeneration in the Alzheimer's brain.

  20. Site-directed mutagenesis maps interactions that enhance cognate and limit promiscuous catalysis by an alkaline phosphatase superfamily phosphodiesterase.

    PubMed

    Wiersma-Koch, Helen; Sunden, Fanny; Herschlag, Daniel

    2013-12-23

    Catalytic promiscuity, an evolutionary concept, also provides a powerful tool for gaining mechanistic insights into enzymatic reactions. Members of the alkaline phosphatase (AP) superfamily are highly amenable to such investigation, with several members having been shown to exhibit promiscuous activity for the cognate reactions of other superfamily members. Previous work has shown that nucleotide pyrophosphatase/phosphodiesterase (NPP) exhibits a >10⁶-fold preference for the hydrolysis of phosphate diesters over phosphate monoesters, and that the reaction specificity is reduced 10³-fold when the size of the substituent on the transferred phosphoryl group of phosphate diester substrates is reduced to a methyl group. Here we show additional specificity contributions from the binding pocket for this substituent (herein termed the R' substituent) that account for an additional ~250-fold differential specificity with the minimal methyl substituent. Removal of four hydrophobic side chains suggested on the basis of structural inspection to interact favorably with R' substituents decreases phosphate diester reactivity 10⁴-fold with an optimal diester substrate (R' = 5'-deoxythymidine) and 50-fold with a minimal diester substrate (R' = CH₃). These mutations also enhance the enzyme's promiscuous phosphate monoesterase activity by nearly an order of magnitude, an effect that is traced by mutation to the reduction of unfavorable interactions with the two residues closest to the nonbridging phosphoryl oxygen atoms. The quadruple R' pocket mutant exhibits the same activity toward phosphate diester and phosphate monoester substrates that have identical leaving groups, with substantial rate enhancements of ~10¹¹-fold. This observation suggests that the Zn²⁺ bimetallo core of AP superfamily enzymes, which is equipotent in phosphate monoester and diester catalysis, has the potential to become specialized for the hydrolysis of each class of phosphate esters via addition

  1. Fibronectin regulates the activation of THP-1 cells by TGF-beta1.

    PubMed

    Wang, A C; Fu, L

    2001-03-01

    To determine how fibronectin regulates the immunomodulatory effects of transforming growth factor (TGF)-beta on THP-1 cells. THP-1 monocytic cell line. THP-1 cells were primed for 48 h in the presence or absence of 250 pM TGF-beta1. Assays or assessments carried out, together with statistical test applied. We found that adherence to fibronectin dramatically modulates the effects of TGF-beta1 on the human monocytic cell line THP-1. TGF-beta did not significantly affect constitutive interleukin (IL)-8 secretion or IL-1beta-induced IL-8 secretion from suspended cells. In contrast, TGF-beta stimulated IL-8 secretion as well as augmented IL-1beta-induced IL-8 secretion from adherent cells. The differential effects of TGF-beta1 on IL-8 secretion from suspended and adherent cells could not be explained by differences in IL-1 receptor antagonist production. The effects of fibronectin on TGF-beta1 induced IL-8 secretion from THP-1 cells were mimicked by adhesion to immobilized anti-a4beta1 integrin antibody and to a fibronectin fragment containing the CS-1 domain. These results indicate that alpha4beta1-mediated adhesion to fibronectin may play a key role during inflammation by profoundly influencing the effects of TGF-beta1 on monocytes.

  2. Signal transduction by beta1 integrin receptors in human chondrocytes in vitro: collaboration with the insulin-like growth factor-I receptor.

    PubMed

    Shakibaei, M; John, T; De Souza, P; Rahmanzadeh, R; Merker, H J

    1999-09-15

    We have examined the mechanism by which collagen-binding integrins co-operate with insulin-like growth factor-I (IGF-I) receptors (IGF-IR) to regulate chondrocyte phenotype and differentiation. Adhesion of chondrocytes to anti-beta1 integrin antibodies or collagen type II leads to phosphorylation of cytoskeletal and signalling proteins localized at focal adhesions, including alpha-actinin, vinculin, paxillin and focal adhesion kinase (FAK). These stimulate docking proteins such as Shc (Src-homology collagen). Moreover, exposure of collagen type II-cultured chondrocytes to IGF-I leads to co-immunoprecipitation of Shc protein with the IGF-IR and with beta1, alpha1 and alpha5 integrins, but not with alpha3 integrin. Shc then associates with growth factor receptor-bound protein 2 (Grb2), an adaptor protein and extracellular signal-regulated kinase. The expression of the docking protein Shc occurs only when chondrocytes are bound to collagen type II or integrin antibodies and increases when IGF-I is added, suggesting a collaboration between integrins and growth factors in a common/shared biochemical signalling pathway. Furthermore, these results indicate that focal adhesion assembly may facilitate signalling via Shc, a potential common target for signal integration between integrin and growth-factor signalling regulatory pathways. Thus, the collagen-binding integrins and IGF-IR co-operate to regulate focal adhesion components and these signalling pathways have common targets (Shc-Grb2 complex) in subcellular compartments, thereby linking to the Ras-mitogen-activated protein kinase signalling pathway. These events may play a role during chondrocyte differentiation.

  3. TGF-{beta} receptors, in a Smad-independent manner, are required for terminal skeletal muscle differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Droguett, Rebeca; Cabello-Verrugio, Claudio; Santander, Cristian

    2010-09-10

    Skeletal muscle differentiation is strongly inhibited by transforming growth factor type {beta} (TGF-{beta}), although muscle formation as well as regeneration normally occurs in an environment rich in this growth factor. In this study, we evaluated the role of intracellular regulatory Smads proteins as well as TGF-{beta}-receptors (TGF-{beta}-Rs) during skeletal muscle differentiation. We found a decrease of TGF-{beta} signaling during differentiation. This phenomenon is explained by a decline in the levels of the regulatory proteins Smad-2, -3, and -4, a decrease in the phosphorylation of Smad-2 and lost of nuclear translocation of Smad-3 and -4 in response to TGF-{beta}. No changemore » in the levels and inhibitory function of Smad-7 was observed. In contrast, we found that TGF-{beta}-R type I (TGF-{beta}-RI) and type II (TGF-{beta}-RII) increased on the cell surface during skeletal muscle differentiation. To analyze the direct role of the serine/threonine kinase activities of TGF-{beta}-Rs, we used the specific inhibitor SB 431542 and the dominant-negative form of TGF-{beta}-RII lacking the cytoplasmic domain. The TGF-{beta}-Rs were important for successful muscle formation, determined by the induction of myogenin, creatine kinase activity, and myosin. Silencing of Smad-2/3 expression by specific siRNA treatments accelerated myogenin, myosin expression, and myotube formation; although when SB 431542 was present inhibition in myosin induction and myotube formation was observed, suggesting that these last steps of skeletal muscle differentiation require active TGF-{beta}-Rs. These results suggest that both down-regulation of Smad regulatory proteins and cell signaling through the TGF-{beta} receptors independent of Smad proteins are essential for skeletal muscle differentiation.« less

  4. Zinc ion-induced domain organization in metallo-beta-lactamases: a flexible "zinc arm" for rapid metal ion transfer?

    PubMed

    Selevsek, Nathalie; Rival, Sandrine; Tholey, Andreas; Heinzle, Elmar; Heinz, Uwe; Hemmingsen, Lars; Adolph, Hans W

