Science.gov

Sample records for factor bfgf zur

  1. Applications of basic fibroblastic growth factor (FGF-2, bFGF) in dentistry.

    PubMed

    Sonmez, Ayse B; Castelnuovo, Jacopo

    2014-04-01

    Recent developments in research have been based on the maintenance and regeneration of natural organs and tissues; among such developments is the use of growth factors (GFs). The use of basic fibroblastic growth factors (bFGF) may be indicated in different disciplines of dentistry such as periodontics and dental traumatology. These cells' ability to induce proliferation and differentiation of cells may make GFs a useful source for the development of natural structures. This mini-review will discuss how bFGF can be beneficial to dentistry in relation to 1) re-implantation/autotransplantation of avulsed teeth and 2) periodontal regeneration.

  2. Delivery of basic fibroblast growth factor (bFGF) from photoresponsive hydrogel scaffolds.

    PubMed

    Andreopoulos, Fotios M; Persaud, Indushekhar

    2006-04-01

    Exogenous growth factor therapy has shown a notable promise in accelerating the healing of acute and chronic wounds. However, their susceptibility to enzymatic degradation and short contact time with the wound bed warrant the use of sophisticated delivery vehicles that stabilize the encapsulated peptides and control their rate of release. Herein, we describe the synthesis of a nitrocinnamate-derived polyethylene glycol (PEG-NC) hydrogel system and study the release kinetics of basic fibroblast growth factor (bFGF) as a function of hydrogel properties. Long-wave ultraviolet irradiation (365 nm) was used to alter the physical properties of the gel scaffold (i.e. degree of swelling) and consequently control the release rates of the encapsulated bFGF. The degree of swelling (DS) decreased from 10.7 to 8 as the length of irradiation increased from 5 to 30 min. Similarly, the DS decreased from 17.5 to 11.5 by increasing the initial PEG-NC concentration from 10 to 30 w/v% while keeping the crosslinking irradiation at 10 min. Radiolabeled I(125) studies were used to monitor the release of bFGF from PEG-NC hydrogels with variable swellabilities. By increasing the length of irradiation from 2 to 10 min the rate of bFGF release from PEG-NC gel scaffolds was decreased by 29% due to the enhanced crosslinking density. The bFGF-releasing PEG-NC hydrogels were not cytotoxic to human neonatal fibroblast cells and the released growth factor maintained its activity and induced fibroblast proliferation and collagen production in vitro. The addition of heparin within the gel scaffolds further increased the growth factor's activity.

  3. Blocking Infralimbic Basic Fibroblast Growth Factor (bFGF or FGF2) Facilitates Extinction of Drug Seeking After Cocaine Self-Administration.

    PubMed

    Hafenbreidel, Madalyn; Twining, Robert C; Rafa Todd, Carolynn; Mueller, Devin

    2015-12-01

    Drug exposure results in structural and functional changes in brain regions that regulate reward and these changes may underlie the persistence of compulsive drug seeking and relapse. Neurotrophic factors, such as basic fibroblast growth factor (bFGF or FGF2), are necessary for neuronal survival, growth, and differentiation, and may contribute to these drug-induced changes. Following cocaine exposure, bFGF is increased in addiction-related brain regions, including the infralimbic medial prefrontal cortex (IL-mPFC). The IL-mPFC is necessary for extinction, but whether drug-induced overexpression of bFGF in this region affects extinction of drug seeking is unknown. Thus, we determined whether blocking bFGF in IL-mPFC would facilitate extinction following cocaine self-administration. Rats were trained to lever press for intravenous infusions of cocaine before extinction. Blocking bFGF in IL-mPFC before four extinction sessions resulted in facilitated extinction. In contrast, blocking bFGF alone was not sufficient to facilitate extinction, as blocking bFGF and returning rats to their home cage had no effect on subsequent extinction. Furthermore, bFGF protein expression increased in IL-mPFC following cocaine self-administration, an effect reversed by extinction. These results suggest that cocaine-induced overexpression of bFGF inhibits extinction, as blocking bFGF during extinction permits rapid extinction. Therefore, targeted reductions in bFGF during therapeutic interventions could enhance treatment outcomes for addiction.

  4. Promotion of tracheal cartilage growth by intra-tracheal injection of basic fibroblast growth factor (b-FGF).

    PubMed

    Komura, Makoto; Komura, Hiroko; Konishi, Kenichirou; Ishimaru, Tetsuya; Hoshi, Kazuto; Takato, Tsuyoshi; Tabata, Yasuhiko; Iwanaka, Tadashi

    2014-02-01

    Basic fibroblast growth factor (b-FGF) is a very effective growth factor that induces the proliferation of chondrocytes. This study aimed to investigate whether intra-tracheally-injected b-FGF solution promotes the growth of tracheal cartilage. Group 1: 500 μl of distilled water was injected at the posterior wall of the cervical trachea of New Zealand white rabbits by using a tracheoscope (n=5). Group 2: 100 μg/500 μl of b-FGF solution was injected at the posterior wall of the cervical trachea (n=5). Group 3: Biodegradable gelatin hydrogel microspheres incorporating 100 μg/500 μl of b-FGF solution were injected at the posterior wall of the cervical trachea (n=5). All animals were sacrificed 4 weeks later, and the outer diameter and luminal area of the cervical trachea at the site of b-FGF injection were measured. The cervical tracheas in the two b-FGF injection groups were spindle-shaped and had a maximum diameter at the injection site. The median outer diameter of the cervical trachea in Groups 1, 2, and 3 was 7.3, 8.0, and 8.0mm, respectively, showing a significant difference among Groups 1, 2, and 3 (P=0.04). The median luminal area in Groups 1, 2, and 3 was 27.4, 29.4, and 32.1mm(2), respectively. The ad hoc test showed a marginally significant difference only between groups 1 and 3 (p=0.056). Intra-tracheal injection of slowly released b-FGF enlarged the tracheal lumen. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Comparison of human dermal fibroblasts (HDFs) growth rate in culture media supplemented with or without basic fibroblast growth factor (bFGF).

    PubMed

    Abdian, Narges; Ghasemi-Dehkordi, Payam; Hashemzadeh-Chaleshtori, Morteza; Ganji-Arjenaki, Mahbobe; Doosti, Abbas; Amiri, Beheshteh

    2015-12-01

    Basic fibroblast growth factor (bFGF or FGF-2) is a member of the FGF family secreted by different kinds of cells like HDFs and it is an important nutritional factor for cell growth and differentiation. The HDFs release bFGF in culture media at very low. The present study aims to investigate the HDFs growth rate in culture media supplemented either with or without bFGF. In brief, HDFs were isolated from human foreskin sample and were cultured in vitro in media containing bFGF and lack of this factor. The cells growth rate was calculated by trypan blue. The karyotyping was performed using G-banding to investigate the chromosomal abnormality of HDFs in both groups. Total RNA of each groups were extracted and cDNA samples were synthesized then, real-time Q-PCR was used to measure the expression level of p27kip1 and cyclin D1 genes normalized to internal control gene (GAPDH). The karyotype analysis showed that HDFs cultured in media or without bFGF had normal karyotype (46 chromosomes, XY) and chromosomal abnormalities were not observed. The cell growth rates in both groups were normal with proliferated exponentially but the slope of growth curve in HDFs cultured in media containing bFGF was increased. Karyotyp test showed that bFGF does not affect on cytogenetic stability of cells. The survey of p27kip1 and cyclin D1 genes by real-time Q-PCR showed that the expression level of these genes were up-regulated when adding bFGF in culture media (p < 0.05). The findings of the present study demonstrate that appropriate supplementation of culture media with growth factor like bFGF could enhance the proliferation and differentiation capacity of cells and improve cells growth rate. Similarly, fibroblast growth factors did not induce any chromosomal abnormality in cells. Furthermore, in HDFs cultured in bFGF supplemented media, the p27kip1 and cyclin D1 genes were up-regulated and suggesting an important role for bFGF in cell-cycle regulation and progression and fibroblast

  6. Phosphorylation of the growth factors bFGF, NGF and BDNF: a prerequisite for their biological activity.

    PubMed

    Klumpp, Susanne; Kriha, Dorothee; Bechmann, Gunther; Maassen, Alexander; Maier, Sandra; Pallast, Stefanie; Hoell, Patrick; Krieglstein, Josef

    2006-01-01

    The aim of this work was to test whether growth factors such as basic fibroblast growth factor (bFGF), nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) undergo autophosphorylation and whether this affects their biological activity. Incubation of those growth factors with [gamma-(32)P]ATP resulted in phosphorylation in vitro. The phosphate bond was resistant to alkaline pH, yet acid-labile. Addition of alkaline phosphatase resulted in time and protein dependent dephosphorylation. Concomitantly, alkaline phosphatase abolished the neuroprotective effect of those growth factors upon oxygen and glucose deprivation and upon staurosporine-induced cell death. For those studies, we were using primary cultures of cortical and hippocampal neurons from embryonic and neonatal rats. Incubation of bFGF with non-hydrolyzable ATP-gammaS resulted in phosphorylation and in neuroprotection resistant to alkaline phosphatase. We conclude that bFGF, NGF and BDNF undergo autophosphorylation on site(s) other than serine, threonine, tyrosine and/or ATP-binding, and that this binding of phosphate is essential for neuroprotection in vivo.

  7. Basic fibroblast growth factor (bFGF) acts intracellularly to cause the transdifferentiation of avian neural crest-derived Schwann cell precursors into melanocytes.

    PubMed

    Sherman, L; Stocker, K M; Morrison, R; Ciment, G

    1993-08-01

    We previously found that cultured neural crest-derived cells from embryonic quail peripheral nerves, which consist mostly of Schwann cell precursors, gave rise to melanocytes following treatment with basic fibroblast growth factor (bFGF) or 12-O-tetradecanoyl phorbol-13-acetate (TPA). Here, we show that antisense deoxyoligonucleotides targeted against two regions of the bFGF mRNA transcript blocked this TPA-induced transdifferentiation of Schwann cell precursors. Neither sense nor scrambled antisense control oligonucleotides had any effect in this regard. TPA increased bFGF protein expression in cell lysates but not in conditioned media from these cultures, and this expression was localized to the nucleus and cytoplasm. Furthermore, bFGF-neutralizing antibodies and inositol-hexakisphosphate (InsP6) both inhibited pigmentation caused by exogenous bFGF, but had no affect on TPA-induced melanogenesis, suggesting that bFGF is not released by these cells. These data indicate that bFGF is necessary for the TPA-induced transdifferentiation of Schwann cell precursors into melanocytes and that bFGF acts via an intracrine mechanism.

  8. Effect of basic fibroblast growth factor (bFGF) on the treatment of exposure of the orbital implants

    PubMed Central

    Cui, Hong-guang; Li, Hui-yan

    2007-01-01

    Objective: To evaluate the efficacy and the indication of basic fibroblast growth factor (bFGF) in the treatment of exposure of orbital implants. Design: Retrospective and observational case series. Methods: We reviewed 41 patients (41 eyes) suffering exposure of orbital implants from Jan. 2000 to June 2006. The study group patients with mild exposure received combined treatment with bFGF and antibiotic drops, and while the control group patients with mild exposure were treated with antibiotic drops only. The study group patients with moderate and severe exposure received combined treatment with bFGF and antibiotic drops, and after 2 months they were subjected to amniotic membrane transplantation, while the control group patients with moderate and severe exposure underwent amniotic membrane transplantation after using antibiotic drops. Observation of the growth of conjunctival epithelium and comparison of the healing rate of the two groups. Results: The healing rates of the mild, moderate and severe exposure study group were 100% and 92.3%. The healing rates of the mild, moderate and severe exposure control group were 55.6% and 66.7% respectively. The difference of the healing rates of the mild exposure study group and the control group was significant (P=0.033). And the difference of the healing rates of the moderate and severe exposure study group and the control group was not significant (P=0.167). Conclusion: bFGF may promote obviously the healing of orbital implant exposure, particularly it can be the first choice for the treatment of mild degree exposure. For the moderate and severe cases, it can be administered before surgical repair to enhance neovascularization and will tend to increase the success rate of surgical repair. PMID:17726742

  9. Differential expression of basic fibroblast growth factor (bFGF) in melanocytic lesions demonstrated by in situ hybridization. Implications for tumor progression.

    PubMed Central

    Reed, J. A.; McNutt, N. S.; Albino, A. P.

    1994-01-01

    Basic fibroblast growth factor (bFGF) is an angiogenic and mitogenic polypeptide produced by diverse cell types including cell lines derived from malignant melanomas but not from normal melanocytes. However, there is no consensus concerning in vivo expression of bFGF in melanocytic lesions due in part to the small numbers of cases studied to date. To evaluate further the possible differential expression of bFGF in melanocytic lesions, we examined 110 formalin-fixed, paraffin-embedded metastatic and primary invasive melanomas, melanomas in situ, nevi with architectural disorder and cytological atypia, and ordinary benign melanocyte nevi by nucleic acid in situ hybridization. All metastatic and primary invasive melanomas studied expressed bFGF mRNA, whereas melanomas in situ and benign melanocyte nevi were negative. Melanomas in situ with features of tumor regression and a majority of nevi with architectural disorder and cytological atypia also contained bFGF mrNA. The results suggest that in vivo bFGF expression is not requisite for malignant transformation per se, but appears to correlate more with invasion or fibroblastic reactions adjacent to the melanocyte lesions. Images Figure 1 Figure 2 PMID:8311116

  10. [The process of heme synthesis in bone marrow mesenchymal stem cells cultured under fibroblast growth factor bFGF and hypoxic conditions].

    PubMed

    Poleshko, A G; Lobanok, E S; Mezhevikina, L M; Fesenko, E E; Volotkovskiĭ, I D

    2014-01-01

    It was demonstrated that fibroblast growth factor bFGF influences the process of heme synthesis, the proliferation activity and viability of bone marrow mesenchymal stem cells in culture under hypoxic conditions. The addition of fibroblast growth factor bFGF (7 ng/ml) to the medium under above conditions led to the accumulation of aminolevulinic acid--an early porphyrin and heme precursor, an increase in CD 71 expression--a transferrin receptor, and also a decrease in porphyrin pigments and heme contents--a late precursor and end products of heme synthesis, respectively. It was found that cultivation of the cells under hypoxic conditions and bFGF is an optimum to maintain high viability and proliferation capacity of the mesenchymal stem cells.

  11. Immunohistochemical expression of CD34 and basic fibroblast growth factor (bFGF) in oral submucous fibrosis

    PubMed Central

    Pandiar, Deepak; Shameena, PM

    2014-01-01

    Background: Oral submucous fibrosis (OSMF) is an insidious chronic fibrotic condition that involves the oral mucosa and occasionally the pharynx and esophagus. Vascularity in OSMF has always been a matter of debate. The prevailing concept is that epithelial atrophy occurs due to lack of perfusion but the recent data challenges this concept. Therefore, the present study was conducted to evaluate the immunoreactivity of CD34 and basic fibroblast growth factor (bFGF) in different histological grades of OSMF. This might further shed light to the role of microvasculature in OSMF, so that the epithelial atrophy and resultant malignant transformation seen in the advanced stages might be elucidated. Materials and Methods: A total of 30 cases of OSMF were included in the study and mean vascular density (MVD) was calculated using CD34 and bFGF. Five cases of OSMF with dysplasia and 2 cases of OSMF turning malignant were added during the course of the study. Results: Mean vascular density was found to decrease significantly as the diseases advanced. Furthermore, vascularity increased significantly in cases of OSMF turning towards malignancy. Conclusion: Our study supports the concept of epithelial atrophy aftermath of lack of perfusion. There is reduced vascularity as the disease advances and this denies the systemic absorption of carcinogens, which affects the already compromised epithelium. Consequently, liberation of angiogenic factors occurs because of malignant transformation, which explains the neoangiogenesis and increased vascularity in OSMF turning towards malignancy. Further studies are required to identify the mechanism leading to carcinogenesis in the atrophied epithelium aftermath of fibrosis and decreased vascularity. PMID:25328292

  12. The effect of aloe vera on the expression of wound healing factors (TGFβ1 and bFGF) in mouse embryonic fibroblast cell: In vitro study.

    PubMed

    Hormozi, Maryam; Assaei, Raheleh; Boroujeni, Mandana Beigi

    2017-04-01

    Aloe vera (A.v) have been used traditionally for topical treatment of wounds and burns in different countries for centuries, but the mechanism of this effect is not well understood. Various growth factors are implicated in the process of wound healing. Among the different growth factors involved in the process, TGFβ1 and bFGF are the most importantly expressed in fibroblast cells. The aim of this study was to evaluate the effect of A.v on the expression of angiogenesis growth factors in mouse embryonic fibroblast cells. We exposed mouse embryonic fibroblast cells to different concentrations of A.v (50, 100 and 150μg/ml) at two different time of 12 and 24h. Fibroblast cell without A.v treatment serves as the control. The expression of TGFβ1and bFGF was measured by real time-polymerase chain reaction (real-time-PCR) and enzyme-linked immunosorbent assay (ELISA) at the level of gene and protein. We observed that A.v gel at first up-regulated the expression of TGFβ1 and bFGF, but, these genes were later repressed after a particular time. Our results demonstrated that A.v was dose-dependent and time-dependent on the expression of bFGF and TGFβ1 in fibroblast cell in vitro. This mechanism can be employed in the prospective treatment of physical lesion. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Insulin-like growth factor-binding protein-3 inhibits IGF-1-induced proliferation of human hepatocellular carcinoma cells by controlling bFGF and PDGF autocrine/paracrine loops.

    PubMed

    Ma, Yang; Han, Chen-Chen; Li, Yifan; Wang, Yang; Wei, Wei

    2016-09-16

    Basic fibroblast growth factor (bFGF) and platelet-derived growth factor (PDGF) produced by hepatocellular carcinoma (HCC) cells are responsible for the growth of HCC cells. Accumulating evidence shows that insulin-like growth factor-binding protein-3 (IGFBP-3) suppresses HCC cell proliferation in both IGF-dependent and independent manners. It's unknown, however, whether treatment with exogenous IGFBP-3 inhibits bFGF and PDGF production in HCC cells. The present study demonstrates that IGFBP-3 suppressed IGF-1-induced bFGF and PDGF expression while it does not affect their expression in the absence of IGF-1. To delineate the underlying mechanism, western-blot and RT-PCR assays confirmed that the transcription factor early growth response protein 1 (EGR1) is involved in IGFBP-3 regulation of bFGF and PDGF. IGFBP-3 inhibition of type 1 insulin-like growth factor receptor (IGF1R), ERK and AKT activation is IGF-1-dependent. Furthermore, transient transfection with constitutively activated AKT or MEK partially blocks the IGFBP-3 inhibition of EGR1, bFGF and PDGF expression. In conclusion, these findings suggest that IGFBP-3 suppresses transcription of EGR1 and its target genes bFGF and PDGF through inhibiting IGF-1-dependent ERK and AKT activation. It demonstrates the importance of IGFBP-3 in the regulation of HCC cell proliferation, suggesting that IGFBP-3 could be a target for the treatment of HCC.

  14. A comparative study on the effects of tumor necrosis factor-alpha (TNF-alpha), human angiogenic factor (h-AF) and basic fibroblast growth factor (bFGF) on the chorioallantoic membrane of the chick embryo.

    PubMed

    Olivo, M; Bhardwaj, R; Schulze-Osthoff, K; Sorg, C; Jacob, H J; Flamme, I

    1992-09-01

    The chorioallantoic membrane (CAM) assay is a widely used bioassay for testing angiogenic activities. In the present study we compared the gross and micromorphological effects of three angiogenic factors applied in Elvax carriers on the CAM: Tumor necrosis factor-alpha (TNF-alpha), human angiogenic factor (h-AF), and basic fibroblast growth factor (bFGF). Our question was whether the CAM responds to these factors which have very different actions with a stereotype or with a factor specific reaction. By microangiography and light microscopy, all positive reactions appeared as a spoke-wheel vascular pattern with a bundle of small capillary blood vessels in the center. These vessels were predominantly of a distended type in h-AF and TNF experiments, while narrower capillary vessels followed bFGF application. Chorioallantoic ectoderm and endoderm were thickened by cell accumulation and the mesenchymal stroma of the CAM was edematous and infiltrated with leucocytes in all three reactions. Additionally, bFGF experiments showed areas of densely arranged fibroblasts. Observations in vivo showed chorioallantoic tissue movements as a possible mechanism for the spokewheel vascular pattern. As compared with our results from studies of cytokinetics with bromodeoxyuridine, these current findings indicate that chemotaxis is responsible for the chorioallantoic angiogenic reaction rather than cellular proliferation.

  15. 5. Accelerated Fracture Healing Targeting Periosteal Cells: Possibility of Combined Therapy of Low-Intensity Pulsed Ultrasound (LIPUS), Bone Graft, and Growth Factor (bFGF).

    PubMed

    Uchida, Kentaro; Urabe, Ken; Naruse, Koji; Mikuni-Takagaki, Yuko; Inoue, Gen; Takaso, Masashi

    2016-08-01

    We have studied the mechanism of fracture healing, and the effect of LIPUS, bone graft and growth factor on accelerating fracture healing. We present here the results of our research. To examine callus formation cells in fracture healing, we made marrow GFP chimera mice and a fracture model of marrow mesenchymal stem cell GFP chimera mice. It was demonstrated that periosteal cells were essential for callus formation. We focused on periosteal cells and examined the effect of LIPUS. In an in vitro experiment using a cultured part of the femur, LIPUS promoted ossification of the periosteal tissue. Further, LIPUS accelerated VEGF expression in the experiment using the femoral fracture model of mice. From these results, it was suggested that activation of periosteal cells might play a role in the fracture healing mechanism of LIPUS. Next, we discussed the possibility of combined therapy of LIPUS, bone graft and growth factor. Therapy involving the topical administration of bFGF using a controlled release system and bone graft could promote callus formation. In addition, LIPUS was able to promote membranaceous ossification after the bone graft. It was suggested that combined therapy of LIPUS, bone graft and bFGF could be a new option for treating fractures.

  16. Endothelial proteoglycans inhibit bFGF binding and mitogenesis.

    PubMed

    Forsten, K E; Courant, N A; Nugent, M A

    1997-08-01

    Basic fibroblast growth factor (bFGF) is a known mitogen for vascular smooth muscle cells and has been implicated as having a role in a number of proliferative vascular disorders. Binding of bFGF to heparin or heparan sulfate has been demonstrated to both stimulate and inhibit growth factor activity. The activity, towards bFGF, of heparan sulfate proteoglycans present within the vascular system is likely related to the chemical characteristics of the glycosaminoglycan as well as the structure and pericellular location of the intact proteoglycans. We have previously shown that endothelial conditioned medium inhibits both bFGF binding to vascular smooth muscle cells and bFGF stimulated cell proliferation in vitro. In the present study, we have isolated proteoglycans from endothelial cell conditioned medium and demonstrated that they are responsible for the bFGF inhibitory activity. We further separated endothelial secreted proteoglycans into two fractions, PG-A and PG-B. The large sized fraction (PG-A) had greater inhibitory activity than did PG-B for both bFGF binding and bFGF stimulation of vascular smooth muscle cell proliferation. The increased relative activity of PG-A was attributed, in part, to larger heparan sulfate chains which were more potent inhibitors of bFGF binding than the smaller heparan sulfate chains on PG-B. Both proteoglycan fractions contained perlecan-like core proteins; however, PG-A contained an additional core protein (approximately 190 kDa) that was not observed in PG-B. Both proteoglycan fractions bound bFGF directly, and PG-A bound a significantly greater relative amount of bFGF than did PG-B. Thus the ability of endothelial heparan sulfate proteoglycans to bind bFGF and prevent its association with vascular smooth muscle cells appears essential for inhibition of bFGF-induced mitogenesis. The production of potent bFGF inhibitory heparan sulfate proteoglycans by endothelial cells might contribute to the maintenance of vascular homeostasis.

  17. Staphylococcus aureus induces TGF-β1 and bFGF expression through the activation of AP-1 and NF-κB transcription factors in bovine mammary gland fibroblasts.

    PubMed

    Wu, Jianmei; Ding, Yulin; Bi, Yannan; Wang, Yi; Zhi, Yu; Wang, Jinling; Wang, Fenglong

    2016-06-01

    Staphylococcus aureus is a common Gram-positive pathogen that causes bovine mastitis, a persistent infection of the bovine mammary gland. To better understand the importance of bovine mammary fibroblasts (BMFBs) and the roles of the TLR-NF-κB and TLR-AP-1 signaling pathways in the regulation of S. aureus-associated mastitis and mammary fibosis, BMFBs cultured in vitro were stimulated with different concentrations of heat-inactivated S. aureus to analyze the gene and protein expression of toll-like receptor 2 (TLR2), toll-like receptor 4 (TLR4), transforming growth factor beta 1 (TGF-β1), basic fibroblast growth factor (bFGF) as well as the protein expression of nuclear factor-kappa B (NF-κB) and activation protein-1 (AP-1) by means of quantitative polymerase chain reaction (qPCR) and western blotting, respectively. Specific NF-κB and AP-1 inhibitors were also used to investigate their effects on the regulation of TGF-β1 and bFGF expression. The results indicated that, in addition to increasing mRNA and protein expression of TLR2 and TLR4, S. aureus could also upregulate TGF-β1 and bFGF mRNA expression and secretion through the activation of NF-κB and AP-1. The increase in TGF-β1 and bFGF expression was shown to be inhibited by AP-1- and NF-κB-specific inhibitors. Taken together, S. aureus induces TGF-β1 and bFGF expression through the activation of AP-1 and NF-κB in BMFBs. This information offers new potential targets for the treatment of bovine mammary fibrosis.

  18. Stem cells with FGF4-bFGF fused gene enhances the expression of bFGF and improves myocardial repair in rats

    SciTech Connect

    Chen, Xiang-Qi; Chen, Liang-Long Fan, Lin; Fang, Jun; Chen, Zhao-Yang; Li, Wei-Wei

    2014-04-25

    Highlights: • BFGF exists only in the cytoplasm of live cells. • BFGF cannot be secreted into the extracellular space to promote cell growth. • We combine the secretion-promoting signal peptide of FGF4. • We successfully modified BMSCs with the fused genes of FGF4-bFGF. • We promoted the therapeutic effects of transplanted BMSCs in myocardial infarction. - Abstract: The aim of this study was to investigate whether the modification of bone marrow-derived mesenchymal stem cells (BMSCs) with the fused FGF4 (fibroblast growth factor 4)-bFGF (basic fibroblast growth factor) gene could improve the expression and secretion of BFGF, and increase the efficacies in repairing infarcted myocardium. We used In-Fusion technique to construct recombinant lentiviral vectors containing the individual gene of bFGF, enhanced green fluorescent protein (EGFP), or genes of FGF4-bFGF and EGFP, and then transfected these lentiviruses into rat BMSCs. We conducted an in vitro experiment to compare the secretion of bFGF in BMSCs infected by these lentiviruses and also examined their therapeutic effects in the treatment of myocardial infraction in a rodent study. Sixty rats were tested in the following five conditions: Group-SHAM received only sham operation as controls; Group-AMI received only injection of placebo PBS buffer; Group-BMSC, Group-bFGF and Group-FGF4-bFGF received implantation of BMSCs with empty lentivirus, bFGF lentivirus, and FGF4-bFGF lentivirus, respectively. Our results found out that the transplanted FGF4-bFGF BMSCs had the highest survival rate, and also the highest myocardial expression of bFGF and microvascular density as evidenced by Western blotting and immunohistochemistry, respectively. As compared to other groups, the Group-FGF4-BFGF rats had the lowest myocardial fibrotic fraction, and the highest left ventricular ejection fraction. These results suggest that the modification of BMSCs with the FGF4-bFGF fused gene can not only increase the expression of

  19. Evaluation of human brain damage in fire fatality by quantification of basic fibroblast growth factor (bFGF), glial fibrillary acidic protein (GFAP) and single-stranded DNA (ssDNA) immunoreactivities.

    PubMed

    Wang, Qi; Ishikawa, Takaki; Michiue, Tomomi; Zhu, Bao-Li; Maeda, Hitoshi

    2011-09-10

    Burns and inhalation of toxic gases, including carbon monoxide (CO) and cyanide, which are produced by combustion, are major factors involved in fire death. The present study immunohistochemically investigated basic fibroblast growth factor (bFGF), glial fibrillary acidic protein (GFAP) and single-stranded DNA (ssDNA) in the brains of fire fatalities (n=49) to examine the differences between fatal burns and CO intoxication, compared with those in cardiac deaths (n=24) and mechanical asphyxiation cases (n=23). In acute fire fatality, neuronal ssDNA immunopositivity in the cerebral cortex of the parietal lobe was high in both fatal burns and fatal CO intoxication, but that of the pallidum was higher for CO intoxication than for burns. The number of neurons was decreased in prolonged fire deaths, irrespective of the severity of burns or CO intoxication, but glias were increased in cases of fatal burns. Prolonged deaths due to burns had a higher glial bFGF immunopositivity in the cortex and white matter, higher and lower glial GFAP immunopositivity in the cortex and white matter, respectively, and a low neuronal ssDNA immunopositivity in the cerebral cortex and hippocampus. In prolonged deaths due to CO intoxication, however, glial bFGF and GFAP immunopositivities were low at each site, but neuronal ssDNA immunopositivity showed a higher value. These observations suggest increased cerebral neuronal ssDNA immunopositivity to be a finding of vitality in acute fire death, and a neuronal loss accompanied by active glial responses after severe burns, and a neuronal loss and progressive apoptosis without glial responses after CO intoxication to be characteristic in prolonged death.

  20. Effects of bFGF incorporated into a gelatin sheet on wound healing.

    PubMed

    Miyoshi, Michiyo; Kawazoe, Takeshi; Igawa, Hiroharu H; Tabata, Yasuhiko; Ikada, Yoshito; Suzuki, Shigehiko

    2005-01-01

    Basic fibroblast growth factor (bFGF) is well known to promote the proliferation of almost all cells associated with wound healing. However, as the activation duration of bFGF is very short in vivo, we incorporated bFGF into an acidic gelatin hydrogel and studied the sustained release of bFGF in vivo. In addition, we investigated the effects of the acidic gelatin sheet containing bFGF on wound healing. To distinguish wound contraction from neoepithelialization, we measured both the wound area and neoepithelium length. Other histological parameters such as thickness of granulation tissue and number of capillaries were also determined as indices of wound healing. Fibrous tissue was assessed using an Elastica van Gieson and Azan stain. A skin defect (1.5 x 1.5 cm) of full thickness was created on the back of each test mouse and the wound was covered with an acidic gelatin hydrogel, referred to as a gelatin sheet in this study (2 x 2 cm), with bFGF (100 microg/site) (A) or without bFGF (B). 1, 2, 3, 5, 7 and 14 days after covering, mice were killed and an enzyme-linked immunosorbent assay (ELISA) was performed to estimate the concentration of bFGF in the plasma. In another experiment, each wound was covered with (A), (B) or a hydrogel dressing (control group, C) and the wound area was measured 1 or 2 weeks postoperatively with a computer planimeter. The histological parameters, as mentioned above, were assessed using a light microscope. Sustained release of bFGF from the gelatin sheet was observed and the gelatin sheet containing bFGF promoted neoepithelialization, granulation, neovascularization and wound closure. This gelatin sheet containing bFGF was concluded to be effective for wound healing and promising for clinical use.

  1. Neurotrophic factors [activity-dependent neurotrophic factor (ADNF) and basic fibroblast growth factor (bFGF)] interrupt excitotoxic neurodegenerative cascades promoted by a PS1 mutation

    PubMed Central

    Guo, Qing; Sebastian, Lois; Sopher, Bryce L.; Miller, Miles W.; Glazner, Gordon W.; Ware, Carol B.; Martin, George M.; Mattson, Mark P.

    1999-01-01

    Although an excitotoxic mechanism of neuronal injury has been proposed to play a role in chronic neurodegenerative disorders such as Alzheimer’s disease, and neurotrophic factors have been put forward as potential therapeutic agents, direct evidence is lacking. Taking advantage of the fact that mutations in the presenilin-1 (PS1) gene are causally linked to many cases of early-onset inherited Alzheimer’s disease, we generated PS1 mutant knock-in mice and directly tested the excitotoxic and neurotrophic hypotheses of Alzheimer’s disease. Primary hippocampal neurons from PS1 mutant knock-in mice exhibited increased production of amyloid β-peptide 42/43 and increased vulnerability to excitotoxicity, which occurred in a gene dosage-dependent manner. Neurons expressing mutant PS1 exhibited enhanced calcium responses to glutamate and increased oxyradical production and mitochondrial dysfunction. Pretreatment with either basic fibroblast growth factor or activity-dependent neurotrophic factor protected neurons expressing mutant PS1 against excitotoxicity. Both basic fibroblast growth factor and activity-dependent neurotrophic factor stabilized intracellular calcium levels and abrogated the increased oxyradical production and mitochondrial dysfunction otherwise caused by the PS1 mutation. Our data indicate that neurotrophic factors can interrupt excitotoxic neurodegenerative cascades promoted by PS1 mutations. PMID:10097174

  2. Immobilization of type-I collagen and basic fibroblast growth factor (bFGF) onto poly (HEMA-co-MMA) hydrogel surface and its cytotoxicity study.

    PubMed

    Yan, Tuo; Sun, Rong; Li, Chun; Tan, Baihua; Mao, Xuan; Ao, Ningjian

    2010-08-01

    Type-I collagen and bFGF were immobilized onto the surface of poly (HEMA-co-MMA) hydrogel by grafting and coating methods to improve its cytotoxicity. The multi-layered structure of the biocompatible layer was confirmed by FTIR, AFM and static water contact angles. The layers were stable in body-like environment (pH 7.4). Human skin fibroblast cells (HSFC) were seeded onto Col/bFGF-poly (HEMA-co-MMA), Col-poly (HEMA-co-MMA) and poly (HEMA-co-MMA) films for 1, 3 and 5 day. MTT assay was performed to evaluate the extraction toxicity of the materials. Results showed that the cell attachment, proliferation and differentiation on Col/bFGF-poly (HEMA-co-MMA) film were higher than those of the control group, which indicated the improvement of cell-material interaction. The extraction toxicity of the modified materials was also lower than that of the unmodified group. The protein and bFGF immobilized poly (HEMA-co-MMA) hydrogel might hold great promise to be a biocompatible material.

  3. Serotonin derivative, N-(p-Coumaroyl)serotonin, isolated from safflower (Carthamus tinctorius L.) oil cake augments the proliferation of normal human and mouse fibroblasts in synergy with basic fibroblast growth factor (bFGF) or epidermal growth factor (EGF).

    PubMed

    Takii, T; Hayashi, M; Hiroma, H; Chiba, T; Kawashima, S; Zhang, H L; Nagatsu, A; Sakakibara, J; Onozaki, K

    1999-05-01

    N-(p-Coumaroyl)serotonin (CS) with antioxidative activity is present in safflower oil. We have reported that CS inhibits proinflammatory cytokine generation from human monocytes in vitro. As reactive oxygen species (ROS) affect cell proliferation, in this study the effect of CS on the proliferation of various cell types was examined. CS augments the proliferation of normal human and mouse fibroblast cells. The cells continue to proliferate in the presence of CS and form a transformed cell-like focus without transformation. CS, however, does not augment the proliferation of other cell types, either normal or tumor cells. CS augments the proliferation of fibroblasts in synergy with basic fibroblast growth factor (bFGF) or epidermal growth factor (EGF), but not with acidic FGF(aFGF) or platelet-derived growth factor (PDGF). This study using synthesized derivatives of CS reveals that the growth-promoting activity is not due to antioxidative activity. These findings indicate that CS is a natural compound with unique growth-promoting activity for fibroblasts.

  4. The Relationships between Polymorphisms in Genes Encoding the Growth Factors TGF-β1, PDGFB, EGF, bFGF and VEGF-A and the Restenosis Process in Patients with Stable Coronary Artery Disease Treated with Bare Metal Stent

    PubMed Central

    Osadnik, Tadeusz; Strzelczyk, Joanna Katarzyna; Reguła, Rafał; Bujak, Kamil; Fronczek, Martyna; Gonera, Małgorzata; Gawlita, Marcin; Wasilewski, Jarosław; Lekston, Andrzej; Kurek, Anna; Gierlotka, Marek; Trzeciak, Przemysław; Hawranek, Michał; Ostrowska, Zofia; Wiczkowski, Andrzej; Poloński, Lech; Gąsior, Mariusz

    2016-01-01

    Background Neointima forming after stent implantation consists of vascular smooth muscle cells (VSMCs) in 90%. Growth factors TGF-β1, PDGFB, EGF, bFGF and VEGF-A play an important role in VSMC proliferation and migration to the tunica intima after arterial wall injury. The aim of this paper was an analysis of functional polymorphisms in genes encoding TGF-β1, PDGFB, EGF, bFGF and VEGF-A in relation to in-stent restenosis (ISR). Materials and Methods 265 patients with a stable coronary artery disease (SCAD) hospitalized in our center in the years 2007–2011 were included in the study. All patients underwent stent implantation at admission to the hospital and had another coronary angiography performed due to recurrence of the ailments or a positive result of the test assessing the coronary flow reserve. Angiographically significant ISR was defined as stenosis >50% in the stented coronary artery segment. The patients were divided into two groups–with angiographically significant ISR (n = 53) and without significant ISR (n = 212). Additionally, the assessment of late lumen loss (LLL) in vessel was performed. EGF rs4444903 polymorphism was genotyped using the PCR-RFLP method whilst rs1800470 (TGFB1), rs2285094 (PDGFB) rs308395 (bFGF) and rs699947 (VEGF-A) were determined using the TaqMan method. Results Angiographically significant ISR was significantly less frequently observed in the group of patients with the A/A genotype of rs1800470 polymorphism (TGFB1) versus patients with A/G and G/G genotypes. In the multivariable analysis, LLL was significantly lower in patients with the A/A genotype of rs1800470 (TGFB1) versus those with the A/G and G/G genotypes and higher in patients with the A/A genotype of the VEGF-A polymorphism versus the A/C and C/C genotypes. The C/C genotype of rs2285094 (PDGFB) was associated with greater LLL compared to C/T heterozygotes and T/T homozygotes. Conclusions The polymorphisms rs1800470, rs2285094 and rs6999447 of the TGFB1, PDGFB and

  5. FSH and bFGF stimulate the production of glutathione in cultured rat Sertoli cells.

    PubMed

    Gualtieri, Ariel F; Mazzone, Graciela L; Rey, Rodolfo A; Schteingart, Helena F

    2009-06-01

    Migration of developing germ cells from the basal to the adluminal compartment of the seminiferous epithelium requires extensive tissue restructuring, resulting in the production of reactive oxygen species. Sertoli cells are involved in this process. Glutathione (GSH), produced by Sertoli cells, has an essential role in cell protection against oxidative stress. Intracellular GSH content is maintained by de novo synthesis, involving glutamate-cysteine ligase catalytic (GCLC) and modulatory (GCLM) subunits, and by recycling from oxidized GSH, catalysed by glutathione reductase (GR). To assess whether follicle-stimulating hormone (FSH) and basic fibroblast growth factor (bFGF) modulate GSH production in Sertoli cells by regulating the expression of GCLC, GCLM and/or GR, we performed in vitro studies using rat Sertoli cells in primary culture. FSH and bFGF stimulation increased Sertoli cell GSH levels after 24 h incubation. The simultaneous addition of FSH and bFGF did not produce any further effect. GCLM expression was upregulated by FSH and bFGF 6 h. At 24 h, only the FSH-mediated effect was still observed. FSH and bFGF also upregulated GR expression. In conclusion, our results show that FSH and bFGF increase GSH levels in Sertoli cells through stimulation of the de novo synthesis and recycling by upregulating GCLM and GR expression respectively. Therefore, protection of germ cells against oxidative stress seems to be regulated by hormones and germ cell-released growth factors capable of influencing the production of Sertoli cell GSH.

  6. Controlled release of EGF and bFGF from dextran hydrogels in vitro and in vivo.

    PubMed

    Dogan, Alper K; Gümüşderelioglu, Menemşe; Aksöz, Erol

    2005-07-01

    In the present study, dextran-epichlorohydrin hydrogels were employed as carriers for the controlled release of epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF). The hydrogels were synthesized from 50% (by weight) monomeric cross-linker, epichlorohydrin, containing dextran mixtures by intermolecular side-chain reaction of dextran-hydroxyl groups with epichlorohydrin-epoxy groups. The hydrogel disks of 3-mm diameter and 1.5-mm thickness have a high swelling capacity (EWC = 650%) and enough mechanical stability for the studies in vivo. Impregnation of EGF and bFGF into the dried hydrogels was carried out by use of phosphate buffered saline solution (PBS, pH = 7.4) containing 0.5 microg mL(-1) EGF and 0.1 microg mL(-1) bFGF, respectively. The in vitro release of growth factors was detected by fluorescence spectroscopy. The prolonged release of EGF is continued up to the 14th day, in comparison with a 26-day release of bFGF. The in vivo studies were realized with subcutaneously implanted hydrogels in Wistar albino rats. The rate of neovascularization was analyzed statistically using one-way analysis of significance with EGF and bFGF incorporated hydrogels. In conclusion, dextran-epichlorohydrin hydrogels were shown to be an alternative delivery system for the release of growth factors.

  7. Delivery of bFGF for Tissue Engineering by Tethering to the ECM.

    PubMed

    Suttinont, Chawapun; Mashimo, Yasumasa; Mie, Masayasu; Kobatake, Eiry

    2015-01-01

    Delivery of growth factors to target cells is an important subject in tissue engineering. Towards that end, we have developed a growth factor-tethered extracellular matrix (ECM). Here, basic fibroblast growth factor (bFGF) was tethered to extracellular matrix noncovalently. The designed ECM was comprised of 12 repeats of the APGVGV peptide motif derived from elastin as a stable structural unit and included the well-known cell adhesive RGD peptide as an active functional unit. To bind bFGF to the ECM, an acidic amino acid-rich sequence was introduced at the C-terminus of the ECM protein. It consisted of 5 repeats of 4 aspartic acids and a serine, DDDDS. bFGF has a highly basic amino acid domain. Therefore, bFGF was tethered to the ECM protein by electrostatic interaction. Cells cultured on bFGF-tethered ECM were well attached to the ECM and induced proliferation without addition of soluble bFGF.

  8. bFGF Protects Pre-oligodendrocytes from Oxygen/Glucose Deprivation Injury to Ameliorate Demyelination.

    PubMed

    Qu, Xuebin; Guo, Rui; Zhang, Zhenzhong; Ma, Li; Wu, Xiuxiang; Luo, Mengjiao; Dong, Fuxing; Yao, Ruiqin

    2015-10-01

    One of the pathological hallmarks of periventricular white matter injury is the vulnerability of pre-oligodendrocytes (preOLs) to hypoxia-ischemia (HI). There is increasing evidence that basic fibroblast growth factor (bFGF) is an important signaling molecule for neurogenesis and neuroprotection in the central nervous system. However, it is unknown whether bFGF protects preOLs from oxygen/glucose deprivation (OGD) damage in vitro and promotes remyelination in HI-induced rats. In this present study, bFGF exerted a protective effect on myelin by increasing the myelin thickness, the number of myelinated axons, and myelin basic protein expression in the HI-induced demyelinated neonatal rat corpus callosum. In vitro, bFGF ameliorated the impaired mitochondria and cell processes induced by OGD to promote the survival of isolated O4-positive preOLs. Additionally, the expression of fibroblast growth factor receptor 3 (FGFR3) was dramatically up-regulated in the preOLs after bFGF administration in vivo and in vitro. Thus, bFGF-stimulated remyelination in HI-induced rats by protecting the preOLs from hypoxic injury, and the mechanism involved may be mediated by FGFR3.

  9. Autologous fibrin scaffolds cultured dermal fibroblasts and enriched with encapsulated bFGF for tissue engineering.

    PubMed

    de la Puente, Pilar; Ludeña, Dolores; Fernández, Ana; Aranda, Jose L; Varela, Gonzalo; Iglesias, Javier

    2011-12-15

    Autologous fibrin scaffolds (AFSs) enriched with cells and specific growth factors represent a promising biocompatible scaffold for tissue engineering. Here, we analyzed the in vitro behavior of dermal fibroblasts (DFs) (cellular attachment, distribution, viability and proliferation, histological and immunohistochemical changes), comparing AFS with and without alginate microcapsules loaded with basic fibroblast growth factor (bFGF), to validate our scaffold in a future animal model in vivo. In all cases, DFs showed good adhesion and normal distribution, while in scaffolds with bFGF at 14 days, the cell counts detected in proliferation and viability assays were greatly improved, as was the proliferative state, and there was a decrease in muscle specific actin expression and collagen synthesis in comparison with the scaffolds without bFGF. In addition, the use of plasma without fibrinogen concentration methods, together with the maximum controlled release of bFGF at 14 days, favored cell proliferation. To conclude, we have been able to create an AFS enriched with fully functional DFs and release-controlled bFGF that could be used in multiple applications for tissue engineering.

  10. Xwnt-8 modifies the character of mesoderm induced by bFGF in isolated Xenopus ectoderm.

    PubMed Central

    Christian, J L; Olson, D J; Moon, R T

    1992-01-01

    In Xenopus, growth factors of the TGF-beta, FGF and Wnt oncogene families have been proposed to play a role in generating embryonic pattern. In this paper we examine potential interactions between the bFGF and Xwnt-8 signaling pathways in the induction and dorsal-ventral patterning of mesoderm. Injection of Xwnt-8 mRNA into 2-cell Xenopus embryos does not induce mesoderm formation in animal cap ectoderm isolated from these embryos at the blastula stage, but alters the response of this tissue to mesoderm induction by bFGF. While animal cap explants isolated from non-injected embryos differentiate to form ventral types of mesoderm and muscle in response to bFGF, explants from Xwnt-8 injected embryos form dorsal mesodermal and neural tissues in response to the same concentration of bFGF, even if the ectoderm is isolated from the prospective ventral sides of embryos or from UV-ventralized animals. Our results support a model whereby dorso-ventral mesodermal patterning can be attained by a single mesoderm inducing agent, possibly bFGF, which is uniformly distributed across the prospective dorsal-ventral axis, and which acts in concert with a dorsally localized signal, possibly a Wnt protein, which either alters the response of ectoderm to induction or modifies the character of mesoderm after its induction. Images PMID:1740111

  11. Molecular and clinical significance of fibroblast growth factor 2 (FGF2 /bFGF) in malignancies of solid and hematological cancers for personalized therapies

    PubMed Central

    Akl, Mohamed R.; Nagpal, Poonam; Ayoub, Nehad M.; Tai, Betty; Prabhu, Sathyen A.; Capac, Catherine M.; Gliksman, Matthew; Goy, Andre; Suh, K. Stephen

    2016-01-01

    Fibroblast growth factor (FGF) signaling is essential for normal and cancer biology. Mammalian FGF family members participate in multiple signaling pathways by binding to heparan sulfate and FGF receptors (FGFR) with varying affinities. FGF2 is the prototype member of the FGF family and interacts with its receptor to mediate receptor dimerization, phosphorylation, and activation of signaling pathways, such as Ras-MAPK and PI3K pathways. Excessive mitogenic signaling through the FGF/FGFR axis may induce carcinogenic effects by promoting cancer progression and increasing the angiogenic potential, which can lead to metastatic tumor phenotypes. Dysregulated FGF/FGFR signaling is associated with aggressive cancer phenotypes, enhanced chemotherapy resistance and poor clinical outcomes. In vitro experimental settings have indicated that extracellular FGF2 affects proliferation, drug sensitivity, and apoptosis of cancer cells. Therapeutically targeting FGF2 and FGFR has been extensively assessed in multiple preclinical studies and numerous drugs and treatment options have been tested in clinical trials. Diagnostic assays are used to quantify FGF2, FGFRs, and downstream signaling molecules to better select a target patient population for higher efficacy of cancer therapies. This review focuses on the prognostic significance of FGF2 in cancer with emphasis on therapeutic intervention strategies for solid and hematological malignancies. PMID:27007053

  12. Photoreceptor dystrophy in the RCS rat: roles of oxygen, debris, and bFGF.

    PubMed

    Valter, K; Maslim, J; Bowers, F; Stone, J

    1998-11-01

    To examine the roles of oxygen, basic fibroblast growth factor (bFGF), and photoreceptor debris in the photoreceptor dystrophy of the Royal College of Surgeons (RCS) rat. Pups were exposed during the critical period of their development (postnatal day [P] 16-24) and for some days thereafter to hypoxia and hyperoxia. The effects of these exposures on photoreceptor death, debris accumulation in the subretinal space, and the expression of bFGF protein and mRNA by surviving cells were studied. During the critical period hyperoxia slowed photoreceptor death in a dose-related fashion and decreased bFGF protein levels, whereas hypoxia accelerated death and increased bFGF levels. At the edges of the retina, where photoreceptors survive longest in normoxia, hypoxia had little effect on either photoreceptor death or bFGF protein levels. Oxygen-induced modulation of rates of death could not be related to the accumulation of debris in the subretinal space. After P27, the relationship between oxygen and photoreceptor death changed markedly, hyperoxia no longer delaying and hypoxia no longer accelerating death. The death of RCS rat photoreceptors in the period P16 to P27 is precipitated by hypoxia that may result from the accumulation of photoreceptor debris in the subretinal space. This debris, the result of the phagocytotic failure of the retinal pigment epithelium in this strain, lies in the normal pathway of oxygen diffusing to the photoreceptors from the choriocapillaris. During this period the retina responds to hypoxia by increasing expression of a potentially protective protein (bFGF), but hypoxia-induced damage overwhelms any protection provided by this or other mechanisms. Later stages of the dystrophy may not be hypoxia-induced.

  13. Human endometrial stem cell neurogenesis in response to NGF and bFGF.

    PubMed

    Noureddini, Mahdi; Verdi, Javad; Mortazavi-Tabatabaei, Seyed Abdolreza; Sharif, Shiva; Azimi, Alireza; Keyhanvar, Peyman; Shoae-Hassani, Alireza

    2012-10-01

    The potential of cell therapy is promising in nerve regeneration, but is limited by ethical considerations about the proper and technically safe source of stem cells. We report the successful differentiation of human EnSCs (endometrial stem cells) as a rich source of renewable and safe progenitors into high-efficiency cholinergic neurons. The extracellular signals of NGF (nerve growth factor) and bFGF (basic fibroblast growth factor) could induce cholinergic neuron differentiation. ChAT (choline acetyltransferase), MAP2 (microtubule associated protein 2) and NF-l (neurofilament L) increased after administration of bFGF and NGF to the EnSC cultures. trkC and FGFR2 (fibroblast growth factor receptor 2), which belong to the NGF and bFGF receptors respectively, were determined in populations of EnSCs. NGF, bFGF and their combination differentially influenced human EnSCs high efficiency differentiation. By inducing cholinergic neurons from EnSCs in a chemically defined medium, we could produce human neural cells without resorting to primary culture of neurons. This in vitro method provides an unlimited source of human neural cells and facilitates clinical applications of EnSCs for neurological diseases.

  14. Cathepsin L derived from skeletal muscle cells transfected with bFGF promotes endothelial cell migration.

    PubMed

    Chung, Ji Hyung; Im, Eun Kyoung; Jin, Tae Won; Lee, Seung-Min; Kim, Soo Hyuk; Choi, Eun Young; Shin, Min-Jeong; Lee, Kyung Hye; Jang, Yangsoo

    2011-04-30

    Gene transfer of basic fibroblast growth factor (bFGF) has been shown to induce significant endothelial migration and angiogenesis in ischemic disease models. Here, we investigate what factors are secreted from skeletal muscle cells (SkMCs) transfected with bFGF gene and whether they participate in endothelial cell migration. We constructed replication-defective adenovirus vectors containing the human bFGF gene (Ad/bFGF) or a control LacZ gene (Ad/LacZ) and obtained conditioned media, bFGF-CM and LacZ-CM, from SkMCs infected by Ad/bFGF or Ad/LacZ, respectively. Cell migration significantly increased in HUVECs incubated with bFGF-CM compared to cells incubated with LacZ-CM. Interestingly, HUVEC migration in response to bFGF-CM was only partially blocked by the addition of bFGF-neutralizing antibody, suggesting that bFGF-CM contains other factors that stimulate endothelial cell migration. Several proteins, matrix metalloproteinase-1 (MMP-1), plasminogen activator inhibitor-1 (PAI-1), and cathepsin L, increased in bFGF-CM compared to LacZ-CM; based on 1-dimensional gel electrophoresis and mass spectrometry. Their increased mRNA and protein levels were confirmed by RT-PCR and immunoblot analysis. The recombinant human bFGF protein induced MMP-1, PAI-1, and cathepsin L expression in SkMCs. Endothelial cell migration was reduced in groups treated with bFGF-CM containing neutralizing antibodies against MMP-1 or PAI-1. In particular, HUVECs treated with bFGF-CM containing cell-impermeable cathepsin L inhibitor showed the most significant decrease in cell migration. Cathepsin L protein directly promotes endothelial cell migration through the JNK pathway. These results indicate that cathepsin L released from SkMCs transfected with the bFGF gene can promote endothelial cell migration.

  15. Inhibition of Endoplasmic Reticulum Stress is Involved in the Neuroprotective Effect of bFGF in the 6-OHDA-Induced Parkinson’s Disease Model

    PubMed Central

    Cai, Pingtao; Ye, Jingjing; Zhu, Jingjing; Liu, Dan; Chen, Daqing; Wei, Xiaojie; Johnson, Noah R.; Wang, Zhouguang; Zhang, Hongyu; Cao, Guodong; Xiao, Jian; Ye, Junming; Lin, Li

    2016-01-01

    Parkinson's disease (PD) is a progressive neurodegenerative disorder with complicated pathophysiologic mechanisms. Endoplasmic reticulum (ER) stress appears to play a critical role in the progression of PD. We demonstrated that basic fibroblast growth factor (bFGF), as a neurotropic factor, inhibited ER stress-induced neuronal cell apoptosis and that 6-hydroxydopamine (6-OHDA)-induced ER stress was involved in the progression of PD in rats. bFGF administration improved motor function recovery, increased tyrosine hydroxylase (TH)-positive neuron survival, and upregulated the levels of neurotransmitters in PD rats. The 6-OHDA-induced ER stress response proteins were inhibited by bFGF treatment. Meanwhile, bFGF also increased expression of TH. The administration of bFGF activated the downstream signals PI3K/Akt and Erk1/2 in vivo and in vitro. Inhibition of the PI3K/Akt and Erk1/2 pathways by specific inhibitors partially reduced the protective effect of bFGF. This study provides new insight towards bFGF translational drug development for PD involving the regulation of ER stress. PMID:27493838

  16. Comparative evaluation of the wound-healing potency of recombinant bFGF and ski gene therapy in rats.

    PubMed

    Peng, Yan; Li, Ping; Zhao, Zi-Ai; Chen, Lei; Zhao, Xiao-Guang; Chen, Xing; Zhao, Yan; Xiong, Ren-Ping; Ning, Ya-Lei; Yang, Nan; Ye, Jian; Zhou, Yuan-Guo

    2016-08-01

    We previously demonstrated that cellular Sloan-Kettering Institute (c-Ski) played a dual role, both promoting wound healing and alleviating scar formation. However, its mechanism and therapeutic effects are not clear, especially compared with widely used treatments, such as basic fibroblast growth factor (bFGF) administration. However, Ski treatment led to an even shorter healing time and a more significant reduction in scar area than bFGF treatment. The mechanism underlying this difference was related to a reduced inflammatory response, more rapid re-epithelialization, less collagen after healing and a greater reduction in the proportion of alpha-smooth muscle actin and SMemb-positive cells after Ski treatment. These results not only confirm that Ski plays a dual role in promoting healing and reducing scarring but also suggest that Ski yields better treatment effects than bFGF, indicating better potential therapeutic effects in wound repair.

  17. Crouzon's syndrome: differential in vitro secretion of bFGF, TGFbeta I isoforms and extracellular matrix macromolecules in patients with FGFR2 gene mutation.

    PubMed

    Baroni, Tiziano; Lilli, Cinzia; Marinucci, Lorella; Bellocchio, Silvia; Pezzetti, Furio; Carinci, Francesco; Stabellini, Giordano; Balducci, Chiara; Locci, Paola

    2002-07-21

    In the Crouzon's syndrome the cranial morphogenic processes are altered due to the early fusion of cranial sutures. We analysed the phenotype of cultured fibroblasts from normal subjects and from Crouzon patients with a specific fibroblast growth factor receptor 2 mutation resulting in a Cys 342 Tyr substitution within the third immunoglobulin domain. Crouzon fibroblasts differed from normal fibroblasts in their extracellular matrix macromolecule accumulation. In Crouzon fibroblasts glycosaminoglycans and fibronectin were decreased and type I collagen increased. As transforming growth factors beta (TGF beta) and basic fibroblasts growth factor (bFGF) together regulate extracellular matrix deposition, we evaluated TGF beta(1), TGF beta(3) and bFGF production by Crouzon and normal fibroblasts. TGF beta(1), TGFb(3) and bFGF levels were lower while TGF beta(1) mRNA transcripts were higher in Crouzon cells. As the increased TGF beta(1) gene expression did not translate into a parallel increase of secreted TGF beta(1), control of TGF beta(1) secretion may be mainly post-transcriptional. Furthermore, adding bFGF increased TGF beta(1) and TGF beta(3) secretion, suggesting the drop may be due to the altered signal transduction of bFGF. These innovative data suggest the in vitro differences between normal and Crouzon fibroblasts may be due to an imbalance in TGF beta and bFGF levels which alters the microenvironment where morphogenesis takes place.

  18. Expansive growth of two glioblastoma stem-like cell lines is mediated by bFGF and not by EGF

    PubMed Central

    Podergajs, Neza; Brekka, Narve; Radlwimmer, Bernhard; Herold-Mende, Christel; Talasila, Krishna M.; Tiemann, Katja; Rajcevic, Uros; Lah, Tamara T.; Bjerkvig, Rolf; Miletic, Hrvoje

    2013-01-01

    Background Patient-derived glioblastoma (GBM) stem-like cells (GSCs) represent a valuable model for basic and therapeutic research. GSCs are usually propagated in serum-free Neural Basal medium supplemented with bFGF and EGF. Yet, the exact influence of these growth factors on GSCs is still unclear. Recently it was suggested that GBM stem-like cells with amplified EGFR should be cultured in stem cell medium without EGF, as the presence of EGF induced rapid loss of EGFR amplification. However, patient biopsies are usually taken into culture before their genomic profiles are defined. Thus, an important question remains whether GBM cells without EGFR amplification also can be cultured in stem cell medium without EGF. Meterials and methods To address this question, we used two heterogeneous glioblastoma GSC lines (NCH421k and NCH644) that lack EGFR amplification. Results Although both cell lines showed very low EGFR expression under standard growth conditions, bFGF stimulation induced higher expression of EGFR in NCH644. In both cell lines, expression of the stem cell markers nestin and CD133 was higher upon stimulation with bFGF compared to EGF. Importantly, bFGF stimulated the growth of both cell lines, whereas EGF had no effect. We verified that the growth stimulation by bFGF was either mediated by proliferation (NCH421k) or resistance to apoptosis (NCH644). Conclusions We demonstrate that GSC cultures without EGFR amplification can be maintained and expanded with bFGF, while the addition of EGF has no significant effect and therefore can be omitted. PMID:24294177

  19. Combined administration of naked DNA vectors encoding VEGF and bFGF enhances tissue perfusion and arteriogenesis in ischemic hindlimb.

    PubMed

    Lee, Jung-Sun; Kim, Jeong-Min; Kim, Koung Li; Jang, Hyung-Suk; Shin, In-Soon; Jeon, Eun-Seok; Suh, Wonhee; Byun, Jonghoe; Kim, Duk-Kyung

    2007-09-07

    Few studies have examined in detail the combined effects of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) gene delivery on collateral development. Here, we evaluated the potential synergism of naked DNA vectors encoding VEGF and bFGF using a skeletal-muscle based ex vivo angiogenesis assay and compared tissue perfusion and limb loss in a murine model of hindlimb ischemia. In the ex vivo angiogenesis assay, the VEGF+bFGF combination group had a larger capillary sprouting area than those of the LacZ, VEGF, and bFGF groups. Consistent with these results, regional blood flow recovery on day 14 was also highest in the VEGF+bFGF combination group, followed by the bFGF, VEGF, and LacZ groups. The limb loss frequency was 0% in the combination group, whereas the limb loss frequencies of the other groups were 7-29%. The ischemic muscles of the combination group revealed evidence of increased angiogenesis and arteriogenesis and the upregulated expression of genes that may be associated with arteriogenesis, such as those for cardiac ankyrin repeat protein, early growth response factor-1, and transforming growth factor-beta1. Our study has implications for the development of a combined gene therapy for the vascular occlusive diseases.

  20. Human amniotic fluid stem cells support undifferentiated propagation and pluripotency of human embryonic stem cell without b-FGF in a density dependent manner.

    PubMed

    Ma, Xiaorong; Li, Huanqi; Xin, Shujia; Ma, Yueting; Ouyang, Tianxiang

    2014-01-01

    Human embryonic stem cells (hESCs) are pluripotent cells which can give rise to almost all adult cell lineages. Culture system of hESCs is complex, requiring exogenous b-FGF and feeder cell layer. Human mesenchymal stem cells (MSCs) not only synthesize soluble cytokines or factors such as b-FGF, but also provide other mechanism which might play positive role on sustaining hESCs propagation and pluripotency. Human amniotic fluid stem (AFS) cells, which share characteristics of both embryonic and adult stem cells, have been regarded as promising cells for regenerative medicine. Taking advantage by AFS cells, we studied the ability of AFS cells in supporting undifferentiated propagation and pluripotency of Chinese population derived X-01 hESCs. Human AF-type amniotic fluid stem cells (hAF-AFSCs) transcribed genes including Activin A, TGF-β1, Noggin and b-FGF, which involved in maintaining pluripotency and self-renewal of hESCs. Compared to mouse embryonic fibroblasts (MEFs), hAF-AFSCs secreted higher concentration of b-FGF which was important in hESCs culture (P < 0.05). The hESCs were propagated more than 30 passages on hAF-AFSCs layer with exogenous b-FGF supplementation, keeping undifferentiated status. While exogenous b-FGF was obviated, propagation of hESCs with undifferentiated status was dependent on density of hAF-AFSC feeder layer. Lower density of hAF-AFSCs resulted in rapid decline in undifferentiated clone number, while higher ones hindered the growth of colonies. The most appropriate hAF-AFSCs feeder density to maintain the X-01 hESC line without exogenous b-FGF was 15-20×10(4)/well. To the best of our knowledge, this is the first study demonstrating that hAF-AFSCs could support undifferentiated propagation and pluripotency of Chinese population derived hESCs without exogenous b-FGF supplementation.

  1. Zur (FurB) is a key factor in the control of the oxidative stress response in Anabaena sp. PCC 7120.

    PubMed

    Sein-Echaluce, Violeta C; González, Andrés; Napolitano, Mauro; Luque, Ignacio; Barja, Francisco; Peleato, M Luisa; Fillat, María F

    2015-06-01

    Iron and zinc are necessary nutrients whose homeostasis is tightly controlled by members of the ferric uptake regulator (FUR) superfamily in the cyanobacterium Anabaena sp. PCC7120. Although the link between iron metabolism and oxidative stress management is well documented, little is known about the connection between zinc homeostasis and the oxidative stress response in cyanobacteria. Zinc homeostasis in Anabaena is controlled by Zur, also named FurB. When overexpressed in Escherichia coli, Zur (FurB) improved cell survival during oxidative stress. In order to investigate the possible correlation between Zur and the oxidative stress response in Anabaena, zur deletion and zur-overexpressing strains have been constructed, and the consequences of Zur imbalance evaluated. The lack of Zur increased sensitivity to hydrogen peroxide (H2 O2 ), whereas an excess of Zur enhanced oxidative stress resistance. Both mutants displayed pleiotropic phenotypes, including alterations on the filament surfaces observable by scanning electron microscopy, reduced content of endogenous H2 O2 and altered expression of sodA, catalases and several peroxiredoxins. Transcriptional and biochemical analyses unveiled that the appropriate level of Zur is required for proper control of the oxidative stress response and allowed us to identify major antioxidant enzymes as novel members of the Zur regulon.

  2. bFGF promotes the differentiation and effectiveness of human bone marrow mesenchymal stem cells in a rotenone model for Parkinson's disease.

    PubMed

    Xiong, Nian; Yang, Hecheng; Liu, Ling; Xiong, Jing; Zhang, Zhaowen; Zhang, Xiaowei; Jia, Min; Huang, Jinsha; Zhang, Zhentao; Mohamed, Asrah A; Lin, Zhicheng; Wang, Tao

    2013-09-01

    Previous studies have shown that bone marrow mesenchymal stem cells (BMSCs) engraftment could alleviate motor dysfunction in parkinsonian animal models, but with limited efficacy and few engrafted cells surviving. On the other side, basic fibroblast growth factor (bFGF) reportedly displays many effects including neuroprotection and promoting multipotent cells to expand and differentiate. In this study, we assessed whether a combination of bFGF and human BMSCs (HBMSCs) therapy could enhance the treatment effectiveness in Parkinson's disease (PD) rat models. Specifically, bFGF promoted HBMSCs to transdifferentiate toward neural-like lineages in vitro. In addition, HBMSCs transplantation alleviated the motor functional asymmetry, as well as prevented dopaminergic neuron loss in a PD model, while bFGF administration enhances its neurodifferentiation capacity and therapeutic effect. In conclusion, optimizing culture condition like supplementation of bFGF could significantly improve the output of HBMSCs in vitro, and HBMSCs transplantation with bFGF might represent an improved transplantation approach for PD. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. [Angiogenin, bFGF and VEGF: angiogenic markers in breath condensate of patients with pulmonary hypertension].

    PubMed

    Seyfarth, H-J; Sack, U; Gessner, C; Wirtz, H

    2015-04-01

    Pulmonary arterial hypertension (PAH) is associated with a change in vascular architecture. A characteristic histological feature is the plexiform lesion. Similar alterations are observed in the pulmonary vascular bed of patients with chronic thromboembolic pulmonary hypertension (CTEPH). Cytokines involved in angiogenesis were found in both serum and lung tissue of patients with PAH and CTEPH, although their role in the formation of plexiform lesions remains unclear. The examination of breath condensate is a noninvasive technique to analyse proteins possibly associated with the pathogenesis of various lung diseases.Breath condensate of 22 patients with pulmonary hypertension (PAH: n = 12; CTEPH: n = 10) and 7 healthy volunteers was examined using a multiplex fluorescent bead immunoassay to determine the concentrations of the biomarkers angiogenin, bFGF, VEGF, IL-8, and TNF-α. Significantly higher levels of angiogenin, bFGF and TNF-α were observed in breath condensate of patients with pulmonary hypertension in comparison to healthy controls. Similarly, breath condensate levels of VEGF were elevated in patients with PAH as against healthy volunteers. However, IL-8 levels in breath condensate did not differ between the two groups. The data suggest that breath condensate of patients with pulmonary hypertension is characterized by increased levels of the angiogenic factors angiogenin, VEGF and bFGF as well as TNF-α, but not IL-8. A larger study is needed to confirm these results and to determine the prognostic and therapeutic implications of these findings.

  4. Activated astrocytes enhance the dopaminergic differentiation of stem cells and promote brain repair through bFGF.

    PubMed

    Yang, Fan; Liu, Yunhui; Tu, Jie; Wan, Jun; Zhang, Jie; Wu, Bifeng; Chen, Shanping; Zhou, Jiawei; Mu, Yangling; Wang, Liping

    2014-12-17

    Astrocytes provide neuroprotective effects against degeneration of dopaminergic (DA) neurons and play a fundamental role in DA differentiation of neural stem cells. Here we show that light illumination of astrocytes expressing engineered channelrhodopsin variant (ChETA) can remarkably enhance the release of basic fibroblast growth factor (bFGF) and significantly promote the DA differentiation of human embryonic stem cells (hESCs) in vitro. Light activation of transplanted astrocytes in the substantia nigra (SN) also upregulates bFGF levels in vivo and promotes the regenerative effects of co-transplanted stem cells. Importantly, upregulation of bFGF levels, by specific light activation of endogenous astrocytes in the SN, enhances the DA differentiation of transplanted stem cells and promotes brain repair in a mouse model of Parkinson's disease (PD). Our study indicates that astrocyte-derived bFGF is required for regulation of DA differentiation of the stem cells and may provide a strategy targeting astrocytes for treatment of PD.

  5. Heparin-based coacervate of bFGF facilitates peripheral nerve regeneration by inhibiting endoplasmic reticulum stress following sciatic nerve injury

    PubMed Central

    Wu, Yanqing; Li, Yiyang; Khor, Sinan; Mao, Yuqin; He, Huacheng; Xu, Ke; Zhang, Hongyu; Li, Xiaokun; Wang, Jian; Jiang, Huai; Jin, Qike; Ye, Qingsong; Wang, Zhouguang; Xiao, Jian

    2017-01-01

    Creating a microenvironment at the injury site that favors axonal regrowth and remyelinationis pivotal to the success of therapeutic reinnervation. The mature myelin sheath of the peripheral nervous system depends on active participation of Schwann cells to form new cytoskeletal components and tremendous amounts of relevant neurotrophic factors. In this study, we utilized a new biomaterial for growth factor delivery consisting of a biocompatible polycation, poly(ethylene argininylaspartatediglyceride) and heparin. It is capable of binding a variety of growth factors to deliver basic fibroblast growth factor (bFGF) through polyvalent ionic interactions for nerve repair. In vitro assays demonstrated that the bFGF loading efficiency reached 10 μg and this delivery vehicle could control the release of bFGF. In vivo, the coacervate enhanced bFGF bioavailability, which improved both motor and sensory function. It could also acceleratemyelinated fiber regeneration and remyelination and promote Schwann cells proliferation. Furthermore, the neuroprotective effect of bFGF-coacervate in sciatic nerve injury was associated with the alleviation of endoplasmic reticulum stress signal. This heparin-based delivery platform leads to increased bFGF loading efficiency and better controls its release, which will provide an effective strategy for peripheral nerve injury regeneration therapy. PMID:28624802

  6. Additive and synergistic effects of bFGF and hypoxia on leporine meniscus cell-seeded PLLA scaffolds.

    PubMed

    Gunja, Najmuddin J; Athanasiou, Kyriacos A

    2010-02-01

    Injuries to avascular regions of menisci do not heal and result in significant discomfort to patients. Current treatments, such as partial meniscectomy, alleviate these symptoms in the short term but lead to premature osteoarthritis as a result of compromised stability and changes in knee biomechanics. Thus, tissue engineering of the meniscus may provide an alternative treatment modality to overcome this problem. In this experiment, a scaffold-based tissue-engineering approach was utilized to regenerate the meniscus. Meniscus cells were cultured on poly-L-lactic acid scaffolds in normoxic (approximately 21% oxygen) or hypoxic (approximately 2% oxygen) conditions in the presence or absence of the growth factor, basic fibroblast growth factor (bFGF). At t = 4 weeks, histological sections of constructs showed presence of collagen and glycosaminoglycan (GAG) in all groups. Immunohistochemical staining showed the presence of collagen I in all groups and collagen II in groups cultured under hypoxic conditions. bFGF in the culture medium significantly increased cell number/construct by 25%, regardless of culture conditions. For GAG/construct, synergistic increases were observed in constructs cultured in hypoxic conditions and bFGF (two-fold) when compared to constructs cultured in normoxic conditions. Compressive tests showed synergistic increases in the relaxation modulus and coefficient of viscosity and additive increases in the instantaneous modulus for constructs cultured under hypoxic conditions and bFGF, when compared to constructs cultured under normoxic conditions. Overall, these results demonstrate that bFGF and hypoxia can significantly enhance the ability of meniscus cells to produce GAGs and improve the compressive properties of tissue-engineered meniscus constructs in vitro.

  7. Dual Delivery of NGF and bFGF Coacervater Ameliorates Diabetic Peripheral Neuropathy via Inhibiting Schwann Cells Apoptosis

    PubMed Central

    Li, Rui; Ma, Jianfeng; Wu, Yanqing; Nangle, Matthew; Zou, Shuang; Li, Yiyang; Yin, Jiayu; Zhao, Yingzheng; Xu, Helin; Zhang, Hongyu; Li, Xiaokun; Ye, Qing song; Wang, Jian; Xiao, Jian

    2017-01-01

    Diabetic neuropathy is a kind of insidious complications that impairs neural and vascular function and ultimately leads to somatic and visceral denervation. Basic fibroblast growth factor (bFGF) and nerve growth factor (NGF) are important neurotrophic factors for stimulating angiogenesis and improving peripheral nerve function. Administrating a single factor has good therapeutic effect on diabetic peripheral neuropathy (DPN). However, the short half-life and rapid diffusion of growth factors under physiological conditions limits its clinical applications. Here, we used a biodegradable coacervate, composed of heparin and polycation, to dominate the combined release of bFGF and NGF in a steady fashion. We found this combined growth factors (GFs) coacervate, administered as a single injection, improved motor and sensory functions, restored morphometric structure and decreased apoptosis of Schwann cells in a rat model of prolonged DPN. Similarly the GFs coacervate, as compared with free bFGF and NGF combination, markedly reduced the apoptosis level of a rat Schwann cell line, RSC 96 cells in vitro. We also demonstrated that neuroprotective effects of the GFs coacervate in both rat DPN model and hyperglycemia-induced RSC 96 cell model is likely due to suppression of endocytoplasmic reticulum stress (ERS). PMID:28539836

  8. Intranasal delivery of bFGF with nanoliposomes enhances in vivo neuroprotection and neural injury recovery in a rodent stroke model.

    PubMed

    Zhao, Ying-Zheng; Lin, Min; Lin, Qian; Yang, Wei; Yu, Xi-Chong; Tian, Fu-Rong; Mao, Kai-Li; Yang, Jing-Jing; Lu, Cui-Tao; Wong, Ho Lun

    2016-02-28

    Basic fibroblast growth factor (bFGF) may protect stroke patients from cerebral ischemia-reperfusion (I/R) injury. In this study, we report the intranasal use of novel nanoliposomes for the brain delivery of bFGF in a rat model of cerebral I/R. Compared with free bFGF, nanoliposomal therapy was able to significantly improve bFGF accumulation in brain tissues (p<0.05) including the most affected ischemic penumbra regions (e.g. hippocampus, pallium). After intranasal bFGF-nanoliposomal treatment for 3 consecutive days, functional recovery as indicated by improved neurologic deficit score and spontaneous locomotor activity was observed, and the stroke infarct volume was nearly halved (p<0.001) which persisted after 21days. These neuroprotective effects could be blocked by the PI3-K/Akt inhibitor LY294002, indicating the involvement of PI3-K/Akt activation in the therapeutic action. Overall, our results support the intranasal use of nanoliposomal bFGF as an efficient, non-invasive means to bypass the blood-brain barrier for ischemic stroke treatment.

  9. [Changes of HSP70, bFGF and TGF-beta1 expression in rat brain after concussion].

    PubMed

    Chen, Rui; Yu, Bin-Hua; Hu, Ling; Yan, Zhi; Wang, Wen-Dong; Liu, Min

    2009-08-01

    To study the changes of expression of relevant factors in rat brain after concussion injury and to provide scientific basis for forensic estimation of brain injury interval. Brain tissues were sampled from the established SD rat animal model of brain concussion, routinely processed and stained with HE and immunohistochemically stained with antibodies directed against heat shock protein 70 (HSP70), transforming growth factor beta 1 (TGF-beta1) and basic fibroblast growth factor (bFGF). The sections were examined under light microscope with IMAGE analytical system and homologous statistical analysis. The expression of HSP 70 was observed in 30 minutes after brain injury. The amount of neurons expressing HSP 70 increased gradually, reached its peak at 12 hours and then declined at 24 hours after brain injury. The expression of bFGF was observed 3 hours after injury in brain stem, reached its peak at 12 hours, and then declined. The expression of TGF-beta1 was detected 6-24 hours after brain injury, remained at its peak up to 3 days. Brain injury can induce a chronological expression of HSP70, bFGF and TGF-beta1. The results can be a potential for estimating the age of brain injury using several markers.

  10. Liposomes with Silk Fibroin Hydrogel Core to Stabilize bFGF and Promote the Wound Healing of Mice with Deep Second-Degree Scald.

    PubMed

    Xu, He-Lin; Chen, Pian-Pian; ZhuGe, De-Li; Zhu, Qun-Yan; Jin, Bing-Hui; Shen, Bi-Xin; Xiao, Jian; Zhao, Ying-Zheng

    2017-06-29

    How to maintain the stability of basic fibroblast growth factor (bFGF) in wounds with massive wound fluids is important to accelerate wound healing. Here, a novel liposome with hydrogel core of silk fibroin (SF-LIP) is successfully developed by the common liposomal template, followed by gelation of liquid SF inside vesicle under sonication. SF-LIP is capable of encapsulating bFGF (SF-bFGF-LIP) with high efficiency, having a diameter of 99.8 ± 0.5 nm and zeta potential of -9.41 ± 0.10 mV. SF-LIP effectively improves the stability of bFGF in wound fluids. After 8 h of incubation with wound fluids at 37 °C, more than 50% of free bFGF are degraded, while only 18.6% of the encapsulated bFGF in SF-LIP are destroyed. Even after 3 d of preincubation with wound fluids, the cell proliferation activity and wound healing ability of SF-bFGF-LIP are still preserved but these are severely compromised for the conventional bFGF-liposome (bFGF-LIP). In vivo experiments reveal that SF-bFGF-LIP accelerates the wound closure of mice with deep second-degree scald. Moreover, due to the protective effect and enhanced penetration ability, SF-bFGF-LIP is very helpful to induce regeneration of vascular vessel in comparison with free bFGF or bFGF-LIP. The liposome with SF hydrogel core may be a potential carrier as growth factors for wound healing. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. bFGF signaling-mediated reprogramming of porcine primordial germ cells.

    PubMed

    Zhang, Yu; Ma, Jing; Li, Hai; Lv, Jiawei; Wei, Renyue; Cong, Yimei; Liu, Zhonghua

    2016-05-01

    Primordial germ cells (PGCs) have the ability to be reprogrammed into embryonic germ cells (EGCs) in vitro and are an alternative source of embryonic stem cells. Other than for the mouse, the systematic characterization of mammalian PGCs is still lacking, especially the process by which PGCs convert to pluripotency. This hampers the understanding of germ cell development and the derivation of authenticated EGCs from other species. We observed the morphological development of the genital ridge from Bama miniature pigs and found primary sexual differentiation in the E28 porcine embryo, coinciding with Blimp1 nuclear exclusion in PGCs. To explore molecular events involved in porcine PGC reprogramming, transcriptome data of porcine EGCs and fetal fibroblasts (FFs) were assembled and 1169 differentially expressed genes were used for Gene Ontology analysis. These genes were significantly enriched in cell-surface receptor-linked signal transduction, in agreement with the activation of LIF/Stat3 signaling and FGF signaling during the derivation of porcine EG-like cells. Using a growth-factor-defined culture system, we explored the effects of bFGF on the process and found that bFGF not only functioned at the very beginning of PGC dedifferentiation by impeding Blimp1 nuclear expression via a PI3K/AKT-dependent pathway but also maintained the viability of cultured PGCs thereafter. These results provide further insights into the development of germ cells from livestock and the mechanism of porcine PGC reprogramming.

  12. Implantable porous gelatin microspheres sustained release of bFGF and improved its neuroprotective effect on rats after spinal cord injury.

    PubMed

    Lan, Li; Tian, Fu-Rong; ZhuGe, De-Li; ZhuGe, Qi-Chuan; Shen, Bi-Xin; Jin, Bing-Hui; Huang, Jian-Ping; Wu, Ming-Ze; Fan, Lu-Xin; Zhao, Ying-Zheng; Xu, He-Lin

    2017-01-01

    In this study, porous gelatin microspheres (GMSs) were constructed to improve the neuroprotective effect of basic fibroblast growth factor (bFGF) on spinal cord injury. GMSs were prepared by a W/O emulsion template, followed by cross-linking, washing and drying. The particle sizes and surface porosity of the blank GMSs were carefully characterized by scan electronic microscopy. The blank GMSs have a mean particle size of 35μm and theirs surface was coarse and porous. bFGF was easily encapsulated inside the bulk GMSs through diffusion along the porous channel. 200μg of bFGF was completely encapsulated in 100mg of GMSs. The bFGF-loaded GMSs displayed a continuous drug release pattern without an obvious burst release over two weeks in vitro. Moreover, the therapeutic effects of bFGF-loaded GMSs were also evaluated in spinal cord injury rat model. After implantation of bFGF-loaded GMSs, the recovery of the motor function of SCI rats were evaluated by behavioral score and foot print experiment. The motor function of SCI rats treated with bFGF-loaded GMSs was more obvious than that treated with free bFGF solution (P<0.05). At the 28th days after treatment, rats were sacrificed and the injured spinal were removed for histopathological and apoptosis examination. Compared with treatment with free bFGF solution, treatment with bFGF-loaded GMSs resulted in a less necrosis, less infiltration of leukocytes, and a reduced the cavity ratio and less apoptotic cells in injured spinal(P<0.01), indicating its better therapeutic effect. Implantable porous GMSs may be a potential carrier to deliver bFGF for therapy of spinal cord injury.

  13. Implantable porous gelatin microspheres sustained release of bFGF and improved its neuroprotective effect on rats after spinal cord injury

    PubMed Central

    ZhuGe, Qi-Chuan; Shen, Bi-Xin; Jin, Bing-Hui; Huang, Jian-Ping; Wu, Ming-Ze; Fan, Lu-Xin; Zhao, Ying-Zheng; Xu, He-Lin

    2017-01-01

    In this study, porous gelatin microspheres (GMSs) were constructed to improve the neuroprotective effect of basic fibroblast growth factor (bFGF) on spinal cord injury. GMSs were prepared by a W/O emulsion template, followed by cross-linking, washing and drying. The particle sizes and surface porosity of the blank GMSs were carefully characterized by scan electronic microscopy. The blank GMSs have a mean particle size of 35μm and theirs surface was coarse and porous. bFGF was easily encapsulated inside the bulk GMSs through diffusion along the porous channel. 200μg of bFGF was completely encapsulated in 100mg of GMSs. The bFGF-loaded GMSs displayed a continuous drug release pattern without an obvious burst release over two weeks in vitro. Moreover, the therapeutic effects of bFGF-loaded GMSs were also evaluated in spinal cord injury rat model. After implantation of bFGF-loaded GMSs, the recovery of the motor function of SCI rats were evaluated by behavioral score and foot print experiment. The motor function of SCI rats treated with bFGF-loaded GMSs was more obvious than that treated with free bFGF solution (P<0.05). At the 28th days after treatment, rats were sacrificed and the injured spinal were removed for histopathological and apoptosis examination. Compared with treatment with free bFGF solution, treatment with bFGF-loaded GMSs resulted in a less necrosis, less infiltration of leukocytes, and a reduced the cavity ratio and less apoptotic cells in injured spinal(P<0.01), indicating its better therapeutic effect. Implantable porous GMSs may be a potential carrier to deliver bFGF for therapy of spinal cord injury. PMID:28291798

  14. bFGF Promotes the Migration of Human Dermal Fibroblasts under Diabetic Conditions through Reactive Oxygen Species Production via the PI3K/Akt-Rac1- JNK Pathways

    PubMed Central

    Shi, Hongxue; Cheng, Yi; Ye, Jingjing; Cai, Pingtao; Zhang, Jinjing; Li, Rui; Yang, Ying; Wang, Zhouguang; Zhang, Hongyu; Lin, Cai; Lu, Xianghong; Jiang, Liping; Hu, Aiping; Zhu, Xinbo; Zeng, Qiqiang; Fu, Xiaobing; Li, Xiaokun; Xiao, Jian

    2015-01-01

    Fibroblasts play a pivotal role in the process of cutaneous wound repair, whereas their migratory ability under diabetic conditions is markedly reduced. In this study, we investigated the effect of basic fibroblast growth factor (bFGF) on human dermal fibroblast migration in a high-glucose environment. bFGF significantly increased dermal fibroblast migration by increasing the percentage of fibroblasts with a high polarity index and reorganizing F-actin. A significant increase in intracellular reactive oxygen species (ROS) was observed in dermal fibroblasts under diabetic conditions following bFGF treatment. The blockage of bFGF-induced ROS production by either the ROS scavenger N-acetyl-L-cysteine (NAC) or the NADPH oxidase inhibitor diphenylene iodonium chloride (DPI) almost completely neutralized the increased migration rate of dermal fibroblasts promoted by bFGF. Akt, Rac1 and JNK were rapidly activated by bFGF in dermal fibroblasts, and bFGF-induced ROS production and promoted dermal fibroblast migration were significantly attenuated when suppressed respectively. In addition, bFGF-induced increase in ROS production was indispensable for the activation of focal adhesion kinase (FAK) and paxillin. Therefore, our data suggested that bFGF promotes the migration of human dermal fibroblasts under diabetic conditions through increased ROS production via the PI3K/Akt-Rac1-JNK pathways. PMID:26078726

  15. bFGF induces changes in hyaluronan synthase and hyaluronidase isoform expression and modulates the migration capacity of fibrosarcoma cells.

