Sample records for factor bfgf expression

  1. Stem cells with FGF4-bFGF fused gene enhances the expression of bFGF and improves myocardial repair in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xiang-Qi; Chen, Liang-Long, E-mail: xhzlyx@126.com; Fan, Lin

    Highlights: • BFGF exists only in the cytoplasm of live cells. • BFGF cannot be secreted into the extracellular space to promote cell growth. • We combine the secretion-promoting signal peptide of FGF4. • We successfully modified BMSCs with the fused genes of FGF4-bFGF. • We promoted the therapeutic effects of transplanted BMSCs in myocardial infarction. - Abstract: The aim of this study was to investigate whether the modification of bone marrow-derived mesenchymal stem cells (BMSCs) with the fused FGF4 (fibroblast growth factor 4)-bFGF (basic fibroblast growth factor) gene could improve the expression and secretion of BFGF, and increase themore » efficacies in repairing infarcted myocardium. We used In-Fusion technique to construct recombinant lentiviral vectors containing the individual gene of bFGF, enhanced green fluorescent protein (EGFP), or genes of FGF4-bFGF and EGFP, and then transfected these lentiviruses into rat BMSCs. We conducted an in vitro experiment to compare the secretion of bFGF in BMSCs infected by these lentiviruses and also examined their therapeutic effects in the treatment of myocardial infraction in a rodent study. Sixty rats were tested in the following five conditions: Group-SHAM received only sham operation as controls; Group-AMI received only injection of placebo PBS buffer; Group-BMSC, Group-bFGF and Group-FGF4-bFGF received implantation of BMSCs with empty lentivirus, bFGF lentivirus, and FGF4-bFGF lentivirus, respectively. Our results found out that the transplanted FGF4-bFGF BMSCs had the highest survival rate, and also the highest myocardial expression of bFGF and microvascular density as evidenced by Western blotting and immunohistochemistry, respectively. As compared to other groups, the Group-FGF4-BFGF rats had the lowest myocardial fibrotic fraction, and the highest left ventricular ejection fraction. These results suggest that the modification of BMSCs with the FGF4-bFGF fused gene can not only increase the

  2. Comparison of human dermal fibroblasts (HDFs) growth rate in culture media supplemented with or without basic fibroblast growth factor (bFGF).

    PubMed

    Abdian, Narges; Ghasemi-Dehkordi, Payam; Hashemzadeh-Chaleshtori, Morteza; Ganji-Arjenaki, Mahbobe; Doosti, Abbas; Amiri, Beheshteh

    2015-12-01

    Basic fibroblast growth factor (bFGF or FGF-2) is a member of the FGF family secreted by different kinds of cells like HDFs and it is an important nutritional factor for cell growth and differentiation. The HDFs release bFGF in culture media at very low. The present study aims to investigate the HDFs growth rate in culture media supplemented either with or without bFGF. In brief, HDFs were isolated from human foreskin sample and were cultured in vitro in media containing bFGF and lack of this factor. The cells growth rate was calculated by trypan blue. The karyotyping was performed using G-banding to investigate the chromosomal abnormality of HDFs in both groups. Total RNA of each groups were extracted and cDNA samples were synthesized then, real-time Q-PCR was used to measure the expression level of p27kip1 and cyclin D1 genes normalized to internal control gene (GAPDH). The karyotype analysis showed that HDFs cultured in media or without bFGF had normal karyotype (46 chromosomes, XY) and chromosomal abnormalities were not observed. The cell growth rates in both groups were normal with proliferated exponentially but the slope of growth curve in HDFs cultured in media containing bFGF was increased. Karyotyp test showed that bFGF does not affect on cytogenetic stability of cells. The survey of p27kip1 and cyclin D1 genes by real-time Q-PCR showed that the expression level of these genes were up-regulated when adding bFGF in culture media (p < 0.05). The findings of the present study demonstrate that appropriate supplementation of culture media with growth factor like bFGF could enhance the proliferation and differentiation capacity of cells and improve cells growth rate. Similarly, fibroblast growth factors did not induce any chromosomal abnormality in cells. Furthermore, in HDFs cultured in bFGF supplemented media, the p27kip1 and cyclin D1 genes were up-regulated and suggesting an important role for bFGF in cell-cycle regulation and progression and fibroblast

  3. Blocking Infralimbic Basic Fibroblast Growth Factor (bFGF or FGF2) Facilitates Extinction of Drug Seeking After Cocaine Self-Administration.

    PubMed

    Hafenbreidel, Madalyn; Twining, Robert C; Rafa Todd, Carolynn; Mueller, Devin

    2015-12-01

    Drug exposure results in structural and functional changes in brain regions that regulate reward and these changes may underlie the persistence of compulsive drug seeking and relapse. Neurotrophic factors, such as basic fibroblast growth factor (bFGF or FGF2), are necessary for neuronal survival, growth, and differentiation, and may contribute to these drug-induced changes. Following cocaine exposure, bFGF is increased in addiction-related brain regions, including the infralimbic medial prefrontal cortex (IL-mPFC). The IL-mPFC is necessary for extinction, but whether drug-induced overexpression of bFGF in this region affects extinction of drug seeking is unknown. Thus, we determined whether blocking bFGF in IL-mPFC would facilitate extinction following cocaine self-administration. Rats were trained to lever press for intravenous infusions of cocaine before extinction. Blocking bFGF in IL-mPFC before four extinction sessions resulted in facilitated extinction. In contrast, blocking bFGF alone was not sufficient to facilitate extinction, as blocking bFGF and returning rats to their home cage had no effect on subsequent extinction. Furthermore, bFGF protein expression increased in IL-mPFC following cocaine self-administration, an effect reversed by extinction. These results suggest that cocaine-induced overexpression of bFGF inhibits extinction, as blocking bFGF during extinction permits rapid extinction. Therefore, targeted reductions in bFGF during therapeutic interventions could enhance treatment outcomes for addiction.

  4. Insulin-like growth factor-binding protein-3 inhibits IGF-1-induced proliferation of human hepatocellular carcinoma cells by controlling bFGF and PDGF autocrine/paracrine loops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Yang; Han, Chen-chen; Li, Yifan

    Basic fibroblast growth factor (bFGF) and platelet-derived growth factor (PDGF) produced by hepatocellular carcinoma (HCC) cells are responsible for the growth of HCC cells. Accumulating evidence shows that insulin-like growth factor-binding protein-3 (IGFBP-3) suppresses HCC cell proliferation in both IGF-dependent and independent manners. It's unknown, however, whether treatment with exogenous IGFBP-3 inhibits bFGF and PDGF production in HCC cells. The present study demonstrates that IGFBP-3 suppressed IGF-1-induced bFGF and PDGF expression while it does not affect their expression in the absence of IGF-1. To delineate the underlying mechanism, western-blot and RT-PCR assays confirmed that the transcription factor early growth responsemore » protein 1 (EGR1) is involved in IGFBP-3 regulation of bFGF and PDGF. IGFBP-3 inhibition of type 1 insulin-like growth factor receptor (IGF1R), ERK and AKT activation is IGF-1-dependent. Furthermore, transient transfection with constitutively activated AKT or MEK partially blocks the IGFBP-3 inhibition of EGR1, bFGF and PDGF expression. In conclusion, these findings suggest that IGFBP-3 suppresses transcription of EGR1 and its target genes bFGF and PDGF through inhibiting IGF-1-dependent ERK and AKT activation. It demonstrates the importance of IGFBP-3 in the regulation of HCC cell proliferation, suggesting that IGFBP-3 could be a target for the treatment of HCC. - Highlights: • IGFBP-3 plays an inhibition role in IGF1-induced HCC cell growth. • IGFBP-3 inhibits bFGF and PDGF production in the IGF-dependent manner. • EGR1 is involved in IGFBP-3 regulation of bFGF and PDGF in HCC cells. • IGFBP-3 suppresses EGR1 and its target genes bFGF and PDGF through inhibiting IGF-1-dependent ERK and AKT activation.« less

  5. The associations between serum VEGF, bFGF and endoglin levels with microvessel density and expression of proangiogenic factors in malignant and benign ovarian tumors.

    PubMed

    Szubert, Sebastian; Moszynski, Rafal; Michalak, Slawomir; Nowicki, Michal; Sajdak, Stefan; Szpurek, Dariusz

    2016-09-01

    To investigate whether serum levels of VEGF, bFGF and endoglin correlate with tumor VEGF and bFGF expression or microvessel density (MVD) in ovarian cancer. Forty five patients with epithelial ovarian cancers (EOCs) and 38 patients with benign ovarian tumors (BOTs) were included into the study. Serum levels of VEGF, bFGF and endoglin were assessed using ELISA. The expression of VEGF and bFGF in tumor samples were evaluated using ELISA of supernatants obtained from tumor homogenization. MVD was analyzed using immunohistochemistry with antibodies against CD31, CD34 and CD105. Serum VEGF levels were significantly higher in EOCs than in BOTs (436.6pg/ml [19.67-2860] vs 295.5pg/ml [123-539], P=0.025). Serum endoglin levels were lowered in the group EOCs when compared to BOTs (33,720g/ml [12,220-73,940] vs 42,390pg/ml [19,380-56,910], P=0.015). There were no differences in bFGF levels between studied groups. EOCs have significantly higher CD105 MVD (25 vessels/mm2 [0-57] vs 6 vessels/mm2 [0-70], P<0.001) and tumor VEGF (405.9pg/mg protein [0-3000] vs 2.225 [0-634.7], P<0.001) expression than BOTs, while, bFGF expression was higher in BOTs than in EOCs (2076pg/mg protein [668.1-8718] vs 847.3pg/mg protein [188.9-8333], P=0.003). In patients with EOCs we have observed negative correlation between serum VEGF concentration and its tissue expression (r Spearman=-0.571, P=0.0261), and serum VEGF concentration correlated positively with CD34-MVD (r Spearman=0.545, P=0.0289). In a multiple regression analysis we have observed only the negative correlation between serum VEGF and CD105-MVD (r=-0.5288, P=0.0427). Serum VEGF is a useful marker for prediction of ovarian cancer MVD and tumor VEGF expression. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Improved neovascularization and wound repair by targeting human basic fibroblast growth factor (bFGF) to fibrin.

    PubMed

    Zhao, Wenxue; Han, Qianqian; Lin, Hang; Gao, Yuan; Sun, Wenjie; Zhao, Yannan; Wang, Bin; Chen, Bing; Xiao, Zhifeng; Dai, Jianwu

    2008-10-01

    Targeted therapy is a new generation of therapeutics, where two critical factors are involved. One is the particular molecular target, and the other is the specific target-binding drug. In this work, the fibrin, a main component of plasma clot at wound sites, was used as the target for human bFGF, aiming to improve therapeutic neovascularization and wound repair. To endow bFGF with fibrin-targeting ability, a fibrin-binding peptide Kringle1 (K1), derived from human plasminogen, was fused to human bFGF. The recombinant K1bFGF showed high fibrin and plasma-clot-binding ability. When applied to the wound sites with plasma clots, K1bFGF induced robust neovascularization and improved wound healing. To extend the application of K1bFGF to other cases where no plasma clots exist, we developed a fibrin-scaffold/K1bFGF system. This system could induce localized neovascularization by delivery of K1bFGF in a sustained and site-targeting manner, and provide a microenvironment promoting cell growth and tissue regeneration. In summary, we successfully used the pathologic environment fibrin clot as the target for bFGF, and based on which bFGF was designed into a targeting agent by introduction of a fibrin-binding peptide. This provides a potential approach to improve therapeutic neovascularization and wound repair.

  7. Immunohistochemical study of the growth factors, aFGF, bFGF, PDGF-AB, VEGF-A and its receptor (Flk-1) during arteriogenesis.

    PubMed

    Wu, Song; Wu, Xiaoqiong; Zhu, Wu; Cai, Wei-Jun; Schaper, Jutta; Schaper, Wolfgang

    2010-10-01

    Growth factors are viewed as main arteriogenic stimulators for collateral vessel growth. However, the information about their native expression and distribution in collateral vessels is still limited. This study was designed to profile expression of acidic and basic FGF, platelet-derived growth factor (PDGF-AB) and vascular endothelial growth factor (VEGF-A) and its receptor, fetal liver kinase-1 (Flk-1) during arteriogenesis by confocal immunofluorescence in both dog ameroid constrictor model and rabbit arteriovenous shunt model of arteriogenesis. We found that: (1) in normal arteries (NA) in dog heart, aFGF, bFGF, and PDGF-AB all were mainly expressed in endothelial cells (EC) and media smooth muscle cells (SMC), but the expression of aFGF was very weak, with those of the other two being moderate; (2) in collateral arteries (CAs), aFGF, bFGF, and PDGF-AB all were significantly upregulated (P < 0.05); they were present in all the layers of the vascular wall and were 2.1, 1.7, and 1.9 times higher than that in NA, respectively; and (3) in NA in rabbit hind limb, VEGF-A was absent, Flk-1 was only weakly present in endothelial cells, but in one week CAs VEGF-A and Flk-1 were significantly increased in both shunt and ligation sides; this was more evident in the shunt-side CAs, 2.3, and 2 times higher than that in the ligation side, respectively. In conclusion, our data demonstrate for the first time that growth factors, aFGF, bFGF, and PDGF-AB are significantly upregulated in collateral vessels in dog heart, and enhanced VEGF-A and its receptor, Flk-1, are associated with rapid and lasting increased shear stress. These findings suggest that endogenous production of growth factors could be an important factor promoting collateral vessel growth.

  8. Extracellular matrix metalloproteinase inducer (EMMPRIN) expression correlates positively with active angiogenesis and negatively with basic fibroblast growth factor expression in epithelial ovarian cancer.

    PubMed

    Szubert, Sebastian; Szpurek, Dariusz; Moszynski, Rafal; Nowicki, Michal; Frankowski, Andrzej; Sajdak, Stefan; Michalak, Slawomir

    2014-03-01

    The primary aim of this paper was to evaluate the expression of extracellular matrix metalloproteinase inducer (EMMPRIN) and its relationship with proangiogenic factors and microvessel density (MVD) in ovarian cancer. The study group included 58 epithelial ovarian cancers (EOCs), 35 benign ovarian tumors, and 21 normal ovaries. The expression of EMMPRIN, vascular endothelial growth factor (VEGF), and basic fibroblast growth factor (bFGF) was assessed by ELISA of tissue homogenates. Antibodies against CD105, CD31, and CD34 were used to immunohistochemically assess MVD. We have found significantly higher EMMPRIN expression in EOC than in benign ovarian tumors and normal ovaries. Similarly, the VEGF expression was higher in EOC than in benign ovarian tumors and normal ovaries. By contrast, bFGF expression was lower in EOC than in benign ovarian tumors and ovary samples. EMMPRIN expression in EOC was directly correlated with VEGF expression and CD105-MVD, but inversely correlated with bFGF expression. Grade 2/3 ovarian cancers had increased expression of EMMPRIN and VEGF, increased CD105-MVD, and lowered expression of bFGF compared to grade 1 ovarian cancers. Moreover, EMMPRIN expression was higher in advanced (FIGO III and IV) ovarian cancer. The upregulation of EMMPRIN and VEGF expression is correlated with increased CD105-MVD and silenced bFGF, which suggests early and/or reactivated angiogenesis in ovarian cancer. Aggressive EOC is characterized by the following: high expression of EMMPRIN and VEGF, high CD105-MVD, and low expression of bFGF.

  9. Moist exposed burn ointment promotes cutaneous excisional wound healing in rats involving VEGF and bFGF.

    PubMed

    Tang, Qian-Li; Han, Shan-Shan; Feng, Jing; Di, Jia-Qi; Qin, Wen-Xi; Fu, Jun; Jiang, Qiu-Yan

    2014-04-01

    Cutaneous delayed wounds are a challenging clinical problem, and vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) exhibit key roles in wound healing. Moist exposed burn ointment (MEBO), a Chinese burn ointment with a USA patented formulation, has been reported to promote chronic ischemic and neurogenic ulcer healing in patients; however, the underlying mechanisms remain unclear. In the present study, MEBO significantly promoted the formation of granulation tissue in cutaneous excisional wounds, shortened the time of wound healing, and increased neovascularization and the number of fibroblasts. Furthermore, as well as enhancing the protein expression, MEBO application also increased the gene expression of VEGF and bFGF. The results indicate that MEBO promotes cutaneous excisional wound healing by at least partially enhancing VEGF and bFGF production, implicating the potential uses of MEBO for delayed cutaneous wound healing.

  10. b-FGF induces corneal blood and lymphatic vessel growth in a spatially distinct pattern.

    PubMed

    Hajrasouliha, Amir R; Sadrai, Zahra; Chauhan, Sunil K; Dana, Reza

    2012-07-01

    To study the spatial variances in ligand expression and angiogenic effect in response to the inflammatory response induced by basic fibroblast growth factor (b-FGF). b-FGF micropellets (80 ng) were implanted in the temporal side of the cornea of Balb/c mice. On days 1, 3, and 7, blood (heme-) and lymphangiogenesis were observed by immunofluorescence staining of corneal flat mounts with LYVE-1 and CD31 to identify lymphatic and blood vessels, respectively. A second group of corneas were harvested for quantitative real-time polymerase chain reaction. Each cornea was divided into 2 different areas: (1) pre-pellet area and (2) opposite-pellet area. Expression of vascular endothelial growth factor (VEGF) ligands was evaluated using real-time polymerase chain reaction in each respective zone. Blood vessels grew into the cornea from the pre-pellet area, whereas corneal lymphatic vessels grew from the opposite-pellet area toward the center of the cornea. VEGF-A was upregulated in the pre-pellet, whereas VEGF-D expression was mostly observed in the opposite-pellet area. VEGF-C level increased simultaneously in both areas. A single inducing factor, that is, b-FGF, may simultaneously provoke hemangiogenesis and lymphangiogenesis in different locations of the cornea through differential expression of VEGF ligands. This distinctive spatial pattern should be considered while evaluating the corneal predilection for inflammation beyond that which is directly visible by slit lamp examination.

  11. Peroxynitrite Upregulates Angiogenic Factors VEGF-A, BFGF, and HIF-1α in Human Corneal Limbal Epithelial Cells

    PubMed Central

    Ashki, Negin; Chan, Ann M.; Qin, Yu; Wang, Wei; Kiyohara, Meagan; Lin, Lin; Braun, Jonathan; Wadehra, Madhuri; Gordon, Lynn K.

    2014-01-01

    Purpose. Corneal neovascularization (NV) is a sight-threatening condition often associated with infection, inflammation, prolonged contact lens use, corneal burns, and acute corneal graft rejection. Macrophages recruited to the cornea release nitric oxide (NO) and superoxide anion (O2−), which react together to form the highly toxic molecule peroxynitrite (ONOO−). The role of ONOO− in upregulating multiple angiogenic factors in cultured human corneal limbal epithelial (HCLE) cells was investigated. Methods. Human corneal limbal epithelial cells were incubated with 500 μM of ONOO− donor for various times. VEGF-A, BFGF, and hypoxic-inducible factor-alpha (HIF-1α) were investigated via Western blot and RT-PCR was performed for VEGF. Functional assays using human umbilical vein endothelial cells (HUVEC) used conditioned media from ONOO−-exposed HCLE cells. Secreted VEGF from conditioned media was detected and analyzed using ELISA. Results. Increased angiogenic factors were observed as early as 4 hours after HCLE exposure to ONOO−. HIF-1 expression was seen at 4, 6, and 8 hours post-ONOO− exposure (P < 0.05). BFGF expression was elevated at 4 hours and peaked at 8 hours after treatment with ONOO− (P < 0.005). Increased VEGF-A gene expression was observed at 6 and 8 hours post-ONOO− treatment. Functional assays using conditioned media showed increased HUVEC migration and tube formation. Conclusions. Exposure to elevated extracellular concentrations of ONOO− results in upregulation of angiogenic factors in HCLE cells. It is possible that, in the setting of inflammation or infection, that exposure to ONOO− could be one contributor to the complex initiators of corneal NV. Validation in vivo would identify an additional potential control point for corneal NV. PMID:24398102

  12. Peroxynitrite upregulates angiogenic factors VEGF-A, BFGF, and HIF-1α in human corneal limbal epithelial cells.

    PubMed

    Ashki, Negin; Chan, Ann M; Qin, Yu; Wang, Wei; Kiyohara, Meagan; Lin, Lin; Braun, Jonathan; Wadehra, Madhuri; Gordon, Lynn K

    2014-03-19

    Corneal neovascularization (NV) is a sight-threatening condition often associated with infection, inflammation, prolonged contact lens use, corneal burns, and acute corneal graft rejection. Macrophages recruited to the cornea release nitric oxide (NO) and superoxide anion (O2(-)), which react together to form the highly toxic molecule peroxynitrite (ONOO(-)). The role of ONOO(-) in upregulating multiple angiogenic factors in cultured human corneal limbal epithelial (HCLE) cells was investigated. Human corneal limbal epithelial cells were incubated with 500 μM of ONOO(-) donor for various times. VEGF-A, BFGF, and hypoxic-inducible factor-alpha (HIF-1α) were investigated via Western blot and RT-PCR was performed for VEGF. Functional assays using human umbilical vein endothelial cells (HUVEC) used conditioned media from ONOO(-)-exposed HCLE cells. Secreted VEGF from conditioned media was detected and analyzed using ELISA. Increased angiogenic factors were observed as early as 4 hours after HCLE exposure to ONOO(-). HIF-1 expression was seen at 4, 6, and 8 hours post-ONOO(-) exposure (P < 0.05). BFGF expression was elevated at 4 hours and peaked at 8 hours after treatment with ONOO(-) (P < 0.005). Increased VEGF-A gene expression was observed at 6 and 8 hours post-ONOO(-) treatment. Functional assays using conditioned media showed increased HUVEC migration and tube formation. Exposure to elevated extracellular concentrations of ONOO(-) results in upregulation of angiogenic factors in HCLE cells. It is possible that, in the setting of inflammation or infection, that exposure to ONOO(-) could be one contributor to the complex initiators of corneal NV. Validation in vivo would identify an additional potential control point for corneal NV.

  13. Myostatin downregulates the expression of basic fibroblast growth factor gene in HeLa cells.

    PubMed

    Liu, H Z; Luo, P; Chen, S H; Shang, J H

    2012-01-01

    Basic fibroblast growth factor (bFGF or FGF-2), a potent tumorigenic cytokine, improves cells proliferation and angiogenesis in tumor and also plays vital roles in tumor growth, metastasis as well as prognosis. Screening and application of effective cytokines against bFGF tumorigenic activity would be helpful to oncologic therapy. Myostatin, a member of transforming growth factor β superfamily, recently showed an antitumor activity and was reported to induce HeLa cells apoptosis through mitochondrion pathway. The above data raised our assumption that expression level of endogenous bFGF gene may be suppressed by exogenous myostatin in myostatin-treated HeLa cells. To test the hypothesis, myostatin was employed to stimulate HeLa cells and expressional level of endogenous bFGF gene in HeLa cells was detected with real-time RT-PCR and ELISA. Results of the suppressed expression level of bFGF gene in Hela cells implied that myostatin may be regarded as an effective cytokine against bFGF to treat certain cancers (Fig. 3, Ref. 26).

  14. Photoreceptor dystrophy in the RCS rat: roles of oxygen, debris, and bFGF.

    PubMed

    Valter, K; Maslim, J; Bowers, F; Stone, J

    1998-11-01

    To examine the roles of oxygen, basic fibroblast growth factor (bFGF), and photoreceptor debris in the photoreceptor dystrophy of the Royal College of Surgeons (RCS) rat. Pups were exposed during the critical period of their development (postnatal day [P] 16-24) and for some days thereafter to hypoxia and hyperoxia. The effects of these exposures on photoreceptor death, debris accumulation in the subretinal space, and the expression of bFGF protein and mRNA by surviving cells were studied. During the critical period hyperoxia slowed photoreceptor death in a dose-related fashion and decreased bFGF protein levels, whereas hypoxia accelerated death and increased bFGF levels. At the edges of the retina, where photoreceptors survive longest in normoxia, hypoxia had little effect on either photoreceptor death or bFGF protein levels. Oxygen-induced modulation of rates of death could not be related to the accumulation of debris in the subretinal space. After P27, the relationship between oxygen and photoreceptor death changed markedly, hyperoxia no longer delaying and hypoxia no longer accelerating death. The death of RCS rat photoreceptors in the period P16 to P27 is precipitated by hypoxia that may result from the accumulation of photoreceptor debris in the subretinal space. This debris, the result of the phagocytotic failure of the retinal pigment epithelium in this strain, lies in the normal pathway of oxygen diffusing to the photoreceptors from the choriocapillaris. During this period the retina responds to hypoxia by increasing expression of a potentially protective protein (bFGF), but hypoxia-induced damage overwhelms any protection provided by this or other mechanisms. Later stages of the dystrophy may not be hypoxia-induced.

  15. Effect of peritoneal dialysis on expression of vascular endothelial growth factor, basic fibroblast growth factor and endostatin of the peritoneum in peritoneal dialysis patients.

    PubMed

    Gao, Dan; Zhao, Zhan-Zheng; Liang, Xian-Hui; Li, Yan; Cao, Ying; Liu, Zhang-Suo

    2011-11-01

    The aim of this study is to investigate the expression of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF) and endostatin (ES) in human peritoneum and investigate the relationship between them and peritoneum neoangiogensis in the patients with uraemia and peritoneal dialysis (PD). Peritoneal biopsies were obtained from normal subjects (n = 8), uraemic predialysis patients (n = 12) and PD patients (n = 10). The mRNA expression of VEGF, bFGF and ES in peritoneal tissues were measured through real-time polymerase chain reaction. The protein expression of VEGF, bFGF and ES in peritoneal tissues were determined through western blot. Microvessel density (MVD) of peritoneal tissue was assessed using immunohistochemistry with CD34 monoclonal antibody. The mRNA and protein of VEGF, bFGF and ES were expressed in all peritoneal samples. Compared with the normal control group, the mRNA and protein expression of VEGF and bFGF in peritoneal tissues were all significantly upregulated in the uraemic predialysis and PD group (all P < 0.05). Compared with the normal control group, the protein expression of ES were significantly upregulated in the uraemic predialysis and PD group (all (P < 0.05), but the mRNA expression of ES did not have obvious differences in the uraemic predialysis and PD group as compared to the normal control group (P > 0.05). MVD of peritoneal tissue were increased in the uraemic predialysis and PD group compared with the normal group (all P < 0.05). A significant positive correlation was found between VEGF mRNA expression and MVD, bFGF mRNA expression and MVD. The mRNA expression of VEGF and bFGF, the protein expression of VEGF, bFGF, and ES and microvessel density (MVD) are increased both in the uraemic predialysis and PD patients. These results show that uraemia circumstances and non-physiological compatibility of peritoneal dialysis solution might increase VEGF, bFGF and ES expression and MVD, which might participate in the

  16. Cellular Dichotomy Between Anchorage-Independent Growth Responses to bFGF and TA Reflects Molecular Switch in Commitment to Carcinogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waters, Katrina M.; Tan, Ruimin; Opresko, Lee K.

    2009-11-01

    We have investigated gene expression patterns underlying reversible and irreversible anchorage-independent growth (AIG) phenotypes to identify more sensitive markers of cell transformation for studies directed at interrogating carcinogenesis responses. In JB6 mouse epidermal cells, basic fibroblast growth factor (bFGF) induces an unusually efficient and reversible AIG response, relative to 12-O-tetradecanoyl phorbol-13-acetate (TPA)-induced AIG which is irreversible. The reversible and irreversible AIG phenotypes are characterized by largely non-overlapping global gene expression profiles. However, a subset of differentially expressed genes were identified as common to reversible and irreversible AIG phenotypes, including genes regulated in a reciprocal fashion. Hepatic leukemia factor (HLF) andmore » D-site albumin promoter-binding protein (DBP) were increased in both bFGF and TPA soft agar colonies and selected for functional validation. Ectopic expression of human HLF and DBP in JB6 cells resulted in a marked increase in TPA- and bFGF-regulated AIG responses. HLF and DBP expression were increased in soft agar colonies arising from JB6 cells exposed to gamma radiation and in a human basal cell carcinoma tumor tissue, relative to paired non-tumor tissue. Subsequent biological network analysis suggests that many of the differentially expressed genes that are common to bFGF- and TPA-dependent AIG are regulated by c-Myc, SP-1 and HNF-4 transcription factors. Collectively, we have identified a potential molecular switch that mediates the transition from reversible to irreversible AIG.« less

  17. Expression of basic fibroblast growth factor mRNA in benign prostatic hyperplasia and prostatic carcinoma.

    PubMed

    Mydlo, J H; Michaeli, J; Heston, W D; Fair, W R

    1988-01-01

    In our previous work we demonstrated that prostate-derived growth factor (PrGF) is homologous to basic fibroblast growth factor (bFGF), not acidic fibroblast growth factor (aFGF). Using Northern blot analysis we now show that the messenger RNA for bFGF but not aFGF is expressed in benign prostatic hyperplastic (BPH) tissue as well as in carcinoma of the prostate (CAP). This not only corroborates our previous results, but suggests that PrGF is produced locally and not merely stored in the prostate. The demonstration of local production of bFGF by prostate tissue may indicate that this growth factor plays a role, either alone or in conjunction with other factors, in the etiology of benign hyperplasia or prostatic cancer.

  18. Dual Delivery of bFGF- and NGF-Binding Coacervate Confers Neuroprotection by Promoting Neuronal Proliferation.

    PubMed

    Wu, Yanqing; Wang, Zhouguang; Cai, Pingtao; Jiang, Ting; Li, Yiyang; Yuan, Yuan; Li, Rui; Khor, Sinan; Lu, Yingfeng; Wang, Jian; Chen, Daqing; Zeng, Qiqiang; Zhong, Ruisheng; Zhang, Hongyu; Lin, Yuan; Li, Xiaokun; Xiao, Jian

    2018-06-12

    Basic fibroblast growth factor (bFGF) and nerve growth factor (NGF) are essential for proper development, survival, growth, and maintenance of neurons in the central and peripheral nervous systems. However, because bFGF and NGF have short half-life and rapid diffusion rate, they have limited clinical efficacy. Thus, there is an urgent need to develop an effective delivery system to protect bFGF and NGF from proteolysis while maintaining their normal bioactivities. To more efficiently deliver bFGF and NGF, we used a coacervate (synthesized with heparin and a biodegradable polycation at mass ratio of 500: 100). The maximal package loads of GFs in coacervate were determined by Western Blotting; release efficiency of bFGF and NGF was measured by ELISA. Additionally, we evaluated the effect of bFGF and NGF on the viability, survival, and proliferation of neurons by MTT assay, BrdU cell proliferation, and calcein staining. Our coacervate incorporated bFGF and NGF and continuously released them for at least three weeks. This enhanced the growth and proliferation of PC12 cells and SH-SY5Y cells. Moreover, co-delivery of bFGF and NGF using coacervate was more neuroprotective than free application of both factors or coacervate delivery of each GF separately. Dual delivery of bFGF and NGF binding coacervate was neuroprotective via stimulating the growth and proliferation of neurons. © 2018 The Author(s). Published by S. Karger AG, Basel.

  19. Basic Fibroblast Growth Factor Regulates Gene and Protein Expression Related to Proliferation, Differentiation, and Matrix Production of Human Dental Pulp Cells.

    PubMed

    Chang, Ya-Ching; Chang, Mei-Chi; Chen, Yi-Jane; Liou, Ji-Uei; Chang, Hsiao-Hua; Huang, Wei-Ling; Liao, Wan-Chuen; Chan, Chiu-Po; Jeng, Po-Yuan; Jeng, Jiiang-Huei

    2017-06-01

    Basic fibroblast growth factor (bFGF) plays differential effects on the proliferation, differentiation, and extracellular matrix turnover in various tissues. However, limited information is known about the effect of bFGF on dental pulp cells. The purposes of this study were to investigate whether bFGF influences the cell differentiation and extracellular matrix turnover of human dental pulp cells (HDPCs) and the related gene and protein expression as well as the role of the mitogen-activated protein kinase (MEK)/extracellular-signal regulated kinase (ERK) signaling pathway. The expression of fibroblast growth factor receptors (FGFRs) in HDPCs was also studied. The expression of FGFR1 and FGFR2 in HDPCs was investigated by reverse-transcription polymerase chain reaction. HDPCs were treated with different concentrations of bFGF. Cell proliferation was evaluated using the 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. Cell differentiation was evaluated using alkaline phosphatase (ALP) staining. Changes in messenger expression of cyclin B1 and tissue inhibitor of metalloproteinase (TIMP) 1 were determined by reverse-transcription polymerase chain reaction. Changes in protein expression of cdc2, TIMP-1, TIMP-2, and collagen I were determined by Western blotting. U0126 was used to clarify the role of MEK/ERK signaling. HDPCs expressed both FGFR1 and FGFR2. Cell viability was stimulated by 50-250 ng/mL bFGF. The expression and enzyme activities of ALP were inhibited by 10-500 ng/mL bFGF. At similar concentrations, bFGF stimulates cdc2, cyclin B1, and TIMP-1 messenger RNA and protein expression. bFGF showed little effect on TIMP-2 and partly inhibited collagen I expression of pulp cells. U0126 (a MEK/ERK inhibitor) attenuated the bFGF-induced increase of cyclin B1, cdc2, and TIMP-1. bFGF may be involved in pulpal repair and regeneration by activation of FGFRs to regulate cell growth; stimulate cdc2, cyclin B1, and TIMP-1 expression; and inhibit ALP

  20. Expression of basic fibroblast growth factor and its receptors FGFR1 and FGFR2 in human benign prostatic hyperplasia treated with finasteride.

    PubMed

    Sáez, C; González-Baena, A C; Japón, M A; Giráldez, J; Segura, D I; Rodríguez-Vallejo, J M; González-Esteban, J; Miranda, G; Torrubia, F

    1999-07-01

    The development of benign prostatic hyperplasia (BPH) is an androgen-dependent process which may be mediated by a number of locally produced growth factors. One of these, the basic fibroblast growth factor (bFGF or FGF2), has a mitogenic effect on prostatic stroma. High expression levels of bFGF have been reported in BPH. FGFR1 and FGFR2 receptors, that exhibit affinity for bFGF, have been identified in normal and hyperplastic prostate. Finasteride, a 5alpha-reductase inhibitor, is an effective drug in the treatment of BPH, inducing regressive changes in the prostate of treated patients, even though its mechanisms of action are not yet completely elucidated. This study was designed to assess the effects of finasteride on the expression levels of bFGF, FGFR1, and FGFR2 in patients with BPH. The expression levels of bFGF, FGFR1, and FGFR2 in 9 patients with prostatic hyperplasia treated with finasteride were assessed by immunohistochemistry and reverse transcription-polymerase chain reaction (RT-PCR) analysis of mRNA expression and were compared with those of 9 control patients with untreated BPH. Immunohistochemistry showed strong bFGF immunoreactivity in the prostatic stroma of untreated patients, this being somewhat weaker in the epithelium. In treated patients, epithelial immunoreactivity was practically negative, and a considerable reduction in stromal immunoreactivity was seen. These findings were also confirmed by RT-PCR. FGFR1 showed a weak immunoreactivity in the stroma and in basal epithelial cells. FGFR1 showed a weak immunoreactivity in the stroma and in basal epithelial cells. FGFR2 exhibited strong stromal immunoreactivity, becoming weaker in the basal epithelium. No differences were seen in the expression of both receptors between the groups of treated and untreated patients. A marked reduction in bFGF levels is seen in BPH treated with finasteride in comparison to untreated BPH. In our opinion, finasteride may act as a negative regulator of bFGF

  1. In Vitro Expression of Cytokeratin 19 in Adipose-Derived Stem Cells Is Induced by Epidermal Growth Factor.

    PubMed

    Chen, Shangliang; Wang, Mingzhu; Chen, Xinglu; Chen, Shaolian; Liu, Li; Zhu, Jianbin; Wang, Jinhui; Yang, Xiaorong; Cai, Xiangsheng

    2018-06-21

    BACKGROUND Cytokeratin 19 (CK19) is a typical epithelial marker. In this study, we determined whether epidermal growth factor (EGF) or basic fibroblast growth factor (bFGF) could enhance CK19 expression in adipose-derived stem cells (ADSCs), thereby inducing the differentiation of ADSCs into epithelial-like cells. MATERIAL AND METHODS ADSCs were isolated from perinephric fat, and the expression of CD29, CD90, and CD105 was confirmed. Following isolation, ADSCs were cultured in static medium or medium containing EGF or bFGF. RESULTS Flow cytometry revealed that EGF and bFGF could alter mesenchymal stem cell markers as well as the cell cycle of ADSCs. Western blotting and immunofluorescence revealed that after 14 days, EGF treatment enhanced the expression of CK19 in ADSCs. CONCLUSIONS Our findings offer important insight for the clinical use of ADSCs in the generation of epithelial-like cells in the future.

  2. Recombinant human basic fibroblast growth factor (bFGF) stimulates periodontal regeneration in class II furcation defects created in beagle dogs.

    PubMed

    Murakami, S; Takayama, S; Kitamura, M; Shimabukuro, Y; Yanagi, K; Ikezawa, K; Saho, T; Nozaki, T; Okada, H

    2003-02-01

    Several growth factors (or cytokines) have been recently investigated for their use as potential therapeutics for periodontal tissue regeneration. The objective of this study was to evaluate periodontal tissue regeneration, including new bone and cementum formation, following topical application of recombinant basic fibroblast growth factor (bFGF, FGF-2) to furcation class II defects. Twelve furcation class II bone defects were surgically created in six beagle dogs, then recombinant bFGF (30 micro g/site) + gelatinous carrier was topically applied to the bony defects. Six weeks after application, periodontal regeneration was analyzed. In all sites where bFGF was applied, periodontal ligament formation with new cementum deposits and new bone formation was observed histomorphometrically, in amounts greater than in the control sites. Basic FGF-applied sites exhibited significant regeneration as represented by the new bone formation rate (NBR) (83.6 +/- 14.3%), new trabecular bone formation rate (NTBR) (44.1 +/- 9.5%), and new cementum formation rate (NCR) (97.0 +/- 7.5%). In contrast, in the carrier-only sites, the NBR, NTBR, and NCR were 35.4 +/- 8.9%, 16.6 +/- 6.2%, and 37.2 +/- 15.1%, respectively. Moreover, no instances of epithelial down growth, ankylosis, or root resorption were observed in the bFGF-applied sites examined. The present results indicate that topical application of bFGF can enhance considerable periodontal regeneration in artificially created furcation class II bone defects of beagle dogs.

  3. Growth Factors and COX2 Expression in Canine Perivascular Wall Tumors.

    PubMed

    Avallone, G; Stefanello, D; Boracchi, P; Ferrari, R; Gelain, M E; Turin, L; Tresoldi, E; Roccabianca, P

    2015-11-01

    Canine perivascular wall tumors (PWTs) are a group of subcutaneous soft tissue sarcomas developing from vascular mural cells. Mural cells are involved in angiogenesis through a complex crosstalk with endothelial cells mediated by several growth factors and their receptors. The evaluation of their expression may have relevance since they may represent a therapeutic target in the control of canine PWTs. The expression of vascular endothelial growth factor (VEGF) and receptors VEGFR-I/II, basic fibroblast growth factor (bFGF) and receptor Flg, platelet-derived growth factor B (PDGFB) and receptor PDGFRβ, transforming growth factor β1 (TGFβ1) and receptors TGFβR-I/II, and cyclooxygenase 2 (COX2) was evaluated on frozen sections of 40 PWTs by immunohistochemistry and semiquantitatively scored to identify their potential role in PWT development. Statistical analysis was performed to analyze possible correlations between Ki67 labeling index and the expression of each molecule. Proteins of the VEGF-, PDGFB-, and bFGF-mediated pathways were highly expressed in 27 (67.5%), 30 (75%), and 19 (47.5%) of 40 PWTs, respectively. Proteins of the TGFβ1- and COX2-mediated pathways were highly expressed in 4 (10%) and 14 (35%) of 40 cases. Statistical analysis identified an association between VEGF and VEGFR-I/II (P = .015 and .003, respectively), bFGF and Flg (P = .038), bFGF and PDGFRβ (P = .003), and between TGFβ1 and COX2 (P = .006). These findings were consistent with the mechanisms that have been reported to play a role in angiogenesis and in tumor development. No association with Ki67 labeling index was found. VEGF-, PDGFB-, and bFGF-mediated pathways seem to have a key role in PWT development and growth. Blockade of tyrosine kinase receptors after surgery could represent a promising therapy with the aim to reduce the PWT relapse rate and prolong the time to relapse. © The Author(s) 2015.

  4. Combined use of bFGF and GDF-5 enhances the healing of medial collateral ligament injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saiga, Kenta; Furumatsu, Takayuki, E-mail: matino@md.okayama-u.ac.jp; Yoshida, Aki

    Research highlights: {yields} bFGF/GDF-5 treatment increases cellular proliferation and migration of MCL fibroblasts. {yields} bFGF/GDF-5 hydrogels stimulate the healing of MCL injury in vivo. {yields} bFGF/GDF-5 hydrogels stimulate Col1a1 expression and type I collagen synthesis. {yields} Combined use of bFGF/GDF-5 enhances MCL healing. -- Abstract: Basic fibroblast growth factor (bFGF) and growth and differentiation factor (GDF)-5 stimulate the healing of medial collateral ligament (MCL) injury. However, the effect of isolated and combined use of bFGF/GDF-5 remains still unclear. We investigated cellular proliferation and migration responding to bFGF/GDF-5 using rabbit MCL fibroblasts. Rabbit MCL injury was treated by bFGF and/or GDF-5more » with peptide hydrogels. Gene expression and deposition of collagens in healing tissues were evaluated. bFGF/GDF-5 treatment additively enhanced cell proliferation and migration. bFGF/GDF-5 hydrogels stimulated Col1a1 expression without increasing Col3a1 expression. Combined use of bFGF/GDF-5 stimulated type I collagen deposition and the reorganization of fiber alignment, and induced better morphology of fibroblasts in healing MCLs. Our study indicates that combined use of bFGF/GDF-5 might enhance MCL healing by increasing proliferation and migration of MCL fibroblasts, and by regulating collagen synthesis and connective fiber alignment.« less

  5. Exposure to transforming growth factor-β1 after basic fibroblast growth factor promotes the fibroblastic differentiation of human periodontal ligament stem/progenitor cell lines.

    PubMed

    Kono, Kiyomi; Maeda, Hidefumi; Fujii, Shinsuke; Tomokiyo, Atsushi; Yamamoto, Naohide; Wada, Naohisa; Monnouchi, Satoshi; Teramatsu, Yoko; Hamano, Sayuri; Koori, Katsuaki; Akamine, Akifumi

    2013-05-01

    Basic fibroblast growth factor (bFGF) is a cytokine that promotes the regeneration of the periodontium, the specialized tissues supporting the teeth. bFGF, does not, however, induce the synthesis of smooth muscle actin alpha 2 (ACTA2), type I collagen (COL1), or COL3, which are principal molecules in periodontal ligament (PDL) tissue, a component of the periodontium. We have suggested the feasibility of using transforming growth factor-β1 (TGFβ1) to induce fibroblastic differentiation of PDL stem/progenitor cells (PDLSCs). Here, we investigated the effect of the subsequent application of TGFβ1 after bFGF (bFGF/TGFβ1) on the differentiation of PDLSCs into fibroblastic cells. We first confirmed the expression of bFGF and TGFβ1 in rat PDL tissue and primary human PDL cells. Receptors for both bFGF and TGFβ1 were expressed in the human PDLSC lines 1-11 and 1-17. Exposure to bFGF for 2 days promoted vascular endothelial growth factor gene and protein expression in both cell lines and down-regulated the expression of ACTA2, COL1, and COL3 mRNA in both cell lines and the gene fibrillin 1 (FBN1) in cell line 1-11 alone. Furthermore, bFGF stimulated cell proliferation of these cell lines and significantly increased the number of cells in phase G2/M in the cell lines. Exposure to TGFβ1 for 2 days induced gene expression of ACTA2 and COL1 in both cell lines and FBN1 in cell line 1-11 alone. BFGF/TGFβ1 treatment significantly up-regulated ACTA2, COL1, and FBN1 expression as compared with the group treated with bFGF alone or the untreated control. This method might thus be useful for accelerating the generation and regeneration of functional periodontium.

  6. [Effects of Guilin Watermelon Frost on the mRNA expressions of basic fibroblast growth factor in patients with uterine cervical columnar ectopy].

    PubMed

    Qiu-Yan, Jiang; Jin-Ling, Song; Hai-Xia, Mo

    2012-01-01

    To study the molecular biological effects of Guilin Watermelon Frost (GWF) on the mRNA expressions of basic fibroblast growth factor (bFGF) in patients with uterine uterine cervical columnar ectopy. One hundred and sixty patients with uterine cervical columnar ectopy were assigned to two groups by the random digit table. Patients in the treatment group were treated with local spray of GWF, while those in the control group were local applied with bFGF-collagen sponge. The mRNA expressions of bFGF of the uterine tissue were detected in the two groups before and after treatment using RT-PCR. Before treatment the mRNA expression of bFGF in the uterine cervical columnar ectopy was 0.55 +/- 0.10 in the treatment group and 0.58 +/- 0.13 in the control group, without insignificant difference (P > 0.05). After treatment it significantly increased in the two groups, being 0.82 +/- 0.17 and 0.78 +/- 0.15 respectively, showing statistical difference from before treatment (P < 0.01). But no statistical difference existed between the two groups after treatment (P > 0.05). GWF showed enhancement on the mRNA expressions of bFGF in patients with uterine cervical columnar ectopy.

  7. Effect of local neutralization of basic fibroblast growth factor or vascular endothelial growth factor by a specific antibody on the development of the corpus luteum in the cow.

    PubMed

    Yamashita, Hiromichi; Kamada, Daichi; Shirasuna, Koumei; Matsui, Motozumi; Shimizu, Takashi; Kida, Katsuya; Berisha, Bajram; Schams, Dieter; Miyamoto, Akio

    2008-09-01

    Active angiogenesis and progesterone (P) synthesis occur in parallel during development of the corpus luteum (CL). Basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) are known to stimulate angiogenesis and P synthesis in vitro. The aim of the present study was to investigate the impact of bFGF or VEGF on the CL development in the cow by using a specific antibody against bFGF or VEGF. bFGF antibody, VEGF antibody, or saline as a control (n = 4 cows/treatment) were injected directly into the CL immediately after ovulation (Day 1), and the treatment was continued for 3 times/day over 7 days. Luteal biopsies were applied on Day 8 of the estrous cycle to determine the expression of genes associated with P synthesis and angiogenesis. Intraluteal injections with the bFGF antibody or the VEGF antibody markedly decreased the CL volume, plasma P concentration and StAR mRNA expression. bFGF antibody treatment decreased the mRNA expression of bFGF, FGF receptor-1, VEGF120, and angiopoietin (ANPT)-1, and increased ANPT-2/ANPT-1 ratio. However, VEGF antibody treatment decreased ANPT-2 mRNA expression and ANPT-2/ANPT-1 ratio. These results indicate that local neutralization of bFGF or VEGF changes genes regulating angiogenesis and P synthesis, and remarkably suppresses the CL size and P secretion during the development of CL in the cow, supporting the concept that bFGF and VEGF control the CL formation and function.

  8. Exogenous bFGF or TGFβ1 accelerates healing of reconstructed dura by CO2 laser soldering in minipigs.

    PubMed

    Wang, Zhenmin; Zhong, Hongliang; Yang, Zhijun; Zhao, Fu; Wang, Bo; Qu, Peiran; Liu, Pinan

    2014-05-01

    This study aims to explore the probable mechanism of better result of dural reconstruction by CO2 laser soldering and the effect of exogenous basic fibroblast growth factor (bFGF) or transforming growth factor-beta1(TGFβ1) on wound healing. In part I of the study, ten minipigs were randomized into two equal groups, and the dural defects were reconstructed by conventional fibrin glue (FG) bonding (group I a) or by CO2 laser soldering (group Ib). In part II, 36 minipigs were randomized into three equal groups, and the dural defect was reconstructed by CO2 laser soldering; then exogenous bFGF or TGFβ1 was administered in group IIb and group IIc, respectively, while group IIa served as control group. The dural specimens were harvested at 1st week postoperatively in part I; and at 1st, 2nd, 3rd, and 4th week postoperatively in part II, they were examined for healing condition and subjected to hematoxylin-eosin (HE) staining and immunohistochemical (IHC) staining with antibodies against bFGF and TGFβ1. In part I, group Ib showed higher fibroblast cell density than group Ia (P < 0.05). The optical density (OD) for IHC staining with antibodies against bFGF of group Ib was significantly higher than that of group Ia (P < 0.05), and for IHC staining with antibodies against TGFβ1, group Ib showed positive staining while group Ia was negative. In part II, administering exogenous bFGF or TGFβ1 made a left shift of fibroblast cell number-time curve compared with control group. For specimens' IHC staining with antibodies against bFGF, the OD of group IIb was higher than that of group IIa in the corresponding time. For specimens' IHC staining with antibodies against TGFβ1, the OD of groups IIb and IIc was both higher than that of group IIa (P < 0.05 and P < 0.01, respectively). In conclusion, CO2 laser may trigger fibroblast proliferation through stimulating the secretion of bFGF and TGFβ1. Topically administering exogenous bFGF or TGFβ1 could accelerate the healing of the

  9. Mucosal expression of basic fibroblastic growth factor, Syndecan 1 and tumor necrosis factor-alpha in diverticular disease of the colon: a case-control study.

    PubMed

    Tursi, A; Elisei, W; Brandimarte, G; Giorgetti, G M; Inchingolo, C D; Nenna, R; Picchio, M; Giorgio, F; Ierardi, E

    2012-09-01

    Inflammation may be detected in diverticular disease (DD), and fibrosis may also develop. We assessed the mucosal expression of bFGF, SD1, and TNF-α in DD according to the severity of the disease. Moreover, we assessed the response to therapy of these cytokines in acute uncomplicated diverticulitis (AUD). Fifteen patients affected by AUD and seven patients affected by symptomatic uncomplicated diverticular disease (SUDD) were enrolled. Patients with asymptomatic diverticulosis (AD), segmental colitis associated with diverticulosis (SCAD), ulcerative colitis (UC), and healthy subjects (HC) served as control groups. The expression of bFGF, SD1, and TNF-α was significantly higher in diverticulitis than in healthy controls, in diverticulosis, and in uncomplicated diverticular disease. Cytokines were significantly higher in uncomplicated diverticular disease than in healthy controls. Cytokine expression in diverticulitis did not differ significantly from that of ulcerative colitis. After treatment, TNF-α expression dropped significantly. Mucosal TNF-α is overexpressed only in symptomatic DD, while SD1 and bFGF are already overexpressed in AD. Finally, TNF-α but not SD1 or bFGF expression seems to be influenced by the treatment in AUD. © 2012 Blackwell Publishing Ltd.

  10. Expression of a functional recombinant human basic fibroblast growth factor from transgenic rice seeds.

    PubMed

    An, Na; Ou, Jiquan; Jiang, Daiming; Zhang, Liping; Liu, Jingru; Fu, Kai; Dai, Ying; Yang, Daichang

    2013-02-07

    Basic fibroblast growth factor (FGF-2) is an important member of the FGF gene family. It is widely used in clinical applications for scald and wound healing in order to stimulate cell proliferation. Further it is applied for inhibiting stem cell differentiation in cultures. Due to a shortage of plasma and low expression levels of recombinant rbFGF in conventional gene expression systems, we explored the production of recombinant rbFGF in rice grains (Oryza sativa bFGF, OsrbFGF). An expression level of up to 185.66 mg/kg in brown rice was obtained. A simple purification protocol was established with final recovery of 4.49% and resulting in a yield of OsrbFGF reaching up to 8.33 mg/kg OsrbFGF. The functional assay of OsrbFGF indicated that the stimulating cell proliferation activity on NIH/3T3 was the same as with commercialized rbFGF. Wound healing in vivo of OsrbFGF is equivalent to commercialized rbFGF. Our results indicate that rice endosperm is capable of expressing small molecular mass proteins, such as bFGF. This again demonstrates that rice endosperm is a promising system to express various biopharmaceutical proteins.

  11. Regulation of Transforming Growth Factor β1, Platelet-Derived Growth Factor, and Basic Fibroblast Growth Factor by Silicone Gel Sheeting in Early-Stage Scarring.

    PubMed

    Choi, Jaehoon; Lee, Eun Hee; Park, Sang Woo; Chang, Hak

    2015-01-01

    Hypertrophic scars and keloids are associated with abnormal levels of growth factors. Silicone gel sheets are effective in treating and preventing hypertrophic scars and keloids. There has been no report on the change in growth factors in the scar tissue following the use of silicone gel sheeting for scar prevention. A prospective controlled trial was performed to evaluate whether growth factors are altered by the application of a silicone gel sheet on a fresh surgical scar. Four of seven enrolled patients completed the study. Transforming growth factor (TGF)-β1, platelet-derived growth factor (PDGF), and basic fibroblast growth factor (bFGF) were investigated immunohistochemically in biopsies taken from five scars at 4 months following surgery. In both the epidermis and the dermis, the expression of TGF-β1 (P=0.042 and P=0.042) and PDGF (P=0.043 and P=0.042) was significantly lower in the case of silicone gel sheet-treated scars than in the case of untreated scars. The expression of bFGF in the dermis was significantly higher in the case of silicone gel sheet-treated scars than in the case of untreated scars (P=0.042), but in the epidermis, the expression of bFGF showed no significant difference between the groups (P=0.655). The levels of TGF-β1, PDGF, and bFGF are altered by the silicone gel sheet treatment, which might be one of the mechanisms of action in scar prevention.

  12. Psychological Stress Delays Periodontitis Healing in Rats: The Involvement of Basic Fibroblast Growth Factor

    PubMed Central

    Zhao, Ya-Juan; Li, Qiang; Cheng, Bai-Xiang; Zhang, Min; Chen, Yong-Jin

    2012-01-01

    Objective. To evaluate the effects of psychological stress on periodontitis healing in rats and the contribution of basic fibroblast growth factor (bFGF) expression to the healing process. Methods. Ninety-six rats were randomly distributed into control group, periodontitis group, and periodontitis plus stress group. Then, the rats were sacrificed at baseline and week(s) 1, 2, and 4. The periodontitis healing condition was assessed, and the expression of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and bFGF were tested by immunohistochemistry. Results. The stressed rats showed reduced body weight gain, behavioral changes, and increased serum corticosterone and ACTH levels (P < 0.05). The surface of inflammatory infiltrate, alveolar bone loss, attachment loss, and expression of IL-1β and TNF-α in the stress group were higher than those in the periodontitis group at weeks 2 and 4 (P < 0.05). Rats with experimental periodontitis showed decreased bFGF expression (P < 0.05), and the recovery of bFGF expression in the stress group was slower than that in the periodontitis group (P < 0.05). Negative correlations between inflammatory cytokines and bFGF were detected. Conclusion. Psychological stress could delay periodontitis healing in rats, which may be partly mediated by downregulation of the expression of bFGF in the periodontal ligament. PMID:23326020

  13. Neural Stem Cells Expressing bFGF Reduce Brain Damage and Restore Sensorimotor Function after Neonatal Hypoxia-Ischemia.

    PubMed

    Ye, Qingsong; Wu, Yanqing; Wu, Jiamin; Zou, Shuang; Al-Zaazaai, Ali Ahmed; Zhang, Hongyu; Shi, Hongxue; Xie, Ling; Liu, Yanlong; Xu, Ke; He, Huacheng; Zhang, Fabiao; Ji, Yiming; He, Yan; Xiao, Jian

    2018-01-01

    Neonatal hypoxia-ischemia (HI) causes severe brain damage and significantly increases neonatal morbidity and mortality. Increasing evidences have verified that stem cell-based therapy has the potential to rescue the ischemic tissue and restore function via secreting growth factors after HI. Here, we had investigated whether intranasal neural stem cells (NSCs) treatment improves the recovery of neonatal HI, and NSCs overexpressing basic fibroblast growth factor (bFGF) has a better therapeutic effect for recovery than NSCs treatment only. We performed permanent occlusion of the right common carotid artery in 9-day old ICR mice as animal model of neonatal hypoxia-ischemia. At 3 days post-HI, NSC, NSC-GFP, NSC-bFGF and vehicle were delivered intranasally. To determine the effect of intranasal NSC, NSC-GFP and NSC-bFGF treatment on recovery after HI, we analyzed brain damage, sensor-motor function and cell differentiation. It was observed that intranasal NSC, NSC-GFP and NSC-bFGF treatment decreased gray and white matter loss area in comparison with vehicle-treated mouse. NSC, NSC-GFP and NSC-bFGF treatment also significantly improved sensor motor function in cylinder rearing test and adhesive removal test, however, NSC-bFGF-treatment was more effective than NSC-treatment in the improvement of somatosensory function. Furthermore, compared with NSC and NSC-GFP, NSC-bFGF treatment group appeared to differentiate into more neurons. Taken together, intranasal administration of NSCs is a promising therapy for treatment of neonatal HI, but NSCs overexpressing bFGF promotes the survival and differentiation of NSCs, and consequently achieves a better therapeutic effect in improving recovery after neonatal HI. © 2018 The Author(s). Published by S. Karger AG, Basel.

  14. Transplantation of bone marrow-derived mesenchymal stem cells expressing elastin alleviates pelvic floor dysfunction.

    PubMed

    Jin, Minfei; Chen, Ying; Zhou, Yun; Mei, Yan; Liu, Wei; Pan, Chenhao; Hua, Xiaolin

    2016-04-05

    Pelvic floor dysfunction (PFD) is a group of clinical conditions including stress urinary incontinence (SUI) and pelvic organ prolapse (POP). The abnormality of collagen and elastin metabolism in pelvic connective tissues is implicated in SUI and POP. To reconstitute the connective tissues with normal distribution of collagen and elastin, we transduced elastin to bone marrow-derived mesenchymal stem cells (BMSC). Elastin-expressing BMSCs were then differentiated to fibroblasts using bFGF, which produced collagen and elastin. To achieve the sustained release of bFGF, we formulated bFGF in poly (lactic-co-glycolic acid) (PLGA) nanoparticles (NP). In an in vitro cell culture system of 7 days, when no additional bFGF was administrated, the initial PLGA-loaded bFGF NP induced prolonged production of collagen and elastin from elastin-expressing BMSCs. In vivo, co-injection of PLGA-loaded bFGF NP and elastin-expressing BMSCs into the PFD rats significantly improved the outcome of urodynamic tests. Together, these results provided an efficient model of connective tissue engineering using BMSC and injectable PLGA-loaded growth factors. Our results provided the first instance of a multidisciplinary approach, combining both stem cell and nanoparticle technologies, for the treatment of PFD.

  15. TGF-β Determines the Pro-migratory Potential of bFGF Signaling in Medulloblastoma.

    PubMed

    Santhana Kumar, Karthiga; Neve, Anuja; Guerreiro Stucklin, Ana S; Kuzan-Fischer, Claudia M; Rushing, Elisabeth J; Taylor, Michael D; Tripolitsioti, Dimitra; Behrmann, Lena; Kirschenbaum, Daniel; Grotzer, Michael A; Baumgartner, Martin

    2018-06-26

    The microenvironment shapes cell behavior and determines metastatic outcomes of tumors. We addressed how microenvironmental cues control tumor cell invasion in pediatric medulloblastoma (MB). We show that bFGF promotes MB tumor cell invasion through FGF receptor (FGFR) in vitro and that blockade of FGFR represses brain tissue infiltration in vivo. TGF-β regulates pro-migratory bFGF function in a context-dependent manner. Under low bFGF, the non-canonical TGF-β pathway causes ROCK activation and cortical translocation of ERK1/2, which antagonizes FGFR signaling by inactivating FGFR substrate 2 (FRS2), and promotes a contractile, non-motile phenotype. Under high bFGF, negative-feedback regulation of FRS2 by bFGF-induced ERK1/2 causes repression of the FGFR pathway. Under these conditions, TGF-β counters inactivation of FRS2 and restores pro-migratory signaling. These findings pinpoint coincidence detection of bFGF and TGF-β signaling by FRS2 as a mechanism that controls tumor cell invasion. Thus, targeting FRS2 represents an emerging strategy to abrogate aberrant FGFR signaling. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  16. [Receptors of selected cytokines and angiokine bFGF in patients with colorectal cancer (a preliminary study)].

    PubMed

    Grotowski, M; Piechota, W

    2001-11-01

    The aim of the study was to examine the frequency of increased serum levels of the soluble receptors TNF and IL-2 and angiokine bFGF in colorectal cancer patients. Also correlation between their concentrations and stage of the tumor was made. The study was done on group consisted of 30 diagnosed colorectal cancer patients, with different location and stage of the tumor. The used classification of stage of the tumor was described by Dukes. The results were compared with control group consisted of 10 healthy persons. The examined factors were assayed by ELISA method (R&D Systems Minneapolis). In colorectal cancer group the serum levels of sTNFRI were increased 1.8 times, sTNFRII 1.4 times, sIL-2R 2.2 times and bFGF 5.3 times in comparison with control group. The serum levels of sTNFRI and sTNFRII showed increased tendency in stage D of colorectal cancer. The serum levels of sIL-2R were the highest in stage D. The serum levels of bFGF showed increased tendency in stage A and B and correlated with stage D of the tumor. This results permit for further study on usefulness of sTNFRI, sTNFRII, sIL-2R and bFGF as a markers for colorectal cancer in clinical use.

  17. Basic Fibroblast Growth Factor Influences Epidermal Homeostasis of Living Skin Equivalents through Affecting Fibroblast Phenotypes and Functions.

    PubMed

    Yang, Lujun; Zhang, Dangui; Wu, Hongjuan; Xie, Sitian; Zhang, Mingjun; Zhang, Bingna; Tang, Shijie

    2018-05-30

    To elucidate the possible mechanisms of how basic fibroblast growth factor (bFGF) influences epidermal homeostasis in a living skin equivalent (LSE) model. Several wound healing-related growth factors were analyzed at protein and mRNA levels for dermal fibroblasts of induced alpha-smooth muscle actin (α-SMA)-positive or α-SMA-negative phenotypes. During culturing an LSE model by seeding normal human keratinocytes on a fibroblast-populated type I collagen gel, bFGF or neutralizing antibody for keratinocyte growth factor (KGF) was added to investigate its effects on fibroblast phenotypes and, subsequently, epidermal homeostasis by histology and immunohistochemistry. The α-SMA-positive phenotype of fibroblasts induced by transforming growth factor beta-1 (TGF-β1) markedly suppressed the expression of KGF and hepatocyte growth factor (HGF), and slightly upregulated vascular endothelial growth factor (VEGF) and TGF-β1 at mRNA and protein levels, compared with α-SMA-negative fibroblasts treated with bFGF. α-SMA expression of fibroblasts at the epidermal-mesenchymal junction of the LSEs was suppressed by the addition of bFGF, and a better-differentiated epidermis was presented. The abrogation of KGF from fibroblasts by the addition of the KGF neutralizing antibody disenabled the LSE culturing system to develop an epidermis. bFGF, through affecting the phenotypes and functions of fibroblasts, especially KGF expression, influenced epidermal homeostasis in an LSE model. © 2018 S. Karger AG, Basel.

  18. Basic fibroblast growth factor (bFGF) facilitates differentiation of adult dorsal root ganglia-derived neural stem cells toward Schwann cells by binding to FGFR-1 through MAPK/ERK activation.

    PubMed

    Gu, Yun; Xue, Chenbin; Zhu, Jianbin; Sun, Hualin; Ding, Fei; Cao, Zheng; Gu, Xiaosong

    2014-04-01

    Considerable research has been devoted to unraveling the regulation of neural stem cell (NSC) differentiation. The responses of NSCs to various differentiation-inducing stimuli, however, are still difficult to estimate. In this study, we aimed to search for a potent growth factor that was able to effectively induce differentiation of NSCs toward Schwann cells. NSCs were isolated from dorsal root ganglia (DRGs) of adult rats and identified by immunostaining. Three different growth factors were used to stimulate the differentiation of DRG-derived NSCs (DRG-NSCs). We found that among these three growth factors, bFGF was the strongest inducer for the glial differentiation of DRG-NSCs, and bFGF induced the generation of an increased number of Schwann cell-like cells as compared to nerve growth factor (NGF) and neuregulin1-β (NRG). These Schwann cell-like cells demonstrated the same characteristics as those of primary Schwann cells. Furthermore, we noted that bFGF-induced differentiation of DRG-NSCs toward Schwann cells might be mediated by binding to fibroblast growth factor receptor-1 (FGFR-1) through activation of MAPK/ERK signal pathway.

  19. bFGF Protects Against Blood-Brain Barrier Damage Through Junction Protein Regulation via PI3K-Akt-Rac1 Pathway Following Traumatic Brain Injury.

    PubMed

    Wang, Zhou-Guang; Cheng, Yi; Yu, Xi-Chong; Ye, Li-Bing; Xia, Qing-Hai; Johnson, Noah R; Wei, Xiaojie; Chen, Da-Qing; Cao, Guodong; Fu, Xiao-Bing; Li, Xiao-Kun; Zhang, Hong-Yu; Xiao, Jian

    2016-12-01

    Many traumatic brain injury (TBI) survivors sustain neurological disability and cognitive impairments due to the lack of defined therapies to reduce TBI-induced blood-brain barrier (BBB) breakdown. Exogenous basic fibroblast growth factor (bFGF) has been shown to have neuroprotective function in brain injury. The present study therefore investigates the beneficial effects of bFGF on the BBB after TBI and the underlying mechanisms. In this study, we demonstrate that bFGF reduces neurofunctional deficits and preserves BBB integrity in a mouse model of TBI. bFGF suppresses RhoA and upregulates tight junction proteins, thereby mitigating BBB breakdown. In vitro, bFGF exerts a protective effect on BBB by upregulating tight junction proteins claudin-5, occludin, zonula occludens-1, p120-catenin, and β-catenin under oxygen glucose deprivation/reoxygenation (OGD) in human brain microvascular endothelial cells (HBMECs). Both the in vivo and in vitro effects are related to the activation of the downstream signaling pathway, PI3K/Akt/Rac-1. Inhibition of the PI3K/Akt or Rac-1 by specific inhibitors LY294002 or si-Rac-1, respectively, partially reduces the protective effect of bFGF on BBB integrity. Overall, our results indicate that the protective role of bFGF on BBB involves the regulation of tight junction proteins and RhoA in the TBI model and OGD-induced HBMECs injury, and that activation of the PI3K/Akt /Rac-1 signaling pathway underlies these effects.

  20. bFGF Promotes the Migration of Human Dermal Fibroblasts under Diabetic Conditions through Reactive Oxygen Species Production via the PI3K/Akt-Rac1- JNK Pathways

    PubMed Central

    Shi, Hongxue; Cheng, Yi; Ye, Jingjing; Cai, Pingtao; Zhang, Jinjing; Li, Rui; Yang, Ying; Wang, Zhouguang; Zhang, Hongyu; Lin, Cai; Lu, Xianghong; Jiang, Liping; Hu, Aiping; Zhu, Xinbo; Zeng, Qiqiang; Fu, Xiaobing; Li, Xiaokun; Xiao, Jian

    2015-01-01

    Fibroblasts play a pivotal role in the process of cutaneous wound repair, whereas their migratory ability under diabetic conditions is markedly reduced. In this study, we investigated the effect of basic fibroblast growth factor (bFGF) on human dermal fibroblast migration in a high-glucose environment. bFGF significantly increased dermal fibroblast migration by increasing the percentage of fibroblasts with a high polarity index and reorganizing F-actin. A significant increase in intracellular reactive oxygen species (ROS) was observed in dermal fibroblasts under diabetic conditions following bFGF treatment. The blockage of bFGF-induced ROS production by either the ROS scavenger N-acetyl-L-cysteine (NAC) or the NADPH oxidase inhibitor diphenylene iodonium chloride (DPI) almost completely neutralized the increased migration rate of dermal fibroblasts promoted by bFGF. Akt, Rac1 and JNK were rapidly activated by bFGF in dermal fibroblasts, and bFGF-induced ROS production and promoted dermal fibroblast migration were significantly attenuated when suppressed respectively. In addition, bFGF-induced increase in ROS production was indispensable for the activation of focal adhesion kinase (FAK) and paxillin. Therefore, our data suggested that bFGF promotes the migration of human dermal fibroblasts under diabetic conditions through increased ROS production via the PI3K/Akt-Rac1-JNK pathways. PMID:26078726

  1. Basic Fibroblast Growth Factor Activates Serum Response Factor Gene Expression by Multiple Distinct Signaling Mechanisms

    PubMed Central

    Spencer, Jeffrey A.; Major, Michael L.; Misra, Ravi P.

    1999-01-01

    Serum response factor (SRF) plays a central role in the transcriptional response of mammalian cells to a variety of extracellular signals. It is a key regulator of many cellular early response genes which are believed to be involved in cell growth and differentiation. The mechanism by which SRF activates transcription in response to mitogenic agents has been extensively studied; however, significantly less is known about regulation of the SRF gene itself. Previously, we identified distinct regulatory elements in the SRF promoter that play a role in activation, including a consensus ETS domain binding site, a consensus overlapping Sp/Egr-1 binding site, and two SRF binding sites. We further showed that serum induces SRF by a mechanism that requires an intact SRF binding site, also termed a CArG box. In the present study we demonstrate that in response to stimulation of cells by a purified growth factor, basic fibroblast growth factor (bFGF), the SRF promoter is upregulated by a complex pathway that involves at least two independent mechanisms: a CArG box-independent mechanism that is mediated by an ETS binding site, and a novel CArG box-dependent mechanism that requires both an Sp factor binding site and the CArG motifs for maximal stimulation. Our analysis indicates that the CArG/Sp element activation mechanism is mediated by distinct signaling pathways. The CArG box-dependent component is targeted by a Rho-mediated pathway, and the Sp binding site-dependent component is targeted by a Ras-mediated pathway. Both SRF and bFGF have been implicated in playing an important role in mediating cardiogenesis during development. The implications of our findings for SRF expression during development are discussed. PMID:10330138

  2. Dosage and cell line dependent inhibitory effect of bFGF supplement in human pluripotent stem cell culture on inactivated human mesenchymal stem cells.

    PubMed

    Quang, Tara; Marquez, Maribel; Blanco, Giselle; Zhao, Yuanxiang

    2014-01-01

    Many different culture systems have been developed for expanding human pluripotent stem cells (hESCs and hiPSCs). In general, 4-10 ng/ml of bFGF is supplemented in culture media in feeder-dependent systems regardless of feeder cell types, whereas in feeder-free systems, up to 100 ng/ml of bFGF is required for maintaining long-term culture on various substrates. The amount of bFGF required in native hESCs growth niche is unclear. Here we report using inactivated adipose-derived human mesenchymal stem cells as feeder cells to examine long-term parallel cultures of two hESCs lines (H1 and H9) and one hiPSCs line (DF19-9-7T) in media supplemented with 0, 0.4 or 4 ng/ml of bFGF for up to 23 passages, as well as parallel cultures of H9 and DF19 in media supplemented with 4, 20 or 100 ng/ml bFGF for up to 13 passages for comparison. Across all cell lines tested, bFGF supplement demonstrated inhibitory effect over growth expansion, single cell colonization and recovery from freezing in a dosage dependent manner. In addition, bFGF exerted differential effects on different cell lines, inducing H1 and DF19 differentiation at 4 ng/ml or higher, while permitting long-term culture of H9 at the same concentrations with no apparent dosage effect. Pluripotency was confirmed for all cell lines cultured in 0, 0.4 or 4 ng/ml bFGF excluding H1-4 ng, as well as H9 cultured in 4, 20 and 100 ng/ml bFGF. However, DF19 demonstrated similar karyotypic abnormality in both 0 and 4 ng/ml bFGF media while H1 and H9 were karyotypically normal in 0 ng/ml bFGF after long-term culture. Our results indicate that exogenous bFGF exerts dosage and cell line dependent effect on human pluripotent stem cells cultured on mesenchymal stem cells, and implies optimal use of bFGF in hESCs/hiPSCs culture should be based on specific cell line and its culture system.

  3. Dosage and Cell Line Dependent Inhibitory Effect of bFGF Supplement in Human Pluripotent Stem Cell Culture on Inactivated Human Mesenchymal Stem Cells

    PubMed Central

    Quang, Tara; Marquez, Maribel; Blanco, Giselle; Zhao, Yuanxiang

    2014-01-01

    Many different culture systems have been developed for expanding human pluripotent stem cells (hESCs and hiPSCs). In general, 4–10 ng/ml of bFGF is supplemented in culture media in feeder-dependent systems regardless of feeder cell types, whereas in feeder-free systems, up to 100 ng/ml of bFGF is required for maintaining long-term culture on various substrates. The amount of bFGF required in native hESCs growth niche is unclear. Here we report using inactivated adipose-derived human mesenchymal stem cells as feeder cells to examine long-term parallel cultures of two hESCs lines (H1 and H9) and one hiPSCs line (DF19-9-7T) in media supplemented with 0, 0.4 or 4 ng/ml of bFGF for up to 23 passages, as well as parallel cultures of H9 and DF19 in media supplemented with 4, 20 or 100 ng/ml bFGF for up to 13 passages for comparison. Across all cell lines tested, bFGF supplement demonstrated inhibitory effect over growth expansion, single cell colonization and recovery from freezing in a dosage dependent manner. In addition, bFGF exerted differential effects on different cell lines, inducing H1 and DF19 differentiation at 4 ng/ml or higher, while permitting long-term culture of H9 at the same concentrations with no apparent dosage effect. Pluripotency was confirmed for all cell lines cultured in 0, 0.4 or 4 ng/ml bFGF excluding H1-4 ng, as well as H9 cultured in 4, 20 and 100 ng/ml bFGF. However, DF19 demonstrated similar karyotypic abnormality in both 0 and 4 ng/ml bFGF media while H1 and H9 were karyotypically normal in 0 ng/ml bFGF after long-term culture. Our results indicate that exogenous bFGF exerts dosage and cell line dependent effect on human pluripotent stem cells cultured on mesenchymal stem cells, and implies optimal use of bFGF in hESCs/hiPSCs culture should be based on specific cell line and its culture system. PMID:24465853

  4. Aloe vera oral administration accelerates acute radiation-delayed wound healing by stimulating transforming growth factor-β and fibroblast growth factor production.

    PubMed

    Atiba, Ayman; Nishimura, Mayumi; Kakinuma, Shizuko; Hiraoka, Takeshi; Goryo, Masanobu; Shimada, Yoshiya; Ueno, Hiroshi; Uzuka, Yuji

    2011-06-01

    Delayed wound healing is a significant clinical problem in patients who have had previous irradiation. This study investigated the effectiveness of Aloe vera (Av) on acute radiation-delayed wound healing. The effect of Av was studied in radiation-exposed rats compared with radiation-only and control rats. Skin wounds were excised on the back of rats after 3 days of local radiation. Wound size was measured on days 0, 3, 6, 9, and 12 after wounding. Wound tissues were examined histologically and the expressions of transforming growth factor β-1 (TGF-β-1) and basic fibroblast growth factor (bFGF) were examined by immunohistochemistry and reverse-transcription polymerase chain reaction. Wound contraction was accelerated significantly by Av on days 6 and 12 after wounding. Furthermore, the inflammatory cell infiltration, fibroblast proliferation, collagen deposition, angiogenesis, and the expression levels of TGF-β-1 and bFGF were significantly higher in the radiation plus Av group compared with the radiation-only group. These data showed the potential application of Av to improve the acute radiation-delayed wound healing by increasing TGF-β-1 and bFGF production. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Epidermal growth factor enhances osteogenic differentiation of dental pulp stem cells in vitro.

    PubMed

    Del Angel-Mosqueda, Casiano; Gutiérrez-Puente, Yolanda; López-Lozano, Ada Pricila; Romero-Zavaleta, Ricardo Emmanuel; Mendiola-Jiménez, Andrés; Medina-De la Garza, Carlos Eduardo; Márquez-M, Marcela; De la Garza-Ramos, Myriam Angélica

    2015-09-03

    Epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) play an important role in extracellular matrix mineralization, a complex process required for proper bone regeneration, one of the biggest challenges in dentistry. The purpose of this study was to evaluate the osteogenic potential of EGF and bFGF on dental pulp stem cells (DPSCs). Human DPSCs were isolated using CD105 magnetic microbeads and characterized by flow cytometry. To induce osteoblast differentiation, the cells were cultured in osteogenic medium supplemented with EGF or bFGF at a low concentration. Cell morphology and expression of CD146 and CD10 surface markers were analyzed using fluorescence microscopy. To measure mineralization, an alizarin red S assay was performed and typical markers of osteoblastic phenotype were evaluated by RT-PCR. EGF treatment induced morphological changes and suppression of CD146 and CD10 markers. Additionally, the cells were capable of producing calcium deposits and increasing the mRNA expression to alkaline phosphatase (ALP) and osteocalcin (OCN) in relation to control groups (p < 0.001). However, bFGF treatment showed an inhibitory effect. These data suggests that DPSCs in combination with EGF could be an effective stem cell-based therapy for bone tissue engineering applications in periodontics and oral implantology.

  6. The differential effect of basic fibroblast growth factor and stromal cell‑derived factor‑1 pretreatment on bone morrow mesenchymal stem cells osteogenic differentiation potency.

    PubMed

    Wang, Ruolin; Liu, Wenhua; Du, Mi; Yang, Chengzhe; Li, Xuefen; Yang, Pishan

    2018-03-01

    In situ tissue engineering has become a novel strategy to repair periodontal/bone tissue defects. The choice of cytokines that promote the recruitment and proliferation, and potentiate and maintain the osteogenic differentiation ability of mesenchymal stem cells (MSCs) is the key point in this technique. Stromal cell‑derived factor‑1 (SDF‑1) and basic fibroblast growth factor (bFGF) have the ability to promote the recruitment, and proliferation of MSCs; however, the differential effect of SDF‑1 and bFGF pretreatment on MSC osteogenic differentiation potency remains to be explored. The present study comparatively observed osteogenic differentiation of bone morrow MSCs (BMMSCs) pretreated by bFGF or SDF‑1 in vitro. The gene and protein expression levels of alkaline phosphatase (ALP), runt related transcription factor 2 (Runx‑2) and bone sialoprotein (BSP) were detected using reverse transcription‑quantitative polymerase chain reaction and western blotting. The results showed that the expression of ALP mRNA on day 3, and BSP and Runx‑2 mRNA on day 7 in the bFGF pretreatment group was significantly higher than those in SDF‑1 pretreatment group. Expression levels of Runx‑2 mRNA, and ALP and Runx‑2 protein on day 3 in the SDF‑1 pretreatment group were higher than those in the bFGF pretreatment group. However, there was no significant difference in osteogenic differentiation ability on day 14 and 28 between the bFGF‑ or SDF‑1‑pretreatment groups and the control. In conclusion, bFGF and SDF‑1 pretreatment inhibits osteogenic differentiation of BMMSCs at the early stage, promotes it in the medium phase, and maintains it in the later stage during osteogenic induction, particularly at the mRNA level. Out of the two cytokines, bFGF appeared to have a greater effect on osteogenic differentiation.

  7. Effect of the association of IGF-I, IGF-II, bFGF, TGF-beta1, GM-CSF, and LIF on the development of bovine embryos produced in vitro.

    PubMed

    Neira, J A; Tainturier, D; Peña, M A; Martal, J

    2010-03-15

    This study examined the influence of the following growth factors and cytokines on early embryonic development: insulin-like growth factors I and II (IGF-I, IGF-II), basic fibroblast growth factor (bFGF), transforming growth factor (TGF-beta), granulocyte-macrophage colony-stimulating factor (GM-CSF), and leukemia inhibitory factor (LIF). Synthetic oviduct fluid (SOF) was used as the culture medium. We studied the development of bovine embryos produced in vitro and cultured until Day 9 after fertilization. TGF-beta1, bFGF, GM-CSF, and LIF used on their own significantly improved the yield of hatched blastocysts. IGF-I, bFGF, TGF-beta1, GM-CSF, and LIF significantly accelerated embryonic development, especially the change from the expanded blastocyst to hatched blastocyst stages. Use of a combination of these growth factors and cytokines (GF-CYK) in SOF medium produced higher percentages of blastocysts and hatched blastocysts than did use of SOF alone (45% and 22% vs. 24% and 12%; P<0.05) on Day 8 after in vitro fertilization and similar results to use of SOF+10% fetal calf serum (38% and 16%, at the same stages, respectively). The averages of total cells, inner cell mass cells, and trophectoderm cells of exclusively in vitro Day-8 blastocysts for pooled GF-CYK treatments were higher than those for SOF and similar to those for fetal calf serum. The presence of these growth factors and cytokines in the embryo culture medium therefore has a combined stimulatory action on embryonic development; in particular through an increase in hatching rate and in the number of cells of both the inner cell mass and trophoblast. These results are the first to demonstrate that use of a combination of recombinant growth factors and cytokine, as IGF-I, IGF-II, bFGF, TGF-beta1, LIF, and GM-CSF, produces similar results to 10% fetal calf serum for the development of in vitro-produced bovine embryos. This entirely synthetic method of embryo culture has undeniable advantages for the

  8. bFGF Regulates PI3-Kinase-Rac1-JNK Pathway and Promotes Fibroblast Migration in Wound Healing

    PubMed Central

    Kanazawa, Shigeyuki; Fujiwara, Toshihiro; Matsuzaki, Shinsuke; Shingaki, Kenta; Taniguchi, Manabu; Miyata, Shingo; Tohyama, Masaya; Sakai, Yasuo; Yano, Kenji; Hosokawa, Ko; Kubo, Tateki

    2010-01-01

    Fibroblast proliferation and migration play important roles in wound healing. bFGF is known to promote both fibroblast proliferation and migration during the process of wound healing. However, the signal transduction of bFGF-induced fibroblast migration is still unclear, because bFGF can affect both proliferation and migration. Herein, we investigated the effect of bFGF on fibroblast migration regardless of its effect on fibroblast proliferation. We noticed involvement of the small GTPases of the Rho family, PI3-kinase, and JNK. bFGF activated RhoA, Rac1, PI3-kinase, and JNK in cultured fibroblasts. Inhibition of RhoA did not block bFGF-induced fibroblast migration, whereas inhibition of Rac1, PI3-kinase, or JNK blocked the fibroblast migration significantly. PI3-kinase-inhibited cells down-regulated the activities of Rac1 and JNK, and Rac1-inhibited cells down-regulated JNK activity, suggesting that PI3-kinase is upstream of Rac1 and that JNK is downstream of Rac1. Thus, we concluded that PI3-kinase, Rac1, and JNK were essential for bFGF-induced fibroblast migration, which is a novel pathway of bFGF-induced cell migration. PMID:20808927

  9. Effect of basic fibroblast growth factor and transforming growth factor β1 on the healing of reconstructed dura by carbon dioxide laser soldering in minipigs.

    PubMed

    Zhong, Hong-liang; Wang, Zhen-min; Yang, Zhi-jun; Zhao, Fu; Wang, Bo; Wang, Zhong-cheng; Liu, Pi-nan

    2012-02-01

    Carbon dioxide (CO2) laser soldering is an alternative technique for tissue bonding. Basic fibroblast growth factor (bFGF) and transforming growth factor β(1) (TGFβ(1)) are two key factors for wound healing. This study was performed to demonstrate the efficacy of CO2 laser soldering for dural reconstruction and the effect of bFGF and TGFβ(1) on healing. In Part I, 10 minipigs were randomized into two equal groups. Dural defects were reconstructed by conventional fibrin glue bonding (group I(a)) or CO2 laser soldering (group I(b)). The reconstructed dura was subjected to burst pressure (BP) measurement and immunohistochemical staining after 1 week. In Part II, 36 minipigs were randomized into three equal groups. Dural reconstruction was achieved by CO2 laser soldering. Exogenous bFGF (group II(b)) or TGFβ(1) (group II(c)) was administered while group II(a) served as a control group. The specimens were subjected to BP measurement after 1, 2, 3, and 4 weeks, respectively. In Part I, the dura specimens displayed positive staining of only bFGF in group I(a) and of both bFGF and TGFβ(1) in group I(b). Group I(b) showed higher BP than group I(a) ((98.00 ± 21.41) mmHg vs. (70.80 ± 15.09) mmHg, respectively; P < 0.05). In Part II, BP of group II(c) was significantly higher than that of group II(a) (P < 0.01). The BP of group II(a) trended toward stabilization after 3 weeks of growth, while that of groups II(b) and II(c) trended toward stabilization after 2 weeks of growth. CO2 laser soldering is a reliable technique for dural reconstruction. The superior healing of dural reconstruction by CO2 laser soldering may be related to higher expression of bFGF and TGFβ(1), and CO2 lasers may stimulate their secretion. Exogenous bFGF or TGFβ(1) may improve healing by shortening the wound healing time, and exogenous TGFβ(1) may improve the tensile strength.

  10. Basic fibroblastic growth factor affects the osteogenic differentiation of dental pulp stem cells in a treatment-dependent manner.

    PubMed

    Qian, J; Jiayuan, W; Wenkai, J; Peina, W; Ansheng, Z; Shukai, S; Shafei, Z; Jun, L; Longxing, N

    2015-07-01

    To determine how basic fibroblastic growth factor (bFGF) affected the osteogenic differentiation of human dental pulp stem cells (DPSCs) in vitro and in vivo. Basic fibroblastic growth factor stimulation of DPSCs was divided into a pre-treatment period and an osteogenic differentiation period. Alizarin red quantification experiments and alkaline phosphatase activity quantification assay were performed to examine the osteogenic differentiation of DPSCs after different bFGF stimulation. Quantification reverse transcription polymerase chain reaction was used to analyze the osteogenic gene expression of DPSCs after different bFGF stimulation. In addition, DPSCs that received the 1 and 2 weeks bFGF pre-treatments as in the in vitro experiments were mineralized for 1 week and seeded into hydroxyapatite/tricalcium phosphate (HA/TCP) pills and subcutaneously transplanted into naked mice for 2 or 3 months. The transplants were removed, sliced and stained using Modified Ponceau Trichrome Stain to observe the formation of mineralized tissue. Basic fibroblastic growth factor stimulation in the osteogenic differentiation period decreased the in vitro osteogenic differentiation ability of DPSCs. One week pre-treatment with bFGF increased the in vitro osteogenic differentiation ability of DPSCs, whereas 2 weeks pre-treatment with bFGF decreased the in vitro osteogenic differentiation ability of DPSCs. The pre-treatment period was vital for the osteogenic differentiation of DPSCs in vitro. The in vivo results were similar to the in vitro results. Basic fibroblastic growth factor affected the osteogenic differentiation of DPSCs in a treatment-dependent manner both in vitro and in vivo. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  11. Feedback Activation of Basic Fibroblast Growth Factor Signaling via the Wnt/β-Catenin Pathway in Skin Fibroblasts

    PubMed Central

    Wang, Xu; Zhu, Yuting; Sun, Congcong; Wang, Tao; Shen, Yingjie; Cai, Wanhui; Sun, Jia; Chi, Lisha; Wang, Haijun; Song, Na; Niu, Chao; Shen, Jiayi; Cong, Weitao; Zhu, Zhongxin; Xuan, Yuanhu; Li, Xiaokun; Jin, Litai

    2017-01-01

    Skin wound healing is a complex process requiring the coordinated behavior of many cell types, especially in the proliferation and migration of fibroblasts. Basic fibroblast growth factor (bFGF) is a member of the FGF family that promotes fibroblast migration, but the underlying molecular mechanism remains elusive. The present RNA sequencing study showed that the expression levels of several canonical Wnt pathway genes, including Wnt2b, Wnt3, Wnt11, T-cell factor 7 (TCF7), and Frizzled 8 (FZD8) were modified by bFGF stimulation in fibroblasts. Enzyme-linked immunosorbent assay (ELISA) analysis also showed that Wnt pathway was activated under bFGF treatment. Furthermore, treatment of fibroblasts with lithium chloride or IWR-1, an inducer and inhibitor of the Wnt signaling pathway, respectively, promoted and inhibited cell migration. Also, levels of cytosolic glycogen synthase kinase 3 beta phosphorylated at serine9 (pGSK3β Ser9) and nuclear β-catenin were increased upon exposure to bFGF. Molecular and biochemical assays indicated that phosphoinositide 3-kinase (PI3K) signaling activated the GSK3β/β-catenin/Wnt signaling pathway via activation of c-Jun N-terminal kinase (JNK), suggesting that PI3K and JNK act at the upstream of β-catenin. In contrast, knock-down of β-catenin delayed fibroblast cell migration even under bFGF stimulation. RNA sequencing analysis of β-catenin knock-down fibroblasts demonstrated that β-catenin positively regulated the transcription of bFGF and FGF21. Moreover, FGF21 treatment activated AKT and JNK, and accelerated fibroblast migration to a similar extent as bFGF does. In addition, ELISA analysis demonstrated that both of bFGF and FGF21 were auto secretion factor and be regulated by Wnt pathway stimulators. Taken together, our analyses define a feedback regulatory loop between bFGF (FGF21) and Wnt signaling acting through β-catenin in skin fibroblasts. PMID:28217097

  12. Differential role of EGF and BFGF in human GBM-TIC proliferation: relationship to EGFR-tyrosine kinase inhibitor sensibility.

    PubMed

    Bajetto, A; Porcile, C; Pattarozzi, A; Scotti, L; Aceto, A; Daga, A; Barbieri, F; Florio, T

    2013-01-01

    Glioblastoma multiforme (GBM) is among the most devastating human tumors being rapidly fatal despite aggressive surgery, radiation and chemotherapies. It is characterized by extensive dissemination of tumor cells within the brain that hinders complete surgical resection. GBM tumor initiating-cells (TICs) are a rare subpopulation of cells responsible for tumor development, growth, invasiveness and recurrence after chemotherapy. TICs from human GBM can be selected in vitro using the same conditions permissive for the growth of normal neural cells, of which share some features including marker expression, self-renewal capacity, long-term proliferation, and ability to differentiate into neuronal and glial cells. EGFR overexpression and its constitutive activation is one of the most important signaling alteration identified in GBM, and its pharmacological targeting represents an attractive therapeutic goal. We previously demonstrated that human GBM TICs have different sensitivity to the EGFR kinase inhibitors erlotinib and gefitinib, depending on the differential modulation of downstream signaling cascades. In this work we investigated the mechanisms of resistance to erlotinib in two human GBM TIC cultures, analyzing EGF and bFGF individual contribution to proliferation, clonogenicity, and migration. We demonstrated the presence of a small cell subpopulation whose proliferation is supported by EGF and a larger one mainly dependent on bFGF. Thus, insensitivity to EGFR kinase inhibitors as far as TIC proliferation results from a predominant FGFR activation that hides the inhibitory effects induced on EGFR signaling. Conversely, EGF and bFGF induced cell migration with similar efficacy. In addition, unlike neural stem/progenitors cells, the removal of chondroitin sulphate proteoglycans from cell surface was unable to discern EGF- and bFGF-dependent subpopulations in GBM TICs.

  13. The Quantitative Analysis of bFGF and VEGF by ELISA in Human Meningiomas

    PubMed Central

    Denizot, Yves; De Armas, Rafael; Caire, François; Moreau, Jean Jacques; Pommepuy, Isabelle; Truffinet, Véronique; Labrousse, François

    2006-01-01

    The quantitative analysis of VEGF using ELISA in various subtypes of grade I meningiomas reported higher VEGF contents in meningothelial (2.38 ± 0.62 pg/μg protein, n = 7), transitional (1.08 ± 0.21 pg/μg protein, n = 13), and microcystic meningiomas (1.98 ± 0.87 pg/μg protein, n = 5) as compared with fibrous ones (0.36 ± 0.09 pg/μg protein, n = 5). In contrast to VEGF, no difference in the concentrations of bFGF was detected. VEGF levels did not correlate with meningioma grade (1.47 ± 0.23 pg/μg versus 2.29 ± 0.58 pg/μg for 32 and 16 grade I and II, resp), vascularisation (1.53 ± 0.41 pg/μg versus 1.96 ± 0.28 pg/μg for 24 low and 24 high vascularisated tumours, resp), and brain invasion (2.32 ± 0.59 pg/μg versus 1.46 ± 0.27 pg/μg for 7 and 41 patients with and without invasion, resp). The ELISA procedure is, thus, an interesting tool to ensure VEGF and bFGF levels in meningiomas and to test putative correlations with clinical parameters. It is, thus, tempting to speculate that ELISA would also be valuable for the quantitative analysis of other angiogenic growth factors and cytokines in intracranial tumours. PMID:17392584

  14. Methylation of eukaryotic elongation factor 2 induced by basic fibroblast growth factor via mitogen-activated protein kinase.

    PubMed

    Jung, Gyung Ah; Shin, Bong Shik; Jang, Yeon Sue; Sohn, Jae Bum; Woo, Seon Rang; Kim, Jung Eun; Choi, Go; Lee, Kyung Mi; Min, Bon Hong; Lee, Kee Ho; Park, Gil Hong

    2011-10-31

    Protein arginine methylation is important for a variety of cellular processes including transcriptional regulation, mRNA splicing, DNA repair, nuclear/cytoplasmic shuttling and various signal transduction pathways. However, the role of arginine methylation in protein biosynthesis and the extracellular signals that control arginine methylation are not fully understood. Basic fibroblast growth factor (bFGF) has been identified as a potent stimulator of myofibroblast dedifferentiation into fibroblasts. We demonstrated that symmetric arginine dimethylation of eukaryotic elongation factor 2 (eEF2) is induced by bFGF without the change in the expression level of eEF2 in mouse embryo fibroblast NIH3T3 cells. The eEF2 methylation is preceded by ras-raf-mitogen-activated protein kinase kinase (MEK)-extracellular signal-regulated kinase (ERK1/2)- p21Cip/WAF1 activation, and suppressed by the mitogenactivated protein kinase (MAPK) inhibitor PD98059 and p21Cip/WAF1 short interfering RNA (siRNA). We determined that protein arginine methyltransferase 7 (PRMT7) is responsible for the methylation, and that PRMT5 acts as a coordinator. Collectively, we demonstrated that eEF2, a key factor involved in protein translational elongation is symmetrically arginine-methylated in a reversible manner, being regulated by bFGF through MAPK signaling pathway.

  15. Methylation of eukaryotic elongation factor 2 induced by basic fibroblast growth factor via mitogen-activated protein kinase

    PubMed Central

    Jung, Gyung Ah; Shin, Bong Shik; Jang, Yeon Sue; Sohn, Jae Bum; Woo, Seon Rang; Kim, Jung Eun; Choi, Go; Lee, Kyung-Mi; Min, Bon Hong

    2011-01-01

    Protein arginine methylation is important for a variety of cellular processes including transcriptional regulation, mRNA splicing, DNA repair, nuclear/cytoplasmic shuttling and various signal transduction pathways. However, the role of arginine methylation in protein biosynthesis and the extracellular signals that control arginine methylation are not fully understood. Basic fibroblast growth factor (bFGF) has been identified as a potent stimulator of myofibroblast dedifferentiation into fibroblasts. We demonstrated that symmetric arginine dimethylation of eukaryotic elongation factor 2 (eEF2) is induced by bFGF without the change in the expression level of eEF2 in mouse embryo fibroblast NIH3T3 cells. The eEF2 methylation is preceded by ras-raf-mitogen-activated protein kinase kinase (MEK)-extracellular signal-regulated kinase (ERK1/2)-p21Cip/WAF1 activation, and suppressed by the mitogen-activated protein kinase (MAPK) inhibitor PD98059 and p21Cip/WAF1 short interfering RNA (siRNA). We determined that protein arginine methyltransferase 7 (PRMT7) is responsible for the methylation, and that PRMT5 acts as a coordinator. Collectively, we demonstrated that eEF2, a key factor involved in protein translational elongation is symmetrically arginine-methylated in a reversible manner, being regulated by bFGF through MAPK signaling pathway. PMID:21778808

  16. A Novel In Vivo Model of Focal Light Emitting Diode-Induced Cone-Photoreceptor Phototoxicity: Neuroprotection Afforded by Brimonidine, BDNF, PEDF or bFGF

    PubMed Central

    García-Ayuso, Diego; Alarcón-Martínez, Luis; Jiménez-López, Manuel; Bernal-Garro, José Manuel; Nieto-López, Leticia; Nadal-Nicolás, Francisco Manuel; Villegas-Pérez, María Paz; Wheeler, Larry A.; Vidal-Sanz, Manuel

    2014-01-01

    We have investigated the effects of light-emitting diode (LED)-induced phototoxicity (LIP) on cone-photoreceptors and their protection with brimonidine (BMD), brain-derived neurotrophic factor (BDNF), pigment epithelium-derived factor (PEDF), ciliary neurotrophic factor (CNTF) or basic fibroblast growth factor (bFGF). In anesthetized, dark adapted, adult albino rats a blue (400 nm) LED was placed perpendicular to the cornea (10 sec, 200 lux) and the effects were investigated using Spectral Domain Optical Coherence Tomography (SD-OCT) and/or analysing the retina in oriented cross-sections or wholemounts immune-labelled for L- and S-opsin and counterstained with the nuclear stain DAPI. The effects of topical BMD (1%) or, intravitreally injected BDNF (5 µg), PEDF (2 µg), CNTF (0.4 µg) or bFGF (1 µg) after LIP were examined on wholemounts at 7 days. SD-OCT showed damage in a circular region of the superotemporal retina, whose diameter varied from 1,842.4±84.5 µm (at 24 hours) to 1,407.7±52.8 µm (at 7 days). This region had a progressive thickness diminution from 183.4±5 µm (at 12 h) to 114.6±6 µm (at 7 d). Oriented cross-sections showed within the light-damaged region of the retina massive loss of rods and cone-photoreceptors. Wholemounts documented a circular region containing lower numbers of L- and S-cones. Within a circular area (1 mm or 1.3 mm radius, respectively) in the left and in its corresponding region of the contralateral-fellow-retina, total L- or S-cones were 7,118±842 or 661±125 for the LED exposed retinas (n = 7) and 14,040±1,860 or 2,255±193 for the fellow retinas (n = 7), respectively. BMD, BDNF, PEDF and bFGF but not CNTF showed significant neuroprotective effects on L- or S-cones. We conclude that LIP results in rod and cone-photoreceptor loss, and is a reliable, quantifiable model to study cone-photoreceptor degeneration. Intravitreal BDNF, PEDF or bFGF, or topical BMD afford significant cone neuroprotection in this model

  17. A novel in vivo model of focal light emitting diode-induced cone-photoreceptor phototoxicity: neuroprotection afforded by brimonidine, BDNF, PEDF or bFGF.

    PubMed

    Ortín-Martínez, Arturo; Valiente-Soriano, Francisco Javier; García-Ayuso, Diego; Alarcón-Martínez, Luis; Jiménez-López, Manuel; Bernal-Garro, José Manuel; Nieto-López, Leticia; Nadal-Nicolás, Francisco Manuel; Villegas-Pérez, María Paz; Wheeler, Larry A; Vidal-Sanz, Manuel

    2014-01-01

    We have investigated the effects of light-emitting diode (LED)-induced phototoxicity (LIP) on cone-photoreceptors and their protection with brimonidine (BMD), brain-derived neurotrophic factor (BDNF), pigment epithelium-derived factor (PEDF), ciliary neurotrophic factor (CNTF) or basic fibroblast growth factor (bFGF). In anesthetized, dark adapted, adult albino rats a blue (400 nm) LED was placed perpendicular to the cornea (10 sec, 200 lux) and the effects were investigated using Spectral Domain Optical Coherence Tomography (SD-OCT) and/or analysing the retina in oriented cross-sections or wholemounts immune-labelled for L- and S-opsin and counterstained with the nuclear stain DAPI. The effects of topical BMD (1%) or, intravitreally injected BDNF (5 µg), PEDF (2 µg), CNTF (0.4 µg) or bFGF (1 µg) after LIP were examined on wholemounts at 7 days. SD-OCT showed damage in a circular region of the superotemporal retina, whose diameter varied from 1,842.4±84.5 µm (at 24 hours) to 1,407.7±52.8 µm (at 7 days). This region had a progressive thickness diminution from 183.4±5 µm (at 12 h) to 114.6±6 µm (at 7 d). Oriented cross-sections showed within the light-damaged region of the retina massive loss of rods and cone-photoreceptors. Wholemounts documented a circular region containing lower numbers of L- and S-cones. Within a circular area (1 mm or 1.3 mm radius, respectively) in the left and in its corresponding region of the contralateral-fellow-retina, total L- or S-cones were 7,118±842 or 661±125 for the LED exposed retinas (n = 7) and 14,040±1,860 or 2,255±193 for the fellow retinas (n = 7), respectively. BMD, BDNF, PEDF and bFGF but not CNTF showed significant neuroprotective effects on L- or S-cones. We conclude that LIP results in rod and cone-photoreceptor loss, and is a reliable, quantifiable model to study cone-photoreceptor degeneration. Intravitreal BDNF, PEDF or bFGF, or topical BMD afford significant cone neuroprotection in this model.