    2009-06-12

    The reversible unfolding of metallo-beta-lactamase from Chryseobacterium meningosepticum (BlaB) by guanidinium hydrochloride is best described by a three-state model including folded, intermediate, and unfolded states. The transformation of the folded apoenzyme into the intermediate state requires only very low denaturant concentrations, in contrast to the Zn2-enzyme. Similarly, circular dichroism spectra of both BlaB and metallo-beta-lactamase from Bacillus cereus 569/H/9 (BcII) display distinct differences between metal-free and Zn2-enzymes, indicating that the zinc ions affect the folding of the proteins, giving a larger alpha-helix content. To identify the regions of the protein involved in this zinc ion-induced change, a hydrogen deuterium exchange study with matrix-assisted laser desorption ionization tandem time of flight mass spectrometry on metal-free and Zn1- and Zn2-BcII was carried out. The region spanning the metal binding metallo-beta-lactamases (MBL) superfamily consensus sequence His-X-His-X-Asp motif and the loop connecting the N- and C-terminal domains of the protein undergoes a zinc ion-dependent structural change between intrinsically disordered and ordered states. The inherent flexibility even appears to allow for the formation of metal ion-bridged protein-protein complexes which may account for both electrospray ionization-mass spectroscopy results obtained upon variation of the zinc/protein ratio and stoichiometry-dependent variations of 199mHg-perturbed angular correlation of gamma-rays spectroscopic data. We suggest that this flexible "zinc arm" motif, present in all the MBL subclasses, is disordered in metal-free MBLs and may be involved in metal ion acquisition from zinc-carrying molecules different from MBL in an "activation on demand" regulation of enzyme activity.

  5. Identification and molecular characterization of the switchgrass AP2/ERF transcription factor superfamily, and overexpression of PvERF001 for improvement of biomass characteristics for biofuel

    DOE PAGES

    Wuddineh, Wegi A.; Mazarei, Mitra; Turner, Geoffry B.; ...

    2015-07-20

    The APETALA2/ethylene response factor (AP2/ERF) superfamily of transcription factors (TFs) plays essential roles in the regulation of various growth and developmental programs including stress responses. Members of these TFs in other plant species have been implicated to play a role in the regulation of cell wall biosynthesis. Here, we identified a total of 207 AP2/ERF TF genes in the switchgrass genome and grouped into four gene families comprised of 25 AP2-, 121 ERF-, 55 DREB (dehydration responsive element binding)-, and 5 RAV (related to API3/VP) genes, as well as a singleton gene not fitting any of the above families. Themore » ERF and DREB subfamilies comprised seven and four distinct groups, respectively. Analysis of exon/intron structures of switchgrass AP2/ERF genes showed high diversity in the distribution of introns in AP2 genes versus a single or no intron in most genes in the ERF and RAV families. The majority of the subfamilies or groups within it were characterized by the presence of one or more specific conserved protein motifs. In silico functional analysis revealed that many genes in these families might be associated with the regulation of responses to environmental stimuli via transcriptional regulation of the response genes. Moreover, these genes had diverse endogenous expression patterns in switchgrass during seed germination, vegetative growth, flower development, and seed formation. Interestingly, several members of the ERF and DREB families were found to be highly expressed in plant tissues where active lignification occurs. These results provide vital resources to select candidate genes to potentially impart tolerance to environmental stress as well as reduced recalcitrance. Furthermore, overexpression of one of the ERF genes ( PvERF001) in switchgrass was associated with increased biomass yield and sugar release efficiency in transgenic lines, exemplifying the potential of these TFs in the development of lignocellulosic feedstocks with

  6. Beta Emission and Bremsstrahlung

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karpius, Peter Joseph

    2017-11-13

    Bremsstrahlung is continuous radiation produced by beta particles decelerating in matter; different beta emitters have different endpoint energies; high-energy betas interacting with high-Z materials will more likely produce bremsstrahlung; depending on the data, sometimes all you can say is that a beta emitter is present.

  7. Sequence-based protein superfamily classification using computational intelligence techniques: a review.

    PubMed

    Vipsita, Swati; Rath, Santanu Kumar

    2015-01-01

    Protein superfamily classification deals with the problem of predicting the family membership of newly discovered amino acid sequence. Although many trivial alignment methods are already developed by previous researchers, but the present trend demands the application of computational intelligent techniques. As there is an exponential growth in size of biological database, retrieval and inference of essential knowledge in the biological domain become a very cumbersome task. This problem can be easily handled using intelligent techniques due to their ability of tolerance for imprecision, uncertainty, approximate reasoning, and partial truth. This paper discusses the various global and local features extracted from full length protein sequence which are used for the approximation and generalisation of the classifier. The various parameters used for evaluating the performance of the classifiers are also discussed. Therefore, this review article can show right directions to the present researchers to make an improvement over the existing methods.

  8. The role of Fas ligand and transforming growth factor beta in tumor progression: molecular mechanisms of immune privilege via Fas-mediated apoptosis and potential targets for cancer therapy.

    PubMed

    Kim, Ryungsa; Emi, Manabu; Tanabe, Kazuaki; Uchida, Yoko; Toge, Tetsuya

    2004-06-01

    Despite the fact that expression of Fas ligand (FasL) in cytotoxic T lymphocytes (CTLs) and in natural killer (NK) cells plays an important role in Fas-mediated tumor killing, During tumor progression FasL-expressing tumor cells are involved in counterattacking to kill tumor-infiltrating lymphocytes (TILs). Soluble FasL levels also increase with tumor progression in solid tumors, and this increase inhibits Fas-mediated tumor killing by CTLs and NK cells. The increased expression of FasL in tumor cells is associated with decreased expression of Fas; and the promoter region of the FASL gene is regulated by transcription factors, such as neuronal factor kappaB (NF-kappaB) and AP-1, in the tumor microenvironment. Although the ratio of FasL expression to Fas expression in tumor cells is not strongly related to the induction of apoptosis in TILs, increased expression of FasL is associated with decreased Fas levels in tumor cells that can escape immune surveillance and facilitate tumor progression and metastasis. Transforming growth factor beta (TGF-beta) is a potent growth inhibitor and has tumor-suppressing activity in the early phases of carcinogenesis. During subsequent tumor progression, the increased secretion of TGF-beta by both tumor cells and, in a paracrine fashion, stromal cells, is involved in the enhancement of tumor invasion and metastasis accompanied by immunosuppression. Herein, the authors review the clinical significance of FasL and TGF-beta expression patterns as features of immune privilege accompanying tumor progression in the tumor microenvironment. Potential strategies for identifying which molecules can serve as targets for effective antitumor therapy also are discussed. Copyright 2004 American Cancer Society.

  9. Association of the membrane estrogen receptor, GPR30, with breast tumor metastasis and transactivation of the epidermal growth factor receptor.

    PubMed

    Filardo, Edward J; Quinn, Jeffrey A; Sabo, Edmond

    2008-10-01

    The epidermal growth factor receptor (EGFR) family of receptor tyrosine kinases function as a common signaling conduit for membrane receptors that lack intrinsic enzymatic activity, such as G-protein coupled receptors and integrins. GPR30, an orphan member of the seven transmembrane receptor (7TMR) superfamily has been linked to specific estrogen binding, rapid estrogen-mediated activation of adenylyl cyclase and the release of membrane-tethered proHB-EGF. More recently, GPR30 expression in primary breast adenocarcinoma has been associated with pathological parameters commonly used to assess breast cancer progression, including the development of extramammary metastases. This newly appreciated mechanism of cross communication between estrogen and EGF is consistent with the observation that 7TMR-mediated transactivation of the EGFR is a recurrent signaling paradigm and may explain prior data reporting the EGF-like effects of estrogen. The molecular details surrounding GPR30-mediated release of proHB-EGF, the involvement of integrin beta1 as a signaling intermediary in estrogen-dependent EGFR action, and the possible implications of these data for breast cancer progression are discussed herein.