    PubMed

    Berdiaki, Aikaterini; Nikitovic, Dragana; Tsatsakis, Aristeidis; Katonis, Pavlos; Karamanos, Nikos K; Tzanakakis, George N

    2009-10-01

    Hyaluronan (HA) a glycosaminoglycan, is capable of transmitting extracellular matrix derived signals to regulate cellular functions. In this study, we investigated whether the changes in HT1080 and B6FS fibrosarcoma cell lines HA metabolism induced by basic fibroblast growth factor (bFGF) are correlated to their migration. Real-time PCR, in vitro wound healing assay, siRNA transfection, enzyme digestions, western blotting and immunofluorescence were utilized. bFGF inhibited the degradation of HA by decreasing hyaluronidase-2 expression in HT1080 cells (p=0.0028), increased HA-synthase-1 and -2 expression as we previously found and enhanced high molecular weight HA deposition in the pericellular matrix. Increased endogenous HA production (p=0.0022) and treatment with exogenous high molecular weight HA (p=0.0268) correlated with a significant decrease of HT1080 cell migration capacity. Transfection with siHAS2 and siHAS1 showed that mainly HAS1 synthesized high molecular weight HA regulates HT1080 cell motility. Induced degradation of the HA content by hyaluronidase treatment and addition of low molecular weight HA, resulted in a significant stimulation of HT1080 cells' motility (p<0.01). In contrast, no effects on B6FS fibrosarcoma cell motility were observed. bFGF regulates, in a cell-specific manner the migration capability of fibrosarcoma cells by modulating their HA metabolism. HA metabolism is suggested to be a potential therapeutic target in fibrosarcoma.

  16. [Efficacy of bFGF atomization inhalation on postoperative sore throat following oral and maxillofacial surgery under general anesthesia].

    PubMed

    Liu, Bin; Jiang, Yin-Hua; Xiao, Jian; Li, Xiao-Kun

    2016-08-01

    To observe the effect of recombinant human basic fibroblast growth factor (bFGF) atomization inhalation on postoperative sore throat following oral and maxillofacial operation under general anethesia. Forty patients in whom oral and maxillofacial operation trachea was removed under general anesthesia were randomly divided into treatment and control groups; the treatment group received bFGF 35000IU + normal saline 20 mL, compression inhalation, day 1, every 20min, continued for 3 d; the control group was given normal saline 5 mL + dexamethasone 5 mg + gentamicin 80000 U + chymotrypsin 4000 U, compression inhalation, twice a day, every 20 min, continued for 3 d. Occurrence of postoperative sore throat 12 h after operation was recorded and visual analog scale (VAS) of sore throat (swallowing) 12,24,48,72 h after operation was measured. SPSS l4.0 software package was used for statistical analysis. The incidence of sore throat in the treatment group was significantly lower than that in the control group (P<0.01) 12 h after operation; sore throat (swallowing) VAS 12,24,48 and 72 h after operation in the treatment group were significantly lower than that in the control group (P<0.05). bFGF atomization inhalation can reduce the incidence of sore throat and sore throat level in oral and maxillofacial surgery after endotracheal intubation.

  17. The role of bFGF in down-regulating α-SMA expression of chondrogenically induced BMSCs and preventing the shrinkage of BMSC engineered cartilage.

    PubMed

    Li, Qiong; Liu, Tianyi; Zhang, Lu; Liu, Yu; Zhang, Wenjie; Liu, Wei; Cao, Yilin; Zhou, Guangdong

    2011-07-01

    Bone marrow stromal cells (BMSCs) have proved to be an ideal cell source for cartilage regeneration. Our previous studies demonstrated that a three-dimensional (3D) cartilage could be constructed successfully in vitro using BMSCs and biodegradable scaffolds. However, an obvious shrinkage and deformation was observed during in vitro chondrogenic induction. According to the literatures, it can be speculated that the up-regulation of smooth muscle actin-alpha (α-SMA) caused by transforming growth factor beta (TGFβ) is one of the leading reasons and that basic fibroblast growth factor (bFGF) could antagonize the role of TGFβ to down-regulate α-SMA expression and prevent the shrinkage of BMSC engineered cartilage. This study testified these speculations by adding bFGF to chondrogenic media. According to the current results, chondrogenic induction significantly up-regulated α-SMA expression of BMSCs at both cell and tissue levels, and the engineered tissue only retained 12.4% of original size after 6 weeks of chondrogenic induction. However, the supplement of bFGF in chondrogenic media efficiently down-regulated α-SMA expression and the engineered tissue still retained over 60% of original size after 6 weeks of culture. Moreover, bFGF showed a beneficial influence on 3D cartilage formation of BMSCs in terms of gene expression and deposition of cartilage specific matrices. All these results suggested that bFGF could repress α-SMA expression caused by chondrogenic induction, efficiently prevent shrinkage of BMSC engineered tissue, and have a positive influence on cartilage formation, which provides a clue for both shape control and quality improvement of BMSC engineered 3D cartilage.

  18. BMP-2, VEGF and bFGF synergistically promote the osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells.

    PubMed

    Bai, Yan; Li, Peipei; Yin, Guangfu; Huang, Zhongbing; Liao, Xiaoming; Chen, Xianchun; Yao, Yadong

    2013-03-01

    Mesenchymal stem cells (MSCs) were treated with bone morphogenetic protein-2 (BMP-2), vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) dose-dependently and time-dependently. Together they caused a strong synergistic effect on the osteogenic differentiation of MSCs, with lower concentrations of each factor being enough to show the synergistic promotion (50 ng BMP-2/ml, 1 ng VEGF/ml and 10 ng bFGF/ml). When both VEGF and bFGF were added in the early proliferating stage (the first 7 days) and BMP-2 was added in the late differentiation stage (the last 7 days), osteogenic differentiation of MSCs could be enhanced more effectively.

  19. Intramyocardial injection of a synthetic hydrogel with delivery of bFGF and IGF1 in a rat model of ischemic cardiomyopathy.

    PubMed

    Nelson, Devin M; Hashizume, Ryotaro; Yoshizumi, Tomo; Blakney, Anna K; Ma, Zuwei; Wagner, William R

    2014-01-13

    It is increasingly appreciated that the properties of a biomaterial used in intramyocardial injection therapy influence the outcomes of infarcted hearts that are treated. In this report the extended in vivo efficacy of a thermally responsive material that can deliver dual growth factors while providing a slow degradation time and high mechanical stiffness is examined. Copolymers consisting of N-isopropylacrylamide, 2-hydroxyethyl methacrylate, and degradable methacrylate polylactide were synthesized. The release of bioactive basic fibroblast growth factor (bFGF) and insulin-like growth factor 1 (IGF1) from the gel and loaded poly(lactide-co-glycolide) microparticles was assessed. Hydrogel with or without loaded growth factors was injected into 2 week-old infarcts in Lewis rats and animals were followed for 16 weeks. The hydrogel released bioactive bFGF and IGF1 as shown by mitogenic effects on rat smooth muscle cells in vitro. Cardiac function and geometry were improved for 16 weeks after hydrogel injection compared to saline injection. Despite demonstrating that left ventricular levels of bFGF and IGF1 were elevated for two weeks after injection of growth factor loaded gels, both functional and histological assessment showed no added benefit to inclusion of these proteins. This result points to the complexity of designing appropriate materials for this application and suggests that the nature of the material alone, without exogenous growth factors, has a direct ability to influence cardiac remodeling.

  20. VEGF and BFGF Expression and Histological Characteristics of the Bone-Tendon Junction during Acute Injury Healing

    PubMed Central

    Wang, Lin; Gao, Weiwei; Xiong, Kaiyu; Hu, Kuan; Liu, Xincun; He, Hui

    2014-01-01

    Bone-tendon junction (BTJ) injuries are common and may be caused by acute trauma and delayed healing during exercise or work. To understand the nature of the healing process of BTJ injuries would help to prevent injuries and improve treatment. Thirty-three mature female rabbit hindlimbs were assigned to normal control (CON, n = 7) and injury groups (n = 26). The acute injury was established by administering one 7 plum-blossom needle puncture. Specimens were harvested post injury at 1, 2, 4, and 8 weeks (ND1W, n = 6; ND2W, n = 6; ND4W, n = 7; and ND8W, n = 7). The injury existed in all of the injury groups. Compared with the CON group, all of the animals in the injury group showed poor cell profiles, an unclear or undetectable tide mark, a proteoglycan area and profile changes; the BTJ cell density diminished significantly in the ND1W (p < 0.01), ND2W (p < 0.05), ND4W (p < 0.01), and ND8W groups (p < 0.01); the fibrocartilage zone thickness in all injury groups was significantly thicker than in the CON group (p < 0.05), but no significant difference was found among the injury groups (p>0.05). The basic fibroblast growth factor (bFGF) expression in the CON group was significantly less than in the ND1W group (p<0.01), but no significant difference was found when compared with the ND2W, ND4W, and ND8W groups. The bFGF expression in the ND1W group was higher than that of the ND4W (p < 0.05) and ND8W groups (p < 0.01). The vascular endothelial growth factor (VEGF) levels were not significantly different among the groups (p > 0.05). The bFGF and VEGF expression levels indicated that the healing process stopped at 8 weeks post injury or was not activated, although the injury had not healed by histological examination. A repeatable animal model of BTJ acute injury was established in this study, and the results described the BTJ acute injury healing difficult concerned with the repairing stop. Key Points This study described the bone-tendon junction acute injury nature

  1. Effects of TGFβ1, PDGF-BB, and bFGF, on human corneal fibroblasts proliferation and differentiation during stromal repair.

    PubMed

    Gallego-Muñoz, Patricia; Ibares-Frías, Lucía; Valsero-Blanco, María Cruz; Cantalapiedra-Rodriguez, Roberto; Merayo-Lloves, Jesús; Martínez-García, M Carmen

    2017-08-01

    In an effort to improve the regenerative nature of corneal repair, this study reports the use of an in vitro human corneal fibroblasts (HCFs) wound model after treatment with three of the main growth factors (GFs) involved in corneal healing: transforming growth factor beta 1 (TGFβ1), platelet-derived growth factor BB-isoform (PDGF-BB), and basic fibroblast growth factor (bFGF) in order to delve in cell proliferation and differentiation processes. HCFs were mechanically wounded. The individual effect of TGFβ1, PDGF-BB, and bFGF on cell proliferation and differentiation during the repair process was studied at different time points until wound closure. Wound dimensions and morphological changes were evaluated by microscopy. Cell proliferation and myofibroblast differentiation were analyzed by immunofluorescence cytochemistry. Changes in cell morphology were apparent at Day 4. PDGF-BB- and bFGF-treated cells had fibroblast-like morphology. TGFβ1 stimulated proliferation in the wound edge and surrounding area, induced myofibroblast differentiation and inhibited cellular migration. PDGF-BB induced rapid wound closure due to proliferation, high motility, and late myofibroblast differentiation. The time course of closure induced by bFGF was similar to that for PDGF-BB, but was mostly due to proliferation in the wound area, and inhibited myofibroblast differentiation. Each of the GFs induced increases in responses promoting stromal repair differently. This study provides insight regarding how to optimize the outcome of stromal repair following corneal injury. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Combined use of bFGF and GDF-5 enhances the healing of medial collateral ligament injury

    SciTech Connect

    Saiga, Kenta; Furumatsu, Takayuki; Yoshida, Aki; Masuda, Shin; Takihira, Shota; Abe, Nobuhiro; Ozaki, Toshifumi

    2010-11-12

    Research highlights: {yields} bFGF/GDF-5 treatment increases cellular proliferation and migration of MCL fibroblasts. {yields} bFGF/GDF-5 hydrogels stimulate the healing of MCL injury in vivo. {yields} bFGF/GDF-5 hydrogels stimulate Col1a1 expression and type I collagen synthesis. {yields} Combined use of bFGF/GDF-5 enhances MCL healing. -- Abstract: Basic fibroblast growth factor (bFGF) and growth and differentiation factor (GDF)-5 stimulate the healing of medial collateral ligament (MCL) injury. However, the effect of isolated and combined use of bFGF/GDF-5 remains still unclear. We investigated cellular proliferation and migration responding to bFGF/GDF-5 using rabbit MCL fibroblasts. Rabbit MCL injury was treated by bFGF and/or GDF-5 with peptide hydrogels. Gene expression and deposition of collagens in healing tissues were evaluated. bFGF/GDF-5 treatment additively enhanced cell proliferation and migration. bFGF/GDF-5 hydrogels stimulated Col1a1 expression without increasing Col3a1 expression. Combined use of bFGF/GDF-5 stimulated type I collagen deposition and the reorganization of fiber alignment, and induced better morphology of fibroblasts in healing MCLs. Our study indicates that combined use of bFGF/GDF-5 might enhance MCL healing by increasing proliferation and migration of MCL fibroblasts, and by regulating collagen synthesis and connective fiber alignment.

  3. Cellular Dichotomy Between Anchorage-Independent Growth Responses to bFGF and TA Reflects Molecular Switch in Commitment to Carcinogenesis

    SciTech Connect

    Waters, Katrina M.; Tan, Ruimin; Opresko, Lee K.; Quesenberry, Ryan D.; Bandyopadhyay, Somnath; Chrisler, William B.; Weber, Thomas J.

    2009-11-01

    We have investigated gene expression patterns underlying reversible and irreversible anchorage-independent growth (AIG) phenotypes to identify more sensitive markers of cell transformation for studies directed at interrogating carcinogenesis responses. In JB6 mouse epidermal cells, basic fibroblast growth factor (bFGF) induces an unusually efficient and reversible AIG response, relative to 12-O-tetradecanoyl phorbol-13-acetate (TPA)-induced AIG which is irreversible. The reversible and irreversible AIG phenotypes are characterized by largely non-overlapping global gene expression profiles. However, a subset of differentially expressed genes were identified as common to reversible and irreversible AIG phenotypes, including genes regulated in a reciprocal fashion. Hepatic leukemia factor (HLF) and D-site albumin promoter-binding protein (DBP) were increased in both bFGF and TPA soft agar colonies and selected for functional validation. Ectopic expression of human HLF and DBP in JB6 cells resulted in a marked increase in TPA- and bFGF-regulated AIG responses. HLF and DBP expression were increased in soft agar colonies arising from JB6 cells exposed to gamma radiation and in a human basal cell carcinoma tumor tissue, relative to paired non-tumor tissue. Subsequent biological network analysis suggests that many of the differentially expressed genes that are common to bFGF- and TPA-dependent AIG are regulated by c-Myc, SP-1 and HNF-4 transcription factors. Collectively, we have identified a potential molecular switch that mediates the transition from reversible to irreversible AIG.

  4. Electrospun fibers with plasmid bFGF polyplex loadings promote skin wound healing in diabetic rats.

    PubMed

    Yang, Ye; Xia, Tian; Chen, Fang; Wei, Wei; Liu, Chaoyu; He, Shuhui; Li, Xiaohong

    2012-01-01

    Deep or chronic skin wounds are difficult to heal spontaneously due to the lack of scaffold to guide cell growth and reduced levels and activities of endogenous growth factors. Emulsion electrospinning process integrated with DNA condensation techniques indicated potentials to gradually release DNA, but no attempt has been made to clarify the advantages in promoting tissue regeneration and wound recovery. In this study, polyplexes of basic fibroblast growth factor-encoding plasmid (pbFGF) with poly(ethylene imine) were incorporated into electrospun fibers with a core-sheath structure, and poly(ethylene glycol) was included into the fiber sheath to allow a sustained release of pbFGF for 4 weeks. In vitro tests on mouse embryo fibroblasts indicated that pbFGF-loaded fibrous mats enhanced cell proliferation by the autocrine bFGF, and an effective cell transfection proceeded for over 28 days. Skin wounds were created in the dorsal area of diabetic rats for in vivo evaluation of skin regeneration after being covered with pbFGF-loaded fibrous mats. The gradual pbFGF release revealed significantly higher wound recovery rate with improved vascularization, enhanced collagen deposition and maturation, complete re-epithelialization and formation of skin appendages. The above results demonstrate the potential use of pbFGF-loaded electrospun fibrous mats to accelerate the healing of skin ulcers for patients with diabetic mellitus.

  5. Angiogenesis and osteogenesis enhanced by bFGF ex vivo gene therapy for bone tissue engineering in reconstruction of calvarial defects.

    PubMed

    Qu, Dan; Li, Jihua; Li, Yubao; Gao, Ying; Zuo, Yi; Hsu, Yuchun; Hu, Jing

    2011-03-01

    Reconstruction of bone defects by tissue engineered substitutes requires coordinated coupling between osteogenesis and angiogenesis. Basic fibroblast growth factor (bFGF or FGF-2) is a protein which acts actively in osteogenesis and angiogenesis during skeletal healing and development. It is hypothesized that BMSCs transfected with bFGF can directly stimulate regeneration of vascular tissue, and subsequently enhance osseous formation and remodeling after implantation of the tissue engineered bone. This study was designed to examine the impact of bFGF-BMSCs, seeded on nano-hydroxyapatite/polyamide66 (n-HA/PA66) composite scaffold, to enhance angiogenesis and osteogenesis in a calvarial critical-sized defect model in rats. To investigate the vascularization and bone formation of tissue engineered bone, the substrate was removed and processed for immunohistochemical, scanning electron microscopic examinations (SEM), reverse transcriptase-polymerase chain reaction (RT-PCR), dual energy X-ray absorptiometry (DEXA), microvessels counting, and new bone volume assay. The results demonstrate that bFGF mediated ex vivo gene transfer based on BMSCs can accelerate vascularization and bone regeneration on these composite scaffolds. The n-HA/PA66 scaffold combined with the bFGF-BMSCs may mimic the natural process of osteogenesis during repair of defect by tissue engineered bone. Copyright © 2010 Wiley Periodicals, Inc.

  6. Endostar attenuates melanoma tumor growth via its interruption of b-FGF mediated angiogenesis.

    PubMed

    Xiao, Lijia; Yang, ShuCai; Hao, Jianhua; Yuan, Xue; Luo, Wei; Jiang, Liping; Hu, Yang; Fu, Zhongping; Zhang, Yun; Zou, Chang

    2015-04-01

    To develop optimal therapeutics is one of the hotspots in both clinical and basic melanoma studies. Previous studies indicate that fibroblast growth factors (b-FGF/FGF-2), an angiogenesis inducer beyond VEGF, might be a potential drug target in melanoma. As a novel anti-angiogenesis peptide drug, Endostar has shown promising therapeutic efficacy in non-small cell lung cancer. However, the effect of Endostar on b-FGF-induced angiogenesis in melanoma is unraveled. To this end, both in vivo and in vitro experiments were conducted and it was found that treatment of Endostar could inhibit tumor growth, which was accompanied by decreased micro-vessel density and serum b-FGF levels in a mouse melanoma model. In addition, treatment with Endostar in blood vessel endothelial cells could reduce their proliferation, cell migration and tube formation capacity in a dosage-dependent manner. Moreover, treatment of Endostar could also attenuate b-FGF-activated phosphorylation of p38 and ERK1/2 in HUVECs. These findings indicate that Endostar might exert its anti-tumor effect via suppressing b-FGF-induced angiogenesis and b-FGF-activated MAPK signaling pathway, suggesting that Endostar might be a potential choice for clinical melanoma treatment.

  7. The positional identity of iPSC-derived neural progenitor cells along the anterior-posterior axis is controlled in a dosage-dependent manner by bFGF and EGF.

    PubMed

    Zhou, Shuling; Ochalek, Anna; Szczesna, Karolina; Avci, Hasan X; Kobolák, Julianna; Varga, Eszter; Rasmussen, Mikkel; Holst, Bjørn; Cirera, Susanna; Hyttel, Poul; Freude, Kristine K; Dinnyés, András

    Neural rosettes derived from human induced pluripotent stem cells (iPSCs) have been claimed to be a highly robust in vitro cellular model for biomedical application. They are able to propagate in vitro in the presence of mitogens, including basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF). However, these two mitogens are also involved in anterior-posterior patterning in a gradient dependent manner along the neural tube axis. Here, we compared the regional identity of neural rosette cells and specific neural subtypes of their progeny propagated with low and high concentrations of bFGF and EGF. We observed that low concentrations of bFGF and EGF in the culturing system were able to induce forebrain identity of the neural rosettes and promote subsequent cortical neuronal differentiation. On the contrary, high concentrations of these mitogens stimulate a mid-hindbrain fate of the neural rosettes, resulting in subsequent cholinergic neuron differentiation. Thus, our results indicate that different concentrations of bFGF and EGF supplemented during propagation of neural rosettes are involved in altering the identity of the resultant neural cells.

  8. [Experimental studies on exterior bFGF for enhancement of membrane guided bone regeneration].

    PubMed

    Duan, Hong; Fan, Yubo; Chen, Jian; Pei, Fuxing; Shen, Bin

    2004-12-01

    These studies sought to evaluate the promoting effect of the exterior bFGF on membrane guided bone regeneration (MGBR). Animal models of MGBR covered with PDLLA membrane tube in bilateral radii were established in 40 New Zealand white rabbits. The membrane tubes on the left side were filled with bFGF 40 microg/100 microl and those on the contralateral side were filled with 100 microl 0.9% NaCl solution as control. The specimens were collected at 2, 4, 8, 12 weeks postoperatively. General observation, X-ray, histological grading and HE staining,and biomechanical examination were applied to studies on the repair of the models of MGBR in the two groups. Two weeks after operation, a sealed room was formed between the two bone fragments where the soft tissues covered the membrane tube. Twelve weeks after operation, PDLLA membrane became fragile and its tube shape was being maintained. Histologically, in the bFGF group numerous newly formed bone trabeculae were seen at 2 weeks after operation the radial defects had healed and the bone reconstruction and remodling had begun by the 12th week. The histological image analysis showed that the values of mean diameter and the area of new bone trabeculae in the bFGF group were higher than those in the control group (P<0.05) at 2 weeks and 4 weeks; however, there were no significant differences in these aspects between the two groups (P>0.05) at 8 and 12 weeks. The strength of the newly formed bone in the bFGF group was higher than that in the control group at 12 weeks postoperatively (P<0.05). Therefore, the authors concluded that bFGF could promote the new bone formation and biomechanical strength in the MGBR model.

  9. Basic fibroblast growth factor autocrine loop controls human osteosarcoma phenotyping and differentiation.

    PubMed Central

    Bodo, Maria; Lilli, Cinzia; Bellucci, Catia; Carinci, Paolo; Calvitti, Mario; Pezzetti, Furio; Stabellini, Giordano; Bellocchio, Silvia; Balducci, Chiara; Carinci, Francesco; Baroni, Tiziano

    2002-01-01

    BACKGROUND: We focused on the phenotype of non-mineralizing MG 63 and mineralizing TE 85 human osteosarcoma cells and investigated the role of bFGF in modulating their differentiative responses. Basic FGF expression and bFGF effects on osteocalcin, runt-related transcription factor-2 (RUNX2), matrix molecular production and bFGF receptors, were evaluated. MATERIALS AND METHODS: Osteocalcin and RUNX2 gene expression were studied by RT-PCR analysis. We evaluated cell proliferation by DNA content and performed differentiation studies on glycosaminoglican (GAG), collagen and proteoglican (PG) synthesis by using radiolabelled precursors and Northern blotting. BFGF receptors were quantified by bFGF receptor binding assay. RESULTS: Osteocalcin is expressed in MG63 and TE65. RUNX2 RNA is differentially spliced in the two cell lines. BFGF elicits the effects of differentially splicing RUNX2. Proliferation, GAG synthesis, bFGF and proteoglycan mRNA expression, high and low affinity bFGF receptors, were more marked in MG 63 and differently affected by bFGF. Procollagen expression and alkaline phosphatase activity were significantly reduced. BFGF increased TE 85 cell proliferation and reduced TE 85 procollagen and osteocalcin production. CONCLUSIONS: The different splice variants in RUNX2 gene in the two cell lines might be related to their different phenotypes. The less differentiated stage of MG63 could also be related to bFGF over-production and more bFGF receptors. The consequent increase in bFGF-bFGF receptor binding could explain the bFGF differentiative effects on MG 63. We suggest an autocrine role of bFGF endogenous release in controlling the different osteosarcoma phenotypes. PMID:12393937

  10. Peripheral blood concentrations of TGFβ1, IGF-1 and bFGF and remodelling of the left ventricle and blood vessels in hypertensive patients.

    PubMed

    Kieć-Wilk, Beata; Stolarz-Skrzypek, Katarzyna; Sliwa, Agnieszka; Zdzienicka, Anna; Kawecka-Jaszcz, Kalina

    2010-09-01

    Remodelling process is associated with activity of such substances as transforming growth factor β1 (TGFβ1), basic fibroblast growth factor (bFGF, FGF2), or insulin like growth factor-1 (IGF-1). In the course of hypertension the remodelling of blood vessels and heart muscle takes place. Studies performed on animal models as well as clinical trials on aetiology of left ventricular hypertrophy (LVH), documented elevated level of both mRNA and proteins of TGFβ1 and IGF-1. To analyse the correlation between cytokine levels and vascular and LV remodelling. One hundred seven patients with essential hypertension (age 50 ± 10 years) as well as 50 healthy volunteers participated in the study. Blood pressure was measured in the doctor's office as well as using the ABPM method. The LVH was diagnosed by echocardiographic examination, while ultrasound diagnostic was used to analyse the blood vessels remodelling measured as carotid intima-media thickness. Based on echocardiography results hypertensive patients were divided into two groups - with or without LVH. Peripheral blood concentration of analysed cytokines was measured using Enzyme-Linked Immunosorbent Assay (ELISA). The results were compared with data obtained from control group of normotensive participants. Values of single measurements of growth factors levels did not show significant differences between analysed groups (p = 0.322), and they did not correlate with the blood pressure levels. The tendency to negative correlation between parameters of diastolic LV function and plasma concentrations of IGF-1 and TGF was found. The value of IMT also did not show significant correlation with TGFβ1, bFGF and IGF-1 in all investigated groups. The obtained results point to the limited usefulness of single measurements of TGFβ1, bFGF as well as IGF-1 blood concentrations, as the potential prognostic factors of the remodelling of blood vessels and cardiac muscle in patients with essential hypertension.

  11. Acceleration of rat salivary gland tissue repair by basic fibroblast growth factor.

    PubMed

    Okazaki, Y; Kagami, H; Hattori, T; Hishida, S; Shigetomi, T; Ueda, M

    2000-10-01

    A model of atrophic rat submandibular gland was used to examine the ability of basic fibroblast growth factor (bFGF) to accelerate tissue repair. The gland duct was separated carefully from associated blood vessels and nerve, and ligated with a 8-0 suture under a surgical microscope. Two weeks after ligation, the glandular tissue showed severe atrophy and weight loss (to 26% of that in a sham-operated group). Thereafter, the ligature was removed and various amounts of bFGF, isoproterenol or saline were instilled retrogradely through the duct. Both isoproterenol and bFGF increased cell proliferation significantly. bFGF accelerated the proliferation of various cell types, including both acinar and ductal. The proliferative effects of bFGF peaked at a dose of 1 ng/gland. When bFGF (1 ng/gland) was administered to the atrophic gland, its weight increased to 125% of the glands in saline-treated control animals after 2 weeks. The effects of bFGF were also examined in normal submandibular glands: bFGF stimulated cell proliferation, but the effective concentration was at least 50 times higher than that required in the atrophic gland. The results from immunohistochemical tests against anti-FGF receptor-type 1 antibody demonstrated increased immunoreactivity in the damaged gland, which might be involved in the difference in the response to bFGF between damaged and normal glands. Overall, the results indicate that bFGF can accelerate tissue repair in salivary gland.

  12. A novel in vivo model of focal light emitting diode-induced cone-photoreceptor phototoxicity: neuroprotection afforded by brimonidine, BDNF, PEDF or bFGF.

    PubMed

    Ortín-Martínez, Arturo; Valiente-Soriano, Francisco Javier; García-Ayuso, Diego; Alarcón-Martínez, Luis; Jiménez-López, Manuel; Bernal-Garro, José Manuel; Nieto-López, Leticia; Nadal-Nicolás, Francisco Manuel; Villegas-Pérez, María Paz; Wheeler, Larry A; Vidal-Sanz, Manuel

    2014-01-01

    We have investigated the effects of light-emitting diode (LED)-induced phototoxicity (LIP) on cone-photoreceptors and their protection with brimonidine (BMD), brain-derived neurotrophic factor (BDNF), pigment epithelium-derived factor (PEDF), ciliary neurotrophic factor (CNTF) or basic fibroblast growth factor (bFGF). In anesthetized, dark adapted, adult albino rats a blue (400 nm) LED was placed perpendicular to the cornea (10 sec, 200 lux) and the effects were investigated using Spectral Domain Optical Coherence Tomography (SD-OCT) and/or analysing the retina in oriented cross-sections or wholemounts immune-labelled for L- and S-opsin and counterstained with the nuclear stain DAPI. The effects of topical BMD (1%) or, intravitreally injected BDNF (5 µg), PEDF (2 µg), CNTF (0.4 µg) or bFGF (1 µg) after LIP were examined on wholemounts at 7 days. SD-OCT showed damage in a circular region of the superotemporal retina, whose diameter varied from 1,842.4±84.5 µm (at 24 hours) to 1,407.7±52.8 µm (at 7 days). This region had a progressive thickness diminution from 183.4±5 µm (at 12 h) to 114.6±6 µm (at 7 d). Oriented cross-sections showed within the light-damaged region of the retina massive loss of rods and cone-photoreceptors. Wholemounts documented a circular region containing lower numbers of L- and S-cones. Within a circular area (1 mm or 1.3 mm radius, respectively) in the left and in its corresponding region of the contralateral-fellow-retina, total L- or S-cones were 7,118±842 or 661±125 for the LED exposed retinas (n = 7) and 14,040±1,860 or 2,255±193 for the fellow retinas (n = 7), respectively. BMD, BDNF, PEDF and bFGF but not CNTF showed significant neuroprotective effects on L- or S-cones. We conclude that LIP results in rod and cone-photoreceptor loss, and is a reliable, quantifiable model to study cone-photoreceptor degeneration. Intravitreal BDNF, PEDF or bFGF, or topical BMD afford significant cone neuroprotection in this model.

  13. A Novel In Vivo Model of Focal Light Emitting Diode-Induced Cone-Photoreceptor Phototoxicity: Neuroprotection Afforded by Brimonidine, BDNF, PEDF or bFGF

    PubMed Central

    García-Ayuso, Diego; Alarcón-Martínez, Luis; Jiménez-López, Manuel; Bernal-Garro, José Manuel; Nieto-López, Leticia; Nadal-Nicolás, Francisco Manuel; Villegas-Pérez, María Paz; Wheeler, Larry A.; Vidal-Sanz, Manuel

    2014-01-01

    We have investigated the effects of light-emitting diode (LED)-induced phototoxicity (LIP) on cone-photoreceptors and their protection with brimonidine (BMD), brain-derived neurotrophic factor (BDNF), pigment epithelium-derived factor (PEDF), ciliary neurotrophic factor (CNTF) or basic fibroblast growth factor (bFGF). In anesthetized, dark adapted, adult albino rats a blue (400 nm) LED was placed perpendicular to the cornea (10 sec, 200 lux) and the effects were investigated using Spectral Domain Optical Coherence Tomography (SD-OCT) and/or analysing the retina in oriented cross-sections or wholemounts immune-labelled for L- and S-opsin and counterstained with the nuclear stain DAPI. The effects of topical BMD (1%) or, intravitreally injected BDNF (5 µg), PEDF (2 µg), CNTF (0.4 µg) or bFGF (1 µg) after LIP were examined on wholemounts at 7 days. SD-OCT showed damage in a circular region of the superotemporal retina, whose diameter varied from 1,842.4±84.5 µm (at 24 hours) to 1,407.7±52.8 µm (at 7 days). This region had a progressive thickness diminution from 183.4±5 µm (at 12 h) to 114.6±6 µm (at 7 d). Oriented cross-sections showed within the light-damaged region of the retina massive loss of rods and cone-photoreceptors. Wholemounts documented a circular region containing lower numbers of L- and S-cones. Within a circular area (1 mm or 1.3 mm radius, respectively) in the left and in its corresponding region of the contralateral-fellow-retina, total L- or S-cones were 7,118±842 or 661±125 for the LED exposed retinas (n = 7) and 14,040±1,860 or 2,255±193 for the fellow retinas (n = 7), respectively. BMD, BDNF, PEDF and bFGF but not CNTF showed significant neuroprotective effects on L- or S-cones. We conclude that LIP results in rod and cone-photoreceptor loss, and is a reliable, quantifiable model to study cone-photoreceptor degeneration. Intravitreal BDNF, PEDF or bFGF, or topical BMD afford significant cone neuroprotection in this model

  14. Intestinal smooth muscle cell maintenance by basic fibroblast growth factor.

    PubMed

    Lee, Min; Wu, Benjamin M; Stelzner, Matthias; Reichardt, Holger M; Dunn, James C Y

    2008-08-01

    Intestinal tissue engineering is a potential therapy for patients with short bowel syndrome. Tissue engineering scaffolds that promote smooth muscle cell proliferation and angiogenesis are essential toward the regeneration of functional smooth muscles for peristalsis and motility. Since basic fibroblast growth factor (bFGF) can stimulate smooth muscle proliferation and angiogenesis, the delivery of bFGF was employed to stimulate proliferation and survival of primary intestinal smooth muscle cells. Two methods of local bFGF delivery were examined: the incorporation of bFGF into the collagen coating and the encapsulation of bFGF into poly(D,L-lactic-co-glycolic acid) microspheres. Cell-seeded scaffolds were implanted into the omentum and were retrieved after 4, 14, and 28 days. The seeded cells proliferated from day 4 to day 14 in all implants; however, at 28 days, significantly higher density of implanted cells and blood vessels was observed, when 10 microg of bFGF was incorporated into the collagen coating of scaffolds as compared to scaffolds with either no bFGF or 1 microg of bFGF in collagen. Microsphere encapsulation of 1 microg of bFGF produced similar effects as 10 microg of bFGF mixed in collagen and was more effective than the delivery of 1 microg of bFGF by collagen incorporation. The majority of the implanted cells also expressed alpha-smooth muscle actin. Scaffolds coated with microsphere-encapsulated bFGF and seeded with smooth muscle cells may be a useful platform for the regeneration of the intestinal smooth muscle.

  15. Molecular logic of the Zur-regulated zinc deprivation response in Bacillus subtilis

    PubMed Central

    Shin, Jung-Ho; Helmann, John D.

    2016-01-01

    Bacteria respond dynamically to the changes in zinc availability. Repression by the Bacillus subtilis transcription factor Zur requires Zn(II), which binds with negative cooperativity to two regulatory sites per dimer to form, sequentially, Zur2:Zn3 and Zur2:Zn4 forms of the repressor. Here we show that, as cells transition from zinc sufficiency to deficiency, operons regulated by Zur are derepressed in three distinct waves. The first includes the alternative RpmEB(L31*) and RpmGC(L33*) ribosomal proteins, which mobilize zinc from the ribosome, whereas the second includes the ZnuACB uptake system and the YciC metallochaperone. Finally, as zinc levels decrease further, the Zur2:Zn3 form loses Zn(II) leading to derepression of RpsNB(S14*) and FolE2, which allow continued ribosome assembly and folate synthesis, respectively. We infer that zinc mobilization from intracellular zinc stores takes priority over energy-dependent import, and our results link the biochemistry of zinc sensing by Zur to the molecular logic of the zinc deprivation response. PMID:27561249

  16. A density gradient of basic fibroblast growth factor guides directional migration of vascular smooth muscle cells.

    PubMed

    Wu, Jindan; Mao, Zhengwei; Han, Lulu; Zhao, Yizhi; Xi, Jiabin; Gao, Changyou

    2014-05-01

    The migration of vascular smooth muscle cells (VSMCs) is an important process in many physiological events. It is of paramount importance to control the migration rate and direction of VSMCs by biomaterials. In this paper, a density gradient of basic fibroblast growth factor (bFGF) was fabricated using an injection method and the bio-conjugation between heparin and bFGF. The density of bFGF gradually increased with a slope of 17 ng/cm(2)/mm. Adhesion and migration of VSMCs were studied on the bFGF gradient. The VSMCs exhibited preferential orientation and an enhanced directional migration behavior on the gradient surface. Up to 70% cells migrated towards the region with a higher density of bFGF on the gradient. However, the bFGF gradient had no effect on the cell migration rate. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Co-delivery of VEGF and bFGF via a PLGA nanoparticle-modified BAM for effective contracture inhibition of regenerated bladder tissue in rabbits

    PubMed Central

    Jiang, Xincheng; Lin, Houwei; Jiang, Dapeng; Xu, Guofeng; Fang, Xiaoliang; He, Lei; Xu, Maosheng; Tang, Bingqiang; Wang, Zhiyong; Cui, Daxiang; Chen, Fang; Geng, Hongquan

    2016-01-01

    Graft contracture is a common problem associated with the regeneration processes of tissue-engineered bladders. Currently, most strategies used for incorporating bioactive molecules into biomaterial designs do not work during all phases of tissue regeneration. In this study, we used a growth factor-PLGA nanoparticle thermo-sensitive gel system (i.e., BAM with incorporated VEGF and bFGF-loaded PLGA nanoparticles and mixed with a hydrophilic gel) to promote bladder tissue regeneration in a rabbit model. At 4 and 12 weeks after surgery, contracture rate assessment and histological examination were conducted to evaluate bladder tissue regeneration. The results indicated that the functional composite scaffold continuously and effectively released VEGF and bFGF and promoted bladder reconstruction with a significant decrease in graft contracture. In addition, the number and arrangement of regenerated urothelial cells and smooth muscle cells as well as microvascular density and maturity were improved in the VEGF/bFGF nanoparticle group compared with the single factor VEGF or bFGF nanoparticle group and BAM alone. The nanoparticle thermo-sensitive gel system, which exhibited favourable performance, may effectively inhibit graft contracture and promote bladder tissue regeneration in rabbits. PMID:26854200

  18. Co-delivery of VEGF and bFGF via a PLGA nanoparticle-modified BAM for effective contracture inhibition of regenerated bladder tissue in rabbits

    NASA Astrophysics Data System (ADS)

    Jiang, Xincheng; Lin, Houwei; Jiang, Dapeng; Xu, Guofeng; Fang, Xiaoliang; He, Lei; Xu, Maosheng; Tang, Bingqiang; Wang, Zhiyong; Cui, Daxiang; Chen, Fang; Geng, Hongquan

    2016-02-01

    Graft contracture is a common problem associated with the regeneration processes of tissue-engineered bladders. Currently, most strategies used for incorporating bioactive molecules into biomaterial designs do not work during all phases of tissue regeneration. In this study, we used a growth factor-PLGA nanoparticle thermo-sensitive gel system (i.e., BAM with incorporated VEGF and bFGF-loaded PLGA nanoparticles and mixed with a hydrophilic gel) to promote bladder tissue regeneration in a rabbit model. At 4 and 12 weeks after surgery, contracture rate assessment and histological examination were conducted to evaluate bladder tissue regeneration. The results indicated that the functional composite scaffold continuously and effectively released VEGF and bFGF and promoted bladder reconstruction with a significant decrease in graft contracture. In addition, the number and arrangement of regenerated urothelial cells and smooth muscle cells as well as microvascular density and maturity were improved in the VEGF/bFGF nanoparticle group compared with the single factor VEGF or bFGF nanoparticle group and BAM alone. The nanoparticle thermo-sensitive gel system, which exhibited favourable performance, may effectively inhibit graft contracture and promote bladder tissue regeneration in rabbits.

  19. Co-delivery of VEGF and bFGF via a PLGA nanoparticle-modified BAM for effective contracture inhibition of regenerated bladder tissue in rabbits.

    PubMed

    Jiang, Xincheng; Lin, Houwei; Jiang, Dapeng; Xu, Guofeng; Fang, Xiaoliang; He, Lei; Xu, Maosheng; Tang, Bingqiang; Wang, Zhiyong; Cui, Daxiang; Chen, Fang; Geng, Hongquan

    2016-02-08

    Graft contracture is a common problem associated with the regeneration processes of tissue-engineered bladders. Currently, most strategies used for incorporating bioactive molecules into biomaterial designs do not work during all phases of tissue regeneration. In this study, we used a growth factor-PLGA nanoparticle thermo-sensitive gel system (i.e., BAM with incorporated VEGF and bFGF-loaded PLGA nanoparticles and mixed with a hydrophilic gel) to promote bladder tissue regeneration in a rabbit model. At 4 and 12 weeks after surgery, contracture rate assessment and histological examination were conducted to evaluate bladder tissue regeneration. The results indicated that the functional composite scaffold continuously and effectively released VEGF and bFGF and promoted bladder reconstruction with a significant decrease in graft contracture. In addition, the number and arrangement of regenerated urothelial cells and smooth muscle cells as well as microvascular density and maturity were improved in the VEGF/bFGF nanoparticle group compared with the single factor VEGF or bFGF nanoparticle group and BAM alone. The nanoparticle thermo-sensitive gel system, which exhibited favourable performance, may effectively inhibit graft contracture and promote bladder tissue regeneration in rabbits.

  20. Expression of basic fibroblast growth factor in intact and ulcerated human gastric mucosa

    PubMed Central

    Hull, M; Brough, J; Powe, D; Carter, G; Jenkins, D; Hawkey, C

    1998-01-01

    Background—Basic fibroblast growth factor (bFGF) promotes angiogenesis and healing of gastric ulcers in rats, and bFGF expression is up regulated in such ulcers. However, little is known about expression of bFGF in human gastric mucosa. 
Aims—To investigate bFGF expression in intact human gastric mucosa and gastric ulcers and to determine whether low bFGF content or altered binding by mucosa is associated with ulceration. 
Subjects—Endoscopy outpatients, gastrectomy patients, and organ donors. 
Methods—bFGF was isolated by heparin affinity chromatography and characterised by western blotting and endothelial cell bioassay. bFGF was measured by immunoassay and its distribution defined by immunohistochemistry and in situ hybridisation. Binding of bFGF by heparan sulphate proteoglycans was investigated by sodium chloride and heparin extraction. 
Results—Bioactive bFGF (19 kDa) was detected in normal mucosa but bFGF mRNA was not found. bFGF expression was up regulated in granulation tissue endothelial cells, mononuclear cells, and epithelial cells at the ulcer rim. Gastric ulcer patients had constitutively low bFGF concentrations in intact antral mucosa which were not explained by changes in binding to heparan sulphate proteoglycans. 
Conclusions—bFGF expression is up regulated in human gastric ulcers. Low intact mucosal bFGF content is associated with gastric ulceration. 

 Keywords: basic fibroblast growth factor; gastric mucosa; heparan sulphate proteoglycan; peptic ulceration PMID:9824581

  1. The effect of vitamin E on basic fibroblast growth factor level in human fibroblast cell culture.

    PubMed

    Rashid, S A Harun Nor; Halim, A S; Muhammad, N A

    2008-07-01

    Basic fibroblast growth factor (bFGF) is angiogenic and effective in down-regulating excess collagen production. The aim of this study is to evaluate the effectiveness of vitamin E (Tocotrienol Rich Fraction) in altering the level of bFGF, a cytokine involved in the scar formation process. In this model, normal human fibroblasts were treated with various concentrations of vitamin E at different time frames. The levels of bFGF were determined by Enzyme-Linked Immunosorbant Assay (ELISA). This study demonstrated that Tocotrienol Rich Fraction (TRF) stimulated bFGF production by fibroblast and postulate that vitamin E may decrease aberrant scar formation.

  2. Perivascular and intravenous administration of basic fibroblast growth factor: vascular and solid organ deposition.

    PubMed Central

    Edelman, E R; Nugent, M A; Karnovsky, M J

    1993-01-01

    The in vivo mitogenicity of basic fibroblast growth factor (bFGF) for arterial smooth muscle cells relies on the removal of endothelium, raising the question of whether the endothelium serves as a mechanical barrier preventing contact of circulating bFGF with underlying smooth muscle cells or as a biochemical barrier that produces a local inhibitor of bFGF activity. To better define the role of the intact endothelium in modulating the vascular and tissue deposition of bFGF, we compared the fate of intravenous injections of 125I-labeled bFGF with perivascular controlled growth factor release. Peak serum bFGF levels were detected within 1 min of injection, and the growth factor was cleared thereafter with a serum half-life of almost 3 min. Polymeric controlled release devices delivered bFGF to the extravascular space without transendothelial transport. Deposition within the blood vessel wall was rapidly distributed circumferentially and was substantially greater than that observed following intravenous injection. The amount of bFGF deposited in arteries adjacent to the release devices was 40 times that deposited in similar arteries in animals who received a single intravenous bolus of bFGF. Endothelial denudation had a minimal effect on deposition following perivascular release, and it increased deposition following intravenous delivery 2-fold. The presence of intimal hyperplasia increased deposition of perivascularly released bFGF 2.4-fold but decreased the deposition of intravenously injected bFGF by 67%. In contrast, bFGF was 5- to 30-fold more abundant in solid organs after intravenous injection than it was following perivascular release. Deposition was greatest in the kidney, liver, and spleen and was substantially lower in the heart and lung. Thus, bFGF is rapidly cleared following intravenous injection and is deposited within both solid organs and the walls of blood vessels. Unlike the mitogenic potential of bFGF within blood vessels, vascular deposition is

  3. Enhancement of nose-to-brain delivery of basic fibroblast growth factor for improving rat memory impairments induced by co-injection of β-amyloid and ibotenic acid into the bilateral hippocampus.

    PubMed

    Feng, Chengcheng; Zhang, Chi; Shao, Xiayan; Liu, Qingfeng; Qian, Yong; Feng, Liang; Chen, Jie; Zha, Yuan; Zhang, Qizhi; Jiang, Xinguo

    2012-02-28

    Basic fibroblast growth factor (bFGF) delivery to the brain of animals appears to be an emerging potential therapeutic approach to neurodegenerative diseases, such as Alzheimer's disease (AD). The intranasal route of administration could provide an alternative to intracerebroventricular infusion. A nasal spray of bFGF had been developed previously and the objective of the present study was to investigate whether bFGF nasal spray could enhance brain uptake of bFGF and ameliorate memory impairment induced by co-injection of β-amyloid(25-35) and ibotenic acid into bilateral hippocampus of rats. The results of brain uptake study showed that the AUC(0-12h) of bFGF nasal spray in olfactory bulb, cerebrum, cerebellum and hippocampus was respectively 2.47, 2.38, 2.56 and 2.19 times that of intravenous bFGF solution, and 1.11, 1.95, 1.40 and 1.93 times that of intranasal bFGF solution, indicating that intranasal administration of bFGF nasal spray was an effective means of delivering bFGF to the brain, especially to cerebrum and hippocampus. In Morris water maze tasks, intravenous administration of bFGF solution at high dose (40 μg/kg) showed little improvement on spatial memory impairment. In contrast, bFGF solution of the same dose following intranasal administration could significantly ameliorate spatial memory impairment. bFGF nasal spray obviously improved spatial memory impairment even at a dose half (20 μg/kg) of bFGF solution, recovered their acetylcholinesterase and choline acetyltransferase activity to the sham control level, and alleviated neuronal degeneration in rat hippocampus, indicating neuroprotective effects on the central nerve system. In a word, bFGF nasal spray may be a new formulation of great potential for treating AD.

  4. Effects of retinal laser photocoagulation on photoreceptor basic fibroblast growth factor and survival.

    PubMed

    Xiao, M; Sastry, S M; Li, Z Y; Possin, D E; Chang, J H; Klock, I B; Milam, A H

    1998-03-01

    In an unpublished study, the authors found that immunoreactivity for basic fibroblast growth factor (bFGF) is increased in rod photoreceptors adjacent to long-standing laser burns in human diabetic retinas. The goal of this study was to determine whether laser photocoagulation produces a similar increase in photoreceptor bFGF and promotes survival of these cells in dystrophic rodent retinas. Threshold (whitening) and subthreshold (nonwhitening) laser burns were made in retinas of normal and Royal College of Surgeons (RCS) rats and normal and rds mice. The retinas were processed for immunocytochemical and morphometric analyses. In nonlasered normal rat and mouse retinas, bFGF immunoreactivity was prominent in the nuclei of Müller cells and astrocytes. Photoreceptors were bFGF negative except for a zone of bFGF-immunoreactive rods near the ora serrata. Some photoreceptors in nonlasered retinas of RCS rats and rds mice became bFGF immunoreactive. After laser treatment, bFGF immunoreactivity was markedly increased in all photoreceptors flanking the threshold burns and within the subthreshold burns in normal and mutant rats and mice. In RCS rat retinas, photoreceptor bFGF immunoreactivity remained elevated within subthreshold burns and flanking the threshold burns, and photoreceptor survival was prolonged. In rds mouse retinas, increased bFGF immunoreactivity in photoreceptors was not sustained and their degeneration was not retarded. Laser treatment of RCS rat retinas produced a sustained increase in bFGF immunoreactivity in photoreceptors and prolonged their survival, but laser treatment of rds mouse retinas did not have a long-term effect on photoreceptor bFGF immunoreactivity or survival. Although species differences in laser effects on photoreceptor bFGF and survival are apparent, the finding that rods flanking laser burns in human retinas have sustained increases in bFGF immunoreactivity suggests that laser treatment may be useful for prolonging survival of

  5. Development of inhalable dry powder formulation of basic fibroblast growth factor.

    PubMed

    Ibrahim, Basma M; Jun, Seoung Wook; Lee, Mee Yong; Kang, Soo Hyung; Yeo, Yoon

    2010-01-29

    Basic fibroblast growth factor (bFGF) is a promising agent for therapy of asthma or chronic obstructive pulmonary disease. We aim to develop an inhalable powder formulation of bFGF, which may provide a safe, effective, and convenient way of delivering bFGF to the disease-ridden lungs. Development of a bFGF dry powder formulation is constrained by the poor stability of bFGF and the uncertainty in compatibility of the protein with carrier excipients. With these constraints in mind, we prepared dry powders containing bFGF in combinations of albumin, phospholipid, lactose, and/or leucine, by spray drying, and evaluated the aerodynamic properties of the powders and the stability of bFGF loaded in the powders. While an ethanolic solution of phospholipid, albumin, and lactose produced dispersible powder, bFGF was unstable in ethanol. The stability of bFGF was preserved when spray-dried with lactose in an aqueous solution. Leucine was required to obtain dry powder with good dispersibility; however, increase in the leucine content more than 50% (w/w) negatively influenced the bFGF stability with no additional benefit to the aerodynamic properties of the powders. Dry powders containing 20% (w/w) leucine provided desirable aerodynamic properties (fine particle fraction of 25.2+/-5.4% and mass median aerodynamic diameter of 4.7+/-0.9 microm) and 98.1+/-7% recovery of bioactive bFGF. This result warrants further investigation of the biological activity of the inhaled bFGF in a disease model. 2009 Elsevier B.V. All rights reserved.

  6. Endogenous basic fibroblast growth factor isoforms involved in different intracellular protein complexes.

    PubMed Central

    Patry, V; Bugler, B; Maret, A; Potier, M; Prats, H

    1997-01-01

    Four forms of basic fibroblast growth factor (bFGF or FGF-2) result from an alternative initiation of translation involving one AUG (155-amino acid form) and three CUGs (210-, 201- and 196-amino acid forms). These different forms of bFGF show different intracellular biological activities. To identify their intracellular targets, the 210- and 155-amino acid forms of bFGF were independently transfected into CHO cells and their correct subcellular localizations were verified, the 155-amino acid bFGF form being essentially cytoplasmic whereas the 210-amino acid protein was nuclear. The radiation fragmentation method was used to determine the target size of the different bFGF isoforms in the transfected CHO cells and to show that the 210- and 155-amino acids bFGF isoforms were included in protein complexes of 320 and 130 kDa respectively. Similar results were obtained using the SK-Hep1 cell line, which naturally expressed all forms of bFGF. Co-immunoprecipitation assays using different chimaeric bFGF-chloramphenicol acetyltransferase proteins showed that different cellular proteins are associated with different parts of the bFGF molecule. We conclude that bFGF isoforms are involved in different molecular complexes in the cytosol and nucleus, which would reflect different functions for these proteins. PMID:9337877

  7. Expression of basic fibroblast growth factor in rabbit corneal alkali wounds in the presence and absence of granulocytes.

    PubMed

    Gan, Lisha; Fagerholm, Per; Palmblad, Jan

    2005-06-01

    To study the expression of basic fibroblast growth factor (bFGF) in the early phases of corneal wound healing in the presence or absence of granulocytes. A central penetrating corneal alkali wound was inflicted to one eye in each of 14 rabbits under general anaesthesia. Subsequently, seven of the rabbits were given fucoidin i.v. for 36 hours in order to block the selectins on the vascular endothelium, thus preventing blood granulocytes from entering the tissues. Then, corneas were prepared, stained for bFGF and evaluated by light microscopy. Whereas normal corneal epithelium expressed bFGF weakly, conjunctival epithelium did so strongly, particularly the goblet cells. The corneal endothelium showed medium staining, while keratocytes and vascular endothelial cells did not consistently express bFGF. After 36 hours of wound healing, a marked up-regulation of bFGF expression was observed in the corneal epithelial and endothelial cells, as well as in the keratocytes, that were migrating into the wound. No other changes were noted. None of these features were modulated when granulocyte emigration was prevented by fucoidin administration. The difference in bFGF expression between the corneal and conjunctival epithelium suggests a role for this growth factor in the barrier function at the limbus. Moreover, the specific presence of bFGF in cells migrating into the wound indicates the participation of bFGF in corneal wound healing. Expression of bFGF was independent of granulocytes.

  8. A green tea component suppresses posttranslational expression of basic fibroblast growth factor in colorectal cancer.

    PubMed

    Sukhthankar, Mugdha; Yamaguchi, Kiyoshi; Lee, Seong-Ho; McEntee, Michael F; Eling, Thomas E; Hara, Yukihiko; Baek, Seung Joon

    2008-06-01

    Green tea catechins are known to have anticarcinogenic effects. Epigallocatechin-3-gallate (EGCG) accounts for almost 50% of the total catechin content in green tea extract and has very potent antioxidant effects. EGCG also inhibits angiogenesis, possibly through the inhibition of proangiogenic factors including vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF), which in turn, inhibits tumor growth and metastasis. However, the exact molecular mechanism by which EGCG suppresses bFGF expression is not known. Our objective was to elucidate the molecular mechanisms by which EGCG inhibits bFGF expression in colorectal cancer. We examined posttranslational regulation of bFGF by EGCG in human colorectal cancer cells. We also examined bFGF in intestinal tumor formation of APC(Min/+) mice with and without catechin treatment. The bFGF protein was quickly degraded in the presence of EGCG, but a proteasome inhibitor suppressed this degradation. EGCG was also found to increase ubiquitination of bFGF and trypsin-like activity of the 20S proteasome, thereby resulting in the degradation of bFGF protein. Furthermore, EGCG suppressed tumor formation in APC(Min/+) mice, compared with vehicle-treated mice, in association with reduced bFGF expression. The ubiquitin-proteasome degradation pathway contributes significantly to down-regulation of bFGF expression by EGCG. Catechin compounds have fewer adverse effects than chemotherapeutic agents and hence can be used as proof-of-concept in cancer therapeutics to suppress growth and metastasis by targeting proteins such as bFGF.

  9. A Green Tea Component Suppresses Posttranslational Expression of Basic Fibroblast Growth Factor in Colorectal Cancer

    PubMed Central

    SUKHTHANKAR, MUGDHA; YAMAGUCHI, KIYOSHI; LEE, SEONG-HO; MCENTEE, MICHAEL F.; ELING, THOMAS E.; HARA, YUKIHIKO; BAEK, SEUNG JOON

    2008-01-01

    Background & Aims Green tea catechins are known to have anticarcinogenic effects. Epigallocatechin-3-gallate (EGCG) accounts for almost 50% of the total catechin content in green tea extract and has very potent antioxidant effects. EGCG also inhibits angiogenesis, possibly through the inhibition of proangiogenic factors including vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF), which in turn, inhibits tumor growth and metastasis. However, the exact molecular mechanism by which EGCG suppresses bFGF expression is not known. Our objective was to elucidate the molecular mechanisms by which EGCG inhibits bFGF expression in colorectal cancer. Methods We examined posttranslational regulation of bFGF by EGCG in human colorectal cancer cells. We also examined bFGF in intestinal tumor formation of APCMin/+ mice with and without catechin treatment. Results The bFGF protein was quickly degraded in the presence of EGCG, but a proteasome inhibitor suppressed this degradation. EGCG was also found to increase ubiquitination of bFGF and trypsin-like activity of the 20S proteasome, thereby resulting in the degradation of bFGF protein. Furthermore, EGCG suppressed tumor formation in APCMin/+ mice, compared with vehicle-treated mice, in association with reduced bFGF expression. Conclusions The ubiquitin-proteasome degradation pathway contributes significantly to down-regulation of bFGF expression by EGCG. Catechin compounds have fewer adverse effects than chemotherapeutic agents and hence can be used as proof-of-concept in cancer therapeutics to suppress growth and metastasis by targeting proteins such as bFGF. PMID:18549879

  10. Nicotine-induced smooth muscle cell proliferation is mediated through bFGF and TGF-beta 1.

    PubMed

    Cucina, A; Sapienza, P; Corvino, V; Borrelli, V; Mariani, V; Randone, B; Santoro D'Angelo, L; Cavallaro, A

    2000-03-01

    Cigarette smoking influences and enhances the development of atherosclerosis. We investigated if nicotine, an important constituent of cigarette smoking, has a stimulatory effect on bovine smooth muscle cell proliferation in vitro through the mediation of bFGF and TGF-beta 1. Bovine aortic smooth muscle cells (SMC) were stimulated with (-)-nicotine at various concentrations ranging from 6 x 10(-4) mol/L to 6 x 10(-8) mol/L. SMC viability and count were assessed. The presence of bFGF and TGF-beta 1 in serum-free conditioned media was determined by the inhibition antibody-binding assay, and the mitogenic activity of (-)-nicotine on SMC was analyzed by the 3H-thymidine uptake. Polymerase chain reaction was used to study the expression of bFGF and TGF-beta 1. The bFGF release after (-)-nicotine stimulation was greater than in the controls, whereas TGF-beta 1 release was lower. The greatest mitogenic activity was found at a (-)-nicotine concentration of 6 x 10(-6) mol/L. The addition of monoclonal antibody anti-bFGF decreased the 3H-thymidine uptake of SMC exposed to (-)-nicotine, whereas the addition of monoclonal antibody anti-TGF-beta 1 increased the 3H-thymidine uptake of stimulated SMC. bFGF mRNA expression was significantly higher in SMC exposed to (-)-nicotine than in the controls, but TGF-beta 1 mRNA expression was significantly lower in SMC exposed to 6 x 10(-6) mol/L (-)-nicotine than in SMC treated with the other concentrations of (-)-nicotine and in controls. Nicotine is a potent regulator of bFGF and TGF-beta 1 production and release by aortic SMC, and it seems to play an important role in the development and progression of atherosclerosis and neointimal fibrous hyperplasia.

  11. Biphasic Effect of Basic Fibroblast Growth Factor on Anterior Pituitary Folliculostellate TtT/GF Cell Coupling, and Connexin 43 Expression and Phosphorylation.

    PubMed

    Vitale, M L; Barry, A

    2015-10-01

    Basic fibroblast growth factor (bFGF) is a mitogenic and differentiating cytokine. In the anterior pituitary, folliculostellate (FS) cells constitute the major source of bFGF. bFGF affects endocrine cell proliferation and secretion in the anterior pituitary. In addition, bFGF increases its own expression by acting directly on FS cells. FS cell Cx43-mediated gap junction intercellular communication allows the establishment of an intrapituitary network for the transmission of information. In the present study, we assessed how bFGF regulates FS cell coupling. Time course studies were carried out on the FS cell line TtT/GF. Short-term bFGF treatment induced a transient cell uncoupling and the phosphorylation in Ser368 of membrane-bound Cx43 without modifying Cx43 levels. We demonstrated the involvement of the protein kinase C (PKC) isoform α in the phosphorylation of Cx43 in S368. Moreover, we showed that bFGF induced PKCα activation by stimulating its expression, phosphorylation and association with the plasma membrane. The long-term incubation with bFGF increased TtT/GF cell coupling, total Cx43 levels and Cx43 accumulation at the cell membrane of cytoplasmic projections. The Cx43 level increase was a result of the stimulation of Cx43 gene transcription as mediated by the extracellular-regulated kinase 1/2 signalling pathway. Taken together, the data show that bFGF modulates TtT/GF cell coupling by activating different pathways that lead to opposite effects on Cx43 phosphorylation and expression depending on the duration of the exposure of the cells to bFGF. A short-term bFGF exposure reduces cell-to-cell communication as a mean of desynchronising FS cells. By contrast, long-term exposure to bFGF enhances cell-to-cell communication and facilitates coordination among FS cells.

  12. Effect of noncovalent interaction on the self-assembly of a designed peptide and its potential use as a carrier for controlled bFGF release

    PubMed Central

    Liu, Yanfei; Zhang, Ling; Wei, Wei

    2017-01-01

    Peptide self-assembly is one of the promising bottom-up approaches for creating synthetic supermolecular architectures. Noncovalent interactions such as hydrophobic packing, electrostatic interaction, and polypeptide chain entropy (ΔSC) are the most relevant factors that affect the folding and self-assembly of peptides and the stability of supermolecular structures. The GVGV tetrapeptide is an abundant repeat in elastin, an extracellular matrix protein. In this study, four GVGV-containing peptides were designed with the aim of understanding the effects of these weak interactions on peptide self-assembly. Transmission electron microscopy, circular dichroism spectroscopy, dynamic light scattering measurements, and rheometry assays were used to study the structural features of the peptides. Because self-assembling peptides with different amino acid sequences may significantly affect protein release, basic fibroblast growth factor (bFGF) was used as a model molecule and encapsulated within the P2 (RLDLGVGVRLDLGVGV) hydrogel to study the release kinetics. The results showed that the balance among hydrophobic effects, electrostatic interactions, and chain entropy determined the molecular state and self-assembly of the peptide. Moreover, encapsulation of bFGF within the P2 hydrogel allowed its sustained release without causing changes in the secondary structure. The release profiles could be tuned by adjusting the P2 hydrogel concentration. Cell Counting Kit-8 and Western blot assays demonstrated that the encapsulated and released bFGFs were biologically active and capable of promoting the proliferation of murine fibroblast NIH-3T3 cells, most likely due to the activation of downstream signaling pathways. PMID:28176898

  13. Effect of noncovalent interaction on the self-assembly of a designed peptide and its potential use as a carrier for controlled bFGF release.

    PubMed

    Liu, Yanfei; Zhang, Ling; Wei, Wei

    2017-01-01

    Peptide self-assembly is one of the promising bottom-up approaches for creating synthetic supermolecular architectures. Noncovalent interactions such as hydrophobic packing, electrostatic interaction, and polypeptide chain entropy (ΔSC) are the most relevant factors that affect the folding and self-assembly of peptides and the stability of supermolecular structures. The GVGV tetrapeptide is an abundant repeat in elastin, an extracellular matrix protein. In this study, four GVGV-containing peptides were designed with the aim of understanding the effects of these weak interactions on peptide self-assembly. Transmission electron microscopy, circular dichroism spectroscopy, dynamic light scattering measurements, and rheometry assays were used to study the structural features of the peptides. Because self-assembling peptides with different amino acid sequences may significantly affect protein release, basic fibroblast growth factor (bFGF) was used as a model molecule and encapsulated within the P2 (RLDLGVGVRLDLGVGV) hydrogel to study the release kinetics. The results showed that the balance among hydrophobic effects, electrostatic interactions, and chain entropy determined the molecular state and self-assembly of the peptide. Moreover, encapsulation of bFGF within the P2 hydrogel allowed its sustained release without causing changes in the secondary structure. The release profiles could be tuned by adjusting the P2 hydrogel concentration. Cell Counting Kit-8 and Western blot assays demonstrated that the encapsulated and released bFGFs were biologically active and capable of promoting the proliferation of murine fibroblast NIH-3T3 cells, most likely due to the activation of downstream signaling pathways.

  14. The role of serum basic fibroblast growth factor, estradiol and urine basic fibroblast growth factor in differentiating infantile haemangiomas from vascular malformations.

    PubMed

    Yang, X J; Jiang, Y H; Zheng, J W; Hong, L; Zhou, Q; Qin, Z P

    2011-08-01

    To investigate the role of serum basic fibroblast growth factor (bFGF), estradiol (E2) and urine bFGF in differentiating infantile haemangiomas from vascular malformations. Between October 2007 and January 2009, 97 patients with haemangiomas and 25 patients with vascular malformations who had not been treated previously were included in this prospective study. Forty-eight patients with cleft lip and/or palate were selected as controls. The age of all subjects ranged from 1 to 30 months. The serum and urine levels of bFGF were determined by enzyme-linked immunosorbent assay (ELISA). The serum levels of E2 were examined via radioimmunoassay. All data were analysed with SPSS 11.5 software package. The concentration of serum and urine bFGF was significantly different among the three groups (haemangiomas, vascular malformations and controls) (P = 0.027, P = 0.001). Significantly different urine bFGF levels were found in patients with proliferating and involuting haemangiomas (P = 0.04). The serum E2 levels were significantly higher in patients with haemangiomas than vascular malformations (P = 0.001) and controls (P = 0.001). Serum bFGF and E2 as well as urine bFGF can be used to supplement the clinical diagnosis of congenital vascular anomalies. Urine bFGF combined with serum E2 may be the most potential markers for diagnosing haemangiomas and determining the proliferating stage of haemangiomas.

  15. Pretreatment of RPE Cells with Lutein Can Mitigate Bevacizumab-Induced Increases in Angiogenin and bFGF.

    PubMed

    Vilà, Natàlia; Coblentz, Jacqueline; Moreira-Neto, Carlos; Bravo-Filho, Vasco; Zoroquiain, Pablo; Burnier, Miguel N

    2017-01-01

    To determine whether pretreatment of retinal pigmented epithelial (RPE) cells with lutein can affect the response of cells to bevacizumab therapy. One human RPE cell line (ARPE-19) was used for all experiments. The cells were treated with lutein in different concentrations (0.01, 0.1, 1, 10, or 100 μg/ml). After 24 h, all plates were treated with bevacizumab (0.25 mg/ml). Media were harvested 24 h later for sandwich ELISA-based angiogenesis arrays. A Quantibody Human Angiogenesis Array was used in order to quantify the secretion of the following 10 proangiogenic cytokines: angiogenin, ANG2, EGF, bFGF, HB-EGF, PDGF-BB, leptin, PIGF, HGF and VEGF. Treatment with bevacizumab alone led to a significant decrease in VEGF, as well as a significant increase in angiogenin and bFGF. Pretreatment with 0.1 and 1.0 μg/ml of lutein led to significant decreases in both bFGF and angiogenin following treatment with bevacizumab compared to bevacizumab treatment alone. Lutein alone did not modify the secretion of proangiogenic cytokines. Pretreatment of human RPE cells in culture with specific doses of lutein prior to bevacizumab treatment mitigated the increase in bFGF and angiogenin caused by bevacizumab monotherapy. © 2016 S. Karger AG, Basel.

  16. Dosage and cell line dependent inhibitory effect of bFGF supplement in human pluripotent stem cell culture on inactivated human mesenchymal stem cells.

    PubMed

    Quang, Tara; Marquez, Maribel; Blanco, Giselle; Zhao, Yuanxiang

    2014-01-01

    Many different culture systems have been developed for expanding human pluripotent stem cells (hESCs and hiPSCs). In general, 4-10 ng/ml of bFGF is supplemented in culture media in feeder-dependent systems regardless of feeder cell types, whereas in feeder-free systems, up to 100 ng/ml of bFGF is required for maintaining long-term culture on various substrates. The amount of bFGF required in native hESCs growth niche is unclear. Here we report using inactivated adipose-derived human mesenchymal stem cells as feeder cells to examine long-term parallel cultures of two hESCs lines (H1 and H9) and one hiPSCs line (DF19-9-7T) in media supplemented with 0, 0.4 or 4 ng/ml of bFGF for up to 23 passages, as well as parallel cultures of H9 and DF19 in media supplemented with 4, 20 or 100 ng/ml bFGF for up to 13 passages for comparison. Across all cell lines tested, bFGF supplement demonstrated inhibitory effect over growth expansion, single cell colonization and recovery from freezing in a dosage dependent manner. In addition, bFGF exerted differential effects on different cell lines, inducing H1 and DF19 differentiation at 4 ng/ml or higher, while permitting long-term culture of H9 at the same concentrations with no apparent dosage effect. Pluripotency was confirmed for all cell lines cultured in 0, 0.4 or 4 ng/ml bFGF excluding H1-4 ng, as well as H9 cultured in 4, 20 and 100 ng/ml bFGF. However, DF19 demonstrated similar karyotypic abnormality in both 0 and 4 ng/ml bFGF media while H1 and H9 were karyotypically normal in 0 ng/ml bFGF after long-term culture. Our results indicate that exogenous bFGF exerts dosage and cell line dependent effect on human pluripotent stem cells cultured on mesenchymal stem cells, and implies optimal use of bFGF in hESCs/hiPSCs culture should be based on specific cell line and its culture system.

  17. Dosage and Cell Line Dependent Inhibitory Effect of bFGF Supplement in Human Pluripotent Stem Cell Culture on Inactivated Human Mesenchymal Stem Cells

    PubMed Central

    Quang, Tara; Marquez, Maribel; Blanco, Giselle; Zhao, Yuanxiang

    2014-01-01

    Many different culture systems have been developed for expanding human pluripotent stem cells (hESCs and hiPSCs). In general, 4–10 ng/ml of bFGF is supplemented in culture media in feeder-dependent systems regardless of feeder cell types, whereas in feeder-free systems, up to 100 ng/ml of bFGF is required for maintaining long-term culture on various substrates. The amount of bFGF required in native hESCs growth niche is unclear. Here we report using inactivated adipose-derived human mesenchymal stem cells as feeder cells to examine long-term parallel cultures of two hESCs lines (H1 and H9) and one hiPSCs line (DF19-9-7T) in media supplemented with 0, 0.4 or 4 ng/ml of bFGF for up to 23 passages, as well as parallel cultures of H9 and DF19 in media supplemented with 4, 20 or 100 ng/ml bFGF for up to 13 passages for comparison. Across all cell lines tested, bFGF supplement demonstrated inhibitory effect over growth expansion, single cell colonization and recovery from freezing in a dosage dependent manner. In addition, bFGF exerted differential effects on different cell lines, inducing H1 and DF19 differentiation at 4 ng/ml or higher, while permitting long-term culture of H9 at the same concentrations with no apparent dosage effect. Pluripotency was confirmed for all cell lines cultured in 0, 0.4 or 4 ng/ml bFGF excluding H1-4 ng, as well as H9 cultured in 4, 20 and 100 ng/ml bFGF. However, DF19 demonstrated similar karyotypic abnormality in both 0 and 4 ng/ml bFGF media while H1 and H9 were karyotypically normal in 0 ng/ml bFGF after long-term culture. Our results indicate that exogenous bFGF exerts dosage and cell line dependent effect on human pluripotent stem cells cultured on mesenchymal stem cells, and implies optimal use of bFGF in hESCs/hiPSCs culture should be based on specific cell line and its culture system. PMID:24465853

  18. In situ injury-induced release of basic-fibroblast growth factor from corneal epithelial cells.

    PubMed Central

    Adamis, A. P.; Meklir, B.; Joyce, N. C.

    1991-01-01

    Basic-fibroblast growth factor (b-FGF) binds to heparan sulfate proteoglycan in Bowman's layer of the cornea. The mechanism by which the molecule is deposited in Bowman's layer is the subject of controversy since b-FGF lacks a signal peptide sequence for extracellular secretion. Using immunofluorescence, the authors studied the presence and distribution of b-FGF in the bovine cornea and the conditions under which it could be released and bound to Bowman's layer. The results indicate that corneal epithelium contains b-FGF but that uninjured corneas do not contain detectable levels of b-FGF in Bowman's layer. Injury to the corneal epithelium results in the binding of b-FGF to Bowman's layer. Removal of the intact corneal epithelium without cell injury does not result in the binding of b-FGF to Bowman's layer. These findings suggest that one mechanism for the release of b-FGF from corneal epithelial cells is passive leakage after cell injury with secondary binding to Bowman's layer. Images Figure 1 Figure 2 Figure 3 PMID:1951634

  19. Pituitary follicular cells produce basic fibroblast growth factor

    SciTech Connect

    Ferrara, N.; Schweigerer, L.; Neufeld, G.; Mitchell, R.; Gospodarowicz, D.

    1987-08-01

    Cultured monolayers of bovine pituitary follicular cells, which transport ions, contain high amounts of mitogenic activity for endothelial cells which, on the basis of gene expression analysis, heparin-Sepharose elution profile, bioassay, immunoblotting, radioimmunoassay, and radioreceptor assay, has been identified as basic fibroblast growth factor (bFGF). These data indicate that follicular cells may be a major source of bFGF in the pituitary gland. Considering that bFGF has been proposed to play a role in paracrine regulation of pituitary hormone secretion, the data also suggest that these cells may exert important local regulatory functions.

  20. Fascia implantation with fibroblast growth factor on vocal fold paralysis.

    PubMed

    Nagai, Hiromi; Nishiyama, Koichiro; Seino, Yutomo; Kimura, Yu; Tabata, Yasuhiko; Okamoto, Makito

    2013-01-01

    The purpose of this prospective study was to determine the effect of autologous transplantation of fascia into the vocal fold (ATFV) with controlled release of basic fibroblast growth factor (bFGF) on unilateral vocal fold paralysis (UVFP) in a rat model. Unilateral recurrent laryngeal nerve (RLN) section was performed on 15 rats. Ten rats received an autologous fascia implant and gelatin hydrogel with or without bFGF (1 μg) to their larynxes (fascia only, "fascia group"; bFGF + fascia, "fascia + bFGF group"), while the rest underwent RLN transection ("RLN section group"). Four months later, evaluation of the laryngeal glottal gap and histological analysis were performed. The glottal gap was significantly reduced in the fascia + bFGF group, and fat volume increased significantly relative to the RLN section. The volume of the remaining fascia in the bFGF + fascia group was significantly greater than that of the fascia group. ATFV with controlled release of bFGF may compensate for diminished laryngeal volume in UVFP by reducing resorption of the implanted fascia and increasing fat volume. Our findings suggest that this modality may represent an attractive option for treating UVFP. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Differential regulation of acidic and basic fibroblast growth factor gene expression in fibroblast growth factor-treated rat aortic smooth muscle cells.

    PubMed

    Alberts, G F; Hsu, D K; Peifley, K A; Winkles, J A

    1994-08-01

    The acidic fibroblast growth factor (aFGF) and basic fibroblast growth factor (bFGF) proteins are potent vascular smooth muscle cell (SMC) mitogens that are expressed by endothelial cells and SMCs in vivo. Overexpression of these proteins in transfected cell lines can result in autocrine transformation; therefore, the precise control of fibroblast growth factor gene expression in the vessel wall may be an important mechanism regulating vascular cell growth. In the present study, we demonstrate that bFGF can induce bFGF mRNA expression, but not aFGF mRNA expression, in serum-starved rat aortic SMCs. bFGF autoinduction is maximal at 4 hours, requires de novo RNA and protein synthesis, and is mediated predominantly by a protein kinase C-dependent signaling pathway. Furthermore, aFGF treatment of rat SMCs also increases bFGF mRNA and protein expression; however, aFGF mRNA levels are only slightly modulated. These results suggest that the local release of aFGF or bFGF within the vessel wall could promote a prolonged period of elevated bFGF synthesis. This, in turn, could be of importance in the SMC hyperplasia that occurs in response to vascular injury and during atherosclerotic plaque formation.

  2. Basic Fibroblast Growth Factor Regulates Persistent ERK Osciliations in Premaligant but not Malignant JB6 Cells

    SciTech Connect

    Weber, Thomas J.; Shankaran, Harish; Wiley, H. S.; Opresko, Lee K.; Chrisler, William B.; Quesenberry, Ryan D.

    2010-05-02

    basic fibroblast growth factor (bFGF or FGF2) plays an important role in epidermal wound healing in vivo and is associated with a persistent increased in the extracellular signal-regulated kinase (ERK) pathway in vitro. Here we have examined whether bFGF induces the closure of an experimental scratch wound in JB6 mouse epidermal cells and have explored the regulation of the ERK pathway by bFGF in the context of kinase oscillations. bFGF stimulation is associated with increases in cellular phospho-ERK and phospho-c-Jun levels. In addition, bFGF increases cell proliferation and a change in cell morphology (stellate appearance) in a dose-dependent fashion (0.1 – 100 ng/ml). bFGF treatment also promoted the closure of an experimental scratch wound in vitro. JB6 cells were stably transfected with an ERK1-GFP chimera to follow temporal ERK subcellular distribution patterns. We observe a persistent upregulation of the ERK pathway, as evidenced by a significant increase in nuclear ERK1-GFP levels at time points up to 24 hr after bFGF treatment. Interestingly, at the single cell level, ERK is observed to oscillate between nuclear and cytosolic compartments in response to bFGF treatment. Because this oscillatory behavior is asynchronous in the cell population, it is only clearly resolved at the single cell level. Collectively, data presented here are consistent with an important role for bFGF in wound healing and suggest a more complex regulation of the ERK pathway by bFGF than has previously been appreciated.

  3. Regulation of expression of Sertoli cell glucose transporters 1 and 3 by FSH, IL1 beta, and bFGF at two different time-points in pubertal development.

    PubMed

    Galardo, María Noel; Riera, María Fernanda; Pellizzari, Eliana Herminia; Chemes, Héctor Edgardo; Venara, Marcela Cristina; Cigorraga, Selva Beatriz; Meroni, Silvina Beatriz

    2008-11-01

    Sertoli cells are necessary to provide adequate levels of lactate for germ cell development. Lactate production is hormonally regulated by follicle-stimulating hormone (FSH) and by a large set of intratesticular regulators such as interleukin-1 beta (IL1 beta) and basic fibroblast growth factor (bFGF). Little is known regarding the critical step in the production of this metabolite, viz., the entrance of glucose into the cell as mediated by GLUTs. The aim of the present study was to investigate the expression of the glucose transporters GLUT1 and GLUT3 and its possible regulation by FSH, IL1 beta, and bFGF in Sertoli cells at two different time-points in sexual development. Sertoli cells retaining the ability to undergo mitosis (obtained from 8-day-old rats) and in the process of terminal differentiation (obtained from 20-day-old rats) were examined. Testicular tissue sections and Sertoli cell monolayers obtained from 8- and 20-day-old rats showed positive immunostaining for GLUT1 and GLUT3 proteins. GLUT1 and GLUT3 mRNA levels were detected at the two ages analyzed. Treatment of Sertoli cells obtained from 8- and 20-day-old rats with FSH, IL1 beta, and bFGF for various periods of time (12, 24, and 48 h) increased GLUT1 without changing GLUT3 mRNA levels. Our results thus show that Sertoli cells express GLUT1 and GLUT3 throughout pubertal development, and that, in Sertoli cells, only GLUT1 is regulated by hormones during pubertal development. Hormonal regulation of GLUT1 expression and consequently glucose uptake and lactate production may be a key molecular event in the regulation of spermatogenesis by hormones.

  4. Expression of human basic fibroblast growth factor cDNA in baby hamster kidney-derived cells results in autonomous cell growth

    PubMed Central

    1988-01-01

    Growth factor over-production by responsive cells might contribute to their autonomous proliferation as well as their acquisition of a transformed phenotype in culture. Basic fibroblast growth factor (bFGF) has been shown to induce transient changes in cell behavior that resemble those encountered in transformed cells. In addition, several types of human tumor cells have been shown to produce bFGF. To determine directly the role that bFGF might play in the induction of the transformed phenotype, we have introduced a human bFGF cDNA expression vector into baby hamster kidney-derived (BHK-21) fibroblasts. One of the BHK transfectants, termed clone 19, expresses the bFGF mRNA and produces biologically active bFGF that accumulates to a high concentration inside the cells. These properties correlate with the ability of the cells to grow in serum-free medium without the addition of exogenous bFGF. Clone 19 cells also proliferated in soft agar, indicating that constitutive expression of the bFGF gene results in a loss of anchorage-dependent growth. PMID:3360856

  5. Conserved Role of bFGF and a Divergent Role of LIF for Pluripotency Maintenance and Survival in Canine Pluripotent Stem Cells.

    PubMed

    Luo, Jiesi; Cibelli, Jose B

    2016-09-19

    Dogs have been widely used as a preclinical model for human disease. With the successful generation of canine induced pluripotent stem cells (ciPSCs), the biomedical community has a unique opportunity to study therapeutic interventions using autologous stem cells that can benefit dogs and humans. Unlike mice and human pluripotent cells, which are leukemia inhibitory factor (LIF)- and basic fibroblast growth factor (bFGF)-dependent, respectively, dog iPSCs require both growth factors simultaneously. In an effort to elucidate the role of each factor in the control of ciPSC self-renewal, we performed a series of experiments aiming at understanding the signaling pathways activated by them. We found that bFGF regulates pluripotency by indirectly activating the SMAD2/3 pathway in the presence of feeder cells, exclusively targeting NANOG expression, and inhibiting spontaneous differentiation toward ectoderm and mesoderm. LIF activates the JAK-STAT3 pathway but does not function in the typical manner described in mouse naïve embryonic stem cells. These results show that a unique mechanism for maintenance of pluripotency is present in ciPSC. These findings should be taken into account when establishing stem cell differentiation protocols and may provide more insight into pluripotency regulation in species other than mice and humans.

  6. Exposure to transforming growth factor-β1 after basic fibroblast growth factor promotes the fibroblastic differentiation of human periodontal ligament stem/progenitor cell lines.

    PubMed

    Kono, Kiyomi; Maeda, Hidefumi; Fujii, Shinsuke; Tomokiyo, Atsushi; Yamamoto, Naohide; Wada, Naohisa; Monnouchi, Satoshi; Teramatsu, Yoko; Hamano, Sayuri; Koori, Katsuaki; Akamine, Akifumi

    2013-05-01

    Basic fibroblast growth factor (bFGF) is a cytokine that promotes the regeneration of the periodontium, the specialized tissues supporting the teeth. bFGF, does not, however, induce the synthesis of smooth muscle actin alpha 2 (ACTA2), type I collagen (COL1), or COL3, which are principal molecules in periodontal ligament (PDL) tissue, a component of the periodontium. We have suggested the feasibility of using transforming growth factor-β1 (TGFβ1) to induce fibroblastic differentiation of PDL stem/progenitor cells (PDLSCs). Here, we investigated the effect of the subsequent application of TGFβ1 after bFGF (bFGF/TGFβ1) on the differentiation of PDLSCs into fibroblastic cells. We first confirmed the expression of bFGF and TGFβ1 in rat PDL tissue and primary human PDL cells. Receptors for both bFGF and TGFβ1 were expressed in the human PDLSC lines 1-11 and 1-17. Exposure to bFGF for 2 days promoted vascular endothelial growth factor gene and protein expression in both cell lines and down-regulated the expression of ACTA2, COL1, and COL3 mRNA in both cell lines and the gene fibrillin 1 (FBN1) in cell line 1-11 alone. Furthermore, bFGF stimulated cell proliferation of these cell lines and significantly increased the number of cells in phase G2/M in the cell lines. Exposure to TGFβ1 for 2 days induced gene expression of ACTA2 and COL1 in both cell lines and FBN1 in cell line 1-11 alone. BFGF/TGFβ1 treatment significantly up-regulated ACTA2, COL1, and FBN1 expression as compared with the group treated with bFGF alone or the untreated control. This method might thus be useful for accelerating the generation and regeneration of functional periodontium.