  18. Carboxyl‐terminal Heparin‐binding Fragments of Platelet Factor 4 Retain the Blocking Effect on the Receptor Binding of Basic Fibroblast Growth Factor

    PubMed Central

    Waki, Michinori; Ohno, Motonori; Kuwano, Michihiko; Sakata, Toshiie

    1993-01-01

    Platelet factor 4 (PF‐4) blocks the binding of basic fibroblast growth factor (bFGF) to its receptor. In the present study, we constructed carboxyl‐terminal fragments, which represent the heparin‐binding region of the PF‐4 molecule, and examined whether these synthetic peptides retain the blocking effects on the receptor binding of bFGF. Synthetic peptides inhibited the receptor binding of bFGF. Furthermore, they inhibited the migration and tube formation of bovine capillary endothelial cells in culture (these phenomena are dependent on endogenous bFGF). PMID:8320164

  19. Intracellular signaling pathways required for rat vascular smooth muscle cell migration. Interactions between basic fibroblast growth factor and platelet-derived growth factor.

    PubMed Central

    Bilato, C; Pauly, R R; Melillo, G; Monticone, R; Gorelick-Feldman, D; Gluzband, Y A; Sollott, S J; Ziman, B; Lakatta, E G; Crow, M T

    1995-01-01

    Intracellular signaling pathways activated by both PDGF and basic fibroblast growth factor (bFGF) have been implicated in the migration of vascular smooth muscle cells (VSMC), a key step in the pathogenesis of many vascular diseases. We demonstrate here that, while bFGF is a weak chemoattractant for VSMCs, it is required for the PDGF-directed migration of VSMCs and the activation of calcium/calmodulin-dependent protein kinase II (CamKinase II), an intracellular event that we have previously shown to be important in the regulation of VSMC migration. Neutralizing antibodies to bFGF caused a dramatic reduction in the size of the intracellular calcium transient normally seen after PDGF stimulation and inhibited both PDGF-directed VSMC migration and CamKinase II activation. Partially restoring the calcium transient with ionomycin restored migration and CamKinase II activation as did the forced expression of a mutant CamKinase II that had been "locked" in the active state by site-directed mutagenesis. These results suggest that bFGF links PDGF receptor stimulation to changes in intracellular calcium and CamKinase II activation, reinforcing the central role played by CamKinase II in regulating VSMC migration. Images PMID:7560082

  20. Constructing a blood vessel on the porous scaffold modified with vascular endothelial growth factor and basic fibroblast growth factor

    NASA Astrophysics Data System (ADS)

    Sevostyanova, V. V.; Matveeva, V. G.; Antonova, L. V.; Velikanova, E. A.; Shabaev, A. R.; Senokosova, E. A.; Krivkina, E. O.; Vasyukov, G. Yu.; Glushkova, T. V.; Kudryavtseva, Yu. A.; Barbarash, O. L.; Barbarash, L. S.

    2016-11-01

    Incorporation of the growth factors into biodegradable polymers is a promising approach for the fabrication of tissue-engineered vascular grafts. Here we blended poly(ɛ-caprolactone) (PCL) with poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) following incorporation of either vascular endothelial growth factor (VEGF) or basic fibroblast growth factor (bFGF) and then fabricated electrospun 2 mm diameter vascular grafts. Grafts without the growth factors were used as a control group. Structure of the grafts was assessed utilizing scanning electron microscopy. We further implanted our grafts into rat abdominal aorta for 1 and 3 months with the aim to test endothelialization, cell infiltration, and patency in vivo. Histological and immunofluorescence examination demonstrated enhanced endothelialization and cell infiltration of the grafts with either VEGF or bFGF compared to those without the growth factors. Grafts with VEGF showed higher patency compared to those with bFGF; however, bFGF promoted migration of smooth muscle cells and fibroblasts into the graft. Therefore, we conclude that incorporation of VEGF and bFGF into the inner and medial/outer layer, respectively, can be a promising option for the fabrication of tissue-engineered vascular grafts.

  1. Vascular delay and administration of basic fibroblast growth factor augment latissimus dorsi muscle flap perfusion and function.

    PubMed

    Carroll, S M; Carroll, C M; Stremel, R W; Heilman, S J; Steffen, J M; Tobin, G R; Barker, J H

    2000-03-01

    Ischemia of the distal latissimus dorsi muscle flap occurs when the entire muscle is acutely elevated. Although this level of ischemia may not be critical if the muscle is to be used as a conventional muscle flap, the ischemia causes decreased distal muscle function if it is used for dynamic muscle flap transfer. This experiment was designed to determine whether or not the administration of exogenous basic fibroblast growth factor (bFGF), combined with a sublethal ischemic insult (i.e., vascular delay), would further augment muscle perfusion and function. Both latissimus dorsi muscles of nine canines were subjected to a bipedicle vascular delay procedure immediately followed by thoracodorsal intraarterial injection of 100 microg of bFGF on one side and by intraarterial injection of vehicle on the other. Ten days later, both latissimus dorsi muscles were raised as thoracodorsally based island flaps, with perfusion determined by laser-Doppler fluximetry. The muscles were wrapped around silicone chambers, simulating cardiomyoplasty, and stimulating electrodes were placed around each thoracodorsal nerve. The muscles were then subjected to an experimental protocol to determine muscle contractile function. At the end of the experiment, latissimus dorsi muscle biopsies were obtained for measurement of bFGF expression. The results demonstrated that the administration of 100 microg of bFGF immediately after the vascular delay procedure increases expression of native bFGF. In the distal and middle muscle segments, it also significantly increased muscle perfusion by approximately 20 percent and fatigue resistance by approximately 300 percent. The administration of growth factors may serve as an important adjuvant to surgical procedures using dynamic muscle flap transfers.

  2. Impacts of You Gui Wan on the expression of estrogen receptors and angiogenic factors in OVX‑rat vagina: a possible mechanism for the trophic effect of the formula on OVX‑induced vaginal atrophy.

    PubMed

    Yin, Qiao-Zhi; Lu, Hua; Li, Li-Min; Yie, Shang-Mian; Hu, Xiang; Liu, Zhi-Bin; Zheng, Xiao; Cao, Sheng; Yao, Zou-Ying

    2013-11-01

    The administration of You Gui Wan (YGW) decoction has been observed to improve vaginal atrophy induced by ovariectomy (OVX) in rats. The aim of the current study was to explore the possible mechanisms underlying this effect. Following OVX, 37 Sprague Dawley female rats were randomly divided into three groups which were orally administered with YGW decoction, saline or estrogen for 11 weeks. In parallel with this, 19 normal and 17 rats with sham-surgery were used as controls. The effects of these treatments on estrogen receptors (ER) and various angiogenic factors, including vascular endothelial growth factor (VEGF), vascular endothelial growth factor receptor-1 (VEGFR-1), angiopoietin (Ang)1 and 2 and basic fibroblast growth factor (bFGF) in the vagina were compared using immunohistochemistry or quantitative polymerase chain reaction (qPCR). OVX was found to induce significant vaginal atrophy and decrease the expression of ER and various angiogenic factors when compared with the normal and sham-surgery animals (all P<0.05). Estrogen replacement and the administration of YGW decoction reversed the vaginal atrophic process. The hormonal replacement and YGW treatment recovered the protein expression of ER-α and -β, VEGF and VEGFR-1 and the mRNA levels of ER-α, VEGF, VEGFR-1, Ang1 and 2, and bFGF when compared with OVX-rats with saline, normal and sham-surgery treatments (all P<0.05). Thus, it may be concluded that a possible mechanism underlying the effect of YGW on OVX-induced vaginal atrophy may be the upregulated expression of ER and various angiogenic factors in the vaginal tissue.

  3. Feeder & basic fibroblast growth factor-free culture of human embryonic stem cells: Role of conditioned medium from immortalized human feeders.

    PubMed

    Teotia, Pooja; Sharma, Shilpa; Airan, Balram; Mohanty, Sujata

    2016-12-01

    Human embryonic stem cell (hESC) lines are commonly maintained on inactivated feeder cells, in the medium supplemented with basic fibroblast growth factor (bFGF). However, limited availability of feeder cells in culture, and the high cost of growth factors limit their use in scalable expansion of hESC cultures for clinical application. Here, we describe an efficient and cost-effective feeder and bFGF-free culture of hESCs using conditioned medium (CM) from immortalized feeder cells. KIND-1 hESC cell line was cultured in CM, collected from primary mouse embryonic fibroblast, human foreskin fibroblast (HFF) and immortalized HFF (I-HFF). Pluripotency of KIND-1 hESC cell line was confirmed by expression of genes, proteins and cell surface markers. In culture, these cells retained normal morphology, expressed all cell surface markers, could differentiate to embryoid bodies upon culture in vitro. Furthermore, I-HFF feeder cells without supplementation of bFGF released ample amount of endogenous bFGF to maintain stemness of hESC cells. The study results described the use of CM from immortalized feeder cells as a consistent source and an efficient, inexpensive feeder-free culture system for the maintenance of hESCs. Moreover, it was possible to maintain hESCs without exogenous supplementation of bFGF. Thus, the study could be extended to scalable expansion of hESC cultures for therapeutic purposes.

  4. Effects of basic fibroblast growth factor and insulin-like growth factor on cultured cartilage cells from skate Raja porasa

    NASA Astrophysics Data System (ADS)

    Fan, Tingjun; Jin, Lingyun; Wang, Xiaofeng

    2003-12-01

    Effects of basic fibroblast growth factor (bFGF) and insulin-like growth factor II (IGF-II) on cartilage cells from proboscis of skate, Raja porasa Günther, were investigated in this study. The cartilage cells were cultured in 20% FBS-supplemented MEM medium at 24°C. Twelve hours after culture initiation, the cartilage cells were treated with bFGF and IGF-II at different concentration combinations. It was found that 20 ng/ml of bFGF or 80 ng/ml of IGF-II was enough to have obvious stimulating effect on the growth and division of skate cartilage cells. Test of bFGF and IGF-II together, revealed that 20 ng/ml of bFGF and 80 ng/ml of IGF-II together had the best stimulating effect on the growth and division of skate cartilage cells. The cartilage cells cultured could form a monolayer at day 7.

  5. Immobilization of type-I collagen and basic fibroblast growth factor (bFGF) onto poly (HEMA-co-MMA) hydrogel surface and its cytotoxicity study.

    PubMed

    Yan, Tuo; Sun, Rong; Li, Chun; Tan, Baihua; Mao, Xuan; Ao, Ningjian

    2010-08-01

    Type-I collagen and bFGF were immobilized onto the surface of poly (HEMA-co-MMA) hydrogel by grafting and coating methods to improve its cytotoxicity. The multi-layered structure of the biocompatible layer was confirmed by FTIR, AFM and static water contact angles. The layers were stable in body-like environment (pH 7.4). Human skin fibroblast cells (HSFC) were seeded onto Col/bFGF-poly (HEMA-co-MMA), Col-poly (HEMA-co-MMA) and poly (HEMA-co-MMA) films for 1, 3 and 5 day. MTT assay was performed to evaluate the extraction toxicity of the materials. Results showed that the cell attachment, proliferation and differentiation on Col/bFGF-poly (HEMA-co-MMA) film were higher than those of the control group, which indicated the improvement of cell-material interaction. The extraction toxicity of the modified materials was also lower than that of the unmodified group. The protein and bFGF immobilized poly (HEMA-co-MMA) hydrogel might hold great promise to be a biocompatible material.

  6. Human basic fibroblast growth factor fused with Kringle4 peptide binds to a fibrin scaffold and enhances angiogenesis.

    PubMed

    Zhao, Wenxue; Han, Qianqian; Lin, Hang; Sun, Wenjie; Gao, Yuan; Zhao, Yannan; Wang, Bin; Wang, Xia; Chen, Bing; Xiao, Zhifeng; Dai, Jianwu

    2009-05-01

    Appropriate three-dimensional (3D) scaffolds and signal molecules could accelerate tissue regeneration and wound repair. In this work, we targeted human basic fibroblast growth factor (bFGF), a potent angiogenic factor, to a fibrin scaffold to improve therapeutic angiogenesis. We fused bFGF to the Kringle4 domain (K4), a fibrin-binding peptide from human plasminogen, to endow bFGF with specific fibrin-binding ability. The recombinant K4bFGF bound specifically to the fibrin scaffold so that K4bFGF was delivered in a site-specific manner, and the fibrin scaffold provided 3D support for cell migration and proliferation. Subcutaneous implantation of the fibrin scaffolds bound with K4bFGF but not with bFGF induced neovascularization. Immunohistochemical analysis showed significantly more proliferation cells in the fibrin scaffolds incorporated with K4bFGF than in those with bFGF. Moreover, the regenerative tissues were integrated well with the fibrin scaffolds, suggesting its good biocompatibility. In summary, targeted delivery of K4bFGF could potentially improve therapeutic angiogenesis.

  7. Spider angiomas in patients with liver cirrhosis: Role of vascular endothelial growth factor and basic fibroblast growth factor

    PubMed Central

    Li, Chung-Pin; Lee, Fa-Yauh; Hwang, Shinn-Jang; Lu, Rei-Hwa; Lee, Wei-Ping; Chao, Yee; Wang, Sung-Sang; Chang, Full-Young; Whang-Peng, Jacqueline; Lee, Shou-Dong

    2003-01-01

    AIM: To investigate whether vascular endothelial growth factor (VEGF) and basic fibroblastic growth factor (bFGF) are associated with spider angiomas in patients with liver cirrhosis. METHODS: Eighty-six patients with liver cirrhosis were enrolled and the number and size of the spider angiomas were recorded. Fifty-three healthy subjects were selected as controls. Plasma levels of VEGF and bFGF were measured in both the cirrhotics and the controls. RESULTS: Plasma VEGF and bFGF were increased in cirrhotics compared with controls (122 ± 13 vs. 71 ± 11 pg/mL, P = 0.003 for VEGF; 5.1 ± 0.5 vs. 3.4 ± 0.5 pg/mL, P = 0.022 for bFGF). In cirrhotics, plasma VEGF and bFGF were also higher in patients with spider angiomas compared with patients without spider angiomas (185 ± 28 vs. 90 ± 10 pg/mL, P = 0.003 for VEGF; 6.8 ± 1.0 vs. 4.1 ± 0.5 pg/mL, P = 0.017 for bFGF). Multivariate logistic regression showed that young age and increased plasma levels of VEGF and bFGF were the most significant predictors for the presence of spider angiomas in cirrhotic patients (odds ratio [OR] = 6.64, 95% confidence interval [CI] = 2.02-21.79, P = 0.002; OR = 4.35, 95%CI = 1.35-14.01, P = 0.014; OR = 5.66, 95%CI = 1.72-18.63, P = 0.004, respectively). CONCLUSION: Plasma VEGF and bFGF are elevated in patients with liver cirrhosis. Age as well as plasma levels of VEGF and bFGF are significant predictors for spider angiomas in cirrhotic patients. PMID:14669345

  8. Effects of structurally stabilized EGF and bFGF on wound healing in type I and type II diabetic mice.

    PubMed

    Choi, Seong Mi; Lee, Kyoung-Mi; Kim, Hyun Jung; Park, Ik Kyu; Kang, Hwi Ju; Shin, Hang-Cheol; Baek, Dawoon; Choi, Yoorim; Park, Kwang Hwan; Lee, Jin Woo

    2018-01-15

    Diabetes mellitus comprises a multiple metabolic disorder that affects millions of people worldwide and consequentially poses challenges for clinical treatment. Among the various complications, diabetic ulcer constitutes the most prevalent associated disorder and leads to delayed wound healing. To enhance wound healing capacity, we developed structurally stabilized epidermal growth factor (ST-EGF) and basic fibroblast growth factor (ST-bFGF) to overcome limitations of commercially available EGF (CA-EGF) and bFGF (CA-bFGF), such as short half-life and loss of activity after loading onto a matrix. Neither ST-EGF nor ST-bFGF was toxic, and both were more stable at higher temperatures than CA-EGF and CA-bFGF. We loaded ST-EGF and ST-bFGF onto a hyaluronate-collagen dressing (HCD) matrix, a biocompatible carrier, and tested the effectiveness of this system in promoting wound healing in a mouse model of diabetes. Wounds treated with HCD matrix loaded with 0.3 μg/cm 2 ST-EGF or 1 μg/cm 2 ST-bFGF showed a more rapid rate of tissue repair as compared to the control in type I and II diabetes models. Our results indicate that an HDC matrix loaded with 0.3 μg/cm 2 ST-EGF or 1 μg/cm 2 ST-bFGF can promote wound healing in diabetic ulcers and are suitable for use in wound dressings owing to their stability for long periods at room temperature. Various types of dressing materials loaded with growth factors, such as VEGF, EGF, and bFGF, are widely used to effect wound repair. However, such growth factor-loaded materials have several limitations for use as therapeutic agents in healing-impaired diabetic wounds. To overcome these limitations, we have developed new materials containing structurally stabilized EGF (ST-EGF) and bFGF (ST-bFGF). To confirm the wound healing capacity of newly developed materials (ST-EGF and ST-bFGF-loaded hyaluronate-collagen dressing [HCD] matrix), we applied these matrices in type I and type II diabetic wounds. Notably, these matrices were

  9. Conserved Role of bFGF and a Divergent Role of LIF for Pluripotency Maintenance and Survival in Canine Pluripotent Stem Cells.

    PubMed

    Luo, Jiesi; Cibelli, Jose B

    2016-09-19

    Dogs have been widely used as a preclinical model for human disease. With the successful generation of canine induced pluripotent stem cells (ciPSCs), the biomedical community has a unique opportunity to study therapeutic interventions using autologous stem cells that can benefit dogs and humans. Unlike mice and human pluripotent cells, which are leukemia inhibitory factor (LIF)- and basic fibroblast growth factor (bFGF)-dependent, respectively, dog iPSCs require both growth factors simultaneously. In an effort to elucidate the role of each factor in the control of ciPSC self-renewal, we performed a series of experiments aiming at understanding the signaling pathways activated by them. We found that bFGF regulates pluripotency by indirectly activating the SMAD2/3 pathway in the presence of feeder cells, exclusively targeting NANOG expression, and inhibiting spontaneous differentiation toward ectoderm and mesoderm. LIF activates the JAK-STAT3 pathway but does not function in the typical manner described in mouse naïve embryonic stem cells. These results show that a unique mechanism for maintenance of pluripotency is present in ciPSC. These findings should be taken into account when establishing stem cell differentiation protocols and may provide more insight into pluripotency regulation in species other than mice and humans.

  10. Nitric oxide mediates angiogenesis induced in vivo by platelet-activating factor and tumor necrosis factor-alpha.

    PubMed Central

    Montrucchio, G.; Lupia, E.; de Martino, A.; Battaglia, E.; Arese, M.; Tizzani, A.; Bussolino, F.; Camussi, G.

    1997-01-01

    We evaluated the role of an endogenous production of nitric oxide (NO) in the in vitro migration of endothelial cells and in the in vivo angiogenic response elicited by platelet-activating factor (PAF), tumor necrosis factor-alpha (TNF), and basic fibroblast growth factor (bFGF). The NO synthase inhibitor, N omega-nitro-L-arginine-methyl ester (L-NAME), but not its enantiomer D-NAME, prevented chemotaxis of endothelial cells induced in vitro by PAF and by TNF. The motogenic activity of TNF was also inhibited by WEB 2170, a specific PAF-receptor antagonist. In contrast, chemotaxis induced by bFGF was not prevented by L-NAME or by WEB 2170. Angiogenesis was studied in vivo in a murine model in which Matrigel was used as a vehicle for the delivery of mediators. In this model, the angiogenesis induced by PAF and TNF was inhibited by WEB 2170 and L-NAME but not by D-NAME. In contrast, angiogenesis induced by bFGF was not affected by L-NAME or by WEB 2170. TNF, but not bFGF, induced PAF synthesis within Matrigel. These results suggest that NO mediates the angiogenesis induced by PAF as well as that induced by TNF, which is dependent on the production of PAF. In contrast, the angiogenic effect of bFGF appears to be both PAF and NO independent. Images Figure 3 Figure 4 PMID:9250168

  11. Comparison between tocotrienol and omeprazole on gastric growth factors in stress-exposed rats.

    PubMed

    Nur Azlina, Mohd Fahami; Qodriyah, Hj Mohd Saad; Chua, Kien Hui; Kamisah, Yusof

    2017-08-28

    To investigate and compare the effects of tocotrienol and omeprazole on gastric growth factors in rats exposed to water-immersion restraint stress (WIRS). Twenty-eight male Wistar rats were randomly assigned to four groups of seven rats. The two control groups were administered vitamin-free palm oil (vehicle) and the two treatment groups were given omeprazole (20 mg/kg) or tocotrienol (60 mg/kg) by oral gavage. After 28 d of treatment, rats from one control group and both treated groups were subjected to WIRS one time for 3.5 h. Gastric lesions were measured and gastric tissues were obtained to measure vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), and transforming growth factor-alpha (TGF-α) mRNA expression. Rats exposed to WIRS for 3.5 h demonstrated the presence of considerable ulcers in the form of gastric erosion. The lesion index in the stressed control (S) group was increased ( P < 0.001) compared to the tocotrienol treated and omeprazole treated groups. Stress led to a decrease in gastric VEGF ( P < 0.001), bFGF ( P < 0.001) and TGF-α ( P < 0.001) mRNA levels and caused an increase in EGF mRNA ( P < 0.001) that was statistically significant compared to the non-stressed control group. Although both treatment agents exerted similar ulcer reducing ability, only treatment with tocotrienol led to increased expression of VEGF ( P = 0.008), bFGF ( P = 0.001) and TGF-α ( P = 0.002) mRNA. Tocotrienol provides gastroprotective effects in WIRS-induced ulcers. Compared to omeprazole, tocotrienol exerts a similar protective effect, albeit through multiple mechanisms of protection, particularly through up-regulation of growth factors that assist in repair of gastric tissue injuries.

  12. Correlations of EGF G1380A, bFGF C754G and VEGF T460C polymorphisms with malignant melanoma susceptibility and prognosis: A case-control study.

    PubMed

    Wang, Xin-Hua; Long, Zi-Wen

    2017-06-20

    This case-control study aims to investigate the correlations of EGF G1380A, bFGF C754G and VEGF T460C polymorphisms with the susceptibility and prognosis of malignant melanoma. A total of 153 patients with multiple primary melanomas were collected as the case group and another 170 healthy individuals were selected as the control group. ELISA and PCR-RFLP were performed to test the serum level of VEGF and to analyze the genotype as well as allele frequencies of VEGF T460C, EGF G1380A, and bFGF C754G, respectively. The patients were assigned into complete remission (CR), partial remission (PR) and non-remission groups after treatment. HE and CD34 staining were conducted in tissue samples of CR and PR patients. Event-free survival (EFS) and overall survival (OS) were measured. AA genotype of EGF G1380A and GG genotype of bFGF C754G had higher frequency distribution in the case group than the control group. Patients with AA genotype of EGF G1380 and GG genotype of bFGF C754G had an elevated VEGF level in comparison to other genotypes. Patients with GA+GG genotypes of EGF G1380A and CG+CC genotypes of bFGF C754G had higher EFS and OS than those with AA genotype and those with GG genotype, respectively. According to the haplotype analysis, the case group had a notably higher frequency of TAG and CAG along with while lower frequency of TGG and CGC compared with the control group. Logistic regression analysis revealed that the polymorphisms of EGF G1380A and bFGF C754G as well as the haploid TAG increased the susceptibility of malignant melanoma. The results indicated that EGF G1380A and bFGF C754G gene polymorphisms were associated with the susceptibility and prognosis of malignant melanoma, and that the polymorphisms of EGF G1380A and bFGF C754G as well as the haploid TAG increased the susceptibility of malignant melanoma. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Hedgehog signaling contributes to basic fibroblast growth factor-regulated fibroblast migration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Zhong Xin; Sun, Cong Cong; Wenzhou People's Hospital, Wenzhou, Zhejiang

    Fibroblast migration is a central process in skin wound healing, which requires the coordination of several types of growth factors. bFGF, a well-known fibroblast growth factor (FGF), is able to accelerate fibroblast migration; however, the underlying mechanism of bFGF regulation fibroblast migration remains unclear. Through the RNA-seq analysis, we had identified that the hedgehog (Hh) canonical pathway genes including Smoothened (Smo) and Gli1, were regulated by bFGF. Further analysis revealed that activation of the Hh pathway via up-regulation of Smo promoted fibroblast migration, invasion, and skin wound healing, but which significantly reduced by GANT61, a selective antagonist of Gli1/Gli2. Westernmore » blot analyses and siRNA transfection assays demonstrated that Smo acted upstream of phosphoinositide 3-kinase (PI3K)-c-Jun N-terminal kinase (JNK)-β-catenin to promote cell migration. Moreover, RNA-seq and qRT-PCR analyses revealed that Hh pathway genes including Smo and Gli1 were under control of β-catenin, suggesting that β-catenin turn feedback activates Hh signaling. Taken together, our analyses identified a new bFGF-regulating mechanism by which Hh signaling regulates human fibroblast migration, and the data presented here opens a new avenue for the wound healing therapy. - Highlights: • bFGF regulates Hedgehog (Hh) signaling in fibroblasts. • The Smo and Gli two master regulators of Hh signaling positively regulate fibroblast migration. • Smo facilitates β-catenin nuclear translocation via activation PI3K/JNK/GSK3β. • β-catenin positively regulates fibroblast cell migration and the expression of Hh signaling genes including Smo and Gli.« less

  14. Regulation by basic fibroblast growth factor of glycosaminoglycan biosynthesis in cultured vascular endothelial cells.

    PubMed

    Kaji, T; Hiraga, S; Ohkawara, S; Inada, M; Yamamoto, C; Kozuka, H; Koizumi, F

    1995-05-01

    The alteration of glycosaminoglycans (GAGs) in cultured bovine aortic endothelial cells after exposure to basic fibroblast growth factor (bFGF) was investigated. It was found that the incorporation of [3H]glucosamine into GAGs was markedly increased by bFGF in both the cell layer and the conditioned medium; however, that of [35S]sulfate was not changed by the growth factor. These results indicated that bFGF enhanced the sugar-chain formation but did not affect their sulfation in endothelial GAG production. Similar changes were observed in either bovine aortic smooth-muscle cells and human fibroblastic IMR-90 cells to greater and lesser degrees, respectively. Characterization of GAGs in the endothelial cell layer and the conditioned medium revealed that bFGF enhanced both heparan sulfate and the other GAGs to a similar degree. The present data suggest that bFGF may be involved in the regulation of the blood coagulation system via altering GAGs of the vascular tissue when the endothelium was damaged.

  15. Laser myocardial revascularization modulates expression of angiogenic, neuronal, and inflammatory cytokines in a porcine model of chronic myocardial ischemia.

    PubMed

    Fuchs, Shmuel; Baffour, Richard; Vodovotz, Yoram; Shou, Matie; Stabile, Eugenio; Tio, Fermin O; Leon, Martin B; Kornowski, Ran

    2002-01-01

    Controversy exists whether transmyocardial laser revascularization (TMR) is associated with angiogenesis or neuromodulation and whether these are time-dependent phenomena. Accordingly, we performed a time-course analysis of the expression of angiogenic and neuronal factors following experimental percutaneous TMR. Five weeks after placing ameroid constrictors on the circumflex coronary artery, 16 pigs underwent left ventricular mapping guided TMR using Ho:YAG laser (2 J x 1 pulse) at 30 sites directed at the ischemic zones and 11 animals were ischemic controls. Histology and immunostaining were obtained at 1 and 2 weeks (4 TMR and 3 controls at each time point) and at 4 weeks (8 TMR and 5 controls) for vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), nerve growth factor (betaNGF), substance P (SP), and monocyte chemoattractant protein-1 (MCP-1). Immunoreactivity was scored using a digital image analysis system. Factor VIII staining was used for blood vessel counting. Enhanced regional expression of VEGF, bFGF and MCP-1 in the TMR group was noted at 1 and 2 weeks with a threefold increase at 4 weeks following TMR compared to controls. BetaNGF expression in the TMR group was enhanced at 1 and 2 weeks with subsequent decline at 4 weeks to the controls level. SP expression was not significantly different between groups at all time points. There was a twofold increase in the number of blood vessels in the TMR group at 4 weeks, which was not apparent earlier. These immunohistological findings suggest that cytokines expression compatible with angiogenesis and neuromodulation occurs early after TMR. Up-regulation of angiogenic and inflammatory cytokines may be more sustained than neuromodulation.

  16. Heparin-Poloxamer Thermosensitive Hydrogel Loaded with bFGF and NGF Enhances Peripheral Nerve Regeneration in Diabetic Rats.

    PubMed

    Li, Rui; Li, Yiyang; Wu, Yanqing; Zhao, Yingzheng; Chen, Huanwen; Yuan, Yuan; Xu, Ke; Zhang, Hongyu; Lu, Yingfeng; Wang, Jian; Li, Xiaokun; Jia, Xiaofeng; Xiao, Jian

    2018-06-01

    Peripheral nerve injury (PNI) is a major burden to society with limited therapeutic options, and novel biomaterials have great potential for shifting the current paradigm of treatment. With a rising prevalence of chronic illnesses such as diabetes mellitus (DM), treatment of PNI is further complicated, and only few studies have proposed therapies suitable for peripheral nerve regeneration in DM. To provide a supportive environment to restore structure and/or function of nerves in DM, we developed a novel thermo-sensitive heparin-poloxamer (HP) hydrogel co-delivered with basic fibroblast growth factor (bFGF) and nerve growth factor (NGF) in diabetic rats with sciatic nerve crush injury. The delivery vehicle not only had a good affinity for large amounts of growth factors (GFs), but also controlled their release in a steady fashion, preventing degradation in vitro. In vivo, compared with HP hydrogel alone or direct GFs administration, GFs-HP hydrogel treatment is more effective at facilitating Schwann cell (SC) proliferation, leading to an increased expression of nerve associated structural proteins, enhanced axonal regeneration and remyelination, and improved recovery of motor function (all p < 0.05). Our mechanistic investigation also revealed that these neuroprotective and neuroregenerative effects of the GFs-HP hydrogel may be associated with activations of phosphatidylinositol 3 kinase and protein kinase B (PI3K/Akt), janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3), and mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (MAPK/ERK) signaling pathways. Our work provides a promising therapy option for peripheral nerve regeneration in patients with DM. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Cardiomyogenic differentiation of human sternal bone marrow mesenchymal stem cells using a combination of basic fibroblast growth factor and hydrocortisone.

    PubMed

    Hafez, Pezhman; Jose, Shinsmon; Chowdhury, Shiplu R; Ng, Min Hwei; Ruszymah, B H I; Abdul Rahman Mohd, Ramzisham

    2016-01-01

    The alarming rate of increase in myocardial infarction and marginal success in efforts to regenerate the damaged myocardium through conventional treatments creates an exceptional avenue for cell-based therapy. Adult bone marrow mesenchymal stem cells (MSCs) can be differentiated into cardiomyocytes, by treatment with 5-azacytidine, thus, have been anticipated as a therapeutic tool for myocardial infarction treatment. In this study, we investigated the ability of basic fibroblastic growth factor (bFGF) and hydrocortisone as a combined treatment to stimulate the differentiation of MSCs into cardiomyocytes. MSCs were isolated from sternal marrow of patients undergoing heart surgery (CABG). The isolated cells were initially monitored for the growth pattern, followed by characterization using ISCT recommendations. Cells were then differentiated using a combination of bFGF and hydrocortisone and evaluated for the expression of characteristic cardiac markers such as CTnI, CTnC, and Cnx43 at protein level using immunocytochemistry and flow cytometry, and CTnC and CTnT at mRNA level. The expression levels and pattern of the cardiac markers upon analysis with ICC and qRT-PCR were similar to that of 5-azacytidine induced cells and cultured primary human cardiomyocytes. However, flow cytometric evaluation revealed that induction with bFGF and hydrocortisone drives MSC differentiation to cardiomyocytes with a marginally higher efficiency. These results indicate that combination treatment of bFGF and hydrocortisone can be used as an alternative induction method for cardiomyogenic differentiation of MSCs for future clinical applications. © 2015 International Federation for Cell Biology.

  18. Root cementum may modulate gene expression during periodontal regeneration: a preliminary study in humans.

    PubMed

    Gonçalves, Patricia F; Lima, Liana L; Sallum, Enilson A; Casati, Márcio Z; Nociti, Francisco H

    2008-02-01

    Previous data demonstrated that root cementum may affect periodontal regeneration. As such, this study aimed to explore further possible mechanisms involved in this process by investigating in humans whether root cementum modulates gene expression in the regenerating tissue formed under membrane-protected intrabony defects. Thirty subjects with deep intrabony defects (> or =5 mm; 2- or 3-wall) were selected and assigned to the control or test group. The control group received scaling and root planing with the removal of granulation tissue and root cementum; the test group underwent removal of granulation tissue and soft microbial deposits by cleaning the root surface with a microbrush and saline solution, aiming at cementum preservation. Guided tissue regeneration (GTR) was applied to both groups. Twenty-one days later, the newly formed tissue under the membrane was assessed for the expression of the following genes: alkaline phosphatase (ALP), osteopontin (OPN), osteocalcin (OCN), platelet-derived growth factor-alpha (PDGFA), bone sialoprotein (BSP), and basic fibroblast growth factor (bFGF). Data analysis demonstrated that mRNA levels for PDGFA, BSP, and bFGF were higher in the sites where root cementum was kept in place compared to the sites where root cementum was removed completely as part of the periodontal therapy (P <0.05); in contrast, OCN levels were lower (P <0.05). No difference for ALP or OPN was observed between the control and test groups (P >0.05). Root cementum may modulate the expression of growth and mineral-associated factors during periodontal regeneration.

  19. Characterization of release of basic fibroblast growth factor from bovine retinal endothelial cells in monolayer cultures.

    PubMed Central

    Brooks, R A; Burrin, J M; Kohner, E M

    1991-01-01

    Release of basic fibroblast growth factor (bFGF) was investigated in bovine retinal endothelial cells (BREC) maintained in monolayer culture. Confluent cells released bFGF into serum-free culture medium or medium containing 5% serum at rates of up to 105.2 and 61.3 pM/day respectively. bFGF release coincided with a decrease in monolayer cell number and increases in lactate dehydrogenase (LDH) concentration and cells and cell-debris particles in the medium, which suggested that cell damage and lysis were responsible for growth-factor release. Maximum bFGF release at 24 h (230 +/- 10 pM) occurred when the cells were treated with lipopolysaccharide (10 micrograms/ml), which also produced the greatest changes in parameters of cell damage. Sub-confluent cells showed little overt damage at 24 h, but released bFGF (78 +/- 20 pM) along with LDH, indicating that some cell lysis had occurred. Insulin-like growth factor 1 (IGF-1) was also released into serum-free culture medium at a rate of 0.34 nM/day, but not into medium containing serum or when the cells were treated with lipopolysaccharide. This implies that the mechanism of IGF-1 release is different from that of bFGF and is not related to cell damage. Culture medium conditioned by BREC stimulated the proliferation of these cells, as measured by an increase in their incorporation of [methyl-3H]thymidine from 7550 +/- 479 to 10467 +/- 924 d.p.m. These results demonstrate that bFGF is released from damaged BREC and that medium conditioned by these cells can stimulate retinal-endothelial-cell proliferation. This strengthens the case for an involvement of this growth factor in retinal neovascularization. Images Fig. 1. PMID:2039465

  20. Prognostic impact of blood and urinary angiogenic factor levels at diagnosis and during treatment in patients with osteosarcoma: a prospective study.

    PubMed

    Tabone, Marie-Dominique; Brugières, Laurence; Piperno-Neumann, Sophie; Selva, Marie-Ange; Marec-Bérard, Perrine; Pacquement, Hélène; Lervat, Cyril; Corradini, Nadège; Gentet, Jean-Claude; Couderc, Rémy; Chevance, Aurélie; Mahier-Ait Oukhatar, Céline; Entz-Werle, Natacha; Blay, Jean-Yves; Le Deley, Marie-Cecile

    2017-06-15

    Angiogenesis is essential for the progression and metastatic spread of solid tumours. Expression of vascular endothelial growth factor (VEGF) has been linked to poor survival among osteosarcoma patients but the clinical relevance of monitoring blood and urine angiogenic factors is uncertain. The aim of this study was to determine the prognostic significance of blood VEGF and blood and urinary basic fibroblast growth factor (bFGF) levels in osteosarcoma patients, both at diagnosis and during treatment. Patients with localised or metastatic osteosarcoma enrolled in OS2005 and OS2006 studies between 2005 and 2011 were prospectively included in this study. VEGF and bFGF levels in serum and plasma and bFGF levels in urine were measured by ELISA at diagnosis, before surgery, and at the end of treatment. Endpoints considered for the prognostic analysis were histological response, progression-free and overall survival. Kruskal-Wallis tests were used to compare the distribution of baseline biomarker values across the different subgroups, and paired sample Wilcoxon rank tests were used to analyze changes over time. Association between biomarker levels and outcomes were assessed in multivariable models (logistic regression for histologic response, and Cox models for survival). Samples were available at diagnosis for 269 patients (54% males; age ≤ 18 years: 73%; localised disease in 68%, doubtful lung lesions in 17%, and metastases in 15%). High serum VEGF and bFGF levels were observed in respectively 61% and 51% of patients. Serum and plasma VEGF values were not strongly correlated with one another (r = 0.53). High serum and plasma VEGF levels were significantly more frequent in patients with large tumours (≥10 cm; p = 0.003 and p = 0.02, respectively). VEGF levels fell significantly during pre-operative chemotherapy (p < 0.0001). No significant correlation was found between this variation and either the histological response, progression-free survival or

  1. Basic Fibroblast Growth Factor Stimulates the Proliferation of Bone Marrow Mesenchymal Stem Cells in Giant Panda (Ailuropoda melanoleuca).

    PubMed

    Wang, Jun-Jie; Liu, Yu-Liang; Sun, Yuan-Chao; Ge, Wei; Wang, Yong-Yong; Dyce, Paul W; Hou, Rong; Shen, Wei

    2015-01-01

    It has been widely known that the giant panda (Ailuropoda melanoleuca) is one of the most endangered species in the world. An optimized platform for maintaining the proliferation of giant panda mesenchymal stem cells (MSCs) is very necessary for current giant panda protection strategies. Basic fibroblast growth factor (bFGF), a member of the FGF family, is widely considered as a growth factor and differentiation inducer within the stem cell research field. However, the role of bFGF on promoting the proliferation of MSCs derived from giant panda bone marrow (BM) has not been reported. In this study, we aimed to investigate the role of bFGF on the proliferation of BM-MSCs derived from giant panda. MSCs were cultured for cell proliferation analysis at 24, 48 and 72 hrs following the addition of bFGF. With increasing concentrations of bFGF, cell numbers gradually increased. This was further demonstrated by performing 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) cell proliferation assay, 5-Bromo-2-deoxyUridine (BrdU) labeling and cell cycle testing. Furthermore, the percentage of MSCs that were OCT4 positive increased slightly following treatment with 5 ng/ml bFGF. Moreover, we demonstrated that the extracellular signal-regulated kinase (ERK) signaling pathway may play an important role in the proliferation of panda MSCs stimulated by bFGF. In conclusion, this study suggests that giant panda BM-MSCs have a high proliferative capacity with the addition of 5 ng/ml bFGF in vitro.

  2. Basic Fibroblast Growth Factor Stimulates the Proliferation of Bone Marrow Mesenchymal Stem Cells in Giant Panda (Ailuropoda melanoleuca)

    PubMed Central

    Wang, Jun-Jie; Liu, Yu-Liang; Sun, Yuan-Chao; Ge, Wei; Wang, Yong-Yong; Dyce, Paul W.; Hou, Rong; Shen, Wei

    2015-01-01

    It has been widely known that the giant panda (Ailuropoda melanoleuca) is one of the most endangered species in the world. An optimized platform for maintaining the proliferation of giant panda mesenchymal stem cells (MSCs) is very necessary for current giant panda protection strategies. Basic fibroblast growth factor (bFGF), a member of the FGF family, is widely considered as a growth factor and differentiation inducer within the stem cell research field. However, the role of bFGF on promoting the proliferation of MSCs derived from giant panda bone marrow (BM) has not been reported. In this study, we aimed to investigate the role of bFGF on the proliferation of BM-MSCs derived from giant panda. MSCs were cultured for cell proliferation analysis at 24, 48 and 72 hrs following the addition of bFGF. With increasing concentrations of bFGF, cell numbers gradually increased. This was further demonstrated by performing 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) cell proliferation assay, 5-Bromo-2-deoxyUridine (BrdU) labeling and cell cycle testing. Furthermore, the percentage of MSCs that were OCT4 positive increased slightly following treatment with 5 ng/ml bFGF. Moreover, we demonstrated that the extracellular signal-regulated kinase (ERK) signaling pathway may play an important role in the proliferation of panda MSCs stimulated by bFGF. In conclusion, this study suggests that giant panda BM-MSCs have a high proliferative capacity with the addition of 5 ng/ml bFGF in vitro. PMID:26375397

  3. Enhanced intestinal anastomotic healing with gelatin hydrogel incorporating basic fibroblast growth factor.

    PubMed

    Hirai, Kenjiro; Tabata, Yasuhiko; Hasegawa, Suguru; Sakai, Yoshiharu

    2016-10-01

    Anastomotic leakage is a common complication of intestinal surgery. In an attempt to resolve this issue, a promising approach is enhancement of anastomotic wound healing. A method for controlled release of basic fibroblast growth factor (bFGF) using a gelatin hydrogel was developed with the objective of investigating the effects of this technology on intestinal anastomotic healing. The small intestine of Wistar rats was cut, end-to-end anastomosis was performed and rats were divided into three groups: bFGF group (anastomosis wrapped with a hydrogel sheet incorporating bFGF), PBS group (wrapped with a sheet incorporating phosphate-buffered saline solution) and NT group (no additional treatment). Degradation profiles of gelatin hydrogels in vivo and histological examinations were performed using gelatin hydrogels with various water contents and bFGF concentrations to define the optimal bFGF dose and hydrogel biodegradability. The anastomotic wound healing process was evaluated by histological examinations, adhesion-related score and bursting pressure. The optimal water content of the hydrogel and bFGF dose was determined as 96% and 30 µg per sheet, respectively. Application of bFGF significantly enhanced neovascularization, fibroblast infiltration and collagen production around the anastomotic site when compared with the other groups. Bursting pressure was significantly increased in the bFGF group. No significant difference was observed in the adhesion-related score among the groups and no anastomotic obstruction and leakage were observed. Therefore controlled release of bFGF enhanced healing of an intestinal anastomosis during the early postoperative period and is a promising method to suppress anastomotic leakage. Copyright © 2013 John Wiley & Sons, Ltd. Copyright © 2013 John Wiley & Sons, Ltd.

  4. Adipose Extracellular Matrix/Stromal Vascular Fraction Gel Secretes Angiogenic Factors and Enhances Skin Wound Healing in a Murine Model.

    PubMed

    Sun, Mingliang; He, Yunfan; Zhou, Tao; Zhang, Pan; Gao, Jianhua; Lu, Feng

    2017-01-01

    Mesenchymal stem cells are an attractive cell type for cytotherapy in wound healing. The authors recently developed a novel, adipose-tissue-derived, injectable extracellular matrix/stromal vascular fraction gel (ECM/SVF-gel) for stem cell therapy. This study was designed to assess the therapeutic effects of ECM/SVF-gel on wound healing and potential mechanisms. ECM/SVF-gel was prepared for use in nude mouse excisional wound healing model. An SVF cell suspension and phosphate-buffered saline injection served as the control. The expression levels of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), and monocyte chemotactic protein-1 (MCP-1) in ECM/SVF-gel were analyzed at different time points. Angiogenesis (tube formation) assays of ECM/SVF-gel extracts were evaluated, and vessels density in skin was determined. The ECM/SVF-gel extract promoted tube formation in vitro and increased the expression of the angiogenic factors VEGF and bFGF compared with those in the control. The expression of the inflammatory chemoattractant MCP-1 was high in ECM/SVF-gel at the early stage and decreased sharply during the late stage of wound healing. The potent angiogenic effects exerted by ECM/SVF-gel may contribute to the improvement of wound healing, and these effects could be related to the enhanced inflammatory response in ECM/SVF-gel during the early stage of wound healing.

  5. Involvement of basic fibroblast growth factor in suramin-induced inhibition of V79/AP4 fibroblast cell proliferation.

    PubMed Central

    Bernardini, N.; Giannessi, F.; Bianchi, F.; Dolfi, A.; Lupetti, M.; Citti, L.; Danesi, R.; Del Tacca, M.

    1993-01-01

    The V79/AP4 Chinese hamster fibroblasts were densely stained with the anti-basic fibroblast growth factor (bFGF) antibody demonstrating an endogenous production of the peptide. The in vitro proliferation of these cells was stimulated by exogenous bFGF and the maximum growth (259% increase in 3H-thymidine incorporation into DNA) was reached with bFGF 10 ng ml-1. Inhibition of bFGF-mediated mitogenic pathway was obtained with a 15-mer antisense oligodeoxynucleotide targeted against bFGF mRNA and with suramin, a drug which blocks the biological activity of heparin-binding growth factors. bFGF antisense oligomer reduced the synthesis of DNA by 79.5 and 89.5% at 20 and 60 microM, respectively; this effect was reversed by the addition of exogenous bFGF to the culture medium. A short-term exposure to suramin 300 micrograms ml-1 produced a modest reduction in 3H-thymidine incorporation but suppressed the mitogenic effect of bFGF on V79/AP4 cells. In cells treated with suramin 300 micrograms ml-1 the drug concentration increased linearly over 3 days, reaching 13.15 micrograms mg-1 of protein; cell proliferation was inhibited in a dose-related manner as evaluated by the colony formation assay (IC50: 344.22 micrograms ml-1) and by the number of mitoses observed in culture. Furthermore, the drug induced ultrastructural alterations, consisting of perinuclear cisternae swelling, chromatin condensation, nucleolar segregation and cytoplasmic vacuolations. These findings demonstrated that the endogenous production of bFGF plays an important role in V79/AP4 fibroblasts proliferation, and the inhibition of bFGF-mediated mitogenic signalling with bFGF antisense oligomer or suramin is an effective mean of reducing cell growth. Images Figure 1 Figure 5 Figure 6 PMID:7685616

  6. Localization of basic fibroblast growth factor binding sites in the chick embryonic neural retina.

    PubMed

    Cirillo, A; Arruti, C; Courtois, Y; Jeanny, J C

    1990-12-01

    We have investigated the localization of basic fibroblast growth factor (bFGF) binding sites during the development of the neural retina in the chick embryo. The specificity of the affinity of bFGF for its receptors was assessed by competition experiments with unlabelled growth factor or with heparin, as well as by heparitinase treatment of the samples. Two different types of binding sites were observed in the neural retina by light-microscopic autoradiography. The first type, localized mainly to basement membranes, was highly sensitive to heparitinase digestion and to competition with heparin. It was not developmentally regulated. The second type of binding site, resistant to heparin competition, appeared to be associated with retinal cells from the earliest stages studied (3-day-old embryo, stages 21-22 of Hamburger and Hamilton). Its distribution was found to vary during embryonic development, paralleling layering of the neural retina. Binding of bFGF to the latter sites was observed throughout the retinal neuroepithelium at early stages but displayed a distinct pattern at the time when the inner and outer plexiform layers were formed. During the development of the inner plexiform layer, a banded pattern of bFGF binding was observed. These bands, lying parallel to the vitreal surface, seemed to codistribute with the synaptic bands existing in the inner plexiform layer. The presence of intra-retinal bFGF binding sites whose distribution varies with embryonic development suggests a regulatory mechanism involving differential actions of bFGF on neural retinal cells.

  7. Induction of endothelial cell proliferation by angiogenic factors released by activated monocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pakala, Rajbabu; Watanabe, Takuya; Benedict, Claude R

    2002-06-01

    Introduction: Cell-cell interaction is an essential component of atherosclerotic plaque development. Activated monocytes appear to play a central role in the development of atherosclerosis, not only through foam cell formation but also via the production of various growth factors that induce proliferation of different cell types that are involved in the plaque development. Using serum free co-culture method, we determined the effect of monocytes on endothelial cell proliferation. Methods: Endothelial cell proliferation is determined by the amount of [{sup 3}H]thymidine incorporated in to the DNA. Basic fibroblast growth factor (b-FGF), vascular endothelial growth factor (VEGF) and interleukin-8 (IL-8) levels inmore » the conditioned medium were determined by ELISA. Results: Conditioned medium from unactivated monocytes partially inhibited endothelial cell proliferation, whereas conditioned medium from activated monocytes promoted endothelial cell proliferation. The mitogenic effect of conditioned medium derived from activated monocytes is due to the presence of b-FGF, VEGF and IL-8. Neutralizing antibodies against b-FGF, VEGF and IL-8 partially reversed the mitogenic effect of conditioned medium derived from activated monocytes. When b-FGF, VEGF and IL-8 were immunoprecipitated from conditioned medium derived from activated monocytes, it is less mitogenic to endothelial cells. Conclusion: Activated monocytes may play an important role in the development of atherosclerotic plaque by producing endothelial cell growth factors.« less

  8. Effect of noncovalent interaction on the self-assembly of a designed peptide and its potential use as a carrier for controlled bFGF release

    PubMed Central

    Liu, Yanfei; Zhang, Ling; Wei, Wei

    2017-01-01

    Peptide self-assembly is one of the promising bottom-up approaches for creating synthetic supermolecular architectures. Noncovalent interactions such as hydrophobic packing, electrostatic interaction, and polypeptide chain entropy (ΔSC) are the most relevant factors that affect the folding and self-assembly of peptides and the stability of supermolecular structures. The GVGV tetrapeptide is an abundant repeat in elastin, an extracellular matrix protein. In this study, four GVGV-containing peptides were designed with the aim of understanding the effects of these weak interactions on peptide self-assembly. Transmission electron microscopy, circular dichroism spectroscopy, dynamic light scattering measurements, and rheometry assays were used to study the structural features of the peptides. Because self-assembling peptides with different amino acid sequences may significantly affect protein release, basic fibroblast growth factor (bFGF) was used as a model molecule and encapsulated within the P2 (RLDLGVGVRLDLGVGV) hydrogel to study the release kinetics. The results showed that the balance among hydrophobic effects, electrostatic interactions, and chain entropy determined the molecular state and self-assembly of the peptide. Moreover, encapsulation of bFGF within the P2 hydrogel allowed its sustained release without causing changes in the secondary structure. The release profiles could be tuned by adjusting the P2 hydrogel concentration. Cell Counting Kit-8 and Western blot assays demonstrated that the encapsulated and released bFGFs were biologically active and capable of promoting the proliferation of murine fibroblast NIH-3T3 cells, most likely due to the activation of downstream signaling pathways. PMID:28176898

  9. Multivalent conjugates of basic fibroblast growth factor enhance in vitro proliferation and migration of endothelial cells.

    PubMed

    Zbinden, Aline; Browne, Shane; Altiok, Eda I; Svedlund, Felicia L; Jackson, Wesley M; Healy, Kevin E

    2018-05-01

    Growth factors hold great promise for regenerative therapies. However, their clinical use has been halted by poor efficacy and rapid clearance from tissue, necessitating the delivery of extremely high doses to achieve clinical effectiveness which has raised safety concerns. Thus, strategies to either enhance growth factor activity at low doses or to increase their residence time within target tissues are necessary for clinical success. In this study, we generated multivalent conjugates (MVCs) of basic fibroblast growth factor (bFGF), a key growth factor involved in angiogenesis and wound healing, to hyaluronic acid (HyA) polymer chains. Multivalent bFGF conjugates (mvbFGF) were fabricated with minimal non-specific interaction observed between bFGF and the HyA chain. The hydrodynamic radii of mvbFGF ranged from ∼50 to ∼75 nm for conjugation ratios of bFGF to HyA chains at low (10 : 1) and high (30 : 1) feed ratios, respectively. The mvbFGF demonstrated enhanced bioactivity compared to unconjugated bFGF in assays of cell proliferation and migration, processes critical to angiogenesis and tissue regeneration. The 30 : 1 mvbFGF outperformed the 10 : 1 conjugate, which could be due to either FGF receptor clustering or interference with receptor mediated internalization and signal deactivation. This study simultaneously investigated the role of both protein to polymer ratio and multivalent conjugate size on their bioactivity, and determined that increasing the protein-to-polymer ratio and conjugate size resulted in greater cell bioactivity.

  10. Linear ordered collagen scaffolds loaded with collagen-binding basic fibroblast growth factor facilitate recovery of sciatic nerve injury in rats.

    PubMed

    Ma, Fukai; Xiao, Zhifeng; Chen, Bing; Hou, Xianglin; Dai, Jianwu; Xu, Ruxiang

    2014-04-01

    Natural biological functional scaffolds, consisting of biological materials filled with promoting elements, provide a promising strategy for the regeneration of peripheral nerve defects. Collagen conduits have been used widely due to their excellent biological properties. Linear ordered collagen scaffold (LOCS) fibers are good lumen fillers that can guide nerve regeneration in an ordered direction. In addition, basic fibroblast growth factor (bFGF) is important in the recovery of nerve injury. However, the traditional method for delivering bFGF to the lesion site has no long-term effect because of its short half-life and rapid diffusion. Therefore, we fused a specific collagen-binding domain (CBD) peptide to the N-terminal of native basic fibroblast growth factor (NAT-bFGF) to retain bFGF on the collagen scaffolds. In this study, a natural biological functional scaffold was constructed using collagen tubes filled with collagen-binding bFGF (CBD-bFGF)-loaded LOCS to promote regeneration in a 5-mm rat sciatic nerve transection model. Functional evaluation, histological investigation, and morphometric analysis indicated that the natural biological functional scaffold retained more bFGF at the injury site, guided axon growth, and promoted nerve regeneration as well as functional restoration.

  11. [An in vivo study of basic fibroblast growth factor on activation and proliferation of retinal progenitor cell in RCS rats].

    PubMed

    Xia, Xiaoping; Song, Guoxiang; Liu, Xiangfu; Tang, Xiangchen; Ye, Hui

    2010-11-01

    To investigate the effect of intravitreal basic fibroblast growth factor(bFGF) on activation and proliferation of endogenous retinal progenitor cells in the Royal College of Surgeons(RCS) rats. Twenty-four rats were studied after the 30th postnatal day(≥30). Eighteen affected rats were randomly divided into 3 groups: bFGF-treated, vehicle-treated and untreated group, and 6 unaffected rats were used as normal controls. Six μl of bFGF (5μg/10 μl) or vehicle was injected into the vitreous on days 31, 33 and 35 after birth (P31, P33, P35) in the bFGF group and vehicle group, and no injection was administered in the untreated and control groups. All the rats were euthanized, and their eyes were enucleated, hemisected and fixed at 50 d after birth for immunohistochemistry and measurement of outer nuclear layer thickness. Nestin and Chx10 were positively expressed in all retinal layers, intravitreous injection of bFGF in retina-dystrophic RCS(RCS-p+/Lav) rats induced intense labeling for the retinal progenitor cell markers Chx10 and Nestin, which were highly colocalized. Fluorescence intensity for both labels was slightly less in the control rats, and much less in the vehicle-injected rats as well as in the untreated RCS rats. The outer nuclear layer (ONL) was significantly thicker in bFGF group than that of vehicle-treated or untreated group(p<0.01), but thinner than that of the control group(p<0.01). No significant difference was observed in the ONL thicknesses between the vehicle group and untreated group(P>0.05). bFGF may contribute to the activation of retinal progenitor cells in RCS rats, thus counteract degeneration by promoting the proliferation of the progenitor cells.

  12. Structure of a Multilayer Nanofilm To Increase the Encapsulation Efficiency of Basic Fibroblast Growth Factor.

    PubMed

    Han, Uiyoung; Hong, Jinkee

    2018-03-05

    In this study, we established the structure of a multilayer nanofilm that more efficiently encapsulates basic fibroblast growth factor (bFGF). First, a positively charged layer material was selected from biocompatible polymers such as collagen (Col), poly(beta-amino ester) (Poly2), and chitosan (Chi), while considering the film thickness. We then investigated the change in bFGF encapsulation efficiency when the multilayer structure was changed from a tetralayer to a trilayer. As a result, we obtained a highly improved bFGF encapsulation efficiency in the nanofilm using a positively charged layer formed by a blend of Col and Poly2 and a negatively charged poly(acrylic acid) (PAA) layer within a trilayered structure. In particular, we found that a significant amount of adsorbed bFGF was desorbed again during the film fabrication process of a tetralayered nanofilm. In the conventional nanofilm, bFGF was regarded as a polycation and formed a multilayer nanofilm that was composed of a tetralayered structure and was represented as (polycation/polyanion/bFGF/polyanion) n where n = number of repeated tetralayers. Here, we suggested that bFGF should not be considered a polycation, rather it should be considered as a small quantity of molecule that exists between the polyanion and polycation layers. In this case, the nanofilm is composed of repeating units of (polycation/polyanion/bFGF/polycation/polyanion), because the amount of adsorbed bFGF is considerably lower than that of other building blocks.

  13. Effects of combination therapy using basic fibroblast growth factor and mature adipocyte-derived dedifferentiated fat (DFAT) cells on skin graft revascularisation.

    PubMed

    Asami, Takashi; Soejima, Kazutaka; Kashimura, Tsutomu; Kazama, Tomohiko; Matsumoto, Taro; Morioka, Kosuke; Nakazawa, Hiroaki

    2015-01-01

    Although the benefits of basic fibroblast growth factor (bFGF) for wound healing and angiogenesis are well known, its effects on the process of skin graft revascularisation have not been clarified. It was hypothesised that bFGF would be beneficial to promote taking of skin grafts, but that the effect might be limited in the case of bFGF monotherapy. Therefore, this study investigated the efficacy of combination therapy using bFGF and dedifferentiated fat (DFAT) cells. DFAT cells have multilineage differentiation potential, including into endothelial cells, similar to the case of mesenchymal stem cells (MSC). Commercially available human recombinant bFGF was used. DFAT cells were prepared from SD strain rats as an adipocyte progenitor cell line from mature adipocytes. Full-thickness skin was lifted from the back of SD strain rats and then grafted back to the original wound site. Four groups were established prior to skin grafting: control group (skin graft alone), bFGF group (treated with bFGF), DFAT group (treated with DFAT cells), and combination group (treated with both bFGF and DFAT cells). Tissue specimens for histological examination were harvested 48 hours after grafting. The histological findings for the bFGF group showed vascular augmentation in the grafted dermis compared with the control group. However, the difference in the number of revascularised vessels per unit area did not reach statistical significance against the control group. In contrast, in the combination group, skin graft revascularisation was significantly promoted, especially in the upper dermis. The results suggest that replacement of the existing graft vessels was markedly promoted by the combination therapy using bFGF and DFAT cells, which may facilitate skin graft taking.

  14. Bone regeneration with active angiogenesis by basic fibroblast growth factor gene transfected mesenchymal stem cells seeded on porous beta-TCP ceramic scaffolds.

    PubMed

    Guo, Xiaodong; Zheng, Qixin; Kulbatski, Iris; Yuan, Quan; Yang, Shuhua; Shao, Zengwu; Wang, Hong; Xiao, Baojun; Pan, Zhengqi; Tang, Shuo

    2006-09-01

    Large segmental bone defect repair remains a clinical and scientific challenge with increasing interest focused on combining gene transfer with tissue engineering techniques. Basic fibroblast growth factor (bFGF) is one of the most prominent osteogenic growth factors that has the potential to accelerate bone healing by promoting the proliferation and differentiation of mesenchymal stem cells (MSCs) and the regeneration of capillary vasculature. However, the short biological half-lives of growth factors may impose severe restraints on their clinical usefulness. Gene-based delivery systems provide a better way of achieving a sustained high concentration of growth factors locally in the defect and delivering a more biologically active product than that achieved by exogenous application of recombinant proteins. The objective of this experimental study was to investigate whether the bFGF gene modified MSCs could enhance the repair of large segmental bone defects. The pcDNA3-bFGF gene transfected MSCs were seeded on biodegradable porous beta tricalcium phosphate (beta-TCP) ceramics and allografted into the 15 mm critical-sized segmental bone defects in the radius of 18 New Zealand White rabbits. The pcDNA3 vector gene transfected MSCs were taken as the control. The follow-up times were 2, 4, 6, 8, 10 and 12 weeks. Scanning electron microscopic, roentgenographic, histologic and immunohistological studies were used to assess angiogenesis and bone regeneration. In vitro, the proliferation and differentiation of bFGF gene transfected MSCs were more active than that of the control groups. In vivo, significantly more new bone formation accompanied by abundant active capillary regeneration was observed in pores of the ceramics loaded with bFGF gene transfected MSCs, compared with control groups. Transfer of gene encoding bFGF to MSCs increases their osteogenic properties by enhancing capillary regeneration, thus providing a rich blood supply for new bone formation. This new bFGF

  15. Clopidogrel inhibits angiogenesis of gastric ulcer healing via downregulation of vascular endothelial growth factor receptor 2.

    PubMed

    Luo, Jiing-Chyuan; Peng, Yen-Ling; Chen, Tseng-Shing; Huo, Teh-Ia; Hou, Ming-Chih; Huang, Hui-Chun; Lin, Han-Chieh; Lee, Fa-Yauh

    2016-09-01

    Although clopidogrel does not cause gastric mucosal injury, it does not prevent peptic ulcer recurrence in high-risk patients. We explored whether clopidogrel delays gastric ulcer healing via inhibiting angiogenesis and to elucidate the possible mechanisms. Gastric ulcers were induced in Sprague Dawley rats, and ulcer healing and angiogenesis of ulcer margin were compared between clopidogrel-treated rats and controls. The expressions of the proangiogenic growth factors and their receptors including basic fibroblast growth factor (bFGF), bFGF receptor (FGFR), vascular endothelial growth factor (VEGF), VEGFR1, VEGFR2, platelet-derived growth factor (PDGF)A, PDGFB, PDGFR A, PDGFR B, and phosphorylated form of mitogenic activated protein kinase pathways over the ulcer margin were compared via western blot and reverse transcription polymerase chain reaction. In vitro, human umbilical vein endothelial cells (HUVECs) were used to elucidate how clopidogrel inhibited growth factors-stimulated HUVEC proliferation. The ulcer sizes were significantly larger and the angiogenesis of ulcer margin was significantly diminished in the clopidogrel (2 and 10 mg/kg/d) treated groups. Ulcer induction markedly increased the expression of phosphorylated form of extracellular signal-regulated kinase (pERK), FGFR2, VEGF, VEGFR2, and PDGFRA when compared with those of normal mucosa. Clopidogrel treatment significantly decreased pERK, FGFR2, VEGF, VEGFR2, and PDGFRA expression at the ulcer margin when compared with those of the respective control group. In vitro, clopidogrel (10(-6)M) inhibited VEGF-stimulated (20 ng/mL) HUVEC proliferation, at least, via downregulation of VEGFR2 and pERK. Clopidogrel inhibits the angiogenesis of gastric ulcer healing at least partially by the inhibition of the VEGF-VEGFR2-ERK signal transduction pathway. Copyright © 2015. Published by Elsevier B.V.

  16. Cytotoxic effects of basic FGF and heparin binding EGF conjugated with cytotoxin saporin on vascular cell cultures.

    PubMed

    Chen, C; Li, J; Micko, C J; Pierce, G F; Cunningham, M R; Lumsden, A B

    1998-02-15

    Vascular smooth muscle cell (SMC) proliferation is an integral component of intimal lesion formation. In this study we compared the mitogenic effects of basic fibroblast growth factor (bFGF) and heparin binding epidermal growth factor (HBEGF) and the cytotoxic effects of bFGF and HBEGF conjugated with plant cytotoxin saporin (SAP) on vascular cell cultures. Human vascular SMCs and endothelial cells were cultured and FGF receptor-1 (FGFR-1) and EGF receptor (EGFR) expression were detected by immunohistochemical staining. Cells were grown in 24-well plates. Variable amounts of testing drugs (bFGF, HBEGF, SAP, bFGF-SAP, or HBEGF-SAP) were added to quadruplicate wells after 24 h. Cells without drugs were used as control. The total number of cells was counted at 72 h using a hemocytometer. The cultured human vascular SMCs and endothelial cells expressed both FGFR-1 and EGFR with predominant perinuclear localization. bFGF and HBEGF demonstrated equally potent mitogenic effects on SMC proliferation. SAP alone showed a limited cytotoxic effect on both SMCs and endothelial cells. bFGF had a more potent effect on endothelial cell proliferation than HBEGF. bFGF-SAP was equally cytotoxic for both SMCs and endothelial cells, while HBEGF-SAP had a more selectively cytotoxic effect on SMCs than on endothelial cells. These data suggest that the mitogenic effects of bFGF and HBEGF and the cytotoxic effects of bFGF-SAP and HBEGF-SAP may both be mediated by their corresponding growth factor receptors. Because of its selective cytotoxic effect on SMCs, HBEGF-SAP may become a more attractive agent for controlling intimal lesion formation.

  17. Regenerative effect of basic fibroblast growth factor on periodontal healing in two-wall intrabony defects in dogs.

    PubMed

    Shirakata, Yoshinori; Taniyama, Katsuyoshi; Yoshimoto, Takehiko; Miyamoto, Motoharu; Takeuchi, Naoshi; Matsuyama, Takashi; Noguchi, Kazuyuki

    2010-04-01

    The aim of the present study was to evaluate the effect of a basic fibroblast growth factor (bFGF) candidate treatment on periodontal healing in two-wall intrabony defects in dogs. Two-wall intrabony defects (5 x 5 x 5 mm) were created surgically on the distal and mesial sides of bilateral mandibular second and fourth premolars in four Beagle dogs. bFGF, enamel matrix derivative (EMD) and platelet-derived growth factor with beta-tricalcium phosphate (PDGF/beta-TCP) treatments, and sham-surgery (OFD) were rotated among the four defects in each animal, EMD and PDGF/beta-TCP serving as benchmark controls. The animals were euthanized for radiographic and histologic evaluation at 8 weeks. Bone formation was significantly greater in the bFGF group (4.11 +/- 0.77 mm) than in the EMD (3.32 +/- 0.71 mm; p<0.05) and OFD (3.09 +/- 0.52 mm; p<0.01) groups. The EMD (4.59 +/- 1.19 mm) and PDGF/beta-TCP (4.66 +/- 0.7 mm) groups exhibited significantly greater cementum regeneration with periodontal ligament-like tissue than the OFD group (2.96 +/- 0.69 mm; p<0.01). No significant differences were observed between the bFGF and the PDGF/beta-TCP groups in any of the histometric parameters. The candidate bFGF treatment supported periodontal regeneration comparable with that of established benchmarks: EMD and PDGF/beta-TCP.

  18. [Growth Factors and Interleukins in Amniotic Membrane Tissue Homogenate].

    PubMed

    Stachon, T; Bischoff, M; Seitz, B; Huber, M; Zawada, M; Langenbucher, A; Szentmáry, N

    2015-07-01

    Application of amniotic membrane homogenate eye drops may be a potential treatment alternative for therapy resistant corneal epithelial defects. The purpose of this study was to determine the concentrations of epidermal growth factor (EGF), fibroblast growth factor basic (bFGF), hepatocyte growth factor (HGF), keratinocyte growth factor (KGF), interleukin-6 (IL-6) and interleukin-8 (IL-8) in amniotic membrane homogenates. Amniotic membranes of 8 placentas were prepared and thereafter stored at - 80 °C using the standard methods of the LIONS Cornea Bank Saar-Lor-Lux, Trier/Westpfalz. Following defreezing, amniotic membranes were cut in two pieces and homogenized in liquid nitrogen. One part of the homogenate was prepared in cell-lysis buffer, the other part was prepared in PBS. The tissue homogenates were stored at - 20 °C until enzyme-linked immunosorbent assay (ELISA) analysis for EGF, bFGF, HGF, KGF, IL-6 and IL-8 concentrations. Concentrations of KGF, IL-6 and IL-8 were below the detection limit using both preparation techniques. The EGF concentration in tissue homogenates treated with cell-lysis buffer (2412 pg/g tissue) was not significantly different compared to that of tissue homogenates treated with PBS (1586 pg/g tissue, p = 0.72). bFGF release was also not significantly different using cell-lysis buffer (3606 pg/g tissue) or PBS treated tissue homogenates (4649 pg/g tissue, p = 0.35). HGF release was significantly lower using cell-lysis buffer (23,555 pg/g tissue), compared to PBS treated tissue (47,766 pg/g tissue, p = 0.007). Containing EGF, bFGF and HGF, and lacking IL-6 and IL-8, the application of amniotic membrane homogenate eye drops may be a potential treatment alternative for therapy-resistant corneal epithelial defects. Georg Thieme Verlag KG Stuttgart · New York.

  19. Radiosurgery reduces plasma levels of angiogenic factors in brain arteriovenous malformation patients.

    PubMed

    Xu, Ming; Liu, Xiaoxia; Mei, Guanghai; Zhang, Junjie; Wang, Weixing; Xu, Hongzhi

    2018-05-09

    Aberrant expression of angiogenic factors has been anecdotally documented in brain arteriovenous malformation (AVM) nidus vessels; however, no data is available on the effect of radiosurgery on the levels of angiogenic factors in AVM patients. We sought to determine the plasma contents of VEGF, TGF-β, Ang-2 and bFGF in 28 brain AVM patients at baseline and post radiosurgery and further analyzed the relationship between plasma contents of these angiogenic factors with clinicopathologic variables of these patients. We enrolled brain AVM patients who underwent Cyberknife radiosurgery at our hospital between January 2014 and December 2015. Brain AVM was confirmed by cerebral angiography and radiosurgery was performed with Cyberknife irradiation. Plasma contents of VEGF, TGF-β, Ang-2 and bFGF were analyzed using commercially available enzyme-linked immunoassay (ELISA) kits. The baseline plasma VEGF content was 222.63 pg/mL (range 43.25-431.25 pg/mL). At three months post surgery, there was a significant -34.29% decline in plasma VEGF content versus baseline (P = 0.000). Furthermore, the median baseline plasma VEGF levels were higher in brain AVM with a nidus volume ≥ 10 cm 3 ) than those with a nidus volume < 10 cm 3 [median(IQR) 293.5 (186.5,359.25) vs. 202 (59.75, 270.75) pg/mL, P = 0.057]. The baseline plasma TGF-β content was 556.17 pg/mL (range 44.44-1486.11 pg/mL) and there was a significant -27.47% decline in plasma TGF-β content at 3 months post radiosurgery versus baseline (P = 0.015). Moreover, the baseline plasma ANG-2 content was 214.27 pg/mL (range 77.14-453.76 pg/mL). There was an immediate and significant -12.47% decline in plasma ANG-2 content post surgery versus baseline (P = 0.002). At three months post surgery, the plasma ANG-2 content still remained significantly depressed versus baseline (P = 0.002). In addition, the baseline plasma bFGF content was 9.17 pg/mL (range 3.67-36.78 pg/mL). No

  20. A highly versatile adaptor protein for the tethering of growth factors to gelatin-based biomaterials.

    PubMed

    Addi, Cyril; Murschel, Frédéric; Liberelle, Benoît; Riahi, Nesrine; De Crescenzo, Gregory

    2017-03-01

    In the field of tissue engineering, the tethering of growth factors to tissue scaffolds in an oriented manner can enhance their activity and increase their half-life. We chose to investigate the capture of the basic Fibroblast Growth Factor (bFGF) and the Epidermal Growth Factor (EGF) on a gelatin layer, as a model for the functionalization of collagen-based biomaterials. Our strategy relies on the use of two high affinity interactions, that is, the one between two distinct coil peptides as well as the one occurring between a collagen-binding domain (CBD) and gelatin. We expressed a chimeric protein to be used as an adaptor that comprises one of the coil peptides and a CBD derived from the human fibronectin. We proved that it has the ability to bind simultaneously to a gelatin substrate and to form a heterodimeric coiled-coil domain with recombinant growth factors being tagged with the complementary coil peptide. The tethering of the growth factors was characterized by ELISA and surface plasmon resonance-based biosensing. The bioactivity of the immobilized bFGF and EGF was evaluated by a human umbilical vein endothelial cell proliferation assay and a vascular smooth muscle cell survival assay. We found that the tethering of EGF preserved its mitogenic and anti-apoptotic activity. In the case of bFGF, when captured via our adaptor protein, changes in its natural mode of interaction with gelatin were observed. In an effort to functionalize collagen/gelatin-based biomaterials with growth factors, we have designed an adaptor protein corresponding to a collagen-binding domain fused to a coil peptide. In our strategy, this adaptor protein captures growth factors being tagged with the partner coil peptide in a specific, stable and oriented manner. We have found that the tethering of the Epidermal Growth Factor preserved its mitogenic and anti-apoptotic activity. In the case of the basic Fibroblast Growth Factor, the captured growth factor remained bioactive although its

  1. Cynaropicrin from Cynara scolymus L. suppresses photoaging of skin by inhibiting the transcription activity of nuclear factor-kappa B.

    PubMed

    Tanaka, Yuka Tsuda; Tanaka, Kiyotaka; Kojima, Hiroyuki; Hamada, Tomoji; Masutani, Teruaki; Tsuboi, Makoto; Akao, Yukihiro

    2013-01-15

    Aging of skin is characterized by skin wrinkling, laxity, and pigmentation induced by several environmental stress factors. Histological changes during the photoaging of skin include hyperproliferation of keratinocytes and melanocytes causing skin wrinkles and pigmentation. Nuclear factor kappa B (NF-κB) is one of the representative transcription factors active in conjunction with inflammation. NF-κB is activated by stimulation such as ultraviolet rays and inflammatory cytokines and induces the expression of various genes such as those of basic fibroblast growth factor (bFGF) and matrix metalloprotease-1 (MMP-1). We screened several plant extracts for their possible inhibitory effect on the transcriptional activity of NF-κB. One of them, an extract from Cynara scolymus L., showed a greatest effect on the suppression of NF-κB transactivation. As a result, we found that cynaropicrin, which is a sesquiterpene lactone, inhibited the NF-κB-mediated transactivation of bFGF and MMP-1. Furthermore, it was confirmed that in an in vivo mouse model cynaropicrin prevented skin photoaging processes leading to the hyperproliferation of keratinocytes and melanocytes. These findings taken together indicate that cynaropicrin is an effective antiphotoaging agent that acts by inhibiting NF-κB-mediated transactivation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Controlled release of basic fibroblast growth factor for angiogenesis using acoustically-responsive scaffolds.

    PubMed

    Moncion, Alexander; Lin, Melissa; O'Neill, Eric G; Franceschi, Renny T; Kripfgans, Oliver D; Putnam, Andrew J; Fabiilli, Mario L

    2017-09-01

    The clinical translation of pro-angiogenic growth factors for treatment of vascular disease has remained a challenge due to safety and efficacy concerns. Various approaches have been used to design spatiotemporally-controlled delivery systems for growth factors in order to recapitulate aspects of endogenous signaling and thus assist in translation. We have developed acoustically-responsive scaffolds (ARSs), which are fibrin scaffolds doped with a payload-containing, sonosensitive emulsion. Payload release can be controlled non-invasively and in an on-demand manner using focused, megahertz-range ultrasound (US). In this study, we investigate the in vitro and in vivo release from ARSs containing basic fibroblast growth factor (bFGF) encapsulated in monodispersed emulsions. Emulsions were generated in a two-step process utilizing a microfluidic device with a flow focusing geometry. At 2.5 MHz, controlled release of bFGF was observed for US pressures above 2.2 ± 0.2 MPa peak rarefactional pressure. Superthreshold US yielded a 12.6-fold increase in bFGF release in vitro. The bioactivity of the released bFGF was also characterized. When implanted subcutaneously in mice, ARSs exposed to superthreshold US displayed up to 3.3-fold and 1.7-fold greater perfusion and blood vessel density, respectively, than ARSs without US exposure. Scaffold degradation was not impacted by US. These results highlight the utility of ARSs in both basic and applied studies of therapeutic angiogenesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. [Effect of Basic Fibroblast Growth Factor and Transforming Growth Factor-Β1 Combined with Bone Marrow Mesenchymal Stem Cells on the Repair of Degenerated Intervertebral Discs in Rat Models].

    PubMed

    Jiang, Chao; Li, Da-peng; Zhang, Zhi-jian; Shu, Hao-ming; Hu, Lang; Li, Zheng-nan; Huang, Yong-hui

    2015-08-01

    To evaluate the effects of the combination of basic fibroblast growth factor (bFGF), transforming growth factor-Β1 (TGF-Β1), bone marrow mesenchymal stem cells (BMSCs), and temperature-responsive chitosan hydrogel (TCH) gel on the repair of degenerative intervertebral disc in rat models. Rat models of intervertebral disc degeneration were established by acupuncture. The degenerative effects were observed under magnetic resonance imaging (MRI). The BMSCs was cultured in vitro and then transfected by adenovirus with enhanced green fluorescent protein to make it carry the gene of enhanced green fluorescent protein,which functioned as fluorescence labeling. The SD rat models of intervertebral disc degeneration were divided into four groups: group A, treated with the combination of bFGF, TGF-Β1,BMSCs,and TCH gel; group B, treated with the combination of BMSCs and TCH gel;group C, treated with the combination of bFGF,TGF-Β1, and TCH gel;and group D, treated with PBS buffer solution. After the corresponding reagents were injected into the degenerative intervertebral discs of each group, the rats were cultivated for another four weeks and then the repair effects of the intervertebral discs were observed under MRI. Furthermore,the intervertebral discs of each group were taken out and observed by HE and Masson staining. The nucleus pulposus was aspirated and the expressions of aggrecan,collagen 2,Sox-9,and collagen I of nucleus pulposus of each group were tested by reverse transcription polymerase chain reaction and Western blot. The transplanted BMSCs survived in the intervertebral disc and differentiated into nucleus pulposus-like cells. MRI showed that:the signal intensity of the nucleus pulposus of group A was much higher than that of the rest groups, the signal intensity of group B was higher than that of group C, and the signal intensity of group D was the lowest,in which the dura mater spinalis was in compression and the spinal cord changed in beaded shape. The

  4. Laser-assisted delivery of vitamin C, vitamin E, and ferulic acid formula serum decreases fractional laser postoperative recovery by increased beta fibroblast growth factor expression.

    PubMed

    Waibel, Jill S; Mi, Qing-Sheng; Ozog, David; Qu, Le; Zhou, Li; Rudnick, Ashley; Al-Niaimi, Firas; Woodward, Julie; Campos, Valerie; Mordon, Serge

    2016-03-01

    Laser-assisted drug delivery is an emerging technology to achieve greater penetration by existing topical medications to reach desired targets in the tissue. The objective of this research was to study whether laser-assisted delivery of Vitamin C, E, and Ferulic immediately postoperatively of fractional ablative laser could improve wound healing. Secondary objectives were to evaluate the potential molecular markers involved in this wound-healing process. A double blinded, prospective, single center, randomized split face trial of Vitamin C, E, and Ferulic topical formula #740019 to decrease postoperative recovery time in fractional ablative laser resurfacing for photo damage. Fifteen healthy men and women of ages 30-55 years were treated with the Vitamin C, E, and Ferulic acid serum to one side of face and vehicle to the other side of face, within 2 minutes immediately after fractional ablative CO2 laser surgery and daily during the healing process. Patients were evaluated daily on days 1-7 using photographs, patient questionnaires, and molecular evaluation. Clinically, postoperative Vitamin C, E, and Ferulic delivery resulted in decreased edema versus vehicle on postoperative day 7 and decreased erythema versus vehicle on postoperative days 3 and 5. Molecularly, the expression of basic fibroblast growth factor (bFGF) was significantly increased at day 5 on the lesion treated with Vitamin C, E, and Ferulic acid serum compared to vehicle control on the other side. This is first study to show that Vitamin C, E, and Ferulic acid correlate with more rapid wound healing post-fractional ablative laser. Elevated bFGF could be involved in the Vitamin C, E, and Ferulic acid-induced rapid wound healing. © 2015 Wiley Periodicals, Inc.

  5. Metabolic effects of basic fibroblast growth factor in streptozotocin-induced diabetic rats: A 1H NMR-based metabolomics investigation.

    PubMed

    Lin, Xiaodong; Zhao, Liangcai; Tang, Shengli; Zhou, Qi; Lin, Qiuting; Li, Xiaokun; Zheng, Hong; Gao, Hongchang

    2016-11-03

    The fibroblast growth factors (FGFs) family shows a great potential in the treatment of diabetes, but little attention is paid to basic FGF (bFGF). In this study, to explore the metabolic effects of bFGF on diabetes, metabolic changes in serum and feces were analyzed in the normal rats, the streptozocin (STZ)-induced diabetic rats and the bFGF-treated diabetic rats using a 1 H nuclear magnetic resonance (NMR)-based metabolomic approach. Interestingly, bFGF treatment significantly decreased glucose, lipid and low density lipoprotein/very low density lipoprotein (LDL/VLDL) levels in serum of diabetic rats. Moreover, bFGF treatment corrected diabetes-induced reductions in citrate, lactate, choline, glycine, creatine, histidine, phenylalanine, tyrosine and glutamine in serum. Fecal propionate was significantly increased after bFGF treatment. Correlation analysis shows that glucose, lipid and LDL/VLDL were significantly negatively correlated with energy metabolites (citrate, creatine and lactate) and amino acids (alanine, glycine, histidine, phenylalanine, tyrosine and glutamine). In addition, a weak but significant correlation was observed between fecal propionate and serum lipid (R = -0.35, P = 0.046). Based on metabolic correlation and pathway analysis, therefore, we suggest that the glucose and lipid lowering effects of bFGF in the STZ-induced diabetic rats may be achieved by activating microbial metabolism, increasing energy metabolism and correcting amino acid metabolism.

  6. Regulated expression of Brachyury(T), Nkx1.1 and Pax genes in embryoid bodies.

    PubMed

    Yamada, G; Kioussi, C; Schubert, F R; Eto, Y; Chowdhury, K; Pituello, F; Gruss, P

    1994-03-15

    Embryonic stem cells (ES) can be exploited to analyze in vitro mechanisms of cellular differentiation. We have utilized ES-derived embryoid body formation in an attempt to study cell types resulting from in vitro differentiation. To this end, a variety of molecular markers, preferably those which have been associated with regulatory events during mouse embryogenesis, was employed. Specifically, Brachyury (T), Pax-3 and Pax-6 genes as well as Nkx-1.1 were used. We could demonstrate that the expression of these genes in vitro was regulated by growth factors such as activin A or bFGF. Implications of these findings and the possible applications for identifying new genes are discussed.

  7. Understanding the role of growth factors in modulating stem cell tenogenesis.

    PubMed

    Gonçalves, Ana I; Rodrigues, Márcia T; Lee, Sang-Jin; Atala, Anthony; Yoo, James J; Reis, Rui L; Gomes, Manuela E

    2013-01-01

    Current treatments for tendon injuries often fail to fully restore joint biomechanics leading to the recurrence of symptoms, and thus resulting in a significant health problem with a relevant social impact worldwide. Cell-based approaches involving the use of stem cells might enable tailoring a successful tendon regeneration outcome. As growth factors (GFs) powerfully regulate the cell biological response, their exogenous addition can further stimulate stem cells into the tenogenic lineage, which might eventually depend on stem cells source. In the present study we investigate the tenogenic differentiation potential of human- amniotic fluid stem cells (hAFSCs) and adipose-derived stem cells (hASCs) with several GFs associated to tendon development and healing; namely, EGF, bFGF, PDGF-BB and TGF-β1. Stem cells response to biochemical stimuli was studied by screening of tendon-related genes (collagen type I, III, decorin, tenascin C and scleraxis) and proteins found in tendon extracellular matrix (ECM) (Collagen I, III, and Tenascin C). Despite the fact that GFs did not seem to influence the synthesis of tendon ECM proteins, EGF and bFGF influenced the expression of tendon-related genes in hAFSCs, while EGF and PDGF-BB stimulated the genetic expression in hASCs. Overall results on cellular alignment morphology, immunolocalization and PCR analysis indicated that both stem cell source can be biochemically induced towards tenogenic commitment, validating the potential of hASCs and hAFSCs for tendon regeneration strategies.

  8. Suramin inhibits bFGF-induced endothelial cell proliferation and angiogenesis in the chick chorioallantoic membrane.

    PubMed Central

    Danesi, R.; Del Bianchi, S.; Soldani, P.; Campagni, A.; La Rocca, R. V.; Myers, C. E.; Paparelli, A.; Del Tacca, M.

    1993-01-01

    The effects of suramin, an inhibitor of growth factor mitogenic activity, were evaluated on basic fibroblast growth factor (bFGF)-induced proliferation of bovine aortic endothelial cells and on angiogenesis in the chorioallantoic membrane (CAM) of chick embryos. The role of bFGF gene expression in endothelial cell growth was also investigated by using an antisense oligodeoxynucleotide to bFGF. The 4-fold increase in [3H]-thymidine uptake in endothelial cells in vitro upon stimulation with 10 ng ml-1 of bFGF was inhibited by suramin 300 micrograms ml-1. bFGF antisense oligomer (10 microM) reduced [3H]-thymidine incorporation in exponentially growing cells by 76%; this effect was reversed by bFGF 10 ng ml-1. In the CAM of chick embryos suramin 50 micrograms was a more potent inhibitor of angiogenesis than the combination of heparin 60 micrograms/hydrocortisone 50 micrograms; the mean value of the area with reduced vascularity was significantly larger in suramin-treated CAMs (2.4 cm2) than in heparin/hydrocortisone (0.6 cm2), while the reduction of vascular density was similar (- 35 and - 29% compared to controls, respectively), In conclusion, the effects of treatments with bFGF and bFGF antisense oligomer demonstrate that bFGF plays a relevant role in endothelial cell proliferation and may be the target of suramin since the drug is able to suppress basal and bFGF-induced endothelial cell growth; in addition to this, suramin is a more potent angiogenesis inhibitor in the CAM than the combination of heparin/hydrocortisone. Images Figure 1 Figure 4 PMID:7692920

  9. Differentiation of embryonic stem cells into hepatocytes that coexpress coagulation factors VIII and IX.

    PubMed

    Cao, Jun; Shang, Chang-zhen; Lü, Li-hong; Qiu, De-chuan; Ren, Meng; Chen, Ya-jin; Min, Jun

    2010-11-01

    To establish an efficient culture system to support embryonic stem (ES) cell differentiation into hepatocytes that coexpress F-VIII and F-IX. Mouse E14 ES cells were cultured in differentiation medium containing sodium butyrate (SB), basic fibroblast growth factor (bFGF), and/or bone morphogenetic protein 4 (BMP4) to induce the differentiation of endoderm cells and hepatic progenitor cells. Hepatocyte growth factor, oncostatin M, and dexamethasone were then used to induce the maturation of ES cell-derived hepatocytes. The mRNA expression levels of endoderm-specific genes and hepatocyte-specific genes, including the levels of F-VIII and F-IX, were detected by RT-PCR and real-time PCR during various stages of differentiation. Protein expression was examined by immunofluorescence and Western blot. At the final stage of differentiation, flow cytometry was performed to determine the percentage of cells coexpressing F-VIII and F-IX, and ELISA was used to detect the levels of F-VIII and F-IX protein secreted into the culture medium. The expression of endoderm-specific and hepatocyte-specific markers was upregulated to highest level in response to the combination of SB, bFGF, and BMP4. Treatment with the three inducers during hepatic progenitor differentiation significantly enhanced the mRNA and protein levels of F-VIII and F-IX in ES cell-derived hepatocytes. More importantly, F-VIII and F-IX were coexpressed with high efficiency at the final stage of differentiation, and they were also secreted into the culture medium. We have established a novel in vitro differentiation protocol for ES-derived hepatocytes that coexpress F-VIII and F-IX that may provide a foundation for stem cell replacement therapy for hemophilia.

  10. Evaluation of Autologous Fascia Implantation With Controlled Release of Fibroblast Growth Factor for Recurrent Laryngeal Nerve Paralysis Due to Long-term Denervation.

    PubMed

    Nagai, Hiromi; Nishiyama, Koichiro; Seino, Yutomo; Tabata, Yasuhiko; Okamoto, Makito

    2016-06-01

    Paralyzed tissue due to long-term denervation is resistant to many treatments because it induces irreversible histological changes and disorders of deglutition or phonation. We sought to determine the effect of autologous transplantation of fascia into the vocal fold (ATFV) with controlled release of basic fibroblast growth factor (bFGF) on long-term unilateral vocal fold paralysis (UVFP). Unilateral recurrent laryngeal nerve (RLN) section was performed on 20 rats. Five rats were implanted with autologous fascia only (fascia group), and 10 rats were implanted with autologous fascia and a gelatin hydrogel sheet with 1 μg (1 μg bFGF + fascia group) or 0.1 μg (0.1 μg bFGF + fascia group) of bFGF 4 months after RLN section. We evaluated the normalized glottal gap and laryngeal volume and histological changes 3 months after implantation. The normalized glottal gap was significantly reduced in the 3 fascia implantation groups. Normalized laryngeal volume, fat volume, and lateral thyroarytenoid muscle volume were significantly increased in the 2 fascia implantation with bFGF groups. The ATFV with controlled release of bFGF repaired the glottal gap and laryngeal volume after RLN section and may reduce the occurrence of aspiration and hoarseness. We speculate that this treatment improves laryngeal function in long-term RLN denervation. © The Author(s) 2016.

  11. Effect of a feeder layer composed of mouse embryonic and human foreskin fibroblasts on the proliferation of human embryonic stem cells.

    PubMed

    Yang, Hua; Qiu, Ying; Zeng, Xianghui; Ding, Yan; Zeng, Jianye; Lu, Kehuan; Li, Dongsheng

    2016-06-01

    The aim of the present study was to investigate the effects of feeder layers composed of various ratios of mouse embryonic fibroblasts (MEFs) and human foreskin fibroblasts (hFFs) on the growth of human embryonic stem cells (hESCs). In addition, the secretion levels of basic fibroblast growth factor (bFGF) by the feeder layers was detected. MEFs and hFFs were treated with mitomycin C and seeded onto gelatin-coated plates at a density of 1×10 8 cells/l. The hFFs and MEFs were combined and plated at the following ratios: 0:1, 1:2, 1:1, 2:1 and 1:0. The secretion of bFGF by the various hFF/MEF ratio feeder layers was detected using an enzyme-linked immunosorbent assay. Subsequently, hESCs were cultured on top of the various feeder layers. The differences in the cellular morphology of the hESCs were observed using microscopy, and the expression levels alkaline phosphatase (AKP) and octamer-binding transcription factor 4 (OCT-4) were detected using immunohistochemical analysis as indicators of differentiation status. The results showed that the hFFs secreted substantial quantities of bFGF, while no bFGF was secreted by the MEFs. The clones of hESC growing on the feeder layer containing MEF or hFF alone were flat. By contrast, hESC clones grown on a mixed feeder layer containing hFFs + MEFs at a ratio of 1:1 exhibited an accumulated growth with a clear edge, as compared with the other ratios. In addition, hESCs growing on the feeder layer were positive for the expression of AKP and OCT-4. In summary, feeder layer hFFs secreted bFGF, while MEFs did not, indicating that bFGF is not the only factor that supports the growth and differentiation of hESCs. The optimal growth of hESCs was achieved using a mixed feeder layer composed of hFFs + MEFs at a ratio of 1:1.

  12. Binding efficiency of recombinant collagen-binding basic fibroblast growth factors (CBD-bFGFs) and their promotion for NIH-3T3 cell proliferation.

    PubMed

    Wu, Zhenxu; Zhou, Yulai; Chen, Li; Hu, Mingxin; Wang, Yu; Li, Linlong; Wang, Zongliang; Zhang, Peibiao

    2018-03-01

    The recombinant basic fibroblast growth factor (bFGF) containing collagen-binding domain (CBD) has been found to be a potential therapeutic factor in tissue regeneration. However, its binding efficiency and quantification remain uncertain. In this research, massive recombinant bFGFs with good bioactivity for enhancing the proliferation of NIH-3T3 cells were achieved. An ELISA-based quantitative method was set up to investigate the binding efficiency of CBD-bFGFs on collagen films. It indicated that the CBDs significantly increased the collagen-binding ability of bFGF (P < .05), with the optimum binding condition first determined to be in the pH range of 7.5-9.5 (P < .05). Then, the relevant equations to calculate the binding density of bFGF, C-bFGF, and V-bFGF were acquired. Analysis confirmed that the bioactivity of immobilized bFGFs was well correlated with the density of growth factor on collagen films. Based on this research, the density of growth factor is a logical and applicable dosage unit for quantification of binding efficiency of growth factors, rather than traditional concentration of soluble growth factors in tissue engineering applications. © 2018 Wiley Periodicals, Inc.

  13. Stimulation of ovarian stem cells by follicle stimulating hormone and basic fibroblast growth factor during cortical tissue culture.

    PubMed

    Parte, Seema; Bhartiya, Deepa; Manjramkar, Dhananjay D; Chauhan, Anahita; Joshi, Amita

    2013-04-01

    Cryopreserved ovarian cortical tissue acts as a source of primordial follicles (PF) which can either be auto-transplanted or cultured in vitro to obtain mature oocytes. This offers a good opportunity to attain biological parenthood to individuals with gonadal insufficiency including cancer survivors. However, role of various intra- and extra-ovarian factors during PF growth initiation still remain poorly understood. Ovarian biology has assumed a different dimension due to emerging data on presence of pluripotent very small embryonic-like stem cells (VSELs) and ovarian germ stem cells (OGSCs) in ovary surface epithelium (OSE) and the concept of postnatal oogenesis. The present study was undertaken to decipher effect of follicle stimulating hormone (FSH) and basic fibroblast growth factor (bFGF) on the growth initiation of PF during organ culture with a focus on ovarian stem cells. Serum-free cultures of marmoset (n=3) and human (young and peri-menopausal) ovarian cortical tissue pieces were established. Cortical tissue pieces stimulated with FSH (0.5 IU/ml) or bFGF (100 ng/ml) were collected on Day 3 for histological and molecular studies. Gene transcripts specific for pluripotency (Oct-4A, Nanog), early germ cells (Oct-4, c-Kit, Vasa) and to reflect PF growth initiation (oocyte-specific Gdf-9 and Lhx8, and granulosa cells specific Amh) were studied by q-RTPCR. A prominent proliferation of OSE (which harbors stem cells) and transition of PF to primary follicles was observed after FSH and bFGF treatment. Ovarian stem cells were found to be released on the culture inserts and retained the potential to spontaneously differentiate into oocyte-like structures in extended cultures. q-RTPCR analysis revealed an increased expression of gene transcripts specific for VSELs, OGSCs and early germ cells suggestive of follicular transition. The present study shows that both FSH and bFGF stimulate stem cells present in OSE and also lead to PF growth initiation. Thus besides being

  14. Possible mechanism of the stimulatory effect of Artemisia leaf extract on the proliferation of cultured endothelial cells: involvement of basic fibroblast growth factor.

    PubMed

    Kaji, T; Kaga, K; Miezi, N; Hayashi, T; Ejiri, N; Sakuragawa, N

    1990-09-01

    To investigate the possible mechanism of the stimulatory effect of a hot water extract from Artemisia leaf (Artemisia princeps PANPANINI) (AFE) on the proliferation of endothelial cells, cells from bovine aorta were cultured for 72 h in RPMI1640 medium supplemented with 10% fetal calf serum in the presence of 5 micrograms/ml AFE. The AFE treatment significantly increased the cell number after culture, while in the presence of 10 micrograms/ml unfractionated heparin, AFE conversely decreased it. This implied that AFE enhanced the cell growth promotion by basic fibroblast growth factor (bFGF). The accumulation of bFGF was significantly increased in the culture medium, in the low-affinity (glycosaminoglycans-binding) fraction, and in the cell extract fraction, but was unchanged in the high-affinity (receptor-binding) fraction. The contents of [35S]sulfate-labeled glycosaminoglycans in both cell layer and the medium were not increased by AFE treatment. The proliferation of A10 cells, an established cell line of smooth muscle cells from murine aorta, was not stimulated by AFE. A10 cells did not produce a significant amount of bFGF in the presence or absence of AFE. Thus, the production of bFGF was considered to be involved in AFE stimulation of cell proliferation. In conclusion, it was suggested that AFE stimulated endothelial cell proliferation by increasing the production of bFGF rather than by an increase in the number of bFGF receptors and the content of glycosaminoglycans in the cell layer. The enhanced reserve of bFGF in the low-affinity fraction of cell layer and in the medium would cause the AFE-stimulated proliferation of endothelial cells.

  15. Platelet-Rich Plasma with Basic Fibroblast Growth Factor for Treatment of Wrinkles and Depressed Areas of the Skin.

    PubMed

    Kamakura, Tatsuro; Kataoka, Jiro; Maeda, Kazuhiko; Teramachi, Hideaki; Mihara, Hisayuki; Miyata, Kazuhiro; Ooi, Kouichi; Sasaki, Naomi; Kobayashi, Miyuki; Ito, Kouhei

    2015-11-01

    There are several treatments for wrinkles and depressed areas of the face, hands, and body. Hyaluronic acid is effective, but only for 6 months to 1 year. Autologous fat grafting may cause damage during tissue harvest. In this study, patients were injected with platelet-rich plasma plus basic fibroblast growth factor (bFGF). Platelet-rich plasma was prepared by collecting blood and extracting platelets using double centrifugation. Basic fibroblast growth factor diluted with normal saline was added to platelet-rich plasma. There were 2005 patients who received platelet-rich plasma plus bFGF therapy. Of the 2005 patients treated, 1889 were female and 116 were male patients; patients had a mean age of 48.2 years. Treated areas inlcuded 1461 nasolabial folds, 437 marionette lines, 1413 nasojugal grooves, 148 supraorbital grooves, 253 midcheek grooves, 304 foreheads, 49 temples, and 282 glabellae. Results on the Global Aesthetic Improvement Scale indicated that the level of patient satisfaction was 97.3 percent and the level of investigator satisfaction was 98.4 percent. The period for the therapy's effectiveness to become apparent was an average of 65.4 days. Platelet-rich plasma plus bFGF therapy resulted in an improved grade on the Wrinkle Severity Rating Scale. Improvement was 0.55 for a Wrinkle Severity Rating Scale grade of 2, 1.13 for a Wrinkle Severity Rating Scale grade of 3, 1.82 for a Wrinkle Severity Rating Scale grade of 4, and 2.23 for a Wrinkle Severity Rating Scale grade of 5. Platelet-rich plasma plus bFGF is effective in treating wrinkles and depressed areas of the skin of the face and body. The study revealed that platelet-rich plasma plus bFGF is an innovative therapy that causes minimal complications. Therapeutic, IV.

  16. Different culture conditions affect the growth of human tendon stem/progenitor cells (TSPCs) within a mixed tendon cells (TCs) population.

    PubMed

    Viganò, M; Perucca Orfei, C; Colombini, A; Stanco, D; Randelli, P; Sansone, V; de Girolamo, L

    2017-12-01

    Tendon resident cells (TCs) are a mixed population made of terminally differentiated tenocytes and tendon stem/progenitor cells (TSPCs). Since the enrichment of progenitors proportion could enhance the effectiveness of treatments based on these cell populations, the interest on the effect of culture conditions on the TSPCs is growing. In this study the clonal selection and the culture in presence or absence of basic fibroblast growth factor (bFGF) were used to assess their influences on the stemness properties and phenotype specific features of tendon cells. Cells cultured with the different methods were analyzed in terms of clonogenic and differentiation abilities, stem and tendon specific genes expression and immunophenotype at passage 2 and passage 4. The clonal selection allowed to isolate cells with a higher multi-differentiation potential, but at the same time a lower proliferation rate in comparison to the whole population. Moreover, the clones express a higher amounts of stemness marker OCT4 and tendon specific transcription factor Scleraxis (SCX) mRNA, but a lower level of decorin (DCN). On the other hand, the number of cells obtained by clonal selection was extremely low and most of the clones were unable to reach a high number of passages in cultures. The presence of bFGF influences TCs morphology, enhance their proliferation rate and reduce their clonogenic ability. Interestingly, the expression of CD54, a known mesenchymal stem cell marker, is reduced in presence of bFGF at early passages. Nevertheless, bFGF does not affect the chondrogenic and osteogenic potential of TCs and the expression of tendon specific markers, while it was able to downregulate the OCT4 expression. This study showed that clonal selection enhance progenitors content in TCs populations, but the extremely low number of cells produced with this method could represent an insurmountable obstacle to its application in clinical approaches. We observed that the addition of bFGF to the

  17. hCG-dependent regulation of angiogenic factors in human granulosa lutein cells.