  10. Synthesis and cytotoxic analysis of some disodium 3beta,6beta-dihydroxysterol disulfates.

    PubMed

    Cui, Jianguo; Wang, Hui; Huang, Yanmin; Xin, Yi; Zhou, Aimin

    2009-01-01

    Disodium 3beta,6beta-dihydroxy-5alpha-cholestane disulfate (1) was synthesized in 4 steps with a high overall yield from cholesterol. First, cholesterol (4a) was converted to cholest-4-en-3,6-dione (5a) via oxidation with pyridinium chlorochromate (PCC) and then 5a was reduced by NaBH(4) in the presence of NiCl(2) to produce cholest-3beta,6beta-diol (6a). The reaction of 6a with the triethylamine-sulfur trioxide complex generated diammonium 3beta,6beta-dihydroxy-5alpha-cholestane disulfate (7a) and the treatment of 7a by cation exchange resin 732 (sodium form)(Na(+)) yielded the target steroid 1. Disodium 24-ethyl-3beta,6beta-dihydroxycholest-22-ene disulfate (2) and disodium 24-ethyl-3beta,6beta-dihydroxycholestane disulfate (3) were synthesized using a similar method. The cytotoxicity of these compounds against Sk-Hep-1 (human liver carcinoma cell line), H-292 (human lung carcinoma cell line), PC-3 (human prostate carcinoma cell line) and Hey-1B (human ovarian carcinoma cell line) cells was investigated. Our results indicate that presence of a cholesterol-type side chain at position 17 is necessary for their biological activity.

  11. Computation-Facilitated Assignment of Function in the Enolase Superfamily: A Regiochemically Distinct Galactarate Dehydratase from Oceanobacillus iheyensis†

    PubMed Central

    Rakus, John F.; Kalyanaraman, Chakrapani; Fedorov, Alexander A.; Fedorov, Elena V.; Mills-Groninger, Fiona P.; Toro, Rafael; Bonanno, Jeffrey; Bain, Kevin; Sauder, J. Michael; Burley, Stephen K.; Almo, Steven C.; Jacobson, Matthew P.; Gerlt, John A.

    2009-01-01

    The structure of an uncharacterized member of the enolase superfamily from Oceanobacillus iheyensis (GI: 23100298; IMG locus tag Ob2843; PDB Code 2OQY) was determined by the New York SGX Research Center for Structural Genomics (NYSGXRC). The structure contained two Mg2+ ions located 10.4 Å from one another, with one located in the canonical position in the (β/α)7β-barrel domain (although the ligand at the end of the fifth β-strand is His, unprecedented in structurally characterized members of the superfamily); the second is located in a novel site within the capping domain. In silico docking of a library of mono- and diacid sugars to the active site predicted a diacid sugar as a likely substrate. Activity screening of a physical library of acid sugars identified galactarate as the substrate (kcat = 6.8 s−1, KM = 620 μM; kcat/KM = 1.1 × 104 M−1 s−1), allowing functional assignment of Ob2843 as galactarate dehydratase (GalrD-II) The structure of a complex of the catalytically impaired Y90F mutant with Mg2+ and galactarate allowed identification of a Tyr 164-Arg 162 dyad as the base that initiates the reaction by abstraction of the α-proton and Tyr 90 as the acid that facilitates departure of the β-OH leaving group. The enzyme product is 2-keto-3-deoxy-D-threo-4,5-dihydroxyadipate, the enantiomer of the product obtained in the GalrD reaction catalyzed by a previously characterized bifunctional L-talarate/galactarate dehydratase (TalrD/GalrD). On the basis of the different active site structures and different regiochemistries, we recognize that these functions represent an example of apparent, not actual, convergent evolution of function. The structure of GalrD-II and its active site architecture allow identification of the seventh functionally and structurally characterized subgroup in the enolase superfamily. This study provides an additional example that an integrated sequence/structure-based strategy employing computational approaches is a viable

  12. Opposite actions of transforming growth factor-beta 1 on the gene expression of atrial natriuretic peptide biological and clearance receptors in a murine thymic stromal cell line.

    PubMed

    Agui, T; Xin, X; Cai, Y; Shim, G; Muramatsu, Y; Yamada, T; Fujiwara, H; Matsumoto, K

    1995-09-01

    The regulation of the gene expression of the atrial natriuretic peptide receptor (ANPR) subtypes, ANPR-A, ANPR-B, and ANPR-C, was investigated in a murine thymic stromal cell line, MRL 104.8a. When MRL 104.8a cells were cultured with transforming growth factor (TGF)-beta1, [125I]ANP binding sites increased with increasing dose of TGF-beta1. These binding sites were identified as ANPR-C by a displacement experiment with ANPR-C-specific ligand, C-ANF, and by the affinity cross-linking of the [125I]ANP binding sites with a chemical cross-linker to determine the molecular weight of the ANPR. This augmentation of the ANPR-C expression was elucidated to occur at the transcriptional level by Northern blot experiment, comparison of the relative amounts of mRNA by reverse transcription (RT)-PCR, and in vitro nuclear transcription assay. Conversely, the expression of the ANP biological receptors, ANPR-A and ANPR-B, was shown to be down-regulated by TGF-beta1. These data suggest that TGF-beta1 regulates the gene expression of ANPRs in the thymic stromal cells and that ANP and TGF-beta1 might affect the thymic stromal cell functions.

  13. Lymphotoxin beta receptor (Lt betaR): dual roles in demyelination and remyelination and successful therapeutic intervention using Lt betaR-Ig protein.

    PubMed

    Plant, Sheila R; Iocca, Heather A; Wang, Ying; Thrash, J Cameron; O'Connor, Brian P; Arnett, Heather A; Fu, Yang-Xin; Carson, Monica J; Ting, Jenny P-Y

    2007-07-11

    Inflammation mediated by macrophages is increasingly found to play a central role in diseases and disorders that affect a myriad of organs, prominent among these are diseases of the CNS. The neurotoxicant-induced, cuprizone model of demyelination is ideally suited for the analysis of inflammatory events. Demyelination on exposure to cuprizone is accompanied by predictable microglial activation and astrogliosis, and, after cuprizone withdrawal, this activation reproducibly diminishes during remyelination. This study demonstrates enhanced expression of lymphotoxin beta receptor (Lt betaR) during the demyelination phase of this model, and Lt betaR is found in areas enriched with microglial and astroglial cells. Deletion of the Lt betaR gene (Lt betaR-/-) resulted in a significant delay in demyelination but also a slight delay in remyelination. Inhibition of Lt betaR signaling by an Lt betaR-Ig fusion decoy protein successfully delayed demyelination in wild-type mice. Unexpectedly, this Lt betaR-Ig decoy protein dramatically accelerated the rate of remyelination, even after the maximal pathological disease state had been reached. This strongly indicates the beneficial role of Lt betaR-Ig in the delay of demyelination and the acceleration of remyelination. The discrepancy between remyelination rates in these systems could be attributed to developmental abnormalities in the immune systems of Lt betaR-/- mice. These findings bode well for the use of an inhibitory Lt betaR-Ig as a candidate biological therapy in demyelinating disorders, because it is beneficial during both demyelination and remyelination.

  14. Effect of [6]-gingerol on myofibroblast differentiation in transforming growth factor beta 1-induced nasal polyp-derived fibroblasts.

