Sample records for factor binding analysis

  1. Synthetic heparin-binding factor analogs

    DOEpatents

    Pena, Louis A [Poquott, NY; Zamora, Paul O [Gaithersburg, MD; Lin, Xinhua [Plainview, NY; Glass, John D [Shoreham, NY

    2010-04-20

    The invention provides synthetic heparin-binding growth factor analogs having at least one peptide chain, and preferably two peptide chains branched from a dipeptide branch moiety composed of two trifunctional amino acid residues, which peptide chain or chains bind a heparin-binding growth factor receptor and are covalently bound to a non-signaling peptide that includes a heparin-binding domain, preferably by a linker, which may be a hydrophobic linker. The synthetic heparin-binding growth factor analogs are useful as pharmaceutical agents, soluble biologics or as surface coatings for medical devices.

  2. Synthetic heparin-binding growth factor analogs

    DOEpatents

    Pena, Louis A.; Zamora, Paul; Lin, Xinhua; Glass, John D.

    2007-01-23

    The invention provides synthetic heparin-binding growth factor analogs having at least one peptide chain that binds a heparin-binding growth factor receptor, covalently bound to a hydrophobic linker, which is in turn covalently bound to a non-signaling peptide that includes a heparin-binding domain. The synthetic heparin-binding growth factor analogs are useful as soluble biologics or as surface coatings for medical devices.

  3. Dynamic motif occupancy (DynaMO) analysis identifies transcription factors and their binding sites driving dynamic biological processes

    PubMed Central

    Kuang, Zheng; Ji, Zhicheng

    2018-01-01

    Abstract Biological processes are usually associated with genome-wide remodeling of transcription driven by transcription factors (TFs). Identifying key TFs and their spatiotemporal binding patterns are indispensable to understanding how dynamic processes are programmed. However, most methods are designed to predict TF binding sites only. We present a computational method, dynamic motif occupancy analysis (DynaMO), to infer important TFs and their spatiotemporal binding activities in dynamic biological processes using chromatin profiling data from multiple biological conditions such as time-course histone modification ChIP-seq data. In the first step, DynaMO predicts TF binding sites with a random forests approach. Next and uniquely, DynaMO infers dynamic TF binding activities at predicted binding sites using their local chromatin profiles from multiple biological conditions. Another landmark of DynaMO is to identify key TFs in a dynamic process using a clustering and enrichment analysis of dynamic TF binding patterns. Application of DynaMO to the yeast ultradian cycle, mouse circadian clock and human neural differentiation exhibits its accuracy and versatility. We anticipate DynaMO will be generally useful for elucidating transcriptional programs in dynamic processes. PMID:29325176

  4. Dynamic motif occupancy (DynaMO) analysis identifies transcription factors and their binding sites driving dynamic biological processes.

    PubMed

    Kuang, Zheng; Ji, Zhicheng; Boeke, Jef D; Ji, Hongkai

    2018-01-09

    Biological processes are usually associated with genome-wide remodeling of transcription driven by transcription factors (TFs). Identifying key TFs and their spatiotemporal binding patterns are indispensable to understanding how dynamic processes are programmed. However, most methods are designed to predict TF binding sites only. We present a computational method, dynamic motif occupancy analysis (DynaMO), to infer important TFs and their spatiotemporal binding activities in dynamic biological processes using chromatin profiling data from multiple biological conditions such as time-course histone modification ChIP-seq data. In the first step, DynaMO predicts TF binding sites with a random forests approach. Next and uniquely, DynaMO infers dynamic TF binding activities at predicted binding sites using their local chromatin profiles from multiple biological conditions. Another landmark of DynaMO is to identify key TFs in a dynamic process using a clustering and enrichment analysis of dynamic TF binding patterns. Application of DynaMO to the yeast ultradian cycle, mouse circadian clock and human neural differentiation exhibits its accuracy and versatility. We anticipate DynaMO will be generally useful for elucidating transcriptional programs in dynamic processes. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Binding Sites Analyser (BiSA): Software for Genomic Binding Sites Archiving and Overlap Analysis

    PubMed Central

    Khushi, Matloob; Liddle, Christopher; Clarke, Christine L.; Graham, J. Dinny

    2014-01-01

    Genome-wide mapping of transcription factor binding and histone modification reveals complex patterns of interactions. Identifying overlaps in binding patterns by different factors is a major objective of genomic studies, but existing methods to archive large numbers of datasets in a personalised database lack sophistication and utility. Therefore we have developed transcription factor DNA binding site analyser software (BiSA), for archiving of binding regions and easy identification of overlap with or proximity to other regions of interest. Analysis results can be restricted by chromosome or base pair overlap between regions or maximum distance between binding peaks. BiSA is capable of reporting overlapping regions that share common base pairs; regions that are nearby; regions that are not overlapping; and average region sizes. BiSA can identify genes located near binding regions of interest, genomic features near a gene or locus of interest and statistical significance of overlapping regions can also be reported. Overlapping results can be visualized as Venn diagrams. A major strength of BiSA is that it is supported by a comprehensive database of publicly available transcription factor binding sites and histone modifications, which can be directly compared to user data. The documentation and source code are available on http://bisa.sourceforge.net PMID:24533055

  6. Binding Site Turnover Produces Pervasive Quantitative Changes in Transcription Factor Binding between Closely Related Drosophila Species

    PubMed Central

    Trapnell, Cole; Davidson, Stuart; Pachter, Lior; Chu, Hou Cheng; Tonkin, Leath A.; Biggin, Mark D.; Eisen, Michael B.

    2010-01-01

    Changes in gene expression play an important role in evolution, yet the molecular mechanisms underlying regulatory evolution are poorly understood. Here we compare genome-wide binding of the six transcription factors that initiate segmentation along the anterior-posterior axis in embryos of two closely related species: Drosophila melanogaster and Drosophila yakuba. Where we observe binding by a factor in one species, we almost always observe binding by that factor to the orthologous sequence in the other species. Levels of binding, however, vary considerably. The magnitude and direction of the interspecies differences in binding levels of all six factors are strongly correlated, suggesting a role for chromatin or other factor-independent forces in mediating the divergence of transcription factor binding. Nonetheless, factor-specific quantitative variation in binding is common, and we show that it is driven to a large extent by the gain and loss of cognate recognition sequences for the given factor. We find only a weak correlation between binding variation and regulatory function. These data provide the first genome-wide picture of how modest levels of sequence divergence between highly morphologically similar species affect a system of coordinately acting transcription factors during animal development, and highlight the dominant role of quantitative variation in transcription factor binding over short evolutionary distances. PMID:20351773

  7. Dual chain synthetic heparin-binding growth factor analogs

    DOEpatents

    Zamora, Paul O [Gaithersburg, MD; Pena, Louis A [Poquott, NY; Lin, Xinhua [Plainview, NY

    2012-04-24

    The invention provides synthetic heparin-binding growth factor analogs having two peptide chains each branched from a branch moiety, such as trifunctional amino acid residues, the branch moieties separated by a first linker of from 3 to about 20 backbone atoms, which peptide chains bind a heparin-binding growth factor receptor and are covalently bound to a non-signaling peptide that includes a heparin-binding domain, preferably by a second linker, which may be a hydrophobic second linker. The synthetic heparin-binding growth factor analogs are useful as pharmaceutical agents, soluble biologics or as surface coatings for medical devices.

  8. Dual chain synthetic heparin-binding growth factor analogs

    DOEpatents

    Zamora, Paul O [Gaithersburg, MD; Pena, Louis A [Poquott, NY; Lin, Xinhua [Plainview, NY

    2009-10-06

    The invention provides synthetic heparin-binding growth factor analogs having two peptide chains each branched from a branch moiety, such as trifunctional amino acid residues, the branch moieties separated by a first linker of from 3 to about 20 backbone atoms, which peptide chains bind a heparin-binding growth factor receptor and are covalently bound to a non-signaling peptide that includes a heparin-binding domain, preferably by a second linker, which may be a hydrophobic second linker. The synthetic heparin-binding growth factor analogs are useful as pharmaceutical agents, soluble biologics or as surface coatings for medical devices.

  9. Comprehensive human transcription factor binding site map for combinatory binding motifs discovery.

    PubMed

    Müller-Molina, Arnoldo J; Schöler, Hans R; Araúzo-Bravo, Marcos J

    2012-01-01

    To know the map between transcription factors (TFs) and their binding sites is essential to reverse engineer the regulation process. Only about 10%-20% of the transcription factor binding motifs (TFBMs) have been reported. This lack of data hinders understanding gene regulation. To address this drawback, we propose a computational method that exploits never used TF properties to discover the missing TFBMs and their sites in all human gene promoters. The method starts by predicting a dictionary of regulatory "DNA words." From this dictionary, it distills 4098 novel predictions. To disclose the crosstalk between motifs, an additional algorithm extracts TF combinatorial binding patterns creating a collection of TF regulatory syntactic rules. Using these rules, we narrowed down a list of 504 novel motifs that appear frequently in syntax patterns. We tested the predictions against 509 known motifs confirming that our system can reliably predict ab initio motifs with an accuracy of 81%-far higher than previous approaches. We found that on average, 90% of the discovered combinatorial binding patterns target at least 10 genes, suggesting that to control in an independent manner smaller gene sets, supplementary regulatory mechanisms are required. Additionally, we discovered that the new TFBMs and their combinatorial patterns convey biological meaning, targeting TFs and genes related to developmental functions. Thus, among all the possible available targets in the genome, the TFs tend to regulate other TFs and genes involved in developmental functions. We provide a comprehensive resource for regulation analysis that includes a dictionary of "DNA words," newly predicted motifs and their corresponding combinatorial patterns. Combinatorial patterns are a useful filter to discover TFBMs that play a major role in orchestrating other factors and thus, are likely to lock/unlock cellular functional clusters.

  10. Comprehensive Human Transcription Factor Binding Site Map for Combinatory Binding Motifs Discovery

    PubMed Central

    Müller-Molina, Arnoldo J.; Schöler, Hans R.; Araúzo-Bravo, Marcos J.

    2012-01-01

    To know the map between transcription factors (TFs) and their binding sites is essential to reverse engineer the regulation process. Only about 10%–20% of the transcription factor binding motifs (TFBMs) have been reported. This lack of data hinders understanding gene regulation. To address this drawback, we propose a computational method that exploits never used TF properties to discover the missing TFBMs and their sites in all human gene promoters. The method starts by predicting a dictionary of regulatory “DNA words.” From this dictionary, it distills 4098 novel predictions. To disclose the crosstalk between motifs, an additional algorithm extracts TF combinatorial binding patterns creating a collection of TF regulatory syntactic rules. Using these rules, we narrowed down a list of 504 novel motifs that appear frequently in syntax patterns. We tested the predictions against 509 known motifs confirming that our system can reliably predict ab initio motifs with an accuracy of 81%—far higher than previous approaches. We found that on average, 90% of the discovered combinatorial binding patterns target at least 10 genes, suggesting that to control in an independent manner smaller gene sets, supplementary regulatory mechanisms are required. Additionally, we discovered that the new TFBMs and their combinatorial patterns convey biological meaning, targeting TFs and genes related to developmental functions. Thus, among all the possible available targets in the genome, the TFs tend to regulate other TFs and genes involved in developmental functions. We provide a comprehensive resource for regulation analysis that includes a dictionary of “DNA words,” newly predicted motifs and their corresponding combinatorial patterns. Combinatorial patterns are a useful filter to discover TFBMs that play a major role in orchestrating other factors and thus, are likely to lock/unlock cellular functional clusters. PMID:23209563

  11. Bioinformatics Identification of Modules of Transcription Factor Binding Sites in Alzheimer's Disease-Related Genes by In Silico Promoter Analysis and Microarrays

    PubMed Central

    Augustin, Regina; Lichtenthaler, Stefan F.; Greeff, Michael; Hansen, Jens; Wurst, Wolfgang; Trümbach, Dietrich

    2011-01-01

    The molecular mechanisms and genetic risk factors underlying Alzheimer's disease (AD) pathogenesis are only partly understood. To identify new factors, which may contribute to AD, different approaches are taken including proteomics, genetics, and functional genomics. Here, we used a bioinformatics approach and found that distinct AD-related genes share modules of transcription factor binding sites, suggesting a transcriptional coregulation. To detect additional coregulated genes, which may potentially contribute to AD, we established a new bioinformatics workflow with known multivariate methods like support vector machines, biclustering, and predicted transcription factor binding site modules by using in silico analysis and over 400 expression arrays from human and mouse. Two significant modules are composed of three transcription factor families: CTCF, SP1F, and EGRF/ZBPF, which are conserved between human and mouse APP promoter sequences. The specific combination of in silico promoter and multivariate analysis can identify regulation mechanisms of genes involved in multifactorial diseases. PMID:21559189

  12. Binding efficiency of recombinant collagen-binding basic fibroblast growth factors (CBD-bFGFs) and their promotion for NIH-3T3 cell proliferation.

    PubMed

    Wu, Zhenxu; Zhou, Yulai; Chen, Li; Hu, Mingxin; Wang, Yu; Li, Linlong; Wang, Zongliang; Zhang, Peibiao

    2018-03-01

    The recombinant basic fibroblast growth factor (bFGF) containing collagen-binding domain (CBD) has been found to be a potential therapeutic factor in tissue regeneration. However, its binding efficiency and quantification remain uncertain. In this research, massive recombinant bFGFs with good bioactivity for enhancing the proliferation of NIH-3T3 cells were achieved. An ELISA-based quantitative method was set up to investigate the binding efficiency of CBD-bFGFs on collagen films. It indicated that the CBDs significantly increased the collagen-binding ability of bFGF (P < .05), with the optimum binding condition first determined to be in the pH range of 7.5-9.5 (P < .05). Then, the relevant equations to calculate the binding density of bFGF, C-bFGF, and V-bFGF were acquired. Analysis confirmed that the bioactivity of immobilized bFGFs was well correlated with the density of growth factor on collagen films. Based on this research, the density of growth factor is a logical and applicable dosage unit for quantification of binding efficiency of growth factors, rather than traditional concentration of soluble growth factors in tissue engineering applications. © 2018 Wiley Periodicals, Inc.

  13. Global Analysis of Transcription Factor-Binding Sites in Yeast Using ChIP-Seq

    PubMed Central

    Lefrançois, Philippe; Gallagher, Jennifer E. G.; Snyder, Michael

    2016-01-01

    Transcription factors influence gene expression through their ability to bind DNA at specific regulatory elements. Specific DNA-protein interactions can be isolated through the chromatin immunoprecipitation (ChIP) procedure, in which DNA fragments bound by the protein of interest are recovered. ChIP is followed by high-throughput DNA sequencing (Seq) to determine the genomic provenance of ChIP DNA fragments and their relative abundance in the sample. This chapter describes a ChIP-Seq strategy adapted for budding yeast to enable the genome-wide characterization of binding sites of transcription factors (TFs) and other DNA-binding proteins in an efficient and cost-effective way. Yeast strains with epitope-tagged TFs are most commonly used for ChIP-Seq, along with their matching untagged control strains. The initial step of ChIP involves the cross-linking of DNA and proteins. Next, yeast cells are lysed and sonicated to shear chromatin into smaller fragments. An antibody against an epitope-tagged TF is used to pull down chromatin complexes containing DNA and the TF of interest. DNA is then purified and proteins degraded. Specific barcoded adapters for multiplex DNA sequencing are ligated to ChIP DNA. Short DNA sequence reads (28–36 base pairs) are parsed according to the barcode and aligned against the yeast reference genome, thus generating a nucleotide-resolution map of transcription factor-binding sites and their occupancy. PMID:25213249

  14. Binding of fluoresceinated epidermal growth factor to A431 cell sub-populations studied using a model-independent analysis of flow cytometric fluorescence data.

    PubMed Central

    Chatelier, R C; Ashcroft, R G; Lloyd, C J; Nice, E C; Whitehead, R H; Sawyer, W H; Burgess, A W

    1986-01-01

    A method is developed for determining ligand-cell association parameters from a model-free analysis of data obtained with a flow cytometer. The method requires measurement of the average fluorescence per cell as a function of ligand and cell concentration. The analysis is applied to data obtained for the binding of fluoresceinated epidermal growth factor to a human epidermoid carcinoma cell line, A431. The results indicate that the growth factor binds to two classes of sites on A431 cells: 4 X 10(4) sites with a dissociation constant (KD) of less than or equal to 20 pM, and 1.5 X 10(6) sites with a KD of 3.7 nM. A derived plot of the average fluorescence per cell versus the average number of bound ligands per cell is used to construct binding isotherms for four sub-populations of A431 cells fractionated on the basis of low-angle light scatter. The four sub-populations bind the ligand with equal affinity but differ substantially in terms of the number of binding sites per cell. We also use this new analysis to critically evaluate the use of 'Fluorotrol' as a calibration standard in flow cytometry. PMID:3015587

  15. Whole-Genome Analysis Reveals That Active Heat Shock Factor Binding Sites Are Mostly Associated with Non-Heat Shock Genes in Drosophila melanogaster

    PubMed Central

    Gonsalves, Sarah E.; Moses, Alan M.; Razak, Zak; Robert, Francois; Westwood, J. Timothy

    2011-01-01

    During heat shock (HS) and other stresses, HS gene transcription in eukaryotes is up-regulated by the transcription factor heat shock factor (HSF). While the identities of the major HS genes have been known for more than 30 years, it has been suspected that HSF binds to numerous other genes and potentially regulates their transcription. In this study, we have used a chromatin immunoprecipitation and microarray (ChIP-chip) approach to identify 434 regions in the Drosophila genome that are bound by HSF. We have also performed a transcript analysis of heat shocked Kc167 cells and third instar larvae and compared them to HSF binding sites. The heat-induced transcription profiles were quite different between cells and larvae and surprisingly only about 10% of the genes associated with HSF binding sites show changed transcription. There were also genes that showed changes in transcript levels that did not appear to correlate with HSF binding sites. Analysis of the locations of the HSF binding sites revealed that 57% were contained within genes with approximately 2/3rds of these sites being in introns. We also found that the insulator protein, BEAF, has enriched binding prior to HS to promoters of genes that are bound by HSF upon HS but that are not transcriptionally induced during HS. When the genes associated with HSF binding sites in promoters were analyzed for gene ontology terms, categories such as stress response and transferase activity were enriched whereas analysis of genes having HSF binding sites in introns identified those categories plus ones related to developmental processes and reproduction. These results suggest that Drosophila HSF may be regulating many genes besides the known HS genes and that some of these genes may be regulated during non-stress conditions. PMID:21264254

  16. Whole-genome analysis reveals that active heat shock factor binding sites are mostly associated with non-heat shock genes in Drosophila melanogaster.

    PubMed

    Gonsalves, Sarah E; Moses, Alan M; Razak, Zak; Robert, Francois; Westwood, J Timothy

    2011-01-14

    During heat shock (HS) and other stresses, HS gene transcription in eukaryotes is up-regulated by the transcription factor heat shock factor (HSF). While the identities of the major HS genes have been known for more than 30 years, it has been suspected that HSF binds to numerous other genes and potentially regulates their transcription. In this study, we have used a chromatin immunoprecipitation and microarray (ChIP-chip) approach to identify 434 regions in the Drosophila genome that are bound by HSF. We have also performed a transcript analysis of heat shocked Kc167 cells and third instar larvae and compared them to HSF binding sites. The heat-induced transcription profiles were quite different between cells and larvae and surprisingly only about 10% of the genes associated with HSF binding sites show changed transcription. There were also genes that showed changes in transcript levels that did not appear to correlate with HSF binding sites. Analysis of the locations of the HSF binding sites revealed that 57% were contained within genes with approximately 2/3rds of these sites being in introns. We also found that the insulator protein, BEAF, has enriched binding prior to HS to promoters of genes that are bound by HSF upon HS but that are not transcriptionally induced during HS. When the genes associated with HSF binding sites in promoters were analyzed for gene ontology terms, categories such as stress response and transferase activity were enriched whereas analysis of genes having HSF binding sites in introns identified those categories plus ones related to developmental processes and reproduction. These results suggest that Drosophila HSF may be regulating many genes besides the known HS genes and that some of these genes may be regulated during non-stress conditions.

  17. Nuclear factors that bind to the enhancer region of nondefective Friend murine leukemia virus.

    PubMed Central

    Manley, N R; O'Connell, M A; Sharp, P A; Hopkins, N

    1989-01-01

    Nondefective Friend murine leukemia virus (MuLV) causes erythroleukemia when injected into newborn NFS mice, while Moloney MuLV causes T-cell lymphoma. Exchange of the Friend virus enhancer region, a sequence of about 180 nucleotides including the direct repeat and a short 3'-adjacent segment, for the corresponding region in Moloney MuLV confers the ability to cause erythroid disease on Moloney MuLV. We have used the electrophoretic mobility shift assay and methylation interference analysis to identify cellular factors which bind to the Friend virus enhancer region and compared these with factors, previously identified, that bind to the Moloney virus direct repeat (N. A. Speck and D. Baltimore, Mol. Cell. Biol. 7:1101-1110, 1987). We identified five binding sites for sequence-specific DNA-binding proteins in the Friend virus enhancer region. While some binding sites are present in both the Moloney and Friend virus enhancers, both viruses contain unique sites not present in the other. Although none of the factors identified in this report which bind to these unique sites are present exclusively in T cells or erythroid cells, they bind to three regions of the enhancer shown by genetic analysis to encode disease specificity and thus are candidates to mediate the tissue-specific expression and distinct disease specificities encoded by these virus enhancer elements. Images PMID:2778872

  18. ABFs, a family of ABA-responsive element binding factors.

    PubMed

    Choi, H; Hong, J; Ha, J; Kang, J; Kim, S Y

    2000-01-21

    Abscisic acid (ABA) plays an important role in environmental stress responses of higher plants during vegetative growth. One of the ABA-mediated responses is the induced expression of a large number of genes, which is mediated by cis-regulatory elements known as abscisic acid-responsive elements (ABREs). Although a number of ABRE binding transcription factors have been known, they are not specifically from vegetative tissues under induced conditions. Considering the tissue specificity of ABA signaling pathways, factors mediating ABA-dependent stress responses during vegetative growth phase may thus have been unidentified so far. Here, we report a family of ABRE binding factors isolated from young Arabidopsis plants under stress conditions. The factors, isolated by a yeast one-hybrid system using a prototypical ABRE and named as ABFs (ABRE binding factors) belong to a distinct subfamily of bZIP proteins. Binding site selection assay performed with one ABF showed that its preferred binding site is the strong ABRE, CACGTGGC. ABFs can transactivate an ABRE-containing reporter gene in yeast. Expression of ABFs is induced by ABA and various stress treatments, whereas their induction patterns are different from one another. Thus, a new family of ABRE binding factors indeed exists that have the potential to activate a large number of ABA/stress-responsive genes in Arabidopsis.

  19. Modulation of DNA binding by gene-specific transcription factors.

    PubMed

    Schleif, Robert F

    2013-10-01

    The transcription of many genes, particularly in prokaryotes, is controlled by transcription factors whose activity can be modulated by controlling their DNA binding affinity. Understanding the molecular mechanisms by which DNA binding affinity is regulated is important, but because forming definitive conclusions usually requires detailed structural information in combination with data from extensive biophysical, biochemical, and sometimes genetic experiments, little is truly understood about this topic. This review describes the biological requirements placed upon DNA binding transcription factors and their consequent properties, particularly the ways that DNA binding affinity can be modulated and methods for its study. What is known and not known about the mechanisms modulating the DNA binding affinity of a number of prokaryotic transcription factors, including CAP and lac repressor, is provided.

  20. Binding Mode Analysis of Zerumbone to Key Signal Proteins in the Tumor Necrosis Factor Pathway

    PubMed Central

    Fatima, Ayesha; Abdul, Ahmad Bustamam Hj.; Abdullah, Rasedee; Karjiban, Roghayeh Abedi; Lee, Vannajan Sanghiran

    2015-01-01

    Breast cancer is the second most common cancer among women worldwide. Several signaling pathways have been implicated as causative and progression agents. The tumor necrosis factor (TNF) α protein plays a dual role in promoting and inhibiting cancer depending largely on the pathway initiated by the binding of the protein to its receptor. Zerumbone, an active constituent of Zingiber zerumbet, Smith, is known to act on the tumor necrosis factor pathway upregulating tumour necrosis factor related apoptosis inducing ligand (TRAIL) death receptors and inducing apoptosis in cancer cells. Zerumbone is a sesquiterpene that is able to penetrate into the hydrophobic pockets of proteins to exert its inhibiting activity with several proteins. We found a good binding with the tumor necrosis factor, kinase κB (IKKβ) and the Nuclear factor κB (NF-κB) component proteins along the TNF pathway. Our results suggest that zerumbone can exert its apoptotic activities by inhibiting the cytoplasmic proteins. It inhibits the IKKβ kinase that activates the NF-κB and also binds to the NF-κB complex in the TNF pathway. Blocking both proteins can lead to inhibition of cell proliferating proteins to be downregulated and possibly ultimate induction of apoptosis. PMID:25629232

  1. Data on master regulators and transcription factor binding sites found by upstream analysis of multi-omics data on methotrexate resistance of colon cancer.

    PubMed

    Kel, AlexanderE

    2017-02-01

    Computational analysis of master regulators through the search for transcription factor binding sites followed by analysis of signal transduction networks of a cell is a new approach of causal analysis of multi-omics data. This paper contains results on analysis of multi-omics data that include transcriptomics, proteomics and epigenomics data of methotrexate (MTX) resistant colon cancer cell line. The data were used for analysis of mechanisms of resistance and for prediction of potential drug targets and promising compounds for reverting the MTX resistance of these cancer cells. We present all results of the analysis including the lists of identified transcription factors and their binding sites in genome and the list of predicted master regulators - potential drug targets. This data was generated in the study recently published in the article "Multi-omics "Upstream Analysis" of regulatory genomic regions helps identifying targets against methotrexate resistance of colon cancer" (Kel et al., 2016) [4]. These data are of interest for researchers from the field of multi-omics data analysis and for biologists who are interested in identification of novel drug targets against NTX resistance.

  2. Carboxyl‐terminal Heparin‐binding Fragments of Platelet Factor 4 Retain the Blocking Effect on the Receptor Binding of Basic Fibroblast Growth Factor

    PubMed Central

    Waki, Michinori; Ohno, Motonori; Kuwano, Michihiko; Sakata, Toshiie

    1993-01-01

    Platelet factor 4 (PF‐4) blocks the binding of basic fibroblast growth factor (bFGF) to its receptor. In the present study, we constructed carboxyl‐terminal fragments, which represent the heparin‐binding region of the PF‐4 molecule, and examined whether these synthetic peptides retain the blocking effects on the receptor binding of bFGF. Synthetic peptides inhibited the receptor binding of bFGF. Furthermore, they inhibited the migration and tube formation of bovine capillary endothelial cells in culture (these phenomena are dependent on endogenous bFGF). PMID:8320164

  3. Heparin-binding epidermal growth factor-like growth factor promotes neuroblastoma differentiation.

    PubMed

    Gaviglio, Angela L; Knelson, Erik H; Blobe, Gerard C

    2017-05-01

    High-risk neuroblastoma is characterized by undifferentiated neuroblasts and low schwannian stroma content. The tumor stroma contributes to the suppression of tumor growth by releasing soluble factors that promote neuroblast differentiation. Here we identify heparin-binding epidermal growth factor-like growth factor (HBEGF) as a potent prodifferentiating factor in neuroblastoma. HBEGF mRNA expression is decreased in human neuroblastoma tumors compared with benign tumors, with loss correlating with decreased survival. HBEGF protein is expressed only in stromal compartments of human neuroblastoma specimens, with tissue from high-stage disease containing very little stroma or HBEGF expression. In 3 human neuroblastoma cell lines (SK-N-AS, SK-N-BE2, and SH-SY5Y), soluble HBEGF is sufficient to promote neuroblast differentiation and decrease proliferation. Heparan sulfate proteoglycans and heparin derivatives further enhance HBEGF-induced differentiation by forming a complex with the epidermal growth factor receptor, leading to activation of the ERK1/2 and STAT3 pathways and up-regulation of the inhibitor of DNA binding transcription factor. These data support a role for loss of HBEGF in the neuroblastoma tumor microenvironment in neuroblastoma pathogenesis.-Gaviglio, A. L., Knelson, E. H., Blobe, G. C. Heparin-binding epidermal growth factor-like growth factor promotes neuroblastoma differentiation. © FASEB.

  4. Global Mapping of Transcription Factor Binding Sites by Sequencing Chromatin Surrogates: a Perspective on Experimental Design, Data Analysis, and Open Problems.

    PubMed

    Wei, Yingying; Wu, George; Ji, Hongkai

    2013-05-01

    Mapping genome-wide binding sites of all transcription factors (TFs) in all biological contexts is a critical step toward understanding gene regulation. The state-of-the-art technologies for mapping transcription factor binding sites (TFBSs) couple chromatin immunoprecipitation (ChIP) with high-throughput sequencing (ChIP-seq) or tiling array hybridization (ChIP-chip). These technologies have limitations: they are low-throughput with respect to surveying many TFs. Recent advances in genome-wide chromatin profiling, including development of technologies such as DNase-seq, FAIRE-seq and ChIP-seq for histone modifications, make it possible to predict in vivo TFBSs by analyzing chromatin features at computationally determined DNA motif sites. This promising new approach may allow researchers to monitor the genome-wide binding sites of many TFs simultaneously. In this article, we discuss various experimental design and data analysis issues that arise when applying this approach. Through a systematic analysis of the data from the Encyclopedia Of DNA Elements (ENCODE) project, we compare the predictive power of individual and combinations of chromatin marks using supervised and unsupervised learning methods, and evaluate the value of integrating information from public ChIP and gene expression data. We also highlight the challenges and opportunities for developing novel analytical methods, such as resolving the one-motif-multiple-TF ambiguity and distinguishing functional and non-functional TF binding targets from the predicted binding sites. The online version of this article (doi:10.1007/s12561-012-9066-5) contains supplementary material, which is available to authorized users.

  5. Heparin-binding epidermal growth factor-like growth factor promotes neuroblastoma differentiation

    PubMed Central

    Gaviglio, Angela L.; Knelson, Erik H.; Blobe, Gerard C.

    2017-01-01

    High-risk neuroblastoma is characterized by undifferentiated neuroblasts and low schwannian stroma content. The tumor stroma contributes to the suppression of tumor growth by releasing soluble factors that promote neuroblast differentiation. Here we identify heparin-binding epidermal growth factor–like growth factor (HBEGF) as a potent prodifferentiating factor in neuroblastoma. HBEGF mRNA expression is decreased in human neuroblastoma tumors compared with benign tumors, with loss correlating with decreased survival. HBEGF protein is expressed only in stromal compartments of human neuroblastoma specimens, with tissue from high-stage disease containing very little stroma or HBEGF expression. In 3 human neuroblastoma cell lines (SK-N-AS, SK-N-BE2, and SH-SY5Y), soluble HBEGF is sufficient to promote neuroblast differentiation and decrease proliferation. Heparan sulfate proteoglycans and heparin derivatives further enhance HBEGF-induced differentiation by forming a complex with the epidermal growth factor receptor, leading to activation of the ERK1/2 and STAT3 pathways and up-regulation of the inhibitor of DNA binding transcription factor. These data support a role for loss of HBEGF in the neuroblastoma tumor microenvironment in neuroblastoma pathogenesis.—Gaviglio, A. L., Knelson, E. H., Blobe, G. C. Heparin-binding epidermal growth factor-like growth factor promotes neuroblastoma differentiation. PMID:28174207

  6. Enhanced protective antibody to a mutant meningococcal factor H-binding protein with low-factor H binding

    PubMed Central

    Granoff, Dan M.; Giuntini, Serena; Gowans, Flor A.; Lujan, Eduardo; Sharkey, Kelsey; Beernink, Peter T.

    2016-01-01

    Meningococcal factor H-binding protein (FHbp) is an antigen in 2 serogroup B meningococcal vaccines. FHbp specifically binds human and some nonhuman primate complement FH. To investigate the effect of binding of FH to FHbp on protective antibody responses, we immunized infant rhesus macaques with either a control recombinant FHbp antigen that bound macaque FH or a mutant antigen with 2 amino acid substitutions and >250-fold lower affinity for FH. The mutant antigen elicited 3-fold higher serum IgG anti-FHbp titers and up to 15-fold higher serum bactericidal titers than the control FHbp vaccine. When comparing sera with similar IgG anti-FHbp titers, the antibodies elicited by the mutant antigen gave greater deposition of complement component C4b on live meningococci (classical complement pathway) and inhibited binding of FH, while the anti-FHbp antibodies elicited by the control vaccine enhanced FH binding. Thus, the mutant FHbp vaccine elicited an anti-FHbp antibody repertoire directed at FHbp epitopes within the FH binding site, which resulted in greater protective activity than the antibodies elicited by the control vaccine, which targeted FHbp epitopes outside of the FH combining site. Binding of a host protein to a vaccine antigen impairs protective antibody responses, which can be overcome with low-binding mutant antigens. PMID:27668287

  7. Synergistic binding of transcription factors to cell-specific enhancers programs motor neuron identity

    PubMed Central

    Mazzoni, Esteban O; Mahony, Shaun; Closser, Michael; Morrison, Carolyn A; Nedelec, Stephane; Williams, Damian J; An, Disi; Gifford, David K; Wichterle, Hynek

    2013-01-01

    Efficient transcriptional programming promises to open new frontiers in regenerative medicine. However, mechanisms by which programming factors transform cell fate are unknown, preventing more rational selection of factors to generate desirable cell types. Three transcription factors, Ngn2, Isl1 and Lhx3, were sufficient to program rapidly and efficiently spinal motor neuron identity when expressed in differentiating mouse embryonic stem cells. Replacement of Lhx3 by Phox2a led to specification of cranial, rather than spinal, motor neurons. Chromatin immunoprecipitation–sequencing analysis of Isl1, Lhx3 and Phox2a binding sites revealed that the two cell fates were programmed by the recruitment of Isl1-Lhx3 and Isl1-Phox2a complexes to distinct genomic locations characterized by a unique grammar of homeodomain binding motifs. Our findings suggest that synergistic interactions among transcription factors determine the specificity of their recruitment to cell type–specific binding sites and illustrate how a single transcription factor can be repurposed to program different cell types. PMID:23872598

  8. Fibroblast growth factor regulates insulin-like growth factor-binding protein production by vascular smooth muscle cells.

    PubMed

    Ververis, J; Ku, L; Delafontaine, P

    1994-02-01

    Insulin-like growth factor I is an important mitogen for vascular smooth muscle cells, and its effects are regulated by several binding proteins. Western ligand blotting of conditioned medium from rat aortic smooth muscle cells detected a 24 kDa binding protein and a 28 kDa glycosylated variant of this protein, consistent with insulin-like growth factor binding protein-4 by size. Low amounts of a glycosylated 38 to 42 kDa doublet (consistent with binding protein-3) and a 31 kDa non-glycosylated protein also were present. Basic fibroblast growth factor markedly increased secretion of the 24 kDa binding protein and its 28 kDa glycosylated variant. This effect was dose- and time-dependent and was inhibited by co-incubation with cycloheximide. Crosslinking of [125I]-insulin-like growth factor I to cell monolayers revealed no surface-associated binding proteins, either basally or after agonist treatment. Induction of binding protein production by fibroblast growth factor at sites of vascular injury may be important in vascular proliferative responses in vivo.

  9. RNA-binding Protein Immunoprecipitation (RIP) to Examine AUF1 Binding to Senescence-Associated Secretory Phenotype (SASP) Factor mRNA

    PubMed Central

    Alspach, Elise; Stewart, Sheila A.

    2016-01-01

    Immunoprecipitation and subsequent isolation of nucleic acids allows for the investigation of protein:nucleic acid interactions. RNA-binding protein immunoprecipitation (RIP) is used for the analysis of protein interactions with mRNA. Combining RIP with quantitative real-time PCR (qRT-PCR) further enhances the RIP technique by allowing for the quantitative assessment of RNA-binding protein interactions with their target mRNAs, and how these interactions change in different cellular settings. Here, we describe the immunoprecipitation of the RNA-binding protein AUF1 with several different factors associated with the senescence-associated secretory phenotype (SASP) (Alspach and Stewart, 2013), specifically IL6 and IL8. This protocol was originally published in Alspach et al. (2014). PMID:27453911

  10. NMR study of the transforming growth factor-alpha (TGF-alpha)-epidermal growth factor receptor complex. Visualization of human TGF-alpha binding determinants through nuclear Overhauser enhancement analysis.

    PubMed

    McInnes, C; Hoyt, D W; Harkins, R N; Pagila, R N; Debanne, M T; O'Connor-McCourt, M; Sykes, B D

    1996-12-13

    The study of human transforming growth factor-alpha (TGF-alpha) in complex with the epidermal growth factor (EGF) receptor extracellular domain has been undertaken in order to generate information on the interactions of these molecules. Analysis of 1H NMR transferred nuclear Overhauser enhancement data for titration of the ligand with the receptor has yielded specific data on the residues of the growth factor involved in contact with the larger protein. Significant increases and decreases in nuclear Overhauser enhancement cross-peak intensity occur upon complexation, and interpretation of these changes indicates that residues of the A- and C-loops of TGF-alpha form the major binding interface, while the B-loop provides a structural scaffold for this site. These results corroborate the conclusions from NMR relaxation studies (Hoyt, D. W., Harkins, R. N., Debanne, M. T., O'Connor-McCourt, M., and Sykes, B. D. (1994) Biochemistry 33, 15283-15292), which suggest that the C-terminal residues of the polypeptide are immobilized upon receptor binding, while the N terminus of the molecule retains considerable flexibility, and are consistent with structure-function studies of the TGF-alpha/EGF system indicating a multidomain binding model. These results give a visualization, for the first time, of native TGF-alpha in complex with the EGF receptor and generate a picture of the ligand-binding site based upon the intact molecule. This will undoubtedly be of utility in the structure-based design of TGF-alpha/EGF agonists and/or antagonists.

  11. An ensemble model of competitive multi-factor binding of the genome

    PubMed Central

    Wasson, Todd; Hartemink, Alexander J.

    2009-01-01

    Hundreds of different factors adorn the eukaryotic genome, binding to it in large number. These DNA binding factors (DBFs) include nucleosomes, transcription factors (TFs), and other proteins and protein complexes, such as the origin recognition complex (ORC). DBFs compete with one another for binding along the genome, yet many current models of genome binding do not consider different types of DBFs together simultaneously. Additionally, binding is a stochastic process that results in a continuum of binding probabilities at any position along the genome, but many current models tend to consider positions as being either binding sites or not. Here, we present a model that allows a multitude of DBFs, each at different concentrations, to compete with one another for binding sites along the genome. The result is an “occupancy profile,” a probabilistic description of the DNA occupancy of each factor at each position. We implement our model efficiently as the software package COMPETE. We demonstrate genome-wide and at specific loci how modeling nucleosome binding alters TF binding, and vice versa, and illustrate how factor concentration influences binding occupancy. Binding cooperativity between nearby TFs arises implicitly via mutual competition with nucleosomes. Our method applies not only to TFs, but also recapitulates known occupancy profiles of a well-studied replication origin with and without ORC binding. Importantly, the sequence preferences our model takes as input are derived from in vitro experiments. This ensures that the calculated occupancy profiles are the result of the forces of competition represented explicitly in our model and the inherent sequence affinities of the constituent DBFs. PMID:19720867

  12. rVISTA 2.0: Evolutionary Analysis of Transcription Factor Binding Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loots, G G; Ovcharenko, I

    2004-01-28

    Identifying and characterizing the patterns of DNA cis-regulatory modules represents a challenge that has the potential to reveal the regulatory language the genome uses to dictate transcriptional dynamics. Several studies have demonstrated that regulatory modules are under positive selection and therefore are often conserved between related species. Using this evolutionary principle we have created a comparative tool, rVISTA, for analyzing the regulatory potential of noncoding sequences. The rVISTA tool combines transcription factor binding site (TFBS) predictions, sequence comparisons and cluster analysis to identify noncoding DNA regions that are highly conserved and present in a specific configuration within an alignment. Heremore » we present the newly developed version 2.0 of the rVISTA tool that can process alignments generated by both zPicture and PipMaker alignment programs or use pre-computed pairwise alignments of seven vertebrate genomes available from the ECR Browser. The rVISTA web server is closely interconnected with the TRANSFAC database, allowing users to either search for matrices present in the TRANSFAC library collection or search for user-defined consensus sequences. rVISTA tool is publicly available at http://rvista.dcode.org/.« less

  13. Searching for transcription factor binding sites in vector spaces

    PubMed Central

    2012-01-01

    Background Computational approaches to transcription factor binding site identification have been actively researched in the past decade. Learning from known binding sites, new binding sites of a transcription factor in unannotated sequences can be identified. A number of search methods have been introduced over the years. However, one can rarely find one single method that performs the best on all the transcription factors. Instead, to identify the best method for a particular transcription factor, one usually has to compare a handful of methods. Hence, it is highly desirable for a method to perform automatic optimization for individual transcription factors. Results We proposed to search for transcription factor binding sites in vector spaces. This framework allows us to identify the best method for each individual transcription factor. We further introduced two novel methods, the negative-to-positive vector (NPV) and optimal discriminating vector (ODV) methods, to construct query vectors to search for binding sites in vector spaces. Extensive cross-validation experiments showed that the proposed methods significantly outperformed the ungapped likelihood under positional background method, a state-of-the-art method, and the widely-used position-specific scoring matrix method. We further demonstrated that motif subtypes of a TF can be readily identified in this framework and two variants called the k NPV and k ODV methods benefited significantly from motif subtype identification. Finally, independent validation on ChIP-seq data showed that the ODV and NPV methods significantly outperformed the other compared methods. Conclusions We conclude that the proposed framework is highly flexible. It enables the two novel methods to automatically identify a TF-specific subspace to search for binding sites. Implementations are available as source code at: http://biogrid.engr.uconn.edu/tfbs_search/. PMID:23244338

  14. Transforming growth factor (TGF. beta. ) decreases the proliferation of human bone marrow fibroblasts by inhibiting the platelet-derived growth factor (PDGF) binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryckaert, M.C.; Tobelem, G.; Lindroth, M.

    1988-12-01

    Human bone marrow fibroblasts were cultivated and characterized by immunofluorescent staining and electron microscopy. Their interactions with PDGF and TGF{beta} were studied. While a positive intracellular antifibronectin staining was observed, the cultured cells were not labeled with specific antibodies toward factor VIII von Willebrand factor (F VIII/vWF), desmin, and macrophage antigen. The binding of pure human PDGF to the cultured bone marrow fibroblasts was investigated. Addition of an excess of unlabeled PDGF decreased the binding to 75 and 80%, which means that the nonspecific binding represented 20-25% of total binding, whereas epidermal growth factor (EGF) had no effect. Two classesmore » of sites were detected by Scatchard analysis. The stimulation of DNA synthesis of PDGF was quantified by ({sup 3}H)thymidine incorporation. The results suggested that PDGF and TGF{beta} could modulate the growth of bone marrow fibroblasts.« less

  15. Characterization of a heparin-binding growth factor from adenocarcinoma of the kidney.

    PubMed

    Mydlo, J H; Heston, W D; Fair, W R

    1988-12-01

    A polypeptide isolated from tissue extracts of renal adenocarcinoma was mitogenic for BALB/c 3T3 cells and human umbilical vein (HUV) cells in culture. It also demonstrated angiogenic ability using the chorioallantoic membrane bioassay. Using heparin-sepharose affinity chromatography the purified protein eluted with a NaCl concentration between 1.4 and 1.8 M and demonstrated a molecular weight of approximately 17,000 daltons based on SDS polyacrylamide gel electrophoresis. Half maximal stimulation of tritiated thymidine incorporation into BALB/c 3T3 cells was achieved by 1.6 ng./ml. of the heparin binding material. Western blot analysis using antibodies specific to basic fibroblast growth factor (bFGF) only or acidic FGF (aFGF) only demonstrated that the purified protein binds to the former and not the latter. The characteristics of this material, in effect the elution profile off heparin-Sepharose, the molecular weight, angiogenic activity and the results of western blot analysis, suggest that this growth factor is similar to the family of basic fibroblast growth factors.

  16. Studies on DNA-binding selectivity of WRKY transcription factors lend structural clues into WRKY-domain function.

    PubMed

    Ciolkowski, Ingo; Wanke, Dierk; Birkenbihl, Rainer P; Somssich, Imre E

    2008-09-01

    WRKY transcription factors have been shown to play a major role in regulating, both positively and negatively, the plant defense transcriptome. Nearly all studied WRKY factors appear to have a stereotypic binding preference to one DNA element termed the W-box. How specificity for certain promoters is accomplished therefore remains completely unknown. In this study, we tested five distinct Arabidopsis WRKY transcription factor subfamily members for their DNA binding selectivity towards variants of the W-box embedded in neighboring DNA sequences. These studies revealed for the first time differences in their binding site preferences, which are partly dependent on additional adjacent DNA sequences outside of the TTGACY-core motif. A consensus WRKY binding site derived from these studies was used for in silico analysis to identify potential target genes within the Arabidopsis genome. Furthermore, we show that even subtle amino acid substitutions within the DNA binding region of AtWRKY11 strongly impinge on its binding activity. Additionally, all five factors were found localized exclusively to the plant cell nucleus and to be capable of trans-activating expression of a reporter gene construct in vivo.

  17. Sperm and Spermatids Contain Different Proteins and Bind Distinct Egg Factors

    PubMed Central

    Teperek, Marta; Miyamoto, Kei; Simeone, Angela; Feret, Renata; Deery, Michael J.; Gurdon, John B.; Jullien, Jerome

    2014-01-01

    Spermatozoa are more efficient at supporting normal embryonic development than spermatids, their immature, immediate precursors. This suggests that the sperm acquires the ability to support embryonic development during spermiogenesis (spermatid to sperm maturation). Here, using Xenopus laevis as a model organism, we performed 2-D Fluorescence Difference Gel Electrophoresis (2D-DIGE) and mass spectrometry analysis of differentially expressed proteins between sperm and spermatids in order to identify factors that could be responsible for the efficiency of the sperm to support embryonic development. Furthermore, benefiting from the availability of egg extracts in Xenopus, we also tested whether the chromatin of sperm could attract different egg factors compared to the chromatin of spermatids. Our analysis identified: (1) several proteins which were present exclusively in sperm; but not in spermatid nuclei and (2) numerous egg proteins binding to the sperm (but not to the spermatid chromatin) after incubation in egg extracts. Amongst these factors we identified many chromatin-associated proteins and transcriptional repressors. Presence of transcriptional repressors binding specifically to sperm chromatin could suggest its preparation for the early embryonic cell cycles, during which no transcription is observed and suggests that sperm chromatin has a unique protein composition, which facilitates the recruitment of egg chromatin remodelling factors. It is therefore likely that the acquisition of these sperm-specific factors during spermiogenesis makes the sperm chromatin suitable to interact with the maternal factors and, as a consequence, to support efficient embryonic development. PMID:25244019

  18. Factor VII and protein C are phosphatidic acid-binding proteins.

    PubMed

    Tavoosi, Narjes; Smith, Stephanie A; Davis-Harrison, Rebecca L; Morrissey, James H

    2013-08-20

    Seven proteins in the human blood clotting cascade bind, via their GLA (γ-carboxyglutamate-rich) domains, to membranes containing exposed phosphatidylserine (PS), although with membrane binding affinities that vary by 3 orders of magnitude. Here we employed nanodiscs of defined phospholipid composition to quantify the phospholipid binding specificities of these seven clotting proteins. All bound preferentially to nanobilayers in which PS headgroups contained l-serine versus d-serine. Surprisingly, however, nanobilayers containing phosphatidic acid (PA) bound substantially more of two of these proteins, factor VIIa and activated protein C, than did equivalent bilayers containing PS. Consistent with this finding, liposomes containing PA supported higher proteolytic activity by factor VIIa and activated protein C toward their natural substrates (factors X and Va, respectively) than did PS-containing liposomes. Moreover, treating activated human platelets with phospholipase D enhanced the rates of factor X activation by factor VIIa in the presence of soluble tissue factor. We hypothesize that factor VII and protein C bind preferentially to the monoester phosphate of PA because of its accessibility and higher negative charge compared with the diester phosphates of most other phospholipids. We further found that phosphatidylinositol 4-phosphate, which contains a monoester phosphate attached to its myo-inositol headgroup, also supported enhanced enzymatic activity of factor VIIa and activated protein C. We conclude that factor VII and protein C bind preferentially to monoester phosphates, which may have implications for the function of these proteases in vivo.