    PubMed

    Phan, B; Rakenius, A; Pietrowski, D; Bettendorf, H; Keck, C; Herr, D

    2006-07-01

    As prerequisite for development and maintenance of many diseases angiogenesis is of particular interest in medicine. Pathologic angiogenesis takes place in chronic arthritis, collagen diseases, arteriosclerosis, retinopathy associated with diabetes, and particularly in cancers. However, angiogenesis as a physiological process regularly occurs in the ovary. After ovulation the corpus luteum is formed by rapid vascularization of initially avascular granulosa lutein cell tissue. This process is regulated by gonadotropic hormones. In order to gain further insights in the regulatory mechanisms of angiogenesis in the ovary, we investigated these mechanisms in cell culture of human granulosa lutein cells. In particular, we determined the expression and production of several angiogenic factors including tissue inhibitor of matrix metalloproteinases-1 (TIMP-1), Leptin, connective tissue growth factor (CTGF), meningioma-associated complimentary DNA (Mac25), basic fibroblast growth factor (bFGF), and Midkine. In addition, we showed that human chorionic gonadotropin (hCG) has distinct effects on their expression and production. hCG enhances the expression and production of TIMP-1, whereas it downregulates the expression of CTGF and Mac25. Furthermore it decreases the expression of Leptin. Our results provide evidence that hCG determines growth and development of the corpus luteum by mediating angiogenic pathways in human granulosa lutein cells. Hence we describe a further approach to understand the regulation of angiogenesis in the ovary.

  18. Tissue Inhibitor of Metalloproteinase-2 (TIMP-2) expression is regulated by multiple neural differentiation signals

    PubMed Central

    Jaworski, Diane M.; Pérez-Martínez, Leonor

    2010-01-01

    Neuronal differentiation requires exquisitely timed cell cycle arrest for progenitors to acquire an appropriate neuronal cell fate and is achieved by communication between soluble signals, such as growth factors and extracellular matrix molecules. Here we report that the expression of TIMP-2, a matrix metalloproteinase inhibitor, is up-regulated by signals that control proliferation (bFGF and EGF) and differentiation (retinoic acid and NGF) in neural progenitor and neuroblastoma cell lines. TIMP-2 expression coincides with the appearance of neurofilament-positive neurons, indicating that TIMP-2 may play a role in neurogenesis. The up-regulation of TIMP-2 expression by proliferative signals suggests a role in the transition from proliferation to neuronal differentiation. Live labeling experiments demonstrate TIMP-2 expression only on α3 integrin-positive cells. Thus, TIMP-2 function may be mediated via interaction with integrin receptor(s). We propose that TIMP-2 represents a component of the neurogenic signaling cascade induced by mitogenic stimuli that may withdraw progenitor cells from the cell cycle permitting their terminal neuronal differentiation. PMID:16805810

  19. [Intramuscular injection of lentivirus-mediated EPAS1 gene improves hind limb ischemia and its mechanism in a rat model of peripheral artery vascular disease].

    PubMed

    Wang, Zhihong; Gu, Hongbin; Yang, Fan; Xie, Huajie; Sheng, Lei; Li, Mingfei

    2017-11-01

    Objective To investigate the effect of over-expressed endothelial Per-Arnt-Sim domain protein 1 (EPAS1) on peripheral arterial disease (PAD) in a rat model. Methods PAD rat model was established by external iliac artery ligation followed by lentivirus-mediated EPAS1 gene injection into rat right adductor magnus. The models were evaluated by quantitative analysis of gait disturbance. The changes of blood flow in the posterior extremity of the rats were detected using laser Doppler. The expressions of EPAS1, hepatocyte growth factor (HGF), basic fibroblast growth factor (bFGF), and vascular endothelial growth factor (VEGF) mRNAs were tested by real-time quantitative PCR. The expression of α-smooth muscle actin (αSMA) was detected by immunohistochemical staining. Results Compared with lenti-EGFP group, rat hind limb function and circulation got recovered obviously 7 days after lenti-EPAS1 injection. The mRNA expressions of EPAS1, HGF, bFGF, and VEGF were up-regulated in the lenti-EPAS1-treated sites.The expression of αSMA showed an obvious increase in the lenti-EPAS1-treated muscles. Conclusion Over-expressed lenti-EPAS1 can promote angiogenesis via the up-regulation of EPAS1-related angiogenic factors in the muscles of the affected hind limb and reduce gait disturbance.

  20. Comparative Analysis of Cellular and Growth Factor Composition in Bone Marrow Aspirate Concentrate and Platelet-Rich Plasma.

    PubMed

    Sugaya, Hisashi; Yoshioka, Tomokazu; Kato, Toshiki; Taniguchi, Yu; Kumagai, Hiroshi; Hyodo, Kojiro; Ohneda, Osamu; Yamazaki, Masashi; Mishima, Hajime

    2018-01-01

    The purpose of this study was to quantify the stem cell and growth factor (GF) contents in the bone marrow aspirate concentrate (BMAC) and platelet-rich plasma (PRP) prepared from whole blood using a protocol established in our laboratory. We examined 10 patients with osteonecrosis of the femoral head who were treated by autologous BMAC transplantation at our hospital between January 2015 and June 2015. We quantified CD34+ and CD31-CD45-CD90+CD105+ cells in BMAC and PRP by flow cytometry. Additionally, we measured various GFs, that is, basic fibroblast growth factor (b-FGF), platelet-derived growth factor-BB (PDGF-BB), vascular endothelial growth factor (VEGF), transforming growth factor- β 1 (TGF- β 1), and bone morphogenetic protein-2 (BMP-2) in BMAC and PRP using enzyme-linked immunosorbent assays and statistical analyses. CD34+ and CD31-45-90+105+ cells accounted for approximately 1.9% and 0.03% of cells in BMAC and no cells in PRP. The concentration of b-FGF was higher in BMAC than in PRP ( P < 0.001), whereas no significant differences in the levels of PDGF-BB, VEGF, TGF- β 1, and BMP-2 were observed between the two types of sample. BMAC had an average of 1.9% CD34+ and 0.03% CD31-45-90+105+ cells and higher levels of b-FGF than those of PRP.

  1. Comparison of potentials between stem cells isolated from human anterior cruciate ligament and bone marrow for ligament tissue engineering.

    PubMed

    Cheng, Ming-Te; Liu, Chien-Lin; Chen, Tain-Hsiung; Lee, Oscar K

    2010-07-01

    We have previously isolated and identified stem cells from human anterior cruciate ligament (ACL). The purpose of this study was to evaluate the differences in proliferation, differentiation, and extracellular matrix (ECM) formation abilities between bone marrow stem cells (BMSCs) and ACL-derived stem cells (LSCs) from the same donors when cultured with different growth factors, including basic fibroblast growth factor (bFGF), epidermal growth factor, and transforming growth factor-beta 1 (TGF-beta1). Ligament tissues and bone marrow aspirate were obtained from patients undergoing total knee arthroplasty and ACL reconstruction surgeries. Proliferation, colony formation, and population doubling capacity as well as multilineage differentiation potentials of LSCs and BMSCs were compared. Gene expression and ECM production for ligament engineering were also evaluated. It was found that BMSCs possessed better osteogenic differentiation potential than LSCs, while similar adipogenic and chondrogenic differentiation abilities were observed. Proliferation rates of both LSCs and BMSCs were enhanced by bFGF and TGF-beta1. TGF-beta1 treatment significantly increased the expression of type I collagen, type III collagen, fibronectin, and alpha-smooth muscle actin in LSCs, but TGF-beta1 only upregulated type I collagen and tenascin-c in BMSCs. Protein quantification further confirmed the results of differential gene expression and suggested that LSCs and BMSCs increase ECM production upon TGF-beta1 treatment. In summary, in comparison with BMSCs, LSCs proliferate faster and maintain an undifferentiated state with bFGF treatment, whereas under TGF-beta1 treatment, LSCs upregulate major tendinous gene expression and produce a robust amount of ligament ECM protein, making LSCs a potential cell source in future applications of ACL tissue engineering.

  2. Protein Kinase B Activation and Lamellipodium Formation Are Independent Phosphoinositide 3-Kinase-Mediated Events Differentially Regulated by Endogenous Ras

    PubMed Central

    van Weering, David H. J.; de Rooij, Johan; Marte, Barbara; Downward, Julian; Bos, Johannes L.; Burgering, Boudewijn M. T.

    1998-01-01

    Regulation of phosphoinositide 3-kinase (PI 3-kinase) can occur by binding of the regulatory p85 subunit to tyrosine-phosphorylated proteins and by binding of the p110 catalytic subunit to activated Ras. However, the way in which these regulatory mechanisms act to regulate PI 3-kinase in vivo is unclear. Here we show that several growth factors (basic fibroblast growth factor [bFGF], platelet-derived growth factor [PDGF], and epidermal growth factor [EGF; to activate an EGF receptor-Ret chimeric receptor]) all activate PI 3-kinase in vivo in the neuroectoderm-derived cell line SKF5. However, these growth factors differ in their ability to activate PI 3-kinase-dependent signaling. PDGF and EGF(Ret) treatment induced PI 3-kinase-dependent lamellipodium formation and protein kinase B (PKB) activation. In contrast, bFGF did not induce lamellipodium formation but activated PKB, albeit to a small extent. PDGF and EGF(Ret) stimulation resulted in binding of p85 to tyrosine-phosphorylated proteins and strong Ras activation. bFGF, however, induced only strong activation of Ras. In addition, while RasAsn17 abolished bFGF activation of PKB, PDGF- and EGF(Ret)-induced PKB activation was only partially inhibited and lamellipodium formation was unaffected. Interestingly, in contrast to activation of only endogenous Ras (bFGF), ectopic expression of activated Ras did result in lamellipodium formation. From this we conclude that, in vivo, p85 and Ras synergize to activate PI 3-kinase and that strong activation of only endogenous Ras exerts a small effect on PI 3-kinase activity, sufficient for PKB activation but not lamellipodium formation. This differential sensitivity to PI 3-kinase activation could be explained by our finding that PKB activation and lamellipodium formation are independent PI 3-kinase-induced events. PMID:9528752

  3. Basic FGF or VEGF gene therapy corrects insufficiency in the intrinsic healing capacity of tendons

    PubMed Central

    Tang, Jin Bo; Wu, Ya Fang; Cao, Yi; Chen, Chuan Hao; Zhou, You Lang; Avanessian, Bella; Shimada, Masaru; Wang, Xiao Tian; Liu, Paul Y.

    2016-01-01

    Tendon injury during limb motion is common. Damaged tendons heal poorly and frequently undergo unpredictable ruptures or impaired motion due to insufficient innate healing capacity. By basic fibroblast growth factor (bFGF) or vascular endothelial growth factor (VEGF) gene therapy via adeno-associated viral type-2 (AAV2) vector to produce supernormal amount of bFGF or VEGF intrinsically in the tendon, we effectively corrected the insufficiency of the tendon healing capacity. This therapeutic approach (1) resulted in substantial amelioration of the low growth factor activity with significant increases in bFGF or VEGF from weeks 4 to 6 in the treated tendons (p < 0.05 or p < 0.01), (2) significantly promoted production of type I collagen and other extracellular molecules (p < 0.01) and accelerated cellular proliferation, and (3) significantly increased tendon strength by 68–91% from week 2 after AAV2-bFGF treatment and by 82–210% from week 3 after AAV2-VEGF compared with that of the controls (p < 0.05 or p < 0.01). Moreover, the transgene expression dissipated after healing was complete. These findings show that the gene transfers provide an optimistic solution to the insufficiencies of the intrinsic healing capacity of the tendon and offers an effective therapeutic possibility for patients with tendon disunion. PMID:26865366

  4. Robust, flexible, and bioadhesive free-standing films for the co-delivery of antibiotics and growth factors.

    PubMed

    Chen, Dongdong; Wu, Mingda; Chen, Jie; Zhang, Chunqiu; Pan, Tiezheng; Zhang, Bing; Tian, Huayu; Chen, Xuesi; Sun, Junqi

    2014-11-25

    Free-standing polymer films that adhere strongly to tissue and can codeliver multiple therapeutic agents in a controlled manner are useful as medical plasters. In this study, a bilayer polymer film comprising a drug reservoir layer and a supporting layer is fabricated by spin-coating poly(lactic-co-glycolic acid) (PLGA) on top of a layer-by-layer assembled film of poly(β-amino esters) (PAE), alginate sodium (ALG), and recombinant human basic fibroblast growth factor (bFGF). Apart from bFGF, the bilayer film can also load antibiotic drug ceftriaxone sodium (CTX) by a postdiffusion process. The PLGA supporting layer facilitates the direct peeling of the bilayer film from substrate to produce a robust and flexible free-standing film with excellent adhesion onto the human skin and porcine liver. The excellent adhesion of the bilayer film originates from the ALG component in the drug reservoir layer. CTX is quickly released by easily breaking its electrostatic interaction with the drug reservoir layer, whereas the sustained release of bFGF is due to the slow degradation of PAE component in the drug reservoir layer. Wounds can be synergetically treated by fast release of CTX to effectively eradicate invasive bacteria and by sustained release of bFGF to accelerate wound healing. Our results serve as a basis for designing multifunctional free-standing films with combination therapy for biomedical applications.

  5. M/sub r/ 25,000 heparin-binding protein from guinea pig brain is a high molecular weight form of basic fibroblast growth factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moscatelli, D.; Joseph-Silverstein, J.; Manejias, R.

    1987-08-01

    A M/sub r/ 25,000 form of basic fibroblast growth factor (bFGF) has been isolated from guinea pig grain along with the typical M/sub r/ 18,000 form. Both forms were purified to homogeneity by a combination of heparin-affinity chromatography and ion-exchange chromatography on an FPLC Mono S column. The M/sub r/ 25,000 form, like the M/sub r/ 18,000 form was not eluted from the heparin-affinity column with 0.95 M NaCl, but was eluted with 2 M NaCl. The M/sub r/ 25,000 guinea pig protein stimulated plasminogen activator production by cultured bovine capillary endothelial cells in a dose-dependent manner at concentration ofmore » 0.1-10 ngml, the same range that was effective for guinea pig and human M/sub r/ 18,000 bFGFs. The binding of human /sup 125/I-labeled bFGF to baby hamster kidney cells is inhibited equally by the M/sub r/ 25,000 guinea pig protein and the M/sub r/ 18,000 guinea pig and human bFGFs. Polyclonal antibodies raised against human bFGF recognize both the M/sub r/ 25,000 and 18,000 guinea pig proteins in an immunoblot analysis. In a radioimmunoassay, both the M/sub r/ 25,000 and M/sub r/ 18,000 guinea pig proteins compete equally well with iodinated human bFGF for binding to the anti-human bFGF antibodies. When treated with low concentrations of trypsin, the M/sub r/ 25,000 guinea pig bFGF was converted to a M/sub r/ 18,000 protein. These results show that the two molecules are closely related and suggest that the M/sub r/ 25,000 protein shares substantial homology with the M/sub r/ 18,000 bFGF« less

  6. Basic fibroblast growth factor promotes the development of human ovarian early follicles during growth in vitro.

    PubMed

    Wang, Tian-ren; Yan, Li-ying; Yan, Jie; Lu, Cui-ling; Xia, Xi; Yin, Tai-lang; Zhu, Xiao-hui; Gao, Jiang-man; Ding, Ting; Hu, Wei-hong; Guo, Hong-yan; Li, Rong; Qiao, Jie

    2014-03-01

    What is the effect of basic fibroblast growth factor (bFGF) on the growth of individual early human follicles in a three-dimensional (3D) culture system in vitro? The addition of 200 ng bFGF/ml improves human early follicle growth, survival and viability during growth in vitro. It has been demonstrated that bFGF enhances primordial follicle development in human ovarian tissue culture. However, the growth and survival of individual early follicles in encapsulated 3D culture have not been reported. The maturation in vitro of human ovarian follicles was investigated. Ovarian tissue (n= 11) was obtained from 11 women during laparoscopic surgery for gynecological disease, after obtaining written informed consent. One hundred and fifty-four early follicles were isolated by enzymic digestion and mechanical disruption. They were individually encapsulated into alginate (1% w/v) and randomly assigned to be cultured with 0, 100, 200 or 300 ng bFGF/ml for 8 days. Individual follicles were cultured in minimum essential medium α (αMEM) supplemented with bFGF. Follicle survival and growth were assessed by microscopy. Follicle viability was evaluated under confocal laser scanning microscope following Calcein-AM and Ethidium homodimer-I (Ca-AM/EthD-I) staining. After 8 days in culture, all 154 follicles had increased in size. The diameter and survival rate of the follicles and the percentage with good viability were significantly higher in the group cultured with 200 ng bFGF/ml than in the group without bFGF (P < 0.05). The percentage of follicles in the pre-antral stage was significantly higher in the 200 ng bFGF/ml group than in the group without bFGF (P < 0.05), while the percentages of primordial and primary follicles were significantly lower (P < 0.05). The study focuses on the effect of bFGF on the development of individual human early follicles in 3D culture in vitro and has limited ability to reveal the specific effect of bFGF at each different stage. The findings

  7. The hormone prolactin is a novel, endogenous trophic factor able to regulate reactive glia and to limit retinal degeneration.

    PubMed

    Arnold, Edith; Thebault, Stéphanie; Baeza-Cruz, German; Arredondo Zamarripa, David; Adán, Norma; Quintanar-Stéphano, Andrés; Condés-Lara, Miguel; Rojas-Piloni, Gerardo; Binart, Nadine; Martínez de la Escalera, Gonzalo; Clapp, Carmen

    2014-01-29

    Retinal degeneration is characterized by the progressive destruction of retinal cells, causing the deterioration and eventual loss of vision. We explored whether the hormone prolactin provides trophic support to retinal cells, thus protecting the retina from degenerative pressure. Inducing hyperprolactinemia limited photoreceptor apoptosis, gliosis, and changes in neurotrophin expression, and it preserved the photoresponse in the phototoxicity model of retinal degeneration, in which continuous exposure of rats to bright light leads to retinal cell death and retinal dysfunction. In this model, the expression levels of prolactin receptors in the retina were upregulated. Moreover, retinas from prolactin receptor-deficient mice exhibited photoresponsive dysfunction and gliosis that correlated with decreased levels of retinal bFGF, GDNF, and BDNF. Collectively, these data unveiled prolactin as a retinal trophic factor that may regulate glial-neuronal cell interactions and is a potential therapeutic molecule against retinal degeneration.

  8. p27 Nuclear localization and growth arrest caused by perlecan knockdown in human endothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakai, Katsuya; Oka, Kiyomasa; Matsumoto, Kunio

    2010-02-12

    Perlecan, a secreted heparan sulfate proteoglycan, is a major component of the vascular basement membrane and participates in angiogenesis. Here, we used small interference RNA-mediated knockdown of perlecan expression to investigate the regulatory function of perlecan in the growth of human vascular endothelial cells. Basic fibroblast growth factor (bFGF)-induced ERK phosphorylation and cyclin D1 expression were unchanged by perlecan deficiency in endothelial cells; however, perlecan deficiency inhibited the Rb protein phosphorylation and DNA synthesis induced by bFGF. By contrast to cytoplasmic localization of the cyclin-dependent kinase inhibitor p27 in control endothelial cells, p27 was localized in the nucleus and itsmore » expression increased in perlecan-deficient cells, which suggests that p27 mediates inhibition of Rb phosphorylation. In addition to the well-characterized function of perlecan as a co-receptor for heparin-binding growth factors such as bFGF, our results suggest that perlecan plays an indispensible role in endothelial cell proliferation and acts through a mechanism that involves subcellular localization of p27.« less

  9. Protective effect of basic fibroblast growth factor on retinal injury induced by argon laser photocoagulation

    NASA Astrophysics Data System (ADS)

    Chen, P.; Zhang, C. P.; San, Q.; Wang, C. Z.; Yang, Z. F.; Kang, H. X.; Qian, H. W.

    2010-12-01

    Laser photocoagulation treatment is often complicated by a side effect of visual impairment, which is caused by the unavoidable laser-induced retinal destruction. At present no specific is found to cure this retinopathy. The aim of this study was to observe the neuroprotective effect of bFGF on laser-induced retinal injury. Chinchilla rabbits were divided into three groups and argon laser lesions were created in the retinas. Then bFGF or dexamethasone, a widely used ophthalmic preparation, or saline was given severally by retrobulbar injection. The retinal lesions were evaluated histologically and morphometrically, and visual function was examined by ERG. The results showed that bFGF administration better preserved morphology of retinal photoreceptors and significantly diminished the area of the lesions. Furthermore, bFGF promoted the restoration of the ERG b-wave amplitude. In rabbits treated with dexamethasone, however, the lesions showed almost no ameliorative changes. This is the first study to investigate the potential role of bFGF as a remedial agent in laser photocoagulation treatment. These findings suggest that bFGF has significant neuroprotective properties in the retina and this type of neuroprotection may be of clinical significance in reducing iatrogenic laser-induced retinal injuries in humans.

  10. Effects of massage on the expression of proangiogenic markers in rat skin.

    PubMed

    Ratajczak-Wielgomas, Katarzyna; Kassolik, Krzysztof; Grzegrzolka, Jedrzej; Halski, Tomasz; Piotrowska, Aleksandra; Mieszala, Katarzyna; Wilk, Iwona; Podhorska-Okolow, Marzenna; Dziegiel, Piotr; Andrzejewski, Waldemar

    2018-05-17

    Massage is a physiotherapeutic treatment, commonly used in both therapy and restoration of normal body functions. The aim of this work was to determine the effects of skin massage on stimulating the expression of angiogenesis-initiating factors, i.e. VEGF-A, FGF-2 (bFGF) and CD34 and on skin regeneration processes. The study was conducted on 48 Buffalo strain rats, randomly divided into two groups. In the first group (M, the massaged group), massage was applied five times a week for 7 weeks. In the second study group (C, the control group), the massage was omitted. Massage consisted of spiral movements at the plantar surface of skin for 5 min on each rear extremity. The gene expression of proangiogenic factors, including VEGF-A, FGF-2, CD34 at the mRNA level was determined using real-time PCR. Immunohistochemistry was performed on paraffin sections of rat skin to determine VEGF-A, FGF-2 CD34 and Ki-67expression. An increase in mRNA expression in the skin of the rat's rear extremity for VEGF-A and FGF-2 in the first week of the experiment was shown in the M group compared with the control rats. The upregulation of CD34 mRNA expression was also observed in the M group. We observed positive correlations between VEGF-A mRNA expression and the expression of mRNA for FGF-2 and CD34, as well as correlation between the expression of mRNA for FGF-2 and CD34. The immunohistochemical expression of VEGF-A, FGF-2 and CD34 was at a much lower level in the skin of control rats relative to the skin of massaged animals. Moreover, significantly higher immunoreactivity was shown for nuclear protein Ki-67 in epidermal cells in the M group compared with the C group. Rat skin massage increased the expression of the main angiogenesis-stimulating factors and the proliferative activity of epidermal cells, which can stimulate skin regeneration and tissue repairing processes.

  11. Release of Growth Factors into Root Canal by Irrigations in Regenerative Endodontics.

    PubMed

    Zeng, Qian; Nguyen, Sean; Zhang, Hongming; Chebrolu, Hari Priya; Alzebdeh, Dalia; Badi, Mustafa A; Kim, Jong Ryul; Ling, Junqi; Yang, Maobin

    2016-12-01

    The aim of this study was to investigate the release of growth factors into root canal space after the irrigation procedure of regenerative endodontic procedure. Sixty standardized root segments were prepared from extracted single-root teeth. Nail varnish was applied to all surfaces except the root canal surface. Root segments were irrigated with 1.5% NaOCl + 17% EDTA, 2.5% NaOCl + 17% EDTA, 17% EDTA, or deionized water. The profile of growth factors that were released after irrigation was studied by growth factor array. Enzyme-linked immunosorbent assay was used to validate the release of transforming growth factor (TGF)-β1 and basic fibroblast growth factor (bFGF) at 4 hours, 1 day, and 3 days after irrigation. The final concentrations were calculated on the basis of the root canal volume measured by cone-beam computed tomography. Dental pulp stem cell migration on growth factors released from root segments was measured by using Transwell assay. Total of 11 of 41 growth factors were detected by growth factors array. Enzyme-linked immunosorbent assay showed that TGF-β1 was released in all irrigation groups. Compared with the group with 17% EDTA (6.92 ± 4.49 ng/mL), the groups with 1.5% NaOCl + 17% EDTA and 2.5% NaOCl + 17% EDTA had significantly higher release of TGF-β1 (69.04 ± 30.41 ng/mL and 59.26 ± 3.37 ng/mL, respectively), with a peak release at day 1. The release of bFGF was detected at a low level in all groups (0 ng/mL to 0.43 ± 0.22 ng/mL). Migration assay showed the growth factors released from root segments induced dental pulp stem cell migration. The root segment model in present study simulated clinical scenario and indicated that the current irrigation protocol released a significant amount of TGF-β1 but not bFGF. The growth factors released into root canal space induced dental pulp stem cell migration. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  12. [Clinical observation of basic fibroblast growth factor combined with topical oxygen therapy in enhancing burn wound healing].

    PubMed

    Nie, Kaiyu; Li, Pengcheng; Zeng, Xueqin; Sun, Guangfeng; Jin, Wenhu; Wei, Zairong; Wang, Bo; Qi, Jianping; Wang, Yuming; Wang, Dali

    2010-06-01

    To investigate the efficacy of basic fibroblast growth factor (bFGF) combined with topical oxygen therapy for deep II degree burn wounds, by comparing the effects of bFGF combined with topical oxygen therapy and bFGF with routine therapy. From February 2004 to July 2009, 85 patients with deep II degree burn wounds (117 wounds) were enrolled and divided into 4 groups randomly according to different treatments. There was no significant difference in sex, age, disease course, wound size, and wound treatment size among 4 groups (P > 0.05). In group A, 18 patients (28 wounds) were treated routinely; in group B, 23 patients (30 wounds) were treated with routine methods and topical oxygen therapy; in group C, 19 patients (25 wounds) were treated with routine methods and bFGF therapy; and in group D, 25 patients (34 wounds) were treated with routine methods and bFGF/topical oxygen therapy. Topical oxygen therapy was administered to the wound for 90 minutes per day for 3 weeks. The bFGF therapy was applied everyday (150 U/cm2) for 3 weeks. All cases were followed up 6-12 months (9 months on average). The wound healing times in groups A, B, C, and D were (27.3 +/- 6.6), (24.2 +/- 5.8), (22.2 +/- 6.8), and (18.2 +/- 4.8) days, respectively; showing significant difference between group A and group D (P < 0.05). The wound healing rates in groups A, B, C, and D were 67.8% +/- 12.1%, 85.1% +/- 7.5%, 89.2% +/- 8.3%, and 96.1% +/- 5.6%, respectively; showing significant differences between group A and groups B, C, D (P < 0.05). The therapic effective rates in groups A, B, C, and D were 75%, 90%, 92%, and 100%, respectively; showing significant difference between group A and group D (P < 0.05). The Vancouver scar scale scoring of group D 6 months after treatment was better than that of group A (P < 0.05). The bFGF combined with topical oxygen therapy can enhance deep II degree burn wound healing. Furthermore, the therapy method is simple and convenient.

  13. Fibroblast migration and proliferation during in vitro wound healing. A quantitative comparison between various growth factors and a low molecular weight blood dialysate used in the clinic to normalize impaired wound healing.

    PubMed

    Schreier, T; Degen, E; Baschong, W

    1993-01-01

    During the formation of granulation tissue in a dermal wound, platelets, monocytes and other cellular blood constituents release various peptide growth factors to stimulate fibroblasts to migrate into the wound site and proliferate, in order to reconstitute the various connective tissue components. The effect on fibroblast migration and proliferation of these growth factors, and of Solcoseryl (HD), a deproteinized fraction of calf blood used to normalize wound granulation and scar tissue formation, was quantified in vitro. The presence of basic fibroblast growth factor (bFGF), platelet-derived growth factor (PDGF), transforming growth factor-beta (TGF-beta) and hemodialysate (HD) increased the number of cells in the denuded area, i.e., in the "wound space" of an artificially ruptured monolayer of LM-fibroblasts (mouse lung fibroblasts). When cell proliferation was blocked with Mitomycin C, in the first 24 h all factors, i.e., bFGF, PDGF, TGF-beta and HD, promoted cell migration, whereas after 48 h it became obvious that each factor stimulated both migration and proliferation, each in a characteristic way. The effects were significant and more distinct after 48 h, following the order: PDGF (46%) approximately bFGF (87%) > HD (45%) approximately TGF-beta (40%) > control (62%). The relative contributions of migration after inhibiting proliferation are given in brackets. The modulatory activity of HD was localized in its hydrophilic fraction. It was destroyed by acid hydrolysis. Furthermore, this activity could be blocked by protamine sulfate, an inhibitor blocking peptide growth factor receptor binding.

  14. Circulating basic fibroblast growth factor is partly derived from the tumour in patients with colon, cervical and ovarian cancer.

    PubMed

    Salgado, R; Benoy, I; Vermeulen, P; van Dam, P; Van Marck, E; Dirix, L

    2004-01-01

    In order to investigate whether the high bFGF serum levels encountered in cancer patients are derived from the tumour, we analysed serum bFGF levels in 18 untreated randomly selected patients with operable colorectal, cervical and ovarian cancer in the blood draining the tumour, i.e., in mesenteric and uterine veins, and compared these with arterial samples. No significantly elevated bFGF levels were found in the veins draining the tumours compared with arterial samples in our patient population. This suggests that, in contrast to what is generally presumed, serum bFGF levels might also be derived from other sources besides the tumour, e.g., platelets.

  15. Current molecular profile of juvenile nasopharyngeal angiofibroma: First comprehensive study from India.

    PubMed

    Pandey, Praveen; Mishra, Anupam; Tripathi, Ashoak Mani; Verma, Veerendra; Trivedi, Ritu; Singh, Hitendra Prakash; Kumar, Sunil; Patel, Brijesh; Singh, Vinay; Pandey, Shivani; Pandey, Amita; Mishra, Subhash Chandra

    2017-03-01

    An attempt is made to analyze the molecular behavior of juvenile nasopharyngeal angiofibroma (JNA). Case Series METHODS: Quantification of mRNAs expression was undertaken through real-time polymerase chain reaction in JNA (9-24) samples for VEGF-A, basic fibroblast growth factor (b-FGF), platelet-derived growth factor PDGF-A, KIT proto-oncogene receptor tyrosine kinase (c-Kit), Avian myelomatosis viral oncogene homolog (c-Myc), Harvey rat sarcoma viral oncogene homolog (H-Ras), tumor suppressor gene TP53, and androgen receptor and interleukin 6 (IL-6). The β-catenin expression was evaluated by western blot in 16 samples. Nasal polyp was taken as control. A significantly increased (P < 0.01) expression of c-myc, VEGFA, bFGF, PDGFA, c-kit, and TP53 was seen, along with enhanced expression of β-catenin. A massive enhancement of H-Ras expression was seen for the first time. Androgen receptor expression was no different, whereas IL-6 despite showing upregulation trend was not significant. The enhanced expressions of various markers suggest their potential role in JNA. Although the biological significance of c-kit, c-myc, and one of the novel markers H-Ras has yet to be defined, their significant expression may have a therapeutic importance. NA. Laryngoscope, 127:E100-E106, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  16. Correlation between increasing tissue ischemia and circulating levels of angiogenic growth factors in peripheral artery disease.

    PubMed

    Jalkanen, Juho; Hautero, Olli; Maksimow, Mikael; Jalkanen, Sirpa; Hakovirta, Harri

    2018-04-21

    The aim of the present study was to assess the circulating levels of vascular endothelial growth factor (VEGF) and other suggested therapeutic growth factors with the degree of ischemia in patients with different clinical manifestations of peripheral arterial disease (PAD) according to the Rutherford grades. The study cohort consists of 226 consecutive patients admitted to a Department of Vascular Surgery for elective invasive procedures. PAD patients were grouped according to the Rutherford grades after a clinical assessment. Ankle-brachial pressure indices (ABI) and absolute toe pressure (TP) values were measured. Serum levels of circulating VEGF, hepatocyte growth factor (HGF), basic fibroblast growth factor (bFGF), and platelet derived growth factor (PDGF) were measured from serum and analysed against Rutherford grades and peripheral hemodynamic measurements. The levels of VEGF (P = 0.009) and HGF (P < 0.001) increased significantly as the ischaemic burden became more severe according to the Rutherford grades. PDGF behaved in opposite manner and declined along increasing Rutherford grades (P = 0.004). A significant, inverse correlations between Rutherford grades was detected as follows; VEGF (Pearson's correlation = 0.183, P = 0.004), HGF (Pearson's correlation = 0.253, P < 0.001), bFGF (Pearson's correlation = 0.169, P = 0.008) and PDGF (Pearson's correlation = 0.296, P < 0.001). In addition, VEGF had a clear direct negative correlation with ABI (Pearson's correlation -0.19, P = 0.009) and TP (Pearson's correlation -0.20, P = 0.005) measurements. Our present observations show that the circulating levels of VEGF and other suggested therapeutic growth factors are significantly increased along with increasing ischemia. These findings present a new perspective to anticipated positive effects of gene therapies utilizing VEGF, HGF, and bFGF, because the levels of these growth factors are endogenously high in end

  17. Protective effect of basic fibroblast growth factor on laser induced retinopathy

    PubMed Central

    Kartal, Unal; Koptagel, Emel; Bulut, H. Eray; Erdogan, Haydar

    2013-01-01

    AIM To investigate the side effects of the commonly used laser treatment along with testing the neuroprotective effect of bFGF on a potential retinal impairment. METHODS To do this, 30 chinchilla pigmented adult male rabbits were divided into the control and experimental groups. The control and experimental groups underwent both laser application and bFGF treatment. The retinal tissue impairment and its renewal rate were tested under the light and electron microscopical levels. RESULTS The focal laser application on rabbit eyes caused morphological alterations both in the application region and in the neighbouring areas. In the damaged areas, the outer nuclear layer of the neural retina was almost disappeared, retina pigment epithelium was interrupted, the retina pigment epithelium migrated intraretinally, and the damaged region along with neighbouring areas seemed to be not separated. bFGF application just after the laser photocoagulation, revealed better results in application areas. CONCLUSION It could be suggested that the bFGF application following laser photocoagulation might have protective, repairing and wound healing effects on the retina. PMID:24392319

  18. The regulation of trefoil factor 2 expression by the transcription factor Sp3.

    PubMed

    Liu, Jingjing; Wang, Xu; Cai, Yiling; Zhou, Jingping; Guleng, Bayasi; Shi, Huaxiu; Ren, Jianlin

    2012-10-19

    Trefoil factor family 2 (TFF2) participates in mucus stabilization and repair, apoptosis, and inflammatory responses. Previously published reports have indicated that several growth factors and basal transcription factors are associated with the expression of TFF2. However, the detailed mechanisms that regulate TFF2 expression are not fully understood. The present study was designed to assess the essential role of the transcription factor SP3 with respect to TFF2 expression. We first demonstrated that there was a negative correlation between the expression levels of SP3 and TFF2. Thus, in the examined cells, the overexpression of SP3 decreased the expression level of TFF2, whereas the inhibition of SP3 increased the expression level of TFF2. Moreover, we discovered two GC boxes in the TFF2 promoter and confirmed the specific binding of SP3 to this promoter. On the whole, this study indicated that Sp3 was a major regulator of TFF2 expression. This knowledge should contribute to our understanding of the role that is played by SP3 in the regulation of TFF2 expression. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Expression of virulence factors by Staphylococcus aureus grown in serum.

    PubMed

    Oogai, Yuichi; Matsuo, Miki; Hashimoto, Masahito; Kato, Fuminori; Sugai, Motoyuki; Komatsuzawa, Hitoshi

    2011-11-01

    Staphylococcus aureus produces many virulence factors, including toxins, immune-modulatory factors, and exoenzymes. Previous studies involving the analysis of virulence expression were mainly performed by in vitro experiments using bacterial medium. However, when S. aureus infects a host, the bacterial growth conditions are quite different from those in a medium, which may be related to the different expression of virulence factors in the host. In this study, we investigated the expression of virulence factors in S. aureus grown in calf serum. The expression of many virulence factors, including hemolysins, enterotoxins, proteases, and iron acquisition factors, was significantly increased compared with that in bacterial medium. In addition, the expression of RNA III, a global regulon for virulence expression, was significantly increased. This effect was partially restored by the addition of 300 μM FeCl₃ into serum, suggesting that iron depletion is associated with the increased expression of virulence factors in serum. In chemically defined medium without iron, a similar effect was observed. In a mutant with agr inactivated grown in serum, the expression of RNA III, psm, and sec4 was not increased, while other factors were still induced in the mutant, suggesting that another regulatory factor(s) is involved. In addition, we found that serum albumin is a major factor for the capture of free iron to prevent the supply of iron to bacteria grown in serum. These results indicate that S. aureus expresses virulence factors in adaptation to the host environment.

  20. Evidence that acidic fibroblast growth factor promotes maturation of rat satellite-cell-derived myotubes in vitro.

    PubMed

    Düsterhöft, S; Pette, D

    1999-11-01

    Satellite cells isolated from fast tibialis anterior (TA) and slow soleus (SOL) rat muscles were cultivated on matrigel, and treated with acidic fibroblast growth factor (aFGF). The following observations were made: 1) aFGF-treated cultures exhibited enhanced proliferation as mirrored by a twofold increase in DNA content. 2) Compared to the untreated cultures, myotubes in the aFGF cultures were larger; 3) Using reverse transcriptase polymerase chain reaction (RT-PCR) and northern blot analyses, we observed enhanced expression of all adult myosin heavy chain (MHC) isoforms, as well as of myogenin. These findings indicate that, under the culture conditions used, aFGF has a stimulatory effect on proliferation but also on maturation and differentiation of satellite cells. Furthermore, transcript levels of FGF receptor 1 (FGFR1) and 4 (FGFR4) isoforms, as well as of aFGF and bFGF were assessed by RT-PCR. aFGF-treated myotubes displayed increased expression of aFGF and bFGF, suggesting a paracrine effect of exogenous aFGF. In this regard, SOL-derived cultures responded more strongly than TA-derived cultures. The effects of aFGF treatment on the two receptors consisted of a decrease in FGFR1 and an increase in FGFR4 mRNA levels in 5-day-old cultures. In 8-day-old TA cultures, effects of FGF were similar to those in 5-day-old cultures. 8-day FGF-treated SOL cultures treated with FGF for 8 days exhibited higher FGFR1 and FGFR4 mRNA levels than the respective untreated cultures. Compared to 5 day-treated cultures, FGFR1 increased and FGFR4 decreased. This led to a shift in the ratio of FGFR1 to FGFR4 in the FGF-treated cultures which may explain the ability of satellite cells to differentiate under the influence of aFGF.

  1. Effect of trehalose coating on basic fibroblast growth factor release from tailor-made bone implants.

    PubMed

    Choi, Sungjin; Lee, Jongil; Igawa, Kazuyo; Suzuki, Shigeki; Mochizuki, Manabu; Nishimura, Ryohei; Chung, Ung-il; Sasaki, Nobuo

    2011-12-01

    Artificial bone implants are often incorporated with osteoinductive factors to facilitate early bone regeneration. Calcium phosphate, the main component in artificial bone implants, strongly binds these factors, and in a few cases, the incorporated proteins are not released from the implant under conditions of physiological pH, thereby leading to reduction in their osteoinductivity. In this study, we coated tailor-made bone implants with trehalose to facilitate the release of basic fibroblast growth factor (bFGF). In an in vitro study, mouse osteoblastic cells were separately cultured for 48 hr in a medium with a untreated implant (T-), trehalose-coated implant (T+), bFGF-incorporated implant (FT-), and bFGF-incorporated implant with trehalose coating (FT+). In the FT+ group, cell viability was significantly higher than that in the other groups (P<0.05). Scanning electron microscopy (SEM) and X-ray diffraction (XRD) revealed that trehalose effectively covered the surface of the artificial bone implant without affecting the crystallinity or the mechanical strength of the artificial bone implant. These results suggest that coating artificial bone implants with trehalose could limit the binding of bFGF to calcium phosphate.

  2. Localization of vascular endothelial growth factor in the zona pellucida of developing ovarian follicles in the rat: a possible role in destiny of follicles.

    PubMed

    Celik-Ozenci, Ciler; Akkoyunlu, Gokhan; Kayisli, Umit Ali; Arici, Aydin; Demir, Ramazan

    2003-11-01

    There is increasing evidence that in many species angiogenic factors, such as vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF), may have important roles in folliculogenesis. The aim of this study is to determine the localization of VEGF and its receptors, Flt-1 and KDR, and bFGF expression in the rat ovary and to evaluate their distributions throughout the different follicular stages. Out of 20 virginal female rats, 10 were studied during the natural ovarian cycle without any ovulation induction. The other 10 were superovulated and their ovaries were studied by western analysis and immunohistochemistry. Granulosa cells (GC) and oocytes of primordial follicles were negative for VEGF. In early primary follicles, VEGF was present in the oocyte but its immunoreactivity was weak, while newly developing zona pellucida (ZP) of primary follicles was negative for VEGF. Subsequently, with the commencement of antral spaces between GC of the secondary follicle, ZP of some secondary follicles became strongly positive for VEGF, forming a continuous ring around the oocyte. In preovulatory mature follicles granulosa and theca interna (TI) cells showed a weak immunoreactivity for VEGF. Western blot analyses have also demonstrated that VEGF, a 26-kDa protein, was present in follicles. Moreover, in ovulated cumulus-oocyte complex we observed a halo-like immunoreactivity of VEGF around the fully mature oocyte. The immunoreactivity for Flt-1 and KDR receptors in growing follicles was mostly limited to GC and TI cells. Anti-bFGF did not exhibit any immunoreactivity in ZP of follicles at any stage. Its expression was weak in GC of the follicles at different stages, whereas, it could be localized to some extent in the blood capillaries of TI of antral follicles and in blood vessels localized in the stroma. Interestingly, VEGF immunoreactivity in the ZP of some secondary follicles is very striking. Accordingly, the possibility that VEGF may be an

  3. Glial cell line-derived neurotrophic factor in combination with insulin-like growth factor 1 and basic fibroblast growth factor promote in vitro culture of goat spermatogonial stem cells.

    PubMed

    Bahadorani, M; Hosseini, S M; Abedi, P; Abbasi, H; Nasr-Esfahani, M H

    2015-01-01

    Growth factors are increasingly considered as important regulators of spermatogonial stem cells (SSCs). This study investigated the effects of various growth factors (GDNF, IGF1, bFGF, EGF and GFRalpha-1) on purification and colonization of undifferentiated goat SSCs under in vitro and in vivo conditions. Irrespective of the culture condition used, the first signs of developing colonies were observed from day 4 of culture onwards. The number of colonies developed in GDNF + IGF1 + bFGF culture condition was significantly higher than the other groups (p < 0.05). In contrast, the size of colonies developed in GDNF + EGF + LIF culture condition was significantly higher than the other groups (p < 0.05). Immunocytochemical stationing for specific biomarkers of somatic cells (vimentin, alpha-inhibin and α-SMA) and spermatogonial cells (PLZF, THY 1, VASA, alpha-1 integrin, bet-1 integrin and DBA) revealed that both cell types existed in developing colonies, irrespective of the culture condition used. Even though, the relative abundance of VASA, FGFR3, OCT4, PLZF, BCL6B and THY1 transcription factors in GDNF + IGF1 + bFGF treatment group was significantly higher than the other groups (p < 0.05). Additionally, goat SSCs developed in the latter culture condition could colonize within the seminiferous tubules of the germ-cell depleted recipient mice following xenotransplantation. Obtained results demonstrated that combination of GDNF with IGF1 and bFGF promote in vitro culture of goat SSCs while precludes uncontrolled proliferation of somatic cells.

  4. Ras Family GTPases Control Growth of Astrocyte Processes

    PubMed Central

    Kalman, Daniel; Gomperts, Stephen N.; Hardy, Stephen; Kitamura, Marina; Bishop, J. Michael

    1999-01-01

    Astrocytes in neuron-free cultures typically lack processes, although they are highly process-bearing in vivo. We show that basic fibroblast growth factor (bFGF) induces cultured astrocytes to grow processes and that Ras family GTPases mediate these morphological changes. Activated alleles of rac1 and rhoA blocked and reversed bFGF effects when introduced into astrocytes in dissociated culture and in brain slices using recombinant adenoviruses. By contrast, dominant negative (DN) alleles of both GTPases mimicked bFGF effects. A DN allele of Ha-ras blocked bFGF effects but not those of Rac1-DN or RhoA-DN. Our results show that bFGF acting through c-Ha-Ras inhibits endogenous Rac1 and RhoA GTPases thereby triggering astrocyte process growth, and they provide evidence for the regulation of this cascade in vivo by a yet undetermined neuron-derived factor. PMID:10233170

  5. Inhibition of muscle-specific gene expression by Id3: requirement of the C-terminal region of the protein for stable expression and function.

    PubMed

    Chen, B; Han, B H; Sun, X H; Lim, R W

    1997-01-15

    We have examined the role of an Id-like protein, Id3 (also known as HLH462), in the regulation of muscle-specific gene expression. Id proteins are believed to block expression of muscle-specific genes by preventing the dimerization between ubiquitous bHLH proteins (E proteins) and myogenic bHLH proteins such as MyoD. Consistent with its putative role as an inhibitor of differentiation, Id3 mRNA was detected in proliferating skeletal muscle cells, was further induced by basic fibroblast growth factor (bFGF) and was down-regulated in differentiated muscle cultures. Overexpression of Id3 efficiently inhibited the MyoD-mediated activation of the muscle-specific creatine kinase (MCK) reporter gene. Deletion analysis indicated that the C-terminal 15 amino acids of Id3 are critical for the full inhibitory activity while deleting up to 42 residues from the C-terminus of the related protein, Id2, did not affect its ability to inhibit the MCK reporter gene. Chimeric protein containing the N-terminal region of Id3 and the C-terminus of Id2 was also non-functional in transfected cells. In contrast, wild-type Id3, the C-terminal mutants, and the Id3/Id2 chimera could all interact with the E-protein E47in vitro. Additional studies indicated that truncation of the Id3 C-terminus might have adversely affected the expression level of the mutant proteins but the Id3/Id2 chimera was stably expressed. Taken together, our results revealed a more complex requirement for the expression and proper function of the Id family proteins than was hitherto expected.

  6. Inhibition of muscle-specific gene expression by Id3: requirement of the C-terminal region of the protein for stable expression and function.

    PubMed Central

    Chen, B; Han, B H; Sun, X H; Lim, R W

    1997-01-01

    We have examined the role of an Id-like protein, Id3 (also known as HLH462), in the regulation of muscle-specific gene expression. Id proteins are believed to block expression of muscle-specific genes by preventing the dimerization between ubiquitous bHLH proteins (E proteins) and myogenic bHLH proteins such as MyoD. Consistent with its putative role as an inhibitor of differentiation, Id3 mRNA was detected in proliferating skeletal muscle cells, was further induced by basic fibroblast growth factor (bFGF) and was down-regulated in differentiated muscle cultures. Overexpression of Id3 efficiently inhibited the MyoD-mediated activation of the muscle-specific creatine kinase (MCK) reporter gene. Deletion analysis indicated that the C-terminal 15 amino acids of Id3 are critical for the full inhibitory activity while deleting up to 42 residues from the C-terminus of the related protein, Id2, did not affect its ability to inhibit the MCK reporter gene. Chimeric protein containing the N-terminal region of Id3 and the C-terminus of Id2 was also non-functional in transfected cells. In contrast, wild-type Id3, the C-terminal mutants, and the Id3/Id2 chimera could all interact with the E-protein E47in vitro. Additional studies indicated that truncation of the Id3 C-terminus might have adversely affected the expression level of the mutant proteins but the Id3/Id2 chimera was stably expressed. Taken together, our results revealed a more complex requirement for the expression and proper function of the Id family proteins than was hitherto expected. PMID:9016574

  7. Ixora coccinea Enhances Cutaneous Wound Healing by Upregulating the Expression of Collagen and Basic Fibroblast Growth Factor

    PubMed Central

    Upadhyay, Aadesh; Chattopadhyay, Pronobesh; Goyary, Danswrang; Mitra Mazumder, Papiya; Veer, Vijay

    2014-01-01

    Background. Ixora coccinea L. (Rubiaceae) has been documented for traditional use in hypertension, menstrual irregularities, sprain, chronic ulcer, and skin diseases. In the present study, I. coccinea was subjected to in vitro and in vivo wound healing investigation. Methods. Petroleum ether, chloroform, methanol, and water sequential I. coccinea leaves extracts were evaluated for in vitro antioxidant, antimicrobial, and fibroblast proliferation activities. The promising I. coccinea methanol extract (IxME) was screened for in vivo wound healing activity in Wistar rat using circular excision model. Wound contraction measurement, hydroxyproline quantification, and western blot for collagen type III (COL3A1), basic fibroblast growth factor (bFGF), and Smad-2, -3, -4, and -7 was performed with 7-day postoperative wound granulation tissue. Gentamicin sulfate (0.01% w/w) hydrogel was used as reference standard. Results. IxME showed the potent antimicrobial, antioxidant activities, with significant fibroblast proliferation inducing activity, as compared to all other extracts. In vivo study confirmed the wound healing accelerating potential of IxME, as evidenced by faster wound contraction, higher hydroxyproline content, and improved histopathology of granulation tissue. Western blot analysis revealed that the topical application of I. coccinea methanol extract stimulates the fibroblast growth factor and Smad mediated collagen production in wound tissue. PMID:24624303

  8. Uncaria rhynchophylla induces angiogenesis in vitro and in vivo.

    PubMed

    Choi, Do-Young; Huh, Jeong-Eun; Lee, Jae-Dong; Cho, Eun-Mi; Baek, Yong-Hyeon; Yang, Ha-Ru; Cho, Yoon-Je; Kim, Kang-Il; Kim, Deog-Yoon; Park, Dong-Suk

    2005-12-01

    Angiogenesis consists of the proliferation, migration, and differentiation of endothelial cells, and angiogenic factors and matrix protein interactions modulate this process. The aim of this study was to determine the angiogenic properties of Uncaria rhynchophylla. Uncaria rhynchophylla significantly enhanced human umbilical vein endothelial cells (HUVECs) proliferation in a dose-dependent manner. Neutralization of vascular endothelial growth factor (VEGF) or basic fibroblast growth factor (bFGF) by monoclonal antibody suppressed the Uncaria rhynchophylla stimulatory effect on proliferation. In addition, Uncaria rhynchophylla significantly increased chemotactic-migration on gelatin and tubular structures on Matrigel of HUVECs in a dose-dependent manner. Interestingly, Uncaria rhynchophylla dose-dependently increased VEGF, and bFGF gene expression and protein secretion of HUVEC. The angiogenic activity of Uncaria rhynchophylla was confirmed using an in vivo Matrigel angiogenesis model, showing promotion of blood vessel formation. These results suggest that Uncaria rhynchophylla could potentially used to accelerate vascular wound healing or to promote the growth of collateral blood vessel in ischemic tissues.

  9. Generation of enhanced definitive endoderm from human embryonic stem cells under an albumin/insulin-free and chemically defined condition.

    PubMed

    Qu, Su; Yan, Liang; Fang, Bo; Ye, Shoudong; Li, Ping; Ge, Shengyang; Wu, Jian; Qu, Di; Song, Houyan

    2017-04-15

    To enhance survival and generation of definitive endoderm cells from human embryonic stem cells in a simple and reproducible system. Definitive endoderm (DE) differentiation from human embryonic stem cells (hESCs) was induced under a chemical-defined condition withdrawn insulin supplement and serum albumin. We dissected influence of "alternative growth factors", WNT3A, BMP4 and bFGF in activin A-driven differentiation by detection of DE-associated genes expression and cell viability. Expression of DE-associated SOX17 and FOXA2 genes was analyzed by real time reverse transcription polymerase chain reaction (RT-PCR) and Western blot assays. Quantitative evaluation of DE efficiency was performed by flow cytometry analysis of CXCR4-expressed cell population. Cell viability during DE differentiation was analyzed by an Annexin V/PI double staining test. Supplementation with WNT3A, BMP4 or bFGF promoted DE generation in a dose- and time-dependent manner. Cell apoptosis elicited by activin A was significantly ameliorated by a cocktail with WNT3A, BMP4 and bFGF. This allowed for sustained cell viability without insulin-containing supplements, thereby indirectly improving the efficiency of DE generation. Therefore, the cocktail containing is optimal for efficient DE generation in the presence of activin A and an insulin/albumin-free condition. This optimal condition facilitates the balance between the productivity and the viability maintenance, and could be valuable for mass production of DE with minimal variation. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Transplantation of Bone Marrow–Derived Mesenchymal Stem Cells Improves Diabetic Polyneuropathy in Rats

    PubMed Central

    Shibata, Taiga; Naruse, Keiko; Kamiya, Hideki; Kozakae, Mika; Kondo, Masaki; Yasuda, Yutaka; Nakamura, Nobuhisa; Ota, Kimiko; Tosaki, Takahiro; Matsuki, Takashi; Nakashima, Eitaro; Hamada, Yoji; Oiso, Yutaka; Nakamura, Jiro

    2008-01-01

    OBJECTIVE—Mesenchymal stem cells (MSCs) have been reported to secrete various cytokines that exhibit angiogenic and neurosupportive effects. This study was conducted to investigate the effects of MSC transplantation on diabetic polyneuropathy (DPN) in rats. RESEARCH DESIGN AND METHODS—MSCs were isolated from bone marrow of adult rats and transplanted into hind limb skeletal muscles of rats with an 8-week duration of streptozotocin (STZ)-induced diabetes or age-matched normal rats by unilateral intramuscular injection. Four weeks after transplantation, vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) productions in transplanted sites, current perception threshold, nerve conduction velocity (NCV), sciatic nerve blood flow (SNBF), capillary number–to–muscle fiber ratio in soleus muscles, and sural nerve morphometry were evaluated. RESULTS—VEGF and bFGF mRNA expression were significantly increased in MSC-injected thigh muscles of STZ-induced diabetic rats. Furthermore, colocalization of MSCs with VEGF and bFGF in the transplanted sites was confirmed. STZ-induced diabetic rats showed hypoalgesia, delayed NCV, decreased SNBF, and decreased capillary number–to–muscle fiber ratio in soleus muscles, which were all ameliorated by MSC transplantation. Sural nerve morphometry showed decreased axonal circularity in STZ-induced diabetic rats, which was normalized by MSC transplantation. CONCLUSIONS—These results suggest that MSC transplantation could have therapeutic effects on DPN through paracrine actions of growth factors secreted by MSCs. PMID:18728233

  11. RNA Expression Profiling Reveals Differentially Regulated Growth Factor and Receptor Expression in Redirected Cancer Cells.

    PubMed

    Schmucker, Hannah S; Park, Jang Pyo; Coissieux, Marie-May; Bentires-Alj, Mohamed; Feltus, F Alex; Booth, Brian W

    2017-05-01

    Tumorigenic cells can be redirected to adopt a normal phenotype when transplanted into cleared mammary fat pads of juvenile female mice in specific ratios with normal epithelial cells. The redirected tumorigenic cells enter stem cell niches and provide progeny that differentiate into all mammary epithelial subtypes. We have developed an in vitro model that mimics the in vivo phenomenon. The shift in phenotype to redirection should be accomplished through a return to a normal gene expression state. To measure this shift, we interrogated the transcriptome of various in vitro model states in search for casual genes. For this study, expression of growth factors, cytokines, and their associated receptors was examined. In all, we queried 251 growth factor and cytokine-related genes. We found numerous growth factor and cytokine genes whose expression levels switched from expression levels seen in cancer cells to expression levels observed in normal cells. The comparisons of gene expression between normal mammary epithelial cells, tumor-derived cells, and redirected cancer cells have revealed insight into active and inactive growth factors and cytokines in cancer cell redirection.

  12. Changes in gene expression and signal transduction in microgravity

    NASA Technical Reports Server (NTRS)

    Hughes-Fulford, M.

    2001-01-01

    Studies from space flights over the past three decades have demonstrated that basic physiological changes occur in humans during space flight. These changes include cephalic fluid shifts, loss of fluid and electrolytes, loss of muscle mass, space motion sickness, anemia, reduced immune response, and loss of calcium and mineralized bone. The cause of most of these manifestations is not known and until recently, the general approach was to investigate general systemic changes, not basic cellular responses to microgravity. This laboratory has recently studied gene growth and activation of normal osteoblasts (MC3T3-El) during spaceflight. Osteoblast cells were grown on glass coverslips and loaded in the Biorack plunger boxes. The osteoblasts were launched in a serum deprived state, activated in microgravity and collected in microgravity. The osteoblasts were examined for changes in gene expression and signal transduction. Approximately one day after growth activation significant changes were observed in gene expression in 0-G flight samples. Immediate early growth genes/growth factors cox-2, c-myc, bcl2, TGF beta1, bFGF and PCNA showed a significant diminished mRNA induction in microgravity FCS activated cells when compared to ground and 1-G flight controls. Cox-1 was not detected in any of the samples. There were no significant differences in the expression of reference gene mRNA between the ground, 0-G and 1-G samples. The data suggest that quiescent osteoblasts are slower to enter the cell cycle in microgravity and that the lack of gravity itself may be a significant factor in bone loss in spaceflight. Preliminary data from our STS 76 flight experiment support our hypothesis that a basic biological response occurs at the tissue, cellular, and molecular level in 0-G. Here we examine ground-based and space flown data to help us understand the mechanism of bone loss in microgravity.

  13. Uterine Wound Healing: A Complex Process Mediated by Proteins and Peptides.

    PubMed

    Lofrumento, Dario D; Di Nardo, Maria A; De Falco, Marianna; Di Lieto, Andrea

    2017-01-01

    Wound healing is the process by which a complex cascade of biochemical events is responsible of the repair the damage. In vivo, studies in humans and mice suggest that healing and post-healing heterogeneous behavior of the surgically wounded myometrium is both phenotype and genotype dependent. Uterine wound healing process involves many cells: endothelial cells, neutrophils, monocytes/macrophages, lymphocytes, fibroblasts, myometrial cells as well a stem cell population found in the myometrium, myoSP (side population of myometrial cells). Transforming growth factor beta (TGF-β) isoforms, connective tissue growth factor (CTGF), basic fibroblast growth factor (bFGF), platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), and tumor necrosis factor alpha (TNF-β) are involved in the wound healing mechanisms. The increased TGF- β1/β3 ratio reduces scarring and fibrosis. The CTGF altered expression may be a factor involved in the abnormal scars formation of low uterine segment after cesarean section and of the formation of uterine dehiscence. The lack of bFGF is involved in the reduction of collagen deposition in the wound site and thicker scabs. The altered expression of TNF-β, VEGF, and PDGF in human myometrial smooth muscle cells in case of uterine dehiscence, it is implicated in the uterine healing process. The over-and under-expressions of growth factors genes involved in uterine scarring process could represent patient's specific features, increasing the risk of cesarean scar complications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Formononetin accelerates wound repair by the regulation of early growth response factor-1 transcription factor through the phosphorylation of the ERK and p38 MAPK pathways.

    PubMed

    Huh, Jeong-Eun; Nam, Dong-Woo; Baek, Young-Hyun; Kang, Jung Won; Park, Dong-Suk; Choi, Do-Young; Lee, Jae-Dong

    2011-01-01

    Formononetin, a phytoestrogen from the root of Astragalus membranaceus, is used as a blood enhancer and to improve blood microcirculation in complementary and alternative medicine. The present study investigated the influence of formononetin on the expression of early growth response factor-1 (Egr-1) and growth factors contributing to wound healing. Formononetin significantly increased growth factors such as transforming growth factor-beta 1 (TGF-β1), vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF) and basic fibroblast growth factor (bFGF) in human umbilical vein endothelial cells (HUVECs). Formononetin also increased the expression of Egr-1 transcription factor by 3.2- and 10.5-fold, compared with recombinant VEGF(125) in HUVECs. The formononetin-mediated 12%-43% increase induced endothelial cell proliferation and recovered the migration of wounded HUVECs. In an ex vivo angiogenesis assay, formononetin produced a larger capillary sprouting area than produced using recombinant VEGF(125). Cell proliferation and migration of HUVECs were also greater in the presence of formonectin than VEGF(125). Western blot analysis of scratch-wounded confluent HUVECs showed that formononetin induced the phosphorylation of extracellular signal-regulated kinase (ERK) and slightly inhibited the phosphorylation of p38 mitogen-activated protein kinase (MAPK). The formononetin-mediated sustained activation of Egr-1 was suppressed by the ERK inhibitor PD98059 and the p38 inhibitor SB203580. PD98059 inhibited the formononetin-induced endothelial proliferation and repair in scratch-wounded HUVECs, SB203580 increased the cell proliferation and wound healing. Formononetin accelerate wound closure rate as early as day 3 after surgery and consistently observed until day 10 after in wound animal model. These data suggest that formononetin promotes endothelial repair and wound healing in a process involving the over-expression of Egr-1 transcription factor

  15. Basic Fibroblast Growth Factor Predicts Cardiovascular Disease Occurrence in Participants from the Veterans Affairs Diabetes Trial

    PubMed Central

    Zimering, Mark B.; Anderson, Robert J.; Ge, Ling; Moritz, Thomas E.; Duckworth, William C.

    2013-01-01

    Aim: Cardiovascular disease (CVD) is a leading cause of morbidity and mortality in adults with type 2 diabetes mellitus. The aim of the present study was to test whether plasma basic fibroblast growth factor (bFGF) levels predict future CVD occurrence in adults from the Veterans Affairs Diabetes Trial (VADT). Methods: Nearly 400 veterans, 40 years of age or older having a mean baseline diabetes duration of 11.4 years were recruited from outpatient clinics at six geographically distributed sites in the VADT. Within the VADT, they were randomly assigned to intensive or standard glycemic treatment, with follow-up as much as seven and one-half years. CVD occurrence was examined at baseline in the patient population and during randomized treatment. Plasma bFGF was determined with a sensitive, specific two-site enzyme-linked immunoassay at the baseline study visit in all 399 subjects and repeated at the year 1 study visit in a randomly selected subset of 215 subjects. Results: One hundred and five first cardiovascular events occurred in these 399 subjects. The best fit model of risk factors associated with the time to first CVD occurrence (in the study) over a seven and one-half year period had as significant predictors: prior cardiovascular event [hazard ratio (HR) 3.378; 95% confidence intervals (CI) 3.079–3.807; P < 0.0001), baseline plasma bFGF (HR 1.008; 95% CI 1.002–1.014; P = 0.01), age (HR 1.027; 95% CI 1.004–1.051; P = 0.019), baseline plasma triglycerides (HR 1.001; 95% CI 1.000–1.002; P = 0.02), and diabetes duration-treatment interaction (P = 0.03). Intensive glucose-lowering was associated with significantly decreased hazard ratios for CVD occurrence (0.38–0.63) in patients with known diabetes duration of 0–10 years, and non-significantly increased hazard ratios for CVD occurrence (0.82–1.78) in patients with longer diabetes duration. Conclusion: High level of plasma bFGF is a predictive biomarker of future CVD

  16. Overexpression of protein kinase C ɛ improves retention and survival of transplanted mesenchymal stem cells in rat acute myocardial infarction.

    PubMed

    He, H; Zhao, Z-H; Han, F-S; Liu, X-H; Wang, R; Zeng, Y-J

    2016-01-21

    We assessed the effects of protein kinase C ɛ (PKCɛ) for improving stem cell therapy for acute myocardial infarction (AMI). Primary mesenchymal stem cells (MSCs) were harvested from rat bone marrow. PKCɛ-overexpressed MSCs and control MSCs were transplanted into infarct border zones in a rat AMI model. MSCs and PKCɛ distribution and expression of principal proteins involved in PKCɛ signaling through the stromal cell-derived factor 1 (SDF-1)/CXC chemokine receptor type 4 (CXCR4) axis and the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (AKT) pathway were analyzed by immunofluorescence and western blot 1 day after transplantation. Echocardiographic measurements and histologic studies were performed at 4 weeks after transplantation, and MSC survival, expression of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), transforming growth factor β (TGFβ), cardiac troponin I (cTnI), von Willebrand factor (vWF), smooth muscle actin (SMA) and factor VIII and apoptosis in infarct border zones were assessed. Rat heart muscles retained more MSCs and SDF-1, CXCR4, PI3K and phosphorylated AKT increased with PKCɛ overexpression 1 day after transplantation. MSC survival and VEGF, bFGF, TGFβ, cTnI, vWF, SMA and factor VIII expression increased in animals with PKCɛ-overexpressed MSCs at 4 weeks after transplantation and cardiac dysfunction and remodeling improved. Infarct size and apoptosis decreased as well. Inhibitory actions of CXCR4 or PI3K partly attenuated the effects of PKCɛ. Activation of PKCɛ may improve retention, survival and differentiation of transplanted MSCs in myocardia. Augmentation of PKCɛ expression may enhance the therapeutic effects of stem cell therapy for AMI.

  17. Optimization of culture conditions for stem cells derived from human anterior cruciate ligament and bone marrow.

    PubMed

    Cheng, Ming-Te; Liu, Chien-Lin; Chen, Tain-Hsiung; Lee, Oscar K

    2014-01-01

    Tissue engineering with stem cells is a fascinating approach for treating anterior cruciate ligament (ACL) injuries. In our previous study, stem cells isolated from the human anterior cruciate ligament were shown to possess extensive proliferation and differentiation capabilities when treated with specific growth factors. However, optimal culture conditions and the usefulness of fetal bovine serum (FBS) as a growth factor in in vitro culture systems are yet to be determined. In this study, we compared the effects of different culture media containing combinations of various concentrations of FBS and the growth factors basic fibroblastic growth factor (bFGF) and transforming growth factor-β1 (TGF-β1) on the proliferation and differentiation of ligament-derived stem cells (LSCs) and bone marrow mesenchymal stem cells (BMSCs). We found that α-MEM plus 10% FBS and bFGF was able to maintain both LSCs and BMSCs in a relatively undifferentiated state but with lower major extracellular matrix (ECM) component gene expression and protein production, which is beneficial for stem cell expansion. However, the differentiation and proliferation potentials of LSCs and BMSCs were increased when cultured in MesenPRO, a commercially available stem cell medium containing 2% FBS. MesenPRO in conjunction with TGF-β1 had the greatest ability to induce the differentiation of BMSCs and LSCs to ligament fibroblasts, which was evidenced by the highest ligamentous ECM gene expression and protein production. These results indicate that culture media and growth factors play a very important role in the success of tissue engineering. With α-MEM plus 10% FBS and bFGF, rapid proliferation of stem cells can be achieved. In this study, MesenPRO was able to promote differentiation of both LSCs and BMSCs to ligament fibroblasts. Differentiation was further increased by TGF-β1. With increasing understanding of the effects of different culture media and growth factors, manipulation of stem cells

  18. [Inhibitory effect of taspine on mouse S180 sarcoma and its mechanism].

    PubMed

    Zhang, Yan-Min; He, Lang-Chong; Wang, Hong-Ying

    2007-05-01

    To study the inhibition effect of taspine on mouse S180 sarcoma and its mechanism. The mouse S180 sarcoma model was established and used to observe the antitumor activity of taspine. The microvessel density and protein expressing of the VEGF, bFGF, Bcl-2 and Bax in the tumor were measured by immunohistochemistry. Taspine showed antitumor activity on the mouse S180 sarcoma in a good dose-dependent manner. The inhibition rates on tumor of taspine at low, middle and high concentrations were 39.08% , 43.99% and 48.60%, respectively. The microvessel density and protein expressing of the VEGF, bFGF, Bcl-2 and Bax in the tumor were decreased compared with the negative control. The ratio of Bax to Bcl-2 was increased. Taspine has antitumor effect on the S180 sarcoma, and the mechanism may be through the way of decreasing the expressing of the VEGF, bFGF, Bcl-2 and Bax and inducing the vascular endothelial cell apoptosis.

  19. Evaluation of Polycaprolactone Scaffold with Basic Fibroblast Growth Factor and Fibroblasts in an Athymic Rat Model for Anterior Cruciate Ligament Reconstruction

    PubMed Central

    Kabir, Nima; Arshi, Armin; Nazemi, Azadeh; Wu, Ben; Petrigliano, Frank A.; McAllister, David R.

    2015-01-01

    Anterior cruciate ligament (ACL) rupture is a common ligamentous injury often necessitating surgery. Current surgical treatment options include ligament reconstruction with autograft or allograft, which have their inherent limitations. Thus, there is interest in a tissue-engineered substitute for use in ACL regeneration. However, there have been relatively few in vivo studies to date. In this study, an athymic rat model of ACL reconstruction was used to evaluate electrospun polycaprolactone (PCL) grafts, with and without the addition of basic fibroblast growth factor (bFGF) and human foreskin fibroblasts. We examined the regenerative potential of tissue-engineered ACL grafts using histology, immunohistochemistry, and mechanical testing up to 16 weeks postoperatively. Histology showed infiltration of the grafts with cells, and immunohistochemistry demonstrated aligned collagen deposition with minimal inflammatory reaction. Mechanical testing of the grafts demonstrated significantly higher mechanical properties than immediately postimplantation. Acellular grafts loaded with bFGF achieved 58.8% of the stiffness and 40.7% of the peak load of healthy native ACL. Grafts without bFGF achieved 31.3% of the stiffness and 28.2% of the peak load of healthy native ACL. In this in vivo rodent model study for ACL reconstruction, the histological and mechanical evaluation demonstrated excellent healing and regenerative potential of our electrospun PCL ligament graft. PMID:25744933

  20. Intrinsic Lens Forming Potential of Mouse Lens Epithelial versus Newt Iris Pigment Epithelial Cells in Three-Dimensional Culture

    PubMed Central

    Nakamura, Kenta; Tsonis, Panagiotis A.

    2014-01-01

    Adult newts (Notophthalmus viridescens) are capable of complete lens regeneration that is mediated through dorsal iris pigment epithelial (IPE) cells transdifferentiation. In contrast, higher vertebrates such as mice demonstrate only limited lens regeneration in the presence of an intact lens capsule with remaining lens epithelial cells. To compare the intrinsic lens regeneration potential of newt IPE versus mouse lens epithelial cells (MLE), we have established a novel culture method that uses cell aggregation before culture in growth factor-reduced Matrigel™. Dorsal newt IPE aggregates demonstrated complete lens formation within 1 to 2 weeks of Matrigel culture without basic fibroblast growth factor (bFGF) supplementation, including the establishment of a peripheral cuboidal epithelial cell layer, and the appearance of central lens fibers that were positive for αA-crystallin. In contrast, the lens-forming potential of MLE cell aggregates cultured in Matrigel was incomplete and resulted in the formation of defined-size lentoids with partial optical transparency. While the peripheral cell layers of MLE aggregates were nucleated, cells in the center of aggregates demonstrated a nonapoptotic nuclear loss over a time period of 3 weeks that was representative of lens fiber formation. Matrigel culture supplementation with bFGF resulted in higher transparent bigger-size MLE aggregates that demonstrated increased appearance of βB1-crystallin expression. Our study demonstrates that bFGF is not required for induction of newt IPE aggregate-dependent lens formation in Matrigel, while the addition of bFGF seems to be beneficial for the formation of MLE aggregate-derived lens-like structures. In conclusion, the three-dimensional aggregate culture of IPE and MLE in Matrigel allows to a higher extent than older models the indepth study of the intrinsic lens-forming potential and the corresponding identification of lentogenic factors. PMID:23672748

  1. Basic Fibroblast Growth Factor Fused with Tandem Collagen-Binding Domains from Clostridium histolyticum Collagenase ColG Increases Bone Formation.

    PubMed

    Sekiguchi, Hiroyuki; Uchida, Kentaro; Matsushita, Osamu; Inoue, Gen; Nishi, Nozomu; Masuda, Ryo; Hamamoto, Nana; Koide, Takaki; Shoji, Shintaro; Takaso, Masashi

    2018-01-01

    Basic fibroblast growth factor 2 (bFGF) accelerates bone formation during fracture healing. Because the efficacy of bFGF decreases rapidly following its diffusion from fracture sites, however, repeated dosing is required to ensure a sustained therapeutic effect. We previously developed a fusion protein comprising bFGF, a polycystic kidney disease domain (PKD; s2b), and collagen-binding domain (CBD; s3) sourced from the Clostridium histolyticum class II collagenase, ColH, and reported that the combination of this fusion protein with a collagen-like peptide, poly(Pro-Hyp-Gly) 10 , induced mesenchymal cell proliferation and callus formation at fracture sites. In addition, C. histolyticum produces class I collagenase (ColG) with tandem CBDs (s3a and s3b) at the C-terminus. We therefore hypothesized that a bFGF fusion protein containing ColG-derived tandem CBDs (s3a and s3b) would show enhanced collagen-binding activity, leading to improved bone formation. Here, we examined the binding affinity of four collagen anchors derived from the two clostridial collagenases to H-Gly-Pro-Arg-Gly-(Pro-Hyp-Gly) 12 -NH 2 , a collagenous peptide, by surface plasmon resonance and found that tandem CBDs (s3a-s3b) have the highest affinity for the collagenous peptide. We also constructed four fusion proteins consisting of bFGF and s3 (bFGF-s3), s2b-s3b (bFGF-s2b-s3), s3b (bFGF-s3b), and s3a-s3b (bFGF-s3a-s3b) and compared their biological activities to those of a previous fusion construct (bFGF-s2b-s3) using a cell proliferation assay in vitro and a mouse femoral fracture model in vivo. Among these CB-bFGFs, bFGF-s3a-s3b showed the highest capacity to induce mesenchymal cell proliferation and callus formation in the mice fracture model. The poly(Pro-Hyp-Gly) 10 /bFGF-s3a-s3b construct may therefore have the potential to promote bone formation in clinical settings.

  2. [Effect of cryotherapy over the expression of vascular endothelial growth factor and pigment epithelium-derived factor].

    PubMed

    Toscano-Garibay, Julia Dolores; Quiroz-Mercado, Hugo; Espitia-Pinzón, Clara; Gil-Carrasco, Félix; Flores-Estrada, José Javier

    2014-01-01

    Cryotherapy is a no invasive technique that uses intense cold to freeze and destroy cancer tissues. There are no descriptions of its effects over the expression of vascular endothelial growth factor and pigment epithelium-derived factor. Experimental study in cryogenic spot were applied in the right sclera of twelve pigs for ten minutes. Other 3 pigs were used as normal controls. Animals were sacrificed at 7, 14 and 21 and the tissues of choriodes and retina were dissected in areas of approximately 1 cm2 surrounding cryogenic spots. Expression levels of vascular endothelial growth factor and pigment epithelium-derived factor were determined analyzed using polymerase chain reaction coupled to reverse-transcription. Vascular endothelial growth factor was significantly downregulated (24%, p< 0.05) seven days post-treatment meanwhile pigment epithelium-derived factor levels increased 44.8% (p< 0.05) as compared to normal controls (untreated). Both vascular endothelial growth factor and pigment epithelium-derived factor levels remain the same until day 14 but returned to basal expression at day 21. This work expose the relation of cryotherapy with the expression of two factors related to angiogenesis. RESULTS showed significant changes on the expression of vascular endothelial growth factor and pigment epithelium-derived factor illustrating that both proteins are regulated in response to cryogenic treatment in relatively short periods (21 days).

  3. Neuronal expression of fibroblast growth factor receptors in zebrafish.

    PubMed

    Rohs, Patricia; Ebert, Alicia M; Zuba, Ania; McFarlane, Sarah

    2013-12-01

    Fibroblast growth factor (FGF) signaling is important for a host of developmental processes such as proliferation, differentiation, tissue patterning, and morphogenesis. In vertebrates, FGFs signal through a family of four fibroblast growth factor receptors (FGFR 1-4), one of which is duplicated in zebrafish (FGFR1). Here we report the mRNA expression of the five known zebrafish fibroblast growth factor receptors at five developmental time points (24, 36, 48, 60, and 72h postfertilization), focusing on expression within the central nervous system. We show that the receptors have distinct and dynamic expression in the developing zebrafish brain, eye, inner ear, lateral line, and pharynx. In many cases, the expression patterns are similar to those of homologous FGFRs in mouse, chicken, amphibians, and other teleosts. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. The role of growth factors in embryonic induction in Xenopus laevis.

    PubMed

    Dawid, I B; Taira, M; Good, P J; Rebagliati, M R

    1992-06-01

    Establishment of the body pattern in all animals, and especially in vertebrate embryos, depends on cell interactions. During the cleavage and blastula stages in amphibians, signal(s) from the vegetal region induce the equatorial region to become mesoderm. Two types of peptide growth factors have been shown by explant culture experiments to be active in mesoderm induction. First, there are several isoforms of fibroblast growth factor (FGF), including aFGF, bFGF, and hst/kFGF. FGF induces ventral, but not the most dorsal, levels of mesodermal tissue; bFGF and its mRNA, and an FGF receptor and its mRNA, are present in the embryo. Thus, FGF probably has a role in mesoderm induction, but is unlikely to be the sole inducing agent in vivo. Second, members of the transforming growth factor-beta (TGF-beta) family. TGF-beta 2 and TGF-beta 3 are active in induction, but the most powerful inducing factors are the distant relatives of TGF-beta named activin A and activin B, which are capable of inducing all types of mesoderm. An important question relates to the establishment of polarity during the induction of mesoderm. While all regions of the animal hemisphere of frog embryos are competent to respond to activins by mesoderm differentiation, only explants that include cells close to the equator form structures with some organization along dorsoventral and anteroposterior axes. These observations suggest that cells in the blastula animal hemisphere are already polarized to some extent, although inducers are required to make this polarity explicit.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Homozygously deleted gene DACH1 regulates tumor-initiating activity of glioma cells

    PubMed Central

    Watanabe, Akira; Ogiwara, Hideki; Ehata, Shogo; Mukasa, Akitake; Ishikawa, Shumpei; Maeda, Daichi; Ueki, Keisuke; Ino, Yasushi; Todo, Tomoki; Yamada, Yasuhiro; Fukayama, Masashi; Saito, Nobuhito; Miyazono, Kohei; Aburatani, Hiroyuki

    2011-01-01

    Loss or reduction in function of tumor suppressor genes contributes to tumorigenesis. Here, by allelic DNA copy number analysis using single-nucleotide polymorphism genotyping array and mass spectrometry, we report homozygous deletion in glioblastoma multiformes at chromosome 13q21, where DACH1 gene is located. We found decreased cell proliferation of a series of glioma cell lines by forced expression of DACH1. We then generated U87TR-Da glioma cells, where DACH1 expression could be activated by exposure of the cells to doxycycline. Both ex vivo cellular proliferation and in vivo growth of s.c. transplanted tumors in mice are reduced in U87TR-Da cells with DACH1 expression (U87-DACH1-high), compared with DACH1-nonexpressing U87TR-Da cells (U87-DACH1-low). U87-DACH1-low cells form spheroids with CD133 and Nestin expression in serum-free medium but U87-DACH1-high cells do not. Compared with spheroid-forming U87-DACH1-low cells, adherent U87-DACH1-high cells display lower tumorigenicity, indicating DACH1 decreases the number of tumor-initiating cells. Gene expression analysis and chromatin immunoprecipitation assay reveal that fibroblast growth factor 2 (FGF2/bFGF) is transcriptionally repressed by DACH1, especially in cells cultured in serum-free medium. Exogenous bFGF rescues spheroid-forming activity and tumorigenicity of the U87-DACH1-high cells, suggesting that loss of DACH1 increases the number of tumor-initiating cells through transcriptional activation of bFGF. These results illustrate that DACH1 is a distinctive tumor suppressor, which does not only suppress growth of tumor cells but also regulates bFGF-mediated tumor-initiating activity of glioma cells. PMID:21750150

  6. Combined effects of chemical priming and mechanical stimulation on mesenchymal stem cell differentiation on nanofiber scaffolds

    PubMed Central

    Subramony, Siddarth D.; Su, Amanda; Yeager, Keith; Lu, Helen H.

    2014-01-01

    Functional tissue engineering of connective tissues such as the anterior cruciate ligament (ACL) remains a significant clinical challenge, largely due to the need for mechanically competent scaffold systems for grafting, as well as a reliable cell source for tissue formation. We have designed an aligned, polylactide-co-glycolide (PLGA) nanofiber-based scaffold with physiologically relevant mechanical properties for ligament regeneration. The objective of this study is to identify optimal tissue engineering strategies for fibroblastic induction of human mesenchymal stem cells (hMSC), testing the hypothesis that basic fibroblast growth factor (bFGF) priming coupled with tensile loading will enhance hMSC-mediated ligament regeneration. It was observed that compared to the unloaded, as well as growth factor-primed but unloaded controls, bFGF stimulation followed by physiologically relevant tensile loading enhanced hMSC proliferation, collagen production and subsequent differentiation into ligament fibroblast-like cells, upregulating the expression of types I and III collagen, as well as tenasin-C and tenomodulin. The results of this study suggest that bFGF priming increases cell proliferation, while mechanical stimulation of the hMSCs on the aligned nanofiber scaffold promotes fibroblastic induction of these cells. In addition to demonstrating the potential of nanofiber scaffolds for hMSC-mediated functional ligament tissue engineering, this study yields new insights into the interactive effects of chemical and mechanical stimuli on stem cell differentiation. PMID:24267271

  7. [Experimental study on long-term prevention effect of chitosan electrospun membrane on cerebrospinal fluid leakage].

    PubMed

    Guo, Xingfeng; Hou, Chunlin; Dou, Yuandong; Lin, Ye; Lei, Deqiao

    2014-08-01

    To study the long-term prevention effect of self-developed chitosan electrospun membrane on cerebrospinal fluid leakage. Twenty-five healthy adult New Zealand rabbits were selected to prepare the bilateral dural defect (0.8 cem x 0.8 cm in size) via midline incision of head. Defect of the right was repaired with chitosan electrospun membrane as the experimental group; defect of the left was not repaired as the control group. At 2-16 weeks after operation, one rabbit was sacrificed for the general observation of inflammatory response surrounding bone window and absorption of chitosan electrospun membrane; at 3 and 6 weeks after operation, 5 rabbits were sacrificed for sampling to observe histological change and collagen expression by_HE and Masson staining, and to measure the expressions of epidermal growth factor receptor (EGFR) and basic fibroblast growth factor (bFGF) by immunohistochemical staining. No inflammatory reaction of swelling, exudation, and sppuration appeared in the skin and subcutaneous tissue after operation in 2 groups. There was no adhesion around the chitosan electrospun membrane, and new fiber membrane formed under the chitosan electrospun membrane in the experimental group; no cerebrospinal fluid leakage happened; the chitosan electrospun membrane was gradually degraded with time, and was completely absorbed at 16 weeks. There was uneven scar around the dural detect in control group. Histological observation showed less inflammatory cell infiltration in the experimental group, showing significant difference in the number of inflammatory cells compared with control group at 3, 6 weeks (P < 0.05); capillary, granulation tissue and collagen fiber massively proliferated; collagen fiber arranged in line, and there was a clear borderline between chitosan electrospurn membrane and adjacent collagen fiber. The immunohistochemical staining showed that there were high expressions of bFGF and EGFR in the experimental group, and low expressions of bFGF

  8. Temporal expression of growth factors triggered by epiregulin regulates inflammation development.

    PubMed

    Harada, Masaya; Kamimura, Daisuke; Arima, Yasunobu; Kohsaka, Hitoshi; Nakatsuji, Yuji; Nishida, Makoto; Atsumi, Toru; Meng, Jie; Bando, Hidenori; Singh, Rajeev; Sabharwal, Lavannya; Jiang, Jing-Jing; Kumai, Noriko; Miyasaka, Nobuyuki; Sakoda, Saburo; Yamauchi-Takihara, Keiko; Ogura, Hideki; Hirano, Toshio; Murakami, Masaaki

    2015-02-01

    In this study, we investigated the relationship between several growth factors and inflammation development. Serum concentrations of epiregulin, amphiregulin, betacellulin, TGF-α, fibroblast growth factor 2, placental growth factor (PLGF), and tenascin C were increased in rheumatoid arthritis patients. Furthermore, local blockades of these growth factors suppressed the development of cytokine-induced arthritis in mice by inhibiting chemokine and IL-6 expressions. We found that epiregulin expression was early and followed by the induction of other growth factors at different sites of the joints. The same growth factors then regulated the expression of epiregulin at later time points of the arthritis. These growth factors were increased in patients suffering from multiple sclerosis (MS) and also played a role in the development of an MS model, experimental autoimmune encephalomyelitis. The results suggest that the temporal expression of growth factors is involved in the inflammation development seen in several diseases, including rheumatoid arthritis and MS. Therefore, various growth factor pathways might be good therapeutic targets for various inflammatory diseases. Copyright © 2015 by The American Association of Immunologists, Inc.

  9. Hemoglobin enhances tissue factor expression on human malignant cells.

    PubMed

    Siddiqui, F A; Amirkhosravi, A; Amaya, M; Meyer, T; Biggerstaff, J; Desai, H; Francis, J L

    2001-04-01

    Tissue Factor (TF) is a transmembrane glycoprotein that complexes with factor VII/activated factor VII to initiate blood coagulation. TF may be expressed on the surface of various cells including monocytes and endothelial cells. Over-expression of TF in human tumor cell lines promotes metastasis. We recently showed that hemoglobin (Hb) forms a specific complex with TF purified from human malignant melanoma cells and enhances its procoagulant activity (PCA). To further study this interaction, we examined the effect of Hb on the expression of TF on human malignant (TF+) cells and KG1 myeloid leukemia (TF-) cells. Human melanoma A375 and J82 bladder carcinoma cells, which express TF at moderate and relatively high levels, respectively, were incubated with varying concentrations (0-1.5 mg/ml) of Hb. After washing, cells were analyzed for Hb binding and TF expression using flow cytometry and confocal microscopy. Hb bound to the cells in a concentration-dependent manner, and increased both TF expression and PCA. The human A375 malignant melanoma cells incubated with Hb (1 mg/ml) expressed up to six times more TF antigen than cells without Hb. This increase in TF expression and PCA of intact cells incubated with Hb was significantly inhibited by cycloheximide at a concentration of 10 microg/ml (P < 0.01). An increase in total cellular TF antigen content was demonstrated by specific immunoassay. In contrast, Hb (5 mg/ml) did not induce TF expression and PCA on KG1 cells as determined by flow cytometry and TF (FXAA) activity. We conclude that Hb specifically binds to TF-bearing malignant cells and increases their PCA. This effect seems to be at least partly due to de novo synthesis of TF and increased surface expression. However, the exact mechanism by which Hb binds and upregulates TF expression remains to be determined.

  10. Nerve Growth Factor Expression Is Not Associated with Perineural Invasion in Extrahepatic Cholangiocarcinoma.

    PubMed

    Urabe, Kazuhide; Murakami, Yoshiaki; Kondo, Naru; Uemura, Kenichiro; Hashimoto, Yasushi; Nakagawa, Naoya; Sasaki, Hayato; Hiyama, Eiso; Takahashi, Shinya; Sueda, Taijiro

    2016-03-01

    Although the presence of perineural invasion has been recognized as a poor prognostic factor in extrahepatic cholangiocarcinoma, the molecular mechanisms of perineural invasion in extrahepatic cholangiocarcinoma remain unclear. Nerve growth factor has been reported to be a candidate predictive biomarker of perineural invasion in some cancers. To investigate the impact of intratumoral nerve growth factor expression in resected extrahepatic cholangiocarcinoma on survival. Intratumoral nerve growth factor expression was investigated immunohistochemically in 112 patients with resected extrahepatic cholangiocarcinoma. Associations between nerve growth factor expression and clinicopathological factors were statistically evaluated, and risk factors for poor survival were analyzed using univariate and multivariate analyses. High and low nerve growth factor expression was observed in 62 (55%) and 50 (45%) patients, respectively. For all 112 patients, no significant correlation was found between nerve growth factor expression and presence of perineural invasion (P = 0.942). Moreover, nerve growth factor expression was not associated with recurrence-free survival (P = 0.861) and overall survival (P = 0.973). In multivariate analysis, lymph node metastasis (P = 0.004) was identified as an independent risk factor for early recurrence and the presence of perineural invasion (P = 0.002) and lymph node metastasis (P < 0.001) was identified as independent risk factors for poor survival. Intratumoral nerve growth factor expression is not associated with perineural invasion or recurrence-free and overall survival in patients with resected extrahepatic cholangiocarcinoma.

  11. Effects of growth factors and glucosamine on porcine mandibular condylar cartilage cells and hyaline cartilage cells for tissue engineering applications.

    PubMed

    Wang, Limin; Detamore, Michael S

    2009-01-01

    Temporomandibular joint (TMJ) condylar cartilage is a distinct cartilage that has both fibrocartilaginous and hyaline-like character, with a thin proliferative zone that separates the fibrocartilaginous fibrous zone at the surface from the hyaline-like mature and hypertrophic zones below. In this study, we compared the effects of insulin-like growth factor-I (IGF-I), basic fibroblast growth factor (bFGF), transforming growth factor beta1 (TGF-beta1), and glucosamine sulphate on porcine TMJ condylar cartilage and ankle cartilage cells in monolayer culture. In general, TMJ condylar cartilage cells proliferated faster than ankle cartilage cells, while ankle cells produced significantly greater amounts of glycosaminoglycans (GAGs) and collagen than TMJ condylar cartilage cells. IGF-I and bFGF were potent stimulators of TMJ cell proliferation, while no signals statistically outperformed controls for ankle cell proliferation. IGF-I was the most effective signal for GAG production with ankle cells, and the most potent upregulator of collagen synthesis for both cell types. Glucosamine sulphate promoted cell proliferation and biosynthesis at specific concentrations and outperformed growth factors in certain instances. In conclusion, hyaline cartilage cells had lower cell numbers and superior biosynthesis compared to TMJ condylar cartilage cells, and we have found IGF-I at 100 ng/mL and glucosamine sulphate at 100 microg/mL to be the most effective signals for these cells under the prescribed conditions.

  12. Developmental expression patterns of candidate co-factors for vertebrate Six family transcription factors

    PubMed Central

    Neilson, Karen M.; Pignoni, Francesca; Yan, Bo; Moody, Sally A.

    2010-01-01

    Six family transcription factors play important roles in craniofacial development. Their transcriptional activity can be modified by co-factor proteins. Two Six genes and one co-factor gene (Eya1) are involved in the human Branchio-otic (BO) and Branchio-otic-renal (BOR) syndromes. However, mutations in Six and Eya genes only account for about half of these patients. To discover potential new causative genes, we searched the Xenopus genome for orthologues of Drosophila co-factor proteins that interact with the fly Six-related factor, SO. We identified 33 Xenopus genes with high sequence identity to 20 of the 25 fly SO-interacting proteins. We provide the developmental expression patterns of the Xenopus orthologues for 11 of the fly genes, and demonstrate that all are expressed in developing craniofacial tissues with at least partial overlap with Six1/Six2. We speculate that these genes may function as Six-interacting partners with important roles in vertebrate craniofacial development and perhaps congenital syndromes. PMID:21089078

  13. Suppression of tumor-induced angiogenesis by taspine isolated from Radix et Rhizoma Leonticis and its mechanism of action in vitro.

    PubMed

    Zhang, Yanmin; He, Langchong; Meng, Liang; Luo, Wenjuan; Xu, Xuemei

    2008-04-08

    The present study was to demonstrate the effect of taspine isolated from Radix et Rhizoma Leonticis on tumor angiogenesis and its mechanism of action. The anti-angiogenic effect in vivo was evaluated on chicken chorioallantoic membrane (CAM) neovascularisation model and CAM transplantation tumor model. Taspine exerted inhibitory influence on CAM angiogenesis and the growth and microvessel density (MVD) of CAM transplantation tumor at concentrations of 0.5-2μg/egg. The mechanism was demonstrated through detecting vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) protein secretion by enzyme-linked immunosorbent assay (ELISA), as well as mRNA expression of VEGF, Flt-1 and Flk-1/KDR by reverse transcription-polymerase chain reaction (RT-PCR). The results showed that taspine down-regulated the VEGF and bFGF secretion in human non-small cell lung cancer cell (A549 cell) and human umbilical vein endothelial cell (HUVEC), and the VEGF and Flk-1/KDR mRNA expression in HUVEC. Additionally, the effect of taspine on HUVEC migration was detected with the method of cell scrape. The result indicated that taspine inhibited HUVEC migration in a dose-dependent manner. These findings suggest that taspine might be a promising candidate as angiogenesis inhibitors.

  14. Tissue factor expression by endothelial cells in sickle cell anemia.

    PubMed

    Solovey, A; Gui, L; Key, N S; Hebbel, R P

    1998-05-01

    The role of the vascular endothelium in activation of the coagulation system, a fundamental homeostatic mechanism of mammalian biology, is uncertain because there is little evidence indicating that endothelial cells in vivo express tissue factor (TF), the system's triggering mechanism. As a surrogate for vessel wall endothelium, we examined circulating endothelial cells (CEC) from normals and patients with sickle cell anemia, a disease associated with activation of coagulation. We find that sickle CEC abnormally express TF antigen (expressed as percent CEC that are TF-positive), with 66+/-13% positive in sickle patients in steady-state, 83+/-19% positive in sickle patients presenting with acute vasoocclusive episodes, and only 10+/-13% positive in normal controls. Repeated samplings confirmed this impression that TF expression is greater when sickle patients develop acute vasoocclusive episodes. Sickle CEC are also positive for TF mRNA, with excellent concurrence between antigen and mRNA expression. The TF expressed on the antigen-positive CEC is functional, as demonstrated by a binding assay for Factor VIIa and a chromogenic assay sensitive to generation of Factor Xa. By establishing that endothelial cells in vivo can express TF, these data imply that the vast endothelial surface area does provide an important pathophysiologic trigger for coagulation activation.

  15. Evaluation of procoagulant tissue factor expression in canine hemangiosarcoma cell lines.

    PubMed

    Witter, Lauren E; Gruber, Erika J; Lean, Fabian Z X; Stokol, Tracy

    2017-01-01

    OBJECTIVE To evaluate expression of procoagulant tissue factor (TF) by canine hemangiosarcoma cells in vitro. SAMPLES 4 canine hemangiosarcoma cell lines (SB-HSA [mouse-passaged cutaneous tumor], Emma [primary metastatic brain tumor], and Frog and Dal-1 [primary splenic tumors]) and 1 nonneoplastic canine endothelial cell line (CnAoEC). PROCEDURES TF mRNA and TF antigen expression were evaluated by quantitative real-time PCR assay and flow cytometry, respectively. Thrombin generation was measured in canine plasma and in coagulation factor-replete or specific coagulation factor-deficient human plasma by calibrated automated thrombography. Corn trypsin inhibitor and annexin V were used to examine contributions of contact activation and membrane-bound phosphatidylserine, respectively, to thrombin generation. RESULTS All cell lines expressed TF mRNA and antigen, with significantly greater expression of both products in SB-HSA and Emma cells than in CnAoEC. A greater percentage of SB-HSA cells expressed TF antigen, compared with other hemangiosarcoma cell lines. All hemangiosarcoma cell lines generated significantly more thrombin than did CnAoEC in canine or factor-replete human plasma. Thrombin generation induced by SB-HSA cells was significantly lower in factor VII-deficient plasma than in factor-replete plasma and was abolished in factor X-deficient plasma; residual thrombin generation in factor VII-deficient plasma was abolished by incubation of cells with annexin V. Thrombin generation by SB-HSA cells was unaffected by the addition of corn trypsin inhibitor. CONCLUSIONS AND CLINICAL RELEVANCE Hemangiosarcoma cell lines expressed procoagulant TF in vitro. Further research is needed to determine whether TF can be used as a biomarker for hemostatic dysfunction in dogs with hemangiosarcoma.

  16. Effects of enamel matrix derivative and basic fibroblast growth factor with μ-tricalcium phosphate on periodontal regeneration in one-wall intrabony defects: an experimental study in dogs.

    PubMed

    Shirakata, Yoshinori; Takeuchi, Naoshi; Yoshimoto, Takehiko; Taniyama, Katsuyoshi; Noguchi, Kazuyuki

    2013-01-01

    This study evaluated the effects of enamel matrix derivative (EMD) and basic fibroblast growth factor (bFGF) with μ-tricalcium phosphate (μ-TCP) on periodontal healing in intrabony defects in dogs. One-wall intrabony defects created in dogs were treated with μ-TCP alone (μ-TCP), EMD with μ-TCP (EMD/μ-TCP), bFGF with μ-TCP (bFGF/μ-TCP), and a combination of each (EMD/bFGF/μ-TCP). The amount of new bone formation was not significant for any group. The EMD/bFGF/μ-TCP group induced significantly greater new cementum formation than the μ-TCP and bFGF/μ-TCP groups and, although not significantly, formed more new cementum than the EMD/μ-TCP group. These findings indicate that EMD/bFGF/μ-TCP treatment is effective for cementum regeneration.

  17. Alternative Sigma Factor Over-Expression Enables Heterologous Expression of a Type II Polyketide Biosynthetic Pathway in Escherichia coli

    PubMed Central

    Stevens, David Cole; Conway, Kyle R.; Pearce, Nelson; Villegas-Peñaranda, Luis Roberto; Garza, Anthony G.; Boddy, Christopher N.

    2013-01-01

    Background Heterologous expression of bacterial biosynthetic gene clusters is currently an indispensable tool for characterizing biosynthetic pathways. Development of an effective, general heterologous expression system that can be applied to bioprospecting from metagenomic DNA will enable the discovery of a wealth of new natural products. Methodology We have developed a new Escherichia coli-based heterologous expression system for polyketide biosynthetic gene clusters. We have demonstrated the over-expression of the alternative sigma factor σ54 directly and positively regulates heterologous expression of the oxytetracycline biosynthetic gene cluster in E. coli. Bioinformatics analysis indicates that σ54 promoters are present in nearly 70% of polyketide and non-ribosomal peptide biosynthetic pathways. Conclusions We have demonstrated a new mechanism for heterologous expression of the oxytetracycline polyketide biosynthetic pathway, where high-level pleiotropic sigma factors from the heterologous host directly and positively regulate transcription of the non-native biosynthetic gene cluster. Our bioinformatics analysis is consistent with the hypothesis that heterologous expression mediated by the alternative sigma factor σ54 may be a viable method for the production of additional polyketide products. PMID:23724102

  18. [Regeneration of autologous tissue-engineered cartilage by using basic-fibroblast growth factor in vitro culture].

    PubMed

    Ding, Xiao-bang; Cheng, Ning-xin; Chen, Bing; Xia, Wan-yao; Cui, Lei; Liu, Wei; Cao, Yi-lin

    2004-05-01

    To investigate the effect of the basic fibroblast growth factor (b-FGF) to regenerate an autologous tissue-engineered cartilage in vitro. The Cells were harvested from the elastic auricular cartilage of swine,and were plated at the concentration of 1 x 10(4) cells/cm2 , studied in vitro at two different media enviroments: Group I contained Ham's F-12 with supplements and b-FGF, Group II contained Ham's F-12 only with supplements. The passage 2 cells (after 12.75 +/- 1.26 days) were harvested and mixed with 30% pluronic F-127/Ham's F-12 at the concentration of 50 x 10(6) cells/ml. It was injected subcutaneously at 0.5 ml per implant. The implants were harvested 8 weeks after the vivo culture and examined with the histological stains. The chondrocytes displayed morphologically similar to the fibroblasts in the media containing basic-FGF. The number of cell doublings (after 12.75 +/- 1.26 days) in vitro culture was as the following: Group I, 70; Group II, 5.4. Eight 8 weeks after the vivo autologous implantation, the average weight (g) and volume (cm3) in each group was as the following: Group I, 0.371 g/0.370 cm3 Group II, 0.179 g/0.173 cm3 (P < 0.01). With the b-FGF in vitro culture, the cells were expanded by 70 times after 2 weeks. Histologically, all of the engineered cartilage in the two groups were similar to the native elastic cartilage. These results indicate that the basic-FGF could be used positively to enhance the quality and quantity of the seeding cells for the generation of the well-engineered cartilage.

  19. PRMT8 Controls the Pluripotency and Mesodermal Fate of Human Embryonic Stem Cells By Enhancing the PI3K/AKT/SOX2 Axis.

    PubMed

    Jeong, Ho-Chang; Park, Soon-Jung; Choi, Jong-Jin; Go, Young-Hyun; Hong, Soon-Ki; Kwon, Ok-Seon; Shin, Joong-Gon; Kim, Rae-Kwon; Lee, Mi-Ok; Lee, Su-Jae; Shin, Hyoung Doo; Moon, Sung-Hwan; Cha, Hyuk-Jin

    2017-09-01

    Basic fibroblast growth factor (bFGF) supplementation is critical to maintain the pluripotency of human pluripotent stem cells (hPSCs) through activation of PI3K/AKT, rather than MEK/ERK pathway. Thus, elaborate molecular mechanisms that preserve PI3K/AKT signaling upon bFGF stimulation may exist in hPSCs. Protein arginine methyltransferase 8 (PRMT8) was expressed and then its level gradually decreased during spontaneous differentiation of human embryonic stem cells (hESCs). PRMT8 loss- or gain-of-function studies demonstrated that PRMT8 contributed to longer maintenance of hESC pluripotency, even under bFGF-deprived conditions. Direct interaction of membrane-localized PRMT8 with p85, a regulatory subunit of PI3K, was associated with accumulation of phosphoinositol 3-phosphate and consequently high AKT activity. Furthermore, the SOX2 induction, which was controlled by the PRMT8/PI3K/AKT axis, was linked to mesodermal lineage differentiation. Thus, we propose that PRMT8 in hESCs plays an important role not only in maintaining pluripotency but also in controlling mesodermal differentiation through bFGF signaling toward the PI3K/AKT/SOX2 axis. Stem Cells 2017;35:2037-2049. © 2017 AlphaMed Press.