    PubMed

    Park, Sook A; Park, Il-Ho; Cho, Jung-Sun; Moon, You-Mi; Lee, Seung Hoon; Kim, Tae Hoon; Lee, Sang Hag; Lee, Heung-Man

    2012-01-01

    [6]-Gingerol is one of the major pungent principles of ginger and has diverse effects, including anti-inflammatory, and antioxidative effects. Reactive oxygen species (ROS) are released during the phenotypic transformation of fibroblasts to myofibroblasts, a process that is involved in the growth of nasal polyps by inducing extracellular matrix (ECM) accumulation. The purpose of this study was to determine the effect of [6]-gingerol on myofibroblast differentiation and collagen production of nasal polyp-derived fibroblasts (NPDFs) and to determine if the effect of [6]-gingerol is linked to an antioxidant effect. NPDFs were incubated and treated with transforming growth factor (TGF) beta 1. The ROS generated by NPDFs were determined using 2″,7″-dichlorfluorescein-diacetate. The fluorescence was captured by a fluorescent microscope and measured using a fluorometer. The expression of alpha-smooth muscle actin (SMA) and collagen type IV mRNA was determined by a reverse transcription-polymerase chain reaction, and the expression of α-SMA protein and pSmad2/3 was determined by immunofluorescence microscopy and or Western blotting. The amount of total soluble collagen production was analyzed by the SirCol collagen dye-binding assay. TGF-beta 1 stimulation increased ROS production by NPDFs. [6]-Gingerol decreased the production of ROS in TGF-beta 1-induced NPDFs. Myofibroblast differentiation, collagen production, and phosphorylation of Smad2/3 were prevented by [6]-gingerol and inhibition of ROS generation with antioxidant such as diphenyliodonium, N-acetylcysteine, and ebselen. These results suggest the possibility that [6]-gingerol may play an important role in inhibiting the production of the ECM in the development of nasal polyps through an antioxidant effect.

  15. Non-B-DNA structures on the interferon-beta promoter?

    PubMed

    Robbe, K; Bonnefoy, E

    1998-01-01

    The high mobility group (HMG) I protein intervenes as an essential factor during the virus induced expression of the interferon-beta (IFN-beta) gene. It is a non-histone chromatine associated protein that has the dual capacity of binding to a non-B-DNA structure such as cruciform-DNA as well as to AT rich B-DNA sequences. In this work we compare the binding affinity of HMGI for a synthetic cruciform-DNA to its binding affinity for the HMGI-binding-site present in the positive regulatory domain II (PRDII) of the IFN-beta promoter. Using gel retardation experiments, we show that HMGI protein binds with at least ten times more affinity to the synthetic cruciform-DNA structure than to the PRDII B-DNA sequence. DNA hairpin sequences are present in both the human and the murine PRDII-DNAs. We discuss in this work the presence of, yet putative, non-B-DNA structures in the IFN-beta promoter.

  16. Beta-Carotene

    MedlinePlus

    ... risk of new tumors. It is unclear if dietary beta-carotene reduces the risk of colon cancer. Lung cancer. Taking beta-carotene ... mucositis during radiation therapy or chemotherapy. Osteoarthritis. Higher ... reduce the risk of ovarian cancer in women after menopause. Pancreatic ...

  17. Rapid synthesis of beta zeolites

    DOEpatents

    Fan, Wei; Chang, Chun -Chih; Dornath, Paul; Wang, Zhuopeng

    2015-08-18

    The invention provides methods for rapidly synthesizing heteroatom containing zeolites including Sn-Beta, Si-Beta, Ti-Beta, Zr-Beta and Fe-Beta. The methods for synthesizing heteroatom zeolites include using well-crystalline zeolite crystals as seeds and using a fluoride-free, caustic medium in a seeded dry-gel conversion method. The Beta zeolite catalysts made by the methods of the invention catalyze both isomerization and dehydration reactions.

  18. Active-site-directed inactivation of Aspergillus oryzae beta-galactosidase with beta-D-galactopyranosylmethyl-p-nitrophenyltriazene.

    PubMed

    Mega, T; Nishijima, T; Ikenaka, T

    1990-04-01

    beta-D-Galactopyranosylmethyl-p-nitrophenyltriazene (beta-GalMNT), a specific inhibitor of beta-galactosidase, was isolated as crystals by HPLC and its chemical and physicochemical characteristics were examined. Aspergillus oryzae beta-galactosidase was inactivated by the compound. We studied the inhibition mechanism in detail. The inhibitor was hydrolyzed by the enzyme to p-nitroaniline and an active intermediate (beta-galactopyranosylmethyl carbonium or beta-galactopyranosylmethyldiazonium), which inactivated the enzyme. The efficiency of inactivation of the enzyme (the ratio of moles of inactivated enzyme to moles of beta-GalMNT hydrolyzed by the enzyme) was 3%; the efficiency of Escherichia coli beta-galactosidase was 49%. In spite of the low efficiency, the rate of inactivation of A. oryzae enzyme was not very different from that of the E. coli enzyme, because the former hydrolyzed beta-GalMNT faster than the latter did. A. oryzae beta-galactosidase was also inactivated by p-chlorophenyl, p-tolyl, and m-nitrophenyl derivatives of beta-galactopyranosylmethyltriazene. However, E. coli beta-galactosidase was not inactivated by these triazene derivatives. The results showed that the inactivation of A. oryzae and E. coli beta-galactosidases by beta-GalMNT was an enzyme-activated and active-site-directed irreversible inactivation. The possibility of inactivation by intermediates produced nonenzymatically was ruled out for E. coli, but not for the A. oryzae enzyme.

  19. Polypeptides having beta-glucosidase activity and beta-xylosidase activity and polynucleotides encoding same

    DOEpatents

    Morant, Marc Dominique

    2014-05-06

    The present invention relates to isolated polypeptides having beta-glucosidase activity, beta-xylosidase activity, or beta-glucosidase and beta-xylosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  20. Polypeptides having beta-glucosidase activity and beta-xylosidase activity and polynucleotides encoding same

    DOEpatents

    Morant, Marc Dominique

    2014-04-29

    The present invention relates to isolated polypeptides having beta-glucosidase activity, beta-xylosidase activity, or beta-glucosidase and beta-xylosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  1. Phylogenetic relationships among superfamilies of Neritimorpha (Mollusca: Gastropoda).

    PubMed

    Uribe, Juan E; Colgan, Don; Castro, Lyda R; Kano, Yasunori; Zardoya, Rafael

    2016-11-01

    Despite the extraordinary morphological and ecological diversity of Neritimorpha, few studies have focused on the phylogenetic relationships of this lineage of gastropods, which includes four extant superfamilies: Neritopsoidea, Hydrocenoidea, Helicinoidea, and Neritoidea. Here, the nucleotide sequences of the complete mitochondrial genomes of Georissa bangueyensis (Hydrocenoidea), Neritina usnea (Neritoidea), and Pleuropoma jana (Helicinoidea) and the nearly complete mt genomes of Titiscania sp. (Neritopsoidea) and Theodoxus fluviatilis (Neritoidea) were determined. Phylogenetic reconstructions using probabilistic methods were based on mitochondrial (13 protein coding genes and two ribosomal rRNA genes), nuclear (partial 28S rRNA, 18S rRNA, actin, and histone H3 genes) and combined sequence data sets. All phylogenetic analyses except one converged on a single, highly supported tree in which Neritopsoidea was recovered as the sister group of a clade including Helicinoidea as the sister group of Hydrocenoidea and Neritoidea. This topology agrees with the fossil record and supports at least three independent invasions of land by neritimorph snails. The mitochondrial genomes of Titiscania sp., G. bangueyensis, N. usnea, and T. fluviatilis share the same gene organization previously described for Nerita mt genomes whereas that of P. jana has undergone major rearrangements. We sequenced about half of the mitochondrial genome of another species of Helicinoidea, Viana regina, and confirmed that this species shares the highly derived gene order of P. jana. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Interleukin 13 and the beta-adrenergic blockade theory of asthma revisited 40 years later.