  19. MONKEY: Identifying conserved transcription-factor binding sitesin multiple alignments using a binding site-specific evolutionarymodel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moses, Alan M.; Chiang, Derek Y.; Pollard, Daniel A.

    2004-10-28

    We introduce a method (MONKEY) to identify conserved transcription-factor binding sites in multispecies alignments. MONKEY employs probabilistic models of factor specificity and binding site evolution, on which basis we compute the likelihood that putative sites are conserved and assign statistical significance to each hit. Using genomes from the genus Saccharomyces, we illustrate how the significance of real sites increases with evolutionary distance and explore the relationship between conservation and function.

  20. Accurate Prediction of Inducible Transcription Factor Binding Intensities In Vivo

    PubMed Central

    Siepel, Adam; Lis, John T.

    2012-01-01

    DNA sequence and local chromatin landscape act jointly to determine transcription factor (TF) binding intensity profiles. To disentangle these influences, we developed an experimental approach, called protein/DNA binding followed by high-throughput sequencing (PB–seq), that allows the binding energy landscape to be characterized genome-wide in the absence of chromatin. We applied our methods to the Drosophila Heat Shock Factor (HSF), which inducibly binds a target DNA sequence element (HSE) following heat shock stress. PB–seq involves incubating sheared naked genomic DNA with recombinant HSF, partitioning the HSF–bound and HSF–free DNA, and then detecting HSF–bound DNA by high-throughput sequencing. We compared PB–seq binding profiles with ones observed in vivo by ChIP–seq and developed statistical models to predict the observed departures from idealized binding patterns based on covariates describing the local chromatin environment. We found that DNase I hypersensitivity and tetra-acetylation of H4 were the most influential covariates in predicting changes in HSF binding affinity. We also investigated the extent to which DNA accessibility, as measured by digital DNase I footprinting data, could be predicted from MNase–seq data and the ChIP–chip profiles for many histone modifications and TFs, and found GAGA element associated factor (GAF), tetra-acetylation of H4, and H4K16 acetylation to be the most predictive covariates. Lastly, we generated an unbiased model of HSF binding sequences, which revealed distinct biophysical properties of the HSF/HSE interaction and a previously unrecognized substructure within the HSE. These findings provide new insights into the interplay between the genomic sequence and the chromatin landscape in determining transcription factor binding intensity. PMID:22479205

  1. Heparin-binding growth factor isolated from human prostatic extracts.

    PubMed

    Mydlo, J H; Bulbul, M A; Richon, V M; Heston, W D; Fair, W R

    1988-01-01

    Prostatic tissue extracts from patients with benign prostatic hyperplasia (BPH) and prostatic carcinoma were fractionated using heparin-Sepharose chromatography. The mitogenic activity of eluted fractions on quiescent subconfluent Swiss Albino 3T3 fibroblasts was tested employing a tritiated-thymidine-incorporation assay. Two peaks of activity were consistently noted--one in the void volume and a second fraction which eluted with 1.3-1.6 M NaCl and contained the majority of the mitogenic activity. Both non-heparin- and heparin-binding fractions increased tritiated incorporation into a mouse osteoblast cell line (MC3T3), while only the heparin-binding fractions stimulated a human umbilical vein endothelial cell line (HUV). No increased uptake of thymidine was seen using a human prostatic carcinoma cell line (PC-3). Sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS/PAGE) of lyophilized active fractions showed a persistent band at 17,500 daltons. The purified protein demonstrated angiogenic properties using the chick embryo chorioallantoic membrane (CAM) assay. Western blot analysis using antibodies specific to basic fibroblast growth factor (bFGF) or acidic FGF (aFGF) demonstrated that the former, but not the latter, bound to prostatic growth factor (PrGF), and inhibited its mitogenic activity as well. It appears that PrGF shares homology with basic fibroblast growth factors.

  2. Transcription Factor Binding Site Enrichment Analysis in Co-Expression Modules in Celiac Disease

    PubMed Central

    Romero-Garmendia, Irati; Jauregi-Miguel, Amaia; Plaza-Izurieta, Leticia; Cros, Marie-Pierre; Legarda, Maria; Irastorza, Iñaki; Herceg, Zdenko; Fernandez-Jimenez, Nora

    2018-01-01

    The aim of this study was to construct celiac co-expression patterns at a whole genome level and to identify transcription factors (TFs) that could drive the gliadin-related changes in coordination of gene expression observed in celiac disease (CD). Differential co-expression modules were identified in the acute and chronic responses to gliadin using expression data from a previous microarray study in duodenal biopsies. Transcription factor binding site (TFBS) and Gene Ontology (GO) annotation enrichment analyses were performed in differentially co-expressed genes (DCGs) and selection of candidate regulators was performed. Expression of candidates was measured in clinical samples and the activation of the TFs was further characterized in C2BBe1 cells upon gliadin challenge. Enrichment analyses of the DCGs identified 10 TFs and five were selected for further investigation. Expression changes related to active CD were detected in four TFs, as well as in several of their in silico predicted targets. The activation of TFs was further characterized in C2BBe1 cells upon gliadin challenge, and an increase in nuclear translocation of CAMP Responsive Element Binding Protein 1 (CREB1) and IFN regulatory factor-1 (IRF1) in response to gliadin was observed. Using transcriptome-wide co-expression analyses we are able to propose novel genes involved in CD pathogenesis that respond upon gliadin stimulation, also in non-celiac models. PMID:29748492

  3. Transcription Factor Binding Site Enrichment Analysis in Co-Expression Modules in Celiac Disease.

    PubMed

    Romero-Garmendia, Irati; Garcia-Etxebarria, Koldo; Hernandez-Vargas, Hector; Santin, Izortze; Jauregi-Miguel, Amaia; Plaza-Izurieta, Leticia; Cros, Marie-Pierre; Legarda, Maria; Irastorza, Iñaki; Herceg, Zdenko; Fernandez-Jimenez, Nora; Bilbao, Jose Ramon

    2018-05-10

    The aim of this study was to construct celiac co-expression patterns at a whole genome level and to identify transcription factors (TFs) that could drive the gliadin-related changes in coordination of gene expression observed in celiac disease (CD). Differential co-expression modules were identified in the acute and chronic responses to gliadin using expression data from a previous microarray study in duodenal biopsies. Transcription factor binding site (TFBS) and Gene Ontology (GO) annotation enrichment analyses were performed in differentially co-expressed genes (DCGs) and selection of candidate regulators was performed. Expression of candidates was measured in clinical samples and the activation of the TFs was further characterized in C2BBe1 cells upon gliadin challenge. Enrichment analyses of the DCGs identified 10 TFs and five were selected for further investigation. Expression changes related to active CD were detected in four TFs, as well as in several of their in silico predicted targets. The activation of TFs was further characterized in C2BBe1 cells upon gliadin challenge, and an increase in nuclear translocation of CAMP Responsive Element Binding Protein 1 (CREB1) and IFN regulatory factor-1 (IRF1) in response to gliadin was observed. Using transcriptome-wide co-expression analyses we are able to propose novel genes involved in CD pathogenesis that respond upon gliadin stimulation, also in non-celiac models.

  4. Complement-mediated bactericidal activity of anti-factor H binding protein monoclonal antibodies against the meningococcus relies upon blocking factor H binding.

    PubMed

    Giuntini, Serena; Reason, Donald C; Granoff, Dan M

    2011-09-01

    Binding of the complement-downregulating protein factor H (fH) to the surface of the meningococcus is important for survival of the organism in human serum. The meningococcal vaccine candidate factor H binding protein (fHbp) is an important ligand for human fH. While some fHbp-specific monoclonal antibodies (MAbs) block binding of fH to fHbp, the stoichiometry of blocking in the presence of high serum concentrations of fH and its effect on complement-mediated bactericidal activity are unknown. To investigate this question, we constructed chimeric antibodies in which the human IgG1 constant region was paired with three murine fHbp-specific binding domains designated JAR 3, JAR 5, and MAb502. By surface plasmon resonance, the association rates for binding of all three MAbs to immobilized fHbp were >50-fold higher than that for binding of fH to fHbp, and the MAb dissociation rates were >500-fold lower than that for fH. While all three MAbs elicited similar C1q-dependent C4b deposition on live bacteria (classical complement pathway), only those antibodies that inhibited binding of fH to fHbp (JAR 3 and JAR 5) had bactericidal activity with human complement. MAb502, which did not inhibit fH binding, had complement-mediated bactericidal activity only when tested with fH-depleted human complement. When an IgG1 anti-fHbp MAb binds to sparsely exposed fHbp on the bacterial surface, there appears to be insufficient complement activation for bacteriolysis unless fH binding also is inhibited. The ability of fHbp vaccines to elicit protective antibodies, therefore, is likely to be enhanced if the antibody repertoire is of high avidity and includes fH-blocking activity.

  5. HOCOMOCO: towards a complete collection of transcription factor binding models for human and mouse via large-scale ChIP-Seq analysis.

    PubMed

    Kulakovskiy, Ivan V; Vorontsov, Ilya E; Yevshin, Ivan S; Sharipov, Ruslan N; Fedorova, Alla D; Rumynskiy, Eugene I; Medvedeva, Yulia A; Magana-Mora, Arturo; Bajic, Vladimir B; Papatsenko, Dmitry A; Kolpakov, Fedor A; Makeev, Vsevolod J

    2018-01-04

    We present a major update of the HOCOMOCO collection that consists of patterns describing DNA binding specificities for human and mouse transcription factors. In this release, we profited from a nearly doubled volume of published in vivo experiments on transcription factor (TF) binding to expand the repertoire of binding models, replace low-quality models previously based on in vitro data only and cover more than a hundred TFs with previously unknown binding specificities. This was achieved by systematic motif discovery from more than five thousand ChIP-Seq experiments uniformly processed within the BioUML framework with several ChIP-Seq peak calling tools and aggregated in the GTRD database. HOCOMOCO v11 contains binding models for 453 mouse and 680 human transcription factors and includes 1302 mononucleotide and 576 dinucleotide position weight matrices, which describe primary binding preferences of each transcription factor and reliable alternative binding specificities. An interactive interface and bulk downloads are available on the web: http://hocomoco.autosome.ru and http://www.cbrc.kaust.edu.sa/hocomoco11. In this release, we complement HOCOMOCO by MoLoTool (Motif Location Toolbox, http://molotool.autosome.ru) that applies HOCOMOCO models for visualization of binding sites in short DNA sequences. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Functional interaction of the DNA-binding transcription factor Sp1 through its DNA-binding domain with the histone chaperone TAF-I.

    PubMed

    Suzuki, Toru; Muto, Shinsuke; Miyamoto, Saku; Aizawa, Kenichi; Horikoshi, Masami; Nagai, Ryozo

    2003-08-01

    Transcription involves molecular interactions between general and regulatory transcription factors with further regulation by protein-protein interactions (e.g. transcriptional cofactors). Here we describe functional interaction between DNA-binding transcription factor and histone chaperone. Affinity purification of factors interacting with the DNA-binding domain of the transcription factor Sp1 showed Sp1 to interact with the histone chaperone TAF-I, both alpha and beta isoforms. This interaction was specific as Sp1 did not interact with another histone chaperone CIA nor did other tested DNA-binding regulatory factors (MyoD, NFkappaB, p53) interact with TAF-I. Interaction of Sp1 and TAF-I occurs both in vitro and in vivo. Interaction with TAF-I results in inhibition of DNA-binding, and also likely as a result of such, inhibition of promoter activation by Sp1. Collectively, we describe interaction between DNA-binding transcription factor and histone chaperone which results in negative regulation of the former. This novel regulatory interaction advances our understanding of the mechanisms of eukaryotic transcription through DNA-binding regulatory transcription factors by protein-protein interactions, and also shows the DNA-binding domain to mediate important regulatory interactions.

  7. Cooperative DNA binding and sequence discrimination by the Opaque2 bZIP factor.

    PubMed

    Yunes, J A; Vettore, A L; da Silva, M J; Leite, A; Arruda, P

    1998-11-01

    The maize Opaque2 (O2) protein is a basic leucine zipper transcription factor that controls the expression of distinct classes of endosperm genes through the recognition of different cis-acting elements in their promoters. The O2 target region in the promoter of the alpha-coixin gene was analyzed in detail and shown to comprise two closely adjacent binding sites, named O2u and O2d, which are related in sequence to the GCN4 binding site. Quantitative DNase footprint analysis indicated that O2 binding to alpha-coixin target sites is best described by a cooperative model. Transient expression assays showed that the two adjacent sites act synergistically. This synergy is mediated in part by cooperative DNA binding. In tobacco protoplasts, O2 binding at the O2u site is more important for enhancer activity than is binding at the O2d site, suggesting that the architecture of the O2-DNA complex is important for interaction with the transcriptional machinery.

  8. Mutant protein of recombinant human granulocyte colony-stimulating factor for receptor binding assay.

    PubMed

    Watanabe, M; Fukamachi, H; Uzumaki, H; Kabaya, K; Tsumura, H; Ishikawa, M; Matsuki, S; Kusaka, M

    1991-05-15

    A new mutant protein of recombinant human granulocyte colony-stimulating factor (rhG-CSF) was produced for the studies on receptors for human G-CSF. The mutant protein [(Tyr1, Tyr3]rhG-CSF), the biological activity of which was almost equal to that of rhG-CSF, was prepared by the replacement of threonine-1 and leucine-3 of rhG-CSF with tyrosine. The radioiodinated preparation of the mutant protein showed high specific radioactivity and retained full biological activity for at least 3 weeks. The binding capacity of the radioiodinated ligand was compared with that of [35S]rhG-CSF. Both radiolabeled ligands showed specific binding to murine bone marrow cells. Unlabeled rhG-CSF and human G-CSF purified from the culture supernatant of the human bladder carcinoma cell line 5637 equally competed for the binding of labeled rhG-CSFs in a dose-dependent manner, demonstrating that the sugar moiety of human G-CSF made no contribution to the binding of human G-CSF to target cells. In contrast, all other colony-stimulating factors and lymphokines examined did not affect the binding. Scatchard analysis of the specific binding of both labeled ligands revealed a single class of binding site with an apparent dissociation constant (Kd) of 20-30 pM and 100-200 maximal binding sites per cell. These data indicate that the radioiodinated preparation of the mutant protein binds the same specific receptor with the same affinity as [35S]rhG-CSF. The labeled mutant protein also showed specific binding to human circulating neutrophils.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Insulin-like growth factor binding protein-2: contributions of the C-terminal domain to insulin-like growth factor-1 binding.

    PubMed

    Kibbey, Megan M; Jameson, Mark J; Eaton, Erin M; Rosenzweig, Steven A

    2006-03-01

    Signaling by the insulin-like growth factor (IGF)-1 receptor (IGF-1R) has been implicated in the promotion and aggressiveness of breast, prostate, colorectal, and lung cancers. The IGF binding proteins (IGFBPs) represent a class of natural IGF antagonists that bind to and sequester IGF-1/2 from the IGF-1R, making them attractive candidates as therapeutics for cancer prevention and control. Recombinant human IGFBP-2 significantly attenuated IGF-1-stimulated MCF-7 cell proliferation with coaddition of 20 or 100 nM IGFBP-2 (50 or 80% inhibition, respectively). We previously identified IGF-1 contact sites both upstream and downstream of the CWCV motif (residues 247-250) in human IGFBP-2 (J Biol Chem 276:2880-2889, 2001). To further test their contributions to IGFBP-2 function, the single tryptophan in human IGFBP-2, Trp-248, was selectively cleaved with 2-(2'nitrophenylsulfenyl)-3-methyl-3 bromoindolenine (BNPS-skatole) and the BNPS-skatole products IGFBP-2(1-248) and IGFBP-2(249-289) as well as IGFBP-2(1-190) were expressed as glutathione S-transferase-fusion proteins and purified. Based on competition binding analysis, deletion of residues 249 to 289 caused an approximately 20-fold decrease in IGF-1 binding affinity (IGFBP-2 EC50 = 0.35 nM and IGFBP-2(1-248) = 7 nM). Removal of the remainder of the C-terminal domain had no further effect on affinity (IGFBP-2(1-190) EC50 = 9.2 nM). In kinetic assays, IGFBP-2(1-248) and IGFBP-2(1-190) exhibited more rapid association and dissociation rates than full-length IGFBP-2. These results confirm that regions upstream and downstream of the CWCV motif participate in IGF-1 binding. They further support the development of full-length IGFBP-2 as a cancer therapeutic.

  10. Localization of TFIIB binding regions using serial analysis of chromatin occupancy

    PubMed Central

    Yochum, Gregory S; Rajaraman, Veena; Cleland, Ryan; McWeeney, Shannon

    2007-01-01

    Background: RNA Polymerase II (RNAP II) is recruited to core promoters by the pre-initiation complex (PIC) of general transcription factors. Within the PIC, transcription factor for RNA polymerase IIB (TFIIB) determines the start site of transcription. TFIIB binding has not been localized, genome-wide, in metazoans. Serial analysis of chromatin occupancy (SACO) is an unbiased methodology used to empirically identify transcription factor binding regions. In this report, we use TFIIB and SACO to localize TFIIB binding regions across the rat genome. Results: A sample of the TFIIB SACO library was sequenced and 12,968 TFIIB genomic signature tags (GSTs) were assigned to the rat genome. GSTs are 20–22 base pair fragments that are derived from TFIIB bound chromatin. TFIIB localized to both non-protein coding and protein-coding loci. For 21% of the 1783 protein-coding genes in this sample of the SACO library, TFIIB binding mapped near the characterized 5' promoter that is upstream of the transcription start site (TSS). However, internal TFIIB binding positions were identified in 57% of the 1783 protein-coding genes. Internal positions are defined as those within an inclusive region greater than 2.5 kb downstream from the 5' TSS and 2.5 kb upstream from the transcription stop. We demonstrate that both TFIIB and TFIID (an additional component of PICs) bound to internal regions using chromatin immunoprecipitation (ChIP). The 5' cap of transcripts associated with internal TFIIB binding positions were identified using a cap-trapping assay. The 5' TSSs for internal transcripts were confirmed by primer extension. Additionally, an analysis of the functional annotation of mouse 3 (FANTOM3) databases indicates that internally initiated transcripts identified by TFIIB SACO in rat are conserved in mouse. Conclusion: Our findings that TFIIB binding is not restricted to the 5' upstream region indicates that the propensity for PIC to contribute to transcript diversity is far greater

  11. Human corpus luteum: presence of epidermal growth factor receptors and binding characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayyagari, R.R.; Khan-Dawood, F.S.

    Epidermal growth factor receptors are present in many reproductive tissues but have not been demonstrated in the human corpus luteum. To determine the presence of epidermal growth factor receptors and its binding characteristics, we carried out studies on the plasma cell membrane fraction of seven human corpora lutea (days 16 to 25) of the menstrual cycle. Specific epidermal growth factor receptors were present in human corpus luteum. Insulin, nerve growth factor, and human chorionic gonadotropin did not competitively displace epidermal growth factor binding. The optimal conditions for corpus luteum-epidermal growth factor receptor binding were found to be incubation for 2more » hours at 4 degrees C with 500 micrograms plasma membrane protein and 140 femtomol /sup 125/I-epidermal growth factor per incubate. The number (mean +/- SEM) of epidermal growth factor binding sites was 12.34 +/- 2.99 X 10(-19) mol/micrograms protein; the dissociation constant was 2.26 +/- 0.56 X 10(-9) mol/L; the association constant was 0.59 +/- 0.12 X 10(9) L/mol. In two regressing corpora lutea obtained on days 2 and 3 of the menstrual cycle, there was no detectable specific epidermal growth factor receptor binding activity. Similarly no epidermal growth factor receptor binding activity could be detected in ovarian stromal tissue. Our findings demonstrate that specific receptors for epidermal growth factor are present in the human corpus luteum. The physiologic significance of epidermal growth factor receptors in human corpus luteum is unknown, but epidermal growth factor may be involved in intragonadal regulation of luteal function.« less

  12. Cooperative DNA binding and sequence discrimination by the Opaque2 bZIP factor.

    PubMed Central

    Yunes, J A; Vettore, A L; da Silva, M J; Leite, A; Arruda, P

    1998-01-01

    The maize Opaque2 (O2) protein is a basic leucine zipper transcription factor that controls the expression of distinct classes of endosperm genes through the recognition of different cis-acting elements in their promoters. The O2 target region in the promoter of the alpha-coixin gene was analyzed in detail and shown to comprise two closely adjacent binding sites, named O2u and O2d, which are related in sequence to the GCN4 binding site. Quantitative DNase footprint analysis indicated that O2 binding to alpha-coixin target sites is best described by a cooperative model. Transient expression assays showed that the two adjacent sites act synergistically. This synergy is mediated in part by cooperative DNA binding. In tobacco protoplasts, O2 binding at the O2u site is more important for enhancer activity than is binding at the O2d site, suggesting that the architecture of the O2-DNA complex is important for interaction with the transcriptional machinery. PMID:9811800

  13. DNA binding by the ribosomal DNA transcription factor rrn3 is essential for ribosomal DNA transcription.

    PubMed

    Stepanchick, Ann; Zhi, Huijun; Cavanaugh, Alice H; Rothblum, Katrina; Schneider, David A; Rothblum, Lawrence I

    2013-03-29

    The human homologue of yeast Rrn3 is an RNA polymerase I-associated transcription factor that is essential for ribosomal DNA (rDNA) transcription. The generally accepted model is that Rrn3 functions as a bridge between RNA polymerase I and the transcription factors bound to the committed template. In this model Rrn3 would mediate an interaction between the mammalian Rrn3-polymerase I complex and SL1, the rDNA transcription factor that binds to the core promoter element of the rDNA. In the course of studying the role of Rrn3 in recruitment, we found that Rrn3 was in fact a DNA-binding protein. Analysis of the sequence of Rrn3 identified a domain with sequence similarity to the DNA binding domain of heat shock transcription factor 2. Randomization, or deletion, of the amino acids in this region in Rrn3, amino acids 382-400, abrogated its ability to bind DNA, indicating that this domain was an important contributor to DNA binding by Rrn3. Control experiments demonstrated that these mutant Rrn3 constructs were capable of interacting with both rpa43 and SL1, two other activities demonstrated to be essential for Rrn3 function. However, neither of these Rrn3 mutants was capable of functioning in transcription in vitro. Moreover, although wild-type human Rrn3 complemented a yeast rrn3-ts mutant, the DNA-binding site mutant did not. These results demonstrate that DNA binding by Rrn3 is essential for transcription by RNA polymerase I.

  14. DNA Binding by the Ribosomal DNA Transcription Factor Rrn3 Is Essential for Ribosomal DNA Transcription*

    PubMed Central

    Stepanchick, Ann; Zhi, Huijun; Cavanaugh, Alice H.; Rothblum, Katrina; Schneider, David A.; Rothblum, Lawrence I.

    2013-01-01

    The human homologue of yeast Rrn3 is an RNA polymerase I-associated transcription factor that is essential for ribosomal DNA (rDNA) transcription. The generally accepted model is that Rrn3 functions as a bridge between RNA polymerase I and the transcription factors bound to the committed template. In this model Rrn3 would mediate an interaction between the mammalian Rrn3-polymerase I complex and SL1, the rDNA transcription factor that binds to the core promoter element of the rDNA. In the course of studying the role of Rrn3 in recruitment, we found that Rrn3 was in fact a DNA-binding protein. Analysis of the sequence of Rrn3 identified a domain with sequence similarity to the DNA binding domain of heat shock transcription factor 2. Randomization, or deletion, of the amino acids in this region in Rrn3, amino acids 382–400, abrogated its ability to bind DNA, indicating that this domain was an important contributor to DNA binding by Rrn3. Control experiments demonstrated that these mutant Rrn3 constructs were capable of interacting with both rpa43 and SL1, two other activities demonstrated to be essential for Rrn3 function. However, neither of these Rrn3 mutants was capable of functioning in transcription in vitro. Moreover, although wild-type human Rrn3 complemented a yeast rrn3-ts mutant, the DNA-binding site mutant did not. These results demonstrate that DNA binding by Rrn3 is essential for transcription by RNA polymerase I. PMID:23393135

  15. Platelet binding sites for factor VIII in relation to fibrin and phosphatidylserine

    PubMed Central

    Novakovic, Valerie A.; Shi, Jialan; Rasmussen, Jan; Pipe, Steven W.

    2015-01-01

    Thrombin-stimulated platelets expose very little phosphatidylserine (PS) but express binding sites for factor VIII (fVIII), casting doubt on the role of exposed PS as the determinant of binding sites. We previously reported that fVIII binding sites are increased three- to sixfold when soluble fibrin (SF) binds the αIIbβ3 integrin. This study focuses on the hypothesis that platelet-bound SF is the major source of fVIII binding sites. Less than 10% of fVIII was displaced from thrombin-stimulated platelets by lactadherin, a PS-binding protein, and an fVIII mutant defective in PS-dependent binding retained platelet affinity. Therefore, PS is not the determinant of most binding sites. FVIII bound immobilized SF and paralleled platelet binding in affinity, dependence on separation from von Willebrand factor, and mediation by the C2 domain. SF also enhanced activity of fVIII in the factor Xase complex by two- to fourfold. Monoclonal antibody (mAb) ESH8, against the fVIII C2 domain, inhibited binding of fVIII to SF and platelets but not to PS-containing vesicles. Similarly, mAb ESH4 against the C2 domain, inhibited >90% of platelet-dependent fVIII activity vs 35% of vesicle-supported activity. These results imply that platelet-bound SF is a component of functional fVIII binding sites. PMID:26162408

  16. Discovering transcription factor binding sites in highly repetitive regions of genomes with multi-read analysis of ChIP-Seq data.

    PubMed

    Chung, Dongjun; Kuan, Pei Fen; Li, Bo; Sanalkumar, Rajendran; Liang, Kun; Bresnick, Emery H; Dewey, Colin; Keleş, Sündüz

    2011-07-01

    Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) is rapidly replacing chromatin immunoprecipitation combined with genome-wide tiling array analysis (ChIP-chip) as the preferred approach for mapping transcription-factor binding sites and chromatin modifications. The state of the art for analyzing ChIP-seq data relies on using only reads that map uniquely to a relevant reference genome (uni-reads). This can lead to the omission of up to 30% of alignable reads. We describe a general approach for utilizing reads that map to multiple locations on the reference genome (multi-reads). Our approach is based on allocating multi-reads as fractional counts using a weighted alignment scheme. Using human STAT1 and mouse GATA1 ChIP-seq datasets, we illustrate that incorporation of multi-reads significantly increases sequencing depths, leads to detection of novel peaks that are not otherwise identifiable with uni-reads, and improves detection of peaks in mappable regions. We investigate various genome-wide characteristics of peaks detected only by utilization of multi-reads via computational experiments. Overall, peaks from multi-read analysis have similar characteristics to peaks that are identified by uni-reads except that the majority of them reside in segmental duplications. We further validate a number of GATA1 multi-read only peaks by independent quantitative real-time ChIP analysis and identify novel target genes of GATA1. These computational and experimental results establish that multi-reads can be of critical importance for studying transcription factor binding in highly repetitive regions of genomes with ChIP-seq experiments.

  17. Ectoderm gene activation in sea urchin embryos mediated by the CCAAT-binding factor.

    PubMed

    Li, Xiaotao; Bhattacharya, Chitralekha; Dayal, Sandeep; Maity, Sankar; Klein, William H

    2002-05-01

    Transcriptional enhancers are short stretches of DNA that function to achieve highly specific patterns of gene expression. To identify the mechanisms by which enhancers achieve their specificity, we made use of an enhancer from the aboral ectoderm-specific spec2a gene of the sea urchin Strongylocentrotus purpuratus. The spec2a enhancer contains five cis-regulatory elements within 78 base pairs that interact with five distinct DNA-binding proteins to confer aboral ectoderm expression. Here, we present an analysis of the sea urchin CCAAT binding factor (CBF), which binds to a CCAAT motif within the spec2a enhancer. S. purpuratus CBF and SpOtx, a ubiquitously expressed factor, act together at closely placed cis-regulatory elements to mediate spec2a transcription in the ectoderm. SpCBF was the sole factor that bound to the spec2a CCAAT element, and two of the three subunits that make up the CBF holoprotein were cloned and shown to have high sequence conservation with their vertebrate orthologs. Based on its involvement in the regulation of several other sea urchin genes, SpCBF appears to be a major transcription factor in the sea urchin embryo for positive regulation of ectoderm gene expression. In addition to its role in vertebrate cell growth and proliferation, our results indicate that CBF also functions at the early stages of germ layer formation, namely ectoderm differentiation.

  18. Dissecting the protein architecture of DNA-binding transcription factors in bacteria and archaea.

    PubMed

    Rivera-Gómez, Nancy; Martínez-Núñez, Mario Alberto; Pastor, Nina; Rodriguez-Vazquez, Katya; Perez-Rueda, Ernesto

    2017-08-01

    Gene regulation at the transcriptional level is a central process in all organisms where DNA-binding transcription factors play a fundamental role. This class of proteins binds specifically at DNA sequences, activating or repressing gene expression as a function of the cell's metabolic status, operator context and ligand-binding status, among other factors, through the DNA-binding domain (DBD). In addition, TFs may contain partner domains (PaDos), which are involved in ligand binding and protein-protein interactions. In this work, we systematically evaluated the distribution, abundance and domain organization of DNA-binding TFs in 799 non-redundant bacterial and archaeal genomes. We found that the distributions of the DBDs and their corresponding PaDos correlated with the size of the genome. We also identified specific combinations between the DBDs and their corresponding PaDos. Within each class of DBDs there are differences in the actual angle formed at the dimerization interface, responding to the presence/absence of ligands and/or crystallization conditions, setting the orientation of the resulting helices and wings facing the DNA. Our results highlight the importance of PaDos as central elements that enhance the diversity of regulatory functions in all bacterial and archaeal organisms, and our results also demonstrate the role of PaDos in sensing diverse signal compounds. The highly specific interactions between DBDs and PaDos observed in this work, together with our structural analysis highlighting the difficulty in predicting both inter-domain geometry and quaternary structure, suggest that these systems appeared once and evolved with diverse duplication events in all the analysed organisms.

  19. The Role of Genome Accessibility in Transcription Factor Binding in Bacteria.

    PubMed

    Gomes, Antonio L C; Wang, Harris H

    2016-04-01

    ChIP-seq enables genome-scale identification of regulatory regions that govern gene expression. However, the biological insights generated from ChIP-seq analysis have been limited to predictions of binding sites and cooperative interactions. Furthermore, ChIP-seq data often poorly correlate with in vitro measurements or predicted motifs, highlighting that binding affinity alone is insufficient to explain transcription factor (TF)-binding in vivo. One possibility is that binding sites are not equally accessible across the genome. A more comprehensive biophysical representation of TF-binding is required to improve our ability to understand, predict, and alter gene expression. Here, we show that genome accessibility is a key parameter that impacts TF-binding in bacteria. We developed a thermodynamic model that parameterizes ChIP-seq coverage in terms of genome accessibility and binding affinity. The role of genome accessibility is validated using a large-scale ChIP-seq dataset of the M. tuberculosis regulatory network. We find that accounting for genome accessibility led to a model that explains 63% of the ChIP-seq profile variance, while a model based in motif score alone explains only 35% of the variance. Moreover, our framework enables de novo ChIP-seq peak prediction and is useful for inferring TF-binding peaks in new experimental conditions by reducing the need for additional experiments. We observe that the genome is more accessible in intergenic regions, and that increased accessibility is positively correlated with gene expression and anti-correlated with distance to the origin of replication. Our biophysically motivated model provides a more comprehensive description of TF-binding in vivo from first principles towards a better representation of gene regulation in silico, with promising applications in systems biology.

  20. ChIP-nexus: a novel ChIP-exo protocol for improved detection of in vivo transcription factor binding footprints

    PubMed Central

    He, Qiye; Johnston, Jeff; Zeitlinger, Julia

    2014-01-01

    Understanding how eukaryotic enhancers are bound and regulated by specific combinations of transcription factors is still a major challenge. To better map transcription factor binding genome-wide at nucleotide resolution in vivo, we have developed a robust ChIP-exo protocol called ChIP experiments with nucleotide resolution through exonuclease, unique barcode and single ligation (ChIP-nexus), which utilizes an efficient DNA self-circularization step during library preparation. Application of ChIP-nexus to four proteins—human TBP and Drosophila NFkB, Twist and Max— demonstrates that it outperforms existing ChIP protocols in resolution and specificity, pinpoints relevant binding sites within enhancers containing multiple binding motifs and allows the analysis of in vivo binding specificities. Notably, we show that Max frequently interacts with DNA sequences next to its motif, and that this binding pattern correlates with local DNA sequence features such as DNA shape. ChIP-nexus will be broadly applicable to studying in vivo transcription factor binding specificity and its relationship to cis-regulatory changes in humans and model organisms. PMID:25751057

  1. Transcription Factor Information System (TFIS): A Tool for Detection of Transcription Factor Binding Sites.

    PubMed

    Narad, Priyanka; Kumar, Abhishek; Chakraborty, Amlan; Patni, Pranav; Sengupta, Abhishek; Wadhwa, Gulshan; Upadhyaya, K C

    2017-09-01

    Transcription factors are trans-acting proteins that interact with specific nucleotide sequences known as transcription factor binding site (TFBS), and these interactions are implicated in regulation of the gene expression. Regulation of transcriptional activation of a gene often involves multiple interactions of transcription factors with various sequence elements. Identification of these sequence elements is the first step in understanding the underlying molecular mechanism(s) that regulate the gene expression. For in silico identification of these sequence elements, we have developed an online computational tool named transcription factor information system (TFIS) for detecting TFBS for the first time using a collection of JAVA programs and is mainly based on TFBS detection using position weight matrix (PWM). The database used for obtaining position frequency matrices (PFM) is JASPAR and HOCOMOCO, which is an open-access database of transcription factor binding profiles. Pseudo-counts are used while converting PFM to PWM, and TFBS detection is carried out on the basis of percent score taken as threshold value. TFIS is equipped with advanced features such as direct sequence retrieving from NCBI database using gene identification number and accession number, detecting binding site for common TF in a batch of gene sequences, and TFBS detection after generating PWM from known raw binding sequences in addition to general detection methods. TFIS can detect the presence of potential TFBSs in both the directions at the same time. This feature increases its efficiency. And the results for this dual detection are presented in different colors specific to the orientation of the binding site. Results obtained by the TFIS are more detailed and specific to the detected TFs as integration of more informative links from various related web servers are added in the result pages like Gene Ontology, PAZAR database and Transcription Factor Encyclopedia in addition to NCBI and Uni

  2. RNA binding specificity of Ebola virus transcription factor VP30.

    PubMed

    Schlereth, Julia; Grünweller, Arnold; Biedenkopf, Nadine; Becker, Stephan; Hartmann, Roland K

    2016-09-01

    The transcription factor VP30 of the non-segmented RNA negative strand Ebola virus balances viral transcription and replication. Here, we comprehensively studied RNA binding by VP30. Using a novel VP30:RNA electrophoretic mobility shift assay, we tested truncated variants of 2 potential natural RNA substrates of VP30 - the genomic Ebola viral 3'-leader region and its complementary antigenomic counterpart (each ∼155 nt in length) - and a series of other non-viral RNAs. Based on oligonucleotide interference, the major VP30 binding region on the genomic 3'-leader substrate was assigned to the internal expanded single-stranded region (∼ nt 125-80). Best binding to VP30 was obtained with ssRNAs of optimally ∼ 40 nt and mixed base composition; underrepresentation of purines or pyrimidines was tolerated, but homopolymeric sequences impaired binding. A stem-loop structure, particularly at the 3'-end or positioned internally, supports stable binding to VP30. In contrast, dsRNA or RNAs exposing large internal loops flanked by entirely helical arms on both sides are not bound. Introduction of a 5´-Cap(0) structure impaired VP30 binding. Also, ssDNAs bind substantially weaker than isosequential ssRNAs and heparin competes with RNA for binding to VP30, indicating that ribose 2'-hydroxyls and electrostatic contacts of the phosphate groups contribute to the formation of VP30:RNA complexes. Our results indicate a rather relaxed RNA binding specificity of filoviral VP30, which largely differs from that of the functionally related transcription factor of the Paramyxoviridae which binds to ssRNAs as short as 13 nt with a preference for oligo(A) sequences.

  3. Organization, chromosomal localization and promoter analysis of the gene encoding human acidic fibroblast growth factor intracellular binding protein.

    PubMed Central

    Kolpakova, E; Frengen, E; Stokke, T; Olsnes, S

    2000-01-01

    Acidic fibroblast growth factor (aFGF) intracellular binding protein (FIBP) is a protein found mainly in the nucleus that might be involved in the intracellular function of aFGF. Here we present a comparative analysis of the deduced amino acid sequences of human, murine and Drosophila FIBP analogues and demonstrate that FIBP is an evolutionarily conserved protein. The human gene spans more than 5 kb, comprising ten exons and nine introns, and maps to chromosome 11q13.1. Two slightly different splice variants found in different tissues were isolated and characterized. Sequence analysis of the region surrounding the translation start revealed a CpG island, a classical feature of widely expressed genes. Functional studies of the promoter region with a luciferase reporter system suggested a strong transcriptional activity residing within 600 bp of the 5' flanking region. PMID:11104667

  4. The fundamental ribosomal RNA transcription initiation factor-IB (TIF-IB, SL1, factor D) binds to the rRNA core promoter primarily by minor groove contacts.

    PubMed

    Geiss, G K; Radebaugh, C A; Paule, M R

    1997-11-14

    Acanthamoeba castellanii transcription initiation factor-IB (TIF-IB) is the TATA-binding protein-containing transcription factor that binds the rRNA promoter to form the committed complex. Minor groove-specific drugs inhibit TIF-IB binding, with higher concentrations needed to disrupt preformed complexes because of drug exclusion by bound TIF-IB. TIF-IB/DNA interactions were mapped by hydroxyl radical and uranyl nitrate footprinting. TIF-IB contacts four minor grooves in its binding site. TIF-IB and DNA wrap around each other in a right-handed superhelix of high pitch, so the upstream and downstream contacts are on opposite faces of the helix. Dimethyl sulfate protection assays revealed limited contact with a few guanines in the major groove. This detailed analysis suggests significant DNA conformation dependence of the interaction.

  5. Genome-wide analysis of the DNA-binding with one zinc finger (Dof) transcription factor family in bananas.

    PubMed

    Dong, Chen; Hu, Huigang; Xie, Jianghui

    2016-12-01

    DNA-binding with one finger (Dof) domain proteins are a multigene family of plant-specific transcription factors involved in numerous aspects of plant growth and development. In this study, we report a genome-wide search for Musa acuminata Dof (MaDof) genes and their expression profiles at different developmental stages and in response to various abiotic stresses. In addition, a complete overview of the Dof gene family in bananas is presented, including the gene structures, chromosomal locations, cis-regulatory elements, conserved protein domains, and phylogenetic inferences. Based on the genome-wide analysis, we identified 74 full-length protein-coding MaDof genes unevenly distributed on 11 chromosomes. Phylogenetic analysis with Dof members from diverse plant species showed that MaDof genes can be classified into four subgroups (StDof I, II, III, and IV). The detailed genomic information of the MaDof gene homologs in the present study provides opportunities for functional analyses to unravel the exact role of the genes in plant growth and development.

  6. Induced Genome-Wide Binding of Three Arabidopsis WRKY Transcription Factors during Early MAMP-Triggered Immunity

    PubMed Central

    Birkenbihl, Rainer P.; Kracher, Barbara; Roccaro, Mario

    2017-01-01

    During microbial-associated molecular pattern-triggered immunity (MTI), molecules derived from microbes are perceived by cell surface receptors and upon signaling to the nucleus initiate a massive transcriptional reprogramming critical to mount an appropriate host defense response. WRKY transcription factors play an important role in regulating these transcriptional processes. Here, we determined on a genome-wide scale the flg22-induced in vivo DNA binding dynamics of three of the most prominent WRKY factors, WRKY18, WRKY40, and WRKY33. The three WRKY factors each bound to more than 1000 gene loci predominantly at W-box elements, the known WRKY binding motif. Binding occurred mainly in the 500-bp promoter regions of these genes. Many of the targeted genes are involved in signal perception and transduction not only during MTI but also upon damage-associated molecular pattern-triggered immunity, providing a mechanistic link between these functionally interconnected basal defense pathways. Among the additional targets were genes involved in the production of indolic secondary metabolites and in modulating distinct plant hormone pathways. Importantly, among the targeted genes were numerous transcription factors, encoding predominantly ethylene response factors, active during early MTI, and WRKY factors, supporting the previously hypothesized existence of a WRKY subregulatory network. Transcriptional analysis revealed that WRKY18 and WRKY40 function redundantly as negative regulators of flg22-induced genes often to prevent exaggerated defense responses. PMID:28011690

  7. Melanin-binding radiopharmaceuticals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Packer, S; Fairchild, R G; Watts, K P

    The scope of this paper is limited to an analysis of the factors that are important to the relationship of radiopharmaceuticals to melanin. While the authors do not attempt to deal with differences between melanin-binding vs. melanoma-binding, a notable variance is assumed. (PSB)

  8. Selective Activation of Transcription by a Novel CCAAT Binding Factor

    NASA Astrophysics Data System (ADS)

    Maity, Sankar N.; Golumbek, Paul T.; Karsenty, Gerard; de Crombrugghe, Benoit

    1988-07-01

    A novel CCAAT binding factor (CBF) composed of two different subunits has been extensively purified from rat liver. Both subunits are needed for specific binding to DNA. Addition of this purified protein to nuclear extracts of NIH 3T3 fibroblasts stimulates transcription from several promoters including the α 2(I) collagen, the α 1(I) collagen, the Rous sarcoma virus long terminal repeat (RSV-LTR), and the adenovirus major late promoter. Point mutations in the CCAAT motif that show either no binding or a decreased binding of CBF likewise abolish or reduce activation of transcription by CBF. Activation of transcription requires, therefore, the specific binding of CBF to its recognition sites.

  9. Leveraging cross-species transcription factor binding site patterns: from diabetes risk loci to disease mechanisms.

    PubMed

    Claussnitzer, Melina; Dankel, Simon N; Klocke, Bernward; Grallert, Harald; Glunk, Viktoria; Berulava, Tea; Lee, Heekyoung; Oskolkov, Nikolay; Fadista, Joao; Ehlers, Kerstin; Wahl, Simone; Hoffmann, Christoph; Qian, Kun; Rönn, Tina; Riess, Helene; Müller-Nurasyid, Martina; Bretschneider, Nancy; Schroeder, Timm; Skurk, Thomas; Horsthemke, Bernhard; Spieler, Derek; Klingenspor, Martin; Seifert, Martin; Kern, Michael J; Mejhert, Niklas; Dahlman, Ingrid; Hansson, Ola; Hauck, Stefanie M; Blüher, Matthias; Arner, Peter; Groop, Leif; Illig, Thomas; Suhre, Karsten; Hsu, Yi-Hsiang; Mellgren, Gunnar; Hauner, Hans; Laumen, Helmut

    2014-01-16

    Genome-wide association studies have revealed numerous risk loci associated with diverse diseases. However, identification of disease-causing variants within association loci remains a major challenge. Divergence in gene expression due to cis-regulatory variants in noncoding regions is central to disease susceptibility. We show that integrative computational analysis of phylogenetic conservation with a complexity assessment of co-occurring transcription factor binding sites (TFBS) can identify cis-regulatory variants and elucidate their mechanistic role in disease. Analysis of established type 2 diabetes risk loci revealed a striking clustering of distinct homeobox TFBS. We identified the PRRX1 homeobox factor as a repressor of PPARG2 expression in adipose cells and demonstrate its adverse effect on lipid metabolism and systemic insulin sensitivity, dependent on the rs4684847 risk allele that triggers PRRX1 binding. Thus, cross-species conservation analysis at the level of co-occurring TFBS provides a valuable contribution to the translation of genetic association signals to disease-related molecular mechanisms. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Identification of a His54Gln substitution in von Willebrand factor from a patient with defective binding of factor VIII.

    PubMed

    Rick, M E; Krizek, D M

    1996-04-01

    A patient with type 2N ("Normandy" variant) von Willebrand's disease is described. Her von Willebrand factor level was borderline low, while her factor VIII was markedly decreased to 7%. Her plasma von Willebrand factor demonstrated a decreased ability to complex with factor VIII in vitro, binding less than 10% when compared to normal plasma von Willebrand factor. The factor VIII released into the circulation after the patient received DDAVP had a shortened survival in vivo. Nucleotide sequence analysis revealed a T-to-A transition at nucleotide 2451 on both alleles. This transition results in a substitution of Gln for His at amino acid 54 in the mature subunit of von Willebrand factor.

  11. Somatomedin-1 binding protein-3: insulin-like growth factor-1 binding protein-3, insulin-like growth factor-1 carrier protein.

    PubMed

    2003-01-01

    Somatomedin-1 binding protein-3 [insulin-like growth factor-1 binding protein-3, SomatoKine] is a recombinant complex of insulin-like growth factor-1 (rhIGF-1) and binding protein-3 (IGFBP-3), which is the major circulating somatomedin (insulin-like growth factor) binding protein; binding protein-3 regulates the delivery of somatomedin-1 to target tissues. Somatomedin-1 binding protein-3 has potential as replacement therapy for somatomedin-1 which may become depleted in indications such as major surgery, organ damage/failure and traumatic injury, resulting in catabolism. It also has potential for the treatment of osteoporosis; diseases associated with protein wasting including chronic renal failure, cachexia and severe trauma; and to attenuate cardiac dysfunction in a variety of disease states, including after severe burn trauma. Combined therapy with somatomedin-1 and somatomedin-1 binding protein-3 would prolong the duration of action of somatomedin-1 and would reduce or eliminate some of the undesirable effects associated with somatomedin-1 monotherapy. Somatomedin-1 is usually linked to binding protein-3 in the normal state of the body, and particular proteases clip them apart in response to stresses and release somatomedin-1 as needed. Therefore, somatomedin-1 binding protein-3 is a self-dosing system and SomatoKine would augment the natural supply of these linked compounds. Somatomedin-1 binding protein-3 was developed by Celtrix using its proprietary recombinant protein production technology. Subsequently, Celtrix was acquired by Insmed Pharmaceuticals on June 1 2000. Insmed and Avecia, UK, have signed an agreement for the manufacturing of SomatoKine and its components, IGF-1 and binding protein-3. CGMP clinical production of SomatoKine and its components will be done in Avecia's Advanced Biologics Centre, Billingham, UK, which manufactures recombinant-based medicines and vaccines with a capacity of up to 1000 litres. In 2003, manufacturing of SomatoKine is

  12. Discovery and information-theoretic characterization of transcription factor binding sites that act cooperatively.

    PubMed

    Clifford, Jacob; Adami, Christoph

    2015-09-02

    Transcription factor binding to the surface of DNA regulatory regions is one of the primary causes of regulating gene expression levels. A probabilistic approach to model protein-DNA interactions at the sequence level is through position weight matrices (PWMs) that estimate the joint probability of a DNA binding site sequence by assuming positional independence within the DNA sequence. Here we construct conditional PWMs that depend on the motif signatures in the flanking DNA sequence, by conditioning known binding site loci on the presence or absence of additional binding sites in the flanking sequence of each site's locus. Pooling known sites with similar flanking sequence patterns allows for the estimation of the conditional distribution function over the binding site sequences. We apply our model to the Dorsal transcription factor binding sites active in patterning the Dorsal-Ventral axis of Drosophila development. We find that those binding sites that cooperate with nearby Twist sites on average contain about 0.5 bits of information about the presence of Twist transcription factor binding sites in the flanking sequence. We also find that Dorsal binding site detectors conditioned on flanking sequence information make better predictions about what is a Dorsal site relative to background DNA than detection without information about flanking sequence features.

  13. Factor H-binding protein, a unique meningococcal vaccine antigen.

    PubMed

    Pizza, Mariagrazia; Donnelly, John; Rappuoli, Rino

    2008-12-30

    GNA1870, also named factor H-binding protein (fHbp) or rLP-2086, is a genome-derived antigen and one of the components of a rationally designed vaccine against Neisseria meningitidis serogroup B, which has entered phase III clinical trials. It has been classified into three main non-cross-protective variant groups. GNA1870 has also been termed fHbp because of its ability to bind factor H, a key regulatory component of the alternative complement pathway. fHbp is important for survival in human blood, human sera, and in presence of antimicrobial peptides, independently of its expression level. All these properties make fHbp a unique vaccine antigen.