  20. Modulation of the binding of basic fibroblast growth factor and heparanase activity by purified λ-carrageenan oligosaccharides.

    PubMed

    Niu, Ting-Ting; Zhang, Dong-Sheng; Chen, Hai-Min; Yan, Xiao-Jun

    2015-07-10

    Inhibitors of angiogenesis and tumor metastasis are increasingly emerging as promising agents for cancer therapy. Here, we report λ-carrageenan oligosaccharides (λ-COs), highly-sulfated oligosaccharides acting as a basic fibroblast growth factor (bFGF) antagonist and heparanase inhibitor. λ-COs with degree of polymerization (DP) from 2 to 8 degraded by λ-carrageenase were separated and purified. The structures were identified by mass spectrometry. The activities of λ-COs are closely related with DP. λ-COs showed no cytotoxicity, but inactivated bFGF-induced cell proliferation; among them, λ-carraheptaose showed highest capability. Only λ-carraheptaose can effectively bind to bFGF. Binding kinetics showed that λ-carraheptaose and suramin had different binding modes, i.e., suramin displayed a fast association and fast dissociation, but λ-carraheptaose exhibited a slow association and slow dissociation. In addition, λ-COs showed the highest heparanase inhibitory ability and abolished the endothelial cell invasion. Thus, λ-COs may provide a tool to develop of new carbohydrate-based therapeutics against cancer and angiogenesis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Comparative characterization of stem cells from human exfoliated deciduous teeth, dental pulp, and bone marrow-derived mesenchymal stem cells.

    PubMed

    Kunimatsu, Ryo; Nakajima, Kengo; Awada, Tetsuya; Tsuka, Yuji; Abe, Takaharu; Ando, Kazuyo; Hiraki, Tomoka; Kimura, Aya; Tanimoto, Kotaro

    2018-06-18

    Mesenchymal stem cells (MSCs) are used clinically in tissue engineering and regenerative medicine. The proliferation and osteogenic differentiation potential of MSCs vary according to factors such as tissue source and cell population heterogeneity. Dental tissue has received attention as an easily accessible source of high-quality stem cells. In this study, we compared the in vitro characteristics of dental pulp stem cells from deciduous teeth (SHED), human dental pulp stem cells (hDPSCs), and human bone marrow mesenchymal stem cells (hBMSCs). SEHD and hDPSCs were isolated from dental pulp and analyzed in comparison with human bone marrow (hBM)MSCs. Proliferative capacity of cultured cells was analyzed using a bromodeoxyuridine immunoassay and cell counting. Alkaline phosphatase (ALP) levels were monitored to assess osteogenic differentiation. Mineralization was evaluated by alizarin red staining. Levels of bone marker mRNA were examined by real-time PCR analysis. SHED were highly proliferative compared with hDPSCs and hBMSCs. SHED, hDPSCs, and hBMSCs exhibited dark alizarin red staining on day 21 after induction of osteogenic differentiation, and staining of hBMSCs was significantly higher than that of SHED and hDPSCs by spectrophotometry. ALP staining was stronger in hBMSCs compared with SHED and hDPSCs, and ALP activity was significantly higher in hBMSCs compared with SHED or hDPSCs. SHED showed significantly higher expression of the Runx2 and ALP genes compared with hBMSCs, based on real-time PCR analysis. In bFGF, SHED showed significantly higher expression of the basic fibroblast growth factor (bFGF) gene compared with hDPSCs and hBMSCs. SHED exhibited higher proliferative activity and levels of bFGF and BMP-2 gene expression compared with BMMSCs and DPSCs. The ease of harvesting cells and ability to avoid invasive surgical procedures suggest that SHED may be a useful cell source for application in bone regeneration treatments. Copyright © 2018 Elsevier Inc

  2. Tumor endothelial marker 5 expression in endothelial cells during capillary morphogenesis is induced by the small GTPase Rac and mediates contact inhibition of cell proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vallon, Mario, E-mail: m.vallon@arcor.de; Rohde, Franziska; Janssen, Klaus-Peter

    2010-02-01

    Tumor endothelial marker (TEM) 5 is an adhesion G-protein-coupled receptor upregulated in endothelial cells during tumor and physiologic angiogenesis. So far, the mechanisms leading to upregulation of TEM5 and its function during angiogenesis have not been identified. Here, we report that TEM5 expression in endothelial cells is induced during capillary-like network formation on Matrigel, during capillary morphogenesis in a three-dimensional collagen I matrix, and upon confluence on a two-dimensional matrix. TEM5 expression was not induced by a variety of soluble angiogenic factors, including VEGF and bFGF, in subconfluent endothelial cells. TEM5 upregulation was blocked by toxin B from Clostridium difficile,more » an inhibitor of the small GTPases Rho, Rac, and Cdc42. The Rho inhibitor C3 transferase from Clostridium botulinum did not affect TEM5 expression, whereas the Rac inhibitor NSC23766 suppressed TEM5 upregulation. An excess of the soluble TEM5 extracellular domain or an inhibitory monoclonal TEM5 antibody blocked contact inhibition of endothelial cell proliferation resulting in multilayered islands within the endothelial monolayer and increased vessel density during capillary formation. Based on our results we conclude that TEM5 expression during capillary morphogenesis is induced by the small GTPase Rac and mediates contact inhibition of proliferation in endothelial cells.« less

  3. MicroRNA-29 facilitates transplantation of bone marrow-derived mesenchymal stem cells to alleviate pelvic floor dysfunction by repressing elastin.

    PubMed

    Jin, Minfei; Wu, Yuelin; Wang, Jun; Ye, Weiping; Wang, Lei; Yin, Peipei; Liu, Wei; Pan, Chenhao; Hua, Xiaolin

    2016-11-17

    Pelvic floor dysfunction (PFD) is a condition affecting many women worldwide, with symptoms including stress urinary incontinence (SUI) and pelvic organ prolapse (POP). We have previously demonstrated stable elastin-expressing bone marrow-derived mesenchymal stem cells (BMSCs) attenuated PFD in rats, and aim to further study the effect of microRNA-29a-3p regulation on elastin expression and efficacy of BMSC transplantation therapy. We inhibited endogenous microRNA-29a-3p in BMSCs and investigated its effect on elastin expression by RT-PCR and Western blot. MicroRNA-29-inhibited BMSCs were then transplanted into PFD rats, accompanied by sustained release of bFGF using formulated bFGF in poly (lactic-co-glycolic acid) (PLGA) nanoparticles (NP), followed by evaluation of urodynamic tests. MicroRNA-29a-3p inhibition resulted in upregulated expression and secretion of elastin in in vitro culture of BMSCs. After co-injection with PLGA-loaded bFGF NP into the PFD rats in vivo, microRNA-29a-3p-inhibited BMSCs significantly improved the urodynamic test results. Our multidisciplinary study, combining microRNA biology, genetically engineered BMSCs, and nanoparticle technology, provides an excellent stem cell-based therapy for repairing connective tissues and treating PFD.

  4. Kruppel-like factor 2 inhibits hypoxia-inducible factor 1alpha expression and function in the endothelium.

    PubMed

    Kawanami, Daiji; Mahabeleshwar, Ganapati H; Lin, Zhiyong; Atkins, G Brandon; Hamik, Anne; Haldar, Saptarsi M; Maemura, Koji; Lamanna, Joseph C; Jain, Mukesh K

    2009-07-31

    Hypoxia-inducible factor 1 (HIF-1) is a central regulator of the hypoxic response in many cell types. In endothelial cells, HIF-1 induces the expression of key proangiogenic factors to promote angiogenesis. Recent studies have identified Kruppel-like factor 2 (KLF2) as a potent inhibitor of angiogenesis. However, the role of KLF2 in regulating HIF-1 expression and function has not been evaluated. KLF2 expression was induced acutely by hypoxia in endothelial cells. Adenoviral overexpression of KLF2 inhibited hypoxia-induced expression of HIF-1alpha and its target genes such as interleukin 8, angiopoietin-2, and vascular endothelial growth factor in endothelial cells. Conversely, knockdown of KLF2 increased expression of HIF-1alpha and its targets. Furthermore, KLF2 inhibited hypoxia-induced endothelial tube formation, whereas endothelial cells from mice with haploinsufficiency of KLF2 showed increased tube formation in response to hypoxia. Consistent with this ex vivo observation, KLF2 heterozygous mice showed increased microvessel density in the brain. Mechanistically, KLF2 promoted HIF-1alpha degradation in a von Hippel-Lindau protein-independent but proteasome-dependent manner. Finally, KLF2 disrupted the interaction between HIF-1alpha and its chaperone Hsp90, suggesting that KLF2 promotes degradation of HIF-1alpha by affecting its folding and maturation. These observations identify KLF2 as a novel inhibitor of HIF-1alpha expression and function. Therefore, KLF2 may be a target for modulating the angiogenic response in disease states.

  5. Recombinant expression of extracellular domain of mutant Epidermal Growth Factor Receptor in prokaryotic and baculovirus expression systems.

    PubMed

    Vettath, Sunitha Kodengil; Shivashankar, Gaganashree; Menon, Krishnakumar N; Vijayachandran, Lakshmi S

    2018-04-15

    Epidermal Growth Factor Receptor variant III (EGFRvIII) is a tumor specific antigen detected in various tumors including gliomas, breast cancer, lung cancer, head and neck squamous cell carcinoma (HNSCC). Screening of EGFRvIII targeting drug molecules can be accelerated by developing drug screening platforms using recombinantly expressed protein. Choice of expression system is one of the major factors deciding the success of recombinant expression of a protein. In our study, we have tried to express and purify the extracellular domain (ECD) of this highly unstable protein using bacterial and baculovirus expression systems to select the expression system suited for our purpose. Even though the protein was successfully expressed in prokaryotic system, purification could be done only under denaturing conditions. But in the baculovirus expression system, the protein was expressed in soluble form and could be purified under native conditions, with single step of purification. Based on our results, we conclude that insect cells are better choice over E. coli cells for expressing EGFRvIII ECD in soluble form. This study provides insights for other researchers involved in expression of similar unstable membrane proteins, on selecting the best expression system and challenges involved. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) expression in colorectal cancer.

    PubMed

    Nagano, Hideki; Goi, Takanori; Koneri, Kenji; Hirono, Yasuo; Katayama, Kanji; Yamaguchi, Akio

    2007-12-01

    Vascular endothelial growth factor (VEGF) is known as an important factor in the growth and metastasis of cancer cells. In 2001, a novel angiogenesis factor, endocrine gland-derived vascular endothelial growth factor (EG-VEGF), was cloned. In this study, we investigated the expression of EG-VEGF in colorectal cancer, the relationship between its expression and clinicopathological factors, and the in vitro activity of EG-VEGF transfectants. We determined expression levels of EG-VEGF in 113 advanced colorectal cancers resected in our hospital by quantitative PCR, and compared the expression levels and clinicopathological findings by multivariate analyses. The expression of EG-VEGF mRNA was positive in 31 cancers and negative in 82 cancers. We found that compared with the negative expression of the EG-VEGF gene, its positive expression was more frequently associated with hematogenous metastasis, and was associated with a poorer survival rate. In addition, EG-VEGF transfectants showed a higher degree of in vitro tubular formation than control cells. We speculate that, in colorectal cancers, the EG-VEGF gene functions as an important factor in angiogenesis in primary and metastatic lesions, and consider that it is useful as a novel prognostic factor. EG-VEGF molecule-targeted therapy has the potential for improving survival rates.

  7. Utilization of Microgravity Bioreactor for Differentiation and Growth of Human Vascular Endothelial Cells

    NASA Technical Reports Server (NTRS)

    Chen, Chu-Huang; Pellis, Neal R.

    1997-01-01

    The goal was to delineate mechanisms of genetic responses to angiogenic stimulation of human coronary arterial and dermal microvascular endothelial cells during exposure to microgravity. The NASA-designed rotating-wall vessel was used to create a three-dimensional culture environment with low shear-stress and microgravity simulating that in space. The primary specific aim was to determine whether simulated microgravity enhances endothelial cell growth and whether the growth enhancement is associated by augmented expression of Basic Fibroblast Growth Factor (BFGF) and c-fos, an immediate early gene and component of the transcription factor AP-1.

  8. Clinical validation of nuclear factor kappa B expression in invasive breast cancer.

    PubMed

    Agrawal, Anil Kumar; Pielka, Ewa; Lipinski, Artur; Jelen, Michal; Kielan, Wojciech; Agrawal, Siddarth

    2018-01-01

    Breast cancer is the most commonly diagnosed cancer in Polish women. The expression of transcription nuclear factor kappa B, a key inducer of inflammatory response promoting carcinogenesis and cancer progression in breast cancer, is not well-established. We assessed the nuclear factor kappa B expression in a total of 119 invasive breast carcinomas and 25 healthy control samples and correlated this expression pattern with several clinical and pathologic parameters including histologic type and grade, tumor size, lymph node status, estrogen receptor status, and progesterone receptor status. The data used for the analysis were derived from medical records. An immunohistochemical analysis of nuclear factor kappa B, estrogen receptor, and progesterone receptor was carried out and evaluation of stainings was performed. The expression of nuclear factor kappa B was significantly higher than that in the corresponding healthy control samples. No statistical difference was demonstrated in nuclear factor kappa B expression in relation to age, menopausal status, lymph node status, tumor size and location, grade and histologic type of tumor, and hormonal status (estrogen receptor and progesterone receptor). Nuclear factor kappa B is significantly overexpressed in invasive breast cancer tissues. Although nuclear factor kappa B status does not correlate with clinicopathological findings, it might provide important additional information on prognosis and become a promising object for targeted therapy.

  9. Autocrine expression of the epidermal growth factor receptor ligand heparin-binding EGF-like growth factor in cervical cancer.

    PubMed

    Schrevel, Marlies; Osse, E Michelle; Prins, Frans A; Trimbos, J Baptist M Z; Fleuren, Gert Jan; Gorter, Arko; Jordanova, Ekaterina S

    2017-06-01

    In cervical cancer, the epidermal growth factor receptor (EGFR) is overexpressed in 70-90% of the cases and has been associated with poor prognosis. EGFR-based therapy is currently being explored in cervical cancer. We investigated which EGFR ligand is primarily expressed in cervical cancer and which cell type functions as the major source of this ligand. We hypothesized that macrophages are the main source of EGFR ligands and that a paracrine loop between tumor cells and macrophages is responsible for ligand expression. mRNA expression analysis was performed on 32 cervical cancer cases to determine the expression of the EGFR ligands amphiregulin, β-cellulin, epidermal growth factor (EGF), epiregulin, heparin-binding EGF-like growth factor (HB‑EGF) and transforming growth factor α (TGFα). Subsequently, protein expression was determined immunohistochemically on 36 additional cases. To assess whether macrophages are the major source of EGFR ligands, immunohistochemical double staining was performed on four representative tissue slides. Expression of the chemokines granulocyte-macrophage colony-stimulating factor (GM-CSF) and C-C motif ligand 2 (CCL2) was determined by mRNA in situ hybridization. Of the known EGFR ligands, HB‑EGF had the highest mRNA expression and HB‑EGF and EGFR protein expression were highly correlated. Tumor specimens with high EGFR expression showed higher numbers of macrophages, and higher expression of GM-CSF and CCL2, but only a small subset (9%) of macrophages was found to be HB‑EGF-positive. Strikingly, 78% of cervical cancer specimens were found to express HB‑EGF. Standardized assessment of staining intensity, using spectral imaging analysis, showed that HB‑EGF expression was higher in the tumor compartment than in the stromal compartment. These results suggest that HB‑EGF is an important EGFR ligand in cervical cancer and that cervical cancer cells are the predominant source of HB‑EGF. Therefore, we propose an autocrine

  10. Factor XIIIa is expressed by fibroblasts in fibrovascular tumors.

    PubMed

    Nemeth, A J; Penneys, N S

    1989-10-01

    Factor XIIIa (FXIIIa), a blood and intracellularly produced coagulation factor, has been found in a variety of cell types including fibroblast-like mesenchymal cells, and has been shown to stimulate the proliferation of fibroblasts and some neoplastic cells in vitro. We have already shown that the dendritic fibroblasts composing the fibrous papule contain this factor. We hypothesized that histopathologically similar fibrovascular tumors may also express FXIIIa and, in this report, show that the large stellate fibroblasts found in acquired digital fibrokeratomas, angiofibromas (adenoma sebaceum of Pringle), and oral fibroma (oral fibrous hyperplasia) also express FXIIIa. We postulate that FXIIIa, possibly acting as a growth factor, may be a common denominator in the pathogenesis of these tumors. Another possibility is that these tumors may be the consequence of a local overproduction of FXIIIa in response to an, as yet, unidentified stimulus.

  11. E74-like factor 2 regulates valosin-containing protein expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Binglin; Tomita, Yasuhiko; Qiu, Ying

    2007-05-11

    Enhanced expression of valosin-containing protein (VCP) correlates with invasion and metastasis of cancers. To clarify the transcription mechanism of VCP, human and mouse genomic sequence was compared, revealing a 260 bp DNA sequence in the 5'-flanking region of VCP gene to be highly conserved between the two, in which binding motif of E74-like factor 2/new Ets-related factor (ELF2/NERF) was identified. Chromatin immunoprecipitation assay showed binding of ELF2/NERF to the 5'-flanking region of VCP gene. Knock-down of ELF2/NERF by siRNA decreased expression level of VCP. Viability of cells under tumor necrosis factor-alpha treatment significantly reduced in ELF2/NERF-knock-down breast cancer cell line.more » Immunohistochemical analysis on clinical breast cancer specimens showed a correlation of nuclear ELF2/NERF expression with VCP expression and proliferative activity of cells shown by Ki-67 immunohistochemistry. These findings indicate that ELF2/NERF promotes VCP transcription and that ELF2/NERF-VCP pathway might be important for cell survival and proliferation under cytokine stress.« less

  12. Angiogenic factors in chronic lymphocytic leukaemia (CLL): Where do we stand?

    PubMed

    Aguirre Palma, Luis Mario; Gehrke, Iris; Kreuzer, Karl-Anton

    2015-03-01

    The role of angiogenesis in haematological malignancies such as chronic lymphocytic leukaemia (CLL) is difficult to envision, because leukaemia cells are not dependent on a network of blood vessels to support basic physiological requirements. Regardless, CLL cells secrete high levels of major angiogenic factors, such as vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), and platelet derived growth factor (PDGF). Nonetheless, it remains unclear how most angiogenic factors regulate accumulation and delayed apoptosis of CLL cells. Angiogenic factors such as leptin, granulocyte colony-stimulating factor (G-CSF), follistatin, angiopoietin-1 (Ang1), angiogenin (ANG), midkine (MK), pleiotrophin (PTN), progranulin (PGRN), proliferin (PLF), placental growth factor (PIGF), and endothelial locus-1 (Del-1), represent novel therapeutic targets of future CLL research but have remained widely overlooked. This review aims to outline our current understanding of angiogenic growth factors and their relationship with CLL, a still uncured haematopoietic malignancy. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Krüppel Like Factors Family Expression in Cervical Cancer Cells.

    PubMed

    Marrero-Rodríguez, Daniel; la Cruz, Hugo Arreola-De; Taniguchi-Ponciano, Keiko; Gomez-Virgilio, Laura; Huerta-Padilla, Victor; Ponce-Navarrete, Gustavo; Andonegui-Elguera, Sergio; Jimenez-Vega, Florinda; Romero-Morelos, Pablo; Rodriguez-Esquivel, Miriam; Meraz-Rios, Marco; Figueroa-Corona, Ma Del Pilar; Monroy, Alberto; Pérez-González, Oscar; Salcedo, Mauricio

    2017-05-01

    Krüppel Like Factors (KLF) refers to a family of seventeen members of transcription factors. Involved in several cellular processes. As other cancer types, Cervical Cancer (CC) presents molecular deregulations in transcription factors, but especially Human Papilloma Virus (HPV) sequences. Here in this work we analyzed the mRNA expression of all KLF family members in CC-derived cell lines and CC tissues. The cell lines used were HeLa, INBL, RoVa, C4-I, Ms751, ViPa, CaLo, SiHa, CaSki, C33a and ViBo and the non-tumorigenic HaCaT. mRNA expression was analyzed by means of expression microarray and RT-PCR, and KLF5 protein by immunofluorescence. The cell lines were grouped according to HPV genotype as HPV16, HPV18 positive or HPV negative cells. Heterogeneous expression was observed among the cell lines. Despite the heterogeneous expression profile, KLF3, -5, -12, -15 and -16 transcripts were present in all cell lines, KLF4 and -10 which were not expressed in CaSki; KLF11 and 13 were not expressed by Vipa and C4-I, and KLF7 was not expressed by C4-I and Rova. The CC tissue analysis shows expression of most of the KLF members, such as KLF5. KLF5 immunosignal was positive in the three cell lines analyzed. We suggest that KLF expression could not be related to HPV presence/genotype, at least at transcriptional level, and the expression of KLF family members may be necessary in the biology of the CC cells. Copyright © 2017 IMSS. Published by Elsevier Inc. All rights reserved.

  14. [The results of combined ozone therapy using in complex treatment of soft tissues infections in patients with diabetes mellitus type II].

    PubMed

    Vinnik, Iu S; Salmina, A B; Tepliakova, O V; Drobushevskaia, A I; Pozhilenkova, E A; Morgun, A V; Shapran, M V; Kovalenko, A O

    2015-01-01

    Levels of interleukins-6, 8, 10, TNF-alpha and basic fibroblast growth factor (bFGF) were examined in peripheral blood of 60 patients with diabetes mellitus type II and soft tissues infections. It was revealed the elevated levels of proinflammatory (IL-6, 8), anti-inflammatory (IL-10) cytokines and basic fibroblast growth factor at the time of admission. Application of combined ozone therapy including ozonated autohemotherapy and superficial management of wounds with ozone-oxygen mixture resulted in significant decrease of IL-6, 8, 10 production and high level of bFGF on blood serum. Thus effective local bactericidal impact of ozone in combination with normalization of proinflammatory cytokines levels and preserved high level of bFGF in peripheral blood provide better results of wound healing process in patients with diabetes mellitus type II.

  15. Leptin plays a catabolic role on articular cartilage.

    PubMed

    Bao, Jia-peng; Chen, Wei-ping; Feng, Jie; Hu, Peng-fei; Shi, Zhong-li; Wu, Li-dong

    2010-10-01

    Leptin has been shown to play a crucial role in the regulation of body weight. There is also evidence that this adipokine plays a key role in the process of osteoarthritis. However, the precise role of leptin on articular cartilage metabolism is not clear. We investigate the role of leptin on articular cartilage in vivo in this study. Recombinant rat leptin (100 μg) was injected into the knee joints of rats, 48 h later, messenger RNA (mRNA) expression and protein levels of basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), matrix metalloproteinases 2 and 9 (MMP-2, MMP-9), cathepsin D, and collagen II from articular cartilage were analyzed by real-time quantitative polymerase chain reaction (PCR) and western blot. Two important aggrecanases ADAMTS-4 and -5 (a disintegrin and metalloproteinase with thrombospondin motifs 4 and 5) were also analyzed by real-time quantitative PCR. Besides, articular cartilage was also assessed for proteoglycan/GAG content by Safranin O staining. Leptin significantly increased both gene and protein levels of MMP-2, MMP-9, cathepsin D, and collagen II, while decreased bFGF markedly in cartilage. Moreover, the gene expression of ADAMTS-4 and -5 were markedly increased, and histologically assessed depletion of proteoglycan in articular cartilage was observed after treatment with leptin. These results strongly suggest that leptin plays a catabolic role on cartilage metabolism and may be a disadvantage factor involve in the pathological process of OA.

  16. Evaluation of procoagulant tissue factor expression in canine hemangiosarcoma cell lines

    PubMed Central

    Witter, Lauren E.; Gruber, Erika J.; Lean, Fabian Z. X.; Stokol, Tracy

    2017-01-01

    OBJECTIVE To evaluate expression of procoagulant tissue factor (TF) by canine hemangiosarcoma cells in vitro. SAMPLES 4 canine hemangiosarcoma cell lines (SB-HSA [mouse-passaged cutaneous tumor], Emma [primary metastatic brain tumor], and Frog and Dal-1 [primary splenic tumors]) and 1 nonneoplastic canine endothelial cell line (CnAoEC). PROCEDURES TF mRNA and TF antigen expression were evaluated by quantitative real-time PCR assay and flow cytometry, respectively. Thrombin generation was measured in canine plasma and in coagulation factor–replete or specific coagulation factor–deficient human plasma by calibrated automated thrombography. Corn trypsin inhibitor and annexin V were used to examine contributions of contact activation and membrane-bound phosphatidylserine, respectively, to thrombin generation. RESULTS All cell lines expressed TF mRNA and antigen, with significantly greater expression of both products in SB-HSA and Emma cells than in CnAoEC. A greater percentage of SB-HSA cells expressed TF antigen, compared with other hemangiosarcoma cell lines. All hemangiosarcoma cell lines generated significantly more thrombin than did CnAoEC in canine or factor-replete human plasma. Thrombin generation induced by SB-HSA cells was significantly lower in factor VII-deficient plasma than in factor-replete plasma and was abolished in factor X–deficient plasma; residual thrombin generation in FVII-deficient plasma was abolished by incubation of cells with annexin V. Thrombin generation by SB-HSA cells was unaffected by the addition of corn trypsin inhibitor. CONCLUSIONS AND CLINICAL RELEVANCE Hemangiosarcoma cell lines expressed procoagulant TF in vitro. Further research is needed to determine whether TF can be used as a biomarker for hemostatic dysfunction in dogs with hemangiosarcoma. PMID:28029283

  17. Accurate expressions for solar cell fill factors including series and shunt resistances

    NASA Astrophysics Data System (ADS)

    Green, Martin A.

    2016-02-01

    Together with open-circuit voltage and short-circuit current, fill factor is a key solar cell parameter. In their classic paper on limiting efficiency, Shockley and Queisser first investigated this factor's analytical properties showing, for ideal cells, it could be expressed implicitly in terms of the maximum power point voltage. Subsequently, fill factors usually have been calculated iteratively from such implicit expressions or from analytical approximations. In the absence of detrimental series and shunt resistances, analytical fill factor expressions have recently been published in terms of the Lambert W function available in most mathematical computing software. Using a recently identified perturbative relationship, exact expressions in terms of this function are derived in technically interesting cases when both series and shunt resistances are present but have limited impact, allowing a better understanding of their effect individually and in combination. Approximate expressions for arbitrary shunt and series resistances are then deduced, which are significantly more accurate than any previously published. A method based on the insights developed is also reported for deducing one-diode fits to experimental data.

  18. Cell cycle re-entry sensitizes podocytes to injury induced death

    PubMed Central

    Hagen, Manuel; Pfister, Eva; Kosel, Andrea; Shankland, Stuart; Pippin, Jeffrey; Amann, Kerstin; Daniel, Christoph

    2016-01-01

    ABSTRACT Podocytes are terminally differentiated renal cells, lacking the ability to regenerate by proliferation. However, during renal injury, podocytes re-enter into the cell cycle but fail to divide. Earlier studies suggested that re-entry into cell cycle results in loss of podocytes, but a direct evidence for this is lacking. Therefore, we established an in vitro model to test the consequences of re-entry into the cell cycle on podocyte survival. A mouse immortalized podocyte cell line was differentiated to non-permissive podocytes and stimulated with e.g. growth factors. Stimulated cells were analyzed for mRNA-expression or stained for cell cycle analysis using flow cytometry and immunocytofluorescence microscopy. After stimulation to re-entry into cell cycle, podocytes were stressed with puromycin aminonucleoside (PAN) and analyzed for survival. During permissive stage more than 40% of immortalized podocytes were in the S-phase. In contrast, S-phase in non-permissive differentiated podocytes was reduced to 5%. Treatment with b-FGF dose dependently induced re-entry into cell cycle increasing the number of podocytes in the S-phase to 10.7% at an optimal bFGF dosage of 10 ng/ml. Forty eight hours after stimulation with bFGF the number of bi-nucleated podocytes significantly increased. A secondary injury stimulus significantly reduced podocyte survival preferentially in bi-nucleated podocytes In conclusion, stimulation of podocytes using bFGF was able to induce re-entry of podocytes into the cell cycle and to sensitize the cells for cell death by secondary injuries. Therefore, this model is appropriate for testing new podocyte protective substances that can be used for therapy. PMID:27232327

  19. Cell cycle re-entry sensitizes podocytes to injury induced death.

    PubMed

    Hagen, Manuel; Pfister, Eva; Kosel, Andrea; Shankland, Stuart; Pippin, Jeffrey; Amann, Kerstin; Daniel, Christoph

    2016-07-17

    Podocytes are terminally differentiated renal cells, lacking the ability to regenerate by proliferation. However, during renal injury, podocytes re-enter into the cell cycle but fail to divide. Earlier studies suggested that re-entry into cell cycle results in loss of podocytes, but a direct evidence for this is lacking. Therefore, we established an in vitro model to test the consequences of re-entry into the cell cycle on podocyte survival. A mouse immortalized podocyte cell line was differentiated to non-permissive podocytes and stimulated with e.g. growth factors. Stimulated cells were analyzed for mRNA-expression or stained for cell cycle analysis using flow cytometry and immunocytofluorescence microscopy. After stimulation to re-entry into cell cycle, podocytes were stressed with puromycin aminonucleoside (PAN) and analyzed for survival. During permissive stage more than 40% of immortalized podocytes were in the S-phase. In contrast, S-phase in non-permissive differentiated podocytes was reduced to 5%. Treatment with b-FGF dose dependently induced re-entry into cell cycle increasing the number of podocytes in the S-phase to 10.7% at an optimal bFGF dosage of 10 ng/ml. Forty eight hours after stimulation with bFGF the number of bi-nucleated podocytes significantly increased. A secondary injury stimulus significantly reduced podocyte survival preferentially in bi-nucleated podocytes In conclusion, stimulation of podocytes using bFGF was able to induce re-entry of podocytes into the cell cycle and to sensitize the cells for cell death by secondary injuries. Therefore, this model is appropriate for testing new podocyte protective substances that can be used for therapy.

  20. Factors Expressed in an Animal Model of Anteroinferior Glenohumeral Instability

    PubMed Central

    Mulcahey, Mary K.; Marshall, Mindy; Gallacher, Stacey E.; Kaback, Lee A.; Blaine, Theodore A.

    2015-01-01

    Background: There is little information on the molecular factors important in healing and changes that occur in the glenoid labrum in response to injury. Using a novel animal model of acute anterior shoulder dislocation, this study characterizes the factors expressed in the glenoid labrum in response to injury and correlates their expression to glenohumeral stability. Purpose: To study the response of the glenoid labrum to injury both biomechanically and with immunohistochemical testing. Methods: An injury to the anteroinferior labrum was surgically induced in 50 male Lewis rats. Rats were sacrificed at 3, 7, 14, 28, or 42 days. Immunolocalization experiments were performed to localize the expression of growth factors and cytokines. For biomechanical testing, dynamic stiffness for anterior and posterior laxity, load to failure, stiffness, and maximum load were recorded. Statistical differences were determined at P < .05. Study Design: Descriptive laboratory study. Results: Expression of interleukin–1 beta (IL-1β), transforming growth factor–beta 1 (TGF-β1), matrix metalloproteinase 3 (MMP3), and matrix metalloproteinase 13 (MMP13) were increased in injured compared with uninjured specimens. Collagen III expression was increased early and decreased with time. Biomechanical testing verified instability by demonstrating increased anterior displacement and decreased stiffness in injured shoulders at all time points. Conclusion: This novel animal model of acute anterior shoulder dislocation showed increased expression of IL-1β, TGF-β1, MMP3, MMP13, and collagen III in the injured labral tissue at early time points. Increased anterior laxity and decreased stiffness and maximum load to failure were seen after anterior labral injury, supporting the model’s ability to re-create anterior glenohumeral instability. These data provide important information on the temporal changes occurring in a rat model of anterior glenohumeral dislocation. Clinical Relevance

  1. [Effects of arnebia root oil on wound healing of rats with full-thickness skin defect and the related mechanism].

    PubMed

    Shen, J Y; Ma, Q; Yang, Z B; Gong, J J; Wu, Y S

    2017-09-20

    Objective: To observe the effects of arnebia root oil on wound healing of rats with full-thickness skin defect, and to explore the related mechanism. Methods: Eighty SD rats were divided into arnebia root oil group and control group according to the random number table, with 40 rats in each group, then full-thickness skin wounds with area of 3 cm×3 cm were inflicted on the back of each rat. Wounds of rats in arnebia root oil group and control group were treated with sterile medical gauze and bandage package infiltrated with arnebia root oil gauze or Vaseline gauze, respectively, with dressing change of once every two days. On post injury day (PID) 3, 7, 14, and 21, 10 rats in each group were sacrificed respectively for general observation and calculation of wound healing rate. The tissue samples of unhealed wound were collected for observation of histomorphological change with HE staining, observation of expressions of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) with immunohistochemical staining, and determination of mRNA expressions of VEGF and bFGF with real time fluorescent quantitive reverse transcription polymerase chain reaction. Data were processed with analysis of variance of factorial design, t test, and Bonferroni correction. Results: (1) On PID 3, there were a few secretions in wounds of rats in the two groups. On PID 7, there were fewer secretions and more granulation tissue in wounds of rats in arnebia root oil group, while there were more secretions and less granulation tissue in wounds of rats in control group. On PID 14, most of the wounds of rats in arnebia root oil group were healed and there was much red granulation tissue in unhealed wounds, while part of wounds of rats in control group was healed and there were a few secretions and less granulation tissue in unhealed wounds. On PID 21, wounds of rats in arnebia root oil group were basically healed, while there were still some unhealed wounds of rats in

  2. Insulin-like growth factor and fibroblast growth factor expression profiles in growth-restricted fetal sheep pancreas.

    PubMed

    Chen, Xiaochuan; Rozance, Paul J; Hay, William W; Limesand, Sean W

    2012-05-01

    Placental insufficiency results in intrauterine growth restriction (IUGR), impaired fetal insulin secretion and less fetal pancreatic β-cell mass, partly due to lower β-cell proliferation rates. Insulin-like growth factors (IGFs) and fibroblast growth factors (FGFs) regulate fetal β-cell proliferation and pancreas development, along with transcription factors, such as pancreatic and duodenal homeobox 1 (PDX-1). We determined expression levels for these growth factors, their receptors and IGF binding proteins in ovine fetal pancreas and isolated islets. In the IUGR pancreas, relative mRNA expression levels of IGF-I, PDX-1, FGF7 and FGFR2IIIb were 64% (P < 0.01), 76% (P < 0.05), 76% (P < 0.05) and 52% (P < 0.01) lower, respectively, compared with control fetuses. Conversely, insulin-like growth factor binding protein 2 (IGFBP-2) mRNA and protein concentrations were 2.25- and 1.2-fold greater (P < 0.05) in the IUGR pancreas compared with controls. In isolated islets from IUGR fetuses, IGF-II and IGFBP-2 mRNA concentrations were 1.5- and 3.7-fold greater (P < 0.05), and insulin mRNA was 56% less (P < 0.05) than control islets. The growth factor expression profiles for IGF and FGF signaling pathways indicate that declines in β-cell mass are due to decreased growth factor signals for both pancreatic progenitor epithelial cell and mature β-cell replication.

  3. The Anti-Inflammatory Cytokine Interleukin-19 Is Expressed in and Angiogenic for Human Endothelial Cells

    PubMed Central

    Jain, Surbhi; Gabunia, Khatuna; Kelemen, Sheri E.; Panetti, Tracee S.; Autieri, Michael V.

    2010-01-01

    OBJECTIVE The expression and effects of anti-inflammatory interleukins on endothelial cell (EC) activation and development of angiogenesis is uncharacterized. The purpose of this study is to characterize the expression and function of Interleukin-19 (IL-19), a recently described Th2 anti-inflammatory interleukin on EC pathophysiology. METHODS and RESULTS We demonstrate by immunohistochemistry and immunoblot that IL-19 is expressed in inflamed, but not normal human coronary endothelium, and can be induced in cultured human EC by serum and bFGF. IL-19 is mitogenic, chemotactic, and promotes cell EC spreading. IL-19 activates the signaling proteins STAT3, p44/42, and Rac1. In functional ex vivo studies, IL-19 promotes cord-like structure formation of cultured EC and also enhances microvessel sprouting in the mouse aortic ring assay. IL-19 induces tube formation in matrigel plugs in vivo. CONCLUSIONS These data are the first to report expression of the anti-inflammatory interleukin IL-19 in EC, and the first to indicate that IL-19 is mitogenic and chemotactic for EC, and can induce the angiogenic potential of EC. PMID:20966397

  4. A novel approach to therapeutic angiogenesis for patients with critical limb ischemia by sustained release of basic fibroblast growth factor using biodegradable gelatin hydrogel: an initial report of the phase I-IIa study.

    PubMed

    Marui, Akira; Tabata, Yasuhiko; Kojima, Shinsuke; Yamamoto, Masaya; Tambara, Keiichi; Nishina, Takeshi; Saji, Yoshiaki; Inui, Ken-ichi; Hashida, Tohru; Yokoyama, Sumiko; Onodera, Rie; Ikeda, Tadashi; Fukushima, Masanori; Komeda, Masashi

    2007-08-01

    Limb ischemia remains a challenge. To overcome shortcomings or limitations of gene therapy or cell transplantation, a sustained release system of basic fibroblast growth factor (bFGF) using biodegradable gelatin hydrogel has been developed. A phase I-IIa study was performed, in which 7 patients had critical limb ischemia. They were intramuscularly injected with 200 microg of bFGF-incorporated gelatin hydrogel microspheres into the gastrocnemius of the ischemic limb. End-points were safety and feasibility of treatment after 4 and 24 weeks. One patient was excluded from the study for social reasons, but only after symptomatic improvements. In the evaluation of the other 6 patients, significant improvements were observed in the distance walked in 6 min (295+/-42 m vs 491+/-85 m for pretreatment vs after 24 weeks, p=0.023) and in transcutaneous oxygen pressure (53.5+/-5.2 mmHg vs 65.5+/-4.0 mmHg, p=0.03). The rest pain scale also improved (3.5+/-0.2 vs 1.0+/-0.6, p=0.022). The ankle-brachial pressure index improved at 4 weeks but not at 24 weeks. Among 5 patients who had a non-healing foot ulcer, the ulcer was completely healed in 3 patients, reduced in 1, and there was no change in 1 patient at 24 weeks. The blood levels of bFGF were undetected or within the normal level in all patients. The sustained release of bFGF from gelatin hydrogel might be simple, safe, and effective to achieve therapeutic angiogenesis because it did not need genetic materials or collection of implanted cells, and because it did not have any general effects, which was supported by there being no elevation of the bFGF serum level.

  5. Epidermal Growth Factor Increases LRF/Pokemon Expression in Human Prostate Cancer Cells

    PubMed Central

    Aggarwal, Himanshu; Aggarwal, Anshu; Agrawal, Devendra K.

    2011-01-01

    Leukemia/lymphoma related factor/POK erythroid myeloid ontogenic factor (LRF/Pokemon) is a member of the POK family of proteins that promotes oncogenesis in several forms of cancer. Recently, we found higher LRF expression in human breast and prostate carcinomas compared to the corresponding normal tissues. The aim of this study was to examine the regulation of LRF expression in human prostate cells. Epidermal growth factor (EGF) and its receptors mediate several tumorigenic cascades that regulate cell differentiation, proliferation, migration and survival of prostate cancer cells. There was significantly higher level of LRF expression in the nucleus of LNCaP and PC-3 cells than RWPE-1 cells. A significant increase in LRF expression was observed with increasing doses of EGF in more aggressive and androgen-sensitive prostate cancer cells suggesting that EGF signaling pathway is critical in upregulating the expression of LRF/Pokemon to promote oncogenesis. PMID:21640721

  6. Tissue factor expression as a possible determinant of thromboembolism in ovarian cancer

    PubMed Central

    Uno, K; Homma, S; Satoh, T; Nakanishi, K; Abe, D; Matsumoto, K; Oki, A; Tsunoda, H; Yamaguchi, I; Nagasawa, T; Yoshikawa, H; Aonuma, K

    2007-01-01

    Ovarian cancer, and clear cell carcinoma in particular, reportedly increases the risk of venous thromboembolism (VTE). However, the mechanisms remain unclear. Tissue factor (TF) supposedly represents a major factor in the procoagulant activities of cancer cells. The present study examined the involvement of TF expression in VTE for patients with ovarian cancer. Subjects comprised 32 consecutive patients (mean age 49.8 years) with histologically confirmed ovarian cancer. Presence of VTE was examined using a combination of clinical features, D-dimer levels and venous ultrasonography. Immunohistochemical analysis was used to evaluate TF expression into 4 degrees. Venous thromboembolism was identified in 10 of the 32 patients (31%), including five of the 11 patients with clear cell carcinoma. Tissue factor expression was detected in cancer tissues from 24 patients and displayed significant correlations with VTE development (P=0.0003), D-dimer concentration (P=0.003) and clear cell carcinoma (P<0.05). Multivariate analysis identified TF expression as an independent predictive factor of VTE development (P<0.05). Tissue factor (TF) expression is a possible determinant of VTE development in ovarian cancer. In particular, clear cell carcinoma may produce excessive levels of TF and is more likely to develop VTE. PMID:17211468

  7. Reactivation of Latent HIV-1 Expression by Engineered TALE Transcription Factors.

    PubMed

    Perdigão, Pedro; Gaj, Thomas; Santa-Marta, Mariana; Barbas, Carlos F; Goncalves, Joao

    2016-01-01

    The presence of replication-competent HIV-1 -which resides mainly in resting CD4+ T cells--is a major hurdle to its eradication. While pharmacological approaches have been useful for inducing the expression of this latent population of virus, they have been unable to purge HIV-1 from all its reservoirs. Additionally, many of these strategies have been associated with adverse effects, underscoring the need for alternative approaches capable of reactivating viral expression. Here we show that engineered transcriptional modulators based on customizable transcription activator-like effector (TALE) proteins can induce gene expression from the HIV-1 long terminal repeat promoter, and that combinations of TALE transcription factors can synergistically reactivate latent viral expression in cell line models of HIV-1 latency. We further show that complementing TALE transcription factors with Vorinostat, a histone deacetylase inhibitor, enhances HIV-1 expression in latency models. Collectively, these findings demonstrate that TALE transcription factors are a potentially effective alternative to current pharmacological routes for reactivating latent virus and that combining synthetic transcriptional activators with histone deacetylase inhibitors could lead to the development of improved therapies for latent HIV-1 infection.

  8. Reactivation of Latent HIV-1 Expression by Engineered TALE Transcription Factors

    PubMed Central

    Perdigão, Pedro; Gaj, Thomas; Santa-Marta, Mariana; Goncalves, Joao

    2016-01-01

    The presence of replication-competent HIV-1 –which resides mainly in resting CD4+ T cells–is a major hurdle to its eradication. While pharmacological approaches have been useful for inducing the expression of this latent population of virus, they have been unable to purge HIV-1 from all its reservoirs. Additionally, many of these strategies have been associated with adverse effects, underscoring the need for alternative approaches capable of reactivating viral expression. Here we show that engineered transcriptional modulators based on customizable transcription activator-like effector (TALE) proteins can induce gene expression from the HIV-1 long terminal repeat promoter, and that combinations of TALE transcription factors can synergistically reactivate latent viral expression in cell line models of HIV-1 latency. We further show that complementing TALE transcription factors with Vorinostat, a histone deacetylase inhibitor, enhances HIV-1 expression in latency models. Collectively, these findings demonstrate that TALE transcription factors are a potentially effective alternative to current pharmacological routes for reactivating latent virus and that combining synthetic transcriptional activators with histone deacetylase inhibitors could lead to the development of improved therapies for latent HIV-1 infection. PMID:26933881

  9. Steroid hormones and maternal experience interact to induce glial plasticity in the cingulate cortex.

    PubMed

    Salmaso, N; Nadeau, J; Woodside, B

    2009-02-01

    Neocortical plasticity is not usually associated with changes in reproductive function. However, we have shown a six to 10-fold increase in the number of astrocytes labeled with glial fibrillary acidic protein (GFAP) and astrocytic basic fibroblast growth factor or FGF-2 (bFGF) in the cingulate cortex area 2 (Cg2) in postpartum rats, indicative of changes in connectivity in this area. In the present studies, we investigated the necessary and sufficient stimuli for these changes to occur. We show that 3 h of maternal experience combined with a hormonal treatment that mimics late pregnancy induces the astrocytic changes in Cg2 in virgin rats. The extent of these changes was similar to those of postpartum females. Sensitized virgin females did not show any astrocytic changes after 3 h of maternal behavior, suggesting that a similar amount of maternal experience alone is not sufficient to increase astrocytic bFGF- and GFAP-immunoreactivity in Cg2. Consistent with these data, eliminating early maternal experience by removing pups immediately postpartum abolishes the increased bFGF and GFAP protein expression in the cingulate cortex. These results suggest that maternal experience and hormonal state interact to produce astrocytic remodeling in the Cg2. The current results are consistent with a role for the cingulate cortex in maternal responsivity as suggested by early lesion studies in rats and more recent imaging studies in humans.

  10. Keratinocyte growth factor expression in human gingival fibroblasts and stimulation of in vitro gene expression by retinoic acid.

    PubMed

    Mackenzie, I C; Gao, Z

    2001-04-01

    Keratinocyte growth factor (KGF) is a stromally derived growth factor of the fibroblast growth factor (FGF) family with paracrine effects targeted to influence the growth and differentiation of epithelia. Regional and temporal changes in KGF expression play important roles in the development and maintenance of epithelial structures and in epithelial wound healing. Differing patterns of expression of KGF by fibroblasts in the gingival region could therefore be related to the observed regional variation in the differentiation and behavior of gingival epithelia. The in vitro and in vivo patterns of expression of KGF mRNA in human gingival and periodontal fibroblasts were examined using reverse transcription polymerase chain reactions (RT-PCR) and in situ hybridization with digoxigenin-labeled riboprobes. The patterns observed for human gingiva were compared with those for human skin and for murine tissues. Gingival and periodontal fibroblasts showed expression of KGF transcripts in vitro, and the degree of expression was markedly influenced by the presence of retinoic acid, an agent known to influence patterns of epithelial differentiation. Sections of human and murine gingiva and skin showed regionally variable expression of transcripts with the cells expressing KGF in the subepithelial, rather than the deeper, connective tissues and periodontium. The results point to a role of KGF in the maintenance of normal growth and differentiation of gingival epithelia. A lack of KGF expression by periodontal fibroblasts in vivo is expected to hinder apical epithelial migration and thus stabilize the epithelial attachment. The effects of retinoic acid (RA) on KGF expression in vitro provide an indirect mechanism by which RA may regulate the growth and differentiation of gingival epithelia.

  11. Epidermal growth factor increases LRF/Pokemon expression in human prostate cancer cells.

    PubMed

    Aggarwal, Himanshu; Aggarwal, Anshu; Agrawal, Devendra K

    2011-10-01

    Leukemia/lymphoma related factor/POK erythroid myeloid ontogenic factor (LRF/Pokemon) is a member of the POK family of proteins that promotes oncogenesis in several forms of cancer. Recently, we found higher LRF expression in human breast and prostate carcinomas compared to the corresponding normal tissues. The aim of this study was to examine the regulation of LRF expression in human prostate cells. Epidermal growth factor (EGF) and its receptors mediate several tumorigenic cascades that regulate cell differentiation, proliferation, migration and survival of prostate cancer cells. There was significantly higher level of LRF expression in the nucleus of LNCaP and PC-3 cells than RWPE-1 cells. A significant increase in LRF expression was observed with increasing doses of EGF in more aggressive and androgen-sensitive prostate cancer cells suggesting that EGF signaling pathway is critical in upregulating the expression of LRF/Pokemon to promote oncogenesis. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Environmental signals modulate ToxT-dependent virulence factor expression in Vibrio cholerae.

    PubMed

    Schuhmacher, D A; Klose, K E

    1999-03-01

    The regulatory protein ToxT directly activates the transcription of virulence factors in Vibrio cholerae, including cholera toxin (CT) and the toxin-coregulated pilus (TCP). Specific environmental signals stimulate virulence factor expression by inducing the transcription of toxT. We demonstrate that transcriptional activation by the ToxT protein is also modulated by environmental signals. ToxT expressed from an inducible promoter activated high-level expression of CT and TCP in V. cholerae at 30 degrees C, but expression of CT and TCP was significantly decreased or abolished by the addition of 0.4% bile to the medium and/or an increase of the temperature to 37 degrees C. Also, expression of six ToxT-dependent TnphoA fusions was modulated by temperature and bile. Measurement of ToxT-dependent transcription of genes encoding CT and TCP by ctxAp- and tcpAp-luciferase fusions confirmed that negative regulation by 37 degrees C or bile occurs at the transcriptional level in V. cholerae. Interestingly, ToxT-dependent transcription of these same promoters in Salmonella typhimurium was relatively insensitive to regulation by temperature or bile. These data are consistent with ToxT transcriptional activity being modulated by environmental signals in V. cholerae and demonstrate an additional level of complexity governing the expression of virulence factors in this pathogen. We propose that negative regulation of ToxT-dependent transcription by environmental signals prevents the incorrect temporal and spatial expression of virulence factors during cholera pathogenesis.

  13. Expression of vascular endothelial growth factor in Juvenile Angiofibroma.

    PubMed

    Hota, Ashutosh; Sarkar, Chitra; Gupta, Siddhartha Datta; Kumar, Rakesh; Bhalla, Ashu Seith; Thakar, Alok

    2015-06-01

    To examine Juvenile Angiofibroma (JA) tissue for expression of vascular endothelial growth factor (VEGF), and to explore its relationship with puberty status, stage, recurrence and the intraoperative blood loss. Retrospective cohort study of 36 histologically proven cases of JA. Minimum follow up period was 3 years. VEGF expression on tumor cells assessed by immunohistochemistry and graded on two criteria--percentage of cells expressing positivity and the intensity of positivity. These two parameters assessed for impact on puberty status, stage, recurrence, and blood loss. VEGF expression noted on the tumor endothelial cells in 36/36, and on the tumor stromal cells in 34/36. The percentage of cells expressing VEGF and the intensity of expression were not significantly related to puberty status, tumor stage, recurrence, or intra-operative blood loss (p values 0.3-1.0). VEGF expression is near universal in JA. Such expression is independent of puberty status and stage, and does not impact on intra operative blood loss and recurrence. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Functional and pathological improvements of the hearts in diabetes model by the combined therapy of bFGF-loaded nanoparticles with ultrasound-targeted microbubble destruction.

    PubMed

    Zhao, Ying-Zheng; Tian, Xin-Qiao; Zhang, Ming; Cai, Lu; Ru, Ao; Shen, Xiao-Tong; Jiang, Xi; Jin, Rong-Rong; Zheng, Lei; Hawkins, Kyle; Charkrabarti, Subrata; Li, Xiao-Kun; Lin, Qian; Yu, Wen-Ze; Ge, Shuping; Lu, Cui-Tao; Wong, Ho Lun

    2014-07-28

    Diabetic cardiomyopathy (DCM) is the leading cause of morbidity and mortality among the diabetic patients and currently there is no effective means to reverse its pathological progress. Basic fibroblast growth factor (bFGF) has shown promise as a molecular therapy for DCM, but its delivery is inefficient and non-specific. In the present study, a therapy combining nanoparticle (NP) carrier and ultrasound-targeted microbubble destruction (UTMD) was reported the first time for bFGF delivery to the heart of diabetic rats. bFGF-loaded NP (bFGF-NP) were prepared with Poloxamer 188-grafted heparin copolymer using water-in-water technique, and the morphology, encapsulation efficiency, and bioactivity of bFGF-NP were studied. The cellular uptake and cytotoxicity of bFGF-NP were evaluated with primary cultures of the left ventricular (LV) cardiomyocytes in vitro. Therapeutic effects of bFGF-NP/UTMD on the heart of DCM rats were studied by measuring LV systolic and diastolic functions, hemodynamic characteristics and indicators of cardiac remodeling including myocardial collagen volume fraction and capillary density. Results demonstrated that bFGF-NP showed good round morphology, efficient bFGF encapsulation and stable bioactivity of bFGF in vitro. bFGF-NP/UTMD combined treatment significantly enhanced the efficiency of bFGF cellular uptake (P<0.05) without obvious cytotoxicity. Significant improvements (P<0.05) in both cardiac functions and tissue morphology in the DCM rats were observed in bFGF-NP/UTMD group. These were not achievable using free bFGF, bFGF-NP or UTMD treatment alone. Our results show that combining a non-viral vector with UTMD technique is an effective strategy to deliver bFGF to the heart, and the resulting growth factor therapy has demonstrated potential to reverse the progress of DCM by restoring the cardiac functions and even the structure of damaged cardiac tissues. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Accuracy of expressions for the fill factor of a solar cell in terms of open-circuit voltage and ideality factor

    NASA Astrophysics Data System (ADS)

    Leilaeioun, Mehdi; Holman, Zachary C.

    2016-09-01

    An approximate expression proposed by Green predicts the maximum obtainable fill factor (FF) of a solar cell from its open-circuit voltage (Voc). The expression was originally suggested for silicon solar cells that behave according to a single-diode model and, in addition to Voc, it requires an ideality factor as input. It is now commonly applied to silicon cells by assuming a unity ideality factor—even when the cells are not in low injection—as well as to non-silicon cells. Here, we evaluate the accuracy of the expression in several cases. In particular, we calculate the recombination-limited FF and Voc of hypothetical silicon solar cells from simulated lifetime curves, and compare the exact FF to that obtained with the approximate expression using assumed ideality factors. Considering cells with a variety of recombination mechanisms, wafer doping densities, and photogenerated current densities reveals the range of conditions under which the approximate expression can safely be used. We find that the expression is unable to predict FF generally: For a typical silicon solar cell under one-sun illumination, the error is approximately 6% absolute with an assumed ideality factor of 1. Use of the expression should thus be restricted to cells under very low or very high injection.

  16. Liver-enriched transcription factors uncoupled from expression of hepatic functions in hepatoma cell lines.

    PubMed Central

    Chaya, D; Fougère-Deschatrette, C; Weiss, M C

    1997-01-01

    Among the liver-enriched transcription factors identified to date, only expression of hepatocyte nuclear factor 4 (HNF4) and hepatocyte nuclear factor 1 (HNF1) is in strict correlation with hepatic differentiation in cultured rat hepatoma cells. Indeed, differentiated hepatoma cells that stably express an extensive set of adult hepatic functions express liver-enriched transcription factors, while dedifferentiated cells that have lost expression of all these hepatic functions no longer express HNF4 and HNF1. We describe a new heritable phenotype, designated as uncoupled, in which there is a spontaneous dissociation between the expression of these transcription factors and that of the hepatic functions. Cells presenting this phenotype, isolated from differentiated hepatoma cells, cease to accumulate all transcripts coding for hepatic functions but nevertheless maintain expression of HNF4 and HNF1. Transitory transfection experiments indicate that these two factors present in these cells have transcriptional activity similar to that of differentiated hepatoma cells. Characterization of the appropriate intertypic cell hybrids demonstrates that this new phenotype is recessive to the dedifferentiated state and fails to be complemented by differentiated cells. These results indicate the existence of mechanisms that inhibit transcription of genes coding for hepatocyte functions in spite of the presence of functional HNF4 and HNF1. Cells of the uncoupled phenotype present certain properties of oval cells described for pathological states of the liver. PMID:9343392

  17. Liver-enriched transcription factors uncoupled from expression of hepatic functions in hepatoma cell lines.

    PubMed

    Chaya, D; Fougère-Deschatrette, C; Weiss, M C

    1997-11-01

    Among the liver-enriched transcription factors identified to date, only expression of hepatocyte nuclear factor 4 (HNF4) and hepatocyte nuclear factor 1 (HNF1) is in strict correlation with hepatic differentiation in cultured rat hepatoma cells. Indeed, differentiated hepatoma cells that stably express an extensive set of adult hepatic functions express liver-enriched transcription factors, while dedifferentiated cells that have lost expression of all these hepatic functions no longer express HNF4 and HNF1. We describe a new heritable phenotype, designated as uncoupled, in which there is a spontaneous dissociation between the expression of these transcription factors and that of the hepatic functions. Cells presenting this phenotype, isolated from differentiated hepatoma cells, cease to accumulate all transcripts coding for hepatic functions but nevertheless maintain expression of HNF4 and HNF1. Transitory transfection experiments indicate that these two factors present in these cells have transcriptional activity similar to that of differentiated hepatoma cells. Characterization of the appropriate intertypic cell hybrids demonstrates that this new phenotype is recessive to the dedifferentiated state and fails to be complemented by differentiated cells. These results indicate the existence of mechanisms that inhibit transcription of genes coding for hepatocyte functions in spite of the presence of functional HNF4 and HNF1. Cells of the uncoupled phenotype present certain properties of oval cells described for pathological states of the liver.

  18. Thymidylate synthase (TS) protein expression as a prognostic factor in advanced colorectal cancer: a comparison with TS mRNA expression.

    PubMed

    Nakagawa, Tateo; Shimada, Mitsuo; Kurita, Nobuhiro; Iwata, Takashi; Nishioka, Masanori; Yoshikawa, Kozo; Higashijima, Jun; Utsunomiya, Tohru

    2012-06-01

    The role of intratumoral thymidylate synthase (TS) mRNA or protein expression is still controversial and little has been reported regarding relation of them in colorectal cancer. Forty-six patients with advanced colorectal cancer who underwent surgical resection were included. TS mRNA expression was determined by the Danenberg tumor profile method based on laser-captured micro-dissection of the tumor cells. TS protein expression was evaluated using immunohistochemical staining. TS mRNA expression tended to relate TS protein expression. Statistical significance was not found in overall survival between the TS mRNA high group and low group regardless of performing adjuvant chemotherapy. The overall survival in the TS protein negative group was significantly higher than that in positive group in all and the patients without adjuvant chemotherapy. Multivariate analysis showed TS protein expression was as an independent prognostic factor. TS protein expression tends to be related TS mRNA expression and is an independent prognostic factor in advanced colorectal cancer.

  19. Expression dynamics of self-renewal factors for spermatogonial stem cells in the mouse testis.

    PubMed

    Sakai, Mizuki; Masaki, Kaito; Aiba, Shota; Tone, Masaaki; Takashima, Seiji

    2018-04-16

    Glial cell line-derived neurotrophic factor (GDNF) and fibroblast growth factor 2 (FGF2) are bona fide self-renewal factors for spermatogonial stem cells (SSCs). Although GDNF is indispensable for the maintenance of SSCs, the role of FGF2 in the testis remains to be elucidated. To clarify this, the expression dynamics and regulatory mechanisms of Fgf2 and Gdnf in the mouse testes were analyzed. It is well known that Sertoli cells express Gdnf, and its receptor is expressed in a subset of undifferentiated spermatogonia, including SSCs. However, we found that Fgf2 was mainly expressed in the germ cells and its receptors were expressed not only in the cultured spermatogonial cell line, but also in testicular somatic cells. Aging, hypophysectomy, retinoic acid treatment, and testicular injury induced distinct Fgf2 and Gdnf expression dynamics, suggesting a difference in the expression mechanism of Fgf2 and Gdnf in the testis. Such differences might cause a dynamic fluctuation of Gdnf/Fgf2 ratio depending on the intrinsic/extrinsic cues. Considering that FGF2-cultured spermatogonia exhibit more differentiated phenotype than those cultured with GDNF, FGF2 might play a role distinct from that of GDNF in the testis, despite the fact that both factors are self-renewal factor for SSC in vitro.

  20. In vitro effects of nanosized diamond particles on macrophages.

    PubMed

    Shkurupy, V A; Arkhipov, S A; Neshchadim, D V; Akhramenko, E S; Troitskii, A V

    2015-02-01

    The effects of synthetic diamond nanoparticles (4-6 nm) on mouse macrophage biotropism and biocompatibility and the modulation of the macrophage functions (expression of IL-1α, TNF-α, GM-CSF, bFGF, and TGF-β) by nanoparticles in different concentrations were studied in vitro during exposure of different duration. Macrophage endocytosis of nanodiamonds increased with increasing the concentration of nanoparticles in culture and incubation time. Nanodiamonds exhibited high biotropism and biocompatibility towards macrophages; in doses of 10-20 μg/ml, they induced expression of GM-CSF and TGF-β, inhibited expression of bFGF, and did not stimulate IL-1α and TNF-α. These data indicate that nanodiamond capture by macrophages in the studied experimental model led to modulation of the functional status of macrophages that determine their capacity to stimulate reparative processes without increasing proinflammatory and profibrogenic status.

  1. Suramin, Genistein and Collagen Matrix (DuraGen) for Delayed Adjustment after Strabismus Surgery: Which One is Best?

    PubMed

    Oktem, Caglar; Oto, Sibel; Toru, Serap; Bakar, Coskun; Ozdemir, Handan; Akova, Yonca Aydin

    2016-01-01

    To evaluate the efficacy and safety of suramin, genistein and collagen matrix for the prevention of inflammation, the reduction of fibrosis and the delay in adjustment after strabismus surgery on a rabbit model. By using an adjustable suture technique, a recession of the superior rectus muscle (SRM) was made in 36 eyes of 18 rabbits. Three study groups were created using genistein, suramin and collagen matrix (n = 6 per group). Two control groups utilized dimethyl sulphoxide (DMSO) (n = 6) and balanced salt solution (n = 12). The adjustments and measurements were made on days 2, 7, 14. After enucleation was done on day 21, the degree of inflammation was evaluated quantitatively in histopathological sections and immunohistochemical investigations were performed for tissue expression of cytoplasmic vascular endothelial growth factor (VEGF), MAC 387, TGF-β and bFGF. The adhesions between conjunctiva and SRM were significantly less in the collagen matrix and suramin groups (p = 0.002) and adhesions between the sclera and SRM were considerably reduced in the genistein and DMSO groups (p = 0.006) on day 7. Force exerted for adjustment was significantly less in the collagen matrix and suramin groups on day 14 (p = 0.006). Expression of b-FGF was significantly lower in the conjunctival epithelium in the suramin and genistein groups (p = 0.0001 for both). TGF-β was significantly lower (p = 0.001) in the suramin group and VEGF expression was totally absent. MAC 387 expression was lower in the genistein and suramin groups (p = 0.0001). Suramin, genistein and collagen matrix successfully reduce adhesions, and facilitate adjustment following recession surgery. Both suramin and genistein effectively suppress growth factor expression, while collagen matrix offers the longest time interval for adjustability after strabismus surgery.

  2. Endometrial Expression of Steroidogenic Factor 1 Promotes Cystic Glandular Morphogenesis

    PubMed Central

    Vasquez, Yasmin M.; Wu, San-Pin; Anderson, Matthew L.; Hawkins, Shannon M.; Creighton, Chad J.; Ray, Madhumita; Tsai, Sophia Y.; Tsai, Ming-Jer; Lydon, John P.

    2016-01-01

    Epigenetic silencing of steroidogenic factor 1 (SF1) is lost in endometriosis, potentially contributing to de novo local steroidogenesis favoring inflammation and growth of ectopic endometrial tissue. In this study, we examine the impact of SF1 expression in the eutopic uterus by a novel mouse model that conditionally expresses SF1 in endometrium. In vivo SF1 expression promoted the development of enlarged endometrial glands and attenuated estrogen and progesterone responsiveness. Endometriosis induction by autotransplantation of uterine tissue to the mesenteric membrane resulted in the increase in size of ectopic lesions from SF1-expressing mice. By integrating the SF1-dependent transcriptome with the whole genome binding profile of SF1, we identified uterine-specific SF1-regulated genes involved in Wingless and Progesterone receptor-Hedgehog-Chicken ovalbumin upstream promoter transcription factor II signaling for gland development and epithelium-stroma interaction, respectively. The present results indicate that SF1 directly contributes to the abnormal uterine gland morphogenesis, an inhibition of steroid hormone signaling and activation of an immune response, in addition to previously postulated estrogen production. PMID:27018534

  3. Angiogenesis alteration by defibrotide: implications for its mechanism of action in severe hepatic veno-occlusive disease.

    PubMed

    Benimetskaya, Luba; Wu, Sijian; Voskresenskiy, Anatoliy M; Echart, Cinara; Zhou, Jin-Feng; Shin, Joongho; Iacobelli, Massimo; Richardson, Paul; Ayyanar, Kanyalakshmi; Stein, C A

    2008-11-15

    Defibrotide (DF) is a mixture of porcine-derived single-stranded phosphodiester oligonucleotides (9-80-mer; average, 50-mer) that has been successfully used to treat severe hepatic veno-occlusive disease (sVOD) with multiorgan failure (MOF) in patients who have received cytotoxic chemotherapy in preparation for bone marrow transplantation. However, its mechanism of action is unknown. Herein, we show that DF and phosphodiester oligonucleotides can bind to heparin-binding proteins (eg, basic fibroblast growth factor [bFGF] but not vascular endothelial growth factor [VEGF] 165) with low nanomolar affinity. This binding occurred in a length- and concentration-dependent manner. DF can mobilize proangiogenic factors such as bFGF from their depot or storage sites on bovine corneal endothelial matrix. However, these molecules do not interfere with high-affinity binding of bFGF to FGFR1 IIIc but can replace heparin as a required cofactor for binding and hence cellular mitogenesis. DF also protects bFGF against digestion by trypsin and chymotrypsin and from air oxidation. In addition, DF binds to collagen I with low nanomolar affinity and can promote human microvascular endothelial cell-1 (HMEC-1) cell mitogenesis and tubular morphogenesis in three-dimensional collagen I gels. Thus, our data suggest that DF may provide a stimulus to the sinusoidal endothelium of a liver that has suffered a severe angiotoxic event, thus helping to ameliorate the clinical sVOD/MOF syndrome.

  4. p27{sup Kip1} inhibits tissue factor expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breitenstein, Alexander, E-mail: alexander.breitenstein@usz.ch; Cardiovascular Research, Physiology Institute, University of Zurich; Center for Integrative Human Physiology

    2013-10-04

    Highlights: •p27{sup Kip1}regulates the expression of tissue factor at the transcriptional level. •This inhibitory effect of p27{sup Kip1} is independently of its cell regulatory action. •The current study provides new insights into a pleiotrophic function of p27{sup Kip1}. -- Abstract: Background: The cyclin-dependent kinase inhibitor (CDKI) p27{sup Kip1} regulates cell proliferation and thus inhibits atherosclerosis and vascular remodeling. Expression of tissue factor (TF), the key initator of the coagulation cascade, is associated with atherosclerosis. Yet, it has not been studied whether p27{sup Kip1} influences the expression of TF. Methods and results: p27{sup Kip1} overexpression in human aortic endothelial cells wasmore » achieved by adenoviral transfection. Cells were rendered quiescent for 24 h in 0.5% fetal-calf serum. After stimulation with TNF-α (5 ng/ml), TF protein expression and activity was significantly reduced (n = 4; P < 0.001) in cells transfected with p27{sup Kip1}. In line with this, p27{sup Kip1} overexpression reduced cytokine-induced TF mRNA expression (n = 4; P < 0.01) and TF promotor activity (n = 4; P < 0.05). In contrast, activation of the MAP kinases p38, ERK and JNK was not affected by p27{sup Kip1} overexpression. Conclusion: This in vitro study suggests that p27{sup Kip1} inhibits TF expression at the transcriptional level. These data indicate an interaction between p27{sup Kip1} and TF in important pathological alterations such as atherosclerosis and vascular remodeling.« less

  5. Fibroblast growth factor 8 is expressed at higher levels in lactating human breast and in breast cancer.

    PubMed

    Zammit, C; Coope, R; Gomm, J J; Shousha, S; Johnston, C L; Coombes, R C

    2002-04-08

    Fibroblast growth factor 8 can transform NIH3T3 cells and its expression has been found to be associated with breast and prostate cancer. Following our finding that fibroblast growth factor 8 mRNA expression is increased in breast cancer, we have undertaken an immunohistochemistry study of fibroblast growth factor 8 expression in a series of human breast tissues and other normal tissues. Our findings confirm increased expression of fibroblast growth factor 8 in malignant breast tissue but also show significant fibroblast growth factor 8 expression in non-malignant breast epithelial cells. No significant difference in fibroblast growth factor 8 expression was found between different grades of ductal carcinoma, lobular carcinoma and ductal carcinoma in-situ or cancer of different oestrogen receptor, progesterone receptor or nodal status. The highest levels of fibroblast growth factor 8 expression were found in lactating breast tissues and fibroblast growth factor 8 was also detected in human milk. A survey of other normal tissues showed that fibroblast growth factor 8 is expressed in the proliferative cells of the dermis and epithelial cells in colon, ovary fallopian tube and uterus. Fibroblast growth factor 8 appears to be expressed in several organs in man and appears to have an importance in lactation.

  6. The strategy of fusion genes construction determines efficient expression of introduced transcription factors.

    PubMed

    Adamus, Tomasz; Konieczny, Paweł; Sekuła, Małgorzata; Sułkowski, Maciej; Majka, Marcin

    2014-01-01

    The main goal in gene therapy and biomedical research is an efficient transcription factors (TFs) delivery system. SNAIL, a zinc finger transcription factor, is strongly involved in tumor, what makes its signaling pathways an interesting research subject. The necessity of tracking activation of intracellular pathways has prompted fluorescent proteins usage as localization markers. Advanced molecular cloning techniques allow to generate fusion proteins from fluorescent markers and transcription factors. Depending on fusion strategy, the protein expression levels and nuclear transport ability are significantly different. The P2A self-cleavage motif through its cleavage ability allows two single proteins to be simultaneously expressed. The aim of this study was to compare two strategies for introducing a pair of genes using expression vector system. We have examined GFP and SNAI1 gene fusions by comprising common nucleotide polylinker (multiple cloning site) or P2A motif in between them, resulting in one fusion or two independent protein expressions respectively. In each case transgene expression levels and translation efficiency as well as nuclear localization of expressed protein have been analyzed. Our data showed that usage of P2A motif provides more effective nuclear transport of SNAIL transcription factor than conventional genes linker. At the same time the fluorescent marker spreads evenly in subcellular space.

  7. Tumor necrosis factor receptor-associated factor 6 (TRAF6) participates in anti-lipopolysaccharide factors (ALFs) gene expression in mud crab.

    PubMed

    Sun, Wan-Wei; Zhang, Xin-Xu; Wan, Wei-Song; Wang, Shu-Qi; Wen, Xiao-Bo; Zheng, Huai-Ping; Zhang, Yue-Ling; Li, Sheng-Kang

    2017-02-01

    Tumor necrosis factor receptor-associated factor 6 (TRAF6) is a key cytoplasm signal adaptor that mediates signals activated by tumor necrosis factor receptor (TNFR) superfamily and the Interleukin-1 receptor/Toll-like receptor (IL-1/TLR) superfamily. The full-length 2492 bp TRAF6 (Sp-TRAF6) from Scylla paramamosain contains 1800 bp of open reading frame (ORF) encoding 598 amino acids, including an N-terminal RING-type zinc finger, two TRAF-type zinc fingers and a conserved C-terminal meprin and TRAF homology (MATH) domain. Multiple alignment analysis shows that the putative amino acid sequence of Sp-TRAf6 has highest identity of 88% with Pt-TRAF6 from Portunus trituberculatus, while the similarity of Sp-TRAF6 with other crustacean sequences was 54-55%. RT-PCR analysis indicated that Sp-TRAF6 transcripts were predominantly expressed in the hepatopancreas and stomach, whereas it was barely detected in the heart and hemocytes in our study. Moreover, Sp-TRAF6 transcripts were significantly up-regulated after Vibrio parahemolyticus and LPS challenges. RNA interference assay was carried out used by siRNA to investigate the genes expression patterns regulated by Sp-TRAF6. The qRT-PCR results showed that silencing Sp-TRAF6 gene could inhibit SpALF1, SpALF2, SpALF5 and SpALF6 expression in hemocytes, while inhibit SpALF1, SpALF3, SpALF4, SpALF5 and SpALF6 expression in hepatopancreas. Taken together, the acute-phase response to immune challenges and the inhibition of SpALFs gene expression indicate that Sp-TRAF6 plays an important role in host defense against pathogen invasions via regulation of ALF gene expression in S. paramamosain. Copyright © 2016. Published by Elsevier Ltd.

  8. Expression of a transmembrane phosphotyrosine phosphatase inhibits cellular response to platelet-derived growth factor and insulin-like growth factor-1.

    PubMed

    Mooney, R A; Freund, G G; Way, B A; Bordwell, K L

    1992-11-25

    Tyrosine phosphorylation is a mechanism of signal transduction shared by many growth factor receptors and oncogene products. Phosphotyrosine phosphatases (PTPases) potentially modulate or counter-regulate these signaling pathways. To test this hypothesis, the transmembrane PTPase CD45 (leukocyte common antigen) was expressed in the murine cell line C127. Hormone-dependent autophosphorylation of the platelet-derived growth factor (PDGF) and insulin-like growth factor-1 (IGF-1) receptors was markedly reduced in cells expressing the transmembrane PTPase. Tyrosine phosphorylation of other PDGF-dependent phosphoproteins (160, 140, and 55 kDa) and IGF-1-dependent phosphoproteins (145 kDa) was similarly decreased. Interestingly, the pattern of growth factor-independent tyrosine phosphorylations was comparable in cells expressing the PTPase and control cells. This suggests a selectivity or accessibility of the PTPase limited to a subset of cellular phosphotyrosyl proteins. The maximum mitogenic response to PDGF and IGF-1 in cells expressing the PTPase was decreased by 67 and 71%, respectively. These results demonstrate that a transmembrane PTPase can both affect the tyrosine phosphorylation state of growth factor receptors and modulate proximal and distal cellular responses to the growth factors.

  9. Enhanced expression of FNDC5 in human embryonic stem cell-derived neural cells along with relevant embryonic neural tissues.

    PubMed

    Ghahrizjani, Fatemeh Ahmadi; Ghaedi, Kamran; Salamian, Ahmad; Tanhaei, Somayeh; Nejati, Alireza Shoaraye; Salehi, Hossein; Nabiuni, Mohammad; Baharvand, Hossein; Nasr-Esfahani, Mohammad Hossein

    2015-02-25

    Availability of human embryonic stem cells (hESCs) has enhanced the capability of basic and clinical research in the context of human neural differentiation. Derivation of neural progenitor (NP) cells from hESCs facilitates the process of human embryonic development through the generation of neuronal subtypes. We have recently indicated that fibronectin type III domain containing 5 protein (FNDC5) expression is required for appropriate neural differentiation of mouse embryonic stem cells (mESCs). Bioinformatics analyses have shown the presence of three isoforms for human FNDC5 mRNA. To differentiate which isoform of FNDC5 is involved in the process of human neural differentiation, we have used hESCs as an in vitro model for neural differentiation by retinoic acid (RA) induction. The hESC line, Royan H5, was differentiated into a neural lineage in defined adherent culture treated by RA and basic fibroblast growth factor (bFGF). We collected all cell types that included hESCs, rosette structures, and neural cells in an attempt to assess the expression of FNDC5 isoforms. There was a contiguous increase in all three FNDC5 isoforms during the neural differentiation process. Furthermore, the highest level of expression of the isoforms was significantly observed in neural cells compared to hESCs and the rosette structures known as neural precursor cells (NPCs). High expression levels of FNDC5 in human fetal brain and spinal cord tissues have suggested the involvement of this gene in neural tube development. Additional research is necessary to determine the major function of FDNC5 in this process. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. [In vitro generation of insulin-producing cells from the neonatal rat bone marrow mesenchymal stem cells].

    PubMed

    Li, Xiaohu; Huang, Haiyan; Liu, Xirong; Xia, Hongxia; Li, Mincai

    2015-03-01

    To observe the differentiation of the neonatal rat bone marrow mesenchymal stem cells (MSCs) into insulin-producing cells and detect the expressions of insulin, pancreatic duodenal homebox-1 (PDX-1) and nestin. MSCs were isolated from the neonatal rats and cultured in the modified medium composed of 10 μg/L human epidermal growth factor (EGF), 10 μg/L basic fibroblast growth factor (bFGF), 10 μg/L hepatocyte growth factor (HGF), 10 μg/L human B cell regulin, 20 mmol/L nicotinamide and 20 g/L B27. After the induction, the mRNA expressions of insulin, PDX-1 and nestin were examined by reverse transcription-PCR, and the insulin, PDX-1 and nestin protein levels were detected by immunocytochemistry. The insulin and PDX-1 mRNA expressions increased and the nestin mRNA expression decreased in the differentiation of the neonatal rat MSCs into insulin-producing cells. The nestin, PDX-1 and insulin proteins were co-expressed in insulin-producing cells. MSCs can be induced to differentiate into insulin-producing cells.

  11. Quantitative gene expression deregulation in mantle-cell lymphoma: correlation with clinical and biologic factors.

    PubMed

    Kienle, Dirk; Katzenberger, Tiemo; Ott, German; Saupe, Doreen; Benner, Axel; Kohlhammer, Holger; Barth, Thomas F E; Höller, Sylvia; Kalla, Jörg; Rosenwald, Andreas; Müller-Hermelink, Hans Konrad; Möller, Peter; Lichter, Peter; Döhner, Hartmut; Stilgenbauer, Stephan

    2007-07-01

    There is evidence for a direct role of quantitative gene expression deregulation in mantle-cell lymphoma (MCL) pathogenesis. Our aim was to investigate gene expression associations with other pathogenic factors and the significance of gene expression in a multivariate survival analysis. Quantitative expression of 20 genes of potential relevance for MCL prognosis and pathogenesis were analyzed using real-time reverse transcriptase polymerase chain reaction and correlated with clinical and genetic factors, tumor morphology, and Ki-67 index in 65 MCL samples. Genomic losses at the loci of TP53, RB1, and P16 were associated with reduced transcript levels of the respective genes, indicating a gene-dosage effect as the pathomechanism. Analysis of gene expression correlations between the candidate genes revealed a separation into two clusters, one dominated by proliferation activators, another by proliferation inhibitors and regulators of apoptosis. Whereas only weak associations were identified between gene expression and clinical parameters or blastoid morphology, several genes were correlated closely with the Ki-67 index, including the short CCND1 variant (positive correlation) and RB1, ATM, P27, and BMI (negative correlation). In multivariate survival analysis, expression levels of MYC, MDM2, EZH2, and CCND1 were the strongest prognostic factors independently of tumor proliferation and clinical factors. These results indicate a pathogenic contribution of several gene transcript levels to the biology and clinical course of MCL. Genes can be differentiated into factors contributing to proliferation deregulation, either by enhancement or loss of inhibition, and proliferation-independent factors potentially contributing to MCL pathogenesis by apoptosis impairment.

  12. Expression of connective tissue growth factor is a prognostic marker for patients with intrahepatic cholangiocarcinoma.

    PubMed

    Gardini, A; Corti, B; Fiorentino, M; Altimari, A; Ercolani, G; Grazi, G L; Pinna, A D; Grigioni, W F; D'Errico Grigioni, A

    2005-04-01

    Connective tissue growth factor is a member of the 'CCN' protein family. Consistent with its profibrotic properties, it is over-expressed in several human epithelial malignancies. We have retrospectively evaluated by immunohistochemistry the presence of connective tissue growth factor in archival tissues from 55 resected intrahepatic cholangiocarcinomas and compared its expression to the main pathological parameters, disease free and overall survival. Tumours were scored as high and low/absent expressers (> or =50%, 0-50% cells, respectively). Thirty-three of 55 cholangiocarcinomas (60%) were high and 22 (40%) low expressers. No significant correlation was found between connective tissue growth factor and tumour grade, tumour location, vascular and perineural invasion. Eighteen of 22 (82%) low/absent expressers and 12/33 (36%) high expressers had recurrence of disease (P=0.001). Low/absent expressers showed a poor disease free and overall survival compared with the higher expressers (P<0.001). Vascular invasion was related to tumour recurrence (P=0.025) and to decreased disease free survival (P<0.05). During proportional hazard regression analysis, only connective tissue growth factor was found to influence disease free survival (P=0.01). Expression of connective tissue growth factor is an independent prognostic indicator of both tumour recurrence and overall survival for intrahepatic cholangiocarcinoma patients regardless of tumour location, tumour grade, vascular and perineural invasion.

  13. Several fibroblast growth factors are expressed during pre-attachment bovine conceptus development and regulate interferon-tau expression from trophectoderm.

    PubMed

    Cooke, Flavia N T; Pennington, Kathleen A; Yang, Qien; Ealy, Alan D

    2009-02-01

    The trophectoderm-derived factor interferon tau (IFNT) maintains the uterus in a pregnancy-receptive state in cattle and sheep. Fibroblast growth factors (FGFs) are implicated in regulating IFNT expression and potentially other critical events associated with early conceptus development in cattle. The overall objectives of this work were to identify the various FGFs and FGF receptors (FGFRs) expressed in elongating pre-attachment bovine conceptuses and determine if these FGFs regulate conceptus development and/or mediate IFNT production. In vitro-derived bovine blastocysts and in vivo-derived elongated conceptuses collected at day 17 of pregnancy express at least four FGFR subtypes (R1c, R2b, R3c, R4). In addition, transcripts for FGF1, 2, and 10 but not FGF7 are present in elongated bovine conceptuses. The expression pattern of FGF10 most closely resembled that of IFNT, with both transcripts remaining low in day 8 and day 11 conceptuses and increasing substantially in day 14 and day 17 conceptuses. Supplementation with recombinant FGF1, 2 or 10 increased IFNT mRNA levels in bovine trophectoderm cells and bovine blastocysts and increased IFNT protein concentrations in trophectoderm-conditioned medium. Blastocyst development was not affected by any of the FGFs. In summary, at least four FGFRs reside in pre- and peri-attachment bovine conceptuses. Moreover, conceptuses express at least three candidate FGFs during elongation, the time of peak IFNT expression. These findings provide new insight for how conceptus-derived factors such as FGF1, 2, and 10 may control IFNT expression during early pregnancy in cattle.

  14. Biological Modulation of Mouse RPE Cells in Response to Subthreshold Diode Micropulse Laser Treatment.

    PubMed

    Li, Zhouyue; Song, Yanping; Chen, Xiao; Chen, Zhongshan; Ding, Qin

    2015-11-01

    Many clinical trials have demonstrated the effectiveness of subthreshold phototherapy with no visible damage in retinal vascular diseases, such as diabetic retinopathy. We aimed primarily to investigate the effect of subthreshold diode micropulse laser (SDM) treatment on mouse retinal pigmented epithelium (RPE) cells. The expression of angiogenesis-modulating cytokines in response to SDM was also explored. The least toxic laser dose was selected by measuring cell viability with MTT assay and 5 % duty cycle (DC) was chosen for use in further experiments. RPE cells were treated with laser-induced radiation ranging from 0 to 400 mW for 24 h. The apoptotic rate of RPE cells was assessed by flow cytometry. Expressions of vascular endothelial growth factor A (VEGF-A), transforming growth factor beta (TGF-β), basic fibroblast growth factor (bFGF), and pigment epithelium-derived factor (PEDF) were determined by Western Blotting and real-time PCR, respectively. After 24 h of laser irradiation, cell viability was reduced dose dependently and the effect was significant compared to the controls (P < 0.05). In addition, laser treatment with intensities of 100 and 200 mW with DC of 5 % produced no significant effect on cell viability and apoptosis as compared with the control group (P > 0.05). The protein and mRNA expressions of angiogenic stimulators (VEGF-A, TGF-β, and bFGF) were significantly down-regulated (P < 0.05), whereas those of the angiogenic inhibitor (PEDF) were up-regulated (P < 0.05). No significant difference was found between the cells treated with different intensities of laser radiation (P > 0.05). Our results showed that SDM treatment of the RPE cells suppressed the expression of choroid neovasculization-promoting cytokines and up-regulated the angiogenic inhibitor, PEDF without damaging the cells. Further investigation is needed to understand the mechanism and to optimize the use of SDM as a novel method of treatment for retinal vascular

  15. Mitogenic signaling pathways of growth factors can be distinguished by the involvement of pertussis toxin-sensitive guanosine triphosphate-binding protein and of protein kinase C.

    PubMed Central

    Nishizawa, N; Okano, Y; Chatani, Y; Amano, F; Tanaka, E; Nomoto, H; Nozawa, Y; Kohno, M

    1990-01-01

    We have examined the possible involvements of pertussis toxin (PT)-sensitive guanosine triphosphate (GTP)-binding protein (Gp) and protein kinase C (PKC) in the mitogenic signaling pathways of various growth factors by the use of PT-pretreated and/or 12-O-tetradecanoyl phorbol-13-acetate (TPA)-pretreated mouse fibroblasts. Effects of PT pretreatment (inactivation of PT-sensitive Gp) and TPA pretreatment (depletion of PKC) on mitogen-induced DNA synthesis varied significantly and systematically in response to growth factors: mitogenic responses of cells to thrombin, bombesin, and bradykinin were almost completely abolished both in PT- and TPA-pretreated cells; responses to epidermal growth factor (EGF), platelet-derived growth factor (PDGF), and vanadate were reduced to approximately 50% both in PT- and TPA-pretreated cells compared with native cells; response to basic fibroblast growth factor (bFGF) was not affected in PT-pretreated cells but was inhibited to some extent in TPA-pretreated cells. Thus, growth factors examined have been classified into three groups with regard to the involvements of PT-sensitive Gp and PKC in their signal transduction pathways. Binding of each growth factor to its receptor was not affected significantly by pretreatment of cells with PT or TPA. Inhibitory effects of PT and TPA pretreatment on each mitogen-induced DNA synthesis were not additive, suggesting that the functions of PT-sensitive Gp and PKC lie on an identical signal transduction pathway. Although all three groups of mitogens activated PKC, signaling of each growth factor depends to a varying extent on the function of PKC. Our results indicate that a single peptide growth factor such as EGF, PDGF, or bFGF acts through multiple signaling pathways to induce cell proliferation. Images PMID:2129194

  16. Cyclic stretch induces upregulation of endothelin-1 with keratinocytes in vitro: Possible role in mechanical stress-induced hyperpigmentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurita, Masakazu, E-mail: masakazukurita@gmail.com; Okazaki, Mutsumi; Fujino, Takashi

    2011-05-27

    Highlights: {yields} Influence of cyclic stretch on melanogenetic paracrine cytokines was investigated. {yields} Keratinocyte-derived endothelin-1 was upregulated with cyclic stretch. {yields} Degree of upregulation increases dose-dependently. {yields} This upregulation possibly plays a role in the pathogenesis of pigmented disorders. -- Abstract: The aim of this study was to investigate the possible pathological relation between mechanical stress and hyperpigmentation. We did this by investigating the influence of cyclic stretch on the expression of keratinocyte- and fibroblast-derived melanogenetic paracrine cytokines in vitro. Using primary human keratinocytes and fibroblasts, alterations of mRNA expression of melanogenetic paracrine cytokines due to cyclic stretch were investigatedmore » using a real-time polymerase chain reaction (PCR). The cytokines included basic fibroblast growth factor (bFGF), stem cell factor (SCF), granulocyte/macrophage colony-stimulating factor, interleukin-1{alpha}, and endothelin-1 (ET-1) for keratinocytes and bFGF, SCF, and hepatocyte growth factor for fibroblasts. The dose dependence of keratinocyte-derived ET-1 upregulation was further investigated using real-time PCR and an enzyme-linked immunosorbent assay. We also investigated the effects of cyclic stretch on the proliferation and differentiation of keratinocytes. Among the melanogenetic paracrine cytokines investigated, keratinocyte-derived ET-1 was consistently upregulated in all four cell lines. The degree of upregulation increased with the degree of the length and frequency of the stretch; in contrast, cell number and differentiation markers showed no obvious alterations with cyclic stretch. Keratinocyte-derived ET-1 upregulation possibly plays a significant role in the pathogenesis of pigmented disorders, such as friction melanosis, caused by mechanical stress.« less

  17. Hypoxia-inducible factor regulates alphavbeta3 integrin cell surface expression.

    PubMed

    Cowden Dahl, Karen D; Robertson, Sarah E; Weaver, Valerie M; Simon, M Celeste

    2005-04-01

    Hypoxia-inducible factor (HIF)-deficient placentas exhibit a number of defects, including changes in cell fate adoption, lack of fetal angiogenesis, hypocellularity, and poor invasion into maternal tissue. HIF is a heterodimeric transcription factor consisting of alpha and beta aryl hydrocarbon receptor nuclear translocator or ARNT) subunits. We used undifferentiated trophoblast stem (TS) cells to characterize HIF-dependent adhesion, migration, and invasion. Arnt(-/-) and Hifalpha(-/-) TS cells exhibit reduced adhesion and migration toward vitronectin compared with wild-type cells. Furthermore, this defect is associated with decreased cell surface expression of integrin alphavbeta3 and significantly decreased expression of this integrin in focal adhesions. Because of the importance of adhesion and migration in tumor progression (in addition to placental development), we examined the affect of culturing B16F0 melanoma cells in 1.5% oxygen (O(2)). Culturing B16F0 melanoma cells at 1.5% O(2) resulted in increased alphavbeta3 integrin surface expression and increased adhesion to and migration toward vitronectin. Together, these data suggest that HIF and O(2) tension influence placental invasion and tumor migration by increasing cell surface expression of alphavbeta3 integrin.

  18. Transcription Factor Binding Site Enrichment Analysis in Co-Expression Modules in Celiac Disease

    PubMed Central

    Romero-Garmendia, Irati; Jauregi-Miguel, Amaia; Plaza-Izurieta, Leticia; Cros, Marie-Pierre; Legarda, Maria; Irastorza, Iñaki; Herceg, Zdenko; Fernandez-Jimenez, Nora

    2018-01-01

    The aim of this study was to construct celiac co-expression patterns at a whole genome level and to identify transcription factors (TFs) that could drive the gliadin-related changes in coordination of gene expression observed in celiac disease (CD). Differential co-expression modules were identified in the acute and chronic responses to gliadin using expression data from a previous microarray study in duodenal biopsies. Transcription factor binding site (TFBS) and Gene Ontology (GO) annotation enrichment analyses were performed in differentially co-expressed genes (DCGs) and selection of candidate regulators was performed. Expression of candidates was measured in clinical samples and the activation of the TFs was further characterized in C2BBe1 cells upon gliadin challenge. Enrichment analyses of the DCGs identified 10 TFs and five were selected for further investigation. Expression changes related to active CD were detected in four TFs, as well as in several of their in silico predicted targets. The activation of TFs was further characterized in C2BBe1 cells upon gliadin challenge, and an increase in nuclear translocation of CAMP Responsive Element Binding Protein 1 (CREB1) and IFN regulatory factor-1 (IRF1) in response to gliadin was observed. Using transcriptome-wide co-expression analyses we are able to propose novel genes involved in CD pathogenesis that respond upon gliadin stimulation, also in non-celiac models. PMID:29748492

  19. Transcription Factor Binding Site Enrichment Analysis in Co-Expression Modules in Celiac Disease.

    PubMed

    Romero-Garmendia, Irati; Garcia-Etxebarria, Koldo; Hernandez-Vargas, Hector; Santin, Izortze; Jauregi-Miguel, Amaia; Plaza-Izurieta, Leticia; Cros, Marie-Pierre; Legarda, Maria; Irastorza, Iñaki; Herceg, Zdenko; Fernandez-Jimenez, Nora; Bilbao, Jose Ramon

    2018-05-10

    The aim of this study was to construct celiac co-expression patterns at a whole genome level and to identify transcription factors (TFs) that could drive the gliadin-related changes in coordination of gene expression observed in celiac disease (CD). Differential co-expression modules were identified in the acute and chronic responses to gliadin using expression data from a previous microarray study in duodenal biopsies. Transcription factor binding site (TFBS) and Gene Ontology (GO) annotation enrichment analyses were performed in differentially co-expressed genes (DCGs) and selection of candidate regulators was performed. Expression of candidates was measured in clinical samples and the activation of the TFs was further characterized in C2BBe1 cells upon gliadin challenge. Enrichment analyses of the DCGs identified 10 TFs and five were selected for further investigation. Expression changes related to active CD were detected in four TFs, as well as in several of their in silico predicted targets. The activation of TFs was further characterized in C2BBe1 cells upon gliadin challenge, and an increase in nuclear translocation of CAMP Responsive Element Binding Protein 1 (CREB1) and IFN regulatory factor-1 (IRF1) in response to gliadin was observed. Using transcriptome-wide co-expression analyses we are able to propose novel genes involved in CD pathogenesis that respond upon gliadin stimulation, also in non-celiac models.

  20. Clinical Application of Growth Factors and Cytokines in Wound Healing

    PubMed Central

    Barrientos, Stephan; Brem, Harold; Stojadinovic, Olivera; Tomic-Canic, Marjana

    2016-01-01

    Wound healing is a complex and dynamic biological process that involves the coordinated efforts of multiple cell types and is executed and regulated by numerous growth factors and cytokines. There has been a drive in the past two decades to study the therapeutic effects of various growth factors in the clinical management of non-healing wounds (e.g. pressure ulcers, chronic venous ulcers, diabetic foot ulcers). For this review, we conducted a nonline search of Medline and Pub Medical and critically analyzed the literature regarding the role of growth factors and cytokines in the management of these wounds. We focused on currently approved therapies, emerging therapies and future research possibilities. In this review we discuss four growth factors and cytokines currently being used on and off label for the healing of wounds. These include: granulocyte-macrophage colony stimulating factor (GM-CSF), platelet derived growth factor (PDGF), vascular endothelial growth factor (VEGF), and basic fibroblast growth factor (bFGF). While the clinical results of using growth factors and cytokines are encouraging, many studies involved a small sample size and are disparate in measured endpoints. Therefore, further research is required to provide definitive evidence of efficacy. PMID:24942811

  1. The influence of nutrients, biliary-pancreatic secretions, and systemic trophic hormones on intestinal adaptation in a Roux-en-Y bypass model.

    PubMed

    Taqi, Esmaeel; Wallace, Laurie E; de Heuvel, Elaine; Chelikani, Prasanth K; Zheng, Huiyuan; Berthoud, Hans-Rudolph; Holst, Jens J; Sigalet, David L

    2010-05-01

    The signals that govern the upregulation of nutrient absorption (adaptation) after intestinal resection are not well understood. A Gastric Roux-en-Y bypass (GRYB) model was used to isolate the relative contributions of direct mucosal stimulation by nutrients, biliary-pancreatic secretions, and systemic enteric hormones on intestinal adaptation in short bowel syndrome. Male rats (350-400 g; n = 8/group) underwent sham or GRYB with pair feeding and were observed for 14 days. Weight and serum hormonal levels (glucagon-like peptide-2 [GLP-2], PYY) were quantified. Adaptation was assessed by intestinal morphology and crypt cell kinetics in each intestinal limb of the bypass and the equivalent points in the sham intestine. Mucosal growth factors and expression of transporter proteins were measured in each limb of the model. The GRYB animals lost weight compared to controls and exhibited significant adaptive changes with increased bowel width, villus height, crypt depth, and proliferation indices in the alimentary and common intestinal limbs. Although the biliary limb did not adapt at the mucosa, it did show an increased bowel width and crypt cell proliferation rate. The bypass animals had elevated levels of systemic PYY and GLP-2. At the mucosal level, insulin-like growth factor-1 (IGF-1) and basic fibroblast growth factor (bFGF) increased in all limbs of the bypass animals, whereas keratinocyte growth factor (KGF) and epidermal growth factor (EGF) had variable responses. The expression of the passive transporter of glucose, GLUT-2, expression was increased, whereas GLUT-5 was unchanged in all limbs of the bypass groups. Expression of the active mucosal transporter of glucose, SGLT-1 was decreased in the alimentary limb. Adaptation occurred maximally in intestinal segments stimulated by nutrients. Partial adaptation in the biliary limb may reflect the effects of systemic hormones. Mucosal content of IGF-1, bFGF, and EGF appear to be stimulated by systemic hormones

  2. Expression of the Maize Dof1 Transcription Factor in Wheat and Sorghum

    PubMed Central

    Peña, Pamela A.; Quach, Truyen; Sato, Shirley; Ge, Zhengxiang; Nersesian, Natalya; Changa, Taity; Dweikat, Ismail; Soundararajan, Madhavan; Clemente, Tom E.

    2017-01-01

    Nitrogen is essential for plant growth and development. Improving the ability of plants to acquire and assimilate nitrogen more efficiently is a key agronomic parameter that will augment sustainability in agriculture. A transcription factor approach was pursued to address improvement of nitrogen use efficiency in two major commodity crops. To this end, the Zea mays Dof1 (ZmDof1) transcription factor was expressed in both wheat (Triticum aestivum) and sorghum (Sorghum bicolor) either constitutively, UBI4 promoter from sugarcane, or in a tissue specific fashion via the maize rbcS1 promoter. The primary transcription activation target of ZmDof1, phosphoenolpyruvate carboxylase (PEPC), is observed in transgenic wheat events. Expression ZmDof1 under control of the rbcs1 promoter translates to increase in biomass and yield components in wheat. However, constitutive expression of ZmDof1 led to the down-regulation of genes involved in photosynthesis and the functional apparatus of chloroplasts, and an outcome that negatively impacts photosynthesis, height, and biomass in wheat. Similar patterns were also observed in sorghum transgenic events harboring the constitutive expression cassette of ZmDof1. These results indicate that transcription factor strategies to boost agronomic phenotypic outcomes in crops need to consider expression patterns of the genetic elements to be introduced. PMID:28424717

  3. Hepatocyte growth factor/scatter factor enhances the invasion of mesothelioma cell lines and the expression of matrix metalloproteinases

    PubMed Central

    Harvey, P; Clark, I M; Jaurand, M-C; Warn, R M; Edwards, D R

    2000-01-01

    Hepatocyte growth factor/scatter factor (HGF/SF) is a multifunctional factor involved both in development and tissue repair, as well as pathological processes such as cancer and metastasis. It has been identified in vivo in many types of tumours together with its tyrosine kinase receptor, Met. We show here that exogenous HGF/SF acts as a strong chemoattractant for human mesothelioma cell lines. The factor also enhanced cell adhesion to and invasion into Matrigel. The mesothelioma cell lines synthesized a panel of matrix metalloproteinases critical for tumour progression such as MMP-1, 2, 3, 9 and membrane-bound MT1-MMP. HGF/SF stimulated the expression of MMP-1, 9 and MT1-MMP and had a slight effect on expression of the MMP inhibitor TIMP-1 but not TIMP-2. However, there was no simple correlation between the levels of MMPs and TIMPs of the cell lines and their different invasion properties or between HGF/SF stimulatory effects on MMP expression and invasion. In addition, effects of protease inhibitors on invasion suggested that serine proteases were also expressed in human mesothelioma cell lines and were involved in HGF/SF-induced invasion. The results show a predominant role for HGF/SF in mesothelioma cell invasion, stimulating simultaneously adhesion, motility, invasion and regulation of MMP and TIMP levels. © 2000 Cancer Research Campaign PMID:11027427

  4. Targeting tissue factor-expressing tumor angiogenesis and tumors with EF24 conjugated to factor VIIa.

    PubMed

    Shoji, Mamoru; Sun, Aiming; Kisiel, Walter; Lu, Yang J; Shim, Hyunsuk; McCarey, Bernard E; Nichols, Christopher; Parker, Ernest T; Pohl, Jan; Mosley, Cara A; Alizadeh, Aaron R; Liotta, Dennis C; Snyder, James P

    2008-04-01

    Tissue factor (TF) is aberrantly expressed on tumor vascular endothelial cells (VECs) and on cancer cells in many malignant tumors, but not on normal VECs, making it a promising target for cancer therapy. As a transmembrane receptor for coagulation factor VIIa (fVIIa), TF forms a high-affinity complex with its cognate ligand, which is subsequently internalized through receptor-mediated endocytosis. Accordingly, we developed a method for selectively delivering EF24, a potent synthetic curcumin analog, to TF-expressing tumor vasculature and tumors using fVIIa as a drug carrier. EF24 was chemically conjugated to fVIIa through a tripeptide-chloromethyl ketone. After binding to TF-expressing targets by fVIIa, EF24 will be endocytosed along with the drug carrier and will exert its cytotoxicity. Our results showed that the conjugate inhibits vascular endothelial growth factor-induced angiogenesis in a rabbit cornea model and in a Matrigel model in athymic nude mice. The conjugate-induced apoptosis in tumor cells and significantly reduced tumor size in human breast cancer xenografts in athymic nude mice as compared with the unconjugated EF24. By conjugating potent drugs to fVIIa, this targeted drug delivery system has the potential to enhance therapeutic efficacy, while reducing toxic side effects. It may also prove to be useful for treating drug-resistant tumors and micro-metastases in addition to primary tumors.