    PubMed

    Townley, Robert G

    2007-09-01

    Beta2-Adrenergic agonists are the most potent agents clinically used in inhibiting and preventing the immediate response to bronchoconstricting agents and in inhibiting mast cell mediator release. This raises the possibility that an abnormality in beta-adrenergic receptor function or circulating catecholamine levels could contribute to airway hyperresponsiveness. To link interleukin 13 (IL-13) to the pathogenesis of asthma. Almost 4 decades ago, Andor Szentivanyi published a beta-adrenergic theory of atopic abnormality in bronchial asthma. He proposed 9 characteristics to define bronchial asthma. Because he published these 9 tenets of the beta-adrenergic blockade theory of asthma in 1968, it is appropriate and important to evaluate their relevance in light of advances in pharmacology, inflammation, and immunology. We describe the effects of the allergic reaction on beta-adrenergic responses and airway responsiveness. Both IL-1beta and tumor necrosis factor a have been detected in increased amounts in bronchial lavage fluids in allergic airway inflammation. Both IL-13 and the proinflammatory cytokines IL-1beta and tumor necrosis factor a have been demonstrated in airway smooth muscle to cause a decreased relaxation response to beta-adrenergic agonist. However, IL-13 has been shown to be necessary and sufficient to produce the characteristics of asthma. The decreased adrenergic bronchodilator activity and associated hypersensitivity to mediators put forth by Szentivanyi can be elicited with IL-13 and support its role in the pathogenesis of asthma.

  3. Maternal plasma concentrations of beta-lipotrophin, beta-endorphin and gamma-lipotrophin throughout pregnancy.

    PubMed

    Browning, A J; Butt, W R; Lynch, S S; Shakespear, R A

    1983-12-01

    Plasma beta-LPH, beta-EP and gamma-LPH concentrations were measured by radioimmunoassay in 10 pregnant women from 12 weeks gestation until term and in nine women in the early follicular phase of the cycle. There was a progressive and significant rise in the concentration of all three peptides throughout pregnancy and by 32 weeks the concentrations of beta-LPH and beta-EP were greater than the corresponding concentrations in the follicular phase: gamma-LPH was greater than in the follicular phase by the end of pregnancy in those women who were delivered after 40 weeks. The ratio of beta-LPH to gamma-LPH did not change significantly throughout pregnancy, but there was a progressive fall in the beta-LPH/beta-EP ratio. The possible presence of a 'big LPH' to explain this finding is discussed.

  4. The CDI toxin of Yersinia kristensenii is a novel bacterial member of the RNase A superfamily

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batot, Gaëlle; Michalska, Karolina; Ekberg, Greg

    Contact-dependent growth inhibition (CDI) is an important mechanism of inter-bacterial competition found in many Gram-negative pathogens. CDI+ cells express cell-surface CdiA proteins that bind neighboring bacteria and deliver C-terminal toxin domains (CdiA-CT) to inhibit target-cell growth. CDI+ bacteria also produce CdiI immunity proteins, which specifically neutralize cognate CdiA-CT toxins to prevent self-inhibition. Here, we present the crystal structure of the CdiA-CT/CdiI(Ykris) complex from Yersinia kris-tensenii ATCC 33638. CdiA-CTYkris adopts the same fold as angiogenin and other RNase A paralogs, but the toxin does not share sequence similarity with these nucleases and lacks the characteristic disulfide bonds of the superfamily. Consistentmore » with the structural homology, CdiA-CTYkris has potent RNase activity in vitro and in vivo. Structure-guided mutagenesis reveals that His175, Arg186, Thr276 and Tyr278 contribute to CdiA-CTYkris activity, suggesting that these residues participate in substrate binding and/or catalysis. CdiI(Ykris) binds directly over the putative active site and likely neutralizes toxicity by blocking access to RNA substrates. Significantly, CdiA-CTYkris is the first non-vertebrate protein found to possess the RNase A superfamily fold, and homologs of this toxin are associated with secretion systems in many Gram-negative and Gram-positive bacteria. These observations suggest that RNase Alike toxins are commonly deployed in inter-bacterial competition.« less

  5. Case Study of Intrapartum Antibiotic Prophylaxis and Subsequent Postpartum Beta-Lactam Anaphylaxis.

    PubMed

    Stark, Mary Ann; Ross, Mary Frances; Kershner, Wendy; Searing, Kimberly

    2015-01-01

    Universal screening for maternal group B Streptococcus (GBS) in the prenatal period has led to administration of intrapartum antibiotic prophylaxis (IAP). Although IAP decreased the rate of early neonatal GBS disease, exposure of childbearing women to penicillin and other beta-lactam antibiotics has increased. Beta-lactam-induced anaphylaxis in the breastfeeding woman during the postpartum period illustrates risk factors for beta-lactam allergy and anaphylaxis. Treatment and nursing implications for this adverse reaction are suggested. © 2015 AWHONN, the Association of Women's Health, Obstetric and Neonatal Nurses.

  6. Optimized formation of detergent micelles of beta-carotene and retinal production using recombinant human beta,beta-carotene 15,15'-monooxygenase.

    PubMed

    Kim, Nam-Hee; Kim, Yeong-Su; Kim, Hye-Jung; Oh, Deok-Kun

    2008-01-01

    The formation of beta-carotene detergent micelles and their conversion into retinal by recombinant human beta,beta-carotene 15,15'-monooxygenase was optimized under aqueous conditions. Toluene was the most hydrophobic among the organic solvents tested; thus, it was used to dissolve beta-carotene, which is a hydrophobic compound. Tween 80 was selected as the detergent because it supported the highest level of retinal production among all of the detergents tested. The maximum production of retinal was achieved in detergent micelles containing 200 mg/L of beta-carotene and 2.4% (w/v) Tween 80. Under these conditions, the recombinant enzyme produced 97 mg/L of retinal after 16 h with a conversion yield of 48.5% (w/w). The amount of retinal produced, which is the highest ever reported, is a result of the ability of our system to dissolve large amounts of beta-carotene.

  7. Pilot-Reported Beta-Blockers Identified by Forensic Toxicology Analysis of Postmortem Specimens.

    PubMed

    Canfield, Dennis V; Dubowski, Kurt M; Whinnery, James M; Forster, Estrella M

    2018-01-01

    This study compared beta-blockers reported by pilots with the medications found by postmortem toxicology analysis of specimens received from fatal aviation accidents between 1999 and 2015. Several studies have compared drugs using the standard approach: Compare the drug found by toxicology analysis with the drug reported by the pilot. This study uniquely examined first the pilot-reported medication and then compared it to that detected by toxicology analysis. This study will serve two purposes: (i) to determine the capability of a toxicology laboratory to detect reported medications, and (ii) to identify pilots with medications below detectable limits. All information required for this study was extracted from the Toxicology Data Base system and was searched using ToxFlo or SQL Server Management Studio. The following information was collected and analyzed: pilot-reported trade and/or generic drug, date specimens received, time of accident, type of aviation operations (CFR), state, pilot level, age, class of medical, specimen type, specimen concentration, dose reported, frequency reported associated with the accident, quantity reported, National Transportation Safety Board (NTSB) accident event number, and all NTSB reports. There were 319 pilots that either reported taking a beta-blocker or were found to be taking a beta-blocker by postmortem toxicology analysis. Time of death, therapeutic concentration and specimen type were found to be factors in the ability of the laboratory to detect beta-blockers. Beta-blockers taken by pilots will, in most cases, be found by a competent postmortem forensic toxicology laboratory at therapeutic concentrations. The dose taken by the pilot was not found to be a factor in the ability of the laboratory to identify beta-blockers. Time of dose, route of administration, specimen tested and therapeutic concentration of the drug were found to be factors in the ability of the laboratory to identify beta-blockers in postmortem specimens

  8. Detecting beta-amyloid aggregation from time-resolved emission spectra

    NASA Astrophysics Data System (ADS)

    Alghamdi, A.; Vyshemirsky, V.; Birch, D. J. S.; Rolinski, O. J.