  7. Thermo-sensitive hydrogels combined with decellularised matrix deliver bFGF for the functional recovery of rats after a spinal cord injury

    PubMed Central

    Xu, He-Lin; Tian, Fu-Rong; Lu, Cui-Tao; Xu, Jie; Fan, Zi-Liang; Yang, Jing-Jing; Chen, Pian-Pian; Huang, Ya-Dong; Xiao, Jian; Zhao, Ying-Zheng

    2016-01-01

    Because of the short half-life, either systemic or local administration of bFGF shows significant drawbacks to spinal injury. In this study, an acellular spinal cord scaffold (ASC) was encapsulated in a thermo-sensitive hydrogel to overcome these limitations. The ASC was firstly prepared from the spinal cord of healthy rats and characterized by scanning electronic microscopy and immunohistochemical staining. bFGF could specifically complex with the ASC scaffold via electrostatic or receptor-mediated interactions. The bFGF-ASC complex was further encapsulated into a heparin modified poloxamer (HP) solution to prepare atemperature-sensitive hydrogel (bFGF-ASC-HP). bFGF release from the ASC-HP hydrogel was more slower than that from the bFGF-ASC complex alone. An in vitro cell survival study showed that the bFGF-ASC-HP hydrogel could more effectively promote the proliferation of PC12 cells than a bFGF solution, with an approximate 50% increase in the cell survival rate within 24 h (P < 0.05). Compared with the bFGF solution, bFGF-ASC-HP hydrogel displayed enhanced inhibition of glial scars and obviously improved the functional recovery of the SCI model rat through regeneration of nerve axons and the differentiation of the neural stem cells. In summary, an ASC-HP hydrogel might be a promising carrier to deliver bFGF to an injured spinal cord. PMID:27922061

  8. In situ detection of basic fibroblast growth factor by highly specific antibodies.

    PubMed Central

    Schulze-Osthoff, K.; Risau, W.; Vollmer, E.; Sorg, C.

    1990-01-01

    Basic fibroblast growth factor (bFGF) is thought to be of major importance for fibrosis and angiogenesis. Despite intensive studies dealing with the biochemistry and multiple biologic effects of bFGF, the cellular distribution is virtually unknown. Therefore, using the indirect immunoperoxidase technique, we examined the effect of bFGF on a large pattern of normal, inflammatory, and tumorous human tissues. Staining was performed on cryostat sections with a highly specific affinity-purified antiserum. In normal tissues, especially those of the thymus and placenta, mainly dendritic cells contained the growth factor. High levels of bFGF were also detected in basal cells and gland epithelial cells of skin biopsies. A conspicuous expression was observed in chronic inflammatory tissues corresponding to a generally pronounced proliferation of fibroblasts and endothelial cells in these situations. Tumors revealed a very heterogenous staining pattern. In some lesions, bFGF was predominantly present in infiltrating and endothelial cells. In several, neoplasms tumor cells exhibited an intensive staining. In some, especially vascular tumors, bFGF could not be detected. From the staining results it is concluded that angiogenesis is not simply controlled by the presence of bFGF but is mediated by a balance of several angiogenic inducers and inhibitors. Images Figure 1 Figure 2 PMID:1695484

  9. Accelerating proliferation of neural stem/progenitor cells in collagen sponges immobilized with engineered basic fibroblast growth factor for nervous system tissue engineering.

    PubMed

    Ma, Fukai; Xiao, Zhifeng; Chen, Bing; Hou, Xianglin; Han, Jin; Zhao, Yannan; Dai, Jianwu; Xu, Ruxiang

    2014-03-10

    Neural stem/progenitor cells (NS/PCs) play a therapeutic role in nervous system diseases and contribute to functional recovery. However, their efficacy is limited as the majority of cells die post-transplantation. In this study, collagen sponges were utilized as carriers for NS/PCs. Basic fibroblast growth factor (bFGF), a mitogen for NS/PCs, was incorporated into the collagen sponges to stimulate NS/PC proliferation. However, the effect of native bFGF is limited because it diffuses into the culture medium and is lost following medium exchange. To overcome this problem, a collagen-binding polypeptide domain, which has high affinity to collagen, was fused with bFGF to sustain the exposure of NS/PCs within the collagen sponges to bFGF. The results indicated that the number of NS/PCs was significantly higher in collagen sponges incorporating engineered bFGF than in those with native bFGF or the PBS control after 7 days in culture. Here, we designed a natural biological neural scaffold consisting of collagen sponges, engineered bFGF, and NS/PCs. In addition to the effect of proliferated NS/PCs, the engineered bFGF retained in the natural biological neural scaffolds could have a direct effect on nervous system reconstruction. The two aspects of the natural biological neural scaffolds may produce synergistic effects, and so they represent a promising candidate for nervous system repair.

  10. Effect of local neutralization of basic fibroblast growth factor or vascular endothelial growth factor by a specific antibody on the development of the corpus luteum in the cow.

    PubMed

    Yamashita, Hiromichi; Kamada, Daichi; Shirasuna, Koumei; Matsui, Motozumi; Shimizu, Takashi; Kida, Katsuya; Berisha, Bajram; Schams, Dieter; Miyamoto, Akio

    2008-09-01

    Active angiogenesis and progesterone (P) synthesis occur in parallel during development of the corpus luteum (CL). Basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) are known to stimulate angiogenesis and P synthesis in vitro. The aim of the present study was to investigate the impact of bFGF or VEGF on the CL development in the cow by using a specific antibody against bFGF or VEGF. bFGF antibody, VEGF antibody, or saline as a control (n = 4 cows/treatment) were injected directly into the CL immediately after ovulation (Day 1), and the treatment was continued for 3 times/day over 7 days. Luteal biopsies were applied on Day 8 of the estrous cycle to determine the expression of genes associated with P synthesis and angiogenesis. Intraluteal injections with the bFGF antibody or the VEGF antibody markedly decreased the CL volume, plasma P concentration and StAR mRNA expression. bFGF antibody treatment decreased the mRNA expression of bFGF, FGF receptor-1, VEGF120, and angiopoietin (ANPT)-1, and increased ANPT-2/ANPT-1 ratio. However, VEGF antibody treatment decreased ANPT-2 mRNA expression and ANPT-2/ANPT-1 ratio. These results indicate that local neutralization of bFGF or VEGF changes genes regulating angiogenesis and P synthesis, and remarkably suppresses the CL size and P secretion during the development of CL in the cow, supporting the concept that bFGF and VEGF control the CL formation and function.

  11. Oestrogens, via transforming growth factor alpha, modulate basic fibroblast growth factor synthesis in hypothalamic astrocytes: in vitro observations.

    PubMed

    Galbiati, M; Martini, L; Melcangi, R C

    2002-10-01

    The data presented here show that, in cultures of type 1 astrocytes obtained from the hypothalamus of neonatal female rat, 17beta-oestradiol is able to increase both the mRNA and the protein levels of basic fibroblast growth factor (bFGF). In particular, after 24 h of exposure to 17beta-oestradiol (10(-9) and 10(-10) m), an increase of messenger levels of bFGF appears in hypothalamic type 1 astrocytes. Similarly, an induction of bFGF protein is also evident at this time of exposure. The effect on the mRNA and protein levels of bFGF is blocked by the presence in the medium of an antibody raised against the transforming growth factor alpha (TGFalpha) receptor. This observation indicates that, TGFalpha, whose synthesis is modulated by oestrogens in hypothalamic astrocytes and which is able to increase, both the mRNA and the protein levels of bFGF in our experimental model, may act as the mediator of the oestrogenic induction of bFGF. Hypothalamic astrocytes, together with hypothalamic neurones synthesizing and secreting luteinizing hormone-releasing hormone (LHRH), form the LHRH network in conjunction with other neuronal systems. Gonadal steroids in general, and oestrogens in particular, play an important role in the control of the activity of this network. In addition, bFGF and TGFalpha, two growth factors released from astrocytes, are able to influence the activity of LHRH neurones. The present observations suggest that oestrogens may also act on LHRH neurones in an indirect fashion (i.e. by modulating the expression of bFGF and TGFalpha in glial cells).

  12. Basic Fibroblast Growth Factor Ameliorates Endothelial Dysfunction in Radiation-Induced Bladder Injury

    PubMed Central

    Zhang, Shiwei; Qiu, Xuefeng; Zhang, Yanting; Fu, Kai; Zhao, Xiaozhi; Wu, Jinhui; Hu, Yiqiao; Zhu, Weiming; Guo, Hongqian

    2015-01-01

    This study was designed to explore the effect of basic fibroblast growth factor (bFGF) on radiation-induced endothelial dysfunction and histological changes in the urinary bladder. bFGF was administrated to human umbilical vein cells (HUVEC) or urinary bladder immediately after radiation. Reduced expression of thrombomodulin (TM) was indicated in the HUVEC and urinary bladder after treatment with radiation. Decreased apoptosis was observed in HUVEC treated with bFGF. Administration of bFGF increased the expression of TM in HUVEC medium, as well as in the urinary bladder at the early and delayed phases of radiation-induced bladder injury (RIBI). At the early phase, injection of bFGF increased the thickness of urothelium and reduced inflammation within the urinary bladder. At the delayed phase, bFGF was effective in reducing fibrosis within the urinary bladder. Our results indicate that endothelial dysfunction is a prominent feature of RIBI. Administration of bFGF can ameliorate radiation-induced endothelial dysfunction in urinary bladder and preserve bladder histology at early and delayed phases of RIBI. PMID:26351640

  13. Isoproterenol inhibits fibroblast growth factor-2-induced growth of renal epithelial cells.

    PubMed

    Izevbigie, E B; Gutkind, J S; Ray, P E

    2000-08-01

    The signal transduction pathways modulating bFGF effects in renal tubular epithelial cells (RTEc) are not completely understood. Since the cAMP and the mitogen-activated protein kinase (MAPK) pathways can modulate the growth of RTEc, we studied whether two cAMP elevating agents, isoproterenol and 8-bromo-cAMP, would modulate basic fibroblast growth factor (bFGF) induction of MAPK activity (ERK-2) and cell proliferation in human renal proximal tubular epithelial cells (RPTEc) and Madin-Darby canine kidney cells (MDCK clone EI1). Isoproterenol, but not bFGF, stimulated cAMP production in RPTEc and MDCKEI1 cells. bFGF, isoproterenol, and 8-bromo-cAMP alone increased ERK-2 activity in both cell types. However, isoproterenol and 8-bromo-cAMP partially inhibited the bFGF induction of ERK-2 activity, but only isoproterenol inhibited the proliferation of both cell types. PD098059 (25 microM), an inhibitor of MAPK kinase (MEK 1/2), blocked the bFGF mitogenic effects, but did not affect the 8-bromo-cAMP-induced mitogenic effects in MDCKEI1 cells. These findings suggest that activation of ERK-2 is required but not sufficient for mitogenesis in RTEc. We conclude that isoproterenol inhibits the growth-promoting effects of bFGF in RTEc via MEK-dependent and -independent pathways.

  14. Serum concentrations of basic fibroblast growth factor in collagen diseases.

    PubMed

    Kadono, T; Kikuchi, K; Kubo, M; Fujimoto, M; Tamaki, K

    1996-09-01

    Basic fibroblast growth factor (bFGF), a cytoplasmic polypeptide growth regulator that induces endothelial cell and fibroblast proliferation, is produced by endothelial cells and skeletal muscle. We hypothesized that this factor is involved in fibrotic changes in muscle and skin in collagen diseases. The serum level of bFGF was measured in 74 patients with systemic sclerosis, 12 with systemic lupus erythematosus, 33 with dermatomyositis, 13 with Raynaud's disease, and 20 control subjects. bFGF was undetectable in the serum of normal persons, but detectable levels were found in 31 of 74 patients with systemic sclerosis and 7 of 33 patients with dermatomyositis. Elevated serum bFGF level was correlated with an elevated plasma endothelin level and anticentromere antibody in patients with systemic sclerosis. An elevated serum bFGF level correlated with lung fibrosis and an elevated creatine kinase level in the patients with dermatomyositis. Measurement of the serum bFGF level may be useful to detect vascular damage in patients with systemic sclerosis and muscule fibrosis in patients with dermatomyositis.

  15. Astragalosides promote angiogenesis via vascular endothelial growth factor and basic fibroblast growth factor in a rat model of myocardial infarction

    PubMed Central

    YU, JUN-MIN; ZHANG, XIAO-BO; JIANG, WEN; WANG, HUI-DONG; ZHANG, YI-NA

    2015-01-01

    The aim of the present study was to evaluate the effect of astragalosides (ASTs) on angiogenesis, as well as the expression of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) following myocardial infarction (MI). MI was induced in rats by ligation of the left coronary artery. Twenty-four hours after surgery, the rats were divided into low-dose, high-dose, control and sham surgery groups (n=8 per group). The low- and high-dose groups were treated with ASTs (2.5 and 10 mg/kg/day, respectively, via intraperitoneal injection), while, the control and sham surgery group rats received saline. Serum levels, and mRNA and protein expression levels of VEGF and bFGF, as well as the microvessel density (MVD) were determined four weeks post-treatment. Twenty-four hours post-surgery, VEGF and bFGF serum levels were observed to be comparable between the groups; while at four weeks, the VEGF and bFGF levels were higher in the AST-treated rats (P<0.01). Similarly, VEGF and bFGF mRNA and protein expression levels were higher following AST treatment (P<0.05). No difference in VEGF mRNA expression between the low- and high-dose groups was noted, however, an increase in the bFGF expression levels was detected in the high-dose group. Newly generated blood vessels were observed following MI, with a significant increase in MVD observed in the AST-treated groups (P<0.05). AST promotes angiogenesis of the heart and increases VEGF and bFGF expression levels. Thus, it is hypothesized that increased VEGF and bFGF levels may contribute to the AST-induced increase in angiogenesis in rat models of MI. PMID:26352430

  16. Effects of combination therapy using basic fibroblast growth factor and mature adipocyte-derived dedifferentiated fat (DFAT) cells on skin graft revascularisation.

    PubMed

    Asami, Takashi; Soejima, Kazutaka; Kashimura, Tsutomu; Kazama, Tomohiko; Matsumoto, Taro; Morioka, Kosuke; Nakazawa, Hiroaki

    2015-01-01

    Although the benefits of basic fibroblast growth factor (bFGF) for wound healing and angiogenesis are well known, its effects on the process of skin graft revascularisation have not been clarified. It was hypothesised that bFGF would be beneficial to promote taking of skin grafts, but that the effect might be limited in the case of bFGF monotherapy. Therefore, this study investigated the efficacy of combination therapy using bFGF and dedifferentiated fat (DFAT) cells. DFAT cells have multilineage differentiation potential, including into endothelial cells, similar to the case of mesenchymal stem cells (MSC). Commercially available human recombinant bFGF was used. DFAT cells were prepared from SD strain rats as an adipocyte progenitor cell line from mature adipocytes. Full-thickness skin was lifted from the back of SD strain rats and then grafted back to the original wound site. Four groups were established prior to skin grafting: control group (skin graft alone), bFGF group (treated with bFGF), DFAT group (treated with DFAT cells), and combination group (treated with both bFGF and DFAT cells). Tissue specimens for histological examination were harvested 48 hours after grafting. The histological findings for the bFGF group showed vascular augmentation in the grafted dermis compared with the control group. However, the difference in the number of revascularised vessels per unit area did not reach statistical significance against the control group. In contrast, in the combination group, skin graft revascularisation was significantly promoted, especially in the upper dermis. The results suggest that replacement of the existing graft vessels was markedly promoted by the combination therapy using bFGF and DFAT cells, which may facilitate skin graft taking.

  17. Effects of basic fibroblast growth factor on hippocampal neurons after axonal injury.

    PubMed

    Himmelseher, S; Pfenninger, E; Georgieff, M

    1997-04-01

    Axons of adult central nervous system neurons fail to regenerate after diffuse axonal injury in head trauma. Basic fibroblast growth factor (bFGF) has been reported to enhance neuritic extensions after neuronal injury in immature nerve cells. To investigate the effects of bFGF on adult neurons and axonal reoutgrowth, differentiated nerve cells were axonally transected and bFGF was applied. Cell culture study with primary rat hippocampal neurons. After axotomy, hippocampal cultures were maintained untreated or in the presence of 0.5, 1, 10, or 20 ng/mL bFGF and evaluated over a 7-day period after injury. Seven days after injury, axotomy decreased cell survival to 65%, increased [3H]arachidonic acid release 1.8-fold from prelabeled cells, and showed negligible effects on neuronal dendrites. bFGF reduced this neurodegeneration at all doses applied. bFGF at 10 ng/mL most efficiently increased live cells to 85% and decreased [3H]arachidonic acid release from prelabeled cells to control values (p < 0.01, vs. damaged cells). Furthermore, 10 ng/mL bFGF induced axonal branching and the longest axonal re-extensions from 60 +/- 8 to 377 +/- 10 microns 7 days after injury (p < 0.01, vs. damaged cells). bFGF increased cell survival and supported axonal re-elongations in adult hippocampal neurons in vitro when applied after axotomy. bFGF may play a role in new therapeutic concepts for the management of axonal injury after head trauma.

  18. Differential role of EGF and BFGF in human GBM-TIC proliferation: relationship to EGFR-tyrosine kinase inhibitor sensibility.

    PubMed

    Bajetto, A; Porcile, C; Pattarozzi, A; Scotti, L; Aceto, A; Daga, A; Barbieri, F; Florio, T

    2013-01-01

    Glioblastoma multiforme (GBM) is among the most devastating human tumors being rapidly fatal despite aggressive surgery, radiation and chemotherapies. It is characterized by extensive dissemination of tumor cells within the brain that hinders complete surgical resection. GBM tumor initiating-cells (TICs) are a rare subpopulation of cells responsible for tumor development, growth, invasiveness and recurrence after chemotherapy. TICs from human GBM can be selected in vitro using the same conditions permissive for the growth of normal neural cells, of which share some features including marker expression, self-renewal capacity, long-term proliferation, and ability to differentiate into neuronal and glial cells. EGFR overexpression and its constitutive activation is one of the most important signaling alteration identified in GBM, and its pharmacological targeting represents an attractive therapeutic goal. We previously demonstrated that human GBM TICs have different sensitivity to the EGFR kinase inhibitors erlotinib and gefitinib, depending on the differential modulation of downstream signaling cascades. In this work we investigated the mechanisms of resistance to erlotinib in two human GBM TIC cultures, analyzing EGF and bFGF individual contribution to proliferation, clonogenicity, and migration. We demonstrated the presence of a small cell subpopulation whose proliferation is supported by EGF and a larger one mainly dependent on bFGF. Thus, insensitivity to EGFR kinase inhibitors as far as TIC proliferation results from a predominant FGFR activation that hides the inhibitory effects induced on EGFR signaling. Conversely, EGF and bFGF induced cell migration with similar efficacy. In addition, unlike neural stem/progenitors cells, the removal of chondroitin sulphate proteoglycans from cell surface was unable to discern EGF- and bFGF-dependent subpopulations in GBM TICs.

  19. A novel chemical-defined medium with bFGF and N2B27 supplements supports undifferentiated growth in human embryonic stem cells

    SciTech Connect

    Liu Yanxia; Song Zhihua; Zhao Yang; Qin Han; Cai Jun; Zhang Hong; Yu Tianxin; Jiang Siming; Wang Guangwen; Ding Mingxiao; Deng Hongkui . E-mail: hongkui_deng@pku.edu.cn

    2006-07-21

    Traditionally, undifferentiated human embryonic stem cells (hESCs) are maintained on mouse embryonic fibroblast (MEF) cells or on matrigel with an MEF-conditioned medium (CM), which hampers the clinical applications of hESCs due to the contamination by animal pathogens. Here we report a novel chemical-defined medium using DMEM/F12 supplemented with N2, B27, and basic fibroblast growth factor (bFGF) [termed NBF]. This medium can support prolonged self-renewal of hESCs. hESCs cultured in NBF maintain an undifferentiated state and normal karyotype, are able to form embryoid bodies in vitro, and differentiate into three germ layers and extraembryonic cells. Furthermore, we find that hESCs cultured in NBF possess a low apoptosis rate and a high proliferation rate compared with those cultured in MEF-CM. Our findings provide a novel, simplified chemical-defined culture medium suitable for further therapeutic applications and developmental studies of hESCs.

  20. Immunolocalization of basic fibroblast growth factor and platelet-derived growth factor-A during adjuvant arthritis in the Lewis rat.

    PubMed Central

    Qu, Z.; Picou, M.; Dang, T. T.; Angell, E.; Planck, S. R.; Hart, C. E.; Rosenbaum, J. T.

    1994-01-01

    A prerequisite in defining the role of a growth factor in a disease is knowledge of its expression kinetics during the natural course of the disease. We, therefore, used immunohistochemical and immunoblot analyses to examine tissue distribution of basic fibroblast growth factor (bFGF) and platelet-derived growth factor (PDGF-A) during the development of destructive arthropathy in the rat adjuvant arthritis model. In normal joints, bFGF was primarily localized in endothelial cells. In inflamed joints, increased staining for bFGF was found in the invading panni, hyperplastic synovium, and thickened periosteum where bFGF was also co-localized with two cell proliferation markers. Staining for bFGF began to increase at the onset of arthritis (days 11 to 13), reached peak level on days 17 to 24, and gradually declined afterward. In contrast, PDGF-A staining did not change until day 17 and the increased staining was restricted to areas of newly formed bone. The district temporal and spatial distribution pattern of these two growth factors during the destructive arthropathy strongly suggests that they play different roles during arthritis. Although PDGF-A seems to be exclusively related to osteogenesis, bFGF may have a more extensive impact on synovial proliferation and bone destruction as well as bone formation. Images Figure 1 Figure 2 Figure 2 Figure 3 Figure 3 Figure 4 Figure 5 PMID:7977644

  1. Fibroblast growth factor is an inhibitor of chondrocyte terminal differentiation

    SciTech Connect

    Kato, Y.; Iwamoto, M. )

    1990-04-05

    The effects of basic fibroblast growth factor (bFGF) on terminal differentiation of chondrocytes and cartilage-matrix calcification were investigated. Rabbit growth-plate chondrocytes maintained as a pelleted mass in a centrifuge tube produced an abundant proteoglycan matrix during the matrix-maturation stage, yielding a cartilage-like tissue. Thereafter, they terminally differentiated to hypertrophic chondrocytes which produced high levels of alkaline phosphatase. These cells induced extensive calcification of the matrix in the absence of additional phosphate. Addition of bFGF to the chondrocyte cultures abolished the increases in alkaline phosphatase activity, {sup 45}Ca deposition, and the calcium content. These effects were dose-dependent, reversible, and observed in the presence of cytosine arabinoside, an inhibitor of DNA synthesis. The inhibitory effects could be observed only when chondrocytes were exposed to bFGF in a transition period between the matrix-maturation and hypertrophic stages. As chondrocytes differentiated to hypertrophic cells, bFGF became less effective in inhibiting the expression of the mineralization-related phenotypes. The present study also shows that although the rate of ({sup 35}S)sulfate incorporation into large, chondroitin sulfate proteoglycan in the cell-matrix fraction is very high during the matrix-maturation stage, it abruptly decreases by 90% after terminal differentiation. Furthermore, the terminal differentiation-associated decrease in proteoglycan synthesis was delayed by bFGF. These results provide evidence that bFGF inhibits terminal differentiation of chondrocytes and calcification.

  2. Involvement of basic fibroblast growth factor in suramin-induced inhibition of V79/AP4 fibroblast cell proliferation.

    PubMed Central

    Bernardini, N.; Giannessi, F.; Bianchi, F.; Dolfi, A.; Lupetti, M.; Citti, L.; Danesi, R.; Del Tacca, M.

    1993-01-01

    The V79/AP4 Chinese hamster fibroblasts were densely stained with the anti-basic fibroblast growth factor (bFGF) antibody demonstrating an endogenous production of the peptide. The in vitro proliferation of these cells was stimulated by exogenous bFGF and the maximum growth (259% increase in 3H-thymidine incorporation into DNA) was reached with bFGF 10 ng ml-1. Inhibition of bFGF-mediated mitogenic pathway was obtained with a 15-mer antisense oligodeoxynucleotide targeted against bFGF mRNA and with suramin, a drug which blocks the biological activity of heparin-binding growth factors. bFGF antisense oligomer reduced the synthesis of DNA by 79.5 and 89.5% at 20 and 60 microM, respectively; this effect was reversed by the addition of exogenous bFGF to the culture medium. A short-term exposure to suramin 300 micrograms ml-1 produced a modest reduction in 3H-thymidine incorporation but suppressed the mitogenic effect of bFGF on V79/AP4 cells. In cells treated with suramin 300 micrograms ml-1 the drug concentration increased linearly over 3 days, reaching 13.15 micrograms mg-1 of protein; cell proliferation was inhibited in a dose-related manner as evaluated by the colony formation assay (IC50: 344.22 micrograms ml-1) and by the number of mitoses observed in culture. Furthermore, the drug induced ultrastructural alterations, consisting of perinuclear cisternae swelling, chromatin condensation, nucleolar segregation and cytoplasmic vacuolations. These findings demonstrated that the endogenous production of bFGF plays an important role in V79/AP4 fibroblasts proliferation, and the inhibition of bFGF-mediated mitogenic signalling with bFGF antisense oligomer or suramin is an effective mean of reducing cell growth. Images Figure 1 Figure 5 Figure 6 PMID:7685616

  3. Vascular endothelial growth factor, basic fibroblast growth factor, insulin-like growth factor-I and platelet-derived growth factor levels in human milk of mothers with term and preterm neonates.

    PubMed

    Ozgurtas, Taner; Aydin, Ibrahim; Turan, Ozden; Koc, Esin; Hirfanoglu, Ibrahim Murat; Acikel, Cengiz Han; Akyol, Mesut; Erbil, M Kemal

    2010-05-01

    Human milk is a complex biological fluid. It contains many nutrients, anti-infectious and biologically active substance. Human milk also contains many angiogenic polypeptides. We have determined four of these: Vascular endothelial growth factor (VEGF), basic fibroblast growth factor (b-FGF), insulin-like growth factor- I (IGF-I) and platelet-derived growth factor (PDGF). The aim of this study was to compare the concentrations of VEGF, b-FGF, IGF-I and PDGF in human milk collected from mothers with preterm and term neonates. Human milk samples were collected from 29 mothers of preterm (<37 weeks) and from 29 mothers of term (38>weeks) infants at days 3, 7 and 28 postpartum. Milk samples were analyzed for VEGF, b-FGF and PDGF by enzyme-linked immunosorbent assay and IGF-I was measured by radioimmunoassay method. Human milk levels of VEGF, IGF-I and b-FGF were significantly higher (p<0.001). Furthermore, within-preterm group concentrations of VEGF, IGF-I and PDGF significantly differed during postpartum days 3-7-28 (p<0.001, p<0.05, p<0.001, respectively), but did not do so for b-FGF concentrations. In term groups, concentrations of IGF-I and VEGF significantly differed (p<0.05, p<0.001, respectively), but did not do so for concentrations of b-FGF and PDGF. This is the first report of simultaneous measurements of four major angiogenic factors in human milk collected from mothers with preterm and term. Our results suggest that three of four angiogenic factors, VEGF, b-FGF and IGF-I, are higher concentration in human milk which collected from preterm mothers than those of terms.

  4. The angiogenic peptide vascular endothelial growth factor-basic fibroblast growth factor signaling is up-regulated in a rat pressure ulcer model.

    PubMed

    Yang, Jing-Jin; Wang, Xue-Ling; Shi, Bo-Wen; Huang, Fang

    2013-08-01

    The purpose of this study is to investigate the mRNA and protein expression levels of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) in pressure ulcers, and to elucidate the molecular mechanism by which VEGF and bFGF are involved in pressure ulcer formation. A rat model of ischemia-reperfusion pressure ulcer was established by magnetic disk circulating compression method. Real-time fluorescence quantitative PCR and Western blot assays were conducted to detect the mRNA and protein expression of VEGF and bFGF in the tissues of rat I-, II-, and III-degree pressure ulcers, the surrounding tissues, and normal skin. Our study confirmed that the mRNA and protein expression levels of VEGF and bFGF in the tissues of rat I-degree pressure ulcer were significantly higher than that in the II- and III-degree pressure ulcer tissues (P < 0.05). The expression of VEGF and bFGF in the tissues surrounding I- and II-degree pressure ulcers were higher than the rats with normal skin. The expression of VEGF and bFGF in the tissues of rat III-degree pressure ulcer was lower than that in the surrounding tissues and normal skin (P < 0.05). There was a significant positive correlation between change in the VEGF and bFGF. The results showed that with an increase in the degree of pressure ulcers, the expression of VEGF and bFGF in pressure ulcers tissue are decreased. This leads to a reduction in angiogenesis and may be a crucial factor in the formation of pressure ulcers. Copyright © 2013 Wiley Periodicals, Inc.

  5. Comparative study of the effects of recombinant human epidermal growth factor and basic fibroblast growth factor on corneal epithelial wound healing and neovascularization in vivo and in vitro.

    PubMed

    Yan, Limeng; Wu, Wei; Wang, Zhichong; Li, Chaoyang; Lu, Xiaohe; Duan, Hucheng; Zhou, Jin; Wang, Xiaoran; Wan, Pengxia; Song, Yiyue; Tang, Jing; Han, Yu

    2013-01-01

    This study was undertaken to investigate the effects of recombinant human epidermal growth factor (rhEGF) and basic fibroblast growth factor (bFGF) on corneal wound healing and neovascularization (CNV). The positive effects of 10 ng/ml rhEGF and bFGF on the proliferation of corneal epithelial cells (SD-HCEC1s), rabbit keratocyte cells (RKCs) and human umbilical vein endothelial cells (HUVECs) as well as the effects on the migration capacity on HUVECs were observed. An animal central corneal wound and CNV model was established in rabbits. One eye of each group was chosen randomly for topical administration of rhEGF, bFGF or normal saline, and variability in the area of corneal epithelial wound healing and CNV was observed. The optimal concentration of rhEGF and bFGF for the proliferation of corneal epithelial cells was 10 ng/ml. The promotive effect of 10 ng/ml rhEGF on the proliferation of RKCs and HUVECs was less than that of 10 ng/ml bFGF. In the animal experiment, the healing rate of the corneal epithelium in the rhEGF group was better than in the other groups on day 1. On day 3, the healing rates of the 3 groups were nearly equal. The CNV area in the rhEGF group was less than that of the bFGF group. rhEGF and bFGF both had promotive effects on corneal epithelial wound healing, but rhEGF had a weaker promotive effect on CNV than bFGF. With long-term application of growth factor drugs, rhEGF is suggested for lessening the growth of CNV. Copyright © 2012 S. Karger AG, Basel.

  6. Sequential delivery of chlorhexidine acetate and bFGF from PLGA-glycol chitosan core-shell microspheres.

    PubMed

    Chen, Ming-Mao; Cao, Huan; Liu, Yuan-Yuan; Liu, Yan; Song, Fei-Fei; Chen, Jing-Di; Zhang, Qi-Qing; Yang, Wen-Zhi

    2017-03-01

    Wound treatment should meet the challenge both of preventing infection and promoting wound healing. To design a sequential delivery system for wound healing, PLGA-glycol chitosan (GC) core-shell microspheres containing chlorhexidine acetate (CHA) at the GC shell and bFGF in the core of PLGA microspheres were fabricated using emulsion-solvent evaporation method. SEM showed that the microspheres were all spherical in shape with a smooth surface. The average size of PLGA-GC microspheres increased due to the GC coating on the surface. The results of release profiles and fluorescence images indicated that PLGA-GC microspheres had an ability to deliver drugs in sequence. The CHA was rapidly released, whereas the proteins presented a sustained release. The release behavior could be modulated by changing the GC amount. Antibacterial assay and cell proliferation tests suggested that the released CHA and bFGF retained their antimicrobial activity and bioactivity during preparation. The microspheres exhibited non-cytotoxicity against 3T3 cells and had a good biocompatibility. These results demonstrated that PLGA-GC core-shell microspheres could be a promising controlled release system of delivering drugs and proteins in sequence for wound healing.

  7. Maintenance of human embryonic stem cells in media conditioned by human mesenchymal stem cells obviates the requirement of exogenous basic fibroblast growth factor supplementation.

    PubMed

    Sánchez, Laura; Gutierrez-Aranda, Iván; Ligero, Gertrudis; Martín, Miguel; Ayllón, Verónica; Real, Pedro J; Ramos-Mejía, Verónica; Bueno, Clara; Menendez, Pablo

    2012-05-01

    Despite the improvements in the human embryonic stem cell (hESC) culture systems, very similar conditions to those used to maintain hESCs on mouse feeders are broadly applied to culture methods based on human feeders. Indeed, basic fibroblast growth factor (bFGF), a master hESC-sustaining factor, is still added in nearly all medium formulations for hESC propagation. Human foreskin fibroblasts (HFFs) and mesenchymal stem cells (MSCs) used as feeders have recently been reported to support hESC growth without exogenous bFGF. However, whether hESCs may be maintained undifferentiated without exogenous bFGF using media conditioned (CM) by human feeders remains elusive. We hypothesize that HFFs and hMSCs are likely to be functionally different and therefore the mechanisms by which HFF-CM and MSC-CM support undifferentiated growth of hESCs may differ. We have thus determined whether HFF-CM and/or MSC-CM sustain feeder-free undifferentiated growth of hESC without exogenous supplementation of bFGF. We report that hMSCs synthesize higher levels of endogenous bFGF than HFFs. Accordingly and in contrast to HFF-CM, MSC-CM produced without the addition of exogenous bFGF supports hESC pluripotency and culture homeostasis beyond 20 passages without the need of bFGF supplementation. hESCs maintained without exogenous bFGF in MSC-CM retained hESC morphology and expression of pluripotency surface markers and transcription factors, formed teratomas, and showed spontaneous and lineage-directed in vitro differentiation capacity. Our data indicate that MSC-CM, but not HFF-CM, provides microenvironment cues supporting feeder-free long-term maintenance of pluripotent hESCs and obviates the requirement of exogenous bFGF at any time.

  8. Basic fibroblast growth factor messenger RNA is expressed strongly at the acute stage of cerebral contusion.

    PubMed

    Iwamoto, Y; Yamaki, T; Murakami, N; Sugawa, N; Yoshino, E; Ueda, S; Nosaka, K; Nishino, H; Iwashima, A

    1994-01-01

    Basic fibroblast growth factor (bFGF) has a neurotrophic effect both in vitro and in vivo, and is considered to play an important role in the maintenance of neuronal functions in the normal brain. Neural damage in brain contusion progresses after the primary injury of trauma because of cerebral hemodynamic and metabolic impairment including intracranial hemorrhage and/or brain swelling. Northern blot analysis of bFGF mRNA was performed in rats after cerebral contusion produced by our modified fluid percussion device. Expression of bFGF mRNA increased significantly on the second day after trauma. A possible role of bFGF is functioning to protect the critical neurons from secondary neural damage in cerebral contusion.

  9. Cellular distribution, subcellular localization and possible functions of basic and acidic fibroblast growth factors.

    PubMed

    Eckenstein, F P; Kuzis, K; Nishi, R; Woodward, W R; Meshul, C; Sherman, L; Ciment, G

    1994-01-13

    The distribution in the rat nervous system of acidic and basic fibroblast growth factors (FGFs) was analysed by a combination of biochemical and anatomical methods. Acidic FGF (aFGF) was found to be present exclusively in specific neuronal populations, such as motor neurons and basal forebrain cholinergic neurons. Basic FGF (bFGF) was found in astrocytes and in neurons in hippocampal area CA2. Within labelled astrocytes and CA2-neurons, bFGF was detected in both the cytoplasm and the nucleus. The levels of intracellular bFGF were manipulated by antisense oligonucleotide treatment of cultures of developing neural crest cells. Results indicated that the amount of melanogenesis in the cultures is likely to be regulated by intracellular, possibly nuclear bFGF.

  10. Expression of vascular endothelial growth factor and basic fibroblast growth factor in extramammary Paget disease.

    PubMed

    Xu, Xiaoyun; Shao, Ning; Qiao, Di; Wang, Zengjun; Song, Ningjing; Song, Ninghong

    2015-01-01

    Extramammary Paget's disease (EMPD) is a special type of cancers. The etiology of the disease is still unclear. We aimed to study the expression differences of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) in EMPD tissues and corresponding adjacent normal tissues. The mRNA expression was detected by RT-PCR and the protein expression was explored by immunohistochemistry. Higher immunostaining signal scores of bFGF and VEGF in EMPD tissues had been found (z=-3.827, P<0.001, z=-3.729, P<0.001, respectively). In addition, the mRNA expression of bFGF and VEGF was higher in EMPD tissues, which had been validated by RT-PCR (t=5.771, P<0.001, t=3.304, P=0.004, respectively). The VEGF and bFGF might be the key signaling proteins in angiogenesis of EMPD. How to block the VEGF and bFGF in EMPD and to destroy the blood supply of the tumor cells becomes the focus of our future research.

  11. Constructing a blood vessel on the porous scaffold modified with vascular endothelial growth factor and basic fibroblast growth factor

    NASA Astrophysics Data System (ADS)

    Sevostyanova, V. V.; Matveeva, V. G.; Antonova, L. V.; Velikanova, E. A.; Shabaev, A. R.; Senokosova, E. A.; Krivkina, E. O.; Vasyukov, G. Yu.; Glushkova, T. V.; Kudryavtseva, Yu. A.; Barbarash, O. L.; Barbarash, L. S.

    2016-11-01

    Incorporation of the growth factors into biodegradable polymers is a promising approach for the fabrication of tissue-engineered vascular grafts. Here we blended poly(ɛ-caprolactone) (PCL) with poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) following incorporation of either vascular endothelial growth factor (VEGF) or basic fibroblast growth factor (bFGF) and then fabricated electrospun 2 mm diameter vascular grafts. Grafts without the growth factors were used as a control group. Structure of the grafts was assessed utilizing scanning electron microscopy. We further implanted our grafts into rat abdominal aorta for 1 and 3 months with the aim to test endothelialization, cell infiltration, and patency in vivo. Histological and immunofluorescence examination demonstrated enhanced endothelialization and cell infiltration of the grafts with either VEGF or bFGF compared to those without the growth factors. Grafts with VEGF showed higher patency compared to those with bFGF; however, bFGF promoted migration of smooth muscle cells and fibroblasts into the graft. Therefore, we conclude that incorporation of VEGF and bFGF into the inner and medial/outer layer, respectively, can be a promising option for the fabrication of tissue-engineered vascular grafts.

  12. Novel cystogenic role of basic fibroblast growth factor in developing rodent kidneys.

    PubMed

    Li, Zhuangwu; Jerebtsova, Marina; Liu, Xue-Hui; Tang, Pingtao; Ray, Patricio E

    2006-08-01

    Basic fibroblast growth factor (bFGF) is a heparin-binding growth factor that is accumulated in human dysplastic and cystic renal diseases. Previous studies have shown that bFGF can modulate the growth of developing renal tubules; however, its role in the pathogenesis of renal cyst formation is not clearly understood. Here, we tested the hypothesis that overexpression of bFGF in developing rodent kidneys induces cyst formation in vivo. We used two different adenoviral-mediated gene-transferring approaches to overexpress bFGF in developing rodent kidneys. Initially, metanephric kidney (MK) explants harvested from embryonic day 15 Sprague-Dawley rats were infected with adenoviral vectors (rAd) encoding human bFGF or LacZ genes and transplanted under the renal capsule of adult female rats. Subsequently, to determine whether bFGF could induce renal cysts in developing kidneys with an intact renal collecting system, we injected rAd-bFGF or LacZ vectors in the retroorbital plexus of newborn mice. Basic FGF induced a more efficient integration of the MK explants into the host kidneys and increased the vascularization and proliferation of developing tubules, leading to tubular dilatation and rapid formation of renal cysts. In addition, we successfully expressed human bFGF in the kidney of newborn mice in vivo and induced tubular dilatation and renal cysts. In contrast, mice injected with rAd-lacZ did not develop tubular dilatation or renal cysts. To the best of our knowledge, these experiments show for the first time that overexpression of bFGF in developing rodent kidneys can induce the formation of renal cysts in vivo.

  13. Astrocyte growth is regulated by neuropeptides through Tis 8 and basic fibroblast growth factor.

    PubMed Central

    Hu, R M; Levin, E R

    1994-01-01

    The important intracellular mechanisms of astrocyte growth are not well defined. Using an inhibitor of astrocyte proliferation, atrial natriuretic peptide (ANP), and the glial mitogen endothelin (ET-3), we sought a common pathway for growth regulation in these neural cells. In cultured fetal rat diencephalic astrocytes, ANP selectively and rapidly inhibited the Tis 8 immediate early gene and protein. After 4 h, ANP selectively inhibited the basic fibroblast growth factor (bFGF) gene and protein. ET-3 significantly stimulated both Tis 8 and bFGF mRNAs and protein, but also stimulated several other immediate early and growth factor/receptor genes. An antisense oligonucleotide to Tis 8 strongly prevented ET-stimulated thymidine incorporation, while the inhibitory action of ANP was enhanced. The Tis 8 antisense oligonucleotide also significantly reversed ET-stimulated bFGF transcription and enhanced the bFGF inhibition caused by ANP. In addition, an antisense oligonucleotide to bFGF significantly reversed the ET-stimulated thymidine incorporation and enhanced the ANP inhibition of DNA synthesis. The sequential modulation of Tis 8, followed by bFGF, provides a novel mechanism for both positive and negative regulation of astrocyte growth by endogenous neuropeptides. Images PMID:8163680

  14. A heparin-mimicking polymer conjugate stabilizes basic fibroblast growth factor

    NASA Astrophysics Data System (ADS)

    Nguyen, Thi H.; Kim, Sung-Hye; Decker, Caitlin G.; Wong, Darice Y.; Loo, Joseph A.; Maynard, Heather D.

    2013-03-01

    Basic fibroblast growth factor (bFGF) is a protein that plays a crucial role in diverse cellular functions, from wound healing to bone regeneration. However, a major obstacle to the widespread application of bFGF is its inherent instability during storage and delivery. Here, we describe the stabilization of bFGF by covalent conjugation with a heparin-mimicking polymer, a copolymer consisting of styrene sulfonate units and methyl methacrylate units bearing poly(ethylene glycol) side chains. The bFGF conjugate of this polymer retained bioactivity after synthesis and was stable to a variety of environmentally and therapeutically relevant stressors—such as heat, mild and harsh acidic conditions, storage and proteolytic degradation—unlike native bFGF. Following the application of stress, the conjugate was also significantly more active than the control conjugate system in which the styrene sulfonate units were omitted from the polymer structure. This research has important implications for the clinical use of bFGF and for the stabilization of heparin-binding growth factors in general.

  15. Overexpression of A-myb induces basic fibroblast growth factor-dependent proliferation of chicken neuroretina cells.

    PubMed Central

    Turque, N; Plaza, S; Klempnauer, K H; Saule, S

    1997-01-01

    A-Myb behaves similarly to c-Myb in chicken neuroretina cells in its ability to induce fibroblast-like differentiation, to promote growth in the presence of basic fibroblast growth factor (bFGF), and to induce Pax-6 and mim-1 expression. The one difference between c-Myb and A-Myb in these cells is that the former but not the latter protein causes colony formation in soft agar in the presence of bFGF. PMID:9371644

  16. Coadministration of adipose-derived stem cells and control-released basic fibroblast growth factor facilitates angiogenesis in a murine ischemic hind limb model.

    PubMed

    Horikoshi-Ishihara, Hisako; Tobita, Morikuni; Tajima, Satoshi; Tanaka, Rica; Oshita, Takashi; Tabata, Yasuhiko; Mizuno, Hiroshi

    2016-12-01

    Adipose-derived stem cells (ASCs) have angiogenic potential owing to their differentiation into endothelial cells and their release of angiogenic growth factors to elicit paracrine effects. In addition, control-released basic fibroblast growth factor (bFGF) sustained with a gelatin hydrogel also supports effective angiogenesis. We sought to determine if coadministration of ASCs and control-released bFGF into murine ischemic limbs facilitates angiogenesis. Levels of growth factors in the conditioned media of ASCs cultured with or without control-released bFGF were measured by enzyme-linked immunosorbent assays. A murine ischemic hind limb model was generated and intramuscularly injected with the following: gelatin hydrogel (group 1), a high number of ASCs (group 2), control-released bFGF (group 3), a small number of ASCs and control-released bFGF (group 4), and a high number of ASCs and control-released bFGF (group 5). Macroscopic and microscopic vascular changes were evaluated until day 7 by laser Doppler perfusion imaging and histologic analyses, respectively. Secretion of hepatocyte growth factor, vascular endothelial growth factor, and transforming growth factor-β1 was enhanced by control-released bFGF. Vascular improvement was achieved in groups 4 and 5 according to laser Doppler perfusion imaging. Hematoxylin and eosin staining and CD31 immunohistochemical staining demonstrated an increase in the vascular density, vessel diameter, and thickness of vessel walls in groups 4 and 5. Cells positively stained for CD146, α-smooth muscle actin, and transforming growth factor-β1 were observed around vessel walls in groups 4 and 5. These findings suggest that coadministration of ASCs and control-released bFGF facilitates angiogenesis in terms of vessel maturation in a murine ischemic hind limb model. Copyright © 2015 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  17. Adenovirus-mediated delivery of bFGF small interfering RNA increases levels of connexin 43 in the glioma cell line, U251.

    PubMed

    Zhang, Biao; Feng, Xuequan; Wang, Jinhuan; Xu, Xinnu; Liu, Hongsheng; Lin, Na

    2010-01-14

    bFGF is an important growth factor for glioma cell proliferation and invasion, while connexin 43 is implicated in the suppression of glioma growth. Correspondingly, gliomas have been shown to have reduced, or compromised, connexin 43 expression. In this study, a bFGF-targeted siRNA was delivered to the glioma cell line, U251, using adenovirus (Ad-bFGF-siRNA) and the expression of connexin 43 and its phosphorylation state were evaluated. U251 cells were infected with Ad-bFGF-siRNA (100, 50, or 25 MOI), and infection with adenovirus expressing green fluorescent protein (Ad-GFP) at 100 MOI served as a control. Western blotting and immunofluorescence were used to detect the expression levels, phosphorylation, and localization of connexin 43 in U251 cells infected, and not infected, with Ad-bFGF-siRNA. Significantly higher levels of connexin 43 were detected in U251 cells infected with Ad-bFGF-siRNA at 100 and 50 MOI than in cells infected with Ad-GFP, and the same amount of connexin 43 was detected in Ad-GFP-infected and uninfected U251 cells. Connexin 43 phosphorylation did not differ between Ad-bFGF-siRNA-infected and uninfected U251 cells. However, the ratio of phosphorylated to unphosphorylated connexin 43 in Ad-bFGF-siRNA cells was lower, and connexin 43 was predominantly localized to the cytoplasm. Using a scrape loading dye transfer assay, more Lucifer Yellow was transferred to neighboring cells in the Ad-bFGF-siRNA treated group than in the control group. To our knowledge, this is the first description of a role for connexin 43 in the inhibition of U251 growth using Ad-bFGF-siRNA.

  18. Basic Fibroblast Growth Factor Contributes to a Shift in the Angioregulatory Activity of Retinal Glial (Müller) Cells

    PubMed Central

    Yafai, Yousef; Iandiev, Ianors; Lange, Johannes; Yang, Xiu Mei; Wiedemann, Peter; Bringmann, Andreas; Eichler, Wolfram

    2013-01-01

    Basic fibroblast growth factor (bFGF) is a pleiotropic cytokine with pro-angiogenic and neurotrophic effects. The angioregulatory role of this molecule may become especially significant in retinal neovascularization, which is a hallmark of a number of ischemic eye diseases. This study was undertaken to reveal expression characteristics of bFGF, produced by retinal glial (Müller) cells, and to determine conditions under which glial bFGF may stimulate the proliferation of retinal microvascular endothelial cells. Immunofluorescence labeling detected bFGF in Müller cells of the rat retina and in acutely isolated Müller cells with bFGF levels, which increased after ischemia-reperfusion in postischemic retinas. In patients with proliferative diabetic retinopathy or myopia, the immunoreactivity of bFGF co-localized to glial fibrillary acidic protein (GFAP)-positive cells in surgically excised retinal tissues. RT-PCR and ELISA analyses indicated that cultured Müller cells produce bFGF, which is elevated under hypoxia or oxidative stress, as well as under stimulation with various growth factors and cytokines, including pro-inflammatory factors. When retinal endothelial cells were cultured in the presence of media from hypoxia (0.2%)-conditioned Müller cells, a distinct picture of endothelial cell proliferation emerged. Media from 24-h cultured Müller cells inhibited proliferation, whereas 72-h conditioned media elicited a stimulatory effect. BFGF-neutralizing antibodies suppressed the enhanced endothelial cell proliferation to a similar extent as anti-VEGF antibodies. Furthermore, phosphorylation of extracellular signal-regulated kinases (ERK−1/−2) in retinal endothelial cells was increased when the cells were cultured in 72-h conditioned media, while neutralizing bFGF attenuated the activation of this signaling pathway. These data provide evidence that retinal (glial) Müller cells are major sources of bFGF in the ischemic retina. Müller cells under

  19. Histological Effect of Basic Fibroblast Growth Factor on Chronic Vocal Fold Scarring in a Rat Model

    PubMed Central

    Tateya, Ichiro; Tateya, Tomoko; Sohn, Jin-Ho; Bless, Diane M.

    2016-01-01

    Objectives Vocal fold scarring is one of the most challenging laryngeal disorders to treat and there are currently no consistently effective treatments available. Our previous studies have shown the therapeutic potential of basic fibroblast growth factor (bFGF) for vocal fold scarring. However, the histological effects of bFGF on scarred vocal fold have not been elucidated. The aim of this study was to examine the histological effects of bFGF on chronic vocal fold scarring. Methods Sprague-Dawley rats were divided into phosphate buffered saline (sham) and bFGF groups. Unilateral vocal fold stripping was performed and the drug was injected into the scarred vocal fold for each group 2 months postoperatively. Injections were performed weekly for 4 weeks. Two months after the last injection, larynges were harvested and histologically analyzed. Results A significant increase of hyaluronic acid was observed in the vocal fold of the bFGF group compared with that of the sham group. However, there was no remarkable change in collagen expression nor in vocal fold contraction. Conclusion Significant increase of hyaluronic acid by local bFGF injection was thought to contribute to the therapeutic effects on chronic vocal fold scarring. PMID:26976028

  20. Outcome of regenerative therapy for age-related vocal fold atrophy with basic fibroblast growth factor.

    PubMed

    Ohno, Satoshi; Hirano, Shigeru; Yasumoto, Akiyoshi; Ikeda, Hiroki; Takebayashi, Shinji; Miura, Makoto

    2016-08-01

    Age-related vocal fold atrophy has become a significant voice disorder as the elderly population grows. However, several therapeutic challenges have limited attempts to improve voice quality. We reported that basic fibroblast growth factor (bFGF) stimulates fibroblasts to produce extracellular matrices such as hyaluronic acid in the lamina propria, leading to a regeneration of pliable vocal folds in animal models. The aim of this study was to determine the efficacy of bFGF for the treatment of age-related vocal fold atrophy. Prospective study. Six patients with age-related vocal fold atrophy underwent injection of bFGF in their vocal folds. Vocal outcomes and stroboscopic examinations were evaluated 1, 3, and 6 months after the injection. The outcome measures included the Voice Handicap Index-10 (VHI-10), GRBAS (grade, roughness, breathiness, asthenia, strain) scale, maximum phonation time (MPT), the amplitude perturbation quotient (APQ), and the pitch perturbation quotient (PPQ). The VHI-10 was significantly improved 6 months after bFGF injection. The GRBAS scale, MPT, APQ, and PPQ were also improved. Stroboscopic examinations showed significant improvement of glottic closure and better mucosal wave. This is the first study to evaluate the regenerative effects of bFGF injection for the treatment of age-related vocal fold atrophy using the VHI-10. Injection of bFGF significantly improved VHI-10 scores and glottal insufficiency for at least 6 months. 4. Laryngoscope, 126:1844-1848, 2016. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  1. Nitric oxide mediates angiogenesis induced in vivo by platelet-activating factor and tumor necrosis factor-alpha.

    PubMed Central

    Montrucchio, G.; Lupia, E.; de Martino, A.; Battaglia, E.; Arese, M.; Tizzani, A.; Bussolino, F.; Camussi, G.

    1997-01-01

    We evaluated the role of an endogenous production of nitric oxide (NO) in the in vitro migration of endothelial cells and in the in vivo angiogenic response elicited by platelet-activating factor (PAF), tumor necrosis factor-alpha (TNF), and basic fibroblast growth factor (bFGF). The NO synthase inhibitor, N omega-nitro-L-arginine-methyl ester (L-NAME), but not its enantiomer D-NAME, prevented chemotaxis of endothelial cells induced in vitro by PAF and by TNF. The motogenic activity of TNF was also inhibited by WEB 2170, a specific PAF-receptor antagonist. In contrast, chemotaxis induced by bFGF was not prevented by L-NAME or by WEB 2170. Angiogenesis was studied in vivo in a murine model in which Matrigel was used as a vehicle for the delivery of mediators. In this model, the angiogenesis induced by PAF and TNF was inhibited by WEB 2170 and L-NAME but not by D-NAME. In contrast, angiogenesis induced by bFGF was not affected by L-NAME or by WEB 2170. TNF, but not bFGF, induced PAF synthesis within Matrigel. These results suggest that NO mediates the angiogenesis induced by PAF as well as that induced by TNF, which is dependent on the production of PAF. In contrast, the angiogenic effect of bFGF appears to be both PAF and NO independent. Images Figure 3 Figure 4 PMID:9250168

  2. Basic Fibroblast Growth Factor Stimulates the Proliferation of Bone Marrow Mesenchymal Stem Cells in Giant Panda (Ailuropoda melanoleuca).

    PubMed

    Wang, Jun-Jie; Liu, Yu-Liang; Sun, Yuan-Chao; Ge, Wei; Wang, Yong-Yong; Dyce, Paul W; Hou, Rong; Shen, Wei

    2015-01-01

    It has been widely known that the giant panda (Ailuropoda melanoleuca) is one of the most endangered species in the world. An optimized platform for maintaining the proliferation of giant panda mesenchymal stem cells (MSCs) is very necessary for current giant panda protection strategies. Basic fibroblast growth factor (bFGF), a member of the FGF family, is widely considered as a growth factor and differentiation inducer within the stem cell research field. However, the role of bFGF on promoting the proliferation of MSCs derived from giant panda bone marrow (BM) has not been reported. In this study, we aimed to investigate the role of bFGF on the proliferation of BM-MSCs derived from giant panda. MSCs were cultured for cell proliferation analysis at 24, 48 and 72 hrs following the addition of bFGF. With increasing concentrations of bFGF, cell numbers gradually increased. This was further demonstrated by performing 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) cell proliferation assay, 5-Bromo-2-deoxyUridine (BrdU) labeling and cell cycle testing. Furthermore, the percentage of MSCs that were OCT4 positive increased slightly following treatment with 5 ng/ml bFGF. Moreover, we demonstrated that the extracellular signal-regulated kinase (ERK) signaling pathway may play an important role in the proliferation of panda MSCs stimulated by bFGF. In conclusion, this study suggests that giant panda BM-MSCs have a high proliferative capacity with the addition of 5 ng/ml bFGF in vitro.

  3. Basic Fibroblast Growth Factor Stimulates the Proliferation of Bone Marrow Mesenchymal Stem Cells in Giant Panda (Ailuropoda melanoleuca)

    PubMed Central

    Wang, Jun-Jie; Liu, Yu-Liang; Sun, Yuan-Chao; Ge, Wei; Wang, Yong-Yong; Dyce, Paul W.; Hou, Rong; Shen, Wei

    2015-01-01

    It has been widely known that the giant panda (Ailuropoda melanoleuca) is one of the most endangered species in the world. An optimized platform for maintaining the proliferation of giant panda mesenchymal stem cells (MSCs) is very necessary for current giant panda protection strategies. Basic fibroblast growth factor (bFGF), a member of the FGF family, is widely considered as a growth factor and differentiation inducer within the stem cell research field. However, the role of bFGF on promoting the proliferation of MSCs derived from giant panda bone marrow (BM) has not been reported. In this study, we aimed to investigate the role of bFGF on the proliferation of BM-MSCs derived from giant panda. MSCs were cultured for cell proliferation analysis at 24, 48 and 72 hrs following the addition of bFGF. With increasing concentrations of bFGF, cell numbers gradually increased. This was further demonstrated by performing 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) cell proliferation assay, 5-Bromo-2-deoxyUridine (BrdU) labeling and cell cycle testing. Furthermore, the percentage of MSCs that were OCT4 positive increased slightly following treatment with 5 ng/ml bFGF. Moreover, we demonstrated that the extracellular signal-regulated kinase (ERK) signaling pathway may play an important role in the proliferation of panda MSCs stimulated by bFGF. In conclusion, this study suggests that giant panda BM-MSCs have a high proliferative capacity with the addition of 5 ng/ml bFGF in vitro. PMID:26375397

  4. Basic fibroblast growth factor is pro-adipogenic in rat skeletal muscle progenitor clone, 2G11 cells.

    PubMed

    Nakano, Shin-ichi; Nakamura, Katsuyuki; Teramoto, Naomi; Yamanouchi, Keitaro; Nishihara, Masugi

    2016-01-01

    Intramuscular adipose tissue (IMAT) formation is a hallmark of marbling in cattle. IMAT is considered to originate from skeletal muscle progenitor cells with adipogenic potential. However, the mechanism involved in IMAT formation from these progenitor cells in vivo remains unclear. In the present study, among the growth factors tested, which were known to be expressed in skeletal muscle, we found only basic fibroblast growth factor (bFGF) has a pro-adipogenic effect on skeletal muscle derived adipogenic progenitor clone, 2G11 cells. Pre-exposure of 2G11 cells to bFGF did not affect initial gene expressions of CCAAT/enhancer-binding protein (C/EBP)β and C/EBPδ, while resulting in an enhancement of subsequent expressions of C/EBPα and proliferator-activated receptor gamma (PPARγ) during adipogenesis, indicating that bFGF is acting on the transcriptional regulation of C/EBPα and PPARγ. In addition, the effect of bFGF is mediated via two types of FGF receptor (FGFR) isoforms: FGFR1 and FGFR2 IIIc, and both receptors are prerequisite for bFGF to express its pro-adipogenic effect. These results suggest that bFGF plays an important role as a key trigger of IMAT formation in vivo.

  5. Effects of basic fibroblast growth factor and insulin-like growth factor on cultured cartilage cells from skate Raja porasa

    NASA Astrophysics Data System (ADS)

    Fan, Tingjun; Jin, Lingyun; Wang, Xiaofeng

    2003-12-01

    Effects of basic fibroblast growth factor (bFGF) and insulin-like growth factor II (IGF-II) on cartilage cells from proboscis of skate, Raja porasa Günther, were investigated in this study. The cartilage cells were cultured in 20% FBS-supplemented MEM medium at 24°C. Twelve hours after culture initiation, the cartilage cells were treated with bFGF and IGF-II at different concentration combinations. It was found that 20 ng/ml of bFGF or 80 ng/ml of IGF-II was enough to have obvious stimulating effect on the growth and division of skate cartilage cells. Test of bFGF and IGF-II together, revealed that 20 ng/ml of bFGF and 80 ng/ml of IGF-II together had the best stimulating effect on the growth and division of skate cartilage cells. The cartilage cells cultured could form a monolayer at day 7.

  6. Biochemical characterization of the molecular interaction between recombinant basic fibroblast growth factor and a recombinant soluble fibroblast growth factor receptor.

    PubMed Central

    Caccia, P; Cletini, O; Isacchi, A; Bergonzoni, L; Orsini, G

    1993-01-01

    The extracellular domain of human fibroblast growth factor receptor (XC-FGF-R) was expressed in Escherichia coli. The protein was purified to homogeneity and the interaction with basic fibroblast growth factor (bFGF), its physiological ligand, was examined. Using resins on which bFGF was reversibly bound, we analysed the characteristics of the binding between XC-FGF-R and immobilized bFGF. We also investigated the stoichiometry of the binding between XC-FGF-R and recombinant human bFGF (rhbFGF) applying non-denaturing gel electrophoresis, chemical cross-linking followed by SDS/PAGE, and gel-filtration chromatography. In cross-linking and gel-filtration chromatography experiments, a 1:1 complex between rhbFGF and XC-FGF-R was observed. The complex was separated from the non-complexed proteins using non-denaturing PAGE in the presence of 0.1% Triton X-100. The band corresponding to the complex was recognized by specific antibodies directed against bFGF and its receptor, blotted on poly(vinylidene difluoride) membranes and submitted to sequence and amino acid analysis. The data obtained from these determinations confirmed the formation of a 1:1 complex between rhbFGF and XC-FGF-R. Images Figure 1 Figure 2 Figure 3 Figure 5 PMID:8379918

  7. Newtons Universum. Materialien zur Geschichte des Kraftbegriffes.

    NASA Astrophysics Data System (ADS)

    Mit einem Vorwort von E. Seibold und einer Einführung von W. Neuser. This book is a selection of 15 articles published in the journal "Spektrum der Wissenschaft". The original English versions of the papers were first published in "Scientific American". Contents: 1. Impetustheorie und Intuition in der Physik (M. McCloskey). 2. Mittelalterliche Ursprünge der industriellen Revolution (T. S. Reynolds). 3. Leonardo da Vincis Beiträge zur theoretischen Mechanik (V. Foley, W. Soedel). 4. Nikolaus Kopernikus und Tycho Brahe (O. Gingerich). 5. Keplers Entdeckung der ersten beiden Planetengesetze (C. Wilson). 6. Galileis Entdeckung des Fallgesetzes (S. Drake). 7. Galileis Beobachtung des Neptun (S. Drake, C. T. Kowal). 8. Galileo Galilei und der Schatten des Giordano Bruno (L. S. Lerner, E. A. Gosselin). 9. Der Fall Galilei (O. Gingerich). 10. Newtons Apfel und Galileis "Dialog" (S. Drake). 11. Newtons Gravitationsgesetz - aus Formeln wird eine Idee (I. B. Cohen). 12. Christopher Wren: Astronom und Architekt (H. Dorn, R. Mark). 13. Atomismus und Kräfte in der Geschichte (L. Holliday). 14. Ein Elitezirkel vor 200 Jahren: Die Lunar Society von Birmingham (L. Ritchie-Calder). 15. Sadi Carnot: Technik und Theorie der Dampfmaschine (S. S. Wilson).

  8. Basic fibroblast growth factor promotes VEGF-C-dependent lymphangiogenesis via inhibition of miR-381 in human chondrosarcoma cells

    PubMed Central

    Tsai, Chun-Hao; Wang, Shih-Wei; Tang, Chih-Hsin

    2016-01-01

    A chondrosarcoma is a common, primary malignant bone tumor that can grow to destroy the bone, produce fractures and develop soft tissue masses. Left untreated, chondrosarcomas metastasize through the vascular system to the lungs and ultimately lead to large metastatic deposits of the malignant cartilage taking over lung volume and function. Vascular endothelial growth factor (VEGF)-C has been implicated in tumor-induced lymphangiogenesis and elevated expression of VEGF-C has been found to correlate with cancer metastasis. bFGF (basic fibroblast growth factor), a secreted cytokine, regulates biological activity, including angiogenesis and metastasis. We have previously reported on the important role of bFGF in angiogenesis in chondrosarcomas. However, the effect of bFGF in VEGF-C regulation and lymphangiogenesis in chondrosarcomas is poorly understood. In this investigation, we demonstrate a correlation exists between bFGF and VEGF-C in tissue specimens from patients with chondrosarcomas. To examine the lymphangiogenic effect of bFGF, we used human lymphatic endothelial cells (LECs) to mimic lymphatic vessel formation. We found that bFGF-treated chondrosarcomas promoted LEC tube formation and cell migration. In addition, bFGF knockdown inhibited lymphangiogenesis in vitro and in vivo. We also found that bFGF-induced VEGF-C is mediated by the platelet-derived growth factor receptor (PDGFR) and c-Src signaling pathway. Furthermore, bFGF inhibited microRNA-381 expression via the PDGFR and c-Src cascade. Our study is the first to describe the mechanism of bFGF-promoted lymphangiogenesis by upregulating VEGF-C expression in chondrosarcomas. Thus, bFGF could serve as a therapeutic target in chondrosarcoma metastasis and lymphangiogenesis. PMID:27229532

  9. Effects of basic fibroblast growth factor and cyclin D1 on cigarette smoke-induced pulmonary vascular remodeling in rats.

    PubMed

    Zhou, Sijing; Li, Min; Zeng, Daxiong; Sun, Gengyun; Zhou, Junsheng; Wang, Ran

    2015-01-01

    Cigarette smoking may contribute to pulmonary hypertension in chronic obstructive pulmonary disease by resulting in pulmonary vascular remodeling that involves pulmonary artery smooth muscle cell proliferation. This study investigated the effects of basic fibroblast growth factor (bFGF) and cyclin D1 on the pulmonary vascular remodeling in smoking-exposed rats. Twenty-four male Wistar rats were randomly divided into four groups. Three tobacco-exposed groups were exposed to the smoke produced by 20 cigarettes for 60 min, twice a day for two, four or eight weeks, and the control group were exposed to fresh air. The expression of bFGF and cyclin D1 in the pulmonary arterial smooth muscle cells were determined using immunohistochemistry. Quantitative polymerase chain reaction was conducted to determine the expression levels of bFGF and cyclin D1 mRNA. In addition, the expression of bFGF and cyclin D1 proteins was evaluated by western blotting. The expression of bFGF and cyclin D1 at the mRNA and protein levels was shown to increase with the duration of smoke exposure (P<0.05). The correlation analysis indicated the expression of bFGF and cyclin D1 was positively associated with the pulmonary vessel wall thickness. The expression of bFGF was positively associated with that of cyclin D1. Collectively, the data demonstrated that the upregulation of bFGF and cyclin D1 occurred in rats subjected to smoke exposure, which may be associated with the abnormal proliferation of the smooth muscle cells in the pulmonary arteries.

  10. Structural and Mechanistic Basis of Zinc Regulation Across the E. coli Zur Regulon

    PubMed Central

    Gilston, Benjamin A.; Wang, Suning; Marcus, Mason D.; Canalizo-Hernández, Mónica A.; Swindell, Elden P.; Xue, Yi; Mondragón, Alfonso; O'Halloran, Thomas V.

    2014-01-01

    Commensal microbes, whether they are beneficial or pathogenic, are sensitive to host processes that starve or swamp the prokaryote with large fluctuations in local zinc concentration. To understand how microorganisms coordinate a dynamic response to changes in zinc availability at the molecular level, we evaluated the molecular mechanism of the zinc-sensing zinc uptake regulator (Zur) protein at each of the known Zur-regulated genes in Escherichia coli. We solved the structure of zinc-loaded Zur bound to the PznuABC promoter and show that this metalloregulatory protein represses gene expression by a highly cooperative binding of two adjacent dimers to essentially encircle the core element of each of the Zur-regulated promoters. Cooperativity in these protein-DNA interactions requires a pair of asymmetric salt bridges between Arg52 and Asp49′ that connect otherwise independent dimers. Analysis of the protein-DNA interface led to the discovery of a new member of the Zur-regulon: pliG. We demonstrate this gene is directly regulated by Zur in a zinc responsive manner. The pliG promoter forms stable complexes with either one or two Zur dimers with significantly less protein-DNA cooperativity than observed at other Zur regulon promoters. Comparison of the in vitro Zur-DNA binding affinity at each of four Zur-regulon promoters reveals ca. 10,000-fold variation Zur-DNA binding constants. The degree of Zur repression observed in vivo by comparison of transcript copy number in wild-type and Δzur strains parallels this trend spanning a 100-fold difference. We conclude that the number of ferric uptake regulator (Fur)-family dimers that bind within any given promoter varies significantly and that the thermodynamic profile of the Zur-DNA interactions directly correlates with the physiological response at different promoters. PMID:25369000

  11. Identification of two new hydrophobic residues on basic fibroblast growth factor important for fibroblast growth factor receptor binding.

    PubMed

    Zhu, H; Ramnarayan, K; Menzel, P; Miao, Y; Zheng, J; Mong, S

    1998-10-01

    Basic fibroblast growth factor (bFGF) is implicated in the pathogenesis of several types of vascular and connective diseases. A key step in the discovery of bFGF receptor antagonists to mitigate these actions is to define the functional epitopes required for receptor binding of the growth factor. Using structure-based site-directed mutagenesis, two critical areas on the bFGF surface for the high affinity receptor binding have already been identified [Springer, B.A., Pantoliano, M.W., Barberal, F.A., Gunyuzlu, P.L., Thompson, L.D., Herblin, W.F., Rosenfeld, S.A. and Book, G.W. (1994) J. Biol. Chem., 269, 26879-26884; Zhu, H.Y., Ramnarayan, K., Anchin, J., Miao, Y., Sereno, A., Millman, L., Zheng, J., Balaji, V.N. and Wolff, M.E. (1995) J. Biol. Chem., 270, 21869-21874; Zhu, H.Y., Anchin, J., Ramnarayan, K., Zheng, J., Kawai, T., Mong, S. and Wolff, M.E. (1997) Protein Engng, 10, 417-421]. According to these studies, one receptor binding site includes two polar residues Glu96 and Asn104 on bFGF whereas the other includes four hydrophobic residues Tyr24, Tyr103, Leu140 and Met142. Using a protein modelling technique, we report here the identification of a new hydrophobic patch on bFGF which includes residues Tyr73, Val88 and Phe93. The role of this area on receptor binding affinity was evaluated by mutating each of these residues individually and determining the mutated protein's (mutein's) receptor binding affinity. In addition, we examined the role of two other hydrophobic residues, Phe30 and Leu138, on bFGF for high-affinity receptor binding. These two residues are the neighbors of the hydrophobic residues Tyr24 and Tyr103, respectively. Replacement of Val88 and Phe93 with alanine reduced the receptor binding affinity about 10- and 80-fold, respectively, compared with wild-type bFGF. In contrast, substitution of Phe30 and Leu138 with alanine has no effect on the receptor binding affinities. We conclude that the newly identified hydrophobic residues, Val88 and Phe93

  12. Similar in vitro effects and pulp regeneration in ectopic tooth transplantation by basic fibroblast growth factor and granulocyte-colony stimulating factor.

    PubMed

    Takeuchi, N; Hayashi, Y; Murakami, M; Alvarez, F J; Horibe, H; Iohara, K; Nakata, K; Nakamura, H; Nakashima, M

    2015-01-01

    Granulocyte-colony stimulating factor (G-CSF) has been shown to have combinatorial trophic effects with dental pulp stem cells for pulp regeneration. The aim of this investigation is to examine the effects of basic fibroblast growth factor (bFGF) in vitro and in vivo compared with those of G-CSF and to assess the potential utility of bFGF as an alternative to G-CSF for pulp regeneration. Five different types of cells were examined in the in vitro effects of bFGF on cell migration, proliferation, anti-apoptosis, neurite outgrowth, angiogenesis, and odontogenesis compared with those of G-CSF. The in vivo regenerative potential of pulp tissue including vasculogenesis and odontoblastic differentiation was also compared using an ectopic tooth transplantation model. Basic fibroblast growth factor was similar to G-CSF in high migration, proliferation and anti-apoptotic effects and angiogenic and neurite outgrowth stimulatory activities in vitro. There was no significant difference between bFGF and G-CSF in the regenerative potential in vivo. The potential utility of bFGF for pulp regeneration is demonstrated as a homing/migration factor similar to the influence of G-CSF. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. The safety and effect of topically applied recombinant basic fibroblast growth factor on the healing of chronic pressure sores.

    PubMed Central

    Robson, M C; Phillips, L G; Lawrence, W T; Bishop, J B; Youngerman, J S; Hayward, P G; Broemeling, L D; Heggers, J P

    1992-01-01

    The first randomized, blinded, placebo-controlled human trials of recombinant basic fibroblast growth factor (bFGF) for pressure sore treatment were performed. Three different concentrations of bFGF in five dosing schedules were tested for safety using hematology, serum chemistries, urinalysis, absorption, antibody formation, and signs of toxicity. Efficacy was evaluated by wound volumes, histology, and photography. No toxicity, significant serum absorption, or antibody formation occurred. In six of eight subgroups, there was a trend toward efficacy with bFGF treatment. When all subgroups were combined, comparison of the slopes of the regression curves of volume decrease over initial pressure sore volume demonstrated a greater healing effect for the bFGF-treated patients (p < 0.05). Histologically, bFGF-treated wound sections demonstrated increased fibroblasts and capillaries. More patients treated with bFGF achieved > 70% wound closure (p < 0.05). Blinded observers were able to distinguish differences in visual wound improvement between bFGF and placebo groups. These data suggest that bFGF may be effective in the treatment of chronic wounds. PMID:1417189

  14. Adipose Tissue and Extracellular Matrix Development by Injectable Decellularized Adipose Matrix Loaded with Basic Fibroblast Growth Factor.

    PubMed

    Zhang, Shipin; Lu, Qiqi; Cao, Tong; Toh, Wei Seong

    2016-04-01

    There is a significant need for soft-tissue replacements in the field of reconstructive surgery. Decellularized adipose tissues were heparin crosslinked and loaded with basic fibroblast growth factor (bFGF). This injectable system was evaluated for its adipogenic and angiogenic capabilities for in vivo adipose tissue regeneration. Decellularized adipose tissues were harvested from the inguinal fat pads of C57BL/6J mice, minced, and heparinized before being loaded with bFGF. Decellularized adipose tissues without bFGF served as a control. In vivo adipose neotissue formation, neovascularization, and volume stability were evaluated over a period of 12 weeks. After 6 or 12 weeks, mice were killed and the newly formed adipose tissues, together with the contralateral endogenous adipose tissues, were harvested for gross, volumetric, histologic, and immunohistochemical analysis. Decellularized adipose tissues that were heparinized and loaded with bFGF induced significant de novo adipose neotissue formation, with progressive tissue growth and neovascularization from 6 to 12 weeks. The adipose neotissues exhibited mature adipose morphology and extracellular matrix that closely resembled that of the endogenous adipose tissue. In contrast, decellularized adipose tissues without bFGF induced limited adipose neotissue formation and were completely resorbed by the end of 12 weeks. This study demonstrates the high efficiency of heparinized decellularized adipose tissue matrix loaded with bFGF in promoting adipose neotissue formation and neovascularization with long-term volume stability.

  15. Basic fibroblast growth factor suppresses radiation-induced apoptosis and TP53 pathway in rat small intestine.

    PubMed

    Matsuu-Matsuyama, Mutsumi; Nakashima, Masahiro; Shichijo, Kazuko; Okaichi, Kumio; Nakayama, Toshiyuki; Sekine, Ichiro

    2010-07-01

    The effect of basic fibroblast growth factor (bFGF) was studied in radiation-induced apoptosis in rat jejunal crypt cells. Six-week-old male Wistar rats were administered 4 mg/kg bFGF intraperitoneally 25 h before receiving 8 Gy whole-body X rays. The jejunum was removed for analysis from time 0 to 120 h after irradiation. Villus length in control rats declined steadily until 72 h, while in bFGF-treated rats the villi were longer than in the controls until 48 h. Crypt lengths were similar to villi. bFGF treatment increased Ki-67-positive cells in the jejunal crypt at 0, 24 and 48 h. The treatment with bFGF reduced the number of apoptotic cells per jejunal crypt to 23% and 10% of the control values at 3 and 6 h, respectively, and increased numbers of mitotic cells significantly at 48 and 72 h. bFGF decreased the levels of TP53, CDKN1A, Puma and Cleaved caspase 3 at 3 h as detected by Western blot analyses. Our results suggest that bFGF protected against acute radiation-induced injury by suppressing the crypt apoptotic cells including the stem cells and promoted crypt cell proliferation. The inhibition of apoptosis thus might be related to suppression of the TP53 pathway.

  16. Intranasal basic fibroblast growth factor attenuates endoplasmic reticulum stress and brain injury in neonatal hypoxic-ischaemic injury

    PubMed Central

    Lin, Zhenlang; Hu, Yingying; Wang, Zhouguang; Pan, Shulin; Zhang, Hao; Ye, Libing; Zhang, Hongyu; Fang, Mingchu; Jiang, Huai; Ye, Junming; Xiao, Jian; Liu, Li

    2017-01-01

    Brain injury secondary to birth asphyxia is the major cause of death and long-term disability in newborns. Intranasal drug administration enables agents to bypass the blood-brain barrier (BBB) and enter the brain directly. In this study, we determined whether intranasal basic fibroblast growth factor (bFGF) could exert neuroprotective effects in neonatal rats after hypoxic-ischaemic (HI) brain injury and assessed whether attenuation of endoplasmic reticulum (ER) stress was associated with these neuroprotective effects. Rats were subjected to HI brain injury via unilateral carotid artery ligation followed by 2.5 h of hypoxia and then treated with intranasal bFGF or vehicle immediately after HI injury. We found that the unfolded protein response (UPR) was strongly activated after HI injury and that bFGF significantly reduced the levels of the ER stress signalling proteins GRP78 and PDI. bFGF also decreased brain infarction volumes and conferred long-term neuroprotective effects against brain atrophy and neuron loss after HI brain injury. Taken together, our results suggest that intranasal bFGF provides neuroprotection function partly by inhibiting HI injury-induced ER stress. bFGF may have potential as a therapy for human neonates after birth asphyxia. PMID:28337259

  17. Effects of 530 nm monochromatic light on basic fibroblast growth factor and transforming growth factor-β1 expression in Müller cells

    PubMed Central

    Fu, Xin-Yi; Zhang, Xiao-Feng; Xia, Wei; Zhong, Lei; Wang, Ying-Ming; Sun, Zheng-Tai; Xia, Jing

    2015-01-01

    AIM To expose rat retinal Müller cells to 530 nm monochromatic light and investigate the influence of varying light illumination times on basic fibroblast growth factor (bFGF) and transforming growth factor-β1 (TGF-β1) expression. METHODS Three groups of rat retinal Müller cells cultured in vitro under a 530 nm monochromatic light were divided into 6, 12 and 24h experimental groups, while cells incubated under dark conditions served as the control group. The bFGF and TGF-β1 mRNA expression, protein levels and fluorescence intensity of the Müller cells were analyzed. RESULTS The bFGF mRNA expression and protein levels were significantly upregulated in Müller cells in all three experimental groups compared with the control group (P<0.05), while that of TGF-β1 was downregulated (P<0.05). Also, bFGF expression was positively correlated, but TGF-β1 expression was negatively correlated with illumination time. The largest changes for both cytokines were seen in the 24h group. The changes in bFGF and TGF-β1 fluorescence intensity were highest in the 24h group, and significant differences were observed among the experimental groups (P<0.05). CONCLUSION The expressions of bFGF and TGF-β1 changed in a time-dependent manner in Müller cells exposed to 530 nm monochromatic light with 250 lx illumination intensity. Müller cells might play a role in the development of myopia by increasing bFGF expression or decreasing TGF-β1 expression. Changes in cytokine expression in retinal Müller cells may affect monochromatic light-induced myopia. PMID:26558199

  18. Effects of 530 nm monochromatic light on basic fibroblast growth factor and transforming growth factor-β1 expression in Müller cells.

    PubMed

    Fu, Xin-Yi; Zhang, Xiao-Feng; Xia, Wei; Zhong, Lei; Wang, Ying-Ming; Sun, Zheng-Tai; Xia, Jing

    2015-01-01

    To expose rat retinal Müller cells to 530 nm monochromatic light and investigate the influence of varying light illumination times on basic fibroblast growth factor (bFGF) and transforming growth factor-β1 (TGF-β1) expression. Three groups of rat retinal Müller cells cultured in vitro under a 530 nm monochromatic light were divided into 6, 12 and 24h experimental groups, while cells incubated under dark conditions served as the control group. The bFGF and TGF-β1 mRNA expression, protein levels and fluorescence intensity of the Müller cells were analyzed. The bFGF mRNA expression and protein levels were significantly upregulated in Müller cells in all three experimental groups compared with the control group (P<0.05), while that of TGF-β1 was downregulated (P<0.05). Also, bFGF expression was positively correlated, but TGF-β1 expression was negatively correlated with illumination time. The largest changes for both cytokines were seen in the 24h group. The changes in bFGF and TGF-β1 fluorescence intensity were highest in the 24h group, and significant differences were observed among the experimental groups (P<0.05). The expressions of bFGF and TGF-β1 changed in a time-dependent manner in Müller cells exposed to 530 nm monochromatic light with 250 lx illumination intensity. Müller cells might play a role in the development of myopia by increasing bFGF expression or decreasing TGF-β1 expression. Changes in cytokine expression in retinal Müller cells may affect monochromatic light-induced myopia.

  19. Elevated expression of basic fibroblast growth factor in an immortalized rabbit smooth muscle cell line.

    PubMed

    Winkles, J A; Friesel, R; Alberts, G F; Janat, M F; Liau, G

    1993-08-01

    Intimal smooth muscle cell accumulation is regarded as an important component of atherosclerotic plaque formation, angioplasty-induced restenosis, and vascular graft occlusion. Vascular smooth muscle cells can both express and respond to acidic fibroblast growth factor (aFGF) and basic fibroblast growth factor (bFGF); therefore, under certain conditions these polypeptides may regulate smooth muscle cell growth in an autocrine manner. Previous studies using smooth muscle cells cultured in vitro have identified factors that can enhance aFGF and bFGF gene expression. In this study, we assayed fibroblast growth factor gene expression in a spontaneously immortalized rabbit smooth muscle cell line. In contrast to "normal" rabbit smooth muscle cells, these immortalized cells acquire an altered morphology and enhanced proliferative rate during; cell passaging in vitro. Both "normal" and immortalized rabbit smooth muscle cells express bFGF but not aFGF transcripts. RNA gel blot hybridization, reverse transcription/polymerase chain reaction amplification, and Western blotting techniques demonstrate that bFGF expression in the immortalized smooth muscle cell line increases as a function of passage level. This continuous cell line should prove valuable for studying both the regulation of bFGF synthesis and the control of vascular smooth muscle cell proliferation.

  20. Regulation and Activity of a Zinc Uptake Regulator, Zur, in Corynebacterium diphtheriae▿

    PubMed Central

    Smith, Kelsy F.; Bibb, Lori A.; Schmitt, Michael P.; Oram, Diana M.

    2009-01-01

    Regulation of metal ion homeostasis is essential to bacterial cell survival, and in most species it is controlled by metal-dependent transcriptional regulators. In this study, we describe a Corynebacterium diphtheriae ferric uptake regulator-family protein, Zur, that controls expression of genes involved in zinc uptake. By measuring promoter activities and mRNA levels, we demonstrate that Zur represses transcription of three genes (zrg, cmrA, and troA) in zinc-replete conditions. All three of these genes have similarity to genes involved in zinc uptake. Transcription of zrg and cmrA was also shown to be regulated in response to iron and manganese, respectively, by mechanisms that are independent of Zur. We demonstrate that the activity of the zur promoter is slightly decreased under low zinc conditions in a process that is dependent on Zur itself. This regulation of zur transcription is distinctive and has not yet been described for any other zur. An adjacent gene, predicted to encode a metal-dependent transcriptional regulator in the ArsR/SmtB family, is transcribed from a separate promoter whose activity is unaffected by Zur. A C. diphtheriae zur mutant was more sensitive to peroxide stress, which suggests that zur has a role in protecting the bacterium from oxidative damage. Our studies provide the first evidence of a zinc specific transcriptional regulator in C. diphtheriae and give new insights into the intricate regulatory network responsible for regulating metal ion concentrations in this toxigenic human pathogen. PMID:19074382

  1. Regulation and activity of a zinc uptake regulator, Zur, in Corynebacterium diphtheriae.

    PubMed

    Smith, Kelsy F; Bibb, Lori A; Schmitt, Michael P; Oram, Diana M

    2009-03-01

    Regulation of metal ion homeostasis is essential to bacterial cell survival, and in most species it is controlled by metal-dependent transcriptional regulators. In this study, we describe a Corynebacterium diphtheriae ferric uptake regulator-family protein, Zur, that controls expression of genes involved in zinc uptake. By measuring promoter activities and mRNA levels, we demonstrate that Zur represses transcription of three genes (zrg, cmrA, and troA) in zinc-replete conditions. All three of these genes have similarity to genes involved in zinc uptake. Transcription of zrg and cmrA was also shown to be regulated in response to iron and manganese, respectively, by mechanisms that are independent of Zur. We demonstrate that the activity of the zur promoter is slightly decreased under low zinc conditions in a process that is dependent on Zur itself. This regulation of zur transcription is distinctive and has not yet been described for any other zur. An adjacent gene, predicted to encode a metal-dependent transcriptional regulator in the ArsR/SmtB family, is transcribed from a separate promoter whose activity is unaffected by Zur. A C. diphtheriae zur mutant was more sensitive to peroxide stress, which suggests that zur has a role in protecting the bacterium from oxidative damage. Our studies provide the first evidence of a zinc specific transcriptional regulator in C. diphtheriae and give new insights into the intricate regulatory network responsible for regulating metal ion concentrations in this toxigenic human pathogen.