  5. Limited hair cell induction from human induced pluripotent stem cells using a simple stepwise method.

    PubMed

    Ohnishi, Hiroe; Skerleva, Desislava; Kitajiri, Shin-ichiro; Sakamoto, Tatsunori; Yamamoto, Norio; Ito, Juichi; Nakagawa, Takayuki

    2015-07-10

    Disease-specific induced pluripotent stem cells (iPS) cells are expected to contribute to exploring useful tools for studying the pathophysiology of inner ear diseases and to drug discovery for treating inner ear diseases. For this purpose, stable induction methods for the differentiation of human iPS cells into inner ear hair cells are required. In the present study, we examined the efficacy of a simple induction method for inducing the differentiation of human iPS cells into hair cells. The induction of inner ear hair cell-like cells was performed using a stepwise method mimicking inner ear development. Human iPS cells were sequentially transformed into the preplacodal ectoderm, otic placode, and hair cell-like cells. As a first step, preplacodal ectoderm induction, human iPS cells were seeded on a Matrigel-coated plate and cultured in a serum free N2/B27 medium for 8 days according to a previous study that demonstrated spontaneous differentiation of human ES cells into the preplacodal ectoderm. As the second step, the cells after preplacodal ectoderm induction were treated with basic fibroblast growth factor (bFGF) for induction of differentiation into otic-placode-like cells for 15 days. As the final step, cultured cells were incubated in a serum free medium containing Matrigel for 48 days. After preplacodal ectoderm induction, over 90% of cultured cells expressed the genes that express in preplacodal ectoderm. By culture with bFGF, otic placode marker-positive cells were obtained, although their number was limited. Further 48-day culture in serum free media resulted in the induction of hair cell-like cells, which expressed a hair cell marker and had stereocilia bundle-like constructions on their apical surface. Our results indicate that hair cell-like cells are induced from human iPS cells using a simple stepwise method with only bFGF, without the use of xenogeneic cells. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Understanding Transcription Factor Regulation by Integrating Gene Expression and DNase I Hypersensitive Sites.

    PubMed

    Wang, Guohua; Wang, Fang; Huang, Qian; Li, Yu; Liu, Yunlong; Wang, Yadong

    2015-01-01

    Transcription factors are proteins that bind to DNA sequences to regulate gene transcription. The transcription factor binding sites are short DNA sequences (5-20 bp long) specifically bound by one or more transcription factors. The identification of transcription factor binding sites and prediction of their function continue to be challenging problems in computational biology. In this study, by integrating the DNase I hypersensitive sites with known position weight matrices in the TRANSFAC database, the transcription factor binding sites in gene regulatory region are identified. Based on the global gene expression patterns in cervical cancer HeLaS3 cell and HelaS3-ifnα4h cell (interferon treatment on HeLaS3 cell for 4 hours), we present a model-based computational approach to predict a set of transcription factors that potentially cause such differential gene expression. Significantly, 6 out 10 predicted functional factors, including IRF, IRF-2, IRF-9, IRF-1 and IRF-3, ICSBP, belong to interferon regulatory factor family and upregulate the gene expression levels responding to the interferon treatment. Another factor, ISGF-3, is also a transcriptional activator induced by interferon alpha. Using the different transcription factor binding sites selected criteria, the prediction result of our model is consistent. Our model demonstrated the potential to computationally identify the functional transcription factors in gene regulation.

  7. A sigma factor toolbox for orthogonal gene expression in Escherichia coli

    PubMed Central

    Van Brempt, Maarten; Van Nerom, Katleen; Van Hove, Bob; Maertens, Jo; De Mey, Marjan; Charlier, Daniel

    2018-01-01

    Abstract Synthetic genetic sensors and circuits enable programmable control over timing and conditions of gene expression and, as a result, are increasingly incorporated into the control of complex and multi-gene pathways. Size and complexity of genetic circuits are growing, but stay limited by a shortage of regulatory parts that can be used without interference. Therefore, orthogonal expression and regulation systems are needed to minimize undesired crosstalk and allow for dynamic control of separate modules. This work presents a set of orthogonal expression systems for use in Escherichia coli based on heterologous sigma factors from Bacillus subtilis that recognize specific promoter sequences. Up to four of the analyzed sigma factors can be combined to function orthogonally between each other and toward the host. Additionally, the toolbox is expanded by creating promoter libraries for three sigma factors without loss of their orthogonal nature. As this set covers a wide range of transcription initiation frequencies, it enables tuning of multiple outputs of the circuit in response to different sensory signals in an orthogonal manner. This sigma factor toolbox constitutes an interesting expansion of the synthetic biology toolbox and may contribute to the assembly of more complex synthetic genetic systems in the future. PMID:29361130

  8. Human dental pulp stem cells cultured in serum-free supplemented medium

    PubMed Central

    Bonnamain, Virginie; Thinard, Reynald; Sergent-Tanguy, Solène; Huet, Pascal; Bienvenu, Géraldine; Naveilhan, Philippe; Farges, Jean-Christophe; Alliot-Licht, Brigitte

    2013-01-01

    Growing evidence show that human dental pulp stem cells (DPSCs) could provide a source of adult stem cells for the treatment of neurodegenerative pathologies. In this study, DPSCs were expanded and cultured with a protocol generally used for the culture of neural stem/progenitor cells. Methodology: DPSC cultures were established from third molars. The pulp tissue was enzymatically digested and cultured in serum-supplemented basal medium for 12 h. Adherent (ADH) and non-adherent (non-ADH) cell populations were separated according to their differential adhesion to plastic and then cultured in serum-free defined N2 medium with epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF). Both ADH and non-ADH populations were analyzed by FACS and/or PCR. Results: FACS analysis of ADH-DPSCs revealed the expression of the mesenchymal cell marker CD90, the neuronal marker CD56, the transferrin receptor CD71, and the chemokine receptor CXCR3, whereas hematopoietic stem cells markers CD45, CD133, and CD34 were not expressed. ADH-DPSCs expressed transcripts coding for the Nestin gene, whereas expression levels of genes coding for the neuronal markers β-III tubulin and NF-M, and the oligodendrocyte marker PLP-1 were donor dependent. ADH-DPSCs did not express the transcripts for GFAP, an astrocyte marker. Cells of the non-ADH population that grew as spheroids expressed Nestin, β-III tubulin, NF-M and PLP-1 transcripts. DPSCs that migrated out of the spheroids exhibited an odontoblast-like morphology and expressed a higher level of DSPP and osteocalcin transcripts than ADH-DPSCs. Conclusion: Collectively, these data indicate that human DPSCs can be expanded and cultured in serum-free supplemented medium with EGF and bFGF. ADH-DPSCs and non-ADH populations contained neuronal and/or oligodendrocyte progenitors at different stages of commitment and, interestingly, cells from spheroid structures seem to be more engaged into the odontoblastic lineage than the ADH

  9. [Effect of human oviductal embryotrophic factors on gene expression of mouse preimplantation embryos].

    PubMed

    Yao, Yuan-Qing; Lee, Kai-Fai; Xu, Jia-Seng; Ho, Pak-Chung; Yeung, Shu-Biu

    2007-09-01

    To investigate the effect of embryotrophic factors (ETF) from human oviductal cells on gene expression of mouse early developmental embryos and discuss the role of fallopian tube in early development of embryos. ETF was isolated from conditioned medium of human oviductal cell line by sequential liquid chromatographic systems. Mouse embryos were treated by ETF in vitro. Using differential display RT-PCR, the gene expression of embryos treated by ETF was compared with embryos without ETF treatment. The differentially expressed genes were separated, re-amplified, cloned and sequenced. Gene expression profiles of embryos with ETF treatment was different from embryos without this treatment. Eight differentially expressed genes were cloned and sequenced. These genes functioned in RNA degradation, synthesis, splicing, protein trafficking, cellular differentiation and embryo development. Embryotrophic factors from human oviductal cells affect gene expression of early developmental embryos. The human oviductal cells play wide roles in early developmental stages of embryos.

  10. Expression of connective tissue growth factor in the livers of non-viral hepatocellular carcinoma patients with metabolic risk factors.

    PubMed

    Akahoshi, Keiichi; Tanaka, Shinji; Mogushi, Kaoru; Shimada, Shu; Matsumura, Satoshi; Akiyama, Yoshimitsu; Aihara, Arihiro; Mitsunori, Yusuke; Ban, Daisuke; Ochiai, Takanori; Kudo, Atsushi; Arii, Shigeki; Tanabe, Minoru

    2016-09-01

    The incidence of hepatocellular carcinoma (HCC) associated with metabolic risk factors, such as diabetes and obesity, has been increasing. However, the underlying mechanism that links these diseases remains unclear. We performed genome-wide expression analysis of human liver tissues of non-viral HCC patients with or without metabolic risk factors. The upregulated genes that associated with diabetes and obesity were investigated by in vitro and in vivo experiments, and immunohistochemistry of human liver tissues was performed. Among the upregulated genes, connective tissue growth factor (CTGF) expression was induced to a greater extent by combined glucose and insulin administration to human hepatoma cells. Genome-wide expression analysis revealed upregulation of a chemokine network in CTGF-overexpressing hepatoma cells, which displayed an increased ability to induce in vitro activation of macrophages, and in vivo infiltration of liver macrophages. Immunohistochemistry of human liver tissues validated the correlations between CTGF expression and diabetes or obesity as well as activation of liver macrophages in patients with non-viral HCC. Recurrence-free survival was significantly poorer in the CTGF-positive patients compared with the CTGF-negative patients (p = 0.002). Multivariate analysis determined that CTGF expression (HR 2.361; 95 % CI 1.195-4.665; p = 0.013) and vascular invasion (HR 2.367; 95 % CI 1.270-4.410; p = 0.007) were independent prognostic factors for recurrence of non-viral HCC. Our data suggest that CTGF could be involved in oncogenic pathways promoting non-viral HCC associated with metabolic risk factors via induction of liver inflammation and is expected to be a novel HCC risk biomarker and potential therapeutic target.

  11. Advanced Glycation End-Products affect transcription factors regulating insulin gene expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Puddu, A., E-mail: alep100@hotmail.com; Storace, D.; Odetti, P.

    2010-04-23

    Advanced Glycation End-Products (AGEs) are generated by the covalent interaction of reducing sugars with proteins, lipids or nucleic acids. AGEs are implicated in diabetic complications and pancreatic {beta}-cell dysfunction. We previously demonstrated that exposure of the pancreatic islet cell line HIT-T15 to high concentrations of AGEs leads to a significant decrease of insulin secretion and content. Insulin gene transcription is positively regulated by the beta cell specific transcription factor PDX-1 (Pancreatic and Duodenal Homeobox-1). On the contrary, the forkhead transcription factor FoxO1 inhibits PDX-1 gene transcription. Activity of FoxO1 is regulated by post-translational modifications: phosphorylation deactivates FoxO1, and acetylation preventsmore » FoxO1 ubiquitination. In this work we investigated whether AGEs affect expression and subcellular localization of PDX-1 and FoxO1. HIT-T15 cells were cultured for 5 days in presence of AGEs. Cells were then lysed and processed for subcellular fractionation. We determined intracellular insulin content, then we assessed the expression and subcellular localization of PDX-1, FoxO1, phosphoFoxO1 and acetylFoxO1. As expected intracellular insulin content was lower in HIT-T15 cells cultured with AGEs. The results showed that AGEs decreased expression and nuclear localization of PDX-1, reduced phosphorylation of FoxO1, and increased expression and acetylation of FoxO1. These results suggest that AGEs decrease insulin content unbalancing transcription factors regulating insulin gene expression.« less

  12. Placental growth factor expression is reversed by antivascular endothelial growth factor therapy under hypoxic conditions.

    PubMed

    Zhou, Ai-Yi; Bai, Yu-Jing; Zhao, Min; Yu, Wen-Zhen; Huang, Lv-Zhen; Li, Xiao-Xin

    2014-08-01

    Clinical trials have revealed that the antivascular endothelial growth factor (VEGF) therapies are effective in retinopathy of prematurity (ROP). But the low level of VEGF was necessary as a survival signal in healthy conditions, and endogenous placental growth factor (PIGF) is redundant for development. The purpose of this study was to elucidate the PIGF expression under hypoxia as well as the influence of anti-VEGF therapy on PIGF. CoCl2-induced hypoxic human umbilical vein endothelial cells (HUVECs) were used for an in vitro study, and oxygen-induced retinopathy (OIR) mice models were used for an in vivo study. The expression patterns of PIGF under hypoxic conditions and the influence of anti-VEGF therapy on PIGF were evaluated by quantitative reverse transcription-polymerase chain reaction (RTPCR). The retinal avascular areas and neovascularization (NV) areas of anti-VEGF, anti-PIGF and combination treatments were calculated. Retina PIGF concentration was evaluated by ELISA after treatment. The vasoactive effects of exogenous PIGF on HUVECs were investigated by proliferation and migration studies. PIGF mRNA expression was reduced by hypoxia in OIR mice, in HUVECs under hypoxia and anti-VEGF treatment. However, PIGF expression was reversed by anti-VEGF therapy in the OIR model and in HUVECs under hypoxia. Exogenous PIGF significantly inhibited HUVECs proliferation and migration under normal conditions, but it stimulated cell proliferation and migration under hypoxia. Anti-PIGF treatment was effective for neovascular tufts in OIR mice (P<0.05). The finding that PIGF expression is iatrogenically up-regulated by anti-VEGF therapy provides a consideration to combine it with anti-PIGF therapy.

  13. Nuclear factor I-A represses expression of the cell adhesion molecule L1

    PubMed Central

    2009-01-01

    Background The neural cell adhesion molecule L1 plays a crucial role in development and plasticity of the nervous system. Neural cells thus require precise control of L1 expression. Results We identified a full binding site for nuclear factor I (NFI) transcription factors in the regulatory region of the mouse L1 gene. Electrophoretic mobility shift assay (EMSA) showed binding of nuclear factor I-A (NFI-A) to this site. Moreover, for a brain-specific isoform of NFI-A (NFI-A bs), we confirmed the interaction in vivo using chromatin immunoprecipitation (ChIP). Reporter gene assays showed that in neuroblastoma cells, overexpression of NFI-A bs repressed L1 expression threefold. Conclusion Our findings suggest that NFI-A, in particular its brain-specific isoform, represses L1 gene expression, and might act as a second silencer of L1 in addition to the neural restrictive silencer factor (NRSF). PMID:20003413

  14. [Clinical application of artificial dermis combined with basic fibroblast growth factor in the treatment of cicatrix and deep skin wounds].

    PubMed

    Liu, Yang; Zhang, Yilan; Huang, Yalan; Luo, Gaoxing; Peng, Yizhi; Yan, Hong; Luo, Qizhi; Zhang, Jiaping; Wu, Jun; Peng, Daizhi

    2016-04-01

    To observe the effects of artificial dermis combined with basic fibroblast growth factor (bFGF) on the treatment of cicatrix and deep skin wounds. The clinical data of 72 patients with wounds repaired with artificial dermis, hospitalized in our unit from October 2010 to April 2015, conforming to the study criteria, were retrospectively analyzed. The types of wounds were wounds after resection of cicatrices, deep burn wounds without exposure of tendon or bone, and wounds with exposure of small area of tendon or bone, in a total number of 102. Wounds were divided into artificial dermis group (A, n=60) and artificial dermis+ bFGF group (B, n=42) according to whether or not artificial dermis combined with bFGF. In group A, after release and resection of cicatrices or thorough debridement of deep skin wounds, artificial dermis was directly grafted to wounds in the first stage operation. After complete vascularization of artificial dermis, wounds were repaired with autologous split-thickness skin grafts in the second stage operation. In group B, all the procedures were exactly the same as those in group A except that artificial dermis had been soaked in bFGF for 30 min before grafting. Operation area, complete vascularization time of artificial dermis, survival of skin grafts, and the follow-up condition of wounds in the two groups were recorded. Data were processed with t test and Fisher's exact test. (1) Operation areas of wounds after resection of cicatrices, deep burn wounds without exposure of tendon or bone, and wounds with exposure of small area of tendon or bone in the two groups were about the same (with t values from -1.853 to -0.200, P values above 0.05). Complete vascularization time of artificial dermis in wounds after resection of cicatrices, deep burn wounds without exposure of tendon or bone, and wounds with exposure of small area of tendon or bone in group B were respectively (15.6 ± 2.9), (14.7 ± 2.7), and (20.3 ± 4.4) d, and they were shorter by an

  15. Expression of transcription factors during sodium phenylacetate induced erythroid differentiation in K562 cells.

    PubMed

    Rath, A V; Schmahl, G E; Niemeyer, C M

    1997-01-01

    During 15 days of treatment of K562 cells with sodium phenylacetate, we observed an increase in the cellular hemoglobin concentration with a similar increase in the expression of gamma-globin mRNA. Morphological studies demonstrated characteristic features of erythroid differentiation and maturation. At the same time there was no change in the level of expression of the cell surface antigenes CD33, CD34, CD45, CD71 and glycophorin A. Likewise, the level of expression of the erythroid transcription factors GATA-1, GATA-2, NF-E2, SCL and RBTN2, all expressed in untreated K562 cells, did not increase during sodium phenylacetate induced erythroid differentiation. The expression of the nuclear factors Evi-1 and c-myb, known to inhibit erythroid differentiation, did not decrease. We conclude that sodium phenylacetate treatment of K562 cells increases gamma-globin mRNA and induces cell maturation as judged by morphology without affecting the expression of the erythroid transcription factors, some of which are known to be involved in the regulation of beta-like globin genes.

  16. Fibroblast growth factor-2 promotes keratan sulfate proteoglycan expression by keratocytes in vitro

    NASA Technical Reports Server (NTRS)

    Long, C. J.; Roth, M. R.; Tasheva, E. S.; Funderburgh, M.; Smit, R.; Conrad, G. W.; Funderburgh, J. L.

    2000-01-01

    Keratocytes of the corneal stroma produce a specialized extracellular matrix responsible for corneal transparency. Corneal keratan sulfate proteoglycans (KSPG) are unique products of keratocytes that are down-regulated in corneal wounds and in vitro. This study used cultures of primary bovine keratocytes to define factors affecting KSPG expression in vitro. KSPG metabolically labeled with [(35)S]sulfate decreased during the initial 2-4 days of culture in quiescent cultures with low serum concentrations (0.1%). Addition of fetal bovine serum, fibroblast growth factor-2 (FGF-2), transforming growth factor beta, or platelet derived growth factor all stimulated cell division, but only FGF-2 stimulated KSPG secretion. Combined with serum, FGF-2 also prevented serum-induced KSPG down-regulation. KSPG secretion was lost during serial subculture with or without FGF-2. Expression of KSPG core proteins (lumican, mimecan, and keratocan) was stimulated by FGF-2, and steady state mRNA pools for these proteins, particularly keratocan, were significantly increased by FGF-2 treatment. KSPG expression therefore is supported by exogenous FGF-2 and eliminated by subculture of the cells in presence of serum. FGF-2 stimulates KSPG core protein expression primarily through an increase in mRNA pools.

  17. Transforming growth factor-beta inhibits the expression of clock genes.

    PubMed

    Gast, Heidemarie; Gordic, Sonja; Petrzilka, Saskia; Lopez, Martin; Müller, Andreas; Gietl, Anton; Hock, Christoph; Birchler, Thomas; Fontana, Adriano

    2012-07-01

    Disturbances of sleep-wake rhythms are an important problem in Alzheimer's disease (AD). Circadian rhythms are regulated by clock genes. Transforming growth factor-beta (TGF-β) is overexpressed in neurons in AD and is the only cytokine that is increased in cerebrospinal fluid (CSF). Our data show that TGF-β2 inhibits the expression of the clock genes Period (Per)1, Per2, and Rev-erbα, and of the clock-controlled genes D-site albumin promoter binding protein (Dbp) and thyrotroph embryonic factor (Tef). However, our results showed that TGF-β2 did not alter the expression of brain and muscle Arnt-like protein-1 (Bmal1). The concentrations of TGF-β2 in the CSF of 2 of 16 AD patients and of 1 of 7 patients with mild cognitive impairment were in the dose range required to suppress the expression of clock genes. TGF-β2-induced dysregulation of clock genes may alter neuronal pathways, which may be causally related to abnormal sleep-wake rhythms in AD patients. © 2012 New York Academy of Sciences.

  18. Obesity-induced endoplasmic reticulum stress suppresses nuclear factor-Y expression.

    PubMed

    Liu, Yulan; Zhang, Yuwei; Zhang, Yanjie; Zhang, Jinlong; Liu, Yin; Feng, Peiqun; Su, Zhiguang

    2017-02-01

    Nuclear transcription factor Y (NF-Y) is an evolutionarily conserved transcription factor composed of three subunits, NF-YA, NF-YB, and NF-YC. NF-Y plays crucial roles in pre-adipocyte maintenance and/or commitment to adipogenesis. NF-YA dysfunction in adipocyte resulted in an age-dependent progressive loss of adipose tissue associated with metabolic complications. Endoplasmic reticulum (ER) stress has emerged as an important mediator in the pathogenesis of obesity. However, it is not known if NF-YA is involved in the ER stress-mediated pathogenesis of obesity. We first examined the effects of ER stress on the NF-YA expression in cultured 3T3-L1 adipocytes; then in ob/ob genetic obesity mice, we tested the effect of chemical chaperones alleviating ER stress on the expression levels of NF-YA. Subsequently, we inhibited the new mRNA synthesis using actinomycin D in 3T3-L1 cells to explore the mechanism modulating NF-YA expression. Finally, we evaluated the involvement of PPARg in the regulation of NF-YA expression by ER stress. We demonstrated that both obesity- and chemical chaperone -induced ER stress suppressed NF-YA expression and alleviation of ER stress by chemical chaperone could recover NF-YA expression in ob/ob mice. Moreover, we showed that ER stress suppressed NF-YA mRNA transcription through the involvement of peroxisome proliferator-activated receptor gamma (PPARg). Activation of PPARg ameliorates the ER stress-induced NF-YA suppression. Our findings may point to a possible role of NF-YA in stress conditions that occur in chronic obesity, ER stress might be involved in the pathogenesis of obesity through NF-YA depletion.

  19. Bioactive nanofibers for fibroblastic differentiation of mesenchymal precursor cells for ligament/tendon tissue engineering applications.

    PubMed

    Sahoo, Sambit; Ang, Lay-Teng; Cho-Hong Goh, James; Toh, Siew-Lok

    2010-02-01

    Mesenchymal stem cells and precursor cells are ideal candidates for tendon and ligament tissue engineering; however, for the stem cell-based approach to succeed, these cells would be required to proliferate and differentiate into tendon/ligament fibroblasts on the tissue engineering scaffold. Among the various fiber-based scaffolds that have been used in tendon/ligament tissue engineering, hybrid fibrous scaffolds comprising both microfibers and nanofibers have been recently shown to be particularly promising. With the nanofibrous coating presenting a biomimetic surface, the scaffolds can also potentially mimic the natural extracellular matrix in function by acting as a depot for sustained release of growth factors. In this study, we demonstrate that basic fibroblast growth factor (bFGF) could be successfully incorporated, randomly dispersed within blend-electrospun nanofibers and released in a bioactive form over 1 week. The released bioactive bFGF activated tyrosine phosphorylation signaling within seeded BMSCs. The bFGF-releasing nanofibrous scaffolds facilitated BMSC proliferation, upregulated gene expression of tendon/ligament-specific ECM proteins, increased production and deposition of collagen and tenascin-C, reduced multipotency of the BMSCs and induced tendon/ligament-like fibroblastic differentiation, indicating their potential in tendon/ligament tissue engineering applications. 2009 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  20. High-Dimensional Sparse Factor Modeling: Applications in Gene Expression Genomics

    PubMed Central

    Carvalho, Carlos M.; Chang, Jeffrey; Lucas, Joseph E.; Nevins, Joseph R.; Wang, Quanli; West, Mike

    2010-01-01

    We describe studies in molecular profiling and biological pathway analysis that use sparse latent factor and regression models for microarray gene expression data. We discuss breast cancer applications and key aspects of the modeling and computational methodology. Our case studies aim to investigate and characterize heterogeneity of structure related to specific oncogenic pathways, as well as links between aggregate patterns in gene expression profiles and clinical biomarkers. Based on the metaphor of statistically derived “factors” as representing biological “subpathway” structure, we explore the decomposition of fitted sparse factor models into pathway subcomponents and investigate how these components overlay multiple aspects of known biological activity. Our methodology is based on sparsity modeling of multivariate regression, ANOVA, and latent factor models, as well as a class of models that combines all components. Hierarchical sparsity priors address questions of dimension reduction and multiple comparisons, as well as scalability of the methodology. The models include practically relevant non-Gaussian/nonparametric components for latent structure, underlying often quite complex non-Gaussianity in multivariate expression patterns. Model search and fitting are addressed through stochastic simulation and evolutionary stochastic search methods that are exemplified in the oncogenic pathway studies. Supplementary supporting material provides more details of the applications, as well as examples of the use of freely available software tools for implementing the methodology. PMID:21218139

  1. Expression of transforming growth factor alpha and epidermal growth factor receptor messenger RNA in neoplastic and nonneoplastic human kidney tissue.

    PubMed

    Mydlo, J H; Michaeli, J; Cordon-Cardo, C; Goldenberg, A S; Heston, W D; Fair, W R

    1989-06-15

    Using Northern blot analysis, we have demonstrated that mRNA for transforming growth factor alpha (TGF-alpha) was expressed in five malignant kidney tissue specimens but was not detected in their autologous nonneoplastic homologues. In addition, the expression of epidermal growth factor (EGF) receptor mRNA in these malignant tissues was 2- to 3-fold greater than in nontransformed tissues. In two cases examined using immunohistochemistry, we were able to correlate the increased expression of the mRNA with an increase in protein expression. Since TGF-alpha is known to bind to the EGF receptor, the finding of an increased expression of both TGF-alpha and EGF receptor mRNA in kidney tumor tissue suggests that interaction between TGF-alpha and the EGF receptor may play a role in promoting transformation and/or proliferation of kidney neoplasms, perhaps by an autocrine mechanism.

  2. Connective tissue growth factor immunohistochemical expression is associated with gallbladder cancer progression.

    PubMed

    Garcia, Patricia; Leal, Pamela; Alvarez, Hector; Brebi, Priscilla; Ili, Carmen; Tapia, Oscar; Roa, Juan C

    2013-02-01

    Gallbladder cancer (GBC) is an aggressive neoplasia associated with late diagnosis, unsatisfactory treatment, and poor prognosis. Molecular mechanisms involved in GBC pathogenesis remain poorly understood. Connective tissue growth factor (CTGF) is thought to play a role in the pathologic processes and is overexpressed in several human cancers, including GBC. No information is available about CTGF expression in early stages of gallbladder carcinogenesis. Objective.- To evaluate the expression level of CTGF in benign and malignant lesions of gallbladder and its correlation with clinicopathologic features and GBC prognosis. Connective tissue growth factor protein was examined by immunohistochemistry on tissue microarrays containing tissue samples of chronic cholecystitis (n = 51), dysplasia (n = 15), and GBC (n = 169). The samples were scored according to intensity of staining as low/absent and high CTGF expressers. Statistical analysis was performed using the χ(2) test or Fisher exact probability test with a significance level of P < .05. Survival analysis was assessed by the Kaplan-Meier method and the log-rank test. Connective tissue growth factor expression showed a progressive increase from chronic cholecystitis to dysplasia and then to early and advanced carcinoma. Immunohistochemical expression (score ≥2) was significantly higher in advanced tumors, in comparison with chronic cholecystitis (P < .001) and dysplasia (P = .03). High levels of CTGF expression correlated with better survival (P = .04). Our results suggest a role for CTGF in GBC progression and a positive association with better prognosis. In addition, they underscore the importance of considering the involvement of inflammation on GBC development.

  3. Platelet factor-4 (CXCL4/PF-4): an angiostatic chemokine for cancer therapy.

    PubMed

    Wang, Zhe; Huang, He

    2013-05-01

    Platelet factor-4 (CXCL4/PF-4) is the first chemokine identified to have several biological functions. Notably, CXCL4/PF-4 inhibits endothelial cell proliferation and migration, leading to suppression of angiogenesis. Since angiogenesis is essential for the growth of most primary tumors and their subsequent metastases, it is a target for cancer therapy; due to its multiple functions, CXCL4/PF-4 is a potential clinical anti-tumor agent. This report reviews the mechanisms of CXCL4/PF-4 angiostatic activity, including interference with angiogenic growth factors bFGF-2 and VEGF165, activation of CXCR3B, interactions with integrins, interference with cell cycle, interactions with factors such as VEGF121 and CXCL8/IL-8, and derived molecules of CXCL4/PF-4 with angiostatic and anti-tumoral activities in different models in vivo or in vitro. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. Neural progenitor cell implants modulate vascular endothelial growth factor and brain-derived neurotrophic factor expression in rat axotomized neurons.

    PubMed

    Talaverón, Rocío; Matarredona, Esperanza R; de la Cruz, Rosa R; Pastor, Angel M

    2013-01-01

    Axotomy of central neurons leads to functional and structural alterations which largely revert when neural progenitor cells (NPCs) are implanted in the lesion site. The new microenvironment created by NPCs in the host tissue might modulate in the damaged neurons the expression of a high variety of molecules with relevant roles in the repair mechanisms, including neurotrophic factors. In the present work, we aimed to analyze changes in neurotrophic factor expression in axotomized neurons induced by NPC implants. For this purpose, we performed immunofluorescence followed by confocal microscopy analysis for the detection of vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and nerve growth factor (NGF) on brainstem sections from rats with axotomy of abducens internuclear neurons that received NPC implants (implanted group) or vehicle injections (axotomized group) in the lesion site. Control abducens internuclear neurons were strongly immunoreactive to VEGF and BDNF but showed a weak staining for NT-3 and NGF. Comparisons between groups revealed that lesioned neurons from animals that received NPC implants showed a significant increase in VEGF content with respect to animals receiving vehicle injections. However, the immunoreactivity for BDNF, which was increased in the axotomized group as compared to control, was not modified in the implanted group. The modifications induced by NPC implants on VEGF and BDNF content were specific for the population of axotomized abducens internuclear neurons since the neighboring abducens motoneurons were not affected. Similar levels of NT-3 and NGF immunolabeling were obtained in injured neurons from axotomized and implanted animals. Among all the analyzed neurotrophic factors, only VEGF was expressed by the implanted cells in the lesion site. Our results point to a role of NPC implants in the modulation of neurotrophic factor expression by lesioned central neurons, which might

  5. Expression of LIM-homeodomain transcription factors in the developing and mature mouse retina

    PubMed Central

    Balasubramanian, Revathi; Bui, Andrew; Ding, Qian; Gan, Lin

    2014-01-01

    LIM-homeodomain (LIM-HD) transcription factors have been extensively studied for their role in the development of the central nervous system. Their function is key to several developmental events like cell proliferation, differentiation and subtype specification. However, their roles in retinal neurogenesis remain largely unknown. Here we report a detailed expression study of LIM-HD transcription factors LHX9 and LHX2, LHX3 and LHX4, and LHX6 in the developing and mature mouse retina using immunohistochemistry and in situ hybridization techniques. We show that LHX9 is expressed during the early stages of development in the retinal ganglion cell layer and the inner nuclear layer. We also show that LHX9 is expressed in a subset of amacrine cells in the adult retina. LHX2 is known to be expressed in retinal progenitor cells during development and in Müller glial cells and a subset of amacrine cells in the adult retina. We found that the LHX2 subset of amacrine cells is not cholinergic and that a very few of LHX2 amacrine cells express calretinin. LHX3 and LHX4 are expressed in a subset of bipolar cells in the adult retina. LHX6 is expressed in cells in the ganglion cell layer and the neuroblast layer starting at embryonic stage 13.5 (E13.5) and continues to be expressed in cells in the ganglion cell layer and inner nuclear layer, postnatally, suggesting its likely expression in amacrine cells or a subset thereof. Taken together, our comprehensive assay of expression patterns of LIM-HD transcription factors during mouse retinal development will help further studies elucidating their biological functions in the differentiation of retinal cell subtypes. PMID:24333658

  6. Clinically significant association of elevated expression of nuclear factor E2-related factor 2 expression with higher glucose uptake and progression of upper urinary tract cancer.

    PubMed

    Nukui, Akinori; Narimatsu, Takahiro; Kambara, Tsunehito; Abe, Hideyuki; Sakamoto, Setsu; Yoshida, Ken-Ichiro; Kamai, Takao

    2018-05-02

    There is growing evidence that the transcription factor nuclear factor E2-related factor 2 (Nrf2) is the major participant in regulating antioxidants and pathways for detoxifying reactive oxygen species (ROS), as well as having a vital role in tumor proliferation, invasion, and chemoresistance. It was also recently reported that Nrf2 supports cell proliferation by promoting metabolic activity. Thus, Nrf2 is involved in progression of cancer. Upper urinary tract urothelial carcinoma (UTUC) is a biologically aggressive tumor with high rates of recurrence and progression, resulting in a poor prognosis. However, the role of Nrf2 in UTUC is largely unknown. In order to study the role of Nrf2 in UTUC from the metabolic perspective, we retrospectively assessed Nrf2 expression in the surgical specimen and the preoperative maximum standard glucose uptake (SUVmax) on [ 18 F]fluorodeoxy-glucose positron emission tomography ( 18 F-FDG-PET) of 107 patients with UTUC who underwent radical nephroureterectomy. Increased expression of Nrf2 in the primary lesion was correlated with less differentiated histology, local invasion, and lymph node metastasis, and was also an independent indicator of shorter overall survival according to multivariate analysis. Furthermore, increased expression of Nrf2 was associated with higher preoperative SUVmax by the primary tumor on 18 F-FDG-PET, while Nrf2 expression and SUVmax were also significantly correlated in the metastatic lymph nodes. Among the 18 patients with lymph node metastasis at nephroureterectomy who underwent retroperitoneal lymph node dissection and received adjuvant chemotherapy, the patients with higher Nrf2 expression in the primary tumor had worse recurrence-free survival. These results suggest that constitutive activation of Nrf2 might be linked with tumor aerobic glycolysis and progression of UTUC, indicating that Nrf2 signaling in the tumor microenvironment promotes progression of UTUC.

  7. Regulation of endogenous human gene expression by ligand-inducible TALE transcription factors.

    PubMed

    Mercer, Andrew C; Gaj, Thomas; Sirk, Shannon J; Lamb, Brian M; Barbas, Carlos F

    2014-10-17

    The construction of increasingly sophisticated synthetic biological circuits is dependent on the development of extensible tools capable of providing specific control of gene expression in eukaryotic cells. Here, we describe a new class of synthetic transcription factors that activate gene expression in response to extracellular chemical stimuli. These inducible activators consist of customizable transcription activator-like effector (TALE) proteins combined with steroid hormone receptor ligand-binding domains. We demonstrate that these ligand-responsive TALE transcription factors allow for tunable and conditional control of gene activation and can be used to regulate the expression of endogenous genes in human cells. Since TALEs can be designed to recognize any contiguous DNA sequence, the conditional gene regulatory system described herein will enable the design of advanced synthetic gene networks.

  8. Identification of trans-acting factors regulating SamDC expression in Oryza sativa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basu, Supratim, E-mail: supratim_genetics@yahoo.co.in; Division of Plant Biology, Bose Institute, Kolkata; Roychoudhury, Aryadeep

    2014-03-07

    Highlights: • Identification of cis elements responsible for SamDC expression by in silico analysis. • qPCR analysis of SamDC expression to abiotic and biotic stress treatments. • Detection of SamDC regulators using identified cis-elements as probe by EMSA. • Southwestern Blot analysis to predict the size of the trans-acting factors. - Abstract: Abiotic stress affects the growth and productivity of crop plants; to cope with the adverse environmental conditions, plants have developed efficient defense machinery comprising of antioxidants like phenolics and flavonoids, and osmolytes like polyamines. SamDC is a key enzyme in the polyamine biosynthesis pathway in plants. In ourmore » present communication we have done in silico analysis of the promoter region of SamDC to look for the presence of different cis-regulatory elements contributing to its expression. Based on the presence of different cis-regulatory elements we completed comparative analysis of SamDC gene expression in rice lamina of IR-29 and Nonabokra by qPCR in response to the abiotic stress treatments of salinity, drought, cold and the biotic stress treatments of ABA and light. Additionally, to explore the role of the cis-regulatory elements in regulating the expression of SamDC gene in plants we comparatively analyzed the binding of rice nuclear proteins prepared from IR-29 and Nonabokra undergoing various stress treatments. The intensity of the complex formed was low and inducible in IR-29 in contrast to Nonabokra. Southwestern blot analysis helped in predicting the size of the trans-acting factors binding to these cis-elements. To our knowledge this is the first report on the comprehensive analysis of SamDC gene expression in rice and identification of the trans-acting factors regulating its expression.« less

  9. Cancer Associated Fibroblasts express pro-inflammatory factors in human breast and ovarian tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erez, Neta, E-mail: netaerez@post.tau.ac.il; Glanz, Sarah; Raz, Yael

    Highlights: •CAFs in human breast and ovarian tumors express pro-inflammatory factors. •Expression of pro-inflammatory factors correlates with tumor invasiveness. •Expression of pro-inflammatory factors is associated with NF-κb activation in CAFs. -- Abstract: Inflammation has been established in recent years as a hallmark of cancer. Cancer Associated Fibroblasts (CAFs) support tumorigenesis by stimulating angiogenesis, cancer cell proliferation and invasion. We previously demonstrated that CAFs also mediate tumor-enhancing inflammation in a mouse model of skin carcinoma. Breast and ovarian carcinomas are amongst the leading causes of cancer-related mortality in women and cancer-related inflammation is linked with both these tumor types. However, themore » role of CAFs in mediating inflammation in these malignancies remains obscure. Here we show that CAFs in human breast and ovarian tumors express high levels of the pro-inflammatory factors IL-6, COX-2 and CXCL1, previously identified to be part of a CAF pro-inflammatory gene signature. Moreover, we show that both pro-inflammatory signaling by CAFs and leukocyte infiltration of tumors are enhanced in invasive ductal carcinoma as compared with ductal carcinoma in situ. The pro-inflammatory genes expressed by CAFs are known NF-κB targets and we show that NF-κB is up-regulated in breast and ovarian CAFs. Our data imply that CAFs mediate tumor-promoting inflammation in human breast and ovarian tumors and thus may be an attractive target for stromal-directed therapeutics.« less

  10. Silencing VDAC1 Expression by siRNA Inhibits Cancer Cell Proliferation and Tumor Growth In Vivo

    PubMed Central

    Arif, Tasleem; Vasilkovsky, Lilia; Refaely, Yael; Konson, Alexander; Shoshan-Barmatz, Varda

    2014-01-01

    Alterations in cellular metabolism and bioenergetics are vital for cancer cell growth and motility. Here, the role of the mitochondrial protein voltage-dependent anion channel (VDAC1), a master gatekeeper regulating the flux of metabolites and ions between mitochondria and the cytoplasm, in regulating the growth of several cancer cell lines was investigated by silencing VDAC1 expression using small interfering RNA (siRNA). A single siRNA specific to the human VDAC1 sequence at nanomolar concentrations led to some 90% decrease in VDAC1 levels in the lung A549 and H358, prostate PC-3, colon HCT116, glioblastoma U87, liver HepG2, and pancreas Panc-1 cancer cell lines. VDAC1 silencing persisted 144 hours post-transfection and resulted in profound inhibition of cell growth in cancer but not in noncancerous cells, with up to 90% inhibition being observed over 5 days that was prolonged by a second transfection. Cells expressing low VDAC1 levels showed decreased mitochondrial membrane potential and adenoside triphosphate (ATP) levels, suggesting limited metabolite exchange between mitochondria and cytosol. Moreover, cells silenced for VDAC1 expression showed decreased migration, even in the presence of the wound healing accelerator basic fibroblast growth factor (bFGF). VDAC1-siRNA inhibited cancer cell growth in a Matrigel-based assay in host nude mice. Finally, in a xenograft lung cancer mouse model, chemically modified VDAC1-siRNA not only inhibited tumor growth but also resulted in tumor regression. This study thus shows that VDAC1 silencing by means of RNA interference (RNAi) dramatically inhibits cancer cell growth and tumor development by disabling the abnormal metabolic behavior of cancer cells, potentially paving the way for a more effective pipeline of anticancer drugs. PMID:24781191

  11. [Expression of connective tissue growth factor in colorectal cancer and its association with prognosis].

    PubMed

    Sun, Zheng; Yang, Ping; Liang, Li-yuan; Zhang, Tong; Zhang, Wei-jian; Cao, Jie

    2012-11-01

    To investigate the expression of connective tissue growth factor (CTGF) in colorectal cancer(CRC) and its association with clinicopathologic parameters and overall survival rate. Fresh tumor tissues and matched distal normal colon tissues were collected from 92 patients diagnosed as CRC by surgical operation. The expression level of CTGF mRNA was quantified by quantitative reverse transcription PCR. Thirty out of 92 pairs of tissue specimens were selected randomly to detect CTGF protein by immunohistochemistry. All the cases were followed up to identify prognostic factors for survival. CTGF mRNA expression was up-regulated in CRC. The positive rate of CTGF protein expression tissues (73.3%) was significantly higher than that in the corresponding normal tissues (23.3%, P<0.01). CTGF expression was lower in patients with lymphatic metastasis or stage III/IIII disease (all P<0.05). A negative association was also observed between the CTGF protein positive rate and tumor infiltration depth (P<0.05). The relative expression of CTGF mRNA in tumor tissues was classified into high and low expression groups. The 5-year cumulative survival rate was lower in patients with low CTGF expression (29.3%) as compared to those with high CTGF expressions (68.3%) (P<0.01). Cox regression analysis revealed that the relative expression level of CTGF was independent factor of overall survival (RR=2.960, 95%CI:1.491-1.587, P<0.01). ROC curve analysis showed that sensitivity and specificity of CTGF mRNA expression for prediction of 5-year survival were 64.9% and 74.5%, respectively. The aberrant expression of CTGF is associated with the malignant biological behaviors of CRC. Low expression of CTGF is associated with worse prognosis of CRC.

  12. Immunohistochemical expression of vascular endothelial growth factor in canine oral squamous cell carcinomas.

    PubMed

    Martano, Manuela; Restucci, Brunella; Ceccarelli, Dora Maria; Lo Muzio, Lorenzo; Maiolino, Paola

    2016-01-01

    Angiogenesis is crucial for the growth and metastasis of malignant tumours, and various proangiogenic factors promote this process. One of these factors is vascular endothelial growth factor (VEGF), which appears to play a key role in tumour angiogenesis. The aim of the present study was to assess whether VEGF expression is associated with angiogenesis, disease progression and neoplastic proliferation in canine oral squamous cell carcinoma (OSCC) tissue. VEGF immunoreactivity was quantified by immunohistochemistry in 30 specimens, including normal oral mucosa and OSCC tissues graded as well, moderately or poorly differentiated. VEGF expression was correlated with tumour cell proliferation, as assessed using the proliferating cell nuclear antigen (PCNA) marker and microvessel density (data already published). The present results revealed that VEGF and PCNA expression increased significantly between normal oral tissue and neoplastic tissue, and between well and moderately/poorly differentiated tumours. In addition, VEGF expression was strongly correlated with PCNA expression and microvessel density. It was concluded that VEGF may promote angiogenesis through a paracrine pathway, stimulating endothelial cell proliferation and, similarly, may induce tumour cell proliferation through an autocrine pathway. The present results suggest that the evaluation of VEGF may be a useful additional criterion for estimating malignancy and growth potential in canine OSCCs.

  13. Phenotypic differences between oral and skin fibroblasts in wound contraction and growth factor expression.

    PubMed

    Shannon, Diane B; McKeown, Scott T W; Lundy, Fionnuala T; Irwin, Chris R

    2006-01-01

    Wounds of the oral mucosa heal in an accelerated fashion with reduced scarring compared with cutaneous wounds. The differences in healing outcome between oral mucosa and skin could be because of phenotypic differences between the respective fibroblast populations. This study compared paired mucosal and dermal fibroblasts in terms of collagen gel contraction, alpha-smooth muscle actin expression (alpha-SMA), and production of the epithelial growth factors: keratinocyte growth factor (KGF) and hepatocyte growth factor/scatter factor (HGF). The effects of transforming growth factor -beta1 and -beta3 on each parameter were also determined. Gel contraction in floating collagen lattices was determined over a 7-day period. alpha-SMA expression by fibroblasts was determined by Western blotting. KGF and HGF expression were determined by an enzyme-linked immunosorbent assay. Oral fibroblasts induced accelerated collagen gel contraction, yet surprisingly expressed lower levels of alpha-SMA. Oral cells also produced significantly greater levels of both KGF and HGF than their dermal counterparts. Transforming growth factor-beta1 and -beta3, over the concentration range of 0.1-10 ng/mL, had similar effects on cell function, stimulating both gel contraction and alpha-SMA production, but inhibiting KGF and HGF production by both cell types. These data indicate phenotypic differences between oral and dermal fibroblasts that may well contribute to the differences in healing outcome between these two tissues.

  14. Dynamic expression of transcription factor Brn3b during mouse cranial nerve development

    PubMed Central

    Sajgo, Szilard; Ali, Seid; Popescu, Octavian; Badea, Tudor Constantin

    2015-01-01

    During development transcription factor combinatorial codes define a large variety of morphologically and physiologically distinct neurons. Such a combinatorial code has been proposed for the differentiation of projection neurons of the somatic and visceral components of cranial nerves. It is possible that individual neuronal cell types are not specified by unique transcription factors, but rather emerge through the intersection of their expression domains. Brn3a, Brn3b and Brn3c, in combination with each other and/or transcription factors of other families, can define subgroups of Retinal Ganglion Cells (RGC), Spiral and Vestibular Ganglia, inner ear and vestibular hair cell neurons in the vestibuloacoustic system, and groups of somatosensory neurons in the Dorsal Root Ganglia (DRG). In the present study we investigated the expression and potential role of the Brn3b transcription factor in cranial nerves and associated nuclei of the brainstem. We report the dynamic expression of Brn3b in the somatosensory component of cranial nerves II, V, VII and VIII and visceromotor nuclei of nerves VII, IX, X, as well as other brainstem nuclei during different stages of development into adult stage. We find that genetically identified Brn3bKO RGC axons show correct but delayed pathfinding during the early stages of embryonic development. However loss of Brn3b does not affect the anatomy of the other cranial nerves normally expressing this transcription factor. PMID:26356988

  15. Increased expression of placental growth factor in high-grade endometrial carcinoma.

    PubMed

    Coenegrachts, Lieve; Schrauwen, Stefanie; Van Bree, Rita; Despierre, Evelyn; Luyten, Catherine; Jonckx, Bart; Stassen, Jean Marie; Vergote, Ignace; Amant, Frédéric

    2013-02-01

    Placental growth factor (PlGF), a homolog of vascular endothelial growth factor (VEGF), exerts pleiotropic functions in cancer by affecting tumor cells as well as endothelial and inflammatory cells. Moreover, PlGF expression correlates with tumor stage, recurrence, metastasis and patient outcome in different types of cancer. Recently, administration of anti-PlGF therapy reduced tumor growth and metastasis in preclinical tumor models. In the present study, we evaluated the diagnostic and prognostic value of systemic and local expression of PlGF in primary endometrial carcinomas. PlGF levels in tumor lysates (n=128) and serum (n=88) of patients with primary endometrial cancer were determined using ELISA. PlGF mRNA expression in endometrial carcinoma tissues was quantified by quantitative qRT-PCR. Results were compared to endometrial cancer stage and grade. Systemic PlGF levels were not altered in patients with endometrial cancer (FIGO stage I-II-III) as compared to healthy controls. Only in FIGO stage IV patients, serum PlGF levels were slightly increased. Local PlGF mRNA and protein expression in endometrial tumors progressively increased with tumor grade. In endometrioid carcinomas, PlGF mRNA expression was significantly increased in endometrioid grade 3 tumors as compared to normal endometrial tissue. PlGF protein expression was significantly increased in endometrioid grade 2 and 3 carcinomas and in serous carcinomas as compared to normal endometrial tissue. Our study showed that systemic/serum PlGF levels cannot be used as a diagnostic or prognostic marker in endometrial cancer. However, the increased local expression of PlGF, primarily in high-grade carcinomas, underscores the possibility for preclinical assessment of anti-PlGF therapy in endometrial cancer.

  16. Correlation between spontaneous apoptosis and the expression of angiogenic factors in advanced gastric adenocarcinoma.

    PubMed

    Ikeguchi, M; Cai, J; Fukuda, K; Oka, S; Katano, K; Tsujitani, S; Maeta, M; Kaibara, N

    2001-06-01

    The aim of this study was to investigate whether angiogenic factors influence the occurrence of spontaneous apoptosis in advanced gastric cancer. The apoptotic indices (AIs) of 97 tumors from 97 patients with advanced gastric cancer (pT3, pN0, pM0, Stage II) were analyzed by the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate biotin nick end labeling (TUNEL) method. Intratumoral microvessel densities (IMVDs) of tumors stained with anti-CD34 monoclonal antibody were quantified under x 200 magnification using computer-assisted image analysis. The expressions of angiogenic factors, such as vascular endothelial growth factor (VEGF), thymidine phosphorylase (dThdPase), transforming growth factor-alpha (TGF-alpha), and p53 were analyzed immunohistochemically and compared with IMVDs and AIs. The mean IMVD of the 97 tumors was 365/mm2 (range 147-990/mm2). The mean AI of tumors was 2.1% (range 0-11.3%). A significant inverse correlation between the AIs and the IMVDs was shown (p = -0.278, P = 0.0064). The mean IMVDs of tumors with high expressions of dThdPase, TGF-alpha, or p53 were significantly higher than those of tumors with low expressions of these factors. The mean AI of tumors with high expressions of dThdPase was significantly lower than that of tumors with low expressions of dThdPase (P = 0.023). However, no significant correlations were detected between AIs and the expression levels of VEGF, TGF-alpha, or p53. In gastric cancer, dThdPase may play an important role in tumor progression by increasing microvessels and by suppressing apoptosis of cancer cells.

  17. Industrial production of clotting factors: Challenges of expression, and choice of host cells.

    PubMed

    Kumar, Sampath R

    2015-07-01

    The development of recombinant forms of blood coagulation factors as safer alternatives to plasma derived factors marked a major advance in the treatment of common coagulation disorders. These are complex proteins, mostly enzymes or co-enzymes, involving multiple post-translational modifications, and therefore are difficult to express. This article reviews the nature of the expression challenges for the industrial production of these factors, vis-à-vis the translational and post-translational bottlenecks, as well as the choice of host cell lines for high-fidelity production. For achieving high productivities of vitamin K dependent proteins, which include factors II (prothrombin), VII, IX and X, and protein C, host cell limitation of γ-glutamyl carboxylation is a major bottleneck. Despite progress in addressing this, involvement of yet unidentified protein(s) impedes a complete cell engineering solution. Human factor VIII expresses at very low levels due to limitations at several steps in the protein secretion pathway. Protein and cell engineering, vector improvement and alternate host cells promise improvement in the productivity. Production of Von Willebrand factor is constrained by its large size, complex structure, and the need for extensive glycosylation and disulfide-bonded oligomerization. All the licensed therapeutic factors are produced in CHO, BHK or HEK293 cells. While HEK293 is a recent adoption, BHK cells appear to be disfavored. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. G =  MAT: linking transcription factor expression and DNA binding data.

    PubMed

    Tretyakov, Konstantin; Laur, Sven; Vilo, Jaak

    2011-01-31

    Transcription factors are proteins that bind to motifs on the DNA and thus affect gene expression regulation. The qualitative description of the corresponding processes is therefore important for a better understanding of essential biological mechanisms. However, wet lab experiments targeted at the discovery of the regulatory interplay between transcription factors and binding sites are expensive. We propose a new, purely computational method for finding putative associations between transcription factors and motifs. This method is based on a linear model that combines sequence information with expression data. We present various methods for model parameter estimation and show, via experiments on simulated data, that these methods are reliable. Finally, we examine the performance of this model on biological data and conclude that it can indeed be used to discover meaningful associations. The developed software is available as a web tool and Scilab source code at http://biit.cs.ut.ee/gmat/.

  19. G = MAT: Linking Transcription Factor Expression and DNA Binding Data

    PubMed Central

    Tretyakov, Konstantin; Laur, Sven; Vilo, Jaak

    2011-01-01

    Transcription factors are proteins that bind to motifs on the DNA and thus affect gene expression regulation. The qualitative description of the corresponding processes is therefore important for a better understanding of essential biological mechanisms. However, wet lab experiments targeted at the discovery of the regulatory interplay between transcription factors and binding sites are expensive. We propose a new, purely computational method for finding putative associations between transcription factors and motifs. This method is based on a linear model that combines sequence information with expression data. We present various methods for model parameter estimation and show, via experiments on simulated data, that these methods are reliable. Finally, we examine the performance of this model on biological data and conclude that it can indeed be used to discover meaningful associations. The developed software is available as a web tool and Scilab source code at http://biit.cs.ut.ee/gmat/. PMID:21297945

  20. The expression of pigment epithelium-derived factor in bladder transitional cell carcinoma.

    PubMed

    Jang, Tae Jung; Kim, Sung Woo; Lee, Kyung Seop

    2012-06-01

    Pigment epithelium-derived factor (PEDF) is an anti-angiogenic factor. The purpose of this study is to examine the involvement of PEDF in the angiogenesis and biological behavior of bladder transitional cell carcinoma (TCC). We examined the expression of PEDF in 99 bladder TCCs and ten non-neoplastic tissues, and evaluated microvessel density (MVD). The positive immunoreactivity for PEDF was seen in normal urothelium in 60% (6/10) and TCC in 13% (13/99). The PEDF expression had a significant correlation with MVD, i.e., a low MVD in 42% (5/12), a middle MVD in 11% (8/76) and a high MVD 0% (0/11) of tumors. The PEDF expression was not significantly correlated with the differentiation and invasion of TCC, but the degree of MVD was significantly higher in both high grade TCC and the pT2 tumors. The degree of PEDF expression is significantly higher in normal bladder urothelium than bladder TCC; it is inversely correlated with the angiogenesis; and it is not related to the differentiation and progression of TCC. It can therefore be concluded that bladder TCC would initially occur if there is a lack of the PEDF expression.

  1. The Influence of Primary Microenvironment on Prostate Cancer Osteoblastic Bone Lesion Development

    DTIC Science & Technology

    2015-09-01

    for inhibiting PCa bone lesion development: 3a. Basic fibroblast growth factor (bFGF) in PC3 bone metastasis: bFGF was identified by cytokine...II receptor (TβRII) knockout (Tgfbr2 KO) mouse models. Col1creERT/Tgfbr2 KO (Col/Tgfbr2 KO), which have TGF-β signaling specific KO in fibroblasts ... fibroblasts and osteoblasts in the bone by Colcre/Tgfbr2 KO, or in the myeloid lineage cells, including osteoclasts in the bone by LysMcre/Tgfbr2 KO

  2. Pathway-based factor analysis of gene expression data produces highly heritable phenotypes that associate with age.

    PubMed

    Anand Brown, Andrew; Ding, Zhihao; Viñuela, Ana; Glass, Dan; Parts, Leopold; Spector, Tim; Winn, John; Durbin, Richard

    2015-03-09

    Statistical factor analysis methods have previously been used to remove noise components from high-dimensional data prior to genetic association mapping and, in a guided fashion, to summarize biologically relevant sources of variation. Here, we show how the derived factors summarizing pathway expression can be used to analyze the relationships between expression, heritability, and aging. We used skin gene expression data from 647 twins from the MuTHER Consortium and applied factor analysis to concisely summarize patterns of gene expression to remove broad confounding influences and to produce concise pathway-level phenotypes. We derived 930 "pathway phenotypes" that summarized patterns of variation across 186 KEGG pathways (five phenotypes per pathway). We identified 69 significant associations of age with phenotype from 57 distinct KEGG pathways at a stringent Bonferroni threshold ([Formula: see text]). These phenotypes are more heritable ([Formula: see text]) than gene expression levels. On average, expression levels of 16% of genes within these pathways are associated with age. Several significant pathways relate to metabolizing sugars and fatty acids; others relate to insulin signaling. We have demonstrated that factor analysis methods combined with biological knowledge can produce more reliable phenotypes with less stochastic noise than the individual gene expression levels, which increases our power to discover biologically relevant associations. These phenotypes could also be applied to discover associations with other environmental factors. Copyright © 2015 Brown et al.

  3. Pathway-Based Factor Analysis of Gene Expression Data Produces Highly Heritable Phenotypes That Associate with Age

    PubMed Central

    Anand Brown, Andrew; Ding, Zhihao; Viñuela, Ana; Glass, Dan; Parts, Leopold; Spector, Tim; Winn, John; Durbin, Richard

    2015-01-01

    Statistical factor analysis methods have previously been used to remove noise components from high-dimensional data prior to genetic association mapping and, in a guided fashion, to summarize biologically relevant sources of variation. Here, we show how the derived factors summarizing pathway expression can be used to analyze the relationships between expression, heritability, and aging. We used skin gene expression data from 647 twins from the MuTHER Consortium and applied factor analysis to concisely summarize patterns of gene expression to remove broad confounding influences and to produce concise pathway-level phenotypes. We derived 930 “pathway phenotypes” that summarized patterns of variation across 186 KEGG pathways (five phenotypes per pathway). We identified 69 significant associations of age with phenotype from 57 distinct KEGG pathways at a stringent Bonferroni threshold (P<5.38×10−5). These phenotypes are more heritable (h2=0.32) than gene expression levels. On average, expression levels of 16% of genes within these pathways are associated with age. Several significant pathways relate to metabolizing sugars and fatty acids; others relate to insulin signaling. We have demonstrated that factor analysis methods combined with biological knowledge can produce more reliable phenotypes with less stochastic noise than the individual gene expression levels, which increases our power to discover biologically relevant associations. These phenotypes could also be applied to discover associations with other environmental factors. PMID:25758824

  4. Expression of the Eukaryotic Translation Initiation Factors 4E and 2α in Non-Hodgkin’s Lymphomas

    PubMed Central

    Wang, Songtao; Rosenwald, Igor B.; Hutzler, Michael J.; Pihan, German A.; Savas, Lou; Chen, Jane-Jane; Woda, Bruce A.

    1999-01-01

    Transition of cells from quiescence to proliferation requires an increase in the rate of protein synthesis, which is regulated in part by two key translation initiation factors, 4E and 2α. The expression and activity of both factors are increased transiently when normal resting cells are stimulated to proliferate. They are constitutively elevated in oncogene transformed cultured cells, and overexpression of either initiation factor in rodent cells makes them tumorigenic. In this study we investigate an association between the expression of translation initiation factors and lymphomagenesis. We have analyzed the expression of the protein synthesis initiation factors 4E and 2α by immunohistochemistry in reactive lymph nodes and several types of non-Hodgkin’s lymphoma representing a wide range of clinical behaviors based on the Revised European-American Lymphoma behavioral classification. The study included 7 benign lymph nodes with follicular hyperplasia, 26 indolent lymphomas (6 marginal zone lymphomas, 7 small lymphocytic lymphomas, and 13 follicular lymphomas, grades 1 and 2), 16 moderately aggressive lymphomas (8 mantle cell lymphomas and 8 follicular lymphomas, grade 3), 24 aggressive lymphomas (14 large-B-cell lymphomas and 10 anaplastic large-cell lymphomas), and 15 highly aggressive lymphomas (7 lymphoblastic lymphomas and 8 Burkitt’s lymphomas). Strong expression of initiation factors 4E and 2α was demonstrated in the germinal centers of reactive follicles. Minimal or no expression was seen in the mantle zones and surrounding paracortices, indicating that high expression of initiation factors 4E and 2α is associated with the active proliferation of lymphocytes. Most cases of aggressive and highly aggressive lymphomas showed strong expression of initiation factors 4E and 2α, in contrast to the cases of indolent and moderately aggressive lymphoma, in which their expression was intermediate between the germinal centers and the mantles of reactive

  5. Expression of pigment epithelium-derived factor and tumor necrosis factor-α is correlated in bladder tumor and is related to tumor angiogenesis.

    PubMed

    Feng, Chen-Chen; Wang, Pao-Hsun; Ding, Qiang; Guan, Ming; Zhang, Yuan-Fang; Jiang, Hao-Wen; Wen, Hui; Wu, Zhong

    2013-02-01

    Angiogenesis is a pivotal process on which solid tumor growth is substantially dependent. Pigment epithelium-derived factor (PEDF) is the most potent natural anti-angiogenic factor, which has seldom been studied in bladder tumor, and whose functioning pathway remains unclear. We have thus investigated PEDF expression in relation to tumor necrosis factor-α (TNF-α) and microvessel density (MVD) with immunohistochemistry. Antibodies of PEDF and TNF-α were examined by Western blotting before immunohistochemistry. Sixty-four urothelial tumor sections and 23 normal controls were stained and expression of PEDF, TNF-α, and MVD were studied. Decreased PEDF expression and increased TNF-α expression was noticed in tumorous tissue compared with healthy urothelium. Lower PEDF expression was related to higher tumor grade but stage. Increased TNF-α expression was noticed in recurrent, larger tumors as well as in tumors with progression in grade and stage. Expression of PEDF and TNF-α was correlated in bladder tumor. PEDF or TNF-α was correlated with MVD negatively or positively, respectively, in cancerous tissue and tumorous grouping without correlation in papillary urothelial neoplasm of low malignant potential. Expressional change of PEDF and TNF-α is in relation to angiogenesis of bladder tumor, especially in bladder cancer development. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Hyperprolactinemia following chronic alcohol administration.

    PubMed

    Sarkar, Dipak K

    2010-01-01

    There are several reports showing evidence for the existence of high levels of prolactin (PRL) in alcoholic men and women. Alcohol-induced hyperprolactinemia has also been demonstrated in nonhuman primates and laboratory animals. Therefore, the clinical data as well as animal data suggest that ethanol consumption is a positive risk factor for hyperprolactinemia. In animal studies, it was found that chronic ethanol administration not only elevates plasma levels of PRL but also increases proliferation of pituitary lactotropes. Ethanol action on lactotropes involves crosstalk with estradiol-responsive signaling cascade or estradiol-regulated cell-cell communication. Additionally, it involves suppression of dopamine D2 receptors inhibition of G proteins and intracellular cyclic adenosine monophosphate (cAMP), modulation of transforming growth factor-beta (TGF-beta) isoforms and their receptors (TbetaRII), as well as factors secondary to TGF-beta actions, including production of beta-fibroblast growth factor (bFGF) from follicular-stellate cells. The downstream signaling that governs b-FGF production and secretion involves activation of the MAP kinase p44/42-dependent pathway. A coordinated suppression of D2 receptor- and TbetaRII receptor-mediated signaling as well as enhancement of bFGF activity might be critical for ethanol action on PRL production and cell proliferation in lactotropes. Copyright (c) 2010 S. Karger AG, Basel.

  7. Cancer-associated fibroblasts drive glycolysis in a targetable signaling loop implicated in head and neck squamous cell carcinoma progression.

    PubMed

    Kumar, Dhruv; New, Jacob; Vishwakarma, Vikalp; Joshi, Radhika; Enders, Jonathan; Lin, Fangchen; Dasari, Sumana; Gutierrez, Wade R; Leef, George; Ponnurangam, Sivapriya; Chavan, Hemantkumar; Ganaden, Lydia; Thornton, Mackenzie M; Dai, Hongying; Tawfik, Ossama; Straub, Jeffrey; Shnayder, Yelizaveta; Kakarala, Kiran; Tsue, Terance Ted; Girod, Douglas A; Van Houten, Bennett; Anant, Shrikant; Krishnamurthy, Partha; Thomas, Sufi Mary

    2018-05-16

    Despite aggressive therapies, head and neck squamous cell carcinoma (HNSCC) is associated with a less than 50% 5-year survival rate. Late stage HNSCC frequently consists of up to 80% cancer-associated fibroblasts (CAF). We previously reported that CAF-secreted hepatocyte growth factor (HGF) facilitates HNSCC progression, however very little is known about the role of CAFs in HNSCC metabolism. Here we demonstrate that CAF-secreted HGF increases extracellular lactate levels in HNSCC via upregulation of glycolysis. CAF-secreted HGF induced basic fibroblast growth factor (bFGF) secretion from HNSCC. CAFs were more efficient than HNSCC in using lactate as a carbon source. HNSCC-secreted bFGF increased mitochondrial oxidative phosphorylation (OXPHOS) and HGF secretion from CAFs. Combined inhibition of c-Met and FGFR significantly inhibited CAF-induced HNSCC growth in vitro and in vivo (p<0.001). Our cumulative findings underscore reciprocal signaling between CAF and HNSCC involving bFGF and HGF. This contributes to metabolic symbiosis and a targetable therapeutic axis involving c-Met and FGFR. Copyright ©2018, American Association for Cancer Research.

  8. Increased expression of placental growth factor in high-grade endometrial carcinoma

    PubMed Central

    COENEGRACHTS, LIEVE; SCHRAUWEN, STEFANIE; VAN BREE, RITA; DESPIERRE, EVELYN; LUYTEN, CATHERINE; JONCKX, BART; STASSEN, JEAN MARIE; VERGOTE, IGNACE; AMANT, FRÉDÉRIC

    2013-01-01

    Placental growth factor (PlGF), a homolog of vascular endothelial growth factor (VEGF), exerts pleiotropic functions in cancer by affecting tumor cells as well as endothelial and inflammatory cells. Moreover, PlGF expression correlates with tumor stage, recurrence, metastasis and patient outcome in different types of cancer. Recently, administration of anti-PlGF therapy reduced tumor growth and metastasis in preclinical tumor models. In the present study, we evaluated the diagnostic and prognostic value of systemic and local expression of PlGF in primary endometrial carcinomas. PlGF levels in tumor lysates (n=128) and serum (n=88) of patients with primary endometrial cancer were determined using ELISA. PlGF mRNA expression in endometrial carcinoma tissues was quantified by quantitative qRT-PCR. Results were compared to endometrial cancer stage and grade. Systemic PlGF levels were not altered in patients with endometrial cancer (FIGO stage I-II-III) as compared to healthy controls. Only in FIGO stage IV patients, serum PlGF levels were slightly increased. Local PlGF mRNA and protein expression in endometrial tumors progressively increased with tumor grade. In endometrioid carcinomas, PlGF mRNA expression was significantly increased in endometrioid grade 3 tumors as compared to normal endometrial tissue. PlGF protein expression was significantly increased in endometrioid grade 2 and 3 carcinomas and in serous carcinomas as compared to normal endometrial tissue. Our study showed that systemic/serum PlGF levels cannot be used as a diagnostic or prognostic marker in endometrial cancer. However, the increased local expression of PlGF, primarily in high-grade carcinomas, underscores the possibility for preclinical assessment of anti-PlGF therapy in endometrial cancer. PMID:23232836

  9. Aberrant RNA splicing in cancer; expression changes and driver mutations of splicing factor genes.

    PubMed

    Sveen, A; Kilpinen, S; Ruusulehto, A; Lothe, R A; Skotheim, R I

    2016-05-12

    Alternative splicing is a widespread process contributing to structural transcript variation and proteome diversity. In cancer, the splicing process is commonly disrupted, resulting in both functional and non-functional end-products. Cancer-specific splicing events are known to contribute to disease progression; however, the dysregulated splicing patterns found on a genome-wide scale have until recently been less well-studied. In this review, we provide an overview of aberrant RNA splicing and its regulation in cancer. We then focus on the executors of the splicing process. Based on a comprehensive catalog of splicing factor encoding genes and analyses of available gene expression and somatic mutation data, we identify cancer-associated patterns of dysregulation. Splicing factor genes are shown to be significantly differentially expressed between cancer and corresponding normal samples, and to have reduced inter-individual expression variation in cancer. Furthermore, we identify enrichment of predicted cancer-critical genes among the splicing factors. In addition to previously described oncogenic splicing factor genes, we propose 24 novel cancer-critical splicing factors predicted from somatic mutations.

  10. Dynamic Modulation of Expression of Lentiviral Restriction Factors in Primary CD4+ T Cells following Simian Immunodeficiency Virus Infection.

    PubMed

    Rahmberg, Andrew R; Rajakumar, Premeela A; Billingsley, James M; Johnson, R Paul

    2017-04-01

    Although multiple restriction factors have been shown to inhibit HIV/SIV replication, little is known about their expression in vivo Expression of 45 confirmed and putative HIV/SIV restriction factors was analyzed in CD4 + T cells from peripheral blood and the jejunum in rhesus macaques, revealing distinct expression patterns in naive and memory subsets. In both peripheral blood and the jejunum, memory CD4 + T cells expressed higher levels of multiple restriction factors compared to naive cells. However, relative to their expression in peripheral blood CD4 + T cells, jejunal CCR5 + CD4 + T cells exhibited significantly lower expression of multiple restriction factors, including APOBEC3G , MX2 , and TRIM25 , which may contribute to the exquisite susceptibility of these cells to SIV infection. In vitro stimulation with anti-CD3/CD28 antibodies or type I interferon resulted in upregulation of distinct subsets of multiple restriction factors. After infection of rhesus macaques with SIVmac239, the expression of most confirmed and putative restriction factors substantially increased in all CD4 + T cell memory subsets at the peak of acute infection. Jejunal CCR5 + CD4 + T cells exhibited the highest levels of SIV RNA, corresponding to the lower restriction factor expression in this subset relative to peripheral blood prior to infection. These results illustrate the dynamic modulation of confirmed and putative restriction factor expression by memory differentiation, stimulation, tissue microenvironment and SIV infection and suggest that differential expression of restriction factors may play a key role in modulating the susceptibility of different populations of CD4 + T cells to lentiviral infection. IMPORTANCE Restriction factors are genes that have evolved to provide intrinsic defense against viruses. HIV and simian immunodeficiency virus (SIV) target CD4 + T cells. The baseline level of expression in vivo and degree to which expression of restriction factors is

  11. Factors affecting expression of the recF gene of Escherichia coli K-12.

    PubMed

    Sandler, S J; Clark, A J

    1990-01-31

    This report describes four factors which affect expression of the recF gene from strong upstream lambda promoters under temperature-sensitive cIAt2-encoded repressor control. The first factor was the long mRNA leader sequence consisting of the Escherichia coli dnaN gene and 95% of the dnaA gene and lambda bet, N (double amber) and 40% of the exo gene. When most of this DNA was deleted, RecF became detectable in maxicells. The second factor was the vector, pBEU28, a runaway replication plasmid. When we substituted pUC118 for pBEU28, RecF became detectable in whole cells by the Coomassie blue staining technique. The third factor was the efficiency of initiation of translation. We used site-directed mutagenesis to change the mRNA leader, ribosome-binding site and the 3 bp before and after the translational start codon. Monitoring the effect of these mutational changes by translational fusion to lacZ, we discovered that the efficiency of initiation of translation was increased 30-fold. Only an estimated two- or threefold increase in accumulated levels of RecF occurred, however. This led us to discover the fourth factor, namely sequences in the recF gene itself. These sequences reduce expression of the recF-lacZ fusion genes 100-fold. The sequences responsible for this decrease in expression occur in four regions in the N-terminal half of recF. Expression is reduced by some sequences at the transcriptional level and by others at the translational level.

  12. Transforming growth factor β-activated kinase 1 negatively regulates interleukin-1α-induced stromal-derived factor-1 expression in vascular smooth muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Bin; Li, Wei; Zheng, Qichang

    Stromal-derived Factor-1 (SDF-1) derived from vascular smooth muscle cells (VSMCs) contributes to vascular repair and remodeling in various vascular diseases. In this study, the mechanism underlying regulation of SDF-1 expression by interleukin-1α (IL-1α) was investigated in primary rat VSMCs. We found IL-1α promotes SDF-1 expression by up-regulating CCAAT-enhancer-binding protein β (C/EBPβ) in an IκB kinase β (IKKβ) signaling-dependent manner. Moreover, IL-1α-induced expression of C/EBPβ and SDF-1 was significantly potentiated by knockdown of transforming growth factor β-activated kinase 1 (TAK1), an upstream activator of IKKβ signaling. In addition, we also demonstrated that TAK1/p38 mitogen-activated protein kinase (p38 MAPK) signaling exerted negativemore » effect on IL-1α-induced expression of C/EBPβ and SDF-1 through counteracting ROS-dependent up-regulation of nuclear factor erythroid 2-related factor 2 (NRF2). In conclusion, TAK1 acts as an important regulator of IL-1α-induced SDF-1 expression in VSMCs, and modulating activity of TAK1 may serve as a potential strategy for modulating vascular repair and remodeling. - Highlights: • IL-1α induces IKKβ signaling-dependent SDF-1 expression by up-regulating C/EBPβ. • Activation of TAK1 by IL-1α negatively regulates C/EBPβ-dependent SDF-1 expression. • IL-1α-induced TAK1/p38 MAPK signaling counteracts ROS-dependent SDF-1 expression. • TAK1 counteracts IL-1α-induced SDF-1 expression by attenuating NRF2 up-regulation.« less

  13. Hypoxia-inducible factors regulate pluripotency factor expression by ZNF217- and ALKBH5-mediated modulation of RNA methylation in breast cancer cells.

    PubMed

    Zhang, Chuanzhao; Zhi, Wanqing Iris; Lu, Haiquan; Samanta, Debangshu; Chen, Ivan; Gabrielson, Edward; Semenza, Gregg L

    2016-10-04

    Exposure of breast cancer cells to hypoxia increases the percentage of breast cancer stem cells (BCSCs), which are required for tumor initiation and metastasis, and this response is dependent on the activity of hypoxia-inducible factors (HIFs). We previously reported that exposure of breast cancer cells to hypoxia induces the ALKBH5-mediated demethylation of N6-methyladenosine (m6A) in NANOG mRNA leading to increased expression of NANOG, which is a pluripotency factor that promotes BCSC specification. Here we report that exposure of breast cancer cells to hypoxia also induces ZNF217-dependent inhibition of m6A methylation of mRNAs encoding NANOG and KLF4, which is another pluripotency factor that mediates BCSC specification. Although hypoxia induced the BCSC phenotype in all breast-cancer cell lines analyzed, it did so through variable induction of pluripotency factors and ALKBH5 or ZNF217. However, in every breast cancer line, the hypoxic induction of pluripotency factor and ALKBH5 or ZNF217 expression was HIF-dependent. Immunohistochemistry revealed that expression of HIF-1α and ALKBH5 was concordant in all human breast cancer biopsies analyzed. ALKBH5 knockdown in MDA-MB-231 breast cancer cells significantly decreased metastasis from breast to lungs in immunodeficient mice. Thus, HIFs stimulate pluripotency factor expression and BCSC specification by negative regulation of RNA methylation.

  14. EBF factors drive expression of multiple classes of target genes governing neuronal development.

    PubMed

    Green, Yangsook S; Vetter, Monica L

    2011-04-30

    Early B cell factor (EBF) family members are transcription factors known to have important roles in several aspects of vertebrate neurogenesis, including commitment, migration and differentiation. Knowledge of how EBF family members contribute to neurogenesis is limited by a lack of detailed understanding of genes that are transcriptionally regulated by these factors. We performed a microarray screen in Xenopus animal caps to search for targets of EBF transcriptional activity, and identified candidate targets with multiple roles, including transcription factors of several classes. We determined that, among the most upregulated candidate genes with expected neuronal functions, most require EBF activity for some or all of their expression, and most have overlapping expression with ebf genes. We also found that the candidate target genes that had the most strongly overlapping expression patterns with ebf genes were predicted to be direct transcriptional targets of EBF transcriptional activity. The identification of candidate targets that are transcription factor genes, including nscl-1, emx1 and aml1, improves our understanding of how EBF proteins participate in the hierarchy of transcription control during neuronal development, and suggests novel mechanisms by which EBF activity promotes migration and differentiation. Other candidate targets, including pcdh8 and kcnk5, expand our knowledge of the types of terminal differentiated neuronal functions that EBF proteins regulate.

  15. Pattern identification in time-course gene expression data with the CoGAPS matrix factorization.

    PubMed

    Fertig, Elana J; Stein-O'Brien, Genevieve; Jaffe, Andrew; Colantuoni, Carlo

    2014-01-01

    Patterns in time-course gene expression data can represent the biological processes that are active over the measured time period. However, the orthogonality constraint in standard pattern-finding algorithms, including notably principal components analysis (PCA), confounds expression changes resulting from simultaneous, non-orthogonal biological processes. Previously, we have shown that Markov chain Monte Carlo nonnegative matrix factorization algorithms are particularly adept at distinguishing such concurrent patterns. One such matrix factorization is implemented in the software package CoGAPS. We describe the application of this software and several technical considerations for identification of age-related patterns in a public, prefrontal cortex gene expression dataset.

  16. Transcription factor CREB is involved in CaSR-mediated cytoskeleton gene expression.

    PubMed

    Huang, Shuaishuai; Ren, Yu; Wang, Ping; Li, Yanyuan; Wang, Xue; Zhuang, Haihui; Fang, Rong; Wang, Yuduo; Liu, Ningsheng; Hehir, Michael; Zhou, Jeff X

    2015-03-01

    Our previous studies illustrated that a steady increase of intracellular calcium concentration ([Ca2+]i) was important for maintaining microtubules (MTs) rearrangement in apoptotic cells. However, little is known about the effect of calcium sensing receptor (CaSR)-mediated increase in [Ca2+]i on cytoskeleton gene expression. We examined the impact of taxol or CaSR agonist/antagonist on the regulation of [Ca2+]i concentration, cytoskeleton arrangement, phosphorylated CREB and cytoskeleton gene expressions in HeLa cells with dominant negative plasmid of CREB (PM). This study demonstrated that Gdcl3 (a specific CaSR agonist) evoked a rapid increase of [Ca2+]i, formed a rigid bundle of MTs which surrounded the nucleus and decreased the cytoskeleton gene expressions in HeLa cells. These effects were rescued by addition of NPS2390 (a specific CaSR antagonist). Moreover, CaSR activity affected cytoskeleton gene expression through transcription factor CREB. Histoscores of pCREB immunoreactivity in tissues of cervical adenocarcinoma, renal clear cell carcinoma, and diffuse large B-cell lymphoma were markedly increased compared with non malignant tissue. These data demonstrate, for the first time, that CaSR-mediated increase in [Ca2+]i probably modulate cytoskeleton organization and gene expression via transcription factor. © 2014 Wiley Periodicals, Inc.

  17. The Expression of Pigment Epithelium-Derived Factor in Bladder Transitional Cell Carcinoma

    PubMed Central

    Kim, Sung Woo; Lee, Kyung Seop

    2012-01-01

    Background Pigment epithelium-derived factor (PEDF) is an anti-angiogenic factor. The purpose of this study is to examine the involvement of PEDF in the angiogenesis and biological behavior of bladder transitional cell carcinoma (TCC). Methods We examined the expression of PEDF in 99 bladder TCCs and ten non-neoplastic tissues, and evaluated microvessel density (MVD). Results The positive immunoreactivity for PEDF was seen in normal urothelium in 60% (6/10) and TCC in 13% (13/99). The PEDF expression had a significant correlation with MVD, i.e., a low MVD in 42% (5/12), a middle MVD in 11% (8/76) and a high MVD 0% (0/11) of tumors. The PEDF expression was not significantly correlated with the differentiation and invasion of TCC, but the degree of MVD was significantly higher in both high grade TCC and the pT2 tumors. Conclusions The degree of PEDF expression is significantly higher in normal bladder urothelium than bladder TCC; it is inversely correlated with the angiogenesis; and it is not related to the differentiation and progression of TCC. It can therefore be concluded that bladder TCC would initially occur if there is a lack of the PEDF expression. PMID:23110012

  18. Expressions of apoptosis-regulating factors in bovine retained placenta.

    PubMed

    Kamemori, Y; Wakamiya, K; Nishimura, R; Hosaka, Y; Ohtani, S; Okuda, K

    2011-01-01

    The aim of the present study was to evaluate the relationship between the retention of fetal membranes (RFM) and apoptosis of the cells in fetal membranes. The present study investigated mRNA and protein expressions of apoptosis-regulating factors: FAS, cellular FLICE-like inhibiting protein (cFLIP), BAX, BCL2, caspase-8 (CASP8), and CASP3 in fetal membranes. Placentomes were manually collected from the uterus immediately after parturition and classified into two groups (RFM; n = 8 and non-RFM; n = 8) according to whether placental membranes were expelled or not within 12 h after delivery. FAS mRNA expression in maternal placental tissue was less in RFM cows than in non-RFM cows (P < 0.05). cFLIP mRNA expression in maternal and fetal placental tissue was greater in RFM cows than in non-RFM cows (P < 0.05). CASP3 mRNA expression in maternal placental tissue was greater in RFM cows than in non-RFM cows (P < 0.05). However, the protein expressions of FAS, cFLIP and cleaved CASP3 were not significantly different between the two groups. mRNA and protein expressions of BAX, BCL2 and CASP8 were also not significantly different between the two groups. In the immunohistochemical study, single-stranded DNA, which appears specifically in the apoptotic cells, was mainly found in the maternal placenta of non-RFM cows. Together these results suggest that RFM occurs at least in part due to a dysfunctional apoptotic process caused by the inhibition of FAS expression in the maternal placenta, and the increase of cFLIP expression in the maternal and fetal placenta. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. TERATOGENIC RESPONSES ARE MODULATED IN MICE LACKING EXPRESSION OF EPIDERMAL GROWTH FACTOR (EGF) AND TRANSFORMING GROWTH FACTOR-ALPHA (TGF)

    EPA Science Inventory

    TITLE:
    TERATOGENIC RESPONSES ARE MODULATED IN MICE LACKING EXPRESSION OF EPIDERMAL GROWTH FACTOR (EGF) AND TRANSFORMING GROWTH FACTOR-ALPHA (TGF). AUTHORS (ALL): Abbott, Barbara D.1; Best, Deborah S.1; Narotsky, Michael G.1. SPONSOR NAME: None INSTITUTIONS (ALL): 1. Repro Tox ...

  20. Sequence and Expression Analyses of Ethylene Response Factors Highly Expressed in Latex Cells from Hevea brasiliensis

    PubMed Central

    Piyatrakul, Piyanuch; Yang, Meng; Putranto, Riza-Arief; Pirrello, Julien; Dessailly, Florence; Hu, Songnian; Summo, Marilyne; Theeravatanasuk, Kannikar; Leclercq, Julie; Kuswanhadi; Montoro, Pascal

    2014-01-01

    The AP2/ERF superfamily encodes transcription factors that play a key role in plant development and responses to abiotic and biotic stress. In Hevea brasiliensis, ERF genes have been identified by RNA sequencing. This study set out to validate the number of HbERF genes, and identify ERF genes involved in the regulation of latex cell metabolism. A comprehensive Hevea transcriptome was improved using additional RNA reads from reproductive tissues. Newly assembled contigs were annotated in the Gene Ontology database and were assigned to 3 main categories. The AP2/ERF superfamily is the third most represented compared with other transcription factor families. A comparison with genomic scaffolds led to an estimation of 114 AP2/ERF genes and 1 soloist in Hevea brasiliensis. Based on a phylogenetic analysis, functions were predicted for 26 HbERF genes. A relative transcript abundance analysis was performed by real-time RT-PCR in various tissues. Transcripts of ERFs from group I and VIII were very abundant in all tissues while those of group VII were highly accumulated in latex cells. Seven of the thirty-five ERF expression marker genes were highly expressed in latex. Subcellular localization and transactivation analyses suggested that HbERF-VII candidate genes encoded functional transcription factors. PMID:24971876

  1. Sequence and expression analyses of ethylene response factors highly expressed in latex cells from Hevea brasiliensis.

    PubMed

    Piyatrakul, Piyanuch; Yang, Meng; Putranto, Riza-Arief; Pirrello, Julien; Dessailly, Florence; Hu, Songnian; Summo, Marilyne; Theeravatanasuk, Kannikar; Leclercq, Julie; Kuswanhadi; Montoro, Pascal

    2014-01-01

    The AP2/ERF superfamily encodes transcription factors that play a key role in plant development and responses to abiotic and biotic stress. In Hevea brasiliensis, ERF genes have been identified by RNA sequencing. This study set out to validate the number of HbERF genes, and identify ERF genes involved in the regulation of latex cell metabolism. A comprehensive Hevea transcriptome was improved using additional RNA reads from reproductive tissues. Newly assembled contigs were annotated in the Gene Ontology database and were assigned to 3 main categories. The AP2/ERF superfamily is the third most represented compared with other transcription factor families. A comparison with genomic scaffolds led to an estimation of 114 AP2/ERF genes and 1 soloist in Hevea brasiliensis. Based on a phylogenetic analysis, functions were predicted for 26 HbERF genes. A relative transcript abundance analysis was performed by real-time RT-PCR in various tissues. Transcripts of ERFs from group I and VIII were very abundant in all tissues while those of group VII were highly accumulated in latex cells. Seven of the thirty-five ERF expression marker genes were highly expressed in latex. Subcellular localization and transactivation analyses suggested that HbERF-VII candidate genes encoded functional transcription factors.

  2. A nanoparticulate injectable hydrogel as a tissue engineering scaffold for multiple growth factor delivery for bone regeneration.

    PubMed

    Dyondi, Deepti; Webster, Thomas J; Banerjee, Rinti

    2013-01-01

    Gellan xanthan gels have been shown to be excellent carriers for growth factors and as matrices for several tissue engineering applications. Gellan xanthan gels along with chitosan nanoparticles of 297 ± 61 nm diameter, basic fibroblast growth factor (bFGF), and bone morphogenetic protein 7 (BMP7) were employed in a dual growth factor delivery system to promote the differentiation of human fetal osteoblasts. An injectable system with ionic and temperature gelation was optimized and characterized. The nanoparticle loaded gels showed significantly improved cell proliferation and differentiation due to the sustained release of growth factors. A differentiation marker study was conducted, analyzed, and compared to understand the effect of single vs dual growth factors and free vs encapsulated growth factors. Dual growth factor loaded gels showed a higher alkaline phosphatase and calcium deposition compared to single growth factor loaded gels. The results suggest that encapsulation and stabilization of growth factors within nanoparticles and gels are promising for bone regeneration. Gellan xanthan gels also showed antibacterial effects against Pseudomonas aeruginosa, Staphylococcus aureus, and Staphylococcus epidermidis, the common pathogens in implant failure.

  3. Glucocorticoid receptor represses brain-derived neurotrophic factor expression in neuron-like cells.

    PubMed

    Chen, Hui; Lombès, Marc; Le Menuet, Damien

    2017-04-12

    Brain-derived neurotrophic factor (BDNF) is involved in many functions such as neuronal growth, survival, synaptic plasticity and memorization. Altered expression levels are associated with many pathological situations such as depression, epilepsy, Alzheimer's, Huntington's and Parkinson's diseases. Glucocorticoid receptor (GR) is also crucial for neuron functions, via binding of glucocorticoid hormones (GCs). GR actions largely overlap those of BDNF. It has been proposed that GR could be a regulator of BDNF expression, however the molecular mechanisms involved have not been clearly defined yet. Herein, we analyzed the effect of a GC agonist dexamethasone (DEX) on BDNF expression in mouse neuronal primary cultures and in the newly characterized, mouse hippocampal BZ cell line established by targeted oncogenesis. Mouse Bdnf gene exhibits a complex genomic structure with 8 untranslated exons (I to VIII) splicing onto one common and unique coding exon IX. We found that DEX significantly downregulated total BDNF mRNA expression by around 30%. Expression of the highly expressed exon IV and VI containing transcripts was also reduced by DEX. The GR antagonist RU486 abolished this effect, which is consistent with specific GR-mediated action. Transient transfection assays allowed us to define a short 275 bp region within exon IV promoter responsible for GR-mediated Bdnf repression. Chromatin immunoprecipitation experiments demonstrated GR recruitment onto this fragment, through unidentified transcription factor tethering. Altogether, GR downregulates Bdnf expression through direct binding to Bdnf regulatory sequences. These findings bring new insights into the crosstalk between GR and BDNF signaling pathways both playing a major role in physiology and pathology of the central nervous system.

  4. Orf virus interleukin-10 and vascular endothelial growth factor-E modulate gene expression in cultured equine dermal fibroblasts.

    PubMed

    Wise, Lyn M; Bodaan, Christa J; Mercer, Andrew A; Riley, Christopher B; Theoret, Christine L

    2016-10-01

    Wounds in horses often exhibit sustained inflammation and inefficient vascularization, leading to excessive fibrosis and clinical complications such as "proud flesh". Orf virus-derived proteins, vascular endothelial growth factor (VEGF)-E and interleukin (ovIL)-10, enhance angiogenesis and control inflammation and fibrosis in skin wounds of laboratory animals. The study aimed to determine if equine dermal cells respond to VEGF-E and ovIL-10. Equine dermal cells are expected to express VEGF and IL-10 receptors, so viral protein treatment is likely to alter cellular gene expression and behaviour in a manner conducive to healing. Skin samples were harvested from the lateral thoracic wall of two healthy thoroughbred horses. Equine dermal cells were isolated using a skin explant method and their phenotype assessed by immunofluorescence. Cells were treated with recombinant proteins, with or without inflammatory stimuli. Gene expression was examined using standard and quantitative reverse transcriptase PCR. Cell behaviour was evaluated in a scratch assay. Cultured cells were half vimentin(+ve) fibroblasts and half alpha smooth muscle actin(+ve) and vimentin(+ve) myofibroblasts. VEGF-E increased basal expression of IL-10 mRNA, whereas VEGF-A and collagenase-1 mRNA expression was increased by ovIL-10. In cells exposed to inflammatory stimulus, both treatments dampened tumour necrosis factor mRNA expression, and ovIL-10 exacerbated expression of monocyte chemoattractant protein. Neither viral protein influenced cell migration greatly. This study shows that VEGF-E and ovIL-10 are active on equine dermal cells and exert anti-inflammatory and anti-fibrotic effects that may enhance skin wound healing in horses. © 2016 ESVD and ACVD.

  5. Inflammatory monocytes expressing tissue factor drive SIV and HIV coagulopathy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schechter, Melissa E.; Andrade, Bruno B.; He, Tianyu

    In HIV infection, persistent inflammation despite effective antiretroviral therapy is linked to increased risk of noninfectious chronic complications such as cardiovascular and thromboembolic disease. Thus, a better understanding of inflammatory and coagulation pathways in HIV infection is needed to optimize clinical care. Markers of monocyte activation and coagulation independently predict morbidity and mortality associated with non-AIDS events. We identified a specific subset of monocytes that express tissue factor (TF), persist after virological suppression, and trigger the coagulation cascade by activating factor X. This subset of monocytes expressing TF had a distinct gene signature with up-regulated innate immune markers and evidencemore » of robust production of multiple proinflammatory cytokines, including interleukin-1β (IL-1β), tumor necrosis factor–α (TNF-α), and IL-6, ex vivo and in vitro upon lipopolysaccharide stimulation. We validated our findings in a nonhuman primate model, showing that TF-expressing inflammatory monocytes were associated with simian immunodeficiency virus (SIV)–related coagulopathy in the progressive [pigtail macaques (PTMs)] but not in the nonpathogenic (African green monkeys) SIV infection model. Last, Ixolaris, an anticoagulant that inhibits the TF pathway, was tested and potently blocked functional TF activity in vitro in HIV and SIV infection without affecting monocyte responses to Toll-like receptor stimulation. Strikingly, in vivo treatment of SIV-infected PTMs with Ixolaris was associated with significant decreases in D-dimer and immune activation. These data suggest that TF-expressing monocytes are at the epicenter of inflammation and coagulation in chronic HIV and SIV infection and may represent a potential therapeutic target.« less

  6. Inflammatory monocytes expressing tissue factor drive SIV and HIV coagulopathy

    DOE PAGES

    Schechter, Melissa E.; Andrade, Bruno B.; He, Tianyu; ...

    2017-08-30

    In HIV infection, persistent inflammation despite effective antiretroviral therapy is linked to increased risk of noninfectious chronic complications such as cardiovascular and thromboembolic disease. Thus, a better understanding of inflammatory and coagulation pathways in HIV infection is needed to optimize clinical care. Markers of monocyte activation and coagulation independently predict morbidity and mortality associated with non-AIDS events. We identified a specific subset of monocytes that express tissue factor (TF), persist after virological suppression, and trigger the coagulation cascade by activating factor X. This subset of monocytes expressing TF had a distinct gene signature with up-regulated innate immune markers and evidencemore » of robust production of multiple proinflammatory cytokines, including interleukin-1β (IL-1β), tumor necrosis factor–α (TNF-α), and IL-6, ex vivo and in vitro upon lipopolysaccharide stimulation. We validated our findings in a nonhuman primate model, showing that TF-expressing inflammatory monocytes were associated with simian immunodeficiency virus (SIV)–related coagulopathy in the progressive [pigtail macaques (PTMs)] but not in the nonpathogenic (African green monkeys) SIV infection model. Last, Ixolaris, an anticoagulant that inhibits the TF pathway, was tested and potently blocked functional TF activity in vitro in HIV and SIV infection without affecting monocyte responses to Toll-like receptor stimulation. Strikingly, in vivo treatment of SIV-infected PTMs with Ixolaris was associated with significant decreases in D-dimer and immune activation. These data suggest that TF-expressing monocytes are at the epicenter of inflammation and coagulation in chronic HIV and SIV infection and may represent a potential therapeutic target.« less

  7. Egr-1 and serum response factor are involved in growth factors- and serum-mediated induction of E2-EPF UCP expression that regulates the VHL-HIF pathway.

    PubMed

    Lim, Jung Hwa; Jung, Cho-Rok; Lee, Chan-Hee; Im, Dong-Soo

    2008-11-01

    E2-EPF ubiquitin carrier protein (UCP) has been shown to be highly expressed in common human cancers and target von Hippel-Lindau (VHL) for proteosomal degradation in cells, thereby stabilizing hypoxia-inducible factor (HIF)-1alpha. Here, we investigated cellular factors that regulate the expression of UCP gene. Promoter deletion assay identified binding sites for early growth response-1 (Egr-1) and serum response factor (SRF) in the UCP promoter. Hepatocyte or epidermal growth factor (EGF), or phorbol 12-myristate 13-acetate induced UCP expression following early induction of Egr-1 expression in HeLa cells. Serum increased mRNA and protein levels of SRF and UCP in the cell. By electrophoretic mobility shift and chromatin immunoprecipitation assays, sequence-specific DNA-binding of Egr-1 and SRF to the UCP promoter was detected in nuclear extracts from HeLa cells treated with EGF and serum, respectively. Overexpression of Egr-1 or SRF increased UCP expression. RNA interference-mediated depletion of endogenous Egr-1 or SRF impaired EGF- or serum-mediated induction of UCP expression, which was required for cancer cell proliferation. Systemic delivery of EGF into mice also increased UCP expression following early induction of Egr-1 expression in mouse liver. The induced UCP expression by the growth factors or serum increased HIF-1alpha protein level under non-hypoxic conditions, suggesting that the Egr-1/SRF-UCP-VHL pathway is in part responsible for the increased HIF-1alpha protein level in vitro and in vivo. Thus, growth factors and serum induce expression of Egr-1 and SRF, respectively, which in turn induces UCP expression that positively regulates cancer cell growth.

  8. Growth differentiation factor 9 and its spatiotemporal expression and regulation in the zebrafish ovary.

    PubMed

    Liu, Lin; Ge, Wei

    2007-02-01

    Growth differentiation factor 9 (GDF9) is a member of the transforming growth factor beta (TGFB) superfamily. As an oocyte-specific growth factor, GDF9 plays critical roles in controlling folliculogenesis in mammals. In the present study, we cloned a 2.1-kb cDNA of the zebrafish GDF9 homolog (Gdf9, gdf9), which shares approximately 60% homology with that of mammals in the mature region. RT-PCR analysis showed that zebrafish gdf9 expression was present only in the gonads and Northern blot analysis revealed a single transcript of about 2.0 kb in the ovary. Real-time RT-PCR analysis revealed that gdf9 expression was highest in primary growth (PG, stage I) follicles and gradually decreased during follicular development, with the lowest level being found in fully grown (FG) follicles. The expression of gdf9 was maintained through fertilization and early embryonic development until gastrulation, at which point the expression level dramatically decreased. Expression was barely detectable after the late gastrula stage. Within the follicle, gdf9 mRNA was localized exclusively in the oocytes, as demonstrated by RT-PCR of denuded oocytes and freshly isolated follicle layers as well as by in situ hybridization. Interestingly, when amplified for high numbers of cycles, the expression of gdf9 was detected in cultured zebrafish follicular cells that were free of oocytes. The expression of gdf9 was downregulated by hCG in both ovarian fragments and isolated follicles in dose- and time-dependent manners, and this inhibition appeared to be stage-dependent, with the strongest inhibition observed for the FG follicles and no effect seen for the PG follicles. This correlates well with the expression profile of the LH receptor (lhcgr) in zebrafish follicles. In conclusion, as an oocyte-derived growth factor, GDF9 is highly conserved across vertebrates. With its biological advantages, zebrafish provides an alternative model for studying gene function and regulation.

  9. TALE factors use two distinct functional modes to control an essential zebrafish gene expression program.

    PubMed

    Ladam, Franck; Stanney, William; Donaldson, Ian J; Yildiz, Ozge; Bobola, Nicoletta; Sagerström, Charles G

    2018-06-18

    TALE factors are broadly expressed embryonically and known to function in complexes with transcription factors (TFs) like Hox proteins at gastrula/segmentation stages, but it is unclear if such generally expressed factors act by the same mechanism throughout embryogenesis. We identify a TALE-dependent gene regulatory network (GRN) required for anterior development and detect TALE occupancy associated with this GRN throughout embryogenesis. At blastula stages, we uncover a novel functional mode for TALE factors, where they occupy genomic DECA motifs with nearby NF-Y sites. We demonstrate that TALE and NF-Y form complexes and regulate chromatin state at genes of this GRN. At segmentation stages, GRN-associated TALE occupancy expands to include HEXA motifs near PBX:HOX sites. Hence, TALE factors control a key GRN, but utilize distinct DNA motifs and protein partners at different stages - a strategy that may also explain their oncogenic potential and may be employed by other broadly expressed TFs. © 2018, Ladam et al.

  10. Expression of vascular endothelial growth factor mRNA in non-small-cell lung carcinomas

    PubMed Central

    Fontanini, G; Boldrini, L; Chinè, S; Pisaturo, F; Basolo, F; Calcinai, A; Lucchi, M; Mussi, A; Angeletti, C A; Bevilacqua, G

    1999-01-01

    The vascular endothelial growth factor (VEGF) has been shown to be strictly related to vascular permeability and endothelial cell growth under physiological and pathological conditions. In tumour development and progression, VEGF plays a pivotal role in the development of the tumoral vascular network, and useful information in the progression of human cancer can be obtained by analysing the vascular endothelial growth factor expression of the tumours. In this study, we investigated the vascular endothelial growth factor transcript expression in non-small-cell lung carcinomas to evaluate the significance of this factor in a group of cancers in which the vascular pattern has been shown to significantly affect progression. Surgical samples of 42 patients with NSCLC were studied using reverse transcription polymerase chain reaction (PCR) analysis and in situ hybridization. Thirty-three out of 42 cases (78.6%) showed VEGF transcript expression predominantly as transcripts for the secretory forms of VEGF (isoforms 121 and 165). In situ hybridization, performed on 24 out of 42 samples, showed that the VEGF transcript expression was in several cases present in the cytoplasm both of neoplastic and normal cells, even if the VEGF mRNA was less expressed in the corresponding non-tumoral part. The VEGF 121 expression was associated with hilar and/or mediastinal nodal involvement (P = 0.02), and, taken together, the VEGF isoforms were shown to significantly influence overall (P = 0.02) and disease-free survival (P = 0.03). As a regulator of tumour angiogenesis, VEGF may represent a useful indicator of progression and poor prognosis in non-small-cell lung carcinomas. © 1999 Cancer Research Campaign PMID:9888482

  11. Expression of the human blood coagulation protein factor XIIIa in Saccharomyces cerevisiae: dependence of the expression levels from host-vector systems and medium conditions.

    PubMed

    Bröker, M; Bäuml, O; Göttig, A; Ochs, J; Bodenbenner, M; Amann, E

    1991-03-01

    The human blood coagulation protein Factor XIIIa (FXIIIa) was expressed in Saccharomyces cerevisiae employing Escherichia coli-yeast shuttle vectors based on a 2-mu plasmid. Several factors affecting high production yield of recombinant FXIIIa were analysed. The use of the regulatable GAL-CYC1 hybrid promoter resulted in higher FXIIIa expression when compared with the constitutive ADCI promoter. Screening for suitable yeast strains for expression of FXIIIa under the transcriptional control of the GAL-CYC1 hybrid promoter revealed a broad spectrum of productivity. No obvious correlation between the expression rate and the genetic markers of the strains could be identified. The medium composition markedly influenced the FXIIIa expression rates. The expression of FXIIIa was strictly regulated by the carbon source. Glucose as the only sugar and energy source repressed the synthesis of FXIIIa, whereas addition of galactose induced FXIIIa expression. Special feeding schemes resulted in a productivity of up to 100 mg FXIIIa/l in shake flasks.