  14. Highly accessible AU-rich regions in 3' untranslated regions are hotspots for binding of regulatory factors.

    PubMed

    Plass, Mireya; Rasmussen, Simon H; Krogh, Anders

    2017-04-01

    Post-transcriptional regulation is regarded as one of the major processes involved in the regulation of gene expression. It is mainly performed by RNA binding proteins and microRNAs, which target RNAs and typically affect their stability. Recent efforts from the scientific community have aimed at understanding post-transcriptional regulation at a global scale by using high-throughput sequencing techniques such as cross-linking and immunoprecipitation (CLIP), which facilitates identification of binding sites of these regulatory factors. However, the diversity in the experimental procedures and bioinformatics analyses has hindered the integration of multiple datasets and thus limited the development of an integrated view of post-transcriptional regulation. In this work, we have performed a comprehensive analysis of 107 CLIP datasets from 49 different RBPs in HEK293 cells to shed light on the complex interactions that govern post-transcriptional regulation. By developing a more stringent CLIP analysis pipeline we have discovered the existence of conserved regulatory AU-rich regions in the 3'UTRs where miRNAs and RBPs that regulate several processes such as polyadenylation or mRNA stability bind. Analogous to promoters, many factors have binding sites overlapping or in close proximity in these hotspots and hence the regulation of the mRNA may depend on their relative concentrations. This hypothesis is supported by RBP knockdown experiments that alter the relative concentration of RBPs in the cell. Upon AGO2 knockdown (KD), transcripts containing "free" target sites show increased expression levels compared to those containing target sites in hotspots, which suggests that target sites within hotspots are less available for miRNAs to bind. Interestingly, these hotspots appear enriched in genes with regulatory functions such as DNA binding and RNA binding. Taken together, our results suggest that hotspots are functional regulatory elements that define an extra layer of

  15. Modeling Shear Induced Von Willebrand Factor Binding to Collagen

    NASA Astrophysics Data System (ADS)

    Dong, Chuqiao; Wei, Wei; Morabito, Michael; Webb, Edmund; Oztekin, Alparslan; Zhang, Xiaohui; Cheng, Xuanhong

    2017-11-01

    Von Willebrand factor (vWF) is a blood glycoprotein that binds with platelets and collagen on injured vessel surfaces to form clots. VWF bioactivity is shear flow induced: at low shear, binding between VWF and other biological entities is suppressed; for high shear rate conditions - as are found near arterial injury sites - VWF elongates, activating its binding with platelets and collagen. Based on parameters derived from single molecule force spectroscopy experiments, we developed a coarse-grain molecular model to simulate bond formation probability as a function of shear rate. By introducing a binding criterion that depends on the conformation of a sub-monomer molecular feature of our model, the model predicts shear-induced binding, even for conditions where binding is highly energetically favorable. We further investigate the influence of various model parameters on the ability to predict shear-induced binding (vWF length, collagen site density and distribution, binding energy landscape, and slip/catch bond length) and demonstrate parameter ranges where the model provides good agreement with existing experimental data. Our results may be important for understanding vWF activity and also for achieving targeted drug therapy via biomimetic synthetic molecules. National Science Foundation (NSF),Division of Mathematical Sciences (DMS).

  16. Position specific variation in the rate of evolution in transcription factor binding sites

    PubMed Central

    Moses, Alan M; Chiang, Derek Y; Kellis, Manolis; Lander, Eric S; Eisen, Michael B

    2003-01-01

    Background The binding sites of sequence specific transcription factors are an important and relatively well-understood class of functional non-coding DNAs. Although a wide variety of experimental and computational methods have been developed to characterize transcription factor binding sites, they remain difficult to identify. Comparison of non-coding DNA from related species has shown considerable promise in identifying these functional non-coding sequences, even though relatively little is known about their evolution. Results Here we analyse the genome sequences of the budding yeasts Saccharomyces cerevisiae, S. bayanus, S. paradoxus and S. mikatae to study the evolution of transcription factor binding sites. As expected, we find that both experimentally characterized and computationally predicted binding sites evolve slower than surrounding sequence, consistent with the hypothesis that they are under purifying selection. We also observe position-specific variation in the rate of evolution within binding sites. We find that the position-specific rate of evolution is positively correlated with degeneracy among binding sites within S. cerevisiae. We test theoretical predictions for the rate of evolution at positions where the base frequencies deviate from background due to purifying selection and find reasonable agreement with the observed rates of evolution. Finally, we show how the evolutionary characteristics of real binding motifs can be used to distinguish them from artefacts of computational motif finding algorithms. Conclusion As has been observed for protein sequences, the rate of evolution in transcription factor binding sites varies with position, suggesting that some regions are under stronger functional constraint than others. This variation likely reflects the varying importance of different positions in the formation of the protein-DNA complex. The characterization of the pattern of evolution in known binding sites will likely contribute to the

  17. Role of Fibroblast Growth Factor Binding Protein-1 in Mammary Development and Tumorigenesis

    DTIC Science & Technology

    2009-10-01

    AD_________________ Award Number: W81XWH-06-1-0763 TITLE: Role of Fibroblast Growth Factor ...2009 4. TITLE AND SUBTITLE Role of Fibroblast Growth Factor Binding Protein-1 in Mammary Development 5a. CONTRACT NUMBER and Tumorigenesis...Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT 15. SUBJECT TERMS Fibroblast Growth Factor Binding Protein-1

  18. Induced Genome-Wide Binding of Three Arabidopsis WRKY Transcription Factors during Early MAMP-Triggered Immunity.

    PubMed

    Birkenbihl, Rainer P; Kracher, Barbara; Somssich, Imre E

    2017-01-01

    During microbial-associated molecular pattern-triggered immunity (MTI), molecules derived from microbes are perceived by cell surface receptors and upon signaling to the nucleus initiate a massive transcriptional reprogramming critical to mount an appropriate host defense response. WRKY transcription factors play an important role in regulating these transcriptional processes. Here, we determined on a genome-wide scale the flg22-induced in vivo DNA binding dynamics of three of the most prominent WRKY factors, WRKY18, WRKY40, and WRKY33. The three WRKY factors each bound to more than 1000 gene loci predominantly at W-box elements, the known WRKY binding motif. Binding occurred mainly in the 500-bp promoter regions of these genes. Many of the targeted genes are involved in signal perception and transduction not only during MTI but also upon damage-associated molecular pattern-triggered immunity, providing a mechanistic link between these functionally interconnected basal defense pathways. Among the additional targets were genes involved in the production of indolic secondary metabolites and in modulating distinct plant hormone pathways. Importantly, among the targeted genes were numerous transcription factors, encoding predominantly ethylene response factors, active during early MTI, and WRKY factors, supporting the previously hypothesized existence of a WRKY subregulatory network. Transcriptional analysis revealed that WRKY18 and WRKY40 function redundantly as negative regulators of flg22-induced genes often to prevent exaggerated defense responses. © 2016 American Society of Plant Biologists. All rights reserved.

  19. Probing the electrostatics and pharmacologic modulation of sequence-specific binding by the DNA-binding domain of the ETS-family transcription factor PU.1: a binding affinity and kinetics investigation

    PubMed Central

    Munde, Manoj; Poon, Gregory M. K.; Wilson, W. David

    2013-01-01

    Members of the ETS family of transcription factors regulate a functionally diverse array of genes. All ETS proteins share a structurally-conserved but sequence-divergent DNA-binding domain, known as the ETS domain. Although the structure and thermodynamics of the ETS-DNA complexes are well known, little is known about the kinetics of sequence recognition, a facet that offers potential insight into its molecular mechanism. We have characterized DNA binding by the ETS domain of PU.1 by biosensor-surface plasmon resonance (SPR). SPR analysis revealed a striking kinetic profile for DNA binding by the PU.1 ETS domain. At low salt concentrations, it binds high-affinity cognate DNA with a very slow association rate constant (≤105 M−1 s−1), compensated by a correspondingly small dissociation rate constant. The kinetics are strongly salt-dependent but mutually balance to produce a relatively weak dependence in the equilibrium constant. This profile contrasts sharply with reported data for other ETS domains (e.g., Ets-1, TEL) for which high-affinity binding is driven by rapid association (>107 M−1 s−1). We interpret this difference in terms of the hydration properties of ETS-DNA binding and propose that at least two mechanisms of sequence recognition are employed by this family of DNA-binding domain. Additionally, we use SPR to demonstrate the potential for pharmacological inhibition of sequence-specific ETS-DNA binding, using the minor groove-binding distamycin as a model compound. Our work establishes SPR as a valuable technique for extending our understanding of the molecular mechanisms of ETS-DNA interactions as well as developing potential small-molecule agents for biotechnological and therapeutic purposes. PMID:23416556

  20. Identification of estrogen-responsive genes using a genome-wide analysis of promoter elements for transcription factor binding sites.

    PubMed

    Kamalakaran, Sitharthan; Radhakrishnan, Senthil K; Beck, William T

    2005-06-03

    We developed a pipeline to identify novel genes regulated by the steroid hormone-dependent transcription factor, estrogen receptor, through a systematic analysis of upstream regions of all human and mouse genes. We built a data base of putative promoter regions for 23,077 human and 19,984 mouse transcripts from National Center for Biotechnology Information annotation and 8793 human and 6785 mouse promoters from the Data Base of Transcriptional Start Sites. We used this data base of putative promoters to identify potential targets of estrogen receptor by identifying estrogen response elements (EREs) in their promoters. Our program correctly identified EREs in genes known to be regulated by estrogen in addition to several new genes whose putative promoters contained EREs. We validated six genes (KIAA1243, NRIP1, MADH9, NME3, TPD52L, and ABCG2) to be estrogen-responsive in MCF7 cells using reverse transcription PCR. To allow for extensibility of our program in identifying targets of other transcription factors, we have built a Web interface to access our data base and programs. Our Web-based program for Promoter Analysis of Genome, PAGen@UIC, allows a user to identify putative target genes for vertebrate transcription factors through the analysis of their upstream sequences. The interface allows the user to search the human and mouse promoter data bases for potential target genes containing one or more listed transcription factor binding sites (TFBSs) in their upstream elements, using either regular expression-based consensus or position weight matrices. The data base can also be searched for promoters harboring user-defined TFBSs given as a consensus or a position weight matrix. Furthermore, the user can retrieve putative promoter sequences for any given gene together with identified TFBSs located on its promoter. Orthologous promoters are also analyzed to determine conserved elements.

  1. Evolution of DNA-Binding Sites of a Floral Master Regulatory Transcription Factor

    PubMed Central

    Muiño, Jose M.; de Bruijn, Suzanne; Pajoro, Alice; Geuten, Koen; Vingron, Martin; Angenent, Gerco C.; Kaufmann, Kerstin

    2016-01-01

    Flower development is controlled by the action of key regulatory transcription factors of the MADS-domain family. The function of these factors appears to be highly conserved among species based on mutant phenotypes. However, the conservation of their downstream processes is much less well understood, mostly because the evolutionary turnover and variation of their DNA-binding sites (BSs) among plant species have not yet been experimentally determined. Here, we performed comparative ChIP (chromatin immunoprecipitation)-seq experiments of the MADS-domain transcription factor SEPALLATA3 (SEP3) in two closely related Arabidopsis species: Arabidopsis thaliana and A. lyrata which have very similar floral organ morphology. We found that BS conservation is associated with DNA sequence conservation, the presence of the CArG-box BS motif and on the relative position of the BS to its potential target gene. Differences in genome size and structure can explain that SEP3 BSs in A. lyrata can be located more distantly to their potential target genes than their counterparts in A. thaliana. In A. lyrata, we identified transposition as a mechanism to generate novel SEP3 binding locations in the genome. Comparative gene expression analysis shows that the loss/gain of BSs is associated with a change in gene expression. In summary, this study investigates the evolutionary dynamics of DNA BSs of a floral key-regulatory transcription factor and explores factors affecting this phenomenon. PMID:26429922

  2. Identification and positional distribution analysis of transcription factor binding sites for genes from the wheat fl-cDNA sequences.

    PubMed

    Chen, Zhen-Yong; Guo, Xiao-Jiang; Chen, Zhong-Xu; Chen, Wei-Ying; Wang, Ji-Rui

    2017-06-01

    The binding sites of transcription factors (TFs) in upstream DNA regions are called transcription factor binding sites (TFBSs). TFBSs are important elements for regulating gene expression. To date, there have been few studies on the profiles of TFBSs in plants. In total, 4,873 sequences with 5' upstream regions from 8530 wheat fl-cDNA sequences were used to predict TFBSs. We found 4572 TFBSs for the MADS TF family, which was twice as many as for bHLH (1951), B3 (1951), HB superfamily (1914), ERF (1820), and AP2/ERF (1725) TFs, and was approximately four times higher than the remaining TFBS types. The percentage of TFBSs and TF members showed a distinct distribution in different tissues. Overall, the distribution of TFBSs in the upstream regions of wheat fl-cDNA sequences had significant difference. Meanwhile, high frequencies of some types of TFBSs were found in specific regions in the upstream sequences. Both TFs and fl-cDNA with TFBSs predicted in the same tissues exhibited specific distribution preferences for regulating gene expression. The tissue-specific analysis of TFs and fl-cDNA with TFBSs provides useful information for functional research, and can be used to identify relationships between tissue-specific TFs and fl-cDNA with TFBSs. Moreover, the positional distribution of TFBSs indicates that some types of wheat TFBS have different positional distribution preferences in the upstream regions of genes.

  3. Ligand binding and dynamics of the monomeric epidermal growth factor receptor ectodomain

    PubMed Central

    Loeffler, Hannes H; Winn, Martyn D

    2013-01-01

    The ectodomain of the human epidermal growth factor receptor (hEGFR) controls input to several cell signalling networks via binding with extracellular growth factors. To gain insight into the dynamics and ligand binding of the ectodomain, the hEGFR monomer was subjected to molecular dynamics simulation. The monomer was found to be substantially more flexible than the ectodomain dimer studied previously. Simulations where the endogeneous ligand EGF binds to either Subdomain I or Subdomain III, or where hEGFR is unbound, show significant differences in dynamics. The molecular mechanics Poisson–Boltzmann surface area method has been used to derive relative free energies of ligand binding, and we find that the ligand is capable of binding either subdomain with a slight preference for III. Alanine-scanning calculations for the effect of selected ligand mutants on binding reproduce the trends of affinity measurements. Taken together, these results emphasize the possible role of the ectodomain monomer in the initial step of ligand binding, and add details to the static picture obtained from crystal structures. Proteins 2013; 81:1931–1943. © 2013 The Authors. Proteins published by Wiley Periodicals, Inc. PMID:23760854

  4. Highly accessible AU-rich regions in 3’ untranslated regions are hotspots for binding of regulatory factors

    PubMed Central

    2017-01-01

    Post-transcriptional regulation is regarded as one of the major processes involved in the regulation of gene expression. It is mainly performed by RNA binding proteins and microRNAs, which target RNAs and typically affect their stability. Recent efforts from the scientific community have aimed at understanding post-transcriptional regulation at a global scale by using high-throughput sequencing techniques such as cross-linking and immunoprecipitation (CLIP), which facilitates identification of binding sites of these regulatory factors. However, the diversity in the experimental procedures and bioinformatics analyses has hindered the integration of multiple datasets and thus limited the development of an integrated view of post-transcriptional regulation. In this work, we have performed a comprehensive analysis of 107 CLIP datasets from 49 different RBPs in HEK293 cells to shed light on the complex interactions that govern post-transcriptional regulation. By developing a more stringent CLIP analysis pipeline we have discovered the existence of conserved regulatory AU-rich regions in the 3’UTRs where miRNAs and RBPs that regulate several processes such as polyadenylation or mRNA stability bind. Analogous to promoters, many factors have binding sites overlapping or in close proximity in these hotspots and hence the regulation of the mRNA may depend on their relative concentrations. This hypothesis is supported by RBP knockdown experiments that alter the relative concentration of RBPs in the cell. Upon AGO2 knockdown (KD), transcripts containing “free” target sites show increased expression levels compared to those containing target sites in hotspots, which suggests that target sites within hotspots are less available for miRNAs to bind. Interestingly, these hotspots appear enriched in genes with regulatory functions such as DNA binding and RNA binding. Taken together, our results suggest that hotspots are functional regulatory elements that define an extra layer

  5. Common and distinct DNA-binding and regulatory activities of the BEN-solo transcription factor family.

    PubMed

    Dai, Qi; Ren, Aiming; Westholm, Jakub O; Duan, Hong; Patel, Dinshaw J; Lai, Eric C

    2015-01-01

    Recently, the BEN (BANP, E5R, and NAC1) domain was recognized as a new class of conserved DNA-binding domain. The fly genome encodes three proteins that bear only a single BEN domain ("BEN-solo" factors); namely, Insensitive (Insv), Bsg25A (Elba1), and CG9883 (Elba2). Insv homodimers preferentially bind CCAATTGG palindromes throughout the genome to mediate transcriptional repression, whereas Bsg25A and Elba2 heterotrimerize with their obligate adaptor, Elba3 (i.e., the ELBA complex), to recognize a CCAATAAG motif in the Fab-7 insulator. While these data suggest distinct DNA-binding properties of BEN-solo proteins, we performed reporter assays that indicate that both Bsg25A and Elba2 can individually recognize Insv consensus sites efficiently. We confirmed this by solving the structure of Bsg25A complexed to the Insv site, which showed that key aspects of the BEN:DNA recognition strategy are similar between these proteins. We next show that both Insv and ELBA proteins are competent to mediate transcriptional repression via Insv consensus sequences but that the ELBA complex appears to be selective for the ELBA site. Reciprocally, genome-wide analysis reveals that Insv exhibits significant cobinding to class I insulator elements, indicating that it may also contribute to insulator function. Indeed, we observed abundant Insv binding within the Hox complexes with substantial overlaps with class I insulators, many of which bear Insv consensus sites. Moreover, Insv coimmunoprecipitates with the class I insulator factor CP190. Finally, we observed that Insv harbors exclusive activity among fly BEN-solo factors with respect to regulation of Notch-mediated cell fate choices in the peripheral nervous system. This in vivo activity is recapitulated by BEND6, a mammalian BEN-solo factor that conserves the Notch corepressor function of Insv but not its capacity to bind Insv consensus sites. Altogether, our data define an array of common and distinct biochemical and functional

  6. Common and distinct DNA-binding and regulatory activities of the BEN-solo transcription factor family

    PubMed Central

    Dai, Qi; Ren, Aiming; Westholm, Jakub O.; Duan, Hong; Patel, Dinshaw J.

    2015-01-01

    Recently, the BEN (BANP, E5R, and NAC1) domain was recognized as a new class of conserved DNA-binding domain. The fly genome encodes three proteins that bear only a single BEN domain (“BEN-solo” factors); namely, Insensitive (Insv), Bsg25A (Elba1), and CG9883 (Elba2). Insv homodimers preferentially bind CCAATTGG palindromes throughout the genome to mediate transcriptional repression, whereas Bsg25A and Elba2 heterotrimerize with their obligate adaptor, Elba3 (i.e., the ELBA complex), to recognize a CCAATAAG motif in the Fab-7 insulator. While these data suggest distinct DNA-binding properties of BEN-solo proteins, we performed reporter assays that indicate that both Bsg25A and Elba2 can individually recognize Insv consensus sites efficiently. We confirmed this by solving the structure of Bsg25A complexed to the Insv site, which showed that key aspects of the BEN:DNA recognition strategy are similar between these proteins. We next show that both Insv and ELBA proteins are competent to mediate transcriptional repression via Insv consensus sequences but that the ELBA complex appears to be selective for the ELBA site. Reciprocally, genome-wide analysis reveals that Insv exhibits significant cobinding to class I insulator elements, indicating that it may also contribute to insulator function. Indeed, we observed abundant Insv binding within the Hox complexes with substantial overlaps with class I insulators, many of which bear Insv consensus sites. Moreover, Insv coimmunoprecipitates with the class I insulator factor CP190. Finally, we observed that Insv harbors exclusive activity among fly BEN-solo factors with respect to regulation of Notch-mediated cell fate choices in the peripheral nervous system. This in vivo activity is recapitulated by BEND6, a mammalian BEN-solo factor that conserves the Notch corepressor function of Insv but not its capacity to bind Insv consensus sites. Altogether, our data define an array of common and distinct biochemical and functional

  7. Insulin-like growth factor II messenger RNA-binding protein-3 is an independent prognostic factor in uterine leiomyosarcoma.

    PubMed

    Yasutake, Nobuko; Ohishi, Yoshihiro; Taguchi, Kenichi; Hiraki, Yuka; Oya, Masafumi; Oshiro, Yumi; Mine, Mari; Iwasaki, Takeshi; Yamamoto, Hidetaka; Kohashi, Kenichi; Sonoda, Kenzo; Kato, Kiyoko; Oda, Yoshinao

    2018-04-01

    The aim of this study was to identify the prognostic factors of uterine leiomyosarcoma (ULMS). We reviewed 60 cases of surgically resected ULMSs and investigated conventional clinicopathological factors, together with the expression of insulin-like growth factor II messenger RNA-binding protein-3 (IMP3), hormone receptors and cell cycle regulatory markers by immunohistochemistry. Mediator complex subunit 12 (MED12) mutation analysis was also performed. Univariate analyses revealed that advanced stage (P < 0.0001), older age (P = 0.0244) and IMP3 expression (P = 0.0011) were significant predictors of a poor outcome. Multivariate analysis revealed advanced stage (P < 0.0001) and IMP3 (P = 0.0373) as independent predictors of a poor prognosis. Expressions of cell cycle markers and hormone receptors, and MED12 mutations (12% in ULMSs) were not identified as prognostic markers in this study. IMP3 expression in ULMS could be a marker of a poor prognosis. © 2017 John Wiley & Sons Ltd.

  8. Discovery and validation of information theory-based transcription factor and cofactor binding site motifs.

    PubMed

    Lu, Ruipeng; Mucaki, Eliseos J; Rogan, Peter K

    2017-03-17

    Data from ChIP-seq experiments can derive the genome-wide binding specificities of transcription factors (TFs) and other regulatory proteins. We analyzed 765 ENCODE ChIP-seq peak datasets of 207 human TFs with a novel motif discovery pipeline based on recursive, thresholded entropy minimization. This approach, while obviating the need to compensate for skewed nucleotide composition, distinguishes true binding motifs from noise, quantifies the strengths of individual binding sites based on computed affinity and detects adjacent cofactor binding sites that coordinate with the targets of primary, immunoprecipitated TFs. We obtained contiguous and bipartite information theory-based position weight matrices (iPWMs) for 93 sequence-specific TFs, discovered 23 cofactor motifs for 127 TFs and revealed six high-confidence novel motifs. The reliability and accuracy of these iPWMs were determined via four independent validation methods, including the detection of experimentally proven binding sites, explanation of effects of characterized SNPs, comparison with previously published motifs and statistical analyses. We also predict previously unreported TF coregulatory interactions (e.g. TF complexes). These iPWMs constitute a powerful tool for predicting the effects of sequence variants in known binding sites, performing mutation analysis on regulatory SNPs and predicting previously unrecognized binding sites and target genes. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Biophysical Fitness Landscapes for Transcription Factor Binding Sites

    PubMed Central

    Haldane, Allan; Manhart, Michael; Morozov, Alexandre V.

    2014-01-01

    Phenotypic states and evolutionary trajectories available to cell populations are ultimately dictated by complex interactions among DNA, RNA, proteins, and other molecular species. Here we study how evolution of gene regulation in a single-cell eukaryote S. cerevisiae is affected by interactions between transcription factors (TFs) and their cognate DNA sites. Our study is informed by a comprehensive collection of genomic binding sites and high-throughput in vitro measurements of TF-DNA binding interactions. Using an evolutionary model for monomorphic populations evolving on a fitness landscape, we infer fitness as a function of TF-DNA binding to show that the shape of the inferred fitness functions is in broad agreement with a simple functional form inspired by a thermodynamic model of two-state TF-DNA binding. However, the effective parameters of the model are not always consistent with physical values, indicating selection pressures beyond the biophysical constraints imposed by TF-DNA interactions. We find little statistical support for the fitness landscape in which each position in the binding site evolves independently, indicating that epistasis is common in the evolution of gene regulation. Finally, by correlating TF-DNA binding energies with biological properties of the sites or the genes they regulate, we are able to rule out several scenarios of site-specific selection, under which binding sites of the same TF would experience different selection pressures depending on their position in the genome. These findings support the existence of universal fitness landscapes which shape evolution of all sites for a given TF, and whose properties are determined in part by the physics of protein-DNA interactions. PMID:25010228

  10. Direct optical mapping of transcription factor binding sites on field-stretched λ-DNA in nanofluidic devices

    PubMed Central

    Sriram, K. K.; Yeh, Jia-Wei; Lin, Yii-Lih; Chang, Yi-Ren; Chou, Chia-Fu

    2014-01-01

    Mapping transcription factor (TF) binding sites along a DNA backbone is crucial in understanding the regulatory circuits that control cellular processes. Here, we deployed a method adopting bioconjugation, nanofluidic confinement and fluorescence single molecule imaging for direct mapping of TF (RNA polymerase) binding sites on field-stretched single DNA molecules. Using this method, we have mapped out five of the TF binding sites of E. coli RNA polymerase to bacteriophage λ-DNA, where two promoter sites and three pseudo-promoter sites are identified with the corresponding binding frequency of 45% and 30%, respectively. Our method is quick, robust and capable of resolving protein-binding locations with high accuracy (∼ 300 bp), making our system a complementary platform to the methods currently practiced. It is advantageous in parallel analysis and less prone to false positive results over other single molecule mapping techniques such as optical tweezers, atomic force microscopy and molecular combing, and could potentially be extended to general mapping of protein–DNA interaction sites. PMID:24753422

  11. Role of promoter DNA sequence variations on the binding of EGR1 transcription factor.

    PubMed

    Mikles, David C; Schuchardt, Brett J; Bhat, Vikas; McDonald, Caleb B; Farooq, Amjad

    2014-05-01

    In response to a wide variety of stimuli such as growth factors and hormones, EGR1 transcription factor is rapidly induced and immediately exerts downstream effects central to the maintenance of cellular homeostasis. Herein, our biophysical analysis reveals that DNA sequence variations within the target gene promoters tightly modulate the energetics of binding of EGR1 and that nucleotide substitutions at certain positions are much more detrimental to EGR1-DNA interaction than others. Importantly, the reduction in binding affinity poorly correlates with the loss of enthalpy and gain of entropy-a trend indicative of a complex interplay between underlying thermodynamic factors due to the differential role of water solvent upon nucleotide substitution. We also provide a rationale for the physical basis of the effect of nucleotide substitutions on the EGR1-DNA interaction at atomic level. Taken together, our study bears important implications on understanding the molecular determinants of a key protein-DNA interaction at the cross-roads of human health and disease. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Generation of tumour-necrosis-factor-alpha-specific affibody molecules capable of blocking receptor binding in vitro.

    PubMed

    Jonsson, Andreas; Wållberg, Helena; Herne, Nina; Ståhl, Stefan; Frejd, Fredrik Y

    2009-08-17

    Affibody molecules specific for human TNF-alpha (tumour necrosis factor-alpha) were selected by phage-display technology from a library based on the 58-residue Protein A-derived Z domain. TNF-alpha is a proinflammatory cytokine involved in several inflammatory diseases and, to this day, four TNF-alpha-blocking protein pharmaceuticals have been approved for clinical use. The phage selection generated 18 unique cysteine-free affibody sequences of which 12 were chosen, after sequence cluster analysis, for characterization as proteins. Biosensor binding studies of the 12 Escherichia coli-produced and IMAC (immobilized-metal-ion affinity chromatography)-purified affibody molecules revealed three variants that demonstrated the strongest binding to human TNF-alpha. These three affibody molecules were subjected to kinetic binding analysis and also tested for their binding to mouse, rat and pig TNF-alpha. For ZTNF-alpha:185, subnanomolar affinity (KD=0.1-0.5 nM) for human TNF-alpha was demonstrated, as well as significant binding to TNF-alpha from the other species. Furthermore, the binding site was found to overlap with the binding site for the TNF-alpha receptor, since this interaction could be efficiently blocked by the ZTNF-alpha:185 affibody. When investigating six dimeric affibody constructs with different linker lengths, and one trimeric construct, it was found that the inhibition of the TNF-alpha binding to its receptor could be further improved by using dimers with extended linkers and/or a trimeric affibody construct. The potential implication of the results for the future design of affibody-based reagents for the diagnosis of inflammation is discussed.

  13. Inhibition by Siomycin and Thiostrepton of Both Aminoacyl-tRNA and Factor G Binding to Ribosomes

    PubMed Central

    Ll, Juan Modole; Cabrer, Bartolomé; Parmeggiani, Andrea; Azquez, David V

    1971-01-01

    Siomycin, a peptide antibiotic that interacts with the 50S ribosomal subunit and inhibits binding of factor G, is shown also to inhibit binding of aminoacyl-tRNA; however, it does not impair binding of fMet-tRNA and completion of the initiation complex. Moreover, unlike other inhibitors of aminoacyl-tRNA binding (tetracycline, sparsomycin, and streptogramin A), siomycin completely abolishes the GTPase activity associated with the binding of aminoacyl-tRNA catalyzed by factor Tu. A single-site interaction of siomycin appears to be responsible for its effect on both the binding of the aminoacyl-tRNA-Tu-GTP complex and that of factor G. PMID:4331558

  14. In Silico Analysis of Gene Expression Network Components Underlying Pigmentation Phenotypes in the Python Identified Evolutionarily Conserved Clusters of Transcription Factor Binding Sites

    PubMed Central

    2016-01-01

    Color variation provides the opportunity to investigate the genetic basis of evolution and selection. Reptiles are less studied than mammals. Comparative genomics approaches allow for knowledge gained in one species to be leveraged for use in another species. We describe a comparative vertebrate analysis of conserved regulatory modules in pythons aimed at assessing bioinformatics evidence that transcription factors important in mammalian pigmentation phenotypes may also be important in python pigmentation phenotypes. We identified 23 python orthologs of mammalian genes associated with variation in coat color phenotypes for which we assessed the extent of pairwise protein sequence identity between pythons and mouse, dog, horse, cow, chicken, anole lizard, and garter snake. We next identified a set of melanocyte/pigment associated transcription factors (CREB, FOXD3, LEF-1, MITF, POU3F2, and USF-1) that exhibit relatively conserved sequence similarity within their DNA binding regions across species based on orthologous alignments across multiple species. Finally, we identified 27 evolutionarily conserved clusters of transcription factor binding sites within ~200-nucleotide intervals of the 1500-nucleotide upstream regions of AIM1, DCT, MC1R, MITF, MLANA, OA1, PMEL, RAB27A, and TYR from Python bivittatus. Our results provide insight into pigment phenotypes in pythons. PMID:27698666

  15. In Silico Analysis of Gene Expression Network Components Underlying Pigmentation Phenotypes in the Python Identified Evolutionarily Conserved Clusters of Transcription Factor Binding Sites.

    PubMed

    Irizarry, Kristopher J L; Bryden, Randall L

    2016-01-01

    Color variation provides the opportunity to investigate the genetic basis of evolution and selection. Reptiles are less studied than mammals. Comparative genomics approaches allow for knowledge gained in one species to be leveraged for use in another species. We describe a comparative vertebrate analysis of conserved regulatory modules in pythons aimed at assessing bioinformatics evidence that transcription factors important in mammalian pigmentation phenotypes may also be important in python pigmentation phenotypes. We identified 23 python orthologs of mammalian genes associated with variation in coat color phenotypes for which we assessed the extent of pairwise protein sequence identity between pythons and mouse, dog, horse, cow, chicken, anole lizard, and garter snake. We next identified a set of melanocyte/pigment associated transcription factors (CREB, FOXD3, LEF-1, MITF, POU3F2, and USF-1) that exhibit relatively conserved sequence similarity within their DNA binding regions across species based on orthologous alignments across multiple species. Finally, we identified 27 evolutionarily conserved clusters of transcription factor binding sites within ~200-nucleotide intervals of the 1500-nucleotide upstream regions of AIM1, DCT, MC1R, MITF, MLANA, OA1, PMEL, RAB27A, and TYR from Python bivittatus . Our results provide insight into pigment phenotypes in pythons.

  16. Dual DNA binding property of ABA insensitive 3 like factors targeted to promoters responsive to ABA and auxin.

    PubMed

    Nag, Ronita; Maity, Manas Kanti; Dasgupta, Maitrayee

    2005-11-01

    The ABA responsive ABI3 and the auxin responsive ARF family of transcription factors bind the CATGCATG (Sph) and TGTCTC core motifs in ABA and auxin response elements (ABRE and AuxRE), respectively. Several evidences indicate ABI3s to act downstream to auxin too. Because DNA binding domain of ABI3s shows significant overlap with ARFs we enquired whether auxin responsiveness through ABI3s could be mediated by their binding to canonical AuxREs. Investigations were undertaken through in vitro gel mobility shift assays (GMSA) using the DNA binding domain B3 of PvAlf (Phaseolus vulgaris ABI3 like factor) and upstream regions of auxin responsive gene GH3 (-267 to -141) and ABA responsive gene Em (-316 to -146) harboring AuxRE and ABRE, respectively. We demonstrate that B3 domain of PvAlf could bind AuxRE only when B3 was associated with its flanking domain B2 (B2B3). Such strict requirement of B2 domain was not observed with ABRE, where B3 could bind with or without being associated with B2. This dual specificity in DNA binding of ABI3s was also demonstrated with nuclear extracts of cultured cells of Arachis hypogea. Supershift analysis of ABRE and AuxRE bound nuclear proteins with antibodies raised against B2B3 domains of PvAlf revealed that ABI3 associated complexes were detectable in association with both cis elements. Competition GMSA confirmed the same complexes to bind ABRE and AuxRE. This dual specificity of ABI3 like factors in DNA binding targeted to natural promoters responsive to ABA and auxin suggests them to have a potential role in conferring crosstalk between these two phytohormones.

  17. An efficient method to transcription factor binding sites imputation via simultaneous completion of multiple matrices with positional consistency.

    PubMed

    Guo, Wei-Li; Huang, De-Shuang

    2017-08-22

    Transcription factors (TFs) are DNA-binding proteins that have a central role in regulating gene expression. Identification of DNA-binding sites of TFs is a key task in understanding transcriptional regulation, cellular processes and disease. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) enables genome-wide identification of in vivo TF binding sites. However, it is still difficult to map every TF in every cell line owing to cost and biological material availability, which poses an enormous obstacle for integrated analysis of gene regulation. To address this problem, we propose a novel computational approach, TFBSImpute, for predicting additional TF binding profiles by leveraging information from available ChIP-seq TF binding data. TFBSImpute fuses the dataset to a 3-mode tensor and imputes missing TF binding signals via simultaneous completion of multiple TF binding matrices with positional consistency. We show that signals predicted by our method achieve overall similarity with experimental data and that TFBSImpute significantly outperforms baseline approaches, by assessing the performance of imputation methods against observed ChIP-seq TF binding profiles. Besides, motif analysis shows that TFBSImpute preforms better in capturing binding motifs enriched in observed data compared with baselines, indicating that the higher performance of TFBSImpute is not simply due to averaging related samples. We anticipate that our approach will constitute a useful complement to experimental mapping of TF binding, which is beneficial for further study of regulation mechanisms and disease.

  18. Dynamic Factors Affecting Gaseous Ligand Binding in an Artificial Oxygen Transport Protein‡

    PubMed Central

    Zhang, Lei; Andersen, Eskil M.E.; Khajo, Abdelahad; Magliozzo, Richard S.; Koder, Ronald L.

    2013-01-01

    We report the functional analysis of an artificial hexacoordinate oxygen transport protein, HP7, which operates via a mechanism similar to that of human neuroglobin and cytoglobin: the destabilization of one of two heme-ligating histidine residues. In the case of HP7 this is the result of the coupling of histidine side chain ligation with the burial of three charged glutamate residues on the same helix. Here we compare gaseous ligand binding, including rates, affinities and oxyferrous state lifetimes, of both heme binding sites in HP7. We find that despite the identical sequence of helices in both binding sites, there are differences in oxygen affinity and oxyferrous state lifetime which may be the result of differences in the freedom of motion imposed by the candelabra fold on the two sites of the protein. We further examine the effect of mutational removal of the buried glutamates on function. Heme iron in the ferrous state of this mutant is rapidly oxidized when when exposed to oxygen. Compared to HP7, distal histidine affinity is increased by a 22-fold decrease in the histidine ligand off-rate. EPR comparison of these ferric hemoproteins demonstrates that the mutation increases disorder at the heme binding site. NMR-detected deuterium exchange demonstrates that the mutation greatly increases water penetration into the protein core. The inability of the mutant protein to bind oxygen may be due to increased water penetration, the large decrease in binding rate caused by the increase in distal histidine affinity, or a combination of the two factors. Together these data underline the importance of the control of protein dynamics in the design of functional artificial proteins. PMID:23249163

  19. Elucidating the evolutionary conserved DNA-binding specificities of WRKY transcription factors by molecular dynamics and in vitro binding assays

    PubMed Central

    Brand, Luise H.; Fischer, Nina M.; Harter, Klaus; Kohlbacher, Oliver; Wanke, Dierk

    2013-01-01

    WRKY transcription factors constitute a large protein family in plants that is involved in the regulation of developmental processes and responses to biotic or abiotic stimuli. The question arises how stimulus-specific responses are mediated given that the highly conserved WRKY DNA-binding domain (DBD) exclusively recognizes the ‘TTGACY’ W-box consensus. We speculated that the W-box consensus might be more degenerate and yet undetected differences in the W-box consensus of WRKYs of different evolutionary descent exist. The phylogenetic analysis of WRKY DBDs suggests that they evolved from an ancestral group IIc-like WRKY early in the eukaryote lineage. A direct descent of group IIc WRKYs supports a monophyletic origin of all other group II and III WRKYs from group I by loss of an N-terminal DBD. Group I WRKYs are of paraphyletic descent and evolved multiple times independently. By homology modeling, molecular dynamics simulations and in vitro DNA–protein interaction-enzyme-linked immunosorbent assay with AtWRKY50 (IIc), AtWRKY33 (I) and AtWRKY11 (IId) DBDs, we revealed differences in DNA-binding specificities. Our data imply that other components are essentially required besides the W-box-specific binding to DNA to facilitate a stimulus-specific WRKY function. PMID:23975197

  20. Interaction of AIM with insulin-like growth factor-binding protein-4

    PubMed Central

    YOU, QIANG; WU, YAN; YAO, NANNAN; SHEN, GUANNAN; ZHANG, YING; XU, LIANGGUO; LI, GUIYING; JU, CYNTHIA

    2015-01-01

    Apoptosis inhibitor of macrophages (AIM/cluster of differentiation 5 antigen-like/soluble protein α) has been shown to inhibit cellular apoptosis; however, the underlying molecular mechanism has not been elucidated. Using yeast two-hybrid screening, the present study uncovered that AIM binds to insulin-like growth factor binding protein-4 (IGFBP-4). AIM interaction with IGFBP-4, as well as IGFBP-2 and -3, but not with IGFBP-1, -5 and -6, was further confirmed by co-immunoprecipitation (co-IP) using 293 cells. The binding activity and affinity between AIM and IGFBP-4 in vitro were analyzed by co-IP and biolayer interferometry. Serum depletion-induced cellular apoptosis was attenuated by insulin-like growth factor-I (IGF-I), and this effect was abrogated by IGFBP-4. Of note, in the presence of AIM, the inhibitory effect of IGFBP-4 on the anti-apoptosis function of IGF-I was attenuated, possibly through binding of AIM with IGFBP-4. In conclusion, to the best of our knowledge, the present study provides the first evidence that AIM binds to IGFBP-2, -3 and -4. The data suggest that this interaction may contribute to the mechanism of AIM-mediated anti-apoptosis function. PMID:26135353

  1. Drosophila transcription factor Tramtrack69 binds MEP1 to recruit the chromatin remodeler NuRD.

    PubMed

    Reddy, B Ashok; Bajpe, Prashanth Kumar; Bassett, Andrew; Moshkin, Yuri M; Kozhevnikova, Elena; Bezstarosti, Karel; Demmers, Jeroen A A; Travers, Andrew A; Verrijzer, C Peter

    2010-11-01

    ATP-dependent chromatin-remodeling complexes (remodelers) are essential regulators of chromatin structure and gene transcription. How remodelers can act in a gene-selective manner has remained enigmatic. A yeast two-hybrid screen for proteins binding the Drosophila transcription factor Tramtrack69 (TTK69) identified MEP1. Proteomic characterization revealed that MEP1 is a tightly associated subunit of the NuRD remodeler, harboring the Mi2 enzymatic core ATPase. In addition, we identified the fly homolog of human Deleted in oral cancer 1 (DOC1), also known as CDK2-associated protein 1 (CDK2AP1), as a bona fide NuRD subunit. Biochemical and genetic assays supported the functional association between MEP1, Mi2, and TTK69. Genomewide expression analysis established that TTK69, MEP1, and Mi2 cooperate closely to control transcription. The TTK69 transcriptome profile correlates poorly with remodelers other than NuRD, emphasizing the selectivity of remodeler action. On the genes examined, TTK69 is able to bind chromatin in the absence of NuRD, but targeting of NuRD is dependent on TTK69. Thus, there appears to be a hierarchical relationship in which transcription factor binding precedes remodeler recruitment.

  2. Proteomic analysis identifies insulin-like growth factor-binding protein-related protein-1 as a podocyte product.

    PubMed

    Matsumoto, Takayuki; Hess, Sonja; Kajiyama, Hiroshi; Sakairi, Toru; Saleem, Moin A; Mathieson, Peter W; Nojima, Yoshihisa; Kopp, Jeffrey B

    2010-10-01

    The podocyte secretory proteome may influence the phenotype of adjacent podocytes, endothelial cells, parietal epithelial cells, and tubular epithelial cells but has not been systematically characterized. We have initiated studies to characterize this proteome, with the goal of further understanding the podocyte cell biology. We cultured differentiated conditionally immortalized human podocytes and subjected the proteins in conditioned medium to mass spectrometry. At a false discovery rate of <3%, we identified 111 candidates from conditioned medium, including 44 proteins that have signal peptides or are described as secreted proteins in the UniProt database. As validation, we confirmed that one of these proteins, insulin-like growth factor-binding protein-related protein-1 (IGFBP-rP1), was expressed in mRNA and protein of cultured podocytes. In addition, transforming growth factor-β1 stimulation increased IGFBP-rP1 in conditioned medium. We analyzed IGFBP-rP1 glomerular expression in a mouse model of human immunodeficiency virus-associated nephropathy. IGFBP-rP1 was absent from podocytes of normal mice and was expressed in podocytes and pseudocrescents of transgenic mice, where it was coexpressed with desmin, a podocyte injury marker. We conclude that IGFBP-rP1 may be a product of injured podocytes. Further analysis of the podocyte secretory proteome may identify biomarkers of podocyte injury.

  3. Transcription Factors Bind Thousands of Active and InactiveRegions in the Drosophila Blastoderm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xiao-Yong; MacArthur, Stewart; Bourgon, Richard

    2008-01-10

    Identifying the genomic regions bound by sequence-specific regulatory factors is central both to deciphering the complex DNA cis-regulatory code that controls transcription in metazoans and to determining the range of genes that shape animal morphogenesis. Here, we use whole-genome tiling arrays to map sequences bound in Drosophila melanogaster embryos by the six maternal and gap transcription factors that initiate anterior-posterior patterning. We find that these sequence-specific DNA binding proteins bind with quantitatively different specificities to highly overlapping sets of several thousand genomic regions in blastoderm embryos. Specific high- and moderate-affinity in vitro recognition sequences for each factor are enriched inmore » bound regions. This enrichment, however, is not sufficient to explain the pattern of binding in vivo and varies in a context-dependent manner, demonstrating that higher-order rules must govern targeting of transcription factors. The more highly bound regions include all of the over forty well-characterized enhancers known to respond to these factors as well as several hundred putative new cis-regulatory modules clustered near developmental regulators and other genes with patterned expression at this stage of embryogenesis. The new targets include most of the microRNAs (miRNAs) transcribed in the blastoderm, as well as all major zygotically transcribed dorsal-ventral patterning genes, whose expression we show to be quantitatively modulated by anterior-posterior factors. In addition to these highly bound regions, there are several thousand regions that are reproducibly bound at lower levels. However, these poorly bound regions are, collectively, far more distant from genes transcribed in the blastoderm than highly bound regions; are preferentially found in protein-coding sequences; and are less conserved than highly bound regions. Together these observations suggest that many of these poorly-bound regions are not involved in early

  4. Computational identification of developmental enhancers:conservation and function of transcription factor binding-site clustersin drosophila melanogaster and drosophila psedoobscura

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berman, Benjamin P.; Pfeiffer, Barret D.; Laverty, Todd R.

    2004-08-06

    Background The identification of sequences that control transcription in metazoans is a major goal of genome analysis. In a previous study, we demonstrated that searching for clusters of predicted transcription factor binding sites could discover active regulatory sequences, and identified 37 regions of the Drosophila melanogaster genome with high densities of predicted binding sites for five transcription factors involved in anterior-posterior embryonic patterning. Nine of these clusters overlapped known enhancers. Here, we report the results of in vivo functional analysis of 27 remaining clusters. Results We generated transgenic flies carrying each cluster attached to a basal promoter and reporter gene,more » and assayed embryos for reporter gene expression. Six clusters are enhancers of adjacent genes: giant, fushi tarazu, odd-skipped, nubbin, squeeze and pdm2; three drive expression in patterns unrelated to those of neighboring genes; the remaining 18 do not appear to have enhancer activity. We used the Drosophila pseudoobscura genome to compare patterns of evolution in and around the 15 positive and 18 false-positive predictions. Although conservation of primary sequence cannot distinguish true from false positives, conservation of binding-site clustering accurately discriminates functional binding-site clusters from those with no function. We incorporated conservation of binding-site clustering into a new genome-wide enhancer screen, and predict several hundred new regulatory sequences, including 85 adjacent to genes with embryonic patterns. Conclusions Measuring conservation of sequence features closely linked to function - such as binding-site clustering - makes better use of comparative sequence data than commonly used methods that examine only sequence identity.« less

  5. Computational identification of developmental enhancers:conservation and function of transcription factor binding-site clustersin drosophila melanogaster and drosophila psedoobscura

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berman, Benjamin P.; Pfeiffer, Barret D.; Laverty, Todd R.

    2004-08-06

    The identification of sequences that control transcription in metazoans is a major goal of genome analysis. In a previous study, we demonstrated that searching for clusters of predicted transcription factor binding sites could discover active regulatory sequences, and identified 37 regions of the Drosophila melanogaster genome with high densities of predicted binding sites for five transcription factors involved in anterior-posterior embryonic patterning. Nine of these clusters overlapped known enhancers. Here, we report the results of in vivo functional analysis of 27 remaining clusters. We generated transgenic flies carrying each cluster attached to a basal promoter and reporter gene, and assayedmore » embryos for reporter gene expression. Six clusters are enhancers of adjacent genes: giant, fushi tarazu, odd-skipped, nubbin, squeeze and pdm2; three drive expression in patterns unrelated to those of neighboring genes; the remaining 18 do not appear to have enhancer activity. We used the Drosophila pseudoobscura genome to compare patterns of evolution in and around the 15 positive and 18 false-positive predictions. Although conservation of primary sequence cannot distinguish true from false positives, conservation of binding-site clustering accurately discriminates functional binding-site clusters from those with no function. We incorporated conservation of binding-site clustering into a new genome-wide enhancer screen, and predict several hundred new regulatory sequences, including 85 adjacent to genes with embryonic patterns. Measuring conservation of sequence features closely linked to function--such as binding-site clustering--makes better use of comparative sequence data than commonly used methods that examine only sequence identity.« less

  6. Saccharin and Cyclamate Inhibit Binding of Epidermal Growth Factor

    NASA Astrophysics Data System (ADS)

    Lee, L. S.

    1981-02-01

    The binding of 125I-labeled mouse epidermal growth factor (EGF) to 18 cell lines, including HeLa (human carcinoma), MDCK (dog kidney cells), HTC (rat hepatoma), K22 (rat liver), HF (human foreskin), GM17 (human skin fibroblasts), XP (human xeroderma pigmentosum fibroblasts), and 3T3-L1 (mouse fibroblasts), was inhibited by saccharin and cyclamate. The human cells were more sensitive to inhibition by these sweeteners than mouse or rat cells. EGF at doses far above the physiological levels reversed the inhibition in rodent cells but not in HeLa cells. In HeLa cells, the doses of saccharin and cyclamate needed for 50% inhibition were 3.5 and 9.3 mg/ml, respectively. Glucose, 2-deoxyglucose, sucrose, and xylitol did not inhibit EGF binding. Previous studies have shown that phorbol esters, strongly potent tumor promoters, also inhibit EGF binding to tissue culture cells. To explain the EGF binding inhibition by such greatly dissimilar molecules as phorbol esters, saccharin, and cyclamate, it is suggested that they operate through the activation of a hormone response control unit.