  2. Vascular-specific growth factor mRNA levels in the human diaphragm.

    PubMed

    Alexopoulou, Christina; Mitrouska, Ioanna; Arvanitis, Dimitrios; Tzanakis, Nikolaos; Chalkiadakis, George; Melissas, John; Zervou, Maria; Siafakas, Nikolaos

    2005-01-01

    Angiogenesis is an adaptation mechanism of skeletal muscles to increased load. Animal data have shown increased vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF) and transforming growth factor-beta(1) (TGF-beta(1)) mRNA levels in the diaphragm as a result of increased minute ventilation, but there are no data concerning the human diaphragm. The purpose of this study was to investigate the VEGF, bFGF, TGF-beta(1) mRNA levels in the human diaphragm of normal subjects and patients with altered respiratory mechanics. We studied 9 patients with chronic obstructive pulmonary disease (COPD), 4 obese patients and 12 controls. We performed multiplex semiquantitative reverse transcription polymerase chain reaction to determine the VEGF, bFGF and TGF-beta(1) mRNA levels in specimens taken from their diaphragm. VEGF mRNA levels were 18% higher in COPD patients compared with controls (p = 0.04), while for the obese patients, these levels were not statistically significantly different. bFGF and TGF-beta(1) mRNA levels in COPD patients or obese individuals compared with controls did not differ significantly either. The results of our study showed that TGF-beta(1), VEGF and bFGF mRNA was detected in the human diaphragm. The VEGF levels were higher in COPD patients than in normal subjects. This upregulation of VEGF may suggest an enhancement of angiogenesis in the diaphragm in COPD patients.

  3. Treatment with basic fibroblast growth factor-incorporated gelatin hydrogel does not exacerbate mechanical allodynia after spinal cord contusion injury in rats.

    PubMed

    Furuya, Takeo; Hashimoto, Masayuki; Koda, Masao; Murata, Atsushi; Okawa, Akihiko; Dezawa, Mari; Matsuse, Dai; Tabata, Yasuhiko; Takahashi, Kazuhisa; Yamazaki, Masashi

    2013-03-01

    Besides stimulating angiogenesis or cell survival, basic fibroblast growth factor (bFGF) has the potential for protecting neurons in the injured spinal cord. To investigate the effects of a sustained-release system of bFGF from gelatin hydrogel (GH) in a rat spinal cord contusion model. Adult female Sprague-Dawley rats were subjected to a spinal cord contusion injury at the T10 vertebral level using an IH impactor (200 kdyn). One week after contusion, GH containing bFGF (20 µg) was injected into the lesion epicenter (bFGF - GH group). The GH-only group was designated as the control. Locomotor recovery was assessed over 9 weeks by Basso, Beattie, Bresnahan rating scale, along with inclined plane and Rota-rod testing. Sensory abnormalities in the hind paws of all the rats were evaluated at 5, 7, and 9 weeks. There were no significant differences in any of the motor assessments at any time point between the bFGF - GH group and the control GH group. The control GH group showed significantly more mechanical allodynia than did the group prior to injury. In contrast, the bFGF - GH group showed no statistically significant changes of mechanical withdrawal thresholds compared with pre-injury. Our findings suggest that bFGF-incorporated GH could have therapeutic potential for alleviating mechanical allodynia following spinal cord injury.

  4. Effects of basic fibroblast growth factor on density and morphology of fibroblasts grown on root surfaces with or without conditioning with tetracycline or EDTA.

    PubMed

    Silvério, Karina G; Martinez, Aurora E T; Rossa, Carlos

    2007-09-01

    A study was conducted to evaluate in vitro the effect of root surface conditioning with basic fibroblast growth factor (b-FGF) on morphology and proliferation of fibroblasts. Three experimental groups were used: non-treated, and treated with 50 microg or 125 microg b-FGF/ml. The dentin samples in each group were divided into subgroups according to the chemical treatment received before application of b-FGF: none, or conditioned with tetracycline-HCl or EDTA. After contact with b-FGF for 5 min, the samples were incubated for 24 h with 1 ml of culture medium containing 1 x 10(5) cells/ml plus 1 ml of culture medium alone. The samples were then subjected to routine preparation for SEM, and random fields were photographed. Three calibrated and blind examiners performed the assessment of morphology and density according to two index systems. Classification and regression trees indicated that the root surfaces treated with 125 microg b-FGF and previously conditioned with tetracycline-HCl or EDTA presented a morphology more suggestive of cellular adhesion and viability (P = 0.004). The density of fibroblasts on samples previously conditioned with EDTA, regardless of treatment with b-FGF, was significantly higher than in the other groups (P < 0.001). The present findings suggest that topical application of b-FGF has a positive influence on both the density and morphology of fibroblasts.

  5. Metabolic effects of basic fibroblast growth factor in streptozotocin-induced diabetic rats: A (1)H NMR-based metabolomics investigation.

    PubMed

    Lin, Xiaodong; Zhao, Liangcai; Tang, Shengli; Zhou, Qi; Lin, Qiuting; Li, Xiaokun; Zheng, Hong; Gao, Hongchang

    2016-11-03

    The fibroblast growth factors (FGFs) family shows a great potential in the treatment of diabetes, but little attention is paid to basic FGF (bFGF). In this study, to explore the metabolic effects of bFGF on diabetes, metabolic changes in serum and feces were analyzed in the normal rats, the streptozocin (STZ)-induced diabetic rats and the bFGF-treated diabetic rats using a (1)H nuclear magnetic resonance (NMR)-based metabolomic approach. Interestingly, bFGF treatment significantly decreased glucose, lipid and low density lipoprotein/very low density lipoprotein (LDL/VLDL) levels in serum of diabetic rats. Moreover, bFGF treatment corrected diabetes-induced reductions in citrate, lactate, choline, glycine, creatine, histidine, phenylalanine, tyrosine and glutamine in serum. Fecal propionate was significantly increased after bFGF treatment. Correlation analysis shows that glucose, lipid and LDL/VLDL were significantly negatively correlated with energy metabolites (citrate, creatine and lactate) and amino acids (alanine, glycine, histidine, phenylalanine, tyrosine and glutamine). In addition, a weak but significant correlation was observed between fecal propionate and serum lipid (R = -0.35, P = 0.046). Based on metabolic correlation and pathway analysis, therefore, we suggest that the glucose and lipid lowering effects of bFGF in the STZ-induced diabetic rats may be achieved by activating microbial metabolism, increasing energy metabolism and correcting amino acid metabolism.

  6. Evaluation of Autologous Fascia Implantation With Controlled Release of Fibroblast Growth Factor for Recurrent Laryngeal Nerve Paralysis Due to Long-term Denervation.

    PubMed

    Nagai, Hiromi; Nishiyama, Koichiro; Seino, Yutomo; Tabata, Yasuhiko; Okamoto, Makito

    2016-06-01

    Paralyzed tissue due to long-term denervation is resistant to many treatments because it induces irreversible histological changes and disorders of deglutition or phonation. We sought to determine the effect of autologous transplantation of fascia into the vocal fold (ATFV) with controlled release of basic fibroblast growth factor (bFGF) on long-term unilateral vocal fold paralysis (UVFP). Unilateral recurrent laryngeal nerve (RLN) section was performed on 20 rats. Five rats were implanted with autologous fascia only (fascia group), and 10 rats were implanted with autologous fascia and a gelatin hydrogel sheet with 1 μg (1 μg bFGF + fascia group) or 0.1 μg (0.1 μg bFGF + fascia group) of bFGF 4 months after RLN section. We evaluated the normalized glottal gap and laryngeal volume and histological changes 3 months after implantation. The normalized glottal gap was significantly reduced in the 3 fascia implantation groups. Normalized laryngeal volume, fat volume, and lateral thyroarytenoid muscle volume were significantly increased in the 2 fascia implantation with bFGF groups. The ATFV with controlled release of bFGF repaired the glottal gap and laryngeal volume after RLN section and may reduce the occurrence of aspiration and hoarseness. We speculate that this treatment improves laryngeal function in long-term RLN denervation. © The Author(s) 2016.

  7. Metabolic effects of basic fibroblast growth factor in streptozotocin-induced diabetic rats: A 1H NMR-based metabolomics investigation

    PubMed Central

    Lin, Xiaodong; Zhao, Liangcai; Tang, Shengli; Zhou, Qi; Lin, Qiuting; Li, Xiaokun; Zheng, Hong; Gao, Hongchang

    2016-01-01

    The fibroblast growth factors (FGFs) family shows a great potential in the treatment of diabetes, but little attention is paid to basic FGF (bFGF). In this study, to explore the metabolic effects of bFGF on diabetes, metabolic changes in serum and feces were analyzed in the normal rats, the streptozocin (STZ)-induced diabetic rats and the bFGF-treated diabetic rats using a 1H nuclear magnetic resonance (NMR)-based metabolomic approach. Interestingly, bFGF treatment significantly decreased glucose, lipid and low density lipoprotein/very low density lipoprotein (LDL/VLDL) levels in serum of diabetic rats. Moreover, bFGF treatment corrected diabetes-induced reductions in citrate, lactate, choline, glycine, creatine, histidine, phenylalanine, tyrosine and glutamine in serum. Fecal propionate was significantly increased after bFGF treatment. Correlation analysis shows that glucose, lipid and LDL/VLDL were significantly negatively correlated with energy metabolites (citrate, creatine and lactate) and amino acids (alanine, glycine, histidine, phenylalanine, tyrosine and glutamine). In addition, a weak but significant correlation was observed between fecal propionate and serum lipid (R = −0.35, P = 0.046). Based on metabolic correlation and pathway analysis, therefore, we suggest that the glucose and lipid lowering effects of bFGF in the STZ-induced diabetic rats may be achieved by activating microbial metabolism, increasing energy metabolism and correcting amino acid metabolism. PMID:27808173

  8. Basic fibroblast growth factor priming increases the responsiveness of immortalized hypothalamic luteinizing hormone releasing hormone neurones to neurotrophic factors.

    PubMed

    Gallo, F; Morale, M C; Tirolo, C; Testa, N; Farinella, Z; Avola, R; Beaudet, A; Marchetti, B

    2000-10-01

    The participation of growth factors (GFs) in the regulation of luteinizing hormone releasing hormone (LHRH) neuronal function has recently been proposed, but little is known about the role played by GFs during early LHRH neurone differentiation. In the present study, we have used combined biochemical and morphological approaches to study the ability of a number of GFs normally expressed during brain development, including basic fibroblast growth factor (bFGF), epidermal growth factor (EGF), insulin and insulin-like growth factor I (IGF-I) to induce survival, differentiation, proliferation, and phenotypic expression of immortalized (GT1-1) LHRH neurones in vitro, at early (3-days in vitro, 3-DIV) and late (8-DIV) stages of neuronal differentiation. Comparison of GF-treated vs untreated neurones grown in serum-deprived (SD) medium demonstrated bFGF to be the most potent, and insulin the least active in promoting neuronal differentiation. Thus, at both 3-DIV and 8-DIV, but especially at 8-DIV, bFGF induced the greatest increase in the total length and number of LHRH processes/cell and in growth cone surface area. bFGF was also the most active at 3-DIV, and IGF-I at 8-DIV, in counteracting SD-induced cell death, whereas EGF was the most potent in increasing [3H]thymidine incorporation. All GFs studied decreased the spontaneous release of LHRH from GT1-1 cells when applied at 3-DIV or 8-DIV, except for insulin which was inactive at both time-points and bFGF which was inactive at 8-DIV. Pre-treatment of GT1-1 cells with a suboptimal ('priming') dose of bFGF for 12 h followed by application of the different GFs induced a sharp potentiation of the neurotrophic and proliferative effects of the latter and particularly of those of IGF-I. Moreover, bFGF priming counteracted EGF-induced decrease in LHRH release and significantly stimulated LHRH secretion following IGF-I or insulin application, suggesting that bFGF may sensitize LHRH neurones to differentiating effects of

  9. Boundary layer infusion of basic fibroblast growth factor accelerates intimal hyperplasia in endarterectomized canine artery.

    PubMed

    Chen, C; Li, J; Mattar, S G; Pierce, G F; Aukerman, L; Hanson, S R; Lumsden, A B

    1997-05-01

    We examined the effects of human recombinant basic fibroblast growth factor (bFGF) on the proliferation and migration of cultured dog smooth muscle cells (SMCs) and endothelial cells (ECs) and the effect of continuous local boundary layer infusion of bFGF on intimal hyperplasia in endarterectomized dog artery. In vitro proliferation and migration of dog SMCs or ECs were performed using direct counting and Boyden's chamber, respectively. At a dose of 10 ng/mL, bFGF significantly promoted both SMC and EC proliferation (7- and 4-fold, respectively) and migration (2.3- and 1.9-fold, respectively). Six dogs underwent bilateral carotid endarterectomies. A newly designed local infusion device with an osmotic pump continuously delivered bFGF to one artery or vehicle solution to the contralateral artery for 14 days. The intimal thickness and area in the bFGF-treated vessels were increased by 72 and 81%, respectively, compared with control arteries (P < 0.05). As assessed by the bromodeoxyuridine index, the proliferative activity was increased by 73% in bFGF-treated arteries (P = 0.03). Furthermore, cell proliferation at the distal anastomoses of local infusion device was significantly increased in the bFGF-infused grafts compared with distal anastomoses in the control grafts (13.24 +/- 1.24% versus 5.24 +/- 1.01%, P < 0.01). These data demonstrate that human recombinant bFGF has a potent effect on dog SMC and EC proliferation and migration, and that local infusion of exogenous bFGF significantly enhances the intimal hyperplasia formation and cell proliferation to vascular injury. We conclude that the bFGF pathway may contribute to the development of intimal hyperplastic lesions.

  10. Effects of Nerve Growth Factor and Basic Fibroblast Growth Factor Promote Human Dental Pulp Stem Cells to Neural Differentiation.

    PubMed

    Zhang, Jinlong; Lian, Min; Cao, Peipei; Bao, Guofeng; Xu, Guanhua; Sun, Yuyu; Wang, Lingling; Chen, Jiajia; Wang, Yi; Feng, Guijuan; Cui, Zhiming

    2017-04-01

    Dental pulp stem cells (DPSCs) were the most widely used seed cells in the field of neural regeneration and bone tissue engineering, due to their easily isolation, lack of ethical controversy, low immunogenicity and low rates of transplantation rejection. The purpose of this study was to investigate the role of basic fibroblast growth factor (bFGF) and nerve growth factor (NGF) on neural differentiation of DPSCs in vitro. DPSCs were cultured in neural differentiation medium containing NGF and bFGF alone or combination for 7 days. Then neural genes and protein markers were analyzed using western blot and RT-PCR. Our study revealed that bFGF and NGF increased neural differentiation of DPSCs synergistically, compared with bFGF and NGF alone. The levels of Nestin, MAP-2, βIII-tubulin and GFAP were the most highest in the DPSCs + bFGF + NGF group. Our results suggested that bFGF and NGF signifiantly up-regulated the levels of Sirt1. After treatment with Sirt1 inhibitor, western blot, RT-PCR and immunofluorescence staining showed that neural genes and protein markers had markedly decreased. Additionally, the ERK and AKT signaling pathway played a key role in the neural differentiation of DPSCs stimulated with bFGF + NGF. These results suggested that manipulation of the ERK and AKT signaling pathway may be associated with the differentiation of bFGF and NGF treated DPSCs. Our date provided theoretical basis for DPSCs to treat neurological diseases and repair neuronal damage.

  11. Acinetobacter baumannii Response to Host-Mediated Zinc Limitation Requires the Transcriptional Regulator Zur

    PubMed Central

    Mortensen, Brittany L.; Rathi, Subodh; Chazin, Walter J.

    2014-01-01

    Acinetobacter baumannii is a leading cause of ventilator-associated pneumonia in intensive care units, and the increasing rates of antibiotic resistance make treating these infections challenging. Consequently, there is an urgent need to develop new antimicrobials to treat A. baumannii infections. One potential therapeutic option is to target bacterial systems involved in maintaining appropriate metal homeostasis, processes that are critical for the growth of pathogens within the host. The A. baumannii inner membrane zinc transporter ZnuABC is required for growth under low-zinc conditions and for A. baumannii pathogenesis. The expression of znuABC is regulated by the transcriptional repressor Zur. To investigate the role of Zur during the A. baumannii response to zinc limitation, a zur deletion mutant was generated, and transcriptional changes were analyzed using RNA sequencing. A number of Zur-regulated genes were identified that exhibit increased expression both when zur is absent and under low-zinc conditions, and Zur binds to predicted Zur box sequences of several genes affected by zinc levels or the zur mutation. Furthermore, the zur mutant is impaired for growth in the presence of both high and low zinc levels compared to wild-type A. baumannii. Finally, the zur mutant exhibits a defect in dissemination in a mouse model of A. baumannii pneumonia, establishing zinc sensing as a critical process during A. baumannii infection. These results define Zur-regulated genes within A. baumannii and demonstrate a requirement for Zur in the A. baumannii response to the various zinc levels experienced within the vertebrate host. PMID:24816603

  12. Plexin-A4 promotes tumor progression and tumor angiogenesis by enhancement of VEGF and bFGF signaling.

    PubMed

    Kigel, Boaz; Rabinowicz, Noa; Varshavsky, Asya; Kessler, Ofra; Neufeld, Gera

    2011-10-13

    Plexin-A4 is a receptor for sema6A and sema6B and associates with neuropilins to transduce signals of class-3 semaphorins. We observed that plexin-A1 and plexin-A4 are required simultaneously for transduction of inhibitory sema3A signals and that they form complexes. Unexpectedly, inhibition of plexin-A1 or plexin-A4 expression in endothelial cells using specific shRNAs resulted in prominent plexin type specific rearrangements of the actin cytoskeleton that were accompanied by inhibition of bFGF and VEGF-induced cell proliferation. The two responses were not interdependent since silencing plexin-A4 in U87MG glioblastoma cells inhibited cell proliferation and strongly inhibited the formation of tumors from these cells without affecting cytoskeletal organization. Plexin-A4 formed stable complexes with the FGFR1 and VEGFR-2 tyrosine-kinase receptors and enhanced VEGF-induced VEGFR-2 phosphorylation in endothelial cells as well as bFGF-induced cell proliferation. We also obtained evidence suggesting that some of the pro-proliferative effects of plexin-A4 are due to transduction of autocrine sema6B-induced pro-proliferative signals, since silencing sema6B expression in endothelial cells and in U87MG cells mimicked the effects of plexin-A4 silencing and also inhibited tumor formation from the U87MG cells. Our results suggest that plexin-A4 may represent a target for the development of novel anti-angiogenic and anti-tumorigenic drugs.

  13. Basic fibroblast growth factor among children with diarrhea-associated hemolytic uremic syndrome.

    PubMed

    Ray, Patricio; Acheson, David; Chitrakar, Ramona; Cnaan, Avital; Gibbs, Kathleen; Hirschman, Gladys H; Christen, Erica; Trachtman, Howard

    2002-03-01

    Diarrhea-associated hemolytic uremic syndrome (D+HUS) is characterized by endothelial injury and activation of inflammatory cytokines. Basic fibroblast growth factor (bFGF) is an angiogenic peptide released in response to vascular damage. The plasma concentrations and urinary excretion of bFGF during the course of D+HUS were determined, in comparison with the levels of various inflammatory cytokines, and changes were correlated with clinical and laboratory features of the disease. Serial plasma and urine samples were collected from 31 children with D+HUS, during the acute (days 1 to 7 of hospitalization) and recovery (through day 60 after discharge from the hospital) phases of the disease. The patients were enrolled in the multicenter trial of SYNSORB Pk (SYNSORB Biotech, Calgary, Alberta, Canada) treatment for D+HUS. bFGF, interleukin-1alpha (IL-1alpha), IL-8, and tumor necrosis factor-alpha levels were determined with enzyme-linked immunosorbent assays. bFGF was detected in urine and plasma samples more frequently than were IL-1alpha, IL-8, and tumor necrosis factor-alpha. There was an acute increase in urinary bFGF excretion, which returned to normal during convalescence. Urinary excretion of bFGF during the acute phase was higher among patients who required dialysis, compared with those who did not (48.9 +/- 15.0 and 28.9 +/- 9.0 pg/ml, respectively; P < 0.05). Plasma bFGF concentrations were persistently elevated throughout the period of hospitalization and the follow-up period among patients with D+HUS. Urinary excretion and plasma levels of bFGF were comparable for the SYNSORB Pk-treated (n = 19) and placebo-treated (n = 12) groups. Measurements of urinary and plasma concentrations of bFGF among patients with D+HUS may be useful indices for assessment of the severity of acute renal disease and the timing and adequacy of the systemic angiogenic process during early convalescence.

  14. In Situ Loading of Basic Fibroblast Growth Factor Within Porous Silica Nanoparticles for a Prolonged Release

    NASA Astrophysics Data System (ADS)

    Zhang, Jin; Postovit, Lynne-Marie; Wang, Dashan; Gardiner, Richard B.; Harris, Richard; Abdul, Mumin Md; Thomas, Anu Alice

    2009-11-01

    Basic fibroblast growth factor (bFGF), a protein, plays a key role in wound healing and blood vessel regeneration. However, bFGF is easily degraded in biologic systems. Mesoporous silica nanoparticles (MSNs) with well-tailored porous structure have been used for hosting guest molecules for drug delivery. Here, we report an in situ route to load bFGF in MSNs for a prolonged release. The average diameter ( d) of bFGF-loaded MSNs is 57 ± 8 nm produced by a water-in-oil microemulsion method. The in vitro releasing profile of bFGF from MSNs in phosphate buffer saline has been monitored for 20 days through a colorimetric enzyme linked immunosorbent assay. The loading efficiency of bFGF in MSNs is estimated at 72.5 ± 3%. In addition, the cytotoxicity test indicates that the MSNs are not toxic, even at a concentration of 50 μg/mL. It is expected that the in situ loading method makes the MSNs a new delivery system to deliver protein drugs, e.g. growth factors, to help blood vessel regeneration and potentiate greater angiogenesis.

  15. Gastric ulcer healing and basic fibroblast growth factor: effects of lansoprazole and famotidine.

    PubMed

    Tsuji, S; Kawano, S; Higashi, T; Mukuda, T; Imaizumi, T; Tatsumi, T; Miura, N; Miyajima, K; Fukuda, M; Noguchi, M

    1995-01-01

    We examined the effects of lansoprazole and famotidine on gastric basic fibroblast growth factor (bFGF) levels and ulcer healing in patients with gastric ulcer. Sixteen patients with active gastric ulcer were divided into two groups and received treatment with lansoprazole 30 mg/day or famotidine 40 mg/day. They were examined endoscopically at 2, 4, and 8 weeks to measure gastric bFGF levels at the ulcer margin and to assess ulcer healing. Helicobacter pylori infection was determined by a rapid urease test. The two groups were comparable with regard to age, male:female ratio, H. pylori infection rates, and bFGF levels. During treatment, bFGF levels did not change significantly in the famotidine group, whereas they increased by a factor of 2.2 to 2.6 in the lansoprazole group. Cumulative healing rates were also significantly lower in the famotidine group than in the lansoprazole group. These results indicate that lansoprazole increases tissue bFGF levels and promotes gastric ulcer healing in humans.

  16. Acellular biological tissues containing inherent glycosaminoglycans for loading basic fibroblast growth factor promote angiogenesis and tissue regeneration.

    PubMed

    Lai, Po-Hong; Chang, Yen; Chen, Sung-Ching; Wang, Chung-Chi; Liang, Huang-Chien; Chang, Wei-Chun; Sung, Hsing-Wen

    2006-09-01

    It was found in our previous study that acellular tissues derived from bovine pericardia consist primarily of insoluble collagen, elastin, and tightly bound glycosaminoglycans (GAGs). It is speculated that the inherent GAGs in acellular tissues may serve as a reservoir for loading basic fibroblast growth factor (bFGF) and promote angiogenesis and tissue regeneration. This study was therefore designed to investigate effects of the content of GAGs in acellular bovine pericardia on the binding of bFGF and its release profile in vitro while its stimulation in angiogenesis and tissue regeneration in vivo were evaluated subcutaneously in a rat model. To control the content of GAGs, acellular tissues were treated additionally with hyaluronidase for 1 (Hase-D1), 3 (Hase-D3), or 5 days (Hase-D5). The in vitro results indicated that a higher content of GAGs in the acellular tissue resulted in an increase in bFGF binding and in a more gradual and sustained release of the growth factor. The in vivo results obtained at 1 week postoperatively showed that the density and the depth of neo-vessels infiltrated into the acellular tissue loaded with bFGF (acellular/bFGF) were significantly greater than the other test samples. At 1 month postoperatively, vascularized neo-connective tissues were found to fill the pores within each test sample, particularly for the acellular/bFGF tissue. These results suggested that the sustained release of bFGF from the acellular/ bFGF tissue continued to be effective in enhancing angiogenesis and generation of new tissues. In conclusion, the inherent GAGs present in acellular tissues may be used for binding and sustained release of bFGF to enhance angiogenesis and tissue regeneration.

  17. Cardiac expression profiles of the naked DNA vectors encoding vascular endothelial growth factor and basic fibroblast growth factor.

    PubMed

    Lee, Jung Sun; Byun, Jonghoe; Kim, Jung Min; Kim, Chae Young; Kim, Byong Moon; Chung, Ji Hyung; Jang, Yangsoo; Kim, Duk Kyung

    2005-10-31

    We investigated expression profiles and biological effects of the naked DNA vectors in the heart. To this end, naked DNA vector was injected into the apex of the beating rat heart after thorocotomy. When the expression of LacZ reporter was examined by reverse transcription-PCR and histochemical staining for beta-galactosidase, LacZ expression was detected only in the heart, suggesting limited dissemination of the injected vector in vivo. Even within the heart, LacZ expression was limited to the injection area (apex). Similar observations were made with other transgenes such as VEGF and basic fibroblast growth factor (bFGF), where 77% and 69% of the total transgene exprssion were detected in the heart segments containing the apex. Although VEGF and bFGF expressions were detected until 2 weeks after DNA injection, the highest levels of VEGF and bFGF were observed on day 5 and day 1, respectively. The optimal doses of the vectors were 10 microg and 25 microg for the VEGF and bFGF vectors, respectively. Interestingly, injection of bFGF vector led to 50% increase in the level of endogenous murine VEGF expression. Consistent with this finding, the number of vessels that stained positive for alpha-smooth muscle actin was increased in the bFGF vector-injected heart. These results suggest that simple injection of naked DNA vector may be sufficient to induce significant angiogenesis in the myocardium and that naked DNA gene therapy may be a feasible approach for the treatment of ischemic heart disease.

  18. Insulin-like growth factors act synergistically with basic fibroblast growth factor and nerve growth factor to promote chromaffin cell proliferation.

    PubMed Central

    Frödin, M; Gammeltoft, S

    1994-01-01

    We have investigated the effects of insulin-like growth factors (IGFs), basic fibroblast growth factor (bFGF), and nerve growth factor (NGF) on DNA synthesis in cultured chromaffin cells from fetal, neonatal, and adult rats by using 5-bromo-2'-deoxyuridine (BrdUrd) pulse labeling for 24 or 48 h and immunocytochemical staining of cell nuclei. After 6 days in culture in the absence of growth factors, nuclear BrdUrd incorporation was detected in 30% of fetal chromaffin cells, 1.5% of neonatal cells, and 0.1% of adult cells. Addition of 10 nM IGF-I or IGF-II increased the fraction of BrdUrd-labeled nuclei to 50% of fetal, 20% of neonatal, and 2% of adult chromaffin cells. The ED50 value of IGF-I- and IGF-II-stimulated BrdUrd labeling in neonatal chromaffin cells was 0.3 nM and 0.8 nM, respectively. In neonatal and adult chromaffin cells, addition of 1 nM bFGF or 2 nM NGF stimulated nuclear BrdUrd incorporation to approximately the same level as 10 nM IGF-I or IGF-II. However, the response to bFGF or NGF in combination with either IGF-I or IGF-II was more than additive, indicating that the combined effect of the IGFs and bFGF or NGF is synergistic. The degree of synergism was 2- to 4-fold in neonatal chromaffin cells and 10- to 20-fold in adult chromaffin cells compared with the effect of each growth factor alone. In contrast, the action of bFGF and NGF added together in the absence of IGFs was not synergistic or additive. IGF-II acted also as a survival factor on neonatal chromaffin cells and the cell survival was further improved when bFGF or NGF was added together with IGF-II. In conclusion, we propose that IGF-I and IGF-II act in synergy with bFGF and NGF to stimulate proliferation and survival of chromaffin cells during neonatal growth and adult maintenance of the adrenal medulla. Our findings may have implications for improving the survival of chromaffin cell implants in diseased human brain. PMID:8127879

  19. Basic fibroblast growth factor reduces functional and structural damage in chronic kidney disease.

    PubMed

    Villanueva, Sandra; Contreras, Felipe; Tapia, Andrés; Carreño, Juan E; Vergara, Cesar; Ewertz, Ernesto; Cespedes, Carlos; Irarrazabal, Carlos; Sandoval, Mauricio; Velarde, Victoria; Vio, Carlos P

    2014-02-15

    Chronic kidney disease (CKD) is characterized by loss of renal function. The pathological processes involved in the progression of this condition are already known, but the molecular mechanisms have not been completely explained. Recent reports have shown the intrinsic capacity of the kidney to undergo repair after acute injury through the reexpression of repairing proteins (Villanueva S, Cespedes C, Vio CP. Am J Physiol Regul Integr Comp Physiol 290: R861-R870, 2006). Stimulation with basic fibroblast growth factor (bFGF) could accelerate this process. However, it is not known whether bFGF can induce this phenomenon in kidney cells affected by CKD. Our aim was to study the evolution of renal damage in animals with CKD treated with bFGF and to relate the amount of repairing proteins with renal damage progression. Male Sprague-Dawley rats were subjected to 5/6 nephrectomy (NPX) and treated with bFGF (30 μg/kg, NPX+bFGF); a control NPX group was treated with saline (NPX+S). Animals were euthanized 35 days after bFGF administration. Functional effects were assessed based on serum creatinine levels; morphological damage was assessed by the presence of macrophages (ED-1), interstitial α-smooth muscle actin (α-SMA), and interstitial collagen through Sirius red staining. The angiogenic factors VEGF and Tie-2 and the epithelial/tubular factors Ncam, bFGF, Pax-2, bone morphogenic protein-7, Noggin, Lim-1, Wnt-4, and Smads were analyzed. Renal stem cells were evaluated by Oct-4. We observed a significant reduction in serum creatinine levels, ED-1, α-SMA, and Sirius red as well as an important induction of Oct-4, angiogenic factors, and repairing proteins in NPX+bFGF animals compared with NPX+S animals. These results open new perspectives toward reducing damage progression in CKD.

  20. Effect of transforming growth factor-beta 1 and basic fibroblast growth factor on the expression of cell surface proteoglycans in human lung fibroblasts. Enhanced glycanation and fibronectin-binding of CD44 proteoglycan, and down-regulation of glypican.

    PubMed Central

    Romarís, M; Bassols, A; David, G

    1995-01-01

    We have tested the effects of transforming growth factor-beta 1 (TGF-beta 1), basic fibroblast growth factor (bFGF) and TGF-beta 1 + bFGF on the expression of the cell surface proteoglycans (CD44, syndecans and glypican) in cultures of human lung fibroblasts (HLF). Cell surface proteoglycan expression was monitored by quantitative immunoprecipitation from metabolically labelled cells. Western and Northern blotting and evaluation of the glycanation of the proteoglycans. Stimulation of the cells with TGF-beta 1 increased the length of the chondroitin sulphate (CS) chains on CD44 (approximately 1.6-fold). bFGF, administered solely, also increased the length of the CS chains on CD44 (approximately 1.4-fold), whereas the combination of TGF-beta 1 + bFGF nearly doubled both the length and the number of the CS chains on CD44. None of these treatments lead to changes in CD44 message or core-protein expression. This enhanced glycanation of CD44 after the TGF-beta 1, bFGF and combined treatments correlated with a 2-fold increase in the affinity of the proteoglycan for fibronectin but had no influence on the binding to type I collagen. TGF-beta 1, alone or in combination with bFGF, also stimulated the CS content of syndecan-1, but none of the other syndecans was significantly affected by any of the factors or combinations tested. The expression of glypican however was significantly decreased (nearly halved) by the combination of TGF-beta 1 + bFGF, less so by TGF-beta 1 and not at all by bFGF. This decrease occurred both at the level of the message and of the core protein. These data demonstrate specific and differential effects of TGF-beta 1 and bFGF on the structure, expression and interactions of the cell surface proteoglycans of HLF. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:7544118

  1. Feedback Activation of Basic Fibroblast Growth Factor Signaling via the Wnt/β-Catenin Pathway in Skin Fibroblasts

    PubMed Central

    Wang, Xu; Zhu, Yuting; Sun, Congcong; Wang, Tao; Shen, Yingjie; Cai, Wanhui; Sun, Jia; Chi, Lisha; Wang, Haijun; Song, Na; Niu, Chao; Shen, Jiayi; Cong, Weitao; Zhu, Zhongxin; Xuan, Yuanhu; Li, Xiaokun; Jin, Litai

    2017-01-01

    Skin wound healing is a complex process requiring the coordinated behavior of many cell types, especially in the proliferation and migration of fibroblasts. Basic fibroblast growth factor (bFGF) is a member of the FGF family that promotes fibroblast migration, but the underlying molecular mechanism remains elusive. The present RNA sequencing study showed that the expression levels of several canonical Wnt pathway genes, including Wnt2b, Wnt3, Wnt11, T-cell factor 7 (TCF7), and Frizzled 8 (FZD8) were modified by bFGF stimulation in fibroblasts. Enzyme-linked immunosorbent assay (ELISA) analysis also showed that Wnt pathway was activated under bFGF treatment. Furthermore, treatment of fibroblasts with lithium chloride or IWR-1, an inducer and inhibitor of the Wnt signaling pathway, respectively, promoted and inhibited cell migration. Also, levels of cytosolic glycogen synthase kinase 3 beta phosphorylated at serine9 (pGSK3β Ser9) and nuclear β-catenin were increased upon exposure to bFGF. Molecular and biochemical assays indicated that phosphoinositide 3-kinase (PI3K) signaling activated the GSK3β/β-catenin/Wnt signaling pathway via activation of c-Jun N-terminal kinase (JNK), suggesting that PI3K and JNK act at the upstream of β-catenin. In contrast, knock-down of β-catenin delayed fibroblast cell migration even under bFGF stimulation. RNA sequencing analysis of β-catenin knock-down fibroblasts demonstrated that β-catenin positively regulated the transcription of bFGF and FGF21. Moreover, FGF21 treatment activated AKT and JNK, and accelerated fibroblast migration to a similar extent as bFGF does. In addition, ELISA analysis demonstrated that both of bFGF and FGF21 were auto secretion factor and be regulated by Wnt pathway stimulators. Taken together, our analyses define a feedback regulatory loop between bFGF (FGF21) and Wnt signaling acting through β-catenin in skin fibroblasts. PMID:28217097

  2. Feedback Activation of Basic Fibroblast Growth Factor Signaling via the Wnt/β-Catenin Pathway in Skin Fibroblasts.

    PubMed

    Wang, Xu; Zhu, Yuting; Sun, Congcong; Wang, Tao; Shen, Yingjie; Cai, Wanhui; Sun, Jia; Chi, Lisha; Wang, Haijun; Song, Na; Niu, Chao; Shen, Jiayi; Cong, Weitao; Zhu, Zhongxin; Xuan, Yuanhu; Li, Xiaokun; Jin, Litai

    2017-01-01

    Skin wound healing is a complex process requiring the coordinated behavior of many cell types, especially in the proliferation and migration of fibroblasts. Basic fibroblast growth factor (bFGF) is a member of the FGF family that promotes fibroblast migration, but the underlying molecular mechanism remains elusive. The present RNA sequencing study showed that the expression levels of several canonical Wnt pathway genes, including Wnt2b, Wnt3, Wnt11, T-cell factor 7 (TCF7), and Frizzled 8 (FZD8) were modified by bFGF stimulation in fibroblasts. Enzyme-linked immunosorbent assay (ELISA) analysis also showed that Wnt pathway was activated under bFGF treatment. Furthermore, treatment of fibroblasts with lithium chloride or IWR-1, an inducer and inhibitor of the Wnt signaling pathway, respectively, promoted and inhibited cell migration. Also, levels of cytosolic glycogen synthase kinase 3 beta phosphorylated at serine(9) (pGSK3β Ser(9)) and nuclear β-catenin were increased upon exposure to bFGF. Molecular and biochemical assays indicated that phosphoinositide 3-kinase (PI3K) signaling activated the GSK3β/β-catenin/Wnt signaling pathway via activation of c-Jun N-terminal kinase (JNK), suggesting that PI3K and JNK act at the upstream of β-catenin. In contrast, knock-down of β-catenin delayed fibroblast cell migration even under bFGF stimulation. RNA sequencing analysis of β-catenin knock-down fibroblasts demonstrated that β-catenin positively regulated the transcription of bFGF and FGF21. Moreover, FGF21 treatment activated AKT and JNK, and accelerated fibroblast migration to a similar extent as bFGF does. In addition, ELISA analysis demonstrated that both of bFGF and FGF21 were auto secretion factor and be regulated by Wnt pathway stimulators. Taken together, our analyses define a feedback regulatory loop between bFGF (FGF21) and Wnt signaling acting through β-catenin in skin fibroblasts.

  3. Ansätze zur Ordnungsreduktion von nichtlinearen Oszillatormodellen zur Anwendung im Schaltungsentwurf

    NASA Astrophysics Data System (ADS)

    Reit, M.; Bremer, J.-K.; Mathis, W.; Stoop, R.

    2010-10-01

    Im Rahmen dieser Arbeit wird ein Konzept zur Ordnungsreduktion von höherdimensionalen nichtlinearen Oszillatormodellen vorgestellt. Hierbei werden zwei wesentliche Ziele verfolgt. Zum einen wird eine höherdimensionale Modellierung der Oszillatorschaltung verwendet. Hierdurch lassen sich die Einflüsse parasitärer Effekte sowie struktureller Erweiterungen auf das dynamische Verhalten des Systems berücksichtigen. Zum anderen wird durch eine anschließende Ordnungsreduktion über die Methode der Zentrumsmannigfaltigkeit eine zweidimensionale Systembeschreibung erzeugt, deren wesentliche Dynamik derjenigen des höherdimensionalen Systems entspricht. Durch diese, in der Ordnung reduzierte, nichtlineare und parameterabhängige Systembeschreibung wird die Anwendbarkeit nichtlinearer Analysemethoden ermöglicht bzw. vereinfacht. Mit der Anwendung der Andronov-Hopf-Bifurkationsanalyse auf das reduzierte System lässt sich eine Stabilitätsuntersuchung durchführen sowie die Amplitude und Frequenz aller Zustandsgrößen approximieren. Das vorgestellte Konzept wird anhand des Beispielsystems eines LC-Tank-VCOs durchgeführt. In this paper, an order reduction technique for higher-dimensional nonlinear oscillator models, based on a center manifold approach, is presented. By modeling the oscillator circuit in the higher-dimensional state space, influences of parasitic elements and of structural extensions of the oscillator architecture on the dynamical system behavior can be examined. Using the proposed order reduction technique, a generalized second order model will be derived, which includes selected design parameters of the higher order model. By using an Andronov-Hopf bifurcation analysis, the reduced system can be studied with respect to stability as well as the amplitude and frequency of the individual state variables. The concept is applied to the design of LC-tank VCOs.

  4. [Study on the expressions of basic fibroblast growth factor and nervous growth factor genes in rat cerebral concussion].

    PubMed

    Peng, Rui-yun; Gao, Ya-bing; Xiao, Xing-yi; Wang, De-wen; Chen, Hao-yu; Wu, Xiao-hong; Liu, Jie; Hu, Wen-hua; Cai, Bao-ren

    2003-04-01

    To study the expressions of basic fibroblast growth factor (bFGF) and nervous growth factor(NGF) genes in rat cerebral concussion. Eighty Wistar male rats were used for animal model of cerebral concussion, which were sacrificed on 1, 3, 7, 14 and 30 days after injury and the brain tissue was taken out. The expressions of bFGF and NGF genes were studied in the course of cerebral concussion by means of immunohistochemistry and in situ hybridization. Rats in 100 g group were seen the clinical manifestation for typical cerebral concussion. The protein and mRNA of bFGF were increased on day 1, obtained at peak on day 3-7, decreased on day 14 and also increased on day 30 compared with controls. The positive area was seen in the plasma of neurons in cerebral cortex, hippocampus, thalamus and cerebellum. NGF protein and mRNA showed strong positive and increased in the plasma of neurons in cerebral cortex, hippocampus, thalamus and cerebellum on day 1, and they were continuously positive but gradually decreased within 30 days after injury. The expression of bFGF gene participates in the course of cerebral concussion, might play an important role in the nervous cells degeneration and necrosis; NGF gene expression participates in the whole course of cerebral concussion, especially in the early phase.

  5. Mutual effects of growth hormone and growth factors on avian skeletal muscle satellite cells.

    PubMed

    Hodik, V; Mett, A; Halevy, O

    1997-10-01

    Chicken growth hormone (cGH) has been shown to affect chicken skeletal muscle satellite cell proliferation and differentiation in vitro. This study describes the interactions of cGH with basic fibroblast growth factor (bFGF) and insulin-like growth factor I (IGF-I). Both cGH and bFGF induced cGH receptor (cGH-R) gene expression as well as that of the avian FGF receptor, FREK, when added at low concentrations to satellite cells. bFGF caused a rapid induction of cGH-R mRNA. Combinations of low levels of bFGF and cGH caused a further increase in receptor mRNA expression levels, relative to that caused by each peptide alone, and their effect on DNA synthesis was synergistic. However, combinations of cGH and bFGF at high concentrations decreased cGH-R and FREK mRNA levels and DNA synthesis in a dose-dependent manner. These results imply that the mutual effects of bFGF and cGH on satellite cell proliferation are receptor-mediated and that each peptide regulates both receptors gene expression. IGF-I induced DNA synthesis in satellite cells but did not affect cGH-R gene expression at any of the concentrations tested. Coincubation of 3.5 ng/ml cGH and various concentrations of IGF-I did not significantly change DNA synthesis relative to the effect of cGH alone. However, combinations with high levels of cGH abolished it. Similar time-course (up to 6 hr) induction of DNA synthesis in serum-starved cells was observed in the presence of cGH or IGF-I, suggesting that cGH affects satellite cell proliferation in an IGF-I-independent manner.

  6. Interferons alpha and beta down-regulate the expression of basic fibroblast growth factor in human carcinomas.

    PubMed Central

    Singh, R K; Gutman, M; Bucana, C D; Sanchez, R; Llansa, N; Fidler, I J

    1995-01-01

    We investigated the influence of interferons alpha, beta, and gamma (IFN-alpha, -beta, and -gamma) on the production of basic fibroblast growth factor (bFGF) by human renal carcinoma cells. The human renal carcinoma cell metastatic line SN12PM6 was established in culture from a lung metastasis and SN12PM6-resistant cells were selected in vitro for resistance to the antiproliferative effects of IFN-alpha or IFN-beta. IFN-alpha and IFN-beta, but not IFN-gamma, down-regulated the expression of bFGF at the mRNA and protein levels by a mechanism independent of their antiproliferative effects. Down-regulation of bFGF required a long exposure (> 4 days) of cells to low concentrations (> 10 units/ml) of IFN-alpha or IFN-beta. The withdrawal of IFN-alpha or IFN-beta from the medium permitted SN12PM6-resistant cells to resume production of bFGF. The incubation of human bladder, prostate, colon, and breast carcinoma cells with noncytostatic concentrations of IFN-alpha or IFN-beta also produced down-regulation of bFGF production. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:7753843

  7. Repair of articular cartilage defect by autologous transplantation of basic fibroblast growth factor gene-transduced chondrocytes with adeno-associated virus vector.

    PubMed

    Yokoo, Naoki; Saito, Tomoyuki; Uesugi, Masaaki; Kobayashi, Naomi; Xin, Ke-Qin; Okuda, Kenji; Mizukami, Hiroaki; Ozawa, Keiya; Koshino, Tomihisa

    2005-01-01

    To examine the effects of basic fibroblast growth factor (bFGF) gene-transduced chondrocytes on the repair of articular cartilage defects. LacZ gene or bFGF gene was transduced into primary isolated rabbit chondrocytes with the use of a recombinant adeno-associated virus (AAV) vector. These gene-transduced chondrocytes were embedded in collagen gel and transplanted into a full-thickness defect in the articular cartilage of the patellar groove of a rabbit. The efficiency of gene transduction was assessed according to the percentage of LacZ-positive cells among the total number of living cells. The concentration of bFGF in the culture supernatant was measured by enzyme-linked immunosorbent assay to confirm the production by bFGF gene-transduced chondrocytes. At 4, 8, and 12 weeks after transplantation, cartilage repair was evaluated histologically and graded semiquantitatively using a histologic scoring system ranging from 0 (complete regeneration) to 14 (no regeneration) points. LacZ gene expression by chondrocytes was maintained until 8 weeks in >85% of the in vitro population. LacZ-positive cells were found at the transplant sites for at least 4 weeks after surgery. The mean concentration of bFGF was significantly increased in bFGF gene-transduced cells compared with control cells (P < 0.01). Semiquantitative histologic scoring indicated that the total score was significantly lower in the bFGF-transduced group than in the control group throughout the observation period. These results demonstrated that gene transfer to chondrocytes by an ex vivo method was established with the AAV vector, and transplantation of bFGF gene-transduced chondrocytes had a clear beneficial effect on the repair of rabbit articular cartilage defects.

  8. Induction of angiogenesis via topical delivery of basic-fibroblast growth factor from polyvinyl alcohol-dextran blend hydrogel in an ovine model of acute myocardial infarction.

    PubMed

    Fathi, Ezzatollah; Nassiri, Seyed Mahdi; Atyabi, Nahid; Ahmadi, Seyed Hossein; Imani, Mohammad; Farahzadi, Raheleh; Rabbani, Shahram; Akhlaghpour, Shahram; Sahebjam, Mohammad; Taheri, Mohammad

    2013-09-01

    Hydrogels are currently used as interesting constructs for the delivery of proteins. In this study, a novel polyvinyl alcohol-dextran (PVA-Dex) blend hydrogel was used for controlled delivery of basic-fibroblast growth factor (bFGF). These biocompatible constructs were sutured to the epicardium as patches on the heart surface to provide slow release of bFGF to the infarcted site in an ovine model of myocardial infarction (MI). Eighteen sheep were randomly divided into three groups (n = 6 each), including group I (control without any patch and bFGF), group II (patch without bFGF) and group III (patch incorporating 100 µg bFGF). They were subjected to coronary artery ligation after lateral thoracotomy, and then in groups II and III the patches were implanted 20-30 min after MI. Cardiac function was assessed by both echocardiography and magnetic resonance imaging (MRI) 2 months after implantation. Then the animals were sacrificed and the hearts subjected to histopathological examination, immunohistochemistry and electron microscopy. Heart lysates were subject to protein expression analysis through western blotting. The results showed that sustained release of bFGF using PVA-Dex blend hydrogel strongly stimulated angiogenesis and increased wall thickness index in the infarcted myocardium. The patch also significantly attenuated the increase in left ventricular end-systolic diameter, but it did not improve cardiac function within 2 months of myocardial infarction. In conclusion, PVA-Dex gel incorporating bFGF can be used as a sustained release construct for therapeutic angiogenesis in ischaemic heart disease.

  9. Enhancement of periosteal bone formation by basic fibroblast-derived growth factor containing polycystic kidney disease and collagen-binding domains from Clostridium histolyticum collagenase.

    PubMed

    Uchida, Kentaro; Matsushita, Osamu; Nishi, Nozomu; Inoue, Gen; Horikawa, Kyosuke; Takaso, Masashi

    2017-04-01

    Recombinant basic fibroblast growth factor (bFGF) is a potent mitogen for mesenchymal cells that accelerates bone union and repair when applied locally at defect sites. However, because bFGF diffuses rapidly from bone defect sites, repeated dosing is required for sustained therapeutic effect. We previously fused the collagen-binding domain (CBD) and polycystic kidney disease (PKD) domain of Clostridium histolyticum class II collagenase (ColH) to bFGF and demonstrated that the fusion protein markedly enhances bone formation when loaded onto collagen materials used for grafting. However, systemic injection of a fusion protein consisting of parathyroid hormone (PTH) and a CBD was shown to accelerate bone formation in an osteoporosis model more rapidly than treatment with a PTH-PKD-CBD fusion protein. Here, we compared the biological properties of two collagen-binding forms of bFGF, bFGF-CBD and bFGF-PKD-CBD. Both fusion proteins promoted the in vitro proliferation of periosteal mesenchymal cells, indicating that they had biological activity similar to that of native bFGF. In vivo periosteal bone formation assays in rat femurs showed that both bFGF-CBD and bFGF-PKD-CBD induced periosteal bone formation at higher rates than collagen sheet alone and bFGF. However, bFGF-PKD-CBD markedly enhanced bone formation and had higher collagen-binding ability than bFGF-CBD in in vitro protein release assays. Taken together, these results suggest that the PKD domain increases the retention of bFGF at graft sites by enhancing collagen-binding affinity. Therefore, bFGF-PKD-CBD-collagen composite appears to be a promising material for bone repair in the clinical setting. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  10. Acceleration of periosteal bone formation by human basic fibroblast growth factor containing a collagen-binding domain from Clostridium histolyticum collagenase

    PubMed Central

    Uchida, Kentaro; Matsushita, Osamu; Naruse, Kouji; Mima, Takehiko; Nishi, Nozomu; Hattori, Shunji; Ogura, Takayuki; Inoue, Gen; Tanaka, Keisuke; Takaso, Masashi

    2014-01-01

    Basic fibroblast growth factor 2 (bFGF) is a potent mitogen for mesenchymal cells, and the local application of recombinant bFGF accelerates bone union and defect repair. However, repeated dosing is required for sustained therapeutic effect as the efficacy of bFGF decreases rapidly following its diffusion from bone defect sites. Here, we attempted to develop a collagen-based bone formation system using a fusion protein (collagen binding-bFGF, CB-bFGF) consisting of bFGF and the collagen-binding domain (CBD) of Clostridium histolyticum collagenase. The addition of the CBD to bFGF did not modify its native biological activity, as shown by the capacity of the fusion protein to promote the in vitro proliferation of periosteal mesenchymal cells. The affinity of the fusion protein towards collagen and demineralized bone matrix (DBM) was also confirmed by collagen-binding assays. Moreover, in vivo periosteal bone formation assays showed that the combination of CB-bFGF with a collagen sheet induced periosteal bone formation at protein concentrations lower than those required for bFGF alone. In addition, grafts of DBM loaded with CB-bFGF accelerated new bone formation in rat femurs compared to the same concentration of bFGF administered alone. Taken together, these properties suggest that the CB-bFGF/collagen composite is a promising material for bone repair in the clinical setting. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 102A: 1737–1743, 2014. PMID:23775724

  11. Acceleration of periosteal bone formation by human basic fibroblast growth factor containing a collagen-binding domain from Clostridium histolyticum collagenase.

    PubMed

    Uchida, Kentaro; Matsushita, Osamu; Naruse, Kouji; Mima, Takehiko; Nishi, Nozomu; Hattori, Shunji; Ogura, Takayuki; Inoue, Gen; Tanaka, Keisuke; Takaso, Masashi

    2014-06-01

    Basic fibroblast growth factor 2 (bFGF) is a potent mitogen for mesenchymal cells, and the local application of recombinant bFGF accelerates bone union and defect repair. However, repeated dosing is required for sustained therapeutic effect as the efficacy of bFGF decreases rapidly following its diffusion from bone defect sites. Here, we attempted to develop a collagen-based bone formation system using a fusion protein (collagen binding-bFGF, CB-bFGF) consisting of bFGF and the collagen-binding domain (CBD) of Clostridium histolyticum collagenase. The addition of the CBD to bFGF did not modify its native biological activity, as shown by the capacity of the fusion protein to promote the in vitro proliferation of periosteal mesenchymal cells. The affinity of the fusion protein towards collagen and demineralized bone matrix (DBM) was also confirmed by collagen-binding assays. Moreover, in vivo periosteal bone formation assays showed that the combination of CB-bFGF with a collagen sheet induced periosteal bone formation at protein concentrations lower than those required for bFGF alone. In addition, grafts of DBM loaded with CB-bFGF accelerated new bone formation in rat femurs compared to the same concentration of bFGF administered alone. Taken together, these properties suggest that the CB-bFGF/collagen composite is a promising material for bone repair in the clinical setting. Copyright © 2013 The Authors. Journal of Biomedical Materials Research Part A Published by Wiley Periodicals, Inc.

  12. The efficacy of a novel collagen-gelatin scaffold with basic fibroblast growth factor for the treatment of vocal fold scar.

    PubMed

    Hiwatashi, Nao; Hirano, Shigeru; Mizuta, Masanobu; Kobayashi, Toshiki; Kawai, Yoshitaka; Kanemaru, Shin-Ichi; Nakamura, Tatsuo; Ito, Juichi; Kawai, Katsuya; Suzuki, Shigehiko

    2015-06-29

    Vocal fold scar remains a therapeutic challenge. Basic fibroblast growth factor (bFGF) was reported to have regenerative effects for vocal fold scar, although it has the disadvantage of rapid absorption in vivo. A collagen-gelatin sponge (CGS) can compensate for the disadvantage by providing a sustained release system. The current study evaluated the efficacy of CGS combined with bFGF on vocal fold scar, using rat fibroblasts for an in vitro model and a canine in vivo model. We prepared fibroblasts from scarred vocal folds (sVFs) in rats and showed that bFGF accelerated cell proliferation and suppressed expression levels of cleaved caspase 3 and α-smooth muscle actin. Has 1, Has 3, Fgf2, Hgf and Vegfa mRNA levels were significantly upregulated, while Col1a1 and Col3a1 were dose-dependently downregulated, with a maximum effect at 100 ng/ml bFGF. In an in vivo assay, 6 weeks after lamina propria stripping, beagles were divided into three groups: CGS alone (CGS group); CGS with bFGF (7 µg/cm(2) ; CGS + bFGF group); or a sham-treated group. Vibratory examination revealed that the glottal gap was significantly reduced in the bFGF group and the two implanted groups, whereas the CGS + bFGF group showed higher mucosal wave amplitude. Histological examination revealed significantly restored hyaluronic acid and elastin redistribution in the CGS + bFGF group and reductions in dense collagen deposition. These results provide evidence that CGS and bFGF combination therapy may have therapeutic potential and could be a promising tool for treating vocal fold scar. Copyright © 2015 John Wiley & Sons, Ltd.

  13. Changes in bone regeneration by trehalose coating and basic fibroblast growth factor after implantation of tailor-made bone implants in dogs.

    PubMed

    Choi, Sungjin; Lee, Jongil; Igawa, Kazuyo; Liu, I-Li; Honnami, Muneki; Suzuki, Shigeki; Nishimura, Ryohei; Chung, Ung-Il; Sasaki, Nobuo; Mochizuki, Manabu

    2013-01-01

    In this study, we aimed to determine the effect of trehalose coating and the optimal dose of basic fibroblast growth factor (bFGF), an osteoinductive protein, loaded onto tailor-made bone implants for implant-induced bone formation in vivo. We fabricated tailor-made α-tricalcium phosphate bone implants (11 mm diameter with 2 parallel cylindrical holes). bFGF 0, 1, 10, 100 or 200 μg/implant was incorporated into implants with and without a trehalose coating, and these were subsequently implanted into dogs to correct temporal bone defects of the same size and shape. Four weeks after implantation, we analyzed the bone implants and surrounding tissues by using micro-computed tomography imaging and histological analyses, as well as gross evaluation. No significant difference in new bone formation was observed between implants with and without a trehalose coating at any of the bFGF doses. Bone implants with 100 and 200 μg bFGF showed significantly more new bone formation at the implant site and within the cylindrical holes of the implants than those without bFGF (P<0.05). However, heterotopic bone formation on the skull near the implant was observed in the group that received 200 μg bFGF. These results suggest that 100 μg bFGF is the optimal dose for this implant in dogs, and that the trehalose coating may not be necessary in vivo, probably due to the presence of blood proteins and electrolytes at the implant site.

  14. Linear Ordered Collagen Scaffolds Loaded with Collagen-Binding Basic Fibroblast Growth Factor Facilitate Recovery of Sciatic Nerve Injury in Rats

    PubMed Central

    Ma, Fukai; Xiao, Zhifeng; Chen, Bing; Hou, Xianglin

    2014-01-01

    Natural biological functional scaffolds, consisting of biological materials filled with promoting elements, provide a promising strategy for the regeneration of peripheral nerve defects. Collagen conduits have been used widely due to their excellent biological properties. Linear ordered collagen scaffold (LOCS) fibers are good lumen fillers that can guide nerve regeneration in an ordered direction. In addition, basic fibroblast growth factor (bFGF) is important in the recovery of nerve injury. However, the traditional method for delivering bFGF to the lesion site has no long-term effect because of its short half-life and rapid diffusion. Therefore, we fused a specific collagen-binding domain (CBD) peptide to the N-terminal of native basic fibroblast growth factor (NAT-bFGF) to retain bFGF on the collagen scaffolds. In this study, a natural biological functional scaffold was constructed using collagen tubes filled with collagen-binding bFGF (CBD-bFGF)-loaded LOCS to promote regeneration in a 5-mm rat sciatic nerve transection model. Functional evaluation, histological investigation, and morphometric analysis indicated that the natural biological functional scaffold retained more bFGF at the injury site, guided axon growth, and promoted nerve regeneration as well as functional restoration. PMID:24188561

  15. The G-rich promoter and G-rich coding sequence of basic fibroblast growth factor are the targets of thalidomide in glioma.

    PubMed

    Mei, Szu-Chieh; Wu, Rong-Tsun

    2008-08-01

    Thalidomide is considered to be a potent antiangiogenic and immunomodulatory drug for cancer therapy. Earlier clinical studies have found that patients responding to this drug often had high plasma levels of basic fibroblast growth factor (bFGF). This cytokine is a proangiogenic factor overexpressed in many tumors and is also a regulator of limb development; hence, it might be a target of thalidomide. Using U-87 MG cell lines, we found that thalidomide, especially when encapsulated in a liposome, down-regulated the transcription and translation of the FGF-2 gene by interacting with G-rich regions present in the promoter and the internal ribosome entry site of its transcript at concentrations much lower than therapeutic serum concentrations. Thalidomide treatment also dramatically suppressed the anchorage-independent growth of U-87 MG and other glioma cells by over a thousand fold without affecting its anchorage-dependent growth, which may be accomplished by knocking down endogenous bFGF expression in these cells. Accordingly, the addition of recombinant bFGF partially restored the anchorage-independent growth of these cells. Our data suggest that by targeting the G-rich regions of bFGF, thalidomide (at 0.1 microg/mL) can reduce cellular bFGF levels and affect tumor anchorage-independent growth, the hallmark of tumorigenicity. Our results are promising for future clinical investigations using low doses of thalidomide.

  16. A new avian fibroblast growth factor receptor in myogenic and chondrogenic cell differentiation.

    PubMed

    Halevy, O; Monsonego, E; Marcelle, C; Hodik, V; Mett, A; Pines, M

    1994-06-01

    We studied the expression of FREK (fibroblast growth factor receptor-like embryonic kinase), a new receptor recently cloned from quail embryo, during the differentiation of skeletal muscle satellite cells and epiphyseal growth-plate chondrocytes. Although FREK mRNA was expressed in both cell types, satellite cells expressed higher levels of this mRNA than chondrocytes. FREK gene expression was found to be modulated by b-FGF in a biphasic manner: low concentrations increased expression, whereas high concentrations attenuated it. In both cell cultures, the levels of FREK mRNA declined during terminal differentiation. Moreover, retinoic acid (RA), which induces skeletal muscle satellite cells to differentiate, also caused a reduction in FREK gene expression in these cells. Induction of chondrocyte differentiation with ascorbic acid was monitored by a decrease in collagen type II gene expression and an increase in alkaline phosphatase activity. Satellite cell differentiation was marked by morphological changes as well as by increased sarcomeric myogenin content and creatine kinase activity and changes in the expression of the regulatory muscle-specific genes, MyoD and myogenin. DNA synthesis in both cell types was stimulated by b-FGF. However, in satellite cells, the response was bell-shaped, peaking at 1 ng/ml b-FGF, whereas in chondrocytes, higher levels of b-FGF were needed. b-FGF-dependent DNA synthesis in satellite cells was decreased by RA at concentrations over 10(-7) M. The observed correlation between the level of FREK gene expression and various stages of differentiation, its modulation by b-FGF and RA, as well as the correlation between FREK gene expression and the physiological response to b-FGF, suggest that this specific FGF receptor plays an important role in muscle and cartilage cell differentiation.

  17. Vom Referat bis zur Examensarbeit: Naturwissenschaftliche Texte perfekt verfassen und gestalten

    NASA Astrophysics Data System (ADS)

    Kremer, Bruno P.

    Welches Thema eignet sich für mein Referat oder meine Seminararbeit? Wie sammle ich Stoff? Wie gliedere ich den Text? Bruno P. Kremer beantwortet auf nur 200 Seiten alle wichtigen Fragen zur wissenschaftlichen Arbeit in den naturwissenschaftlichen Fächern. Dabei beschränkt er sich auf das für Studenten und Schüler wirklich notwendige Wissen und lässt jeglichen unnützen Ballast beiseite. Dieser praktische Ratgeber verhilft Ihnen zur erfolgreichen wissenschaftlichen Arbeit - vom Referat bis zur Examensarbeit.

  18. Expression of basic fibroblast growth factor and its receptors FGFR1 and FGFR2 in human benign prostatic hyperplasia treated with finasteride.

    PubMed

    Sáez, C; González-Baena, A C; Japón, M A; Giráldez, J; Segura, D I; Rodríguez-Vallejo, J M; González-Esteban, J; Miranda, G; Torrubia, F

    1999-07-01

    The development of benign prostatic hyperplasia (BPH) is an androgen-dependent process which may be mediated by a number of locally produced growth factors. One of these, the basic fibroblast growth factor (bFGF or FGF2), has a mitogenic effect on prostatic stroma. High expression levels of bFGF have been reported in BPH. FGFR1 and FGFR2 receptors, that exhibit affinity for bFGF, have been identified in normal and hyperplastic prostate. Finasteride, a 5alpha-reductase inhibitor, is an effective drug in the treatment of BPH, inducing regressive changes in the prostate of treated patients, even though its mechanisms of action are not yet completely elucidated. This study was designed to assess the effects of finasteride on the expression levels of bFGF, FGFR1, and FGFR2 in patients with BPH. The expression levels of bFGF, FGFR1, and FGFR2 in 9 patients with prostatic hyperplasia treated with finasteride were assessed by immunohistochemistry and reverse transcription-polymerase chain reaction (RT-PCR) analysis of mRNA expression and were compared with those of 9 control patients with untreated BPH. Immunohistochemistry showed strong bFGF immunoreactivity in the prostatic stroma of untreated patients, this being somewhat weaker in the epithelium. In treated patients, epithelial immunoreactivity was practically negative, and a considerable reduction in stromal immunoreactivity was seen. These findings were also confirmed by RT-PCR. FGFR1 showed a weak immunoreactivity in the stroma and in basal epithelial cells. FGFR1 showed a weak immunoreactivity in the stroma and in basal epithelial cells. FGFR2 exhibited strong stromal immunoreactivity, becoming weaker in the basal epithelium. No differences were seen in the expression of both receptors between the groups of treated and untreated patients. A marked reduction in bFGF levels is seen in BPH treated with finasteride in comparison to untreated BPH. In our opinion, finasteride may act as a negative regulator of bFGF

  19. S1-Leitlinie zur UV-Phototherapie und Photochemotherapie.

    PubMed

    Herzinger, Thomas; Berneburg, Mark; Ghoreschi, Kamran; Gollnick, Harald; Hölzle, Erhard; Hönigsmann, Herbert; Lehmann, Percy; Peters, Thorsten; Röcken, Martin; Scharffetter-Kochanek, Karin; Schwarz, Thomas; Simon, Jan; Tanew, Adrian; Weichenthal, Michael

    2016-08-01

    Die heilsame Wirkung des Sonnenlichts war teilweise schon im Altertum bekannt und fand in der zweiten Hälfte des 19. Jahrhunderts wieder zunehmend Beachtung. Den Beginn der modernen Phototherapien markiert die Entwicklung einer Apparatur zur ultravioletten Bestrahlung der Hauttuberkulose durch Finnsen zu Beginn des zwanzigsten Jahrhunderts. Zur Therapie von Hauterkrankungen finden beinahe ausschließlich die spektralen Bereiche unterhalb des sichtbaren Lichtes (ultraviolett) Anwendung. Seit den 1970er Jahren stehen zunehmend leistungsfähige künstliche Strahlenquellen bereit für die Therapie mit UVB, UVA und die Kombination von UVA mit Photosensibilisatoren (Photochemotherapie). Hohe strukturelle und prozedurale Qualitätsstandards sind unabdingbare Voraussetzung für die Durchführung einer gleichermaßen wirkungsvollen wie auch sicheren Phototherapie. Die Leitlinie formuliert den aktuellen Konsens führender Experten auf dem Gebiet der Phototherapie in Bezug auf die Indikationen für die jeweiligen Therapieverfahren, deren Gegenanzeigen und Nebenwirkungen und insbesondere für die Wahl der korrekten Dosis zu Beginn und im Verlauf einer Therapie sowie das Management von Nebenwirkungen. © 2016 The Authors | Journal compilation © Blackwell Verlag GmbH, Berlin.

  20. Erythromycin and clarithromycin modulation of growth factor-induced expression of heparanase mRNA on human lung cancer cells in vitro.

    PubMed Central

    Sasaki, M; Ito, T; Kashima, M; Fukui, S; Izumiyama, N; Watanabe, A; Sano, M; Fujiwara, Y; Miura, M

    2001-01-01

    Heparanase activity is correlated with the metastatic potential of several cancer cells and is a key enzyme in the breakdown of tissue barriers. It is also involved in the regulation of growth factor and cytokine activity. However, little is known about the factors that induce heparanase in cancer cells. We investigated the effect of three growth factors, platelet-derived growth factor (PDGF), hepatocyte growth factor (HGF) and basic fibroblast growth factor (bFGF), on heparanase mRNA induction in lung cancer cells in vitro. In addition, we examined the effect of erythromycin (EM) and clarithromycin (CAM), which are 14-membered ring macrolide antibiotics that act as biological response modifiers, on the expression of heparanase mRNA induced by growth factors. PDGF, HGF and bFGF stimulated cell migration activity and enhanced the expression of heparanase mRNA in the human lung adenocarcinoma cell line A549. Via different mechanisms, EM and CAM modulate the induction by these factors of heparanase mRNA expression on A549 cells. EM also significantly suppressed A549 cell migration induced by PDGF and HGF, and CAM significantly suppressed A549cell migration induced by bFGF. The results suggest that the growth factors PDGF, HGF and bFGF are important inducers of heparanase in potentially invasive and metastatic cancer cells. The suppressive effect of heparanase mRNA expression by EM and CAM may have interestingtherapeutic applications in the prevention of metastasis. PMID:11759110

  1. A mutein of human basic fibroblast growth factor TGP-580 accelerates colonic ulcer healing by stimulating angiogenesis in the ulcer bed in rats.

    PubMed

    Satoh, H; Szabo, S

    2015-10-01

    Previously, we reported that TGP-580, a mutein of human basic fibroblast growth factor (bFGF), accelerated the healing of gastric and duodenal ulcers in rats. In the present study, we examined the effect of TGP-580 on the healing of colonic ulcers. In male Sprague Dawley rats, ulcers were induced in the colon 6 cm from the anus by enema of 50 μl of 3% N-ethylmaleimide, a sulfhydryl alkylator. The lesions were examined under a dissecting microscope (x10). The concentration of bFGF in the ulcerated colon was measured by enzyme immunoassay, and both the distribution of bFGF and the density of microvessels in the ulcer bed were examined by immunohistochemical staining. The content of bFGF in the ulcerated colon was markedly increased associated with ulcer healing, and ulcer healing was significantly delayed by intravenous administration of a monoclonal antibody for bFGF (MAb 3H3) once daily for 10 days. In the ulcer bed, many cells such as fibroblasts, vascular endothelial cells and macrophages were positively stained with bFGF antiserum. TGP-580, human bFGF or dexamethasone was given intracolonally twice daily for 10 days, starting the day after ulcer induction. TGP-580 (0.2 - 20 μg/ml, 200 μl/rat) dose-dependently accelerated ulcer healing, and its effect was more than 10 times stronger than that of human bFGF. Density (μm/0.01 mm(2)) of microvessels in the ulcer bed was significantly increased by treatment with TGP-580, and there was a good correlation between the density of microvessels and the decrease of ulcerated area (R(2) = 0.633). On the other hand dexamethasone (20 μg/ml) inhibited angiogenesis in the ulcer bed and delayed ulcer healing. These results suggest that angiogenesis in the ulcer bed plays an important role in ulcer healing, and that bFGF mutein TGP-580 accelerated colonic ulcer healing, at least in part, by stimulating angiogenesis, whereas glucocorticoids may delay the healing by inhibiting angiogenesis.

  2. In vitro stress effect on degradation and drug release behaviors of basic fibroblast growth factor--poly(lactic-co-glycolic-acid) microsphere.

    PubMed

    Xiong, Yan; Yu, Zeping; Lang, Yun; Hu, Juanyu; Li, Hong; Yan, Yonggang; Tu, Chongqi; Yang, Tianfu; Song, Yueming; Duan, Hong; Pei, Fuxing

    2016-01-01

    To study the degradation and basic fibroblast growth factor (bFGF) release activity of bFGF - poly(lactic-co-glycolic-acid) microsphere (bFGF-PLGA MS) under stress in vitro, including the static pressure and shearing force-simulating mechanical environment of the joint cavity. First, bFGF-PLGA MSs were created. Meanwhile, two self-made experimental instruments (static pressure and shearing force loading instruments) were initially explored to provide stress-simulating mechanical environment of the joint cavity. Then, bFGF-PLGA MSs were loaded into the two instruments respectively, to study microsphere degradation and drug release experiments. In the static pressure loading experiment, normal atmospheric pressure loading (approximately 0.1 MPa), 0.35 MPa, and 4.0 MPa pressure loading and shaking flask oscillation groups were designed to study bFGF-PLGA MS degradation and bFGF release. In the shearing force loading experiment, a pulsating pump was used to give the experimental group an output of 1,000 mL/min and the control group an output of 10 mL/min to carry out bFGF-PLGA MS degradation and drug release experiments. Changes of bFGF-PLGA MSs, including microsphere morphology, quality, weight-average molecular weight of polymer, and microsphere degradation and bFGF release, were analyzed respectively. In the static pressure loading experiment, bFGF-PLGA MSs at different pressure were stable initially. The trend of molecular weight change, quality loss, and bFGF release was consistent. Meanwhile, microsphere degradation and bFGF release rates in the 4.0 MPa pressure loading group were faster than those in the normal and 0.35 MPa pressure loading groups. It was the fastest in the shaking flask group, showing a statistically significant difference (P<0.0001). In the shearing force loading experiment, there were no distinctive differences in the rates of microsphere degradation and bFGF release between experimental and control group. Meanwhile, microsphere degradation

  3. Osmotic Induction of Angiogenic Growth Factor Expression in Human Retinal Pigment Epithelial Cells

    PubMed Central

    Reichenbach, Andreas; Wiedemann, Peter; Kohen, Leon; Bringmann, Andreas

    2016-01-01

    Background Although systemic hypertension is a risk factor of age-related macular degeneration, antihypertensive medications do not affect the risk of the disease. One condition that induces hypertension is high intake of dietary salt resulting in increased blood osmolarity. In order to prove the assumption that, in addition to hypertension, high osmolarity may aggravate neovascular retinal diseases, we determined the effect of extracellular hyperosmolarity on the expression of angiogenic cytokines in cultured human retinal pigment epithelial (RPE) cells. Methodology/Principal Findings Hyperosmolarity was induced by the addition of 100 mM NaCl or sucrose to the culture medium. Hypoxia and oxidative stress were induced by the addition of the hypoxia mimetic CoCl2 and H2O2, respectively. Alterations in gene expression were determined with real-time RT-PCR. Secretion of bFGF was evaluated by ELISA. Cell viability was determined by trypan blue exclusion. Nuclear factor of activated T cell 5 (NFAT5) expression was knocked down with siRNA. Hyperosmolarity induced transcriptional activation of bFGF, HB-EGF, and VEGF genes, while the expression of other cytokines such as EGF, PDGF-A, TGF-β1, HGF, and PEDF was not or moderately altered. Hypoxia induced increased expression of the HB-EGF, EGF, PDGF-A, TGF-β1, and VEGF genes, but not of the bFGF gene. Oxidative stress induced gene expression of HB-EGF, but not of bFGF. The hyperosmotic expression of the bFGF gene was dependent on the activation of p38α/β MAPK, JNK, PI3K, and the transcriptional activity of NFAT5. The hyperosmotic expression of the HB-EGF gene was dependent on the activation of p38α/β MAPK, ERK1/2, and JNK. The hyperosmotic expression of bFGF, HB-EGF, and VEGF genes was reduced by inhibitors of TGF-β1 superfamily activin receptor-like kinase receptors and the FGF receptor kinase, respectively. Hyperosmolarity induced secretion of bFGF that was reduced by inhibition of autocrine/paracrine TGF-β1

  4. Block of AIDS-Kaposi's sarcoma (KS) cell growth, angiogenesis, and lesion formation in nude mice by antisense oligonucleotide targeting basic fibroblast growth factor. A novel strategy for the therapy of KS.

    PubMed Central

    Ensoli, B; Markham, P; Kao, V; Barillari, G; Fiorelli, V; Gendelman, R; Raffeld, M; Zon, G; Gallo, R C

    1994-01-01

    Kaposi's sarcoma (KS) is the most frequent tumor of HIV-1-infected individuals (AIDS-KS). Typical features of KS are proliferating spindle-shaped cells, considered to be the tumor cells of KS, and endothelial cells forming blood vessels. Basic fibroblast growth factor (bFGF), a potent angiogenic factor, is highly expressed by KS spindle cells in vivo and after injection in nude mice it induces vascular lesions closely resembling early KS in humans. Similar lesions are induced by inoculating nude mice with cultured spindle cells from AIDS-KS lesions (AIDS-KS cells) which produce and release bFGF. Here we show that phosphorothioate antisense (AS) oligonucleotides directed against bFGF mRNA (ASbFGF) inhibit both the growth of AIDS-KS cells derived from different patients and the angiogenic activity associated with these cells, including the induction of KS-like lesions in nude mice. These effects are due to the block of the production of bFGF which is required by AIDS-KS cells to enter the cell cycle and which, after release, mediates angiogenesis. The effects of ASbFGF are specific, dose dependent, achieved at low (0.1-1 microM), nontoxic, oligomer concentrations, and are reversed by the addition of bFGF to the cells, suggesting that ASbFGF oligomers are promising drug candidates for KS therapy. Images PMID:7525646

  5. Endothelial cells regulate β-catenin activity in adrenocortical cells via secretion of basic fibroblast growth factor.

    PubMed

    Schwafertz, Carolin; Schinner, Sven; Kühn, Markus C; Haase, Matthias; Asmus, Amelie; Mülders-Opgenoorth, Birgit; Ansurudeen, Ishrath; Hornsby, Peter J; Morawietz, Henning; Oetjen, Elke; Schott, Matthias; Willenberg, Holger S

    2017-02-05

    Endothelial cell-derived products influence the synthesis of aldosterone and cortisol in human adrenocortical cells by modulating proteins such as steroidogenic acute-regulatory (StAR) protein, steroidogenic factor (SF)-1 and CITED2. However, the potential endothelial cell-derived factors that mediate this effect are still unknown. The current study was perfomed to look into the control of β-catenin activity by endothelial cell-derived factors and to identify a mechanism by which they affect β-catenin activity in adrenocortical NCIH295R cells. Using reporter gene assays and Western blotting, we found that endothelial cell-conditioned medium (ECCM) led to nuclear translocation of β-catenin and an increase in β-catenin-dependent transcription that could be blocked by U0126, an inhibitor of the mitogen-activated protein kinase pathway. Furthermore, we found that a receptor tyrosin kinase (RTK) was involved in ECCM-induced β-catenin-dependent transcription. Through selective inhibition of RTK using Su5402, it was shown that receptors responding to basic fibroblast growth factor (bFGF) mediate the action of ECCM. Adrenocortical cells treated with bFGF showed a significant greater level of bFGF mRNA. In addition, HUVECs secrete bFGF in a density-dependent manner. In conclusion, the data suggest that endothelial cells regulate β-catenin activity in adrenocortical cells also via secretion of basic fibroblast growth factor.

  6. Ein Organic Computing Ansatz zur Steuerung einer sechsbeinigen Laufmaschine

    NASA Astrophysics Data System (ADS)

    Auf, Adam El Sayed; Larionova, Svetlana; Mösch, Florian; Litza, Marek; Jakimovski, Bojan; Maehle, Erik

    Obwohl die Rechengeschwindigkeit von Computern und die Komplexität unserer Systeme ständig zunimmt, sind die heutigen Laufmaschinen nicht in der Lage, sich mit den Fähigkeiten von Landtieren wie zum Beispiel Insekten zu messen. Das Verständnis biologischer Konzepte und das Lernen von der Natur könnten zur Verbesserung der heutigen Maschinen beitragen und sie ein wenig “lebensähnlicher“ machen. Dieser Artikel stellt einen Kontrollarchitekturansatz basierend auf “Organic Computing“-Prinzipien vor, der die Nutzung von Dezentralisierung und Selbstorganisation an einer sechsbeinigen Laufmaschine demonstriert. Die vorliegende Arbeit erklärt die elementaren Mechanismen für das gerade Laufen, das Kurvenlaufen sowie das Drehen auf der Stelle und den Umgang mit strukturellen körperlichen Änderungen wie einer Beinamputation und stellt die Ergebnisse experimenteller Versuche vor.

  7. Ein routine-integrierbares Planungswerkzeug zur operativen Rekonstruktion der Orbita

    NASA Astrophysics Data System (ADS)

    Kleiner, Melanie; Schulze, Dirk; Voss, Pit Jakob; Deserno, Thomas M.

    Bei Frakturen des Orbitabodens kann ein Titangitter zur Rekonstruktion operativ eingesetzt werden. In dieser Arbeit wird ein Planungswerkzeug entwickelt, welches mit Hilfe eines aktiven Konturmodells die Orbita in CT Daten segmentiert, ihr Volumen berechnet und visualisiert. Neben den technischen Integrationsstufen der Funktions- und Präsentationsintegration, welche durch den Einsatz des Medical Imaging Interaction Toolkit (MITK) erreicht werden, sowie der Daten-, und Kontextintegration ist vor allem die Stabilität der eingesetzten Algorithmik für die Routine-Integrierbarkeit wichtig. Erste Stabilitätsuntersuchungen basieren auf 3 von 100 zufällig ausgewählten CT-Datensätzen, wobei das Volumen mit je 50 verschiedenen Startpunkten berechnet wurde. Die so ermittelten Variationskoeffizienten liegen deutlich unterhalb der kritischen 5 % Schwelle.

  8. Serum factors involved in human microvascular endothelial cell morphogenesis.

    PubMed

    Harvey, Kevin; Siddiqui, Rafat A; Sliva, Daniel; Garcia, Joe G N; English, Denis

    2002-09-01

    Our previous studies have demonstrated that lipid and protein angiogenic factors operate in tandem to induce optimal angiogenic responses in vivo. This study was undertaken to clarify the nature of the substances in human serum that are responsible for its remarkable ability to promote capillary morphogenesis in vitro. The ability of dilute (2%) human serum to promote the morphogenic differentiation of human dermal microvascular endothelial cells on Matrigel supports was depleted by more than 50% by treatment of the serum with activated charcoal, a procedure that effectively removes biologically active lipid growth factors. The remainder of the activity within serum was lost on heating to 60 degrees C for 60 minutes, indicating the involvement of a protein in the response. The ability of charcoal-treated serum to promote capillary morphogenesis was completely restored by the addition of sphingosine 1-phosphate (SPP, 500 nmol/L), but other lipids thought to be released into serum during clotting were ineffective. In addition, basic fibroblast growth factor (bFGF) effectively restored the ability of heat-treated serum to promote endothelial cell morphogenesis, but other protein growth factors, including vascular endothelial growth factor and platelet-derived growth factor, were ineffective. Together, SPP and bFGF were as effective as whole serum in promoting capillary morphogenesis. Responses to purified SPP were entirely sensitive to the effects of preexposure of the cells to pertussis toxin, whereas responses to bFGF were entirely pertussis toxin-resistant. Consistent with our hypothesis that two distinct factors in serum play a role in promoting capillary morphogenesis, responses induced by serum were inhibited approximately 50% by preexposure of endothelial cells to pertussis toxin. We conclude that platelet-released SPP acts in conjunction with circulating bFGF to promote capillary formation by microvascular endothelial cells. Lipid and protein growth factors

  9. Epidermal growth factor enhances osteogenic differentiation of dental pulp stem cells in vitro.

    PubMed

    Del Angel-Mosqueda, Casiano; Gutiérrez-Puente, Yolanda; López-Lozano, Ada Pricila; Romero-Zavaleta, Ricardo Emmanuel; Mendiola-Jiménez, Andrés; Medina-De la Garza, Carlos Eduardo; Márquez-M, Marcela; De la Garza-Ramos, Myriam Angélica

    2015-09-03

    Epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) play an important role in extracellular matrix mineralization, a complex process required for proper bone regeneration, one of the biggest challenges in dentistry. The purpose of this study was to evaluate the osteogenic potential of EGF and bFGF on dental pulp stem cells (DPSCs). Human DPSCs were isolated using CD105 magnetic microbeads and characterized by flow cytometry. To induce osteoblast differentiation, the cells were cultured in osteogenic medium supplemented with EGF or bFGF at a low concentration. Cell morphology and expression of CD146 and CD10 surface markers were analyzed using fluorescence microscopy. To measure mineralization, an alizarin red S assay was performed and typical markers of osteoblastic phenotype were evaluated by RT-PCR. EGF treatment induced morphological changes and suppression of CD146 and CD10 markers. Additionally, the cells were capable of producing calcium deposits and increasing the mRNA expression to alkaline phosphatase (ALP) and osteocalcin (OCN) in relation to control groups (p < 0.001). However, bFGF treatment showed an inhibitory effect. These data suggests that DPSCs in combination with EGF could be an effective stem cell-based therapy for bone tissue engineering applications in periodontics and oral implantology.

  10. Role of endogenous basic fibroblast growth factor in stem cells isolated from human exfoliated deciduous teeth.

    PubMed

    Nowwarote, Nunthawan; Pavasant, Prasit; Osathanon, Thanaphum

    2015-03-01

    This study aimed to investigate the role of endogenous basic fibroblast growth factor (bFGF) in stem cells isolated from human exfoliated deciduous teeth. Cells were isolated from dental pulp tissues of human exfoliated deciduous teeth. The expression of stem cell markers was determined using conventional semi-quantitative polymerase chain reaction (PCR) and flow cytometry. The multipotential differentiation ability was also examined. The lentiviral shRNA or fibroblast growth factor receptor (FGFR) inhibitor was employed to inhibit bFGF mRNA expression and signal transduction, respectively. The colony formation ability was determined by low-density cell seeding protocol. The mRNA expression was evaluated using real-time quantitative PCR. The osteogenic differentiation was examined using alkaline phosphatase enzymatic activity assay and alizarin red staining. The results demonstrated that the cells isolated from human exfoliated deciduous teeth (SHEDs) exhibited stem cell characteristics, regarding marker expression and multipotential differentiation ability (osteogenic, adipogenic, and neurogenic lineage). The sh-bFGF transduced SHEDs had lower colony forming unit and higher mineralization than those of the control. Similarly, the decrease of colony number and the increase of mineral deposition were noted upon exposing cells to FGFR chemical inhibitor. These results imply that the endogenous bFGF may participate in the colony formation and osteogenic differentiation ability. In addition, the inhibition of bFGF signalling may be useful to enhance osteogenic differentiation of stem cells. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Intein mediated hyper-production of authentic human basic fibroblast growth factor in Escherichia coli

    PubMed Central

    Kwong, Keith W. Y.; Sivakumar, T.; Wong, W. K. R.