  12. Expression of macrophage migration inhibitory factor in footpad skin lesions with diabetic neuropathy.

    PubMed

    Up Noh, Sun; Lee, Won-Young; Kim, Won-Serk; Lee, Yong-Taek; Jae Yoon, Kyung

    2018-01-01

    Background Diabetic neuropathy originating in distal lower extremities is associated with pain early in the disease course, overwhelming in the feet. However, the pathogenesis of diabetic neuropathy remains unclear. Macrophage migration inhibitory factor has been implicated in the onset of neuropathic pain and the development of diabetes. Objective of this study was to observe pain syndromes elicited in the footpad of diabetic neuropathy rat model and to assess the contributory role of migration inhibitory factor in the pathogenesis of diabetic neuropathy. Methods Diabetic neuropathy was made in Sprague Dawley rats by streptozotocin. Pain threshold was evaluated using von Frey monofilaments for 24 weeks. On comparable experiment time after streptozotocin injection, all footpads were prepared for following procedures; glutathione assay, terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling staining, immunohistochemistry staining, real-time reverse transcription polymerase chain reaction, and Western blot. Additionally, human HaCaT skin keratinocytes were treated with methylglyoxal, transfected with migration inhibitory factor/control small interfering RNA, and prepared for real-time reverse transcription polymerase chain reaction and Western blot. Results As compared to sham group, pain threshold was significantly reduced in diabetic neuropathy group, and glutathione was decreased in footpad skin, simultaneously, cell death was increased. Over-expression of migration inhibitory factor, accompanied by low expression of glyoxalase-I and intraepidermal nerve fibers, was shown on the footpad skin lesions of diabetic neuropathy. But, there was no significance in expression of neurotransmitters and inflammatory mediators such as transient receptor potential vanilloid 1, mas-related G protein coupled receptor D, nuclear factor kappa B, tumor necrosis factor-alpha, and interleukin-6 between diabetic neuropathy group and sham group. Intriguingly

  13. Factors for C-Kit Expression in Cardiac Outgrowth Cells and Human Heart Tissue.

    PubMed

    Matsushita, Satoshi; Minematsu, Kazuo; Yamamoto, Taira; Inaba, Hirotaka; Kuwaki, Kenji; Shimada, Akie; Yokoyama, Yasutaka; Amano, Atsushi

    2017-12-12

    We determined the factors associated with the expression of c-kit in the heart and the proliferation of c-kit-positive (c-kit pos ) cardiac stem cells among the outgrowth cells cultured from human cardiac explants.Samples of the right atrium (RA), left atrium (LA), and left ventricle obtained from patients during open-heart surgery were processed for cell culture of outgrowth cells and tissue analysis. The total number of growing cells and the population of c-kit pos cells were measured and compared with c-kit expression in native tissues and characteristics of the patients according to the region of the heart.We analyzed 452 samples from 334 patients. Atrial fibrillation (AF) in the patients reduced the number of outgrowth cells from the RA and LA, and aging was a co-factor for the LA. The c-kit pos population from the RA was associated with serum brain natriuretic peptide (BNP). C-kit expression in native tissue was also associated with BNP expression. However, we observed no relationship in expression between outgrowth cells and native tissue. In addition, the RA tissue provided the highest number of c-kit pos cells, and the left ventricle provided the lowest.C-kit was weakly expressed in response to damage. In addition, no correlation between outgrowth cells and native tissue was found for c-kit expression.

  14. Molecular mechanisms of ulcer healing.

    PubMed

    Tarnawski, A

    2000-04-01

    An ulcer in the gastrointestinal tract is a deep necrotic lesion penetrating the entire mucosal thickness and muscularis mucosae. Ulcer healing is an active process of filling the mucosal defect with proliferating and migrating epithelial and connective tissue cells. At the ulcer margin, epithelial cells proliferate and migrate onto the granulation tissue to cover (reepithelialize) the ulcer and also invade granulation tissue to reconstruct glandular structures within the ulcer scar. The reepithelialization and reconstruction of glandular structures is controlled by growth factors: trefoil peptides, EGF, HGF, bFGF and PDGF; and locally produced cytokines by regenerating cells in an orderly fashion and integrated manner to ensure the quality of mucosal restoration. These growth factors, most notably EGF, trigger cell proliferation via signal transduction pathways involving EGF-R, adapter proteins (Grb2, Shc and Sos), Ras, Raf1 and MAP (Erk1/Erk2) kinases, which, after translocation to nuclei, activate transcription factors and cell proliferation. Cell migration requires cytoskeletal rearrangements and is controlled by growth factors via Rho/Rac and signaling pathways involving PLC-gamma, PI-3 K and phosphorylation of focal adhesion proteins. Granulation tissue develops at the ulcer base. It consists of connective tissue cells: fibroblasts, macrophages and proliferating endothelial cells forming microvessels under the control of angiogenic growth factors: bFGF, VEGF and angiopoietins, which all promote angiogenesiscapillary vessel formation, essential for the restoration of microvascular network in the mucosa and thus crucial for oxygen and nutrient supply. The major mechanism of activation of angiogenic growth factors and their receptor expression appears to be hypoxia, which activates hypoxia-inducible factor, which binds to VEGF promoter.

  15. Differences in Aqueous Concentrations of Cytokines in Macular Edema Secondary to Branch and Central Retinal Vein Occlusion

    PubMed Central

    Feng, Jing; Zhao, Tong; Zhang, Yan; Ma, Yan; Jiang, Yanrong

    2013-01-01

    Purpose This study investigates the differential aqueous concentrations of interleukin 6, 8, 1β (IL-6, IL-8, IL-1β, respectively), serum amyloid A (SAA), transforming growth factor (TGF)-β, basic fibroblast growth factor (bFGF), and vascular endothelial growth factor (VEGF) in eyes with macular edema as a result of a branch retinal vein occlusion (BRVO) or central retinal vein occlusion (CRVO). Principal Findings Significantly higher concentrations of IL-6, IL-8, IL-1β, TGF-β, bFGF, SAA, and VEGF were found in the aqueous humor of CRVO and BRVO patients than in the aqueous humor of control patients. A significant correlation was observed between the concentration of bFGF and the inner central macular thickness (CMT) of BRVO patients (r = 0.688; P = 0.02). A significant correlation was observed between the concentration of SAA and both the full and outer CMT of the ischemic group (r = 0.545 and 0.683, respectively; P = 0.04 and 0.01, respectively). In the non-ischemic group, the level of IL-6 was significantly associated with inner CMT (r = 0.560; P = 0.03). The full and outer CMT was significantly reduced in CRVO patients when compared with BRVO patients (P = 0.02 and 0.02, respectively) after injection of intravitreal bevacizumab (IVB) at 4 weeks. Significance Serum amyloid A as a major protein involved in the acute and chronic stages of inflammation, and IL-6 and bFGF were significantly associated with the extent of macular edema in patients with RVO. Besides VEGF, other inflammatory cytokines and angiogenesic factors may be associated with RVO. This finding may have implications for the medical treatment of RVO. PMID:23861862

  16. Platelet lysate from whole blood-derived pooled platelet concentrates and apheresis-derived platelet concentrates for the isolation and expansion of human bone marrow mesenchymal stromal cells: production process, content and identification of active components

    PubMed Central

    Fekete, Natalie; Gadelorge, Mélanie; Fürst, Daniel; Maurer, Caroline; Dausend, Julia; Fleury-Cappellesso, Sandrine; Mailänder, Volker; Lotfi, Ramin; Ignatius, Anita; Sensebé, Luc; Bourin, Philippe; Schrezenmeier, Hubert; Rojewski, Markus Thomas

    2012-01-01

    Background aims The clinical use of human mesenchymal stromal cells (MSC) requires ex vivo expansion in media containing supplements such as fetal bovine serum or, alternatively, human platelet lysate (PL). Methods Platelet concentrates were frozen, quarantine stored, thawed and sterile filtered to obtain PL. PL content and its effect on fibroblast-colony-forming unit (CFU-F) formation, MSC proliferation and large-scale expansion were studied. Results PL contained high levels of basic fibroblast growth factor (bFGF), soluble CD40L (sCD40L), vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), platelet-derived growth factor AA (PDGF-AA), platelet-derived growth factor AB/BB (PDGF-AB/BB), chemokine (C-C) ligand 5 (CCL5; RANTES) transforming growth factor-β1 (TGF-β1) and chemokine (C-X-C) ligand 1/2/3 (GRO), with low batch-to-batch variability, and most were stable for up to 14 days. Inhibition of PDGF-BB and bFGF decreased MSC proliferation by about 20% and 50%, respectively. The strongest inhibition (about 75%) was observed with a combination of anti-bFGF + anti-PDGF-BB and anti-bFGF + anti-TGF-β1 + anti-PDGF-BB. Interestingly, various combinations of recombinant PDGF-BB, bFGF and TGF-β1 were not sufficient to promote cell proliferation. PL from whole blood-derived pooled platelet concentrates and apheresis platelet concentrates did not differ significantly in their growth-promoting activity on MSC. Conclusions PL enhances MSC proliferation and can be regarded as a safe tool for MSC expansion for clinical purposes. \\in particular, PDGF-BB and bFGF are essential components for the growth-promoting effect of PL, but are not sufficient for MSC proliferation. PMID:22296115

  17. Hypoxia-inducible Factor Regulates αvβ3 Integrin Cell Surface Expression

    PubMed Central

    Cowden Dahl, Karen D.; Robertson, Sarah E.; Weaver, Valerie M.; Simon, M. Celeste

    2005-01-01

    Hypoxia-inducible factor (HIF)-deficient placentas exhibit a number of defects, including changes in cell fate adoption, lack of fetal angiogenesis, hypocellularity, and poor invasion into maternal tissue. HIF is a heterodimeric transcription factor consisting of α and β aryl hydrocarbon receptor nuclear translocator or ARNT) subunits. We used undifferentiated trophoblast stem (TS) cells to characterize HIF-dependent adhesion, migration, and invasion. Arnt-/- and Hifα-/- TS cells exhibit reduced adhesion and migration toward vitronectin compared with wild-type cells. Furthermore, this defect is associated with decreased cell surface expression of integrin αvβ3 and significantly decreased expression of this integrin in focal adhesions. Because of the importance of adhesion and migration in tumor progression (in addition to placental development), we examined the affect of culturing B16F0 melanoma cells in 1.5% oxygen (O2). Culturing B16F0 melanoma cells at 1.5% O2 resulted in increased αvβ3 integrin surface expression and increased adhesion to and migration toward vitronectin. Together, these data suggest that HIF and O2 tension influence placental invasion and tumor migration by increasing cell surface expression of αvβ3 integrin. PMID:15689487

  18. Comparative study of angiostatic and anti-invasive gene expressions as prognostic factors in gastric cancer.

    PubMed

    Lee, J H; Koh, J T; Shin, B A; Ahn, K Y; Roh, J H; Kim, Y J; Kim, K K

    2001-02-01

    Genes involving angiogenesis and metastasis play an important role in the progression and infiltration of cancer. We examined the expressions of various angiostatic and potential invasion/metastasis suppressor genes through RT-PCR analyses in 32 gastric cancer specimens with or without distant metastasis. The expressions of the invasion/metastasis suppressor, nm23 and E-cadherin increased much more in the cancer tissue (CT) and metastatic lymph node (MLN) than in the extraneoplastic mucosa (EM) and non-metastatic lymph node (NLN), respectively. The expressions of the angiostatic factor, angiopoietin 2 and thrombospondin 2 increased in the CT and MLN as compared with the EM and NLN, respectively. The newly cloned angiostatic factor, brain-specific angiogenesis inhibitor 1 (BAI1) decreased much more in the CT and MLN than the EM and NLN, respectively. However, BAI1 increased in the CT compared with the EM among the patients with poor prognosis and distant metastasis, such as liver or peritoneum. The expressions of the invasive factor, matrix metalloproteinase-2 and its suppressor, tissue inhibitor metalloproteinase-2 (TIMP-2) increased in the CM as compared with the EM, but the increased expression pattern of these genes in the CT became blunted among the patients with good prognosis. Our results indicate that BAI1 and TIMP-2 expressions in the extraneoplastic mucosa and non-metastatic lymph nodes were not suppressed in the patients with good prognosis, but increased expressions of angiopoietin 2, thrombospondin 2, TIMP-2, nm23 and E-cadherin in the tumor tissue did not lead to a long survival after operation. It is suggested that the extent of BAI1 and TIMP-2 expression in the gastric mucosa may be an important prognostic factor for predicting survival in gastric cancer.

  19. Stemness and angiogenic gene expression changes of serial-passage human amnion mesenchymal cells.

    PubMed

    Fatimah, Simat Siti; Tan, Geok Chin; Chua, Kienhui; Fariha, Mohd Manzor Nur; Tan, Ay Eeng; Hayati, Abdul Rahman

    2013-03-01

    Particular attention has been directed towards human amnion mesenchymal stem cells (HAMCs) due to their accessibility, availability and immunomodulatory properties. Therefore, the aim of the present study was to determine the temporal changes of stemness and angiogenic gene expressions of serial-passage HAMCs. HAMCs were isolated from human term placenta and cultured in serial passages in culture medium supplemented with 10% fetal bovine serum. Morphological analysis, growth kinetic and CFU-F assay of HAMCs were assessed. In vitro differentiation and the immunophenotype of HAMCs at P5 were also analyzed. Quantitative PCR was used to determine the stemness, angiogenic and endothelial gene expression of cultured HAMCs after serial passage. Cultured HAMCs displayed intermediate epitheloid-fibroblastoid morphology at an initial culture and the fibroblastoid features became more pronounced in later passages. They showed high clonogenic activity and faster proliferation at later passages with colony forming efficiency of 0.88%. HAMCs were successfully differentiated into adipocytes, osteocytes and neuron-like cells. Most HAMCs expressed CD9, CD44, CD73, CD90 and HLA-A,B,C but negligibly expressed CD31, CD34, CD45, CD117 and HLA-DR,DP,DQ. After serial passage, stemness genes Oct-3/4, Sox-2, Nanog3, Rex-1, FGF-4 and FZD-9 expressions significantly decreased. Of the angiogenic genes PECAM-1, bFGF, eNOS, VEGFR-2, VEGF, and vWF expressions also decreased significantly except angiopoietin-1 which significantly increased. No significant differences were observed in ABCG-2, BST-1, nestin, PGF and HGF expressions after serial passage. These results suggested that cultured HAMCs could be an alternative source of stem cells and may have the potential for angiogenesis and hence its use in stem-cell based therapy. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. The spatial expression and regulation of transcription factors IDEF1 and IDEF2

    PubMed Central

    Kobayashi, Takanori; Ogo, Yuko; Aung, May Sann; Nozoye, Tomoko; Itai, Reiko Nakanishi; Nakanishi, Hiromi; Yamakawa, Takashi; Nishizawa, Naoko K.

    2010-01-01

    Background and Aims Under conditions of low iron availability, rice plants induce genes involved in iron uptake and utilization. The iron deficiency-responsive cis-acting element binding factors 1 and 2 (IDEF1 and IDEF2) regulate transcriptional response to iron deficiency in rice roots. Clarification of the functions of IDEF1 and IDEF2 could uncover the gene regulation mechanism. Methods Spatial patterns of IDEF1 and IDEF2 expression were analysed by histochemical staining of IDEF1 and IDEF2 promoter-GUS transgenic rice lines. Expression patterns of the target genes of IDEF1 and IDEF2 were analysed using transformants with induced or repressed expression of IDEF1 or IDEF2 grown in iron-rich or in iron-deficient solutions for 1 d. Key Results IDEF1 and IDEF2 were highly expressed in the basal parts of the lateral roots and vascular bundles. IDEF1 and IDEF2 expression was dominant in leaf mesophyll and vascular cells, respectively. These expression patterns were similar under both iron-deficient and iron-sufficient conditions. IDEF1 was strongly expressed in pollen, ovaries, the aleurone layer and embryo. IDEF2 was expressed in pollen, ovaries and the dorsal vascular region of the endosperm. During seed germination, IDEF1 and IDEF2 were expressed in the endosperm and embryo. Expression of IDEF1 target genes was regulated in iron-rich roots similar to early iron-deficiency stages. In addition, the expression patterns of IDEF2 target genes were similar between iron-rich conditions and early or subsequent iron deficiency. Conclusions IDEF1 and IDEF2 are constitutively expressed during both vegetative and reproductive stages. The spatial expression patterns of IDEF1 and IDEF2 overlap with their target genes in restricted cell types, but not in all cells. The spatial expression patterns and gene regulation of IDEF1 and IDEF2 in roots are generally conserved under conditions of iron sufficiency and deficiency, suggesting complicated interactions with unknown factors for

  1. Angiogenesis and expression of vascular endothelial growth factor, tumour necrosis factor-α and hypoxia inducible factor-1α in canine renal cell carcinoma.

    PubMed

    Yhee, J Y; Yu, C H; Kim, J H; Im, K S; Kim, N H; Brodersen, B W; Doster, A R; Sur, J-H

    2012-01-01

    The aim of the present study was to determine the distribution and characteristics of microvessels in various histological types of canine renal cell carcinoma (RCC). The study compared microvessel density (MVD) and distribution of blood vessels according to histological type and evaluated the presence of angiogenesis-related proteins. Nine archival samples of canine RCC were studied. MVD was calculated as the mean number of blood vessels per mm(2). The diameter of blood vessels was calculated by determining either the length of the long axis of blood vessels (diameter(max)) or the mean distance from the centre of each blood vessel to the tunica adventia (diameter(mean)). A significant difference in MVD was evident between RCCs and normal kidneys (46.6 ± 28.0 versus 8.4 ± 2.2 microvessels/mm(2)). Diameter(max) in canine RCCs (34.1 ± 14.7 μm) was also significantly different from normal canine kidney (23.2 ± 3.4 μm). Vascular endothelial growth factor (VEGF) was expressed by tumour cells and vascular endothelial cells and tumour necrosis factor (TNF)-α expression was observed in vascular endothelial cells in both neoplastic and normal kidney. Although VEGF is involved in angiogenesis and correlates with tumour stage of development, no correlation was found between VEGF expression and MVD. Tumour-associated macrophages expressing TNF-α and hypoxia inducible factor 1α were identified in peritumoural tissue and may play an important role in angiogenesis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Identification and expression profiles of the WRKY transcription factor family in Ricinus communis.

    PubMed

    Li, Hui-Liang; Zhang, Liang-Bo; Guo, Dong; Li, Chang-Zhu; Peng, Shi-Qing

    2012-07-25

    In plants, WRKY proteins constitute a large family of transcription factors. They are involved in many biological processes, such as plant development, metabolism, and responses to biotic and abiotic stresses. A large number of WRKY transcription factors have been reported from Arabidopsis, rice, and other higher plants. The recent publication of the draft genome sequence of castor bean (Ricinus communis) has allowed a genome-wide search for R. communis WRKY (RcWRKY) transcription factors and the comparison of these positively identified proteins with their homologs in model plants. A total of 47 WRKY genes were identified in the castor bean genome. According to the structural features of the WRKY domain, the RcWRKY are classified into seven main phylogenetic groups. Furthermore, putative orthologs of RcWRKY proteins in Arabidopsis and rice could now be assigned. An analysis of expression profiles of RcWRKY genes indicates that 47 WRKY genes display differential expressions either in their transcript abundance or expression patterns under normal growth conditions. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Differential expression of growth factors at the cellular level in virus-infected brain

    PubMed Central

    Prosniak, Mikhail; Zborek, Anna; Scott, Gwen S.; Roy, Anirban; Phares, Timothy W.; Koprowski, Hilary; Hooper, D. Craig

    2003-01-01

    The contribution of host factors to rabies virus (RV) transcription/replication and axonal/transsynaptic spread is largely unknown. We previously identified several host genes that are up-regulated in the mouse brain during RV infection, including neuroleukin, which is involved in neuronal growth and survival, cell motility, and differentiation, and fibroblast growth factor homologous factor 4 (FHF4), which has been implicated in limb and nervous system development. In this study, we used real-time quantitative RT-PCR to assess the expression of mRNAs specific for neuroleukin, the two isoforms of FHF4 (FHF4-1a and -1b) encoded by the FHF4 gene, and N protein of RV in neurons and astrocytes isolated by laser capture microdissection from mouse brains infected with the laboratory-adapted RV strain CVS-N2c or with a street RV of silver-haired bat origin. Differences in the gene expression patterns suggest that the capacity of RV strains to infect nonneuronal cells and differentially modulate host gene expression may be important in virus replication and spread in the CNS. PMID:12736376

  4. Engineering synthetic TALE and CRISPR/Cas9 transcription factors for regulating gene expression.

    PubMed

    Kabadi, Ami M; Gersbach, Charles A

    2014-09-01

    Engineered DNA-binding proteins that can be targeted to specific sites in the genome to manipulate gene expression have enabled many advances in biomedical research. This includes generating tools to study fundamental aspects of gene regulation and the development of a new class of gene therapies that alter the expression of endogenous genes. Designed transcription factors have entered clinical trials for the treatment of human diseases and others are in preclinical development. High-throughput and user-friendly platforms for designing synthetic DNA-binding proteins present innovative methods for deciphering cell biology and designing custom synthetic gene circuits. We review two platforms for designing synthetic transcription factors for manipulating gene expression: Transcription activator-like effectors (TALEs) and the RNA-guided clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system. We present an overview of each technology and a guide for designing and assembling custom TALE- and CRISPR/Cas9-based transcription factors. We also discuss characteristics of each platform that are best suited for different applications. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. The Role of Cellular Proliferation in Adipogenic Differentiation of Human Adipose Tissue-Derived Mesenchymal Stem Cells.

    PubMed

    Marquez, Maribel P; Alencastro, Frances; Madrigal, Alma; Jimenez, Jossue Loya; Blanco, Giselle; Gureghian, Alex; Keagy, Laura; Lee, Cecilia; Liu, Robert; Tan, Lun; Deignan, Kristen; Armstrong, Brian; Zhao, Yuanxiang

    2017-11-01

    Mitotic clonal expansion has been suggested as a prerequisite for adipogenesis in murine preadipocytes, but the precise role of cell proliferation during human adipogenesis is unclear. Using adipose tissue-derived human mesenchymal stem cells as an in vitro cell model for adipogenic study, a group of cell cycle regulators, including Cdk1 and CCND1, were found to be downregulated as early as 24 h after adipogenic initiation and consistently, cell proliferation activity was restricted to the first 48 h of adipogenic induction. Cell proliferation was either further inhibited using siRNAs targeting cell cycle genes or enhanced by supplementing exogenous growth factor, basic fibroblast growth factor (bFGF), at specific time intervals during adipogenesis. Expression knockdown of Cdk1 at the initiation of adipogenic induction resulted in significantly increased adipocytes, even though total number of cells was significantly reduced compared to siControl-treated cells. bFGF stimulated proliferation throughout adipogenic differentiation, but exerted differential effect on adipogenic outcome at different phases, promoting adipogenesis during mitotic phase (first 48 h), but significantly inhibiting adipogenesis during adipogenic commitment phase (days 3-6). Our results demonstrate that cellular proliferation is counteractive to adipogenic commitment in human adipogenesis. However, cellular proliferation stimulation can be beneficial for adipogenesis during the mitotic phase by increasing the population of cells capable of committing to adipocytes before adipogenic commitment.

  6. A stem cell medium containing neural stimulating factor induces a pancreatic cancer stem-like cell-enriched population

    PubMed Central

    WATANABE, YUSAKU; YOSHIMURA, KIYOSHI; YOSHIKAWA, KOICHI; TSUNEDOMI, RYOICHI; SHINDO, YOSHITARO; MATSUKUMA, SOU; MAEDA, NORIKO; KANEKIYO, SHINSUKE; SUZUKI, NOBUAKI; KURAMASU, ATSUO; SONODA, KOUHEI; TAMADA, KOJI; KOBAYASHI, SEI; SAYA, HIDEYUKI; HAZAMA, SHOICHI; OKA, MASAAKI

    2014-01-01

    Cancer stem cells (CSCs) have been studied for their self-renewal capacity and pluripotency, as well as their resistance to anticancer therapy and their ability to metastasize to distant organs. CSCs are difficult to study because their population is quite low in tumor specimens. To overcome this problem, we established a culture method to induce a pancreatic cancer stem-like cell (P-CSLC)-enriched population from human pancreatic cancer cell lines. Human pancreatic cancer cell lines established at our department were cultured in CSC-inducing media containing epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), leukemia inhibitory factor (LIF), neural cell survivor factor-1 (NSF-1), and N-acetylcysteine. Sphere cells were obtained and then transferred to a laminin-coated dish and cultured for approximately two months. The surface markers, gene expression, aldehyde dehydrogenase (ALDH) activity, cell cycle, and tumorigenicity of these induced cells were examined for their stem cell-like characteristics. The population of these induced cells expanded within a few months. The ratio of CD24high, CD44high, epithelial specific antigen (ESA) high, and CD44variant (CD44v) high cells in the induced cells was greatly enriched. The induced cells stayed in the G0/G1 phase and demonstrated mesenchymal and stemness properties. The induced cells had high tumorigenic potential. Thus, we established a culture method to induce a P-CSLCenriched population from human pancreatic cancer cell lines. The CSLC population was enriched approximately 100-fold with this method. Our culture method may contribute to the precise analysis of CSCs and thus support the establishment of CSC-targeting therapy. PMID:25118635

  7. Activated Monocytes Enhance Platelet-Driven Contraction of Blood Clots via Tissue Factor Expression.

    PubMed

    Peshkova, Alina D; Le Minh, Giang; Tutwiler, Valerie; Andrianova, Izabella A; Weisel, John W; Litvinov, Rustem I

    2017-07-11

    Platelet-driven reduction in blood clot volume (clot contraction or retraction) has been implicated to play a role in hemostasis and thrombosis. Although these processes are often linked with inflammation, the role of inflammatory cells in contraction of blood clots and thrombi has not been investigated. The aim of this work was to study the influence of activated monocytes on clot contraction. The effects of monocytes were evaluated using a quantitative optical tracking methodology to follow volume changes in a blood clot formed in vitro. When a physiologically relevant number of isolated human monocytes pre-activated with phorbol-12-myristate-13-acetate (PMA) were added back into whole blood, the extent and rate of clot contraction were increased compared to addition of non-activated cells. Inhibition of tissue factor expression or its inactivation on the surface of PMA-treated monocytes reduced the extent and rate of clot contraction back to control levels with non-activated monocytes. On the contrary, addition of tissue factor enhanced clot contraction, mimicking the effects of tissue factor expressed on the activated monocytes. These data suggest that the inflammatory cells through their expression of tissue factor can directly affect hemostasis and thrombosis by modulating the size and density of intra- and extravascular clots and thrombi.

  8. Valproic acid disrupts the oscillatory expression of core circadian rhythm transcription factors.

    PubMed

    Griggs, Chanel A; Malm, Scott W; Jaime-Frias, Rosa; Smith, Catharine L

    2018-01-15

    Valproic acid (VPA) is a well-established therapeutic used in treatment of seizure and mood disorders as well as migraines and a known hepatotoxicant. About 50% of VPA users experience metabolic disruptions, including weight gain, hyperlipidemia, and hyperinsulinemia, among others. Several of these metabolic abnormalities are similar to the effects of circadian rhythm disruption. In the current study, we examine the effect of VPA exposure on the expression of core circadian transcription factors that drive the circadian clock via a transcription-translation feedback loop. In cells with an unsynchronized clock, VPA simultaneously upregulated the expression of genes encoding core circadian transcription factors that regulate the positive and negative limbs of the feedback loop. Using low dose glucocorticoid, we synchronized cultured fibroblast cells to a circadian oscillatory pattern. Whether VPA was added at the time of synchronization or 12h later at CT12, we found that VPA disrupted the oscillatory expression of multiple genes encoding essential transcription factors that regulate circadian rhythm. Therefore, we conclude that VPA has a potent effect on the circadian rhythm transcription-translation feedback loop that may be linked to negative VPA side effects in humans. Furthermore, our study suggests potential chronopharmacology implications of VPA usage. Copyright © 2017. Published by Elsevier Inc.

  9. Identity-expression interaction in face perception: sex, visual field, and psychophysical factors.

    PubMed

    Godard, Ornella; Baudouin, Jean-Yves; Bonnet, Philippe; Fiori, Nicole

    2013-01-01

    We investigated the psychophysical factors underlying the identity-emotion interaction in face perception. Visual field and sex were also taken into account. Participants had to judge whether a probe face, presented in either the left or the right visual field, and a central target face belonging to same person while emotional expression varied (Experiment 1) or to judge whether probe and target faces expressed the same emotion while identity was manipulated (Experiment 2). For accuracy we replicated the mutual facilitation effect between identity and emotion; no sex or hemispheric differences were found. Processing speed measurements, however, showed a lesser degree of interference in women than in men, especially for matching identity when faces expressed different emotions after a left visual presentation probe face. Psychophysical indices can be used to determine whether these effects are perceptual (A') or instead arise at a post-perceptual decision-making stage (B"). The influence of identity on the processing of facial emotion seems to be due to perceptual factors, whereas the influence of emotion changes on identity processing seems to be related to decisional factors. In addition, men seem to be more "conservative" after a LVF/RH probe-face presentation when processing identity. Women seem to benefit from better abilities to extract facial invariant aspects relative to identity.

  10. Enhance tumor radiosensitivity by intracellular delivery of eukaryotic translation initiation factor 4E binding proteins.

    PubMed

    Tian, Shuang; Li, Xiu-Li; Shi, Mei; Yao, Yuan-Qing; Li, Li-Wen; Xin, Xiao-Yan

    2011-02-01

    PTEN (phosphatase and tensin homologue deleted on chromosome ten)/PI3K (phosphatidylinositol 3-kinase)/Akt/mTOR (mammalian target of rapamycin) signaling pathway, which is commonly dysregulated in a broad array of human malignancies, controls the assembly of eukaryotic translation initiation factor 4F (eIF4F) complex through regulation of eIF4E binding proteins (4E-BPs) phosphorylation. And accumulated data over the past two decades implicated eIF4F complex as one of the promising targets for anticancer therapy. It has been confirmed that the translation initiation of mRNA coding for hypoxia-inducible factor-1α (HIF-1α) and survivin, which had been considered as the two major determinants of tumor radiosensitivity, are both controlled by eIF4F complex. Also, eIF4F complex controls the expression of VEGF and bFGF, the two well-known pro-angiogenic factors involved in developing radioresistance. Therefore eIF4F complex plays a pivotal role in regulation of radiosensitivity. In this article, we postulate that cell-permeable, phosphorylation-defective 4E-BP fusion proteins, which could be prepared by substituting the mTOR recognition motif located in N-terminal of 4E-BPs with protein transduction domain from HIV-1 TAT, HSV-1 VP22 or PTD4, could not only inhibit tumor growth but also enhance tumor response to radiation therapy through disruption of eIF4F complex assembly. In our opinion, the recombinant fusion proteins are superior to mTOR inhibitors for they do not cause immunosuppression, do not lead to Akt activation, and could be easily prepared by prokaryotic expression. If the hypothesis was proved to be practical, the cell-permeable, phosphorylation-defective 4E-BP fusion proteins would be widely used in clinical settings to improve tumor response to radiotherapy in the near future. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. The Activity of Differentiation Factors Induces Apoptosis in Polyomavirus Large T-Expressing Myoblasts

    PubMed Central

    Fimia, Gian Maria; Gottifredi, Vanesa; Bellei, Barbara; Ricciardi, Maria Rosaria; Tafuri, Agostino; Amati, Paolo; Maione, Rossella

    1998-01-01

    It is commonly accepted that pathways that regulate proliferation/differentiation processes, if altered in their normal interplay, can lead to the induction of programmed cell death. In a previous work we reported that Polyoma virus Large Tumor antigen (PyLT) interferes with in vitro terminal differentiation of skeletal myoblasts by binding and inactivating the retinoblastoma antioncogene product. This inhibition occurs after the activation of some early steps of the myogenic program. In the present work we report that myoblasts expressing wild-type PyLT, when subjected to differentiation stimuli, undergo cell death and that this cell death can be defined as apoptosis. Apoptosis in PyLT-expressing myoblasts starts after growth factors removal, is promoted by cell confluence, and is temporally correlated with the expression of early markers of myogenic differentiation. The block of the initial events of myogenesis by transforming growth factor β or basic fibroblast growth factor prevents PyLT-induced apoptosis, while the acceleration of this process by the overexpression of the muscle-regulatory factor MyoD further increases cell death in this system. MyoD can induce PyLT-expressing myoblasts to accumulate RB, p21, and muscle- specific genes but is unable to induce G00 arrest. Several markers of different phases of the cell cycle, such as cyclin A, cdk-2, and cdc-2, fail to be down-regulated, indicating the occurrence of cell cycle progression. It has been frequently suggested that apoptosis can result from an unbalanced cell cycle progression in the presence of a contrasting signal, such as growth factor deprivation. Our data involve differentiation pathways, as a further contrasting signal, in the generation of this conflict during myoblast cell apoptosis. PMID:9614186

  12. Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance.

    PubMed

    Doherty, Colleen J; Van Buskirk, Heather A; Myers, Susan J; Thomashow, Michael F

    2009-03-01

    The Arabidopsis thaliana CBF cold response pathway plays a central role in cold acclimation. It is characterized by rapid cold induction of genes encoding the CBF1-3 transcription factors, followed by expression of the CBF gene regulon, which imparts freezing tolerance. Our goal was to further the understanding of the cis-acting elements and trans-acting factors involved in expression of CBF2. We identified seven conserved DNA motifs (CM), CM1 to 7, that are present in the promoters of CBF2 and another rapidly cold-induced gene encoding a transcription factor, ZAT12. The results presented indicate that in the CBF2 promoter, CM4 and CM6 have negative regulatory activity and that CM2 has both negative and positive activity. A Myc binding site in the CBF2 promoter was also found to have positive regulatory effects. Moreover, our results indicate that members of the calmodulin binding transcription activator (CAMTA) family of transcription factors bind to the CM2 motif, that CAMTA3 is a positive regulator of CBF2 expression, and that double camta1 camta3 mutant plants are impaired in freezing tolerance. These results establish a role for CAMTA proteins in cold acclimation and provide a possible point of integrating low-temperature calcium and calmodulin signaling with cold-regulated gene expression.

  13. Dimensions of assertiveness: factors underlying the college self-expression scale.

    PubMed

    Kipper, D A; Jaffe, Y

    1978-02-01

    A total of 447 Israeli students, both males and females, from four educational institutions were administered the College Self-expression Scale, a measure of assertiveness. The obtained responses were factor analyzed using the principal axis solution and the varimax rotation method. The results showed four main factors which included 43 of the 50 items of the original scale. These factors were identified as the willingness to take risks in interpersonal interactions, the ability to communicate feelings, setting rules and rectifying injustices, and the presence or absence of a tendency to invoke a self-punitive attitude. The findings were interpreted as adding support to the validity of the scale as a measure of assertiveness.

  14. Expression of Metallothionein and Vascular Endothelial Growth Factor Isoforms in Breast Cancer Cells.

    PubMed

    Wierzowiecka, Barbara; Gomulkiewicz, Agnieszka; Cwynar-Zajac, Lucja; Olbromski, Mateusz; Grzegrzolka, Jedrzej; Kobierzycki, Christopher; Podhorska-Okolow, Marzenna; Dziegiel, Piotr

    2016-01-01

    Metallothioneins (MTs) are low-molecular-weight and cysteine-rich proteins that bind heavy metal ions and oxygen-free radicals. MTs are commonly expressed in various tissues of mammals and are involved in regulation of cell proliferation and differentiation, and may be engaged in angiogenesis. Expression of MTs has been studied in many cancer types, especially breast cancer. The research results indicate that MTs may play important, although not yet fully known, roles in cancer angiogenesis. The aim of this study was to analyze the level of gene expression of selected MT isoforms induced with zinc ions in correlation with vascular endothelial growth factor (VEGF) isoforms in in vitro models of breast cancer. The studies were carried out in three breast cancer cell lines (MCF-7, SK-BR-3, MDA-MB-231). An epithelial cell line derived from normal breast tissue (Me16c) was used as a control. The levels of expression of selected MT isoforms and selected genes involved in angiogenesis were studied with real-time PCR. Expression of different MT isoforms was induced by zinc ions to differing degrees in individual breast cancer cell lines. An increase in the expression of some MT isoforms was associated with a slight increase in the level of expression of VEGFA. The research results may indicate certain correlation between an increased expression of selected MT isoforms and a pro-angiogenic factor VEGF in specific types of breast cancer cells. Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  15. Delivery of Alginate Scaffold Releasing Two Trophic Factors for Spinal Cord Injury Repair

    PubMed Central

    Grulova, I.; Slovinska, L.; Blaško, J.; Devaux, S.; Wisztorski, M.; Salzet, M.; Fournier, I.; Kryukov, O.; Cohen, S.; Cizkova, D.

    2015-01-01

    Spinal cord injury (SCI) has been implicated in neural cell loss and consequently functional motor and sensory impairment. In this study, we propose an alginate -based neurobridge enriched with/without trophic growth factors (GFs) that can be utilized as a therapeutic approach for spinal cord repair. The bioavailability of key GFs, such as Epidermal Growth factor (EGF) and basic Fibroblast Growth Factor (bFGF) released from injected alginate biomaterial to the central lesion site significantly enhanced the sparing of spinal cord tissue and increased the number of surviving neurons (choline acetyltransferase positive motoneurons) and sensory fibres. In addition, we document enhanced outgrowth of corticospinal tract axons and presence of blood vessels at the central lesion. Tissue proteomics was performed at 3, 7 and 10 days after SCI in rats indicated the presence of anti-inflammatory factors in segments above the central lesion site, whereas in segments below, neurite outgrowth factors, inflammatory cytokines and chondroitin sulfate proteoglycan of the lectican protein family were overexpressed. Collectively, based on our data, we confirm that functional recovery was significantly improved in SCI groups receiving alginate scaffold with affinity-bound growth factors (ALG +GFs), compared to SCI animals without biomaterial treatment. PMID:26348665

  16. Coordinating Regulation of Gene Expression in Cardiovascular Disease: Interactions between Chromatin Modifiers and Transcription Factors

    PubMed Central

    Bauer, Ashley J.; Martin, Kathleen A.

    2017-01-01

    Cardiovascular disease is a leading cause of death with increasing economic burden. The pathogenesis of cardiovascular diseases is complex, but can arise from genetic and/or environmental risk factors. This can lead to dysregulated gene expression in numerous cell types including cardiomyocytes, endothelial cells, vascular smooth muscle cells, and inflammatory cells. While initial studies addressed transcriptional control of gene expression, epigenetics has been increasingly appreciated to also play an important role in this process through alterations in chromatin structure and gene accessibility. Chromatin-modifying proteins including enzymes that modulate DNA methylation, histone methylation, and histone acetylation can influence gene expression in numerous ways. These chromatin modifiers and their marks can promote or prevent transcription factor recruitment to regulatory regions of genes through modifications to DNA, histones, or the transcription factors themselves. This review will focus on the emerging question of how epigenetic modifiers and transcription factors interact to coordinately regulate gene expression in cardiovascular disease. While most studies have addressed the roles of either epigenetic or transcriptional control, our understanding of the integration of these processes is only just beginning. Interrogating these interactions is challenging, and improved technical approaches will be needed to fully dissect the temporal and spatial relationships between transcription factors, chromatin modifiers, and gene expression in cardiovascular disease. We summarize the current state of the field and provide perspectives on limitations and future directions. Through studies of epigenetic and transcriptional interactions, we can advance our understanding of the basic mechanisms of cardiovascular disease pathogenesis to develop novel therapeutics. PMID:28428957

  17. Erythropoietin protects myocardin-expressing cardiac stem cells against cytotoxicity of tumor necrosis factor-{alpha}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madonna, Rosalinda; Institute of Cardiology, and Center of Excellence on Aging, 'G. d'Annunzio' University, Chieti; Shelat, Harnath

    2009-10-15

    Cardiac stem cells are vulnerable to inflammation caused by infarction or ischemic injury. The growth factor, erythropoietin (Epo), ameliorates the inflammatory response of the myocardium to ischemic injury. This study was designed to assess the role of Epo in regulation of expression and activation of the cell death-associated intracellular signaling components in cardiac myoblasts stimulated with the proinflammatory cytokine tumor necrosis factor (TNF)-{alpha}. Cardiac myoblasts isolated from canine embryonic hearts characterized by expression of myocardin A, a promyogenic transcription factor for cardiovascular muscle development were pretreated with Epo and then exposed to TNF-{alpha}. Compared to untreated cells, the Epo-treated cardiacmore » myoblasts exhibited better morphology and viability. Immunoblotting revealed lower levels of active caspase-3 and reductions in iNOS expression and NO production in Epo-treated cells. Furthermore, Epo pretreatment reduced nuclear translocation of NF-{kappa}B and inhibited phosphorylation of inhibitor of kappa B (I{kappa}B) in TNF-{alpha}-stimulated cardiac myoblasts. Thus, Epo protects cardiac myocyte progenitors or myoblasts against the cytotoxic effects of TNF-{alpha} by inhibiting NF-{kappa}B-mediated iNOS expression and NO production and by preventing caspase-3 activation.« less

  18. The Forkhead Transcription Factor, Foxd1, Is Necessary for Pituitary Luteinizing Hormone Expression in Mice

    PubMed Central

    Gumbel, Jason H.; Patterson, Elizabeth M.; Owusu, Sarah A.; Kabat, Brock E.; Jung, Deborah O.; Simmons, Jasmine; Hopkins, Torin; Ellsworth, Buffy S.

    2012-01-01

    The pituitary gland regulates numerous physiological functions including growth, reproduction, temperature and metabolic homeostasis, lactation, and response to stress. Pituitary organogenesis is dependent on signaling factors that are produced in and around the developing pituitary. The studies described in this report reveal that the forkhead transcription factor, Foxd1, is not expressed in the developing mouse pituitary gland, but rather in the mesenchyme surrounding the pituitary gland, which is an essential source of signaling factors that regulate pituitary organogenesis. Loss of Foxd1 causes a morphological defect in which the anterior lobe of the pituitary gland protrudes through the cartilage plate that is developing ventral to the pituitary at embryonic days (e)14.5, e16.5, and e18.5. The number of proliferating pituitary cells is increased at e14.5 and e16.5. Loss of Foxd1 also results in significantly decreased levels of Lhb expression at e18.5. This decrease in Lhb expression does not appear to be due to a change in the number of gonadotrope cells in the pituitary gland. Previous studies have shown that loss of the LIM homeodomain factor, Lhx3, which is activated by the FGF signaling pathway, results in loss of LH production. Although there is a difference in Lhb expression in Foxd1 null mice, the expression pattern of LHX3 is not altered in Foxd1 null mice. These studies suggest that Foxd1 is indirectly required for normal Lhb expression and cartilage formation. PMID:23284914

  19. Evaluation of approaches to monitor Staphylococcus aureus virulence factor expression during human disease.

    PubMed

    Rozemeijer, Wouter; Fink, Pamela; Rojas, Eduardo; Jones, C Hal; Pavliakova, Danka; Giardina, Peter; Murphy, Ellen; Liberator, Paul; Jiang, Qin; Girgenti, Douglas; Peters, Remco P H; Savelkoul, Paul H M; Jansen, Kathrin U; Anderson, Annaliesa S; Kluytmans, Jan

    2015-01-01

    Staphylococcus aureus is a versatile pathogen of medical significance, using multiple virulence factors to cause disease. A prophylactic S. aureus 4-antigen (SA4Ag) vaccine comprising capsular polysaccharide (types 5 and 8) conjugates, clumping factor A (ClfA) and manganese transporter C (MntC) is under development. This study was designed to characterize S. aureus isolates recovered from infected patients and also to investigate approaches for examining expression of S. aureus vaccine candidates and the host response during human infection. Confirmation of antigen expression in different disease states is important to support the inclusion of these antigens in a prophylactic vaccine. Hospitalized patients with diagnosed S. aureus wound (27) or bloodstream (24) infections were enrolled. Invasive and nasal carriage S. aureus isolates were recovered and characterized for genotypic diversity. S. aureus antigen expression was evaluated directly by real-time, quantitative, reverse-transcriptase PCR (qRT-PCR) analysis and indirectly by serology using a competitive Luminex immunoassay. Study isolates were genotypically diverse and all had the genes encoding the antigens present in the SA4Ag vaccine. S. aureus nasal carriage was detected in 55% of patients, and in those subjects 64% of the carriage isolates matched the invasive strain. In swab samples with detectable S. aureus triosephosphate isomerase housekeeping gene expression, RNA transcripts encoding the S. aureus virulence factors ClfA, MntC, and capsule polysaccharide were detected by qRT-PCR. Antigen expression was indirectly confirmed by increases in antibody titer during the course of infection from acute to convalescent phase. Demonstration of bacterial transcript expression together with immunological response to the SA4Ag antigens in a clinically relevant patient population provides support for inclusion of these antigens in a prophylactic vaccine.

  20. Low-Concentration Tributyltin Decreases GluR2 Expression via Nuclear Respiratory Factor-1 Inhibition

    PubMed Central

    Ishida, Keishi; Aoki, Kaori; Takishita, Tomoko; Miyara, Masatsugu; Sakamoto, Shuichiro; Sanoh, Seigo; Kimura, Tomoki; Kanda, Yasunari; Ohta, Shigeru; Kotake, Yaichiro

    2017-01-01

    Tributyltin (TBT), which has been widely used as an antifouling agent in paints, is a common environmental pollutant. Although the toxicity of high-dose TBT has been extensively reported, the effects of low concentrations of TBT are relatively less well studied. We have previously reported that low-concentration TBT decreases α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-type glutamate receptor subunit 2 (GluR2) expression in cortical neurons and enhances neuronal vulnerability to glutamate. However, the mechanism of this TBT-induced GluR2 decrease remains unknown. Therefore, we examined the effects of TBT on the activity of transcription factors that control GluR2 expression. Exposure of primary cortical neurons to 20 nM TBT for 3 h to 9 days resulted in a decrease in GluR2 mRNA expression. Moreover, TBT inhibited the DNA binding activity of nuclear respiratory factor-1 (NRF-1), a transcription factor that positively regulates the GluR2. This result indicates that TBT inhibits the activity of NRF-1 and subsequently decreases GluR2 expression. In addition, 20 nM TBT decreased the expression of genes such as cytochrome c, cytochrome c oxidase (COX) 4, and COX 6c, which are downstream of NRF-1. Our results suggest that NRF-1 inhibition is an important molecular action of the neurotoxicity induced by low-concentration TBT. PMID:28800112

  1. Low-Concentration Tributyltin Decreases GluR2 Expression via Nuclear Respiratory Factor-1 Inhibition.

    PubMed

    Ishida, Keishi; Aoki, Kaori; Takishita, Tomoko; Miyara, Masatsugu; Sakamoto, Shuichiro; Sanoh, Seigo; Kimura, Tomoki; Kanda, Yasunari; Ohta, Shigeru; Kotake, Yaichiro

    2017-08-11

    Tributyltin (TBT), which has been widely used as an antifouling agent in paints, is a common environmental pollutant. Although the toxicity of high-dose TBT has been extensively reported, the effects of low concentrations of TBT are relatively less well studied. We have previously reported that low-concentration TBT decreases α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-type glutamate receptor subunit 2 ( GluR2 ) expression in cortical neurons and enhances neuronal vulnerability to glutamate. However, the mechanism of this TBT-induced GluR2 decrease remains unknown. Therefore, we examined the effects of TBT on the activity of transcription factors that control GluR2 expression. Exposure of primary cortical neurons to 20 nM TBT for 3 h to 9 days resulted in a decrease in GluR2 mRNA expression. Moreover, TBT inhibited the DNA binding activity of nuclear respiratory factor-1 (NRF-1), a transcription factor that positively regulates the GluR2 . This result indicates that TBT inhibits the activity of NRF-1 and subsequently decreases GluR2 expression. In addition, 20 nM TBT decreased the expression of genes such as cytochrome c, cytochrome c oxidase (COX) 4, and COX 6c, which are downstream of NRF-1. Our results suggest that NRF-1 inhibition is an important molecular action of the neurotoxicity induced by low-concentration TBT.

  2. Quantitative PET Imaging of Tissue Factor Expression Using 18F-Labeled Active Site-Inhibited Factor VII.

    PubMed

    Nielsen, Carsten H; Erlandsson, Maria; Jeppesen, Troels E; Jensen, Mette M; Kristensen, Lotte K; Madsen, Jacob; Petersen, Lars C; Kjaer, Andreas

    2016-01-01

    Tissue factor (TF) is upregulated in many solid tumors, and its expression is linked to tumor angiogenesis, invasion, metastasis, and prognosis. A noninvasive assessment of tumor TF expression status is therefore of obvious clinical relevance. Factor VII is the natural ligand to TF. Here we report the development of a new PET tracer for specific imaging of TF using an (18)F-labeled derivative of factor VII. Active site-inhibited factor VIIa (FVIIai) was obtained by inactivation with phenylalanine-phenylalanine-arginine-chloromethyl ketone. FVIIai was radiolabeled with N-succinimidyl 4-(18)F-fluorobenzoate and purified. The corresponding product, (18)F-FVIIai, was injected into nude mice with subcutaneous human pancreatic xenograft tumors (BxPC-3) and investigated using small-animal PET/CT imaging 1, 2, and 4 h after injection. Ex vivo biodistribution was performed after the last imaging session, and tumor tissue was preserved for molecular analysis. A blocking experiment was performed in a second set of mice. The expression pattern of TF in the tumors was visualized by immunohistochemistry and the amount of TF in tumor homogenates was measured by enzyme-linked immunosorbent assay and correlated with the uptake of (18)F-FVIIai in the tumors measured in vivo by PET imaging. The PET images showed high uptake of (18)F-FVIIai in the tumor regions, with a mean uptake of 2.5 ± 0.3 percentage injected dose per gram (%ID/g) (mean ± SEM) 4 h after injection of 7.3-9.3 MBq of (18)F-FVIIai and with an average maximum uptake in the tumors of 7.1 ± 0.7 %ID/g at 4 h. In comparison, the muscle uptake was 0.2 ± 0.01 %ID/g at 4 h. At 4 h, the tumors had the highest uptake of any organ. Blocking with FVIIai significantly reduced the uptake of (18)F-FVIIai from 2.9 ± 0.1 to 1.4 ± 0.1 %ID/g (P < 0.001). The uptake of (18)F-FVIIai measured in vivo by PET imaging correlated (r = 0.72, P < 0.02) with TF protein level measured ex vivo. (18)F-FVIIai is a promising PET tracer for

  3. BFDCA: A Comprehensive Tool of Using Bayes Factor for Differential Co-Expression Analysis.

    PubMed

    Wang, Duolin; Wang, Juexin; Jiang, Yuexu; Liang, Yanchun; Xu, Dong

    2017-02-03

    Comparing the gene-expression profiles between biological conditions is useful for understanding gene regulation underlying complex phenotypes. Along this line, analysis of differential co-expression (DC) has gained attention in the recent years, where genes under one condition have different co-expression patterns compared with another. We developed an R package Bayes Factor approach for Differential Co-expression Analysis (BFDCA) for DC analysis. BFDCA is unique in integrating various aspects of DC patterns (including Shift, Cross, and Re-wiring) into one uniform Bayes factor. We tested BFDCA using simulation data and experimental data. Simulation results indicate that BFDCA outperforms existing methods in accuracy and robustness of detecting DC pairs and DC modules. Results of using experimental data suggest that BFDCA can cluster disease-related genes into functional DC subunits and estimate the regulatory impact of disease-related genes well. BFDCA also achieves high accuracy in predicting case-control phenotypes by using significant DC gene pairs as markers. BFDCA is publicly available at http://dx.doi.org/10.17632/jdz4vtvnm3.1. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Macrophage Migration Inhibitory Factor Stimulates Angiogenic Factor Expression and Correlates With Differentiation and Lymph Node Status in Patients With Esophageal Squamous Cell Carcinoma

    PubMed Central

    Ren, Yi; Law, Simon; Huang, Xin; Lee, Ping Yin; Bacher, Michael; Srivastava, Gopesh; Wong, John

    2005-01-01

    Objective: The objectives of this study were: 1) to examine the expression of macrophage migration inhibitory factor (MIF) in esophageal squamous cell carcinoma (ESCC); 2) to see if a relationship exists between MIF expression, clinicopathologic features, and long-term prognosis; and 3) to ascertain the possible biologic function of MIF in angiogenesis. Summary Background Data: MIF has been linked to fundamental processes such as those controlling cell proliferation, cell survival, angiogenesis, and tumor progression. Its role in ESCC, and the correlation of MIF expression and tumor pathologic features in patients, has not been elucidated. Methods: The expression of MIF in tumor and nontumor tissues was examined by immunohistochemical staining. Concentrations of MIF, vascular endothelial growth factor (VEGF), and interleukin-8 (IL-8) in patients’ sera and in the supernatant of tumor cells culture were examined by ELISA. Correlations with clinicopathologic factors were made. Results: In 72 patients with ESCC, intracellular MIF was overexpressed in esophagectomy specimens. The expression of MIF correlated with both tumor differentiation and lymph node status. The median survival in the low-MIF expression group (<50% positively stained cancer cells on immunohistochemistry) and high expression group (≥50% positively stained cancer cells) was 28.3 months and 15.8 months, respectively (P = 0.03). The 3-year survival rates for the 2 groups were 37.7% and 12.1%, respectively. MIF expression was related to microvessel density; increased MIF serum levels also correlated with higher serum levels of VEGF. In addition, in vitro MIF stimulation of esophageal cancer cell lines induced a dose-dependent increase in VEGF and IL-8 secretion. Conclusions: These results demonstrate, for the first time, that human esophageal carcinomas express and secrete large amounts of MIF. Through its effects on VEGF and IL-8, MIF may serve as an autocrine factor in angiogenesis and thus play an

  5. Individual Differences in the Expression of Conditioned Fear Are Associated with Endogenous Fibroblast Growth Factor 2

    ERIC Educational Resources Information Center

    Graham, Bronwyn M.; Richardson, Rick

    2016-01-01

    These experiments examined the relationship between the neurotrophic factor fibroblast growth factor 2 (FGF2) and individual differences in the expression of conditioned fear. Experiments 1 and 2 demonstrated that rats naturally expressing low levels of contextual or cued fear have higher levels of hippocampal FGF2 relative to rats that express…

  6. Characterization of a heparin-binding growth factor from adenocarcinoma of the kidney.

    PubMed

    Mydlo, J H; Heston, W D; Fair, W R

    1988-12-01

    A polypeptide isolated from tissue extracts of renal adenocarcinoma was mitogenic for BALB/c 3T3 cells and human umbilical vein (HUV) cells in culture. It also demonstrated angiogenic ability using the chorioallantoic membrane bioassay. Using heparin-sepharose affinity chromatography the purified protein eluted with a NaCl concentration between 1.4 and 1.8 M and demonstrated a molecular weight of approximately 17,000 daltons based on SDS polyacrylamide gel electrophoresis. Half maximal stimulation of tritiated thymidine incorporation into BALB/c 3T3 cells was achieved by 1.6 ng./ml. of the heparin binding material. Western blot analysis using antibodies specific to basic fibroblast growth factor (bFGF) only or acidic FGF (aFGF) only demonstrated that the purified protein binds to the former and not the latter. The characteristics of this material, in effect the elution profile off heparin-Sepharose, the molecular weight, angiogenic activity and the results of western blot analysis, suggest that this growth factor is similar to the family of basic fibroblast growth factors.

  7. Expression Profile of Interferon Regulatory Factor 1 in Chronic Hepatitis B Virus-Infected Liver Transplant Patients.

    PubMed

    Janfeshan, Sahar; Yaghobi, Ramin; Eidi, Akram; Karimi, Mohammad Hossein; Geramizadeh, Bita; Malekhosseini, Seyed Ali; Kafilzadeh, Farshid

    2017-12-01

    Hepatitis B virus, which mainly affects normal liver function, leads to severe acute and chronic hepatitis, resulting in cirrhosis and hepatocellular carcinoma, but can be safely treated after liver transplant. Evaluation of determinative biomarkers may facilitate more effective treatment of posttransplant rejection. Therefore, we investigated interferon regulatory factor 1 expression in hepatitis B virus-infected liver transplant patients with and without previous rejection compared with controls. Hepatitis B virus-infected liver recipients were divided into those with (20 patients) and without a rejection (26 patients), confirmed by pathologic analyses in those who had a rejection. In addition, a healthy control group composed of 13 individuals was included. Expression levels of interferon regulatory factor 1 were evaluated during 3 follow-ups after transplant using an in-house comparative SYBR green real-time polymerase chain reaction method. Statistical analyses were performed with SPSS software (SPSS: An IBM Company, version 16.0, IBM Corporation, Armonk, NY, USA). Modifications of interferon regulatory factor 1 gene expression levels in patient groups with and without rejection were not significant between days 1, 4, and 7 after liver transplant. Interferon regulatory factor 1 mRNA expression levels were down-regulated in patients without rejection versus patients with rejection, although not significantly at day 1 (P = .234) and day 4 (P = .302) but significantly at day 7 (P = .004) after liver transplant. Down-regulation of interferon regulatory factor 1 gene expression in hepatitis B virus patients without rejection emphasized counteraction between hepatitis B virus replication and interferon regulatory factor 1 production. On the other hand, interferon regulatory factor 1 gene overexpression in patients with rejection may result in inflammatory reactions and ischemic-reperfusion injury. Therefore, a better understanding of the association between

  8. Identification and embryonic expression of a new AP-2 transcription factor, AP-2 epsilon.

    PubMed

    Wang, Hao-Ven; Vaupel, Kristina; Buettner, Reinhard; Bosserhoff, Anja-Katrin; Moser, Markus

    2004-09-01

    AP-2 proteins comprise a family of highly related transcription factors, which are expressed during mouse embryogenesis in a variety of ectodermal, neuroectodermal, and mesenchymal tissues. AP-2 transcription factors were shown to be involved in morphogenesis of craniofacial, urogenital, neural crest-derived, and placental tissues. By means of a partial cDNA fragment identified during an expressed sequence tag search for AP-2 genes, we identified a fifth, previously unknown AP-2-related gene, AP-2 epsilon. AP-2 epsilon encodes an open reading frame of 434 amino acids, which reveals the typical modular structure of AP-2 transcription factors with highly conserved C-terminal DNA binding and dimerization domains. Although the N-terminally localized activation domain is less homologous, position and identity of amino acids essential for transcriptional transactivation are conserved. Reverse transcriptase-polymerase chain reaction analyses of murine embryos revealed AP-2 epsilon expression from gestational stage embryonic day 7.5 throughout all later embryonic stages until birth. Whole-mount in situ hybridization using a specific AP-2 epsilon cDNA fragment demonstrated that during embryogenesis, expression of AP-2 epsilon is mainly restricted to neural tissue, especially the midbrain, hindbrain, and olfactory bulb. This expression pattern was confirmed by immunohistochemistry with an AP-2 epsilon-specific antiserum. By using this antiserum, we could further localize AP-2 epsilon expression in a hypothalamic nucleus and the neuroepithelium of the vomeronasal organ, suggesting an important function of AP-2 epsilon for the development of the olfactory system.

  9. Validation of a Theory of Planned Behavior-Based Questionnaire to Examine Factors Associated With Milk Expression.

    PubMed

    Bai, Yeon K; Dinour, Lauren M

    2017-11-01

    A proper assessment of multidimensional needs for breastfeeding mothers in various settings is crucial to facilitate and support breastfeeding and its exclusivity. The theory of planned behavior (TPB) has been used frequently to measure factors associated with breastfeeding. Full utility of the TPB requires accurate measurement of theory constructs. Research aim: This study aimed to develop and confirm the psychometric properties of an instrument, Milk Expression on Campus, based on the TPB and to establish the reliability and validity of the instrument. In spring 2015, 218 breastfeeding (current or in the recent past) employees and students at one university campus in northern New Jersey completed the online questionnaire containing demography and theory-based items. Internal consistency (α) and split-half reliability ( r) tests and factor analyses established and confirmed the reliability and construct validity of this instrument. Milk Expression on Campus showed strong and significant reliabilities as a full scale (α = .78, r = .74, p < .001) and theory construct subscales. Validity was confirmed as psychometric properties corresponded to the factors extracted from the scale. Four factors extracted from the direct construct subscales accounted for 79.49% of the total variability. Four distinct factors from the indirect construct subscales accounted for 73.68% of the total variability. Milk Expression on Campus can serve as a model TPB-based instrument to examine factors associated with women's milk expression behavior. The utility of this instrument extends to designing effective promotion programs to foster breastfeeding and milk expression behaviors in diverse settings.

  10. Identifying Stress Transcription Factors Using Gene Expression and TF-Gene Association Data

    PubMed Central

    Wu, Wei-Sheng; Chen, Bor-Sen

    2007-01-01

    Unicellular organisms such as yeasts have evolved to survive environmental stresses by rapidly reorganizing the genomic expression program to meet the challenges of harsh environments. The complex adaptation mechanisms to stress remain to be elucidated. In this study, we developed Stress Transcription Factor Identification Algorithm (STFIA), which integrates gene expression and TF-gene association data to identify the stress transcription factors (TFs) of six kinds of stresses. We identified some general stress TFs that are in response to various stresses, and some specific stress TFs that are in response to one specific stress. The biological significance of our findings is validated by the literature. We found that a small number of TFs may be sufficient to control a wide variety of expression patterns in yeast under different stresses. Two implications can be inferred from this observation. First, the adaptation mechanisms to different stresses may have a bow-tie structure. Second, there may exist extensive regulatory cross-talk among different stress responses. In conclusion, this study proposes a network of the regulators of stress responses and their mechanism of action. PMID:20066130

  11. Erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA) blocks differentiation and maintains the expression of pluripotency markers in human embryonic stem cells.

    PubMed

    Burton, Peter; Adams, David R; Abraham, Achamma; Allcock, Robert W; Jiang, Zhong; McCahill, Angela; Gilmour, Jane; McAbney, John; Kaupisch, Alexandra; Kane, Nicole M; Baillie, George S; Baker, Andrew H; Milligan, Graeme; Houslay, Miles D; Mountford, Joanne C

    2010-12-15

    hESCs (human embryonic stem cells) have enormous potential for use in pharmaceutical development and therapeutics; however, to realize this potential, there is a requirement for simple and reproducible cell culture methods that provide adequate numbers of cells of suitable quality. We have discovered a novel way of blocking the spontaneous differentiation of hESCs in the absence of exogenous cytokines by supplementing feeder-free conditions with EHNA [erythro-9-(2-hydroxy-3-nonyl)adenine], an established inhibitor of ADA (adenosine deaminase) and cyclic nucleotide PDE2 (phosphodiesterase 2). hESCs maintained in feeder-free conditions with EHNA for more than ten passages showed no reduction in hESC-associated markers including NANOG, POU5F1 (POU domain class 5 transcription factor 1, also known as Oct-4) and SSEA4 (stage-specific embryonic antigen 4) compared with cells maintained in feeder-free conditions containing bFGF (basic fibroblast growth factor). Spontaneous differentiation was reversibly suppressed by the addition of EHNA, but, upon removing EHNA, hESC populations underwent efficient spontaneous, multi-lineage and directed differentiation. EHNA also acts as a strong blocker of directed neuronal differentiation. Chemically distinct inhibitors of ADA and PDE2 lacked the capacity of EHNA to suppress hESC differentiation, suggesting that the effect is not driven by inhibition of either ADA or PDE2. Preliminary structure-activity relationship analysis found the differentiation-blocking properties of EHNA to reside in a pharmacophore comprising a close adenine mimetic with an extended hydrophobic substituent in the 8- or 9-position. We conclude that EHNA and simple 9-alkyladenines can block directed neuronal and spontaneous differentiation in the absence of exogenous cytokine addition, and may provide a useful replacement for bFGF in large-scale or cGMP-compliant processes.

  12. Transcription Factors Expressed in Lateral Organ Boundaries: Identification of Downstream Targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Springer, Patricia S

    2010-07-12

    The processes of lateral organ initiation and patterning are central to the generation of mature plant form. Characterization of the molecular mechanisms underlying these processes is essential to our understanding of plant development. Communication between the shoot apical meristem and initiating organ primordia is important both for functioning of the meristem and for proper organ patterning, and very little is known about this process. In particular, the boundary between meristem and leaf is emerging as a critical region that is important for SAM maintenance and regulation of organogenesis. The goal of this project was to characterize three boundary-expressed genes thatmore » encode predicted transcription factors. Specifically, we have studied LATERAL ORGAN BOUNDARIES (LOB), LATERAL ORGAN FUSION1 (LOF1), and LATERAL ORGAN FUSION2 (LOF2). LOB encodes the founding member of the LOB-DOMAIN (LBD) plant-specific DNA binding transcription factor family and LOF1 and LOF2 encode paralogous MYB-domain transcription factors. We characterized the genetic relationship between these three genes and other boundary and meristem genes. We also used an ectopic inducible expression system to identify direct targets of LOB.« less

  13. Novel therapeutic approach for pulmonary emphysema using gelatin microspheres releasing basic fibroblast growth factor in a canine model.

    PubMed

    Chang, Sung Soo; Yokomise, Hiroyasu; Matsuura, Natsumi; Gotoh, Masashi; Tabata, Yasuhiko

    2014-08-01

    The prognosis of patients with emphysema is poor as there is no truly effective treatment. Our previous study showed that the alveolar space was smaller and the microvessel density was higher in a canine emphysema model after the intrapulmonary arterial administration of gelatin microspheres slowly releasing basic fibroblast growth factor (bFGF-GMS). In the present study, we evaluated the functional effect of injecting bFGF-GMS via the pulmonary artery in this canine pulmonary emphysema model. Using the porcine pancreatic elastase (PPE)-induced total emphysema model, we approximated the value of lung compliance with a Power Lab System, and performed blood gas analysis in a control group, a total emphysema group, and a bFGF group in which bFGF-GMS were injected toward the whole pulmonary artery via the femoral vein. Each group comprised five dogs. Lung compliance was higher in the total emphysema group than in the control group (p = 0.031), and the bFGF group showed no significant improvement of lung compliance vs. the total emphysema group (p = 0.112). PaO2 (partial pressure of oxygen in arterial blood) was improved by administering bFGF-GMS in the total emphysema model (p = 0.027). In the canine total emphysema model, blood gas parameters were improved by the whole pulmonary arterial administration of bFGF-GMS. This method has the potential to be an effective novel therapy for pulmonary emphysema.

  14. A novel grapheme oxide-modified collagen-chitosan bio-film for controlled growth factor release in wound healing applications.

    PubMed

    Liu, Ting; Dan, Weihua; Dan, Nianhua; Liu, Xinhua; Liu, Xuexu; Peng, Xu

    2017-08-01

    Collagen-chitosan composite film modified with grapheme oxide (GO) and 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC), termed CC-G-E film, was loaded with basic fibroblast growth factor (bFGF) as the development of an efficacious wound healing device. In this study we report a novel drug delivery system that prevents the initial burst release and loss of bioactivity of drugs in vitro and in vivo applications. The results showed that CC-G-E film possessed improved thermal stability and a higher rate of crosslinking with increased mechanical properties when the dosage of GO was between 0.03% and 0.07%. It was shown that the in vitro release of bFGF from CC-G-E film continued for more than 28d. Furthermore, the CC-G-E films demonstrated excellent in vitro biocompatibility following culture with L929 fibroblasts in terms of cell adhesion and proliferation. CC-G-E films were implanted into Sprague-Dawley rats to characterize their ability to repair full-thickness skin wounds. Results showed that the CC-G-E film accelerated the wound healing process compared with the blank control. Based on all the results, it was concluded that CC-G-E film operates as a novel drug delivery system and due to its performance in wound remodeling, has potential to be developed as a wound dressing material. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. The over-expression of a chrysanthemum WRKY transcription factor enhances aphid resistance.

    PubMed

    Li, Peiling; Song, Aiping; Gao, Chunyan; Jiang, Jiafu; Chen, Sumei; Fang, Weimin; Zhang, Fei; Chen, Fadi

    2015-10-01

    Members of the large WRKY transcription factor family are responsible for the regulation of plant growth, development and the stress response. Here, five WRKY members were isolated from chrysanthemum. They each contained a single WRKY domain and a C2H2 zinc finger motif, so were classified into group II. Transient expression experiments demonstrated that all five were expressed in the nucleus, although CmWRKY42 was also expressed in the cytoplasm. When expressed heterologously in yeast, the products of CmWRKY22 and CmWRKY48 exhibited transactivation activity, while those of CmWRKY21, CmWRKY40 and CmWRKY42 did not. The transcription of the five CmWRKY genes was profiled when the plants were challenged with a variety of abiotic and biotic stress agents, as well as being treated with various phytohormones. CmWRKY21 proved to be markedly induced by salinity stress, and suppressed by high temperature exposure; CmWRKY22 was induced by high temperature exposure; CmWRKY40 was highly induced by salinity stress, and treatment with either abscisic acid (ABA) or methyl jasmonate (MeJA); CmWRKY42 was up-regulated by salinity stress, low temperature, ABA and MeJA treatment and aphid infestation; CmWRKY48 was induced by drought stress, ABA and MeJA treatment and aphid infestation. The function of CmWRKY48 was further investigated by over-expressing it transgenically. The constitutive expression of this transcription factor inhibited the aphids' population growth capacity, suggesting that it may represent an important component of the plant's defense machinery against aphids. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  16. Conservation of transcription factor binding events predicts gene expression across species

    PubMed Central

    Hemberg, Martin; Kreiman, Gabriel

    2011-01-01

    Recent technological advances have made it possible to determine the genome-wide binding sites of transcription factors (TFs). Comparisons across species have suggested a relatively low degree of evolutionary conservation of experimentally defined TF binding events (TFBEs). Using binding data for six different TFs in hepatocytes and embryonic stem cells from human and mouse, we demonstrate that evolutionary conservation of TFBEs within orthologous proximal promoters is closely linked to function, defined as expression of the target genes. We show that (i) there is a significantly higher degree of conservation of TFBEs when the target gene is expressed in both species; (ii) there is increased conservation of binding events for groups of TFs compared to individual TFs; and (iii) conserved TFBEs have a greater impact on the expression of their target genes than non-conserved ones. These results link conservation of structural elements (TFBEs) to conservation of function (gene expression) and suggest a higher degree of functional conservation than implied by previous studies. PMID:21622661

  17. [CONDITIONS OF SYNOVIAL MESENCHYMAL STEM CELLS DIFFERENTIATING INTO FIBROCARTILAGE CELLS].

    PubMed

    Fu, Peiliang; Cong, Ruijun; Chen, Song; Zhang, Lei; Ding, Zheru; Zhou, Qi; Li, Lintao; Xu, Zhenyu; Wu, Yuli; Wu, Haishan

    2015-01-01

    To explore the conditions of synovial derived mesenchymal stem cells (SMSCs) differentiating into the fibrocartilage cells by using the orthogonal experiment. The synovium was harvested from 5 adult New Zealand white rabbits, and SMSCs were separated by adherence method. The flow cytometry and multi-directional differentiation method were used to identify the SMSCs. The conditions were found from the preliminary experiment and literature review. The missing test was carried out to screen the conditions and then 12 conditions were used for the orthogonal experiment, including transforming growth factor β1 (TGF-β1), bone morphogenic protein 2 (BMP-2), dexamethasone (DEX), proline, ascorbic acid (ASA), pyruvic acid, insulin + transferrin + selenious acid pre-mixed solution (ITS), bovin serum albumin (BSA), basic fibroblast growth factor (bFGF), intermittent hydraulic pressure (IHP), bone morphogenic protein 7 (BMP-7), and insulin-like growth factor (IGF). The L60 (212) orthogonal experiment was designed using the SPSS 18.0 with 2 level conditions and the cells were induced to differentiate on the small intestinal submucosa (SIS)-3D scaffold. The CD151+/CD44+ cells were detected with the flow cytometry and then the differentiation rate was recorded. The immumohistochemical staining, cellular morphology, toluidine blue staining, and semi-quantitative RT-PCR examination for the gene expressions of sex determining region Y (SRY)-box 9 gene (Sox9), aggrecan gene (AGN), collagen type I gene (Col I), collagen type II gene (Col II), collagen type IX gene (Col IX) were used for result confirmation. The differentiation rate was calculated as the product of CD151/CD44+ cells and cells with Col I high expression. The grow curve was detected with the DNA abundance using the PicoGreen Assay. The visual observation and the variances analysis among the variable were used to evaluate the result of the orthogonal experiment, 1 level interaction was considered. The q-test and the

  18. Intervertebral disc degeneration-induced expression of pain-related molecules: glial cell-derived neurotropic factor as a key factor.

    PubMed

    Jung, Woon-Won; Kim, Hyun-Sook; Shon, Jong-Ryeul; Lee, Min; Lee, Sang-Heon; Sul, Donggeun; Na, Heung Sik; Kim, Joo Han; Kim, Byung-Jo

    2011-10-01

    Discogenic low back pain has been shown to develop into chronic intractable pain due to an unknown pathogenesis. To study the mechanism of discogenic pain, we analyzed the serial expression of pain-related molecules in the dorsal root ganglia (DRG) and thalamus using a newly developed rat model of disc degeneration. Ten microliters of complete Freund's adjuvant was injected into the L5-6 disc of male Sprague-Dawley rats for 10 minutes using a 26-gauge needle. Using a behavioral test, rats with significant pain were selected and subsequently serial gene expression of pain-related molecules in the DRG and the thalamus was analyzed by reverse transcriptase polymerase chain reaction. The expression of tumor necrosis factor-α and interleukin-1β significantly increased at 4 and 8 weeks in the DRG of rats with pain. Furthermore, interleukin-6 was significantly increased at 4 weeks in the DRG; however, these cytokines did not show a significant change in the thalamus. Calcitonin gene-related peptide and substance P were significantly increased in DRG at 4 and 8 weeks and in the thalamus at 2 and 4 weeks. The level of nerve growth factor-β did not significantly increase in the DRG or thalamus, whereas glial cell line-derived neurotropic factor (GDNF) was significantly increased at 2 weeks and was sustained through 8 weeks in both the DRG and thalamus. The disc degeneration rat model described herein led to significant pain of a chronic nature. The gradual and persistent increase of GDNF in both the thalamus and DRG suggests that GDNF might be a key factor in the development of intractable, chronic discogenic pain.

  19. Parental expression of disappointment: should it be a factor in Hoffman's model of parental discipline?

    PubMed

    Patrick, Renee B; Gibbs, John C

    2007-06-01

    The authors addressed whether parental expression of disappointment should be included as a distinct factor in M. L. Hoffman's well-established typology of parenting styles (induction, love withdrawal, power assertion). Hoffman's 3-factor model, along with a more inclusive 4-factor model (induction, love withdrawal, power assertion, and expressions of disappointment), were respectively evaluated in exploratory factor analyses. The analysis utilized extant data comprised of responses by children (N = 73) and their mothers (N = 67) to an adaptation of M. L. Hoffman and H. D. Saltzstein's parental discipline measure. The findings supported Hoffman's original model. Disappointment may be reducible to love withdrawal or induction, although disappointment may be a more appropriate induction for adolescents.

  20. Expression of allograft inflammatory factor-1 in inflammatory skin disorders.

    PubMed

    Orsmark, Christina; Skoog, Tiina; Jeskanen, Leila; Kere, Juha; Saarialho-Kere, Ulpu

    2007-01-01

    Allograft inflammatory factor-1 (AIF-1) is an evolutionarily conserved, inflammatory protein produced by activated macrophages during chronic transplant rejection and in inflammatory brain lesions. Since T-cell-mediated inflammation is common to various dermatoses and nothing is known about AIF-1 in skin, we studied its protein expression at the tissue level and regulation in monocytic cell lines by various agents. Using immunohistochemistry, we found that AIF-1 is expressed at low levels in normal skin, but is highly upregulated in various inflammatory skin disorders, such as psoriasis, lichen planus, graft-versus-host disease and mycosis fungoides. The main cell types expressing AIF-1 in affected skin are macrophages and Langerhans' cells. We also show by real-time PCR that AIF-1 mRNA levels in monocytic THP-1 and U937 cell lines are significantly upregulated by retinoic acid as well as a number of cytokines. We conclude that AIF-1 may mediate survival and pro-inflammatory properties of macrophages in skin diseases.

  1. Effects of Forskolin on Trefoil factor 1 expression in cultured ventral mesencephalic dopaminergic neurons.

    PubMed

    Jensen, P; Ducray, A D; Widmer, H R; Meyer, M

    2015-12-03

    Trefoil factor 1 (TFF1) belongs to a family of secreted peptides that are mainly expressed in the gastrointestinal tract. Notably, TFF1 has been suggested to operate as a neuropeptide, however, its specific cellular expression, regulation and function remain largely unknown. We have previously shown that TFF1 is expressed in developing and adult rat ventral mesencephalic tyrosine hydroxylase-immunoreactive (TH-ir) dopaminergic neurons. Here, we investigated the expression of TFF1 in rat ventral mesencephalic dopaminergic neurons (embryonic day 14) grown in culture for 5, 7 or 10 days in the absence (controls) or presence of either glial cell line-derived neurotrophic factor (GDNF), Forskolin or the combination. No TFF1-ir cells were identified at day 5 and only a few at day 7, whereas TH was markedly expressed at both time points. At day 10, several TFF1-ir cells were detected, and their numbers were significantly increased after the addition of GDNF (2.2-fold) or Forskolin (4.1-fold) compared to controls. Furthermore, the combination of GDNF and Forskolin had an additive effect and increased the number of TFF1-ir cells by 5.6-fold compared to controls. TFF1 expression was restricted to neuronal cells, and the percentage of TH/TFF1 co-expressing cells was increased to the same extent in GDNF and Forskolin-treated cultures (4-fold) as compared to controls. Interestingly, the combination of GDNF and Forskolin resulted in a significantly increased co-expression (8-fold) of TH/TFF1, which could indicate that GDNF and Forskolin targeted different subpopulations of TH/TFF1 neurons. Short-term treatment with Forskolin resulted in an increased number of TFF1-ir cells, and this effect was significantly reduced by the MEK1 inhibitor PD98059 or the protein kinase A (PKA) inhibitor H89, suggesting that Forskolin induced TFF1 expression through diverse signaling pathways. In conclusion, distinct populations of cultured dopaminergic neurons express TFF1, and their numbers can be

  2. Effect of hypoxia on tissue factor pathway inhibitor expression in breast cancer.

    PubMed

    Cui, X Y; Tinholt, M; Stavik, B; Dahm, A E A; Kanse, S; Jin, Y; Seidl, S; Sahlberg, K K; Iversen, N; Skretting, G; Sandset, P M

    2016-02-01

    ESSENTIALS: A hypoxic microenvironment is a common feature of tumors that may influence activation of coagulation. MCF-7 and SK-BR-3 breast cancer cells and breast cancer tissue samples were used. The results showed transcriptional repression of tissue factor pathway inhibitor expression in hypoxia. Hypoxia-inducible factor 1α may be a target for the therapy of cancer-related coagulation and thrombosis. Activation of coagulation is a common finding in patients with cancer, and is associated with an increased risk of venous thrombosis. As a hypoxic microenvironment is a common feature of solid tumors, we investigated the role of hypoxia in the regulation of tissue factor (TF) pathway inhibitor (TFPI) expression in breast cancer. To explore the transcriptional regulation of TFPI by hypoxia-inducible factor (HIF)-1α in breast cancer cells and their correlation in breast cancer tissues. MCF-7 and SK-BR-3 breast cancer cells were cultured in 1% oxygen or treated with cobalt chloride (CoCl2 ) to mimic hypoxia. Time-dependent and dose-dependent downregulation of TFPI mRNA (quantitative RT-PCR) and of free TFPI protein (ELISA) were observed in hypoxia. Western blotting showed parallel increases in the levels of HIF-1α protein and TF. HIF-1α inhibitor abolished or attenuated the hypoxia-induced downregulation of TFPI. Luciferase reporter assay showed that both hypoxia and HIF-1α overexpression caused strong repression of TFPI promoter activity. Subsequent chromatin immunoprecipitation and mutagenesis analysis demonstrated a functional hypoxia response element within the TFPI promoter, located at -1065 to -1060 relative to the transcriptional start point. In breast cancer tissue samples, gene expression analyses showed a positive correlation between the mRNA expression of TFPI and that of HIF-1α. This study demonstrates that HIF-1α is involved in the transcriptional regulation of the TFPI gene, and suggests that a hypoxic microenvironment inside a breast tumor may

  3. Multi-protein Delivery by Nanodiamonds Promotes Bone Formation

    PubMed Central

    Moore, L.; Gatica, M.; Kim, H.; Osawa, E.; Ho, D.

    2013-01-01

    Bone morphogenetic proteins (BMPs) are well-studied regulators of cartilage and bone development that have been Food and Drug Administration (FDA)-approved for the promotion of bone formation in certain procedures. BMPs are seeing more use in oral and maxillofacial surgeries because of recent FDA approval of InFUSE® for sinus augmentation and localized alveolar ridge augmentation. However, the utility of BMPs in medical and dental applications is limited by the delivery method. Currently, BMPs are delivered to the surgical site by the implantation of bulky collagen sponges. Here we evaluate the potential of detonation nanodiamonds (NDs) as a delivery vehicle for BMP-2 and basic fibroblast growth factor (bFGF). Nanodiamonds are biocompatible, 4- to 5-nm carbon nanoparticles that have previously been used to deliver a wide variety of molecules, including proteins and peptides. We find that both BMP-2 and bFGF are readily loaded onto NDs by physisorption, forming a stable colloidal solution, and are triggered to release in slightly acidic conditions. Simultaneous delivery of BMP-2 and bFGF by ND induces differentiation and proliferation in osteoblast progenitor cells. Overall, we find that NDs provide an effective injectable alternative for the delivery of BMP-2 and bFGF to promote bone formation. PMID:24045646

  4. Multi-protein delivery by nanodiamonds promotes bone formation.

    PubMed

    Moore, L; Gatica, M; Kim, H; Osawa, E; Ho, D

    2013-11-01

    Bone morphogenetic proteins (BMPs) are well-studied regulators of cartilage and bone development that have been Food and Drug Administration (FDA)-approved for the promotion of bone formation in certain procedures. BMPs are seeing more use in oral and maxillofacial surgeries because of recent FDA approval of InFUSE(®) for sinus augmentation and localized alveolar ridge augmentation. However, the utility of BMPs in medical and dental applications is limited by the delivery method. Currently, BMPs are delivered to the surgical site by the implantation of bulky collagen sponges. Here we evaluate the potential of detonation nanodiamonds (NDs) as a delivery vehicle for BMP-2 and basic fibroblast growth factor (bFGF). Nanodiamonds are biocompatible, 4- to 5-nm carbon nanoparticles that have previously been used to deliver a wide variety of molecules, including proteins and peptides. We find that both BMP-2 and bFGF are readily loaded onto NDs by physisorption, forming a stable colloidal solution, and are triggered to release in slightly acidic conditions. Simultaneous delivery of BMP-2 and bFGF by ND induces differentiation and proliferation in osteoblast progenitor cells. Overall, we find that NDs provide an effective injectable alternative for the delivery of BMP-2 and bFGF to promote bone formation.

  5. Breast Angiosarcoma: Case Series and Expression of Vascular Endothelial Growth Factor

    PubMed Central

    Brar, Rondeep; West, Robert; Witten, Daniela; Raman, Bhargav; Jacobs, Charlotte; Ganjoo, Kristen

    2009-01-01

    Purpose Angiosarcoma of the breast is a rare, malignant tumor for which little is known regarding prognostic indicators and optimal therapeutic regimens. To address this issue, we performed a retrospective analysis of breast angiosarcoma cases seen at Stanford University along with immunohistochemical analysis for markers of angiogenesis. Methods Breast angiosarcoma cases seen between 1980 and 2008 were examined. Viable tissue blocks were analyzed for expression of vascular endothelial growth factor and its receptors. Results A total of 16 cases were identified. Data was collected regarding epidemiology, treatment, response rates, disease-free survival, and the use of various imaging modalities. Five tissue blocks remained viable for immunohistochemical analysis. Vascular endothelial growth factor-A was positively expressed in 3 of these samples. Conclusion Angiosarcoma of the breast is an aggressive malignancy with a propensity for both local recurrence and distant metastases. Angiogenesis inhibition may represent a novel therapeutic modality in this rare, vascular malignancy. PMID:20737044

  6. Vascular endothelial growth factor-C (VEGF-C) expression predicts lymph node metastasis of transitional cell carcinoma of the bladder.

    PubMed

    Suzuki, Kazumi; Morita, Tatsuo; Tokue, Akihiko

    2005-02-01

    It has been found that expression of vascular endothelial growth factor-C (VEGF-C) in several carcinomas is significantly associated with angiogenesis, lymphangiogenesis and regional lymph node metastasis. However, VEGF-C expression in bladder transitional cell carcinoma (TCC) has not yet been reported. To elucidate the role of VEGF-C in bladder TCC, we examined VEGF-C expression in bladder TCC and pelvic lymph node metastasis specimens obtained from patients who underwent radical cystectomy. Eighty-seven patients who underwent radical cystectomy for clinically organ-confined TCC of the bladder were enrolled in the present study. No neoadjuvant treatments, except transurethral resection of the tumor, were given to these patients. The VEGF-C expressions of 87 bladder tumors and 20 pelvic lymph node metastasis specimens were examined immunohistochemically and the association between VEGF-C expression and clinicopathological factors, including angiogenesis as evaluated by microvessel density (MVD), was also examined. Vascular endothelial growth factor-C expression was found in the cytoplasm of tumor cells, but not in the normal transitional epithelium. Vascular endothelial growth factor-C expression was significantly associated with the pathological T stage (P = 0.0289), pelvic lymph node metastasis (P < 0.0001), lymphatic involvement (P = 0.0008), venous involvement (P = 0.0002) and high MVD (P = 0.0043). The multivariate analysis demonstrated that VEGF-C expression and high MVD in bladder TCC were independent risk factors influencing the pelvic lymph node metastasis. Moreover, the patients with VEGF-C-positive tumors had significantly poorer prognoses than those with the VEGF-C-negative tumors (P = 0.0087) in the univariate analysis. The multivariate analysis based on Cox proportional hazard model showed that the independent prognostic factors were patient age (P = 0.0132) and pelvic lymph node metastasis (P = 0.0333). The present study suggests that VEGF

  7. Gene Expression Profiling of Transcription Factors of Helicobacter pylori under Different Environmental Conditions.

    PubMed

    De la Cruz, Miguel A; Ares, Miguel A; von Bargen, Kristine; Panunzi, Leonardo G; Martínez-Cruz, Jessica; Valdez-Salazar, Hilda A; Jiménez-Galicia, César; Torres, Javier

    2017-01-01

    Helicobacter pylori is a Gram-negative bacterium that colonizes the human gastric mucosa and causes peptic ulcers and gastric carcinoma. H. pylori strain 26695 has a small genome (1.67 Mb), which codes for few known transcriptional regulators that control bacterial metabolism and virulence. We analyzed by qRT-PCR the expression of 16 transcriptional regulators in H. pylori 26695, including the three sigma factors under different environmental conditions. When bacteria were exposed to acidic pH, urea, nickel, or iron, the sigma factors were differentially expressed with a particularly strong induction of fliA . The regulatory genes hrcA, hup , and crdR were highly induced in the presence of urea, nickel, and iron. In terms of biofilm formation fliA, flgR, hp1021, fur, nikR , and crdR were induced in sessile bacteria. Transcriptional expression levels of rpoD, flgR, hspR, hp1043 , and cheY were increased in contact with AGS epithelial cells. Kanamycin, chloramphenicol, and tetracycline increased or decreased expression of regulatory genes, showing that these antibiotics affect the transcription of H. pylori . Our data indicate that environmental cues which may be present in the human stomach modulate H. pylori transcription.

  8. Combined Effects of Brain-Derived Neurotrophic Factor Immobilized Poly-Lactic-Co-Glycolic Acid Membrane with Human Adipose-Derived Stem Cells and Basic Fibroblast Growth Factor Hydrogel on Recovery of Erectile Dysfunction

    PubMed Central

    Lee, Seung Hwan; Kim, In Gul; Jung, Ae Ryang; Shrestha, Kshitiz Raj; Lee, Jin Ho; Park, Ki Dong; Chung, Byung Ha; Kim, Sae Woong; Kim, Ki Hean

    2014-01-01

    Erectile dysfunction (ED) is the most frequent long-term problem after radical prostatectomy. We aimed to evaluate whether the use of combination therapy with basic fibroblast growth factor (bFGF)-hydrogel on corpus cavernosum and with adipose-derived stem cells (ADSCs) and brain-derived neurotrophic factor (BDNF)-immobilized poly-lactic-co-glycolic acid (PLGA) membrane on the cavernous nerve (CN) could improve erectile function in a rat model of bilateral cavernous nerve crush injury (BCNI). Rats were randomly divided into five groups (n=15 per group): a normal group (N group), a group receiving saline application after bilateral cavernous nerve crush injury (BCNI), a group undergoing bFGF-hydrogel injection in the corpus cavernosum after BCNI (bFGF), a group receiving ADSC application covered with BDNF-membrane after BCNI (ADSC/BDNF), and a group undergoing coadministration of bFGF-hydrogel injection and BDNF-membrane with ADSCs after BDNF (bFGF+ADSC/BDNF). Four weeks postoperatively, the erectile function was assessed by detecting the ratio of intracavernous pressure (ICP) to mean arterial pressure (MAP). Smooth muscle and collagen contents were measured using Masson's trichrome staining. Neuronal nitric oxide synthase (nNOS) expression in the dorsal penile nerve was detected by immunostaining. The protein expression of the α-smooth muscle actin (α-SMA) and the cyclic guanosine monophosphate (cGMP) level of the corpus cavernosum were quantified by western blot and cGMP assay, respectively. In the bFGF+ADSC/BDNF group, the erectile function was significantly elevated compared with the BCNI and other treated groups and showed a significantly increased smooth muscle/collagen ratio, nNOS content, α-SMA expression, and cGMP level. In particular, there were no statistical differences in the ICP/MAP ratio, smooth muscle/collagen ratio, and α-SMA and cGMP levels between the bFGF+ADSC/BDNF group and normal group. Application of the BDNF-immobilized PLGA membrane with

  9. Heterogeneous expression pattern of pro- and anti-apoptotic factors in myeloid progenitor cells of patients with severe congenital neutropenia treated with granulocyte colony-stimulating factor.

    PubMed

    Cario, Gunnar; Skokowa, Julia; Wang, Zheng; Bucan, Vesna; Zeidler, Cornelia; Stanulla, Martin; Schrappe, Martin; Welte, Karl

    2005-04-01

    Apoptosis is accelerated in the myeloid progenitor cells of patients with severe congenital neutropenia (CN). Granulocyte colony-stimulating factor (G-CSF) increases neutrophil numbers in most CN patients. The effect of G-CSF on apoptosis in CN was analysed by apoptosis rate and expression of anti- and pro-apoptotic factors. G-CSF-treated patients showed higher apoptosis frequency, lower expression of bcl-2 and bcl-xL, but higher expression of bfl-1/A1 and mcl-1. Caspase 9 was highly expressed in patients and controls after G-CSF administration. Thus, G-CSF acts on apoptosis regulation, but additional mechanisms leading to the increase of neutrophil numbers must be assumed.

  10. [Exendin-4 promotes paracrine action of adipose-derived stem cells through PI3K/Akt signaling pathways].

    PubMed

    Zhou, Hao; Yang, Junjie; Wagn, Jing; Hu, Shunying; Chen, Guanghui; Chen, Yundai

    2014-10-01

    To investigate the mechanism by which exendin-4 promotes paracrine secretion of cytokines by adipose-derived stem cells (ADSCs). In vitro cultured SD rat ADSCs (fourth passage) with or without exendin-4 treatment underwent flow cytometry to characterize the surface markers. MTT assay was performed to assess the proliferation of the cells exposed to different concentrations (0-20 nm/L) of exendin-4, and the paracrine secretion of cytokines (bFGF, VEGF, HGF, and IGF-1) by the ADSCs was evaluated by qPCR. The changes in the expressions of p-Akt in the cells were analyzed by Western blotting and qPCR in response to exendin-4 (10 nm/L) with or without exposure to PI3K/Akt inhibitor LY-294002 (50 nm/L); bFGF, VEGF, HGF, and IGF-1 production in the cells were detected using ELISA kits. Treatment with exendin-4 for 12 h did not affect the surface marker profile of the ADSCs but promoted the cell proliferation (P<0.05). Exendin-4 significantly increased the mRNA expressions of VEGF, bFGF, HGF, and IGF-1 in a concentration-dependent manner, and 10 nm/L was the optimum concentration (P<0.05). Exendin-4 treatment resulted in significantly increased p-Akt expressions in the ADSCs, and PI3K/Akt inhibitor not only reversed such effects of exendin-4 on p-Akt but also diminished the exendin-4- mediated up-regulation of the paracrine cytokines. Exendin-4 can concentration-dependently promote the proliferative and paracrine capacities of ADSCs partially through the PI3K/Akt signaling pathway without affecting the surface marker profile of the cells.

  11. NFI Transcription Factors Interact with FOXA1 to Regulate Prostate-Specific Gene Expression

    PubMed Central

    Elliott, Amicia D.; DeGraff, David J.; Anderson, Philip D.; Anumanthan, Govindaraj; Yamashita, Hironobu; Sun, Qian; Friedman, David B.; Hachey, David L.; Yu, Xiuping; Sheehan, Jonathan H.; Ahn, Jung-Mo; Raj, Ganesh V.; Piston, David W.; Gronostajski, Richard M.; Matusik, Robert J.

    2014-01-01

    Androgen receptor (AR) action throughout prostate development and in maintenance of the prostatic epithelium is partly controlled by interactions between AR and forkhead box (FOX) transcription factors, particularly FOXA1. We sought to identity additional FOXA1 binding partners that may mediate prostate-specific gene expression. Here we identify the nuclear factor I (NFI) family of transcription factors as novel FOXA1 binding proteins. All four family members (NFIA, NFIB, NFIC, and NFIX) can interact with FOXA1, and knockdown studies in androgen-dependent LNCaP cells determined that modulating expression of NFI family members results in changes in AR target gene expression. This effect is probably mediated by binding of NFI family members to AR target gene promoters, because chromatin immunoprecipitation (ChIP) studies found that NFIB bound to the prostate-specific antigen enhancer. Förster resonance energy transfer studies revealed that FOXA1 is capable of bringing AR and NFIX into proximity, indicating that FOXA1 facilitates the AR and NFI interaction by bridging the complex. To determine the extent to which NFI family members regulate AR/FOXA1 target genes, motif analysis of publicly available data for ChIP followed by sequencing was undertaken. This analysis revealed that 34.4% of peaks bound by AR and FOXA1 contain NFI binding sites. Validation of 8 of these peaks by ChIP revealed that NFI family members can bind 6 of these predicted genomic elements, and 4 of the 8 associated genes undergo gene expression changes as a result of individual NFI knockdown. These observations suggest that NFI regulation of FOXA1/AR action is a frequent event, with individual family members playing distinct roles in AR target gene expression. PMID:24801505

  12. Physiological factors that regulate skin pigmentation

    PubMed Central

    Yamaguchi, Yuji; Hearing, Vincent J.

    2009-01-01

    More than 150 genes have been identified that affect skin color either directly or indirectly, and we review current understanding of physiological factors that regulate skin pigmentation. We focus on melanosome biogenesis, transport and transfer, melanogenic regulators in melanocytes and factors derived from keratinocytes, fibroblasts, endothelial cells, hormones, inflammatory cells and nerves. Enzymatic components of melanosomes include tyrosinase, tyrosinase-related protein 1 and dopachrome tautomerase, which depend on the functions of OA1, P, MATP, ATP7A and BLOC-1 to synthesize eumelanins and pheomelanins. The main structural component of melanosomes is Pmel17/gp100/Silv, whose sorting involves adaptor protein 1A (AP1A), AP1B, AP2 and spectrin, as well as a chaperone-like component, MART-1. During their maturation, melanosomes move from the perinuclear area toward the plasma membrane. Microtubules, dynein, kinesin, actin filaments, Rab27a, melanophilin, myosin Va and Slp2-a are involved in melanosome transport. Foxn1 and p53 up-regulate skin pigmentation via bFGF and POMC derivatives including α-MSH and ACTH, respectively. Other critical factors that affect skin pigmentation include MC1R, CREB, ASP, MITF, PAX3, SOX9/10, LEF-1/TCF, PAR-2, DKK1, SCF, HGF, GM-CSF, endothelin-1, prostaglandins, leukotrienes, thromboxanes, neurotrophins and neuropeptides. UV radiation up-regulates most factors that increase melanogenesis. Further studies will elucidate the currently unknown functions of many other pigment genes/proteins. PMID:19449448

  13. Mangiferin inhibits tumor necrosis factor-α-induced matrix metalloproteinase-9 expression and cellular invasion by suppressing nuclear factor-κB activity.

    PubMed

    Dilshara, Matharage Gayani; Kang, Chang-Hee; Choi, Yung Hyun; Kim, Gi-Young

    2015-10-01

    We investigated the effects of mangiferin on the expression and activity of metalloproteinase (MMP)-9 and the invasion of tumor necrosis factor (TNF)-α-stimulated human LNCaP prostate carcinoma cells. Reverse-transcription polymerase chain reaction (RT-PCR) and western blot analysis showed that mangiferin significantly reversed TNF-α-induced mRNA and protein expression of MMP-9 expression. Zymography data confirmed that stimulation of cells with TNF-α significantly increased MMP-9 activity. However, mangiferin substantially reduced the TNF-α-induced activity of MMP-9. Additionally, a matrigel invasion assay showed that mangiferin significantly reduced TNF-α-induced invasion of LNCaP cells. Compared to untreated controls, TNF-α-stimulated LNCaP cells showed a significant increase in nuclear factor-κB (NF-κB) luciferase activity. However, mangiferin treatment markedly decreased TNF-α-induced NF-κB luciferase activity. Furthermore, mangiferin suppressed nuclear translocation of the NF-κB subunits p65 and p50. Collectively, our results indicate that mangiferin is a potential anti-invasive agent that acts by suppressing NF-κB-mediated MMP-9 expression.

  14. Growth factors and myometrium: biological effects in uterine fibroid and possible clinical implications

    PubMed Central

    Ciarmela, Pasquapina; Islam, Md. Soriful; Reis, Fernando M.; Gray, Peter C.; Bloise, Enrrico; Petraglia, Felice; Vale, Wylie; Castellucci, Mario

    2011-01-01

    BACKGROUND Growth factors are proteins secreted by a number of cell types that are capable of modulating cellular growth, proliferation and cellular differentiation. It is well accepted that uterine cellular events such as proliferation and differentiation are regulated by sex steroids and their actions in target tissues are mediated by local production of growth factors acting through paracrine and/or autocrine mechanisms. Myometrial mass is ultimately modified in pregnancy as well as in tumour conditions such as leiomyoma and leiomyosarcoma. Leiomyomas, also known as fibroids, are benign tumours of the uterus, considered to be one of the most frequent causes of infertility in reproductive years in women. METHODS For this review, we searched the database MEDLINE and Google Scholar for articles with content related to growth factors acting on myometrium; the findings are hereby reviewed and discussed. RESULTS Different growth factors such as epidermal growth factor (EGF), transforming growth factor-α (TGF-α), heparin-binding EGF (HB-EGF), acidic fibroblast growth factor (aFGF), basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), insulin-like growth factor (IGF), platelet-derived growth factor (PDGF) and TGF-β perform actions in myometrium and in leiomyomas. In addition to these growth factors, activin and myostatin have been recently identified in myometrium and leiomyoma. CONCLUSIONS Growth factors play an important role in the mechanisms involved in myometrial patho-physiology. PMID:21788281

  15. Building gene expression signatures indicative of transcription factor activation to predict AOP modulation

    EPA Science Inventory

    Building gene expression signatures indicative of transcription factor activation to predict AOP modulation Adverse outcome pathways (AOPs) are a framework for predicting quantitative relationships between molecular initiatin...

  16. Analysis of Obesity-Related Factors and their Association with Aromatase Expression in Canine Malignant Mammary Tumours.

    PubMed

    Shin, J-I; Lim, H-Y; Kim, H-W; Seung, B-J; Ju, J-H; Sur, J-H

    2016-07-01

    This study was designed to investigate the role of obesity in canine malignant mammary tumours (CMMTs), by assessing aromatase expression and the regulatory roles of immune mediators such as cyclo-oxygenase-2 (COX2), prostaglandin E2 (PGE2), nuclear factor kappa beta (NF-κB), hypoxia inducible factor-1α (HIF-1α) and adipokines (i.e. leptin) in lean, optimal body weight, overweight and obese animals. Clinicopathological data, including the breed, body weight, body condition score and age and neutering status, were collected, together with histopathological characteristics (i.e. histological types, grading and lymphatic invasion). To determine the expression of each factor, immunohistochemistry was conducted with 60 samples of malignant CMMTs. CMMTs from overweight and obese animals had significantly elevated levels of PGE2, and aromatase expression correlated significantly with PGE2, NF-κB and leptin expression. However, no significant difference was observed in terms of histopathological characteristics. The results suggest that PGE2, a known obesity-related immune mediator, could be upregulated in CMMTs from overweight and obese animals. In addition, PGE2, NF-κB and leptin influenced the expression of aromatase, as observed in women. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Expression of Fushi tarazu factor 1 homolog and Pit-1 genes in the pituitaries of pre-spawning chum and sockeye salmon.