    2018-04-01

    The aggregation of beta-amyloids is one of the key processes responsible for the development of Alzheimer’s disease. Early molecular-level detection of beta-amyloid oligomers may help in early diagnosis and in the development of new intervention therapies. Our previous studies on the changes in beta-amyloid’s single tyrosine intrinsic fluorescence response during aggregation demonstrated a four-exponential fluorescence intensity decay, and the ratio of the pre-exponential factors indicated the extent of the aggregation in the early stages of the process before the beta-sheets were formed. Here we present a complementary approach based on the time-resolved emission spectra (TRES) of amyloid’s tyrosine excited at 279 nm and fluorescence in the window 240-450 nm. TRES have been used to demonstrate sturctural changes occuring on the nanosecond time scale after excitation which has significant advantages over using steady-state spectra. We demonstrate this by resolving the fluorescent species and revealing that beta-amyloid’s monomers show very fast dielectric relaxation, and its oligomers display a substantial spectral shift due to dielectric relaxation, which gradually decreases when the oligomers become larger.

  9. Melanophore migration and survival during zebrafish adult pigment stripe development require the immunoglobulin superfamily adhesion molecule Igsf11.

    PubMed

    Eom, Dae Seok; Inoue, Shinya; Patterson, Larissa B; Gordon, Tiffany N; Slingwine, Rebecca; Kondo, Shigeru; Watanabe, Masakatsu; Parichy, David M

    2012-01-01

    The zebrafish adult pigment pattern has emerged as a useful model for understanding the development and evolution of adult form as well as pattern-forming mechanisms more generally. In this species, a series of horizontal melanophore stripes arises during the larval-to-adult transformation, but the genetic and cellular bases for stripe formation remain largely unknown. Here, we show that the seurat mutant phenotype, consisting of an irregular spotted pattern, arises from lesions in the gene encoding Immunoglobulin superfamily member 11 (Igsf11). We find that Igsf11 is expressed by melanophores and their precursors, and we demonstrate by cell transplantation and genetic rescue that igsf11 functions autonomously to this lineage in promoting adult stripe development. Further analyses of cell behaviors in vitro, in vivo, and in explant cultures ex vivo demonstrate that Igsf11 mediates adhesive interactions and that mutants for igsf11 exhibit defects in both the migration and survival of melanophores and their precursors. These findings identify the first in vivo requirements for igsf11 as well as the first instance of an immunoglobulin superfamily member functioning in pigment cell development and patterning. Our results provide new insights into adult pigment pattern morphogenesis and how cellular interactions mediate pattern formation.

  10. Melanophore Migration and Survival during Zebrafish Adult Pigment Stripe Development Require the Immunoglobulin Superfamily Adhesion Molecule Igsf11

    PubMed Central

    Patterson, Larissa B.; Gordon, Tiffany N.; Slingwine, Rebecca; Kondo, Shigeru; Watanabe, Masakatsu; Parichy, David M.

    2012-01-01

    The zebrafish adult pigment pattern has emerged as a useful model for understanding the development and evolution of adult form as well as pattern-forming mechanisms more generally. In this species, a series of horizontal melanophore stripes arises during the larval-to-adult transformation, but the genetic and cellular bases for stripe formation remain largely unknown. Here, we show that the seurat mutant phenotype, consisting of an irregular spotted pattern, arises from lesions in the gene encoding Immunoglobulin superfamily member 11 (Igsf11). We find that Igsf11 is expressed by melanophores and their precursors, and we demonstrate by cell transplantation and genetic rescue that igsf11 functions autonomously to this lineage in promoting adult stripe development. Further analyses of cell behaviors in vitro, in vivo, and in explant cultures ex vivo demonstrate that Igsf11 mediates adhesive interactions and that mutants for igsf11 exhibit defects in both the migration and survival of melanophores and their precursors. These findings identify the first in vivo requirements for igsf11 as well as the first instance of an immunoglobulin superfamily member functioning in pigment cell development and patterning. Our results provide new insights into adult pigment pattern morphogenesis and how cellular interactions mediate pattern formation. PMID:22916035

  11. TED, an Autonomous and Rare Maize Transposon of the Mutator Superfamily with a High Gametophytic Excision Frequency[W

    PubMed Central

    Li, Yubin; Harris, Linda; Dooner, Hugo K.

    2013-01-01

    Mutator (Mu) elements, one of the most diverse superfamilies of DNA transposons, are found in all eukaryotic kingdoms, but are particularly numerous in plants. Most of the present knowledge on the transposition behavior of this superfamily comes from studies of the maize (Zea mays) Mu elements, whose transposition is mediated by the autonomous Mutator-Don Robertson (MuDR) element. Here, we describe the maize element TED (for Transposon Ellen Dempsey), an autonomous cousin that differs significantly from MuDR. Element excision and reinsertion appear to require both proteins encoded by MuDR, but only the single protein encoded by TED. Germinal excisions, rare with MuDR, are common with TED, but arise in one of the mitotic divisions of the gametophyte, rather than at meiosis. Instead, transposition-deficient elements arise at meiosis, suggesting that the double-strand breaks produced by element excision are repaired differently in mitosis and meiosis. Unlike MuDR, TED is a very low-copy transposon whose number and activity do not undergo dramatic changes upon inbreeding or outcrossing. Like MuDR, TED transposes mostly to unlinked sites and can form circular transposition products. Sequences closer to TED than to MuDR were detected only in the grasses, suggesting a rather recent evolutionary split from a common ancestor. PMID:24038653

  12. Expression of the growth factor pleiotrophin and its receptor protein tyrosine phosphatase beta/zeta in the serum, cartilage and subchondral bone of patients with osteoarthritis.

    PubMed

    Kaspiris, Angelos; Mikelis, Constantinos; Heroult, Melanie; Khaldi, Lubna; Grivas, Theodoros B; Kouvaras, Ioannis; Dangas, Spyridon; Vasiliadis, Elias; Lioté, Frédéric; Courty, José; Papadimitriou, Evangelia

    2013-07-01

    Pleiotrophin is a heparin-binding growth factor expressed in embryonic but not mature cartilage, suggesting a role in cartilage development. Elucidation of the molecular changes observed during the remodelling process in osteoarthritis is of paramount importance. This study aimed to investigate serum pleiotrophin levels and expression of pleiotrophin and its receptor protein tyrosine phosphatase beta/zeta in the cartilage and subchondral bone of osteoarthritis patients. Serum samples derived from 16 osteoarthritis patients and 18 healthy donors. Pleiotrophin and receptor protein tyrosine phosphatase beta/zeta in the cartilage and subchondral bone were studied in 29 patients who had undergone total knee or hip replacement for primary osteoarthritis and in 10 control patients without macroscopic osteoarthritis changes. Serum pleiotrophin levels and expression of pleiotrophin in chondrocytes and subchondral bone osteocytes significantly increased in osteoarthritis patients graded Ahlback II to III. Receptor protein tyrosine phosphatase beta/zeta was mainly detected in the subchondral bone osteocytes of patients with moderate osteoarthritis and as disease severity increased, in the osteocytes and bone lining cells of the distant trabeculae. These data render pleiotrophin and receptor protein tyrosine phosphatase beta/zeta promising candidates for further studies towards developing targeted therapeutic schemes for osteoarthritis. Copyright © 2012 Société française de rhumatologie. Published by Elsevier SAS. All rights reserved.