    2016-01-01

    Human basic fibroblast growth factor is a functionally versatile but very expensive polypeptide. In this communication, employing a novel amplification method for the target gene and genetic optimization of a previously engineered expression construct, pWK3R, together with a refined fed-batch fermentation protocol, we report an achievement of a phenomenal yield of 610 mg/L of the 146 aa authentic human basic fibroblast growth factor (bFGF) in Escherichia coli. Construct pWK3R was first modified to form plasmid pWK311ROmpAd, which was devoid of the ompA leader sequence and possessed two copies of a DNA segment encoding a fusion product comprising an intein, Saccharomyces cerevisiae vascular membrane ATPase (VMA), and bFGF. When E. coli transformant JM101 [pWK311ROmpAd] was cultivated using the refined fed-batch fermentation protocol, superb expression resulting in a total yield of 610 mg/L of bFGF was detected. Despite existing in high levels, the bFGF remained to be soluble and highly bioactive. PMID:27653667

  12. Basic fibroblast growth factor loaded polypropylene meshes in repair of abdominal wall defects in rats.

    PubMed

    Heybeli, T; Kulacoglu, H; Genc, V; Ergul, Z; Ensari, C; Kiziltay, A; Yilmazer, D; Serbetci, K; Hasirci, N

    2010-01-01

    Incisional hernia following laparotomy and recurrent herniation after its repair are still common problems in spite of mesh augmentation. The underlying biological mechanism may be related to collagen metabolism. Recently, some members of growth factors family have been tested in the prevention of wound failure and incisonal hernia formation. Growth factors may promote fibroblast proliferation and collagen deposition. In the present study, we searched the effects of basic fibroblast growth factor (bFGF) loaded polypropylene meshes in an incisional hernia model in rats. A total of 80 Wistar albino rats were randomly divided into five groups. A uniform surgical procedure was employed in all groups: a 5 cm skin incision was made at the midline and a full segment of the abdominal wall sized 3 x 2 cm was excised. Abdominal wall was closed with rapidly absorbable 3/0 catgut. Following this standard surgery, five different procedures were applied to the groups before closing the skin with 4/0 monofilament polypropylene sutures. Control subjects (Group 1) received no extra procedure after abdominal wall suturing. Polypropylene meshes were used in onlay position by fixing 4/0 monofimalent polypropylene interrupted sutures in other four groups. A standard mesh with no chemical treatment was used in Group 2. Gelatin coated meshes were used in Group 3, while Group 4 and 5 received bFGF loaded meshes with 1 microgram (microg) and 5 microg doses respectively. All the groups then divided into 1st month (early: E) and 2nd month (late: L) subgroups (n=8 each) according to sacrification dates. Tensiometric and histopathological evaluations were done. The specimens for histopathology were obtained from the interface area of the meshes and stained with hematoxylin and eosin, and also Masson trichrome. The variables were examined and evaluated by a single blinded pathologist under light microscopy in respect of inflammation, vascularization, fibroblast activity, collagen fibers and

  13. Alveolar bone regeneration using poly-(lactic acid-co-glycolic acid-co-ε-caprolactone) porous membrane with collagen sponge containing basic fibroblast growth factor: an experimental study in the dog.

    PubMed

    Matsumoto, Goichi; Hoshino, Jyunichi; Kinoshita, Yasuhiko; Sugita, Yoshihiko; Kubo, Katsutoshi; Maeda, Hatsuhiko; Ikada, Yoshito; Kinoshita, Yukihiko

    2012-11-01

    The aim of this study was to evaluate the effects of combining porous poly-lactic acid-co-glycolic acid-co-ε-caprolactone (PLGC) as a barrier membrane and collagen sponge containing basic fibroblast growth factor (bFGF) to promote bone regeneration in the canine mandible. In six beagle dogs, two lateral bone defects per side were created in the mandible. The lateral bone defects on the left side were treated with a PLGC membrane plus a collagen sponge containing bFGF. In half of these, the collagen sponge contained 50 µg of bFGF. In the other half, it contained 250 µg of bFGF. As a control, we treated the right-side bone defects in each animal with the same PLGC membrane but with a collagen sponge containing phosphate buffered saline. Computed tomography (CT) images were recorded at 3 and 6 months post-op to evaluate regeneration of the bone defects. After a healing period of 6 months, whole mandibles were removed for micro-CT and histological analyses. The post-op CT images showed that more bone had formed at all experimental sites than at control sites. At 3 months post-op, the volume of bone at defect sites covered with PLGC membrane plus 250 µg of bFGF was significantly greater than it was at defect sites covered with PLGC membrane plus 50 µg of bFGF. At 6 months post-op, however, this difference was smaller and not statistically significant. Micro-CT measurement showed that the volume of new bone regenerated at bone-defect sites, covered with PLGC membrane plus bFGF, was significantly greater than that of control sites. However, the presence or absence of bFGF in the collagen sponge did not significantly affect the bone density of new bone. These results suggest that the macroporous bioresorbable PLGC membrane plus collagen sponge containing bFGF effectively facilitates healing in GBR procedures.

  14. Comparison of Explant-Derived and Enzymatic Digestion-Derived MSCs and the Growth Factors from Wharton's Jelly

    PubMed Central

    Yoon, Jong Hyun; Roh, Eun Youn; Shin, Sue; Jung, Nam Hee; Song, Eun Young; Chang, Ju Young; Kim, Byoung Jae; Jeon, Hye Won

    2013-01-01

    Wharton's jelly is not only one of the most promising tissue sources for mesenchymal stem cells (MSCs) but also a source of natural growth factors. To prove that we can get both natural growth factors and MSCs from Wharton's jelly, we compared cellular characteristics and the level of basic fibroblast growth factor (bFGF) from samples using the explant culture method to those derived from the traditional enzymatic culture method. The levels of bFGF were 27.0 ± 11.7 ng/g on day 3, 15.6 ± 11.1 ng/g on day 6, and decreased to 2.6 ± 1.2 ng/g on day 14. The total amount of bFGF released was 55.0 ± 25.6 ng/g on explant culture. Compared with the traditional enzymatic digestion method, the explant culture method showed a tendency to release higher levels of bFGF in supernatant media for the first week of culture, and the higher cellular yield at passage 0 (4.89 ± 3.2 × 105/g versus 1.75 ± 2.2 × 105/g, P = 0.01). In addition, the genes related to mitosis were upregulated in the explant-derived MSCs. PMID:23653895

  15. Expression of growth factors in canine flexor tendon after laceration in vivo.

    PubMed

    Tsubone, Tetsu; Moran, Steven L; Amadio, Peter C; Zhao, Chunfeng; An, Kai-Nan

    2004-10-01

    Growth factors, transforming growth factor beta (TGF-beta), epidermal growth factor (EGF), platelet-derived growth factor (PDGF), insulin-like growth factor (IGF), basic fibroblast growth factor (bFGF), and vascular endothelial growth factor (VEGF), are critical components of the cutaneous wound healing process. Little is known, however, about the expression of these growth factors in normal flexor tendon healing. In this study, we wished to examine which of these growth factors are present at 10 days following tendon injury in a canine flexor tendon repair model. Using immunohistochemical analysis, we found positive staining for all growth factors in both timing groups. TGF-beta was detected around the repair site and proximal to it. PDGF-AA, PDGF-BB and VEGF appeared in the whole tendon section following repair. EGF, IGF and bFGF were not seen in tenocytes but were present in inflammatory cells surrounding the repair site. These findings provide evidence that TGF-beta, EGF, PDGF-AA, PDGF-BB, IGF, bFGF and VEGF are all expressed at 10 days after tendon injury but by different cell types and in different locations. The time course of growth factor expression is an important element in wound healing, and a better understanding of where and when such factors are expressed may help in the development of methods to manipulate this expression, accelerate healing, and reduce adhesions.

  16. Evaluation of additives required for periodontal disease formulation using basic fibroblast growth factor.

    PubMed

    Sato, Yasuhiko; Oba, Takuma; Natori, Nobuyuki; Danjo, Kazumi

    2010-12-01

    To design a suitable periodontal disease formulation using basic fibroblast growth factor (bFGF), legally available thickeners were evaluated focusing on their viscosity, extrusive force from a syringe, flow property and inertness to bFGF. Thirteen candidate thickeners showed appropriate viscosity (about 1×10⁴ mPa·s), and further evaluations were conducted on them. Flow property was evaluated by the tilting test tube method. As a result, most thickener solutions with the optimum viscosity showed appropriate flow time (about 100 s) and the flow time did not depend on thickener concentration, whereas the extrusive force from a syringe depended on thickener concentration despite the thickener type and grade. Thickener solutions of 2-3% showed ideal result (10-20 N) and thickener solutions prepared outside of the concentration range (2-3%) were found to show unsuitable extrusive force. Consequently, to obtain required properties for a dental drug formulation, thickener solutions needed to show adequate viscosity (about 1×10⁴ mPa·s) at 2-3% thickener concentration. In addition, several types of cellulose derivatives showed inertness to the bFGF because of their structure, without strong ionic dissociable groups, and neutral pH. Overall, the present work demonstrates that some water-soluble cellulose derivatives, such as hydroxypropylcellulose (HPC) and hydroxyethylcellulose (HEC), were suggested to have required properties for a dental drug formulation including bFGF.

  17. Acidic pH with coordinated reduction of basic fibroblast growth factor maintains the glioblastoma stem cell-like phenotype in vitro.

    PubMed

    Haley, Elizabeth M; Tilson, Samantha G; Triantafillu, Ursula L; Magrath, Justin W; Kim, Yonghyun

    2017-01-04

    Glioblastoma stem cells (GSCs) are a unique subpopulation of cells within glioblastoma multiforme (GBM) brain tumors that possess the ability to self-renew and differentiate into bulk tumor cells. GSCs are resistant to currently available treatments and are the likely culprit behind tumor relapse in GBM patients. However, GSCs are currently inaccessible to the larger scientific community because obtaining a sufficient number of GSCs remains technically challenging and cost-prohibitive. Thus, the objective of this study was to develop a more efficient GSC culture strategy that results in a higher cell yield of GSCs at a lower cost. We observed that the basic fibroblast growth factor (bFGF) is indispensable in allowing GSCs to retain an optimal stem cell-like phenotype in vitro, but little change was seen in their stemness when grown with lower concentrations of bFGF than the established protocol. Interestingly, a dynamic fluctuation of GSC protein marker expression was observed that corresponded to the changes in the bFGF concentration during the culture period. This suggested that bFGF alone did not control stem cell-like phenotype; rather, it was linked to the fluctuations of both bFGF and media pH. We demonstrated that a high level of stem cell-like phenotype could be retained even when lowering bFGF to 8 ng/mL when the media pH was simultaneously lowered to 6.8. These results provide the proof-of-concept that GSC expansion costs could be lowered to a more economical level and warrant the use of pH- and bFGF-controlled bioprocessing methodologies to more optimally expand GSCs in the future.

  18. Basic fibroblast growth factor activates β-catenin/RhoA signaling in pulmonary fibroblasts with chronic obstructive pulmonary disease in rats.

    PubMed

    Ge, Zhengxing; Li, Bo; Zhou, Xun; Yang, Yi; Zhang, Jun

    2016-12-01

    Chronic obstructive pulmonary disease (COPD) is featured by aberrant extracellular matrix (ECM) deposition. Trigger of the β-catenin/RhoA pathway has been involved in aberrant ECM deposition in several diseases. We investigated WNT signaling activation in primary pulmonary fibroblasts of rats with and without COPD and the function of WNT signaling in pulmonary fibroblast. We evaluated the expression of WNT signaling and the role of β-catenin, using MRC-5 fibroblasts and primary lung fibroblasts of rats with and without COPD. Lung fibroblasts highly expressed mRNA of genes associated with WNT signaling. Treatment of MRC-5 fibroblasts using basic fibroblast growth factor (bFGF), a composition of the mucus in COPD patients, enhanced β-catenin, Wnt5a and RhoA expression. The expression in β-catenin, Wnt5a and RhoA induced by bFGF was higher in fibroblasts of rats with COPD than without COPD, whereas the basal expression was similar. bFGF also activated transcriptionally active and increased total β-catenin protein expression. Moreover, bFGF enhanced the expression of α-sm-actin and fibronectin, which was abrogated by β-catenin, Wnt5a and RhoA-specific adenovirus siRNA. The induction of active β-catenin and then fibronectin turnover in response to bFGF were markedly increased in pulmonary fibroblasts from rat with COPD. β-Catenin/RhoA pathway results in ECM deposition in lung fibroblasts and myofibroblasts differentiation. β-catenin/RhoA signaling induced by bFGF is promoted in lung fibroblasts from rats with COPD. The study indicated a crucial role of the WNT signaling in mediating fibroblast morphology and function in COPD.

  19. Role of transiently altered sarcolemmal membrane permeability and basic fibroblast growth factor release in the hypertrophic response of adult rat ventricular myocytes to increased mechanical activity in vitro.

    PubMed Central

    Kaye, D; Pimental, D; Prasad, S; Mäki, T; Berger, H J; McNeil, P L; Smith, T W; Kelly, R A

    1996-01-01

    One of the trophic factors that has been implicated in initiating or facilitating growth in response to increased mechanical stress in several tissues and cell types is basic fibroblast growth factor (bFGF; FGF-2). Although mammalian cardiac muscle cells express bFGF, it is not known whether it plays a role in mediating cardiac adaptation to increased load, nor how release of the cytosolic 18-kD isoform of bFGF would be regulated in response to increased mechanical stress. To test the hypothesis that increased mechanical activity induces transient alterations in sarcolemmal permeability that allow cytosolic bFGF to be released and subsequently to act as an autocrine and paracrine growth stimulus, we examined primary isolates of adult rat ventricular myocytes maintained in serum-free, defined medium that were continually paced at 3 Hz for up to 5 d. Paced myocytes, but not nonpaced control cells, exhibited a "hypertrophic" response, which was characterized by increases in the rate of phenylalanine incorporation, total cellular protein content, and cell size. These changes could be mimicked in control cells by exogenous recombinant bFGF and could be blocked in continually paced cells by a specific neutralizing anti-bFGF antibody. In addition, medium conditioned by continually paced myocytes contained significantly more bFGF measured by ELISA and more mitogenic activity for 3T3 cells, activity that could be reduced by a neutralizing anti-bFGF antibody. The hypothesis that transient membrane disruptions sufficient to allow release of cytosolic bFGF occur in paced myocytes was examined by monitoring the rate of uptake into myocytes from the medium of 10-kD dextran linked to fluorescein. Paced myocytes exhibited a significantly higher rate of fluoresceinlabeled dextran uptake. These data are consistent with the hypothesis that nonlethal, transient alterations in sarcolemmal membrane permeability with release of cytosolic bFGF is one mechanism by which increased

  20. Fibroblast Growth Factor Receptor-2 Contributes to the Basic Fibroblast Growth Factor-Induced Neuronal Differentiation in Canine Bone Marrow Stromal Cells via Phosphoinositide 3-Kinase/Akt Signaling Pathway

    PubMed Central

    Nakano, Rei; Edamura, Kazuya; Nakayama, Tomohiro; Narita, Takanori; Okabayashi, Ken; Sugiya, Hiroshi

    2015-01-01

    Bone marrow stromal cells (BMSCs) are considered as candidates for regenerative therapy and a useful model for studying neuronal differentiation. The role of basic fibroblast growth factor (bFGF) in neuronal differentiation has been previously studied; however, the signaling pathway involved in this process remains poorly understood. In this study, we investigated the signaling pathway in the bFGF-induced neuronal differentiation of canine BMSCs. bFGF induced the mRNA expression of the neuron marker, microtubule associated protein-2 (MAP2) and the neuron-like morphological change in canine BMSCs. In the presence of inhibitors of fibroblast growth factor receptors (FGFR), phosphatidylinositol 3-kinase (PI3K) and Akt, i.e., SU5402, LY294002, and MK2206, respectively, bFGF failed to induce the MAP2 mRNA expression and the neuron-like morphological change. bFGF induced Akt phosphorylation, but it was attenuated by the FGFR inhibitor SU5402 and the PI3K inhibitor LY294002. In canine BMSCs, expression of FGFR-1 and FGFR-2 was confirmed, but only FGFR-2 activation was detected by cross-linking and immunoprecipitation analysis. Small interfering RNA-mediated knockdown of FGFR-2 in canine BMSCs resulted in the attenuation of bFGF-induced Akt phosphorylation. These results suggest that the FGFR-2/PI3K/Akt signaling pathway is involved in the bFGF-induced neuronal differentiation of canine BMSCs. PMID:26523832

  1. Effect of growth factors on nuclear and mitochondrial ADP-ribosylation processes during astroglial cell development and aging in culture.

    PubMed

    Spina Purrello, Vittoria; Cormaci, Gianfrancesco; Denaro, Luca; Reale, Salvatore; Costa, Antonino; Lalicata, Calogera; Sabbatini, Maurizio; Marchetti, Bianca; Avola, Roberto

    2002-03-15

    Epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), insulin-like growth factor-I (IGF-I) and insulin (INS) are powerful mitogens and may regulate gene expression in cultured astrocytes by ADP-ribosylation process. Nuclear poly-ADP ribose polymerase (PARP) and mitochondrial monoADP-ribosyltransferase (ADPRT) are the key enzymes involved in poly-ADP-ribosylation and mono ADP-ribosylation, respectively. In this investigation the effect of EGF, bFGF, IGF-I or INS on nuclear PARP and mitochondrial ADPRT activities were assessed in nuclei and mitochondria purified from developing (30 DIV) or aging (90 and 190 DIV) primary rat astrocyte cultures. A marked increase of PARP activity in bFGF or IGF-I treated astroglial cell cultures at 30 DIV was found. Nuclear PARP and mitochondrial ADPRT activities were greatly stimulated by treatment with EGF or INS alone or together in astrocyte cultures at 30 DIV. Nuclear PARP and mitochondrial ADPRT activities showed a more remarkable increase in control untreated astrocyte cultures at 190 DIV than at 90 DIV. These findings suggest that ADP-ribosylation process is involved in DNA damage and repair during cell differentiation and aging in culture. Twelve hours treatment with EGF, INS or bFGF significantly stimulated nuclear PARP and mitochondrial ADPRT activities in 190 DIV aging astrocyte cultures. The above results indicate that EGF, INS and bFGF may play a crucial role in the post-translational modification of chromosomal proteins including ADP-ribosylation process in in vitro models. This suggests that growth factors regulate genomic stability in glial cells during development and maturation, stimulating nuclear and mitochondrial ADP-ribosylation processes in developing or aging astrocyte cultures.

  2. Separation of the arterial wall from blood contact using hydrogel barriers reduces intimal thickening after balloon injury in the rat: The roles of medial and luminal factors in arterial healing

    PubMed Central

    West, Jennifer L.; Hubbell, Jeffrey A.

    1996-01-01

    The objective of this study was to clarify the relative roles of medial versus luminal factors in the induction of thickening of the arterial intima after balloon angioplasty injury. Platelet-derived growth factor (PDGF) and thrombin, both associated with thrombosis, and basic fibroblast growth factor (bFGF), stored in the arterial wall, have been implicated in this process. To unequivocally isolate the media from luminally derived factors, we used a 20-μm thick hydrogel barrier that adhered firmly to the arterial wall to block thrombus deposition after balloon-induced injury of the carotid artery of the rat. Thrombosis, bFGF mobilization, medial repopulation, and intimal thickening were measured. Blockade of postinjury arterial contact with blood prevented thrombosis and dramatically inhibited both intimal thickening and endogenous bFGF mobilization. By blocking blood contact on the two time scales of thrombosis and of intimal thickening, and by using local protein release to probe, by reconstitution, the individual roles of PDGF-BB and thrombin, we were able to conclude that a luminally derived factor other than PDGF or thrombin is required for the initiation of cellular events leading to intimal thickening after balloon injury in the rat. We further conclude that a luminally derived factor is required for mobilization of medial bFGF. PMID:8917566

  3. Repair of mandibular defects by bone marrow stromal cells expressing the basic fibroblast growth factor transgene combined with multi-pore mineralized Bio-Oss.

    PubMed

    Yang, Chunyan; Liu, Yang; Li, Chunming; Zhang, Bin

    2013-01-01

    The aim of the present study was to evaluate the effect of combining Bio‑Oss with bone marrow stromal cells (BMSCs) transfected with the basic fibroblast growth factor (bFGF) gene on bone regeneration during mandibular distraction of rabbits. BMSCs obtained from rabbits were transfected with bFGF gene‑encoding plasmids and proliferation rate and the differentiation marker alkaline phosphatase activity were measured. Following seeding into Bio‑Oss collagen and 9‑day culture in vitro, the surface morphology of the Bio‑Oss was assessed using scanning electron microscopy analysis. Three mandibular defects were induced in the lower border of the bilateral mandibular ramus in each New Zealand white rabbit (total n=6). Three scaffolds, group A (seeded with BMSCs/bFGF), B (seeded with BMSCs/pVAX1) and C (cell‑free), which had been cultured in vitro under standard cell culture conditions for 18 days, were implanted into mandibular defects under sterile conditions. Animals were sacrificed by anesthesia overdose 12 weeks following surgery and the scaffolds were extracted for bone mineral density and histological analyses. Results indicate that bFGF was successfully transfected into BMSCs. Proliferation and osteoblast differentiation of BMSCs were stimulated by bFGF in vitro. No differences were identified in surface morphology for Bio‑Oss loaded with variable groups of cells. At week 12 following implantation of Bio‑Oss scaffolds, mineralization of BMSCs in Bio‑Oss scaffolds was observed to be increased by bFGF. New bone and cartilage formation was revealed in hematoxylin and eosin‑stained sections in Bio‑Oss scaffolds and was most abundant in group A (BMSCs transfected with bFGF). In the current study, the bFGF gene was transfected into BMSCs and expressed successfully. bFGF promoted proliferation and differentiation of BMSCs in vitro and implantation of bFGF‑expressing BMSCs combined with Bio‑Oss enhanced new bone regeneration more

  4. Basic fibroblast growth factor increases collateral blood flow in spontaneously hypertensive rats.

    PubMed

    Srivastava, Sunita; Terjung, Ronald L; Yang, H T

    2003-09-01

    Ischemia-induced angiogenic response is reduced in spontaneously hypertensive rats (SHR). To study whether exogenous basic fibroblast growth factor (bFGF) infusion is effective in expanding collateral circulation in frankly hypertensive SHR, femoral arteries of male SHR (weighing approximately 250 g) were kept intact (nonoccluded control; n = 9) or occluded for 4h(n = 12) or for 16 days with vehicle (n = 14) or bFGF [0.5 (n = 17), 5.0 (n = 13), and 50.0 (n = 14) microg. kg-1. day-1 for 14 days] intraarterially. Maximal collateral-dependent blood flows (BF) to the hindlimbs were determined with 85Sr- and 141Ce-labeled microspheres during running at 20 and 25 m/min (15% grade). Preexercise heart rates (approximately 530 beats/min) and blood pressures (BP; approximately 200 mmHg) were similar across groups except in the high-dose bFGF group, where BP was reduced by approximately 12% (P < 0.05). Femoral artery occlusion for 4 h resulted in approximately 95% reduction of BF in calf muscles [199 +/- 18.7 (nonoccluded group) to 10 +/- 1.0 ml. min-1. 100 g-1; P < 0.001]. BF to calf muscles of the vehicle and low-dose bFGF (0.5 microg. kg-1. day-1) groups increased to 36 +/- 3.2 and 45 +/- 2.0 ml. min-1. 100 g-1, respectively (P < 0.001). bFGF infusion at 5.0 and 50.0 microg. kg-1. day-1 further increased (P < 0.001) BF to calf muscles (62 +/- 4.6 and 62 +/- 2.2 ml. min-1. 100 g-1, respectively). Our results show that bFGF can effectively increase BF in hypertensive rats. The reduced hypertension with high-dose bFGF suggests that a critical signal in arteriogenesis (nitric oxide bioavailability) may be restored. These findings suggest that the dulled endothelial nitric oxide synthase of SHR does not preempt collateral vessel remodeling.

  5. Effect of early administration of exogenous basic fibroblast growth factor on acute edematous pancreatitis in rats

    PubMed Central

    Yan, Qiang; Yao, Xing; Dai, Li-Cheng; Zhang, Guo-Lei; Ping, Jin-Liang; He, Jian-Fang; Han, Chun-Fan

    2006-01-01

    AIM: To observe the therapeutic effect of early administration of exogenous Basic fibroblast growth factor (bFGF) on acute edematous pancreatitis (AEP) in rats. METHODS: Thirty male Sprague-Dawley rats were randomly divided into three (n = 10): normal control group (group I), AEP group (group II) and AEP with bFGF treatment group (group III). AEP was induced by subcutaneous injection of cerulein (5.5 μg/kg and 7.5 μg/kg) at 1 h interval into rats of groups II and III. Three hours after induction of AEP, 100 μg/kg bFGF was administrated intraperitoneally for 1h to group III rats. For test of DNA synthesis in acinar cells, 5-bromo-2’-deoxyuridine (BrdU) labeling solution was intraperitoneally injected into the rats of groups II and III 24 h after bFGF treatment. The changes in serum amylase, lipase, pancreatic tissue wet/dry ratio were detected. RESULTS: In bFGF treatment group, there was a significant decrease in the volume of serum amylase, lipase and the pancreatic wet/dry weight ratio(1383.0 ± 94.6 U/L, 194.0 ± 43.6 U/L, 4.32 ± 0.32) compared to AEP group (3464 ± 223.7 U/L, 456 ±68.7 U/L, 6.89 ± 0.47) (P < 0.01), and no significant difference was found between bFGF treatment and control group (1289 ± 94.0 U/L, 171 ± 23.4 U/L, 4.12 ± 0.26, P > 0.05). The inflammatory changes such as interstitial edema, polymorphonuclear neutrophils (PMNs) and vacuolization were significantly ameliorated compared to AEP group (P < 0.01). A small number of BrdU-labeled nuclei were observed in acinar cells of AEP rats (1.8 ± 0.3 nuclei/microscopic field, n = 10) while diffuse BrdU-labeled nuclei were found in bFGF-treated rats (18.9 ± 1.4 nuclei/microscopic field, n = 10) (P < 0.01). Immunohistochemical study showed increased DNA synthesis in pancreatic acinar cells. CONCLUSION: Early administration of exogenous bFGF has significant therapeutic effect on cerulein-induced acute edematous pancreatitis in rats. Its mechanism is related to the amelioration of inflammation

  6. MFG-E8 Reprogramming of Macrophages Promotes Wound Healing by Increased bFGF Production and Fibroblast Functions.

    PubMed

    Laplante, Patrick; Brillant-Marquis, Frédéric; Brissette, Marie-Joëlle; Joannette-Pilon, Benjamin; Cayrol, Romain; Kokta, Victor; Cailhier, Jean-François

    2017-09-01

    Macrophages are essential for tissue repair. They have a crucial role in cutaneous wound healing, participating actively in the inflammation phase of the process. Unregulated macrophage activation may, however, represent a source of excessive inflammation, leading to abnormal wound healing and hypertrophic scars. Our research group has shown that apoptotic endothelial and epithelial cells secrete MFG-E8, which has the ability to reprogram macrophages from an M1 (proinflammatory) to an M2 (anti-inflammatory, pro-repair) phenotype. Hence, we tested whether modulation of macrophage reprogramming would promote tissue repair. Using a mouse model of wound healing, we showed that the presence and/or addition of MFG-E8 favors wound closure associated with an increase in CD206-positive cells and basic fibroblast growth factor production in healing tissues. More importantly, adoptive transfer of ex vivo MFG-E8-treated macrophages promoted wound closure. We also observed that MFG-E8-treated macrophages produced basic fibroblast growth factor that is responsible for fibroblast migration and proliferation. Taken together, our results strongly suggest that MFG-E8 plays a key role in macrophage reprogramming in tissue healing through induction of an anti-inflammatory M2 phenotype and basic fibroblast growth factor production, leading to fibroblast migration and wound closure. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Effect of interferon alpha and ribavirin treatment on serum levels of transforming growth factor-β1, vascular endothelial growth factor, and basic fibroblast growth factor in patients with chronic hepatitis C

    PubMed Central

    Janczewska-Kazek, Ewa; Marek, Bogdan; Kajdaniuk, Dariusz; Borgiel-Marek, Halina

    2006-01-01

    AIM: To assess the role of transforming growth factor-β1 (TGF-β1), vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) in the pathogenesis of fibrosis associated with chronic hepatitis C (CHC) and to evaluate the influence of the antiviral therapy on above parameter levels depending on the treatment results (complete response or no response). METHODS: Study group included 100 patients with CHC, in whom fibrosis in liver specimens was assessed (Scheuer fibrosis score: 1-4 points). Control group included 30 subjects with antibodies anti-HCV present and persistently normal ALT level, without fibrosis (Scheuer fibrosis score: 0 points). Concentration of studied parameters was assayed in the serum by immunoenzymatic method before and after the therapy with interferon alpha-2b and ribavirin. RESULTS: TGF-β1 levels were significantly higher in the study group compared to the control group (35.89 vs 32.37 ng/mL; P = 0.023). Such differences were not found in VEGF and bFGF levels. In patients showing complete response (negative HCV RNA and normal ALT level), significant increase in VEGF (112.8 vs 315.03 pg/mL; P < 0.05) and bFGF (2.51 vs 15.79 pg/mL; P = 0.04) levels were found. Significant decrease in TGF-β1 level was observed both in responders (37.44 vs 30.02 ng/mL; P=0.05), and in non-responders (38.22 vs 30.43 ng/mL; P = 0.043). bFGF levels before the treatment were significantly lower (2.51 vs 5.94 pg/mL; P = 0.04), and after the treatment significantly higher (15.79 vs 4.35 pg/mL; P = 0.01) in patients with complete response than in those with no response. CONCLUSION: Among the analyzed parameters TGF-β1 seems to play the most important role in the pathogenesis of fibrosis in CHC. Levels of this factor are significantly lower in subjects who do not have fibrosis developed in them. Good therapeutic effect in CHC patients is associated with significant changes in TGF-β1, VEGF, and bFGF levels. bFGF seems to

  8. Healing with basic fibroblast growth factor is associated with reduced indomethacin induced relapse in a human model of gastric ulceration.

    PubMed Central

    Hull, M A; Knifton, A; Filipowicz, B; Brough, J L; Vautier, G; Hawkey, C J

    1997-01-01

    BACKGROUND: Acid stable basic fibroblast growth factor (bFGF) promotes angiogenesis and healing of gastric ulcers in rats and reduces subsequent non-steroidal anti-inflammatory drug (NSAID) induced relapse. AIMS: To test in a double blind, placebo controlled, three way crossover study whether bFGF promotes healing and reduces subsequent relapse in a human model of gastric ulceration. SUBJECTS: Twelve healthy volunteers. METHODS: Subjects took aspirin 900 mg twice daily (days 1-3) with bFGF 0.1 mg twice daily or cimetidine 400 mg twice daily or placebo (days 1-14) and then indomethacin 50 mg thrice daily (days 15-21). Endoscopy was performed on days 1, 4, 8, 15, and 22 during each treatment period. Eight antral biopsy specimens were taken on day 1 and the number of unhealed biopsy induced mini-ulcers and NSAID induced erosions counted during subsequent endoscopies. RESULTS: Basic FGF and cimetidine were protective against aspirin and indomethacin induced duodenal (but not gastric) injury compared with placebo. There was significant relapse of biopsy induced mini-ulcers after indomethacin only in the placebo group (0 (0-0) before v 1 (0-4.5) after; p > 0.05). TGP-580 was detected in serum of one volunteer. CONCLUSIONS: Healing with bFGF (and cimetidine) was associated with reduced NSAID induced ulcer relapse in this model of gastric ulceration. PMID:9071932

  9. Platelet-Rich Plasma with Basic Fibroblast Growth Factor for Treatment of Wrinkles and Depressed Areas of the Skin.

    PubMed

    Kamakura, Tatsuro; Kataoka, Jiro; Maeda, Kazuhiko; Teramachi, Hideaki; Mihara, Hisayuki; Miyata, Kazuhiro; Ooi, Kouichi; Sasaki, Naomi; Kobayashi, Miyuki; Ito, Kouhei

    2015-11-01

    There are several treatments for wrinkles and depressed areas of the face, hands, and body. Hyaluronic acid is effective, but only for 6 months to 1 year. Autologous fat grafting may cause damage during tissue harvest. In this study, patients were injected with platelet-rich plasma plus basic fibroblast growth factor (bFGF). Platelet-rich plasma was prepared by collecting blood and extracting platelets using double centrifugation. Basic fibroblast growth factor diluted with normal saline was added to platelet-rich plasma. There were 2005 patients who received platelet-rich plasma plus bFGF therapy. Of the 2005 patients treated, 1889 were female and 116 were male patients; patients had a mean age of 48.2 years. Treated areas inlcuded 1461 nasolabial folds, 437 marionette lines, 1413 nasojugal grooves, 148 supraorbital grooves, 253 midcheek grooves, 304 foreheads, 49 temples, and 282 glabellae. Results on the Global Aesthetic Improvement Scale indicated that the level of patient satisfaction was 97.3 percent and the level of investigator satisfaction was 98.4 percent. The period for the therapy's effectiveness to become apparent was an average of 65.4 days. Platelet-rich plasma plus bFGF therapy resulted in an improved grade on the Wrinkle Severity Rating Scale. Improvement was 0.55 for a Wrinkle Severity Rating Scale grade of 2, 1.13 for a Wrinkle Severity Rating Scale grade of 3, 1.82 for a Wrinkle Severity Rating Scale grade of 4, and 2.23 for a Wrinkle Severity Rating Scale grade of 5. Platelet-rich plasma plus bFGF is effective in treating wrinkles and depressed areas of the skin of the face and body. The study revealed that platelet-rich plasma plus bFGF is an innovative therapy that causes minimal complications. Therapeutic, IV.

  10. Eine selbstkonsistente Carleman Linearisierung zur Analyse von Oszillatoren

    NASA Astrophysics Data System (ADS)

    Weber, Harry; Mathis, Wolfgang

    2017-09-01

    Die Analyse nichtlinearer dynamischer Schaltungen ist bis heute eine herausfordernde Aufgabe, da nur selten analytische Lösungen angegeben werden können. Daher wurden eine Vielzahl von Methoden entwickelt, um eine qualitative oder quantitative Näherung für die Lösungen der Netzwerkgleichung zu erhalten. Oftmals wird beispielsweise eine Kleinsignalanalyse mit Hilfe einer Taylorreihe in einem Arbeitspunkt durchgeführt, die nach den Gliedern erster Ordnung abgebrochen wird. Allerdings ist diese Linearisierung nur in der Nähe des stabilen Arbeitspunktes für hyperbolische Systeme gültig. Besonders für die Analyse des dynamischen Verhaltens von Oszillatoren treten jedoch nicht-hyperbolische Systeme auf, sodass diese Methode nicht angewendet werden kann Mathis(2000). Carleman hat gezeigt, dass nichtlineare Differentialgleichungen mit polynomiellen Nichtlinearitäten in ein unendliches System von linearen Differentialgleichungen transformiert werden können Carleman(1932). Wird das unendlichdimensionale Gleichungssystem für numerische Zwecke abgebrochen, kann bei Oszillatoren der Übergang in eine stationäre Schwingung (Grenzzyklus) nicht wiedergegeben werden.

    In diesem Beitrag wird eine selbstkonsistente Carleman Linearisierung zur Untersuchung von Oszillatoren vorgestellt, die auch dann anwendbar ist, wenn die Nichtlinearitäten keinen Polynomen entsprechen. Anstelle einer linearen Näherung um einen Arbeitspunkt, erfolgt mit Hilfe der Carleman Linearisierung eine Approximation auf einem vorgegebenen Gebiet. Da es jedoch mit der selbstkonsistenten Technik nicht möglich ist, das stationäre Verhalten von Oszillatoren zu beschreiben, wird die Berechnung einer Poincaré-Abbildung durchgeführt. Mit dieser ist eine anschließende Analyse des Oszillators möglich.

  11. Basic fibroblast growth factor promotes stem Leydig cell development and inhibits LH-stimulated androgen production by regulating microRNA expression.

    PubMed

    Liu, Hui; Yang, Yan; Zhang, Lei; Liang, Rui; Ge, Ren-Shan; Zhang, Yufei; Zhang, Qihao; Xiang, Qi; Huang, Yadong; Su, Zhijian

    2014-10-01

    Leydig cells are the primary source of testosterone in the testes, and their steroidogenic function is strictly controlled by the hypothalamus-pituitary-gonad axis. Emerging evidence has indicated that fibroblast growth factors play a role in regulating stem Leydig cell development and steroidogenesis, but little is known about the regulatory mechanism. Using a seminiferous tubule culture system, we demonstrated that basic fibroblast growth factor (bFGF) can promote stem Leydig cell proliferation and commitment toward differentiation in testosterone-producing Leydig cells. However, these promoting effects decreased with an increase in the bFGF dose. Previous studies have reported that bFGF inhibits luteinizing hormone (LH)-stimulated androgen production by downregulating the mRNA expression of steroidogenic genes in immature Leydig cells. However, the expression levels of 677 microRNAs did not change significantly during the LH-mediated process of testosterone synthesis. Five microRNAs (miR-29a, -29c, -142-3p, -451 and -335) were identified, and their expression in immature Leydig cells was regulated simultaneously by bFGF and LH. These results suggested that the inhibition of LH-stimulated androgen production may be modulated by a change in bFGF-mediated microRNA expression, which further impacts the signaling pathway of testosterone biosynthesis and steroidogenic gene expression.

  12. Expression of bone morphogenetic protein, vascular endothelial growth factor, and basic fibroblast growth factor in irradiated mandibles during distraction osteogenesis.

    PubMed

    Zhang, Wen Biao; Zheng, Li Wu; Chua, Daniel Tsin Tien; Cheung, Lim Kwong

    2011-11-01

    The present study evaluated the expression of bone morphogenetic proteins (BMPs)-2, -4, -7, vascular endothelial growth factor (VEGF), and basic fibroblast growth factor (bFGF) in irradiated mandibles during distraction osteogenesis. A total of 24 rabbits were randomly assigned to the control and experimental groups. Each rabbit in the experimental group underwent preoperative radiation to 9 Gy in 5 fractions. After 1 month, all rabbits underwent osteotomy and distraction osteogenesis with 7 days of latency. Three rabbits in the control and experimental groups were killed at day 7 (end of the latency period), day 12 (middle of active distraction), day 18 (end of active distraction), and day 25 (1 week after consolidation). The specimens were used for immunohistochemical staining and real-time polymerase chain reaction analysis. Histologically, at day 25, cortical bone formation was much better in the control group than in the radiotherapy group. In the radiotherapy group, the bone spicules were aligned in the direction of tension stress. At day 12, the expression of BMP-2, -4, and -7 was elevated in the radiotherapy group compared with the control group. At day 25, the expression of BMP-2 was significantly greater in the radiotherapy group. At day 7, the expression of bFGF was significantly suppressed in the radiotherapy group. At day 12, the expression of bFGF and VEGF was significantly elevated in the radiotherapy group compared with the control group. At day 25, the expression of VEGF was significantly greater in the radiotherapy group. The results of our study have shown that radiotherapy changes the expression pattern of BMPs, VEGF, and bFGF. Copyright © 2011. Published by Elsevier Inc.

  13. Effects of insulin-like growth factor 1 and basic fibroblast growth factor on the morphology and proliferation of chondrocytes embedded in Matrigel in a microfluidic platform.

    PubMed

    Li, Yuancheng; Fan, Qinbo; Jiang, Yong; Gong, Fuliang; Xia, Honggang

    2017-09-01

    An integrated microfluidic device was utilized in the present study to investigate the morphology and proliferation of rabbit articular chondrocytes embedded in Matrigel in the presence of insulin-like growth factor 1 (IGF-1) and/or basic fibroblast growth factor (bFGF). The microfluidic device was composed of two parallel channels and a central perfusion-based three-dimensional cell culture module. The rabbit chondrocytes were cultured for 2 weeks at series of concentration gradients of IGF-1 and/or bFGF, which were generated through a diffusion process. At the end of the experiment, the morphology and quantity of cells were measured. Since high expression of collagen II is essential to the function of hyaline cartilage, immunofluorescent images of collagen II expression prior to and after the experiments were gathered for each group. The mean fluorescence intensity ratio (MIR) of collagen II in each group was calculated. The MIRs of collagen II in chondrocytes treated with IGF-1 ranged from 0.6-0.81, those in the cells treated with bFGF ranged from 0.47-0.52, and those in cells treated with a combination of IGF-1 and bFGF ranged from 0.63-0.83. Chondrocyte aggregations were observed in the group treated with 75-100 ng/ml IGF-1 (3.46-fold proliferation ratio). Similarly, a 3.83-fold proliferation ratio was identified in chondrocytes treated with 2.5-5.0 ng/ml bFGF. The group treated with 50-75 ng/ml IGF-1 and 2.5-5.0 ng/ml bFGF exhibited the optimum increase in proliferation (4.83-fold proliferation ratio). The microfluidic device used in the present study can be easily adapted to investigate other growth factors at any concentration gradient. In addition, parallel experiments can be performed simultaneously with a small quantity of cells, making it an attractive platform for the high-throughput screening of cell culture parameters. This platform will aid in the optimization of culture conditions for the in vitro expansion of chondrocytes while maintaining their

  14. Suppression of Helicobacter pylori protease activity towards growth factors by sulglycotide.

    PubMed

    Piotrowski, J; Slomiany, A; Slomiany, B L

    1997-09-01

    Infection with H. pylori is now recognized as a major factor in the pathogenesis of gastric disease. Here, we examined the susceptibility of epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), transforming growth factor-beta (TGF beta) and platelet derived growth factor (PDGF) to degradation by H. pylori protease, and assessed the effect of a cytoprotective agent, sulglycotide, on this process. The 125I-labeled EGF, bFGF, TGF beta and PDGF were incubatet with H. pylori protease, obtained from the filtrates of saline washes of the bacterium culture, in the presence of 0-100 micrograms sulglycotide. The results showed that, under the assay conditions, H. pylori protease caused only 5% degradation of EGF and 7% degradation of bFGF. However, the protease evoked a 61.7% degradation of PDGF and a 62.3% degradation of TGF beta. Introduction of sulglycotide to the reaction assay system caused a dose-dependent inhibition in PDGF and TGF beta proteolysis by the H. pylori enzyme. The maximal inhibitory effect was obtained with sulglycotide at 100 micrograms/ml, at which dose an 84.4% decrease in PDGF and 88.3% decrease in TGF beta degradation was achieved. The results provide a strong evidence for the effectiveness of sulglycotide in the protection of gastric mucosal growth factors against degradation by H. pylori.

  15. Optimal Amount of Basic Fibroblast Growth Factor in Gelatin Sponges Incorporating β-Tricalcium Phosphate with Chondrocytes

    PubMed Central

    Otani, Yushi; Komura, Hiroko; Ishimaru, Tetsuya; Konishi, Kenichiro; Komuro, Hiroaki; Hoshi, Kazuto; Takato, Tsuyoshi; Tabata, Yasuhiko; Iwanaka, Tadashi

    2015-01-01

    Background: A gelatin sponge with slowly releasing basic fibroblast growth factor (b-FGF) enhances chondrogenesis. This study investigated the optimal amount of b-FGF in gelatin sponges to fabricate engineered cartilage. Materials and Methods: b-FGF (0, 10, 100, 500, 1000, and 2000 μg/cm3)-impregnated gelatin sponges incorporating β-tricalcium phosphate (β-TCP) were produced. Chondrocytes were isolated from the auricular cartilage of C57B6J mice and expanded. The expanded auricular chondrocytes (10×106 cells/cm3) were seeded onto the gelatin sponges, which served as scaffolds. The construct assembly was implanted in the subcutaneous space of mice through a syngeneic fashion. Thereafter, constructs were retrieved at 2, 4, or 6 weeks. Results: (1) Morphology: The size of implanted constructs was larger than the size of the scaffold with 500, 1000, and 2000 μg/cm3 b-FGF-impregnated gelatin sponges incorporating β-TCP at 4 and 6 weeks after implantation. (2) The weight of the constructs increased roughly proportional to the increase in volume of the b-FGF-impregnated scaffold at 2, 4, and 6 weeks after implantation, except in the 2000 μg/cm3 b-FGF-impregnated constructs group. (3) Histological examination: Extracellular matrix in the center of the constructs was observed in gelatin sponges impregnated with more than 100 μg/cm3 b-FGF at 4 weeks after implantation. The areas of cells with an abundant extracellular matrix were positive for cartilage-specific marker type 2 collagen in the constructs. (4) Protein assay: Glycosaminoglycan and collagen type 2 expression were significantly increased at 4 and 6 weeks on implantation of gelatin sponges impregnated with more than 100 μg/cm3 b-FGF. At 6 weeks after implantation, the ratio of type 2 collagen to type 1 collagen in constructs impregnated with 100 μg/cm3 or more b-FGF was higher than that in mice auricular cartilage. Conclusion: Gelatin sponges impregnated with more than 100 μg/cm3 b-FGF

  16. Use of Decellularized Scaffolds Combined with Hyaluronic Acid and Basic Fibroblast Growth Factor for Skin Tissue Engineering

    PubMed Central

    Wu, Zhengzheng; Fan, Lina; Xu, Bin; Lin, Yongliang; Zhang, Peng

    2015-01-01

    Skin damage is one of the common clinical skin diseases, and the main cure is the use of skin graft, especially for large area of skin injury or deep-skin damage. However, skin graft demand is far greater than that currently available. In this study, xenogeneic decellularized scaffold was prepared with pig peritoneum by a series of biochemical treatments to retain normal three-dimensional tissue scaffold and remove cells and antigenic components from the tissue. Scaffold was combined with hyaluronic acid (HA) plus two different concentrations of basic fibroblast growth factor (bFGF) and tested for its use for the repair of skin wounds. HA enhanced bFGF to adsorb to the decellularized scaffolds and slowed the release of bFGF from the scaffolds in vitro. A total of 20 rabbits were sacrificed on day 3, 6, 11, or 14 postsurgery. The wound healing rate and the thickness of dermis layer of each wound were determined for analyzing the wound repair. Statistical analysis was performed by the two-tailed Student's t-test. Wounds covered with scaffolds containing 1 μg/mL bFGF had higher wound healing rates of 47.24%, 74.69%, and 87.54%, respectively, for days 6, 11, and 14 postsurgery than scaffolds alone with wound healing rates of 28.17%, 50.31%, and 61.36% and vaseline oil gauze with wound healing rates of 24.84%, 42.75%, and 57.62%. Wounds covered with scaffolds containing 1 μg/mL bFGF showed more dermis regeneration than the other wounds and had dermis layer of 210.60, 374.40, and 774.20 μm, respectively, for days 6, 11, and 14 postsurgery compared with scaffolds alone with dermis layer of 116.60, 200.00, and 455.40 μm and vaseline oil gauze with dermis layer of 82.60, 186.20, and 384.40 μm. There was no significant difference in wound healing rates and thickness of dermis layer between wounds covered with scaffolds containing 1 and 3 μg/mL bFGF on days 3, 6, 11, and 14 postsurgery. The decellularized scaffolds combined with HA and bFGF can be further

  17. bFGF and Activin A function to promote survival and proliferation of single iPS cells in conditioned half-exchange mTeSR1 medium.

    PubMed

    Guo, Xiaoling; Lian, Ruiling; Guo, Yonglong; Liu, Qing; Ji, Qingshan; Chen, Jiansu

    2015-07-01

    Human induced pluripotent stem (iPS) cells can be well maintained by clonal growth. The pluripotent growth of single iPS cells is limited by low survival. To facilitate robust single iPS cells cultured in vitro, half-exchange mTeSR1 medium (HM), whole-exchange medium (WM) and iPS cell-derived conditioned medium (iPS-CM) culture were used. The effects of bFGF and Activin A on the growth of single iPS cells were explored. The dissociation and propagation of single iPS cells also included Accutase enzymatic isolation, Rho-associated protein kinase (ROCK) inhibitor Y27632 protection and high-density single-cell seeding (1 × 10(6) cells/well). CCK-8 assays demonstrated that the viability of clonal iPS cells in mTeSR1 medium and single iPS cells in HM, iPS-CM or WM supplemented with 100 ng/ml bFGF and 10 ng/ml Activin A was significantly higher than that in WM. Annexin v and propidium iodide (PI) assay, Calcein AM and EthD-III double staining also confirmed the similar results. ELISA assays showed that the levels of bFGF and Activin A of single iPS cells in HM and iPS-CM were higher than single iPS cells in WM. Meanwhile, Reverse Transcription-Polymerase Chain Reaction (RT-PCR), quantitative Polymerase Chain Reaction (qPCR), Western Blotting (WB), Immunofluorescence (IF) and karyotype analysis revealed that HM culture was able to maintain undifferentiated markers of Nanog, Klf4, Sox2, Oct4, and did not affect the karyotype of iPS cells. Undifferentiated single iPS cells in HM displayed homogenized growth. These findings demonstrate that bFGF and Activin A are important for the survival and growth of single iPS cells. HM culture system combined Accutase, Y27632 and high-density single-cell seeding can facilitate short-term growth of single iPS cells in vitro.

  18. CORNEAL ANGIOGENIC PRIVILEGE: ANGIOGENIC AND ANTIANGIOGENIC FACTORS IN CORNEAL AVASCULARITY, VASCULOGENESIS, AND WOUND HEALING (AN AMERICAN OPHTHALMOLOGICAL SOCIETY THESIS)

    PubMed Central

    Azar, Dimitri T.

    2006-01-01

    Purpose To determine the molecular basis of corneal avascularity during wound healing and determine the role of angiogenic and antiangiogenic factors in corneal vasculogenesis. Methods The expression of proangiogenic factors (vascular endothelial growth factor [VEGF]; basic fibroblast growth factor [bFGF]; matrix metalloproteinase-2 [MMP-2]; and membrane-type 1-MMP [MT1-MMP]) and antiangiogenic factors (pigment epithelium–derived factor [PEDF]; angiostatin; restin; and endostatin) was analyzed in avascular corneas and in models of corneal neovascularization (bFGF pellet implantation, intrastromal injection of MT1-MMP cDNA, and surgically induced partial limbal deficiency). Results Immunohistochemistry demonstrated the presence of antiangiogenic factors (PEDF, angiostatin, restin, and endostatin) and proangiogenic molecules (VEGF, bFGF, MMP-2, and MT1-MMP) in the cornea after wounding. Proangiogenic MMPs were upregulated in stromal fibroblasts in the vicinity of invading vessels following bFGF pellet implantation. Corneal neovascularization (NV) was also induced by intrastromal injection of MT1-MMP naked cDNA in conjunction with de-epithelialization. Partial limbal deficiency (HLD-) resulted in corneal NV in MMP-7 and MMP-3 knockout mice but not in wild type controls. Conclusions Corneal angiogenic privilege is an active process involving the production of antiangiogenic factors to counterbalance the proangiogenic factors (which are upregulated after wound healing even in the absence of new vessels). Our finding that the potent antiangiogenic factors, angiostatin and endostatin, are colocalized with several MMPs during wound healing suggests that MMPs may be involved in the elaboration of these antiangiogenic molecules by proteolytic processing of substrates within the cornea. PMID:17471348

  19. The characterization and optimization of injectable silicone resin particles in conjunction with dermal fibroblasts and growth factors: an in vitro study.

    PubMed

    Crews, Robert M; Jennings, Jessica A; McCanless, Jonathan; Cole, Judith A; Bumgardner, Joel D; Haggard, Warren O

    2010-04-01

    Minimally invasive subdermal injection of liquid silicone has been used clinically to augment the soft tissue of the foot to mitigate high pressures that cause diabetic foot ulcers. However, implant migration has been a clinical issue. The objective of this study was to assess the effects of three specific concentrations of silicone resin particles (12 mum average diameter) in conjunction with either platelet-derived growth factor (PDGF-BB) or basic fibroblast growth factor (bFGF) on fibroblast cell proliferation, collagen synthesis, cell morphology, and migration through in vitro assays and a monolayer scratch wound model. PDGF and bFGF enhanced the proliferation of fibroblasts 5.7-fold and fivefold, respectively, while the addition of silicone particles had no significant effect on proliferation. Collagen production was increased approximately twofold with the addition of bFGF and the medium concentration of particles over bFGF without particles and the PDGF groups. The addition of silicone particles had no significant effect on collagen production compared with control groups without particles. Fibroblast migration was enhanced by the addition of both PDGF and bFGF compared to controls, although slower scratch wound closure rates were observed in the presence of particles compared to controls without particles. Cell morphology suggested that particles induced cellular aggregation encircling silicone particles postwounding as well as migration into the wound area. These results suggest that silicone particles in combination with a growth factor might enhance fibroblast aggregation and implant stability, and could promote connective tissue ingrowth and implant encapsulation in the soft tissue of the diabetic foot.

  20. A highly versatile adaptor protein for the tethering of growth factors to gelatin-based biomaterials.

    PubMed

    Addi, Cyril; Murschel, Frédéric; Liberelle, Benoît; Riahi, Nesrine; De Crescenzo, Gregory

    2017-03-01

    In the field of tissue engineering, the tethering of growth factors to tissue scaffolds in an oriented manner can enhance their activity and increase their half-life. We chose to investigate the capture of the basic Fibroblast Growth Factor (bFGF) and the Epidermal Growth Factor (EGF) on a gelatin layer, as a model for the functionalization of collagen-based biomaterials. Our strategy relies on the use of two high affinity interactions, that is, the one between two distinct coil peptides as well as the one occurring between a collagen-binding domain (CBD) and gelatin. We expressed a chimeric protein to be used as an adaptor that comprises one of the coil peptides and a CBD derived from the human fibronectin. We proved that it has the ability to bind simultaneously to a gelatin substrate and to form a heterodimeric coiled-coil domain with recombinant growth factors being tagged with the complementary coil peptide. The tethering of the growth factors was characterized by ELISA and surface plasmon resonance-based biosensing. The bioactivity of the immobilized bFGF and EGF was evaluated by a human umbilical vein endothelial cell proliferation assay and a vascular smooth muscle cell survival assay. We found that the tethering of EGF preserved its mitogenic and anti-apoptotic activity. In the case of bFGF, when captured via our adaptor protein, changes in its natural mode of interaction with gelatin were observed.

  1. Bacillus licheniformis Contains Two More PerR-Like Proteins in Addition to PerR, Fur, and Zur Orthologues

    PubMed Central

    Ju, Shin-Yeong; Yang, Yoon-Mo; Ryu, Su-Hyun; Kwon, Yumi; Won, Young-Bin; Lee, Yeh-Eun; Youn, Hwan; Lee, Jin-Won

    2016-01-01

    The ferric uptake regulator (Fur) family proteins include sensors of Fe (Fur), Zn (Zur), and peroxide (PerR). Among Fur family proteins, Fur and Zur are ubiquitous in most prokaryotic organisms, whereas PerR exists mainly in Gram positive bacteria as a functional homologue of OxyR. Gram positive bacteria such as Bacillus subtilis, Listeria monocytogenes and Staphylococcus aureus encode three Fur family proteins: Fur, Zur, and PerR. In this study, we identified five Fur family proteins from B. licheniformis: two novel PerR-like proteins (BL00690 and BL00950) in addition to Fur (BL05249), Zur (BL03703), and PerR (BL00075) homologues. Our data indicate that all of the five B. licheniformis Fur homologues contain a structural Zn2+ site composed of four cysteine residues like many other Fur family proteins. Furthermore, we provide evidence that the PerR-like proteins (BL00690 and BL00950) as well as PerRBL (BL00075), but not FurBL (BL05249) and ZurBL (BL03703), can sense H2O2 by histidine oxidation with different sensitivity. We also show that PerR2 (BL00690) has a PerR-like repressor activity for PerR-regulated genes in vivo. Taken together, our results suggest that B. licheniformis contains three PerR subfamily proteins which can sense H2O2 by histidine oxidation not by cysteine oxidation, in addition to Fur and Zur. PMID:27176811

  2. Bacillus licheniformis Contains Two More PerR-Like Proteins in Addition to PerR, Fur, and Zur Orthologues.

    PubMed

    Kim, Jung-Hoon; Ji, Chang-Jun; Ju, Shin-Yeong; Yang, Yoon-Mo; Ryu, Su-Hyun; Kwon, Yumi; Won, Young-Bin; Lee, Yeh-Eun; Youn, Hwan; Lee, Jin-Won

    2016-01-01

    The ferric uptake regulator (Fur) family proteins include sensors of Fe (Fur), Zn (Zur), and peroxide (PerR). Among Fur family proteins, Fur and Zur are ubiquitous in most prokaryotic organisms, whereas PerR exists mainly in Gram positive bacteria as a functional homologue of OxyR. Gram positive bacteria such as Bacillus subtilis, Listeria monocytogenes and Staphylococcus aureus encode three Fur family proteins: Fur, Zur, and PerR. In this study, we identified five Fur family proteins from B. licheniformis: two novel PerR-like proteins (BL00690 and BL00950) in addition to Fur (BL05249), Zur (BL03703), and PerR (BL00075) homologues. Our data indicate that all of the five B. licheniformis Fur homologues contain a structural Zn2+ site composed of four cysteine residues like many other Fur family proteins. Furthermore, we provide evidence that the PerR-like proteins (BL00690 and BL00950) as well as PerRBL (BL00075), but not FurBL (BL05249) and ZurBL (BL03703), can sense H2O2 by histidine oxidation with different sensitivity. We also show that PerR2 (BL00690) has a PerR-like repressor activity for PerR-regulated genes in vivo. Taken together, our results suggest that B. licheniformis contains three PerR subfamily proteins which can sense H2O2 by histidine oxidation not by cysteine oxidation, in addition to Fur and Zur.

  3. Injectable extracellular matrix derived hydrogel provides a platform for enhanced retention and delivery of a heparin-binding growth factor.

    PubMed

    Seif-Naraghi, Sonya B; Horn, Dinah; Schup-Magoffin, Pamela J; Christman, Karen L

    2012-10-01

    Injectable hydrogels derived from the extracellular matrix (ECM) of decellularized tissues have recently emerged as scaffolds for tissue-engineering applications. Here, we introduce the potential for using a decellularized ECM-derived hydrogel for the improved delivery of heparin-binding growth factors. Immobilization of growth factors on a scaffold has been shown to increase their stability and activity. This can be done via chemical crosslinking, covalent bonding, or by incorporating natural or synthetic growth factor-binding domains similar to those found in vivo in sulfated glycosaminoglycans (GAGs). Many decellularized ECM-derived hydrogels retain native sulfated GAGs, and these materials may therefore provide an excellent delivery platform for heparin-binding growth factors. In this study, the sulfated GAG content of an ECM hydrogel derived from decellularized pericardial ECM was confirmed by Fourier transform infrared spectroscopy and its ability to bind basic fibroblast growth factor (bFGF) was established. Delivery in the pericardial matrix hydrogel increased retention of bFGF both in vitro and in vivo in ischemic myocardium compared to delivery in collagen. In a rodent infarct model, intramyocardial injection of bFGF in pericardial matrix enhanced neovascularization by approximately 112% compared to delivery in collagen. Importantly, the newly formed vasculature was anastomosed with existing vasculature. Thus, the sulfated GAG content of the decellularized ECM hydrogel provides a platform for incorporation of heparin-binding growth factors for prolonged retention and delivery. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. The effect of locally administered anti-growth factor antibodies on neointimal hyperplasia formation in expanded polytetrafluoroethylene grafts.

    PubMed

    Sapienza, Paolo; di Marzo, Luca; Cucina, Alessandra; Borrelli, Valeria; Mosiello, Giovanni; Basile, Ursula; Iacovitti, Simonetta; Cavallaro, Antonino

    2009-01-01

    The selective blockage of platelet-derived growth factor BB (PDGF-BB), basic fibroblast growth factor (bFGF), and transforming growth factor beta1 (TGF-beta1) by specific antibodies coated into expanded polytetrafluoroethylene (ePTFE) grafts may diminish neointimal hyperplasia. Sixty pigs were divided into two groups (n = 30 each) and then further divided into five subgroups. Group 1 had a bilateral iliac artery ePTFE interposition graft precoated with Matrigel. Three subgroups (A, B, and C) received a specific monoclonal antibody against PDGF-BB, bFGF, or TGF-beta1. One (D) received all antibodies, and one served as control (nonimmune immunoglobulin G [IgG] isotypes) (E). Group 2 had a bilateral iliac artery endothelial cell (EC)-seeded ePTFE interposition graft precoated with Matrigel. Three subgroups (A, B, and C) received a specific antibody against PDGF-BB, bFGF, or TGF-beta1. One (D) received all antibodies, and one served as control (nonimmune IgG isotypes) (E). Light microscopy and immunohistochemical stain showed that neointimal hyperplasia formation was significantly reduced in subgroups D compared to the others (p < 0.05). In subgroups D, the different precoating influenced neointimal hyperplasia formation. It was more pronounced in the prosthesis precoated with EC and Matrigel (p < 0.05). In organ culture, the amount of PDGF-BB, bFGF, and TGF-beta1 release was reduced in subgroup D animals compared to the others (p < 0.05). In subgroups D, the release of PDGF-BB, bFGF, and TGF-beta1 depended on ePTFE seeding. A higher amount of these growth factors was released in the prostheses precoated with EC and Matrigel (p < 0.05), and the bromodeoxyuridine labeling index confirmed higher incorporation in this subgroup (p < 0.001). The combined use of locally administered anti-PDGF-BB, bFGF, and TGF-beta1 monoclonal antibodies reduces neointimal hyperplasia formation.

  5. Migrational changes of mesenchymal stem cells in response to cytokines, growth factors, hypoxia, and aging.

    PubMed

    Naaldijk, Yahaira; Johnson, Adiv A; Ishak, Stefan; Meisel, Hans Jörg; Hohaus, Christian; Stolzing, Alexandra

    2015-10-15

    Mesenchymal stem cells (MSCs) are non-immunogenic, multipotent cells with at least trilineage differentiation potential. They promote wound healing, improve regeneration of injured tissue, and mediate numerous other health effects. MSCs migrate to sites of injury and stimulate repair either through direct differentiation or indirectly through the stimulation of endogenous repair mechanisms. Using the in vitro scratch assay, we show that the inflammatory cytokines, chemokines, and growth factors TNF-α, SDF-1, PDGF, and bFGF enhance migration of rat MSCs under normoxic conditions, while TNF-α, IFN-γ, PDGF, and bFGF promote MSC migration under hypoxic conditions. This indicates that the oxygen concentration affects how MSCs will migrate in response to specific factors and, consistent with this, differential expression of cytokines was observed under hypoxic versus normoxic conditions. Using the transwell migration assay, we find that TNF-α, IFN-γ, bFGF, IGF-1, PDGF, and SDF-1 significantly increase transmigration of rat MSCs compared to unstimulated medium. MSCs derived from aged rats exhibited comparable migration to MSCs derived from young rats under hypoxic and normoxic conditions, even after application with specific factors. Similarly, migration in MSCs from aged, human donors did not statistically differ compared to migration in MSCs derived from human umbilical cord tissue or younger donors.

  6. Effect of laser phototherapy on the release of fibroblast growth factors by human gingival fibroblasts.

    PubMed

    Damante, Carla Andreotti; De Micheli, Giorgio; Miyagi, Sueli Patrícia Harumi; Feist, Ilíria Salomão; Marques, Márcia Martins

    2009-11-01

    The effects of laser phototherapy on the release of growth factors by human gingival fibroblasts were studied in vitro. Cells from a primary culture were irradiated twice (6 h interval), with continuous diode laser [gallium-aluminum-arsenium (GaAlAs), 780 nm, or indium-gallium-aluminum-phosphide (InGaAlP),_660 nm] in punctual and contact mode, 40 mW, spot size 0.042 cm(2), 3 J/cm(2) and 5 J/cm(2) (3 s and 5 s, respectively). Positive [10% fetal bovine serum (FBS)] and negative (1%FBS) controls were not irradiated. Production of keratinocyte growth factor (KGF) and basic fibroblast growth factor (bFGF) was quantified by enzyme-linked immunosorbent assay (ELISA). The data were statistically compared by analysis of variance (ANOVA) followed by Tukey's test (P bFGF was significantly greater (1.49-times) in groups treated with infra-red laser. It was concluded that increased production of bFGF could be one of the mechanisms by which infra-red laser stimulates wound healing.

  7. A composite fibrin-based scaffold for controlled delivery of bioactive pro-angiogenetic growth factors.

    PubMed

    Briganti, Enrica; Spiller, Dario; Mirtelli, Chiara; Kull, Silvia; Counoupas, Claudio; Losi, Paola; Senesi, Sonia; Di Stefano, Rossella; Soldani, Giorgio

    2010-02-25

    The aim of this study was to fabricate and characterize in vitro a novel composite scaffold that, combining good mechanical properties with a controlled and sustained release of bioactive pro-angiogenetic growth factors, should be useful for angiogenesis induction in organs/tissues in which is also necessary to give resistance and mechanical strength. Composite scaffolds, constituted by a synthetic biocompatible material, a poly(ether)urethane-polydimethylsiloxane blend, and a biological polymer, the fibrin, were manufactured by spray, phase-inversion technique. During the manufacturing process heparin and heparin-binding growth factors, such as VEGF(165) and bFGF, were incorporated into the fibrin layer. Microscopical examinations showed a homogeneous fibrin layer firmly adherent on top of the synthetic material. Tensile tests highlighted the high elasticity of the composite scaffold and its capability to maintain integrity up to high deformation. VEGF(165) and bFGF release were controlled by fibrinogen concentration, whereas it was not affected by heparin concentration, as revealed by ELISA assay. The biological activity of the released growth factors was maintained as demonstrated by HUVEC proliferation. Finally, scaffolds induced a low monocyte mRNA expression of inflammatory markers (IL-8, L-SEL, LFA-1 and iNOS). In conclusion, the new composite scaffolds, once implanted, providing a co-localization and temporal distribution of bioactive VEGF and bFGF in addition to good mechanical properties, may be useful to stimulate new vessels formation in ischemic tissues.

  8. Oncogene N-ras mediates selective inhibition of c-fos induction by nerve growth factor and basic fibroblast growth factor in a PC12 cell line.

    PubMed Central

    Thomson, T M; Green, S H; Trotta, R J; Burstein, D E; Pellicer, A

    1990-01-01

    A cell line was generated from U7 cells (a subline of PC12 rat pheochromocytoma cells) that contains a stably integrated transforming mouse N-ras (Lys-61) gene under the control of the long terminal repeat from mouse mammary tumor virus. Such cells, designated UR61, undergo neuronal differentiation upon exposure to nanomolar concentrations of dexamethasone, as a consequence of expression of the activated N-ras gene (I. Guerrero, A. Pellicer, and D.E. Burstein, Biochem, Biophys. Res. Commun. 150:1185-1192, 1988). Exposure of UR61 cells to either nerve growth factor (NGF) or basic fibroblast growth factor (bFGF) results in a marked induction of c-fos RNA, with kinetics paralleling those of NGF- or bFGF-induced expression of c-fos RNA in PC12 cells. Dexamethasone-induced expression of activated N-ras p21 results in blocking of c-fos RNA induction by NGF or bFGF in a time-dependent manner. Activated N-ras p21-mediated inhibition of c-fos RNA induction in UR61 cells is selective for NGF and bFGF and is not due to selective degradation of c-fos RNA. Normal and transforming N-ras can trans activate the chloramphenicol acetyltransferase gene linked to mouse c-fos regulatory sequences when transient expression assays are performed. Our observations suggest that N-ras p21 selectively interacts with pathways involved in induction of c-fos expression which initiate at the receptors for NGF and bFGF. Images PMID:2108319

  9. Basic fibroblast growth factor is critical to reprogramming buffalo (Bubalus bubalis) primordial germ cells into embryonic germ stem cell-like cells.

    PubMed

    Wang, Caizhu; Deng, Yanfei; Chen, Feng; Zhu, Peng; Wei, Jingwei; Luo, Chan; Lu, Fenghua; Yang, Sufang; Shi, Deshun

    2017-03-15

    Primordial germ cells (PGCs) are destined to form gametes in vivo, and they can be reprogrammed into pluripotent embryonic germ (EG) cells in vitro. Buffalo PGC have been reported to be reprogrammed into EG-like cells, but the identities of the major signaling pathways and culture media involved in this derivation remain unclear. Here, the effects of basic fibroblast growth factor (bFGF) and downstream signaling pathways on the reprogramming of buffalo PGCs into EG-like cells were investigated. Results showed bFGF to be critical to buffalo PGCs to dedifferentiate into EG-like cells (20 ng/mL is optimal) with many characteristics of pluripotent stem cells, including alkaline phosphatase (AP) activity, expression of pluripotency marker genes such as OCT4, NANOG, SOX2, SSEA-1, CDH1, and TRA-1-81, and the capacity to differentiate into all three embryonic germ layers. After chemically inhibiting pathways or components downstream of bFGF, data showed that inhibition of the PI3K/AKT pathway led to significantly lower EG cell derivation, while inhibition of P53 activity resulted in an efficiency of EG cell derivation comparable to that in the presence of bFGF. These results suggest that the role of bFGF in PGC-derived EG-like cell generation is mainly due to the activation of the PI3K/AKT/P53 pathway, in particular, the inhibition of P53 function. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Influence of antibiotic therapy on the level of selected angiogenic factors in patients with benign gynecologic tumors--preliminary report.

    PubMed

    Michalska, M; Palatyńska-Ulatowska, A; Palatyński, A; Mirowski, M; Kaplińska, K; Nawrot-Modranka, J; Lazarenkow, A

    2011-08-01

    An increased fibrin level enhances the activity of proangiogenic factors and may contribute to tumor formation. Formation of new blood vessels during angiogenesis leads to neoplasm development through interaction with factors such as basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF) and interleukins. The aim of this study was to investigate the influence of perioperative antibiotic therapy in women with benign gynecological tumors with regard to basic fibroblast growth factor level, fibrinogen concentration and fibrin viscosity. The influence of clindamycin plus metronidazole therapy (group I) and cephazolin therapy (group II) on fibrinogen concentration, level of bFGF and fibrin viscosity was studied in women diagnosed with nonmalignant myomas and cysts. In patients with benign gynecologic tumors, higher bFGF levels (51.40 +/- 13.72 pg/ml), fibrinogen concentration (348.26 +/- 164.74 mg/dl) and fibrin viscosity (2.63 +/- 0.36 mPa) were observed, as compared with healthy women. There were strong indications that antiangiogenic activity occurred with both clindamycin plus metronidazole and cephazolin, although the response to these particular antibiotic therapies was different. The use of various drug therapies in groups I and II resulted in faster and delayed antiangiogenic effects, respectively. Further research is essential to provide more detailed information about the mechanisms of the induction of antiangiogenic activity by perioperative adjuvant antibiotic treatment.

  11. Effiziente Verfahren zur Parallelisierung von EMV-Simulationen für den Entwurfsprozess integrierter Schaltungen

    NASA Astrophysics Data System (ADS)

    Barke, M.; Preisner, T.; Mathis, W.

    2009-05-01

    In dieser Arbeit wird mit einer parallelisierten Version des PCG-Verfahrens (preconditioned conjugate gradient method) eine effiziente Technik zur numerischen Lösung großer Gleichungssysteme vorgestellt. Der Anwendungsbereich ist dabei die Simulation numerischer Feldberechnungen (beispielsweise durch die Finite-Elemente-Methode). Es wird ferner auf eine Datenstruktur eingegangen, die für die spezielle Struktur der auftretenden Koeffizientenmatrizen geeignet ist.

  12. Charakterisierung von CMOS RF Blöcken mittels Volterra-Reihen zur Optimierung des Designprozesses

    NASA Astrophysics Data System (ADS)

    Fei, B.; Darrat, A. H.; Mathis, W.

    2009-05-01

    Im Rahmen dieser Arbeit werden die Volterra-Reihen zur Analyse der Nichtlinearität in RF Schaltungen verwendet, um den Designprozess für RF Systeme zu optimieren. Die auf Volterra-Reihen basierende Nichtlinearitätsanalyse wurde in eine Matlab-Toolbox implementiert. Diese Toolbox kann mittels Volterra-Reihen die symbolische Berechnung der Nichtlinearitätsparameter (harmonische Verzerrungen und Intermodulationsverzerrungen) eines RF Blocks für eine gegebene Architektur und Technologie durchführen. Danach können die symbolische Ausdrücke der Nichtlinearitätsparameter in Abhängigkeit von den Architekturparametern und Technologieparametern erhalten werden. Dies ermöglicht die Beschränkung der Wertebereiche der Architekturparameter und die Überprüfung auf die Erfüllung der Nichtlinearitätsspezifikationen für unterschiedliche Kombinationen von Architekturen und Technologien. Somit ist eine Beschränkung der Klassen der Architekturen und Technologien möglich. Die Toolbox wurde zur Verdeutlichung auf einen Low Noise Amplifier (LNA) der Inductive Source Degeneration (ISD) Architektur angewandt. Zur Verifikation wurde diese LNA-Schaltung auch in Cadence SpectreRF Design Tool simuliert.

  13. Growth factors/cytokines/defensins and apoptosis in periodontal pathologies.

    PubMed

    Laurina, Zane; Pilmane, Mara; Care, Ruta

    2009-01-01

    In the recent past there has been an increased emphasis on morphogenetic tissue research of periodontal tissues. The aim of this study was to find qualitative and quantitative correlations in distribution and appearance of growth factors/cytokines/defensins and apoptosis in periodontal pathologies. Tissue was obtained from 5 controls and 6 chronical periodontitis patients 30-50 years of age referred to Latvian Institute of Stomatology. Histological investigations were performed at the Institute of Anatomy and Anthropology of Riga Stradins University. Epithelial cells abundantly expressed IL10 in patients. The expression of b-defensins was very variable in both sulcular and gingival epithelium. TUNEL positive cells were observed in patients and control specimens with dominance in control group. Gingival epithelium showed moderate expression of bFGF whereas few to moderate cells were positive for bFGF in sulcular epithelium. Fibroblast growth factor receptor (FGF-1R) was abundant in gingival epithelium and in connective tissue cells, but almost not detectable in sulcular epithelium. Insulin-like growth factor receptor was not expressed in gingival epithelium and was weakly seen in basal layer of sulcular epithelium. Basic nerve growth factor expresion in both types of epithelium was numerous to abundant. Staining for the NGFR in the gingival epithelium was variable, with prevalence to be moderate whereas sulcular epithelium was free from any factor immunoreactivity. 1. Finding of apoptotic cells are variable and seems to correlate with the expression of defensins in oral epithelium in patients with periodontitis. 2. FGFR was expressed more than the bFGF, but in case with NGFR and bNGF situation was opposite. Although IGFRI was found in sulcular epithelium with no expression in gingival one suggesting about stimulation in regeneration/adaptation in periodontitis affected tissue. 3. The expression of growth factors and their receptors in sulcular epithelium was lower

  14. Hedgehog signaling contributes to basic fibroblast growth factor-regulated fibroblast migration.

    PubMed

    Zhu, Zhong Xin; Sun, Cong Cong; Ting Zhu, Yu; Wang, Ying; Wang, Tao; Chi, Li Sha; Cai, Wan Hui; Zheng, Jia Yong; Zhou, Xuan; Cong, Wei Tao; Li, Xiao Kun; Jin, Li Tai

    2017-03-28

    Fibroblast migration is a central process in skin wound healing, which requires the coordination of several types of growth factors. bFGF, a well-known fibroblast growth factor (FGF), is able to accelerate fibroblast migration; however, the underlying mechanism of bFGF regulation fibroblast migration remains unclear. Through the RNA-seq analysis, we had identified that the hedgehog (Hh) canonical pathway genes including Smoothened (Smo) and Gli1, were regulated by bFGF. Further analysis revealed that activation of the Hh pathway via up-regulation of Smo promoted fibroblast migration, invasion, and skin wound healing, but which significantly reduced by GANT61, a selective antagonist of Gli1/Gli2. Western blot analyses and siRNA transfection assays demonstrated that Smo acted upstream of phosphoinositide 3-kinase (PI3K)-c-Jun N-terminal kinase (JNK)-β-catenin to promote cell migration. Moreover, RNA-seq and qRT-PCR analyses revealed that Hh pathway genes including Smo and Gli1 were under control of β-catenin, suggesting that β-catenin turn feedback activates Hh signaling. Taken together, our analyses identified a new bFGF-regulating mechanism by which Hh signaling regulates human fibroblast migration, and the data presented here opens a new avenue for the wound healing therapy.

  15. Stability and biological activity evaluations of PEGylated human basic fibroblast growth factor

    PubMed Central

    Hadadian, Shahin; Shamassebi, Dariush Norouzian; Mirzahoseini, Hasan; Shokrgozar, Mohamad Ali; Bouzari, Saeid; Sepahi, Mina

    2015-01-01

    Background: Human basic fibroblast growth factor (hBFGF) is a heparin-binding growth factor and stimulates the proliferation of a wide variety of cells and tissues causing survival properties and its stability and biological activity improvements have received much attention. Materials and Methods: In the present work, hBFGF produced by engineered Escherichia coli and purified by cation exchange and heparin affinity chromatography, was PEGylated under appropriate condition employing 10 kD polyethylene glycol. The PEGylated form was separated by size exclusion chromatography. Structural, biological activity, and stability evaluations were performed using Fourier transform infrared (FITR) spectroscopy, 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide (MTT) assay and effect denaturing agent, respectively. Results: FITR spectroscopy revealed that both PEGylated and native forms had the same structures. MTT assay showed that PEGyalated form had a 30% reduced biological activity. Fluorescence spectrophotometry indicated that the PEGylated form denatured at higher concentrations of guanidine HCl (1.2 M) compared with native, which denatured at 0.8 M guanidine HCl. Conclusions: PEGylation of hBFGF makes it more stable against denaturing agent but reduces its bioactivity up to 30%. PMID:26605215

  16. Heparinized magnetic mesoporous silica nanoparticles as multifunctional growth factor delivery carriers

    NASA Astrophysics Data System (ADS)

    Wu, Qiang; Liu, Chaoqun; Fan, Luna; Shi, Jiahua; Liu, Zhiqiang; Li, Ruifang; Sun, Liwei

    2012-12-01

    Well-defined magnetic mesoporous silica nanoparticles (MMSNs) with a core/shell structure were prepared via a one pot synthesis. Sphere-like magnetite aggregates were obtained as cores of the final nanoparticles by assembly in the presence of polyvinyl pyrrolidone and cetyltrimethylammonium bromide. The nanoparticles have the property of superparamagnetism with a saturation magnetization value of 20.3 emu g-1. In addition, the combination of heparin and fluorescence-labeled MMSNs endows the resultant particles (denoted as MFMSNs-HP) with magnetism and fluorescence properties, excellent dispersity in the buffer solutions and cell culture media, anticoagulant activity in the blood stream, and the controlled release of basic fibroblast growth factor (bFGF). Furthermore, the bFGF cell viability assays indicate that MFMSNs-HP has nearly no toxicity to human umbilical vein endothelial cells (HUVEC) up to a concentration of 200 μg ml-1, and the proliferation activity of bFGF incorporated into MFMSNs-HP could be retained for at least 6 days. All of these suggest that MFMSNs-HP may serve as a multifunctional carrier for the delivery of growth factors.

  17. Beitraege zur Astronomiegeschichte, Band 5 (Acta Historica Astronomiae Vol. 18)

    NASA Astrophysics Data System (ADS)

    Duerbeck, H. W.; Dick, W. R.; Hamel, J.

    2003-01-01

    The 18th volume of the Acta Historica Astronomiae is at the same time the sixth collection of essays on the history of astronomy ("Beitræge zur Astronomiegeschichte, Band 6"), edited by the historians of astronomy W.R. Dick (Potsdam) and J. Hamel (Berlin). Besides a few short notices and book reviews, the book contains eight major articles, which deal with astronomical topics covering the time from the 16th to the 19th centuries. The first article by Michael Weichenhan (Berlin) deals with "the invention of the disk-shaped earth: a chapter of Copernican apologetics". The author shows that the concept of a "disc-shaped Earth" was by no means widespread in the middle ages, but restricted to the father of the church Lactantius and some adherents. Nevertheless, it was used by adherents of Copernicus to show the absurd consequences of a strictly literal biblical interpretation -- here concerning the Earth's shape, disc versus sphere, there the geocentric versus the heliocentric system. This thorough philosophical study is followed by two very short articles. "The measuring accuracy of Tycho's large sextant" by Johann Wünsch investigates O-C values of planet-star distances, as based on Tycho's observations as published in the Historia Coelestis (a compilation, which is also based on Tycho's manuscripts, and published in Regensburg in 1672). The result is that standard deviations are 80 arcseconds for Saturn and 89 arcseconds for Jupiter and Mars, an unexpectedly poor result in view of the general opinion that Tycho was famous for his precision work. "The astronomer Christoph Grienberger and the Galilei trial" by Franz Daxecker deals with a Jesuit astronomer who was both the disciple and successor of the mathematician-astronomer Christopher Clavius at the Collegium Romanum. While he was inclined to Galilei early on, he was forced to propagate Aristotelian doctrine. The brief article is very concise, but extremely tiresome to read (3 pages of pure text are embellished by

  18. Das Blüte-Bestäuber-Netz auf Brachflächen : biozönologische Untersuchung zur Bedeutung von Brachen in einer intensiv genutzten Agrarlandschaft

    NASA Astrophysics Data System (ADS)

    Hahn, Robert

    2002-11-01

    In der vorliegenden Dissertation wird die Bedeutung von Brachen für Artenvielfalt und Stabilität von Blüte-Bestäuber-Nahrungsnetzen in agrarisch genutzten Landschaften anhand ausgewählter blütenbesuchender Insektengruppen (Syrphidae, Lepidoptera) untersucht. Die Freilandarbeiten fanden von 1998-2000 im Raum der Feldberger Seenlandschaft, Mecklenburg-Vorpommern, statt. Es werden die beiden Hauptnahrungsquellen Nektar und Pollen betrachtet, dabei fanden Untersuchungen zur Intensität der Blüte-Bestäuber-Interaktion auf Stilllegungsflächen, zum flächenbezogenen quantitativen Nektarangebot im Jahresverlauf, zur individuellen Pollennutzung bei Syrphiden und zur Breite und Überlappung der Nahrungsnischen bei den dominanten Arten Episyrphus balteatus, Metasyrphus corollae, Syritta pipiens und Sphaerophoria scripta statt. Im Ergebnis zeigt sich eine hohe Bedeutung der Brachflächen für die Stabilität des Blüte-Bestäuber-Netzes, während die Diversität von anderen, eher landschaftsbezogenen Faktoren abhängig ist. This dissertation examines the importance of fallow land for the diversity and stability of pollination webs in agricultural landscapes as exemplified by selected groups of anthophilous insects (syrphidae and lepidoptera). The field studies were carried out between 1998 and 2000 in the Feldberg lakeland area in the north-east German State of Mecklenburg-Western Pomerania. Observations were made of nectar and pollen as the two main sources of food. Studies were conducted into the intensity of plant-pollinator interaction in set-aside areas, the site-specific quantity of nectar available during the vegetation period and the individual pollen intake of syrphid flies. Different methods were employed to establish the breadth of the trophic niches among the predominant species (Episyrphus balteatus, Metasyrphus corollae, Syritta pipiens and Sphaerophoria scripta) and the extent to which they overlapped. The studies showed that, while fallow land is very

  19. Novel magnetic fibrin hydrogel scaffolds containing thrombin and growth factors conjugated iron oxide nanoparticles for tissue engineering

    PubMed Central

    Ziv-Polat, Ofra; Skaat, Hadas; Shahar, Abraham; Margel, Shlomo

    2012-01-01

    Novel tissue-engineered magnetic fibrin hydrogel scaffolds were prepared by the interaction of thrombin-conjugated iron oxide magnetic nanoparticles with fibrinogen. In addition, stabilization of basal fibroblast growth factor (bFGF) was achieved by the covalent and physical conjugation of the growth factor to the magnetic nanoparticles. Adult nasal olfactory mucosa (NOM) cells were seeded in the transparent fibrin scaffolds in the absence or presence of the free or conjugated bFGF-iron oxide nanoparticles. The conjugated bFGF enhanced significantly the growth and differentiation of the NOM cells in the fibrin scaffolds, compared to the same or even five times higher concentration of the free bFGF. In the presence of the bFGF-conjugated magnetic nanoparticles, the cultured NOM cells proliferated and formed a three-dimensional interconnected network composed mainly of tapered bipolar cells. The magnetic properties of these matrices are due to the integration of the thrombin- and bFGF-conjugated magnetic nanoparticles within the scaffolds. The magnetic properties of these scaffolds may be used in future work for various applications, such as magnetic resonance visualization of the scaffolds after implantation and reloading the scaffolds via magnetic forces with bioactive agents, eg, growth factors bound to the iron oxide magnetic nanoparticles. PMID:22419873

  20. Connexin Hemichannels and Gap Junction Channels Are Differentially Influenced by Lipopolysaccharide and Basic Fibroblast Growth Factor

    PubMed Central

    De Vuyst, Elke; Decrock, Elke; De Bock, Marijke; Yamasaki, Hiroshi; Naus, Christian C.; Evans, W. Howard

    2007-01-01

    Gap junction (GJ) channels are formed by two hemichannels (connexons), each contributed by the cells taking part in this direct cell–cell communication conduit. Hemichannels that do not interact with their counterparts on neighboring cells feature as a release pathway for small paracrine messengers such as nucleotides, glutamate, and prostaglandins. Connexins are phosphorylated by various kinases, and we compared the effect of various kinase-activating stimuli on GJ channels and hemichannels. Using peptides identical to a short connexin (Cx) amino acid sequence to specifically block hemichannels, we found that protein kinase C, Src, and lysophosphatidic acid (LPA) inhibited GJs and hemichannel-mediated ATP release in Cx43-expressing C6 glioma cells (C6-Cx43). Lipopolysaccharide (LPS) and basic fibroblast growth factor (bFGF) inhibited GJs, but they stimulated ATP release via hemichannels in C6-Cx43. LPS and bFGF inhibited hemichannel-mediated ATP release in HeLa-Cx43 cells, but they stimulated it in HeLa-Cx43 with a truncated carboxy-terminal (CT) domain or in HeLa-Cx26, which has a very short CT. Hemichannel potentiation by LPS was inhibited by blockers of the arachidonic acid metabolism, and arachidonic acid had a potentiating effect like LPS and bFGF. We conclude that GJ channels and hemichannels display similar or oppositely directed responses to modulatory influences, depending on the balance between kinase activity and the activity of the arachidonic acid pathway. Distinctive hemichannel responses to pathological stimulation with LPS or bFGF may serve to optimize the cell response, directed at strictly controlling cellular ATP release, switching from direct GJ communication to indirect paracrine signaling, or maximizing cell-protective strategies. PMID:17079735

  1. Tracheal cartilage growth by intratracheal injection of basic fibroblast growth factor.

    PubMed

    Komura, Makoto; Komura, Hiroko; Komuro, Hiroaki; Ikebukuro, Kenichi; Hikita, Atsuhiko; Hoshi, Kazuto; Takato, Tsuyoshi

    2017-02-01

    We have previously shown that intratracheal injection of slowly released (in gelatin) basic fibroblast growth factor (bFGF) significantly enlarged the tracheal lumen by a slight margin. This study aimed to investigate differences in tracheal cartilage growth by the intratracheal injection of bFGF doses in a rabbit model. Water (group 1; n=7; control) or 100μg (group 2; n=8) or 200μg (group 3; n=8) of bFGF dissolved in water was injected into the posterior wall of the cervical trachea of New Zealand white rabbits using a tracheoscope. All animals were sacrificed four weeks later. The mean circumferences of cervical tracheas for groups 1, 2, and 3 were 18.8±0.83, 21.1±2.0, and 22.1±1.3mm, respectively. A significant difference was found between groups 1 and 2 (P=0.034) and groups 1 and 3 (P=0.004). The mean luminal areas of cervical tracheas for groups 1, 2, and 3 were 27.0±2.1, 32.2±4.8, and 36.3±4.6mm(2), respectively. A significant difference was found between groups 1 and 3 (P=0.001). Intratracheal injection of bFGF in the dose range used significantly promoted the growth of tracheal cartilage in a rabbit model. Level II at treatment study (animal experiment). Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Connexin hemichannels and gap junction channels are differentially influenced by lipopolysaccharide and basic fibroblast growth factor.