    PubMed

    Higa, M; Ando, H; Urano, A

    2001-06-01

    Fushi tarazu factor-1 (FTZ-F1) and Pit-1 are major pituitary transcription factors, controlling expression of genes coding for gonadotropin (GTH) subunits and growth hormone/prolactin/somatolactin family hormone, respectively. As a first step to investigate physiological factors regulating gene expression of these transcription factors, we determined their mRNA levels in the pituitaries of chum salmon (Oncorhynchus keta) at different stages of sexual maturation. FTZ-F1 gene expression was increased in males at the stage before spermiation, where the levels of GTH alpha and IIbeta subunit mRNAs were elevated. Pit-1 mRNA showed maximum levels at the final stage of sexual maturation in both sexes, when expression of somatolactin gene peaked. To clarify whether gonadotropin-releasing hormone (GnRH) is involved in these increases in FTZ-F1 and Pit-1 gene expression, we examined effects of GnRH analog (GnRHa) administration on their gene expression in maturing sockeye salmon (Oncorhynchus nerka). GnRHa stimulated Pit-1 gene expression in females only, but failed to stimulate FTZ-F1 gene expression in both sexes. The up-regulated expression of FTZ-F1 and Pit-1 genes at the pre-spawning stages suggest that the two transcription factors have roles in sexual maturation of salmonids. Physiological factors regulating gene expression of FTZ-F1 and Pit-1 are discussed in this review.

  18. Histone Deacetylase Inhibitors Repress Tumoral Expression of the Proinvasive Factor RUNX2.

    PubMed

    Sancisi, Valentina; Gandolfi, Greta; Ambrosetti, Davide Carlo; Ciarrocchi, Alessia

    2015-05-01

    Aberrant reactivation of embryonic pathways occurs commonly in cancer. The transcription factor RUNX2 plays a fundamental role during embryogenesis and is aberrantly reactivated during progression and metastasization of different types of human tumors. In this study, we attempted to dissect the molecular mechanisms governing RUNX2 expression and its aberrant reactivation. We identified a new regulatory enhancer element, located within the RUNX2 gene, which is responsible for the activation of the RUNX2 promoter and for the regulation of its expression in cancer cells. Furthermore, we have shown that treatment with the anticancer compounds histone deacetylase inhibitor (HDACi) results in a profound inhibition of RUNX2 expression, which is determined by the disruption of the transcription-activating complex on the identified enhancer. These data envisage a possible targeting strategy to counteract the oncongenic function of RUNX2 in cancer cells and provide evidence that the cytotoxic activity of HDACi in cancer is not only dependent on the reactivation of silenced oncosuppressors but also on the repression of oncogenic factors that are necessary for survival and progression. ©2015 American Association for Cancer Research.

  19. Involvement of human decidual cell-expressed tissue factor in uterine hemostasis and abruption.

    PubMed

    Lockwood, C J; Paidas, M; Murk, W K; Kayisli, U A; Gopinath, A; Huang, S J; Krikun, G; Schatz, F

    2009-11-01

    Vascular injury increases access and binding of plasma-derived factor VII to perivascular cell membrane-bound tissue factor (TF). The resulting TF/VIIa complex promotes hemostasis by cleaving pro-thrombin to thrombin leading to the fibrin clot. In human pregnancy, decidual cell-expressed TF prevents decidual hemorrhage (abruption). During placentation, trophoblasts remodel decidual spiral arteries into high conductance vessels. Shallow trophoblast invasion impedes decidual vascular conversion, producing an inadequate uteroplacental blood flow that elicits abruption-related placental ischemia. Thrombin induces several biological effects via cell surface protease activated receptors. In first trimester human DCs thrombin increases synthesis of sFlt-1, which elicits placental ischemia by impeding angiogenesis-related decidual vascular remodeling. During pregnacy, the fibrillar collagen-rich amnion and choriodecidua extracellular matrix (ECM) provides greater than additive tensile strength and structural integrity. Thrombin acts as an autocrine/paracrine mediator that degrades these ECMs by augmenting decidual cell expression of: 1) matrix metalloproteinases and 2) interleukin-8, a key mediator of abruption-associated decidual infiltration of neutrophils, which express several ECM degrading proteases. Among the cell types at the maternal fetal interface at term, TF expression is highest in decidual cells indicating that this TF meets the hemostatic demands of labor and delivery. TF expression in cultured term decidual cells is enhanced by progestin and thrombin suggesting that the maintenance of elevated circulating progesterone provides hemostatic protection and that abruption-generated thrombin acts in an autocrine/paracrine fashion on decidual cells to promote hemostasis via enhanced TF expression.

  20. Involvement of human decidual cell-expressed tissue factor in uterine hemostasis and abruption

    PubMed Central

    Lockwood, C.J.; Paidas, M.; Murk, W.K.; Kayisli, U.A.; Gopinath, A.; Krikun, G.; Huang, S.J.; Schatz, F.

    2009-01-01

    Vascular injury increases access and binding of plasma-derived factor VII to perivascular cell membrane-bound tissue factor (TF). The resulting TF/VIIa complex promotes hemostasis by cleaving pro-thrombin to thrombin leading to the fibrin clot. In human pregnancy, decidual cell-expressed TF prevents decidual hemorrhage (abruption). During placentation, trophoblasts remodel decidual spiral arteries into high conductance vessels. Shallow trophoblast invasion impedes decidual vascular conversion, producing an inadequate uteroplacental blood flow that elicits abruption-related placental ischemia. Thrombin induces several biological effects via cell surface protease activated receptors. In first trimester human DCs thrombin increases synthesis of sFlt-1, which elicits placental ischemia by impeding angiogenesis-related decidual vascular remodeling. During pregnacy, the fibrillar collagen-rich amnion and choriodecidua extracellular matrix (ECM) provides greater than additive tensile strength and structural integrity. Thrombin acts as an autocrine/paracrine mediator that degrades these ECMs by augmenting decidual cell expression of: 1) matrix metalloproteinases and 2) interleukin-8, a key mediator of abruption-associated decidual infiltration of neutrophils, which express several ECM degrading proteases. Our recent observations that: 1) among the cell types at the maternal fetal interface at term TF expression is highest in decidual cells indicates that this TF meets the hemostatic demands of labor and delivery; 2) TF expression in cultured term decidual cells is enhanced by progestin and thrombin suggest that maintenance of elevated circulating progesterone at term provides hemostatic protection, whereas abruption-generated thrombin can act in autocrine/paracrine fashion on DCs to promote hemostasis via enhanced TF expression. PMID:19720393

  1. Combined caveolin-1 and epidermal growth factor receptor expression as a prognostic marker for breast cancer.

    PubMed

    Liang, Ya-Nan; Liu, Yu; Wang, Letian; Yao, Guodong; Li, Xiaobo; Meng, Xiangning; Wang, Fan; Li, Ming; Tong, Dandan; Geng, Jingshu

    2018-06-01

    Previous studies have indicated that caveolin-1 (Cav-1) is able to bind the signal transduction factor epidermal growth factor receptor (EGFR) to regulate its tyrosine kinase activity. The aim of the present study was to evaluate the clinical significance of Cav-1 gene expression in association with the expression of EGFR in patients with breast cancer. Primary breast cancer samples from 306 patients were analyzed for Cav-1 and EGFR expression using immunohistochemistry, and clinical significance was assessed using multivariate Cox regression analysis, Kaplan-Meier estimator curves and the log-rank test. Stromal Cav-1 was downregulated in 38.56% (118/306) of tumor tissues, whereas cytoplasmic EGFR and Cav-1 were overexpressed in 53.92% (165/306) and 44.12% (135/306) of breast cancer tissues, respectively. EGFR expression was positively associated with cytoplasmic Cav-1 and not associated with stromal Cav-1 expression in breast cancer samples; however, low expression of stromal Cav-1 was negatively associated with cytoplasmic Cav-1 expression in total tumor tissues, and analogous results were identified in the chemotherapy group. Multivariate Cox's proportional hazards model analysis revealed that, for patients in the estrogen receptor (ER)(+) group, the expression of stromal Cav-1 alone was a significant prognostic marker of breast cancer. However, in the chemotherapy, human epidermal growth factor receptor 2 (HER-2)(-), HER-2(+) and ER(-) groups, the use of combined markers was more effective prognostic marker. Stromal Cav-1 has a tumor suppressor function, and the combined marker stromal Cav-1/EGFR expression was identified as an improved prognostic marker in the diagnosis of breast cancer. Parenchymal expression of Cav-1 is able to promote EGFR signaling in breast cancer, potentially being required for EGFR-mediated initiation of mitosis.

  2. The Fur-Iron Complex Modulates Expression of the Quorum-Sensing Master Regulator, SmcR, To Control Expression of Virulence Factors in Vibrio vulnificus

    PubMed Central

    Kim, In Hwang; Wen, Yancheng; Son, Jee-Soo; Lee, Kyu-Ho

    2013-01-01

    The gene vvpE, encoding the virulence factor elastase, is a member of the quorum-sensing regulon in Vibrio vulnificus and displays enhanced expression at high cell density. We observed that this gene was repressed under iron-rich conditions and that the repression was due to a Fur (ferric uptake regulator)-dependent repression of smcR, a gene encoding a quorum-sensing master regulator with similarity to luxR in Vibrio harveyi. A gel mobility shift assay and a footprinting experiment demonstrated that the Fur-iron complex binds directly to two regions upstream of smcR (−82 to −36 and −2 to +27, with respect to the transcription start site) with differing affinities. However, binding of the Fur-iron complex is reversible enough to allow expression of smcR to be induced by quorum sensing at high cell density under iron-rich conditions. Under iron-limiting conditions, Fur fails to bind either region and the expression of smcR is regulated solely by quorum sensing. These results suggest that two biologically important environmental signals, iron and quorum sensing, converge to direct the expression of smcR, which then coordinates the expression of virulence factors. PMID:23716618

  3. Parental Expression of Disappointment: Should It Be a Factor in Hoffman's Model of Parental Discipline?

    ERIC Educational Resources Information Center

    Patrick, Renee B.; Gibbs, John C.

    2007-01-01

    The authors addressed whether parental expression of disappointment should be included as a distinct factor in M. L. Hoffman's (2000) well-established typology of parenting styles (induction, love withdrawal, power assertion). Hoffman's 3-factor model, along with a more inclusive 4-factor model (induction, love withdrawal, power assertion, and…

  4. Genome-wide identification and expression analysis of TCP transcription factors in Gossypium raimondii.

    PubMed

    Ma, Jun; Wang, Qinglian; Sun, Runrun; Xie, Fuliang; Jones, Don C; Zhang, Baohong

    2014-10-16

    Plant-specific TEOSINTE-BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factors play versatile functions in multiple aspects of plant growth and development. However, no systematical study has been performed in cotton. In this study, we performed for the first time the genome-wide identification and expression analysis of the TCP transcription factor family in Gossypium raimondii. A total of 38 non-redundant cotton TCP encoding genes were identified. The TCP transcription factors were divided into eleven subgroups based on phylogenetic analysis. Most TCP genes within the same subfamily demonstrated similar exon and intron organization and the motif structures were highly conserved among the subfamilies. Additionally, the chromosomal distribution pattern revealed that TCP genes were unevenly distributed across 11 out of the 13 chromosomes; segmental duplication is a predominant duplication event for TCP genes and the major contributor to the expansion of TCP gene family in G. raimondii. Moreover, the expression profiles of TCP genes shed light on their functional divergence.

  5. Genome-wide identification and expression analysis of TCP transcription factors in Gossypium raimondii

    PubMed Central

    Ma, Jun; Wang, Qinglian; Sun, Runrun; Xie, Fuliang; Jones, Don C.; Zhang, Baohong

    2014-01-01

    Plant-specific TEOSINTE-BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factors play versatile functions in multiple aspects of plant growth and development. However, no systematical study has been performed in cotton. In this study, we performed for the first time the genome-wide identification and expression analysis of the TCP transcription factor family in Gossypium raimondii. A total of 38 non-redundant cotton TCP encoding genes were identified. The TCP transcription factors were divided into eleven subgroups based on phylogenetic analysis. Most TCP genes within the same subfamily demonstrated similar exon and intron organization and the motif structures were highly conserved among the subfamilies. Additionally, the chromosomal distribution pattern revealed that TCP genes were unevenly distributed across 11 out of the 13 chromosomes; segmental duplication is a predominant duplication event for TCP genes and the major contributor to the expansion of TCP gene family in G. raimondii. Moreover, the expression profiles of TCP genes shed light on their functional divergence. PMID:25322260

  6. The Role of Multiple Transcription Factors In Archaeal Gene Expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charles J. Daniels

    2008-09-23

    Since the inception of this research program, the project has focused on two central questions: What is the relationship between the 'eukaryal-like' transcription machinery of archaeal cells and its counterparts in eukaryal cells? And, how does the archaeal cell control gene expression using its mosaic of eukaryal core transcription machinery and its bacterial-like transcription regulatory proteins? During the grant period we have addressed these questions using a variety of in vivo approaches and have sought to specifically define the roles of the multiple TATA binding protein (TBP) and TFIIB-like (TFB) proteins in controlling gene expression in Haloferax volcanii. H. volcaniimore » was initially chosen as a model for the Archaea based on the availability of suitable genetic tools; however, later studies showed that all haloarchaea possessed multiple tbp and tfb genes, which led to the proposal that multiple TBP and TFB proteins may function in a manner similar to alternative sigma factors in bacterial cells. In vivo transcription and promoter analysis established a clear relationship between the promoter requirements of haloarchaeal genes and those of the eukaryal RNA polymerase II promoter. Studies on heat shock gene promoters, and the demonstration that specific tfb genes were induced by heat shock, provided the first indication that TFB proteins may direct expression of specific gene families. The construction of strains lacking tbp or tfb genes, coupled with the finding that many of these genes are differentially expressed under varying growth conditions, provided further support for this model. Genetic tools were also developed that led to the construction of insertion and deletion mutants, and a novel gene expression scheme was designed that allowed the controlled expression of these genes in vivo. More recent studies have used a whole genome array to examine the expression of these genes and we have established a linkage between the expression of

  7. Alterations in expression pattern of splicing factors in epithelial ovarian cancer and its clinical impact.

    PubMed

    Iborra, Severine; Hirschfeld, Marc; Jaeger, Markus; Zur Hausen, Axel; Braicu, Iona; Sehouli, Jalid; Gitsch, Gerald; Stickeler, Elmar

    2013-07-01

    Alternative splicing represents an important nuclear mechanism in the posttranscriptional regulation of gene expression, which is frequently altered during tumorigenesis. Previously, we described marked changes in alternative splicing of the CD44 gene in ovarian and breast cancer as well as specific induction of distinct splicing factors during tumor development. The present study was focused on the expression profiles of different splicing factors, including classical serine-arginine (SR) proteins including ASF/SF2, hTra2β1, hTra2α, and Y-box-binding protein (YB-1) in physiological and malignant epithelial ovarian tissue to evaluate their expression pattern with regard to tumor development and disease progression. Expression levels of the different splicing factors were analyzed in physiological epithelial ovarian tissue samples, primary tumors, and metastatic samples of patients with a diagnosis of epithelial ovarian cancer using quantified reverse transcription polymerase chain reaction analysis. We examined more closely the splicing factor hTra2β1 using Western blot analysis and immunohistochemistry. The analysis revealed a marked and specific induction of ASF/SF2, SRp20, hTra2β1, and YB-1 in primary tumors as well as in their metastatic sites. However, in our patient cohort, no induction was seen for the other investigated splicing factors SRp55, SRp40, and hTra2α. Our results suggest a specific induction of distinct splicing factors in ovarian cancer tumorigenesis. The involvement of hTra2β1, YB-1, SRp20, and ASF/SF2 in exon recognition and alternative splicing may be important for gene regulation of alternatively spliced genes like CD44 with potential functional consequences in this tumor type leading to progression and metastasis.

  8. Sequential expression of cyclooxygenase-2, glutamate receptor-2, and platelet activating factor receptor in rat hippocampal neurons after fluid percussion injury

    PubMed Central

    Li, Zhiqiang; Shu, Qingming; Li, Lingzhi; Ge, Maolin; Zhang, Yongliang

    2014-01-01

    Traumatic brain injury causes gene expression changes in different brain regions. Occurrence and development of traumatic brain injury are closely related, involving expression of three factors, namely cyclooxygenase-2, glutamate receptor-2, and platelet activating factor receptor. However, little is known about the correlation of these three factors and brain neuronal injury. In this study, primary cultured rat hippocampal neurons were subjected to fluid percussion injury according to Scott's method, with some modifications. RT-PCR and semi-quantitative immunocytochemical staining was used to measure the expression levels of cyclooxygenase-2, glutamate receptor-2, and platelet activating factor receptor. Our results found that cyclooxygenase-2 expression were firstly increased post-injury, and then decreased. Both mRNA and protein expression levels reached peaks at 8 and 12 hours post-injury, respectively. Similar sequential changes in glutamate receptor 2 were observed, with highest levels mRNA and protein expression at 8 and 12 hours post-injury respectively. On the contrary, the expressions of platelet activating factor receptor were firstly decreased post-injury, and then increased. Both mRNA and protein expression levels reached the lowest levels at 8 and 12 hours post-injury, respectively. Totally, our findings suggest that these three factors are involved in occurrence and development of hippocampal neuronal injury. PMID:25206921

  9. Expression of brain derived-neurotrophic factor and granulocyte-colony stimulating factor in the urothelium: relation with voiding function.

    PubMed

    Yuk, Seung Mo; Shin, Ju Hyun; Song, Ki Hak; Na, Yong Gil; Lim, Jae Sung; Sul, Chong Koo

    2015-05-08

    We designed this experiment to elucidate the relationship between the expression of brain derived-neurotrophic factor (BDNF), the expression of granulocyte-colony stimulating factor (G-CSF), and the development of overactive bladder (OAB). In our previous study, the urothelium was observed to be more than a simple mechanosensory receptor and was found to be a potential therapeutic target for OAB. Moreover, neuregulin-1 and BDNF were found to be potential new biomarkers of OAB. Here, we investigated the relationship between changes in the voiding pattern and the expression of BDNF and G-CSF in the urothelium and evaluated the effects of 5-hydroxymethyl tolterodine (5-HMT) on rats with bladder outlet obstruction (BOO). A total of 100 Sprague-Dawley rats were divided into the following groups: 20 control rats; 40 BOO rats; and 40 BOO rats administered 5-HMT (0.1 mg/kg). After BOO was induced for 4 weeks, the rats were assessed by cystometrography. The changes in BDNF and G-CSF expression were examined in both separated urothelial tissues and in cultured urothelial cells by reverse transcription polymerase chain reaction (RT-PCR). BOO rats showed increased non-voiding activity [NVA; (number/10 voidings)] and bladder weight and decreased micturition volume (MV), micturition interval (MI), and micturition time (MT) relative to the controls. Moreover, the 5-HMT administration rats showed decreased NVA and bladder weight and increased MV and MI in comparison to the BOO rats. BDNF and G-CSF expression was increased in BOO rats and decreased following 5-HMT administration. In this model, voiding dysfunction developed as a result of BOO. As a therapeutic agent for OAB, the administration of 5-HMT improved the voiding dysfunction. BDNF and G-CSF might modulate voiding patterns through micturition pathways and might be involved only in the urothelium. Moreover, the expression of both genes in the urothelium might be related to voiding dysfunction in OAB patients. Thus, the

  10. oPOSSUM: identification of over-represented transcription factor binding sites in co-expressed genes

    PubMed Central

    Ho Sui, Shannan J.; Mortimer, James R.; Arenillas, David J.; Brumm, Jochen; Walsh, Christopher J.; Kennedy, Brian P.; Wasserman, Wyeth W.

    2005-01-01

    Targeted transcript profiling studies can identify sets of co-expressed genes; however, identification of the underlying functional mechanism(s) is a significant challenge. Established methods for the analysis of gene annotations, particularly those based on the Gene Ontology, can identify functional linkages between genes. Similar methods for the identification of over-represented transcription factor binding sites (TFBSs) have been successful in yeast, but extension to human genomics has largely proved ineffective. Creation of a system for the efficient identification of common regulatory mechanisms in a subset of co-expressed human genes promises to break a roadblock in functional genomics research. We have developed an integrated system that searches for evidence of co-regulation by one or more transcription factors (TFs). oPOSSUM combines a pre-computed database of conserved TFBSs in human and mouse promoters with statistical methods for identification of sites over-represented in a set of co-expressed genes. The algorithm successfully identified mediating TFs in control sets of tissue-specific genes and in sets of co-expressed genes from three transcript profiling studies. Simulation studies indicate that oPOSSUM produces few false positives using empirically defined thresholds and can tolerate up to 50% noise in a set of co-expressed genes. PMID:15933209

  11. Epidermal Growth Factor Receptor Mutation Enhances Expression of Cadherin-5 in Lung Cancer Cells.

    PubMed

    Hung, Ming-Szu; Chen, I-Chuan; Lung, Jr-Hau; Lin, Paul-Yann; Li, Ya-Chin; Tsai, Ying-Huang

    2016-01-01

    Epidermal growth factor receptor (EGFR) activation has been shown to play a critical role in tumor angiogenesis. In this study, we investigate the correlation between EGFR mutations and cadherin-5 (CDH5), which is an angiogenic factor, in lung cancer cells. Increased expression CDH5 is observed in lung cancer cells with EGFR mutations. Stable lung cancer cell lines expressing mutant (exon 19 deletion E746-A750, and exon 21 missense mutation L858R) and wild type EGFR genes are established. A significantly higher expression of CDH5 is observed in exon 19 deletion stable lung cancer cells and mouse xenografts. Further studies show that expression of CDH5 is decreased after the inhibition of EGFR and downstream Akt pathways in lung cancer cells with EGFR mutation. In addition, mutant EGFR genes potentiates angiogenesis in lung cancer cells, which is inhibited by CDH5 siRNA, and potentiates migration and invasion in lung cancer cells. Our study shows that mutant EGFR genes are associated with overexpression of CDH5 through increased phosphorylation of EGFR and downstream Akt pathways. Our result may provide an insight into the association of mutant EGFR and CDH5 expression in lung cancer and aid further development of target therapy for NSCLC in the future.

  12. Epidermal Growth Factor Receptor Mutation Enhances Expression of Cadherin-5 in Lung Cancer Cells

    PubMed Central

    Hung, Ming-Szu; Chen, I-Chuan; Lung, Jr-Hau; Lin, Paul-Yann; Li, Ya-Chin; Tsai, Ying-Huang

    2016-01-01

    Epidermal growth factor receptor (EGFR) activation has been shown to play a critical role in tumor angiogenesis. In this study, we investigate the correlation between EGFR mutations and cadherin-5 (CDH5), which is an angiogenic factor, in lung cancer cells. Increased expression CDH5 is observed in lung cancer cells with EGFR mutations. Stable lung cancer cell lines expressing mutant (exon 19 deletion E746-A750, and exon 21 missense mutation L858R) and wild type EGFR genes are established. A significantly higher expression of CDH5 is observed in exon 19 deletion stable lung cancer cells and mouse xenografts. Further studies show that expression of CDH5 is decreased after the inhibition of EGFR and downstream Akt pathways in lung cancer cells with EGFR mutation. In addition, mutant EGFR genes potentiates angiogenesis in lung cancer cells, which is inhibited by CDH5 siRNA, and potentiates migration and invasion in lung cancer cells. Our study shows that mutant EGFR genes are associated with overexpression of CDH5 through increased phosphorylation of EGFR and downstream Akt pathways. Our result may provide an insight into the association of mutant EGFR and CDH5 expression in lung cancer and aid further development of target therapy for NSCLC in the future. PMID:27362942

  13. Microgravity inhibition of lipopolysaccharide-induced tumor necrosis factorexpression in macrophage cells.

    PubMed

    Wang, Chongzhen; Luo, Haiying; Zhu, Linnan; Yang, Fan; Chu, Zhulang; Tian, Hongling; Feng, Meifu; Zhao, Yong; Shang, Peng

    2014-01-01

    Microgravity environments in space can cause major abnormalities in human physiology, including decreased immunity. The underlying mechanisms of microgravity-induced inflammatory defects in macrophages are unclear. RAW264.7 cells and primary mouse macrophages were used in the present study. Lipopolysaccharide (LPS)-induced cytokine expression in mouse macrophages was detected under either simulated microgravity or 1g control. Freshly isolated primary mouse macrophages and RAW264.7 cells were cultured in a standard simulated microgravity situation using a rotary cell culture system (RCCS-1) and 1g control conditions. The cytokine expression was determined by real-time PCR and ELISA assays. Western blots were used to investigate the related intracellular signals. LPS-induced tumor necrosis factor-α (TNF-α) expression, but not interleukin-1β expression, in mouse macrophages was significantly suppressed under simulated microgravity. The molecular mechanism studies showed that LPS-induced intracellular signal transduction including phosphorylation of IKK and JNK and nuclear translocation of NF-κB in macrophages was identical under normal gravity and simulated microgravity. Furthermore, TNF-α mRNA stability did not decrease under simulated microgravity. Finally, we found that heat shock factor-1 (HSF1), a known repressor of TNF-α promoter, was markedly activated under simulated microgravity. Short-term treatment with microgravity caused significantly decreased TNF-α production. Microgravity-activated HSF1 may contribute to the decreased TNF-α expression in macrophages directly caused by microgravity, while the LPS-induced NF-κB pathway is resistant to microgravity.

  14. Rab-GDI complex dissociation factor expressed through translational frameshifting in filamentous ascomycetes.

    PubMed

    Malagnac, Fabienne; Fabret, Céline; Prigent, Magali; Rousset, Jean-Pierre; Namy, Olivier; Silar, Philippe

    2013-01-01

    In the model fungus Podospora anserina, the PaYIP3 gene encoding the orthologue of the Saccharomyces cerevisiae YIP3 Rab-GDI complex dissociation factor expresses two polypeptides, one of which, the long form, is produced through a programmed translation frameshift. Inactivation of PaYIP3 results in slightly delayed growth associated with modification in repartition of fruiting body on the thallus, along with reduced ascospore production on wood. Long and short forms of PaYIP3 are expressed in the mycelium, while only the short form appears expressed in the maturing fruiting body (perithecium). The frameshift has been conserved over the evolution of the Pezizomycotina, lasting for over 400 million years, suggesting that it has an important role in the wild.

  15. Rab-GDI Complex Dissociation Factor Expressed through Translational Frameshifting in Filamentous Ascomycetes

    PubMed Central

    Prigent, Magali; Rousset, Jean-Pierre; Namy, Olivier; Silar, Philippe

    2013-01-01

    In the model fungus Podospora anserina, the PaYIP3 gene encoding the orthologue of the Saccharomyces cerevisiae YIP3 Rab-GDI complex dissociation factor expresses two polypeptides, one of which, the long form, is produced through a programmed translation frameshift. Inactivation of PaYIP3 results in slightly delayed growth associated with modification in repartition of fruiting body on the thallus, along with reduced ascospore production on wood. Long and short forms of PaYIP3 are expressed in the mycelium, while only the short form appears expressed in the maturing fruiting body (perithecium). The frameshift has been conserved over the evolution of the Pezizomycotina, lasting for over 400 million years, suggesting that it has an important role in the wild. PMID:24069231

  16. Quantitative expression analysis of selected transcription factors in pavement, basal and trichome cells of mature leaves from Arabidopsis thaliana.

    PubMed

    Schliep, Martin; Ebert, Berit; Simon-Rosin, Ulrike; Zoeller, Daniela; Fisahn, Joachim

    2010-05-01

    Gene expression levels of several transcription factors from Arabidopsis thaliana that were described previously to be involved in leaf development and trichome formation were analysed in trichome, basal and pavement cells of mature leaves. Single cell samples of these three cells types were collected by glass micro-capillaries. Real-time reverse transcription (RT)-PCR was used to analyse expression patterns of the following transcription factors: MYB23, MYB55, AtHB1, FILAMENTOUS FLOWER (FIL)/YABBY1 (YAB1), TRIPTYCHON (TRY) and CAPRICE (CPC). A difference in the expression patterns of TRY and CPC was revealed. Contrary to the CPC expression pattern, no transcripts of TRY could be detected in pavement cells. FIL/YAB1 was exclusively expressed in trichome cells. AtHB1 was highly expressed throughout all three cell types. MYB55 was higher expressed in basal cells than in trichome and pavement cells. MYB23 showed a pattern of low expression in pavement cells, medium in basal cells and high expression in trichomes. Expression patterns obtained by single cell sampling and real-time RT-PCR were compared to promoter GUS fusions of the selected transcription factors. Therefore, we regenerated two transgenic Arabidopsis lines that expressed the GUS reporter gene under control of the promoters of MYB55 and YAB1. In conclusion, despite their function in leaf morphogenesis, all six transcription factors were detected in mature leaves. Furthermore, single cell sampling and promoter GUS staining patterns demonstrated the predominant presence of MYB55 in basal cells as compared to pavement cells and trichomes.

  17. Quantitative expression analysis of selected transcription factors in pavement, basal and trichome cells of mature leaves from Arabidopsis thaliana

    PubMed Central

    Schliep, Martin; Ebert, Berit; Simon-Rosin, Ulrike; Zoeller, Daniela

    2010-01-01

    Gene expression levels of several transcription factors from Arabidopsis thaliana that were described previously to be involved in leaf development and trichome formation were analysed in trichome, basal and pavement cells of mature leaves. Single cell samples of these three cells types were collected by glass micro-capillaries. Real-time reverse transcription (RT)-PCR was used to analyse expression patterns of the following transcription factors: MYB23, MYB55, AtHB1, FILAMENTOUS FLOWER (FIL)/YABBY1 (YAB1), TRIPTYCHON (TRY) and CAPRICE (CPC). A difference in the expression patterns of TRY and CPC was revealed. Contrary to the CPC expression pattern, no transcripts of TRY could be detected in pavement cells. FIL/YAB1 was exclusively expressed in trichome cells. AtHB1 was highly expressed throughout all three cell types. MYB55 was higher expressed in basal cells than in trichome and pavement cells. MYB23 showed a pattern of low expression in pavement cells, medium in basal cells and high expression in trichomes. Expression patterns obtained by single cell sampling and real-time RT-PCR were compared to promoter GUS fusions of the selected transcription factors. Therefore, we regenerated two transgenic Arabidopsis lines that expressed the GUS reporter gene under control of the promoters of MYB55 and YAB1. In conclusion, despite their function in leaf morphogenesis, all six transcription factors were detected in mature leaves. Furthermore, single cell sampling and promoter GUS staining patterns demonstrated the predominant presence of MYB55 in basal cells as compared to pavement cells and trichomes. PMID:20101514

  18. Bayesian inference of the number of factors in gene-expression analysis: application to human virus challenge studies

    PubMed Central

    2010-01-01

    Background Nonparametric Bayesian techniques have been developed recently to extend the sophistication of factor models, allowing one to infer the number of appropriate factors from the observed data. We consider such techniques for sparse factor analysis, with application to gene-expression data from three virus challenge studies. Particular attention is placed on employing the Beta Process (BP), the Indian Buffet Process (IBP), and related sparseness-promoting techniques to infer a proper number of factors. The posterior density function on the model parameters is computed using Gibbs sampling and variational Bayesian (VB) analysis. Results Time-evolving gene-expression data are considered for respiratory syncytial virus (RSV), Rhino virus, and influenza, using blood samples from healthy human subjects. These data were acquired in three challenge studies, each executed after receiving institutional review board (IRB) approval from Duke University. Comparisons are made between several alternative means of per-forming nonparametric factor analysis on these data, with comparisons as well to sparse-PCA and Penalized Matrix Decomposition (PMD), closely related non-Bayesian approaches. Conclusions Applying the Beta Process to the factor scores, or to the singular values of a pseudo-SVD construction, the proposed algorithms infer the number of factors in gene-expression data. For real data the "true" number of factors is unknown; in our simulations we consider a range of noise variances, and the proposed Bayesian models inferred the number of factors accurately relative to other methods in the literature, such as sparse-PCA and PMD. We have also identified a "pan-viral" factor of importance for each of the three viruses considered in this study. We have identified a set of genes associated with this pan-viral factor, of interest for early detection of such viruses based upon the host response, as quantified via gene-expression data. PMID:21062443

  19. Bayesian inference of the number of factors in gene-expression analysis: application to human virus challenge studies.

    PubMed

    Chen, Bo; Chen, Minhua; Paisley, John; Zaas, Aimee; Woods, Christopher; Ginsburg, Geoffrey S; Hero, Alfred; Lucas, Joseph; Dunson, David; Carin, Lawrence

    2010-11-09

    Nonparametric Bayesian techniques have been developed recently to extend the sophistication of factor models, allowing one to infer the number of appropriate factors from the observed data. We consider such techniques for sparse factor analysis, with application to gene-expression data from three virus challenge studies. Particular attention is placed on employing the Beta Process (BP), the Indian Buffet Process (IBP), and related sparseness-promoting techniques to infer a proper number of factors. The posterior density function on the model parameters is computed using Gibbs sampling and variational Bayesian (VB) analysis. Time-evolving gene-expression data are considered for respiratory syncytial virus (RSV), Rhino virus, and influenza, using blood samples from healthy human subjects. These data were acquired in three challenge studies, each executed after receiving institutional review board (IRB) approval from Duke University. Comparisons are made between several alternative means of per-forming nonparametric factor analysis on these data, with comparisons as well to sparse-PCA and Penalized Matrix Decomposition (PMD), closely related non-Bayesian approaches. Applying the Beta Process to the factor scores, or to the singular values of a pseudo-SVD construction, the proposed algorithms infer the number of factors in gene-expression data. For real data the "true" number of factors is unknown; in our simulations we consider a range of noise variances, and the proposed Bayesian models inferred the number of factors accurately relative to other methods in the literature, such as sparse-PCA and PMD. We have also identified a "pan-viral" factor of importance for each of the three viruses considered in this study. We have identified a set of genes associated with this pan-viral factor, of interest for early detection of such viruses based upon the host response, as quantified via gene-expression data.

  20. Stochastic model of transcription factor-regulated gene expression

    NASA Astrophysics Data System (ADS)

    Karmakar, Rajesh; Bose, Indrani

    2006-09-01

    We consider a stochastic model of transcription factor (TF)-regulated gene expression. The model describes two genes, gene A and gene B, which synthesize the TFs and the target gene proteins, respectively. We show through analytic calculations that the TF fluctuations have a significant effect on the distribution of the target gene protein levels when the mean TF level falls in the highest sensitive region of the dose-response curve. We further study the effect of reducing the copy number of gene A from two to one. The enhanced TF fluctuations yield results different from those in the deterministic case. The probability that the target gene protein level exceeds a threshold value is calculated with the knowledge of the probability density functions associated with the TF and target gene protein levels. Numerical simulation results for a more detailed stochastic model are shown to be in agreement with those obtained through analytic calculations. The relevance of these results in the context of the genetic disorder haploinsufficiency is pointed out. Some experimental observations on the haploinsufficiency of the tumour suppressor gene, Nkx 3.1, are explained with the help of the stochastic model of TF-regulated gene expression.

  1. Simultaneous expression of tissue factor and tissue factor pathway inhibitor by human monocytes. A potential mechanism for localized control of blood coagulation

    PubMed Central

    1994-01-01

    Cells of monocytic lineage can initiate extravascular fibrin deposition via expression of blood coagulation mediators. This report is about experiments on three mechanisms with the potential to modulate monocyte- initiated coagulation. Monocyte procoagulant activity was examined as a function of lipid cofactor, protein cofactor, and specific inhibitor expression during short-term culture in vitro. Lipid cofactor activity was measured as the initial rate of factor X activation by intrinsic- pathway components, the assembly of which depends on this cofactor. Lipid cofactor activity levels changed by < 30% during 48-h culture. Protein cofactor, i.e., tissue factor (TF) antigen was measured by enzyme immunoassay. It increased from 461 pg/ml to a maximum value of 3,550 pg/ml at 24 h and remained at 70% of this value. Specific TF activity, measured as factor VII-dependent factor X activation rate, decreased from 54 to 18 nM FXa/min between 24 and 48 h. TF activity did not correlate well with either lipid cofactor or TF protein levels. In contrast, the decrease in TF activity coincided in time with maximal expression of tissue factor pathway inhibitor (TFPI) mRNA, which was determined using reverse transcriptase polymerase chain reaction (RT- PCR), and with maximal TFPI protein levels measured by immunoassay. The number of mRNA copies coding for TFPI and TF in freshly isolated blood monocytes were 46 and 20 copies/cells, respectively. These values increased to 220 and 63 copies/cell during short-term cell culture in the presence of endotoxin. Results demonstrate concomitant expression by monocytes of genes coding for both the essential protein cofactor and the specific inhibitor of the extrinsic coagulation pathway. Together with functional and antigenic analyses, they also imply that the initiation of blood clotting by extravascular monocyte/macrophages can be modulated locally by TFPI independently of plasma sources of the inhibitor. PMID:8195712

  2. Glucocorticoid Induction of Occludin Expression and Endothelial Barrier Requires Transcription Factor p54 NONO

    PubMed Central

    Keil, Jason M.; Liu, Xuwen; Antonetti, David A.

    2013-01-01

    Purpose. Glucocorticoids (GCs) effectively reduce retinal edema and induce vascular barrier properties but possess unwanted side effects. Understanding GC induction of barrier properties may lead to more effective and specific therapies. Previous work identified the occludin enhancer element (OEE) as a GC-responsive cis-element in the promoters of multiple junctional genes, including occludin, claudin-5, and cadherin-9. Here, we identify two OEE-binding factors and determine their contribution to GC induction of tight junction (TJ) gene expression and endothelial barrier properties. Methods. OEE-binding factors were isolated from human retinal endothelial cells (HREC) using DNA affinity purification followed by MALDI-TOF MS/MS. Chromatin immunoprecipitation (ChIP) assays determined in situ binding. siRNA was used to evaluate the role of trans-acting factors in transcription of TJ genes in response to GC stimulation. Paracellular permeability was determined by quantifying flux through a cell monolayer, whereas transendothelial electrical resistance (TER) was measured using the ECIS system. Results. MS/MS analysis of HREC nuclear extracts identified the heterodimer of transcription factors p54/NONO (p54) and polypyrimidine tract-binding protein-associated splicing factor (PSF) as OEE-binding factors, which was confirmed by ChIP assay from GC-treated endothelial cells and rat retina. siRNA knockdown of p54 demonstrated that this factor is necessary for GC induction of occludin and claudin-5 expression. Further, p54 knockdown ablated the pro-barrier effects of GC treatment. Conclusions. p54 is essential for GC-mediated expression of occludin, claudin-5, and barrier induction, and the p54/PSF heterodimer may contribute to normal blood-retinal barrier (BRB) induction in vivo. Understanding the mechanism of GC induction of BRB properties may provide novel therapies for macular edema. PMID:23640037

  3. Glucocorticoid induction of occludin expression and endothelial barrier requires transcription factor p54 NONO.

    PubMed

    Keil, Jason M; Liu, Xuwen; Antonetti, David A

    2013-06-12

    Glucocorticoids (GCs) effectively reduce retinal edema and induce vascular barrier properties but possess unwanted side effects. Understanding GC induction of barrier properties may lead to more effective and specific therapies. Previous work identified the occludin enhancer element (OEE) as a GC-responsive cis-element in the promoters of multiple junctional genes, including occludin, claudin-5, and cadherin-9. Here, we identify two OEE-binding factors and determine their contribution to GC induction of tight junction (TJ) gene expression and endothelial barrier properties. OEE-binding factors were isolated from human retinal endothelial cells (HREC) using DNA affinity purification followed by MALDI-TOF MS/MS. Chromatin immunoprecipitation (ChIP) assays determined in situ binding. siRNA was used to evaluate the role of trans-acting factors in transcription of TJ genes in response to GC stimulation. Paracellular permeability was determined by quantifying flux through a cell monolayer, whereas transendothelial electrical resistance (TER) was measured using the ECIS system. MS/MS analysis of HREC nuclear extracts identified the heterodimer of transcription factors p54/NONO (p54) and polypyrimidine tract-binding protein-associated splicing factor (PSF) as OEE-binding factors, which was confirmed by ChIP assay from GC-treated endothelial cells and rat retina. siRNA knockdown of p54 demonstrated that this factor is necessary for GC induction of occludin and claudin-5 expression. Further, p54 knockdown ablated the pro-barrier effects of GC treatment. p54 is essential for GC-mediated expression of occludin, claudin-5, and barrier induction, and the p54/PSF heterodimer may contribute to normal blood-retinal barrier (BRB) induction in vivo. Understanding the mechanism of GC induction of BRB properties may provide novel therapies for macular edema.

  4. Glycogen synthase kinase 3 regulates expression of nuclear factor-erythroid-2 related transcription factor-1 (Nrf1) and inhibits pro-survival function of Nrf1

    PubMed Central

    Biswas, Madhurima; Kwong, Erick K.; Park, Eujean; Nagra, Parminder; Chan, Jefferson Y.

    2013-01-01

    Nuclear factor E2-related factor-1 (Nrf1) is a basic leucine zipper transcription factor that is known to regulate antioxidant and cytoprotective gene expression. It was recently shown that Nrf1 is regulated by SCF-Fbw7 ubiquitin ligase. However our knowledge of upstream signals that targets Nrf1 for degradation by the UPS is not known. We report here that Nrf1 expression is negatively regulated by glycogen synthase kinase 3 (GSK3) in Fbw7-dependent manner. We show that GSK3 interacts with Nrf1 and phosphorylates the Cdc4 phosphodegron domain (CPD) in Nrf1. Mutation of serine residue in the CPD of Nrf1 to alanine (S350A), blocks Nrf1 from phosphorylation by GSK3, and stabilizes Nrf1. Knockdown of Nrf1 and expression of a constitutively active form of GSK3 results in increased apoptosis in neuronal cells in response to ER stress, while expression of the GSK3 phosphorylation resistant S350A–Nrfl attenuates apoptotic cell death. Together these data suggest that GSK3 regulates Nrf1 expression and cell survival function in response to stress activation. PMID:23623971

  5. Impact of Parturition on Chemokine Homing Factor Expression in the Vaginal Distention Model of Stress Urinary Incontinence

    PubMed Central

    Lenis, Andrew T.; Kuang, Mei; Woo, Lynn L.; Hijaz, Adonis; Penn, Marc S.; Butler, Robert S.; Rackley, Raymond; Damaser, Margot S.; Wood, Hadley M.

    2015-01-01

    Purpose Human childbirth simulated by vaginal distention is known to increase the expression of chemokines and receptors involved in stem cell homing and tissue repair. We hypothesized that pregnancy and parturition in rats contributes to the expression of chemokines and receptors after vaginal distention. Materials and Methods We used 72 age matched female Lewis rats, including virgin rats with and without vaginal distention, and delivered rats with and without vaginal distention. Each rat was sacrificed immediately, or 3 or 7 days after vaginal distention and/or parturition, and the urethra was harvested. Relative expression of chemokines and receptors was determined by real-time polymerase chain reaction. Mixed models were used with the Bonferroni correction for multiple comparisons. Results Vaginal distention up-regulated urethral expression of CCL7 immediately after injury in virgin and postpartum rats. Hypoxia inducible factor-1α and vascular endothelial growth factor were up-regulated only in virgin rats immediately after vaginal distention. CD191 expression was immediately up-regulated in postpartum rats without vaginal distention compared to virgin rats without vaginal distention. CD195 was up-regulated in virgin rats 3 days after vaginal distention compared to virgin rats without vaginal distention. CD193 and CXCR4 showed delayed up-regulation in virgin rats 7 days after vaginal distention. CXCL12 was up-regulated in virgin rats 3 days after vaginal distention compared to immediately after vaginal distention. Interleukin-8 and CD192 showed no differential expression. Conclusions Vaginal distention results in up-regulation of the chemokines and receptors expressed during tissue injury, which may facilitate the spontaneous functional recovery previously noted. Pregnancy and delivery up-regulated CD191 and attenuated the expression of hypoxia inducible factor-1α and vascular endothelial growth factor in the setting of vaginal distention, likely by

  6. Expression of transcription factor Pokemon in non-small cell lung cancer and its clinical significance.

    PubMed

    Zhao, Zhi-hong; Wang, Sheng-fa; Yu, Liang; Wang, Ju; Chang, Hao; Yan, Wei-li; Fu, Kai; Zhang, Jian

    2008-03-05

    Transcription factor Pokemon, a central regulation gene of the important tumor suppressor ARF gene, exerted its activity by acting upstream of many tumor-suppressing genes and proto-oncogenes. Its expression in non-small cell lung cancer (NSCLC) and its clinical significance remains unclear. The aim of this study was to investigate the expression of Pokemon in NSCLC and to explore its correlation with the clinical pathological characteristics and its influence on patients' prognosis. Fifty-five cases of NSCLC were involved in this study. The expression of Pokemon in the tumor tissue, the corresponding tumor adjacent tissue and the surrounding tissue was detected via reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting, with the aim of investigating the correlation between the expression of Pokemon in tumor tissue of NSCLC and its clinical pathological characteristics. Moreover, a prognostic analysis was carried out based upon the immunohistochemical (IHC) detection of the expression of Pokemon gene in archival tumor specimens (5 years ago) of 62 cases of NSCLC. Statistical significance of the expression of Pokemon mRNA and protein was determined in the tumor tissue, the tumor adjacent tissue and the surrounding tissue (P<0.05). The expression of Pokemon was determined not to be associated with the patients' sex, age, smoking condition, tumor differentiation degree, histology and lymph node metastasis condition. However, its relationship with TNM staging was established (P<0.05). Furthermore, it was shown that the survival rate of patients with negative Pokemon expression was significantly higher than that of those with positive Pokemon expression (P=0.004), therefore, the expression of Pokemon is believed to be an independent factor affecting prognosis (P=0.034). Pokemon was over-expressed in NSCLC tissue and the expression of Pokemon might be of clinical significance in non-small cell lung cancer prognostic evaluation.

  7. Complement Factor H Is Expressed in Adipose Tissue in Association With Insulin Resistance

    PubMed Central

    Moreno-Navarrete, José María; Martínez-Barricarte, Rubén; Catalán, Victoria; Sabater, Mònica; Gómez-Ambrosi, Javier; Ortega, Francisco José; Ricart, Wifredo; Blüher, Mathias; Frühbeck, Gema; Rodríguez de Cordoba, Santiago; Fernández-Real, José Manuel

    2010-01-01

    OBJECTIVE Activation of the alternative pathway of the complement system, in which factor H (fH; complement fH [CFH]) is a key regulatory component, has been suggested as a link between obesity and metabolic disorders. Our objective was to study the associations between circulating and adipose tissue gene expressions of CFH and complement factor B (fB; CFB) with obesity and insulin resistance. RESEARCH DESIGN AND METHODS Circulating fH and fB were determined by enzyme-linked immunosorbent assay in 398 subjects. CFH and CFB gene expressions were evaluated in 76 adipose tissue samples, in isolated adipocytes, and in stromovascular cells (SVC) (n = 13). The effects of weight loss and rosiglitazone were investigated in independent cohorts. RESULTS Both circulating fH and fB were associated positively with BMI, waist circumference, triglycerides, and inflammatory parameters and negatively with insulin sensitivity and HDL cholesterol. For the first time, CFH gene expression was detected in human adipose tissue (significantly increased in subcutaneous compared with omental fat). CFH gene expression in omental fat was significantly associated with insulin resistance. In contrast, CFB gene expression was significantly increased in omental fat but also in association with fasting glucose and triglycerides. The SVC fraction was responsible for these differences, although isolated adipocytes also expressed fB and fH at low levels. Both weight loss and rosiglitazone led to significantly decreased circulating fB and fH levels. CONCLUSIONS Increased circulating fH and fB concentrations in subjects with altered glucose tolerance could reflect increased SVC-induced activation of the alternative pathway of complement in omental adipose tissue linked to insulin resistance and metabolic disturbances. PMID:19833879

  8. Complement factor H is expressed in adipose tissue in association with insulin resistance.

    PubMed

    Moreno-Navarrete, José María; Martínez-Barricarte, Rubén; Catalán, Victoria; Sabater, Mònica; Gómez-Ambrosi, Javier; Ortega, Francisco José; Ricart, Wifredo; Blüher, Mathias; Frühbeck, Gema; Rodríguez de Cordoba, Santiago; Fernández-Real, José Manuel

    2010-01-01

    Activation of the alternative pathway of the complement system, in which factor H (fH; complement fH [CFH]) is a key regulatory component, has been suggested as a link between obesity and metabolic disorders. Our objective was to study the associations between circulating and adipose tissue gene expressions of CFH and complement factor B (fB; CFB) with obesity and insulin resistance. Circulating fH and fB were determined by enzyme-linked immunosorbent assay in 398 subjects. CFH and CFB gene expressions were evaluated in 76 adipose tissue samples, in isolated adipocytes, and in stromovascular cells (SVC) (n = 13). The effects of weight loss and rosiglitazone were investigated in independent cohorts. Both circulating fH and fB were associated positively with BMI, waist circumference, triglycerides, and inflammatory parameters and negatively with insulin sensitivity and HDL cholesterol. For the first time, CFH gene expression was detected in human adipose tissue (significantly increased in subcutaneous compared with omental fat). CFH gene expression in omental fat was significantly associated with insulin resistance. In contrast, CFB gene expression was significantly increased in omental fat but also in association with fasting glucose and triglycerides. The SVC fraction was responsible for these differences, although isolated adipocytes also expressed fB and fH at low levels. Both weight loss and rosiglitazone led to significantly decreased circulating fB and fH levels. Increased circulating fH and fB concentrations in subjects with altered glucose tolerance could reflect increased SVC-induced activation of the alternative pathway of complement in omental adipose tissue linked to insulin resistance and metabolic disturbances.

  9. Heparin-binding growth factor isolated from human prostatic extracts.

    PubMed

    Mydlo, J H; Bulbul, M A; Richon, V M; Heston, W D; Fair, W R

    1988-01-01

    Prostatic tissue extracts from patients with benign prostatic hyperplasia (BPH) and prostatic carcinoma were fractionated using heparin-Sepharose chromatography. The mitogenic activity of eluted fractions on quiescent subconfluent Swiss Albino 3T3 fibroblasts was tested employing a tritiated-thymidine-incorporation assay. Two peaks of activity were consistently noted--one in the void volume and a second fraction which eluted with 1.3-1.6 M NaCl and contained the majority of the mitogenic activity. Both non-heparin- and heparin-binding fractions increased tritiated incorporation into a mouse osteoblast cell line (MC3T3), while only the heparin-binding fractions stimulated a human umbilical vein endothelial cell line (HUV). No increased uptake of thymidine was seen using a human prostatic carcinoma cell line (PC-3). Sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS/PAGE) of lyophilized active fractions showed a persistent band at 17,500 daltons. The purified protein demonstrated angiogenic properties using the chick embryo chorioallantoic membrane (CAM) assay. Western blot analysis using antibodies specific to basic fibroblast growth factor (bFGF) or acidic FGF (aFGF) demonstrated that the former, but not the latter, bound to prostatic growth factor (PrGF), and inhibited its mitogenic activity as well. It appears that PrGF shares homology with basic fibroblast growth factors.

  10. Mucin (MUC) expression in EUS-FNA specimens is a useful prognostic factor in pancreatic ductal adenocarcinoma

    PubMed Central

    Higashi, Michiyo; Yokoyama, Seiya; Yamamoto, Takafumi; Goto, Yuko; Kitazono, Ikumi; Hiraki, Tsubasa; Taguchi, Hiroki; Hashimoto, Shinichi; Fukukura, Yoshihiko; Koriyama, Chihaya; Mataki, Yuko; Maemura, Kosei; Shinchi, Hiroyuki; Jain, Maneesh; Batra, Surinder K.; Yonezawa, Suguru

    2015-01-01

    Objectives The aim of this study was to further examine the utility of mucin expression profiles as prognostic factors in PDAC. Methods Mucin (MUC) expression was examined by immunohistochemistry (IHC) analysis in endoscopic ultrasound-guided fine-needle aspiration (EUS-FNA) specimens obtained from 114 patients with PDAC. The rate of expression of each mucin was compared with clinicopathologic features. Results The expression rates of mucins in cancer lesions were MUC1, 87.7%; MUC2, 0.8%; MUC4, 93.0%; MUC5AC, 78.9%; MUC6, 24.6%; and MUC16, 67.5%. MUC1 and MUC4 were positive and MUC2 was negative in most PDACs. Patients with advanced stage of PDAC with MUC5AC expression had a significantly better outcome than those who were MUC5AC-negative (P=0.002).With increasing clinical stage, total MUC6 expression decreased (P for trend=0.001) and MUC16 cytoplasmic expression increased (P for trend=0.02). The prognosis of patients with MUC16 cytoplasmic expression was significantly poorer than those without this expression. Multivariate survival analysis revealed that MUC16 cytoplasmic expression was a significant independent predictor of a poor prognosis after adjusting for the effects of other prognostic factors (P=0.002). Conclusion Mucin expression profiles in EUS-FNA specimens have excellent diagnostic utility and are useful predictors of outcome in patients with PDAC. PMID:25906442

  11. Mangiferin inhibits tumor necrosis factor-α-induced matrix metalloproteinase-9 expression and cellular invasion by suppressing nuclear factor-κB activity

    PubMed Central

    Dilshara, Matharage Gayani; Kang, Chang-Hee; Choi, Yung Hyun; Kim, Gi-Young

    2015-01-01

    We investigated the effects of mangiferin on the expression and activity of metalloproteinase (MMP)-9 and the invasion of tumor necrosis factor (TNF)-α-stimulated human LNCaP prostate carcinoma cells. Reverse-transcription polymerase chain reaction (RT-PCR) and western blot analysis showed that mangiferin significantly reversed TNF-α-induced mRNA and protein expression of MMP-9 expression. Zymography data confirmed that stimulation of cells with TNF-α significantly increased MMP-9 activity. However, mangiferin substantially reduced the TNF-α-induced activity of MMP-9. Additionally, a matrigel invasion assay showed that mangiferin significantly reduced TNF-α-induced invasion of LNCaP cells. Compared to untreated controls, TNF-α-stimulated LNCaP cells showed a significant increase in nuclear factor-κB (NF-κB) luciferase activity. However, mangiferin treatment markedly decreased TNF-α-induced NF-κB luciferase activity. Furthermore, mangiferin suppressed nuclear translocation of the NF-κB subunits p65 and p50. Collectively, our results indicate that mangiferin is a potential anti-invasive agent that acts by suppressing NF-κB-mediated MMP-9 expression. [BMB Reports 2015; 48(10): 559-564] PMID:25739392

  12. Hepatocyte growth factor limits autoimmune neuroinflammation via glucocorticoid-induced leucine zipper expression in dendritic cells.

    PubMed

    Benkhoucha, Mahdia; Molnarfi, Nicolas; Dunand-Sauthier, Isabelle; Merkler, Doron; Schneiter, Gregory; Bruscoli, Stefano; Riccardi, Carlo; Tabata, Yasuhiko; Funakoshi, Hiroshi; Nakamura, Toshikazu; Reith, Walter; Santiago-Raber, Marie-Laure; Lalive, Patrice H

    2014-09-15

    Autoimmune neuroinflammation, including multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE), a prototype for T cell-mediated autoimmunity, is believed to result from immune tolerance dysfunction leading to demyelination and substantial neurodegeneration. We previously showed that CNS-restricted expression of hepatocyte growth factor (HGF), a potent neuroprotective factor, reduced CNS inflammation and clinical deficits associated with EAE. In this study, we demonstrate that systemic HGF treatment ameliorates EAE through the development of tolerogenic dendritic cells (DCs) with high expression levels of glucocorticoid-induced leucine zipper (GILZ), a transcriptional repressor of gene expression and a key endogenous regulator of the inflammatory response. RNA interference-directed neutralization of GILZ expression by DCs suppressed the induction of tolerance caused by HGF. Finally, adoptive transfer of HGF-treated DCs from wild-type but not GILZ gene-deficient mice potently mediated functional recovery in recipient mice with established EAE through effective modulation of autoaggressive T cell responses. Altogether, these results show that by inducing GILZ in DCs, HGF reproduces the mechanism of immune regulation induced by potent immunomodulatory factors such as IL-10, TGF-β1, and glucocorticoids and therefore that HGF therapy may have potential in the treatment of autoimmune dysfunctions. Copyright © 2014 by The American Association of Immunologists, Inc.

  13. Clinical and histopathological factors associated with Ki-67 expression in breast cancer patients

    PubMed Central

    ALCO, GUL; BOZDOGAN, ATILLA; SELAMOGLU, DERYA; PILANCI, KEZBAN NUR; TUZLALI, SITKI; ORDU, CETIN; IGDEM, SEFIK; OKKAN, SAIT; DINCER, MAKTAV; DEMIR, GOKHAN; OZMEN, VAHIT

    2015-01-01

    The aim of the present study was to identify the optimal Ki-67 cut-off value in breast cancer (BC) patients, and investigate the association of Ki-67 expression levels with other prognostic factors. Firstly, a retrospective search was performed to identify patients with stage I–III BC (n=462). A range of Ki-67 index values were then assigned to five groups (<10, 10–14, 15–19, 20–24 and ≥25%). The correlation between the Ki-67 index and other prognostic factors [age, tumor type, histological and nuclear grade, tumor size, multifocality, an in situ component, lymphovascular invasion (LVI), estrogen and progesterone receptor (ER/PR) expression, human epidermal growth factor receptor (HER-2) status, axillary involvement and tumor stage] were investigated in each group. The median Ki-67 value was revealed to be 20% (range, 1–95%). A young age (≤40 years old), tumor type, size and grade, LVI, ER/PR negativity and HER-2 positivity were revealed to be associated with the Ki-67 level. Furthermore, Ki-67 was demonstrated to be negatively correlated with ER/PR expression (P<0.001), but positively correlated with tumor size (P<0.001). The multivariate analysis revealed that a Ki-67 value of ≥15% was associated with the largest number of poor prognostic factors (P=0.036). In addition, a Ki-67 value of ≥15% was identified to be statistically significant in association with certain luminal subtypes. The rate of disease-free survival was higher in patients with luminal A subtype BC (P=0.036). Following the correlation analysis for the Ki-67 index and the other prognostic factors, a Ki-67 value of ≥15% was revealed to be the optimal cut-off level for BC patients. PMID:25663855

  14. The significance of alternative transcripts for Caenorhabditis elegans transcription factor genes, based on expression pattern analysis

    PubMed Central

    2013-01-01

    Background Sequence-specific DNA-binding proteins, with their paramount importance in the regulation of expression of the genetic material, are encoded by approximately 5% of the genes in an animal’s genome. But it is unclear to what extent alternative transcripts from these genes may further increase the complexity of the transcription factor complement. Results Of the 938 potential C. elegans transcription factor genes, 197 were annotated in WormBase as encoding at least two distinct isoforms. Evaluation of prior evidence identified, with different levels of confidence, 50 genes with alternative transcript starts, 23 with alternative transcript ends, 35 with alternative splicing and 34 with alternative transcripts generated by a combination of mechanisms, leaving 55 that were discounted. Expression patterns were determined for transcripts for a sample of 29 transcription factor genes, concentrating on those with alternative transcript starts for which the evidence was strongest. Seamless fosmid recombineering was used to generate reporter gene fusions with minimal modification to assay expression of specific transcripts while maintaining the broad genomic DNA context and alternative transcript production. Alternative transcription factor gene transcripts were typically expressed with identical or substantially overlapping distributions rather than in distinct domains. Conclusions Increasingly sensitive sequencing technologies will reveal rare transcripts but many of these are clearly non-productive. The majority of the transcription factor gene alternative transcripts that are productive may represent tolerable noise rather than encoding functionally distinct isoforms. PMID:23586691

  15. Expression of genes involved in early cell fate decisions in human embryos and their regulation by growth factors.

    PubMed

    Kimber, S J; Sneddon, S F; Bloor, D J; El-Bareg, A M; Hawkhead, J A; Metcalfe, A D; Houghton, F D; Leese, H J; Rutherford, A; Lieberman, B A; Brison, D R

    2008-05-01

    Little is understood about the regulation of gene expression in human preimplantation embryos. We set out to examine the expression in human preimplantation embryos of a number of genes known to be critical for early development of the murine embryo. The expression profile of these genes was analysed throughout preimplantation development and in response to growth factor (GF) stimulation. Developmental expression of a number of genes was similar to that seen in murine embryos (OCT3B/4, CDX2, NANOG). However, GATA6 is expressed throughout preimplantation development in the human. Embryos were cultured in IGF-I, leukaemia inhibitory factor (LIF) or heparin-binding EGF-like growth factor (HBEGF), all of which are known to stimulate the development of human embryos. Our data show that culture in HBEGF and LIF appears to facilitate human embryo expression of a number of genes: ERBB4 (LIF) and LIFR and DSC2 (HBEGF) while in the presence of HBEGF no blastocysts expressed EOMES and when cultured with LIF only two out of nine blastocysts expressed TBN. These data improve our knowledge of the similarities between human and murine embryos and the influence of GFs on human embryo gene expression. Results from this study will improve the understanding of cell fate decisions in early human embryos, which has important implications for both IVF treatment and the derivation of human embryonic stem cells.

  16. Expression of early growth response factor-1 in rats with cerulein-induced acute pancreatitis and its significance

    PubMed Central

    Gong, Lan-Bo; He, Li; Liu, Yang; Chen, Xue-Qing; Jiang, Bo

    2005-01-01

    AIM: To observe the expressions of early growth response factor-1 (Egr-1) and tissue factor (TF) in rats with cerulein-induced acute pancreatitis and to explore its significance. METHODS: A large dose of cerulein was used to create the experimental acute pancreatitis model in rats. The changes of Egr-1 mRNA and protein in rats were observed during 30 min to 4 h after the treatment and immunohistochemical method was used to observe the localized expression of Egr-1 in tissues. In addition to the mRNA expression of Egr-1 target gene, TF was also observed. A blank control group, and a bombesin-administered group were used for comparison. RESULTS: After the stimulation of a large dose of cerulein, the rats showed typical inflammatory changes of acute pancreatitis. Thirty minutes after the stimulation, the mRNA expression of Egr-1 in the pancreatic tissue reached its peak and then declined, while the expression of Egr-1 protein reached its peak 2 h after the stimulation. Histologically, 2 h after the stimulation, almost all pancreatic acinar cells had the expression of Egr-1 protein, which was focused in the nuclei. The mRNA expression of TF occurred 1 h after the stimulation and gradually increased within 4 h. However, a large dose of bombesin only stimulated the pancreatic tissue to produce a little mRNA expression of Egr-1 and no mRNA expression of Egr-1 protein and TF. CONCLUSION: Egr-1 as a pro-inflammatory transcription factor may play an important role in the pathogenesis of acute pancreatitis by modulating the expression of TF. PMID:16124058

  17. Expression of Leukemia/Lymphoma-Related Factor (LRF/POKEMON) in Human Breast Carcinoma and Other Cancers

    PubMed Central

    Aggarwal, Anshu; Hunter, William J.; Aggarwal, Himanshu; Silva, Edibaldo D.; Davey, Mary S.; Murphy, Richard F.; Agrawal, Devendra K.

    2010-01-01

    The POK family of proteins plays an important role in not only embryonic development and cell differentiation, but also in oncogenesis. Leukemia/lymphoma-related factor (LRF) belongs to the POK family of transcriptional repressors and is also known as POK erythroid myeloid ontogenic factor (POKEMON), which binds to short transcripts of HIV-1 (FBI-1) and TTF-1 interacting peptide (TIP21). Its oncogenic role is known only in lymphoma, non-small cell lung carcinoma, and malignant gliomas. The functional expression of LRF in human breast carcinoma has not yet been confirmed. The aim of this study was to investigate and compare the expression of LRF in human breast cancer tissues and other human tumors. The expression of LRF mRNA transcripts and protein was observed in twenty human benign and malignant breast biopsy tissues. Expression of LRF was observed in several formalin-fixed tissues by immunohistochemistry and immunofluorescence. All malignant breast tissues expressed mRNA transcripts and protein for LRF. However, 40% and 15% benign breast biopsy tissues expressed LRF mRNA transcripts and protein, respectively. The overall expression of LRF mRNA transcripts and total protein was significantly more in malignant breast tissues than the benign breast tissues. LRF expression was also observed in the nuclei of human colon, renal, lung, hepatocellular carcinomas and thymoma tumor cells. In general, a significantly higher expression of LRF was seen in malignant tissues than in the corresponding benign or normal tissue. Further studies are warranted to determine the malignant role of LRF in human breast carcinoma. PMID:20471975

  18. Growth factor expression in cartilage wound healing: temporal and spatial immunolocalization in a rabbit auricular cartilage wound model.

    PubMed

    Bos, P K; van Osch, G J; Frenz, D A; Verhaar, J A; Verwoerd-Verhoef, H L

    2001-05-01

    The ability of cartilage to regenerate following injury is limited, potentially leading to osteoarthritis. Integrative cartilage repair, necessary for durable restoration of cartilage lesions, can be regarded as a wound healing process. Little is known about the effects of growth factors regulating acute cartilage wound healing in vivo. In this study the temporal expression patterns of growth factors and proteoglycan content in cartilage wound edges in vivo were studied. Cartilage wounds were created in rabbit ear cartilage using a 6 mm biopsy punch. Specimens were subsequently harvested 1, 3, 7, 14 and 28 days after surgery. Paraffin sections were thionin stained to visualize proteoglycan loss and replacement. Immunohistochemical staining of TGFbeta1, TGFbeta3, IGF-1, IGF-II and FGF-2 was used to define growth factor expression at the cartilage wound sites. Almost no effect of cartilage wounding was observed one day after surgery. A decrease of proteoglycan content, with a maximal loss at day 7, and a subsequent restoration was observed at the wound edges. Growth factor expression increased simultaneously. Maximal immunostaining for IGF1, IGFII, FGF2 and TGF-beta3 was observed at day 7, followed by a gradual decrease. Increased expression of TGFbeta1 lasted from day 3 until day 14. We have demonstrated the ability of chondrocytes to increase growth factor expression and to restore the rapid decrease in proteoglycan content in the initial phase following acute wounding. A temporal increase in intracellular growth factor expression suggests an autocrine and/or paracrine metabolic stimulation, which can be regarded a sign of chondrocytes repair capacity. Copyright 2001 OsteoArthritis Research Society International.

  19. Expression of hypoxia-induced factor-1 alpha in early-stage and in metastatic oral squamous cell carcinoma.

    PubMed

    Ribeiro, Maisa; Teixeira, Sarah R; Azevedo, Monarko N; Fraga, Ailton C; Gontijo, Antônio Pm; Vêncio, Eneida F

    2017-04-01

    To investigate hypoxia-induced factor-1 alpha expression in distinct oral squamous cell carcinoma subtypes and topographies and correlate with clinicopathological data. Hypoxia-induced factor-1 alpha expression was assessed by immunohistochemistry in 93 cases of OSCC. Clinical and histopathological data were reviewed from medical records. Hypoxia-induced factor-1 alpha status was distinct according to tumor location, subtype and topography affect. In superficial oral squamous cell carcinomas, most tumor cells overexpressed hypoxia-induced factor-1 alpha, whereas hypoxia-induced factor-1 alpha was restricted to the intratumoral region in conventional squamous cell carcinomas. All basaloid squamous cell carcinomas exhibited downregulation of hypoxia-induced factor-1 alpha. Interestingly, metastatic lymph nodes (91.7%, p = 0.001) and the intratumoral regions of corresponding primary tumors (58.3%, p = 0.142) showed hypoxia-induced factor-1 alpha-positive tumor cells. Overall survival was poor in patients with metastatic lymph nodes. Hypoxia-induced factor-1 alpha has distinct expression patterns in different oral squamous cell carcinoma subtypes and topographies, suggesting that low oxygen tension promotes the growth pattern of superficial and conventional squamous cell carcinoma, but not basaloid squamous cell carcinoma. Indeed, a hypoxic environment may facilitate regional metastasis, making it a useful diagnostic and prognostic marker in primary tumors.

  20. Increased tumor necrosis factor receptor 1 expression in human colorectal adenomas

    PubMed Central

    Hosono, Kunihiro; Yamada, Eiji; Endo, Hiroki; Takahashi, Hirokazu; Inamori, Masahiko; Hippo, Yoshitaka; Nakagama, Hitoshi; Nakajima, Atsushi

    2012-01-01

    AIM: To determine the expression statuses of tumor necrosis factor (TNF)-α, its receptors (TNF-R) and downstream effector molecules in human colorectal adenomas. METHODS: We measured the serum concentrations of TNF-α and its receptors in 62 colorectal adenoma patients and 34 healthy controls. The protein expression of TNF-α, TNF-R1, TNF-R2 and downstream signals of the TNF receptors, such as c-Jun N-terminal kinase (JNK), nuclear factor-κ B and caspase-3, were also investigated in human colorectal adenomas and in normal colorectal mucosal tissues by immunohistochemistry. Immunofluorescence confocal microscopy was used to investigate the consistency of expression of TNF-R1 and phospho-JNK (p-JNK). RESULTS: The serum levels of soluble TNF-R1 (sTNF-R1) in adenoma patients were significantly higher than in the control group (3.67 ± 0.86 ng/mL vs 1.57 ± 0.72 ng/mL, P < 0.001). Receiver operating characteristic analysis revealed the high diagnostic sensitivity of TNF-R1 measurements (AUC was 0.928) for the diagnosis of adenoma, and the best cut-off level of TNF-R1 was 2.08 ng/mL, with a sensitivity of 93.4% and a specificity of 82.4%. There were no significant differences in the serum levels of TNF-α or sTNF-R2 between the two groups. Immunohistochemistry showed high levels of TNF-R1 and p-JNK expression in the epithelial cells of adenomas. Furthermore, a high incidence of co-localization of TNF-R1 and p-JNK was identified in adenoma tissue. CONCLUSION: TNF-R1 may be a promising biomarker of colorectal adenoma, and it may also play an important role in the very early stages of colorectal carcinogenesis. PMID:23082052

  1. Three-dimensional porous poly-DL-lactide/basic fibroblast growth factor composites for bone defect repair: an experimental study.

    PubMed

    Min, Shao-xiong; Jin, An-min; Tong, Bin-hui; Zhu, Li-xin; Tian, Jing

    2003-04-01

    To investigate the osteoinductive ability of the composites consisting of basic fibroblast growth factor (bFGF) and porous poly-DL-lactide (PDLLA) for the development of a new absorbable osteosynthesis material. Highly porous foams of PDLLA with the pore size ranging from 150 to 300 microm were prepared by a solvent-casting, particulate-leaching technique with NaCl as the leachable component. Animal models of radial diaphyseal defects of 1.0 cm with complete removal of the periosteum were induced in 45 rabbits, which were randomly divided into 3 groups to receive the defect repair with PDLLA and PDLLA/bFGF respectively, leaving one group untreated to serve as the control group. The implant specimens were harvested at 2, 4, 8, and 12 weeks respectively after the surgery and X-ray, histological and scanning electron microscopic (SEM) examinations were performed to evaluate the effectiveness of defect repair. At 8 and 12 weeks after implantation, biomechanical test (for three-point bending strength) was employed to study the quality of bone formation. PDLLA/bFGF composite stimulated more bone formation and had higher bending strength than PDLLA (P<0.05), and the bone formation induced by both materials was significantly more than that observed in the control group in every postoperative stage (P<0.05). PDLLA possesses good biocompatibility and absorbability, and when prepared into a porous material, it exhibits good osteoconductibility. As a good bFGF carrier, the foam of PDLLA with three- dimensional structure shows good osteoinductive ability with regard to the rapidity, quantity and quality of the bone formation.

  2. Increased and correlated expression of connective tissue growth factor and transforming growth factor beta 1 in surgically removed periodontal tissues with chronic periodontitis.

    PubMed

    Mize, T W; Sundararaj, K P; Leite, R S; Huang, Y

    2015-06-01

    Both gingival tissue destruction and regeneration are associated with chronic periodontitis, although the former overwhelms the latter. Studies have shown that transforming growth factor beta 1 (TGF-β1), a growth factor largely involved in tissue regeneration and remodeling, is upregulated in chronic periodontitis. However, the gingival expression of connective tissue growth factor (CTGF or CCN2), a TGF-β1-upregulated gene, in patients with periodontitis remains undetermined. Although both CTGF/CCN2 and TGF-b1 increase the production of extracellular matrix, they have many different biological functions. Therefore, it is important to delineate the impact of periodontitis on gingival CTGF/CCN2 expression. Periodontal tissue specimens were collected from seven individuals without periodontitis (group 1) and from 14 with periodontitis (group 2). The expression of CTGF and TGFβ1 mRNAs were quantified using real-time PCR. Analysis using the nonparametric Mann-Whitney U-test showed that the levels of expression of both CTGF/CCN2 and TGFβ1 mRNAs were significantly increased in individuals with periodontitis compared with individuals without periodontitis. Furthermore, analysis using a nonparametric correlation (Spearman r) test showed a positive correlation between TGFβ1 and CTGF/CCN2 mRNAs. The gingival expression levels of CTGF/CCN2 and TGFβ1 mRNAs in individuals with periodontitis are upregulated and correlated. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Transforming growth factor (TGF)beta, fibroblast growth factor (FGF) and retinoid signalling pathways promote pancreatic exocrine gene expression in mouse embryonic stem cells.

    PubMed Central

    Skoudy, Anouchka; Rovira, Meritxell; Savatier, Pierre; Martin, Franz; León-Quinto, Trinidad; Soria, Bernat; Real, Francisco X

    2004-01-01

    Extracellular signalling cues play a major role in the activation of differentiation programmes. Mouse embryonic stem (ES) cells are pluripotent and can differentiate into a wide variety of specialized cells. Recently, protocols designed to induce endocrine pancreatic differentiation in vitro have been designed but little information is currently available concerning the potential of ES cells to differentiate into acinar pancreatic cells. By using conditioned media of cultured foetal pancreatic rudiments, we demonstrate that ES cells can respond in vitro to signalling pathways involved in exocrine development and differentiation. In particular, modulation of the hedgehog, transforming growth factor beta, retinoid, and fibroblast growth factor pathways in ES cell-derived embryoid bodies (EB) resulted in increased levels of transcripts encoding pancreatic transcription factors and cytodifferentiation markers, as demonstrated by RT-PCR. In EB undergoing spontaneous differentiation, expression of the majority of the acinar genes (i.e. amylase, carboxypeptidase A and elastase) was induced after the expression of endocrine genes, as occurs in vivo during development. These data indicate that ES cells can undergo exocrine pancreatic differentiation with a kinetic pattern of expression reminiscent of pancreas development in vivo and that ES cells can be coaxed to express an acinar phenotype by activation of signalling pathways known to play a role in pancreatic development and differentiation. PMID:14733613

  4. BDNF Regulates the Expression and Distribution of Vesicular Glutamate Transporters in Cultured Hippocampal Neurons

    PubMed Central

    Melo, Carlos V.; Silva, Carla G.; Duarte, Carlos B.

    2013-01-01

    BDNF is a pro-survival protein involved in neuronal development and synaptic plasticity. BDNF strengthens excitatory synapses and contributes to LTP, presynaptically, through enhancement of glutamate release, and postsynaptically, via phosphorylation of neurotransmitter receptors, modulation of receptor traffic and activation of the translation machinery. We examined whether BDNF upregulated vesicular glutamate receptor (VGLUT) 1 and 2 expression, which would partly account for the increased glutamate release in LTP. Cultured rat hippocampal neurons were incubated with 100 ng/ml BDNF, for different periods of time, and VGLUT gene and protein expression were assessed by real-time PCR and immunoblotting, respectively. At DIV7, exogenous application of BDNF rapidly increased VGLUT2 mRNA and protein levels, in a dose-dependent manner. VGLUT1 expression also increased but only transiently. However, at DIV14, BDNF stably increased VGLUT1 expression, whilst VGLUT2 levels remained low. Transcription inhibition with actinomycin-D or α-amanitine, and translation inhibition with emetine or anisomycin, fully blocked BDNF-induced VGLUT upregulation. Fluorescence microscopy imaging showed that BDNF stimulation upregulates the number, integrated density and intensity of VGLUT1 and VGLUT2 puncta in neurites of cultured hippocampal neurons (DIV7), indicating that the neurotrophin also affects the subcellular distribution of the transporter in developing neurons. Increased VGLUT1 somatic signals were also found 3 h after stimulation with BDNF, further suggesting an increased de novo transcription and translation. BDNF regulation of VGLUT expression was specifically mediated by BDNF, as no effect was found upon application of IGF-1 or bFGF, which activate other receptor tyrosine kinases. Moreover, inhibition of TrkB receptors with K252a and PLCγ signaling with U-73122 precluded BDNF-induced VGLUT upregulation. Hippocampal neurons express both isoforms during embryonic and neonatal

  5. Complement factor H: spatial and temporal expression and localization in the eye.

    PubMed

    Mandal, Md Nawajes A; Ayyagari, Radha

    2006-09-01

    Complement factor H (CFH) is a component of the mammalian complement system, which regulates the alternative pathway of complement activation and protects the host cell from inappropriate complement activation. CFH is a key regulator of innate immunity, and CFH deficiency leads to membranoproliferative glomerulonephritis type II. A variation in human CFH, Y402H, has been shown to be associated with an increased risk for age-related macular degeneration. The authors describe studies on the spatial and temporal expression of the CFH gene and localization of this protein in ocular tissues to gain insight into its role in the eye. CFH expression in human and mouse tissues was studied by quantitative RT-PCR and Western blot analysis, and localization of CFH was studied by immunohistochemical analysis followed by fluorescence microscopy. In human and mouse, CFH expression was found to be similar to the highest level of expression in the liver. In ocular tissue, CFH was detected in the distalmost optic nerve (3 mm) cut from the scleral surface of the eyeball, sclera, RPE-choroid, retina, lens, and ciliary body. In mouse, Cfh expression was observed from early embryonic stages, and in the eye its expression increased with age. A significant level of CFH expression is maintained in different ocular tissues during development and aging. Sustained high levels of CFH expression in eye tissues suggest that this protein may play a role in protecting these tissues from indiscriminate complement activation and inflammatory insult.

  6. Characterization of the expression and clinical features of epidermal growth factor receptor and vascular endothelial growth factor receptor-2 in esophageal carcinoma

    PubMed Central

    NIYAZ, MADINIYAT; ANWER, JURAT; LIU, HUI; ZHANG, LIWEI; SHAYHEDIN, ILYAR; AWUT, IDIRIS

    2015-01-01

    The present study aimed to understand the expression characteristics of epidermal growth factor receptor (EGFR) and vascular endothelial growth factor receptor-2 (VEGFR-2) in individuals of Uygur, Han and Kazak ethnicity with esophageal carcinoma in Xinjiang (China) and their interrelation analysis, and to investigate the expression differences in these genes between esophageal carcinoma and pericarcinoma tissue samples, and between the three ethnic groups. The expression levels of EGFR and VEGFR-2 from 119 pairs of esophageal carcinoma tissue and corresponding pericarcinoma tissue from Uygur, Han and Kazak patients with esophageal carcinoma were detected by immunohistochemistry following surgical resection, and an additional five carcinoma in situ specimens were also tested. The relative expression was analyzed among the ethnic groups and clinicopathological parameters. The positive rate of EGFR in esophageal carcinoma tissue from patients of Uygur, Han and Kazak heritage was 70.73, 68.42 and 67.5%, respectively. For VEGFR-2 the positive rate was 73.17, 68.42 and 67.5%, respectively. No significant difference was detected in their expression between the three ethnic groups (P>0.05); however, EGFR and VEGFR-2 overexpression were correlated with lymph node metastasis (P<0.05). VEGF expression was also correlated with the expression of VEGFR-2 in esophageal carcinoma tissues. EGFR was positive in carcinoma in situ samples, while VEGFR-2 was negative. The overexpression of EGFR is therefore an early event and may have a significant role in the progression of esophageal carcinoma pathogenesis. EGFR overexpression may correlate with the expression of VEGFR-2 in esophageal cancer. These results may aid the early diagnosis of esophageal cancer, and the development of individual target treatment in the future. PMID:26788193

  7. Effect of expressions of tumor necrosis factor α and interleukin 1B on peritoneal metastasis of gastric cancer.

    PubMed

    Guo, Lin; Ou, Jin-Lei; Zhang, Tong; Ma, Liang; Qu, Long-Fei

    2015-11-01

    Our study aimed to investigate effect of expressions of tumor necrosis factor α (TNF-α) and interleukin 1B (IL-1B) on peritoneal metastasis of gastric cancer (GC). From June 2012 to June 2014, a total of 60 patients with advanced peritoneal metastasis from GC were collected from Department of Gastrointestinal and Nutriology Surgery at Shengjing Hospital of China Medical University. Furthermore, 60 GC patients without peritoneal metastasis were enrolled as controls. Immunohistochemistry was performed to test TNF-α and IL-1B expression, and logistic regression analysis was employed for evaluating risk factors for peritoneal metastasis of GC. Our results showed that TNF-α expression in metastatic group and non-metastatic group was significantly different (P = 0.043), but no significant difference was found in IL-1B expression between two groups (P = 0.261). In addition, TNF-α expression in metastatic group and non-metastatic group was associated with tumor size, depth of invasion, the degree of differentiation (all P < 0.05). Logistic regression analysis indicated that tumor size, depth of invasion, the degree of differentiation and TNF-α expression were risk factors for peritoneal metastasis of GC (all P < 0.05). Our study found that TNF-α expression may play a vital role in peritoneal metastasis of GC, while IL-1B expression might not be correlated with peritoneal metastasis.

  8. Transforming growth factor β-induced expression of chondroitin sulfate proteoglycans is mediated through non-Smad signaling pathways.

    PubMed

    Jahan, Naima; Hannila, Sari S

    2015-01-01

    The expression of chondroitin sulfate proteoglycans (CSPGs) by reactive astrocytes is a major factor contributing to glial scarring and regenerative failure after spinal cord injury, but the molecular mechanisms underlying CSPG expression remain largely undefined. One contributing factor is transforming growth factor β (TGFβ), which is upregulated after injury and has been shown to induce expression of CSPGs in vitro. TGFβ typically mediates its effects through the Smad2/3 signaling pathway, and it has been suggested that this pathway is responsible for CSPG expression. However, there is evidence that TGFβ can also activate non-Smad signaling pathways. In this study, we report that TGFβ-induced expression of three different CSPGs--neurocan, brevican, and aggrecan--is mediated through non-Smad signaling pathways. We observed significant increases in TGFβ-induced expression of neurocan, brevican, and aggrecan following siRNA knockdown of Smad2 or Smad4, which indicates that Smad signaling is not required for the expression of these CSPGs. In addition, we show that neurocan, aggrecan, and brevican levels are significantly reduced when TGFβ is administered in the presence of either the PI3K inhibitor LY294002 or the mTOR inhibitor rapamycin, but not the MEK1/2 inhibitor U0126. This suggests that TGFβ mediates this effect through non-Smad-dependent activation of the PI3K-Akt-mTOR signaling pathway, and targeting this pathway may therefore be an effective means of reducing CSPG expression in the injured CNS. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Minoxidil upregulates the expression of vascular endothelial growth factor in human hair dermal papilla cells.

    PubMed

    Lachgar, S; Charveron, M; Gall, Y; Bonafe, J L

    1998-03-01

    The hair follicle dermal papilla which controls hair growth, is characterized in the anagen phase by a highly developed vascular network. We have demonstrated in a previous study that the expression of an angiogenic growth factor called vascular endothelial growth factor (VEGF) mRNA varied during the hair cycle. VEGF mRNA is strongly expressed in dermal papilla cells (DPC) in the anagen phase, but during the catagen and telogen phases. VEGF mRNA is less strongly expressed. This involvement of VEGF during the hair cycle allowed us to determine whether VEGF mRNA expression by DPC was regulated by minoxidil. In addition, the effect of minoxidil on VEGF protein synthesis in both cell extracts and DPC-conditioned medium, was investigated immunoenzymatically. Both VEGF mRNA and protein were significantly elevated in treated DPC compared with controls. DPC incubated with increasing minoxidil concentrations (0.2, 2, 6, 12 and 24 mumol/L) induced a dose-dependent expression of VEGF mRNA. Quantification of transcripts showed that DPC stimulated with 24 mumol/L minoxidil express six times more VEGF mRNA than controls. Similarly, VEGF protein production increases in cell extracts and conditioned media following minoxidil stimulation. These studies strongly support the likely involvement of minoxidil in the development of dermal papilla vascularization via a stimulation of VEGF expression, and support the hypothesis that minoxidil has a physiological role in maintaining a good vascularization of hair follicles in androgenetic alopecia.

  10. Expression of receptors for putative anabolic growth factors in human intervertebral disc: implications for repair and regeneration of the disc.

    PubMed

    Le Maitre, Christine L; Richardson, Stephen M A; Baird, Pauline; Freemont, Anthony J; Hoyland, Judith A

    2005-12-01

    Low back pain (LBP) is a common, debilitating and economically important disorder. Current evidence implicates loss of intervertebral disc (IVD) matrix consequent upon 'degeneration' as a major cause of LBP. Degeneration of the IVD involves increases in degradative enzymes and decreases in the extracellular matrix (ECM) component in a process that is controlled by a range of cytokines and growth factors. Studies have suggested using anabolic growth factors to regenerate the normal matrix of the IVD, hence restoring disc height and reversing degenerative disc disease. However, for such therapies to be successful it is vital that the target cells (i.e. the disc cells) express the appropriate receptors. This immunohistochemical study has for the first time investigated the expression and localization of four potentially beneficial growth factor receptors (i.e. TGFbetaRII, BMPRII, FGFR3 and IGFRI) in non-degenerate and degenerate human IVDs. Receptor expression was quantified across regions of the normal and degenerate disc and showed that cells of the nucleus pulposus (NP) and inner annulus fibrosus (IAF) expressed significantly higher levels of the four growth factor receptors investigated. There were no significant differences between the four growth factor expression in non-degenerate and degenerate biopsies. However, expression of TGFbetaRII, FGFR3 and IGFRI, but not BMP RII, were observed in the ingrowing blood vessels that characterize part of the disease aetiology. In conclusion, this study has demonstrated the expression of the four growth factor receptors at similar levels in the chondrocyte-like cells of the NP and IAF in both non-degenerate and degenerate discs, implicating a role in normal disc homeostasis and suggesting that the application of these growth factors to the degenerate human IVD would stimulate matrix production. However, the expression of some of the growth factor receptors on ingrowing blood vessels might be problematic in a therapeutic

  11. Physiological factors that regulate skin pigmentation.

    PubMed

    Yamaguchi, Yuji; Hearing, Vincent J

    2009-01-01

    More than 150 genes have been identified that affect skin color either directly or indirectly, and we review current understanding of physiological factors that regulate skin pigmentation. We focus on melanosome biogenesis, transport and transfer, melanogenic regulators in melanocytes, and factors derived from keratinocytes, fibroblasts, endothelial cells, hormones, inflammatory cells, and nerves. Enzymatic components of melanosomes include tyrosinase, tyrosinase-related protein 1, and dopachrome tautomerase, which depend on the functions of OA1, P, MATP, ATP7A, and BLOC-1 to synthesize eumelanins and pheomelanins. The main structural component of melanosomes is Pmel17/gp100/Silv, whose sorting involves adaptor protein 1A (AP1A), AP1B, AP2, and spectrin, as well as a chaperone-like component, MART-1. During their maturation, melanosomes move from the perinuclear area toward the plasma membrane. Microtubules, dynein, kinesin, actin filaments, Rab27a, melanophilin, myosin Va, and Slp2-a are involved in melanosome transport. Foxn1 and p53 up-regulate skin pigmentation via bFGF and POMC derivatives including alpha-MSH and ACTH, respectively. Other critical factors that affect skin pigmentation include MC1R, CREB, ASP, MITF, PAX3, SOX9/10, LEF-1/TCF, PAR-2, DKK1, SCF, HGF, GM-CSF, endothelin-1, prostaglandins, leukotrienes, thromboxanes, neurotrophins, and neuropeptides. UV radiation up-regulates most factors that increase melanogenesis. Further studies will elucidate the currently unknown functions of many other pigment genes/proteins. (c) 2009 International Union of Biochemistry and Molecular Biology, Inc.

  12. MGMT DNA repair gene promoter/enhancer haplotypes alter transcription factor binding and gene expression.

    PubMed

    Xu, Meixiang; Cross, Courtney E; Speidel, Jordan T; Abdel-Rahman, Sherif Z

    2016-10-01

    The O 6 -methylguanine-DNA methyltransferase (MGMT) protein removes O 6 -alkyl-guanine adducts from DNA. MGMT expression can thus alter the sensitivity of cells and tissues to environmental and chemotherapeutic alkylating agents. Previously, we defined the haplotype structure encompassing single nucleotide polymorphisms (SNPs) in the MGMT promoter/enhancer (P/E) region and found that haplotypes, rather than individual SNPs, alter MGMT promoter activity. The exact mechanism(s) by which these haplotypes exert their effect on MGMT promoter activity is currently unknown, but we noted that many of the SNPs comprising the MGMT P/E haplotypes are located within or in close proximity to putative transcription factor binding sites. Thus, these haplotypes could potentially affect transcription factor binding and, subsequently, alter MGMT promoter activity. In this study, we test the hypothesis that MGMT P/E haplotypes affect MGMT promoter activity by altering transcription factor (TF) binding to the P/E region. We used a promoter binding TF profiling array and a reporter assay to evaluate the effect of different P/E haplotypes on TF binding and MGMT expression, respectively. Our data revealed a significant difference in TF binding profiles between the different haplotypes evaluated. We identified TFs that consistently showed significant haplotype-dependent binding alterations (p ≤ 0.01) and revealed their role in regulating MGMT expression using siRNAs and a dual-luciferase reporter assay system. The data generated support our hypothesis that promoter haplotypes alter the binding of TFs to the MGMT P/E and, subsequently, affect their regulatory function on MGMT promoter activity and expression level.

  13. Mechanisms of impaired nephrogenesis with fetal growth restriction: altered renal transcription and growth factor expression

    PubMed Central

    Abdel-Hakeem, Ahmed K; Henry, Tasmia Q; Magee, Thomas R; Desai, Mina; Ross, Michael; Mansano, Roy; Torday, John; Nast, Cynthia C.

    2010-01-01

    Objective Maternal food restriction during pregnancy results in growth restricted newborns and reduced glomerular number, contributing to programmed offspring hypertension. We investigated whether reduced nephrogenesis may be programmed by dysregulation of factors controlling ureteric bud branching and mesenchyme to epithelial transformation. Study Design 10 to 20 days gestation, Sprague Dawley pregnant rats (n=6/group) received ad libitum food; FR rats were 50% food restricted. At embryonic day 20, mRNA and protein expression of WT1, Pax2, FGF2, GDNF, cRET, WNT4, WNT11, BMP4, BMP7, and FGF7 were determined by real-time PCR and Western blotting. Results Maternal FR resulted in up-regulated mRNA expression for WT1, FGF2, and BMP7 whereas Pax2, GDNF, FGF7, BMP4, WNT4, and WNT11 mRNAs were down-regulated. Protein expression was concordant for WT1, GDNF, Pax2, FGF7, BMP4 and WNT4. Conclusion Maternal FR altered gene expression of fetal renal transcription and growth factors, and likely contributes to development of offspring hypertension. PMID:18639218

  14. Upregulation of Endogenous HMOX1 Expression by a Computer-Designed Artificial Transcription Factor

    PubMed Central

    Guo, Hongfeng; Tian, Yi; Lu, Hai; Wei, Yong; Ying, Dajun

    2010-01-01

    Heme oxygenase-1 (HO-1) is well known as a cytoprotective factor. Research has revealed that it is a promising therapeutic target for cardiovascular diseases. In the current study, an HMOX1 (HO-1 gene) enhancer-specific artificial zinc-finger protein (AZP) was designed using bioinformatical methods. Then, an artificial transcription factor (ATF) was constructed based on the AZP. In the ATF, the p65 functional domain was used as the effector domain (ED), and a nuclear localization sequence (NLS) was also included. We next analyzed the affinity of the ATF to the HMOX1 enhancer and the effect of the ATF on endogenous HMOX1 expression. The results suggest that the ATF could effectively upregulate endogenous HMOX1 expression in ECV304 cells. With further research, the ATF could be developed as a potential drug for cardiovascular diseases. PMID:20706680

  15. Protein arginine Methyltransferase 8 gene is expressed in pluripotent stem cells and its expression is modulated by the transcription factor Sox2.

    PubMed

    Solari, Claudia; Echegaray, Camila Vázquez; Luzzani, Carlos; Cosentino, María Soledad; Waisman, Ariel; Petrone, María Victoria; Francia, Marcos; Sassone, Alina; Canizo, Jésica; Sevlever, Gustavo; Barañao, Lino; Miriuka, Santiago; Guberman, Alejandra

    2016-04-22

    Addition of methyl groups to arginine residues is catalyzed by a group of enzymes called Protein Arginine Methyltransferases (Prmt). Although Prmt1 is essential in development, its paralogue Prmt8 has been poorly studied. This gene was reported to be expressed in nervous system and involved in neurogenesis. In this work, we found that Prmt8 is expressed in mouse embryonic stem cells (ESC) and in induced pluripotent stem cells, and modulated along differentiation to neural precursor cells. We found that Prmt8 promoter activity is induced by the pluripotency transcription factors Oct4, Sox2 and Nanog. Moreover, endogenous Prmt8 mRNA levels were reduced in ESC transfected with Sox2 shRNA vector. As a whole, our results indicate that Prmt8 is expressed in pluripotent stem cells and its transcription is modulated by pluripotency transcription factors. These findings suggest that besides its known function in nervous system, Prmt8 could play a role in pluripotent stem cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Tumor necrosis factor alpha induces gamma-glutamyltransferase expression via nuclear factor-kappaB in cooperation with Sp1.

    PubMed

    Reuter, Simone; Schnekenburger, Michael; Cristofanon, Silvia; Buck, Isabelle; Teiten, Marie-Hélène; Daubeuf, Sandrine; Eifes, Serge; Dicato, Mario; Aggarwal, Bharat B; Visvikis, Athanase; Diederich, Marc

    2009-02-01

    Gamma-glutamyltransferase (GGT) cleaves the gamma-glutamyl moiety of glutathione (GSH), an endogenous antioxidant, and is involved in mercapturic acid metabolism and in cancer drug resistance when overexpressed. Moreover, GGT converts leukotriene (LT) C4 into LTD4 implicated in various inflammatory pathologies. So far the effect of inflammatory stimuli on regulation of GGT expression and activity remained to be addressed. We found that the proinflammatory cytokine tumor necrosis factor alpha (TNFalpha) induced GGT promoter transactivation, mRNA and protein synthesis, as well as enzymatic activity. Remicade, a clinically used anti-TNFalpha antibody, small interfering RNA (siRNA) against p50 and p65 nuclear factor-kappaB (NF-kappaB) isoforms, curcumin, a well characterized natural NF-kappaB inhibitor, as well as a dominant negative inhibitor of kappaB alpha (IkappaBalpha), prevented GGT activation at various levels, illustrating the involvement of this signaling pathway in TNFalpha-induced stimulation. Over-expression of receptor of TNFalpha-1 (TNFR1), TNFR-associated factor-2 (TRAF2), TNFR-1 associated death domain (TRADD), dominant negative (DN) IkappaBalpha or NF-kappaB p65 further confirmed GGT promoter activation via NF-kappaB. Linker insertion mutagenesis of 536 bp of the proximal GGT promoter revealed NF-kappaB and Sp1 binding sites at -110 and -78 relative to the transcription start site, responsible for basal GGT transcription. Mutation of the NF-kappaB site located at -110 additionally inhibited TNFalpha-induced promoter induction. Chromatin immunoprecipitation (ChIP) assays confirmed mutagenesis results and further demonstrated that TNFalpha treatment induced in vivo binding of both NF-kappaB and Sp1, explaining increased GGT expression, and led to RNA polymerase II recruitment under inflammatory conditions.

  17. Growth factor expression pattern of homologous feeder layer for culturing buffalo embryonic stem cell-like cells.

    PubMed

    Sharma, Ruchi; George, Aman; Kamble, Nitin M; Chauhan, Manmohan S; Singla, Suresh; Manik, Radhey S; Palta, Prabhat

    2012-01-01

    The present study examined the expression profile of buffalo fetal fibroblasts (BFF) used as a feeder layer for embryonic stem (ES) cell-like cells. The expression of important growth factors was detected in cells at different passages. Mitomycin-C inactivation increased relative expression levels of ACTIVIN-A, TGF-β1, BMP-4 and GREMLIN but not of fibroblast growth factor-2 (FGF-2). The expression level of ACTIVIN-A, transforming growth factor-β1 (TGF-β1), bone morphogenetic protein-4 (BMP-4) and FGF-2 was similar in buffalo fetal fibroblast (BFF) cultured in stem cell medium (SCM), SCM+1000IU mL(-1) leukemia inhibitory factor (LIF), SCM+5 ngmL(-1) FGF-2 or SCM+LIF+FGF-2 for 24 h whereas GREMLIN expression was higher in FGF-2-supplemented groups. In spent medium, the concentration of ACTIVIN-A was higher in FGF-2-supplemented groups whereas that of TGF-β1 was similar in SCM and LIF+FGF-2, which was higher than when either LIF or FGF-2 was used alone. Following culture of ES cell-like cells on a feeder layer for 24 h, the TGF-β1 concentration was higher with LIF+FGF-2 than with LIF or FGF-2 alone which, in turn, was higher than that in SCM. In the LIF+FGF-2 group, the concentration of TGF-β1 was lower and that of ACTIVIN-A was higher in spent medium at 24 h than at 48 h of culture. These results suggest that BFF produce signalling molecules that may help in self-renewal of buffalo ES cell-like cells.

  18. Glycogen synthase kinase 3 regulates expression of nuclear factor-erythroid-2 related transcription factor-1 (Nrf1) and inhibits pro-survival function of Nrf1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biswas, Madhurima; Kwong, Erick K.; Park, Eujean

    2013-08-01

    Nuclear factor E2-related factor-1 (Nrf1) is a basic leucine zipper transcription factor that is known to regulate antioxidant and cytoprotective gene expression. It was recently shown that Nrf1 is regulated by SCF–Fbw7 ubiquitin ligase. However our knowledge of upstream signals that targets Nrf1 for degradation by the UPS is not known. We report here that Nrf1 expression is negatively regulated by glycogen synthase kinase 3 (GSK3) in Fbw7-dependent manner. We show that GSK3 interacts with Nrf1 and phosphorylates the Cdc4 phosphodegron domain (CPD) in Nrf1. Mutation of serine residue in the CPD of Nrf1 to alanine (S350A), blocks Nrf1 frommore » phosphorylation by GSK3, and stabilizes Nrf1. Knockdown of Nrf1 and expression of a constitutively active form of GSK3 results in increased apoptosis in neuronal cells in response to ER stress, while expression of the GSK3 phosphorylation resistant S350A–Nrf1 attenuates apoptotic cell death. Together these data suggest that GSK3 regulates Nrf1 expression and cell survival function in response to stress activation. Highlights: • The effect of GSK3 on Nrf1 expression was examined. • GSK3 destabilizes Nrf1 protein via Fbw7 ubiquitin ligase. • GSK3 binds and phosphorylates Nrf1. • Protection from stress-induced apoptosis by Nrf1 is inhibited by GSK3.« less

  19. Tumoural Expression of Connective Tissue Growth Factor (CTGF) Impacts on Survival in Patients Diagnosed with Hepatocellular Carcinoma (HCC).