  13. A MicroRNA Superfamily Regulates Nucleotide Binding Site–Leucine-Rich Repeats and Other mRNAs[W][OA

    PubMed Central

    Shivaprasad, Padubidri V.; Chen, Ho-Ming; Patel, Kanu; Bond, Donna M.; Santos, Bruno A.C.M.; Baulcombe, David C.

    2012-01-01

    Analysis of tomato (Solanum lycopersicum) small RNA data sets revealed the presence of a regulatory cascade affecting disease resistance. The initiators of the cascade are microRNA members of an unusually diverse superfamily in which miR482 and miR2118 are prominent members. Members of this superfamily are variable in sequence and abundance in different species, but all variants target the coding sequence for the P-loop motif in the mRNA sequences for disease resistance proteins with nucleotide binding site (NBS) and leucine-rich repeat (LRR) motifs. We confirm, using transient expression in Nicotiana benthamiana, that miR482 targets mRNAs for NBS-LRR disease resistance proteins with coiled-coil domains at their N terminus. The targeting causes mRNA decay and production of secondary siRNAs in a manner that depends on RNA-dependent RNA polymerase 6. At least one of these secondary siRNAs targets other mRNAs of a defense-related protein. The miR482-mediated silencing cascade is suppressed in plants infected with viruses or bacteria so that expression of mRNAs with miR482 or secondary siRNA target sequences is increased. We propose that this process allows pathogen-inducible expression of NBS-LRR proteins and that it contributes to a novel layer of defense against pathogen attack. PMID:22408077

  14. Ellagic acid promotes A{beta}42 fibrillization and inhibits A{beta}42-induced neurotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Ying; Tsinghua University School of Medicine, Haidian District, Beijing 100084; Yang, Shi-gao

    Smaller, soluble oligomers of {beta}-amyloid (A{beta}) play a critical role in the pathogenesis of Alzheimer's disease (AD). Selective inhibition of A{beta} oligomer formation provides an optimum target for AD therapy. Some polyphenols have potent anti-amyloidogenic activities and protect against A{beta} neurotoxicity. Here, we tested the effects of ellagic acid (EA), a polyphenolic compound, on A{beta}42 aggregation and neurotoxicity in vitro. EA promoted A{beta} fibril formation and significant oligomer loss, contrary to previous results that polyphenols inhibited A{beta} aggregation. The results of transmission electron microscopy (TEM) and Western blot displayed more fibrils in A{beta}42 samples co-incubated with EA in earlier phasesmore » of aggregation. Consistent with the hypothesis that plaque formation may represent a protective mechanism in which the body sequesters toxic A{beta} aggregates to render them harmless, our MTT results showed that EA could significantly reduce A{beta}42-induced neurotoxicity toward SH-SY5Y cells. Taken together, our results suggest that EA, an active ingredient in many fruits and nuts, may have therapeutic potential in AD.« less

  15. ROS signaling, oxidative stress and Nrf2 in pancreatic beta-cell function

    PubMed Central

    Pi, Jingbo; Zhang, Qiang; Fu, Jingqi; Woods, Courtney G.; Hou, Yongyong; Corkey, Barbara E; Collins, Sheila; Andersen, Melvin E.

    2009-01-01

    This review focuses on the emerging evidence that reactive oxygen species (ROS) derived from glucose metabolism, such as H2O2, act as metabolic signaling molecules for glucose-stimulated insulin secretion (GSIS) in pancreatic beta-cells. Particular emphasis is placed on the potential inhibitory role of endogenous antioxidants, which rise in response to oxidative stress, in glucose-triggered ROS and GSIS. We propose that cellular adaptive response to oxidative stress challenge, such as nuclear factor E2-related factor 2 (Nrf2)-mediated antioxidant induction, plays paradoxical roles in pancreatic beta-cell function. On the one hand, induction of antioxidant enzymes protects beta-cells from oxidative damage and possible cell death, thus minimizing oxidative damage-related impairment of insulin secretion. On the other hand, the induction of antioxidant enzymes by Nrf2 activation blunts glucose-triggered ROS signaling, thus resulting in reduced GSIS. These two premises are potentially relevant to impairment of beta-cells occurring in the late and early stage of Type 2 diabetes, respectively. In addition, we summarized our recent findings that persistent oxidative stress due to absence of uncoupling protein 2 activates cellular adaptive response which is associated with impaired pancreatic beta-cell function. PMID:19501608

  16. Radiation effects on beta 10.6 of pure and europium doped KCl

    NASA Technical Reports Server (NTRS)

    Grimes, H. H.; Maisel, J. E.; Hartford, R. H.

    1975-01-01

    Changes in the optical absorption coefficient as a result of X-ray and electron bombardment of pure KCl (monocrystalline and polycrystalline), and divalent europium doped polycrystalline KCl were determined. The optical absorption coefficients were measured by a constant heat flow calorimetric method. Both 300 KV X-irradiation and 2 MeV electron irradiation produced significant increases in beta 10.6, measured at room temperature. The X-irradiation of pure moncrystalline KCl increased beta 10.6 by 0.005/cm for a 113 MR dose. For an equivalent dose, 2 MeV electrons were found less efficient in changing beta 10.6. However, electron irradiation of pure and Eu-doped polycrystalline KCl produced marked increases in adsorption. Beta increased to over 0.25/cm in Eu-doped material for a 30 x 10 to the 14th power electrons/sq cm dose, a factor of 20 increase over unirradiated material. Moreover, bleaching the electron irradiated doped KCl with 649 m light produced and additional factor of 1.5 increase. These findings will be discussed in light of known defect-center properties in KCl.

  17. TGF{beta} induces proHB-EGF shedding and EGFR transactivation through ADAM activation in gastric cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebi, Masahide; Kataoka, Hiromi, E-mail: hkataoka@med.nagoya-cu.ac.jp; Shimura, Takaya