    PubMed

    De Vuyst, Elke; Decrock, Elke; De Bock, Marijke; Yamasaki, Hiroshi; Naus, Christian C; Evans, W Howard; Leybaert, Luc

    2007-01-01

    Gap junction (GJ) channels are formed by two hemichannels (connexons), each contributed by the cells taking part in this direct cell-cell communication conduit. Hemichannels that do not interact with their counterparts on neighboring cells feature as a release pathway for small paracrine messengers such as nucleotides, glutamate, and prostaglandins. Connexins are phosphorylated by various kinases, and we compared the effect of various kinase-activating stimuli on GJ channels and hemichannels. Using peptides identical to a short connexin (Cx) amino acid sequence to specifically block hemichannels, we found that protein kinase C, Src, and lysophosphatidic acid (LPA) inhibited GJs and hemichannel-mediated ATP release in Cx43-expressing C6 glioma cells (C6-Cx43). Lipopolysaccharide (LPS) and basic fibroblast growth factor (bFGF) inhibited GJs, but they stimulated ATP release via hemichannels in C6-Cx43. LPS and bFGF inhibited hemichannel-mediated ATP release in HeLa-Cx43 cells, but they stimulated it in HeLa-Cx43 with a truncated carboxy-terminal (CT) domain or in HeLa-Cx26, which has a very short CT. Hemichannel potentiation by LPS was inhibited by blockers of the arachidonic acid metabolism, and arachidonic acid had a potentiating effect like LPS and bFGF. We conclude that GJ channels and hemichannels display similar or oppositely directed responses to modulatory influences, depending on the balance between kinase activity and the activity of the arachidonic acid pathway. Distinctive hemichannel responses to pathological stimulation with LPS or bFGF may serve to optimize the cell response, directed at strictly controlling cellular ATP release, switching from direct GJ communication to indirect paracrine signaling, or maximizing cell-protective strategies.

  3. Ontogeny of basic fibroblast growth factor binding sites in mouse ocular tissues

    SciTech Connect

    Fayein, N.A.; Courtois, Y.; Jeanny, J.C. )

    1990-05-01

    Basic fibroblast growth factor (bFGF) binding to ocular tissues has been studied by autoradiographical and biochemical approaches directly performed on sections during mouse embryonic and postnatal development. Frozen sections of embryos (9 to 18 days), newborns, and adults (1 day to 6 months) were incubated with iodinated bFGF. One specific FGF binding site (KD = 2.5 nM) is colocalized with heparan sulfate proteoglycans of the basement membranes and is heparitinase sensitive. It first appears at Day 9 around the neural tube, the optic vesicles, and below the head ectoderm and by Day 14 of embryonic development is found in all basement membranes of the eye. At Day 16, very intensely labeled patches appear, corresponding to mast cells which have been characterized by metachromatic staining of their heparin-rich granulations with toluidine blue. In addition to the latter binding, we have also observed a general diffuse distribution of silver grains on all tissues and preferentially in the ecto- and neuroectodermic tissues. From Days 17-18, there is heterogeneous labeling inside the retina, localized in the pigmented epithelium and in three different layers colocalized with the inner and outer plexiform layers and with the inner segments of the photoreceptors. This binding is heparitinase resistant but N-glycanase sensitive and may represent a second specific binding site corresponding to cellular FGF receptors (KD = 280 pM). Both types of binding patterns observed suggest a significant role for bFGF in eye development and physiology.

  4. Basic fibroblast growth factor promotes melanocyte migration via increased expression of p125(FAK) on melanocytes.

    PubMed

    Wu, Ching-Shuang; Lan, Cheng-Che E; Chiou, Min-Hsi; Yu, Hsin-Su

    2006-01-01

    Vitiligo is an acquired pigmentary disorder characterized by depigmentation of skin and hair. Melanocyte migration is an important event in re-pigmentation of vitiligo. We have demonstrated that narrow-band ultraviolet B (UVB) irradiation stimulated cultured keratinocytes to release a significant amount of basic fibroblast growth factor (bFGF). Furthermore, narrow-band UVB enhanced migration of melanocytes via increased expression of phosphorylated focal adhesion kinase (p125(FAK)) on melanocytes. The aim of this study was to investigate the effect of recombinant human bFGF (rhbFGF) on melanocyte migration. The relationship between the expression of p125(FAK) and melanocyte migration induced by rhbFGF was also studied. Our results demonstrated that rhbFGF significantly enhanced migration of melanocytes and p125(FAK) expression on melanocytes. Herbimycin A, a potent p125(FAK) inhibitor, effectively abolished rhbFGF-induced melanocyte migration. The combined results indicated that p125(FAK) plays an important role in the signal transduction pathway of melanocyte migration induced by bFGF.

  5. Basic fibroblast growth factor promotes the development of human ovarian early follicles during growth in vitro.

    PubMed

    Wang, Tian-ren; Yan, Li-ying; Yan, Jie; Lu, Cui-ling; Xia, Xi; Yin, Tai-lang; Zhu, Xiao-hui; Gao, Jiang-man; Ding, Ting; Hu, Wei-hong; Guo, Hong-yan; Li, Rong; Qiao, Jie

    2014-03-01

    What is the effect of basic fibroblast growth factor (bFGF) on the growth of individual early human follicles in a three-dimensional (3D) culture system in vitro? The addition of 200 ng bFGF/ml improves human early follicle growth, survival and viability during growth in vitro. It has been demonstrated that bFGF enhances primordial follicle development in human ovarian tissue culture. However, the growth and survival of individual early follicles in encapsulated 3D culture have not been reported. The maturation in vitro of human ovarian follicles was investigated. Ovarian tissue (n= 11) was obtained from 11 women during laparoscopic surgery for gynecological disease, after obtaining written informed consent. One hundred and fifty-four early follicles were isolated by enzymic digestion and mechanical disruption. They were individually encapsulated into alginate (1% w/v) and randomly assigned to be cultured with 0, 100, 200 or 300 ng bFGF/ml for 8 days. Individual follicles were cultured in minimum essential medium α (αMEM) supplemented with bFGF. Follicle survival and growth were assessed by microscopy. Follicle viability was evaluated under confocal laser scanning microscope following Calcein-AM and Ethidium homodimer-I (Ca-AM/EthD-I) staining. After 8 days in culture, all 154 follicles had increased in size. The diameter and survival rate of the follicles and the percentage with good viability were significantly higher in the group cultured with 200 ng bFGF/ml than in the group without bFGF (P < 0.05). The percentage of follicles in the pre-antral stage was significantly higher in the 200 ng bFGF/ml group than in the group without bFGF (P < 0.05), while the percentages of primordial and primary follicles were significantly lower (P < 0.05). The study focuses on the effect of bFGF on the development of individual human early follicles in 3D culture in vitro and has limited ability to reveal the specific effect of bFGF at each different stage. The findings

  6. Acceleration of bone formation during fracture healing by injectable collagen powder and human basic fibroblast growth factor containing a collagen-binding domain from Clostridium histolyticum collagenase.

    PubMed

    Saito, Wataru; Uchida, Kentaro; Ueno, Masaki; Matsushita, Osamu; Inoue, Gen; Nishi, Nozomu; Ogura, Takayuki; Hattori, Shunji; Fujimaki, Hisako; Tanaka, Keisuke; Takaso, Masashi

    2014-09-01

    Growth factor delivered with implantable biomaterials has been used to both accelerate and ensure healing of open fractures in human patients. However, a major limitation of implantable biomaterials is the requirement for open surgical placement. Here, we developed an injectable collagen material-based bone formation system consisting of injectable collagen powder with fibril morphology and collagen triple helix conformation, and basic fibroblast growth factor (bFGF) fused to the collagen-binding domain (CBD) of Clostridium histolyticum collagenase. The affinity of the CBD towards collagen was confirmed by the results of collagen-binding assays. Moreover, the combination of the collagen binding-bFGF fusion protein (CB-bFGF) with injectable collagen powder induced bone formation at protein concentrations lower than those required for bFGF alone in mice fracture models. Taken together, these properties suggest that the CB-bFGF/collagen powder composite is a promising injectable material for bone repair in the clinical setting.

  7. Gelatin nanostructured lipid carriers-mediated intranasal delivery of basic fibroblast growth factor enhances functional recovery in hemiparkinsonian rats.

    PubMed

    Zhao, Ying-Zheng; Li, Xing; Lu, Cui-Tao; Lin, Min; Chen, Li-Juan; Xiang, Qi; Zhang, Ming; Jin, Rong-Rong; Jiang, Xi; Shen, Xiao-Tong; Li, Xiao-Kun; Cai, Jun

    2014-05-01

    Lipid nanoparticles with solid matrix have been given increasing attention due to their biodegradable status and ability to entrap a variety of biologically active compounds. In this study, new phospholipid-based gelatin nanoparticles encapsulating basic fibroblast growth factor (bFGF) were developed to target the brain via nasal administration. Treatment effects were assessed by quantifying rotational behavior, monoamine neurotransmitter levels and tyrosine hydroxylase expression in 6-hydroxydopamine induced hemiparkinsonian rats. The gelatin nanostructured lipid carriers (GNLs) were prepared by a water-in-water emulsion method and then freeze-dried. The GNLs possessed better profile than gelatin nanoparticles (GNs), with particle size 143±1.14nm and Zeta potential -38.2±1.2mV. The intranasal GNLs efficiently enriched exogenous bFGF in olfactory bulb and striatum without adverse impact on the integrity of nasal mucosa and showed obvious therapeutic effects on hemiparkinsonian rats. Thus, GNLs are attractive carriers for nose-to-brain drug delivery, especially for unstable macromolecular drugs such as bFGF. This team of authors reports the development of phospholipid-based gelatin nanoparticles encapsulating basic fibroblast growth factor to target the brain via intranasal administration. A rat model of hemiparkinsonism was applied demonstrating a good safety profile and an obvious therapeutic effect. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Growth factors and steroid mediated regulation of cytoskeletal protein expression in serum-deprived primary astrocyte cultures.

    PubMed

    Bramanti, Vincenzo; Bronzi, Daniela; Tomassoni, Daniele; Costa, Antonino; Raciti, Giuseppina; Avitabile, Marcello; Amenta, Francesco; Avola, Roberto

    2008-12-01

    In this research we aimed to investigate the interactions between growth factors (GFs) and dexamethasone (DEX) on cytoskeletal proteins GFAP and vimentin (VIM) expression under different experimental conditions. Condition I: 24 h pretreatment with bFGF, subsequent 72 h switching in serum-free medium (SFM) and final addition of GFs, alone or by two in the last 24 h, after a prolonged (60 h) DEX treatment. Condition II: 36 h pretreatment with DEX (with bFGF in the last 24 h), followed by SFM for 60 h and final addition for 24 h with growth factors alone or two of them together. Western blot analysis data showed a marked GFAP expression in cultures submitted to Condition I comparing results to untreated or treated controls. VIM expression was instead significantly reduced after GFs addition in the last 24 h of 60 h DEX treatment, respect to control DEX-pretreated ones. Referring data to untreated controls, VIM expression was significantly enhanced after GFs addition. GFAP showed also a significant increase in astrocytes submitted to Condition II, respect to untreated or treated control cultures. VIM expression was up and down regulated under Condition II. Collectively, our findings evidence an interactive dialogue between GFs and DEX in astroglial cultures, co-pretreated with DEX and bFGF, regulating cytoskeletal network under stressful conditions.

  9. Generation and Characterization of Leukemia Inhibitory Factor-Dependent Equine Induced Pluripotent Stem Cells from Adult Dermal Fibroblasts

    PubMed Central

    Ovchinnikov, Dmitry A.; Sun, Jane; Fortuna, Patrick R.J.; Wolvetang, Ernst J.

    2014-01-01

    In this study we have reprogrammed dermal fibroblasts from an adult female horse into equine induced pluripotent stem cells (equiPSCs). These equiPSCs are dependent only on leukemia inhibitory factor (LIF), placing them in striking contrast to previously derived equiPSCs that have been shown to be co-dependent on both LIF and basic fibroblast growth factor (bFGF). These equiPSCs have a normal karyotype and have been maintained beyond 60 passages. They possess alkaline phosphatase activity and express eqNANOG, eqOCT4, and eqTERT mRNA. Immunocytochemistry confirmed that they produce NANOG, REX1, SSEA4, TRA1-60, and TRA1-81. While our equiPSCs are LIF dependent, bFGF co-stimulates their proliferation via the PI3K/AKT pathway. EquiPSCs lack expression of eqXIST and immunostaining for H3K27me3, suggesting that during reprogramming the inactive X chromosome has likely been reactivated to generate cells that have two active X chromosomes. EquiPSCs form embryoid bodies and in vitro teratomas that contain derivatives of all three germ layers. These LIF-dependent equiPSCs likely reflect a more naive state of pluripotency than equiPSCs that are co-dependent on both LIF and bFGF and so provide a novel resource for understanding pluripotency in the horse. PMID:24555755

  10. Probabilistisches Belegtheitsfilter zur Schätzung dynamischer Umgebungen unter Verwendung multipler Bewegungsmodelle

    NASA Astrophysics Data System (ADS)

    Brechtel, Sebastian; Gindele, Tobias; Vogelgesang, Jan; Dillmann, Rüdiger

    In dieser Arbeit wird eine Erweiterung des zeilbasierten Belegtheitsfilters BOFUM1 um Objektgruppen zum BOFUG (Bayesian Occupancy Filtering using Groups) vorgenommen. Diese ermöglicht die Einteilung und Klassifikation der Gruppenzugehörigkeit von Belegtheit, allein auf Basis von statischen Belegtheitsmessungen. Exemplarisch wird für Fußgänger und Fahrzeuge gezeigt, dass die Definition unterschiedlicher Dynamikmodelle ausreicht, um auf Objektinformationen zu schließen und das Filterergebnis nachhaltig zu verbessern. Die implizite Gruppeninferenz stellt einen ersten Schritt zur Vereinigung von Objekt- und Zellebene dar.

  11. [Growth Factors and Interleukins in Amniotic Membrane Tissue Homogenate].

    PubMed

    Stachon, T; Bischoff, M; Seitz, B; Huber, M; Zawada, M; Langenbucher, A; Szentmáry, N

    2015-07-01

    Application of amniotic membrane homogenate eye drops may be a potential treatment alternative for therapy resistant corneal epithelial defects. The purpose of this study was to determine the concentrations of epidermal growth factor (EGF), fibroblast growth factor basic (bFGF), hepatocyte growth factor (HGF), keratinocyte growth factor (KGF), interleukin-6 (IL-6) and interleukin-8 (IL-8) in amniotic membrane homogenates. Amniotic membranes of 8 placentas were prepared and thereafter stored at - 80 °C using the standard methods of the LIONS Cornea Bank Saar-Lor-Lux, Trier/Westpfalz. Following defreezing, amniotic membranes were cut in two pieces and homogenized in liquid nitrogen. One part of the homogenate was prepared in cell-lysis buffer, the other part was prepared in PBS. The tissue homogenates were stored at - 20 °C until enzyme-linked immunosorbent assay (ELISA) analysis for EGF, bFGF, HGF, KGF, IL-6 and IL-8 concentrations. Concentrations of KGF, IL-6 and IL-8 were below the detection limit using both preparation techniques. The EGF concentration in tissue homogenates treated with cell-lysis buffer (2412 pg/g tissue) was not significantly different compared to that of tissue homogenates treated with PBS (1586 pg/g tissue, p = 0.72). bFGF release was also not significantly different using cell-lysis buffer (3606 pg/g tissue) or PBS treated tissue homogenates (4649 pg/g tissue, p = 0.35). HGF release was significantly lower using cell-lysis buffer (23,555 pg/g tissue), compared to PBS treated tissue (47,766 pg/g tissue, p = 0.007). Containing EGF, bFGF and HGF, and lacking IL-6 and IL-8, the application of amniotic membrane homogenate eye drops may be a potential treatment alternative for therapy-resistant corneal epithelial defects. Georg Thieme Verlag KG Stuttgart · New York.

  12. Von neuen Geschäftsideen zur gelebten Digitalisierung in Utility 4.0 - das Integrierte Geschäftsmodell

    NASA Astrophysics Data System (ADS)

    Doleski, Oliver D.

    Die Energiewirtschaft benötigt neue, digitale Geschäftsmodelle. Gegenwärtig folgt auf Liberalisierung und Energiewende die nächste Stufe einer weitreichenden Bereinigung des Versorgungsmarktes. Digitalisierung und Dezentralisierung sind heute in aller Munde und verlangen nach neuen Produkten und Dienstleistungen. Dabei wirken die immensen Herausforderungen einer digitalen Energiewelt wie Beschleuniger für die Transformation im Versorgungssektor und tragen damit zur breiten Etablierung von Utilities 4.0 bei. Dieser Entwicklungsprozess vollzieht sich mithilfe unterschiedlicher Methoden zur Realisierung neuer Geschäftsideen. Allerdings greifen die gängigen Konzepte zur Entwicklung von Geschäftsmodellen gerade im Hinblick auf die Berücksichtigung komplexer, unbeständiger Rahmenbedingungen und spezifischer Anforderungen der digitalen Energiewelt mitunter zu kurz. Vor diesem Hintergrund wird das auf dem ganzheitlichen St. Galler Management-Konzept beruhende Integrierte Geschäftsmodell iOcTen als geeignetes Instrumentarium zur Geschäftsmodellentwicklung vorgestellt. Neben der Modellbeschreibung unterstützt ein intuitiv verständlicher Leitfaden den Praktiker bei der Transformation vom klassischen Versorgungsunternehmen zum digitalen Energiedienstleistungsunternehmen.

  13. Molekulare Methoden zum Nachweis, zur Quantifizierung und zum Monitoring der Mykotoxinbildung lebensmittelrelevanter Pilze

    NASA Astrophysics Data System (ADS)

    Geisen, Rolf

    Schimmelpilze kommen ubiquitär vor und spielen besonders bei pflanzlichen Lebensmitteln und Rohprodukten eine besondere Rolle als Verderbsorganismen. Es wird geschätzt, dass 20-25 % der jährlichen Produktion an pflanzlichen Produkten durch Schimmelpilze verdorben werden (Smith et al., 1994). Viele der lebensmittelrelevanten Schimmelpilze sind zudem in der Lage, Mykotoxine, toxische Sekundärmetabolite, zu bilden, was das Ausmaß des Problems deutlich macht. Die wichtigsten mykotoxinbildenden Spezies gehören zu den Fusarien (Trichothecene, Fumonisine, Zearalenon), Aspergillen (Aflatoxin, Ochratoxin, Cyclopiazonsäure) und Penicillien (Patulin, Ochratoxin). Für viele Mykotoxine, wie die Aflatoxine, Ochratoxin, Fumonisine und Trichothecene sind Grenzwerte erlassen worden, die die Verkehrsfähigkeit betroffener Produkte regeln. Die Einhaltung der Grenzwerte kann sehr genau durch offizielle chemisch-analytische Methoden, wie HPLC, GC-MS etc. kontrolliert werden. Diese analytischen Methoden sind aber für die Anwendung eines HACCP-Ansatzes zur Kontrolle der Mykotoxinbildung nur bedingt geeignet, da sie Endpunktkontrollen darstellen und nur das über eine längere Zeit gebildete Mykotoxin bestimmen. Sie sagen daher nichts über die biologischen Bedingungen zur Zeit der Bildung durch den Pilz aus.

  14. Identifikationsverfahren zur Analyse von EEG-Signalen bei Epilepsie mit Reaktions-Diffusions Netzwerken

    NASA Astrophysics Data System (ADS)

    Gollas, F.; Tetzlaff, R.

    2007-06-01

    Partielle Differentialgleichungen des Reaktions-Diffusions-Typs beschreiben Phänomene wie Musterbildung, nichtlineare Wellenausbreitung und deterministisches Chaos und werden oft zur Untersuchung komplexer Vorgänge auf den Gebieten der Biologie, Chemie und Physik herangezogen. Zellulare Nichtlineare Netzwerke (CNN) sind eine räumliche Anordnung vergleichsweise einfacher dynamischer Systeme, die eine lokale Kopplung untereinander aufweisen. Durch eine Diskretisierung der Ortsvariablen können Reaktions-Diffusions-Gleichungen häufig auf CNN mit nichtlinearen Gewichtsfunktionen abgebildet werden. Die resultierenden Reaktions-Diffusions-CNN (RD-CNN) weisen dann in ihrer Dynamik näherungsweise gleiches Verhalten wie die zugrunde gelegten Reaktions-Diffusions-Systeme auf. Werden RD-CNN zur Identifikation neuronaler Strukturen anhand von EEG-Signalen herangezogen, so besteht die Möglichkeit festzustellen, ob das gefundene Netzwerk lokale Aktivität aufweist. Die von Chua eingeführte Theorie der lokalen Aktivität Chua (1998); Dogaru und Chua (1998) liefert eine notwendige Bedingung für das Auftreten von emergentem Verhalten in zellularen Netzwerken. Änderungen in den Parametern bestimmter RD-CNN könnten auf bevorstehende epileptische Anfälle hinweisen. In diesem Beitrag steht die Identifikation neuronaler Strukturen anhand von EEG-Signalen durch Reaktions-Diffusions-Netzwerke im Vordergrund der dargestellten Untersuchungen. In der Ergebnisdiskussion wird insbesondere auch die Frage nach einer geeigneten Netzwerkstruktur mit minimaler Komplexität behandelt.

  15. mRNA expression of basic fibroblast growth factor from a single intratracheal instillation of papain-induced emphysema in rats.

    PubMed

    Fu, J; Xu, Y; Zhang, Z

    2001-01-01

    The relations between mRNA expression of basic fibroblast growth factor (bFGF) and the changes in collagen I and collagen III in pulmonary tissues from a single intratracheal instillation of papain-induced emphysema in rats were investigated. Wistar rats (n = 42) were randomly divided into normal group and emphysema model 1, 3, 5, 7, 15, 30-day groups (n = 6 in each group). The rat model of emphysema was induced by a single intratracheal instillation of papain. The results of immunohistochemistry SABC and in situ hybridization with bFGF probe were quantitatively analyzed to examine the changes of collagen I and collagen III and bFGF mRNA expression in lung tissues and the percent of positive expression of bFGFmRNA in alveolar macrophages. The results were as follows: (1) In the emphysema model groups the optical densities of collagen I and collagen III began to increase after 3 days, reached the highest at the 7th day, and began to reduce at the 15th day; (2) No expression of bFGFmRNA in pulmonary tissues was detectable in the normal group. The positive expression of bFGFmRNA was detectable in lung tissues one day after the intratracheal instillation of papain. The average optical densities reached the peak (41.895 +/- 7.017) at the 7th day, significantly higher than in the normal group (0.581 +/- 0.139, P < 0.01). The positive expression of bFGFmRNA in lung tissues began to reduce at the 15th day; (3) Positive expression of bFGFmRNA in alveolar macrophages of instillation papain rats was detectable 3 days after the intratracheal instillation of papain, and reached the highest at the 7th day with the percent of positive expression of bFGF mRNA in alveolar macrophages being 70.13 +/- 11.21, higher than in the normal group (5.12 +/- 0.18, P < 0.01); (4) The expression of bFGF mRNA in the lung tissues and macrophages was positively related with the changes in collagen I and collagen III (P < 0.01 or P < 0.05) respectively. It was suggested that the up-regulation of bFGF

  16. Effect of basic fibroblast growth factor on the growth and differentiation of adult stromal bone marrow cells: enhanced development of mineralized bone-like tissue in culture.

    PubMed

    Pitaru, S; Kotev-Emeth, S; Noff, D; Kaffuler, S; Savion, N

    1993-08-01

    Rat stromal bone marrow cells (SBMC) were shown to produce mineralized bone-like tissue in culture in the presence of dexamethasone, ascorbic acid, and beta-glycerophosphate. The addition of 3 ng/ml of basic fibroblast growth factor (bFGF) resulted in a significant increase in formation of mineralized tissue. The present study was aimed at assessing the effect of bFGF on the proliferation and differentiation of SBMC and on the sequential development of mineralized bone-like tissue in culture. Transmission electron microscopy of bFGF-treated cultures demonstrated the development of a multilayered structure resembling mineralized bone tissue consisting of cell layers embedded within a heavy extracellular matrix. The matrix was rich in bundles of collagen fibers associated with extensive mineral deposits consisting of hydroxyapatite as determined by infrared spectrophotometry. The addition of 3 ng/ml of bFGF resulted in significant enhancement of [3H]thymidine and [3H]proline incorporation and protein accumulation by 12-, 2.5-, and 2.5-fold, respectively. bFGF treatment increased cAMP responsiveness, alkaline phosphatase activity, osteocalcin level, 45Ca2+ deposition, and mineralized-like tissue formation and induced the earlier expression of these markers in the treated culture. A biphasic sequence of events was observed during the development of mineralized bone-like tissue in bFGF-treated and control cultures. The first phase is characterized by cell proliferation and matrix accumulation and is reflected by a progressive increase in [3H]thymidine and [3H]proline incorporation until day 11. The second phase, which follows, is characterized by a sharp decline in cell proliferation and matrix accumulation and a concomitant expression of osteoblast differentiation as reflected by the progressive increase in alkaline phosphatase activity, mineral deposition, and osteocalcin expression. Treatment of cultures with bFGF accentuated this biphasic sequence of events. These

  17. Growth factor expression in degenerated intervertebral disc tissue. An immunohistochemical analysis of transforming growth factor beta, fibroblast growth factor and platelet-derived growth factor.

    PubMed

    Tolonen, Jukka; Grönblad, Mats; Vanharanta, Heikki; Virri, Johanna; Guyer, Richard D; Rytömaa, Tapio; Karaharju, Erkki O

    2006-05-01

    Degenerated intervertebral disc has lost its normal architecture, and there are changes both in the nuclear and annular parts of the disc. Changes in cell shape, especially in the annulus fibrosus, have been reported. During degeneration the cells become more rounded, chondrocyte-like, whereas in the normal condition annular cells are more spindle shaped. These chondrocyte-like cells, often forming clusters, affect extracellular matrix turnover. In previous studies transforming growth factor beta (TGFbeta) -1 and -2, basic fibroblast growth factor (bFGF) and platelet-derived growth factor (PDGF) have been highlighted in herniated intervertebral disc tissue. In the present study the same growth factors are analysed immunohistochemically in degenerated intervertebral disc tissue. Disc material was obtained from 16 discs operated for painful degenerative disc disease. Discs were classified according to the Dallas Discogram Description. Different disc regions were analysed in parallel. As normal control disc tissue material from eight organ donors was used. Polyclonal antibodies against different growth factors and TGFbeta receptor type II were used, and the immunoreaction was detected by the avidin biotin complex method. All studied degenerated discs showed immunoreactivity for TGFbeta receptor type II and bFGF. Fifteen of 16 discs were immunopositive for TGFbeta-1 and -2, respectively, and none showed immunoreaction for PDGF. Immunopositivity was located in blood vessels and in disc cells. In the nucleus pulposus the immunoreaction was located almost exclusively in chondrocyte-like disc cells, whereas in the annular region this reaction was either in chondrocyte-like disc cells, often forming clusters, or in fibroblast-like disc cells. Chondrocyte-like disc cells were especially prevalent in the posterior disrupted area. In the anterior area of the annulus fibrosus the distribution was more even between these two cell types. bFGF was expressed in the anterior annulus

  18. Regulation of vascular endothelial growth factor secretion in human meningioma cells.

    PubMed

    Tsai, J C; Hsiao, Y Y; Teng, L J; Shun, C T; Chen, C T; Goldman, C K; Kao, M C

    1999-02-01

    Previously, we induced vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) secretion in glioma cell lines by using physiologic concentrations of epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), or platelet-derived growth factor-BB (PDGF-BB). We hypothesized that VEGF/VPF might enhance the blood supply required for the unregulated growth of tumors, and that it acts as the central mediator of tumor angiogenesis. The objective of this study was to determine whether the expression of VEGF/VPF by meningiomas is regulated by growth factors or sex hormones. By means of an enzyme-linked immunosorbent assay of CH-157MN meningioma cell supernatants, we demonstrated that EGF and bFGF similarly induce VEGF secretion by CH-157MN meningioma cells. At the maximum concentrations of EGF (50 ng/mL) and bFGF (50 ng/mL) used in this study, VEGF secretion was induced to 140% to 160% above baseline constitutive secretion. PDGF-BB homodimer did not enhance VEGF secretion significantly. Estradiol (up to 10(-7) mol/L), progesterone (up to 10(-5) mol/L), or testosterone (up to 10(-5) mol/L) did not stimulate or inhibit VEGF secretion in CH-157MN meningioma cells (p > 0.05). Furthermore, we demonstrated that dexamethasone decreased VEGF secretion to 32% of baseline constitutive secretion. This might explain the effect of corticosteroids in alleviating peritumoral brain edema in meningiomas. These results suggest that VEGF secretion in CH-157MN meningioma cells is mainly regulated by growth factors and corticosteroids, but not by sex hormones. Understanding the regulation of VEGF/VPF secretion in meningiomas might contribute to the development of a new therapeutic strategy.

  19. Biological characterization of human fibroblast-derived mitogenic factors for human melanocytes.

    PubMed Central

    Imokawa, G; Yada, Y; Morisaki, N; Kimura, M

    1998-01-01

    To clarify the paracrine linkage between human fibroblasts and melanocytes in cutaneous pigmentation, we studied the effects of human fibroblast-derived factors on the proliferation of human melanocytes. In medium conditioned for 4 days with human fibroblast culture, factors were produced that markedly stimulated DNA synthesis of human melanocytes. The stimulatory effect was higher in medium conditioned with fibroblasts from aged skin than in medium conditioned with fibroblasts from young skin, and was interrupted by inhibitors of tyrosine kinase, such as tyrphostin, genistein and herbimycin, but not by inhibitors of protein kinases C and A, such as H-7 and phloretin. The conditioned medium was also capable of activating mitogen-activated protein kinase of human melanocytes, with old fibroblasts being more effective than young ones. Analysis of factors released into the conditioned medium revealed that levels of hepatocyte growth factor (HGF) and stem cell factor (SCF) were increased in old-fibroblast-conditioned medium compared with young-fibroblast-conditioned medium. In contrast, levels of basic fibroblast growth factor (bFGF) were similar in both media. When the conditioned medium was treated with HGF antibody with or without SCF antibody, the increase in DNA synthesis by human melanocytes was decreased to 20% of the elevated level, whereas antibodies to bFGF had no effect. Analysis of the medium conditioned for 4 days after cytokine application demonstrated that, of the cytokines tested, interleukin 1alpha and tumour necrosis factor alpha are highly effective in stimulating HGF secretion by old fibroblasts. HGF and SCF, but not bFGF, were markedly increased in culture medium in the presence of IL-1alpha, and this stimulatory effect was confined to young human fibroblasts. These findings suggest that SCF and HGF derived from human fibroblasts may play a part in regulating cutaneous pigmentation during inflammation and aging. PMID:9494091

  20. [Effects of histone deacetylase inhibitor on the expression of angiogenesis related factors in Kasumi-1 leukemic cell line].

    PubMed

    Zhu, Cui-Min; Zhang, Zhi-Hua; Jiang, Feng-Yun; Liu, Bao-Qin; Zhao, Lei; Tian, Wen-Liang; Yan, Li-Na; Liang, Zhi-Qiang; Hao, Chang-Lai

    2010-07-01

    To investigate the effects of two histone deacetylase (HDAC) inhibitors, valproic acid (VPA) and TSA, on the expression of vascular endothelial growth factor (VEGF) and its receptor KDR of the leukemia cell line Kasumi-1 cells, and to explore their potential mechanism in leukemia angiogenesis. Kasumi-1 cells were treated with VPA and TSA at different concentrations for 3 days. The mRNA and protein expression levels of VEGF and KDR were determined by semi-quantitative RT-PCR and Western blot, and the bFGF mRNA by semi-quantitative RT-PCR. As compared with that of control groups, VPA at 3 mmol/L downregulated the VEGF mRNA expression level for VEGF(121) from 0.632 ± 0.014 to 0.034 ± 0.004 and for VEGF(165) from 0.526 ± 0.021 to 0.015 ± 0.001, for KDR mRNA from 0.258 ± 0.034 to 0.038 ± 0.000, and for bFGF mRNA from 0.228 ± 0.017 to 0.086 ± 0.015. TSA downregulated the VEGF mRNA and KDR mRNA at concentration of 100 nmol/L, but its effect on bFGF mRNA only at higher concentration. HDAC inhibitors might inhibit the leukemia angiogenesis by regulating the expression of VEGF and its recptor.

  1. A Stable Chimeric Fibroblast Growth Factor (FGF) Can Successfully Replace Basic FGF in Human Pluripotent Stem Cell Culture

    PubMed Central

    Onuma, Yasuko; Higuchi, Kumiko; Aiki, Yasuhiko; Shu, Yujing; Asada, Masahiro; Asashima, Makoto; Suzuki, Masashi; Imamura, Toru; Ito, Yuzuru

    2015-01-01

    Fibroblast growth factors (FGFs) are essential for maintaining self-renewal in human embryonic stem cells and induced pluripotent stem cells. Recombinant basic FGF (bFGF or FGF2) is conventionally used to culture pluripotent stem cells; however, because of the instability of bFGF, repeated addition of fresh bFGF into the culture medium is required in order to maintain its concentration. In this study, we demonstrate that a heat-stable chimeric variant of FGF, termed FGFC, can be successfully used for maintaining human pluripotent stem cells. FGFC is a chimeric protein composed of human FGF1 and FGF2 domains that exhibits higher thermal stability and protease resistance than do both FGF1 and FGF2. Both human embryonic stem cells and induced pluripotent stem cells were maintained in ordinary culture medium containing FGFC instead of FGF2. Comparison of cells grown in FGFC with those grown in conventional FGF2 media showed no significant differences in terms of the expression of pluripotency markers, global gene expression, karyotype, or differentiation potential in the three germ lineages. We therefore propose that FGFC may be an effective alternative to FGF2, for maintenance of human pluripotent stem cells. PMID:25850016

  2. Magnetisch abgeschirmte Kabine zur Aufnahme kleinster magnetischer und elektrischer Biosignale

    NASA Astrophysics Data System (ADS)

    Mager, Albrecht

    1982-08-01

    An extraordinary magnetically shielded room was designed and constructed for the Physikalisch-Technische Bundesanstalt Institut Berlin to measure extremely weak magnetic fields of the human body with SQUID-magnetometers. The inner and the outer dimensions of the cube-shaped room are 2.25 m and about 5 m. The shield has 6 magnetic shells of a high-permeability alloy and an inner shell welded of massive copper plates. The total weight of the magnetic alloy is about 10 t and about 5 t for the inner copper shell. The required shielding factor of 1000 for the very low frequencies was greatly surpassed by the real measured value of 10000 (measured without any compensating or idealizing method). With rising frequencies the shielding factor reaches higher values, at 50 Hz more than 100000 and a million for 1000 Hz. First measurements in the shielded room with high-resolution magnetocardiograms (HR MCG) and high-resolution electrocardiograms (HR ECG) showed new methods for non-invasive electrophysiological investigations in man.

  3. Comparison between tocotrienol and omeprazole on gastric growth factors in stress-exposed rats

    PubMed Central

    Nur Azlina, Mohd Fahami; Qodriyah, Hj Mohd Saad; Chua, Kien Hui; Kamisah, Yusof

    2017-01-01

    AIM To investigate and compare the effects of tocotrienol and omeprazole on gastric growth factors in rats exposed to water-immersion restraint stress (WIRS). METHODS Twenty-eight male Wistar rats were randomly assigned to four groups of seven rats. The two control groups were administered vitamin-free palm oil (vehicle) and the two treatment groups were given omeprazole (20 mg/kg) or tocotrienol (60 mg/kg) by oral gavage. After 28 d of treatment, rats from one control group and both treated groups were subjected to WIRS one time for 3.5 h. Gastric lesions were measured and gastric tissues were obtained to measure vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), and transforming growth factor-alpha (TGF-α) mRNA expression. RESULTS Rats exposed to WIRS for 3.5 h demonstrated the presence of considerable ulcers in the form of gastric erosion. The lesion index in the stressed control (S) group was increased (P < 0.001) compared to the tocotrienol treated and omeprazole treated groups. Stress led to a decrease in gastric VEGF (P < 0.001), bFGF (P < 0.001) and TGF-α (P < 0.001) mRNA levels and caused an increase in EGF mRNA (P < 0.001) that was statistically significant compared to the non-stressed control group. Although both treatment agents exerted similar ulcer reducing ability, only treatment with tocotrienol led to increased expression of VEGF (P = 0.008), bFGF (P = 0.001) and TGF-α (P = 0.002) mRNA. CONCLUSION Tocotrienol provides gastroprotective effects in WIRS-induced ulcers. Compared to omeprazole, tocotrienol exerts a similar protective effect, albeit through multiple mechanisms of protection, particularly through up-regulation of growth factors that assist in repair of gastric tissue injuries. PMID:28932080

  4. Basic fibroblast growth factor induces matrix metalloproteinase-13 via ERK MAP kinase-altered phosphorylation and sumoylation of Elk-1 in human adult articular chondrocytes.

    PubMed

    Im, Hee-Jeong; Sharrocks, Andrew D; Lin, Xia; Yan, Dongyao; Kim, Jaesung; van Wijnen, Andre J; Hipskind, Robert A

    2009-01-01

    Degradation of the extracellular matrix (ECM) by matrix metalloproteinases (MMPs) and release of basic fibroblast growth factor (bFGF) are principal aspects of the pathology of osteoarthritis (OA). ECM disruption leads to bFGF release, which activates the extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) pathway and its downstream target the Ets-like transcription factor Elk-1. Previously we demonstrated that the bFGF-ERK-Elk-1 signaling axis is responsible for the potent induction of MMP-13 in human primary articular chondrocytes. Here we report that, in addition to phosphorylation of Elk-1, dynamic posttranslational modification of Elk-1 by small ubiquitin-related modifier (SUMO) serves as an important mechanism through which MMP-13 gene expression is regulated. We show that bFGF activates Elk-1 mainly through the ERK pathway and that increased phosphorylation of Elk-1 is accompanied by decreased conjugation of SUMO to Elk-1. Reporter gene assays reveal that phosphorylation renders Elk-1 competent for induction of MMP-13 gene transcription, while sumoylation has the opposite effect. Furthermore, we demonstrate that the SUMO-conjugase Ubc9 acts as a key mediator for Elk-1 sumoylation. Taken together, our results suggest that sumoylation antagonizes the phosphorylation-dependent transactivation capacity of Elk-1. This attenuates transcription of its downstream target gene MMP-13 to maintain the integrity of cartilage ECM homeostasis.

  5. Stabilization of growth factors relevant to wound healing by a plant cell wall biomaterial.

    PubMed

    Ni, Yawei; Turner, Debra; Yates, Kenneth; Tizard, Ian

    2007-10-01

    Stabilization of growth factors in a wound environment is critical to the wound healing process. Here we report on the stabilization of key growth factors by a unique plant cell wall biomaterial. MicroSheets are clear cell wall fragments isolated from the non-living water storage cells in the pulp or inner gel of Aloe vera L., which has widely been used for wound healing. It was found that MicroSheets bind to a subset of heparin binding growth factors including basic fibroblast growth factor (bFGF) and keratinocyte growth factor (KGF), two key growth factors in the wound healing process. The binding of bFGF and KGF to MicroSheets was inhibited by heparin and also by a pectic substance isolated from the MicroSheets, indicating that the binding was mediated by this pectic component of the MicroSheet. The binding protected the growth factors against protease digestion. Furthermore, the protective effect was also demonstrated with KGF against digestion by wound fluids and by measuring the biological activity. Thus, these results showed that MicroSheets can stabilize certain critical growth factors in wounds and thereby promote the healing process. Incorporation of a material like MicroSheets provides an important functional element in wound dressings, i. e., growth factor stabilization.

  6. siRNA-mediated silencing of bFGF gene inhibits the proliferation, migration, and invasion of human pituitary adenoma cells.

    PubMed

    Zhou, Kai; Fan, Yan-Dong; Duysenbi, Serick; Wu, Peng-Fei; Feng, Zhao-Hai; Qian, Zheng; Zhang, Ting-Rong

    2017-06-01

    Human pituitary adenoma is one of the most common intracranial tumors with an incidence as high as 16.7%. Recent evidence has hinted a relationship between growth factors of pituitary or hypothalamic origin and proliferation of human pituitary adenoma cells. This study explores the effects of small interfering RNA-mediated silencing of basic fibroblast growth factor gene on the proliferation, migration, and invasion of human pituitary adenoma cells. Human pituitary adenoma tissues were collected to obtain human pituitary adenoma cells. The basic fibroblast growth factor silencing interference plasmid was constructed, and the human pituitary adenoma cells were transfected and assigned as basic fibroblast growth factor-small interfering RNA, negative control-small interfering RNA, and blank groups. The quantitative real-time polymerase chain reaction and Western blotting were carried out to detect the expression of basic fibroblast growth factor, pituitary tumor transforming gene, vascular endothelial growth factor, cluster of differentiation 147, and matrix metalloproteinase 9. Cell Counting Kit-8 assay was conducted to observe cell proliferation at 0, 24, 48, and 72 h. Flow cytometry was used to determine cell cycle. Transwell and scratch test were applied to detect the invasion and migration of pituitary adenoma cells. Protein kinase C activity was detected. In comparison with the blank group, the basic fibroblast growth factor-small interfering RNA group showed reduced messenger RNA and protein expression of basic fibroblast growth factor, reduced cell viability at 24, 48, and 72 h, increased cells in G0/G1 stage, declined cells in S and G2/M stages, decreased number of cell migration, shortened migrating distance, reduced protein kinase C activity, and decreased expression of pituitary tumor transforming gene, vascular endothelial growth factor, cluster of differentiation 147, and matrix metalloproteinase 9. However, the negative control-small interfering

  7. Zur Biologie des Planktons des Königshafens (Nordsylter Wattenmeer)

    NASA Astrophysics Data System (ADS)

    Martens, P.

    1982-06-01

    From May 1979 on, the following parameters were measured at a station in the inlet of Königshafen near List (Island of Sylt): temperature, salinity, mesozooplankton (>76 µm), chlorophyll-a, seston dry weight, oxygen and phytoplankton-nutrients (NH4-N, NO2-N, NO3-N, PO4-P, SiO3-Si). A multiple regression analysis showed the interrelationships between the parameters measured. Tidal influences on zooplankton and seston dry weight could be observed. At low tide, the amount of zooplankton (not counting the harpacticoid copepods) declines and the number of harpacticoid copepods rises as does the seston dry weight too. The chlorophyll-a content is a function of the phytoplankton-nutrients. An increase in chlorophyll-a leads to a decrease in nitrogen and silicate concentrations. Phosphate, due possibly to a sewage inlet into the Königshafen, is not a limiting factor. The availability of nutrients is influenced by temperature, salinity and the tidal cycle. The amount of oxygen is dependent on water temperature and seston dry weight. High water temperatures and a high seston content lead to a decrease in oxygen concentrations.

  8. Analysis of the Caulobacter crescentus Zur regulon reveals novel insights in zinc acquisition by TonB-dependent outer membrane proteins.

    PubMed

    Mazzon, Ricardo Ruiz; Braz, Vânia Santos; da Silva Neto, José Freire; do Valle Marques, Marilis

    2014-08-28

    Intracellular zinc concentration needs to be maintained within strict limits due to its toxicity at high levels, and this is achieved by a finely regulated balance between uptake and efflux. Many bacteria use the Zinc Uptake Regulator Zur to orchestrate zinc homeostasis, but little is known regarding the transport of this metal across the bacterial outer membrane. In this work we determined the Caulobacter crescentus Zur regulon by global transcriptional and in silico analyses. Among the genes directly repressed by Zur in response to zinc availability are those encoding a putative high affinity ABC uptake system (znuGHI), three TonB-dependent receptors (znuK, znuL and znuM) and one new putative transporter of a family not yet characterized (zrpW). Zur is also directly involved in the activation of a RND and a P-type ATPase efflux systems, as revealed by β-galactosidase and site-directed mutagenesis assays. Several genes belonging to the Fur regulon were also downregulated in the zur mutant, suggesting a putative cross-talk between Zur and Fur regulatory networks. Interestingly, a phenotypic analysis of the znuK and znuL mutants has shown that these genes are essential for growth under zinc starvation, suggesting that C. crescentus uses these TonB-dependent outer membrane transporters as key zinc scavenging systems. The characterization of the C. crescentus Zur regulon showed that this regulator coordinates not only uptake, but also the extrusion of zinc. The uptake of zinc by C. crescentus in conditions of scarcity of this metal is highly dependent on TonB-dependent receptors, and the extrusion is mediated by an RND and P-type ATPase transport systems. The absence of Zur causes a disturbance in the dynamic equilibrium of zinc intracellular concentration, which in turn can interfere with other regulatory networks as seen for the Fur regulon.

  9. The Effects of Soluble Growth Factors on Embryonic Stem Cell Differentiation Inside of Fibrin Scaffolds

    PubMed Central

    Willerth, Stephanie M.; Faxel, Tracy E.; Gottlieb, David I.; Sakiyama-Elbert, Shelly E.

    2008-01-01

    The goal of this research was to determine the effects of different growth factors on the survival and differentiation of murine embryonic stem cell derived neural progenitor cells (ESNPCs) seeded inside of fibrin scaffolds. Embryoid bodies (EBs) were cultured for 8 days in suspension, retinoic acid was applied for the final 4 days to induce ESNPC formation, and then the EBs were seeded inside of 3 dimensional (3D) fibrin scaffolds. Scaffolds were cultured in the presence of media containing different doses of the following growth factors: neurotrophin-3 (NT-3), basic fibroblast growth factor (bFGF), platelet derived growth factor (PDGF-AA), ciliary neurotrophic factor (CNTF), and sonic hedgehog (Shh). The cell phenotypes were characterized using fluorescence activated cell sorting (FACS) and immunohistochemistry after 14 days of culture. Cell viability was also assessed at this time point. Shh (10 ng/mL) and NT-3 (25 ng/mL) produced the largest fractions of neurons and oligodendrocytes while PDGF (2 and 10 ng/mL) and bFGF (10 ng/mL) produced an increase in cell viability after 14 days of culture. Combinations of growth factors were tested based on the results of the individual growth factor studies to determine their effect on cell differentiation. The incorporation of ESNPCs and growth factors into fibrin scaffolds may serve as potential treatment for spinal cord injury (SCI). PMID:17585170

  10. Effect of gamma radiation on the expression of mRNA growth factors in glycerol cryopreserved human amniotic membrane.

    PubMed

    Yatim, Rusidah Mat; Kannan, Thirumulu Ponnuraj; Ab Hamid, Suzina Sheikh

    2016-12-01

    Human amniotic membrane (HAM) due to its high biocompatibility, low immunogenicity, anti-microbial, anti-viral properties as well as the presence of growth factors has been used in various clinical applications. The growth factors play an important role in wound healing. The current study aimed to explore the effect of 15 kGy gamma radiation dose on selected growth factors and receptors mRNA present in HAM. Eight growth factors, namely, EGF, HGF, KGF, TGF-α, TGF-β1, TGF-β2, TGF-β3 and bFGF and two growth factor receptors, HGFR and KGFR were evaluated in this study. The total RNA was extracted and converted to complimentary DNA using commercial kits. Subsequently, the mRNA expressions of these growth factors were evaluated using real-time PCR and the results were statistically analyzed using REST-MCS software. This study confirmed the presence of these mRNA growth factors and receptors in fresh, glycerol cryopreserved and irradiated glycerol cryopreserved HAM. In glycerol cryopreserved HAM, the results showed up-regulation of HGF and bFGF and down-regulation of EGF, HGFR, KGF, KGFR, TGF-α, TGF-β1, TGF-β2 and TGF-β3 relative to the fresh HAM which acted as the control, whereas in irradiated glycerol cryopreserved HAM, the results showed up-regulation of EGF, HGF, KGF, KGFR, TGF-β1, TGF-β2 and TGF-β3 and down-regulation of HGFR, TGF-α and bFGF relative to the glycerol cryopreserved HAM which acted as the control. However, these mRNA expressions did not show any statistical significant difference compared to the control groups. This study concluded that a dose of 15 kGy of gamma radiation did not affect the mRNA expression for the growth factors' and receptors' in the glycerol cryopreserved HAM.

  11. Versuche zur Gewinnung von katalytischen Antikörpern zur Hydrolyse von Arylcarbamaten und Arylharnstoffen. (English Title: Attempts to produce catalytic antibodies for hydrolysis of arylcarbamates and arylureas)

    NASA Astrophysics Data System (ADS)

    Werner, Deljana

    2002-05-01

    Im Rahmen dieser Arbeit gelang es, katalytische Antikörper zur Hydrolyse von Benzylphenylcarbamaten sowie zahlreiche monoklonale Antikörper gegen Haptene herzustellen. Es wurden verschiedene Hapten-Protein-Konjugate unter Verwendung unterschiedlicher Kopplungsmethoden hergestellt und charakterisiert. Zur Generierung der hydrolytisch aktiven Antikörper wurden Inzuchtmäuse mit KLH-Konjugaten von 4 Übergangszustandsanaloga (ÜZA) immunisiert. Mit Hilfe der Hybridomtechnik wurden verschiedene monoklonale Antikörper gegen diese ÜZA gewonnen. Dabei wurden sowohl verschiedene Immunisierungsschemata als auch verschiedene Inzuchtmausstämme und Fusionstechniken verwendet. Insgesamt wurden 32 monoklonale Antikörper gegen die verwendeten ÜZA selektiert. Diese Antikörper wurden in groen Mengen hergestellt und gereinigt. Zum Nachweis der Antikörper-vermittelten Katalyse wurden verschiedene Methoden entwickelt und eingesetzt, darunter immunologische Nachweismethoden mit Anti-Substrat- und Anti-Produkt-Antikörpern und eine photometrische Methode mit Dimethylaminozimtaldehyd. Der Nachweis der hydrolytischen Aktivität gelang mit Hilfe eines Enzymsensors, basierend auf immobilisierter Tyrosinase. Die Antikörper N1-BC1-D11, N1-FA7-C4, N1-FA7-D12 und R3-LG2-F9 hydrolysierten die Benzylphenylcarbamate POCc18, POCc19 und Substanz 27. Der Nachweis der hydrolytischen Aktivität dieser Antikörper gelang auch mit Hilfe der HPLC. Der katalytische Antikörper N1-BC1-D11 wurde kinetisch und thermodynamisch untersucht. Es wurde eine Michaelis-Menten-Kinetik mit Km von 210 µM, vmax von 3 mM/min und kcat von 222 min-1 beobachtet. Diese Werte korrelieren mit den Werten der wenigen bekannten Diphenylcarbamat-spaltenden Abzyme. Die Beschleunigungsrate des Antikörpers N1-BC1-D11 betrug 10. Das ÜZA Hei3 hemmte die hydrolytische Aktivität. Dies beweist, dass die Hydrolyse in der Antigenbindungsstelle stattfindet. Weiter wurde zwischen der Antikörperkonzentration und der

  12. Hybridverfahren zur EMV-Analyse elektrischer Leitungen über geschlitztem Grund

    NASA Astrophysics Data System (ADS)

    Ter Haseborg, J. R.; Brüns, H.-D.; Singer, H.

    2006-09-01

    Die Betrachtung niedrig geführter elektrischer Leitungen über leitendem Grund stellt besondere Anforderungen an die numerische Feldanalyse. Insbesondere für Fälle ungleichförmiger Leitungsführung oder ungleichförmigen Grunds werden Verfahren benötigt, die eine effektive EMV-Analyse zulassen. Die Verwendung von volldiskretisierten Modellen erfordert aufwändige Diskretisierungen, große Ressourcen und hohe Rechenzeiten. Daher werden Möglichkeiten gesucht, die effektive Leitungstheorie auf Anordnungen anzuwenden, deren direkte Berechnung in klassischer Betrachtungsweise nicht möglich ist. In der vorliegenden Arbeit wird ein Hybridverfahren vorgestellt, um den Einfluss von Schlitzen unterhalb von Leitungen in einer approximativen EMV-Analyse zu untersuchen. Hierzu dient neben der Leitungstheorie zur Berechnung des Leiterstroms eine momententheoretische Simulation auf Basis von magnetischen Linienströmen.

  13. Regeneration of anterior cruciate ligament by biodegradable scaffold combined with local controlled release of basic fibroblast growth factor and collagen wrapping.

    PubMed

    Kimura, Yuta; Hokugo, Akishige; Takamoto, Tomoaki; Tabata, Yasuhiko; Kurosawa, Hisashi

    2008-03-01

    The objective of this study was to increase the therapeutic efficacy of anterior cruciate ligament (ACL) surgery using an artificial ligament material developed through a combination of tissue engineering technologies. A poly-L-lactic acid (PLLA) scaffold of plain-woven braid was incorporated with a gelatin hydrogel for controlled release of basic fibroblast growth factor (bFGF) and wrapped with a collagen membrane to allow space for ligament regeneration. For the ACL reconstruction surgery, the PLLA braid scaffold combined with the gelatin hydrogel incorporating bFGF and the collagen wrapping was applied to a tunnel prepared in the femur and tibia of rabbits. The hydrogel was placed in the bone, whereas the portion of the braid inside the joint cavity was wrapped with the membrane. As controls, the PLLA scaffold was applied with the hydrogel or the membrane, or without either material. Bone regeneration in the tunnel and ACL tissue regeneration in the joint cavity were histologically evaluated, and the mechanical strength and collagen content of the regenerated ACL were assessed. When the PLLA scaffold was integrated with both the hydrogel and the membrane, bone and ACL tissues were regenerated in the corresponding sites, in marked contrast to the control groups. Combination of bFGF-controlled release resulted in enhanced mechanical strength of the regenerated ACL tissue. In the joint cavity, it is possible that the local bFGF release inside the membrane enhanced the cell migration and collagen production, and that the surrounding PLLA scaffold results in the biological regeneration of ligament-like tissue. Additionally, significant bone regeneration around the scaffold was observed in the bone tunnel. It is therefore possible that the local controlled release of bFGF near the PLLA braid induced both osseointegration and intrascaffold cell migration in the bone tunnel and joint cavity, respectively, resulting in an overall increase in the mechanical strength of

  14. Basic Fibroblast Growth Factor Inhibits Apoptosis and Promotes Proliferation of Adipose-Derived Mesenchymal Stromal Cells Isolated from Patients with Type 2 Diabetes by Reducing Cellular Oxidative Stress

    PubMed Central

    2017-01-01

    Type 2 diabetes (T2D) is a chronic metabolic disorder affecting increasing number of people in developed countries. Therefore new strategies for treatment of T2D and its complications are of special interest. Nowadays, cellular therapies involving mesenchymal stromal cells that reside in adipose tissue (ASCs) constitute a promising approach; however, there are still many obstacles concerning safety and effectiveness that need to be overcome before ASCs could be engaged for the treatment of diabetes mellitus. One of the challenges is preventing ASCs from deterioration caused by elevated oxidative stress present in diabetes milieu. In the current study we investigated the effect of basic fibroblast growth factor (bFGF) treatment on ASCs isolated from patients with diagnosed T2D. We demonstrate here that cell exposition to bFGF in 5 and 10 ng/mL dosages results in improved morphology, increased proliferative activity, reduced cellular senescence and apoptosis, and decreased oxidative stress, indicating recovery of ASCs' function impaired by T2D. Therefore our results provide a support for bFGF as a potential therapeutic agent for improving stem cell-based approaches for the treatment of diabetes mellitus and its complications. PMID:28168007

  15. Basic fibroblast growth factor promotes melanocyte migration via activating PI3K/Akt-Rac1-FAK-JNK and ERK signaling pathways.

    PubMed

    Shi, Hongxue; Lin, Beibei; Huang, Yan; Wu, Jiang; Zhang, Hongyu; Lin, Cai; Wang, Zhouguang; Zhu, Jingjing; Zhao, Yingzhen; Fu, Xiaobing; Lou, Zhencai; Li, Xiaokun; Xiao, Jian

    2016-09-01

    Vitiligo is a depigmentation disorder characterized by loss of functional melanocytes of the skin epidermis. The pathogenesis of vitiligo remains elusive. The purpose of this study is to investigate the effects of basic fibroblast growth factor (bFGF) on melanocyte migration, including its biochemical mechanism using transwell assay in vitro. We found that melanocyte treated with bFGF showed a significant increase in migration and cytoskeletal rearrangement. These changes were associated with increased activation of PI3K/Akt, Rac1, FAK, JNK, and ERK. Likewise, reduction of PI3K/Akt, Rac1, FAK, JNK, and ERK activity using selective inhibitors or siRNA was associated with impediment of bFGF-induced melanocyte migration. In addition, activity of Rac1, FAK, and JNK was reduced in cells in which PI3K/Akt was inhibited, activity of FAK and JNK was reduced in cells in which the Rac1 was inhibited, and activity of JNK was reduced in cells in which the FAK was inhibited. Collectively, these data demonstrate that bFGF facilitated melanocyte migration via PI3K/Akt-Rac1-FAK-JNK and ERK signaling pathways. © 2016 IUBMB Life, 68(9):735-747, 2016. © 2016 International Union of Biochemistry and Molecular Biology.

  16. Fluid shear stress differentially modulates expression of genes encoding basic fibroblast growth factor and platelet-derived growth factor B chain in vascular endothelium.

    PubMed Central

    Malek, A M; Gibbons, G H; Dzau, V J; Izumo, S

    1993-01-01

    Fluid shear stress has been shown to be an important regulator of vascular structure and function through its effect on the endothelial cell. We have explored the effect of shear stress on the expression of the heparin-binding growth factors platelet-derived growth factor B chain (PDGF-B) and basic fibroblast growth factor (bFGF) in bovine aortic endothelial cells using a purpose-built cone-plate viscometer. Using morphometric analysis, we have mimicked the endothelial cell shape changes encountered in vivo in response to shear stress and correlated these with changes in gene expression. Steady laminar shear stress of 15 and 36 dyn/cm2 both resulted in endothelial cell shape change, but the higher shear stress induced greater and more uniform alignment in the direction of flow and nuclear protrusion after 24 h. Steady laminar shear stress of both 15 and 36 dyn/cm2 induced a significant 3.9- and 4.2-fold decrease, respectively, in PDGF-B mRNA at 9 h. In contrast, steady laminar shear of 15 dyn/cm2 induced a mild and transient 1.5-fold increase in bFGF mRNA while shear of 36 dyn/cm2 induced a significant 4.8-fold increase at 6 h of shear which remained at 2.9-fold at 9 h. Pulsatile and turbulent shear stress showed the same effect as steady laminar shear stress (all at 15 dyn/cm2 time-average magnitude) on PDGF-B and bFGF mRNA content. Cyclic stretch (20% strain, 20/min) of cells grown on silicone substrate did not significantly affect either PDGF-B or bFGF mRNA levels. These results suggest that expression of each peptide growth factor gene is differentially regulated by fluid shear stress in the vascular endothelial cell. These results may have implications on vascular structure and function in response to hemodynamic forces and present a model for the study of transduction of mechanical stimuli into altered gene expression. Images PMID:8408655

  17. Optimization of human tendon tissue engineering: synergistic effects of growth factors for use in tendon scaffold repopulation.

    PubMed

    Raghavan, Shyam S; Woon, Colin Y L; Kraus, Armin; Megerle, Kai; Pham, Hung; Chang, James

    2012-02-01

    Tissue-engineered flexor tendon grafts may allow reconstruction of severe tendon losses. One critical factor is the optimization of cell proliferation and reseeding. Use of growth factors--basic fibroblast growth factor (bFGF), insulin-like growth factor (IGF)-1, and platelet-derived growth factor (PDGF)-BB--may improve culture conditions for human fibroblasts, tenocytes, and adipose-derived stem cells and increase repopulation of a tendon scaffold. All cell types were plated at a density of 10,000 cells per well and cultured in F12 media supplemented with varying concentrations of bFGF, IGF-1, and PDGF-BB. After 72 hours, cell proliferation was determined using the CellTiter assay. Human flexor tendon segments were acellularized and reseeded in a cell suspension of 5 × 10(5) cells/ml. After 5 days, tendon repopulation was determined using the MTS assay and histology. Statistical significance was determined with analysis of variance and a t test. For all cell types, there was enhanced proliferation with growth factors. Among single growth factors, PDGF-BB at 50 ng/ml was the most efficient stimulator of proliferation. With multiple growth factors, the optimal concentration was determined to be 5 ng/ml bFGF, 50 ng/ml IGF-1, and 50 ng/ml PDGF-BB (increase when compared with control: fibroblasts, 2.92-fold; tenocytes, 2.3-fold; and adipose-derived stem cells, 2.4-fold; p < 0.05). Tendons reseeded with this optimal combination of growth factors showed improved reseeding compared with the control group (fibroblasts, 2.01-fold; tenocytes, 1.78-fold; and adipose-derived stem cells, 1.76-fold; p < 0.05). bFGF, IGF-1, and PDGF-BB can be used to improve cellular proliferation and repopulation of an acellularized scaffold. The use of growth factors may be an important step in the tissue engineering of human flexor tendons.

  18. Multiple release of polyplexes of plasmids VEGF and bFGF from electrospun fibrous scaffolds towards regeneration of mature blood vessels.

    PubMed

    He, Shuhui; Xia, Tian; Wang, Huan; Wei, Li; Luo, Xiaoming; Li, Xiaohong

    2012-07-01

    Key challenges associated with the outcomes of vascular grafting (for example, to fully vascularize engineered tissues and promptly regenerate blood vessel substitutes) remain unsolved. The local availability of angiogenic growth factors is highly desirable for tissue regeneration, and plasmid loading in scaffolds represents a powerful alternative for local production of tissue-inductive factors. No attempt has been made so far to clarify the efficacy of electrospun fibers with the loading of multiple plasmids to promote tissue regeneration. In the present study, core-sheath electrospun fibers with the encapsulation of polyplexes of basic fibroblast growth factor-encoding plasmid (pbFGF) and vascular endothelial growth factor-encoding plasmid (pVEGF) were evaluated to promote the generation of mature blood vessels. In vitro release indicated a sustained release of pDNA for ∼4 weeks with as low as ∼10% initial burst release, and the release patterns from the single and twofold plasmid-loaded systems coincided. In vitro investigations on human umbilical vein endothelial cells showed that the sustained release of pDNA from fibrous mats promoted cell attachment and viability, cell transfection and protein expression, and extracellular secretion of collagen IV and laminin. The acceleration of angiogenesis was assessed in vivo after subcutaneous implantation of fibrous scaffolds, and the explants were evaluated after 1, 2 and 4 weeks' treatment by histological and immunohistochemical staining. Compared with pDNA polyplex infiltrated fibrous mats, the pDNA polyplex encapsulated fibers alleviated the inflammation reaction and enhanced the generation of microvessels. Although there was no significant difference in the total number of microvessels, the density of mature vessels was significantly enhanced by the combined treatment with both pbFGF and pVEGF compared with those incorporating individual pDNA. The integration of the core-sheath structure, DNA condensation and

  19. The activity of cAMP-dependent protein kinase is required at a posttranslational level for induction of voltage-dependent sodium channels by peptide growth factors in PC12 cells

    PubMed Central

    1992-01-01

    The synthesis and expression of voltage-dependent sodium (Na) channels is a crucial aspect of neuronal differentiation because of the central role these ion channels play in the generation of action potentials and the transfer of information in the nervous system. We have used rat pheochromocytoma (PC12) cell lines deficient in cAMP-dependent protein kinase (PKA) activity to examine the role of PKA in the induction of Na channel expression by nerve growth factor (NGF) and basic FGF (bFGF). In the parental PC12 cell line both NGF and bFGF elicit an increase in the density of functional Na channels, as determined from whole-cell patch clamp recordings. This increase does not occur in two PC12 cell lines deficient in both isozymes of PKA (PKAI and PKAII), and is strongly reduced in a third line deficient in PKAII, but not PKAI. Despite the inability of the neurotrophic factors to induce functional Na channel expression in the PKA-deficient cells, Northern blot hybridization studies and saxitoxin binding assays of intact cells indicate that NGF and bFGF are still capable of eliciting increases in both Na channel mRNA and Na channel protein in the membrane. Thus, PKA activity appears to be necessary at a posttranslational step in the synthesis and expression of functional Na channels, and thereby plays an important role in determining neuronal excitability. PMID:1311713

  20. Regulation of hyaluronan and versican deposition by growth factors in fibrosarcoma cell lines.

    PubMed

    Berdiaki, A; Zafiropoulos, A; Fthenou, E; Katonis, P; Tsatsakis, A; Karamanos, N K; Tzanakakis, G N

    2008-02-01

    Versican, a large chondroitin sulphate proteoglycan and hyaluronan (HA), a non-sulphated glycosaminoglycan are major constituents of the pericellular matrix. In many neoplastic tissues, changes in the expression of versican and HA affect tumour progression. Here, we analyse the synthesis of versican and hyaluronan by fibrosarcoma cells, and document how the latter is affected by PDGF-BB, bFGF and TGFB2, growth factors endogenously produced by these cells. Fibrosarcoma cell lines B6FS and HT1080 were utilised and compared with normal lung fibroblasts (DLF). The major versican isoforms expressed by DLF and B6FS cells were V0 and V1. Treatment of B6FS cells with TGFB2 showed a significant increase of V0 and V1 mRNAs. Versican expression in HT1080 cells was not significantly affected by any of the growth factors. In addition, TGFB2 treatment increased versican protein in DLF cells. HA, showed approximately a 2-fold and a 9-fold higher production in DLF cells compared to B6FS and HT1080 cells, respectively. In HT1080 cells, HA biosynthesis was significantly increased by bFGF, whereas, in B6FS cells it was increased by TGFB2 and PDGF-BB. Furthermore, analysis of HA synthases (HAS) expression indicated that HT1080 expressed similar levels of all three HAS isoforms in the following order: HAS2> HAS3> HAS1. bFGF shifted that balance by increasing the abundance of HAS1. The major HAS isoform expressed by B6FS cells was HAS2. PDGF-BB and TGFB2 showed the most prominent effects by increasing both HAS2 and HAS1 isoforms. In conclusion, these growth factors modulated, through upregulation of specific HAS isoforms, HA synthesis, secretion and net deposition to the pericellular matrix.

  1. Vergleich von rekombinanten Vaccinia- und DNA-Vektoren zur Tumorimmuntherapie im C57BL/6-Mausmodell

    NASA Astrophysics Data System (ADS)

    Johnen, Heiko

    2002-10-01

    In der vorliegenden Arbeit wurden Tumorimpfstoffe auf der Basis des Plasmid-Vektors pCI, modified vaccinia virus Ankara (MVA) und MVA-infizierten dendritischen Zellen entwickelt und durch Sequenzierung, Western blotting und durchflußzytometrische Analyse überprüft. Die in vivo Wirksamkeit der Vakzinen wurde in verschiedenen Tumormodellen in C57BL/6 Mäusen verglichen. Die auf dem eukaryotischen Expressionsvektor pCI basierende DNA-Vakzinierung induzierte einen sehr wirksamen, antigenspezifischen und langfristigen Schutz vor Muzin, CEA oder beta-Galactosidase exprimierenden Tumoren. Eine MVA-Vakzinierung bietet in den in dieser Arbeit durchgeführten Tumormodellen keinen signifikanten Schutz vor Muzin oder beta-Galactosidase exprimierenden Tumoren. Sowohl humane, als auch murine in vitro generierte dendritische Zellen lassen sich mit MVA – im Vergleich zu anderen viralen Vektoren – sehr gut infizieren. Die Expressionsrate der eingefügten Gene ist aber gering im Vergleich zur Expression in permissiven Wirtszellen des Virus (embryonale Hühnerfibroblasten). Es konnte gezeigt werden, daß eine MVA-Infektion dendritischer Zellen ähnliche Auswirkungen auf den Reifezustand humaner und muriner dendritischer Zellen hat, wie eine Infektion mit replikationskompetenten Vakzinia-Stämmen, und außerdem die Hochregulation von CD40 während der terminalen Reifung von murinen dendritischen Zellen inhibiert wird. Die während der langfristigen in vitro Kultur auf CEF-Zellen entstandenen Deletionen im MVA Genom führten zu einer starken Attenuierung und dem Verlust einiger Gene, die immunmodulatorische Proteine kodieren, jedoch nicht zu einer Verminderung des zytopathischen Effekts in dendritischen Zellen. Die geringe Expressionsrate und die beobachtete Inhibition der Expression kostimulatorischer Moleküle auf dendritischen Zellen kann für eine wenig effektive Induktion einer Immunantwort in MVA vakzinierten Tieren durch cross priming oder die direkte Infektion

  2. A generic strategy for co-presentation of heparin-binding growth factors based on CVD polymerization.

    PubMed

    Deng, Xiaopei; Lahann, Joerg

    2012-09-14

    A multifunctional copolymer with both aldehyde and alkyne groups is synthesized by chemical vapor deposition (CVD) for orthogonal co-immobilization of biomolecules. Surface analytical methods including FTIR and XPS are used to confirm the surface modification. Heparin-binding growth factors [basic fibroblast growth factor (bFGF) in this study] can be immobilized through interaction with heparin, which was covalently attached to the CVD surface through an aldehyde-hydrazide reaction. In parallel, an alkyne-azide reaction is used to orthogonally co-immobilize an adhesion peptide as the second biomolecule.

  3. Comparison of colony-formation efficiency of bovine fetal fibroblast cell lines cultured with low oxygen, hydrocortisone, L-carnosine, bFGF, or different levels of FBS.

    PubMed

    Talbot, Neil C; Powell, Anne M; Caperna, Thomas J

    2004-01-01

    A comparison of colony-formation efficiency (CFE) was made between six independent bovine fetal fibroblast (BFF) cell lines used in somatic cell nuclear transfer. Variation in CFE was assessed under different culture conditions. The conditions examined were ambient atmosphere (approximately 20% oxygen) culture versus 5% oxygen culture, three levels of fetal bovine serum (FBS) in the medium (5%, 10% or 20%), and the amendment of 10% FBS medium with basic fibroblast growth factor (1 ng/mL), L-carnosine (20 mM), or hydrocortisone (1 microM). The six BFF cell lines showed significant differences from one another in CFE. No significant difference in CFE was found with reduced oxygen culture. L-Carnosine also had no significant effect on CFE. A FBS concentration of 10% was found to produce the best overall CFE. Hydrocortisone treatment reduced the size of colonies although the number of colonies formed was not affected. Basic FGF increased the size of colonies but the number of colonies formed was not affected. The results showed that different BFF cell lines varied significantly in their CFE. Also, some medium supplements or culture conditions that have shown positive CFE effects on the fibroblasts of other species failed to show significant positive CFE effects on the BFF cell lines tested.

  4. Human corneal fibroblast migration and extracellular matrix synthesis during stromal repair: Role played by platelet-derived growth factor-BB, basic fibroblast growth factor, and transforming growth factor-β1.

    PubMed

    Gallego-Muñoz, Patricia; Ibares-Frías, Lucía; Garrote, José A; Valsero-Blanco, María Cruz; Cantalapiedra-Rodríguez, Roberto; Merayo-Lloves, Jesús; Carmen Martínez-García, M

    2016-11-15

    The development of treatments that modulate corneal wound healing to avoid fibrosis during tissue repair is important for the restoration of corneal transparency after an injury. To date, few studies have studied the influence of growth factors (GFs) on human corneal fibroblast (HCF) expression of extracellular matrix (ECM) proteins such as collagen types I and III, proteoglycans such as perlecan, or proteins implicated in cellular migration such as α5β1-integrin and syndecan-4. Using in vitro HCFs, a mechanical wound model was developed to study the influence of the GFs basic fibroblast GF (bFGF), platelet-derived GF (PDGF-BB) and transforming GF-β1 (TGFβ1) on ECM protein production and cellular migration. Our results show that mechanical wounding provokes the autocrine release of bFGF and TGFβ1 at different time points during the wound closure. The HCF response to PDGF-BB was a rapid closure due to fast cellular migration associated with a high focal adhesion replacement and a high expression of collagen and proteoglycans, producing nonfibrotic healing. bFGF stimulated nonfibrotic ECM production and limited the migration process. Finally, TGFβ1 induced expression of the fibrotic markers collagen type III and α5β1 integrin, and it inhibited cellular migration due to the formation of focal adhesions with a low turnover rate. The novel in vitro HCF mechanical wound model can be used to understand the role played by GFs in human corneal repair. The model can also be used to test the effects of different treatments aimed at improving the healing process. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  5. A growth factor phenotype map for ovine preimplantation development.

    PubMed

    Watson, A J; Watson, P H; Arcellana-Panlilio, M; Warnes, D; Walker, S K; Schultz, G A; Armstrong, D T; Seamark, R F

    1994-04-01

    The reverse transcription-polymerase chain reaction (RT-PCR) was used to determine the patterns of expression for several growth factor ligand and receptor genes during ovine preimplantation development. Transcripts for insulin-like growth factor (IGF)-I, IGF-II, and the receptors for insulin and IGF-I were detected throughout ovine preimplantation development from the 1-cell to the blastocyst stage. Transforming growth factor alpha (TGF alpha) transcripts were also detected throughout ovine preimplantation development. The mRNAs encoding basic fibroblast growth factor (bFGF) were detected in all stages of the ovine preimplantation embryo, although the relative abundance of this transcript consistently decreased from the 1-cell to the blastocyst stage, suggesting that it may represent a maternal transcript in early sheep embryos. Transcripts encoding ovine trophoblast protein (oTP) were detected only within blastocyst-stage embryos. Primary ovine oviduct cell cultures express the transcripts for IGF-II, IGF-I, TGF alpha, bFGF, TGF beta 1, and the receptors for insulin and IGF-I, suggesting that paracrine growth factor circuits may exist between the oviduct epithelium and the early ovine embryo. Transcripts for insulin, epidermal growth factor (EGF), and nerve growth factor (NGF) were not detected in any stage of the ovine preimplantation embryo or within the oviduct cell preparations. The expression of growth factor transcripts very early in mammalian development would predict that these molecules fulfil a necessary role(s) in supporting the progression of early embryos through the preimplantation interval. Our future efforts will be directed to understanding the nature of these putative regulatory pathways.

  6. Periodisches Hitzdrahtverfahren zur Messung von Wärme- und Temperaturleitfähigkeit von geringen Stoffmengen

    NASA Astrophysics Data System (ADS)

    Griesinger, A.; Spindler, K.; Hahne, E.

    Zusammenfassung Es wird ein Meßverfahren zur gleichzeitigen Bestimmung der Wärme- und der Temperaturleitfähigkeit von geringen Stoffmengen beschrieben. Neben Messungen an hochviskosen Flüssigkeiten eignet sich das Verfahren besonders für Messungen an Pulver-Schüttungen. Das Meßverfahren basiert auf dem transienten Hitzdraht-Verfahren. In einem dünnen Platindraht fließt ein sinusförmiger Wechselstrom, der den Draht periodisch erwärmt. Es entstehen thermische Wellen, die in die umgebende Probe eindringen. Die Amplitude und die Phasenlage der thermischen Wellen in der Probe hängen von der Temperaturleitfähigkeit a und der Wärmeleitfähigkeit λ der Probe ab. Die Temperaturschwingung in der Probe wird mit Hilfe des Platindrahtes gemessen, der gleichzeitig als Widerstandsthermometer eingesetzt wird. Meßwerte von Wasser und Glycerin zeigen eine gute Übereinstimmung mit Literaturwerten. Das Meßverfahren zeichnet sich dadurch aus, daß zur Bestimmung der Wärme- und Temperaturleitfähigkeit nur 13 ml einer Probe benötigt werden. Es werden Meßwerte einer Zeolith-Schüttung unter Wasserstoffbeladung dargestellt. A measuring procedure for the simultaneous determination of the thermal conductivity and thermal diffusivity of small quantities is described. The procedure is suited for high-viscous fluids and for powdery material. The measuring principle is based on the transient hot-wire method. A sinusoidal alternating current flows through a thin platinum wire and heats up the wire periodically. This results in thermal waves, which penetrate into the surrounding sample. The amplitude and the phase shift of the thermal waves depend on the thermal diffusivity ``a'' and the thermal conductivity ``λ'' of the sample. The temperature oscillation in the sample is measured by means of the platinum wire, which is simultaneously applied as a resistance thermometer. The values measured for water and glycerine correspond well to those given in literature. Results of the

  7. Modellierungskonzept für MOS Varaktoren zur Minimierung der AM-FM Konversion in VCOs

    NASA Astrophysics Data System (ADS)

    Peikert, T.; Bremer, J.-K.; Mathis, W.

    2010-10-01

    In dieser Arbeit wird ein analytisches Simulationsmodell für MOS Varaktoren zur Entwurfsunterstützung von integrierten CMOS LC-Tank VCO-Schaltungen präsentiert. Das analytische Simulationsmodell wurde auf Basis des EKV-Transistormodells implementiert und beinhaltet ausschließlich Design- und Prozessparameter für die Berechnung der Varaktorkapazität. Dieses Simulationsmodell ermöglicht es, die verwendeten Varaktoren im Vorfeld des VCO-Entwurfs zu dimensionieren, die effektive Großsignalkapazität in Abhängigkeit des Ausgangssignals zu berechnen und einzelne Eigenschaften der Varaktoren, wie z.B. das AM-FM Konversionsverhalten zu optimieren. Die Gültigkeit des vorgestellten analytischen Simulationsmodells zur Beschreibung der Varaktorkapazität in CMOS LC-Tank VCOs, wird anhand von Spectre (Cadence) Simulationen auf Basis eines 0.25 μm CMOS Prozesses der Firma IHP (SGB25) und eines 0.35 μm CMOS Prozesses der Firma AMS (C35) verifiziert. In this work an analytical simulation model for MOS varactors, that can be used in a systematically VCO design flow, is presented. The simulation model is based on the EKV transistor model and includes only design and process parameters of the used CMOS technology. The proposed simulation model allows calculating the required design parameters and the effective large signal capacitance of the varactors incorporated into the VCO as a function of the output signal of the VCO. Based on the expression for the effective large signal capacitance it is possible to optimize the AM-FM conversion behavior of the used varactors. The validity and accuracy of the simulation model is verified by Spectre simulations which are based on a 0.25 μm CMOS process (SGB25) from the company IHP and a 0.35 μm CMOS process (C35) from the company AMS. The simulation results show a good accordance in all transistor operating regions for NMOS varactors as well as PMOS varactors.

  8. Specific fixation of bovine brain and retinal acidic and basic fibroblast growth factors to mouse embryonic eye basement membranes

    SciTech Connect

    Jeanny, J.C.; Fayein, N.; Courtois, Y. ); Moenner, M.; Chevallier, B.; Barritault, D. )

    1987-07-01

    The labeling pattern of mouse embryonic eye frozen sections incubated with radioiodinated brain acidic and basic fibroblasts growth factors (aFGF and bFGF) was investigated by autoradiography. Both growth factors bind to basement membranes in a dose-dependent way, with a higher affinity for bFGF. Similar data were obtained with eye-derived growth factors (EDGF), the retinal forms of FGF. There was a heterogeneity in the affinity of the various basement membranes toward these growth factors. The specificity of the growth factor-basement membrane interaction was demonstrated by the following experiments: (i) an excess of unlabeled growth factor displaced the labeling; (ii) unrelated proteins with different isoelectric points did not modify the labeling; and (iii) iodinated EGF or PDGF did not label basement membrane. In order to get a better understanding of the nature of this binding, the authors performed the incubation of the frozen sections with iodinated FGFs preincubated with various compounds. These results demonstrate that FGFs bind specifically to basement membranes, probably on the polysaccharidic part of the proteoheparan sulfate, and suggest that this type of interaction may be a general feature of the mechanism of action of these growth factors.

  9. Effects on proliferation and differentiation of multipotent bone marrow stromal cells engineered to express growth factors for combined cell and gene therapy.

    PubMed

    Fierro, Fernando A; Kalomoiris, Stefanos; Sondergaard, Claus S; Nolta, Jan A

    2011-11-01

    A key mechanism for mesenchymal stem cells/bone marrow stromal cells (MSCs) to promote tissue repair is by secretion of soluble growth factors (GFs). Therefore, clinical application could be optimized by a combination of cell and gene therapies, where MSCs are genetically modified to express higher levels of a specific factor. However, it remains unknown how this overexpression may alter the fate of the MSCs. Here, we show effects of overexpressing the growth factors, such as basic fibroblast growth factor (bFGF), platelet derived growth factor B (PDGF-BB), transforming growth factor β(1) (TGF-β(1) ), and vascular endothelial growth factor (VEGF), in human bone marrow-derived MSCs. Ectopic expression of bFGF or PDGF-B lead to highly proliferating MSCs and lead to a robust increase in osteogenesis. In contrast, adipogenesis was strongly inhibited in MSCs overexpressing PDGF-B and only mildly affected in MSCs overexpressing bFGF. Overexpression of TGF-β(1) blocked both osteogenic and adipogenic differentiation while inducing the formation of stress fibers and increasing the expression of the smooth muscle marker calponin-1 and the chondrogenic marker collagen type II. In contrast, MSCs overexpressing VEGF did not vary from control MSCs in any parameters, likely due to the lack of VEGF receptor expression on MSCs. MSCs engineered to overexpress VEGF strongly induced the migration of endothelial cells and enhanced blood flow restoration in a xenograft model of hind limb ischemia. These data support the rationale for genetically modifying MSCs to enhance their therapeutically relevant trophic signals, when safety and efficacy can be demonstrated, and when it can be shown that there are no unwanted effects on their proliferation and differentiation. Copyright © 2011 AlphaMed Press.

  10. Effects on Proliferation and Differentiation of Multipotent Bone Marrow Stromal Cells Engineered to Express Growth Factors for Combined Cell and Gene Therapy

    PubMed Central

    Fierro, Fernando A.; Kalomoiris, Stefanos; Sondergaard, Claus S.; Nolta, Jan A.