  7. Dynamic factors affecting gaseous ligand binding in an artificial oxygen transport protein.

    PubMed

    Zhang, Lei; Andersen, Eskil M E; Khajo, Abdelahad; Magliozzo, Richard S; Koder, Ronald L

    2013-01-22

    We report the functional analysis of an artificial hexacoordinate oxygen transport protein, HP7, which operates via a mechanism similar to that of human neuroglobin and cytoglobin: the destabilization of one of two heme-ligating histidine residues. In the case of HP7, this is the result of the coupling of histidine side chain ligation with the burial of three charged glutamate residues on the same helix. Here we compare gaseous ligand binding, including rates, affinities, and oxyferrous state lifetimes, of both heme binding sites in HP7. We find that despite the identical sequence of helices in both binding sites, there are differences in oxygen affinity and oxyferrous state lifetime that may be the result of differences in the freedom of motion imposed by the candelabra fold on the two sites of the protein. We further examine the effect of mutational removal of the buried glutamates on function. Heme iron in the ferrous state of this mutant is rapidly oxidized when exposed to oxygen. Compared to that of HP7, the distal histidine affinity is increased by a 22-fold decrease in the histidine ligand off rate. Electron paramagnetic resonance comparison of these ferric hemoproteins demonstrates that the mutation increases the level of disorder at the heme binding site. Nuclear magnetic resonance-detected deuterium exchange demonstrates that the mutation greatly increases the degree of penetration of water into the protein core. The inability of the mutant protein to bind oxygen may be due to an increased level of water penetration, the large decrease in binding rate caused by the increase in distal histidine affinity, or a combination of the two factors. Together, these data underline the importance of the control of protein dynamics in the design of functional artificial proteins.

  8. Quantification of transcription factor-DNA binding affinity in a living cell

    PubMed Central

    Belikov, Sergey; Berg, Otto G.; Wrange, Örjan

    2016-01-01

    The apparent dissociation constant (Kd) for specific binding of glucocorticoid receptor (GR) and androgen receptor (AR) to DNA was determined in vivo in Xenopus oocytes. The total nuclear receptor concentration was quantified as specifically retained [3H]-hormone in manually isolated oocyte nuclei. DNA was introduced by nuclear microinjection of single stranded phagemid DNA, chromatin is then formed during second strand synthesis. The fraction of DNA sites occupied by the expressed receptor was determined by dimethylsulphate in vivo footprinting and used for calculation of the receptor-DNA binding affinity. The forkhead transcription factor FoxA1 enhanced the DNA binding by GR with an apparent Kd of ∼1 μM and dramatically stimulated DNA binding by AR with an apparent Kd of ∼0.13 μM at a composite androgen responsive DNA element containing one FoxA1 binding site and one palindromic hormone receptor binding site known to bind one receptor homodimer. FoxA1 exerted a weak constitutive- and strongly cooperative DNA binding together with AR but had a less prominent effect with GR, the difference reflecting the licensing function of FoxA1 at this androgen responsive DNA element. PMID:26657626

  9. Analysis of the DNA-Binding Activities of the Arabidopsis R2R3-MYB Transcription Factor Family by One-Hybrid Experiments in Yeast

    PubMed Central

    Kelemen, Zsolt; Sebastian, Alvaro; Xu, Wenjia; Grain, Damaris; Salsac, Fabien; Avon, Alexandra; Berger, Nathalie; Tran, Joseph; Dubreucq, Bertrand; Lurin, Claire; Lepiniec, Loïc; Contreras-Moreira, Bruno; Dubos, Christian

    2015-01-01

    The control of growth and development of all living organisms is a complex and dynamic process that requires the harmonious expression of numerous genes. Gene expression is mainly controlled by the activity of sequence-specific DNA binding proteins called transcription factors (TFs). Amongst the various classes of eukaryotic TFs, the MYB superfamily is one of the largest and most diverse, and it has considerably expanded in the plant kingdom. R2R3-MYBs have been extensively studied over the last 15 years. However, DNA-binding specificity has been characterized for only a small subset of these proteins. Therefore, one of the remaining challenges is the exhaustive characterization of the DNA-binding specificity of all R2R3-MYB proteins. In this study, we have developed a library of Arabidopsis thaliana R2R3-MYB open reading frames, whose DNA-binding activities were assayed in vivo (yeast one-hybrid experiments) with a pool of selected cis-regulatory elements. Altogether 1904 interactions were assayed leading to the discovery of specific patterns of interactions between the various R2R3-MYB subgroups and their DNA target sequences and to the identification of key features that govern these interactions. The present work provides a comprehensive in vivo analysis of R2R3-MYB binding activities that should help in predicting new DNA motifs and identifying new putative target genes for each member of this very large family of TFs. In a broader perspective, the generated data will help to better understand how TF interact with their target DNA sequences. PMID:26484765

  10. Binding affinities of vascular endothelial growth factor (VEGF) for heparin-derived oligosaccharides

    PubMed Central

    Zhao, Wenjing; McCallum, Scott A.; Xiao, Zhongping; Zhang, Fuming; Linhardt, Robert J.

    2011-01-01

    Heparin and heparan sulphate (HS) exert their wide range of biological activities by interacting with extracellular protein ligands. Among these important protein ligands are various angiogenic growth factors and cytokines. HS-binding to vascular endothelial growth factor (VEGF) regulates multiple aspects of vascular development and function through its specific interaction with HS. Many studies have focused on HS-derived or HS-mimicking structures for the characterization of VEGF165 interaction with HS. Using a heparinase 1-prepared small library of heparin-derived oligosaccharides ranging from hexasaccharide to octadecasaccharide, we systematically investigated the heparin-specific structural features required for VEGF binding. We report the apparent affinities for the association between the heparin-derived oligosaccharides with both VEGF165 and VEGF55, a peptide construct encompassing exclusively the heparin-binding domain of VEGF165. An octasaccharide was the minimum size of oligosaccharide within the library to efficiently bind to both forms of VEGF and that a tetradecasaccharide displayed an effective binding affinity to VEGF165 comparable to unfractionated heparin. The range of relative apparent binding affinities among VEGF and the panel of heparin-derived oligosaccharides demonstrate that VEGF binding affinity likely depends on the specific structural features of these oligosaccharides including their degree of sulphation and sugar ring stereochemistry and conformation. Notably, the unique 3-O-sulpho group found within the specific antithrombin binding site of heparin is not required for VEGF165 binding. These findings afford new insight into the inherent kinetics and affinities for VEGF association with heparin and heparin-derived oligosaccharides with key residue specific modifications and may potentially benefit the future design of oligosaccharide-based anti-angiogenesis drugs. PMID:21658003

  11. Sequestration of cAMP response element-binding proteins by transcription factor decoys causes collateral elaboration of regenerating Aplysia motor neuron axons.

    PubMed

    Dash, P K; Tian, L M; Moore, A N

    1998-07-07

    Axonal injury increases intracellular Ca2+ and cAMP and has been shown to induce gene expression, which is thought to be a key event for regeneration. Increases in intracellular Ca2+ and/or cAMP can alter gene expression via activation of a family of transcription factors that bind to and modulate the expression of CRE (Ca2+/cAMP response element) sequence-containing genes. We have used Aplysia motor neurons to examine the role of CRE-binding proteins in axonal regeneration after injury. We report that axonal injury increases the binding of proteins to a CRE sequence-containing probe. In addition, Western blot analysis revealed that the level of ApCREB2, a CRE sequence-binding repressor, was enhanced as a result of axonal injury. The sequestration of CRE-binding proteins by microinjection of CRE sequence-containing plasmids enhanced axon collateral formation (both number and length) as compared with control plasmid injections. These findings show that Ca2+/cAMP-mediated gene expression via CRE-binding transcription factors participates in the regeneration of motor neuron axons.

  12. Bioinformatics approaches to predict target genes from transcription factor binding data.

    PubMed

    Essebier, Alexandra; Lamprecht, Marnie; Piper, Michael; Bodén, Mikael

    2017-12-01

    Transcription factors regulate gene expression and play an essential role in development by maintaining proliferative states, driving cellular differentiation and determining cell fate. Transcription factors are capable of regulating multiple genes over potentially long distances making target gene identification challenging. Currently available experimental approaches to detect distal interactions have multiple weaknesses that have motivated the development of computational approaches. Although an improvement over experimental approaches, existing computational approaches are still limited in their application, with different weaknesses depending on the approach. Here, we review computational approaches with a focus on data dependency, cell type specificity and usability. With the aim of identifying transcription factor target genes, we apply available approaches to typical transcription factor experimental datasets. We show that approaches are not always capable of annotating all transcription factor binding sites; binding sites should be treated disparately; and a combination of approaches can increase the biological relevance of the set of genes identified as targets. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. A Graphical Modelling Approach to the Dissection of Highly Correlated Transcription Factor Binding Site Profiles

    PubMed Central

    Stojnic, Robert; Fu, Audrey Qiuyan; Adryan, Boris

    2012-01-01

    Inferring the combinatorial regulatory code of transcription factors (TFs) from genome-wide TF binding profiles is challenging. A major reason is that TF binding profiles significantly overlap and are therefore highly correlated. Clustered occurrence of multiple TFs at genomic sites may arise from chromatin accessibility and local cooperation between TFs, or binding sites may simply appear clustered if the profiles are generated from diverse cell populations. Overlaps in TF binding profiles may also result from measurements taken at closely related time intervals. It is thus of great interest to distinguish TFs that directly regulate gene expression from those that are indirectly associated with gene expression. Graphical models, in particular Bayesian networks, provide a powerful mathematical framework to infer different types of dependencies. However, existing methods do not perform well when the features (here: TF binding profiles) are highly correlated, when their association with the biological outcome is weak, and when the sample size is small. Here, we develop a novel computational method, the Neighbourhood Consistent PC (NCPC) algorithms, which deal with these scenarios much more effectively than existing methods do. We further present a novel graphical representation, the Direct Dependence Graph (DDGraph), to better display the complex interactions among variables. NCPC and DDGraph can also be applied to other problems involving highly correlated biological features. Both methods are implemented in the R package ddgraph, available as part of Bioconductor (http://bioconductor.org/packages/2.11/bioc/html/ddgraph.html). Applied to real data, our method identified TFs that specify different classes of cis-regulatory modules (CRMs) in Drosophila mesoderm differentiation. Our analysis also found depletion of the early transcription factor Twist binding at the CRMs regulating expression in visceral and somatic muscle cells at later stages, which suggests a CRM

  14. Effects of nucleoside analog incorporation on DNA binding to the DNA binding domain of the GATA-1 erythroid transcription factor.

    PubMed

    Foti, M; Omichinski, J G; Stahl, S; Maloney, D; West, J; Schweitzer, B I

    1999-02-05

    We investigate here the effects of the incorporation of the nucleoside analogs araC (1-beta-D-arabinofuranosylcytosine) and ganciclovir (9-[(1,3-dihydroxy-2-propoxy)methyl] guanine) into the DNA binding recognition sequence for the GATA-1 erythroid transcription factor. A 10-fold decrease in binding affinity was observed for the ganciclovir-substituted DNA complex in comparison to an unmodified DNA of the same sequence composition. AraC substitution did not result in any changes in binding affinity. 1H-15N HSQC and NOESY NMR experiments revealed a number of chemical shift changes in both DNA and protein in the ganciclovir-modified DNA-protein complex when compared to the unmodified DNA-protein complex. These changes in chemical shift and binding affinity suggest a change in the binding mode of the complex when ganciclovir is incorporated into the GATA DNA binding site.

  15. TFBSshape: a motif database for DNA shape features of transcription factor binding sites.

    PubMed

    Yang, Lin; Zhou, Tianyin; Dror, Iris; Mathelier, Anthony; Wasserman, Wyeth W; Gordân, Raluca; Rohs, Remo

    2014-01-01

    Transcription factor binding sites (TFBSs) are most commonly characterized by the nucleotide preferences at each position of the DNA target. Whereas these sequence motifs are quite accurate descriptions of DNA binding specificities of transcription factors (TFs), proteins recognize DNA as a three-dimensional object. DNA structural features refine the description of TF binding specificities and provide mechanistic insights into protein-DNA recognition. Existing motif databases contain extensive nucleotide sequences identified in binding experiments based on their selection by a TF. To utilize DNA shape information when analysing the DNA binding specificities of TFs, we developed a new tool, the TFBSshape database (available at http://rohslab.cmb.usc.edu/TFBSshape/), for calculating DNA structural features from nucleotide sequences provided by motif databases. The TFBSshape database can be used to generate heat maps and quantitative data for DNA structural features (i.e., minor groove width, roll, propeller twist and helix twist) for 739 TF datasets from 23 different species derived from the motif databases JASPAR and UniPROBE. As demonstrated for the basic helix-loop-helix and homeodomain TF families, our TFBSshape database can be used to compare, qualitatively and quantitatively, the DNA binding specificities of closely related TFs and, thus, uncover differential DNA binding specificities that are not apparent from nucleotide sequence alone.

  16. TFBSshape: a motif database for DNA shape features of transcription factor binding sites

    PubMed Central

    Yang, Lin; Zhou, Tianyin; Dror, Iris; Mathelier, Anthony; Wasserman, Wyeth W.; Gordân, Raluca; Rohs, Remo

    2014-01-01

    Transcription factor binding sites (TFBSs) are most commonly characterized by the nucleotide preferences at each position of the DNA target. Whereas these sequence motifs are quite accurate descriptions of DNA binding specificities of transcription factors (TFs), proteins recognize DNA as a three-dimensional object. DNA structural features refine the description of TF binding specificities and provide mechanistic insights into protein–DNA recognition. Existing motif databases contain extensive nucleotide sequences identified in binding experiments based on their selection by a TF. To utilize DNA shape information when analysing the DNA binding specificities of TFs, we developed a new tool, the TFBSshape database (available at http://rohslab.cmb.usc.edu/TFBSshape/), for calculating DNA structural features from nucleotide sequences provided by motif databases. The TFBSshape database can be used to generate heat maps and quantitative data for DNA structural features (i.e., minor groove width, roll, propeller twist and helix twist) for 739 TF datasets from 23 different species derived from the motif databases JASPAR and UniPROBE. As demonstrated for the basic helix-loop-helix and homeodomain TF families, our TFBSshape database can be used to compare, qualitatively and quantitatively, the DNA binding specificities of closely related TFs and, thus, uncover differential DNA binding specificities that are not apparent from nucleotide sequence alone. PMID:24214955

  17. Analysis of an artificial zinc finger epigenetic modulator: widespread binding but limited regulation

    PubMed Central

    Grimmer, Matthew R.; Stolzenburg, Sabine; Ford, Ethan; Lister, Ryan; Blancafort, Pilar; Farnham, Peggy J.

    2014-01-01

    Artificial transcription factors (ATFs) and genomic nucleases based on a DNA binding platform consisting of multiple zinc finger domains are currently being developed for clinical applications. However, no genome-wide investigations into their binding specificity have been performed. We have created six-finger ATFs to target two different 18 nt regions of the human SOX2 promoter; each ATF is constructed such that it contains or lacks a super KRAB domain (SKD) that interacts with a complex containing repressive histone methyltransferases. ChIP-seq analysis of the effector-free ATFs in MCF7 breast cancer cells identified thousands of binding sites, mostly in promoter regions; the addition of an SKD domain increased the number of binding sites ∼5-fold, with a majority of the new sites located outside of promoters. De novo motif analyses suggest that the lack of binding specificity is due to subsets of the finger domains being used for genomic interactions. Although the ATFs display widespread binding, few genes showed expression differences; genes repressed by the ATF-SKD have stronger binding sites and are more enriched for a 12 nt motif. Interestingly, epigenetic analyses indicate that the transcriptional repression caused by the ATF-SKD is not due to changes in active histone modifications. PMID:25122745

  18. Analysis of functional importance of binding sites in the Drosophila gap gene network model.

    PubMed

    Kozlov, Konstantin; Gursky, Vitaly V; Kulakovskiy, Ivan V; Dymova, Arina; Samsonova, Maria

    2015-01-01

    The statistical thermodynamics based approach provides a promising framework for construction of the genotype-phenotype map in many biological systems. Among important aspects of a good model connecting the DNA sequence information with that of a molecular phenotype (gene expression) is the selection of regulatory interactions and relevant transcription factor bindings sites. As the model may predict different levels of the functional importance of specific binding sites in different genomic and regulatory contexts, it is essential to formulate and study such models under different modeling assumptions. We elaborate a two-layer model for the Drosophila gap gene network and include in the model a combined set of transcription factor binding sites and concentration dependent regulatory interaction between gap genes hunchback and Kruppel. We show that the new variants of the model are more consistent in terms of gene expression predictions for various genetic constructs in comparison to previous work. We quantify the functional importance of binding sites by calculating their impact on gene expression in the model and calculate how these impacts correlate across all sites under different modeling assumptions. The assumption about the dual interaction between hb and Kr leads to the most consistent modeling results, but, on the other hand, may obscure existence of indirect interactions between binding sites in regulatory regions of distinct genes. The analysis confirms the previously formulated regulation concept of many weak binding sites working in concert. The model predicts a more or less uniform distribution of functionally important binding sites over the sets of experimentally characterized regulatory modules and other open chromatin domains.

  19. Characterization of diverse subvariants of the meningococcal factor H (fH) binding protein for their ability to bind fH, to mediate serum resistance, and to induce bactericidal antibodies.

    PubMed

    Seib, Kate L; Brunelli, Brunella; Brogioni, Barbara; Palumbo, Emmanuelle; Bambini, Stefania; Muzzi, Alessandro; DiMarcello, Federica; Marchi, Sara; van der Ende, Arie; Aricó, Beatrice; Savino, Silvana; Scarselli, Maria; Comanducci, Maurizio; Rappuoli, Rino; Giuliani, Marzia M; Pizza, Mariagrazia

    2011-02-01

    Neisseria meningitidis is a commensal of the human nasopharynx but is also a major cause of septicemia and meningitis. The meningococcal factor H binding protein (fHbp) binds human factor H (fH), enabling downregulation of complement activation on the bacterial surface. fHbp is a component of two serogroup B meningococcal vaccines currently in clinical development. Here we characterize 12 fHbp subvariants for their level of surface exposure and ability to bind fH, to mediate serum resistance, and to induce bactericidal antibodies. Flow cytometry and Western analysis revealed that all strains examined expressed fHbp on their surface to different extents and bound fH in an fHbp-dependent manner. However, differences in fH binding did not always correlate with the level of fHbp expression, indicating that this is not the only factor affecting the amount of fH bound. To overcome the issue of strain variability in fHbp expression, the MC58ΔfHbp strain was genetically engineered to express different subvariants from a constitutive heterologous promoter. These recombinant strains were characterized for fH binding, and the data confirmed that each subvariant binds different levels of fH. Surface plasmon resonance revealed differences in the stability of the fHbp-fH complexes that ranged over 2 orders of magnitude, indicating that differences in residues between and within variant groups can influence fH binding. Interestingly, the level of survival in human sera of recombinant MC58 strains expressing diverse subvariants did not correlate with the level of fH binding, suggesting that the interaction of fHbp with fH is not the only function of fHbp that influences serum resistance. Furthermore, cross-reactive bactericidal activity was seen within each variant group, although the degree of activity varied, suggesting that amino acid differences within each variant group influence the bactericidal antibody response.

  20. Effects of heparin-binding epidermal growth factor-like growth factor on cell repopulation and signal transduction in periodontal ligament cells after scratch wounding in vitro.

    PubMed

    Lee, J S; Kim, J M; Hong, E K; Kim, S-O; Yoo, Y-J; Cha, J-H

    2009-02-01

    A growing amount of attention has been placed on periodontal regeneration and wound healing for periodontal therapy. This study was conducted in an effort to determine the effects of heparin-binding epidermal growth factor-like growth factor on cell repopulation and signal transduction in periodontal ligament cells after scratch wounding in vitro. Human periodontal ligament cells were acquired from explant tissue of human healthy periodontal ligament. After the wounding of periodontal ligament cells, the change in expression of heparin-binding epidermal growth factor-like growth factor and epidermal growth factor receptors 1-4 mRNA was assessed. The effects of heparin-binding epidermal growth factor-like growth factor on periodontal ligament cell proliferation and repopulation were assessed in vitro via the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and by photographing the injuries, respectively. Extracellular signal-regulated kinase (Erk)1/2, p38 and Akt phosphorylation was characterized via western blotting. Scratch wounding resulted in a significant up-regulation of heparin-binding epidermal growth factor-like growth factor mRNA expression, whereas wounding had no effect on the expression levels of epidermal growth factor receptors 1-4. Interestingly, no expression of epidermal growth factor receptors 2 and 4 was detectable prior to or after wounding. Heparin-binding epidermal growth factor-like growth factor treatment promoted the proliferation and repopulation of periodontal ligament cells. The scratch wounding also stimulated the phosphorylation of Erk1/2 and p38, but not of Akt, in periodontal ligament cells, and heparin-binding epidermal growth factor-like growth factor treatment applied after wounding amplified and extended the activations of Erk1/2 and p38, but not of Akt. Furthermore, Erk1/2 inhibition blocked the process of cell repopulation induced by heparin-binding epidermal growth factor-like growth factor, whereas the

  1. MGMT DNA repair gene promoter/enhancer haplotypes alter transcription factor binding and gene expression.

    PubMed

    Xu, Meixiang; Cross, Courtney E; Speidel, Jordan T; Abdel-Rahman, Sherif Z

    2016-10-01

    The O 6 -methylguanine-DNA methyltransferase (MGMT) protein removes O 6 -alkyl-guanine adducts from DNA. MGMT expression can thus alter the sensitivity of cells and tissues to environmental and chemotherapeutic alkylating agents. Previously, we defined the haplotype structure encompassing single nucleotide polymorphisms (SNPs) in the MGMT promoter/enhancer (P/E) region and found that haplotypes, rather than individual SNPs, alter MGMT promoter activity. The exact mechanism(s) by which these haplotypes exert their effect on MGMT promoter activity is currently unknown, but we noted that many of the SNPs comprising the MGMT P/E haplotypes are located within or in close proximity to putative transcription factor binding sites. Thus, these haplotypes could potentially affect transcription factor binding and, subsequently, alter MGMT promoter activity. In this study, we test the hypothesis that MGMT P/E haplotypes affect MGMT promoter activity by altering transcription factor (TF) binding to the P/E region. We used a promoter binding TF profiling array and a reporter assay to evaluate the effect of different P/E haplotypes on TF binding and MGMT expression, respectively. Our data revealed a significant difference in TF binding profiles between the different haplotypes evaluated. We identified TFs that consistently showed significant haplotype-dependent binding alterations (p ≤ 0.01) and revealed their role in regulating MGMT expression using siRNAs and a dual-luciferase reporter assay system. The data generated support our hypothesis that promoter haplotypes alter the binding of TFs to the MGMT P/E and, subsequently, affect their regulatory function on MGMT promoter activity and expression level.

  2. Engineering Factor Xa Inhibitor with Multiple Platelet-Binding Sites Facilitates its Platelet Targeting

    NASA Astrophysics Data System (ADS)

    Zhu, Yuanjun; Li, Ruyi; Lin, Yuan; Shui, Mengyang; Liu, Xiaoyan; Chen, Huan; Wang, Yinye

    2016-07-01

    Targeted delivery of antithrombotic drugs centralizes the effects in the thrombosis site and reduces the hemorrhage side effects in uninjured vessels. We have recently reported that the platelet-targeting factor Xa (FXa) inhibitors, constructed by engineering one Arg-Gly-Asp (RGD) motif into Ancylostoma caninum anticoagulant peptide 5 (AcAP5), can reduce the risk of systemic bleeding than non-targeted AcAP5 in mouse arterial injury model. Increasing the number of platelet-binding sites of FXa inhibitors may facilitate their adhesion to activated platelets, and further lower the bleeding risks. For this purpose, we introduced three RGD motifs into AcAP5 to generate a variant NR4 containing three platelet-binding sites. NR4 reserved its inherent anti-FXa activity. Protein-protein docking showed that all three RGD motifs were capable of binding to platelet receptor αIIbβ3. Molecular dynamics simulation demonstrated that NR4 has more opportunities to interact with αIIbβ3 than single-RGD-containing NR3. Flow cytometry analysis and rat arterial thrombosis model further confirmed that NR4 possesses enhanced platelet targeting activity. Moreover, NR4-treated mice showed a trend toward less tail bleeding time than NR3-treated mice in carotid artery endothelium injury model. Therefore, our data suggest that engineering multiple binding sites in one recombinant protein is a useful tool to improve its platelet-targeting efficiency.

  3. Jasmonate regulates the inducer of cbf expression-C-repeat binding factor/DRE binding factor1 cascade and freezing tolerance in Arabidopsis.

    PubMed

    Hu, Yanru; Jiang, Liqun; Wang, Fang; Yu, Diqiu

    2013-08-01

    The inducer of cbf expression (ICE)-C-repeat binding factor/DRE binding factor1 (CBF/DREB1) transcriptional pathway plays a critical role in modulating cold stress responses in Arabidopsis thaliana. Dissecting crucial upstream regulatory signals or components of the ICE-CBF/DREB1 cascade will enhance our understanding of plant cold-tolerance mechanisms. Here, we show that jasmonate positively regulates plant responses to freezing stress in Arabidopsis. Exogenous application of jasmonate significantly enhanced plant freezing tolerance with or without cold acclimation. By contrast, blocking endogenous jasmonate biosynthesis and signaling rendered plants hypersensitive to freezing stress. Consistent with the positive role of jasmonate in freezing stress, production of endogenous jasmonate was triggered by cold treatment. In addition, cold induction of genes acting in the CBF/DREB1 signaling pathway was upregulated by jasmonate. Further investigation revealed that several jasmonate ZIM-domain (JAZ) proteins, the repressors of jasmonate signaling, physically interact with ICE1 and ICE2 transcription factors. JAZ1 and JAZ4 repress the transcriptional function of ICE1, thereby attenuating the expression of its regulon. Consistent with this, overexpression of JAZ1 or JAZ4 represses freezing stress responses of Arabidopsis. Taken together, our study provides evidence that jasmonate functions as a critical upstream signal of the ICE-CBF/DREB1 pathway to positively regulate Arabidopsis freezing tolerance.

  4. CCAAT-binding factor regulates expression of the beta1 subunit of soluble guanylyl cyclase gene in the BE2 human neuroblastoma cell line

    NASA Technical Reports Server (NTRS)

    Sharina, Iraida G.; Martin, Emil; Thomas, Anthony; Uray, Karen L.; Murad, Ferid

    2003-01-01

    Soluble guanylyl cyclase (sGC) is a cytosolic enzyme producing the intracellular messenger cyclic guanosine monophosphate (cGMP) on activation with nitric oxide (NO). sGC is an obligatory heterodimer composed of alpha and beta subunits. We investigated human beta1 sGC transcriptional regulation in BE2 human neuroblastoma cells. The 5' upstream region of the beta1 sGC gene was isolated and analyzed for promoter activity by using luciferase reporter constructs. The transcriptional start site of the beta1 sGC gene in BE2 cells was identified. The functional significance of consensus transcriptional factor binding sites proximal to the transcriptional start site was investigated by site deletions in the 800-bp promoter fragment. The elimination of CCAAT-binding factor (CBF) and growth factor independence 1 (GFI1) binding cores significantly diminished whereas deletion of the NF1 core elevated the transcription. Electrophoretic mobility-shift assay (EMSA) and Western analysis of proteins bound to biotinated EMSA probes confirmed the interaction of GFI1, CBF, and NF1 factors with the beta1 sGC promoter. Treatment of BE2 cells with genistein, known to inhibit the CBF binding to DNA, significantly reduced protein levels of beta1 sGC by inhibiting transcription. In summary, our study represents an analysis of the human beta1 sGC promoter regulation in human neuroblastoma BE2 cells and identifies CBF as a critically important factor in beta1 sGC expression.

  5. Spatial Analysis and Quantification of the Thermodynamic Driving Forces in Protein-Ligand Binding: Binding Site Variability

    PubMed Central

    Raman, E. Prabhu; MacKerell, Alexander D.

    2015-01-01

    The thermodynamic driving forces behind small molecule-protein binding are still not well understood, including the variability of those forces associated with different types of ligands in different binding pockets. To better understand these phenomena we calculate spatially resolved thermodynamic contributions of the different molecular degrees of freedom for the binding of propane and methanol to multiple pockets on the proteins Factor Xa and p38 MAP kinase. Binding thermodynamics are computed using a statistical thermodynamics based end-point method applied on a canonical ensemble comprising the protein-ligand complexes and the corresponding free states in an explicit solvent environment. Energetic and entropic contributions of water and ligand degrees of freedom computed from the configurational ensemble provides an unprecedented level of detail into the mechanisms of binding. Direct protein-ligand interaction energies play a significant role in both non-polar and polar binding, which is comparable to water reorganization energy. Loss of interactions with water upon binding strongly compensates these contributions leading to relatively small binding enthalpies. For both solutes, the entropy of water reorganization is found to favor binding in agreement with the classical view of the “hydrophobic effect”. Depending on the specifics of the binding pocket, both energy-entropy compensation and reinforcement mechanisms are observed. Notable is the ability to visualize the spatial distribution of the thermodynamic contributions to binding at atomic resolution showing significant differences in the thermodynamic contributions of water to the binding of propane versus methanol. PMID:25625202

  6. Incorporating evolution of transcription factor binding sites into annotated alignments.

    PubMed

    Bais, Abha S; Grossmann, Stefen; Vingron, Martin

    2007-08-01

    Identifying transcription factor binding sites (TFBSs) is essential to elucidate putative regulatory mechanisms. A common strategy is to combine cross-species conservation with single sequence TFBS annotation to yield "conserved TFBSs". Most current methods in this field adopt a multi-step approach that segregates the two aspects. Again, it is widely accepted that the evolutionary dynamics of binding sites differ from those of the surrounding sequence. Hence, it is desirable to have an approach that explicitly takes this factor into account. Although a plethora of approaches have been proposed for the prediction of conserved TFBSs, very few explicitly model TFBS evolutionary properties, while additionally being multi-step. Recently, we introduced a novel approach to simultaneously align and annotate conserved TFBSs in a pair of sequences. Building upon the standard Smith-Waterman algorithm for local alignments, SimAnn introduces additional states for profiles to output extended alignments or annotated alignments. That is, alignments with parts annotated as gaplessly aligned TFBSs (pair-profile hits)are generated. Moreover,the pair- profile related parameters are derived in a sound statistical framework. In this article, we extend this approach to explicitly incorporate evolution of binding sites in the SimAnn framework. We demonstrate the extension in the theoretical derivations through two position-specific evolutionary models, previously used for modelling TFBS evolution. In a simulated setting, we provide a proof of concept that the approach works given the underlying assumptions,as compared to the original work. Finally, using a real dataset of experimentally verified binding sites in human-mouse sequence pairs,we compare the new approach (eSimAnn) to an existing multi-step tool that also considers TFBS evolution. Although it is widely accepted that binding sites evolve differently from the surrounding sequences, most comparative TFBS identification methods do

  7. Deletion of transcription factor binding motifs using the CRISPR/spCas9 system in the β-globin LCR.

    PubMed

    Kim, Yea Woon; Kim, AeRi

    2017-07-20

    Transcription factors play roles in gene transcription through direct binding to their motifs in genome, and inhibiting this binding provides an effective strategy for studying their roles. Here we applied the CRISPR/spCas9 system to mutate the binding motifs of transcription factors. Binding motifs for erythroid specific transcription factors were mutated in the locus control region hypersensitive sites of the human β-globin locus. Guide RNAs targeting binding motifs were cloned into lentiviral CRISPR vector containing the spCas9 gene, and transduced into MEL/ch11 cells carrying a human chromosome 11. DNA mutations in clonal cells were initially screened by quantitative PCR in genomic DNA and then clarified by sequencing. Mutations in binding motifs reduced occupancy by transcription factors in a chromatin environment. Characterization of mutations revealed that the CRISPR/spCas9 system mainly induced deletions in short regions of <20 bp and preferentially deleted nucleotides around the fifth nucleotide upstream of Protospacer adjacent motifs. These results indicate that the CRISPR/Cas9 system is suitable for mutating the binding motifs of transcription factors, and, consequently, would contribute to elucidate the direct roles of transcription factors. ©2017 The Author(s).

  8. Structural basis for the inhibition of insulin-like growth factors by insulin-like growth factor-binding proteins

    PubMed Central

    Sitar, Tomasz; Popowicz, Grzegorz M.; Siwanowicz, Igor; Huber, Robert; Holak, Tad A.

    2006-01-01

    Insulin-like growth factor-binding proteins (IGFBPs) control bioavailability, activity, and distribution of insulin-like growth factor (IGF)1 and -2 through high-affinity IGFBP/IGF complexes. IGF-binding sites are found on N- and C-terminal fragments of IGFBPs, the two conserved domains of IGFBPs. The relative contributions of these domains to IGFBP/IGF complexation has been difficult to analyze, in part, because of the lack of appropriate three-dimensional structures. To analyze the effects of N- and C-terminal domain interactions, we determined several x-ray structures: first, of a ternary complex of N- and C-terminal domain fragments of IGFBP4 and IGF1 and second, of a “hybrid” ternary complex using the C-terminal domain fragment of IGFBP1 instead of IGFBP4. We also solved the binary complex of the N-terminal domains of IGFBP4 and IGF1, again to analyze C- and N-terminal domain interactions by comparison with the ternary complexes. The structures reveal the mechanisms of IGF signaling regulation via IGFBP binding. This finding supports research into the design of IGFBP variants as therapeutic IGF inhibitors for diseases of IGF disregulation. In IGFBP4, residues 1–38 form a rigid disulphide bond ladder-like structure, and the first five N-terminal residues bind to IGF and partially mask IGF residues responsible for the type 1 IGF receptor binding. A high-affinity IGF1-binding site is located in a globular structure between residues 39 and 82. Although the C-terminal domains do not form stable binary complexes with either IGF1 or the N-terminal domain of IGFBP4, in the ternary complex, the C-terminal domain contacts both and contributes to blocking of the IGF1 receptor-binding region of IGF1. PMID:16924115

  9. Insulin-like growth factor (IGF) binding protein from human decidua inhibits the binding and biological action of IGF-I in cultured choriocarcinoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ritvos, O.; Ranta, T.; Jalkanen, J.

    1988-05-01

    The placenta expresses genes for insulin-like growth factors (IGFs) and possesses IGF-receptors, suggesting that placental growth is regulated by IGFs in an autocrine manner. We have previously shown that human decidua, but not placenta, synthesizes and secretes a 34 K IGF-binding protein (34 K IGF-BP) called placental protein 12. We now used human choriocarcinoma JEG-3 cell monolayer cultures and recombinant (Thr59)IGF-I as a model to study whether the decidual 34 K IGF-BP is able to modulate the receptor binding and biological activity of IGFs in trophoblasts. JEG-3 cells, which possess type I IGF receptors, were unable to produce IGF-BPs. Purifiedmore » 34 K IGF-BP specifically bound (125I)iodo-(Thr59)IGF-I. Multiplication-stimulating activity had 2.5% the potency of (Thr59)IGF-I, and insulin had no effect on the binding of (125I) iodo-(Thr59)IGF-I. 34 K IGF-BP inhibited the binding of (125I) iodo-(Thr59)IGF-I to JEG-3 monolayers in a concentration-dependent manner by forming with the tracer a soluble complex that could not bind to the cell surface as demonstrated by competitive binding and cross-linking experiments. After incubating the cell monolayers with (125I)iodo-(Thr59)IGF-I in the presence of purified binding protein, followed by cross-linking, no affinity labeled bands were seen on autoradiography. In contrast, an intensely labeled band at 40 K was detected when the incubation medium was analyzed, suggesting that (Thr59)IGF-I and 34 K IGF-BP formed a complex in a 1:1 molar ratio. Also, 34 K IGF-BP inhibited both basal and IGF-I-stimulated uptake of alpha-(3H)aminoisobutyric acid in JEG-3 cells. RNA analysis revealed that IGF-II is expressed in JEG-3 cells.« less

  10. The kangaroo cation-independent mannose 6-phosphate receptor binds insulin-like growth factor II with low affinity.

    PubMed

    Yandell, C A; Dunbar, A J; Wheldrake, J F; Upton, Z

    1999-09-17

    The mammalian cation-independent mannose 6-phosphate receptor (CI-MPR) binds mannose 6-phosphate-bearing glycoproteins and insulin-like growth factor (IGF)-II. However, the CI-MPR from the opossum has been reported to bind bovine IGF-II with low affinity (Dahms, N. M., Brzycki-Wessell, M. A., Ramanujam, K. S., and Seetharam, B. (1993) Endocrinology 133, 440-446). This may reflect the use of a heterologous ligand, or it may represent the intrinsic binding affinity of this receptor. To examine the binding of IGF-II to a marsupial CI-MPR in a homologous system, we have previously purified kangaroo IGF-II (Yandell, C. A., Francis, G. L., Wheldrake, J. F., and Upton, Z. (1998) J. Endocrinol. 156, 195-204), and we now report the purification and characterization of the CI-MPR from kangaroo liver. The interaction of the kangaroo CI-MPR with IGF-II has been examined by ligand blotting, radioreceptor assay, and real-time biomolecular interaction analysis. Using both a heterologous and homologous approach, we have demonstrated that the kangaroo CI-MPR has a lower binding affinity for IGF-II than its eutherian (placental mammal) counterparts. Furthermore, real-time biomolecular interaction analysis revealed that the kangaroo CI-MPR has a higher affinity for kangaroo IGF-II than for human IGF-II. The cDNA sequence of the kangaroo CI-MPR indicates that there is considerable divergence in the area corresponding to the IGF-II binding site of the eutherian receptor. Thus, the acquisition of a high-affinity binding site for regulating IGF-II appears to be a recent event specific to the eutherian lineage.

  11. JunB is required for endothelial cell morphogenesis by regulating core-binding factor β

    PubMed Central

    Licht, Alexander H.; Pein, Oliver T.; Florin, Lore; Hartenstein, Bettina; Reuter, Hendrik; Arnold, Bernd; Lichter, Peter; Angel, Peter; Schorpp-Kistner, Marina

    2006-01-01

    The molecular mechanism triggering the organization of endothelial cells (ECs) in multicellular tubules is mechanistically still poorly understood. We demonstrate that cell-autonomous endothelial functions of the AP-1 subunit JunB are required for proper endothelial morphogenesis both in vivo in mouse embryos with endothelial-specific ablation of JunB and in in vitro angiogenesis models. By cDNA microarray analysis, we identified core-binding factor β (CBFβ), which together with the Runx proteins forms the heterodimeric core-binding transcription complex CBF, as a novel JunB target gene. In line with our findings, expression of the CBF target MMP-13 was impaired in JunB-deficient ECs. Reintroduction of CBFβ into JunB-deficient ECs rescued the tube formation defect and MMP-13 expression, indicating an important role for CBFβ in EC morphogenesis. PMID:17158955

  12. G =  MAT: linking transcription factor expression and DNA binding data.

    PubMed

    Tretyakov, Konstantin; Laur, Sven; Vilo, Jaak

    2011-01-31

    Transcription factors are proteins that bind to motifs on the DNA and thus affect gene expression regulation. The qualitative description of the corresponding processes is therefore important for a better understanding of essential biological mechanisms. However, wet lab experiments targeted at the discovery of the regulatory interplay between transcription factors and binding sites are expensive. We propose a new, purely computational method for finding putative associations between transcription factors and motifs. This method is based on a linear model that combines sequence information with expression data. We present various methods for model parameter estimation and show, via experiments on simulated data, that these methods are reliable. Finally, we examine the performance of this model on biological data and conclude that it can indeed be used to discover meaningful associations. The developed software is available as a web tool and Scilab source code at http://biit.cs.ut.ee/gmat/.

  13. G = MAT: Linking Transcription Factor Expression and DNA Binding Data

    PubMed Central

    Tretyakov, Konstantin; Laur, Sven; Vilo, Jaak

    2011-01-01

    Transcription factors are proteins that bind to motifs on the DNA and thus affect gene expression regulation. The qualitative description of the corresponding processes is therefore important for a better understanding of essential biological mechanisms. However, wet lab experiments targeted at the discovery of the regulatory interplay between transcription factors and binding sites are expensive. We propose a new, purely computational method for finding putative associations between transcription factors and motifs. This method is based on a linear model that combines sequence information with expression data. We present various methods for model parameter estimation and show, via experiments on simulated data, that these methods are reliable. Finally, we examine the performance of this model on biological data and conclude that it can indeed be used to discover meaningful associations. The developed software is available as a web tool and Scilab source code at http://biit.cs.ut.ee/gmat/. PMID:21297945

  14. Cross-talk between cognate and noncognate RpoE sigma factors and Zn(2+)-binding anti-sigma factors regulates photooxidative stress response in Azospirillum brasilense.

    PubMed

    Gupta, Namrata; Gupta, Ankush; Kumar, Santosh; Mishra, Rajeev; Singh, Chhaya; Tripathi, Anil Kumar

    2014-01-01

    Azospirillum brasilense harbors two redox-sensitive Zinc-binding anti-sigma (ZAS) factors (ChrR1 and ChrR2), which negatively regulate the activity of their cognate extra-cytoplasmic function (ECF) σ factors (RpoE1 and RpoE2) by occluding their binding to the core enzyme. Both pairs of RpoE-ChrR control responses to photooxidative stress. The aim of this study was to investigate whether the two RpoE-ChrR pairs cross-talk while responding to the stress. In silico analysis showed a high sequence similarity between ChrR1 and ChrR2 proteins, but differences in redox sensitivity. Using in silico and in vitro methods of protein-protein interaction, we have shown that both ChrR1 and ChrR2 proteins physically bind to their noncognate RpoE proteins. Restoration of the phenotypes of chrR1::Tn5 and chrR2::Km mutants related to carotenoid biosynthesis and photooxidative stress tolerance by expressing chrR1 or chrR2 provided in vivo evidence for the cross-talk. In addition, up- or down-regulation of several identical proteins by expressing chrR1 or chrR2 in the chrR1::Tn5 mutant provided another in vivo evidence for the cross-talk. Although multiple redox-sensitive ZAS anti-σ factors occur in some Gram-positive bacteria, no cross-talk is reported among them. We report here, for the first time, that the two ZAS anti-σ factors of A. brasilense also interact with their noncognate σ factors and affect gene expression. The two redox-sensitive ZAS anti-σ factors in A. brasilense may interact with their cognate as well as noncognate ECF σ factors to play an important role in redox homeostasis by facilitating recovery from the oxidative stress.

  15. Jasmonate Regulates the INDUCER OF CBF EXPRESSION–C-REPEAT BINDING FACTOR/DRE BINDING FACTOR1 Cascade and Freezing Tolerance in Arabidopsis[W

    PubMed Central

    Hu, Yanru; Jiang, Liqun; Wang, Fang; Yu, Diqiu

    2013-01-01

    The INDUCER OF CBF EXPRESSION (ICE)–C-REPEAT BINDING FACTOR/DRE BINDING FACTOR1 (CBF/DREB1) transcriptional pathway plays a critical role in modulating cold stress responses in Arabidopsis thaliana. Dissecting crucial upstream regulatory signals or components of the ICE-CBF/DREB1 cascade will enhance our understanding of plant cold-tolerance mechanisms. Here, we show that jasmonate positively regulates plant responses to freezing stress in Arabidopsis. Exogenous application of jasmonate significantly enhanced plant freezing tolerance with or without cold acclimation. By contrast, blocking endogenous jasmonate biosynthesis and signaling rendered plants hypersensitive to freezing stress. Consistent with the positive role of jasmonate in freezing stress, production of endogenous jasmonate was triggered by cold treatment. In addition, cold induction of genes acting in the CBF/DREB1 signaling pathway was upregulated by jasmonate. Further investigation revealed that several JASMONATE ZIM-DOMAIN (JAZ) proteins, the repressors of jasmonate signaling, physically interact with ICE1 and ICE2 transcription factors. JAZ1 and JAZ4 repress the transcriptional function of ICE1, thereby attenuating the expression of its regulon. Consistent with this, overexpression of JAZ1 or JAZ4 represses freezing stress responses of Arabidopsis. Taken together, our study provides evidence that jasmonate functions as a critical upstream signal of the ICE-CBF/DREB1 pathway to positively regulate Arabidopsis freezing tolerance. PMID:23933884

  16. p48 Activates a UV-Damaged-DNA Binding Factor and Is Defective in Xeroderma Pigmentosum Group E Cells That Lack Binding Activity

    PubMed Central

    Hwang, Byung Joon; Toering, Stephanie; Francke, Uta; Chu, Gilbert

    1998-01-01

    A subset of xeroderma pigmentosum (XP) group E cells lack a factor that binds to DNA damaged by UV radiation. This factor can be purified to homogeneity as p125, a 125-kDa polypeptide. However, when cDNA encoding p125 is translated in vitro, only a small fraction binds to UV-damaged DNA, suggesting that a second factor is required for the activation of p125. We discovered that most hamster cell lines expressed inactive p125, which was activated in somatic cell hybrids containing human chromosome region 11p11.2-11cen. This region excluded p125 but included p48, which encodes a 48-kDa polypeptide known to copurify with p125 under some conditions. Expression of human p48 activated p125 binding in hamster cells and increased p125 binding in human cells. No such effects were observed from expression of p48 containing single amino acid substitutions from XP group E cells that lacked binding activity, demonstrating that the p48 gene is defective in those cells. Activation of p125 occurred by a “hit-and-run” mechanism, since the presence of p48 was not required for subsequent binding. Nevertheless, p48 was capable of forming a complex with p125 either bound to UV-damaged DNA or in free solution. It is notable that hamster cells fail to efficiently repair cyclobutane pyrimidine dimers in nontranscribed DNA and fail to express p48, which contains a WD motif with homology to proteins that reorganize chromatin. We propose that p48 plays a role in repairing lesions that would otherwise remain inaccessible in nontranscribed chromatin. PMID:9632823

  17. The Iron-Dependent Regulation of the Candida albicans Oxidative Stress Response by the CCAAT-Binding Factor

    PubMed Central

    Chakravarti, Ananya; Camp, Kyle; McNabb, David S.