    2010-11-19

    Research highlights: {yields} TGF{beta} induces EGFR transactivation through proHB-EGF shedding by activated ADAM members in gastric cancer cells. {yields} TGF{beta} induces nuclear translocation of HB-EGF-CTF cleaved by ADAM members. {yields} TGF{beta} enhances cell growth by EGFR transactivation and HB-EGF-CTF nuclear translocation and ADAM inhibitors block these effects. {yields} Silencing of ADAM17 also blocks EGFR transactivation, HB-EGF-CTF nuclear translocation and cancer cell growth by TGF{beta}. {yields} ADAM17 may play a crucial role in this TGF{beta}-HB-EGF signal transduction. -- Abstract: Background and aims: Transforming growth factor-beta (TGF{beta}) is known to potently inhibit cell growth. Loss of responsiveness to TGF{beta} inhibition on cellmore » growth is a hallmark of many types of cancer, yet its mechanism is not fully understood. Membrane-anchored heparin-binding EGF-like growth factor (proHB-EGF) ectodomain is cleaved by a disintegrin and metalloproteinase (ADAM) members and is implicated in epidermal growth factor receptor (EGFR) transactivation. Recently, nuclear translocation of the C-terminal fragment (CTF) of pro-HB-EGF was found to induce cell growth. We investigated the association between TGF{beta} and HB-EGF signal transduction via ADAM activation. Materials and methods: The CCK-8 assay in two gastric cancer cell lines was used to determine the effect for cell growth by TGF{beta}. The effect of two ADAM inhibitors was also evaluated. Induction of EGFR phosphorylation by TGF{beta} was analyzed and the effect of the ADAM inhibitors was also examined. Nuclear translocation of HB-EGF-CTF by shedding through ADAM activated by TGF{beta} was also analyzed. EGFR transactivation, HB-EGF-CTF nuclear translocation, and cell growth were examined under the condition of ADAM17 knockdown. Result: TGF{beta}-induced EGFR phosphorylation of which ADAM inhibitors were able to inhibit. TGF{beta} induced shedding of proHB-EGF allowing HB-EGF-CTF to

  18. Lewis type 1 antigen synthase (beta3Gal-T5) is transcriptionally regulated by homeoproteins.

    PubMed

    Isshiki, Soichiro; Kudo, Takashi; Nishihara, Shoko; Ikehara, Yuzuru; Togayachi, Akira; Furuya, Akiko; Shitara, Kenya; Kubota, Tetsuro; Watanabe, Masahiko; Kitajima, Masaki; Narimatsu, Hisashi

    2003-09-19

    The type 1 carbohydrate chain, Galbeta1-3GlcNAc, is synthesized by UDP-galactose:beta-N-acetylglucosamine beta1,3-galactosyltransferase (beta3Gal-T). Among six beta3Gal-Ts cloned to date, beta3Gal-T5 is an essential enzyme for the synthesis of type 1 chain in epithelium of digestive tracts or pancreatic tissue. It forms the type 1 structure on glycoproteins produced from such tissues. In the present study, we found that the transcriptional regulation of the beta3Gal-T5 gene is controlled by homeoproteins, i.e. members of caudal-related homeobox protein (Cdx) and hepatocyte nuclear factor (HNF) families. We found an important region (-151 to -121 from the transcription initiation site), named the beta3Gal-T5 control element (GCE), for the promoter activity. GCE contained the consensus sequences for members of the Cdx and HNF families. Mutations introduced into this sequence abolished the transcriptional activity. Four factors, Cdx1, Cdx2, HNF1alpha, and HNF1beta, could bind to GCE and transcriptionally activate the beta3Gal-T5 gene. Transcriptional regulation of the beta3Gal-T5 gene was consistent with that of members of the Cdx and HNF1 families in two in vivo systems. 1) During in vitro differentiation of Caco-2 cells, transcriptional up-regulation of beta3Gal-T5 was observed in correlation with the increase in transcripts for Cdx2 and HNF1alpha. 2) Both transcript and protein levels of beta3Gal-T5 were determined to be significantly reduced in colon cancer. This down-regulation was correlated with the decrease of Cdx1 and HNF1beta expression in cancer tissue. This is the first finding that a glycosyltransferase gene is transcriptionally regulated under the control of homeoproteins in a tissue-specific manner. beta3Gal-T5, controlled by the intestinal homeoproteins, may play an important role in the specific function of intestinal cells by modifying the carbohydrate structure of glycoproteins.

  19. Energetic, Structural, and Antimicrobial Analyses of [beta]-Lactam Side Chain Recognition by [beta]-Lactamases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caselli, E.; Powers, R.A.; Blaszczak, L.C.

    2010-03-05

    Penicillins and cephalosporins are among the most widely used and successful antibiotics. The emergence of resistance to these {beta}-lactams, most often through bacterial expression of {beta}-lactamases, threatens public health. To understand how {beta}-lactamases recognize their substrates, it would be helpful to know their binding energies. Unfortunately, these have been difficult to measure because {beta}-lactams form covalent adducts with {beta}-lactamases. This has complicated functional analyses and inhibitor design. To investigate the contribution to interaction energy of the key amide (R1) side chain of {beta}-lactam antibiotics, eight acylglycineboronic acids that bear the side chains of characteristic penicillins and cephalosporins, as well asmore » four other analogs, were synthesized. These transition-state analogs form reversible adducts with serine {beta}-lactamases. Therefore, binding energies can be calculated directly from K{sub i} values. The K{sub i} values measured span four orders of magnitude against the Group I {beta}-lactamase AmpC and three orders of magnitude against the Group II {beta}-lactamase TEM-1. The acylglycineboronic acids have K{sub i} values as low as 20 nM against AmpC and as low as 390 nM against TEM-1. The inhibitors showed little activity against serine proteases, such as chymotrypsin. R1 side chains characteristic of {beta}-lactam inhibitors did not have better affinity for AmpC than did side chains characteristic of {beta}-lactam substrates. Two of the inhibitors reversed the resistance of pathogenic bacteria to {beta}-lactams in cell culture. Structures of two inhibitors in their complexes with AmpC were determined by X-ray crystallography to 1.90 {angstrom} and 1.75 {angstrom} resolution; these structures suggest interactions that are important to the affinity of the inhibitors. Acylglycineboronic acids allow us to begin to dissect interaction energies between {beta}-lactam side chains and {beta

  20. Genome-wide identification of nuclear receptor (NR) superfamily genes in the copepod Tigriopus japonicus.

    PubMed

    Hwang, Dae-Sik; Lee, Bo-Young; Kim, Hui-Su; Lee, Min Chul; Kyung, Do-Hyun; Om, Ae-Son; Rhee, Jae-Sung; Lee, Jae-Seong

    2014-11-18

    Nuclear receptors (NRs) are a large superfamily of proteins defined by a DNA-binding domain (DBD) and a ligand-binding domain (LBD). They function as transcriptional regulators to control expression of genes involved in development, homeostasis, and metabolism. The number of NRs differs from species to species, because of gene duplications and/or lineage-specific gene losses during metazoan evolution. Many NRs in arthropods interact with the ecdysteroid hormone and are involved in ecdysone-mediated signaling in arthropods. The nuclear receptor superfamily complement has been reported in several arthropods, including crustaceans, but not in copepods. We identified the entire NR repertoire of the copepod Tigriopus japonicus, which is an important marine model species for ecotoxicology and environmental genomics. Using whole genome and transcriptome sequences, we identified a total of 31 nuclear receptors in the genome of T. japonicus. Nomenclature of the nuclear receptors was determined based on the sequence similarities of the DNA-binding domain (DBD) and ligand-binding domain (LBD). The 7 subfamilies of NRs separate into five major clades (subfamilies NR1, NR2, NR3, NR4, and NR5/6). Although the repertoire of NR members in, T. japonicus was similar to that reported for other arthropods, there was an expansion of the NR1 subfamily in Tigriopus japonicus. The twelve unique nuclear receptors identified in T. japonicus are members of NR1L. This expansion may be a unique lineage-specific feature of crustaceans. Interestingly, E78 and HR83, which are present in other arthropods, were absent from the genomes of T. japonicus and two congeneric copepod species (T. japonicus and Tigriopus californicus), suggesting copepod lineage-specific gene loss. We identified all NR receptors present in the copepod, T. japonicus. Knowledge of the copepod nuclear receptor repertoire will contribute to a better understanding of copepod- and crustacean-specific NR evolution.