    2013-01-01

    A key mechanism for mesenchymal stem cells/bone marrow stromal cells (MSCs) to promote tissue repair is by secretion of soluble growth factors (GFs). Therefore, clinical application could be optimized by a combination of cell and gene therapies, where MSCs are genetically modified to express higher levels of a specific factor. However, it remains unknown how this overexpression may alter the fate of the MSCs. Here, we show effects of overexpressing the growth factors, such as basic fibroblast growth factor (bFGF), platelet derived growth factor B (PDGF-BB), transforming growth factor β1 (TGF-β1), and vascular endothelial growth factor (VEGF), in human bone marrow-derived MSCs. Ectopic expression of bFGF or PDGF-B lead to highly proliferating MSCs and lead to a robust increase in osteogenesis. In contrast, adipogenesis was strongly inhibited in MSCs overexpressing PDGF-B and only mildly affected in MSCs overexpressing bFGF. Overexpression of TGF-β1 blocked both osteogenic and adipogenic differentiation while inducing the formation of stress fibers and increasing the expression of the smooth muscle marker calponin-1 and the chondrogenic marker collagen type II. In contrast, MSCs overexpressing VEGF did not vary from control MSCs in any parameters, likely due to the lack of VEGF receptor expression on MSCs. MSCs engineered to overexpress VEGF strongly induced the migration of endothelial cells and enhanced blood flow restoration in a xenograft model of hind limb ischemia. These data support the rationale for genetically modifying MSCs to enhance their therapeutically relevant trophic signals, when safety and efficacy can be demonstrated, and when it can be shown that there are no unwanted effects on their proliferation and differentiation. PMID:21898687

  11. CD44 isoforms containing exon V3 are responsible for the presentation of heparin-binding growth factor

    PubMed Central

    1995-01-01

    Glycosaminoglycan-modified isoforms of CD44 have been implicated in growth factor presentation at sites of inflammation. In the present study we show that COS cell transfectants expressing CD44 isoforms containing the alternatively spliced exon V3 are modified with heparan sulfate (HS). Binding studies with three HS-binding growth factors, basic-fibroblast growth factor (b-FGF), heparin binding-epidermal growth factor (HB-EGF), and amphiregulin, showed that the HS-modified CD44 isoforms are able to bind to b-FGF and HB-EGF, but not AR. b-FGF and HB-EGF binding to HS-modified CD44 was eliminated by pretreating the protein with heparitinase or by blocking with free heparin. HS- modified CD44 immunoprecipitated from keratinocytes, which express a CD44 isoform containing V3, also bound to b-FGF. We examined whether HS- modified CD44 isoforms were expressed by activated endothelial cells where they might present HS-binding growth factors to leukocytes during an inflammatory response. PCR and antibody-binding studies showed that activated cultured endothelial cells only express the CD44H isoform which does not contain any of the variably spliced exons including V3. Immunohistological studies with antibodies directed to CD44 extracellular domains encoded by the variably spliced exons showed that vascular endothelial cells in inflamed skin tissue sections do not express CD44 spliced variants. Keratinocytes, monocytes, and dendritic cells in the same specimens were found to express variably spliced CD44. 35SO4(-2)-labeling experiments demonstrated that activated cultured endothelial cells do not express detectable levels of chondroitin sulfate or HS-modified CD44. Our results suggest that one of the functions of CD44 isoforms expressing V3 is to bind and present a subset of HS-binding proteins. Furthermore, it is probable that HS- modified CD44 is involved in the presentation of HS-binding proteins by keratinocytes in inflamed skin. However, our data suggests that CD44 is

  12. Methodik zur Zuverlässigkeitsbewertung in frühen Entwicklungsphasen

    NASA Astrophysics Data System (ADS)

    Bertsche, Bernd; Gäng, Jochen

    Im Folgenden soll eine Methodik zur Zuverlässigkeitsbewertung mechatronischer Systeme vorgestellt werden, die in frühen Entwicklungsphasen anwendbar ist. Eine wichtige Anforderung an diese Methodik ist die Verknüpfung an mechatronischen Entwicklungsmethoden, um so die Entwicklungstätigkeiten sowie die Konzeptauswahlentscheidungen zu unterstützen. Dies erlaubt dann das zuverlässigste Konzept auszuwählen. Dadurch können Kosten und Zeit gespart werden, da die Auswahl eines unzuverlässigen Konzepts im Nachhinein viele aufwändige Änderungen bis zu einer Neukonzeption mit sich bringen kann. Für die Auswahl der Entwicklungsmethode bietet sich das V-Modell aus der Richtlinie VDI 2206 [3.44] an (siehe Kap. 2.2). Mit dem Schwerpunkt der frühen Entwicklungsphasen muss besonders die erste Phase des V-Modells, der Systementwurf, näher betrachtet werden. Anhand des Systementwurfes ist eine Vorgehensweise entstanden, die insgesamt sechs Schritte umfasst (Abb. 3.1). Diese sind im Laufe der Förderzeit der Forschergruppe nach und nach erweitert worden. Im Folgenden werden die einzelnen Schritte detailliert beschrieben und erklärt.

  13. [COPD und Klangtherapie: Pilotstudie zur Wirksamkeit einer Behandlung mit Körpertambura bei COPD-Patienten].

    PubMed

    Hartwig, Bernhard; Schmidt, Stefan; Hartwig, Isabella

    2016-01-01

    Hintergrund: Erkrankungen der Atemorgane treten mit steigendem Alter öfter auf, nehmen weltweit zu und sind häufige Ursachen für Morbidität und Mortalität. In dieser Pilotstudie wurde der Frage nachgegangen, ob eine einmalige 10-minütige Behandlung mit einer Körpertambura eine signifikante und effektive Verbesserung der Lungenfunktion von Patienten mit chronisch-obstruktiver Lungenerkrankung (COPD; GOLD-Stadium A oder B) erbringen kann. Patienten und Methoden: 54 Probanden konnten je zur Hälfte in eine Behandlungsgruppe (Körpertambura) und eine aktive Kontrollgruppe (Atemtherapie) randomisiert werden. Eine Bestimmung der Lungenfunktionsmessparameter «Einsekundenkapazität» (FEV1) und «inspiratorische Vitalkapazität» (IVC) zu den Zeitpunkten T1 (Baseline), T2 (direkt nach Behandlung) und als Follow-up etwa 3 Wochen nach T1 (T3). Ergebnisse: Die Behandlungsgruppe zeigte sich der Kontrollgruppe in beiden Werten signifikant überlegen. Die Zeit-×-Gruppe-Interaktion (Varianzanalyse) ergab p = 0,001 (FEV1) bzw. p = 0,04 (IVC). Die Behandlungsgruppe zeigte bei beiden Werten eine Verbesserung von klinischer Relevanz. Schlussfolgerung: Diese Ergebnisse zeigen, dass die Klangbehandlung mittels einer Körpertambura - neben den schulmedizinischen, leitliniengerechten Therapien - eine zusätzliche, nebenwirkungsarme, aber durchaus klinisch wirksame Option für die Behandlung von COPD-Patienten darstellen kann, um deren Lebensqualität zu stabilisieren und zu verbessern. © 2016 S. Karger GmbH, Freiburg.

  14. Ganzheitliche Digitalisierungsansätze im Stadtwerk: Von der Strategie bis zur Umsetzung

    NASA Astrophysics Data System (ADS)

    Dudenhausen, Roman; Hahn, Heike

    Digitalisierung muss im Stadtwerk dazu führen, Kundenerwartungen, die heutzutage schon vielfach durch digitales Know-how und Erfahrungen geprägt sind, in einzigartiger Weise zu entsprechen - in Form digitaler Kundenkontaktpunkte, automatisierter Prozesse oder plattformbasierter Geschäftsmodelle. Eine große Rolle spielen dabei unternehmensweit nutzbare Informationen, die eine 360-Grad-Sicht auf den Kunden ermöglichen. Nur in dieser Kombination werden sich nachhaltig Wettbewerbsvorteile generieren lassen. Manch ein Kunde wird die Lust, einen Prozess zu Ende zu gehen, schon vor dem Abschluss verlieren, wenn er nicht unmittelbar und ohne die digitale Welt zu verlassen zum Ziel kommt. Eine nur "halb digitale Kundenerfahrung" wird weder zu Neugeschäft noch zur positiven emotionalen Bindung zwischen Kunden und Stadtwerk führen. Nicht zu unterschätzen sind zudem Erwartungen hinsichtlich zukünftiger Geschäftsmodelle, aus denen sich disruptive Bedrohungen für die herkömmlichen Strom- und Gasangebote ergeben werden. Erste innovative Ansätze finden sich bereits im Markt, die erahnen lassen, dass zurzeit viel diskutierte Technologien wie die Blockchain nicht mehr nur hypothetischer Natur sind. Die Auseinandersetzung mit der Digitalisierung erfolgt dabei sinnvollerweise in einem unternehmensweit abgestimmten Rahmen, der eine zielgerichtete und ganzheitliche Vorgehensweise ermöglicht.

  15. Einstellung und Wissen von Lehramtsstudierenden zur Evolution - ein Vergleich zwischen Deutschland und der Türkei

    NASA Astrophysics Data System (ADS)

    Graf, Dittmar; Soran, Haluk

    Es wird eine Untersuchung vorgestellt, in der Wissen und Überzeugungen von Lehramtsstudierenden aller Fächer zum Thema Evolution an zwei Universitäten in Deutschland und der Türkei erhoben worden sind. Die Befragung wurde in Dortmund und in Ankara durchgeführt. Es stellte sich heraus, dass ausgeprägte Defizite im Verständnis der Evolutionsmechanismen herrschen. Viele Studierende, insbesondere aus der Türkei, sind nicht von der Faktizität der Evolution überzeugt. Dies gilt sowohl für Studierende mit Fach Biologie als auch für Studierende mit anderen Fächern. Näher untersucht worden sind die Faktoren, die die Überzeugungen zur Evolution beeinflussen können, was ja in Anbetracht der hohen Ablehnungsrate der Evolution von besonderem Interesse ist. Das Vertrauen in die Wissenschaft spielt hierbei eine besondere Rolle: Wer der Wissenschaft vertraut, ist auch eher von der Evolution überzeugt, als diejenigen, die skeptisch gegenüber der Wissenschaft sind.

  16. Involvement of interleukin-8, vascular endothelial growth factor, and basic fibroblast growth factor in tumor necrosis factor alpha-dependent angiogenesis.

    PubMed Central

    Yoshida, S; Ono, M; Shono, T; Izumi, H; Ishibashi, T; Suzuki, H; Kuwano, M

    1997-01-01

    Tumor necrosis factor alpha (TNF-alpha) is a macrophage/monocyte-derived polypeptide which modulates the expression of various genes in vascular endothelial cells and induces angiogenesis. However, the underlying mechanism by which TNF-alpha mediates angiogenesis is not completely understood. In this study, we assessed whether TNF-alpha-induced angiogenesis is mediated through TNF-alpha itself or indirectly through other TNF-alpha-induced angiogenesis-promoting factors. Cellular mRNA levels of interleukin-8 (IL-8), vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), and their receptors were increased after the treatment of human microvascular endothelial cells with TNF-alpha (100 U/ml). TNF-alpha-dependent tubular morphogenesis in vascular endothelial cells was inhibited by the administration of anti-IL-8, anti-VEGF, and anti-bFGF antibodies, and coadministration of all three antibodies almost completely abrogated tubular formation. Moreover, treatment with Sp1, NF-kappaB, and c-Jun antisense oligonucleotides inhibited TNF-alpha-dependent tubular morphogenesis by microvascular endothelial cells. Administration of a NF-kappaB antisense oligonucleotide almost completely inhibited TNF-alpha-dependent IL-8 production and partially abrogated TNF-alpha-dependent VEGF production, and an Sp1 antisense sequence partially inhibited TNF-alpha-dependent production of VEGF. A c-Jun antisense oligonucleotide significantly inhibited TNF-alpha-dependent bFGF production but did not affect the production of IL-8 and VEGF. Administration of an anti-IL-8 or anti-VEGF antibody also blocked TNF-alpha-induced neovascularization in the rabbit cornea in vivo. Thus, angiogenesis by TNF-alpha appears to be modulated through various angiogenic factors, both in vitro and in vivo, and this pathway is controlled through paracrine and/or autocrine mechanisms. PMID:9199336

  17. Differential effects of amnion and chorion membrane extracts on osteoblast-like cells due to the different growth factor composition of the extracts.

    PubMed

    Go, Yoon Young; Kim, Sung Eun; Cho, Geum Joon; Chae, Sung-Won; Song, Jae-Jun

    2017-01-01

    Human amniotic membrane extracts contain numerous growth factors and bioactive substances. However, osteogenic effects of amnion and chorion membrane extracts (AME and CME, respectively) on osteoblasts are unclear. In this study, we explored the ability of AME and CME to promote the osteogenic differentiation of osteoblast-like MG-63 cells. MG-63 cells were cultured in osteogenic induction medium (OIM) with or without exogenous AME and CME. CME enhanced the osteogenic differentiation of MG-63 cells compared with AME, as indicated by increased mineralization; alkaline phosphatase activity; and mRNA expression of osteogenic marker genes encoding integrin-binding sialoprotein (IBSP), RUNX2, OSTERIX, and osteocalcin (OCN). Interestingly, AME and CME contained different combinations of osteogenesis-related growth factors, including basic fibroblast growth factor (bFGF), transforming growth factor beta-1 (TGFβ-1), and epidermal growth factor (EGF), which differentially regulated the osteogenic differentiation of MG-63 cells. bFGF and TGFβ-1 present in CME positively regulated the osteogenic differentiation of MG-63 cells, whereas EGF present in AME negatively regulated the differentiation of MG-63 cells. Moreover, exogenous treatment of EGF antagonized CME-induced mineralization of extracellular matrix on MG-63 cells. We compared the osteogenic efficacy of CME with that of BMP2, bFGF, and TGFβ-1 alone or their combinations. We observed that CME greatly enhanced osteogenesis by providing a conductive environment for the differentiation of MG-63 cells. Together, our results indicated that human AME and CME exerted differential effects on osteogenesis because of the presence of different compositions of growth factors. In addition, our results highlighted a new possible strategy of using CME as a biocompatible therapeutic material for bone regeneration.

  18. Growth Factor-Loaded Nano-niosomal Gel Formulation and Characterization.

    PubMed

    Moghassemi, Saeid; Hadjizadeh, Afra; Hakamivala, Amirhossien; Omidfar, Kobra

    2017-01-01

    Controlled delivery of signaling factors could be a great approach in the tissue engineering field. Nano-niosomal drug delivery systems offer numerous advantages for this purpose. The present study reports the formulation and evaluation of a growth factor (GF)-loaded nano-niosome-hydrogel composite for GF delivery to modulate cell behavior. Niosomes were prepared, using span 60 surfactant with cholesterol (CH) in diethyl ether solvent, by reverse-phase evaporation technique. Basic fibroblast growth factor (bFGF) and bovine serum albumin (BSA) were loaded simultaneously and the final suspension was embedded into agarose hydrogel. Particle size, vesicle morphology, protein entrapment efficiency (EE), and release profile were measured by dynamic light scattering (DLS) nanoparticle size analyzer, transmission electron microscopy (TEM) and NanoDrop spectrophotometry methods, respectively. The release and performance of bFGF were revealed via human umbilical vein endothelial cell (HUVEC) proliferation using microscopy imaging and MTT assay. Nano-niosomes had an average particle size of 232 nm and had encapsulated 58% of the total proteins present in the suspension. bFGF-BSA-loaded niosomal gel considerably enhanced HUVEC proliferation. This GF-loaded niosomal hydrogel could be a potent material in many biomedical applications including the induction of angiogenesis in tissue engineering.

  19. Dual growth factor-immobilized microspheres for tissue reinnervation: in vitro and preliminary in vivo studies.

    PubMed

    Kim, Tae Ho; Oh, Se Heang; An, Dan Bi; Lee, Ji Youl; Lee, Jin Ho

    2015-01-01

    Growth factors (GFs) (basic fibroblast growth factor (bFGF) and/or nerve growth factor (NGF))-immobilized polycaprolactone (PCL)/Pluronic F127 microspheres were prepared using an isolated particulate-melting method and the sequential binding of heparin and GFs onto the microspheres. The GFs immobilized on the microspheres were released in a sustained manner over 28 days, regardless of GF type. From the in vitro culture of muscle-derived stem cells, it was observed that the NGF-immobilized microspheres induced more neurogenic differentiation than the bFGF-immobilized microspheres, as evidenced by a quantitative real-time polymerase chain reaction using specific neurogenic markers (Nestin, GFAP, β-tubulin, and MAP2) and Western blot (Nestin and β-tubulin) analyses. The dual bFGF/NGF-immobilized microspheres showed better neurogenic differentiation than the microspheres immobilized with single bFGF or NGF. From the preliminary animal study, the dual bFGF/NGF-immobilized microsphere group also showed effective nerve regeneration, as evaluated by immunocytochemistry using a marker - β-tubulin. The dual bFGF/NGF-immobilized PCL/Pluronic F127 microspheres may be a promising candidate for nerve regeneration in certain target tissues (i.e. muscles) leading to sufficient reinnervation.

  20. Effect of trehalose coating on basic fibroblast growth factor release from tailor-made bone implants.

    PubMed

    Choi, Sungjin; Lee, Jongil; Igawa, Kazuyo; Suzuki, Shigeki; Mochizuki, Manabu; Nishimura, Ryohei; Chung, Ung-il; Sasaki, Nobuo

    2011-12-01

    Artificial bone implants are often incorporated with osteoinductive factors to facilitate early bone regeneration. Calcium phosphate, the main component in artificial bone implants, strongly binds these factors, and in a few cases, the incorporated proteins are not released from the implant under conditions of physiological pH, thereby leading to reduction in their osteoinductivity. In this study, we coated tailor-made bone implants with trehalose to facilitate the release of basic fibroblast growth factor (bFGF). In an in vitro study, mouse osteoblastic cells were separately cultured for 48 hr in a medium with a untreated implant (T-), trehalose-coated implant (T+), bFGF-incorporated implant (FT-), and bFGF-incorporated implant with trehalose coating (FT+). In the FT+ group, cell viability was significantly higher than that in the other groups (P<0.05). Scanning electron microscopy (SEM) and X-ray diffraction (XRD) revealed that trehalose effectively covered the surface of the artificial bone implant without affecting the crystallinity or the mechanical strength of the artificial bone implant. These results suggest that coating artificial bone implants with trehalose could limit the binding of bFGF to calcium phosphate.

  1. Cloning and expression of two distinct high-affinity receptors cross-reacting with acidic and basic fibroblast growth factors.

    PubMed Central

    Dionne, C A; Crumley, G; Bellot, F; Kaplow, J M; Searfoss, G; Ruta, M; Burgess, W H; Jaye, M; Schlessinger, J

    1990-01-01

    The fibroblast growth factor (FGF) family consists of at least seven closely related polypeptide mitogens which exert their activities by binding and activation of specific cell surface receptors. Unanswered questions have been whether there are multiple FGF receptors and what factors determine binding specificity and biological response. We report the complete cDNA cloning of two human genes previously designated flg and bek. These genes encode two similar but distinct cell surface receptors comprised of an extracellular domain with three immunoglobulin-like regions, a single transmembrane domain, and a cytoplasmic portion containing a tyrosine kinase domain with a typical kinase insert. The expression of these two cDNAs in transfected NIH 3T3 cells led to the biosynthesis of proteins of 150 kd and 135 kd for flg and bek, respectively. Direct binding experiments with radiolabeled acidic FGF (aFGF) or basic FGF (bFGF), inhibition of binding with native growth factors, and Scatchard analysis of the binding data indicated that bek and flg bind either aFGF or bFGF with dissociation constants of (2-15) x 10(-11) M. The high affinity binding of two distinct growth factors to each of two different receptors represents a unique double redundancy without precedence among polypeptide growth factor-receptor interactions. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. PMID:1697263

  2. Cytokines, matrix metalloproteases, angiogenic and growth factors in tears of normal subjects and vernal keratoconjunctivitis patients.

    PubMed

    Leonardi, A; Sathe, S; Bortolotti, M; Beaton, A; Sack, R

    2009-05-01

    To detect the presence of multiple mediators and growth factors in tears of vernal keratoconjunctivitis (VKC) patients with active disease using stationary phase antibody arrays. Tears were collected from 12 normal subjects (CT) and 24 active VKC patients. Tears were centrifuged and successively probed using three microwell plate arrays specific for: (i) cytokines: interleukin (IL)-2, IL-4, IL-5, IL-8, IL-10, IL-12, IL-13, interferon-gamma and tumour necrosis factor-alpha; (ii) growth factors: basic fibroblast growth factor (bFGF), platelet-derived growth factor, thrombopoietin, angiopoietin-2, vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), keratocyte growth factor, tissue inhibitor of metalloprotease (TIMP)-1 and heparin-binding epithelial growth factor (HB-EGF) and (iii) matrix metalloprotease (MMP)-1, MMP-2, MMP-3, MMP-8, MMP-9, MMP-10, MMP-13, TIMP-1 and TIMP-2. Interleukin-8 signals were detected in all CT and highly detected in all VKC samples. The Th2-type cytokines, IL-4, IL-5 and IL-10 were detected only in tears of VKC patients. Signals for bFGF, HB-EGF, VEGF and HGF were detected in 41-87% of VKC samples and in few CT samples. Only TIMP-1 and TIMP-2 were found in all normal and patient tear samples, whereas MMP-1, MMP-2, MMP-3, MMP-9 and MMP-10 were highly present in all VKC samples. Stationary phase antibody array methodology was useful for the screening of various cytokines, growth factors and MMPs in tears. These analyses identified in tears of VKC patients previously unreported factors including MMP-3 and MMP-10 and multiple proteases, growth factors and cytokines, which may all play an important role in the pathogenesis of conjunctival inflammation.

  3. Propranolol inhibits angiogenesis via down-regulating the expression of vascular endothelial growth factor in hemangioma derived stem cell

    PubMed Central

    Zhang, Ling; Mai, Hua-Ming; Zheng, Jing; Zheng, Jia-Wei; Wang, Yan-An; Qin, Zhong-Ping; Li, Ke-Lei

    2014-01-01

    Background: Oral propranolol (PRN) has recently been shown to be highly effective for infantile hemangiomas (IHs), and is currently recommended as the first-line treatment of complicated IHs. However, the therapeutic mechanism(s) still remain unclear. Methods: In this study, we tested hemangioma-derived stem cells for expression of vascular endothelial growth factor (VEGF) in vitro and studied the inhibition of VEGF expression. We used PCR, Elisa, Western blotting and immunohistochemistry in vivo and in vitro trial. Results: The study demonstrated that application of PRN at a “normal” concentration equivalent to plasma concentration did not inhibit proliferation or promote apoptosis of hemangioma derived stem cells (HemSCs) isolated from IH patients. PRN suppressed expression of vascular endothelial growth factor (VEGF) and basic Fibroblast Growth Factor (bFGF) in HemSCs in vitro. Morphological, histological and immunohistological improvement were observed in vivo using murine IH model in which HemSCs pre-treated with PRN were implanted into BALB/c-nu mice. In the pre-treated HemSC grafts, mean micro-vessel density (MVD) significantly decreased and protein levels of VEGF markedly decreased, while bFGF was still detectable. Conclusions: The results suggested PRN inhibited angiogenesis via down-regulating the expression of vascular endothelial growth factor in hemangioma derived stem cell. These findings provide critical insight into the potential mechanisms of PRN action on IH. PMID:24427325

  4. Acoustic droplet–hydrogel composites for spatial and temporal control of growth factor delivery and scaffold stiffness

    PubMed Central

    Fabiilli, Mario L.; Wilson, Christopher G.; Padilla, Frédéric; Martín-Saavedra, Francisco M.; Fowlkes, J. Brian; Franceschi, Renny T.

    2013-01-01

    Wound healing is regulated by temporally and spatially restricted patterns of growth factor signaling, but there are few delivery vehicles capable of the “on-demand” release necessary for recapitulating these patterns. Recently we described a perfluorocarbon double emulsion that selectively releases a protein payload upon exposure to ultrasound through a process known as acoustic droplet vaporization (ADV). In this study, we describe a delivery system composed of fibrin hydrogels doped with growth factor-loaded double emulsion for applications in tissue regeneration. Release of immunoreactive basic fibroblast growth factor (bFGF) from the composites increased up to 5-fold following ADV and delayed release was achieved by delaying exposure to ultrasound. Releasates of ultrasound-treated materials significantly increased the proliferation of endothelial cells compared to sham controls, indicating that the released bFGF was bioactive. ADV also triggered changes in the ultrastructure and mechanical properties of the fibrin as bubble formation and consolidation of the fibrin in ultrasound-treated composites were accompanied by up to a 22-fold increase in shear stiffness. ADV did not reduce the viability of cells suspended in composite scaffolds. These results demonstrate that an acoustic droplet–hydrogel composite could have broad utility in promoting wound healing through on-demand control of growth factor release and/or scaffold architecture. PMID:23535233

  5. Effects of growth factors and glucosamine on porcine mandibular condylar cartilage cells and hyaline cartilage cells for tissue engineering applications.

    PubMed

    Wang, Limin; Detamore, Michael S

    2009-01-01

    Temporomandibular joint (TMJ) condylar cartilage is a distinct cartilage that has both fibrocartilaginous and hyaline-like character, with a thin proliferative zone that separates the fibrocartilaginous fibrous zone at the surface from the hyaline-like mature and hypertrophic zones below. In this study, we compared the effects of insulin-like growth factor-I (IGF-I), basic fibroblast growth factor (bFGF), transforming growth factor beta1 (TGF-beta1), and glucosamine sulphate on porcine TMJ condylar cartilage and ankle cartilage cells in monolayer culture. In general, TMJ condylar cartilage cells proliferated faster than ankle cartilage cells, while ankle cells produced significantly greater amounts of glycosaminoglycans (GAGs) and collagen than TMJ condylar cartilage cells. IGF-I and bFGF were potent stimulators of TMJ cell proliferation, while no signals statistically outperformed controls for ankle cell proliferation. IGF-I was the most effective signal for GAG production with ankle cells, and the most potent upregulator of collagen synthesis for both cell types. Glucosamine sulphate promoted cell proliferation and biosynthesis at specific concentrations and outperformed growth factors in certain instances. In conclusion, hyaline cartilage cells had lower cell numbers and superior biosynthesis compared to TMJ condylar cartilage cells, and we have found IGF-I at 100 ng/mL and glucosamine sulphate at 100 microg/mL to be the most effective signals for these cells under the prescribed conditions.

  6. Cynaropicrin from Cynara scolymus L. suppresses photoaging of skin by inhibiting the transcription activity of nuclear factor-kappa B.

    PubMed

    Tanaka, Yuka Tsuda; Tanaka, Kiyotaka; Kojima, Hiroyuki; Hamada, Tomoji; Masutani, Teruaki; Tsuboi, Makoto; Akao, Yukihiro

    2013-01-15

    Aging of skin is characterized by skin wrinkling, laxity, and pigmentation induced by several environmental stress factors. Histological changes during the photoaging of skin include hyperproliferation of keratinocytes and melanocytes causing skin wrinkles and pigmentation. Nuclear factor kappa B (NF-κB) is one of the representative transcription factors active in conjunction with inflammation. NF-κB is activated by stimulation such as ultraviolet rays and inflammatory cytokines and induces the expression of various genes such as those of basic fibroblast growth factor (bFGF) and matrix metalloprotease-1 (MMP-1). We screened several plant extracts for their possible inhibitory effect on the transcriptional activity of NF-κB. One of them, an extract from Cynara scolymus L., showed a greatest effect on the suppression of NF-κB transactivation. As a result, we found that cynaropicrin, which is a sesquiterpene lactone, inhibited the NF-κB-mediated transactivation of bFGF and MMP-1. Furthermore, it was confirmed that in an in vivo mouse model cynaropicrin prevented skin photoaging processes leading to the hyperproliferation of keratinocytes and melanocytes. These findings taken together indicate that cynaropicrin is an effective antiphotoaging agent that acts by inhibiting NF-κB-mediated transactivation.

  7. Basic fibroblast growth factor promotes macaque follicle development in vitro.

    PubMed

    Lu, C L; Yan, J; Zhi, X; Xia, X; Wang, T R; Yan, L Y; Yu, Y; Ding, T; Gao, J M; Li, R; Qiao, J

    2015-05-01

    Fertility preservation is an important type of frontier scientific research in the field of reproductive health. The culture of ovarian cortices to i) initiate primordial follicle growth and ii) procure developing follicles for later oocyte maturation is a promising fertility preservation strategy, especially for older women or cancer patients. At present, this goal remains largely unsubstantiated in primates because of the difficulty in attaining relatively large follicles via ovarian cortex culture. To overcome this hurdle, we cultured macaque monkey ovarian cortices with FSH, kit ligand (KL), basic fibroblast growth factor (bFGF), and/or epidermal growth factor (EGF). The various factors and factor combinations promoted primordial follicle development to different extents. Notably, both bFF (bFGF, 100 ng/ml and FSH, 50 ng/ml) and KF (KL, 100 ng/ml and FSH, 50 ng/ml) contributed to the activation of primordial follicles at day 12 (D12) of culture, whereas at D18, the proportions of developing follicles were significantly higher in the bFF and KF groups relative to the other treatment groups, particularly in the bFF group. Estradiol and progesterone production were also highest in the bFF group, and primary follicle diameters were the largest. Up until D24, the bFF group still exhibited the highest proportion of developing follicles. In conclusion, the bFGF-FSH combination promotes nonhuman primate primordial follicle development in vitro, with the optimal experimental window within 18 days. These results provide evidence for the future success of human ovarian cortex culture and the eventual acquisition of mature human follicles or oocytes for fertility restoration. © 2015 Society for Reproduction and Fertility.

  8. Variabilität des Reviergesangs des Buchfinken (Fringilla coelebs) zur Raum-Zeit-Beschreibung von Metapopulationen

    NASA Astrophysics Data System (ADS)

    Nolte, Björn

    2003-10-01

    Der Buchfinkengesang wurde in Potsdam in zwei Hauptpopulationen über drei Jahre aufgenommen. Jedes Individuum wurde eindeutig am individuellen Strophentypenrepertoire identifiziert. Ein weiterer Punkt der die individuelle Wiedererkennung bestätigt ist die hohe Standorttreue der adulten Männchen. Die beschriebene Methode eignet sich für die Untersuchung von gesamten Populationen, um den Wandel des Gesangs von Populationen in Raum und Zeit zu beschreiben. Die Haupterkenntnisse der Arbeit sind: - Die Gesamtanzahl der Grundstrophentypen innerhalb einer Population bleibt über Jahre konstant. - Die relative Häufigkeit jedes einzelnen Strophentyps variiert von Jahr zu Jahr und von Population zu Population. - Gesangslernen erfolgt exakt mit einem Korrektheitsgrad von mindestens 96%. - Das Song-Sharing ist innerhalb der Population hoch. Die diskutierten Mechanismen für das Song-Sharing sind: Die Lebenserwartung, das Zugverhalten, das Lernverhalten, die Etabliertheit von Strophentypen, Weibchenpräferenzen und die Reaktionen der territorialen Männchen. - Weiterhin wurde ein Modell zur kulturellen Evolution des Buchfinkengesangs programmiert, um die Rolle der Einflussfaktoren, wie Fehlerquote, Abwanderungsrate und Laufzeit zu ermitteln. Der Wandel des Dialektes erfolgt graduell in Raum und Zeit. Daher sind keine scharfen Dialektgrenzen anzutreffen. Trotz dieser Tatsache markieren die etablierten Strophentypen die Population. 50 % der Juvenilen siedeln am Geburtsort, auf diese Weise bleibt der Dialekt erhalten und Inzest wird vermieden. -Analysiert man das Repertoire benachbarten Männchen bei isolierten Alleen, so entspricht die Gesangsangleichung in etwa dem Zufall. -Intraindividuelle Vergleiche der quantitativen Parameter des jeweiligen Strophentyps wurden saisonal und annuell durchgeführt. Saisonal konnten für einen Strophentyp ein Trend ermittelt werden. Bei jährlichen Vergleichen konnten intraindividuell ausschließlich nicht signifikante Ergebnisse ermittelt

  9. Release of Growth Factors into Root Canal by Irrigations in Regenerative Endodontics.

    PubMed

    Zeng, Qian; Nguyen, Sean; Zhang, Hongming; Chebrolu, Hari Priya; Alzebdeh, Dalia; Badi, Mustafa A; Kim, Jong Ryul; Ling, Junqi; Yang, Maobin

    2016-12-01

    The aim of this study was to investigate the release of growth factors into root canal space after the irrigation procedure of regenerative endodontic procedure. Sixty standardized root segments were prepared from extracted single-root teeth. Nail varnish was applied to all surfaces except the root canal surface. Root segments were irrigated with 1.5% NaOCl + 17% EDTA, 2.5% NaOCl + 17% EDTA, 17% EDTA, or deionized water. The profile of growth factors that were released after irrigation was studied by growth factor array. Enzyme-linked immunosorbent assay was used to validate the release of transforming growth factor (TGF)-β1 and basic fibroblast growth factor (bFGF) at 4 hours, 1 day, and 3 days after irrigation. The final concentrations were calculated on the basis of the root canal volume measured by cone-beam computed tomography. Dental pulp stem cell migration on growth factors released from root segments was measured by using Transwell assay. Total of 11 of 41 growth factors were detected by growth factors array. Enzyme-linked immunosorbent assay showed that TGF-β1 was released in all irrigation groups. Compared with the group with 17% EDTA (6.92 ± 4.49 ng/mL), the groups with 1.5% NaOCl + 17% EDTA and 2.5% NaOCl + 17% EDTA had significantly higher release of TGF-β1 (69.04 ± 30.41 ng/mL and 59.26 ± 3.37 ng/mL, respectively), with a peak release at day 1. The release of bFGF was detected at a low level in all groups (0 ng/mL to 0.43 ± 0.22 ng/mL). Migration assay showed the growth factors released from root segments induced dental pulp stem cell migration. The root segment model in present study simulated clinical scenario and indicated that the current irrigation protocol released a significant amount of TGF-β1 but not bFGF. The growth factors released into root canal space induced dental pulp stem cell migration. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  10. Re-Imagining "Bildung Zur Humanität": How I Developed the Dialogos Approach to Practical Philosophy through Action Inquiry Research

    ERIC Educational Resources Information Center

    Helskog, Guro Hansen

    2015-01-01

    This paper presents an account of how I developed the Dialogos approach to practical philosophy through action inquiry research. The process of development is understood as a contribution to the reconstruction of the notion "Bildung zur Humanität" as an ideal in education. Core perspectives, traditions and purposes involved in the action…

  11. “&ldots;how the right technique emerged at the right time” Zur Geschichte der fotografischen Methode im Kalten Krieg

    NASA Astrophysics Data System (ADS)

    Fengler, Silke

    Die Frühgeschichte der fotografischen Methode, die als Nachweisinstrument kernphysikalischer und kosmischer Strahlung in den 1950er Jahren zur Blüte kam, hat das Interesse vieler Wissenschaftshistoriker gefunden. Peter Galison hat gezeigt, wie fragil das Experimentalsystem lange Zeit war, das sich um die Methode bildete, und wie prekär die mit ihr aufgezeichneten Ergebnisse.

  12. Re-Imagining "Bildung Zur Humanität": How I Developed the Dialogos Approach to Practical Philosophy through Action Inquiry Research

    ERIC Educational Resources Information Center

    Helskog, Guro Hansen

    2015-01-01

    This paper presents an account of how I developed the Dialogos approach to practical philosophy through action inquiry research. The process of development is understood as a contribution to the reconstruction of the notion "Bildung zur Humanität" as an ideal in education. Core perspectives, traditions and purposes involved in the action…

  13. A structure-activity analysis of antagonism of the growth factor and angiogenic activity of basic fibroblast growth factor by suramin and related polyanions.

    PubMed Central

    Braddock, P. S.; Hu, D. E.; Fan, T. P.; Stratford, I. J.; Harris, A. L.; Bicknell, R.

    1994-01-01

    The ability of a series of polysulphonated naphthylureas structurally related to suramin to inhibit basic fibroblast growth factor (bFGF) or serum-stimulated growth of endothelial cells [either large vessel, human umbilical vein endothelial cells (HUVEC) or microvascular, bovine adrenal capillary endothelial (BACE) cells] and angiogenesis in vivo has been examined. The polyanions encompassed two main structural variations, namely the number of aromatic amide groups intervening between two terminal naphthyl rings and/or variation in the substitution pattern of the naphthyl rings. The polyanions were either inactive (group I) or inhibited (group II) bFGF-stimulated uptake of [3H]methylthymidine by BACE cells. Group I compounds shared a common structural feature in that they were simple binaphthyl-substituted ureas. In contrast, group II compounds all had an extended multiple ring structure with at least two aromatic groups intervening between the two terminal naphthyl rings. Compounds with either two or four intervening groups were equipotent in blocking bFGF in vitro. However, compounds with two bridging aromatic groups were 5- to 10-fold less toxic than suramin in mice, suggesting a potential for an improved therapeutic ratio. The ability of the polyanions to block bFGF-driven endothelial cell proliferation in vitro correlated with antiangiogenic activity in vivo as shown by use of the rat sponge angiogenesis model. These observations could substantially widen the anti-tumour therapeutic opportunities for this class of compound. Images Figure 7 PMID:7514028

  14. Hepatocyte growth factor and basic fibroblast growth factor regulate atrial fibrosis in patients with atrial fibrillation and rheumatic heart disease via the mitogen-activated protein kinase signaling pathway.

    PubMed

    Li, Mingjiang; Yi, Xin; Ma, Lele; Zhou, Yanli

    2013-11-01

    The aim of this study was to investigate the interrelation between basic fibroblast growth factor (bFGF), hepatocyte growth factor (HGF) and atrial fibrosis in patients with atrial fibrillation (AF) and rheumatic heart disease (RHD), and to explore the possible molecular mechanisms underlying this interrelation. Twenty patients with RHD who were scheduled for valve replacement were divided into two groups, comprising 10 cases with AF and 10 cases with sinus rhythm (SR). Clinical data were collected and a small sample of aseptic left atrial appendage was collected by the surgeon. Hematoxylin and eosin (H&E) and Masson's trichrome-stained sections were used to evaluate the cross-sectional area and level of fibrosis, respectively. The expression levels of bFGF and HGF were assessed using immunohistochemistry. The phosphorylation levels of mitogen-activated protein kinase/extracellular signal-regulated kinase 1/2 (MEK1/2), c-Jun N-terminal kinase 1/2 (JNK1/2), extracellular signal-regulated kinase 1/2 (ERK1/2) and p38 in atrial tissue were measured using western blotting. Compared with the SR group, myocardial cell diameter was significantly expanded and there was increased collagen deposition in the AF group (P<0.05). The distribution of bFGF in the AF group was significantly higher than that in the SR group (P<0.05); however, HGF levels were significantly lower in the AF group (P<0.05). The phosphorylation levels of MEK1/2, ERK1/2, JNK1/2 and p38 in the AF group were significantly higher than those in the SR group (P<0.05). The results indicated that bFGF may promote the development of atrial fibrosis, while HGF may function in an opposite manner in patients with AF and RHD. The mitogen-activated protein kinase (MAPK) signaling pathway may be the molecular basis for these roles in atrial fibrosis.

  15. Angiogenic factors in bone local environment.

    PubMed

    Chim, Shek Man; Tickner, Jennifer; Chow, Siu To; Kuek, Vincent; Guo, Baosheng; Zhang, Ge; Rosen, Vicki; Erber, Wendy; Xu, Jiake

    2013-06-01

    Angiogenesis plays an important role in physiological bone growth and remodeling, as well as in pathological bone disorders such as fracture repair, osteonecrosis, and tumor metastasis to bone. Vascularization is required for bone remodeling along the endosteal surface of trabecular bone or Haversian canals within the cortical bone, as well as the homeostasis of the cartilage-subchondral bone interface. Angiogenic factors, produced by cells from a basic multicellular unit (BMU) within the bone remodeling compartment (BRC) regulate local endothelial cells and pericytes. In this review, we discuss the expression and function of angiogenic factors produced by osteoclasts, osteoblasts and osteocytes in the BMU and in the cartilage-subchondral bone interface. These include vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), BMP7, receptor activator of NF-κB ligand (RANKL) and epidermal growth factor (EGF)-like family members. In addition, the expression of EGFL2, EGFL3, EGFL5, EGFL6, EGFL7, EGFL8 and EGFL9 has been recently identified in the bone local environment, giving important clues to their possible roles in angiogenesis. Understanding the role of angiogenic factors in the bone microenvironment may help to develop novel therapeutic targets and diagnostic biomarkers for bone and joint diseases, such as osteoporosis, osteonecrosis, osteoarthritis, and delayed fracture healing. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Purified Human Pancreatic Duct Cell Culture Conditions Defined by Serum-Free High-Content Growth Factor Screening

    PubMed Central

    Hoesli, Corinne A.; Johnson, James D.; Piret, James M.

    2012-01-01

    The proliferation of pancreatic duct-like CK19+ cells has implications for multiple disease states including pancreatic cancer and diabetes mellitus. The in vitro study of this important cell type has been hampered by their limited expansion compared to fibroblast-like vimentin+ cells that overgrow primary cultures. We aimed to develop a screening platform for duct cell mitogens after depletion of the vimentin+ population. The CD90 cell surface marker was used to remove the vimentin+ cells from islet-depleted human pancreas cell cultures by magnetic-activated cell sorting. Cell sorting decreased CD90+ cell contamination of the cultures from 34±20% to 1.3±0.6%, yielding purified CK19+ cultures with epithelial morphology. A full-factorial experimental design was then applied to test the mitogenic effects of bFGF, EGF, HGF, KGF and VEGF. After 6 days in test conditions, the cells were labelled with BrdU, stained and analyzed by high-throughput imaging. This screening assay confirmed the expected mitogenic effects of bFGF, EGF, HGF and KGF on CK19+ cells and additionally revealed interactions between these factors and VEGF. A serum-free medium containing bFGF, EGF, HGF and KGF led to CK19+ cell expansion comparable to the addition of 10% serum. The methods developed in this work should advance pancreatic cancer and diabetes research by providing effective cell culture and high-throughput screening platforms to study purified primary pancreatic CK19+ cells. PMID:22442738

  17. High-efficiency production of bioactive oleosin-basic fibroblast growth factor in A. thaliana and evaluation of wound healing.

    PubMed

    Yang, Jing; Qiang, Weidong; Ren, Suping; Yi, Shanyong; Li, Jian; Guan, Lili; Du, Linna; Guo, Yongxin; Hu, Huilong; Li, Haiyan; Li, Xiaokun

    2017-09-29

    Basic fibroblast growth factor (bFGF) is a member of the fibroblast growth factors family. It is a highly specific mitogenic factor for many cell types, as though it be involved in wound repair, angiogenesis, nerve nutrition and embryonic development etc. Oil bodies have been applied for medicine, foodstuff and industry field. The heterogonous proteins expressed in oil bodies have distinct advantages, such as less purification steps and low costs. In this study, bFGF was expressed in A. thaliana seeds using oleosin fusion technology. The pOTB-bFGF vector contained an oleosin-bFGF fusion gene and a glufosinate resistance gene for selection. Transgenic A. thaliana lines were obtained by the floral dip method and protein expression was identified by SDS-PAGE and western blotting in transgenic A. thaliana lines. Moreover, MTT assays showed that the oil bodies expressed oleosin-bFGF fusion protein had a remarkable proliferation effect on NIH/3T3 cells and animal experiments showed that it could effectively decrease wound size and accelerate granulation tissue maturation. In conclusion, this may be a better method of producing oleosin-bFGF fusion protein to meet the increasing demand in its pharmacological application. Copyright © 2017. Published by Elsevier B.V.

  18. Reinforcement of transvaginal repair using polypropylene mesh functionalized with basic fibroblast growth factor.

    PubMed

    Zhang, Dandan; Lin, Zhi Yuan William; Cheng, Ruoyu; Wu, Wei; Yu, Jia; Zhao, Xin; Chen, Xinliang; Cui, Wenguo

    2016-06-01

    Numerous modifications have been developed over the past two decades seeking to improve the transvaginal repair in the pelvic organ prolapse (POP) by using polypropylene (PP) mesh implants. The hydrophobicity of PP, however, presents a great hindrance for translating potential technologies into viable clinical applications. In this study, by manipulating self-polymerization and strong adhesive characteristics of dopamine, we developed a facile method to enhance the transvaginal repair by modifying PP meshes with polydopamine (PDA), which allowed easy grafting of basic fibroblast growth factor (bFGF) onto the surface of PP. Such surface modification of PP meshes with bFGF was found to efficiently promote bioactivity without changing the morphology or mechanical properties of the PP meshes. Additionally, bFGF-modified PP meshes significantly promoted cell viability and adhesion compared to the unmodified PP. Ultimately, after three months of implantation, the bFGF-modified PP meshes exhibited improved tissue repair with greater degree of organization of deposited collagen, increased tensile strength and reduced inflammatory response. Overall, the surface-modified PP meshes will be highly practical as templates for transvaginal repair in the POP treatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Role of platelet-derived growth factor-AB in tumour growth and angiogenesis in relation with other angiogenic cytokines in multiple myeloma.

    PubMed

    Tsirakis, George; Pappa, Constantina A; Kanellou, Peggy; Stratinaki, Maria A; Xekalou, Athina; Psarakis, Fotios E; Sakellaris, George; Alegakis, Athanasios; Stathopoulos, Efstathios N; Alexandrakis, Michael G

    2012-09-01

    Angiogenesis is a complex process essential for the growth, invasion, and metastasis of various malignant tumours, including multiple myeloma (MM). Various angiogenic cytokines have been implicated in the angiogenic process. Among them, platelet-derived growth factor-AB (PDGF-AB) has been reported to be a potent stimulator of angiogenesis in many solid tumours and haematological malignancies, including MM. The aim of the study was to investigate the relationship between PDGF-AB, microvascular density (MVD), and various angiogenic cytokines, such as basic fibroblast growth factor (b-FGF), angiogenin (ANG), and interleukin-6 (IL-6), in MM patients. Forty-seven MM patients before treatment, 22 of whom were in plateau phase, were studied. We determined the serum levels of the aforementioned cytokines and MVD in bone marrow biopsies before and after treatment. Mean serum values of PDGF-AB, b-FGF, ANG, and MVD were significantly higher in patients compared with controls and with increasing disease stage. Significant positive correlations were observed between serum PDGF-AB, ANG, and IL-6 levels and MVD. Furthermore, we found significant positive correlations between PDGF-AB and b-FGF, IL-6, ANG, and β2 microglobulin. We also found that patients with high MVD had statistically significantly higher serum levels of PDGF-AB when a median MVD value of 7.7 was used as the cutoff point. Furthermore, a significant difference was found in serum levels of PDGF-AB between pre- and post-treatment patients. Finally, survival time was significantly higher in the low MVD group versus the high MVD group (76 vs 51 months). Our results showed that there is a strong positive correlation between PDGF-AB and the studied angiogenic cytokines and MVD. It seems that PDGF-AB plays a role in the complex network of cytokines inducing bone marrow neovascularization in patients with MM. Copyright © 2011 John Wiley & Sons, Ltd.

  20. Regulation and secretion of Xanthomonas virulence factors.

    PubMed

    Büttner, Daniela; Bonas, Ulla

    2010-03-01

    Plant pathogenic bacteria of the genus Xanthomonas cause a variety of diseases in economically important monocotyledonous and dicotyledonous crop plants worldwide. Successful infection and bacterial multiplication in the host tissue often depend on the virulence factors secreted including adhesins, polysaccharides, LPS and degradative enzymes. One of the key pathogenicity factors is the type III secretion system, which injects effector proteins into the host cell cytosol to manipulate plant cellular processes such as basal defense to the benefit of the pathogen. The coordinated expression of bacterial virulence factors is orchestrated by quorum-sensing pathways, multiple two-component systems and transcriptional regulators such as Clp, Zur, FhrR, HrpX and HpaR. Furthermore, virulence gene expression is post-transcriptionally controlled by the RNA-binding protein RsmA. In this review, we summarize the current knowledge on the infection strategies and regulatory networks controlling secreted virulence factors from Xanthomonas species.

  1. Expression of basic fibroblast growth factor, FGFR1 and FGFR2 in normal and malignant human breast, and comparison with other normal tissues.

    PubMed Central

    Luqmani, Y. A.; Graham, M.; Coombes, R. C.

    1992-01-01

    The expression of basic fibroblast growth factor (bFGF) and two of its receptors, FGFR1 and FGFR2, was detected using the polymerase chain reaction, and quantified by comparison to the relative amount of product obtained following co-amplification of the ubiquitous glyceraldehyde phosphate dehydrogenase transcript. Varying levels were found in the vast majority of both cancer and non-malignant breast biopsies as well as in samples of several other normal human tissues. Significantly less bFGF was present in cancers (P less than 0.0001). Similarly, FGFR2 product was also much less in cancer tissues (P = 0.0078), as was FGFR1 (P = 0.002). FGFR1 levels in cancers tended to be higher in those which were oestrogen receptor positive (P less than 0.06). Amplification of different coding regions showed evidence of variant forms of FGFR1 RNA. Cancers appeared to have a significantly greater proportion of PCR product corresponding to the region between the third immunoglobulin like domain and the tyrosine kinase domain (P = 0.046). Differential expression was observed in breast cell lines, with bFGF in the normal derived HBL100, HBR SV1.6.1 and 184A1 but little or none in ZR-75-1, MCF-7, T47D and MDA-MB-231. FGFR1 was present in most of these but FGFR2 was absent from T47D, MDA-MB-231 and HBL100. ZR-75-1 cells had a marked preponderance of FGFR1 variants lacking part of the coding sequence. Aberrant receptor processing may provide clues concerning the role of FGF's and their potential involvement in malignancy. Images Figure 3 PMID:1380281

  2. Clinical Application of Growth Factors and Cytokines in Wound Healing

    PubMed Central

    Barrientos, Stephan; Brem, Harold; Stojadinovic, Olivera; Tomic-Canic, Marjana

    2016-01-01

    Wound healing is a complex and dynamic biological process that involves the coordinated efforts of multiple cell types and is executed and regulated by numerous growth factors and cytokines. There has been a drive in the past two decades to study the therapeutic effects of various growth factors in the clinical management of non-healing wounds (e.g. pressure ulcers, chronic venous ulcers, diabetic foot ulcers). For this review, we conducted a nonline search of Medline and Pub Medical and critically analyzed the literature regarding the role of growth factors and cytokines in the management of these wounds. We focused on currently approved therapies, emerging therapies and future research possibilities. In this review we discuss four growth factors and cytokines currently being used on and off label for the healing of wounds. These include: granulocyte-macrophage colony stimulating factor (GM-CSF), platelet derived growth factor (PDGF), vascular endothelial growth factor (VEGF), and basic fibroblast growth factor (bFGF). While the clinical results of using growth factors and cytokines are encouraging, many studies involved a small sample size and are disparate in measured endpoints. Therefore, further research is required to provide definitive evidence of efficacy. PMID:24942811

  3. Long-term therapy with the acorn cardiac support device normalizes gene expression of growth factors and gelatinases in dogs with heart failure.

    PubMed

    Rastogi, Sharad; Gupta, Ramesh C; Mishra, Sudhish; Morita, Hideaki; Tanhehco, Elaine J; Sabbah, Hani N

    2005-10-01

    Passive mechanical containment of the failing left ventricle with the Acorn Cardiac Support Device (CSD) was shown to prevent progressive left ventricular dilation in dogs with heart failure and increase left ventricular ejection fraction. To examine possible mechanisms for improved cardiac function with a CSD, we examined the effect of CSD therapy on the mRNA gene expression of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), matrix metalloproteinases (MMP) 2 and 9, and tissue inhibitors of metalloproteinases (TIMP) 1 and 2. Heart failure was produced in 12 dogs by multiple sequential intracoronary microembolizations. Six dogs were implanted with the CSD and 6 served as concurrent controls. Left ventricular tissue from 6 normal dogs was used for comparison. Compared with normal dogs, dogs with untreated heart failure showed downregulation of mRNA expression for VEGF and bFGF, whereas upregulation of mRNA expression for MMP-2 and MMP-9 was observed. Normalization of mRNA expression for all these genes was seen after treatment with the CSD. This study shows that preventing left ventricular dilation and myocardial stretch with the CSD promotes normalization of growth factor and MMP gene expression. These results suggest that modulation of gene activity may, in part, contribute to the improvement of left ventricular function observed with CSD therapy.

  4. Brain-derived neurotrophic factor inhibits osmotic swelling of rat retinal glial (Müller) and bipolar cells by activation of basic fibroblast growth factor signaling.

    PubMed

    Berk, B-A; Vogler, S; Pannicke, T; Kuhrt, H; Garcia, T B; Wiedemann, P; Reichenbach, A; Seeger, J; Bringmann, A

    2015-06-04

    Water accumulation in retinal glial (Müller) and neuronal cells resulting in cellular swelling contributes to the development of retinal edema and neurodegeneration. Intravitreal administration of neurotrophins such as brain-derived neurotrophic factor (BDNF) is known to promote survival of retinal neurons. Here, we show that exogenous BDNF inhibits the osmotic swelling of Müller cell somata induced by superfusion of rat retinal slices or freshly isolated cells with a hypoosmotic solution containing barium ions. BDNF also inhibited the osmotic swelling of bipolar cell somata in retinal slices, but failed to inhibit the osmotic soma swelling of freshly isolated bipolar cells. The inhibitory effect of BDNF on Müller cell swelling was mediated by activation of tropomyosin-related kinase B (TrkB) and transactivation of fibroblast growth factor receptors. Exogenous basic fibroblast growth factor (bFGF) fully inhibited the osmotic swelling of Müller cell somata while it partially inhibited the osmotic swelling of bipolar cell somata. Isolated Müller cells displayed immunoreactivity of truncated TrkB, but not full-length TrkB. Isolated rod bipolar cells displayed immunoreactivities of both TrkB isoforms. Data suggest that the neuroprotective effect of exogenous BDNF in the retina is in part mediated by prevention of the cytotoxic swelling of retinal glial and bipolar cells. While BDNF directly acts on Müller cells by activation of TrkB, BDNF indirectly acts on bipolar cells by inducing glial release of factors like bFGF that inhibit bipolar cell swelling.

  5. Functional definition and global regulation of Zur, a zinc uptake regulator in a Streptococcus suis serotype 2 strain causing streptococcal toxic shock syndrome.

    PubMed

    Feng, Youjun; Li, Ming; Zhang, Huimin; Zheng, Beiwen; Han, Huiming; Wang, Changjun; Yan, Jinghua; Tang, Jiaqi; Gao, George F

    2008-11-01

    Zinc is an essential trace element for all living organisms and plays pivotal roles in various cellular processes. However, an excess of zinc is extremely deleterious to cells. Bacteria have evolved complex machineries (such as efflux/influx systems) to control the concentration at levels appropriate for the maintenance of zinc homeostasis in cells and adaptation to the environment. The Zur (zinc uptake regulator) protein is one of these functional members involved in the precise control of zinc homeostasis. Here we identified a zur homologue designated 310 from Streptococcus suis serotype 2, strain 05ZYH33, a highly invasive isolate causing streptococcal toxic shock syndrome. Biochemical analysis revealed that the protein product of gene 310 exists as a dimer form and carries zinc ions. An isogenic gene replacement mutant of gene 310, the Delta310 mutant, was obtained by homologous recombination. Physiological tests demonstrated that the Delta310 mutant is specifically sensitive to Zn(2+), while functional complementation of the Delta310 mutant can restore its duration capability, suggesting that 310 is a functional member of the Zur family. Two-dimensional electrophoresis indicated that nine proteins in the Delta310 mutant are overexpressed in comparison with those in the wild type. DNA microarray analyses suggested that 121 genes in the Delta310 mutant are affected, of which 72 genes are upregulated and 49 are downregulated. The transcriptome of S. suis serotype 2 with high Zn(2+) concentrations also showed 117 differentially expressed genes, with 71 upregulated and 46 downregulated. Surprisingly, more than 70% of the genes differentially expressed in the Delta310 mutant were the same as those in S. suis serotype 2 that were differentially expressed in response to high Zn(2+) concentration, consistent with the notion that 310 is involved in zinc homeostasis. We thus report for the first time a novel zinc-responsive regulator, Zur, from Streptococcus suis

  6. Influence of angiogenetic factors and matrix metalloproteinases upon tumour progression in non-small-cell lung cancer

    PubMed Central

    Shou, Y; Hirano, T; Gong, Y; Kato, Y; Yoshida, K; Ohira, T; Ikeda, N; Konaka, C; Ebihara, Y; Zhao, F; Kato, H

    2001-01-01

    We attempted to investigate immunohistochemical expression of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), platelet-derived growth factor (PD-ECGF), c-erbB-2, matrix metalloproteinase-2 (MMP-2), and MMP-9 using surgical specimens of 119 non-small-cell lung carcinoma (NSCLC) cases and to evaluate the relationship between the expression levels of each molecule and clinicopathological factors or prognosis. VEGF expression levels were significantly associated with the local invasion (P = 0.0001), lymph node involvement (pN-factor) (P = 0.0019), pathological stage (p-stage) (P = 0.0027) and lymphatic permeation (P = 0.0389). PD-ECGF expression levels were associated with pN-factor (P = 0.0347). MMP-2 expression levels were associated with pN-factor (P = 0.004) and lymphatic permeation (P = 0.0056). Also, MMP-9 expression levels showed a significant correlation to local invasion (P = 0.0012), pN-factor (P = 0.0093) and p-stage (P = 0.0142). Multivariate analysis showed VEGF to be the most related to local invasion (P = 0.0084), and MMP-2 was the only factor with significant independent impact on lymphatic permeation (P = 0.0228). Furthermore, log-rank analysis showed significant association with poor survival by VEGF, bFGF, MMP-2 and MMP-9. Especially, combined overexpression of VEGF and MMP-2 revealed poor prognosis, our study might provide a basis for the better evaluation of biological characteristics and a new therapeutic strategy based on chemotherapy. © 2001 Cancer Research Campaign http://www.bjcancer.com PMID:11742492

  7. Demonstration of inhibitory effect of oral shark cartilage on basic fibroblast growth factor-induced angiogenesis in the rabbit cornea.

    PubMed

    González, R P; Soares, F S; Farias, R F; Pessoa, C; Leyva, A; de Barros Viana, G S; Moraes, M O

    2001-02-01

    Several angiogenic inhibitors have been obtained from shark cartilage, some of these are currently in clinical trials for assessment of safety and therapeutic efficacy in humans. Still, shark cartilage taken orally is commonly used in alternative and complimentary medicine for various ailments including serious diseases such as cancer. However, only few studies of oral shark cartilage have demonstrated pharmacological effects in experimental animals or patients, to indicate safe doses with sufficient bioavailability. In the present study we demonstrated the antiangiogenic properties of oral shark cartilage in the rabbit cornea model. Slow-release, polymethylmetacrylate pellets containing basic fibroblast growth factor (bFGF) were surgically implanted in the rabbit cornea to stimulate neovascularization scored by stereo microscopy. Powdered shark cartilage (PSC; commercial product) was tested orally along with a water-soluble fraction (WSF) of this cartilage product which was tested by local application. Animals were treated with oral dosages of 100 mg/kg PSC or 200 mg/kg thalidomide as positive control. Pellets containing WSF (50, 100 or 200 microg/pellet) or bFGF-inhibitor pentosan polysulfate were implanted adjacent to the bFGF pellet. Oral shark cartilage inhibited bFGF-induced angiogenesis, as did oral thalidomide, in this in vivo model. WSF and pentosan polysulfate was shown to block neovascularization in the cornea when applied locally. This study demonstrates that in the rabbit, oral shark cartilage appears to produce systemic levels of angiogenesis inhibitors that can exert their effect at the cornea.

  8. Novel therapeutic approach for pulmonary emphysema using gelatin microspheres releasing basic fibroblast growth factor in a canine model.

    PubMed

    Chang, Sung Soo; Yokomise, Hiroyasu; Matsuura, Natsumi; Gotoh, Masashi; Tabata, Yasuhiko

    2014-08-01

    The prognosis of patients with emphysema is poor as there is no truly effective treatment. Our previous study showed that the alveolar space was smaller and the microvessel density was higher in a canine emphysema model after the intrapulmonary arterial administration of gelatin microspheres slowly releasing basic fibroblast growth factor (bFGF-GMS). In the present study, we evaluated the functional effect of injecting bFGF-GMS via the pulmonary artery in this canine pulmonary emphysema model. Using the porcine pancreatic elastase (PPE)-induced total emphysema model, we approximated the value of lung compliance with a Power Lab System, and performed blood gas analysis in a control group, a total emphysema group, and a bFGF group in which bFGF-GMS were injected toward the whole pulmonary artery via the femoral vein. Each group comprised five dogs. Lung compliance was higher in the total emphysema group than in the control group (p = 0.031), and the bFGF group showed no significant improvement of lung compliance vs. the total emphysema group (p = 0.112). PaO2 (partial pressure of oxygen in arterial blood) was improved by administering bFGF-GMS in the total emphysema model (p = 0.027). In the canine total emphysema model, blood gas parameters were improved by the whole pulmonary arterial administration of bFGF-GMS. This method has the potential to be an effective novel therapy for pulmonary emphysema.

  9. Clopidogrel inhibits angiogenesis of gastric ulcer healing via downregulation of vascular endothelial growth factor receptor 2.

    PubMed

    Luo, Jiing-Chyuan; Peng, Yen-Ling; Chen, Tseng-Shing; Huo, Teh-Ia; Hou, Ming-Chih; Huang, Hui-Chun; Lin, Han-Chieh; Lee, Fa-Yauh

    2016-09-01

    Although clopidogrel does not cause gastric mucosal injury, it does not prevent peptic ulcer recurrence in high-risk patients. We explored whether clopidogrel delays gastric ulcer healing via inhibiting angiogenesis and to elucidate the possible mechanisms. Gastric ulcers were induced in Sprague Dawley rats, and ulcer healing and angiogenesis of ulcer margin were compared between clopidogrel-treated rats and controls. The expressions of the proangiogenic growth factors and their receptors including basic fibroblast growth factor (bFGF), bFGF receptor (FGFR), vascular endothelial growth factor (VEGF), VEGFR1, VEGFR2, platelet-derived growth factor (PDGF)A, PDGFB, PDGFR A, PDGFR B, and phosphorylated form of mitogenic activated protein kinase pathways over the ulcer margin were compared via western blot and reverse transcription polymerase chain reaction. In vitro, human umbilical vein endothelial cells (HUVECs) were used to elucidate how clopidogrel inhibited growth factors-stimulated HUVEC proliferation. The ulcer sizes were significantly larger and the angiogenesis of ulcer margin was significantly diminished in the clopidogrel (2 and 10 mg/kg/d) treated groups. Ulcer induction markedly increased the expression of phosphorylated form of extracellular signal-regulated kinase (pERK), FGFR2, VEGF, VEGFR2, and PDGFRA when compared with those of normal mucosa. Clopidogrel treatment significantly decreased pERK, FGFR2, VEGF, VEGFR2, and PDGFRA expression at the ulcer margin when compared with those of the respective control group. In vitro, clopidogrel (10(-6)M) inhibited VEGF-stimulated (20 ng/mL) HUVEC proliferation, at least, via downregulation of VEGFR2 and pERK. Clopidogrel inhibits the angiogenesis of gastric ulcer healing at least partially by the inhibition of the VEGF-VEGFR2-ERK signal transduction pathway. Copyright © 2015. Published by Elsevier B.V.

  10. Glial cell line-derived neurotrophic factor in combination with insulin-like growth factor 1 and basic fibroblast growth factor promote in vitro culture of goat spermatogonial stem cells.

    PubMed

    Bahadorani, M; Hosseini, S M; Abedi, P; Abbasi, H; Nasr-Esfahani, M H

    2015-01-01

    Growth factors are increasingly considered as important regulators of spermatogonial stem cells (SSCs). This study investigated the effects of various growth factors (GDNF, IGF1, bFGF, EGF and GFRalpha-1) on purification and colonization of undifferentiated goat SSCs under in vitro and in vivo conditions. Irrespective of the culture condition used, the first signs of developing colonies were observed from day 4 of culture onwards. The number of colonies developed in GDNF + IGF1 + bFGF culture condition was significantly higher than the other groups (p < 0.05). In contrast, the size of colonies developed in GDNF + EGF + LIF culture condition was significantly higher than the other groups (p < 0.05). Immunocytochemical stationing for specific biomarkers of somatic cells (vimentin, alpha-inhibin and α-SMA) and spermatogonial cells (PLZF, THY 1, VASA, alpha-1 integrin, bet-1 integrin and DBA) revealed that both cell types existed in developing colonies, irrespective of the culture condition used. Even though, the relative abundance of VASA, FGFR3, OCT4, PLZF, BCL6B and THY1 transcription factors in GDNF + IGF1 + bFGF treatment group was significantly higher than the other groups (p < 0.05). Additionally, goat SSCs developed in the latter culture condition could colonize within the seminiferous tubules of the germ-cell depleted recipient mice following xenotransplantation. Obtained results demonstrated that combination of GDNF with IGF1 and bFGF promote in vitro culture of goat SSCs while precludes uncontrolled proliferation of somatic cells.

  11. Tailored design of electrospun composite nanofibers with staged release of multiple angiogenic growth factors for chronic wound healing.

    PubMed

    Lai, Huan-Ju; Kuan, Chen-Hsiang; Wu, Hsi-Chin; Tsai, Jui-Che; Chen, Tim-Mo; Hsieh, Dar-Jen; Wang, Tzu-Wei

    2014-10-01

    The objective of this research study is to develop a collagen (Col) and hyaluronic acid (HA) inter-stacking nanofibrous skin equivalent substitute with the programmable release of multiple angiogenic growth factors (vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), basic fibroblast growth factor (bFGF) and endothelial growth factor (EGF)) either directly embedded in the nanofibers or encapsulated in the gelatin nanoparticles (GNs) by electrospinning technology. The delivery of EGF and bFGF in the early stage is expected to accelerate epithelialization and vasculature sprouting, while the release of PDGF and VEGF in the late stage is with the aim of inducing blood vessels maturation. The physiochemical characterizations indicate that the Col-HA-GN nanofibrous membrane possesses mechanical properties similar to human native skin. The design of a particle-in-fiber structure allows growth factors for slow controlled release up to 1month. Cultured on biodegradable Col-HA membrane with four kinds of growth factors (Col-HA w/4GF), endothelial cells not only increase in growth rate but also form a better network with a thread-like tubular structure. The therapeutic effect of Col-HA w/4GF membrane on streptozotocin (STZ)-induced diabetic rats reveals an accelerated wound closure rate, together with elevated collagen deposition and enhanced maturation of vessels, as revealed by Masson's trichrome stain and immunohistochemical analysis, respectively. From the above, the electrospun Col-HA-GN composite nanofibrous skin substitute with a stage-wise release pattern of multiple angiogenic factors could be a promising bioengineered construct for chronic wound healing in skin tissue regeneration.

  12. Effects of estrogen receptor antagonist on biological behavior and expression of growth factors in the prolactinoma MMQ cell line.

    PubMed

    Lv, Hongtao; Li, Chuzhong; Gui, Songbai; Sun, Meizhen; Li, Dan; Zhang, Yazhuo

    2011-04-01

    The relationship between estrogen and pituitary prolactinoma is well documented. The biological effects of estrogen are mainly mediated by estrogen receptor α (ERα). Several lines of evidence demonstrate that growth factors such as pituitary tumor transforming gene (PTTG), basic fibroblast growth factor (bFGF), transforming growth factor β1 (TGFβ1), transforming growth factor β3 (TGFβ3), and transforming growth factor β receptor type II (TGFβRII) play an important role in prolactinoma pathogenesis induced by estrogen, but the relationship between ERα and such growth factors is still unclear. The aims of this study are to investigate the functional role of ERα in proliferation, prolactin (PRL) secretion, and expression of the above-mentioned growth factors in MMQ cells in the absence of estrogen and to discuss the feasibility of using an estrogen receptor antagonist to treat prolactinoma. Fulvestrant, a "pure" antiestrogen without any estrogen-like activity, was used to block expression of ERα in the MMQ cell line. Proliferation and PRL secretion of MMQ cells were measured using CellTiter 96(®) AQueous One Solution Cell Proliferation Assay (MTS) and the enzyme-linked immunosorbent assay (ELISA) method. Levels of ERα, PTTG, bFGF, TGFβ1, TGFβ3, and TGFβRII were analyzed by real-time polymerase chain reaction (PCR) and Western blot. Fulvestrant significantly inhibited cell proliferation (up to 60.80%) and PRL secretion (up to 77.95%), and changed expression of TGFβ3 and TGFβRII in the absence of estrogen. In conclusion, ERα plays an important functional role in proliferation and PRL secretion of pituitary prolactinomas and also can change expression of some growth factors even under the condition of no estrogen. Fulvestrant could potentially be an effective therapy for treating such tumors.

  13. An angiogenesis inhibitor, 2-methoxyestradiol, involutes rat collagen-induced arthritis and suppresses gene expression of synovial vascular endothelial growth factor and basic fibroblast growth factor.

    PubMed

    Brahn, Ernest; Banquerigo, Mona L; Lee, John K; Park, Eun J; Fogler, William E; Plum, Stacy M

    2008-11-01

    Rheumatoid arthritis (RA) pannus may be dependent on angiogenesis and several critical growth factors including vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF). 2-Methoxyestradiol (2ME2), an endogenous metabolite with low estrogen receptor affinity, has both antiangiogenic and antiproliferative activity. 2ME2 was assessed in the rat collagen-induced arthritis (CIA) model to determine if it could prevent or involute established synovitis. Rats were immunized on Day 0 with collagen and randomized to a vehicle control or two 2ME2 prevention arms. In additional studies, multiple parallel treatment arms were initiated at Day 10 after arthritis onset. 2ME2 in preventive protocols at 30 or 100 mg/kg significantly delayed the onset and reduced the severity of clinical and radiographic CIA. In established CIA, oral 2ME2 at 50 mg/kg/bid, 100 mg/kg/day, and 300 mg/kg/day reduced severity compared to vehicle controls. Efficacy of 2ME2 delivery by osmotic pumps at 60 mg/kg/day was equivalent to 300 mg/kg/day by daily gavage. The 3 oral treatment protocols all significantly reduced radiographic scores in a dose-dependent fashion, with the greatest benefit at 300 mg/kg. 2ME2 showed marked suppression of synovial gene expression of proangiogenic bFGF and VEGF, with parallel reduction of synovial blood vessels. Serum antibody levels to native type II collagen were not reduced, suggesting that 2ME2 did not influence humoral immunity. Our results indicate that 2ME2 may represent a novel agent for the treatment of inflammatory autoimmune diseases such as RA.

  14. Quantitative estimates of vascularity in a collagen-based cell scaffold containing basic fibroblast growth factor by non-invasive near-infrared spectroscopy for regenerative medicine

    NASA Astrophysics Data System (ADS)

    Kushibiki, Toshihiro; Awazu, Kunio

    2008-04-01

    Successful tissue regeneration required both cells with high proliferative and differentiation potential and an environment permissive for regeneration. These conditions can be achieved by providing cell scaffolds and growth factors that induce angiogenesis and cell proliferation. Angiogenenis within cell scaffolds is typically determined by histological examination with immunohistochemical markers for endothelium. Unfortunately, this approach requires removal of tissue and the scaffold. In this study, we examined the hemoglobin content of implanted collagen-based cell scaffolds containing basic fibroblast growth factor (bFGF) in vivo by non-invasive near infrared spectroscopy (NIRS). We also compared the hemoglobin levels measured by NIRS to the hemoglobin content measured with a conventional biological assay. Non-invasive NIRS recordings were performed with a custom-built near-infrared spectrometer using light guide-coupled reflectance measurements. NIRS recordings revealed that absorbance increased after implantation of collagen scaffolds containing bFGF. This result correlated (R2=0.93) with our subsequent conventional hemoglobin assay. The NIRS technique provides a non-invasive method for measuring the degree of vascularization in cell scaffolds. This technique may be advantageous for monitoring angiogenesis within different cell scaffolds, a prerequisite for effective tissue regeneration.

  15. Non-enzymatic isolation followed by supplementation of basic fibroblast growth factor improves proliferation, clonogenic capacity and SSEA-4 expression of perivascular cells from human umbilical cord.

    PubMed

    An, Borim; Na, Sunghun; Lee, Sungeun; Kim, Woo Jin; Yang, Se-Ran; Woo, Heung-Myong; Kook, Songyi; Hong, Yoonki; Song, Haengseok; Hong, Seok-Ho

    2015-03-01

    Multipotent perivascular cells (PVCs) have recently gained attention as an alternative source for cell-based regenerative medicine. Because of their rarity in human tissues, the development of efficient methods to isolate and expand PVCs from various fetal and adult tissues is necessary to obtain a clinically relevant number of cells that maintain progenitor potency. We report a simple non-enzymatic isolation (NE) method of PVCs from human umbilical cord (HUC) and compare its efficiency with the conventional collagenase treatment method (CT) in terms of proliferation, immunophenotype, clonogenic capacity, and differentiation potential. Cells isolated by NE expressed the accepted surface marker profile of PVCs and possessed multilineage differentiation potential. Whereas both methods provided similar patterns or levels of immunophenotypes and proliferation, PVCs obtained by NE maintained a higher level of CD146(+) frequency compared with that of CT over passages and displayed greater in vitro osteogenic differentiation potential and clonogenic capacity than CT-PVCs. We assess the potential of various exogenous factors to boost the proliferation of NE- and CT-PVCs in vitro. Supplementation of basic fibroblast growth factor (bFGF) provided optimal conditions that significantly enhanced their proliferation rate. This treatment drove the cells into S phase and increased the proportion of stage-specific antigen-4-positive population without altering other immunophenotypes. Thus, the NE method with bFGF supplementation offers an alternative way for obtaining sufficient numbers of HUCPVCs that have good clonogenic and differentiation potential and that are applicable at therapeutic doses for regenerative medicine.

  16. Oncogenic K-Ras and Basic Fibroblast Growth Factor Prevent FAS-Mediated Apoptosis in Fibroblasts through Activation of Mitogen-Activated Protein Kinase

    PubMed Central

    Kazama, Hirotaka; Yonehara, Shin

    2000-01-01

    By an expression cloning method using Fas-transgenic Balb3T3 cells, we tried to obtain inhibitory genes against Fas-mediated apoptosis and identified proto-oncogene c-K-ras. Transient expression of K-Ras mutants revealed that oncogenic mutant K-Ras (RasV12) strongly inhibited, whereas dominant-inhibitory mutant K-Ras (RasN17) enhanced, Fas-mediated apoptosis by inhibiting Fas-triggered activation of caspases without affecting an expression level of Fas. Among the target molecules of Ras, including Raf (mitogen-activated protein kinase kinase kinase [MAPKKK]), phosphatidylinositol 3 (PI-3) kinase, and Ral guanine nucleotide exchange factor (RalGDS), only the constitutively active form of Raf (Raf-CAAX) could inhibit Fas-mediated apoptosis. In addition, the constitutively active form of MAPKK (SDSE-MAPKK) suppressed Fas-mediated apoptosis, and MKP-1, a phosphatase specific for classical MAPK, canceled the protective activity of oncogenic K-Ras (K-RasV12), Raf-CAAX, and SDSE-MAPKK. Furthermore, physiological activation of Ras by basic fibroblast growth factor (bFGF) protected Fas-transgenic Balb3T3 cells from Fas-mediated apoptosis. bFGF protection was also dependent on the activation of the MAPK pathway through Ras. All the results indicate that the activation of MAPK through Ras inhibits Fas-mediated apoptosis in Balb3T3 cells, which may play a role in oncogenesis. PMID:10662780

  17. [The effect of blue light on human retinal pigment epithelium cells α1D subunit protein expression and vascular endothelial growth factor and basic fibroblast growth factor secretion in vitro].

    PubMed

    Li, Haihui; Cai, Shanjun; Gong, Xin; Wu, Zhipeng; Lyn, Jianping; Su, Gang; Xie, Bing

    2014-11-01

    To investigate the effect of blue light on human retinal pigment epithelium (RPE) α1D subunit protein expression and its relationship with vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) secretion in vitro. The fourth generation cultured human RPE cells in vitro were randomly divided into 4 groups, group A (control), group B (exposure to blue light), group C (exposure to blue light+nifedipine), group D [exposure to blue light+(-)Bay K8644]. Cells were exposed to blue light (2 000 ± 500) lx for 6 hours, and cells culture completed 24 hours later. VEGF and bFGF concentration were assayed by enzyme linked immunosorbent assay (ELISA). Real-time polymerase chain reaction was used to analysis L-type calcium channel α1D subunit mRNA expression. Western blot was used to examine the protein expression of L-type calcium channel α1D subunit. Analysis of variance was used to compare the difference of α1D subunit mRNA and protein expression, VEGF and bFGF concentration between groups. Correlation analysis was used to show the relationship between α1D subunit protein expression and concentration of VEGF and bFGF. (1) There is significant statistically difference in the population mean of VEGF and bFGF concentration in four groups (F = 99.441, 21.310, P = 0.000,0.000) . VEGF and bFGF concentration in group B (3 281.51 ± 251.73, 1 346.81 ± 62.27) and group D (3 808.01 ± 94.01, 1 485.82 ± 108.97) was higher than it was in group A (2 401.09 ± 228.07, 1 232.42 ± 65.41) , which was statistically different (P = 0.000, 0.000, 0.019, 0.000). And it was higher in group D (3 808.01 ± 94.01, 1 485.82 ± 108.97) compared with group B (3 281.51 ± 251.73, 1 346.81 ± 62.27) (P = 0.000, 0.006). While, it was lower in group C (1 927.28 ± 143.11, 1 149.39 ± 62.99) than it was in group B (3 281.51 ± 251.73, 1 346.81 ± 62.27) (P = 0.000, 0.000) . (2) The mean of mRNA expression of α1D subunit between four groups was statistically significant (F

  18. Laminin-rich blood vessels display activated growth factor signaling and act as the proliferation centers in Dupuytren's contracture.

    PubMed

    Viil, Janeli; Maasalu, Katre; Mäemets-Allas, Kristina; Tamming, Liis; Lõhmussaar, Kadi; Tooming, Mikk; Ingerpuu, Sulev; Märtson, Aare; Jaks, Viljar

    2015-05-28

    Dupuytren's contracture (DC) is a chronic fibroproliferative disease of the hand, which is characterized by uncontrolled proliferation of atypical myofibroblasts at the cellular level. We hypothesized that specific areas of the DC tissue are sustaining the cell proliferation and studied the potential molecular determinants that might contribute to the formation of such niches. We studied the expression pattern of cell proliferation marker Ki67, phosphorylated AKT (Ak mouse strain thymoma) kinase, DC-associated growth factors (connective tissue growth factor (CTGF), basic fibroblast growth factor (bFGF), insulin-like growth factor 2 (IGF-2)) and extracellular matrix components (laminins, fibronectin, collagen IV) in DC tissue and normal palmar fascia using immunofluorescence microscopy and quantitative real-time polymerase chain reaction (qPCR). We found that proliferative cells in the DC nodules were concentrated in the immediate vicinity of small blood vessels and localized predominantly in the myofibroblast layer. Correspondingly, the DC-associated blood vessels contained increased levels of phosphorylated AKT, a hallmark of activated growth factor signaling. When studying the expression of potential activators of AKT signaling we found that the expression of bFGF was confined to the endothelium of the small blood vessels, IGF-2 was present uniformly in the DC tissue and CTGF was expressed in the DC-associated sweat gland acini. In addition, the blood vessels in DC nodules contained increased amounts of laminins 511 and 521, which have been previously shown to promote the proliferation and stem cell properties of different cell types. Based on our findings, we propose that in the DC-associated small blood vessels the presence of growth factors in combination with favorable extracellular matrix composition provide a supportive environment for sustained proliferation of myofibroblasts and thus the blood vessels play an important role in DC pathogenesis.

  19. Book Review: Beitraege zur Astronomiegeschichte, Band 5 (Acta Historica Astronomiae Vol. 15)

    NASA Astrophysics Data System (ADS)

    Duerbeck, H. W.; Dick, W. R.; Hamel, J.

    2002-12-01

    The 15th volume of the Acta Historica Astronomiae is at the same time the fifth collection of essays on the history of astronomy (Beitraege zur Astronomiegeschichte, Band 5), edited by the historians of astronomy W.R. Dick (Potsdam) and J. Hamel (Berlin). Besides a few short notices and book reviews, the book contains 11 major articles, which deal with astronomical topics covering the time from the 16th to the 20th centuries. The first article, on the analysis and interpretation of historical horoscopes as a source of the history of science, is based on the inaugural lecture of its author, Guenther Oestmann. After a general introduction, which deals with the principles of horoscope making, the author discusses the horoscope of Count Heinrich Ranzau (1526-1598), the Danish governor of Schleswig-Holstein, who was a friend of Tycho Brahe. Oestmann shows that the astronomical-mathematical basis of such a horoscope can be reconstructed and interpreted. However, it is hardly possible to gain an insight in the process how the interpretation of a horoscope was done in detail. The second and third articles, by Franz Daxecker, deal with Athanasius Kircher and Christoph Scheiner, two catholic astronomers of the 17th century. Kircher's Organum Mathematicum is a calculating device that can be used in the fields of arithmetic, geometry, chronology, astronomy, astrology and others. The author provides extracts of the description of the Organum taken from a book by Caspar Schott, which deal with chronology and astronomy. A photograph of the Organum indicates that this tool consists of a set of tables glued on wooden or cardboard, but details of its contents and applications remain pretty obscure for the reader - a few elaborated examples would have been helpful. The second paper deals with the life of Christoph Scheiner SJ, the co-discoverer of sunspots (next to Galileo), after leaving Rome in 1633 - the year of the Galileo trial. Scheiner spent his later years in the Austrian and

  20. Growth factors and myometrium: biological effects in uterine fibroid and possible clinical implications

    PubMed Central

    Ciarmela, Pasquapina; Islam, Md. Soriful; Reis, Fernando M.; Gray, Peter C.; Bloise, Enrrico; Petraglia, Felice; Vale, Wylie; Castellucci, Mario

    2011-01-01

    BACKGROUND Growth factors are proteins secreted by a number of cell types that are capable of modulating cellular growth, proliferation and cellular differentiation. It is well accepted that uterine cellular events such as proliferation and differentiation are regulated by sex steroids and their actions in target tissues are mediated by local production of growth factors acting through paracrine and/or autocrine mechanisms. Myometrial mass is ultimately modified in pregnancy as well as in tumour conditions such as leiomyoma and leiomyosarcoma. Leiomyomas, also known as fibroids, are benign tumours of the uterus, considered to be one of the most frequent causes of infertility in reproductive years in women. METHODS For this review, we searched the database MEDLINE and Google Scholar for articles with content related to growth factors acting on myometrium; the findings are hereby reviewed and discussed. RESULTS Different growth factors such as epidermal growth factor (EGF), transforming growth factor-α (TGF-α), heparin-binding EGF (HB-EGF), acidic fibroblast growth factor (aFGF), basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), insulin-like growth factor (IGF), platelet-derived growth factor (PDGF) and TGF-β perform actions in myometrium and in leiomyomas. In addition to these growth factors, activin and myostatin have been recently identified in myometrium and leiomyoma. CONCLUSIONS Growth factors play an important role in the mechanisms involved in myometrial patho-physiology. PMID:21788281

  1. Modulare und durchgängige Produktmodelle als Erfolgsfaktor zur Bedienung einer Omni-Channel-Architektur - PLM 4.0

    NASA Astrophysics Data System (ADS)

    Golovatchev, Julius; Felsmann, Marcus

    Mit der Transformation der Wertschöpfungsstrukturen von Utility 1.0 zu Utility 4.0 erfolgt offensichtlich auch eine Veränderung des Produkts. Vor dem Hintergrund disruptiver Technologien (IoT, Big Data, Cloud, Robotics etc.) und auch gesellschaftlicher Veränderungen entstehen ständig neue Geschäftsmodelle und Produkte, die über die reine Versorgungsdienstleistung (z. B. Strom) hinausgehen. Dabei muss der wertvolle Rohstoff Produktdaten für smarte Produkte durchgängiger und schneller nutzbar gemacht werden. Die modularen und durchgängigen Produktstrukturen leisten einen Beitrag zur Beherrschung von Komplexität und stellen somit einen wesentlichen Hebel für erfolgreiche Produktentwicklung und -management dar. In diesem Beitrag werden Ansätze beschrieben, wie es den vor der Herausforderung Utility 4.0 stehenden Unternehmen gelingen kann, Smart-Energy-Produkte so zu modellieren, dass sie die Interoperabilität der einzelnen Produktionsmodule sicherstellt und ein Ende-zu-Ende-Management ermöglicht.

  2. [Clinical application of artificial dermis combined with basic fibroblast growth factor in the treatment of cicatrix and deep skin wounds].