    2017-01-01

    Candida albicans is the most frequently encountered fungal pathogen in humans, capable of causing mucocutaneous and systemic infections in immunocompromised individuals. C. albicans virulence is influenced by multiple factors. Importantly, iron acquisition and avoidance of the immune oxidative burst are two critical barriers for survival in the host. Prior studies using whole genome microarray expression data indicated that the CCAAT-binding factor is involved in the regulation of iron uptake/utilization and the oxidative stress response. This study examines directly the role of the CCAAT-binding factor in regulating the expression of oxidative stress genes in response to iron availability. The CCAAT-binding factor is a heterooligomeric transcription factor previously shown to regulate genes involved in respiration and iron uptake/utilization in C. albicans. Since these pathways directly influence the level of free radicals, it seemed plausible the CCAAT-binding factor regulates genes necessary for the oxidative stress response. In this study, we show the CCAAT-binding factor is involved in regulating some oxidative stress genes in response to iron availability, including CAT1, SOD4, GRX5, and TRX1. We also show that CAT1 expression and catalase activity correlate with the survival of C. albicans to oxidative stress, providing a connection between iron obtainability and the oxidative stress response. We further explore the role of the various CCAAT-binding factor subunits in the formation of distinct protein complexes that modulate the transcription of CAT1 in response to iron. We find that Hap31 and Hap32 can compensate for each other in the formation of an active transcriptional complex; however, they play distinct roles in the oxidative stress response during iron limitation. Moreover, Hap43 was found to be solely responsible for the repression observed under iron deprivation. PMID:28122000

  18. Curated collection of yeast transcription factor DNA binding specificity data reveals novel structural and gene regulatory insights

    PubMed Central

    2011-01-01

    Background Transcription factors (TFs) play a central role in regulating gene expression by interacting with cis-regulatory DNA elements associated with their target genes. Recent surveys have examined the DNA binding specificities of most Saccharomyces cerevisiae TFs, but a comprehensive evaluation of their data has been lacking. Results We analyzed in vitro and in vivo TF-DNA binding data reported in previous large-scale studies to generate a comprehensive, curated resource of DNA binding specificity data for all characterized S. cerevisiae TFs. Our collection comprises DNA binding site motifs and comprehensive in vitro DNA binding specificity data for all possible 8-bp sequences. Investigation of the DNA binding specificities within the basic leucine zipper (bZIP) and VHT1 regulator (VHR) TF families revealed unexpected plasticity in TF-DNA recognition: intriguingly, the VHR TFs, newly characterized by protein binding microarrays in this study, recognize bZIP-like DNA motifs, while the bZIP TF Hac1 recognizes a motif highly similar to the canonical E-box motif of basic helix-loop-helix (bHLH) TFs. We identified several TFs with distinct primary and secondary motifs, which might be associated with different regulatory functions. Finally, integrated analysis of in vivo TF binding data with protein binding microarray data lends further support for indirect DNA binding in vivo by sequence-specific TFs. Conclusions The comprehensive data in this curated collection allow for more accurate analyses of regulatory TF-DNA interactions, in-depth structural studies of TF-DNA specificity determinants, and future experimental investigations of the TFs' predicted target genes and regulatory roles. PMID:22189060

  19. Sasquatch: predicting the impact of regulatory SNPs on transcription factor binding from cell- and tissue-specific DNase footprints

    PubMed Central

    Suciu, Maria C.; Telenius, Jelena

    2017-01-01

    In the era of genome-wide association studies (GWAS) and personalized medicine, predicting the impact of single nucleotide polymorphisms (SNPs) in regulatory elements is an important goal. Current approaches to determine the potential of regulatory SNPs depend on inadequate knowledge of cell-specific DNA binding motifs. Here, we present Sasquatch, a new computational approach that uses DNase footprint data to estimate and visualize the effects of noncoding variants on transcription factor binding. Sasquatch performs a comprehensive k-mer-based analysis of DNase footprints to determine any k-mer's potential for protein binding in a specific cell type and how this may be changed by sequence variants. Therefore, Sasquatch uses an unbiased approach, independent of known transcription factor binding sites and motifs. Sasquatch only requires a single DNase-seq data set per cell type, from any genotype, and produces consistent predictions from data generated by different experimental procedures and at different sequence depths. Here we demonstrate the effectiveness of Sasquatch using previously validated functional SNPs and benchmark its performance against existing approaches. Sasquatch is available as a versatile webtool incorporating publicly available data, including the human ENCODE collection. Thus, Sasquatch provides a powerful tool and repository for prioritizing likely regulatory SNPs in the noncoding genome. PMID:28904015

  20. Direct inhibition of the DNA-binding activity of POU transcription factors Pit-1 and Brn-3 by selective binding of a phenyl-furan-benzimidazole dication.

    PubMed

    Peixoto, Paul; Liu, Yang; Depauw, Sabine; Hildebrand, Marie-Paule; Boykin, David W; Bailly, Christian; Wilson, W David; David-Cordonnier, Marie-Hélène

    2008-06-01

    The development of small molecules to control gene expression could be the spearhead of future-targeted therapeutic approaches in multiple pathologies. Among heterocyclic dications developed with this aim, a phenyl-furan-benzimidazole dication DB293 binds AT-rich sites as a monomer and 5'-ATGA sequence as a stacked dimer, both in the minor groove. Here, we used a protein/DNA array approach to evaluate the ability of DB293 to specifically inhibit transcription factors DNA-binding in a single-step, competitive mode. DB293 inhibits two POU-domain transcription factors Pit-1 and Brn-3 but not IRF-1, despite the presence of an ATGA and AT-rich sites within all three consensus sequences. EMSA, DNase I footprinting and surface-plasmon-resonance experiments determined the precise binding site, affinity and stoichiometry of DB293 interaction to the consensus targets. Binding of DB293 occurred as a cooperative dimer on the ATGA part of Brn-3 site but as two monomers on AT-rich sites of IRF-1 sequence. For Pit-1 site, ATGA or AT-rich mutated sequences identified the contribution of both sites for DB293 recognition. In conclusion, DB293 is a strong inhibitor of two POU-domain transcription factors through a cooperative binding to ATGA. These findings are the first to show that heterocyclic dications can inhibit major groove transcription factors and they open the door to the control of transcription factors activity by those compounds.

  1. Widespread evidence of cooperative DNA binding by transcription factors in Drosophila development.

    PubMed

    Kazemian, Majid; Pham, Hannah; Wolfe, Scot A; Brodsky, Michael H; Sinha, Saurabh

    2013-09-01

    Regulation of eukaryotic gene transcription is often combinatorial in nature, with multiple transcription factors (TFs) regulating common target genes, often through direct or indirect mutual interactions. Many individual examples of cooperative binding by directly interacting TFs have been identified, but it remains unclear how pervasive this mechanism is during animal development. Cooperative TF binding should be manifest in genomic sequences as biased arrangements of TF-binding sites. Here, we explore the extent and diversity of such arrangements related to gene regulation during Drosophila embryogenesis. We used the DNA-binding specificities of 322 TFs along with chromatin accessibility information to identify enriched spacing and orientation patterns of TF-binding site pairs. We developed a new statistical approach for this task, specifically designed to accurately assess inter-site spacing biases while accounting for the phenomenon of homotypic site clustering commonly observed in developmental regulatory regions. We observed a large number of short-range distance preferences between TF-binding site pairs, including examples where the preference depends on the relative orientation of the binding sites. To test whether these binding site patterns reflect physical interactions between the corresponding TFs, we analyzed 27 TF pairs whose binding sites exhibited short distance preferences. In vitro protein-protein binding experiments revealed that >65% of these TF pairs can directly interact with each other. For five pairs, we further demonstrate that they bind cooperatively to DNA if both sites are present with the preferred spacing. This study demonstrates how DNA-binding motifs can be used to produce a comprehensive map of sequence signatures for different mechanisms of combinatorial TF action.

  2. Localisation of stem cell factor, stanniocalcin-1, connective tissue growth factor and heparin-binding epidermal growth factor in the bovine uterus at the time of blastocyst formation.

    PubMed

    Muñoz, M; Martin, D; Carrocera, S; Alonso-Guervos, M; Mora, M I; Corrales, F J; Peynot, N; Giraud-Delville, C; Duranthon, V; Sandra, O; Gómez, E

    2017-10-01

    Early embryonic losses before implantation account for the highest rates of reproductive failure in mammals, in particular when in vitro-produced embryos are transferred. In the present study, we used molecular biology techniques (real-time quantitative polymerase chain reaction), classical immunohistochemical staining coupled with confocal microscopy and proteomic analysis (multiple reaction monitoring and western blot analysis) to investigate the role of four growth factors in embryo-uterine interactions during blastocyst development. Supported by a validated embryo transfer model, the study investigated: (1) the expression of stem cell factor (SCF), stanniocalcin-1 (STC1), connective tissue growth factor (CTGF) and heparin-binding epidermal growth factor-like growth factor (HB-EGF) in bovine uterine fluid; (2) the presence of SCF, STC1, CTGF and HB-EGF mRNA and protein in the bovine endometrium and embryos; and (3) the existence of reciprocal regulation between endometrial and embryonic expression of SCF, STC1, CTGF and HB-EGF. The results suggest that these growth factors most likely play an important role during preimplantation embryo development in cattle. The information obtained from the present study can contribute to improving the performance of in vitro culture technology in cattle and other species.

  3. A tandem regression-outlier analysis of a ligand cellular system for key structural modifications around ligand binding.

    PubMed

    Lin, Ying-Ting

    2013-04-30

    A tandem technique of hard equipment is often used for the chemical analysis of a single cell to first isolate and then detect the wanted identities. The first part is the separation of wanted chemicals from the bulk of a cell; the second part is the actual detection of the important identities. To identify the key structural modifications around ligand binding, the present study aims to develop a counterpart of tandem technique for cheminformatics. A statistical regression and its outliers act as a computational technique for separation. A PPARγ (peroxisome proliferator-activated receptor gamma) agonist cellular system was subjected to such an investigation. Results show that this tandem regression-outlier analysis, or the prioritization of the context equations tagged with features of the outliers, is an effective regression technique of cheminformatics to detect key structural modifications, as well as their tendency of impact to ligand binding. The key structural modifications around ligand binding are effectively extracted or characterized out of cellular reactions. This is because molecular binding is the paramount factor in such ligand cellular system and key structural modifications around ligand binding are expected to create outliers. Therefore, such outliers can be captured by this tandem regression-outlier analysis.

  4. Competition between histone and transcription factor binding regulates the onset of transcription in zebrafish embryos.

    PubMed

    Joseph, Shai R; Pálfy, Máté; Hilbert, Lennart; Kumar, Mukesh; Karschau, Jens; Zaburdaev, Vasily; Shevchenko, Andrej; Vastenhouw, Nadine L

    2017-04-20

    Upon fertilization, the genome of animal embryos remains transcriptionally inactive until the maternal-to-zygotic transition. At this time, the embryo takes control of its development and transcription begins. How the onset of zygotic transcription is regulated remains unclear. Here, we show that a dynamic competition for DNA binding between nucleosome-forming histones and transcription factors regulates zebrafish genome activation. Taking a quantitative approach, we found that the concentration of non-DNA-bound core histones sets the time for the onset of transcription. The reduction in nuclear histone concentration that coincides with genome activation does not affect nucleosome density on DNA, but allows transcription factors to compete successfully for DNA binding. In agreement with this, transcription factor binding is sensitive to histone levels and the concentration of transcription factors also affects the time of transcription. Our results demonstrate that the relative levels of histones and transcription factors regulate the onset of transcription in the embryo.

  5. Conservation of transcription factor binding events predicts gene expression across species

    PubMed Central

    Hemberg, Martin; Kreiman, Gabriel

    2011-01-01

    Recent technological advances have made it possible to determine the genome-wide binding sites of transcription factors (TFs). Comparisons across species have suggested a relatively low degree of evolutionary conservation of experimentally defined TF binding events (TFBEs). Using binding data for six different TFs in hepatocytes and embryonic stem cells from human and mouse, we demonstrate that evolutionary conservation of TFBEs within orthologous proximal promoters is closely linked to function, defined as expression of the target genes. We show that (i) there is a significantly higher degree of conservation of TFBEs when the target gene is expressed in both species; (ii) there is increased conservation of binding events for groups of TFs compared to individual TFs; and (iii) conserved TFBEs have a greater impact on the expression of their target genes than non-conserved ones. These results link conservation of structural elements (TFBEs) to conservation of function (gene expression) and suggest a higher degree of functional conservation than implied by previous studies. PMID:21622661

  6. [Insulin-like growth factor-binding protein-1: a new biochemical marker of nonalcoholic fatty liver disease?].

    PubMed

    Graffigna, Mabel Nora; Belli, Susana H; de Larrañaga, Gabriela; Fainboim, Hugo; Estepo, Claudio; Peres, Silvia; García, Natalia; Levalle, Oscar

    2009-03-01

    to assess the presence of nonalcoholic fatty liver disease in patients with risk factors for this pathology (obesity, dyslipidemia, metabolic syndrome and diabetes type 2) and to determine the role of insulin, HOMA index, insulin-like growth factor-binding protein-1, sex hormone-binding globulin and plasminogen activator inhibitor type 1, as biochemical markers. Ninety-one patients with risk factors for nonalcoholic fatty liver disease were evaluated. Serum transaminases, insulin, sex hormone-binding globulin, insulin-like growth factor-binding protein-1 and plasminogen activator inhibitor type 1 were measured. The diagnosis of fatty liver was performed by ultrasonography and liver biopsies were performed to 31 subjects who had steatosis by ultrasonography and high alanine aminotransferase. Nonalcoholic fatty liver disease was present in 65 out of 91 patients (71,4%). Liver biopsy performed to 31 subjects confirmed nonalcoholic steatohepatitis. Twenty-five patients had different degrees of fibrosis. Those individuals with fatty liver had higher waist circumference, serum levels of triglycerides, insulin and HOMA index, and lower serum insulin-like growth factor-binding protein-1 concentration. The degree ofhepatic steatosis by ultrasonography was positively correlated to waist circumference, triglycerides, insulin and HOMA index (p<0,003; p<0,003; p<0,002 and p<0,001, respectively), and was negatively correlated to HDL-cholesterol and insulin-like growth factor-binding protein-1 (p<0,025 and p<0,018, respectively). We found a high prevalence of NAFLD in patients with risk factors, most of them overweight or obese. Although SHBG and PAI-1 have a closely relationship to insulin resistance, they did not show to be markers of NAFLD. Regardless of low IGFBP-1 levels associated with NAFLD, serum IGFBP-1 measure is less accessible than insulin and triglycerides levels, HOMA index and waist circumference. Moreover, it is not a better marker for NAFLD than the above

  7. Insulin-Like Growth Factor Binding Proteins Increase Intracellular Calcium Levels in Two Different Cell Lines

    PubMed Central

    Seurin, Danielle; Lombet, Alain; Babajko, Sylvie; Godeau, François; Ricort, Jean-Marc

    2013-01-01

    Background Insulin-like growth factor binding proteins (IGFBPs) are six related secreted proteins that share IGF-dependent and -independent functions. If the former functions begin to be well described, the latter are somewhat more difficult to investigate and to characterize. At the cellular level, IGFBPs were shown to modulate numerous processes including cell growth, differentiation and apoptosis. However, the molecular mechanisms implicated remain largely unknown. We previously demonstrated that IGFBP-3, but not IGFBP-1 or IGFBP-5, increase intracellular calcium concentration in MCF-7 cells (Ricort J-M et al. (2002) FEBS lett 527: 293–297). Methodology/Principal Findings We perform a global analysis in which we studied, by two different approaches, the binding of each IGFBP isoform (i.e., IGFBP-1 to -6) to the surface of two different cellular models, MCF-7 breast adenocarcinoma cells and C2 myoblast proliferative cells, as well as the IGFBP-induced increase of intracellular calcium concentration. Using both confocal fluorescence microscopy and flow cytometry analysis, we showed that all IGFBPs bind to MCF-7 cell surface. By contrast, only four IGFBPs can bind to C2 cell surface since neither IGFBP-2 nor IGFBP-4 were detected. Among the six IGFBPs tested, only IGFBP-1 did not increased intracellular calcium concentration whatever the cellular model studied. By contrast, IGFBP-2, -3, -4 and -6, in MCF-7 cells, and IGFBP-3, -5 and -6, in C2 proliferative cells, induce a rapid and transient increase in intracellular free calcium concentration. Moreover, IGFBP-2 and -3 (in MCF-7 cells) and IGFBP-5 (in C2 cells) increase intracellular free calcium concentration by a pertussis toxin sensitive signaling pathway. Conclusions Our results demonstrate that IGFBPs are able to bind to cell surface and increase intracellular calcium concentration. By characterizing the IGFBPs-induced cell responses and intracellular couplings, we highlight the cellular specificity and

  8. CORE_TF: a user-friendly interface to identify evolutionary conserved transcription factor binding sites in sets of co-regulated genes

    PubMed Central

    Hestand, Matthew S; van Galen, Michiel; Villerius, Michel P; van Ommen, Gert-Jan B; den Dunnen, Johan T; 't Hoen, Peter AC

    2008-01-01

    Background The identification of transcription factor binding sites is difficult since they are only a small number of nucleotides in size, resulting in large numbers of false positives and false negatives in current approaches. Computational methods to reduce false positives are to look for over-representation of transcription factor binding sites in a set of similarly regulated promoters or to look for conservation in orthologous promoter alignments. Results We have developed a novel tool, "CORE_TF" (Conserved and Over-REpresented Transcription Factor binding sites) that identifies common transcription factor binding sites in promoters of co-regulated genes. To improve upon existing binding site predictions, the tool searches for position weight matrices from the TRANSFACR database that are over-represented in an experimental set compared to a random set of promoters and identifies cross-species conservation of the predicted transcription factor binding sites. The algorithm has been evaluated with expression and chromatin-immunoprecipitation on microarray data. We also implement and demonstrate the importance of matching the random set of promoters to the experimental promoters by GC content, which is a unique feature of our tool. Conclusion The program CORE_TF is accessible in a user friendly web interface at . It provides a table of over-represented transcription factor binding sites in the users input genes' promoters and a graphical view of evolutionary conserved transcription factor binding sites. In our test data sets it successfully predicts target transcription factors and their binding sites. PMID:19036135

  9. Nucleotide Interdependency in Transcription Factor Binding Sites in the Drosophila Genome.

    PubMed

    Dresch, Jacqueline M; Zellers, Rowan G; Bork, Daniel K; Drewell, Robert A

    2016-01-01

    A long-standing objective in modern biology is to characterize the molecular components that drive the development of an organism. At the heart of eukaryotic development lies gene regulation. On the molecular level, much of the research in this field has focused on the binding of transcription factors (TFs) to regulatory regions in the genome known as cis-regulatory modules (CRMs). However, relatively little is known about the sequence-specific binding preferences of many TFs, especially with respect to the possible interdependencies between the nucleotides that make up binding sites. A particular limitation of many existing algorithms that aim to predict binding site sequences is that they do not allow for dependencies between nonadjacent nucleotides. In this study, we use a recently developed computational algorithm, MARZ, to compare binding site sequences using 32 distinct models in a systematic and unbiased approach to explore nucleotide dependencies within binding sites for 15 distinct TFs known to be critical to Drosophila development. Our results indicate that many of these proteins have varying levels of nucleotide interdependencies within their DNA recognition sequences, and that, in some cases, models that account for these dependencies greatly outperform traditional models that are used to predict binding sites. We also directly compare the ability of different models to identify the known KRUPPEL TF binding sites in CRMs and demonstrate that a more complex model that accounts for nucleotide interdependencies performs better when compared with simple models. This ability to identify TFs with critical nucleotide interdependencies in their binding sites will lead to a deeper understanding of how these molecular characteristics contribute to the architecture of CRMs and the precise regulation of transcription during organismal development.

  10. Nucleotide Interdependency in Transcription Factor Binding Sites in the Drosophila Genome

    PubMed Central

    Dresch, Jacqueline M.; Zellers, Rowan G.; Bork, Daniel K.; Drewell, Robert A.

    2016-01-01

    A long-standing objective in modern biology is to characterize the molecular components that drive the development of an organism. At the heart of eukaryotic development lies gene regulation. On the molecular level, much of the research in this field has focused on the binding of transcription factors (TFs) to regulatory regions in the genome known as cis-regulatory modules (CRMs). However, relatively little is known about the sequence-specific binding preferences of many TFs, especially with respect to the possible interdependencies between the nucleotides that make up binding sites. A particular limitation of many existing algorithms that aim to predict binding site sequences is that they do not allow for dependencies between nonadjacent nucleotides. In this study, we use a recently developed computational algorithm, MARZ, to compare binding site sequences using 32 distinct models in a systematic and unbiased approach to explore nucleotide dependencies within binding sites for 15 distinct TFs known to be critical to Drosophila development. Our results indicate that many of these proteins have varying levels of nucleotide interdependencies within their DNA recognition sequences, and that, in some cases, models that account for these dependencies greatly outperform traditional models that are used to predict binding sites. We also directly compare the ability of different models to identify the known KRUPPEL TF binding sites in CRMs and demonstrate that a more complex model that accounts for nucleotide interdependencies performs better when compared with simple models. This ability to identify TFs with critical nucleotide interdependencies in their binding sites will lead to a deeper understanding of how these molecular characteristics contribute to the architecture of CRMs and the precise regulation of transcription during organismal development. PMID:27330274

  11. The Fn14 cytoplasmic tail binds tumour-necrosis-factor-receptor-associated factors 1, 2, 3 and 5 and mediates nuclear factor-kappaB activation.

    PubMed Central

    Brown, Sharron A N; Richards, Christine M; Hanscom, Heather N; Feng, Sheau-Line Y; Winkles, Jeffrey A

    2003-01-01

    Fn14 is a growth-factor-inducible immediate-early-response gene encoding a 102-amino-acid type I transmembrane protein. The human Fn14 protein was recently identified as a cell-surface receptor for the tumour necrosis factor (TNF) superfamily member named TWEAK (TNF-like weak inducer of apoptosis). In the present paper, we report that the human TWEAK extracellular domain can also bind the murine Fn14 protein. Furthermore, site-specific mutagenesis and directed yeast two-hybrid interaction assays revealed that the TNFR-associated factor (TRAF) 1, 2, 3 and 5 adaptor molecules bind the murine Fn14 cytoplasmic tail at an overlapping, but non-identical, amino acid sequence motif. We also found that TWEAK treatment of quiescent NIH 3T3 cells stimulates inhibitory kappaBalpha phosphorylation and transcriptional activation of a nuclear factor-kappaB (NF-kappaB) enhancer/luciferase reporter construct. Fn14 overexpression in transiently transfected NIH 3T3 cells also promotes NF-kappaB activation, and this cellular response requires an intact TRAF binding site. These results indicate that Fn14 is a functional TWEAK receptor that can associate with four distinct TRAF family members and stimulate the NF-kappaB transcription factor signalling pathway. PMID:12529173

  12. EMSA Analysis of DNA Binding By Rgg Proteins.

    PubMed

    LaSarre, Breah; Federle, Michael J

    2013-08-20

    In bacteria, interaction of various proteins with DNA is essential for the regulation of specific target gene expression. Electrophoretic mobility shift assay (EMSA) is an in vitro approach allowing for the visualization of these protein-DNA interactions. Rgg proteins comprise a family of transcriptional regulators widespread among the Firmicutes. Some of these proteins function independently to regulate target gene expression, while others have now been demonstrated to function as effectors of cell-to-cell communication, having regulatory activities that are modulated via direct interaction with small signaling peptides. EMSA analysis can be used to assess DNA binding of either type of Rgg protein. EMSA analysis of Rgg protein activity has facilitated in vitro confirmation of regulatory targets, identification of precise DNA binding sites via DNA probe mutagenesis, and characterization of the mechanism by which some cognate signaling peptides modulate Rgg protein function ( e.g. interruption of DNA-binding in some cases).

  13. Widespread evidence of cooperative DNA binding by transcription factors in Drosophila development

    PubMed Central

    Kazemian, Majid; Pham, Hannah; Wolfe, Scot A.; Brodsky, Michael H.; Sinha, Saurabh

    2013-01-01

    Regulation of eukaryotic gene transcription is often combinatorial in nature, with multiple transcription factors (TFs) regulating common target genes, often through direct or indirect mutual interactions. Many individual examples of cooperative binding by directly interacting TFs have been identified, but it remains unclear how pervasive this mechanism is during animal development. Cooperative TF binding should be manifest in genomic sequences as biased arrangements of TF-binding sites. Here, we explore the extent and diversity of such arrangements related to gene regulation during Drosophila embryogenesis. We used the DNA-binding specificities of 322 TFs along with chromatin accessibility information to identify enriched spacing and orientation patterns of TF-binding site pairs. We developed a new statistical approach for this task, specifically designed to accurately assess inter-site spacing biases while accounting for the phenomenon of homotypic site clustering commonly observed in developmental regulatory regions. We observed a large number of short-range distance preferences between TF-binding site pairs, including examples where the preference depends on the relative orientation of the binding sites. To test whether these binding site patterns reflect physical interactions between the corresponding TFs, we analyzed 27 TF pairs whose binding sites exhibited short distance preferences. In vitro protein–protein binding experiments revealed that >65% of these TF pairs can directly interact with each other. For five pairs, we further demonstrate that they bind cooperatively to DNA if both sites are present with the preferred spacing. This study demonstrates how DNA-binding motifs can be used to produce a comprehensive map of sequence signatures for different mechanisms of combinatorial TF action. PMID:23847101

  14. Facilitated dissociation of transcription factors from single DNA binding sites

    PubMed Central

    Kamar, Ramsey I.; Banigan, Edward J.; Erbas, Aykut; Giuntoli, Rebecca D.; Olvera de la Cruz, Monica; Johnson, Reid C.; Marko, John F.

    2017-01-01

    The binding of transcription factors (TFs) to DNA controls most aspects of cellular function, making the understanding of their binding kinetics imperative. The standard description of bimolecular interactions posits that TF off rates are independent of TF concentration in solution. However, recent observations have revealed that proteins in solution can accelerate the dissociation of DNA-bound proteins. To study the molecular basis of facilitated dissociation (FD), we have used single-molecule imaging to measure dissociation kinetics of Fis, a key Escherichia coli TF and major bacterial nucleoid protein, from single dsDNA binding sites. We observe a strong FD effect characterized by an exchange rate ∼1×104 M−1s−1, establishing that FD of Fis occurs at the single-binding site level, and we find that the off rate saturates at large Fis concentrations in solution. Although spontaneous (i.e., competitor-free) dissociation shows a strong salt dependence, we find that FD depends only weakly on salt. These results are quantitatively explained by a model in which partially dissociated bound proteins are susceptible to invasion by competitor proteins in solution. We also report FD of NHP6A, a yeast TF with structure that differs significantly from Fis. We further perform molecular dynamics simulations, which indicate that FD can occur for molecules that interact far more weakly than those that we have studied. Taken together, our results indicate that FD is a general mechanism assisting in the local removal of TFs from their binding sites and does not necessarily require cooperativity, clustering, or binding site overlap. PMID:28364020

  15. Comprehensive mutational profiling of core binding factor acute myeloid leukemia

    PubMed Central

    Duployez, Nicolas; Marceau-Renaut, Alice; Boissel, Nicolas; Petit, Arnaud; Bucci, Maxime; Geffroy, Sandrine; Lapillonne, Hélène; Renneville, Aline; Ragu, Christine; Figeac, Martin; Celli-Lebras, Karine; Lacombe, Catherine; Micol, Jean-Baptiste; Abdel-Wahab, Omar; Cornillet, Pascale; Ifrah, Norbert; Dombret, Hervé; Leverger, Guy; Jourdan, Eric

    2016-01-01

    Acute myeloid leukemia (AML) with t(8;21) or inv(16) have been recognized as unique entities within AML and are usually reported together as core binding factor AML (CBF-AML). However, there is considerable clinical and biological heterogeneity within this group of diseases, and relapse incidence reaches up to 40%. Moreover, translocations involving CBFs are not sufficient to induce AML on its own and the full spectrum of mutations coexisting with CBF translocations has not been elucidated. To address these issues, we performed extensive mutational analysis by high-throughput sequencing in 215 patients with CBF-AML enrolled in the Phase 3 Trial of Systematic Versus Response-adapted Timed-Sequential Induction in Patients With Core Binding Factor Acute Myeloid Leukemia and Treating Patients with Childhood Acute Myeloid Leukemia with Interleukin-2 trials (age, 1-60 years). Mutations in genes activating tyrosine kinase signaling (including KIT, N/KRAS, and FLT3) were frequent in both subtypes of CBF-AML. In contrast, mutations in genes that regulate chromatin conformation or encode members of the cohesin complex were observed with high frequencies in t(8;21) AML (42% and 18%, respectively), whereas they were nearly absent in inv(16) AML. High KIT mutant allele ratios defined a group of t(8;21) AML patients with poor prognosis, whereas high N/KRAS mutant allele ratios were associated with the lack of KIT or FLT3 mutations and a favorable outcome. In addition, mutations in epigenetic modifying or cohesin genes were associated with a poor prognosis in patients with tyrosine kinase pathway mutations, suggesting synergic cooperation between these events. These data suggest that diverse cooperating mutations may influence CBF-AML pathophysiology as well as clinical behavior and point to potential unique pathogenesis of t(8;21) vs inv(16) AML. PMID:26980726

  16. Comprehensive mutational profiling of core binding factor acute myeloid leukemia.

    PubMed

    Duployez, Nicolas; Marceau-Renaut, Alice; Boissel, Nicolas; Petit, Arnaud; Bucci, Maxime; Geffroy, Sandrine; Lapillonne, Hélène; Renneville, Aline; Ragu, Christine; Figeac, Martin; Celli-Lebras, Karine; Lacombe, Catherine; Micol, Jean-Baptiste; Abdel-Wahab, Omar; Cornillet, Pascale; Ifrah, Norbert; Dombret, Hervé; Leverger, Guy; Jourdan, Eric; Preudhomme, Claude

    2016-05-19

    Acute myeloid leukemia (AML) with t(8;21) or inv(16) have been recognized as unique entities within AML and are usually reported together as core binding factor AML (CBF-AML). However, there is considerable clinical and biological heterogeneity within this group of diseases, and relapse incidence reaches up to 40%. Moreover, translocations involving CBFs are not sufficient to induce AML on its own and the full spectrum of mutations coexisting with CBF translocations has not been elucidated. To address these issues, we performed extensive mutational analysis by high-throughput sequencing in 215 patients with CBF-AML enrolled in the Phase 3 Trial of Systematic Versus Response-adapted Timed-Sequential Induction in Patients With Core Binding Factor Acute Myeloid Leukemia and Treating Patients with Childhood Acute Myeloid Leukemia with Interleukin-2 trials (age, 1-60 years). Mutations in genes activating tyrosine kinase signaling (including KIT, N/KRAS, and FLT3) were frequent in both subtypes of CBF-AML. In contrast, mutations in genes that regulate chromatin conformation or encode members of the cohesin complex were observed with high frequencies in t(8;21) AML (42% and 18%, respectively), whereas they were nearly absent in inv(16) AML. High KIT mutant allele ratios defined a group of t(8;21) AML patients with poor prognosis, whereas high N/KRAS mutant allele ratios were associated with the lack of KIT or FLT3 mutations and a favorable outcome. In addition, mutations in epigenetic modifying or cohesin genes were associated with a poor prognosis in patients with tyrosine kinase pathway mutations, suggesting synergic cooperation between these events. These data suggest that diverse cooperating mutations may influence CBF-AML pathophysiology as well as clinical behavior and point to potential unique pathogenesis of t(8;21) vs inv(16) AML. © 2016 by The American Society of Hematology.

  17. Naturally occurring mutations in the human 5-lipoxygenase gene promoter that modify transcription factor binding and reporter gene transcription.

    PubMed

    In, K H; Asano, K; Beier, D; Grobholz, J; Finn, P W; Silverman, E K; Silverman, E S; Collins, T; Fischer, A R; Keith, T P; Serino, K; Kim, S W; De Sanctis, G T; Yandava, C; Pillari, A; Rubin, P; Kemp, J; Israel, E; Busse, W; Ledford, D; Murray, J J; Segal, A; Tinkleman, D; Drazen, J M

    1997-03-01

    Five lipoxygenase (5-LO) is the first committed enzyme in the metabolic pathway leading to the synthesis of the leukotrienes. We examined genomic DNA isolated from 25 normal subjects and 31 patients with asthma (6 of whom had aspirin-sensitive asthma) for mutations in the known transcription factor binding regions and the protein encoding region of the 5-LO gene. A family of mutations in the G + C-rich transcription factor binding region was identified consisting of the deletion of one, deletion of two, or addition of one zinc finger (Sp1/Egr-1) binding sites in the region 176 to 147 bp upstream from the ATG translation start site where there are normally 5 Sp1 binding motifs in tandem. Reporter gene activity directed by any of the mutant forms of the transcription factor binding region was significantly (P < 0.05) less effective than the activity driven by the wild type transcription factor binding region. Electrophoretic mobility shift assays (EMSAs) demonstrated the capacity of wild type and mutant transcription factor binding regions to bind nuclear extracts from human umbilical vein endothelial cells (HUVECs). These data are consistent with a family of mutations in the 5-LO gene that can modify reporter gene transcription possibly through differences in Sp1 and Egr-1 transactivation.

  18. SP transcription factor paralogs and DNA-binding sites coevolve and adaptively converge in mammals and birds.

    PubMed

    Yokoyama, Ken Daigoro; Pollock, David D

    2012-01-01

    Functional modification of regulatory proteins can affect hundreds of genes throughout the genome, and is therefore thought to be almost universally deleterious. This belief, however, has recently been challenged. A potential example comes from transcription factor SP1, for which statistical evidence indicates that motif preferences were altered in eutherian mammals. Here, we set out to discover possible structural and theoretical explanations, evaluate the role of selection in SP1 evolution, and discover effects on coregulatory proteins. We show that SP1 motif preferences were convergently altered in birds as well as mammals, inducing coevolutionary changes in over 800 regulatory regions. Structural and phylogenic evidence implicates a single causative amino acid replacement at the same SP1 position along both lineages. Furthermore, paralogs SP3 and SP4, which coregulate SP1 target genes through competitive binding to the same sites, have accumulated convergent replacements at the homologous position multiple times during eutherian and bird evolution, presumably to preserve competitive binding. To determine plausibility, we developed and implemented a simple model of transcription factor and binding site coevolution. This model predicts that, in contrast to prevailing beliefs, even small selective benefits per locus can drive concurrent fixation of transcription factor and binding site mutants under a broad range of conditions. Novel binding sites tend to arise de novo, rather than by mutation from ancestral sites, a prediction substantiated by SP1-binding site alignments. Thus, multiple lines of evidence indicate that selection has driven convergent evolution of transcription factors along with their binding sites and coregulatory proteins.

  19. SP Transcription Factor Paralogs and DNA-Binding Sites Coevolve and Adaptively Converge in Mammals and Birds

    PubMed Central

    Yokoyama, Ken Daigoro; Pollock, David D.

    2012-01-01

    Functional modification of regulatory proteins can affect hundreds of genes throughout the genome, and is therefore thought to be almost universally deleterious. This belief, however, has recently been challenged. A potential example comes from transcription factor SP1, for which statistical evidence indicates that motif preferences were altered in eutherian mammals. Here, we set out to discover possible structural and theoretical explanations, evaluate the role of selection in SP1 evolution, and discover effects on coregulatory proteins. We show that SP1 motif preferences were convergently altered in birds as well as mammals, inducing coevolutionary changes in over 800 regulatory regions. Structural and phylogenic evidence implicates a single causative amino acid replacement at the same SP1 position along both lineages. Furthermore, paralogs SP3 and SP4, which coregulate SP1 target genes through competitive binding to the same sites, have accumulated convergent replacements at the homologous position multiple times during eutherian and bird evolution, presumably to preserve competitive binding. To determine plausibility, we developed and implemented a simple model of transcription factor and binding site coevolution. This model predicts that, in contrast to prevailing beliefs, even small selective benefits per locus can drive concurrent fixation of transcription factor and binding site mutants under a broad range of conditions. Novel binding sites tend to arise de novo, rather than by mutation from ancestral sites, a prediction substantiated by SP1-binding site alignments. Thus, multiple lines of evidence indicate that selection has driven convergent evolution of transcription factors along with their binding sites and coregulatory proteins. PMID:23019068

  20. Molecular Determinants of Epidermal Growth Factor Binding: A Molecular Dynamics Study

    PubMed Central

    Sanders, Jeffrey M.; Wampole, Matthew E.; Thakur, Mathew L.; Wickstrom, Eric

    2013-01-01

    The epidermal growth factor receptor (EGFR) is a member of the receptor tyrosine kinase family that plays a role in multiple cellular processes. Activation of EGFR requires binding of a ligand on the extracellular domain to promote conformational changes leading to dimerization and transphosphorylation of intracellular kinase domains. Seven ligands are known to bind EGFR with affinities ranging from sub-nanomolar to near micromolar dissociation constants. In the case of EGFR, distinct conformational states assumed upon binding a ligand is thought to be a determining factor in activation of a downstream signaling network. Previous biochemical studies suggest the existence of both low affinity and high affinity EGFR ligands. While these studies have identified functional effects of ligand binding, high-resolution structural data are lacking. To gain a better understanding of the molecular basis of EGFR binding affinities, we docked each EGFR ligand to the putative active state extracellular domain dimer and 25.0 ns molecular dynamics simulations were performed. MM-PBSA/GBSA are efficient computational approaches to approximate free energies of protein-protein interactions and decompose the free energy at the amino acid level. We applied these methods to the last 6.0 ns of each ligand-receptor simulation. MM-PBSA calculations were able to successfully rank all seven of the EGFR ligands based on the two affinity classes: EGF>HB-EGF>TGF-α>BTC>EPR>EPG>AR. Results from energy decomposition identified several interactions that are common among binding ligands. These findings reveal that while several residues are conserved among the EGFR ligand family, no single set of residues determines the affinity class. Instead we found heterogeneous sets of interactions that were driven primarily by electrostatic and Van der Waals forces. These results not only illustrate the complexity of EGFR dynamics but also pave the way for structure-based design of therapeutics targeting EGF

  1. SCOWLP classification: Structural comparison and analysis of protein binding regions

    PubMed Central

    Teyra, Joan; Paszkowski-Rogacz, Maciej; Anders, Gerd; Pisabarro, M Teresa

    2008-01-01

    Background Detailed information about protein interactions is critical for our understanding of the principles governing protein recognition mechanisms. The structures of many proteins have been experimentally determined in complex with different ligands bound either in the same or different binding regions. Thus, the structural interactome requires the development of tools to classify protein binding regions. A proper classification may provide a general view of the regions that a protein uses to bind others and also facilitate a detailed comparative analysis of the interacting information for specific protein binding regions at atomic level. Such classification might be of potential use for deciphering protein interaction networks, understanding protein function, rational engineering and design. Description Protein binding regions (PBRs) might be ideally described as well-defined separated regions that share no interacting residues one another. However, PBRs are often irregular, discontinuous and can share a wide range of interacting residues among them. The criteria to define an individual binding region can be often arbitrary and may differ from other binding regions within a protein family. Therefore, the rational behind protein interface classification should aim to fulfil the requirements of the analysis to be performed. We extract detailed interaction information of protein domains, peptides and interfacial solvent from the SCOWLP database and we classify the PBRs of each domain family. For this purpose, we define a similarity index based on the overlapping of interacting residues mapped in pair-wise structural alignments. We perform our classification with agglomerative hierarchical clustering using the complete-linkage method. Our classification is calculated at different similarity cut-offs to allow flexibility in the analysis of PBRs, feature especially interesting for those protein families with conflictive binding regions. The hierarchical

  2. Binding and Translocation of Termination Factor Rho Studied at the Single-Molecule Level

    PubMed Central

    Koslover, Daniel J.; Fazal, Furqan M.; Mooney, Rachel A.; Landick, Robert; Block, Steven M.

    2012-01-01

    Rho termination factor is an essential hexameric helicase responsible for terminating 20–50% of all mRNA synthesis in E. coli. We used single- molecule force spectroscopy to investigate Rho-RNA binding interactions at the Rho- utilization (rut) site of the ? tR1 terminator. Our results are consistent with Rho complexes adopting two states, one that binds 57 ±2 nucleotides of RNA across all six of the Rho primary binding sites, and another that binds 85 ±2 nucleotides at the six primary sites plus a single secondary site situated at the center of the hexamer. The single-molecule data serve to establish that Rho translocates 5′-to-3′ towards RNA polymerase (RNAP) by a tethered-tracking mechanism, looping out the intervening RNA between the rut site and RNAP. These findings lead to a general model for Rho binding and translocation, and establish a novel experimental approach that should facilitate additional single- molecule studies of RNA-binding proteins. PMID:22885804

  3. Comparison of Nerve Growth Factor Receptor Binding Models Using Heterodimeric Muteins

    PubMed Central

    Mehta, Hrishikesh M.; Woo, Sang B.; Neet, Kenneth E.

    2013-01-01

    Nerve growth factor (NGF) is a homodimer that binds to two distinct receptor types, TrkA and p75, to support survival and differentiation of neurons. The high-affinity binding on the cell surface is believed to involve a heteroreceptor complex, but its exact nature is unclear. We developed a heterodimer (heteromutein) of two NGF muteins that can bind p75 and TrkA on opposite sides of the heterodimer, but not two TrkA receptors. Previously described muteins are Δ9/13 that is TrkA negative and 7-84-103 that is signal selective through TrkA. The heteromutein (Htm1) was used to study the heteroreceptor complex formation and function, in the putative absence of NGF-induced TrkA dimerization. Cellular binding assays indicated that Htm1 does not bind TrkA as efficiently as wild-type (wt) NGF but has better affinity than either homodimeric mutein. Htm1, 7-84-103, and Δ9/13 were each able to compete for cold-temperature, cold-chase stable binding on PC12 cells, indicating that binding to p75 was required for a portion of this high-affinity binding. Survival, neurite outgrowth, and MAPK signaling in PC12 cells also showed a reduced response for Htm1, compared with wtNGF, but was better than the parent muteins in the order wtNGF > Htm1 > 7-84-103 >> Δ9/13. Htm1 and 7-84-103 demonstrated similar levels of survival on cells expressing only TrkA. In the longstanding debate on the NGF receptor binding mechanism, our data support the ligand passing of NGF from p75 to TrkA involving a transient heteroreceptor complex of p75-NGF-TrkA. PMID:22903500

  4. Receptor binding sites for atrial natriuretic factor are expressed by brown adipose tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bacay, A.C.; Mantyh, C.R.; Vigna, S.R.

    1988-09-01

    To explore the possibility that atrial natriuretic factor (ANF) is involved in thermoregulation we used quantitative receptor autoradiography and homogenate receptor binding assays to identify ANF bindings sites in neonatal rat and sheep brown adipose tissue, respectively. Using quantitative receptor autoradiography were were able to localize high levels of specific binding sites for {sup 125}I-rat ANF in neonatal rat brown adipose tissue. Homogenate binding assays on sheep brown fat demonstrated that the radioligand was binding to the membrane fraction and that the specific binding was not due to a lipophilic interaction between {sup 125}I-rat ANF and brown fat. Specific bindingmore » of {sup 125}I-rat ANF to the membranes of brown fat cells was inhibited by unlabeled rat ANF with a Ki of 8.0 x 10(-9) M, but not by unrelated peptides. These studies demonstrate that brown fat cells express high levels of ANF receptor binding sites in neonatal rat and sheep and suggest that ANF may play a role in thermoregulation.« less

  5. EMSA Analysis of DNA Binding By Rgg Proteins

    PubMed Central

    LaSarre, Breah; Federle, Michael J.

    2016-01-01

    In bacteria, interaction of various proteins with DNA is essential for the regulation of specific target gene expression. Electrophoretic mobility shift assay (EMSA) is an in vitro approach allowing for the visualization of these protein-DNA interactions. Rgg proteins comprise a family of transcriptional regulators widespread among the Firmicutes. Some of these proteins function independently to regulate target gene expression, while others have now been demonstrated to function as effectors of cell-to-cell communication, having regulatory activities that are modulated via direct interaction with small signaling peptides. EMSA analysis can be used to assess DNA binding of either type of Rgg protein. EMSA analysis of Rgg protein activity has facilitated in vitro confirmation of regulatory targets, identification of precise DNA binding sites via DNA probe mutagenesis, and characterization of the mechanism by which some cognate signaling peptides modulate Rgg protein function (e.g. interruption of DNA-binding in some cases). PMID:27430004

  6. Sasquatch: predicting the impact of regulatory SNPs on transcription factor binding from cell- and tissue-specific DNase footprints.

    PubMed

    Schwessinger, Ron; Suciu, Maria C; McGowan, Simon J; Telenius, Jelena; Taylor, Stephen; Higgs, Doug R; Hughes, Jim R

    2017-10-01

    In the era of genome-wide association studies (GWAS) and personalized medicine, predicting the impact of single nucleotide polymorphisms (SNPs) in regulatory elements is an important goal. Current approaches to determine the potential of regulatory SNPs depend on inadequate knowledge of cell-specific DNA binding motifs. Here, we present Sasquatch, a new computational approach that uses DNase footprint data to estimate and visualize the effects of noncoding variants on transcription factor binding. Sasquatch performs a comprehensive k -mer-based analysis of DNase footprints to determine any k -mer's potential for protein binding in a specific cell type and how this may be changed by sequence variants. Therefore, Sasquatch uses an unbiased approach, independent of known transcription factor binding sites and motifs. Sasquatch only requires a single DNase-seq data set per cell type, from any genotype, and produces consistent predictions from data generated by different experimental procedures and at different sequence depths. Here we demonstrate the effectiveness of Sasquatch using previously validated functional SNPs and benchmark its performance against existing approaches. Sasquatch is available as a versatile webtool incorporating publicly available data, including the human ENCODE collection. Thus, Sasquatch provides a powerful tool and repository for prioritizing likely regulatory SNPs in the noncoding genome. © 2017 Schwessinger et al.; Published by Cold Spring Harbor Laboratory Press.

  7. Two signaling molecules share a phosphotyrosine-containing binding site in the platelet-derived growth factor receptor.

    PubMed

    Nishimura, R; Li, W; Kashishian, A; Mondino, A; Zhou, M; Cooper, J; Schlessinger, J

    1993-11-01

    Autophosphorylation sites of growth factor receptors with tyrosine kinase activity function as specific binding sites for Src homology 2 (SH2) domains of signaling molecules. This interaction appears to be a crucial step in a mechanism by which receptor tyrosine kinases relay signals to downstream signaling pathways. Nck is a widely expressed protein consisting exclusively of SH2 and SH3 domains, the overexpression of which causes cell transformation. It has been shown that various growth factors stimulate the phosphorylation of Nck and its association with autophosphorylated growth factor receptors. A panel of platelet-derived growth factor (PDGF) receptor mutations at tyrosine residues has been used to identify the Nck binding site. Here we show that mutation at Tyr-751 of the PDGF beta-receptor eliminates Nck binding both in vitro and in living cells. Moreover, the Y751F PDGF receptor mutant failed to mediate PDGF-stimulated phosphorylation of Nck in intact cells. A phosphorylated Tyr-751 is also required for binding of phosphatidylinositol-3 kinase to the PDGF receptor. Hence, the SH2 domains of p85 and Nck share a binding site in the PDGF receptor. Competition experiments with different phosphopeptides derived from the PDGF receptor suggest that binding of Nck and p85 is influenced by different residues around Tyr-751. Thus, a single tyrosine autophosphorylation site is able to link the PDGF receptor to two distinct SH2 domain-containing signaling molecules.

  8. msCentipede: Modeling Heterogeneity across Genomic Sites and Replicates Improves Accuracy in the Inference of Transcription Factor Binding

    PubMed Central

    Gilad, Yoav; Pritchard, Jonathan K.; Stephens, Matthew

    2015-01-01

    Understanding global gene regulation depends critically on accurate annotation of regulatory elements that are functional in a given cell type. CENTIPEDE, a powerful, probabilistic framework for identifying transcription factor binding sites from tissue-specific DNase I cleavage patterns and genomic sequence content, leverages the hypersensitivity of factor-bound chromatin and the information in the DNase I spatial cleavage profile characteristic of each DNA binding protein to accurately infer functional factor binding sites. However, the model for the spatial profile in this framework fails to account for the substantial variation in the DNase I cleavage profiles across different binding sites. Neither does it account for variation in the profiles at the same binding site across multiple replicate DNase I experiments, which are increasingly available. In this work, we introduce new methods, based on multi-scale models for inhomogeneous Poisson processes, to account for such variation in DNase I cleavage patterns both within and across binding sites. These models account for the spatial structure in the heterogeneity in DNase I cleavage patterns for each factor. Using DNase-seq measurements assayed in a lymphoblastoid cell line, we demonstrate the improved performance of this model for several transcription factors by comparing against the Chip-seq peaks for those factors. Finally, we explore the effects of DNase I sequence bias on inference of factor binding using a simple extension to our framework that allows for a more flexible background model. The proposed model can also be easily applied to paired-end ATAC-seq and DNase-seq data. msCentipede, a Python implementation of our algorithm, is available at http://rajanil.github.io/msCentipede. PMID:26406244

  9. msCentipede: Modeling Heterogeneity across Genomic Sites and Replicates Improves Accuracy in the Inference of Transcription Factor Binding.

    PubMed

    Raj, Anil; Shim, Heejung; Gilad, Yoav; Pritchard, Jonathan K; Stephens, Matthew

    2015-01-01

    Understanding global gene regulation depends critically on accurate annotation of regulatory elements that are functional in a given cell type. CENTIPEDE, a powerful, probabilistic framework for identifying transcription factor binding sites from tissue-specific DNase I cleavage patterns and genomic sequence content, leverages the hypersensitivity of factor-bound chromatin and the information in the DNase I spatial cleavage profile characteristic of each DNA binding protein to accurately infer functional factor binding sites. However, the model for the spatial profile in this framework fails to account for the substantial variation in the DNase I cleavage profiles across different binding sites. Neither does it account for variation in the profiles at the same binding site across multiple replicate DNase I experiments, which are increasingly available. In this work, we introduce new methods, based on multi-scale models for inhomogeneous Poisson processes, to account for such variation in DNase I cleavage patterns both within and across binding sites. These models account for the spatial structure in the heterogeneity in DNase I cleavage patterns for each factor. Using DNase-seq measurements assayed in a lymphoblastoid cell line, we demonstrate the improved performance of this model for several transcription factors by comparing against the Chip-seq peaks for those factors. Finally, we explore the effects of DNase I sequence bias on inference of factor binding using a simple extension to our framework that allows for a more flexible background model. The proposed model can also be easily applied to paired-end ATAC-seq and DNase-seq data. msCentipede, a Python implementation of our algorithm, is available at http://rajanil.github.io/msCentipede.