    PubMed

    Lamarca, Angela; Mendiola, Marta; Bernal, Elsa; Heredia, Victoria; Díaz, Esther; Miguel, María; Pastrian, Laura G; Burgos, Emilio; Feliu, Jaime; Barriuso, Jorge

    2015-01-01

    Hepatocellular carcinoma (HCC) tends to develop in the liver when there is a high level of background inflammation (cirrhosis). Treatment options are limited and mainly based on systemic therapies such as anti-angiogenic drugs (e.g. sorafenib). Connective tissue growth factor (CTGF) is a matricellular protein involved in inflammation, tumour growth and angiogenesis. The aim of this study is to determine the expression of CTGF and hypoxia inducible factors (HIF) in HCC and to clarify its impact on relapse and survival. Eligibility criteria for the study consisted of patients with a diagnosis of HCC, formalin-fixed and paraffin-embedded (FFPE) biopsy tissue, as well as relapse and available survival data. A tissue microarray was constructed from ≥ 70% tumoural sections. The expressions of CTGF, HIF1α and HIF2α were analysed by immunohistochemistry. The relationship between expression of CTGF/HIF1α and CTGF/HIF2α were analysed. Univariate and multivariate analyses were performed. Fifty-three patients were screened; 39 patients were eligible for this study. Patients were treated with radical intent. At the end of follow up, 59% patients relapsed (28.2% locally, 10.3% multicentric liver relapse and 7.7% distant metastases). Estimated median disease-free survival (DFS) and overall survival (OS) were 23.4 (95%CI 7.18-39.66) and 38.6 months (95%CI 30.7-46.6), respectively. Expression of CTGF was: negative 23.1%, focal 48.7% and diffuse 23.1%. A non-statistically significant relationship between expression of CTGF and HIF was shown supporting an alternative pathway for CTGF expression in HCC. In multivariate analysis CTGF expression was an independent factor related to OS, with shorter survival in those patients with focal/diffuse CTGF expression (HR 2.46; 95%CI 1.18-5.15). Our results support that expression of CTGF is an independent factor associated with shorter OS in HCC. Further analysis of CTGF expression in a larger series of HCC patients is required to confirm

  20. Expression of Epidermal Growth Factor Receptor and Transforming Growth Factor Alpha in Cancer Bladder: Schistosomal and Non-Schistosomal

    PubMed Central

    Badawy, Afkar A.; El-Hindawi, Ali; Hammam, Olfat; Moussa, Mona; Helal, Noha S.; Kamel, Amira

    2017-01-01

    Introduction Overexpression of epidermal growth factor receptor (EGFR) has been described in several solid tumors including bladder cancer. Transforming growth factor alpha (TGFα) is frequently deregulated in neoplastic cells and plays a role in the development of bladder cancer. TGFα-EGFR ligand-receptor combination constitutes an important event in multistep tumorigenesis. Methods This study was done on 30 bladder biopsies from patients with urothelial carcinoma, 15 with squamous cell carcinoma, 10 with cystitis and 5 normal control bladder specimens. All were immuohistochemically stained with EGFR and TGFα antibodies. Results EGFR and TGFα were over-expressed in higher grades and late stages of bladder cancer. Moreover, they show higher expression in squamous cell carcinoma compared to urothelial carcinoma and in schistosomal associated lesions than in non-schistosomal associated lesions. Conclusion EGFR and TGFα could be used as prognostic predictors in early stage and grade of bladder cancer cases, especially those with schistosomal association. In addition they can help in selecting patients who can get benefit from anti-EGFR molecular targeted therapy. PMID:28413380

  1. Therapeutic potential of fibroblast growth factor-2 for hypertrophic scars: upregulation of MMP-1 and HGF expression.

    PubMed

    Eto, Hitomi; Suga, Hirotaka; Aoi, Noriyuki; Kato, Harunosuke; Doi, Kentaro; Kuno, Shinichiro; Tabata, Yasuhiko; Yoshimura, Kotaro

    2012-02-01

    Although hypertrophic scars (HTSs) and keloids are challenging problems, their pathogenesis is not well understood, making therapy difficult. We showed that matrix metalloproteinase (MMP)-1 expression was downregulated in HTS compared with normal skin from the same patients, whereas type 1 and 3 collagen and transforming growth factor-β (TGF-β) were upregulated. These differences, however, were not seen in cultured fibroblasts, suggesting the involvement of microenvironmental factors in the pathogenesis of HTS. Fibroblast growth factor-2 (FGF-2) highly upregulated the expression of MMP-1 and hepatocyte growth factor (HGF) in both HTS-derived and control fibroblasts; the upregulation was reversed by extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) inhibitors. An animal study using human HTS tissue implanted into nude mice indicated that controlled-release FGF-2 resulted in significantly less weight and decreased hydroxyproline content in HTS. Degradation of collagen fibers in FGF-2-treated HTS was also confirmed histologically. Western blotting showed that FGF-2-treated HTS expressed significantly higher MMP-1 protein than control. Decreased MMP-1 expression may be an important transcriptional change in HTS, and its reversal as well as upregulation of HGF by FGF-2 could be a new therapeutic approach for HTS.

  2. Expression of multi-drug resistance-related genes MDR3 and MRP as prognostic factors in clinical liver cancer patients.

    PubMed

    Yu, Zheng; Peng, Sun; Hong-Ming, Pan; Kai-Feng, Wang

    2012-01-01

    To investigate the expression of multi-drug resistance-related genes, MDR3 and MRP, in clinical specimens of primary liver cancer and their potential as prognostic factors in liver cancer patients. A total of 26 patients with primary liver cancer were enrolled. The expression of MDR3 and MRP genes was measured by real-time PCR and the association between gene expression and the prognosis of patients was analyzed by the Kaplan-Meier method and COX regression model. This study showed that increases in MDR3 gene expression were identified in cholangiocellular carcinoma, cirrhosis and HBsAg-positive patients, while MRP expression increased in hepatocellular carcinoma, non-cirrhosis and HBsAg-negative patients. Moreover, conjugated bilirubin and total bile acid in the serum were significantly reduced in patients with high MRP expression compared to patients with low expression. The overall survival tended to be longer in patients with high MDR3 and MRP expression compared to the control group. MRP might be an independent prognostic factor in patients with liver cancer by COX regression analysis. MDR3 and MRP may play important roles in liver cancer patients as prognostic factors and their underlying mechanisms in liver cancer are worthy of further investigation.

  3. Expression of leukemia inhibitory factor and leukemia inhibitory factor receptor in the canine pituitary gland and corticotrope adenomas.

    PubMed

    Hanson, J M; Mol, J A; Meij, B P

    2010-05-01

    Leukemia inhibitory factor (LIF) is a pleiotropic cytokine of the IL-6 family that activates the hypothalamic-pituitary-adrenal axis and promotes corticotrope cell differentiation during development. The aim of this study was to investigate the expression of LIF and its receptor (LIFR) in the canine pituitary gland and in corticotrope adenomas, and to perform a mutation analysis of LIFR. Using immunohistochemistry, immunofluorescence, and quantitative expression analysis, LIF and LIFR expression were studied in pituitary glands of control dogs and in specimens of corticotrope adenoma tissue collected through hypophysectomy in dogs with pituitary-dependent hypercortisolism (PDH, Cushing's disease). Using sequence analysis, cDNA was screened for mutations in the LIFR. In the control pituitary tissues and corticotrope adenomas, there was a low magnitude of LIF expression. The LIFR, however, was highly expressed and co-localized with ACTH(1-24) expression. Cytoplasmatic immunoreactivity of LIFR was preserved in corticotrope adenomas and adjacent nontumorous cells of pars intermedia. No mutation was found on mutation analysis of the complete LIFR cDNA. Surprisingly, nuclear to perinuclear immunoreactivity for LIFR was present in nontumorous pituitary cells of the pars distalis in 10 of 12 tissue specimens from PDH dogs. These data show that LIFR is highly co-expressed with adrenocorticotropic hormone (ACTH) and alpha-melanocyte-stimulating hormone (alpha-MSH) in the canine pituitary gland and in corticotrope adenomas. Nuclear immunoreactivity for LIFR in nontumorous cells of the pars distalis may indicate the presence of a corticotrope adenoma. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  4. Epidermal growth factor expression in esophageal adenocarcinoma: a clinically relevant target?

    PubMed

    Harper, Nicholas; Li, Yan; Farmer, Russell; Martin, Robert C G

    2012-05-01

    There has been recent widespread enthusiasm in epidermal growth factor (EGFR) as a molecularly active target in esophageal adenocarcinoma (EAC). However, there is limited data on the extent of EGFR expression in EAC. Thus, the aim of this study was to evaluated EGFR, pErk1/2, and total Erk1/2 expression in malignant and benign specimens. Baseline expression of EGFR in the human normal squamous, Barrett's, and EAC cell lines were determined as well as after bile acid treatment and curcumin pretreatment. In addition, EGFR expression was also evaluated in 60 matched normal and malignant EAC resected specimens. The in vitro studies in the Het-1a, BarT, and OE19 cell lines failed to show any measurable expression of EGFR via Western blot technique. The marker serving as the positive control for the study, MnSOD, showed expression in each cell line for all three treatment regimens at approximately 24 kDa EGFR, showing moderate staining in the malignant tumor specimens and low staining in the benign tissue specimens. pErk1/2 showed low staining in the malignant tumor specimens and no staining in the benign tissue specimens. Total Erk1/2 showed high staining in both the malignant tumor specimens and benign tissue specimens. The differences in the mean staining scores for the malignant versus benign tissue specimens for pErk1/2 and total Erk1/2 are not statistically significant (p = 0.0726 and p = 0.7054, respectively). Thus, in conclusion, EGFR expression has been confirmed to be limited to non-existent in EAC and thus its use as a clinically active target is limited at best. Prior to the use of these expensive anti-EGFR therapies, confirmation of overexpression should be verified.

  5. Platelets release CXCL4L1, a nonallelic variant of the chemokine platelet factor-4/CXCL4 and potent inhibitor of angiogenesis.

    PubMed

    Struyf, Sofie; Burdick, Marie D; Proost, Paul; Van Damme, Jo; Strieter, Robert M

    2004-10-29

    Platelet factor-4 (PF-4)/CXCL4 was the first chemokine described to inhibit neovascularization. Here, the product of the nonallelic variant gene of CXCL4, PF-4var1/PF-4alt, designated CXCL4L1, was isolated for the first time from thrombin-stimulated human platelets and purified to homogeneity. Although secreted CXCL4 and CXCL4L1 differ in only three amino acids, CXCL4L1 was more potent in inhibiting chemotaxis of human microvascular endothelial cells toward interleukin-8 (IL-8)/CXCL8 or basic fibroblast growth factor (bFGF). In vivo, CXCL4L1 was also more effective than CXCL4 in inhibiting bFGF-induced angiogenesis in rat corneas. Thus, activated platelets release CXCL4L1, a potent regulator of endothelial cell biology, which affects angiogenesis and vascular diseases.

  6. Mangiferin inhibits macrophage classical activation via downregulating interferon regulatory factor 5 expression

    PubMed Central

    Wei, Zhiquan; Yan, Li; Chen, Yixin; Bao, Chuanhong; Deng, Jing; Deng, Jiagang

    2016-01-01

    Mangiferin is a natural polyphenol and the predominant effective component of Mangifera indica Linn. leaves. For hundreds of years, Mangifera indica Linn. leaf has been used as an ingredient in numerous traditional Chinese medicine preparations for the treatment of bronchitis. However, the pharmacological mechanism of mangiferin in the treatment of bronchitis remains to be elucidated. Macrophage classical activation is important role in the process of bronchial airway inflammation, and interferon regulatory factor 5 (IRF5) has been identified as a key regulatory factor for macrophage classical activation. The present study used the THP-1 human monocyte cell line to investigate whether mangiferin inhibits macrophage classical activation via suppressing IRF5 expression in vitro. THP-1 cells were differentiated to macrophages by phorbol 12-myristate 13-acetate. Macrophages were polarized to M1 macrophages following stimulation with lipopolysaccharide (LPS)/interferon-γ (IFN-γ). Flow cytometric analysis was conducted to detect the M1 macrophages. Reverse transcription-quantitative polymerase chain reaction was used to investigate cellular IRF5 gene expression. Levels of proinflammatory cytokines and IRF5 were assessed following cell culture and cellular homogenization using enzyme-linked immunosorbent assay. IRF5 protein and nuclei co-localization was performed in macrophages with laser scanning confocal microscope immunofluorescence analysis. The results of the present study demonstrated that mangiferin significantly inhibits LPS/IFN-γ stimulation-induced classical activation of macrophages in vitro and markedly decreases proinflammatory cytokine release. In addition, cellular IRF5 expression was markedly downregulated. These results suggest that the inhibitory effect of mangiferin on classical activation of macrophages may be exerted via downregulation of cellular IRF5 expression levels. PMID:27277156

  7. Chronic ethanol consumption modulates growth factor release, mucosal cytokine production, and microRNA expression in nonhuman primates.

    PubMed

    Asquith, Mark; Pasala, Sumana; Engelmann, Flora; Haberthur, Kristen; Meyer, Christine; Park, Byung; Grant, Kathleen A; Messaoudi, Ilhem

    2014-04-01

    Chronic alcohol consumption has been associated with enhanced susceptibility to both systemic and mucosal infections. However, the exact mechanisms underlying this enhanced susceptibility remain incompletely understood. Using a nonhuman primate model of ethanol (EtOH) self-administration, we examined the impact of chronic alcohol exposure on immune homeostasis, cytokine, and growth factor production in peripheral blood, lung, and intestinal mucosa following 12 months of chronic EtOH exposure. EtOH exposure inhibited activation-induced production of growth factors hepatocyte growth factor (HGF), granulocyte colony-stimulating factor (G-CSF), and vascular-endothelial growth factor (VEGF) by peripheral blood mononuclear cells (PBMC). Moreover, EtOH significantly reduced the frequency of colonic Th1 and Th17 cells in a dose-dependent manner. In contrast, we did not observe differences in lymphocyte frequency or soluble factor production in the lung of EtOH-consuming animals. To uncover mechanisms underlying reduced growth factor and Th1/Th17 cytokine production, we compared expression levels of microRNAs in PBMC and intestinal mucosa. Our analysis revealed EtOH-dependent up-regulation of distinct microRNAs in affected tissues (miR-181a and miR-221 in PBMC; miR-155 in colon). Moreover, we were able to detect reduced expression of the transcription factors STAT3 and ARNT, which regulate expression of VEGF, G-CSF, and HGF and contain targets for these microRNAs. To confirm and extend these observations, PBMC were transfected with either mimics or antagomirs of miR-181 and miR-221, and protein levels of the transcription factors and growth factors were determined. Transfection of microRNA mimics led to a reduction in both STAT3/ARNT as well as VEGF/HGF/G-CSF levels. The opposite outcome was observed when microRNA antagomirs were transfected. Chronic EtOH consumption significantly disrupts both peripheral and mucosal immune homeostasis, and this dysregulation may be

  8. Specificity Protein (Sp) Transcription Factors and Metformin Regulate Expression of the Long Non-coding RNA HULC

    EPA Science Inventory

    There is evidence that specificity protein 1 (Sp1) transcription factor (TF) regulates expression of long non-coding RNAs (lncRNAs) in hepatocellular carcinoma (HCC) cells. RNA interference (RNAi) studies showed that among several lncRNAs expressed in HepG2, SNU-449 and SK-Hep-1...

  9. Epidermal growth factor receptor expression in radiation-induced dog lung tumors by immunocytochemical localization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leung, F.L.; Park, J.F.; Dagle, G.E.

    1993-06-01

    In studies to determine the role of growth factors in radiation-induced lung cancer, epidermal growth factor (EGFR) expression was examined by immunocytochemistry in 51 lung tumors from beagle dogs exposed to inhaled plutonium; 21 of 51 (41%) tumors were positive for EGFR. The traction of tumors positive for EGFR and the histological type of EGFR-positive tumors in the plutonium-exposed dogs were not different from spontaneous dog lung tumors, In which 36% were positive for EGFR. EGFR involvement in Pu-induced lung tumors appeared to be similar to that in spontaneous lung tumors. However, EGFR-positive staining was observed in only 1 ofmore » 16 tumors at the three lowest Pu exposure levels, compared to 20 of 35 tumors staining positive at the two highest Pu exposure levels. The results in dogs were in good agreement with the expression of EGFR reported in human non-small cell carcinoma of the lung, suggesting that Pu-induced lung tumors in the dog may be a suitable animal model to investigate the role of EGFR expression in lung carcinogenesis. In humans, EGFR expression in lung tumors has been primarily related to histological tumor types. In individual dogs with multiple primary lung tumors, the tumors were either all EGFR positive or EGFR negative, suggesting that EGFR expression may be related to the response of the individual dog as well as to the histological type of tumor.« less

  10. Expression of forkhead box transcription factor genes Foxp1 and Foxp2 during jaw development.

    PubMed

    Cesario, Jeffry M; Almaidhan, Asma A; Jeong, Juhee

    2016-03-01

    Development of the face is regulated by a large number of genes that are expressed in temporally and spatially specific patterns. While significant progress has been made on characterizing the genes that operate in the oral region of the face, those regulating development of the aboral (lateral) region remain largely unknown. Recently, we discovered that transcription factors LIM homeobox (LHX) 6 and LHX8, which are key regulators of oral development, repressed the expression of the genes encoding forkhead box transcription factors, Foxp1 and Foxp2, in the oral region. To gain insights into the potential role of the Foxp genes in region-specific development of the face, we examined their expression patterns in the first pharyngeal arch (primordium for the jaw) of mouse embryos at a high spatial and temporal resolution. Foxp1 and Foxp2 were preferentially expressed in the aboral and posterior parts of the first pharyngeal arch, including the developing temporomandibular joint. Through double immunofluorescence and double fluorescent RNA in situ hybridization, we found that Foxp1 was expressed in the progenitor cells for the muscle, bone, and connective tissue. Foxp2 was expressed in subsets of bone and connective tissue progenitors but not in the myoblasts. Neither gene was expressed in the dental mesenchyme nor in the oral half of the palatal shelf undergoing extensive growth and morphogenesis. Together, we demonstrated for the first time that Foxp1 and Foxp2 are expressed during craniofacial development. Our data suggest that the Foxp genes may regulate development of the aboral and posterior regions of the jaw. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Structure and expression of sulfatase and sulfatase modifying factor genes in the diamondback moth, Plutella xylostella.

    PubMed

    Ma, Xiao-Li; He, Wei-Yi; Chen, Wei; Xu, Xue-Jiao; Qi, Wei-Ping; Zou, Ming-Min; You, Yan-Chun; Baxter, Simon W; Wang, Ping; You, Min-Sheng

    2017-06-01

    The diamondback moth, Plutella xylostella (L.), uses sulfatases (SULF) to counteract the glucosinolate-myrosinase defensive system that cruciferous plants have evolved to deter insect feeding. Sulfatase activity is regulated by post-translational modification of a cysteine residue by sulfatase modifying factor 1 (SUMF1). We identified 12 SULF genes (PxylSulfs) and two SUMF1 genes (PxylSumf1s) in the P. xylostella genome. Phylogenetic analysis of SULFs and SUMFs from P. xylostella, Bombyx mori, Manduca sexta, Heliconius melpomene, Danaus plexippus, Drosophila melanogaster, Tetranychus urticae and Homo sapiens showed that the SULFs were clustered into five groups, and the SUMFs could be divided into two groups. Profiling of the expression of PxylSulfs and PxylSumfs by RNA-seq and by quantitative real-time polymerase chain reaction showed that two glucosinolate sulfatase genes (GSS), PxylSulf2 and PxylSulf3, were primarily expressed in the midgut of 3rd- and 4th-instar larvae. Moreover, expression of sulfatases PxylSulf2, PxylSulf3 and PxylSulf4 were correlated with expression of the sulfatases modifying factor PxylSumf1a. The findings from this study provide new insights into the structure and expression of SUMF1 and PxylSulf genes that are considered to be key factors for the evolutionary success of P. xylostella as a specialist herbivore of cruciferous plants. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  12. Transcription Factors Runx1 to 3 Are Expressed in the Lacrimal Gland Epithelium and Are Involved in Regulation of Gland Morphogenesis and Regeneration

    PubMed Central

    Voronov, Dmitry; Gromova, Anastasia; Liu, Daren; Zoukhri, Driss; Medvinsky, Alexander; Meech, Robyn; Makarenkova, Helen P.

    2013-01-01

    Purpose. Lacrimal gland (LG) morphogenesis and repair are regulated by a complex interplay of intrinsic factors (e.g., transcription factors) and extrinsic signals (e.g., soluble growth/signaling factors). Many of these interconnections remain poorly characterized. Runt-related (Runx) factors belong to a small family of heterodimeric transcription factors known to regulate lineage-specific proliferation and differentiation of stem cells. The purpose of this study was to define the expression pattern and the role of Runx proteins in LG development and regeneration. Methods. Expression of epithelial-restricted transcription factors in murine LG was examined using immunostaining, qRT-PCR, and RT2Profiler PCR microarrays. The role of Runx transcription factors in LG morphogenesis was studied using siRNA and ex vivo LG cultures. Expression of Runx transcription factors during LG regeneration was assessed using in vivo model of LG regeneration. Results. We found that Runx factors are expressed in the epithelial compartment of the LG; in particular, Runx1 was restricted to the epithelium with highest level of expression in ductal and centroacinar cells. Downregulation of Runx1 to 3 expression using Runx-specific siRNAs abolished LG growth and branching and our data suggest that Runx1, 2, and 3 are partially redundant in LG development. In siRNA-treated LG, reduction of branching correlated with reduction of epithelial proliferation, as well as expression of cyclin D1 and the putative epithelial progenitor cell marker cytokeratin-5. Runx1, Runx3, and cytokeratin-5 expression increased significantly in regenerating LG and there was modest increase in Runx2 expression during LG differentiation. Conclusions. Runx1 and 2 are new markers of the LG epithelial lineage and Runx factors are important for normal LG morphogenesis and regeneration. PMID:23532528

  13. Epidermal growth factor receptor expression in different subtypes of oral lichenoid disease.

    PubMed

    Cortés-Ramírez, Dionisio-Alejandro; Rodríguez-Tojo, María-Jose; Coca-Meneses, Juan-Carlos; Marichalar-Mendia, Xabier; Aguirre-Urizar, José-Manuel

    2014-09-01

    The oral lichenoid disease (OLD) includes different chronic inflammatory processes such as oral lichen planus (OLP) and oral lichenoid lesions (OLL), both entities with controversial diagnosis and malignant potential. Epidermal growth factor receptor (EFGR) is an important oral carcinogenesis biomarker and overexpressed in several oral potentially malignant disorders. To analyze the EGFR expression in the OLD to find differences between OLP and OLL, and to correlate it with the main clinical and pathological features. Forty-four OLD cases were studied and classified according to their clinical (Group C1: only papular lesions / Group C2: papular and other lesions) and histopathological features (Group HT: OLP-typical / Group HC: OLP-compatible) based in previous published criteria. Standard immunohistochemical identification of EGFR protein was performed. Comparative and descriptive statistical analyses were performed. Thirty-five cases (79.5%) showed EGFR overexpression without significant differences between clinical and histopathological groups (p<0.05). Histological groups showed significant differences in the EGFR expression pattern (p=0.016). Conlusions: All OLD samples showed high EGFR expression. The type of clinical lesion was not related with EGFR expression; however, there are differences in the EGFR expression pattern between histological groups that may be related with a different biological profile and malignant risk.

  14. Transcription Factors Encoded on Core and Accessory Chromosomes of Fusarium oxysporum Induce Expression of Effector Genes

    PubMed Central

    van der Does, H. Charlotte; Schmidt, Sarah M.; Langereis, Léon; Hughes, Timothy R.

    2016-01-01

    Proteins secreted by pathogens during host colonization largely determine the outcome of pathogen-host interactions and are commonly called ‘effectors’. In fungal plant pathogens, coordinated transcriptional up-regulation of effector genes is a key feature of pathogenesis and effectors are often encoded in genomic regions with distinct repeat content, histone code and rate of evolution. In the tomato pathogen Fusarium oxysporum f. sp. lycopersici (Fol), effector genes reside on one of four accessory chromosomes, known as the ‘pathogenicity’ chromosome, which can be exchanged between strains through horizontal transfer. The three other accessory chromosomes in the Fol reference strain may also be important for virulence towards tomato. Expression of effector genes in Fol is highly up-regulated upon infection and requires Sge1, a transcription factor encoded on the core genome. Interestingly, the pathogenicity chromosome itself contains 13 predicted transcription factor genes and for all except one, there is a homolog on the core genome. We determined DNA binding specificity for nine transcription factors using oligonucleotide arrays. The binding sites for homologous transcription factors were highly similar, suggesting that extensive neofunctionalization of DNA binding specificity has not occurred. Several DNA binding sites are enriched on accessory chromosomes, and expression of FTF1, its core homolog FTF2 and SGE1 from a constitutive promoter can induce expression of effector genes. The DNA binding sites of only these three transcription factors are enriched among genes up-regulated during infection. We further show that Ftf1, Ftf2 and Sge1 can activate transcription from their binding sites in yeast. RNAseq analysis revealed that in strains with constitutive expression of FTF1, FTF2 or SGE1, expression of a similar set of plant-responsive genes on the pathogenicity chromosome is induced, including most effector genes. We conclude that the Fol

  15. Epidermal Growth Factor Receptor (EGFR) mutation analysis, gene expression profiling and EGFR protein expression in primary prostate cancer

    PubMed Central

    2011-01-01

    Background Activating mutations of the epidermal growth factor receptor (EGFR) confer sensitivity to the tyrosine kinase inhibitors (TKi), gefitinib and erlotinib. We analysed EGFR expression, EGFR mutation status and gene expression profiles of prostate cancer (PC) to supply a rationale for EGFR targeted therapies in this disease. Methods Mutational analysis of EGFR TK domain (exons from 18 to 21) and immunohistochemistry for EGFR were performed on tumour tissues derived from radical prostatectomy from 100 PC patients. Gene expression profiling using oligo-microarrays was also carried out in 51 of the PC samples. Results EGFR protein overexpression (EGFRhigh) was found in 36% of the tumour samples, and mutations were found in 13% of samples. Patients with EGFRhigh tumours experienced a significantly increased risk of biochemical relapse (hazard ratio-HR 2.52, p=0.02) compared with patients with tumours expressing low levels of EGFR (EGFRlow). Microarray analysis did not reveal any differences in gene expression between EGFRhigh and EGFRlow tumours. Conversely, in EGFRhigh tumours, we were able to identify a 79 gene signature distinguishing mutated from non-mutated tumours. Additionally, 29 genes were found to be differentially expressed between mutated/EGFRhigh (n=3) and mutated/EGFRlow tumours (n=5). Four of the down-regulated genes, U19/EAF2, ABCC4, KLK3 and ANXA3 and one of the up-regulated genes, FOXC1, are involved in PC progression. Conclusions Based on our findings, we hypothesize that accurate definition of the EGFR status could improve prognostic stratification and we suggest a possible role for EGFR-directed therapies in PC patients. Having been generated in a relatively small sample of patients, our results warrant confirmation in larger series. PMID:21266046

  16. Epidermal Growth Factor Receptor (EGFR) mutation analysis, gene expression profiling and EGFR protein expression in primary prostate cancer.

    PubMed

    Peraldo-Neia, Caterina; Migliardi, Giorgia; Mello-Grand, Maurizia; Montemurro, Filippo; Segir, Raffaella; Pignochino, Ymera; Cavalloni, Giuliana; Torchio, Bruno; Mosso, Luciano; Chiorino, Giovanna; Aglietta, Massimo

    2011-01-25

    Activating mutations of the epidermal growth factor receptor (EGFR) confer sensitivity to the tyrosine kinase inhibitors (TKi), gefitinib and erlotinib. We analysed EGFR expression, EGFR mutation status and gene expression profiles of prostate cancer (PC) to supply a rationale for EGFR targeted therapies in this disease. Mutational analysis of EGFR TK domain (exons from 18 to 21) and immunohistochemistry for EGFR were performed on tumour tissues derived from radical prostatectomy from 100 PC patients. Gene expression profiling using oligo-microarrays was also carried out in 51 of the PC samples. EGFR protein overexpression (EGFRhigh) was found in 36% of the tumour samples, and mutations were found in 13% of samples. Patients with EGFRhigh tumours experienced a significantly increased risk of biochemical relapse (hazard ratio-HR 2.52, p=0.02) compared with patients with tumours expressing low levels of EGFR (EGFRlow). Microarray analysis did not reveal any differences in gene expression between EGFRhigh and EGFRlow tumours. Conversely, in EGFRhigh tumours, we were able to identify a 79 gene signature distinguishing mutated from non-mutated tumours. Additionally, 29 genes were found to be differentially expressed between mutated/EGFRhigh (n=3) and mutated/EGFRlow tumours (n=5). Four of the down-regulated genes, U19/EAF2, ABCC4, KLK3 and ANXA3 and one of the up-regulated genes, FOXC1, are involved in PC progression. Based on our findings, we hypothesize that accurate definition of the EGFR status could improve prognostic stratification and we suggest a possible role for EGFR-directed therapies in PC patients. Having been generated in a relatively small sample of patients, our results warrant confirmation in larger series.

  17. Insulin-Like Growth Factors Are Expressed in the Taste System, but Do Not Maintain Adult Taste Buds.

    PubMed

    Biggs, Bradley T; Tang, Tao; Krimm, Robin F

    2016-01-01

    Growth factors regulate cell growth and differentiation in many tissues. In the taste system, as yet unknown growth factors are produced by neurons to maintain taste buds. A number of growth factor receptors are expressed at greater levels in taste buds than in the surrounding epithelium and may be receptors for candidate factors involved in taste bud maintenance. We determined that the ligands of eight of these receptors were expressed in the E14.5 geniculate ganglion and that four of these ligands were expressed in the adult geniculate ganglion. Of these, the insulin-like growth factors (IGF1, IGF2) were expressed in the ganglion and their receptor, insulin-like growth factor receptor 1 (IGF1R), were expressed at the highest levels in taste buds. To determine whether IGF1R regulates taste bud number or structure, we conditionally eliminated IGF1R from the lingual epithelium of mice using the keratin 14 (K14) promoter (K14-Cre::Igf1rlox/lox). While K14-Cre::Igf1rlox/lox mice had significantly fewer taste buds at P30 compared with control mice (Igf1rlox/lox), this difference was not observed by P80. IGF1R removal did not affect taste bud size or cell number, and the number of phospholipase C β2- (PLCβ2) and carbonic anhydrase 4- (Car4) positive taste receptor cells did not differ between genotypes. Taste buds at the back of the tongue fungiform taste field were larger and contained more cells than those at the tongue tip, and these differences were diminished in K14-Cre::Igf1rlox/lox mice. The epithelium was thicker at the back versus the tip of the tongue, and this difference was also attenuated in K14-Cre::Igf1rlox/lox mice. We conclude that, although IGFs are expressed at high levels in the taste system, they likely play little or no role in maintaining adult taste bud structure. IGFs have a potential role in establishing the initial number of taste buds, and there may be limits on epithelial thickness in the absence of IGF1R signaling.

  18. Insulin-Like Growth Factors Are Expressed in the Taste System, but Do Not Maintain Adult Taste Buds

    PubMed Central

    Biggs, Bradley T.; Tang, Tao; Krimm, Robin F.

    2016-01-01

    Growth factors regulate cell growth and differentiation in many tissues. In the taste system, as yet unknown growth factors are produced by neurons to maintain taste buds. A number of growth factor receptors are expressed at greater levels in taste buds than in the surrounding epithelium and may be receptors for candidate factors involved in taste bud maintenance. We determined that the ligands of eight of these receptors were expressed in the E14.5 geniculate ganglion and that four of these ligands were expressed in the adult geniculate ganglion. Of these, the insulin-like growth factors (IGF1, IGF2) were expressed in the ganglion and their receptor, insulin-like growth factor receptor 1 (IGF1R), were expressed at the highest levels in taste buds. To determine whether IGF1R regulates taste bud number or structure, we conditionally eliminated IGF1R from the lingual epithelium of mice using the keratin 14 (K14) promoter (K14-Cre::Igf1rlox/lox). While K14-Cre::Igf1rlox/lox mice had significantly fewer taste buds at P30 compared with control mice (Igf1rlox/lox), this difference was not observed by P80. IGF1R removal did not affect taste bud size or cell number, and the number of phospholipase C β2- (PLCβ2) and carbonic anhydrase 4- (Car4) positive taste receptor cells did not differ between genotypes. Taste buds at the back of the tongue fungiform taste field were larger and contained more cells than those at the tongue tip, and these differences were diminished in K14-Cre::Igf1rlox/lox mice. The epithelium was thicker at the back versus the tip of the tongue, and this difference was also attenuated in K14-Cre::Igf1rlox/lox mice. We conclude that, although IGFs are expressed at high levels in the taste system, they likely play little or no role in maintaining adult taste bud structure. IGFs have a potential role in establishing the initial number of taste buds, and there may be limits on epithelial thickness in the absence of IGF1R signaling. PMID:26901525

  19. Problem-Based Test: The Effect of Fibroblast Growth Factor on Gene Expression

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2011-01-01

    This paper shows the results of an experiment in which the effects of fibroblast growth factor (FGF), actinomycin D (Act D; an inhibitor of transcription), and cycloheximide (CHX; an inhibitor of translation) were studied on the expression of two genes: a gene called "Fnk" and the gene coding for glyceraldehyde-3-phosphate dehydrogenase (GAPDH).…

  20. c-kit expression profile and regulatory factors during spermatogonial stem cell differentiation

    PubMed Central

    2013-01-01

    Background It has been proven that c-kit is crucial for proliferation, migration, survival and maturation of spermatogenic cells. A periodic expression of c-kit is observed from primordial germ cells (PGCs) to spermatogenetic stem cells (SSCs), However, the expression profile of c-kit during the entire spermatogenesis process is still unclear. This study aims to reveal and compare c-kit expression profiles in the SSCs before and after the anticipated differentiation, as well as to examine its relationship with retinoic acid (RA) stimulation. Results We have found that there are more than 4 transcripts of c-kit expressed in the cell lines and in the testes. The transcripts can be divided into short and long categories. The long transcripts include the full-length canonical c-kit transcript and the 3′ end short transcript. Short transcripts include the 3.4 kb short transcript and several truncated transcripts (1.9-3.2 kb). In addition, the 3.4 kb transcript (starting from intron 9 and covering exons 10 ~ 21) is discovered to be specifically expressed in the spermatogonia. The extracellular domain of Kit is obtained in the spermatogonia stage, but the intracellular domain (50 kDa) is constantly expressed in both SSCs and spermatogonia. The c-kit expression profiles in the testis and the spermatogonial stem cell lines vary after RA stimulation. The wave-like changes of the quantitative expression pattern of c-kit (increase initially and decrease afterwards) during the induction process are similar to that of the in vivo male germ cell development process. Conclusions There are dynamic transcription and translation changes of c-kit before and after SSCs’ anticipated differentiation and most importantly, RA is a significant upstream regulatory factor for c-kit expression. PMID:24161026

  1. Low-intensity treadmill exercise promotes rat dorsal wound healing.

    PubMed

    Zhou, Wu; Liu, Guo-hui; Yang, Shu-hua; Mi, Bo-bin; Ye, Shu-nan

    2016-02-01

    In order to investigate the promoting effect of low-intensity treadmill exercise on rat dorsal wound healing and the mechanism, 20 Sprague-Dawley rats were randomly divided into two groups: exercise group (Ex) and non-exercise group (non-ex). The rats in Ex group were given treadmill exercise for one month, and those in non-ex group raised on the same conditions without treadmill exercise. Both groups received dorsal wound operation with free access to food and water. By two-week continuous observation and recording of the wound area, the healing rate was analyzed. The blood sample was collected at day 14 post-operation via cardiac puncture for determination of the number of endothelial progenitor cells (EPCs) by flow cytometry, and the concentrations of relevant cytokines such as basic fibroblast growth factor (bFGF), endothelial nitric oxide synthase (eNOS) and vascular endothelial growth factor (VEGF) were measured by ELISA. The skin tissue around the wound was dissected to observe the vascular density under the microscope after HE staining, to detect the mRNA level of VEGFR2 and angiopoietin-1 (Ang-1) receptor using RT-qPCR, and protein expression of a-smooth muscle actin (αSMA) and type III collagen (ColIII) using Western blotting. It was found that the wound area in Ex group was smaller at the same time point than in non-ex group. The number of circulating EPCs was greater and the concentrations of vasoactive factors such as VEGF, eNOS and bFGF were higher in Ex group than in non-ex group. HE staining displayed a higher vessel density in Ex group than in non-ex group. Moreover, the mRNA expression of VEGFR2 and Ang-1 detected in the wound tissue in Ex group was higher than in non-ex group. Meanwhile, the protein expression of αSMA and ColIII was more abundant in Ex group than in non-ex group. Conclusively, the above results demonstrate Ex rats had a higher wound healing rate, suggesting low-intensity treadmill exercise accelerates wound healing. The present

  2. Elevated transcription factor specificity protein 1 in autistic brains alters the expression of autism candidate genes.

    PubMed

    Thanseem, Ismail; Anitha, Ayyappan; Nakamura, Kazuhiko; Suda, Shiro; Iwata, Keiko; Matsuzaki, Hideo; Ohtsubo, Masafumi; Ueki, Takatoshi; Katayama, Taiichi; Iwata, Yasuhide; Suzuki, Katsuaki; Minoshima, Shinsei; Mori, Norio

    2012-03-01

    Profound changes in gene expression can result from abnormalities in the concentrations of sequence-specific transcription factors like specificity protein 1 (Sp1). Specificity protein 1 binding sites have been reported in the promoter regions of several genes implicated in autism. We hypothesize that dysfunction of Sp1 could affect the expression of multiple autism candidate genes, contributing to the heterogeneity of autism. We assessed any alterations in the expression of Sp1 and that of autism candidate genes in the postmortem brain (anterior cingulate gyrus [ACG], motor cortex, and thalamus) of autism patients (n = 8) compared with healthy control subjects (n = 13). Alterations in the expression of candidate genes upon Sp1/DNA binding inhibition with mithramycin and Sp1 silencing by RNAi were studied in SK-N-SH neuronal cells. We observed elevated expression of Sp1 in ACG of autism patients (p = .010). We also observed altered expression of several autism candidate genes. GABRB3, RELN, and HTR2A showed reduced expression, whereas CD38, ITGB3, MAOA, MECP2, OXTR, and PTEN showed elevated expression in autism. In SK-N-SH cells, OXTR, PTEN, and RELN showed reduced expression upon Sp1/DNA binding inhibition and Sp1 silencing. The RNA integrity number was not available for any of the samples. Transcription factor Sp1 is dysfunctional in the ACG of autistic brain. Consequently, the expression of potential autism candidate genes regulated by Sp1, especially OXTR and PTEN, could be affected. The diverse downstream pathways mediated by the Sp1-regulated genes, along with the environmental and intracellular signal-related regulation of Sp1, could explain the complex phenotypes associated with autism.

  3. Effect of mitomycin on normal dermal fibroblast and HaCat cell: an in vitro study

    PubMed Central

    Wang, Yao-wen; Ren, Ji-hao; Xia, Kun; Wang, Shu-hui; Yin, Tuan-fang; Xie, Ding-hua; Li, Li-hua

    2012-01-01

    Objective: To evaluate the effects of mitomycin on the growth of human dermal fibroblast and immortalized human keratinocyte line (HaCat cell), particularly the effect of mitomycin on intracellular messenger RNA (mRNA) synthesis of collagen and growth factors of fibroblast. Methods: The normal dermal fibroblast and HaCat cell were cultured in vitro. Cell cultures were exposed to 0.4 and 0.04 mg/ml of mitomycin solution, and serum-free culture medium was used as control. The cellular morphology change, growth characteristics, cell proliferation, and apoptosis were observed at different intervals. For the fibroblasts, the mRNA expression changes of transforming growth factor (TGF)-β1, basic fibroblast growth factor (bFGF), procollagen I, and III were detected by reverse transcription polymerase chain reaction (RT-PCR). Results: The cultured normal human skin fibroblast and HaCat cell grew exponentially. A 5-min exposure to mitomycin at either 0.4 or 0.04 mg/ml caused marked dose-dependent cell proliferation inhibition on both fibroblasts and HaCat cells. Cell morphology changed, cell density decreased, and the growth curves were without an exponential phase. The fibroblast proliferated on the 5th day after the 5-min exposure of mitomycin at 0.04 mg/ml. Meanwhile, 5-min application of mitomycin at either 0.04 or 0.4 mg/ml induced fibroblast apoptosis but not necrosis. The apoptosis rate of the fibroblast increased with a higher concentration of mytomycin (p<0.05). A 5-min exposure to mitomycin at 0.4 mg/ml resulted in a marked decrease in the mRNA production of TGF-β1, procollagen I and III, and a marked increase in the mRNA production of bFGF. Conclusions: Mitomycin can inhibit fibroblast proliferation, induce fibroblast apoptosis, and regulate intracellular protein expression on mRNA levels. In additon, mitomycin can inhibit HaCat cell proliferation, so epithelial cell needs more protecting to avoid mitomycin’s side effect when it is applied clinically. PMID

  4. Global transcriptional regulatory network for Escherichia coli robustly connects gene expression to transcription factor activities

    PubMed Central

    Fang, Xin; Sastry, Anand; Mih, Nathan; Kim, Donghyuk; Tan, Justin; Lloyd, Colton J.; Gao, Ye; Yang, Laurence; Palsson, Bernhard O.

    2017-01-01

    Transcriptional regulatory networks (TRNs) have been studied intensely for >25 y. Yet, even for the Escherichia coli TRN—probably the best characterized TRN—several questions remain. Here, we address three questions: (i) How complete is our knowledge of the E. coli TRN; (ii) how well can we predict gene expression using this TRN; and (iii) how robust is our understanding of the TRN? First, we reconstructed a high-confidence TRN (hiTRN) consisting of 147 transcription factors (TFs) regulating 1,538 transcription units (TUs) encoding 1,764 genes. The 3,797 high-confidence regulatory interactions were collected from published, validated chromatin immunoprecipitation (ChIP) data and RegulonDB. For 21 different TF knockouts, up to 63% of the differentially expressed genes in the hiTRN were traced to the knocked-out TF through regulatory cascades. Second, we trained supervised machine learning algorithms to predict the expression of 1,364 TUs given TF activities using 441 samples. The algorithms accurately predicted condition-specific expression for 86% (1,174 of 1,364) of the TUs, while 193 TUs (14%) were predicted better than random TRNs. Third, we identified 10 regulatory modules whose definitions were robust against changes to the TRN or expression compendium. Using surrogate variable analysis, we also identified three unmodeled factors that systematically influenced gene expression. Our computational workflow comprehensively characterizes the predictive capabilities and systems-level functions of an organism’s TRN from disparate data types. PMID:28874552

  5. Environmental contaminants and microRNA regulation: Transcription factors as regulators of toxicant-altered microRNA expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sollome, James; Martin, Elizabeth

    MicroRNAs (miRNAs) regulate gene expression by binding mRNA and inhibiting translation and/or inducing degradation of the associated transcripts. Expression levels of miRNAs have been shown to be altered in response to environmental toxicants, thus impacting cellular function and influencing disease risk. Transcription factors (TFs) are known to be altered in response to environmental toxicants and play a critical role in the regulation of miRNA expression. To date, environmentally-responsive TFs that are important for regulating miRNAs remain understudied. In a state-of-the-art analysis, we utilized an in silico bioinformatic approach to characterize potential transcriptional regulators of environmentally-responsive miRNAs. Using the miRStart database,more » genomic sequences of promoter regions for all available human miRNAs (n = 847) were identified and promoter regions were defined as − 1000/+500 base pairs from the transcription start site. Subsequently, the promoter region sequences of environmentally-responsive miRNAs (n = 128) were analyzed using enrichment analysis to determine overrepresented TF binding sites (TFBS). While most (56/73) TFs differed across environmental contaminants, a set of 17 TFs was enriched for promoter binding among miRNAs responsive to numerous environmental contaminants. Of these, one TF was common to miRNAs altered by the majority of environmental contaminants, namely SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily A, member 3 (SMARCA3). These identified TFs represent candidate common transcriptional regulators of miRNAs perturbed by environmental toxicants. - Highlights: • Transcription factors that regulate environmentally-modulated miRNA expression are understudied • Transcription factor binding sites (TFBS) located within DNA promoter regions of miRNAs were identified. • Specific transcription factors may serve as master regulators of environmentally-mediated microRNA expression.« less

  6. Gene expression analysis of growth factor receptors in human chondrocytes in monolayer and 3D pellet cultures

    PubMed Central

    Witt, Anika; Salamon, Achim; Boy, Diana; Hansmann, Doris; Büttner, Andreas; Wree, Andreas; Bader, Rainer; Jonitz-Heincke, Anika

    2017-01-01

    The main goal of cartilage repair is to create functional tissue by enhancing the in vitro conditions to more physiological in vivo conditions. Chondrogenic growth factors play an important role in influencing cartilage homeostasis. Insulin-like growth factor (IGF)-1 and transforming growth factor (TGF)-β1 affect the expression of collagen type II (Col2) and glycosaminoglycans (GAGs) and, therefore, the targeted use of growth factors could make chondrogenic redifferentiation more efficient. In the present study, human chondrocytes were postmortally isolated from healthy articular cartilage and cultivated as monolayer or 3D pellet cultures either under normoxia or hypoxia and stimulated with IGF-1 and/or TGF-β1 to compare the impact of the different growth factors. The mRNA levels of the specific receptors (IGF1R, TGFBR1, TGFBR2) were analyzed at different time points. Moreover, gene expression rates of collagen type 1 and 2 in pellet cultures were observed over a period of 5 weeks. Additionally, hyaline-like Col2 protein and sulphated GAG (sGAG) levels were quantified. Stimulation with IGF-1 resulted in an enhanced expression of IGF1R and TGFBR2 whereas TGF-β1 stimulated TGFBR1 in the monolayer and pellet cultures. In monolayer, the differences reached levels of significance. This effect was more pronounced under hypoxic culture conditions. In pellet cultures, increased amounts of Col2 protein and sGAGs after incubation with TGF-β1 and/or IGF-1 were validated. In summary, constructing a gene expression profile regarding mRNA levels of specific growth factor receptors in monolayer cultures could be helpful for a targeted application of growth factors in cartilage tissue engineering. PMID:28534942

  7. Chronic Ethanol consumption modulates growth factor release, mucosal cytokine production and microRNA expression in nonhuman primates

    PubMed Central

    Asquith, Mark; Pasala, Sumana; Engelmann, Flora; Haberthur, Kristen; Meyer, Christine; Park, Byung; Grant, Kathleen A.; Messaoudi, Ilhem

    2013-01-01

    BACKGROUND Chronic alcohol consumption has been associated with enhanced susceptibility to both systemic and mucosal infections. However, the exact mechanisms underlying this enhanced susceptibility remain incompletely understood. METHODS Using a nonhuman primate model of ethanol self-administration, we examined the impact of chronic alcohol exposure on immune homeostasis, cytokine and growth factor production in peripheral blood, lung and intestinal mucosa following twelve months of chronic ethanol exposure. RESULTS Ethanol exposure inhibited activation-induced production of growth factors HGF, G-CSF and VEGF by peripheral blood mononuclear cells (PBMC). Moreover, ethanol significantly reduced the frequency of colonic Th1 and Th17 cells in a dose-dependent manner. In contrast, we did not observe differences in lymphocyte frequency or soluble factor production in the lung of ethanol-consuming animals. To uncover mechanisms underlying reduced growth factor and Th1/Th17 cytokine production, we compared expression levels of microRNAs in PBMC and intestinal mucosa. Our analysis revealed ethanol-dependent upregulation of distinct microRNAs in affected tissues (miR-181a and miR-221 in PBMC; miR-155 in colon). Moreover, we were able to detect reduced expression of the transcription factors STAT3 and ARNT, which regulate expression of VEGF, G-CSF and HGF and contain targets for these microRNAs. To confirm and extend these observations, PBMC were transfected with either mimics or antagomirs of miR181 and 221and protein levels of the transcription factors and growth factors were determined. Transfection of microRNA mimics led to a reduction in both STAT-3/ARNT as well as VEGF/HGF/G-CSF levels. The opposite outcome was observed when microRNA antagomirs were transfected CONCLUSION Chronic ethanol consumption significantly disrupts both peripheral and mucosal immune homeostasis, and this dysregulation may be mediated by changes in microRNA expression. PMID:24329418

  8. Low-Intensity Extracorporeal Shock Wave Therapy Enhances Brain-Derived Neurotrophic Factor Expression through PERK/ATF4 Signaling Pathway.

    PubMed

    Wang, Bohan; Ning, Hongxiu; Reed-Maldonado, Amanda B; Zhou, Jun; Ruan, Yajun; Zhou, Tie; Wang, Hsun Shuan; Oh, Byung Seok; Banie, Lia; Lin, Guiting; Lue, Tom F

    2017-02-16

    Low-intensity extracorporeal shock wave therapy (Li-ESWT) is used in the treatment of erectile dysfunction, but its mechanisms are not well understood. Previously, we found that Li-ESWT increased the expression of brain-derived neurotrophic factor (BDNF). Here we assessed the underlying signaling pathways in Schwann cells in vitro and in penis tissue in vivo after nerve injury. The result indicated that BDNF were significantly increased by the Li-ESWT after nerve injury, as well as the expression of BDNF in Schwann cells (SCs, RT4-D6P2T) in vitro. Li-ESWT activated the protein kinase RNA-like endoplasmic reticulum (ER) kinase (PERK) pathway by increasing the phosphorylation levels of PERK and eukaryotic initiation factor 2a (eIF2α), and enhanced activating transcription factor 4 (ATF4) in an energy-dependent manner. In addition, GSK2656157-an inhibitor of PERK-effectively inhibited the effect of Li-ESWT on the phosphorylation of PERK, eIF2α, and the expression of ATF4. Furthermore, silencing ATF4 dramatically attenuated the effect of Li-ESWT on the expression of BDNF, but had no effect on hypoxia-inducible factor (HIF)1α or glial cell-derived neurotrophic factor (GDNF) in Schwann cells. In conclusion, our findings shed new light on the underlying mechanisms by which Li-ESWT may stimulate the expression of BDNF through activation of PERK/ATF4 signaling pathway. This information may help to refine the use of Li-ESWT to further improve its clinical efficacy.

  9. Low-Intensity Extracorporeal Shock Wave Therapy Enhances Brain-Derived Neurotrophic Factor Expression through PERK/ATF4 Signaling Pathway

    PubMed Central

    Wang, Bohan; Ning, Hongxiu; Reed-Maldonado, Amanda B.; Zhou, Jun; Ruan, Yajun; Zhou, Tie; Wang, Hsun Shuan; Oh, Byung Seok; Banie, Lia; Lin, Guiting; Lue, Tom F.

    2017-01-01

    Low-intensity extracorporeal shock wave therapy (Li-ESWT) is used in the treatment of erectile dysfunction, but its mechanisms are not well understood. Previously, we found that Li-ESWT increased the expression of brain-derived neurotrophic factor (BDNF). Here we assessed the underlying signaling pathways in Schwann cells in vitro and in penis tissue in vivo after nerve injury. The result indicated that BDNF were significantly increased by the Li-ESWT after nerve injury, as well as the expression of BDNF in Schwann cells (SCs, RT4-D6P2T) in vitro. Li-ESWT activated the protein kinase RNA-like endoplasmic reticulum (ER) kinase (PERK) pathway by increasing the phosphorylation levels of PERK and eukaryotic initiation factor 2a (eIF2α), and enhanced activating transcription factor 4 (ATF4) in an energy-dependent manner. In addition, GSK2656157—an inhibitor of PERK—effectively inhibited the effect of Li-ESWT on the phosphorylation of PERK, eIF2α, and the expression of ATF4. Furthermore, silencing ATF4 dramatically attenuated the effect of Li-ESWT on the expression of BDNF, but had no effect on hypoxia-inducible factor (HIF)1α or glial cell-derived neurotrophic factor (GDNF) in Schwann cells. In conclusion, our findings shed new light on the underlying mechanisms by which Li-ESWT may stimulate the expression of BDNF through activation of PERK/ATF4 signaling pathway. This information may help to refine the use of Li-ESWT to further improve its clinical efficacy. PMID:28212323

  10. Prognostic Factors and Expression of MDM2 in Patients with Primary Extremity Liposarcoma

    PubMed Central

    Júnior, Rosalvo Zósimo Bispo; de Camargo, Olavo Pires; de Oliveira, Cláudia Regina G. C. M.; Filippi, Renée Zon; Baptista, André Mathias; Caiero, Marcelo Tadeu

    2008-01-01

    OBJECTIVE The objective of this study was to investigate MDM2 (murine double minute 2) protein expression and evaluate its relationship with some anatomical and pathological aspects, aiming also to identify prognostic factors concerning local recurrence-free survival, metastasis-free survival and overall survival in patients with primary liposarcomas of the extremities. MATERIALS AND METHODS Of 50 patients with primary liposarcomas of the extremities admitted to a Reference Service, between 1968 and 2004, 25 were enrolled in the study, following eligibility and exclusion criteria. RESULTS The adverse factors that influenced the risk for local recurrence in the univariant analysis included male sex (P = 0.023), pleomorphic histological subtype (P = 0.027), and high histological grade (P = 0.007). Concerning metastasis-free survival, age less than 50 years (P = 0.040), male sex (P = 0.040), pleomorphic subtype (P < 0.001), and high histological grade (P = 0.003) had a worse prognosis. Adverse factors for overall survival were age under 50 years (P = 0.040), male sex (P = 0.040), pleomorphic subtype (P < 0.001), and high histological grade (P = 0.003). CONCLUSIONS There was no correlation between immunohistochemically observed MDM2 protein expressions and the anatomical and pathological variables studied. The immunohistochemical expression of MDM2 protein was not considered to have a prognostic value for any of the surviving patients in this study (local recurrence-free survival, metastasis-free survival, or overall survival). The immunoexpression of MDM2 protein was a frequent event in the different subtypes of liposarcomas. PMID:18438568

  11. Stage-specific control of connective tissue growth factor (CTGF/CCN2) expression in chondrocytes by Sox9 and beta-catenin.

    PubMed

    Huang, Bau-Lin; Brugger, Sean M; Lyons, Karen M

    2010-09-03

    CCN2/connective tissue growth factor is highly expressed in hypertrophic chondrocytes and is required for chondrogenesis. However, the transcriptional mechanisms controlling its expression in cartilage are largely unknown. The activity of the Ccn2 promoter was, therefore, investigated in osteochondro-progenitor cells and hypertrophic chondrocytes to ascertain these mechanisms. Sox9 and T-cell factor (TCF) x lymphoid enhancer factor (LEF) factors contain HMG domains and bind to related consensus sites. TCF x LEF factors are normally repressive but when bound to DNA in a complex with beta-catenin become activators of gene expression. In silico analysis of the Ccn2 proximal promoter identified multiple consensus TCF x LEF elements, one of which was also a consensus binding site for Sox9. Using luciferase reporter constructs, the TCF x LEF x Sox9 site was found to be involved in stage-specific expression of Ccn2. Luciferase, electrophoretic mobility shift assay (EMSA), and ChIP analysis revealed that Sox9 represses Ccn2 expression by binding to the consensus TCF x LEF x Sox9 site. On the other hand, the same assays showed that in hypertrophic chondrocytes, TCF x LEF x beta-catenin complexes occupy the consensus TCF x LEF x Sox9 site and activate Ccn2 expression. Furthermore, transgenic mice in which lacZ expression is driven under the control of the proximal Ccn2 promoter revealed that the proximal Ccn2 promoter responded to Wnt signaling in cartilage. Hence, we propose that differential occupancy of the TCF x LEF x Sox9 site by Sox9 versus beta-catenin restricts high levels of Ccn2 expression to hypertrophic chondrocytes.

  12. Liposomal gene transfer of keratinocyte growth factor improves wound healing by altering growth factor and collagen expression.

    PubMed

    Pereira, Clifford T; Herndon, David N; Rocker, Roland; Jeschke, Marc G

    2007-05-15

    Growth factors affect the complex cascade of wound healing; however, interaction between different growth factors during dermal and epidermal regeneration are still not entirely defined. In the present study, we thought to determine the interaction between keratinocyte growth factor (KGF) administered as liposomal cDNA with other dermal and epidermal growth factors and collagen synthesis in an acute wound. Rats received an acute wound and were divided into two groups to receive weekly subcutaneous injections of liposomes plus the Lac-Z gene (0.22 microg, vehicle), or liposomes plus the KGF cDNA (2.2 microg) and Lac-Z gene (0.22 microg). Histological and immunohistochemical techniques were used to determine growth factor, collagen expression, and dermal and epidermal structure. KGF cDNA increased insulin-like growth factor-I (IGF-I), insulin-like growth factor binding protein-3 (IGFBP-3), and fibroblast growth factor (FGF), decreased transforming growth factor-beta (TGF-beta), while it had no effect on platelet-derived growth factor (PDGF) levels in the wound. KGF cDNA significantly increased collagen Type IV at both the wound edge as well as the wound bed, while it had no effect on collagen Type I and III. KGF cDNA increased re-epithelialization, improved dermal regeneration, and increased neovascularization. Exogenous administered KGF cDNA causes increases in IGF-I, IGF-BP3, FGF, and collagen IV and decreases TGF-beta concentration. KGF gene transfer accelerates wound healing without causing an increase in collagen I or III.

  13. Effects of nerve growth factor (NGF) on blood vessels area and expression of the angiogenic factors VEGF and TGFbeta1 in the rat ovary

    PubMed Central

    Julio-Pieper, Marcela; Lara, Hernán E; Bravo, Javier A; Romero, Carmen

    2006-01-01

    Background Angiogenesis is a crucial process in follicular development and luteogenesis. The nerve growth factor (NGF) promotes angiogenesis in various tissues. An impaired production of this neurotrophin has been associated with delayed wound healing. A variety of ovarian functions are regulated by NGF, but its effects on ovarian angiogenesis remain unknown. The aim of this study was to elucidate if NGF modulates 1) the amount of follicular blood vessels and 2) ovarian expression of two angiogenic factors: vascular endothelial growth factor (VEGF) and transforming growth factor beta 1 (TGFbeta1), in the rat ovary. Results In cultured neonatal rat ovaries, NGF increased VEGF mRNA and protein levels, whereas TGFbeta1 expression did not change. Sectioning of the superior ovarian nerve, which increases ovarian NGF protein content, augmented VEGF immunoreactivity and the area of capillary vessels in ovaries of prepubertal rats compared to control ovaries. Conclusion Results indicate that NGF may be important in the maintenance of the follicular and luteal vasculature in adult rodents, either indirectly, by increasing the expression of VEGF in the ovary, or directly via promoting the proliferation of vascular cells. This data suggests that a disruption on NGF regulation could be a component in ovarian disorders related with impaired angiogenesis. PMID:17096853

  14. Activated but not resting T cells or thymocytes express colony-stimulating factor 1 mRNA without co-expressing c-fms mRNA.

    PubMed

    Cerdan, C; Courcoul, M; Razanajaona, D; Pierrès, A; Maroc, N; Lopez, M; Mannoni, P; Mawas, C; Olive, D; Birg, F

    1990-02-01

    Following the observation that, besides acute myeloid leukemia cells, acute lymphoid leukemia cells of either B or T phenotype could express the transcript for the colony-stimulating factor 1 (CSF-1), a growth factor known to be restricted to the monocytic-macrophage lineage, various sources of resting and/or activated T cells and thymocytes were screened for expression of this hemopoietic growth factor. We report here that the CSF-1 transcript was rapidly (7 h) induced in T cells by a variety of stimuli, but was not detectable in either resting T cells or thymocytes. In addition, secretion of CSF-1 was detectable in the supernatants of activated T cells by 72 h, with a peak around 92-120 h. In contrast to activated monocytes, the transcript of the c-fms proto-oncogene, the product of which is the receptor for CSF-1, was not detectable in either resting or activated T cells. This observation could be relevant to the intimate relationships between T cells and antigen-presenting cells during immune responses.

  15. Recombinant Human Acidic Fibroblast Growth Factor (aFGF) Expressed in Nicotiana benthamiana Potentially Inhibits Skin Photoaging.

    PubMed

    Ha, Jang-Ho; Kim, Ha-Neul; Moon, Ki-Beom; Jeon, Jae-Heung; Jung, Dai-Hyun; Kim, Su-Jung; Mason, Hugh S; Shin, Seo-Yeon; Kim, Hyun-Soon; Park, Kyung-Mok

    2017-07-01

    Responding to the need for recombinant acidic fibroblast growth factor in the pharmaceutical and cosmetic industries, we established a scalable expression system for recombinant human aFGF using transient and a DNA replicon vector expression in Nicotiana benthamiana . Recombinant human-acidic fibroblast growth factor was recovered following Agrobacterium infiltration of N. benthamiana . The optimal time point at which to harvest recombinant human acidic fibroblast growth factor expressing leaves was found to be 4 days post-infiltration, before necrosis was evident. Commassie-stained SDS-PAGE gels of His-tag column eluates, concentrated using a 10 000 molecular weight cut-off column, showed an intense band at the expected molecular weight for recombinant human acidic fibroblast growth factor. An immunoblot confirmed that this band was recombinant human acidic fibroblast growth factor. Up to 10 µg recombinant human-acidic fibroblast growth factor/g of fresh leaves were achieved by a simple affinity purification protocol using protein extract from the leaves of agroinfiltrated N. benthamiana . The purified recombinant human acidic fibroblast growth factor improved the survival rate of UVB-irradiated HaCaT and CCD-986sk cells approximately 89 and 81 %, respectively. N. benthamiana -derived recombinant human acidic fibroblast growth factor showed similar effects on skin cell proliferation and UVB protection compared to those of Escherichia coli -derived recombinant human acidic fibroblast growth factor. Additionally, N. benthamiana- derived recombinant human acidic fibroblast growth factor increased type 1 procollagen synthesis up to 30 % as well as reduced UVB-induced intracellular reactive oxygen species generation in fibroblast (CCD-986sk) cells.UVB is a well-known factor that causes various types of skin damage and premature aging. Therefore, the present study demonstrated that N. benthamiana -derived recombinant human acidic fibroblast growth factor

  16. Critical Factors Affecting the Success of Cloning, Expression, and Mass Production of Enzymes by Recombinant E. coli.

    PubMed

    Fakruddin, Md; Mohammad Mazumdar, Reaz; Bin Mannan, Khanjada Shahnewaj; Chowdhury, Abhijit; Hossain, Md Nur

    2013-01-01

    E. coli is the most frequently used host for production of enzymes and other proteins by recombinant DNA technology. E. coli is preferable for its relative simplicity, inexpensive and fast high-density cultivation, well-known genetics, and large number of compatible molecular tools available. Despite all these advantages, expression and production of recombinant enzymes are not always successful and often result in insoluble and nonfunctional proteins. There are many factors that affect the success of cloning, expression, and mass production of enzymes by recombinant E. coli. In this paper, these critical factors and approaches to overcome these obstacles are summarized focusing controlled expression of target protein/enzyme in an unmodified form at industrial level.

  17. Sugarcane transgenics expressing MYB transcription factors show improved glucose release

    DOE PAGES

    Poovaiah, Charleson R.; Bewg, William P.; Lan, Wu; ...

    2016-07-15

    In this study, sugarcane, a tropical C4 perennial crop, is capable of producing 30-100 tons or more of biomass per hectare annually. The lignocellulosic residue remaining after sugar extraction is currently underutilized and can provide a significant source of biomass for the production of second-generation bioethanol. As a result, MYB31 and MYB42 were cloned from maize and expressed in sugarcane with and without the UTR sequences. The cloned sequences were 98 and 99 % identical to the published nucleotide sequences. The inclusion of the UTR sequences did not affect any of the parameters tested. There was little difference in plantmore » height and the number of internodes of the MYB-overexpressing sugarcane plants when compared with controls. MYB transgene expression determined by qPCR exhibited continued expression in young and maturing internodes. MYB31 downregulated more genes within the lignin biosynthetic pathway than MYB42. MYB31 and MYB42 expression resulted in decreased lignin content in some lines. All MYB42 plants further analyzed showed significant increases in glucose release by enzymatic hydrolysis in 72 h, whereas only two MYB31 plants released more glucose than control plants. This correlated directly with a significant decrease in acid-insoluble lignin. Soluble sucrose content of the MYB42 transgenic plants did not vary compared to control plants. In conclusion, this study demonstrates the use of MYB transcription factors to improve the production of bioethanol from sugarcane bagasse remaining after sugar extraction.« less

  18. Sugarcane transgenics expressing MYB transcription factors show improved glucose release

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poovaiah, Charleson R.; Bewg, William P.; Lan, Wu

    In this study, sugarcane, a tropical C4 perennial crop, is capable of producing 30-100 tons or more of biomass per hectare annually. The lignocellulosic residue remaining after sugar extraction is currently underutilized and can provide a significant source of biomass for the production of second-generation bioethanol. As a result, MYB31 and MYB42 were cloned from maize and expressed in sugarcane with and without the UTR sequences. The cloned sequences were 98 and 99 % identical to the published nucleotide sequences. The inclusion of the UTR sequences did not affect any of the parameters tested. There was little difference in plantmore » height and the number of internodes of the MYB-overexpressing sugarcane plants when compared with controls. MYB transgene expression determined by qPCR exhibited continued expression in young and maturing internodes. MYB31 downregulated more genes within the lignin biosynthetic pathway than MYB42. MYB31 and MYB42 expression resulted in decreased lignin content in some lines. All MYB42 plants further analyzed showed significant increases in glucose release by enzymatic hydrolysis in 72 h, whereas only two MYB31 plants released more glucose than control plants. This correlated directly with a significant decrease in acid-insoluble lignin. Soluble sucrose content of the MYB42 transgenic plants did not vary compared to control plants. In conclusion, this study demonstrates the use of MYB transcription factors to improve the production of bioethanol from sugarcane bagasse remaining after sugar extraction.« less

  19. Developmentally Regulated Expression of the Nerve Growth Factor Receptor Gene in the Periphery and Brain

    NASA Astrophysics Data System (ADS)

    Buck, C. R.; Martinez, Humberto J.; Black, Ira B.; Chao, Moses V.

    1987-05-01

    Nerve growth factor (NGF) regulates development and maintenance of function of peripheral sympathetic and sensory neurons. A potential role for the trophic factor in brain has been detected only recently. The ability of a cell to respond to NGF is due, in part, to expression of specific receptors on the cell surface. To study tissue-specific expression of the NGF receptor gene, we have used sensitive cRNA probes for detection of NGF receptor mRNA. Our studies indicate that the receptor gene is selectively and specifically expressed in sympathetic (superior cervical) and sensory (dorsal root) ganglia in the periphery, and by the septum-basal forebrain centrally, in the neonatal rat in vivo. Moreover, examination of tissues from neonatal and adult rats reveals a marked reduction in steady-state NGF receptor mRNA levels in sensory ganglia. In contrast, a 2- to 4-fold increase was observed in the basal forebrain and in the sympathetic ganglia over the same time period. Our observations suggest that NGF receptor mRNA expression is developmentally regulated in specific areas of the nervous system in a differential fashion.

  20. Early Growth Response-1 Induces and Enhances Vascular Endothelial Growth Factor-A Expression in Lung Cancer Cells

    PubMed Central

    Shimoyamada, Hiroaki; Yazawa, Takuya; Sato, Hanako; Okudela, Koji; Ishii, Jun; Sakaeda, Masashi; Kashiwagi, Korehito; Suzuki, Takehisa; Mitsui, Hideaki; Woo, Tetsukan; Tajiri, Michihiko; Ohmori, Takahiro; Ogura, Takashi; Masuda, Munetaka; Oshiro, Hisashi; Kitamura, Hitoshi

    2010-01-01

    Vascular endothelial growth factor-A (VEGF-A) is crucial for angiogenesis, vascular permeability, and metastasis during tumor development. We demonstrate here that early growth response-1 (EGR-1), which is induced by the extracellular signal–regulated kinase (ERK) pathway activation, activates VEGF-A in lung cancer cells. Increased EGR-1 expression was found in adenocarcinoma cells carrying mutant K-RAS or EGFR genes. Hypoxic culture, siRNA experiment, luciferase assays, chromatin immunoprecipitation, electrophoretic mobility shift assays, and quantitative RT-PCR using EGR-1–inducible lung cancer cells demonstrated that EGR-1 binds to the proximal region of the VEGF-A promoter, activates VEGF-A expression, and enhances hypoxia inducible factor 1α (HIF-1α)-mediated VEGF-A expression. The EGR-1 modulator, NAB-2, was rapidly induced by increased levels of EGR-1. Pathology samples of human lung adenocarcinomas revealed correlations between EGR-1/HIF-1α and VEGF-A expressions and relative elevation of EGR-1 and VEGF-A expression in mutant K-RAS- or EGFR-carrying adenocarcinomas. Both EGR-1 and VEGF-A expression increased as tumors dedifferentiated, whereas HIF-1α expression did not. Although weak correlation was found between EGR-1 and NAB-2 expressions on the whole, NAB-2 expression decreased as tumors dedifferentiated, and inhibition of DNA methyltransferase/histone deacetylase increased NAB-2 expression in lung cancer cells despite no epigenetic alteration in the NAB-2 promoter. These findings suggest that EGR-1 plays important roles on VEGF-A expression in lung cancer cells, and epigenetic silencing of transactivator(s) associated with NAB-2 expression might also contribute to upregulate VEGF-A expression. PMID:20489156

  1. Matrix metalloproteinases, tissue inhibitors of matrix metalloproteinases and angiogenic cytokines in peripheral blood of patients with thyroid cancer.

    PubMed

    Komorowski, Jan; Pasieka, Z; Jankiewicz-Wika, J; Stepień, H

    2002-08-01

    Stimulation of growth of endothelial cells from preexisting blood vessels, i.e., angiogenesis, is one of the essential elements necessary to create a permissive environment in which a tumor can grow. During angiogenesis, the matrix metalloproteinase (MMP) family of tissue enzymes contributes to normal (embriogenesis or wound repair) and pathologic tissue remodeling (chronic inflammation and tumor genesis). The proposed pathogenic roles of MMPs in cancer are tissue breakdown and remodeling during invasive tumor growth and tumor angiogenesis. Tissue inhibitors of metalloproteinases (TIMPs) form a complex with MMPs, which in turn inhibits active MMPs. Vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) are unique among mediators of angiogenesis with synergistic effect, and both can also be secreted by thyroid cancer cells. The goal of the study was to evaluate the plasma blood concentration of VEGF, bFGF, MMP-1, MMP-2, MMP-3, MMP-8, MMP-9, TIMP-1, and TIMP-2 in patients with cancer and in normal subjects. Twenty-two patients with thyroid cancers (papillary cancer, 11; partly papillary and partly follicular cancer, 3; anaplastic cancer, 5; medullary cancer, 3) and 16 healthy subjects (controls) were included in the study. VEGF, bFGF MMPs, and TIMPs were evaluated by enzyme-linked immunosorbent assay (ELISA). In patients with thyroid cancer, normal VEGF concentrations (74.29 +/- 13.38 vs. 84.85 +/- 21.71 pg/mL; p > 0.05) and increased bFGF (29.52 +/- 4.99 vs. 6.05 +/- 1.43 pg/mL; p < 0.001), MMP-2 (605.95 +/- 81.83 vs. 148.75 +/- 43.53 ng/mL; p < 0.001), TIMP-2 (114.19 +/- 6.62 vs. 60.75 +/- 9.18 ng/mL; p < 0.001), as well as lower MMP-1 (0.70 +/- 0.42 vs. 3.87 +/- 0.53; p < 0.001) levels have been noted. Increased plasma levels of MMP-3 and MMP-9 were also found in patients with medullary carcinoma. In conclusion, predominance of MMP-2 over TIMP-2 and TIMP-1 over MMP-1 as well as increased concentration of bFGF in peripheral blood are

  2. Control of cell proliferation by a porous chitosan scaffold with multiple releasing capabilities

    NASA Astrophysics Data System (ADS)

    Cai, Shu-Jyun; Li, Ching-Wen; Weihs, Daphne; Wang, Gou-Jen

    2017-12-01

    The aim of this study was to develop a porous chitosan scaffold with long-acting drug release as an artificial dressing to promote skin wound healing. The dressing was fabricated by pre-freezing at different temperatures (-20 and -80 °C) for different periods of time, followed by freeze-drying to form porous chitosan scaffolds with different pore sizes. The chitosan scaffolds were then used to investigate the effect of the controlled release of fibroblast growth factor-basic (bFGF) and transforming growth factor-β1 (TGFβ1) on mouse fibroblast cells (L929) and bovine carotid endothelial cells (BEC). The biocompatibility of the prepared chitosan scaffold was confirmed with WST-1 proliferation and viability assay, which demonstrated that the material is suitable for cell growth. The results of this study show that the pore sizes of the porous scaffolds prepared by freeze-drying can change depending on the pre-freezing temperature and time via the formation of ice crystals. In this study, the scaffolds with the largest pore size were found to be 153 ± 32 μm and scaffolds with the smallest pores to be 34 ± 9 μm. Through cell culture analysis, it was found that the concentration that increased proliferation of L929 cells for bFGF was 0.005 to 0.1 ng/mL, and the concentration for TGFβ1 was 0.005 to 1 ng/mL. The cell culture of the chitosan scaffold and growth factors shows that 3.75 ng of bFGF in scaffolds with pore sizes of 153 ± 32 μm can promote L929 cell proliferation, while 400 pg of TGFβ1 in scaffolds with pore size of 34 ± 9 μm can enhance the proliferation of L929 cells, but also inhibit BEC proliferation. It is proposed that the prepared chitosan scaffolds can form a multi-drug (bFGF and TGFβ1) release dressing that has the ability to control wound healing via regulating the proliferation of different cell types.

  3. Myeloid Leukemia Factor Acts in a Chaperone Complex to Regulate Transcription Factor Stability and Gene Expression.

    PubMed

    Dyer, Jamie O; Dutta, Arnob; Gogol, Madelaine; Weake, Vikki M; Dialynas, George; Wu, Xilan; Seidel, Christopher; Zhang, Ying; Florens, Laurence; Washburn, Michael P; Abmayr, Susan M; Workman, Jerry L

    2017-06-30

    Mutations that affect myelodysplasia/myeloid leukemia factor (MLF) proteins are associated with leukemia and several other cancers. However, with no strong homology to other proteins of known function, the role of MLF proteins in the cell has remained elusive. Here, we describe a proteomics approach that identifies MLF as a member of a nuclear chaperone complex containing a DnaJ protein, BCL2-associated anthanogene 2, and Hsc70. This complex associates with chromatin and regulates the expression of target genes. The MLF complex is bound to sites of nucleosome depletion and sites containing active chromatin marks (e.g., H3K4me3 and H3K4me1). Hence, MLF binding is enriched at promoters and enhancers. Additionally, the MLF-chaperone complex functions to regulate transcription factor stability, including the RUNX transcription factor involved in hematopoiesis. Although Hsc70 and other co-chaperones have been shown to play a role in nuclear translocation of a variety of proteins including transcription factors, our findings suggest that MLF and the associated co-chaperones play a direct role in modulating gene transcription. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Tenascin in meningioma: expression is correlated with anaplasia, vascular endothelial growth factor expression, and peritumoral edema but not with tumor border shape.

    PubMed

    Kiliç, Türker; Bayri, Yaşar; Ozduman, Koray; Acar, Melih; Diren, Semin; Kurtkaya, Ozlem; Ekinci, Gazanfer; Buğra, Kuyaş; Sav, Aydin; Ozek, M Memet; Pamir, M Necmettin

    2002-07-01

    Tenascin is an extracellular matrix glycoprotein that is expressed during embryogenesis, inflammation, angiogenesis, and carcinogenesis. The aim of this study was to investigate how tenascin expression relates to histological grade, angiogenesis, and radiological findings in meningiomas. Twenty typical, 20 atypical, and 5 malignant meningiomas were studied retrospectively. Tenascin expression and vascular endothelial growth factor (VEGF) expression in the tumor tissue were investigated by immunohistochemistry. Tenascin messenger ribonucleic acid expression was also studied by comparative reverse transcriptase-polymerase chain reaction. Magnetic resonance images from each case were assessed for peritumoral edema and tumor border shape. The atypical and malignant meningiomas showed higher levels of tenascin expression than the typical meningiomas. The more sensitive messenger ribonucleic acid-based methods confirmed this finding. Tenascin expression was correlated with peritumoral edema and VEGF expression but not with tumor border shape. In the 13 tumors with marked tenascin expression, peritumoral edema was Grade 0 in one, Grade 1 in three, and Grade 2 in nine specimens. In the same 13 tumors, VEGF expression was Grade 1 in five and Grade 2 in eight specimens, and the findings for tumor border shape were Grade 0 in seven, Grade 1 in four, and Grade 2 in two specimens. In meningiomas, tenascin expression is correlated with anaplasia, tumor-associated edema, and VEGF expression but not with tumor border shape. This protein may play a role in the neoplastic and/or angiogenic processes in atypical and malignant meningiomas and may thus be a potential target for meningioma therapy.

  5. Gelatin Methacrylate Microspheres for Growth Factor Controlled Release

    PubMed Central

    Nguyen, Anh H.; McKinney, Jay; Miller, Tobias; Bongiorno, Tom; McDevitt, Todd C.

    2014-01-01

    Gelatin has been commonly used as a delivery vehicle for various biomolecules for tissue engineering and regenerative medicine applications due to its simple fabrication methods, inherent electrostatic binding properties, and proteolytic degradability. Compared to traditional chemical cross-linking methods, such as the use of glutaraldehyde (GA), methacrylate modification of gelatin offers an alternative method to better control the extent of hydrogel cross-linking. Here we examined the physical properties and growth factor delivery of gelatin methacrylate (GMA) microparticles formulated with a wide range of different cross-linking densities (15–90%). Less methacrylated MPs had decreased elastic moduli and larger mesh sizes compared to GA MPs, with increasing methacrylation correlating to greater moduli and smaller mesh sizes. As expected, an inverse correlation between microparticle cross-linking density and degradation was observed, with the lowest cross-linked GMA MPs degrading at the fastest rate, comparable to GA MPs. Interestingly, GMA MPs at lower cross-linking densities could be loaded with up to a 10-fold higher relative amount of growth factor over conventional GA cross-linked MPs, despite an order of magnitude greater gelatin content of GA MPs. Moreover, a reduced GMA cross-linking density resulted in more complete release of bone morphogenic protein 4 (BMP4) and basic fibroblast growth factor (bFGF) and accelerated release rate with collagenase treatment. These studies demonstrate that GMA MPs provide a more flexible platform for growth factor delivery by enhancing the relative binding capacity and permitting proteolytic degradation tunability, thereby offering a more potent controlled release system for growth factor delivery. PMID:25463489

  6. Vascular endothelial growth factor and soft tissue sarcomas: tumor expression correlates with grade.

    PubMed

    Chao, C; Al-Saleem, T; Brooks, J J; Rogatko, A; Kraybill, W G; Eisenberg, B

    2001-04-01

    Vascular endothelial growth factor (VEGF), an endothelial-specific mitogen overexpressed in various epithelial malignancies is thought to be a potent regulator of angiogenesis. We hypothesized that some soft tissue sarcomas, due to their high propensity for hematogenous metastases (1) would overexpress VEGF, (2) that the degree of expression may represent a significant biologic predictor for disease-specific survival, and (3) that recurrent tumor would express as high or higher VEGF compared with the primary tumor. Selected paraffin-embedded tissue of surgical specimens from 79 patients with soft tissue sarcomas, treated between 1989 and 1995 were stained with a rabbit polyclonal anti-VEGF antibody at a concentration of 2 microg/ml. Slides were assessed for VEGF expression as high or low by two investigators blinded to the clinicopathologic data. Twelve patients had VEGF expression of their primary tumors, and their recurrent tumors were compared. The Fishers' exact test assessed for differences in VEGF expression; survival analyses were performed according to the methods of Kaplan and Meier. Seventy-eight percent (29 of 37) of patients who died of disease had high VEGF expression. However, VEGF expression was not an independent predictor of either overall or disease-free survival. Tumor grade correlated with VEGF expression significantly. For the low-grade tumors, 7 of 13 expressed low VEGF, whereas for high-grade tumors, 53 of 66 expressed high VEGF (P = .016). Seven of the 12 paired tumor samples expressed identical VEGF immunostaining. The majority of high-grade soft tissue sarcomas in this study have high intensity VEGF expression. This finding may provide useful information on individual soft tissue sarcomas and offer the basis for therapeutic and biologic targeting in high-risk patients using anti-angiogenesis strategies. However, in our analysis, after accounting for tumor grade, VEGF does not seem to be an independent predictor of clinical outcome.

  7. Effect of microRNA-135a on Cell Proliferation, Migration, Invasion, Apoptosis and Tumor Angiogenesis Through the IGF-1/PI3K/Akt Signaling Pathway in Non-Small Cell Lung Cancer.

    PubMed

    Zhou, Yufei; Li, Shaoxia; Li, Jiangtao; Wang, Dongfeng; Li, Quanxing

    2017-01-01

    This study explored the ability of microRNA-135a (miR-135a) to influence cell proliferation, migration, invasion, apoptosis and tumor angiogenesis through the IGF-1/PI3K/Akt signaling pathway in non-small cell lung cancer (NSCLC). NSCLC tissues and adjacent normal tissues were collected from 138 NSCLC patients. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression levels of miR-135a and IGF-1, PI3K, Akt, VEGF, bFGF and IL-8 mRNA; western blotting was used to determine the expression levels of IGF-1, PI3K and Akt protein; and enzyme-linked immunosorbent assay (ELISA) was used to analyze the expression levels of VEGF, bFGF and IL-8 protein. Human NSCLC cell lines (A549, H460, and H1299) and the human bronchial epithelial cell line (HBE) were selected. A549 cells were assigned to blank, negative control (NC), miR-135a mimics, miR-135a inhibitors, IGF-1 siRNA and miR-135a inhibitors + IGF-1 siRNA groups. The following were performed: an MTT assay to assess cell proliferation, a scratch test to detect cell migration, a Transwell assay to measure cell invasion, and a flow cytometry to analyze cell apoptosis. The expression level of miR-135a was lower while those of IGF-1, PI3K and Akt mRNA were higher in NSCLC tissues than in the adjacent normal tissues. Dual-luciferase reporter assay indicated IGF-1 as a target of miR-135a. The in vitro results showed that compared with the blank group, cell proliferation, migration and invasion were suppressed, mRNA and protein levels of IGF-1, PI3K, Akt, VEGF, bFGF and IL-8 were reduced, and cell apoptosis was enhanced in the miR-135a mimics and IGF-1 siRNA groups. Compared with the IGF-1 siRNA group, cells in the miR-135a inhibitors + IGF-1 siRNA group demonstrated increased cell proliferation, migration and invasion, elevated mRNA and protein levels of IGF-1, PI3K, Akt, VEGF, bFGF and IL-8 and reduced cell apoptosis. These findings indicated that miR-135a promotes cell apoptosis and inhibits

  8. [Anger expressive behaviors and its inhibitory factors in Japanese junior high school students: from the aspect to narcissism and norms].

    PubMed

    Hibino, Kei; Yukawa, Shintaro; Kodama, Masahiro; Yoshida, Fujio

    2005-12-01

    This study investigated inhibitory factors in anger expressive behaviors among Japanese junior high school students. It also examined the relations between anger experiences and personality traits: verbal expression and narcissism. The result indicated that the factors of "friend relationships" and "cost-reward consciousness" were selected as those which inhibited anger expressive behaviors. Results of a covariance structure analysis were as follows. First, narcissistic personality elicited feelings of anger and depression and cognitions of inflating and calming, which all facilitated aggressive behavior, social sharing, and object-displacement as anger expressive behaviors. Second, verbal expression elicited cognitions of objectifying and self-reproaching, and the former inhibited anger expressive behaviors, though the latter facilitated them. Finally, "cost-reward consciousness" inhibited anger expressive behaviors for boys, while "normative consciousness" inhibited them for girls.

  9. Hepatocyte growth factor and transforming growth factor beta regulate 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene expression in rat hepatocyte primary cultures.

    PubMed Central

    Joaquin, M; Rosa, J L; Salvadó, C; López, S; Nakamura, T; Bartrons, R; Gil, J; Tauler, A

    1996-01-01

    Hepatocyte growth factor (HGF) and transforming growth factor beta (TGF-beta) are believed to be of major importance for hepatic regeneration after liver damage. We have studied the effect of these growth factors on fructose 2,6-bisphosphate (Fru-2,6-P2) levels and the expression of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (6PF2K/Fru-2,6-BPase) in rat hepatocyte primary cultures. Our results demonstrate that HGF activates the expression of the 6PF2K/Fru-2,6-BPase gene by increasing the levels of its mRNA. As a consequence of this activation, the amount of 6PF2K/Fru-2,6-BPase protein and 6-phosphofructo-2-kinase activity increased, which was reflected by a rise in Fru-2,6-P2 levels. In contrast, TGF-beta decreased the levels of 6PF2K/Fru-2,6-BPase mRNA, which led to a decrease in the amount of 6PF2K/Fru-2,6-BPase protein and Fru-2,6-P2. The different actions of HGF and TGF-beta on 6PF2K/Fru-2,6-BPase gene expression are concomitant with their effect on cell proliferation. Here we show that, in the absence of hormones, primary cultures of hepatocytes express the F-type isoenzyme. In addition, HGF increases the expression of this isoenzyme, and dexamethasone activates the L-type isoform. HGF and TGF-beta were able to inhibit this activation. PMID:8660288

  10. Cardiomyogenic Differentiation in Cardiac Myxoma Expressing Lineage-Specific Transcription Factors

    PubMed Central

    Kodama, Hiroaki; Hirotani, Takashi; Suzuki, Yusuke; Ogawa, Satoshi; Yamazaki, Kazuto

    2002-01-01

    We investigated five cases of cardiac myxoma and one case of cardiac undifferentiated sarcoma by light and electron microscopy, in situ hybridization, immunohistochemical staining, and reverse transcriptase-polymerase chain reaction for cardiomyocyte-specific transcription factors, Nkx2.5/Csx, GATA-4, MEF2, and eHAND. Conventional light microscopy revealed that cardiac myxoma and sarcoma cells presented variable cellular arrangements and different histological characteristics. Ultrastructurally, some of the myxoma cells exhibited endothelium-like or immature mesenchymal cell differentiation. Immunohistochemistry for Nkx2.5/Csx, GATA-4, and eHAND was slightly to intensely positive in all myxoma cases. MEF2 immunoreactivity was observed in all cases including the case of sarcoma, thus suggesting myogenic differentiation of myxoma or sarcoma cells. In situ hybridization for Nkx2.5/Csx also revealed that all myxoma cells, but not sarcoma cells, expressed mRNA of the cardiac homeobox gene, Nkx2.5/Csx. Furthermore, nested reverse transcriptase-polymerase chain reaction from formalin-fixed, paraffin-embedded tissue was performed and demonstrated that the Nkx2.5/Csx and eHAND gene product to be detected in all cases, and in three of six cases, respectively. In conclusion, cardiac myxoma cells were found to express various amounts of cardiomyocyte-specific transcription factor gene products at the mRNA and protein levels, thus suggesting cardiomyogenic differentiation. These results support the concept that cardiac myxoma might arise from mesenchymal cardiomyocyte progenitor cells. PMID:12163362

  11. Central administration of insulin-like growth factor-I decreases depressive-like behavior and brain cytokine expression in mice

    PubMed Central

    2011-01-01

    Exogenous administration of insulin-like growth factor (IGF)-I has anti-depressant properties in rodent models of depression. However, nothing is known about the anti-depressant properties of IGF-I during inflammation, nor have mechanisms by which IGF-I alters behavior following activation of the innate immune system been clarified. We hypothesized that central IGF-I would diminish depressive-like behavior on a background of an inflammatory response and that it would do so by inducing expression of the brain-derived neurotrophic factor (BDNF) while decreasing pro-inflammatory cytokine expression in the brain. IGF-I (1,000 ng) was administered intracerebroventricularly (i.c.v.) to CD-1 mice. Mice were subsequently given lipopolysaccharide i.c.v. (LPS, 10 ng). Sickness and depressive-like behaviors were assessed followed by analysis of brain steady state mRNA expression. Central LPS elicited typical transient signs of sickness of mice, including body weight loss, reduced feed intake and decreased social exploration toward a novel juvenile. Similarly, LPS increased time of immobility in the tail suspension test (TST). Pretreatment with IGF-I or antidepressants significantly decreased duration of immobility in the TST in both the absence and presence of LPS. To elucidate the mechanisms underlying the anti-depressant action of IGF-I, we quantified steady-state mRNA expression of inflammatory mediators in whole brain using real-time RT-PCR. LPS increased, whereas IGF-I decreased, expression of inflammatory markers interleukin-1ß (IL-1ß), tumor necrosis factor-(TNF)α, inducible nitric oxide synthase (iNOS) and glial fibrillary acidic protein (GFAP). Moreover, IGF-I increased expression of BDNF. These results indicate that IGF-I down regulates glial activation and induces expression of an endogenous growth factor that shares anti-depressant activity. These actions of IGF-I parallel its ability to diminish depressive-like behavior. PMID:21306618

  12. Epidermal growth factor receptor expression is related to post-mitotic events in cerebellar development: regulation by thyroid hormone.

    PubMed

    Carrasco, Emilce; Blum, Mariann; Weickert, Cynthia Shannon; Casper, Diana

    2003-01-10

    It has been established that thyroid hormone and neurotrophic factors both orchestrate developmental events in the brain. However, it is not clear how these two influences are related. In this study, we investigated the effects of thyroid hormone on cerebellar development and the coincident expression of transforming growth factor-alpha (TGF-alpha), a ligand in the epidermal growth factor (EGF) family, and the epidermal growth factor receptor (EGFR). Profiles of thyroid hormone expression were measured in postnatal animals and were found to peak at postnatal day 15 (P15). These levels dropped below detectable levels when mice were made hypothyroid with propylthiouracil (PTU). TGF-alpha and EGFR expression, as determined by RNAse protection assay, was maximal at P6 in normal animals, but remained low in hypothyroid animals, suggesting that thyroid hormone was responsible for their induction. In situ hybridization and immunohistochemical analysis of EGFR expression revealed that this receptor was present on granule cells within the inner zone of the external granule cell layer (EGL), suggesting that EGFR-ligands were not inducing granule cell proliferation. The persistence of EGFR expression on migrating granule cells and subsequent down-regulation of expression in the internal granule cell layer (IGL) implicates a role for EGFR-ligands in differentiation and/or migration. In hypothyroid animals, we observed a delayed progression of granule cell migration, consistent with the persistence of EGFR labeling in the EGL, and in the 'pile-up' of labeled cells at the interface between the molecular layer and the Purkinje cell layer. Taken together, these results implicate thyroid hormone in the coordinated expression of TGF-alpha and EGFR, which are positioned to play a role in post-mitotic developmental events in the cerebellum.

  13. Factors Associated with Expressive and Receptive Language in French-Speaking Toddlers Clinically Diagnosed with Language Delay

    ERIC Educational Resources Information Center

    Sylvestre, Audette; Desmarais, Chantal; Meyer, Francois; Bairati, Isabelle; Rouleau, Nancie; Merette, Chantal

    2012-01-01

    The purpose of this exploratory study was to examine child and environmental factors known to be associated to language development and how they relate to results in expressive vocabulary, expressive language, and receptive language in language-delayed toddlers. The cross-sectional data on 96 French-speaking children aged 18-36 months were…

  14. Embryonic expression of the transforming growth factor beta ligand and receptor genes in chicken.

    PubMed

    Cooley, James R; Yatskievych, Tatiana A; Antin, Parker B

    2014-03-01

    Transforming growth factor-beta (TGFβ) signaling regulates a myriad of biological processes during embryogenesis, in the adult, and during the manifestation of disease. TGFβ signaling is propagated through one of three TGFβ ligands interacting with Type I and Type II receptors, and Type III co-receptors. Although TGFβ signaling is regulated partly by the combinatorial expression patterns of TGFβ receptors and ligands, a comprehensive gene expression analysis has not been published. Here we report the embryonic mRNA expression patterns in chicken embryos of the canonical TGFβ ligands (TGFB1, TGFB2, and TGFB3) and receptors (TGFBR1, TGFBR2, TGFBR3), plus the Activin A receptor, type 1 (ACVR1) and co receptor Endoglin (ENG) that also transduce TGFβ signaling. TGFB ligands and receptors show dynamic and frequently overlapping expression patterns in numerous embryonic cell layers and structures. Integrating expression information identifies combinations of ligands and receptors that are involved in specific developmental processes including somitogenesis, cardiogenesis and vasculogenesis. Copyright © 2013 Wiley Periodicals, Inc.

  15. Increased expression of high mobility group box protein 1 and vascular endothelial growth factor in placenta previa.

    PubMed

    Xie, Han; Qiao, Ping; Lu, Yi; Li, Ying; Tang, Yuping; Huang, Yiying; Bao, Yirong; Ying, Hao

    2017-12-01

    Placenta previa is often associated with preterm delivery, reduced birth weight, a higher frequency of placental accreta and postpartum haemorrhage, and increased likelihood of blood transfusion. The present study aimed to examine the expression of high mobility group box protein 1 (HMGB1) in the placenta of women with or without placenta previa. The study group consisted of placental tissues obtained from women with or without placenta previa. The expression levels of HMGB1 and vascular endothelial growth factor (VEGF) were evaluated in the placental tissues using reverse transcription‑quantitative polymerase chain reaction, western blotting and immunohistochemistry. The mRNA expression levels of HMGB1 and VEGF were significantly increased in the placenta previa group compared with in the normal group. In addition, the placenta previa group exhibited increased HMGB1 and VEGF staining in vascular endothelial cells and trophoblasts. There were no significant differences in the expression of HMGB1 or VEGF between groups with or without placenta accreta or postpartum haemorrhage. The present study hypothesised that the increased expression of HMGB1 in the placenta may be associated with the pathogenesis of placenta previa by regulating the expression of the proangiogenic factor VEGF.

  16. Modulation of tumor necrosis factor (TNF) receptor expression during monocytic differentiation by glucocorticoids.

    PubMed

    Goppelt-Struebe, M; Reiser, C O; Schneider, N; Grell, M

    1996-10-01

    Regulation of tumor necrosis factor receptors by glucocorticoids was investigated during phorbol ester-induced monocytic differentiation. As model system the human monocytic cell lines U937 and THP-1, which express both types of TNF receptors (TNF-R60 and TNF-R80), were differentiated with tetradecanoyl phorbol-13-acetate (TPA, 5 x 10(-9) M) in the presence or absence of dexamethasone (10(-9) - 10(-6) M). Expression of TNF receptors was determined at the mRNA level by Northern blot analysis and at the protein level by FACS analysis. During differentiation, TNF-R60 mRNA was down-regulated, whereas TNF-R80 mRNA levels were increased. Dexamethasone had no effect on TNF-R60 mRNA expression but attenuated TNF-R80 mRNA expression in both cell lines. Cell surface expression of TNF-R60 protein remained essentially unchanged during differentiation of THP-1 cells, whereas a rapid down-regulation of TNF-R80 was observed that was followed by a slow recovery. Surface expression of TNF-R80 was not affected by dexamethasone, whereas TNF-R60 expression was reduced by about 25%. These results indicate differential regulation of the two types of TNF receptors at the mRNA and protein level during monocytic differentiation. Glucocorticoids interfered with mRNA expression of TNF-R80 and protein expression of TNF-R60, but the rather limited effect leaves the question of its functional relevance open. In contrast to other cytokine systems, TNF receptors do not appear to be major targets of glucocorticoid action.

  17. MicroRNA expression profile in endometriosis: its relation to angiogenesis and fibrinolytic factors.

    PubMed

    Braza-Boïls, Aitana; Marí-Alexandre, Josep; Gilabert, Juan; Sánchez-Izquierdo, Dolors; España, Francisco; Estellés, Amparo; Gilabert-Estellés, Juan

    2014-05-01

    Could an aberrant microRNA (miRNA) expression profile be responsible for the changes in the angiogenic and fibrinolytic states observed in endometriotic lesions? This study revealed characteristic miRNA expression profiles associated with endometriosis in endometrial tissue and endometriotic lesions from the same patient and their correlation with the most important angiogenic and fibrinolytic factors. WHAT IS ALREADY KNOWN?: An important role for dysregulated miRNA expression in the pathogenesis of endometriosis is well documented. However, to the best of our knowledge, there are no reports of the relationship between angiogenic and fibrinolytic factors and miRNAs when endometrial tissue and different types of endometriotic lesions from the same patient are compared. Case-control study that involved 51 women with endometriosis and 32 women without the disease (controls). The miRNA expression profiles were determined using the GeneChip miRNA 2.0 Affymetrix array platform, and the results were analysed using Partek Genomic Suite software. To validate the obtained results, 12 miRNAs differentially expressed were quantified by using miRCURY LNA™ Universal RT microRNA PCR. Levels of vascular endothelial growth factor (VEGF-A), thrombospondin-1 (TSP-1), urokinase plasminogen activator (uPA) and plasminogen activator inhibitor-1 (PAI-1) proteins were quantified by ELISA. Patient endometrial tissue showed significantly lower levels of miR-202-3p, miR-424-5p, miR-449b-3p and miR-556-3p, and higher levels of VEGF-A and uPA than healthy (control) endometrium. However, tissue affected by ovarian endometrioma showed significantly lower expression of miR-449b-3p than endometrium from both controls and patients, and higher levels of PAI-1 and the angiogenic inhibitor TSP-1. A significant inverse correlation between miR-424-5p and VEGF-A protein levels was observed in patient endometrium, and an inverse correlation between miR-449b-3p and TSP-1 protein levels was observed in

  18. The POU Transcription Factor Oct-1 Represses Virus-Induced Interferon A Gene Expression

    PubMed Central

    Mesplède, Thibault; Island, Marie-Laure; Christeff, Nicolas; Petek, Fahrettin; Doly, Janine; Navarro, Sébastien

    2005-01-01

    Alpha interferon (IFN-α) and IFN-β are able to interfere with viral infection. They exert a vast array of biologic functions, including growth arrest, cell differentiation, and immune system regulation. This regulation extends from innate immunity to cellular and humoral adaptive immune responses. A strict control of expression is needed to prevent detrimental effects of unregulated IFN. Multiple IFN-A subtypes are coordinately induced in human and mouse cells infected by virus and exhibit differences in expression of their individual mRNAs. We demonstrated that the weakly expressed IFN-A11 gene is negatively regulated after viral infection, due to a distal negative regulatory element, binding homeoprotein pituitary homeobox 1 (Pitx1). Here we show that the POU protein Oct-1 binds in vitro and in vivo to the IFN-A11 promoter and represses IFN-A expression upon interferon regulatory factor overexpression. Furthermore, we show that Oct-1-deficient MEFs exhibit increased in vivo IFN-A gene expression and increased antiviral activity. Finally, the IFN-A expression pattern is modified in Oct-1-deficient MEFs. The broad representation of effective and potent octamer-like sequences within IFN-A promoters suggests an important role for Oct-1 in IFN-A regulation. PMID:16166650

  19. Crystallization of bFGF-DNA Aptamer Complexes Using a Sparse Matrix Designed for Protein-Nucleic Acid Complexes

    NASA Technical Reports Server (NTRS)

    Cannone, Jaime J.; Barnes, Cindy L.; Achari, Aniruddha; Kundrot, Craig E.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The Sparse Matrix approach for obtaining lead crystallization conditions has proven to be very fruitful for the crystallization of proteins and nucleic acids. Here we report a Sparse Matrix developed specifically for the crystallization of protein-DNA complexes. This method is rapid and economical, typically requiring 2.5 mg of complex to test 48 conditions. The method was originally developed to crystallize basic fibroblast growth factor (bFGF) complexed with DNA sequences identified through in vitro selection, or SELEX, methods. Two DNA aptamers that bind with approximately nanomolar affinity and inhibit the angiogenic properties of bFGF were selected for co-crystallization. The Sparse Matrix produced lead crystallization conditions for both bFGF-DNA complexes.

  20. Connective Tissue Growth Factor (CTGF) Expression Modulates Response to High Glucose

    PubMed Central

    James, Leighton R.; Le, Catherine; Doherty, Heather; Kim, Hyung-Suk; Maeda, Nobuyo

    2013-01-01

    Connective tissue growth factor (CTGF) is an important mediator of fibrosis; emerging evidence link changes in plasma and urinary CTGF levels to diabetic kidney disease. To further ascertain the role of CTGF in responses to high glucose, we assessed the consequence of 4 months of streptozotocin-induced diabetes in wild type (+/+) and CTGF heterozygous (+/−) mice. Subsequently, we studied the influence of glucose on gene expression and protein in mice embryonic fibroblasts (MEF) cells derived from wildtype and heterozygous mice. At study initiation, plasma glucose, creatinine, triglyceride and cholesterol levels were similar between non-diabetic CTGF+/+ and CTGF+/− mice. In the diabetic state, plasma glucose levels were increased in CTGF+/+ and CTGF+/− mice (28.2 3.3 mmol/L vs 27.0 3.1 mmol/L), plasma triglyceride levels were lower in CTGF+/− mice than in CTGF+/+ (0.7 0.2 mmol/L vs 0.5 0.1 mmol/L, p<0.05), but cholesterol was essentially unchanged in both groups. Plasma creatinine was higher in diabetic CTGF+/+ group (11.7±1.2 vs 7.9±0.6 µmol/L p<0.01), while urinary albumin excretion and mesangial expansion were reduced in diabetic CTGF+/− animals. Cortices from diabetic mice (both CTGF +/+ and CTGF +/−) manifested higher expression of CTGF and thrombospondin 1 (TSP1). Expression of nephrin was reduced in CTGF +/+ animals; this reduction was attenuated in CTGF+/− group. In cultured MEF from CTGF+/+ mice, glucose (25 mM) increased expression of pro-collagens 1, IV and XVIII as well as fibronectin and thrombospondin 1 (TSP1). In contrast, activation of these genes by high glucose was attenuated in CTGF+/− MEF. We conclude that induction of Ctgf mediates expression of extracellular matrix proteins in diabetic kidney. Thus, genetic variability in CTGF expression directly modulates the severity of diabetic nephropathy. PMID:23950936