    PubMed

    Liu, Yang; Zhang, Yilan; Huang, Yalan; Luo, Gaoxing; Peng, Yizhi; Yan, Hong; Luo, Qizhi; Zhang, Jiaping; Wu, Jun; Peng, Daizhi

    2016-04-01

    To observe the effects of artificial dermis combined with basic fibroblast growth factor (bFGF) on the treatment of cicatrix and deep skin wounds. The clinical data of 72 patients with wounds repaired with artificial dermis, hospitalized in our unit from October 2010 to April 2015, conforming to the study criteria, were retrospectively analyzed. The types of wounds were wounds after resection of cicatrices, deep burn wounds without exposure of tendon or bone, and wounds with exposure of small area of tendon or bone, in a total number of 102. Wounds were divided into artificial dermis group (A, n=60) and artificial dermis+ bFGF group (B, n=42) according to whether or not artificial dermis combined with bFGF. In group A, after release and resection of cicatrices or thorough debridement of deep skin wounds, artificial dermis was directly grafted to wounds in the first stage operation. After complete vascularization of artificial dermis, wounds were repaired with autologous split-thickness skin grafts in the second stage operation. In group B, all the procedures were exactly the same as those in group A except that artificial dermis had been soaked in bFGF for 30 min before grafting. Operation area, complete vascularization time of artificial dermis, survival of skin grafts, and the follow-up condition of wounds in the two groups were recorded. Data were processed with t test and Fisher's exact test. (1) Operation areas of wounds after resection of cicatrices, deep burn wounds without exposure of tendon or bone, and wounds with exposure of small area of tendon or bone in the two groups were about the same (with t values from -1.853 to -0.200, P values above 0.05). Complete vascularization time of artificial dermis in wounds after resection of cicatrices, deep burn wounds without exposure of tendon or bone, and wounds with exposure of small area of tendon or bone in group B were respectively (15.6 ± 2.9), (14.7 ± 2.7), and (20.3 ± 4.4) d, and they were shorter by an

  3. Phosphorylation of p85 beta PIX, a Rac/Cdc42-specific guanine nucleotide exchange factor, via the Ras/ERK/PAK2 pathway is required for basic fibroblast growth factor-induced neurite outgrowth.

    PubMed

    Shin, Eun-Young; Shin, Kyung-Sun; Lee, Chan-Soo; Woo, Kyung-Nam; Quan, Song-Hua; Soung, Nak-Kyun; Kim, Young Gyu; Cha, Choong Ik; Kim, Seung-Ryul; Park, Dongeun; Bokoch, Gary M; Kim, Eung-Gook

    2002-11-15

    Guanine nucleotide exchange factors (GEFs) have been implicated in growth factor-induced neuronal differentiation through the activation of small GTPases. Although phosphorylation of these GEFs is considered an activation mechanism, little is known about the upstream of PAK-interacting exchange factor (PIX), a member of the Dbl family of GEFs. We report here that phosphorylation of p85 betaPIX/Cool/p85SPR is mediated via the Ras/ERK/PAK2 pathway. To understand the role of p85 betaPIX in basic fibroblast growth factor (bFGF)-induced neurite outgrowth, we established PC12 cell lines that overexpress the fibroblast growth factor receptor-1 in a tetracycline-inducible manner. Treatment with bFGF induces the phosphorylation of p85 betaPIX, as determined by metabolic labeling and mobility shift upon gel electrophoresis. Interestingly, phosphorylation of p85 betaPIX is inhibited by PD98059, a specific MEK inhibitor, suggesting the involvement of the ERK cascade. PAK2, a major PAK isoform in PC12 cells as well as a binding partner of p85 betaPIX, also functions upstream of p85 betaPIX phosphorylation. Surprisingly, PAK2 directly binds to ERK, and its activation is dependent on ERK. p85 betaPIX specifically localizes to the lamellipodia at neuronal growth cones in response to bFGF. A mutant form of p85 betaPIX (S525A/T526A), in which the major phosphorylation sites are replaced by alanine, shows significant defect in targeting. Moreover, expression of the mutant p85 betaPIX efficiently blocks PC12 cell neurite outgrowth. Our study defines a novel signaling pathway for bFGF-induced neurite outgrowth that involves activation of the PAK2-p85 betaPIX complex via the ERK cascade and subsequent translocation of this complex.

  4. A novel grapheme oxide-modified collagen-chitosan bio-film for controlled growth factor release in wound healing applications.

    PubMed

    Liu, Ting; Dan, Weihua; Dan, Nianhua; Liu, Xinhua; Liu, Xuexu; Peng, Xu

    2017-08-01

    Collagen-chitosan composite film modified with grapheme oxide (GO) and 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC), termed CC-G-E film, was loaded with basic fibroblast growth factor (bFGF) as the development of an efficacious wound healing device. In this study we report a novel drug delivery system that prevents the initial burst release and loss of bioactivity of drugs in vitro and in vivo applications. The results showed that CC-G-E film possessed improved thermal stability and a higher rate of crosslinking with increased mechanical properties when the dosage of GO was between 0.03% and 0.07%. It was shown that the in vitro release of bFGF from CC-G-E film continued for more than 28d. Furthermore, the CC-G-E films demonstrated excellent in vitro biocompatibility following culture with L929 fibroblasts in terms of cell adhesion and proliferation. CC-G-E films were implanted into Sprague-Dawley rats to characterize their ability to repair full-thickness skin wounds. Results showed that the CC-G-E film accelerated the wound healing process compared with the blank control. Based on all the results, it was concluded that CC-G-E film operates as a novel drug delivery system and due to its performance in wound remodeling, has potential to be developed as a wound dressing material. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Acceleration of bone formation during fracture healing by poly(pro-hyp-gly)10 and basic fibroblast growth factor containing polycystic kidney disease and collagen-binding domains from Clostridium histolyticum collagenase.

    PubMed

    Sekiguchi, Hiroyuki; Uchida, Kentaro; Inoue, Gen; Matsushita, Osamu; Saito, Wataru; Aikawa, Jun; Tanaka, Keisuke; Fujimaki, Hisako; Miyagi, Masayuki; Takaso, Masashi

    2016-06-01

    Growth factor delivered in combination with animal-derived collagen materials has been used to accelerate bone fracture healing in human patients. However, the introduction of bovine proteins into humans carries the risk of zoonotic and immunologic complications. Here, we developed a collagen-like polypeptide-based bone formation system consisting of poly(Pro-Hyp-Gly)10 , which mimics the triple helical conformation of collagen, and basic fibroblast growth factor (bFGF) fused to the polycystic kidney disease (PKD) domain and collagen-binding domain (CBD) of Clostridium histolyticum collagenase. Circular dichroism spectral analysis showed that when pepsin-soluble bovine type I collagen was treated at 50°C, a positive signal corresponding to the collagen triple helix at 220 nm was not detected. In contrast, poly(Pro-Hyp-Gly)10 retained the 220-nm positive peak, even when treated at 80°C. The combination of the collagen binding-bFGF fusion protein (bFGF-PKD-CBD) with poly(Pro-Hyp-Gly)10 induced greater bone formation compared to bFGF alone in mice bone fracture models. Taken together, these properties suggest that the bFGF-PKD-CBD/poly(Pro-Hyp-Gly)10 composite is a promising material for bone repair in the clinical setting. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1372-1378, 2016.

  6. Kinetics of the Factor XIa catalyzed activation of human blood coagulation Factor IX

    SciTech Connect

    Walsh, P.N.; Bradford, H.; Sinha, D.; Piperno, J.R.; Tuszynski, G.P.

    1984-05-01

    The kinetics of activation of human Factor IX by human Factor XIa was studied by measuring the release of a trichloroacetic acid-soluble tritium-labeled activation peptide from Factor IX. Initial rates of trichloroacetic acid-soluble /sup 3/H-release were linear over 10-30 min of incubation of Factor IX (88 nM) with CaCl/sub 2/ (5 mM) and with pure (greater than 98%) Factor XIa (0.06-1.3 nM), which was prepared by incubating human Factor XI with bovine Factor XIIa. Release of /sup 3/H preceded the appearance of Factor IXa activity, and the percentage of /sup 3/H released remained constant when the mole fraction of /sup 3/H-labeled and unlabeled Factor IX was varied and the total Factor IX concentration remained constant. A linear correlation (r greater than 0.98, P less than 0.001) was observed between initial rates of /sup 3/H-release and the concentration of Factor XIa, measured by chromogenic assay and by radioimmunoassay and added at a Factor IX:Factor XIa molar ratio of 70-5,600. Kinetic parameters, determined by Lineweaver-Burk analysis, include K/sub m/ (0.49 microM) of about five- to sixfold higher than the plasma Factor IX concentration, which could therefore regulate the reaction. The catalytic constant (k/sub cat/) (7.7/s) is approximately 20-50 times higher than that reported by Zur and Nemerson for Factor IX activation by Factor VIIa plus tissue factor. Therefore, depending on the relative amounts of Factor XIa and Factor VIIa generated in vivo and other factors which may influence reaction rates, these kinetic parameters provide part of the information required for assessing the relative contributions of the intrinsic and extrinsic pathways to Factor IX activation, and suggest that the Factor XIa catalyzed reaction is physiologically significant.

  7. Interleukin-1α and tumour necrosis factor-α modulate airway smooth muscle DNA synthesis by induction of cyclo-oxygenase-2: inhibition by dexamethasone and fluticasone propionate

    PubMed Central

    Vlahos, Ross; Stewart, Alastair G

    1999-01-01

    Previous studies have established that glucocorticoids inhibit airway smooth muscle DNA synthesis. The effects of a combination of the pro-inflammatory cytokines, interleukin-1α (IL-1α) and tumour necrosis factor-α (TNF-α) on the inhibition of DNA synthesis by glucocorticoids in human cultured airway smooth muscle have now been investigated, since these cytokines are chronically expressed in asthmatic airways. Thrombin (0.3 u ml−1) and basic fibroblast growth factor (bFGF, 300 pM) stimulated increases in DNA synthesis which were concentration-dependently inhibited by dexamethasone (1–1000 nM). The cytokine mixture, comprising IL-1α (0.01 and 0.1 pM) and TNF-α (3 and 30 pM), directly evoked increases in DNA synthesis which were attenuated by dexamethasone. However, the cytokine mixture prevented responses to bFGF or thrombin. Paradoxically, in the presence of the cytokine mixture and bFGF, dexamethasone (1–1000 nM) concentration-dependently increased DNA synthesis. Furthermore, neither dexamethasone (100 nM) nor fluticasone propionate (1 nM) inhibited DNA synthesized in response to bFGF/cytokine mixture combination and dexamethasone was similarly inactive against the thrombin/cytokine mixture. The levels of prostaglandin E2 (PGE2), an established inhibitor of airway smooth muscle DNA synthesis, remained below the limits of assay detection (0.05 nM) under basal conditions or following stimulation with either thrombin or bFGF. In contrast, the cytokine mixture alone, and in the presence of thrombin or bFGF, induced biologically active levels of PGE2. Dexamethasone (100 nM), the non-selective cyclo-oxygenase (COX) inhibitor indomethacin (3 μM) or the selective COX-2 inhibitor L-745,337 (0.3 μM) completely inhibited synthesis of PGE2. Neither indomethacin (3 μM) nor L-745,337 (0.3 μM) influenced thrombin- or bFGF-induced DNA synthesis. However, each COX inhibitor enhanced DNA synthesis in cytokine-treated cells. In

  8. Reaktive Tracer zur Bestimmung der sedimentären Aquifer-Oxidationskapazität im Labor- und Feldversuch

    NASA Astrophysics Data System (ADS)

    Dethlefsen, Frank; Bliss, Fabian; Wachter, Thorsten; Dahmke, Andreas

    Kurzfassung Mikrobiell reduzierbares Eisen(III) im Aquifer kann als Elektronenakzeptor von großer Bedeutung für Natural Attenuation (NA) von aromatischen Kohlenwasserstoffen sein und bildet den Hauptbestandteil der sedimentären Oxidationskapazität (OXC) des Aquifers. Untersuchungsgegenstand war der Vergleich traditioneller, nasschemischer Methoden mit neuentwickelten, reaktiven Tracerverfahren zur Bestimmung der sedimentären OXC. Die innovativen Tracermethoden haben gegenüber nasschemischen Extraktionsverfahren den prinzipiellen Vorteil, dass sie einen integralen Ansatz zur Bestimmung der sedimentären OXC bilden, weil geochemische und hydraulische Heterogenitäten des Aquifers berücksichtigt werden. Daher wurden am RETZINA-Standort Zeitz einerseits herkömmliche Säure-Extraktionsmethoden (bestimmter Eisen(III)-Gehalt: 0,43 +/- 0,07 mg/g Aquifermaterial) und andererseits reaktive Tracertests mit Phosphat-(Eisen(III): 1,0 mg/g) und Sulfidtracern (Eisen(III): 0,31 +/- 0,02 mg/g) in Laborversuchen sowie Bioabbauversuche mit Toluol als Kohlenstoffquelle undGeobacter metallireducensals Eisen(III)-Reduzierer (Eisen(III): 1,0 mg/g) durchgeführt. Sulfid als reaktiver Tracer wurde in Form eines 〝Push-Pull-Tests`` im Feldversuch eingesetzt (Eisen(III): 1,1 mg/g). Zudem bedeutet die Anwendung des Feld-Tracerverfahrens deutlich weniger Zeitaufwand in der Durchführung als die Anwendung traditioneller Extraktionsmethoden. Microbially reducible iron(III) is important as a terminal electron acceptor for the Natural Attenuation (NA) of aromatic hydrocarbons and forms the balance of the aquifer's sedimentary oxidation capacity (OXC). It was the aim of this investigation to compare traditional acid extraction methods to reactive tracer methods in quantifying the sedimentary OXC. The sedimentary OXC at the RETZINA test site in Zeitz was therefore determined through traditional acid extraction methods (determined Iron(III)-content: 0.43 +/- 0.07 mg/g aquifer material) and

  9. Cultured human foreskin fibroblasts produce a factor that stimulates their growth with properties similar to basic fibroblast growth factor

    SciTech Connect

    Story, M.T. )

    1989-05-01

    To determine if fibroblasts could be a source of fibroblast growth factor (FGF) in tissue, cells were initiated in culture from newborn human foreskin. Fibroblast cell lysates promoted radiolabeled thymidine uptake by cultured quiescent fibroblasts. Seventy-nine percent of the growth-promoting activity of lysates was recovered from heparin-Sepharose. The heparin-binding growth factor reacted on immunoblots with antiserum to human placenta-derived basic FGF and competed with iodinated basic FGF for binding to antiserum to (1-24)bFGF synthetic peptide. To confirm that fibroblasts were the source of the growth factor, cell lysates were prepared from cells incubated with radiolabeled methionine. Heparin affinity purified material was immunoprecipitated with basic FGF antiserum and electrophoresed. Radiolabeled material was detected on gel autoradiographs in the same molecular weight region as authentic iodinated basic FGF. The findings are consistant with the notion that cultured fibroblasts express basic FGF. As these cells also respond to the mitogen, it is possible that the regulation of their growth is under autocrine control. Fibroblasts may be an important source of the growth factor in tissue.

  10. Nicotine and cotinine stimulate secretion of basic fibroblast growth factor and affect expression of matrix metalloproteinases in cultured human smooth muscle cells.

    PubMed

    Carty, C S; Soloway, P D; Kayastha, S; Bauer, J; Marsan, B; Ricotta, J J; Dryjski, M

    1996-12-01

    We have recently shown that nicotine and its metabolite cotinine are mitogenic for smooth muscle cells in vitro. In the present study, we examined the effect of nicotine and cotinine on the production of growth factors and the expression of matrix metallo-proteinases in smooth muscle cells. Smooth muscle cells were harvested from human arteries and grown in culture. Subconfluent cultures were incubated for 24 hours in M199 containing 0.1% fetal bovine serum with or without nicotine or cotinine at concentrations ranging from 10(-9) mol/L to 10(-6) mol/L. The supernatants and cell lysates were assayed by enzyme-linked immunosorbent assay for basic fibroblast growth factor (bFGF), tumor necrosis factor alpha (TNF-alpha), platelet-derived growth factor AB (PDGF-AB), and transforming growth factor beta (TGF-beta). Matrix metalloproteinase expression was determined in subconfluent cultures incubated in albumin with or without nicotine or cotinine at 10(-8) mol/L and 10(-7) mol/L for 6, 12, 18, 24 and 36 hours. Northern blot analyses were performed with human cDNA probes for collagenase-1, stromelysin-1, gelatinase A, gelatinase B, and triose phosphate isomerase. Blots were quantified by phosphor-imaging techniques. Both nicotine and cotinine stimulated the production and secretion of bFGF in a dose-dependent manner. PDGF, TNF-alpha, and TGF-beta secretions were not significantly affected by nicotine or cotinine. Collagenase was up-regulated by nicotine at 18 and 24 hours (4.5-fold to 5.8-fold) and by cotinine at 18 hours (from 5.0-fold to 29-fold). Stromelysin-1 was up-regulated by nicotine and cotinine at 12 and 18 hours (1.5-fold to 7.0-fold). Gelatinase A generally peaked at 12 hours and was up-regulated by both agents (2.0-fold to 6.5-fold). Nicotine and cotinine enhanced the production of bFGF, a major mitogen for smooth muscle cells, and up-regulated the expression of several matrix metalloproteinases that are critical in cell migration. These data demonstrate

  11. Abstract and review of "Zur Erbpathologie der Schizophrenie" (Contribution to the genetics of schizophrenia). 1916.

    PubMed

    Kendler, K S; Zerbin-Rüdin, E

    1996-07-26

    Starting from the 722 probands originally studied by Rüdin, Bruno Schulz re-examined them and their relatives confirming the diagnosis in 660. While Rüdin sought for mendelian ratios in siblings, Schulz, anticipating modern methods, focused on the family study method as an approach to clarifying possible etiologic heterogeneity within the schizophrenia syndrome. Using a Kraepelian approach to diagnosis, Schulz reports a MR for narrowly and broadly defined schizophrenia of 6.7 and 8.2% in siblings and 2.6 and 3.7% in parents. He found no evidence for a difference in risk of illness in siblings as a function of either the gender or outcome of the proband. The risk for schizophrenia was significantly increased in siblings of hebephrenic probands. Compared to siblings of probands with no identified factor which precipitated their schizophrenia, the risk for schizophrenia was significantly decreased in probands with a physical etiologic factor but did not differ in siblings of probands with a psychological etiologic factor. The risk for schizophrenia was particularly low in siblings of probands whose onset of illness occurred within a year of major head trauma.

  12. Zur Determination der zeitlichen Verteilung von Fortpflanzungsprozessen in Laborkulturen des Polychaeten Typosyllis prolifera

    NASA Astrophysics Data System (ADS)

    Franke, H.-D.

    1980-03-01

    Factors controlling the timing of reproduction in laboratory cultures of the polychaete Trposyllis prolifera. Typosyllis prolifera (Krohn) from Poreč (Yugoslavia) has been cultured for 12 successive generations. The life cycle of the species in the laboratory is described briefly. During their life individuals reproduce several times (up to 15) by stolonization which, under constant laboratory conditions (LD 16:8, 20 °C), is cyclic and takes place about every 30 days. Based on the investigations of Durchon (1959) and Wissocq (1966), experiments on extirpation and transplantation of the proventriculus have been carried out. The results suggest that an endocrine system anatomically connected to the proventriculus is important in the control of reproduction. Most likely, the endogenous reproductive cycle of an individual is controlled by periodical changes of the activity of this system. During the period following stolonization, the endocrine system of the proventriculus, which at this time shows its maximal activity, inhibits sexual development and enables regeneration of the segments lost as stolon. A subsequent decrease of the hormonal activity induces sexual maturation and epitokous metamorphosis, thus leading to further stolonization. Exogenous factors influencing the timing of reproduction probably affect the endocrine function of the proventriculus. Short-day photoperiods (LD 10:14) and low temperatures (12 °C) given simultaneously (i.e. winter conditions) totally suppress reproduction. Under normally favourable conditions (LD 16:8, 20 °C), reproductive processes can be prevented by starving or amputation of caudal segments. In all these cases, however, stolonization can be induced by removing the proventriculus. Exogenous factors also play a decisive role in synchronizing reproductive events within the species population. Under field conditions reproduction shows a lunar periodicity. The endogenous reproductive cycles of cultured specimens can be

  13. Porcine Bone Scaffolds Adsorb Growth Factors Secreted by MSCs and Improve Bone Tissue Repair.

    PubMed

    Mijiritsky, Eitan; Ferroni, Letizia; Gardin, Chiara; Bressan, Eriberto; Zanette, Gastone; Piattelli, Adriano; Zavan, Barbara

    2017-09-08

    An ideal tissue-engineered bone graft should have both excellent pro-osteogenesis and pro-angiogenesis properties to rapidly realize the bone regeneration in vivo. To meet this goal, in this work a porcine bone scaffold was successfully used as a Trojan horse to store growth factors produced by mesenchymal stem cells (MSCs). This new scaffold showed a time-dependent release of bioactive growth factors, such as vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF), in vitro. The biological effect of the growth factors-adsorbed scaffold on the in vitro commitment of MSCs into osteogenic and endothelial cell phenotypes has been evaluated. In addition, we have investigated the activity of growth factor-impregnated granules in the repair of critical-size defects in rat calvaria by means of histological, immunohistochemical, and molecular biology analyses. Based on the results of our work bone tissue formation and markers for bone and vascularization were significantly increased by the growth factor-enriched bone granules after implantation. This suggests that the controlled release of active growth factors from porcine bone granules can enhance and promote bone regeneration.

  14. Safety and efficacy of sustained release of basic fibroblast growth factor using gelatin hydrogel in patients with critical limb ischemia.

    PubMed

    Kumagai, Motoyuki; Marui, Akira; Tabata, Yasuhiko; Takeda, Takahide; Yamamoto, Masaya; Yonezawa, Atsushi; Tanaka, Shiro; Yanagi, Shigeki; Ito-Ihara, Toshiko; Ikeda, Takafumi; Murayama, Toshinori; Teramukai, Satoshi; Katsura, Toshiya; Matsubara, Kazuo; Kawakami, Koji; Yokode, Masayuki; Shimizu, Akira; Sakata, Ryuzo

    2016-05-01

    As a form of therapeutic angiogenesis, we sought to investigate the safety and efficacy of a sustained-release system of basic fibroblast growth factor (bFGF) using biodegradable gelatin hydrogel in patients with critical limb ischemia (CLI). We conducted a phase I-IIa study that analyzed 10 CLI patients following a 200-μg intramuscular injection of bFGF-incorporated gelatin hydrogel microspheres into the ischemic limb. Primary endpoints were safety and transcutaneous oxygen pressure (TcO2) at 4 and 24 weeks after treatment. During the follow-up, there was no death or serious procedure-related adverse event. After 24 weeks, TcO2 (28.4 ± 8.4 vs. 46.2 ± 13.0 mmHg for pretreatment vs after 24 weeks, p < 0.01) showed significant improvement. Regarding secondary endpoints, the distance walked in 6 min (255 ± 105 vs. 318 ± 127 m, p = 0.02), the Rutherford classification (4.4 ± 0.5 vs. 3.1 ± 1.4, p = 0.02), the rest pain scale (1.7 ± 1.0 vs. 1.2 ± 1.3, p = 0.03), and the cyanotic scale (2.0 ± 1.1 vs. 0.9 ± 0.9, p < 0.01) also showed improvement. The blood levels of bFGF were within the normal range in all patients. A subanalysis of patients with arteriosclerosis obliterans (n = 7) or thromboangiitis obliterans (Buerger's disease) (n = 3) revealed that TcO2 had significantly improved in both subgroups. TcO2 did not differ between patients with or without chronic kidney disease. The sustained release of bFGF from biodegradable gelatin hydrogel may offer a safe and effective form of angiogenesis for patients with CLI.

  15. Intramyocardial delivery of basic fibroblast growth factor-impregnated gelatin hydrogel microspheres enhances collateral circulation to infarcted canine myocardium.

    PubMed

    Yamamoto, T; Suto, N; Okubo, T; Mikuniya, A; Hanada, H; Yagihashi, S; Fujita, M; Okumura, K

    2001-05-01

    The present study examined whether basic fibroblast growth factor (bFGF)-impregnated acidic gelatin hydrogel microspheres (AGHM) would enhance collateral development to the infarct area in dogs with coronary occlusion. Studies were conducted in 28 dogs with a 2-week occlusion of the proximal left anterior descending coronary artery (LAD). The dogs were divided into 3 groups according to treatment: Group A treated with bFGF-impregnated AGHM in the infarct area; Group B with free-form bFGF; Group C with AGHM alone. Coronary angiography (n=15; Group A, 7 dogs; Group B, 5 dogs; Group C, 3 dogs) and a regional myocardial blood flow study (n=13; Group A, 6 dogs; Group B, 4 dogs; Group C, 3 dogs) were repeated at a 2-week interval. Coronary angiography revealed that in Group A, antegrade flow in the LAD distal to the occlusion, which was assessed by Thrombolysis in Myocardial Infarction (TIMI) grade, was significantly increased after treatment. In contrast, in Groups B and C, the treatment did not change the flow grade in the LAD. In Group A, the regional myocardial blood flow in the collateral dependent area was significantly increased after treatment, and the regional myocardial blood flow reserve after adenosine injection was also significantly increased. These measurements remained after treatment in Groups B and C. The immunohistochemical study with factor VIII-related antigen revealed an increase of vascular density in the ischemic region in Group A. Intramyocardial delivery of bFGF-impregnated AGHM, but not free-form bFGF, improves the collateral circulation to the infarct area of a coronary occlusion in dogs.

  16. The promotion of angiogenesis by growth factors integrated with ECM proteins through coiled-coil structures.

    PubMed

    Assal, Yasmine; Mie, Masayasu; Kobatake, Eiry

    2013-04-01

    An appropriate method to bind extracellular matrix (ECM) proteins and growth factors using advanced protein engineering techniques has the potential to enhance cell proliferation and differentiation for tissue regeneration and repair. In this study we developed a method to co-immobilize non-covalently an ECM protein to three different types of growth factors: basic fibroblast growth factor (bFGF), epidermal growth factor (EGF) and single-chain vascular endothelial growth factor (scVEGF121) through a coiled-coil structure formed by helixA/helixB in order to promote angiogenesis. The designed ECM was established by fusing two repeats of elastin-derived unit (APGVGV)(12), cell-adhesive sequence (RGD), laminin-derived IKVAV sequence and collagen-binding domain (CBD) to obtain CBDEREI2. HelixA was fused to each growth factor and helixB to the engineered ECM. Human umbilical vein endothelial cells (HUVECs) were cultured on engineered ECM and growth factors connected through the coiled-coil formation between helixA and helixB. Cell proliferation and capillary tube-like formation were monitored. Moreover, the differentiated cells with high expression of Ang-2 suggested the ECM remodeling. Our approach of non-covalent coupling method should provide a protein-release control system as a new contribution in biomaterial for tissue engineering field.

  17. Studies of Wound Healing in the Presence of an Angiogenesis Factor

    DTIC Science & Technology

    1989-07-14

    presence of the large crust on the granulation tissue affected the migration of keratinocytes. Therefore, it will certainly be of interest to test the...bFGF or used as controls. The wounds were then prepared and tested as described in Methods . 1, db/+ control; 2, db/+ plus 5 ug bFGF; 3, db/db, control; 4, db/db plus 5 ug bFGF. ...wound healing in a healing- impaired model; the db/db mouse. When bFGF was applied to 6 mm punch biopsy wounds, a dramatic increase in granulation tissue

  18. Delivery of Alginate Scaffold Releasing Two Trophic Factors for Spinal Cord Injury Repair

    PubMed Central

    Grulova, I.; Slovinska, L.; Blaško, J.; Devaux, S.; Wisztorski, M.; Salzet, M.; Fournier, I.; Kryukov, O.; Cohen, S.; Cizkova, D.

    2015-01-01

    Spinal cord injury (SCI) has been implicated in neural cell loss and consequently functional motor and sensory impairment. In this study, we propose an alginate -based neurobridge enriched with/without trophic growth factors (GFs) that can be utilized as a therapeutic approach for spinal cord repair. The bioavailability of key GFs, such as Epidermal Growth factor (EGF) and basic Fibroblast Growth Factor (bFGF) released from injected alginate biomaterial to the central lesion site significantly enhanced the sparing of spinal cord tissue and increased the number of surviving neurons (choline acetyltransferase positive motoneurons) and sensory fibres. In addition, we document enhanced outgrowth of corticospinal tract axons and presence of blood vessels at the central lesion. Tissue proteomics was performed at 3, 7 and 10 days after SCI in rats indicated the presence of anti-inflammatory factors in segments above the central lesion site, whereas in segments below, neurite outgrowth factors, inflammatory cytokines and chondroitin sulfate proteoglycan of the lectican protein family were overexpressed. Collectively, based on our data, we confirm that functional recovery was significantly improved in SCI groups receiving alginate scaffold with affinity-bound growth factors (ALG +GFs), compared to SCI animals without biomaterial treatment. PMID:26348665

  19. [Assessment of parental stress using the "Eltern-Belastungs-Screening zur Kindeswohlgefährdung" (EBSK) - association with emotional and behavioral problems in children].

    PubMed

    Eichler, Anna K; Glaubitz, Katharina A; Hartmann, Luisa C; Spangler, Gottfried

    2014-07-01

    Parental stress is increased in clinical contexts (e.g., child psychiatry) and correlates with behavioral and emotional problems of children. In addition, parental stress can result in a biased parental perception of child's behavior and emotions. These interrelations were examined in a normal (N = 320) and a clinical (N = 75) sample. The "Eltern-Belastungs-Screening zur Kindeswohlgefährdung" (EBSK; Deegener, Spangler, Körner & Becker, 2009) was used for the assessment of parental stress. As expected, increased EBSK scores were overrepresented in the clinical sample. In both samples stressed parents reported having children with more behavioral and emotional problems. Children of stressed parents in turn reported significantly less problems than their parents did. The rating of independent third persons, e.g. teachers, was not available and should be added in future research. Restrictions in methodology and conclusions for practice are discussed.

  20. A nanoparticulate injectable hydrogel as a tissue engineering scaffold for multiple growth factor delivery for bone regeneration

    PubMed Central

    Dyondi, Deepti; Webster, Thomas J; Banerjee, Rinti

    2013-01-01

    Gellan xanthan gels have been shown to be excellent carriers for growth factors and as matrices for several tissue engineering applications. Gellan xanthan gels along with chitosan nanoparticles of 297 ± 61 nm diameter, basic fibroblast growth factor (bFGF), and bone morphogenetic protein 7 (BMP7) were employed in a dual growth factor delivery system to promote the differentiation of human fetal osteoblasts. An injectable system with ionic and temperature gelation was optimized and characterized. The nanoparticle loaded gels showed significantly improved cell proliferation and differentiation due to the sustained release of growth factors. A differentiation marker study was conducted, analyzed, and compared to understand the effect of single vs dual growth factors and free vs encapsulated growth factors. Dual growth factor loaded gels showed a higher alkaline phosphatase and calcium deposition compared to single growth factor loaded gels. The results suggest that encapsulation and stabilization of growth factors within nanoparticles and gels are promising for bone regeneration. Gellan xanthan gels also showed antibacterial effects against Pseudomonas aeruginosa, Staphylococcus aureus, and Staphylococcus epidermidis, the common pathogens in implant failure. PMID:23293519

  1. Basic fibroblast growth factor binds to subendothelial extracellular matrix and is released by heparitinase and heparin-like molecules

    SciTech Connect

    Bashkin, P.; Doctrow, S.; Klagsbrun, M.; Svahn, C.M.; Folkman, J.; Vlodavsky, I. )

    1989-02-21

    Basic fibroblast growth factor (bFGF) exhibits specific binding to the extracellular matrix (ECM) produced by cultured endothelial cells. Binding was saturable as a function both of time and of concentration of {sup 125}I-bFGF. Scatchard analysis of FGF binding revealed the presence of about 1.5 x 10{sup 12} binding sites/mm{sup 2} ECM with an apparent k{sub D} of 610 nM. FGF binds to heparan sulfate (HS) in ECM as evidenced by (i) inhibition of binding in the presence of heparin or HS at 0.1-1 {mu}g/mL, but not by chondroitin sulfate, keratan sulfate, or hyaluronic acid at 10 {mu}g/mL, (ii) lack of binding to ECM pretreated with heparitinase, but not with chondroitinase ABC, and (iii) rapid release of up to 90% of ECM-bound FGF by exposure to heparin, HS, or heparitinase, but not to chondroitin sulfate, keratan sulfate, hyaluronic acid, or chondroitinase ABC. Oligosaccharides derived from depolymerized heparin, and as small as the tetrasaccharide, released the ECM-bound FGF, but there was little or no release of FGF by modified nonanticoagulant heparins such as totally desulfated heparin, N-desulfated heparin, and N-acetylated heparin. FGF released from ECM was biologically active, as indicated by its stimulation of cell proliferation and DNA synthesis in vascular endothelial cells and 3T3 fibroblasts. Similar results were obtained in studies on release of endogenous FGF-like mitogenic activity from Descement's membranes of bovine corneas. It is suggested that ECM storage and release of bFGF provide a novel mechanism for regulation of capillary blood vessel growth. Whereas ECM-bound FGF may be prevented from acting on endothelial cells, its displacement by heparin-like molecules and/or HS-degrading enzymes may elicit a neovascular response.

  2. Intramyocardial sustained delivery of basic fibroblast growth factor improves angiogenesis and ventricular function in a rat infarct model.

    PubMed

    Iwakura, Atsushi; Fujita, Masatoshi; Kataoka, Kazuaki; Tambara, Keiichi; Sakakibara, Yutaka; Komeda, Masashi; Tabata, Yasuhiko

    2003-05-01

    Recently we have demonstrated that the release of basic fibroblast growth factor (bFGF) from a biodegradable gelatin hydrogel carrier depends on the degradation of hydrogel in vivo. The purpose of our study was to assess whether bFGF-incorporating gelatin hydrogels induce myocardial angiogenesis and improve left ventricular function in the infarcted myocardium of rats. Studies were conducted in 22 Lewis rats after a 4-week ligation of the proximal left anterior descending coronary artery. The rats were randomized into the following two groups: the control group (n = 11) had an intramyocardial injection of saline alone, and the FGF group (n = 11) had gelatin hydrogel microspheres containing 100 microg of bFGF injected into the border zone of the infarct area after the repeat left thoracotomy. For visualization of the regional myocardial blood flow in the rat heart, (201)Tl images were taken just before and 4 weeks after the treatment using a 4-head single photon emission computed tomography scanner with pinhole collimators. Left ventricular function was also assessed with echocardiography and a micromanometer-tipped catheter. Finally, the extent of myocardial angiogenesis was evaluated quantitatively in the postmortem analysis. The (201)Tl defect score in the control group remained unchanged before and after the treatment, whereas it decreased significantly in the FGF group. Both regional and global left ventricular function was significantly better in the FGF group compared with the control group. The vascular density in the border zone of the infarct in the FGF group was significantly higher than that in the control group. In conclusion, intramyocardial injection of bFGF-impregnated gelatin hydrogels induces functionally significant angiogenesis and improves left ventricular systolic and diastolic function in the infarcted myocardium of rats.

  3. The diabetic rat as an impaired wound healing model: stimulatory effects of transforming growth factor-beta and basic fibroblast growth factor.

    PubMed

    Broadley, K N; Aquino, A M; Hicks, B; Ditesheim, J A; McGee, G S; Demetriou, A A; Woodward, S C; Davidson, J M

    Two models of wound repair compared the effect of defined, recombinant growth factors on the rate of wound repair in both normal and streptozotocin-induced diabetic rats: subcutaneous implantation of polyvinyl alcohol sponges and incisional wounding. Transverse incisional wounds were made on the dorsal surface of rats and closed with steel sutures. Three days postwounding the rats received a single injection of either transforming growth factor-beta or vehicle alone directly into the wound site. Animals were sacrificed 7, 14, and 21 days postwounding, and fresh and formalin-fixed wound tensile strength were measured. Diabetic rats had expected defects in wound repair, including decreased granulation tissue and reduced amounts of collagen, protein, and DNA. Fresh tensile strength of the diabetic incisions was 53% of normal on Day 7 (p < or = .01) and 29% of normal on Day 21. Fixed tensile strength was 41% of normal on Day 7 (p < or = .01) and fell to 78% of normal by Day 21 (p < or = .01), suggesting that collagen concentrations of diabetic wounds increased towards normal but did not undergo maturation. TGF beta produced a moderate increase in tensile strength of fresh and fixed wounds of diabetic rats, but not to the levels of wounds in untreated normal rats. Sponges fill with granulation tissue, their reproducible rate of organization being measured by histological and biochemical methods. A single injection into sponges 3 days postimplantation of basic fibroblast growth factor, transforming growth factor-beta, or vehicle only, was evaluated at 7 and 9 days postimplantation. In the sponge model, bFGF and TGF beta were each able to induce significant increases in the accumulation of granulation tissue in both diabetic and normal rats. TGF beta increased the collagen content of sponges by 136% in sponges from diabetic animals (p < or = .001), thereby raising the collagen content to that of normal control wounds, while stimulating a 49% (p < or = .02) increase in

  4. Dual blockade of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (FGF-2) exhibits potent anti-angiogenic effects.

    PubMed

    Li, Dong; Xie, Kun; Zhang, Longzhen; Yao, Xuejing; Li, Hongwen; Xu, Qiaoyu; Wang, Xin; Jiang, Jing; Fang, Jianmin

    2016-07-28

    Both vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF or FGF-2) are potent pro-angiogenic factors and play a critical role in cancer development and progression. Clinical anti-VEGF therapy trials had a major challenge due to upregulated expression of other pro-angiogenic factor, like FGF-2. This study developed a novel chimeric decoy receptor VF-Trap fusion protein to simultaneously block activity of both VEGF and FGF pathways in order to achieve an additive or synergistic anti-tumor effect. Our in vitro data showed that VF-Trap potently blocked proliferation and migration of both VEGF- and FGF-2-induced vascular endothelial cells. In animal models, treatment of xenograft tumors with VF-Trap resulted in significant inhibition of tumor growth compared to blockage of the single molecule, like VEGF or FGF blocker. In addition, VF-Trap was also more potent in inhibition of ocular angiogenesis in a mouse oxygen-induced retinopathy (OIR) model. These data demonstrated the potent anti-angiogenic effects of this novel VF-Trap fusion protein on blockage of VEGF and FGF-2 activity in vitro and in animal models. Further study will assess its effects in clinic as a therapeutic agent for angiogenesis-related disorders, such as cancer and ocular vascular diseases.

  5. Zur Bahndynamik niedrigfliegender Satelliten.

    NASA Astrophysics Data System (ADS)

    Scheinert, M.

    The satellite mission ARISTOTELES and STEP give the chance to determine the gravitational field of the Earth with high accuracy and up to the short-wave domain. This is due to the expected highly sensitive observations of gravitational gradients and tracking information obtained by GPS. The goal of the dissertation is to investigate especially the potentiality of the GPS tracking data to solve the coefficients of the long-wave domain in particular. The theory of Hill's equations forms an excellent tool to analyse the orbit perturbations of the satellites moving in nearly polar, nearly circular orbits of very low altitude. The derivation of the linear perturbation theory is dealt with in detail. On the basis of the linear theory numerical simulations were carried out which proofed the impossibility to solve the long-wave domain completely from tracking data of only one of the discussed satellites. But the orbit analysis allows to set up a so-called Tailored Model in each case which may support and complete the processing of the gradiometry data.

  6. Zur Entstehung des Schallstrahlungsdruckes

    NASA Astrophysics Data System (ADS)

    Richter, G.

    Der Schallstrahlungsdruck in Flüssigkeiten und Gasen wird unter Benutzung der Bernoullischen Gleichung der Schallbewegung in der Näherung kleiner Amplituden erneut diskutiert, wobei einige Ableitungen vereinfacht und verkürzt wurden. Insbesondere wird der von G. Hertz und H. Mende erstmals beobachtete negative Schallstrahlungsdruck näher betrachtet.Translated AbstractOn the Origin of the Radiation Pressure of Sound WavesThe radiation pressure of sound waves is discussed once more using Bernoullis equation for vibrating fluids and gases. In approximations for small amplitudes some derivations could be simplified and shortened. Especially the negative radiation pressure first observed by G. Hertz und H. Mende is concidered in more details.

  7. Zur Geschichte der Geophysik

    NASA Astrophysics Data System (ADS)

    Strobach, Klaus

    1980-07-01

    Alfred Wegener's most important work, the theory of continental drift, has a key position in the history of geophysics and has crucially advanced the discussion of this central problem of geodynamics amongst supporters and adversaries. The aim of this paper is to paint a portrait of Wegener's personality, of his stations of life, and of his interests and research work. The conceptions of the origin of continents and oceans prior to Wegener, and the further development of his ideas after his death on the ice cup of Greenland 50 years ago are discussed.

  8. Self-renewing and differentiating properties of cortical neural stem cells are selectively regulated by basic fibroblast growth factor (FGF) signaling via specific FGF receptors.

    PubMed

    Maric, Dragan; Fiorio Pla, Alessandra; Chang, Yoong Hee; Barker, Jeffery L

    2007-02-21

    Developmental processes mediating the initiation of lineage commitment from self-renewing neural stem cells (NSCs) remain mostly unclear because of the persisting ambiguity in identifying true NSCs from proliferative lineage-restricted progenitors (LRPs), which are directly or indirectly derived from NSCs. Our multilineage immunohistochemical analyses of early embryonic rat telencephalon at the onset of neurogenesis revealed clear dorsoventral gradients in the emergence of two types of neuronal progenitors (NPs) from multilineage-negative NSCs. Enumeration of NSCs using comprehensive flow cytometric analysis demonstrated that their precipitous decline in vivo involved both active differentiation into NPs and an increased propensity toward apoptosis. Both processes paralleled the dorsoventral changes in fibroblast growth factor receptor (FGFR) expressions. NSCs residing in the dorsal telencephalon coexpressed FGFR1 and FGFR3, whereas those residing in the ventral telencephalon also expressed FGFR2. NSCs exposed to basic fibroblast growth factor (bFGF) in vitro generated four stereotypical clonal expansion states: efficiently self-renewing, inefficiently self-renewing limited by apoptosis, exclusively neurogenic, and multipotential, generating up to five types of LRPs. The plasticity among these expansion states depended on ambient [bFGF], telencephalic developmental stage, and differential activation/inactivation of specific FGFRs. Coactivation of FGFR1 and FGFR3 promoted symmetrical divisions of NSCs (self-renewal), whereas inactivation of either triggered asymmetrical divisions and neurogenesis from these cells. Developmental upregulation of FGFR2 expression correlated with a shift of NSCs into a multipotential state or apoptosis. These results provide new insights regarding the roles of FGFRs in diversification of NSC properties and initiation of neural lineage-restricted differentiation.

  9. Gelatin Methacrylate Microspheres for Growth Factor Controlled Release

    PubMed Central

    Nguyen, Anh H.; McKinney, Jay; Miller, Tobias; Bongiorno, Tom; McDevitt, Todd C.

    2014-01-01

    Gelatin has been commonly used as a delivery vehicle for various biomolecules for tissue engineering and regenerative medicine applications due to its simple fabrication methods, inherent electrostatic binding properties, and proteolytic degradability. Compared to traditional chemical cross-linking methods, such as the use of glutaraldehyde (GA), methacrylate modification of gelatin offers an alternative method to better control the extent of hydrogel cross-linking. Here we examined the physical properties and growth factor delivery of gelatin methacrylate (GMA) microparticles formulated with a wide range of different cross-linking densities (15–90%). Less methacrylated MPs had decreased elastic moduli and larger mesh sizes compared to GA MPs, with increasing methacrylation correlating to greater moduli and smaller mesh sizes. As expected, an inverse correlation between microparticle cross-linking density and degradation was observed, with the lowest cross-linked GMA MPs degrading at the fastest rate, comparable to GA MPs. Interestingly, GMA MPs at lower cross-linking densities could be loaded with up to a 10-fold higher relative amount of growth factor over conventional GA cross-linked MPs, despite an order of magnitude greater gelatin content of GA MPs. Moreover, a reduced GMA cross-linking density resulted in more complete release of bone morphogenic protein 4 (BMP4) and basic fibroblast growth factor (bFGF) and accelerated release rate with collagenase treatment. These studies demonstrate that GMA MPs provide a more flexible platform for growth factor delivery by enhancing the relative binding capacity and permitting proteolytic degradation tunability, thereby offering a more potent controlled release system for growth factor delivery. PMID:25463489

  10. Protective effect of basic fibroblast growth factor on retinal injury induced by argon laser photocoagulation

    NASA Astrophysics Data System (ADS)

    Chen, P.; Zhang, C. P.; San, Q.; Wang, C. Z.; Yang, Z. F.; Kang, H. X.; Qian, H. W.

    2010-12-01

    Laser photocoagulation treatment is often complicated by a side effect of visual impairment, which is caused by the unavoidable laser-induced retinal destruction. At present no specific is found to cure this retinopathy. The aim of this study was to observe the neuroprotective effect of bFGF on laser-induced retinal injury. Chinchilla rabbits were divided into three groups and argon laser lesions were created in the retinas. Then bFGF or dexamethasone, a widely used ophthalmic preparation, or saline was given severally by retrobulbar injection. The retinal lesions were evaluated histologically and morphometrically, and visual function was examined by ERG. The results showed that bFGF administration better preserved morphology of retinal photoreceptors and significantly diminished the area of the lesions. Furthermore, bFGF promoted the restoration of the ERG b-wave amplitude. In rabbits treated with dexamethasone, however, the lesions showed almost no ameliorative changes. This is the first study to investigate the potential role of bFGF as a remedial agent in laser photocoagulation treatment. These findings suggest that bFGF has significant neuroprotective properties in the retina and this type of neuroprotection may be of clinical significance in reducing iatrogenic laser-induced retinal injuries in humans.

  11. Effect of Freeze-Dried Allograft Bone With Human Basic Fibroblast Growth Factor Containing a Collagen-Binding Domain From Clostridium histolyticum Collagenase on Bone Formation After Lumbar Posterolateral Fusion Surgery in Rats.

    PubMed

    Inoue, Gen; Uchida, Kentaro; Matsushita, Osamu; Fujimaki, Hisako; Saito, Wataru; Miyagi, Masayuki; Sekiguchi, Hiroyuki; Nishi, Nozomu; Ohtori, Seiji; Yogoro, Mizuki; Takaso, Masashi

    2017-09-01

    An experimental study. To evaluate the effectiveness of freeze-dried bone allograft (FDBA) with basic fibroblast growth factor (bFGF) fused with the polycystic kidney disease domain (PKD) and the collagen-binding domain (CBD) of Clostridium histolyticum collagenase, for the acceleration of lumbar posterolateral fusion in rats. Reports indicate bFGF is an effective growth factor with osteogenic potential for promoting bone regeneration, although its efficiency decreases rapidly following its diffusion in body fluid from the host site. We developed a bFGF fusion protein containing the PKD and the CBD of C histolyticum collagenase (bFGF-PKD-CBD), which markedly enhanced bone formation at a relatively low concentration when applied to the surface of rat femurs in a previous study. The potential of this novel protein to accelerate bone fusion in a rat model of lumbar posterolateral fusion has yet to be investigated. Bilateral L4-L5 posterolateral fusions were performed, using 150 mg of FDBA powder per side. A total of 20 male Sprague-Dawley rats weighing 200 to 250 g/each were divided into two groups of 10 rats: FDBA was incubated with either phosphate-buffered saline (control group) or 0.58 nmol bFGF-PKD-CBD (bFGF-PKD-CBD group) before fusion surgery. The effect of bFGF-PKD-CBD was estimated using radiographs, microcomputed tomography, and histology (hematoxylin-eosin and von Kossa staining). Both grafted bone volume in the posterolateral lesion and the volume of new bone formation on the surface of laminae and spinal processes were significantly higher in the bFGF-PKD-CBD group than in the control group. Histologically, new bone formation and surrounding chondrocytes and fibroblasts were prominent in the bFGF-PKD-CBD group. FDBA infused with bFGF-PKD-CBD may be a promising material for accelerating spinal fusion, and the FDBA-based delivery system for localizing bFGF-PKD-CBD may offer novel therapeutic approaches to augment spinal fusion. N/A.

  12. Effects of nerve growth factor and basic fibroblast growth factor dual gene modification on rat bone marrow mesenchymal stem cell differentiation into neuron-like cells in vitro

    PubMed Central

    HU, YANG; ZHANG, YAN; TIAN, KANG; XUN, CHONG; WANG, SHOUYU; LV, DECHENG

    2016-01-01

    Recent studies regarding regenerative medicine have focused on bone marrow mesenchymal stem cells (BMSCs), which have the potential to undergo neural differentiation, and may be transfected with specific genes. BMSCs can differentiate into neuron-like cells in certain neurotropic circumstances in vitro. Basic fibroblast growth factor (bFGF) and nerve growth factor (NGF) are often used to induce neural differentiation in BMSCs in vitro. However, previous studies regarding their combined actions are insufficient. The present study is the first, to the best of our knowledge, to thoroughly assess the enhancement of neural differentiation of BMSCs following transfection with bFGF and NGF. Sprague-Dawley (SD) rat BMSCs were separated through whole bone marrow adherence, and were then passaged to the third generation. The cells were subsequently divided into five groups: The control group, which consisted of untransfected BMSCs; the plv-blank-transfected BMSCs group; the plv-bFGF-trans-fected BMSCs group; the plv-NGF-transfected BMSCs group; and the plv-NGF-bFGF co-transfected BMSCs group. Cell neural differentiation was characterized in terms of stem cell molecular expression, and the neuronal morphology and expression of neural-like molecules was detected in each of the groups. A total of 72 h post-transfection, the expression levels of neuron-specific enolase, glial fibrillary acidic protein, and nestin protein, were higher in the co-transfected group, as compared with the other groups, the expression levels of β-tubulin III were also increased in the co-transfected cells, thus suggesting the maturation of differentiated neuron-like cells. Furthermore, higher neuronal proliferation was observed in the co-transfected group, as compared with the other groups at passages 2, 4, 6 and 8. Western blotting demonstrated that the transfected groups exhibited a simultaneous increase in phosphorylation of the AKT and extracellular signal-regulated kinases (ERK) signaling pathway

  13. Effects of nerve growth factor and basic fibroblast growth factor dual gene modification on rat bone marrow mesenchymal stem cell differentiation into neuron-like cells in vitro.

    PubMed

    Hu, Yang; Zhang, Yan; Tian, Kang; Xun, Chong; Wang, Shouyu; Lv, Decheng

    2016-01-01

    Recent studies regarding regenerative medicine have focused on bone marrow mesenchymal stem cells (BMSCs), which have the potential to undergo neural differentiation, and may be transfected with specific genes. BMSCs can differentiate into neuron‑like cells in certain neurotropic circumstances in vitro. Basic fibroblast growth factor (bFGF) and nerve growth factor (NGF) are often used to induce neural differentiation in BMSCs in vitro. However, previous studies regarding their combined actions are insufficient. The present study is the first, to the best of our knowledge, to thoroughly assess the enhancement of neural differentiation of BMSCs following transfection with bFGF and NGF. Sprague‑Dawley (SD) rat BMSCs were separated through whole bone marrow adherence, and were then passaged to the third generation. The cells were subsequently divided into five groups: The control group, which consisted of untransfected BMSCs; the plv‑blank‑transfected BMSCs group; the plv‑bFGF‑transfected BMSCs group; the plv‑NGF‑transfected BMSCs group; and the plv‑NGF‑bFGF co‑transfected BMSCs group. Cell neural differentiation was characterized in terms of stem cell molecular expression, and the neuronal morphology and expression of neural‑like molecules was detected in each of the groups. A total of 72 h post‑transfection, the expression levels of neuron‑specific enolase, glial fibrillary acidic protein, and nestin protein, were higher in the co‑transfected group, as compared with the other groups, the expression levels of β‑tubulin III were also increased in the co‑transfected cells, thus suggesting the maturation of differentiated neuron‑like cells. Furthermore, higher neuronal proliferation was observed in the co‑transfected group, as compared with the other groups at passages 2, 4, 6 and 8. Western blotting demonstrated that the transfected groups exhibited a simultaneous increase in phosphorylation of the AKT and extracellular signal

  14. Control-released basic fibroblast growth factor-loaded poly-lactic-co-glycolic acid microspheres promote sciatic nerve regeneration in rats

    PubMed Central

    Si, Hai-Bo; Zeng, Yi; Lu, Yan-Rong; Cheng, Jing-Qiu; Shen, Bin

    2017-01-01

    Although peripheral nerve injury may result in a loss of function in innervated areas, the most effective method for nerve regeneration remains to be determined. The aim of the present study was to investigate the effect of control-released basic fibroblast growth factor (bFGF)-loaded poly-lactic-co-glycolic acid (PLGA) microspheres on sciatic nerve regeneration following injury in rats. bFGF-PLGA microspheres were prepared and their characteristics were evaluated. The sciatic nerve was segmentally resected to create a 10 mm defect in 36 Sprague Dawley (SD) rats and, following the anastomosis of the nerve ends with a silicone tube, bFGF-PLGA microspheres, free bFGF or PBS were injected into the tube (n=12 in each group). The outcome of nerve regeneration was evaluated using the sciatic function index (SFI), electrophysiological test and histological staining at 6 weeks and 12 weeks post-surgery. The bFGF-PLGA microspheres were successfully synthesized with an encapsulation efficiency of 66.43%. The recovery of SFI and electrophysiological values were significantly greater (P<0.05), and morphological and histological observations were significantly greater (P<0.05) in bFGF-PLGA microspheres and bFGF groups compared with those in the PBS group, and the quickest recovery was observed in the bFGF-PLGA microspheres group. In conclusion, the bFGF-PLGA microspheres may promote nerve regeneration and functional recovery in the sciatic nerve, and may have potential therapeutic applications in peripheral nerve regeneration. PMID:28352311

  15. Treatment of neural anosmia by topical application of basic fibroblast growth factor-gelatin hydrogel in the nasal cavity: an experimental study in mice.

    PubMed

    Nota, Jumpei; Takahashi, Hirotaka; Hakuba, Nobuhiro; Hato, Naohito; Gyo, Kiyofumi

    2013-04-01

    A new treatment of neural anosmia. To investigate the effects of basic fibroblast growth factor (bFGF)-gelatin hydrogel on recovery of neural anosmia in mice. Anosmia was induced by intraperitoneal injection of 3-methylindole, 200 mg/kg. One week later, the animals underwent 1 of the following 3 procedures bilaterally: (1) group A: single-shot intranasal drip infusion of phosphate-buffered saline, (2) group B: single-shot intranasal drip infusion of bFGF, and (3) group C: placement of bFGF-gelatin hydrogel in the nasal cavity. The olfactory function of the animal was evaluated by the odor-detection test (ODT) 2 and 4 weeks later. Following the testing, the animal was killed, the thickness of the olfactory epithelium was measured, and the number of olfactory marker protein (OMP)-positive cells was counted. Research installation. Mice. The placement of bFGF-gelatin hydrogel in the nasal cavity. An ODT, thickness of olfactory epithelium, the number of OMP-positive cells The ODT proved that neural anosmia recovered in group C but not in groups A and B. Histologically, olfactory epithelium became thicker and the number of OMP-positive cells increased in group C, while such functional and histologic recovery was poor in groups A and B. These findings suggested that placement of bFGF-gelatin hydrogel in the nasal cavity was an efficient way to facilitate recovery of neural anosmia. As a gelatin hydrogel degrades slowly in the body, bFGF is gradually released around the site of the lesion; thus, it constantly exerts its effects on neural regeneration.

  16. Laser-assisted delivery of vitamin C, vitamin E, and ferulic acid formula serum decreases fractional laser postoperative recovery by increased beta fibroblast growth factor expression.

    PubMed

    Waibel, Jill S; Mi, Qing-Sheng; Ozog, David; Qu, Le; Zhou, Li; Rudnick, Ashley; Al-Niaimi, Firas; Woodward, Julie; Campos, Valerie; Mordon, Serge

    2016-03-01

    Laser-assisted drug delivery is an emerging technology to achieve greater penetration by existing topical medications to reach desired targets in the tissue. The objective of this research was to study whether laser-assisted delivery of Vitamin C, E, and Ferulic immediately postoperatively of fractional ablative laser could improve wound healing. Secondary objectives were to evaluate the potential molecular markers involved in this wound-healing process. A double blinded, prospective, single center, randomized split face trial of Vitamin C, E, and Ferulic topical formula #740019 to decrease postoperative recovery time in fractional ablative laser resurfacing for photo damage. Fifteen healthy men and women of ages 30-55 years were treated with the Vitamin C, E, and Ferulic acid serum to one side of face and vehicle to the other side of face, within 2 minutes immediately after fractional ablative CO2 laser surgery and daily during the healing process. Patients were evaluated daily on days 1-7 using photographs, patient questionnaires, and molecular evaluation. Clinically, postoperative Vitamin C, E, and Ferulic delivery resulted in decreased edema versus vehicle on postoperative day 7 and decreased erythema versus vehicle on postoperative days 3 and 5. Molecularly, the expression of basic fibroblast growth factor (bFGF) was significantly increased at day 5 on the lesion treated with Vitamin C, E, and Ferulic acid serum compared to vehicle control on the other side. This is first study to show that Vitamin C, E, and Ferulic acid correlate with more rapid wound healing post-fractional ablative laser. Elevated bFGF could be involved in the Vitamin C, E, and Ferulic acid-induced rapid wound healing. © 2015 Wiley Periodicals, Inc.

  17. Mouse Proepicardium Exhibits a Sprouting Response to Exogenous Proangiogenic Growth Factors in vitro.

    PubMed

    Niderla-Bielińska, Justyna; Ciszek, Bogdan; Jankowska-Steifer, Ewa; Flaht-Zabost, Aleksandra; Gula, Grzegorz; Radomska-Leśniewska, Dorota M; Ratajska, Anna

    2016-01-01

    Angiogenesis contributes to the generation of the vascular bed but also affects the progression of many diseases, such as tumor growth. Many details of the molecular pathways controlling angiogenesis are still undefined due to the lack of appropriate models. We propose the proepicardial explant as a suitable model for studying certain aspects of angiogenesis. The proepicardium (PE) is a transient embryonic structure that contains a population of undifferentiated endothelial cells (ECs) forming a vascular net continuous with the sinus venosus. In this paper, we show that PE explants give rise to CD31-positive vascular sprouts in the presence of basic fibroblast growth factor (bFGF) and 2 isoforms of vascular endothelial growth factor A (VEGF-A), i.e. VEGF-A120 and VEGF-A164. Vascular sprouts exhibit differences in number, length, thickness and the number of branches, depending on the combination of growth factors used. Moreover, the ECs of the sprouts express various levels of mRNA for Notch1 and its ligand Dll4. Additionally, stimulation with bFGF/VEGF-A164 upregulates the expression of Lyve-1 antigen in the ECs in the sprouts. In summary, we present a new model for angiogenesis studies involving mouse PE as a source of ECs. We believe that our model may act as a supplementary assay for angiogenesis studies along with the existing models.

  18. The isolation and characterization of growth regulatory factors produced by a herpes simplex virus Type 2 transformed mouse tumor cell line, H238

    SciTech Connect

    Stagg, R.B.

    1988-01-01

    This study was performed in an attempt to associate HSV-2-transformation with specific growth factors in order to develop a testable model for HSV-2-transformation. We report here the isolation and characterization of four growth regulatory factors produced by H238, an HSV-2-transformed mouse tumor cell line. These factors were separated from the H238-CM by heparin-sepharose affinity chromatography into three peaks of mitogenic activity and a fourth containing inhibitory activity for splenocytes. The three peaks of mitogenic activity have been identified based on physiochemical characteristics: the first supported the anchorage-independent growth of EGF treated NRK-c-49 cells and resembles transforming growth factor-{beta} (TGF-{beta}); the second bound to lectin-coated sepharose beads and was sensitive to trypsin, neuroaminidase, and the reducing agent dithiothreitol (DTT) and, resembled a platelet-derived growth factor (PDGF)-like factor; and the third displaced ({sup 125}I)-labeled basic fibroblast growth factor (bFGF) in a dose-dependent fashion when tested with a radioimmune assay. The fourth peak was inhibitory for a variety of splenocyte function assays. A model for the interaction of these factors in vivo is presented with an emphasis on testability.

  19. Influence of basement membrane proteins and endothelial cell-derived factors on the morphology of human fetal-derived astrocytes in 2D.

    PubMed

    Levy, Amanda F; Zayats, Maya; Guerrero-Cazares, Hugo; Quiñones-Hinojosa, Alfredo; Searson, Peter C

    2014-01-01

    Astrocytes are the most prevalent type of glial cell in the brain, participating in a variety of diverse functions from regulating cerebral blood flow to controlling synapse formation. Astrocytes and astrocyte-conditioned media are widely used in models of the blood-brain barrier (BBB), however, very little is known about astrocyte culture in 2D. To test the hypothesis that surface coating and soluble factors influence astrocyte morphology in 2D, we quantitatively analyzed the morphology of human fetal derived astrocytes on glass, matrigel, fibronectin, collagen IV, and collagen I, and after the addition soluble factors including platelet-derived growth factor (PDGF), laminin, basic fibroblast growth factor (bFGF), and leukemia inhibitory factor (LIF). Matrigel surface coatings, as well as addition of leukemia inhibitory factor (LIF) to the media, were found to have the strongest effects on 2D astrocyte morphology, and may be important in improving existing BBB models. In addition, the novel set of quantitative parameters proposed in this paper provide a test for determining the influence of compounds on astrocyte morphology, both to screen for new endothelial cell-secreted factors that influence astrocytes, and to determine in a high-throughput way which factors are important for translation to more complex, 3D BBB models.

  20. Inter-rater reliability of the `Merkmalprofile zur Eingliederung Leistungsgewandelter und Behinderter in Arbeit' (MELBA) in young disabled adults with psychosocial limitations.

    PubMed

    Achterberg, Thea; Wind, Haije; Prinzie, Peter; Frings-Dresen, Monique

    2013-01-01

    To evaluate the inter-rater reliability of the Merkmalprofile zur Eingliederung Leistungsgewandelter und Behinderter in Arbeit (MELBA). Twenty-five young adults with psychosocial limitations. The MELBA measures work ability in five themes: cognitive, social, work performance, psychomotor characteristics and cultural/technical communication, divided into 29 work-related items, which are assessed by work-related tasks and by observations during work performance. Two raters independently evaluated one participant during the same time/test and independently assigned scores on 19~items out of 29. For this observational study the inter-rater reliability, expressed as the Intraclass Correlation Coefficient (ICC), was calculated for every item. An ICC of at least 0.75 was considered as showing good reliability, below 0.75 was considered poor to moderate reliability. The ICC for six items was good: comprehension (0.81), attentiveness (0.84), problem solving (0.79), imagination (0.88), independence (0.79) and speed of reaction (1.0) showed good reliability. Especially the items of cognitive characteristics of the MELBA showed a good inter-rater reliability and can be used to measure work ability in people with psychosocial limitations.

  1. DC electric stimulation upregulates angiogenic factors in endothelial cells through activation of VEGF receptors

    PubMed Central

    Bai, Huai; Forrester, John V.; Zhao, Min

    2015-01-01

    Small direct current (DC) electric fields direct some important angiogenic responses of vascular endothelial cells. Those responses indicate promising use of electric fields to modulate angiogenesis. We sought to determine the regulation of electric fields on transcription and expression of a serial of import angiogenic factors by endothelial cells themselves. Using semi-quantitative PCR and ELISA we found that electric stimulation upregulates the levels of mRNAs and proteins of a number of angiogenic proteins, most importantly VEGF165, VEGF121 and IL-8 in human endothelial cells. The up-regulation of mRNA levels might be specific, as the mRNA encoding bFGF, TGF-beta and eNOS are not affected by DC electric stimulation at 24 h time-point. Inhibition of VEGF receptor (VEGFR1 or VEGFR2) signaling significantly decreased VEGF production and completely abolished IL-8 production. DC electric stimulation selectively regulates production of some growth factors and cytokines important for angiogenesis through a feed-back loop mediated by VEGF receptors. PMID:21524919

  2. DC electric stimulation upregulates angiogenic factors in endothelial cells through activation of VEGF receptors.

    PubMed

    Bai, Huai; Forrester, John V; Zhao, Min

    2011-07-01

    Small direct current (DC) electric fields direct some important angiogenic responses of vascular endothelial cells. Those responses indicate promising use of electric fields to modulate angiogenesis. We sought to determine the regulation of electric fields on transcription and expression of a serial of import angiogenic factors by endothelial cells themselves. Using semi-quantitative PCR and ELISA we found that electric stimulation upregulates the levels of mRNAs and proteins of a number of angiogenic proteins, most importantly VEGF165, VEGF121 and IL-8 in human endothelial cells. The up-regulation of mRNA levels might be specific, as the mRNA encoding bFGF, TGF-beta and eNOS are not affected by DC electric stimulation at 24h time-point. Inhibition of VEGF receptor (VEGFR1 or VEGFR2) signaling significantly decreased VEGF production and completely abolished IL-8 production. DC electric stimulation selectively regulates production of some growth factors and cytokines important for angiogenesis through a feed-back loop mediated by VEGF receptors.

  3. Intranasal nanoparticles of basic fibroblast growth factor for brain delivery to treat Alzheimer's disease.

    PubMed

    Zhang, Chi; Chen, Jie; Feng, Chengcheng; Shao, Xiayan; Liu, Qingfeng; Zhang, Qizhi; Pang, Zhiqing; Jiang, Xinguo

    2014-01-30

    Disabilities caused by neurodegeneration have become one of the main causes of mortality in elderly population, with drug distribution to the brain remaining one of the most difficult challenges in the treatment of the central nervous system (CNS) diseases due to the existence of blood-brain barrier. Lectins modified polyethylene glycol-polylactide-polyglycolide (PEG-PLGA) nanoparticles could enhance the drug delivery to the brain following intranasal administration. In this study, basic fibroblast growth factor (bFGF) was entrapped in nanoparticles conjugated with Solanum tuberosum lectin (STL), which selectively binds to N-acetylglucosamine on the nasal epithelial membrane for its brain delivery. The resulting nanoparticles had uniform particle size and negative zeta potential. The brain distribution of the formulations following intranasal administration was assessed using radioisotopic tracing method. The areas under the concentration-time curve of (125)I-bFGF in the olfactory bulb, cerebrum, and cerebellum of rats following nasal application of STL modified nanoparticles (STL-bFGF-NP) were 1.79-5.17 folds of that of rats with intravenous administration, and 0.61-2.21 and 0.19-1.07 folds higher compared with intranasal solution and unmodified nanoparticles, respectively. Neuroprotective effect was evaluated using Mirror water maze task in rats with intracerebroventricular injection of β-amyloid25-35 and ibotenic acid. The spatial learning and memory of Alzheimer's disease (AD) rats in STL-bFGF-NP group were significantly improved compared with AD model group, and were also better than other preparations. The results were consistent with the value of choline acetyltransferase activity of rat hippocampus as well as the histological observations of rat hippocampal region. The histopathology assays also confirmed the in vivo safety of STL-bFGF-NP. These results clearly indicated that STL-NP was a promising drug delivery system for peptide and protein drugs such as

  4. Expression of growth factor ligand and receptor genes in the preimplantation bovine embryo.

    PubMed

    Watson, A J; Hogan, A; Hahnel, A; Wiemer, K E; Schultz, G A

    1992-02-01

    The sensitive technique of mRNA phenotyping with the reverse transcription-polymerase chain reaction was employed to determine the patterns of gene expression for several growth factor ligand and receptor genes during bovine preimplantation development. Several thousand bovine embryos encompassing a developmental series from one-cell zygotes to hatched blastocysts were produced by the application of in vitro maturation, fertilization, and oviductal epithelial cell embryo coculture methods. Transcripts for transforming growth factor (TGF-alpha) and platelet-derived growth factor (PDGF-A) are detectable in all preimplantation bovine stages as observed in the mouse. Transcripts for TGF-beta 2 and insulin-like growth factor (IGF-II) and the receptors for PDGF-alpha, insulin, IGF-I, and IGF-II are also detectable throughout bovine preimplantation development, suggesting that these mRNAs are products of both the maternal and the embryonic genomes in the cow, whereas in the mouse they are present only following the activation of the embryonic genome at the two-cell stage. In contrast to the mouse embryo, IGF-I mRNA was detected within preimplantation bovine embryos. Basic fibroblast growth factor (bFGF) is a maternal message in the bovine embryo, since it is only detectable up until the eight-cell embryo stage. Bovine trophoblast protein (bTP) mRNA was detectable within day 8 bovine blastocysts. As was observed in the mouse, the transcripts for insulin, epidermal growth factor (EGF), or nerve growth factor (NGF) were not detectable in any bovine embryo stage. Analyses of this type should aid the development of a completely defined culture medium for the more efficient production of preimplantation bovine embryos.

  5. Inhibition of corneal neovascularization with the combination of bevacizumab and plasmid pigment epithelium-derived factor-synthetic amphiphile INTeraction-18 (p-PEDF-SAINT-18) vector in a rat corneal experimental angiogenesis model.

    PubMed

    Kuo, Chien-Neng; Chen, Chung-Yi; Chen, San-Ni; Yang, Lin-Cheng; Lai, Li-Ju; Lai, Chien-Hsiung; Chen, Miao-Fen; Hung, Chia-Hui; Chen, Ching-Hsein

    2013-04-16

    Bevacizumab, a 149-kDa protein, is a recombinant humanized monoclonal antibody to VEGF. PEDF, a 50-kDa glycoprotein, has demonstrated anti-vasopermeability properties. In this study, we demonstrated that the combination of bevacizumab and plasmid pigment epithelium-derived factor-synthetic amphiphile INTeraction-18(p-PEDF-SAINT-18) has a favorable antiangiogenic effect on corneal NV. Four groups(Group A: 0 μg + 0 μg, B: 0.1 μg + 0.1 μg, C: 1 μg + 1 μg, and D: 10 μg + 10 μg) of bevacizumab + p-PEDF-SAINT-18 were prepared and implanted into the rat subconjunctival substantia propria 1.5 mm from the limbus on the temporal side. Then, 1 μgof p-bFGF-SAINT-18 was prepared and implanted into the rat corneal stroma 1.5 mm from the limbus on the same side. The inhibition of NV was observed and quantified from days 1 to 60. Biomicroscopic examination, western blot analysis and immunohistochemistry were used to analyze the 18-kDa bFGF, 50-kDa PEDF and VEGF protein expression. No inhibition activity for normal limbal vessels was noted. Subconjunctival injection with the combination of bevacizumab and p-PEDF-SAINT-18 successfully inhibited corneal NV.The bFGF and PEDF genes were successfully expressed as shown by western blot analysis,and a mild immune response to HLA-DR was shown by immunohistochemistry. We concluded that the combination of bevacizumab and p-PEDF-SAINT-18 may have more potent and prolonged antiangiogenic effects, making it possible to reduce the frequency of subconjunctival bevacizumab administration combined with a relatively safe profile and low toxicity.

  6. Bis-Retinoid A2E Induces an Increase of Basic Fibroblast Growth Factor via Inhibition of Extracellular Signal-Regulated Kinases 1/2 Pathway in Retinal Pigment Epithelium Cells and Facilitates Phagocytosis

    PubMed Central

    Balmer, Delphine; Bapst-Wicht, Linda; Pyakurel, Aswin; Emery, Martine; Nanchen, Natacha; Bochet, Christian G.; Roduit, Raphael

    2017-01-01

    Age-related macular degeneration (ARMD) is the leading cause of vision loss in developed countries. Hallmarks of the disease are well known; indeed, this pathology is characterized by lipofuscin accumulation, is principally composed of lipid-containing residues of lysosomal digestion. The N-retinyl-N-retinylidene ethanolamine (A2E) retinoid which is thought to be a cytotoxic component for RPE is the best-characterized component of lipofuscin so far. Even if no direct correlation between A2E spatial distribution and lipofuscin fluorescence has been established in aged human RPE, modified forms or metabolites of A2E could be involved in ARMD pathology. Mitogen-activated protein kinase (MAPK) pathways have been involved in many pathologies, but not in ARMD. Therefore, we wanted to analyze the effects of A2E on MAPKs in polarized ARPE19 and isolated mouse RPE cells. We showed that long-term exposure of polarized ARPE19 cells to low A2E dose induces a strong decrease of the extracellular signal-regulated kinases' (ERK1/2) activity. In addition, we showed that A2E, via ERK1/2 decrease, induces a significant decrease of the retinal pigment epithelium-specific protein 65 kDa (RPE65) expression in ARPE19 cells and isolated mouse RPE. In the meantime, we showed that the decrease of ERK1/2 activity mediates an increase of basic fibroblast growth factor (bFGF) mRNA expression and secretion that induces an increase in phagocytosis via a paracrine effect. We suggest that the accumulation of deposits coming from outer segments (OS) could be explained by both an increase of bFGF-induced phagocytosis and by the decrease of clearance by A2E. The bFGF angiogenic protein may therefore be an attractive target to treat ARMD. PMID:28298893

  7. Production of Heparin-Functionalized Hydrogels for the Development of Responsive and Controlled Growth Factor Delivery Systems

    PubMed Central

    Nie, Ting; Baldwin, Aaron; Yamaguchi, Nori; Kiick, Kristi L.

    2007-01-01

    Methods to assemble polymeric hydrogels on the basis of noncovalent protein-glycosaminoglycan interactions have been previously demonstrated by us and others and hold promise in the development of receptor-responsive hydrogel materials; improvements in the mechanical properties of such systems would broaden their utility. Thus, in situ crosslinkable and degradable heparin-containing hydrogels were designed for the binding and controlled release of growth factors. Specifically, maleimide-functionalized high molecular weight heparin (HMWH) was synthesized via straightforward chemical methods that permitted facile and controllable modification of carboxylates in HMWH with maleimide groups via control of catalyst and reaction conditions, as assessed via 1H NMR spectroscopy. These modified heparins were crosslinked into hydrogels via reaction with various thiol-functionalized PEGs. The gelation times and elastic moduli of the gels, as assessed through oscillatory rheometry, could be tuned by via control of the functionality of HMWH, the concentration of hydrogel, the identity of the PEG-based crosslinker, as well as the molar ratio between maleimide and thiol groups. The capability of the hydrogels to bind to growth factors was investigated with immunochemical assays. Preliminary studies indicate the controlled release of basic fibroblast growth factor (bFGF) from these materials and suggest their broader use in the design of responsive materials. PMID:17582636

  8. Impact Factor? Shmimpact Factor!

    PubMed Central

    2007-01-01

    The journal impact factor is a measure of the citability of articles published in that journal—the more citations generated, the more important that article is considered to be, and as a consequence the prestige of the journal is enhanced. The impact factor is not without controversy, and it can be manipulated. It no longer dominates the choices of journals to search for information. Online search engines, such as PubMed, can locate articles of interest in seconds across journals regardless of high or low impact factors. Editors desiring to increase their influence will need to focus on a fast and friendly submission and review process, early online and speedy print publication, and encourage the rapid turnaround of high-quality peer reviews. Authors desiring to have their results known to the world have never had it so good—the internet permits anyone with computer access to find the author's work. PMID:20806031

  9. Comparison of melatonin with growth factors in promoting precursor cells proliferation in adult mouse subventricular zone

    PubMed Central

    Sotthibundhu, Areechun; Ekthuwapranee, Kasima; Govitrapong, Piyarat

    2016-01-01

    Melatonin, secreted mainly by the pineal gland, plays roles in various physiological functions including protecting cell death. We showed in previous study that the proliferation and differentiation of precursor cells from the adult mouse subventricular zone (SVZ) can be modulated by melatonin via the MT1 melatonin receptor. Since melatonin and epidermal growth factor receptor (EGFR) share some signaling pathway components, we investigated whether melatonin can promote the proliferation of precursor cells from the adult mouse SVZ via the extracellular signal-regulated protein kinase /mitogen-activated protein kinase (ERK/MAPK) pathways in comparison with epidermal growth factor (EGF). Melatonin-induced ERK/MAPK pathways compared with EGF were measured by using in vitro and vivo models. We used neurosphere proliferation assay, immunocytochemistry, and immuno-blotting to analyze significant differences between melatonin and growth factor treatment. We also used specific antagonist and inhibitors to confirm the exactly signaling pathway including luzindole and U0126. We found that significant increase in proliferation was observed when two growth factors (EGF+bFGF) and melatonin were used simultaneously compared with EGF + bFGF or compared with melatonin alone. In addition, the present result suggested the synergistic effect occurred of melatonin and growth factors on the activating the ERK/MAPK pathway. This study exhibited that melatonin could act as a trophic factor, increasing proliferation in precursor cells mediated through the melatonin receptor coupled to ERK/MAPK signaling pathways. Understanding the mechanism by which melatonin regulates precursor cells may conduct to the development of novel strategies for neurodegenerative disease therapy. PMID:28275319

  10. Nucleo-cytoplasmic translocation and secretion of fibroblast growth factor-2 during avian gastrulation.

    PubMed

    Riese, J; Zeller, R; Dono, R

    1995-01-01

    The expression and distribution of the fibroblast growth factor-2 (FGF-2 or bFGF) proteins during early avian embryogenesis has been analysed in detail. Three FGF-2 protein isoforms of 18.5, 20.0 and 21.5 kDa are expressed during gastrulation of chicken embryos. Using whole mount immunohistochemistry, these proteins were found to be predominantly nuclear in prestreak blastodiscs during mesoderm induction. Distribution of positive cells in the epiblast was mosaic, whereas all cells of the forming hypoblast expressed the FGF-2 proteins. During primitive streak formation, the proteins started to translocate to the cytoplasm in epiblast cells but remained nuclear in the hypoblast. The FGF-2 proteins became predominantly cytoplasmic in all cells during the subsequent developmental stages. Their highest levels were detected in endodermal cells underlying Hensen's node and the newly formed notochord, the dorsal apex of all epiblast cells and, most interestingly, in the extra-cellular basal lamina separating the epiblast from newly formed mesoderm. Heparin and suramin treatment of these advanced embryos (stage 4) revealed a dose-dependent inhibition on the regression of Hensen's node and formation of mesodermal derivatives such as somites. The results are discussed with respect to current models on FGF-mediated functions during vertebrate mesoderm induction and regionalization.

  11. Cell and Growth Factor Loaded Keratin Hydrogels for Treatment of Volumetric Muscle Loss (VML) in a Mouse Model.

    PubMed

    Baker, Hannah B; Passipieri, Juliana A; Siriwardane, Mevan; Ellenburg, Mary; Vadhavkar, Manasi; Bergman, Christopher R; Saul, Justin M; Tomblyn, Seth; Burnett, Luke; Christ, George Joseph

    2017-02-04

    Wounds to the head, neck and extremities have been estimated to account for ~84% of reported combat injuries to military personnel. Volumetric muscle loss (VML), defined as skeletal muscle injuries in which tissue loss results in permanent functional impairment, are common among these injuries. The present standard of care entails the use of muscle flap transfers, which suffer from the need for additional surgery when using autografts or the risk of rejection when cadaveric grafts are used. Tissue engineering (TE) strategies for skeletal muscle repair have been investigated as a means to overcome current therapeutic limitations. In that regard, human hair derived keratin (KN) biomaterials have been found to possess several favorable properties for use in TE applications and as such are a viable candidate for use in skeletal muscle repair. Herein, KN hydrogels with and without the addition of skeletal muscle progenitor cells (MPC) and/or insulin-like growth factor 1 (IGF-1) and/or basic fibroblast growth factor (bFGF) were implanted in an established murine model of surgically-induced VML injury to the latissimus dorsi (LD) muscle. Control treatments included surgery with no repair (NR) as well as implantation of bladder acellular matrix (BAM). In vitro muscle contraction force was evaluated at two months post-surgery via electrical stimulation of the explanted LD in an organ bath. Functional data indicated that implantation of KN+bFGF+IGF-1 (n=8) enabled a greater recovery of contractile force than KN+bFGF (n=8)***, KN+MPC (n=8)**, KN+MPC+bFGF+IGF-1 (n=8)**, BAM (n=8)*, KN+IGF-1 (n=8)*, KN+MPCs+bFGF (n=9)*, or no repair (n=9)**, (*p<0.05, **p<0.01, ***p<0.001). Consistent with the physiological findings, histological evaluation of retrieved tissue revealed much more extensive new muscle tissue formation in groups with greater functional recovery (e.g., KN+IGF-1+bFGF), when compared with observations in tissue from groups with lower functional recovery (i.e., BAM

  12. Continuous administration of insulin-like growth factor-I and basic fibroblast growth factor does not affect left ventricular geometry after acute myocardial infarction in rats.

    PubMed

    Scheinowitz, M; Abramov, D; Kotlyar, A; Savion, N; Eldar, M

    1998-02-28

    We examined the long-term effect of exogenous administration of bFGF and IGF-I on myocardial geometry in 72 Sprague-Dawley male rats subjected to AMI. A preloaded miniature osmotic pump subsequently implanted in the peritoneum for continuous infusion (1 week) of IGF-I, bFGF, IGF-I+bFGF or rat albumin. Six weeks following AMI the rats were killed and cross-section slices were analyzed for left ventricular geometry. No differences were observed between IGF-I-treated, bFGF-treated, IGF-I+bFGF-treated and control groups in all parameters of the left ventricle.

  13. Differential expression of two TEF-1 (TEAD) genes during Xenopus laevis development and in response to inducing factors.

    PubMed

    Naye, François; Tréguer, Karine; Soulet, Fabienne; Faucheux, Corinne; Fédou, Sandrine; Thézé, Nadine; Thiébaud, Pierre

    2007-01-01

    Transcription enhancer factors 1 (TEF-1 or TEAD) make a highly conserved family of eukaryotic DNA binding proteins that activate not only viral regulatory elements but muscle specific genes and are involved in several developmental processes. In this study, we report the identification and the expression pattern of NTEF-1 (TEAD1) and DTEF-1 (TEAD3), two members of this family in Xenopus laevis. Both X. laevis NTEF-1 (XNTEF-1 or XTEAD1) and DTEF-1 (XDTEF-1 or XTEAD3) possess a 72 amino acid TEA domain characteristic of TEF-1 proteins. XNTEF-1 is a 426 amino acid protein that has 96% identity with the avian or the mammalian NTEF-1 proteins while XDTEF-1 is a 433 amino acid protein with 77 to 80% identity with the avian and mammalian DTEF-1 sequences respectively. Temporal expression analysis by RT-PCR indicated that the two genes are expressed maternally and throughout embryonic development. In the adult, the two genes are broadly expressed although they showed differences of expression between tissues. Spatial expression analysis by whole mount in situ hybridization showed that the XNTEF-1 and XDTEF-1 mRNAS were predominantly detected in eye, embryonic brain, somites and heart. In animal cap assay, the two genes are activated by bFGF but are differently regulated by BMP4, and the muscle regulatory factor Mef2d.

  14. Zur Ökophysiologie, Sexualität und Populationsgenetik litoraler Gammaridea — ein Überblick

    NASA Astrophysics Data System (ADS)

    Bulnheim, H.-P.

    1991-09-01

    Comparative investigations on the physiological capacities in the euryhaline amphipods Gammarus locusta, G. oceanicus, G. salinus, G. zaddachi and G. duebeni were reviewed. In order to assess the adaptations of these species to the abiotic conditions of their environment, the following criteria were examined: oxygen consumption in relation to ambient salinity and temperature levels, respiratory responses following osmotic stress, resistance capacities to oxygen deficiency, resistance to aerial exposure and the simultaneous presence of hydrogen sulphide. Covering the range from marine to typically brackish-water inhabitants, the 5 species show adaptive responses in the above-mentioned order. Respiration is less intensely modified by external factors, and oxygen consumption decreases. Accompanied by faster rates of acclimation to new steady states of performance, resistance capacities increase. The significance of the findings obtained is discussed in relation to the environmental requirements of the amphipods considered. Based on breeding experiments, the sex-determining systems reported thus far in Gammarus species are outlined. As demonstrated in G. duebeni, a more or less pronounced influence of external factors such as photoperiod may become effective. A preponderance of males was noted when offspring were raised under long-day photoperiods, whereas females prevailed under short-day conditions. In terms of the critical daylength, the light per day was estimated as being between 13 and 14 h (Elbe estuary population). Feminizing microporidians ( Octosporea effeminans, Thelohania herediteria), which are transovarially transmitted, can interfere with the system of sex determination and sex differentiation of the host. As reflected in various G. duebeni populations, they cause a maternally transferred sex-ratio condition by the production of all-female broods, thereby mimicking extrachromosomal inheritance. An increase of the salinity level to 25 30‰ results in a

  15. Nature of Interaction between basic fibroblast growth factor and the antiangiogenic drug 7,7-(carbonyl-bis[imino-N-methyl-4,2-pyrrolecarbonylimino[N-methyl-4,2-pyrrole]-carbonylimino])-bis-(1,3-naphtalene disulfonate). II. Removal of polar interactions affects protein folding.

    PubMed Central

    Zamai, Moreno; Hariharan, Chithra; Pines, Dina; Safran, Michal; Yayon, Avner; Caiolfa, Valeria R; Cohen-Luria, Rivka; Pines, Ehud; Parola, Abraham H

    2002-01-01

    Fibrob