  10. Competition between histone and transcription factor binding regulates the onset of transcription in zebrafish embryos

    PubMed Central

    Joseph, Shai R; Pálfy, Máté; Hilbert, Lennart; Kumar, Mukesh; Karschau, Jens; Zaburdaev, Vasily; Shevchenko, Andrej; Vastenhouw, Nadine L

    2017-01-01

    Upon fertilization, the genome of animal embryos remains transcriptionally inactive until the maternal-to-zygotic transition. At this time, the embryo takes control of its development and transcription begins. How the onset of zygotic transcription is regulated remains unclear. Here, we show that a dynamic competition for DNA binding between nucleosome-forming histones and transcription factors regulates zebrafish genome activation. Taking a quantitative approach, we found that the concentration of non-DNA-bound core histones sets the time for the onset of transcription. The reduction in nuclear histone concentration that coincides with genome activation does not affect nucleosome density on DNA, but allows transcription factors to compete successfully for DNA binding. In agreement with this, transcription factor binding is sensitive to histone levels and the concentration of transcription factors also affects the time of transcription. Our results demonstrate that the relative levels of histones and transcription factors regulate the onset of transcription in the embryo. DOI: http://dx.doi.org/10.7554/eLife.23326.001 PMID:28425915

  11. Naturally occurring mutations in the human 5-lipoxygenase gene promoter that modify transcription factor binding and reporter gene transcription.

    PubMed Central

    In, K H; Asano, K; Beier, D; Grobholz, J; Finn, P W; Silverman, E K; Silverman, E S; Collins, T; Fischer, A R; Keith, T P; Serino, K; Kim, S W; De Sanctis, G T; Yandava, C; Pillari, A; Rubin, P; Kemp, J; Israel, E; Busse, W; Ledford, D; Murray, J J; Segal, A; Tinkleman, D; Drazen, J M

    1997-01-01

    Five lipoxygenase (5-LO) is the first committed enzyme in the metabolic pathway leading to the synthesis of the leukotrienes. We examined genomic DNA isolated from 25 normal subjects and 31 patients with asthma (6 of whom had aspirin-sensitive asthma) for mutations in the known transcription factor binding regions and the protein encoding region of the 5-LO gene. A family of mutations in the G + C-rich transcription factor binding region was identified consisting of the deletion of one, deletion of two, or addition of one zinc finger (Sp1/Egr-1) binding sites in the region 176 to 147 bp upstream from the ATG translation start site where there are normally 5 Sp1 binding motifs in tandem. Reporter gene activity directed by any of the mutant forms of the transcription factor binding region was significantly (P < 0.05) less effective than the activity driven by the wild type transcription factor binding region. Electrophoretic mobility shift assays (EMSAs) demonstrated the capacity of wild type and mutant transcription factor binding regions to bind nuclear extracts from human umbilical vein endothelial cells (HUVECs). These data are consistent with a family of mutations in the 5-LO gene that can modify reporter gene transcription possibly through differences in Sp1 and Egr-1 transactivation. PMID:9062372

  12. Drosophila Transcription Factor Tramtrack69 Binds MEP1 To Recruit the Chromatin Remodeler NuRD ▿ †

    PubMed Central

    Reddy, B. Ashok; Bajpe, Prashanth Kumar; Bassett, Andrew; Moshkin, Yuri M.; Kozhevnikova, Elena; Bezstarosti, Karel; Demmers, Jeroen A. A.; Travers, Andrew A.; Verrijzer, C. Peter

    2010-01-01

    ATP-dependent chromatin-remodeling complexes (remodelers) are essential regulators of chromatin structure and gene transcription. How remodelers can act in a gene-selective manner has remained enigmatic. A yeast two-hybrid screen for proteins binding the Drosophila transcription factor Tramtrack69 (TTK69) identified MEP1. Proteomic characterization revealed that MEP1 is a tightly associated subunit of the NuRD remodeler, harboring the Mi2 enzymatic core ATPase. In addition, we identified the fly homolog of human Deleted in oral cancer 1 (DOC1), also known as CDK2-associated protein 1 (CDK2AP1), as a bona fide NuRD subunit. Biochemical and genetic assays supported the functional association between MEP1, Mi2, and TTK69. Genomewide expression analysis established that TTK69, MEP1, and Mi2 cooperate closely to control transcription. The TTK69 transcriptome profile correlates poorly with remodelers other than NuRD, emphasizing the selectivity of remodeler action. On the genes examined, TTK69 is able to bind chromatin in the absence of NuRD, but targeting of NuRD is dependent on TTK69. Thus, there appears to be a hierarchical relationship in which transcription factor binding precedes remodeler recruitment. PMID:20733004

  13. Quantitative Analysis of Guanine Nucleotide Exchange Factors (GEFs) as Enzymes

    PubMed Central

    Randazzo, Paul A; Jian, Xiaoying; Chen, Pei-Wen; Zhai, Peng; Soubias, Olivier; Northup, John K

    2014-01-01

    The proteins that possess guanine nucleotide exchange factor (GEF) activity, which include about ~800 G protein coupled receptors (GPCRs),1 15 Arf GEFs,2 81 Rho GEFs,3 8 Ras GEFs,4 and others for other families of GTPases,5 catalyze the exchange of GTP for GDP on all regulatory guanine nucleotide binding proteins. Despite their importance as catalysts, relatively few exchange factors (we are aware of only eight for ras superfamily members) have been rigorously characterized kinetically.5–13 In some cases, kinetic analysis has been simplistic leading to erroneous conclusions about mechanism (as discussed in a recent review14). In this paper, we compare two approaches for determining the kinetic properties of exchange factors: (i) examining individual equilibria, and; (ii) analyzing the exchange factors as enzymes. Each approach, when thoughtfully used,14,15 provides important mechanistic information about the exchange factors. The analysis as enzymes is described in further detail. With the focus on the production of the biologically relevant guanine nucleotide binding protein complexed with GTP (G•GTP), we believe it is conceptually simpler to connect the kinetic properties to cellular effects. Further, the experiments are often more tractable than those used to analyze the equilibrium system and, therefore, more widely accessible to scientists interested in the function of exchange factors. PMID:25332840

  14. Interaction of AIM with insulin-like growth factor-binding protein-4.

    PubMed

    You, Qiang; Wu, Yan; Yao, Nannan; Shen, Guannan; Zhang, Ying; Xu, Liangguo; Li, Guiying; Ju, Cynthia

    2015-09-01

    Apoptosis inhibitor of macrophages (AIM/cluster of differentiation 5 antigen-like/soluble protein α) has been shown to inhibit cellular apoptosis; however, the underlying molecular mechanism has not been elucidated. Using yeast two‑hybrid screening, the present study uncovered that AIM binds to insulin‑like growth factor binding protein‑4 (IGFBP‑4). AIM interaction with IGFBP‑4, as well as IGFBP‑2 and ‑3, but not with IGFBP‑1, ‑5 and ‑6, was further confirmed by co‑immunoprecipitation (co‑IP) using 293 cells. The binding activity and affinity between AIM and IGFBP‑4 in vitro were analyzed by co‑IP and biolayer interferometry. Serum depletion‑induced cellular apoptosis was attenuated by insulin‑like growth factor‑I (IGF‑I), and this effect was abrogated by IGFBP‑4. Of note, in the presence of AIM, the inhibitory effect of IGFBP‑4 on the anti‑apoptosis function of IGF‑I was attenuated, possibly through binding of AIM with IGFBP‑4. In conclusion, to the best of our knowledge, the present study provides the first evidence that AIM binds to IGFBP‑2, ‑3 and ‑4. The data suggest that this interaction may contribute to the mechanism of AIM-mediated anti-apoptosis function.

  15. The dyad palindromic glutathione transferase P enhancer binds multiple factors including AP1.

    PubMed Central

    Diccianni, M B; Imagawa, M; Muramatsu, M

    1992-01-01

    Glutathione Transferase P (GST-P) gene expression is dominantly regulated by an upstream enhancer (GPEI) consisting of a dyad of palindromically oriented imperfect TPA (12-O-tetradecanoyl-phorbol-13-acetate)-responsive elements (TRE). GPEI is active in AP1-lacking F9 cells as well in AP1-containing HeLa cells. Despite GPEI's similarity to a TRE, c-jun co-transfection has only a minimal effect on transactivation. Antisense c-jun and c-fos co-transfection experiments further demonstrate the lack of a role for AP1 in GPEI mediated trans-activation in F9 cells, although endogenously present AP1 can influence GPEI in HeLa cells. Co-transfection of delta fosB with c-jun, which forms an inactive c-Jun/delta FosB heterodimer that binds TRE sequences, inhibits GPEI-mediated transcription in AP1-lacking F9 cells as well as AP1-containing HeLa cells. These data suggest novel factor(s) other than AP1 are influencing GPEI. Binding studies reveal multiple nucleoproteins bind to GPEI. These factors are likely responsible for the high level of GPEI-mediated transcription observed in the absence of AP1 and during hepatocarcinogenesis. Images PMID:1408831

  16. The dyad palindromic glutathione transferase P enhancer binds multiple factors including AP1.

    PubMed

    Diccianni, M B; Imagawa, M; Muramatsu, M

    1992-10-11

    Glutathione Transferase P (GST-P) gene expression is dominantly regulated by an upstream enhancer (GPEI) consisting of a dyad of palindromically oriented imperfect TPA (12-O-tetradecanoyl-phorbol-13-acetate)-responsive elements (TRE). GPEI is active in AP1-lacking F9 cells as well in AP1-containing HeLa cells. Despite GPEI's similarity to a TRE, c-jun co-transfection has only a minimal effect on transactivation. Antisense c-jun and c-fos co-transfection experiments further demonstrate the lack of a role for AP1 in GPEI mediated trans-activation in F9 cells, although endogenously present AP1 can influence GPEI in HeLa cells. Co-transfection of delta fosB with c-jun, which forms an inactive c-Jun/delta FosB heterodimer that binds TRE sequences, inhibits GPEI-mediated transcription in AP1-lacking F9 cells as well as AP1-containing HeLa cells. These data suggest novel factor(s) other than AP1 are influencing GPEI. Binding studies reveal multiple nucleoproteins bind to GPEI. These factors are likely responsible for the high level of GPEI-mediated transcription observed in the absence of AP1 and during hepatocarcinogenesis.

  17. Identification of candidate transcription factor binding sites in the cattle genome

    USDA-ARS?s Scientific Manuscript database

    A resource that provides candidate transcription factor binding sites does not currently exist for cattle. Such data is necessary, as predicted sites may serve as excellent starting locations for future 'omics studies to develop transcriptional regulation hypotheses. In order to generate this resour...

  18. Using RSAT to scan genome sequences for transcription factor binding sites and cis-regulatory modules.

    PubMed

    Turatsinze, Jean-Valery; Thomas-Chollier, Morgane; Defrance, Matthieu; van Helden, Jacques

    2008-01-01

    This protocol shows how to detect putative cis-regulatory elements and regions enriched in such elements with the regulatory sequence analysis tools (RSAT) web server (http://rsat.ulb.ac.be/rsat/). The approach applies to known transcription factors, whose binding specificity is represented by position-specific scoring matrices, using the program matrix-scan. The detection of individual binding sites is known to return many false predictions. However, results can be strongly improved by estimating P value, and by searching for combinations of sites (homotypic and heterotypic models). We illustrate the detection of sites and enriched regions with a study case, the upstream sequence of the Drosophila melanogaster gene even-skipped. This protocol is also tested on random control sequences to evaluate the reliability of the predictions. Each task requires a few minutes of computation time on the server. The complete protocol can be executed in about one hour.

  19. pH Modulates the Binding of EGR1 Transcription Factor to DNA

    PubMed Central

    Mikles, David C.; Bhat, Vikas; Schuchardt, Brett J.; Deegan, Brian J.; Seldeen, Kenneth L.; McDonald, Caleb B.; Farooq, Amjad

    2013-01-01

    EGR1 transcription factor orchestrates a plethora of signaling cascades involved in cellular homeostasis and its down-regulation has been implicated in the development of prostate cancer. Herein, using a battery of biophysical tools, we show that the binding of EGR1 to DNA is tightly regulated by solution pH. Importantly, the binding affinity undergoes an enhancement of more than an order of magnitude with increasing pH from 5 to 8, implying that the deprotonation of an ionizable residue accounts for such behavior. This ionizable residue is identified as H382 by virtue of the fact that its substitution to non-ionizable residues abolishes pH-dependence of the binding of EGR1 to DNA. Notably, H382 inserts into the major groove of DNA and stabilizes the EGR1-DNA interaction via both hydrogen bonding and van der Waals contacts. Remarkably, H382 is predominantly conserved across other members of EGR1 family, implying that histidine protonation-deprotonation may serve as a molecular switch for modulating protein-DNA interactions central to this family of transcription factors. Collectively, our findings uncover an unexpected but a key step in the molecular recognition of EGR1 family of transcription factors and suggest that they may act as sensors of pH within the intracellular environment. PMID:23718776

  20. Identification of Specific DNA Binding Residues in the TCP Family of Transcription Factors in Arabidopsis[W

    PubMed Central

    Aggarwal, Pooja; Das Gupta, Mainak; Joseph, Agnel Praveen; Chatterjee, Nirmalya; Srinivasan, N.; Nath, Utpal

    2010-01-01

    The TCP transcription factors control multiple developmental traits in diverse plant species. Members of this family share an ∼60-residue-long TCP domain that binds to DNA. The TCP domain is predicted to form a basic helix-loop-helix (bHLH) structure but shares little sequence similarity with canonical bHLH domain. This classifies the TCP domain as a novel class of DNA binding domain specific to the plant kingdom. Little is known about how the TCP domain interacts with its target DNA. We report biochemical characterization and DNA binding properties of a TCP member in Arabidopsis thaliana, TCP4. We have shown that the 58-residue domain of TCP4 is essential and sufficient for binding to DNA and possesses DNA binding parameters comparable to canonical bHLH proteins. Using a yeast-based random mutagenesis screen and site-directed mutants, we identified the residues important for DNA binding and dimer formation. Mutants defective in binding and dimerization failed to rescue the phenotype of an Arabidopsis line lacking the endogenous TCP4 activity. By combining structure prediction, functional characterization of the mutants, and molecular modeling, we suggest a possible DNA binding mechanism for this class of transcription factors. PMID:20363772

  1. Production of insulin-like growth factor binding proteins by small-cell lung cancer cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaques, G.; Kiefer, P.; Rotsch, M.

    1989-10-01

    Conditioned serum-free media (CM) from small-cell lung cancer (SCLC) cell lines were examined for the presence of insulin-like growth-factor-binding proteins (IGF-BP). 6/9 SCLC cell lines secreted binding proteins with high affinity for IGFs. When ({sup 125}I)IGF-1 or ({sup 125}I)IGF-II was incubated with the CMs, complexes of tracer with proteins could be demonstrated by gel filtration, by precipitation with polyethylenglycol, and after adsorption of unbound tracer with activated charcoal. Analysis of binding data according to the method of Scatchard resulted in linear plots for IGF-I and IGF-II. Cross-linking of ({sup 125}I)IGF-I or ({sup 125}I)IGF-II to the CMs followed by sodium dodecylmore » sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) under nonreducing conditions revealed the presence of IGF-BPs with molecular masses in the range of 24-32 kDa. Northern blot hybridization with an IGF-BP cDNA probe encoding a low-molecular-weight IGF-BP from a human placenta cDNA library and Western blot analysis with a corresponding polyclonal antibody showed no expression of this gene. These data demonstrate that SCLC cell lines release IGF-BPs in culture supernatants, which differ from IGF-BPs detected in liver and placenta. These IGF-BPs might be important mediators in the autocrine/paracrine growth regulation of IGFs in SCLC.« less

  2. De-novo discovery of differentially abundant transcription factor binding sites including their positional preference.

    PubMed

    Keilwagen, Jens; Grau, Jan; Paponov, Ivan A; Posch, Stefan; Strickert, Marc; Grosse, Ivo

    2011-02-10

    Transcription factors are a main component of gene regulation as they activate or repress gene expression by binding to specific binding sites in promoters. The de-novo discovery of transcription factor binding sites in target regions obtained by wet-lab experiments is a challenging problem in computational biology, which has not been fully solved yet. Here, we present a de-novo motif discovery tool called Dispom for finding differentially abundant transcription factor binding sites that models existing positional preferences of binding sites and adjusts the length of the motif in the learning process. Evaluating Dispom, we find that its prediction performance is superior to existing tools for de-novo motif discovery for 18 benchmark data sets with planted binding sites, and for a metazoan compendium based on experimental data from micro-array, ChIP-chip, ChIP-DSL, and DamID as well as Gene Ontology data. Finally, we apply Dispom to find binding sites differentially abundant in promoters of auxin-responsive genes extracted from Arabidopsis thaliana microarray data, and we find a motif that can be interpreted as a refined auxin responsive element predominately positioned in the 250-bp region upstream of the transcription start site. Using an independent data set of auxin-responsive genes, we find in genome-wide predictions that the refined motif is more specific for auxin-responsive genes than the canonical auxin-responsive element. In general, Dispom can be used to find differentially abundant motifs in sequences of any origin. However, the positional distribution learned by Dispom is especially beneficial if all sequences are aligned to some anchor point like the transcription start site in case of promoter sequences. We demonstrate that the combination of searching for differentially abundant motifs and inferring a position distribution from the data is beneficial for de-novo motif discovery. Hence, we make the tool freely available as a component of the open

  3. Identification of transactivation-responsive DNA-binding protein 43 (TARDBP43; TDP-43) as a novel factor for TNF-α expression upon lipopolysaccharide stimulation in human monocytes.

    PubMed

    Murata, H; Hattori, T; Maeda, H; Takashiba, S; Takigawa, M; Kido, J; Nagata, T

    2015-08-01

    Tumor necrosis factor alpha (TNF-α) is a major cytokine implicated in various inflammatory diseases. The nature of the nuclear factors associated with human TNF-α gene regulation is not well elucidated. We previously identified a novel region located from -550 to -487 in human TNF-α promoter that did not contain the reported binding sites for nuclear factor kappa B (NF-κB) but showed lipopolysaccharide (LPS)-induced transcriptional activity. The purpose of this study is to identify novel factors that bind to the promoter region and regulate TNF-α expression. To identify DNA-binding proteins that bound to the target region of TNF-α promoter, a cDNA library from LPS-stimulated human monocytic cell line THP-1 was screened using a yeast one-hybrid system. Cellular localizations of the DNA-binding protein in the cells were examined by subcellular immunocytochemistry. Nuclear amounts of the protein in LPS-stimulated THP-1 cells were identified by western blot analysis. Expression of mRNA of the protein in the cells was quantified by real-time polymerase chain reaction. Electrophoretic mobility shift assays were performed to confirm the DNA-binding profile. Overexpression of the protein and knockdown of the gene were also performed to investigate the role for TNF-α expression. Several candidates were identified from the cDNA library and transactivation-responsive DNA-binding protein 43 (TARDBP43; TDP-43) was focused on. Western blot analysis revealed that nuclear TDP-43 protein was increased in the LPS-stimulated THP-1 cells. Expression of TDP-43 mRNA was already enhanced before TNF-α induction by LPS. Electrophoretic mobility shift assay analysis showed that nuclear extracts obtained by overexpressing FLAG-tagged TDP-43 bound to the -550 to -487 TNF-α promoter fragments. Overexpression of TDP-43 in THP-1 cells resulted in an increase of TNF-α expression. Knockdown of TDP-43 in THP-1 cells downregulated TNF-α expression. We identified TDP-43 as one of the novel

  4. Stable Binding of the Conserved Transcription Factor Grainy Head to its Target Genes Throughout Drosophila melanogaster Development

    PubMed Central

    Nevil, Markus; Bondra, Eliana R.; Schulz, Katharine N.; Kaplan, Tommy; Harrison, Melissa M.

    2017-01-01

    It has been suggested that transcription factor binding is temporally dynamic, and that changes in binding determine transcriptional output. Nonetheless, this model is based on relatively few examples in which transcription factor binding has been assayed at multiple developmental stages. The essential transcription factor Grainy head (Grh) is conserved from fungi to humans, and controls epithelial development and barrier formation in numerous tissues. Drosophila melanogaster, which possess a single grainy head (grh) gene, provide an excellent system to study this conserved factor. To determine whether temporally distinct binding events allow Grh to control cell fate specification in different tissue types, we used a combination of ChIP-seq and RNA-seq to elucidate the gene regulatory network controlled by Grh during four stages of embryonic development (spanning stages 5–17) and in larval tissue. Contrary to expectations, we discovered that Grh remains bound to at least 1146 genomic loci over days of development. In contrast to this stable DNA occupancy, the subset of genes whose expression is regulated by Grh varies. Grh transitions from functioning primarily as a transcriptional repressor early in development to functioning predominantly as an activator later. Our data reveal that Grh binds to target genes well before the Grh-dependent transcriptional program commences, suggesting it sets the stage for subsequent recruitment of additional factors that execute stage-specific Grh functions. PMID:28007888

  5. Internal Associations of the Acidic Region of Upstream Binding Factor Control Its Nucleolar Localization.

    PubMed

    Ueshima, Shuhei; Nagata, Kyosuke; Okuwaki, Mitsuru

    2017-11-15

    Upstream binding factor (UBF) is a member of the high-mobility group (HMG) box protein family, characterized by multiple HMG boxes and a C-terminal acidic region (AR). UBF is an essential transcription factor for rRNA genes and mediates the formation of transcriptionally active chromatin in the nucleolus. However, it remains unknown how UBF is specifically localized to the nucleolus. Here, we examined the molecular mechanisms that localize UBF to the nucleolus. We found that the first HMG box (HMG box 1), the linker region (LR), and the AR cooperatively regulate the nucleolar localization of UBF1. We demonstrated that the AR intramolecularly associates with and attenuates the DNA binding activity of HMG boxes and confers the structured DNA preference to HMG box 1. In contrast, the LR was found to serve as a nuclear localization signal and compete with HMG boxes to bind the AR, permitting nucleolar localization of UBF1. The LR sequence binds DNA and assists the stable chromatin binding of UBF. We also showed that the phosphorylation status of the AR does not clearly affect the localization of UBF1. Our results strongly suggest that associations of the AR with HMG boxes and the LR regulate UBF nucleolar localization. Copyright © 2017 American Society for Microbiology.

  6. Amperometric Glucose Sensor Using Thermostable Co-Factor Binding Glucose Dehydrogenase

    NASA Astrophysics Data System (ADS)

    Nakazawa, Yukie; Yamazaki, Tomohiko; Tsugawa, Wakako; Ikebukuro, Kazunori; Sode, Koji

    A thermostable mediator-type enzyme glucose sensor was constructed. The electrode was fabricated using chemically cross-linked thermostable co-factor binding glucose dehydrogenase (GDH) from thermophilic bacteria in carbon paste matrix. The electrode responded directly proportional to D-glucose concentration from 0.01 mM to 3 mM in stirred buffer containing 1 mM 1-methoxyphenazinemethosulfate as a mediator with the steady-state mode. The storage stability was examined by incubating the enzyme electrode at 50oC during the measurement. The cross-linked GDH immobilized electrode showed good storage stability. Ninety percent of its initial response was retained after incubation in buffer solution for 9 days at 50oC. The flow injection analysis (FIA) glucose sensing system was also constructed by immobilizing the cross-linked GDH and ferrocene as a mediator in the carbon paste matrix. The FIA system was able to measure 600 samples for 100 h.

  7. Epigenetic priors for identifying active transcription factor binding sites.

    PubMed

    Cuellar-Partida, Gabriel; Buske, Fabian A; McLeay, Robert C; Whitington, Tom; Noble, William Stafford; Bailey, Timothy L

    2012-01-01

    Accurate knowledge of the genome-wide binding of transcription factors in a particular cell type or under a particular condition is necessary for understanding transcriptional regulation. Using epigenetic data such as histone modification and DNase I, accessibility data has been shown to improve motif-based in silico methods for predicting such binding, but this approach has not yet been fully explored. We describe a probabilistic method for combining one or more tracks of epigenetic data with a standard DNA sequence motif model to improve our ability to identify active transcription factor binding sites (TFBSs). We convert each data type into a position-specific probabilistic prior and combine these priors with a traditional probabilistic motif model to compute a log-posterior odds score. Our experiments, using histone modifications H3K4me1, H3K4me3, H3K9ac and H3K27ac, as well as DNase I sensitivity, show conclusively that the log-posterior odds score consistently outperforms a simple binary filter based on the same data. We also show that our approach performs competitively with a more complex method, CENTIPEDE, and suggest that the relative simplicity of the log-posterior odds scoring method makes it an appealing and very general method for identifying functional TFBSs on the basis of DNA and epigenetic evidence. FIMO, part of the MEME Suite software toolkit, now supports log-posterior odds scoring using position-specific priors for motif search. A web server and source code are available at http://meme.nbcr.net. Utilities for creating priors are at http://research.imb.uq.edu.au/t.bailey/SD/Cuellar2011. t.bailey@uq.edu.au Supplementary data are available at Bioinformatics online.

  8. Modular Evolution of DNA-Binding Preference of a Tbrain Transcription Factor Provides a Mechanism for Modifying Gene Regulatory Networks

    PubMed Central

    Cheatle Jarvela, Alys M.; Brubaker, Lisa; Vedenko, Anastasia; Gupta, Anisha; Armitage, Bruce A.; Bulyk, Martha L.; Hinman, Veronica F.

    2014-01-01

    Gene regulatory networks (GRNs) describe the progression of transcriptional states that take a single-celled zygote to a multicellular organism. It is well documented that GRNs can evolve extensively through mutations to cis-regulatory modules (CRMs). Transcription factor proteins that bind these CRMs may also evolve to produce novelty. Coding changes are considered to be rarer, however, because transcription factors are multifunctional and hence are more constrained to evolve in ways that will not produce widespread detrimental effects. Recent technological advances have unearthed a surprising variation in DNA-binding abilities, such that individual transcription factors may recognize both a preferred primary motif and an additional secondary motif. This provides a source of modularity in function. Here, we demonstrate that orthologous transcription factors can also evolve a changed preference for a secondary binding motif, thereby offering an unexplored mechanism for GRN evolution. Using protein-binding microarray, surface plasmon resonance, and in vivo reporter assays, we demonstrate an important difference in DNA-binding preference between Tbrain protein orthologs in two species of echinoderms, the sea star, Patiria miniata, and the sea urchin, Strongylocentrotus purpuratus. Although both orthologs recognize the same primary motif, only the sea star Tbr also has a secondary binding motif. Our in vivo assays demonstrate that this difference may allow for greater evolutionary change in timing of regulatory control. This uncovers a layer of transcription factor binding divergence that could exist for many pairs of orthologs. We hypothesize that this divergence provides modularity that allows orthologous transcription factors to evolve novel roles in GRNs through modification of binding to secondary sites. PMID:25016582

  9. A Comparative Study of the Application of Fluorescence Excitation-Emission Matrices Combined with Parallel Factor Analysis and Nonnegative Matrix Factorization in the Analysis of Zn Complexation by Humic Acids

    PubMed Central

    Boguta, Patrycja; Pieczywek, Piotr M.; Sokołowska, Zofia

    2016-01-01

    The main aim of this study was the application of excitation-emission fluorescence matrices (EEMs) combined with two decomposition methods: parallel factor analysis (PARAFAC) and nonnegative matrix factorization (NMF) to study the interaction mechanisms between humic acids (HAs) and Zn(II) over a wide concentration range (0–50 mg·dm−3). The influence of HA properties on Zn(II) complexation was also investigated. Stability constants, quenching degree and complexation capacity were estimated for binding sites found in raw EEM, EEM-PARAFAC and EEM-NMF data using mathematical models. A combination of EEM fluorescence analysis with one of the proposed decomposition methods enabled separation of overlapping binding sites and yielded more accurate calculations of the binding parameters. PARAFAC and NMF processing allowed finding binding sites invisible in a few raw EEM datasets as well as finding totally new maxima attributed to structures of the lowest humification. Decomposed data showed an increase in Zn complexation with an increase in humification, aromaticity and molecular weight of HAs. EEM-PARAFAC analysis also revealed that the most stable compounds were formed by structures containing the highest amounts of nitrogen. The content of oxygen-functional groups did not influence the binding parameters, mainly due to fact of higher competition of metal cation with protons. EEM spectra coupled with NMF and especially PARAFAC processing gave more adequate assessments of interactions as compared to raw EEM data and should be especially recommended for modeling of complexation processes where the fluorescence intensities (FI) changes are weak or where the processes are interfered with by the presence of other fluorophores. PMID:27782078

  10. Dehydration responsive element binding transcription factors and their applications for the engineering of stress tolerance.

    PubMed

    Agarwal, Pradeep K; Gupta, Kapil; Lopato, Sergiy; Agarwal, Parinita

    2017-04-01

    Dehydration responsive element binding (DREB) factors or CRT element binding factors (CBFs) are members of the AP2/ERF family, which comprises a large number of stress-responsive regulatory genes. This review traverses almost two decades of research, from the discovery of DREB/CBF factors to their optimization for application in plant biotechnology. In this review, we describe (i) the discovery, classification, structure, and evolution of DREB genes and proteins; (ii) induction of DREB genes by abiotic stresses and involvement of their products in stress responses; (iii) protein structure and DNA binding selectivity of different groups of DREB proteins; (iv) post-transcriptional and post-translational mechanisms of DREB transcription factor (TF) regulation; and (v) physical and/or functional interaction of DREB TFs with other proteins during plant stress responses. We also discuss existing issues in applications of DREB TFs for engineering of enhanced stress tolerance and improved performance under stress of transgenic crop plants. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  11. Localization of basic fibroblast growth factor binding sites in the chick embryonic neural retina.

    PubMed

    Cirillo, A; Arruti, C; Courtois, Y; Jeanny, J C

    1990-12-01

    We have investigated the localization of basic fibroblast growth factor (bFGF) binding sites during the development of the neural retina in the chick embryo. The specificity of the affinity of bFGF for its receptors was assessed by competition experiments with unlabelled growth factor or with heparin, as well as by heparitinase treatment of the samples. Two different types of binding sites were observed in the neural retina by light-microscopic autoradiography. The first type, localized mainly to basement membranes, was highly sensitive to heparitinase digestion and to competition with heparin. It was not developmentally regulated. The second type of binding site, resistant to heparin competition, appeared to be associated with retinal cells from the earliest stages studied (3-day-old embryo, stages 21-22 of Hamburger and Hamilton). Its distribution was found to vary during embryonic development, paralleling layering of the neural retina. Binding of bFGF to the latter sites was observed throughout the retinal neuroepithelium at early stages but displayed a distinct pattern at the time when the inner and outer plexiform layers were formed. During the development of the inner plexiform layer, a banded pattern of bFGF binding was observed. These bands, lying parallel to the vitreal surface, seemed to codistribute with the synaptic bands existing in the inner plexiform layer. The presence of intra-retinal bFGF binding sites whose distribution varies with embryonic development suggests a regulatory mechanism involving differential actions of bFGF on neural retinal cells.

  12. Role of Fibroblast Growth Factor Binding Protein-1 in Mammary Development and Tumorigenesis

    DTIC Science & Technology

    2008-10-01

    AD_________________ AWARD NUMBER: W81XWH-06-1-0763 TITLE: Role of Fibroblast Growth Factor ...Role of Fibroblast Growth Factor Binding Protein-1 in Mammary Development and Tumorigenesis 5b. GRANT NUMBER W81XWH-06-1-0763 5c. PROGRAM...Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Fibroblast growth factors (FGFs) are vital modulators of development as well as

  13. Comprehensive meta-analysis of Signal Transducers and Activators of Transcription (STAT) genomic binding patterns discerns cell-specific cis-regulatory modules

    PubMed Central

    2013-01-01

    Background Cytokine-activated transcription factors from the STAT (Signal Transducers and Activators of Transcription) family control common and context-specific genetic programs. It is not clear to what extent cell-specific features determine the binding capacity of seven STAT members and to what degree they share genetic targets. Molecular insight into the biology of STATs was gained from a meta-analysis of 29 available ChIP-seq data sets covering genome-wide occupancy of STATs 1, 3, 4, 5A, 5B and 6 in several cell types. Results We determined that the genomic binding capacity of STATs is primarily defined by the cell type and to a lesser extent by individual family members. For example, the overlap of shared binding sites between STATs 3 and 5 in T cells is greater than that between STAT5 in T cells and non-T cells. Even for the top 1,000 highly enriched STAT binding sites, ~15% of STAT5 binding sites in mouse female liver are shared by other STATs in different cell types while in T cells ~90% of STAT5 binding sites are co-occupied by STAT3, STAT4 and STAT6. In addition, we identified 116 cis-regulatory modules (CRM), which are recognized by all STAT members across cell types defining a common JAK-STAT signature. Lastly, in liver STAT5 binding significantly coincides with binding of the cell-specific transcription factors HNF4A, FOXA1 and FOXA2 and is associated with cell-type specific gene transcription. Conclusions Our results suggest that genomic binding of STATs is primarily determined by the cell type and further specificity is achieved in part by juxtaposed binding of cell-specific transcription factors. PMID:23324445

  14. High-resolution mapping of transcription factor binding sites on native chromatin

    PubMed Central

    Kasinathan, Sivakanthan; Orsi, Guillermo A.; Zentner, Gabriel E.; Ahmad, Kami; Henikoff, Steven

    2014-01-01

    Sequence-specific DNA-binding proteins including transcription factors (TFs) are key determinants of gene regulation and chromatin architecture. Formaldehyde cross-linking and sonication followed by Chromatin ImmunoPrecipitation (X-ChIP) is widely used for profiling of TF binding, but is limited by low resolution and poor specificity and sensitivity. We present a simple protocol that starts with micrococcal nuclease-digested uncross-linked chromatin and is followed by affinity purification of TFs and paired-end sequencing. The resulting ORGANIC (Occupied Regions of Genomes from Affinity-purified Naturally Isolated Chromatin) profiles of Saccharomyces cerevisiae Abf1 and Reb1 provide highly accurate base-pair resolution maps that are not biased toward accessible chromatin, and do not require input normalization. We also demonstrate the high specificity of our method when applied to larger genomes by profiling Drosophila melanogaster GAGA Factor and Pipsqueak. Our results suggest that ORGANIC profiling is a widely applicable high-resolution method for sensitive and specific profiling of direct protein-DNA interactions. PMID:24336359

  15. Evaluation of Selected Binding Domains for the Analysis of Ubiquitinated Proteomes

    NASA Astrophysics Data System (ADS)

    Nakayasu, Ernesto S.; Ansong, Charles; Brown, Joseph N.; Yang, Feng; Lopez-Ferrer, Daniel; Qian, Wei-Jun; Smith, Richard D.; Adkins, Joshua N.

    2013-08-01

    Ubiquitination is an abundant post-translational modification that consists of covalent attachment of ubiquitin to lysine residues or the N-terminus of proteins. Mono- and polyubiquitination have been shown to be involved in many critical eukaryotic cellular functions and are often disrupted by intracellular bacterial pathogens. Affinity enrichment of ubiquitinated proteins enables global analysis of this key modification. In this context, the use of ubiquitin-binding domains is a promising but relatively unexplored alternative to more broadly used immunoaffinity or tagged affinity enrichment methods. In this study, we evaluated the application of eight ubiquitin-binding domains that have differing affinities for ubiquitination states. Small-scale proteomics analysis identified ~200 ubiquitinated protein candidates per ubiquitin-binding domain pull-down experiment. Results from subsequent Western blot analyses that employed anti-ubiquitin or monoclonal antibodies against polyubiquitination at lysine 48 and 63 suggest that ubiquitin-binding domains from Dsk2 and ubiquilin-1 have the broadest specificity in that they captured most types of ubiquitination, whereas the binding domain from NBR1 was more selective to polyubiquitination. These data demonstrate that with optimized purification conditions, ubiquitin-binding domains can be an alternative tool for proteomic applications. This approach is especially promising for the analysis of tissues or cells resistant to transfection, of which the overexpression of tagged ubiquitin is a major hurdle.

  16. Evaluation of selected binding domains for the analysis of ubiquitinated proteomes

    PubMed Central

    Nakayasu, Ernesto S.; Ansong, Charles; Brown, Joseph N.; Yang, Feng; Lopez-Ferrer, Daniel; Qian, Wei-Jun; Smith, Richard D.; Adkins, Joshua N.

    2013-01-01

    Ubiquitination is an abundant post-translational modification that consists of covalent attachment of ubiquitin to lysine residues or the N-terminus of proteins. Mono and polyubiquitination have been shown to be involved in many critical eukaryotic cellular functions and are often disrupted by intracellular bacterial pathogens. Affinity enrichment of ubiquitinated proteins enables global analysis of this key modification. In this context, the use of ubiquitin-binding domains is a promising, but relatively unexplored alternative to more broadly used immunoaffinity or tagged affinity enrichment methods. In this study, we evaluated the application of eight ubiquitin-binding domains that have differing affinities for ubiquitination states. Small-scale proteomics analysis identified ∼200 ubiquitinated protein candidates per ubiquitin-binding domain pull-down experiment. Results from subsequent Western blot analyses that employed anti-ubiquitin or monoclonal antibodies against polyubiquitination at lysine 48 and 63 suggest that ubiquitin-binding domains from Dsk2 and ubiquilin-1 have the broadest specificity in that they captured most types of ubiquitination, whereas the binding domain from NBR1 was more selective to polyubiquitination. These data demonstrate that with optimized purification conditions, ubiquitin-binding domains can be an alternative tool for proteomic applications. This approach is especially promising for the analysis of tissues or cells resistant to transfection, of which the overexpression of tagged ubiquitin is a major hurdle. PMID:23649778

  17. JASPAR 2016: a major expansion and update of the open-access database of transcription factor binding profiles

    PubMed Central

    Mathelier, Anthony; Fornes, Oriol; Arenillas, David J.; Chen, Chih-yu; Denay, Grégoire; Lee, Jessica; Shi, Wenqiang; Shyr, Casper; Tan, Ge; Worsley-Hunt, Rebecca; Zhang, Allen W.; Parcy, François; Lenhard, Boris; Sandelin, Albin; Wasserman, Wyeth W.

    2016-01-01

    JASPAR (http://jaspar.genereg.net) is an open-access database storing curated, non-redundant transcription factor (TF) binding profiles representing transcription factor binding preferences as position frequency matrices for multiple species in six taxonomic groups. For this 2016 release, we expanded the JASPAR CORE collection with 494 new TF binding profiles (315 in vertebrates, 11 in nematodes, 3 in insects, 1 in fungi and 164 in plants) and updated 59 profiles (58 in vertebrates and 1 in fungi). The introduced profiles represent an 83% expansion and 10% update when compared to the previous release. We updated the structural annotation of the TF DNA binding domains (DBDs) following a published hierarchical structural classification. In addition, we introduced 130 transcription factor flexible models trained on ChIP-seq data for vertebrates, which capture dinucleotide dependencies within TF binding sites. This new JASPAR release is accompanied by a new web tool to infer JASPAR TF binding profiles recognized by a given TF protein sequence. Moreover, we provide the users with a Ruby module complementing the JASPAR API to ease programmatic access and use of the JASPAR collection of profiles. Finally, we provide the JASPAR2016 R/Bioconductor data package with the data of this release. PMID:26531826

  18. A resource for characterizing genome-wide binding and putative target genes of transcription factors expressed during secondary growth and wood formation in Populus.

    PubMed

    Liu, Lijun; Ramsay, Trevor; Zinkgraf, Matthew; Sundell, David; Street, Nathaniel Robert; Filkov, Vladimir; Groover, Andrew

    2015-06-01

    Identifying transcription factor target genes is essential for modeling the transcriptional networks underlying developmental processes. Here we report a chromatin immunoprecipitation sequencing (ChIP-seq) resource consisting of genome-wide binding regions and associated putative target genes for four Populus homeodomain transcription factors expressed during secondary growth and wood formation. Software code (programs and scripts) for processing the Populus ChIP-seq data are provided within a publically available iPlant image, including tools for ChIP-seq data quality control and evaluation adapted from the human Encyclopedia of DNA Elements (ENCODE) project. Basic information for each transcription factor (including members of Class I KNOX, Class III HD ZIP, BEL1-like families) binding are summarized, including the number and location of binding regions, distribution of binding regions relative to gene features, associated putative target genes, and enriched functional categories of putative target genes. These ChIP-seq data have been integrated within the Populus Genome Integrative Explorer (PopGenIE) where they can be analyzed using a variety of web-based tools. We present an example analysis that shows preferential binding of transcription factor ARBORKNOX1 to the nearest neighbor genes in a pre-calculated co-expression network module, and enrichment for meristem-related genes within this module including multiple orthologs of Arabidopsis KNOTTED-like Arabidopsis 2/6. © 2015 Society for Experimental Biology and John Wiley & Sons Ltd This article has been contributed to by US Government employees and their work is in the public domain in the USA.

  19. Genome-wide inference of transcription factor-DNA binding specificity in cell regeneration using a combination strategy.

    PubMed

    Wang, Xiaofeng; Zhang, Aiqun; Ren, Weizheng; Chen, Caiyu; Dong, Jiahong

    2012-11-01

    The cell growth, development, and regeneration of tissue and organ are associated with a large number of gene regulation events, which are mediated in part by transcription factors (TFs) binding to cis-regulatory elements involved in the genome. Predicting the binding affinity and inferring the binding specificity of TF-DNA interactions at the genomic level would be fundamentally helpful for our understanding of the molecular mechanism and biological implication underlying sequence-specific TF-DNA recognition. In this study, we report the development of a combination method to characterize the interaction behavior of a 11-mer oligonucleotide segment and its mutations with the Gcn4p protein, a homodimeric, basic leucine zipper TF, and to predict the binding affinity and specificity of potential Gcn4p binders in the genome-wide scale. In this procedure, a position-mutated energy matrix is created based on molecular modeling analysis of native and mutated Gcn4p-DNA complex structures to describe the position-independent interaction energy profile of Gcn4p with different nucleotide types at each position of the oligonucleotide, and the energy terms extracted from the matrix and their interactives are then correlated with experimentally measured affinities of 19268 distinct oligonucleotides using statistical modeling methodology. Subsequently, the best one of built regression models is successfully applied to screen those of potential high-affinity Gcn4p binders from the complete genome. The findings arising from this study are briefly listed below: (i) The 11 positions of oligonucleotides are highly interactive and non-additive in contribution to Gcn4p-DNA binding affinity; (ii) Indirect conformational effects upon nucleotide mutations as well as associated subtle changes in interfacial atomic contacts, but not the direct nonbonded interactions, are primarily responsible for the sequence-specific recognition; (iii) The intrinsic synergistic effects among the sequence

  20. CHEMOSENSITIZATION BY A NON-APOPTOGENIC HEAT SHOCK PROTEIN 70-BINDING APOPTOSIS INDUCING FACTOR MUTANT

    EPA Science Inventory

    Chemosensitization by a non-apoptogenic heat shock protein 70-binding apoptosis inducing factor mutant

    Abstract
    HSP70 inhibits apoptosis by neutralizing the caspase activator Apaf-1 and by interacting with apoptosis inducing factor (AIF), a mitochondrial flavoprotein wh...

  1. Crystal Structure of a Fibroblast Growth Factor Homologous Factor (FHF) Defines a Conserved Surface on FHFs for Binding and Modulation of Voltage-gated Sodium Channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goetz, R.; Dover, K; Laezza, F

    2009-01-01

    Voltage-gated sodium channels (Nav) produce sodium currents that underlie the initiation and propagation of action potentials in nerve and muscle cells. Fibroblast growth factor homologous factors (FHFs) bind to the intracellular C-terminal region of the Nav alpha subunit to modulate fast inactivation of the channel. In this study we solved the crystal structure of a 149-residue-long fragment of human FHF2A which unveils the structural features of the homology core domain of all 10 human FHF isoforms. Through analysis of crystal packing contacts and site-directed mutagenesis experiments we identified a conserved surface on the FHF core domain that mediates channel bindingmore » in vitro and in vivo. Mutations at this channel binding surface impaired the ability of FHFs to co-localize with Navs at the axon initial segment of hippocampal neurons. The mutations also disabled FHF modulation of voltage-dependent fast inactivation of sodium channels in neuronal cells. Based on our data, we propose that FHFs constitute auxiliary subunits for Navs.« less

  2. Distant homologs of anti-apoptotic factor HAX1 encode parvalbumin-like calcium binding proteins.

    PubMed

    Kokoszyńska, Katarzyna; Rychlewski, Leszek; Wyrwicz, Lucjan S

    2010-07-15

    Apoptosis is a highly ordered and orchestrated multiphase process controlled by the numerous cellular and extra-cellular signals, which executes the programmed cell death via release of cytochrome c alterations in calcium signaling, caspase-dependent limited proteolysis and DNA fragmentation. Besides the general modifiers of apoptosis, several tissue-specific regulators of this process were identified including HAX1 (HS-1 associated protein X-1) - an anti-apoptotic factor active in myeloid cells. Although HAX1 was the subject of various experimental studies, the mechanisms of its action and a functional link connected with the regulation of apoptosis still remains highly speculative. Here we provide the data which suggests that HAX1 may act as a regulator or as a sensor of calcium. On the basis of iterative similarity searches, we identified a set of distant homologs of HAX1 in insects. The applied fold recognition protocol gives us strong evidence that the distant insects' homologs of HAX1 are novel parvalbumin-like calcium binding proteins. Although the whole three EF-hands fold is not preserved in vertebrate our analysis suggests that there is an existence of a potential single EF-hand calcium binding site in HAX1. The molecular mechanism of its action remains to be identified, but the risen hypothesis easily translates into previously reported lines of various data on the HAX1 biology as well as, provides us a direct link to the regulation of apoptosis. Moreover, we also report that other family of myeloid specific apoptosis regulators - myeloid leukemia factors (MLF1, MLF2) share the homologous C-terminal domain and taxonomic distribution with HAX1. Performed structural and active sites analyses gave new insights into mechanisms of HAX1 and MLF families in apoptosis process and suggested possible role of HAX1 in calcium-binding, still the analyses require further experimental verification.

  3. Distant homologs of anti-apoptotic factor HAX1 encode parvalbumin-like calcium binding proteins

    PubMed Central

    2010-01-01

    Background Apoptosis is a highly ordered and orchestrated multiphase process controlled by the numerous cellular and extra-cellular signals, which executes the programmed cell death via release of cytochrome c alterations in calcium signaling, caspase-dependent limited proteolysis and DNA fragmentation. Besides the general modifiers of apoptosis, several tissue-specific regulators of this process were identified including HAX1 (HS-1 associated protein X-1) - an anti-apoptotic factor active in myeloid cells. Although HAX1 was the subject of various experimental studies, the mechanisms of its action and a functional link connected with the regulation of apoptosis still remains highly speculative. Findings Here we provide the data which suggests that HAX1 may act as a regulator or as a sensor of calcium. On the basis of iterative similarity searches, we identified a set of distant homologs of HAX1 in insects. The applied fold recognition protocol gives us strong evidence that the distant insects' homologs of HAX1 are novel parvalbumin-like calcium binding proteins. Although the whole three EF-hands fold is not preserved in vertebrate our analysis suggests that there is an existence of a potential single EF-hand calcium binding site in HAX1. The molecular mechanism of its action remains to be identified, but the risen hypothesis easily translates into previously reported lines of various data on the HAX1 biology as well as, provides us a direct link to the regulation of apoptosis. Moreover, we also report that other family of myeloid specific apoptosis regulators - myeloid leukemia factors (MLF1, MLF2) share the homologous C-terminal domain and taxonomic distribution with HAX1. Conclusions Performed structural and active sites analyses gave new insights into mechanisms of HAX1 and MLF families in apoptosis process and suggested possible role of HAX1 in calcium-binding, still the analyses require further experimental verification. PMID:20633251

  4. A Novel DNA Binding Mechanism for maf Basic Region-Leucine Zipper Factors Inferred from a MafA-DNA Complex Structure and Binding Specificities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Xun; Guanga, Gerald P; Wan, Cheng

    2012-11-13

    MafA is a proto-oncoprotein and is critical for insulin gene expression in pancreatic β-cells. Maf proteins belong to the AP1 superfamily of basic region-leucine zipper (bZIP) transcription factors. Residues in the basic helix and an ancillary N-terminal domain, the Extended Homology Region (EHR), endow maf proteins with unique DNA binding properties: binding a 13 bp consensus site consisting of a core AP1 site (TGACTCA) flanked by TGC sequences and binding DNA stably as monomers. To further characterize maf DNA binding, we determined the structure of a MafA–DNA complex. MafA forms base-specific hydrogen bonds with the flanking G –5C –4 andmore » central C 0/G 0 bases, but not with the core-TGA bases. However, in vitro binding studies utilizing a pulse–chase electrophoretic mobility shift assay protocol revealed that mutating either the core-TGA or flanking-TGC bases dramatically increases the binding off rate. Comparing the known maf structures, we propose that DNA binding specificity results from positioning the basic helix through unique phosphate contacts. The EHR does not contact DNA directly but stabilizes DNA binding by contacting the basic helix. Collectively, these results suggest a novel multistep DNA binding process involving a conformational change from contacting the core-TGA to contacting the flanking-TGC bases.« less

  5. Comparison of Genome-Wide Binding of MyoD in Normal Human Myogenic Cells and Rhabdomyosarcomas Identifies Regional and Local Suppression of Promyogenic Transcription Factors

    PubMed Central

    MacQuarrie, Kyle L.; Yao, Zizhen; Fong, Abraham P.; Diede, Scott J.; Rudzinski, Erin R.; Hawkins, Douglas S.

    2013-01-01

    Rhabdomyosarcoma is a pediatric tumor of skeletal muscle that expresses the myogenic basic helix-loop-helix protein MyoD but fails to undergo terminal differentiation. Prior work has determined that DNA binding by MyoD occurs in the tumor cells, but myogenic targets fail to activate. Using MyoD chromatin immunoprecipitation coupled to high-throughput sequencing and gene expression analysis in both primary human muscle cells and RD rhabdomyosarcoma cells, we demonstrate that MyoD binds in a similar genome-wide pattern in both tumor and normal cells but binds poorly at a subset of myogenic genes that fail to activate in the tumor cells. Binding differences are found both across genomic regions and locally at specific sites that are associated with binding motifs for RUNX1, MEF2C, JDP2, and NFIC. These factors are expressed at lower levels in RD cells than muscle cells and rescue myogenesis when expressed in RD cells. MEF2C is located in a genomic region that exhibits poor MyoD binding in RD cells, whereas JDP2 exhibits local DNA hypermethylation in its promoter in both RD cells and primary tumor samples. These results demonstrate that regional and local silencing of differentiation factors contributes to the differentiation defect in rhabdomyosarcomas. PMID:23230269

  6. DNA sequence+shape kernel enables alignment-free modeling of transcription factor binding.

    PubMed

    Ma, Wenxiu; Yang, Lin; Rohs, Remo; Noble, William Stafford

    2017-10-01

    Transcription factors (TFs) bind to specific DNA sequence motifs. Several lines of evidence suggest that TF-DNA binding is mediated in part by properties of the local DNA shape: the width of the minor groove, the relative orientations of adjacent base pairs, etc. Several methods have been developed to jointly account for DNA sequence and shape properties in predicting TF binding affinity. However, a limitation of these methods is that they typically require a training set of aligned TF binding sites. We describe a sequence + shape kernel that leverages DNA sequence and shape information to better understand protein-DNA binding preference and affinity. This kernel extends an existing class of k-mer based sequence kernels, based on the recently described di-mismatch kernel. Using three in vitro benchmark datasets, derived from universal protein binding microarrays (uPBMs), genomic context PBMs (gcPBMs) and SELEX-seq data, we demonstrate that incorporating DNA shape information improves our ability to predict protein-DNA binding affinity. In particular, we observe that (i) the k-spectrum + shape model performs better than the classical k-spectrum kernel, particularly for small k values; (ii) the di-mismatch kernel performs better than the k-mer kernel, for larger k; and (iii) the di-mismatch + shape kernel performs better than the di-mismatch kernel for intermediate k values. The software is available at https://bitbucket.org/wenxiu/sequence-shape.git. rohs@usc.edu or william-noble@uw.edu. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  7. Structural and functional analysis of the YAP-binding domain of human TEAD2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Wei; Yu, Jianzhong; Tomchick, Diana R.

    2010-06-15

    The Hippo pathway controls organ size and suppresses tumorigenesis in metazoans by blocking cell proliferation and promoting apoptosis. The TEAD1-4 proteins (which contain a DNA-binding domain but lack an activation domain) interact with YAP (which lacks a DNA-binding domain but contains an activation domain) to form functional heterodimeric transcription factors that activate proliferative and prosurvival gene expression programs. The Hippo pathway inhibits the YAP-TEAD hybrid transcription factors by phosphorylating and promoting cytoplasmic retention of YAP. Here we report the crystal structure of the YAP-binding domain (YBD) of human TEAD2. TEAD2 YBD adopts an immunoglobulin-like {beta}-sandwich fold with two extra helix-turn-helixmore » inserts. NMR studies reveal that the TEAD-binding domain of YAP is natively unfolded and that TEAD binding causes localized conformational changes in YAP. In vitro binding and in vivo functional assays define an extensive conserved surface of TEAD2 YBD as the YAP-binding site. Therefore, our studies suggest that a short segment of YAP adopts an extended conformation and forms extensive contacts with a rigid surface of TEAD. Targeting a surface-exposed pocket of TEAD might be an effective strategy to disrupt the YAP-TEAD interaction and to reduce the oncogenic potential of YAP.« less

  8. JASPAR 2016: a major expansion and update of the open-access database of transcription factor binding profiles.

    PubMed

    Mathelier, Anthony; Fornes, Oriol; Arenillas, David J; Chen, Chih-Yu; Denay, Grégoire; Lee, Jessica; Shi, Wenqiang; Shyr, Casper; Tan, Ge; Worsley-Hunt, Rebecca; Zhang, Allen W; Parcy, François; Lenhard, Boris; Sandelin, Albin; Wasserman, Wyeth W

    2016-01-04

    JASPAR (http://jaspar.genereg.net) is an open-access database storing curated, non-redundant transcription factor (TF) binding profiles representing transcription factor binding preferences as position frequency matrices for multiple species in six taxonomic groups. For this 2016 release, we expanded the JASPAR CORE collection with 494 new TF binding profiles (315 in vertebrates, 11 in nematodes, 3 in insects, 1 in fungi and 164 in plants) and updated 59 profiles (58 in vertebrates and 1 in fungi). The introduced profiles represent an 83% expansion and 10% update when compared to the previous release. We updated the structural annotation of the TF DNA binding domains (DBDs) following a published hierarchical structural classification. In addition, we introduced 130 transcription factor flexible models trained on ChIP-seq data for vertebrates, which capture dinucleotide dependencies within TF binding sites. This new JASPAR release is accompanied by a new web tool to infer JASPAR TF binding profiles recognized by a given TF protein sequence. Moreover, we provide the users with a Ruby module complementing the JASPAR API to ease programmatic access and use of the JASPAR collection of profiles. Finally, we provide the JASPAR2016 R/Bioconductor data package with the data of this release. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Hormone induces binding of receptors and transcription factors to a rearranged nucleosome on the MMTV promoter in vivo.

    PubMed Central

    Truss, M; Bartsch, J; Schelbert, A; Haché, R J; Beato, M

    1995-01-01

    Hormonal induction of the mouse mammary tumour virus (MMTV) promoter is mediated by interactions between hormone receptors and other transcription factors bound to a complex array of sites. Previous results suggested that access to these sites is modulated by their precise organization into a positioned regulatory nucleosome. Using genomic footprinting, we show that MMTV promoter DNA is rotationally phased in intact cells containing either episomal or chromosomally integrated proviral fragments. Prior to induction there is no evidence for factors bound to the promoter. Following progesterone induction of cells with high levels of receptor, genomic footprinting detects simultaneous protection over the binding sites for hormone receptors, NF-I and the octamer binding proteins. Glucocorticoid or progestin induction leads to a characteristic chromatin remodelling that is independent of ongoing transcription. The centre of the regulatory nucleosome becomes more accessible to DNase I and restriction enzymes, but the limits of the nucleosome are unchanged and the 145 bp core region remains protected against micrococcal nuclease digestion. Thus, the nucleosome covering the MMTV promoter is neither removed nor shifted upon hormone induction, and all relevant transcription factors bind to the surface of the rearranged nucleosome. Since these factors cannot bind simultaneously to free DNA, maintainance of the nucleosome may be required for binding of factors to contiguous sites. Images PMID:7737125

  10. Monoclonal antibodies to meningococcal factor H binding protein with overlapping epitopes and discordant functional activity.

    PubMed

    Giuntini, Serena; Beernink, Peter T; Reason, Donald C; Granoff, Dan M

    2012-01-01

    Meningococcal factor H binding protein (fHbp) is a promising vaccine candidate. Anti-fHbp antibodies can bind to meningococci and elicit complement-mediated bactericidal activity directly. The antibodies also can block binding of the human complement down-regulator, factor H (fH). Without bound fH, the organism would be expected to have increased susceptibility to bacteriolysis. Here we describe bactericidal activity of two anti-fHbp mAbs with overlapping epitopes in relation to their different effects on fH binding and bactericidal activity. Both mAbs recognized prevalent fHbp sequence variants in variant group 1. Using yeast display and site-specific mutagenesis, binding of one of the mAbs (JAR 1, IgG3) to fHbp was eliminated by a single amino acid substitution, R204A, and was decreased by K143A but not by R204H or D142A. The JAR 1 epitope overlapped that of previously described mAb (mAb502, IgG2a) whose binding to fHbp was eliminated by R204A or R204H substitutions, and was decreased by D142A but not by K143A. Although JAR 1 and mAb502 appeared to have overlapping epitopes, only JAR 1 inhibited binding of fH to fHbp and had human complement-mediated bactericidal activity. mAb502 enhanced fH binding and lacked human complement-mediated bactericidal activity. To control for confounding effects of different mouse IgG subclasses on complement activation, we created chimeric mAbs in which the mouse mAb502 or JAR 1 paratopes were paired with human IgG1 constant regions. While both chimeric mAbs showed similar binding to fHbp, only JAR 1, which inhibited fH binding, had human complement-mediated bactericidal activity. The lack of human complement-mediated bactericidal activity by anti-fHbp mAb502 appeared to result from an inability to inhibit binding of fH. These results underscore the importance of inhibition of fH binding for anti-fHbp mAb bactericidal activity.

  11. Phosphorylation Affects DNA-Binding of the Senescence-Regulating bZIP Transcription Factor GBF1

    PubMed Central

    Smykowski, Anja; Fischer, Stefan M.; Zentgraf, Ulrike

    2015-01-01

    Massive changes in the transcriptome of Arabidopsis thaliana during onset and progression of leaf senescence imply a central role for transcription factors. While many transcription factors are themselves up- or down-regulated during senescence, the bZIP transcription factor G-box-binding factor 1 (GBF1/bZIP41) is constitutively expressed in Arabidopsis leaf tissue but at the same time triggers the onset of leaf senescence, suggesting posttranscriptional mechanisms for senescence-specific GBF1 activation. Here we show that GBF1 is phosphorylated by the threonine/serine CASEIN KINASE II (CKII) in vitro and that CKII phosphorylation had a negative effect on GBF1 DNA-binding to G-boxes of two direct target genes, CATALASE2 and RBSCS1a. Phosphorylation mimicry at three serine positions in the basic region of GBF1 also had a negative effect on DNA-binding. Kinase assays revealed that CKII phosphorylates at least one serine in the basic domain but has additional phosphorylation sites outside this domain. Two different ckII α subunit1 and one α subunit2 T-DNA insertion lines showed no visible senescence phenotype, but in all lines the expression of the senescence marker gene SAG12 was remarkably diminished. A model is presented suggesting that senescence-specific GBF1 activation might be achieved by lowering the phosphorylation of GBF1 by CKII. PMID:27135347

  12. Network Analysis Reveals the Recognition Mechanism for Mannose-binding Lectins

    NASA Astrophysics Data System (ADS)

    Zhao, Yunjie; Jian, Yiren; Zeng, Chen; Computational Biophysics Lab Team

    The specific carbohydrate binding of mannose-binding lectin (MBL) protein in plants makes it a very useful molecular tool for cancer cell detection and other applications. The biological states of most MBL proteins are dimeric. Using dynamics network analysis on molecular dynamics (MD) simulations on the model protein of MBL, we elucidate the short- and long-range driving forces behind the dimer formation. The results are further supported by sequence coevolution analysis. We propose a general framework for deciphering the recognition mechanism underlying protein-protein interactions that may have potential applications in signaling pathways.

  13. Specific binding of antigen-antibody in physiological environments: Measurement, force characteristics and analysis

    NASA Astrophysics Data System (ADS)

    Gu, Xin; Zhou, Jun; Zhou, Lu; Xie, Shusen; Petti, Lucia; Wang, Shaomin; Wang, Fuyan

    2018-05-01

    The specific recognition of the antigen by the antibody is the crucial step in immunoassays. Measurement and analysis of the specific recognition, including the ways in which it is influenced by external factors are of paramount significance for the quality of the immunoassays. Using prostate-specific antigen (PSA)/anti-PSA antibody and α-fetoprotein (AFP) /anti-AFP antibody as examples, we have proposed a novel solution for measuring the binding forces between the antigens and their corresponding antibodies in different physiological environments by combining laminar flow control technology and optical tweezers technology. On the basis of the experimental results, the different binding forces of PSA/anti-PSA antibody and AFP/anti-AFP antibody in the same phosphate-buffered saline (PBS) environments are analysed by comparing the affinity constant of the two antibodies and the number of antigenic determinants of the two antigens. In different electrolyte environments, the changes of the binding force of antigens-antibodies are explained by the polyelectrolyte effect and hydrophobic interaction. Furthermore, in different pH environments, the changes of binding forces of antigens-antibodies are attributed to the role of the denaturation of protein. The study aims to recognise the antigen-antibody immune mechanism, thus ensuring further understanding of the biological functions of tumour markers, and it promises to be very useful for the clinical diagnosis of early-stage cancer.

  14. Sequence2Vec: a novel embedding approach for modeling transcription factor binding affinity landscape.

    PubMed

    Dai, Hanjun; Umarov, Ramzan; Kuwahara, Hiroyuki; Li, Yu; Song, Le; Gao, Xin

    2017-11-15

    An accurate characterization of transcription factor (TF)-DNA affinity landscape is crucial to a quantitative understanding of the molecular mechanisms underpinning endogenous gene regulation. While recent advances in biotechnology have brought the opportunity for building binding affinity prediction methods, the accurate characterization of TF-DNA binding affinity landscape still remains a challenging problem. Here we propose a novel sequence embedding approach for modeling the transcription factor binding affinity landscape. Our method represents DNA binding sequences as a hidden Markov model which captures both position specific information and long-range dependency in the sequence. A cornerstone of our method is a novel message passing-like embedding algorithm, called Sequence2Vec, which maps these hidden Markov models into a common nonlinear feature space and uses these embedded features to build a predictive model. Our method is a novel combination of the strength of probabilistic graphical models, feature space embedding and deep learning. We conducted comprehensive experiments on over 90 large-scale TF-DNA datasets which were measured by different high-throughput experimental technologies. Sequence2Vec outperforms alternative machine learning methods as well as the state-of-the-art binding affinity prediction methods. Our program is freely available at https://github.com/ramzan1990/sequence2vec. xin.gao@kaust.edu.sa or lsong@cc.gatech.edu. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  15. OnTheFly: a database of Drosophila melanogaster transcription factors and their binding sites.

    PubMed

    Shazman, Shula; Lee, Hunjoong; Socol, Yakov; Mann, Richard S; Honig, Barry

    2014-01-01

    We present OnTheFly (http://bhapp.c2b2.columbia.edu/OnTheFly/index.php), a database comprising a systematic collection of transcription factors (TFs) of Drosophila melanogaster and their DNA-binding sites. TFs predicted in the Drosophila melanogaster genome are annotated and classified and their structures, obtained via experiment or homology models, are provided. All known preferred TF DNA-binding sites obtained from the B1H, DNase I and SELEX methodologies are presented. DNA shape parameters predicted for these sites are obtained from a high throughput server or from crystal structures of protein-DNA complexes where available. An important feature of the database is that all DNA-binding domains and their binding sites are fully annotated in a eukaryote using structural criteria and evolutionary homology. OnTheFly thus provides a comprehensive view of TFs and their binding sites that will be a valuable resource for deciphering non-coding regulatory DNA.

  16. Arabidopsis Polycomb Repressive Complex 2 binding sites contain putative GAGA factor binding motifs within coding regions of genes

    PubMed Central

    2013-01-01

    Background Polycomb Repressive Complex 2 (PRC2) is an essential regulator of gene expression that maintains genes in a repressed state by marking chromatin with trimethylated Histone H3 lysine 27 (H3K27me3). In Arabidopsis, loss of PRC2 function leads to pleiotropic effects on growth and development thought to be due to ectopic expression of seed and embryo-specific genes. While there is some understanding of the mechanisms by which specific genes are targeted by PRC2 in animal systems, it is still not clear how PRC2 is recruited to specific regions of plant genomes. Results We used ChIP-seq to determine the genome-wide distribution of hemagglutinin (HA)-tagged FERTLIZATION INDEPENDENT ENDOSPERM (FIE-HA), the Extra Sex Combs homolog protein present in all Arabidopsis PRC2 complexes. We found that the FIE-HA binding sites co-locate with a subset of the H3K27me3 sites in the genome and that the associated genes were more likely to be de-repressed in mutants of PRC2 components. The FIE-HA binding sites are enriched for three sequence motifs including a putative GAGA factor binding site that is also found in Drosophila Polycomb Response Elements (PREs). Conclusions Our results suggest that PRC2 binding sites in plant genomes share some sequence features with Drosophila PREs. However, unlike Drosophila PREs which are located in promoters and devoid of H3K27me3, Arabidopsis FIE binding sites tend to be in gene coding regions and co-localize with H3K27me3. PMID:24001316

  17. Competition between Ski and CREB-binding protein for binding to Smad proteins in transforming growth factor-beta signaling.

    PubMed

    Chen, Weijun; Lam, Suvana S; Srinath, Hema; Schiffer, Celia A; Royer, William E; Lin, Kai

    2007-04-13

    The family of Smad proteins mediates transforming growth factor-beta (TGF-beta) signaling in cell growth and differentiation. Smads repress or activate TGF-beta signaling by interacting with corepressors (e.g. Ski) or coactivators (e.g. CREB-binding protein (CBP)), respectively. Specifically, Ski has been shown to interfere with the interaction between Smad3 and CBP. However, it is unclear whether Ski competes with CBP for binding to Smads and whether they can interact with Smad3 at the same binding surface on Smad3. We investigated the interactions among purified constructs of Smad, Ski, and CBP in vitro by size-exclusion chromatography, isothermal titration calorimetry, and mutational studies. Here, we show that Ski-(16-192) interacted directly with a homotrimer of receptor-regulated Smad protein (R-Smad), e.g. Smad2 or Smad3, to form a hexamer; Ski-(16-192) interacted with an R-Smad.Smad4 heterotrimer to form a pentamer. CBP-(1941-1992) was also found to interact directly with an R-Smad homotrimer to form a hexamer and with an R-Smad.Smad4 heterotrimer to form a pentamer. Moreover, these domains of Ski and CBP competed with each other for binding to Smad3. Our mutational studies revealed that domains of Ski and CBP interacted with Smad3 at a portion of the binding surface of the Smad anchor for receptor activation. Our results suggest that Ski negatively regulates TGF-beta signaling by replacing CBP in R-Smad complexes. Our working model suggests that Smad protein activity is delicately balanced by Ski and CBP in the TGF-beta pathway.

  18. Anti-Tumor Activity of a Novel HS-Mimetic-Vascular Endothelial Growth Factor Binding Small Molecule

    PubMed Central

    Sugahara, Kazuyuki; Thimmaiah, Kuntebommanahalli N.; Bid, Hemant K.; Houghton, Peter J.; Rangappa, Kanchugarakoppal S.

    2012-01-01

    The angiogenic process is controlled by variety of factors of which the vascular endothelial growth factor (VEGF) pathway plays a major role. A series of heparan sulfate mimetic small molecules targeting VEGF/VEGFR pathway has been synthesized. Among them, compound 8 (2-butyl-5-chloro-3-(4-nitro-benzyl)-3H-imidazole-4-carbaldehyde) was identified as a significant binding molecule for the heparin-binding domain of VEGF, determined by high-throughput-surface plasmon resonance assay. The data predicted strong binding of compound 8 with VEGF which may prevent the binding of VEGF to its receptor. We compared the structure of compound 8 with heparan sulfate (HS), which have in common the functional ionic groups such as sulfate, nitro and carbaldehyde that can be located in similar positions of the disaccharide structure of HS. Molecular docking studies predicted that compound 8 binds at the heparin binding domain of VEGF through strong hydrogen bonding with Lys-30 and Gln-20 amino acid residues, and consistent with the prediction, compound 8 inhibited binding of VEGF to immobilized heparin. In vitro studies showed that compound 8 inhibits the VEGF-induced proliferation migration and tube formation of mouse vascular endothelial cells, and finally the invasion of a murine osteosarcoma cell line (LM8G7) which secrets high levels of VEGF. In vivo, these effects produce significant decrease of tumor burden in an experimental model of liver metastasis. Collectively, these data indicate that compound 8 may prevent tumor growth through a direct effect on tumor cell proliferation and by inhibition of endothelial cell migration and angiogenesis mediated by VEGF. In conclusion, compound 8 may normalize the tumor vasculature and microenvironment in tumors probably by inhibiting the binding of VEGF to its receptor. PMID:22916091

  19. Human basic fibroblast growth factor fused with Kringle4 peptide binds to a fibrin scaffold and enhances angiogenesis.

    PubMed

    Zhao, Wenxue; Han, Qianqian; Lin, Hang; Sun, Wenjie; Gao, Yuan; Zhao, Yannan; Wang, Bin; Wang, Xia; Chen, Bing; Xiao, Zhifeng; Dai, Jianwu

    2009-05-01

    Appropriate three-dimensional (3D) scaffolds and signal molecules could accelerate tissue regeneration and wound repair. In this work, we targeted human basic fibroblast growth factor (bFGF), a potent angiogenic factor, to a fibrin scaffold to improve therapeutic angiogenesis. We fused bFGF to the Kringle4 domain (K4), a fibrin-binding peptide from human plasminogen, to endow bFGF with specific fibrin-binding ability. The recombinant K4bFGF bound specifically to the fibrin scaffold so that K4bFGF was delivered in a site-specific manner, and the fibrin scaffold provided 3D support for cell migration and proliferation. Subcutaneous implantation of the fibrin scaffolds bound with K4bFGF but not with bFGF induced neovascularization. Immunohistochemical analysis showed significantly more proliferation cells in the fibrin scaffolds incorporated with K4bFGF than in those with bFGF. Moreover, the regenerative tissues were integrated well with the fibrin scaffolds, suggesting its good biocompatibility. In summary, targeted delivery of K4bFGF could potentially improve therapeutic angiogenesis.

  20. Bean Metal-Responsive Element-Binding Transcription Factor Confers Cadmium Resistance in Tobacco1

    PubMed Central

    Sun, Na; Liu, Meng; Zhang, Wentao; Yang, Wanning; Bei, Xiujuan; Ma, Hui; Qiao, Fan; Qi, Xiaoting

    2015-01-01

    Cadmium (Cd) is highly toxic to plants. Modulation of Cd-responsive transcription is an important way for Cd detoxification in plants. Metal-responsive element (MRE) is originally described in animal metallothionein genes. Although functional MREs also exist in Cd-regulated plant genes, specific transcription factors that bind MRE to regulate Cd tolerance have not been identified. Previously, we showed that Cd-inducible bean (Phaseolus vulgaris) stress-related gene2 (PvSR2) produces a short (S) PvSR2 transcript (S-PvSR2) driven by an intronic promoter. Here, we demonstrate that S-PvSR2 encodes a bean MRE-binding transcription factor1 (PvMTF-1) that confers Cd tolerance in tobacco (Nicotiana tabacum). PvMTF-1 expression was up-regulated by Cd at the levels of RNA and protein. Importantly, expression of PvMTF-1 in tobacco enhanced Cd tolerance, indicating its role in regulating Cd resistance in planta. This was achieved through direct regulation of a feedback-insensitive Anthranilate Synthase α-2 chain gene (ASA2), which catalyzes the first step for tryptophan biosynthesis. In vitro and in vivo DNA-protein interaction studies further revealed that PvMTF-1 directly binds to the MRE in the ASA2 promoter, and this binding depends on the zinc finger-like motif of PvMTF-1. Through modulating ASA2 up-regulation by Cd, PvMTF-1 increased free tryptophan level and subsequently reduced Cd accumulation, thereby enhancing Cd tolerance of transgenic tobacco plants. Consistent with this observation, tobacco transiently overexpressing ASA2 also exhibited increased tolerance to Cd. We conclude that PvMTF-1 is a zinc finger-like transcription factor that links MRE to Cd resistance in transgenic tobacco through activation of tryptophan biosynthesis. PMID:25624396

  1. An analysis of subunit exchange in the dimeric DNA-binding and DNA-bending protein, TF1.

    PubMed

    Andera, L; Schneider, G J; Geiduschek, E P

    1994-01-01

    TF1 is the Bacillus subtilis bacteriophage-encoded dimeric type II DNA-binding protein. This relative of the eubacterial HU proteins and of the Escherichia coli integration host factor binds preferentially to 5-(hydroxymethyluracil)-containing DNA. We have examined the dynamics of exchange of monomer subunits between molecules of dimeric TF1. The analysis takes advantage of the fact that replacement of phenylalanine with arginine at amino acid 61 in the beta-loop 'arm' of TF1 alters DNA-bending and -binding properties, generating DNA complexes with distinctively different mobilities in gel electrophoresis. New species of DNA-protein complexes were formed by mixtures of wild type and mutant TF1, reflecting the formation of heterodimeric TF1, and making the dynamics of monomer exchange between TF1 dimers accessible to a simple gel retardation analysis. Exchange was rapid at high protein concentrations, even at 0 degrees C, and is proposed to be capable of proceeding through an interaction of molecules of TF1 dimer rather than exclusively through dissociation into monomer subunits. Evidence suggesting that DNA-bound TF1 dimers do not exchange subunits readily is also presented.

  2. A mammary cell-specific enhancer in mouse mammary tumor virus DNA is composed of multiple regulatory elements including binding sites for CTF/NFI and a novel transcription factor, mammary cell-activating factor.

    PubMed Central

    Mink, S; Härtig, E; Jennewein, P; Doppler, W; Cato, A C

    1992-01-01

    Mouse mammary tumor virus (MMTV) is a milk-transmitted retrovirus involved in the neoplastic transformation of mouse mammary gland cells. The expression of this virus is regulated by mammary cell type-specific factors, steroid hormones, and polypeptide growth factors. Sequences for mammary cell-specific expression are located in an enhancer element in the extreme 5' end of the long terminal repeat region of this virus. This enhancer, when cloned in front of the herpes simplex thymidine kinase promoter, endows the promoter with mammary cell-specific response. Using functional and DNA-protein-binding studies with constructs mutated in the MMTV long terminal repeat enhancer, we have identified two main regulatory elements necessary for the mammary cell-specific response. These elements consist of binding sites for a transcription factor in the family of CTF/NFI proteins and the transcription factor mammary cell-activating factor (MAF) that recognizes the sequence G Pu Pu G C/G A A G G/T. Combinations of CTF/NFI- and MAF-binding sites or multiple copies of either one of these binding sites but not solitary binding sites mediate mammary cell-specific expression. The functional activities of these two regulatory elements are enhanced by another factor that binds to the core sequence ACAAAG. Interdigitated binding sites for CTF/NFI, MAF, and/or the ACAAAG factor are also found in the 5' upstream regions of genes encoding whey milk proteins from different species. These findings suggest that mammary cell-specific regulation is achieved by a concerted action of factors binding to multiple regulatory sites. Images PMID:1328867

  3. Altered (/sup 125/I)epidermal growth factor binding and receptor distribution in psoriasis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nanney, L.B.; Stoscheck, C.M.; Magid, M.

    1986-03-01

    Stimulation of growth and differentiation of human epidermis by epidermal growth factor (EGF) is mediated by its binding to specific receptors. Whether EGF receptors primarily mediate cell division or differentiation in hyperproliferative disease such as psoriasis vulgaris is unclear. To study the pathogenesis of psoriasis, 4-mm2 punch biopsy specimens of normal, uninvolved, and involved psoriatic skin were assayed for EGF receptors by autoradiographic, immunohistochemical, and biochemical methods. Using autoradiographic and immunohistochemical methods, basal keratinocytes were found to contain the greatest number of EGF binding sites and immunoreactive receptors as compared to the upper layers of the epidermis in both normalmore » epidermis and psoriatic skin. No EGF receptor differences between normal and psoriatic epidermis were observed in this layer. In the upper layers of the epidermis, a 2-fold increase in EGF binding capacity was observed in psoriatic skin as compared with normal thin or thick skin. Biochemical methods indicated that (/sup 125/I)EGF binding was increased in psoriatic epidermis as compared with similar thickness normal epidermis when measured on a protein basis. Epidermal growth factor was shown to increase phosphorylation of the EGF receptor in skin. EGF receptors retained in the nonmitotic stratum spinosum and parakeratotic stratum corneum may reflect the incomplete, abnormal differentiation that occurs in active psoriatic lesions. Alternatively, retained EGF receptors may play a direct role in inhibiting cellular differentiation in the suprabasal layers.« less

  4. Combining transcription factor binding affinities with open-chromatin data for accurate gene expression prediction

    PubMed Central

    Schmidt, Florian; Gasparoni, Nina; Gasparoni, Gilles; Gianmoena, Kathrin; Cadenas, Cristina; Polansky, Julia K.; Ebert, Peter; Nordström, Karl; Barann, Matthias; Sinha, Anupam; Fröhler, Sebastian; Xiong, Jieyi; Dehghani Amirabad, Azim; Behjati Ardakani, Fatemeh; Hutter, Barbara; Zipprich, Gideon; Felder, Bärbel; Eils, Jürgen; Brors, Benedikt; Chen, Wei; Hengstler, Jan G.; Hamann, Alf; Lengauer, Thomas; Rosenstiel, Philip; Walter, Jörn; Schulz, Marcel H.

    2017-01-01

    The binding and contribution of transcription factors (TF) to cell specific gene expression is often deduced from open-chromatin measurements to avoid costly TF ChIP-seq assays. Thus, it is important to develop computational methods for accurate TF binding prediction in open-chromatin regions (OCRs). Here, we report a novel segmentation-based method, TEPIC, to predict TF binding by combining sets of OCRs with position weight matrices. TEPIC can be applied to various open-chromatin data, e.g. DNaseI-seq and NOMe-seq. Additionally, Histone-Marks (HMs) can be used to identify candidate TF binding sites. TEPIC computes TF affinities and uses open-chromatin/HM signal intensity as quantitative measures of TF binding strength. Using machine learning, we find low affinity binding sites to improve our ability to explain gene expression variability compared to the standard presence/absence classification of binding sites. Further, we show that both footprints and peaks capture essential TF binding events and lead to a good prediction performance. In our application, gene-based scores computed by TEPIC with one open-chromatin assay nearly reach the quality of several TF ChIP-seq data sets. Finally, these scores correctly predict known transcriptional regulators as illustrated by the application to novel DNaseI-seq and NOMe-seq data for primary human hepatocytes and CD4+ T-cells, respectively. PMID:27899623

  5. CCN2/CTGF binds to fibroblast growth factor receptor 2 and modulates its signaling.

    PubMed

    Aoyama, Eriko; Kubota, Satoshi; Takigawa, Masaharu

    2012-12-14

    CCN2 plays a critical role in the development of mesenchymal tissues such as cartilage and bone, and the binding of CCN2 to various cytokines and receptors regulates their signaling.By screening a protein array, we found that CCN2 could bind to fibroblast growth factor receptors (FGFRs) 2 and 3, with a higher affinity toward FGFR2.We ascertained that FGFR2 bound to CCN2 and that the binding of FGFR2 to FGF2 and FGF4 was enhanced by CCN2.CCN2 and FGF2 had a collaborative effect on the phosphorylation of ERK and the differentiation of osteoblastic cells.The present results indicate the biological significance of the binding of CCN2 to FGFR2 in bone metabolism. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  6. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.

    PubMed

    Riechmann, J L; Heard, J; Martin, G; Reuber, L; Jiang, C; Keddie, J; Adam, L; Pineda, O; Ratcliffe, O J; Samaha, R R; Creelman, R; Pilgrim, M; Broun, P; Zhang, J Z; Ghandehari, D; Sherman, B K; Yu, G

    2000-12-15

    The completion of the Arabidopsis thaliana genome sequence allows a comparative analysis of transcriptional regulators across the three eukaryotic kingdoms. Arabidopsis dedicates over 5% of its genome to code for more than 1500 transcription factors, about 45% of which are from families specific to plants. Arabidopsis transcription factors that belong to families common to all eukaryotes do not share significant similarity with those of the other kingdoms beyond the conserved DNA binding domains, many of which have been arranged in combinations specific to each lineage. The genome-wide comparison reveals the evolutionary generation of diversity in the regulation of transcription.

  7. Genome-wide Analysis of Simultaneous GATA1/2, RUNX1, FLI1, and SCL Binding in Megakaryocytes Identifies Hematopoietic Regulators

    PubMed Central

    Tijssen, Marloes R.; Cvejic, Ana; Joshi, Anagha; Hannah, Rebecca L.; Ferreira, Rita; Forrai, Ariel; Bellissimo, Dana C.; Oram, S. Helen; Smethurst, Peter A.; Wilson, Nicola K.; Wang, Xiaonan; Ottersbach, Katrin; Stemple, Derek L.; Green, Anthony R.; Ouwehand, Willem H.; Göttgens, Berthold

    2011-01-01

    Summary Hematopoietic differentiation critically depends on combinations of transcriptional regulators controlling the development of individual lineages. Here, we report the genome-wide binding sites for the five key hematopoietic transcription factors—GATA1, GATA2, RUNX1, FLI1, and TAL1/SCL—in primary human megakaryocytes. Statistical analysis of the 17,263 regions bound by at least one factor demonstrated that simultaneous binding by all five factors was the most enriched pattern and often occurred near known hematopoietic regulators. Eight genes not previously appreciated to function in hematopoiesis that were bound by all five factors were shown to be essential for thrombocyte and/or erythroid development in zebrafish. Moreover, one of these genes encoding the PDZK1IP1 protein shared transcriptional enhancer elements with the blood stem cell regulator TAL1/SCL. Multifactor ChIP-Seq analysis in primary human cells coupled with a high-throughput in vivo perturbation screen therefore offers a powerful strategy to identify essential regulators of complex mammalian differentiation processes. PMID:21571218

  8. Fundamental considerations in ski binding analysis.

    PubMed

    Mote, C D; Hull, M L

    1976-01-01

    1. The static adjustment of a ski binding by hand or by available machines is only an adjustment and is neither a static nor a dynamic evaluation of the binding design. Bindings of different design with identical static adjustments will perform differently in environments in which the forces are static or dynamic. 2. The concept of binding release force is a useful measure of binding adjustment, but it is inappropriate as a criterion for binding evaluation. First, it does not direct attention toward the injury causing mechanism, strain, or displacement in the leg. Second, it is only part of the evaluation in dynamic problems. 3. The binding release decision in present bindings is displacement controlled. The relative displacement of the boot and ski is the system variable. For any specified relative displacement the binding force can be any of an infinite number of possibilities determined by the loading path. 4. The response of the leg-ski system to external impulses applied to the ski is independent of the boot-ski relative motion as long as the boot recenters quickly in the binding. Response is dependent upon the external impulse plus system inertia, damping and stiffness. 5. When tested under half sinusoidal forces applied to a test ski, all bindings will demonstrate static and impulse loading regions. In the static region the force drives the binding to a relative release displacement. In the impulse region the initial velocity of the ski drives the binding to a release displacement. 6. The transition between the static and impulse loading regions is determined by the binding's capacity to store and dissipate energy along the principal loading path. Increased energy capacity necessitates larger external impulses to produce release. 7. In all bindings examined to date, the transmitted leg displacement or strain at release under static loading exceeds leg strain under dynamic or impact loading. Because static loading is responsible for many injuries, a skier

  9. SNP2TFBS - a database of regulatory SNPs affecting predicted transcription factor binding site affinity.

    PubMed

    Kumar, Sunil; Ambrosini, Giovanna; Bucher, Philipp

    2017-01-04

    SNP2TFBS is a computational resource intended to support researchers investigating the molecular mechanisms underlying regulatory variation in the human genome. The database essentially consists of a collection of text files providing specific annotations for human single nucleotide polymorphisms (SNPs), namely whether they are predicted to abolish, create or change the affinity of one or several transcription factor (TF) binding sites. A SNP's effect on TF binding is estimated based on a position weight matrix (PWM) model for the binding specificity of the corresponding factor. These data files are regenerated at regular intervals by an automatic procedure that takes as input a reference genome, a comprehensive SNP catalogue and a collection of PWMs. SNP2TFBS is also accessible over a web interface, enabling users to view the information provided for an individual SNP, to extract SNPs based on various search criteria, to annotate uploaded sets of SNPs or to display statistics about the frequencies of binding sites affected by selected SNPs. Homepage: http://ccg.vital-it.ch/snp2tfbs/. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Protection of Nonself Surfaces from Complement Attack by Factor H-Binding Peptides: Implications for Therapeutic Medicine

    PubMed Central

    Wu, You-Qiang; Qu, Hongchang; Sfyroera, Georgia; Tzekou, Apostolia; Kay, Brian K.; Nilsson, Bo; Ekdahl, Kristina Nilsson; Ricklin, Daniel; Lambris, John D.

    2011-01-01

    Exposure of nonself surfaces such as those of biomaterials or transplanted cells and organs to host blood frequently triggers innate immune responses, thereby affecting both their functionality and tolerability. Activation of the alternative pathway of complement plays a decisive role in this unfavorable reaction. Whereas previous studies demonstrated that immobilization of physiological regulators of complement activation (RCA) can attenuate this foreign body-induced activation, simple and efficient approaches for coating artificial surfaces with intact RCA are still missing. The conjugation of small molecular entities that capture RCA with high affinity is an intriguing alternative, as this creates a surface with autoregulatory activity upon exposure to blood. We therefore screened two variable cysteine-constrained phage-displayed peptide libraries for factor H-binding peptides. We discovered three peptide classes that differed with respect to their main target binding areas. Peptides binding to the broad middle region of factor H (domains 5–18) were of particular interest, as they do not interfere with either regulatory or binding activities. One peptide in this group (5C6) was further characterized and showed high factor H-capturing activity while retaining its functional integrity. Most importantly, when 5C6 was coated to a model polystyrene surface and exposed to human lepirudin-anticoagulated plasma, the bound peptide captured factor H and substantially inhibited complement activation by the alternative pathway. Our study therefore provides a promising and novel approach to produce therapeutic materials with enhanced biocompatibility. PMID:21339361

  11. Specific binding, internalization, and degradation of human neutrophil activating factor by human polymorphonuclear leukocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Besemer, J.; Hujber, A.; Kuhn, B.

    1989-10-15

    The interaction of {sup 125}I-labeled recombinant human neutrophil activating factor (NAF) with polymorphonuclear leukocytes (PMN) was studied by means of a radioreceptor assay. The binding was characterized by a rapid transition (t1/2 less than or equal to 1 min) from a pH 3-sensitive state at 4{degree}C to pH 3 resistance at 37{degree}C. This was not caused by internalization of NAF since pH 3-resistant bound iodinated NAF could still be exchanged by an excess of nonlabeled NAF, i.e. was dissociable. Internalized iodinated NAF was processed into trichloroacetic acid-soluble forms. Scatchard transformation of binding isotherms at 4 and 37{degree}C led to nonlinearmore » curves, a finding which is consistent with the expression of two receptor populations, one with high (KD = 11-35 pM) and the other with lower affinity (KD = 640-830 pM) at 4 degrees C. Numbers of the low affinity binding sites were approximately 34,000, and those with high affinity were 5,200/PMN when estimated at 4 degrees C. Binding of iodinated NAF to PMN was specific since it could be competed by an excess of nonlabeled NAF but not by two other activators of PMN function, formylmethionyl-leucyl-phenylalanine or human recombinant granulocyte-macrophage colony-stimulating factor. In addition to human PMN, NAF also bound specifically to two human monocytic cell lines; however, only the low affinity binding site could be detected on these cells.« less

  12. The Interaction Properties of the Human Rab GTPase Family – A Comparative Analysis Reveals Determinants of Molecular Binding Selectivity

    PubMed Central

    Stein, Matthias; Pilli, Manohar; Bernauer, Sabine; Habermann, Bianca H.; Zerial, Marino; Wade, Rebecca C.

    2012-01-01

    Background Rab GTPases constitute the largest subfamily of the Ras protein superfamily. Rab proteins regulate organelle biogenesis and transport, and display distinct binding preferences for effector and activator proteins, many of which have not been elucidated yet. The underlying molecular recognition motifs, binding partner preferences and selectivities are not well understood. Methodology/Principal Findings Comparative analysis of the amino acid sequences and the three-dimensional electrostatic and hydrophobic molecular interaction fields of 62 human Rab proteins revealed a wide range of binding properties with large differences between some Rab proteins. This analysis assists the functional annotation of Rab proteins 12, 14, 26, 37 and 41 and provided an explanation for the shared function of Rab3 and 27. Rab7a and 7b have very different electrostatic potentials, indicating that they may bind to different effector proteins and thus, exert different functions. The subfamily V Rab GTPases which are associated with endosome differ subtly in the interaction properties of their switch regions, and this may explain exchange factor specificity and exchange kinetics. Conclusions/Significance We have analysed conservation of sequence and of molecular interaction fields to cluster and annotate the human Rab proteins. The analysis of three dimensional molecular interaction fields provides detailed insight that is not available from a sequence-based approach alone. Based on our results, we predict novel functions for some Rab proteins and provide insights into their divergent functions and the determinants of their binding partner selectivity. PMID:22523562

  13. Evaluating the binding efficiency of pheromone binding protein with its natural ligand using molecular docking and fluorescence analysis

    NASA Astrophysics Data System (ADS)

    Ilayaraja, Renganathan; Rajkumar, Ramalingam; Rajesh, Durairaj; Muralidharan, Arumugam Ramachandran; Padmanabhan, Parasuraman; Archunan, Govindaraju

    2014-06-01

    Chemosignals play a crucial role in social and sexual communication among inter- and intra-species. Chemical cues are bound with protein that is present in the pheromones irrespective of sex are commonly called as pheromone binding protein (PBP). In rats, the pheromone compounds are bound with low molecular lipocalin protein α2u-globulin (α2u). We reported farnesol is a natural endogenous ligand (compound) present in rat preputial gland as a bound volatile compound. In the present study, an attempt has been made through computational method to evaluating the binding efficiency of α2u with the natural ligand (farnesol) and standard fluorescent molecule (2-naphthol). The docking analysis revealed that the binding energy of farnesol and 2-naphthol was almost equal and likely to share some binding pocket of protein. Further, to extrapolate the results generated through computational approach, the α2u protein was purified and subjected to fluorescence titration and binding assay. The results showed that the farnesol is replaced by 2-naphthol with high hydrophobicity of TYR120 in binding sites of α2u providing an acceptable dissociation constant indicating the binding efficiency of α2u. The obtained results are in corroboration with the data made through computational approach.

  14. Intestinal Master Transcription Factor CDX2 Controls Chromatin Access for Partner Transcription Factor Binding

    PubMed Central

    Verzi, Michael P.; Shin, Hyunjin; San Roman, Adrianna K.

    2013-01-01

    Tissue-specific gene expression requires modulation of nucleosomes, allowing transcription factors to occupy cis elements that are accessible only in selected tissues. Master transcription factors control cell-specific genes and define cellular identities, but it is unclear if they possess special abilities to regulate cell-specific chromatin and if such abilities might underlie lineage determination and maintenance. One prevailing view is that several transcription factors enable chromatin access in combination. The homeodomain protein CDX2 specifies the embryonic intestinal epithelium, through unknown mechanisms, and partners with transcription factors such as HNF4A in the adult intestine. We examined enhancer chromatin and gene expression following Cdx2 or Hnf4a excision in mouse intestines. HNF4A loss did not affect CDX2 binding or chromatin, whereas CDX2 depletion modified chromatin significantly at CDX2-bound enhancers, disrupted HNF4A occupancy, and abrogated expression of neighboring genes. Thus, CDX2 maintains transcription-permissive chromatin, illustrating a powerful and dominant effect on enhancer configuration in an adult tissue. Similar, hierarchical control of cell-specific chromatin states is probably a general property of master transcription factors. PMID:23129810

  15. Delivering heparin-binding insulin-like growth factor 1 with self-assembling peptide hydrogels.

    PubMed

    Florine, Emily M; Miller, Rachel E; Liebesny, Paul H; Mroszczyk, Keri A; Lee, Richard T; Patwari, Parth; Grodzinsky, Alan J

    2015-02-01

    Heparin-binding insulin-like growth factor 1 (HB-IGF-1) is a fusion protein of IGF-1 with the HB domain of heparin-binding epidermal growth factor-like growth factor. A single dose of HB-IGF-1 has been shown to bind specifically to cartilage and to promote sustained upregulation of proteoglycan synthesis in cartilage explants. Achieving strong integration between native cartilage and tissue-engineered cartilage remains challenging. We hypothesize that if a growth factor delivered by the tissue engineering scaffold could stimulate enhanced matrix synthesis by both the cells within the scaffold and the adjacent native cartilage, integration could be enhanced. In this work, we investigated methods for adsorbing HB-IGF-1 to self-assembling peptide hydrogels to deliver the growth factor to encapsulated chondrocytes and cartilage explants cultured with growth factor-loaded hydrogels. We tested multiple methods for adsorbing HB-IGF-1 in self-assembling peptide hydrogels, including adsorption prior to peptide assembly, following peptide assembly, and with/without heparan sulfate (HS, a potential linker between peptide molecules and HB-IGF-1). We found that HB-IGF-1 and HS were retained in the peptide for all tested conditions. A subset of these conditions was then studied for their ability to stimulate increased matrix production by gel-encapsulated chondrocytes and by chondrocytes within adjacent native cartilage. Adsorbing HB-IGF-1 or IGF-1 prior to peptide assembly was found to stimulate increased sulfated glycosaminoglycan per DNA and hydroxyproline content of chondrocyte-seeded hydrogels compared with basal controls at day 10. Cartilage explants cultured adjacent to functionalized hydrogels had increased proteoglycan synthesis at day 10 when HB-IGF-1 was adsorbed, but not IGF-1. We conclude that delivery of HB-IGF-1 to focal defects in cartilage using self-assembling peptide hydrogels is a promising technique that could aid cartilage repair via enhanced matrix

  16. Acquisition of complement inhibitor serine protease factor I and its cofactors C4b-binding protein and factor H by Prevotella intermedia.

    PubMed

    Malm, Sven; Jusko, Monika; Eick, Sigrun; Potempa, Jan; Riesbeck, Kristian; Blom, Anna M

    2012-01-01

    Infection with the Gram-negative pathogen Prevotella intermedia gives rise to periodontitis and a growing number of studies implies an association of P. intermedia with rheumatoid arthritis. The serine protease Factor I (FI) is the central inhibitor of complement degrading complement components C3b and C4b in the presence of cofactors such as C4b-binding protein (C4BP) and Factor H (FH). Yet, the significance of complement inhibitor acquisition in P. intermedia infection and FI binding by Gram-negative pathogens has not been addressed. Here we show that P. intermedia isolates bound purified FI as well as FI directly from heat-inactivated human serum. FI bound to bacteria retained its serine protease activity as shown in degradation experiments with (125)I-labeled C4b. Since FI requires cofactors for its activity we also investigated the binding of purified cofactors C4BP and FH and found acquisition of both proteins, which retained their activity in FI mediated degradation of C3b and C4b. We propose that FI binding by P. intermedia represents a new mechanism contributing to complement evasion by a Gram-negative bacterial pathogen associated with chronic diseases.

  17. Binding of Complement Factor H (FH) Decreases Protective Anti-FH Binding Protein Antibody Responses of Infant Rhesus Macaques Immunized With a Meningococcal Serogroup B Vaccine

    PubMed Central

    Granoff, Dan M.; Costa, Isabella; Konar, Monica; Giuntini, Serena; Van Rompay, Koen K. A.; Beernink, Peter T.

    2015-01-01

    Background. The meningococcal vaccine antigen, factor H (FH)–binding protein (FHbp), binds human complement FH. In human FH transgenic mice, binding decreased protective antibody responses. Methods. To investigate the effect of primate FH binding, we immunized rhesus macaques with a 4-component serogroup B vaccine (4CMenB). Serum FH in 6 animals bound strongly to FHbp (FHbp-FHhigh) and, in 6 animals, bound weakly to FHbp (FHbp-FHlow). Results. There were no significant differences between the respective serum bactericidal responses of the 2 groups against meningococcal strains susceptible to antibody to the NadA or PorA vaccine antigens. In contrast, anti-FHbp bactericidal titers were 2-fold lower in FHbp-FHhigh macaques against a strain with an exact FHbp match to the vaccine (P = .08) and were ≥4-fold lower against 4 mutants with other FHbp sequence variants (P ≤ .005, compared with FHbp-FHlow macaques). Unexpectedly, postimmunization sera from all 12 macaques enhanced FH binding to meningococci. In contrast, serum anti-FHbp antibodies elicited by 4CMenB in mice whose mouse FH did not bind to the vaccine antigen inhibited FH binding. Conclusions. Binding of FH to FHbp decreases protective anti-FHbp antibody responses of macaques to 4CMenB. Even low levels of FH binding skew the antibody repertoire to FHbp epitopes outside of the FH-binding site, which enhance FH binding. PMID:25676468

  18. Energetic factors determining the binding of type I inhibitors to c-Met kinase: experimental studies and quantum mechanical calculations.

    PubMed

    Yu, Zhe; Ma, Yu-chi; Ai, Jing; Chen, Dan-qi; Zhao, Dong-mei; Wang, Xin; Chen, Yue-lei; Geng, Mei-yu; Xiong, Bing; Cheng, Mao-sheng; Shen, Jing-Kang

    2013-11-01

    To decipher the molecular interactions between c-Met and its type I inhibitors and to facilitate the design of novel c-Met inhibitors. Based on the prototype model inhibitor 1, four ligands with subtle differences in the fused aromatic rings were synthesized. Quantum chemistry was employed to calculate the binding free energy for each ligand. Symmetry-adapted perturbation theory (SAPT) was used to decompose the binding energy into several fundamental forces to elucidate the determinant factors. Binding free energies calculated from quantum chemistry were correlated well with experimental data. SAPT calculations showed that the predominant driving force for binding was derived from a sandwich π-π interaction with Tyr-1230. Arg-1208 was the differentiating factor, interacting with the 6-position of the fused aromatic ring system through the backbone carbonyl with a force pattern similar to hydrogen bonding. Therefore, a hydrogen atom must be attached at the 6-position, and changing the carbon atom to nitrogen caused unfavorable electrostatic interactions. The theoretical studies have elucidated the determinant factors involved in the binding of type I inhibitors to c-Met.

  19. Decipher the mechanisms of protein conformational changes induced by nucleotide binding through free-energy landscape analysis: ATP binding to Hsp70.

    PubMed

    Nicolaï, Adrien; Delarue, Patrice; Senet, Patrick

    2013-01-01

    ATP regulates the function of many proteins in the cell by transducing its binding and hydrolysis energies into protein conformational changes by mechanisms which are challenging to identify at the atomic scale. Based on molecular dynamics (MD) simulations, a method is proposed to analyze the structural changes induced by ATP binding to a protein by computing the effective free-energy landscape (FEL) of a subset of its coordinates along its amino-acid sequence. The method is applied to characterize the mechanism by which the binding of ATP to the nucleotide-binding domain (NBD) of Hsp70 propagates a signal to its substrate-binding domain (SBD). Unbiased MD simulations were performed for Hsp70-DnaK chaperone in nucleotide-free, ADP-bound and ATP-bound states. The simulations revealed that the SBD does not interact with the NBD for DnaK in its nucleotide-free and ADP-bound states whereas the docking of the SBD was found in the ATP-bound state. The docked state induced by ATP binding found in MD is an intermediate state between the initial nucleotide-free and final ATP-bound states of Hsp70. The analysis of the FEL projected along the amino-acid sequence permitted to identify a subset of 27 protein internal coordinates corresponding to a network of 91 key residues involved in the conformational change induced by ATP binding. Among the 91 residues, 26 are identified for the first time, whereas the others were shown relevant for the allosteric communication of Hsp70 s in several experiments and bioinformatics analysis. The FEL analysis revealed also the origin of the ATP-induced structural modifications of the SBD recently measured by Electron Paramagnetic Resonance. The pathway between the nucleotide-free and the intermediate state of DnaK was extracted by applying principal component analysis to the subset of internal coordinates describing the transition. The methodology proposed is general and could be applied to analyze allosteric communication in other proteins.

  20. Decipher the Mechanisms of Protein Conformational Changes Induced by Nucleotide Binding through Free-Energy Landscape Analysis: ATP Binding to Hsp70

    PubMed Central

    Nicolaï, Adrien; Delarue, Patrice; Senet, Patrick

    2013-01-01

    ATP regulates the function of many proteins in the cell by transducing its binding and hydrolysis energies into protein conformational changes by mechanisms which are challenging to identify at the atomic scale. Based on molecular dynamics (MD) simulations, a method is proposed to analyze the structural changes induced by ATP binding to a protein by computing the effective free-energy landscape (FEL) of a subset of its coordinates along its amino-acid sequence. The method is applied to characterize the mechanism by which the binding of ATP to the nucleotide-binding domain (NBD) of Hsp70 propagates a signal to its substrate-binding domain (SBD). Unbiased MD simulations were performed for Hsp70-DnaK chaperone in nucleotide-free, ADP-bound and ATP-bound states. The simulations revealed that the SBD does not interact with the NBD for DnaK in its nucleotide-free and ADP-bound states whereas the docking of the SBD was found in the ATP-bound state. The docked state induced by ATP binding found in MD is an intermediate state between the initial nucleotide-free and final ATP-bound states of Hsp70. The analysis of the FEL projected along the amino-acid sequence permitted to identify a subset of 27 protein internal coordinates corresponding to a network of 91 key residues involved in the conformational change induced by ATP binding. Among the 91 residues, 26 are identified for the first time, whereas the others were shown relevant for the allosteric communication of Hsp70 s in several experiments and bioinformatics analysis. The FEL analysis revealed also the origin of the ATP-induced structural modifications of the SBD recently measured by Electron Paramagnetic Resonance. The pathway between the nucleotide-free and the intermediate state of DnaK was extracted by applying principal component analysis to the subset of internal coordinates describing the transition. The methodology proposed is general and could be applied to analyze allosteric communication in other proteins

  1. Human Lineage-Specific Transcriptional Regulation through GA-Binding Protein Transcription Factor Alpha (GABPa)

    PubMed Central

    Perdomo-Sabogal, Alvaro; Nowick, Katja; Piccini, Ilaria; Sudbrak, Ralf; Lehrach, Hans; Yaspo, Marie-Laure; Warnatz, Hans-Jörg; Querfurth, Robert

    2016-01-01

    A substantial fraction of phenotypic differences between closely related species are likely caused by differences in gene regulation. While this has already been postulated over 30 years ago, only few examples of evolutionary changes in gene regulation have been verified. Here, we identified and investigated binding sites of the transcription factor GA-binding protein alpha (GABPa) aiming to discover cis-regulatory adaptations on the human lineage. By performing chromatin immunoprecipitation-sequencing experiments in a human cell line, we found 11,619 putative GABPa binding sites. Through sequence comparisons of the human GABPa binding regions with orthologous sequences from 34 mammals, we identified substitutions that have resulted in 224 putative human-specific GABPa binding sites. To experimentally assess the transcriptional impact of those substitutions, we selected four promoters for promoter-reporter gene assays using human and African green monkey cells. We compared the activities of wild-type promoters to mutated forms, where we have introduced one or more substitutions to mimic the ancestral state devoid of the GABPa consensus binding sequence. Similarly, we introduced the human-specific substitutions into chimpanzee and macaque promoter backgrounds. Our results demonstrate that the identified substitutions are functional, both in human and nonhuman promoters. In addition, we performed GABPa knock-down experiments and found 1,215 genes as strong candidates for primary targets. Further analyses of our data sets link GABPa to cognitive disorders, diabetes, KRAB zinc finger (KRAB-ZNF), and human-specific genes. Thus, we propose that differences in GABPa binding sites played important roles in the evolution of human-specific phenotypes. PMID:26814189

  2. Combining transcription factor binding affinities with open-chromatin data for accurate gene expression prediction.

    PubMed

    Schmidt, Florian; Gasparoni, Nina; Gasparoni, Gilles; Gianmoena, Kathrin; Cadenas, Cristina; Polansky, Julia K; Ebert, Peter; Nordström, Karl; Barann, Matthias; Sinha, Anupam; Fröhler, Sebastian; Xiong, Jieyi; Dehghani Amirabad, Azim; Behjati Ardakani, Fatemeh; Hutter, Barbara; Zipprich, Gideon; Felder, Bärbel; Eils, Jürgen; Brors, Benedikt; Chen, Wei; Hengstler, Jan G; Hamann, Alf; Lengauer, Thomas; Rosenstiel, Philip; Walter, Jörn; Schulz, Marcel H

    2017-01-09

    The binding and contribution of transcription factors (TF) to cell specific gene expression is often deduced from open-chromatin measurements to avoid costly TF ChIP-seq assays. Thus, it is important to develop computational methods for accurate TF binding prediction in open-chromatin regions (OCRs). Here, we report a novel segmentation-based method, TEPIC, to predict TF binding by combining sets of OCRs with position weight matrices. TEPIC can be applied to various open-chromatin data, e.g. DNaseI-seq and NOMe-seq. Additionally, Histone-Marks (HMs) can be used to identify candidate TF binding sites. TEPIC computes TF affinities and uses open-chromatin/HM signal intensity as quantitative measures of TF binding strength. Using machine learning, we find low affinity binding sites to improve our ability to explain gene expression variability compared to the standard presence/absence classification of binding sites. Further, we show that both footprints and peaks capture essential TF binding events and lead to a good prediction performance. In our application, gene-based scores computed by TEPIC with one open-chromatin assay nearly reach the quality of several TF ChIP-seq data sets. Finally, these scores correctly predict known transcriptional regulators as illustrated by the application to novel DNaseI-seq and NOMe-seq data for primary human hepatocytes and CD4+ T-cells, respectively. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Understanding and predicting binding between human leukocyte antigens (HLAs) and peptides by network analysis.

    PubMed

    Luo, Heng; Ye, Hao; Ng, Hui; Shi, Leming; Tong, Weida; Mattes, William; Mendrick, Donna; Hong, Huixiao

    2015-01-01

    As the major histocompatibility complex (MHC), human leukocyte antigens (HLAs) are one of the most polymorphic genes in humans. Patients carrying certain HLA alleles may develop adverse drug reactions (ADRs) after taking specific drugs. Peptides play an important role in HLA related ADRs as they are the necessary co-binders of HLAs with drugs. Many experimental data have been generated for understanding HLA-peptide binding. However, efficiently utilizing the data for understanding and accurately predicting HLA-peptide binding is challenging. Therefore, we developed a network analysis based method to understand and predict HLA-peptide binding. Qualitative Class I HLA-peptide binding data were harvested and prepared from four major databases. An HLA-peptide binding network was constructed from this dataset and modules were identified by the fast greedy modularity optimization algorithm. To examine the significance of signals in the yielded models, the modularity was compared with the modularity values generated from 1,000 random networks. The peptides and HLAs in the modules were characterized by similarity analysis. The neighbor-edges based and unbiased leverage algorithm (Nebula) was developed for predicting HLA-peptide binding. Leave-one-out (LOO) validations and two-fold cross-validations were conducted to evaluate the performance of Nebula using the constructed HLA-peptide binding network. Nine modules were identified from analyzing the HLA-peptide binding network with a highest modularity compared to all the random networks. Peptide length and functional side chains of amino acids at certain positions of the peptides were different among the modules. HLA sequences were module dependent to some extent. Nebula archived an overall prediction accuracy of 0.816 in the LOO validations and average accuracy of 0.795 in the two-fold cross-validations and outperformed the method reported in the literature. Network analysis is a useful approach for analyzing large and

  4. Understanding and predicting binding between human leukocyte antigens (HLAs) and peptides by network analysis

    PubMed Central

    2015-01-01

    Background As the major histocompatibility complex (MHC), human leukocyte antigens (HLAs) are one of the most polymorphic genes in humans. Patients carrying certain HLA alleles may develop adverse drug reactions (ADRs) after taking specific drugs. Peptides play an important role in HLA related ADRs as they are the necessary co-binders of HLAs with drugs. Many experimental data have been generated for understanding HLA-peptide binding. However, efficiently utilizing the data for understanding and accurately predicting HLA-peptide binding is challenging. Therefore, we developed a network analysis based method to understand and predict HLA-peptide binding. Methods Qualitative Class I HLA-peptide binding data were harvested and prepared from four major databases. An HLA-peptide binding network was constructed from this dataset and modules were identified by the fast greedy modularity optimization algorithm. To examine the significance of signals in the yielded models, the modularity was compared with the modularity values generated from 1,000 random networks. The peptides and HLAs in the modules were characterized by similarity analysis. The neighbor-edges based and unbiased leverage algorithm (Nebula) was developed for predicting HLA-peptide binding. Leave-one-out (LOO) validations and two-fold cross-validations were conducted to evaluate the performance of Nebula using the constructed HLA-peptide binding network. Results Nine modules were identified from analyzing the HLA-peptide binding network with a highest modularity compared to all the random networks. Peptide length and functional side chains of amino acids at certain positions of the peptides were different among the modules. HLA sequences were module dependent to some extent. Nebula archived an overall prediction accuracy of 0.816 in the LOO validations and average accuracy of 0.795 in the two-fold cross-validations and outperformed the method reported in the literature. Conclusions Network analysis is a

  5. Predicting conformational ensembles and genome-wide transcription factor binding sites from DNA sequences.

    PubMed

    Andrabi, Munazah; Hutchins, Andrew Paul; Miranda-Saavedra, Diego; Kono, Hidetoshi; Nussinov, Ruth; Mizuguchi, Kenji; Ahmad, Shandar

    2017-06-22

    DNA shape is emerging as an important determinant of transcription factor binding beyond just the DNA sequence. The only tool for large scale DNA shape estimates, DNAshape was derived from Monte-Carlo simulations and predicts four broad and static DNA shape features, Propeller twist, Helical twist, Minor groove width and Roll. The contributions of other shape features e.g. Shift, Slide and Opening cannot be evaluated using DNAshape. Here, we report a novel method DynaSeq, which predicts molecular dynamics-derived ensembles of a more exhaustive set of DNA shape features. We compared the DNAshape and DynaSeq predictions for the common features and applied both to predict the genome-wide binding sites of 1312 TFs available from protein interaction quantification (PIQ) data. The results indicate a good agreement between the two methods for the common shape features and point to advantages in using DynaSeq. Predictive models employing ensembles from individual conformational parameters revealed that base-pair opening - known to be important in strand separation - was the best predictor of transcription factor-binding sites (TFBS) followed by features employed by DNAshape. Of note, TFBS could be predicted not only from the features at the target motif sites, but also from those as far as 200 nucleotides away from the motif.

  6. JASPAR 2010: the greatly expanded open-access database of transcription factor binding profiles

    PubMed Central

    Portales-Casamar, Elodie; Thongjuea, Supat; Kwon, Andrew T.; Arenillas, David; Zhao, Xiaobei; Valen, Eivind; Yusuf, Dimas; Lenhard, Boris; Wasserman, Wyeth W.; Sandelin, Albin

    2010-01-01

    JASPAR (http://jaspar.genereg.net) is the leading open-access database of matrix profiles describing the DNA-binding patterns of transcription factors (TFs) and other proteins interacting with DNA in a sequence-specific manner. Its fourth major release is the largest expansion of the core database to date: the database now holds 457 non-redundant, curated profiles. The new entries include the first batch of profiles derived from ChIP-seq and ChIP-chip whole-genome binding experiments, and 177 yeast TF binding profiles. The introduction of a yeast division brings the convenience of JASPAR to an active research community. As binding models are refined by newer data, the JASPAR database now uses versioning of matrices: in this release, 12% of the older models were updated to improved versions. Classification of TF families has been improved by adopting a new DNA-binding domain nomenclature. A curated catalog of mammalian TFs is provided, extending the use of the JASPAR profiles to additional TFs belonging to the same structural family. The changes in the database set the system ready for more rapid acquisition of new high-throughput data sources. Additionally, three new special collections provide matrix profile data produced by recent alternative high-throughput approaches. PMID:19906716

  7. Identification of Candidate Transcription Factor Binding Sites in the Cattle Genome

    PubMed Central

    Bickhart, Derek M.; Liu, George E.

    2013-01-01

    A resource that provides candidate transcription factor binding sites (TFBSs) does not currently exist for cattle. Such data is necessary, as predicted sites may serve as excellent starting locations for future omics studies to develop transcriptional regulation hypotheses. In order to generate this resource, we employed a phylogenetic footprinting approach—using sequence conservation across cattle, human and dog—and position-specific scoring matrices to identify 379,333 putative TFBSs upstream of nearly 8000 Mammalian Gene Collection (MGC) annotated genes within the cattle genome. Comparisons of our predictions to known binding site loci within the PCK1, ACTA1 and G6PC promoter regions revealed 75% sensitivity for our method of discovery. Additionally, we intersected our predictions with known cattle SNP variants in dbSNP and on the Illumina BovineHD 770k and Bos 1 SNP chips, finding 7534, 444 and 346 overlaps, respectively. Due to our stringent filtering criteria, these results represent high quality predictions of putative TFBSs within the cattle genome. All binding site predictions are freely available at http://bfgl.anri.barc.usda.gov/BovineTFBS/ or http://199.133.54.77/BovineTFBS. PMID:23433959

  8. Structure-function mapping of BbCRASP-1, the key complement factor H and FHL-1 binding protein of Borrelia burgdorferi.

    PubMed

    Cordes, Frank S; Kraiczy, Peter; Roversi, Pietro; Simon, Markus M; Brade, Volker; Jahraus, Oliver; Wallis, Russell; Goodstadt, Leo; Ponting, Chris P; Skerka, Christine; Zipfel, Peter F; Wallich, Reinhard; Lea, Susan M

    2006-05-01

    Borrelia burgdorferi, a spirochaete transmitted to human hosts during feeding of infected Ixodes ticks, is the causative agent of Lyme disease, the most frequent vector-borne disease in Eurasia and North America. Sporadically Lyme disease develops into a chronic, multisystemic disorder. Serum-resistant B. burgdorferi strains bind complement factor H (FH) and FH-like protein 1 (FHL-1) on the spirochaete surface. This binding is dependent on the expression of proteins termed complement-regulator acquiring surface proteins (CRASPs). The atomic structure of BbCRASP-1, the key FHL-1/FH-binding protein of B. burgdorferi, has recently been determined. Our analysis indicates that its protein topology apparently evolved to provide a high affinity interaction site for FH/FHL-1 and leads to an atomic-level hypothesis for the functioning of BbCRASP-1. This work demonstrates that pathogens interact with complement regulators in ways that are distinct from the mechanisms used by the host and are thus obvious targets for drug design.

  9. HMG I(Y) interferes with the DNA binding of NF-AT factors and the induction of the interleukin 4 promoter in T cells

    PubMed Central

    Klein-Hessling, Stefan; Schneider, Günter; Heinfling, Annette; Chuvpilo, Sergei; Serfling, Edgar

    1996-01-01

    HMG I(Y) proteins bind to double-stranded A+T oligonucleotides longer than three base pairs. Such motifs form part of numerous NF-AT-binding sites of lymphokine promoters, including the interleukin 4 (IL-4) promoter. NF-AT factors share short homologous peptide sequences in their DNA-binding domain with NF-κB factors and bind to certain NF-κB sites. It has been shown that HMG I(Y) proteins enhance NF-κB binding to the interferon β promoter and virus-mediated interferon β promoter induction. We show that HMG I(Y) proteins exert an opposite effect on the DNA binding of NF-AT factors and the induction of the IL-4 promoter in T lymphocytes. Introduction of mutations into a high-affinity HMG I(Y)-binding site of the IL-4 promoter, which decreased HMG I(Y)-binding to a NF-AT-binding sequence, the Pu-bB (or P) site, distinctly increased the induction of the IL-4 promoter in Jurkat T leukemia cells. High concentrations of HMG I(Y) proteins are able to displace NF-ATp from its binding to the Pu-bB site. High HMG I(Y) concentrations are typical for Jurkat cells and peripheral blood T lymphocytes, whereas El4 T lymphoma cells and certain T helper type 2 cell clones contain relatively low HMG I(Y) concentrations. Our results indicate that HMG I(Y) proteins do not cooperate, but instead compete with NF-AT factors for the binding to DNA even though NF-AT factors share some DNA-binding properties with NF-kB factors. This competition between HMG I(Y) and NF-AT proteins for DNA binding might be due to common contacts with minor groove nucleotides of DNA and may be one mechanism contributing to the selective IL-4 expression in certain T lymphocyte populations, such as T helper type 2 cells. PMID:8986808

  10. Tomography of epidermal growth factor receptor binding to fluorescent Affibody in vivo studied with magnetic resonance guided fluorescence recovery in varying orthotopic glioma sizes

    NASA Astrophysics Data System (ADS)

    Holt, Robert W.; Demers, Jennifer-Lynn H.; Sexton, Kristian J.; Gunn, Jason R.; Davis, Scott C.; Samkoe, Kimberley S.; Pogue, Brian W.

    2015-02-01

    The ability to image targeted tracer binding to epidermal growth factor receptor (EGFR) was studied in vivo in orthotopically grown glioma tumors of different sizes. The binding potential was quantified using a dual-tracer approach, which employs a fluorescently labeled peptide targeted to EGFR and a reference tracer with similar pharmacokinetic properties but no specific binding, to estimate the relative bound fraction from kinetic compartment modeling. The recovered values of binding potential did not vary significantly as a function of tumor size (1 to 33 mm3), suggesting that binding potential may be consistent in the U251 tumors regardless of size or stage after implantation. However, the fluorescence yield of the targeted fluorescent tracers in the tumor was affected significantly by tumor size, suggesting that dual-tracer imaging helps account for variations in absolute uptake, which plague single-tracer imaging techniques. Ex vivo analysis showed relatively high spatial heterogeneity in each tumor that cannot be resolved by tomographic techniques. Nonetheless, the dual-tracer tomographic technique is a powerful tool for longitudinal bulk estimation of receptor binding.

  11. Structure, dynamics and RNA binding of the multi-domain splicing factor TIA-1

    PubMed Central

    Wang, Iren; Hennig, Janosch; Jagtap, Pravin Kumar Ankush; Sonntag, Miriam; Valcárcel, Juan; Sattler, Michael

    2014-01-01

    Alternative pre-messenger ribonucleic acid (pre-mRNA) splicing is an essential process in eukaryotic gene regulation. The T-cell intracellular antigen-1 (TIA-1) is an apoptosis-promoting factor that modulates alternative splicing of transcripts, including the pre-mRNA encoding the membrane receptor Fas. TIA-1 is a multi-domain ribonucleic acid (RNA) binding protein that recognizes poly-uridine tract RNA sequences to facilitate 5′ splice site recognition by the U1 small nuclear ribonucleoprotein (snRNP). Here, we characterize the RNA interaction and conformational dynamics of TIA-1 by nuclear magnetic resonance (NMR), isothermal titration calorimetry (ITC) and small angle X-ray scattering (SAXS). Our NMR-derived solution structure of TIA-1 RRM2–RRM3 (RRM2,3) reveals that RRM2 adopts a canonical RNA recognition motif (RRM) fold, while RRM3 is preceded by an non-canonical helix α0. NMR and SAXS data show that all three RRMs are largely independent structural modules in the absence of RNA, while RNA binding induces a compact arrangement. RRM2,3 binds to pyrimidine-rich FAS pre-mRNA or poly-uridine (U9) RNA with nanomolar affinities. RRM1 has little intrinsic RNA binding affinity and does not strongly contribute to RNA binding in the context of RRM1,2,3. Our data unravel the role of binding avidity and the contributions of the TIA-1 RRMs for recognition of pyrimidine-rich RNAs. PMID:24682828

  12. Autocrine expression of the epidermal growth factor receptor ligand heparin-binding EGF-like growth factor in cervical cancer.

    PubMed

    Schrevel, Marlies; Osse, E Michelle; Prins, Frans A; Trimbos, J Baptist M Z; Fleuren, Gert Jan; Gorter, Arko; Jordanova, Ekaterina S

    2017-06-01

    In cervical cancer, the epidermal growth factor receptor (EGFR) is overexpressed in 70-90% of the cases and has been associated with poor prognosis. EGFR-based therapy is currently being explored in cervical cancer. We investigated which EGFR ligand is primarily expressed in cervical cancer and which cell type functions as the major source of this ligand. We hypothesized that macrophages are the main source of EGFR ligands and that a paracrine loop between tumor cells and macrophages is responsible for ligand expression. mRNA expression analysis was performed on 32 cervical cancer cases to determine the expression of the EGFR ligands amphiregulin, β-cellulin, epidermal growth factor (EGF), epiregulin, heparin-binding EGF-like growth factor (HB‑EGF) and transforming growth factor α (TGFα). Subsequently, protein expression was determined immunohistochemically on 36 additional cases. To assess whether macrophages are the major source of EGFR ligands, immunohistochemical double staining was performed on four representative tissue slides. Expression of the chemokines granulocyte-macrophage colony-stimulating factor (GM-CSF) and C-C motif ligand 2 (CCL2) was determined by mRNA in situ hybridization. Of the known EGFR ligands, HB‑EGF had the highest mRNA expression and HB‑EGF and EGFR protein expression were highly correlated. Tumor specimens with high EGFR expression showed higher numbers of macrophages, and higher expression of GM-CSF and CCL2, but only a small subset (9%) of macrophages was found to be HB‑EGF-positive. Strikingly, 78% of cervical cancer specimens were found to express HB‑EGF. Standardized assessment of staining intensity, using spectral imaging analysis, showed that HB‑EGF expression was higher in the tumor compartment than in the stromal compartment. These results suggest that HB‑EGF is an important EGFR ligand in cervical cancer and that cervical cancer cells are the predominant source of HB‑EGF. Therefore, we propose an autocrine

  13. Temporal Hierarchy of Gene Expression Mediated by Transcription Factor Binding Affinity and Activation Dynamics

    PubMed Central

    Gao, Rong

    2015-01-01

    ABSTRACT Understanding cellular responses to environmental stimuli requires not only the knowledge of specific regulatory components but also the quantitative characterization of the magnitude and timing of regulatory events. The two-component system is one of the major prokaryotic signaling schemes and is the focus of extensive interest in quantitative modeling and investigation of signaling dynamics. Here we report how the binding affinity of the PhoB two-component response regulator (RR) to target promoters impacts the level and timing of expression of PhoB-regulated genes. Information content has often been used to assess the degree of conservation for transcription factor (TF)-binding sites. We show that increasing the information content of PhoB-binding sites in designed phoA promoters increased the binding affinity and that the binding affinity and concentration of phosphorylated PhoB (PhoB~P) together dictate the level and timing of expression of phoA promoter variants. For various PhoB-regulated promoters with distinct promoter architectures, expression levels appear not to be correlated with TF-binding affinities, in contrast to the intuitive and oversimplified assumption that promoters with higher affinity for a TF tend to have higher expression levels. However, the expression timing of the core set of PhoB-regulated genes correlates well with the binding affinity of PhoB~P to individual promoters and the temporal hierarchy of gene expression appears to be related to the function of gene products during the phosphate starvation response. Modulation of the information content and binding affinity of TF-binding sites may be a common strategy for temporal programming of the expression profile of RR-regulated genes. PMID:26015501

  14. Factor H binds to the hypervariable region of many Streptococcus pyogenes M proteins but does not promote phagocytosis resistance or acute virulence.

    PubMed

    Gustafsson, Mattias C U; Lannergård, Jonas; Nilsson, O Rickard; Kristensen, Bodil M; Olsen, John E; Harris, Claire L; Ufret-Vincenty, Rafael L; Stålhammar-Carlemalm, Margaretha; Lindahl, Gunnar

    2013-01-01

    Many pathogens express a surface protein that binds the human complement regulator factor H (FH), as first described for Streptococcus pyogenes and the antiphagocytic M6 protein. It is commonly assumed that FH recruited to an M protein enhances virulence by protecting the bacteria against complement deposition and phagocytosis, but the role of FH-binding in S. pyogenes pathogenesis has remained unclear and controversial. Here, we studied seven purified M proteins for ability to bind FH and found that FH binds to the M5, M6 and M18 proteins but not the M1, M3, M4 and M22 proteins. Extensive immunochemical analysis indicated that FH binds solely to the hypervariable region (HVR) of an M protein, suggesting that selection has favored the ability of certain HVRs to bind FH. These FH-binding HVRs could be studied as isolated polypeptides that retain ability to bind FH, implying that an FH-binding HVR represents a distinct ligand-binding domain. The isolated HVRs specifically interacted with FH among all human serum proteins, interacted with the same region in FH and showed species specificity, but exhibited little or no antigenic cross-reactivity. Although these findings suggested that FH recruited to an M protein promotes virulence, studies in transgenic mice did not demonstrate a role for bound FH during acute infection. Moreover, phagocytosis tests indicated that ability to bind FH is neither sufficient nor necessary for S. pyogenes to resist killing in whole human blood. While these data shed new light on the HVR of M proteins, they suggest that FH-binding may affect S. pyogenes virulence by mechanisms not assessed in currently used model systems.

  15. Factor H Binds to the Hypervariable Region of Many Streptococcus pyogenes M Proteins but Does Not Promote Phagocytosis Resistance or Acute Virulence

    PubMed Central

    Kristensen, Bodil M.; Olsen, John E.; Harris, Claire L.; Ufret-Vincenty, Rafael L.; Stålhammar-Carlemalm, Margaretha; Lindahl, Gunnar

    2013-01-01

    Many pathogens express a surface protein that binds the human complement regulator factor H (FH), as first described for Streptococcus pyogenes and the antiphagocytic M6 protein. It is commonly assumed that FH recruited to an M protein enhances virulence by protecting the bacteria against complement deposition and phagocytosis, but the role of FH-binding in S. pyogenes pathogenesis has remained unclear and controversial. Here, we studied seven purified M proteins for ability to bind FH and found that FH binds to the M5, M6 and M18 proteins but not the M1, M3, M4 and M22 proteins. Extensive immunochemical analysis indicated that FH binds solely to the hypervariable region (HVR) of an M protein, suggesting that selection has favored the ability of certain HVRs to bind FH. These FH-binding HVRs could be studied as isolated polypeptides that retain ability to bind FH, implying that an FH-binding HVR represents a distinct ligand-binding domain. The isolated HVRs specifically interacted with FH among all human serum proteins, interacted with the same region in FH and showed species specificity, but exhibited little or no antigenic cross-reactivity. Although these findings suggested that FH recruited to an M protein promotes virulence, studies in transgenic mice did not demonstrate a role for bound FH during acute infection. Moreover, phagocytosis tests indicated that ability to bind FH is neither sufficient nor necessary for S. pyogenes to resist killing in whole human blood. While these data shed new light on the HVR of M proteins, they suggest that FH-binding may affect S. pyogenes virulence by mechanisms not assessed in currently used model systems. PMID:23637608

  16. Multi-species comparative analysis of the equine ACE gene identifies a highly conserved potential transcription factor binding site in intron 16.

    PubMed

    Hamilton, Natasha A; Tammen, Imke; Raadsma, Herman W

    2013-01-01

    Angiotensin converting enzyme (ACE) is essential for control of blood pressure. The human ACE gene contains an intronic Alu indel (I/D) polymorphism that has been associated with variation in serum enzyme levels, although the functional mechanism has not been identified. The polymorphism has also been associated with cardiovascular disease, type II diabetes, renal disease and elite athleticism. We have characterized the ACE gene in horses of breeds selected for differing physical abilities. The equine gene has a similar structure to that of all known mammalian ACE genes. Nine common single nucleotide polymorphisms (SNPs) discovered in pooled DNA were found to be inherited in nine haplotypes. Three of these SNPs were located in intron 16, homologous to that containing the Alu polymorphism in the human. A highly conserved 18 bp sequence, also within that intron, was identified as being a potential binding site for the transcription factors Oct-1, HFH-1 and HNF-3β, and lies within a larger area of higher than normal homology. This putative regulatory element may contribute to regulation of the documented inter-individual variation in human circulating enzyme levels, for which a functional mechanism is yet to be defined. Two equine SNPs occurred within the conserved area in intron 16, although neither of them disrupted the putative binding site. We propose a possible regulatory mechanism of the ACE gene in mammalian species which was previously unknown. This advance will allow further analysis leading to a better understanding of the mechanisms underpinning the associations seen between the human Alu polymorphism and enzyme levels, cardiovascular disease states and elite athleticism.

  17. Multi-Species Comparative Analysis of the Equine ACE Gene Identifies a Highly Conserved Potential Transcription Factor Binding Site in Intron 16

    PubMed Central

    Hamilton, Natasha A.; Tammen, Imke; Raadsma, Herman W.

    2013-01-01

    Angiotensin converting enzyme (ACE) is essential for control of blood pressure. The human ACE gene contains an intronic Alu indel (I/D) polymorphism that has been associated with variation in serum enzyme levels, although the functional mechanism has not been identified. The polymorphism has also been associated with cardiovascular disease, type II diabetes, renal disease and elite athleticism. We have characterized the ACE gene in horses of breeds selected for differing physical abilities. The equine gene has a similar structure to that of all known mammalian ACE genes. Nine common single nucleotide polymorphisms (SNPs) discovered in pooled DNA were found to be inherited in nine haplotypes. Three of these SNPs were located in intron 16, homologous to that containing the Alu polymorphism in the human. A highly conserved 18 bp sequence, also within that intron, was identified as being a potential binding site for the transcription factors Oct-1, HFH-1 and HNF-3β, and lies within a larger area of higher than normal homology. This putative regulatory element may contribute to regulation of the documented inter-individual variation in human circulating enzyme levels, for which a functional mechanism is yet to be defined. Two equine SNPs occurred within the conserved area in intron 16, although neither of them disrupted the putative binding site. We propose a possible regulatory mechanism of the ACE gene in mammalian species which was previously unknown. This advance will allow further analysis leading to a better understanding of the mechanisms underpinning the associations seen between the human Alu polymorphism and enzyme levels, cardiovascular disease states and elite athleticism. PMID:23408978

  18. Energetic factors determining the binding of type I inhibitors to c-Met kinase: experimental studies and quantum mechanical calculations

    PubMed Central

    Yu, Zhe; Ma, Yu-chi; Ai, Jing; Chen, Dan-qi; Zhao, Dong-mei; Wang, Xin; Chen, Yue-lei; Geng, Mei-yu; Xiong, Bing; Cheng, Mao-sheng; Shen, Jing-kang

    2013-01-01

    Aim: To decipher the molecular interactions between c-Met and its type I inhibitors and to facilitate the design of novel c-Met inhibitors. Methods: Based on the prototype model inhibitor 1, four ligands with subtle differences in the fused aromatic rings were synthesized. Quantum chemistry was employed to calculate the binding free energy for each ligand. Symmetry-adapted perturbation theory (SAPT) was used to decompose the binding energy into several fundamental forces to elucidate the determinant factors. Results: Binding free energies calculated from quantum chemistry were correlated well with experimental data. SAPT calculations showed that the predominant driving force for binding was derived from a sandwich π–π interaction with Tyr-1230. Arg-1208 was the differentiating factor, interacting with the 6-position of the fused aromatic ring system through the backbone carbonyl with a force pattern similar to hydrogen bonding. Therefore, a hydrogen atom must be attached at the 6-position, and changing the carbon atom to nitrogen caused unfavorable electrostatic interactions. Conclusion: The theoretical studies have elucidated the determinant factors involved in the binding of type I inhibitors to c-Met. PMID:24056705

  19. Computational Study of the Binding Mechanism of Actin-Depolymerizing Factor 1 with Actin in Arabidopsis thaliana.

    PubMed

    Du, Juan; Wang, Xue; Dong, Chun-Hai; Yang, Jian Ming; Yao, Xiao Jun

    2016-01-01

    Actin is a highly conserved protein. It plays important roles in cellular function and exists either in the monomeric (G-actin) or polymeric form (F-actin). Members of the actin-depolymerizing factor (ADF)/cofilin protein family bind to both G-actin and F-actin and play vital roles in actin dynamics by manipulating the rates of filament polymerization and depolymerization. It has been reported that the S6D and R98A/K100A mutants of actin-depolymerizing factor 1 (ADF1) in Arabidopsis thaliana decreased the binding affinity of ADF for the actin monomer. To investigate the binding mechanism and dynamic behavior of the ADF1-actin complex, we constructed a homology model of the AtADF1-actin complex based on the crystal structure of AtADF1 and the twinfilin C-terminal ADF-H domain in a complex with a mouse actin monomer. The model was then refined for subsequent molecular dynamics simulations. Increased binding energy of the mutated system was observed using the Molecular Mechanics Generalized Born Surface Area and Poisson-Boltzmann Surface Area (MM-GB/PBSA) methods. To determine the residues that make decisive contributions to the ADF1 actin-binding affinity, per-residue decomposition and computational alanine scanning analyses were performed, which provided more detailed information on the binding mechanism. Root-mean-square fluctuation and principal component analyses confirmed that the S6D and R98A/K100A mutants induced an increased conformational flexibility. The comprehensive molecular insight gained from this study is of great importance for understanding the binding mechanism of ADF1 and G-actin.

  20. Computational Study of the Binding Mechanism of Actin-Depolymerizing Factor 1 with Actin in Arabidopsis thaliana

    PubMed Central

    Wang, Xue; Dong, Chun-Hai; Yang, Jian Ming; Yao, Xiao Jun

    2016-01-01

    Actin is a highly conserved protein. It plays important roles in cellular function and exists either in the monomeric (G-actin) or polymeric form (F-actin). Members of the actin-depolymerizing factor (ADF)/cofilin protein family bind to both G-actin and F-actin and play vital roles in actin dynamics by manipulating the rates of filament polymerization and depolymerization. It has been reported that the S6D and R98A/K100A mutants of actin-depolymerizing factor 1 (ADF1) in Arabidopsis thaliana decreased the binding affinity of ADF for the actin monomer. To investigate the binding mechanism and dynamic behavior of the ADF1–actin complex, we constructed a homology model of the AtADF1–actin complex based on the crystal structure of AtADF1 and the twinfilin C-terminal ADF-H domain in a complex with a mouse actin monomer. The model was then refined for subsequent molecular dynamics simulations. Increased binding energy of the mutated system was observed using the Molecular Mechanics Generalized Born Surface Area and Poisson–Boltzmann Surface Area (MM-GB/PBSA) methods. To determine the residues that make decisive contributions to the ADF1 actin-binding affinity, per-residue decomposition and computational alanine scanning analyses were performed, which provided more detailed information on the binding mechanism. Root-mean-square fluctuation and principal component analyses confirmed that the S6D and R98A/K100A mutants induced an increased conformational flexibility. The comprehensive molecular insight gained from this study is of great importance for understanding the binding mechanism of ADF1 and G-actin. PMID:27414648

  1. Acquisition of Complement Inhibitor Serine Protease Factor I and Its Cofactors C4b-Binding Protein and Factor H by Prevotella intermedia

    PubMed Central

    Malm, Sven; Jusko, Monika; Eick, Sigrun; Potempa, Jan; Riesbeck, Kristian; Blom, Anna M.

    2012-01-01

    Infection with the Gram-negative pathogen Prevotella intermedia gives rise to periodontitis and a growing number of studies implies an association of P. intermedia with rheumatoid arthritis. The serine protease Factor I (FI) is the central inhibitor of complement degrading complement components C3b and C4b in the presence of cofactors such as C4b-binding protein (C4BP) and Factor H (FH). Yet, the significance of complement inhibitor acquisition in P. intermedia infection and FI binding by Gram-negative pathogens has not been addressed. Here we show that P. intermedia isolates bound purified FI as well as FI directly from heat-inactivated human serum. FI bound to bacteria retained its serine protease activity as shown in degradation experiments with 125I-labeled C4b. Since FI requires cofactors for its activity we also investigated the binding of purified cofactors C4BP and FH and found acquisition of both proteins, which retained their activity in FI mediated degradation of C3b and C4b. We propose that FI binding by P. intermedia represents a new mechanism contributing to complement evasion by a Gram-negative bacterial pathogen associated with chronic diseases. PMID:22514678

  2. Structural Determination of Functional Domains in Early B-cell Factor (EBF) Family of Transcription Factors Reveals Similarities to Rel DNA-binding Proteins and a Novel Dimerization Motif*

    PubMed Central

    Siponen, Marina I.; Wisniewska, Magdalena; Lehtiö, Lari; Johansson, Ida; Svensson, Linda; Raszewski, Grzegorz; Nilsson, Lennart; Sigvardsson, Mikael; Berglund, Helena

    2010-01-01

    The early B-cell factor (EBF) transcription factors are central regulators of development in several organs and tissues. This protein family shows low sequence similarity to other protein families, which is why structural information for the functional domains of these proteins is crucial to understand their biochemical features. We have used a modular approach to determine the crystal structures of the structured domains in the EBF family. The DNA binding domain reveals a striking resemblance to the DNA binding domains of the Rel homology superfamily of transcription factors but contains a unique zinc binding structure, termed zinc knuckle. Further the EBF proteins contain an IPT/TIG domain and an atypical helix-loop-helix domain with a novel type of dimerization motif. The data presented here provide insights into unique structural features of the EBF proteins and open possibilities for detailed molecular investigations of this important transcription factor family. PMID:20592035

  3. Core-binding factor beta interacts with Runx2 and is required for skeletal development.

    PubMed

    Yoshida, Carolina A; Furuichi, Tatsuya; Fujita, Takashi; Fukuyama, Ryo; Kanatani, Naoko; Kobayashi, Shinji; Satake, Masanobu; Takada, Kenji; Komori, Toshihisa

    2002-12-01

    Core-binding factor beta (CBFbeta, also called polyomavirus enhancer binding protein 2beta (PEBP2B)) is associated with an inversion of chromosome 16 and is associated with acute myeloid leukemia in humans. CBFbeta forms a heterodimer with RUNX1 (runt-related transcription factor 1), which has a DNA binding domain homologous to the pair-rule protein runt in Drosophila melanogaster. Both RUNX1 and CBFbeta are essential for hematopoiesis. Haploinsufficiency of another runt-related protein, RUNX2 (also called CBFA1), causes cleidocranial dysplasia in humans and is essential in skeletal development by regulating osteoblast differentiation and chondrocyte maturation. Mice deficient in Cbfb (Cbfb(-/-)) die at midgestation, so the function of Cbfbeta in skeletal development has yet to be ascertained. To investigate this issue, we rescued hematopoiesis of Cbfb(-/-) mice by introducing Cbfb using the Gata1 promoter. The rescued Cbfb(-/-) mice recapitulated fetal liver hematopoiesis in erythroid and megakaryocytic lineages and survived until birth, but showed severely delayed bone formation. Although mesenchymal cells differentiated into immature osteoblasts, intramembranous bones were poorly formed. The maturation of chondrocytes into hypertrophic cells was markedly delayed, and no endochondral bones were formed. Electrophoretic mobility shift assays and reporter assays showed that Cbfbeta was necessary for the efficient DNA binding of Runx2 and for Runx2-dependent transcriptional activation. These findings indicate that Cbfbeta is required for the function of Runx2 in skeletal development.

  4. Photochemically enhanced binding of small molecules to the tumor necrosis factor receptor-1 inhibits the binding of TNF-[alpha

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, Percy H.; Scherle, Peggy A.; Muckelbauer, Jodi K.

    2010-03-05

    The binding of tumor necrosis factor alpha (TNF-{alpha}) to the type-1 TNF receptor (TNFRc1) plays an important role in inflammation. Despite the clinical success of biologics (antibodies, soluble receptors) for treating TNF-based autoimmune conditions, no potent small molecule antagonists have been developed. Our screening of chemical libraries revealed that N-alkyl 5-arylidene-2-thioxo-1,3-thiazolidin-4-ones were antagonists of this protein-protein interaction. After chemical optimization, we discovered IW927, which potently disrupted the binding of TNF-{alpha} to TNFRc1 (IC{sub 50} = 50 nM) and also blocked TNF-stimulated phosphorylation of I{kappa}-B in Ramos cells (IC{sub 50} = 600 nM). This compound did not bind detectably to themore » related cytokine receptors TNFRc2 or CD40, and did not display any cytotoxicity at concentrations as high as 100 {micro}M. Detailed evaluation of this and related molecules revealed that compounds in this class are 'photochemically enhanced' inhibitors, in that they bind reversibly to the TNFRc1 with weak affinity (ca. 40-100 mM) and then covalently modify the receptor via a photochemical reaction. We obtained a crystal structure of IV703 (a close analog of IW927) bound to the TNFRc1. This structure clearly revealed that one of the aromatic rings of the inhibitor was covalently linked to the receptor through the main-chain nitrogen of Ala-62, a residue that has already been implicated in the binding of TNF-{alpha} to the TNFRc1. When combined with the fact that our inhibitors are reversible binders in light-excluded conditions, the results of the crystallography provide the basis for the rational design of nonphotoreactive inhibitors of the TNF-{alpha}-TNFRc1 interaction.« less

  5. DNA breathing dynamics distinguish binding from nonbinding consensus sites for transcription factor YY1 in cells.

    PubMed

    Alexandrov, Boian S; Fukuyo, Yayoi; Lange, Martin; Horikoshi, Nobuo; Gelev, Vladimir; Rasmussen, Kim Ø; Bishop, Alan R; Usheva, Anny

    2012-11-01

    The genome-wide mapping of the major gene expression regulators, the transcription factors (TFs) and their DNA binding sites, is of great importance for describing cellular behavior and phenotypic diversity. Presently, the methods for prediction of genomic TF binding produce a large number of false positives, most likely due to insufficient description of the physiochemical mechanisms of protein-DNA binding. Growing evidence suggests that, in the cell, the double-stranded DNA (dsDNA) is subject to local transient strands separations (breathing) that contribute to genomic functions. By using site-specific chromatin immunopecipitations, gel shifts, BIOBASE data, and our model that accurately describes the melting behavior and breathing dynamics of dsDNA we report a specific DNA breathing profile found at YY1 binding sites in cells. We find that the genomic flanking sequence variations and SNPs, may exert long-range effects on DNA dynamics and predetermine YY1 binding. The ubiquitous TF YY1 has a fundamental role in essential biological processes by activating, initiating or repressing transcription depending upon the sequence context it binds. We anticipate that consensus binding sequences together with the related DNA dynamics profile may significantly improve the accuracy of genomic TF binding sites and TF binding-related functional SNPs.

  6. Vibrio parahaemolyticus enolase is an adhesion-related factor that binds plasminogen and functions as a protective antigen.

    PubMed

    Jiang, Wei; Han, Xiangan; Wang, Quan; Li, Xintong; Yi, Li; Liu, Yongjie; Ding, Chan

    2014-06-01

    Vibrio parahaemolyticus, an emerging food and waterborne pathogen, is a leading cause of seafood poisoning worldwide. Surface proteins can directly participate in microbial virulence by facilitating pathogen dissemination via interactions with host factors. Screening and identification of protective antigens is important for developing therapies against V. parahaemolyticus infections. Here, we systematically characterized a novel immunogenic enolase of V. parahaemolyticus. The enolase gene of V. parahaemolyticus ATCC33847 was cloned, sequenced, and expressed in Escherichia coli BL21. Enzymatic assays revealed that the purified recombinant V. parahaemolyticus enolase protein catalyzes the dehydration of 2-phospho-D-glycerate to phosphoenolpyruvate. Western blot analysis showed that V. parahaemolyticus enolase was detectable in the extracellular, outer membrane (OM) and cytoplasmic protein fractions using antibodies against the recombinant enolase. Surface expression of enolase was further confirmed by immunogold staining and mass spectrometry (liquid chromatography-tandem mass spectrometry) analysis of OM protein profiles. Notably, V. parahaemolyticus enolase was identified as a human plasminogen-binding protein with the enzyme-linked immunosorbent assay. The values obtained for adherence and inhibition suggest a role of surface-exposed enolase in epithelial adherence of V. parahaemolyticus. We further showed that enolase confers efficient immunity against challenge with a lethal dose of V. parahaemolyticus in a mouse model. To our knowledge, this is the first study to demonstrate the plasminogen-binding activity of enolase that is an adhesion-related factor of V. parahaemolyticus. Our findings collectively imply that enolase plays important roles in pathogenicity, supporting its utility as a novel vaccine candidate against V. parahaemolyticus infection.

  7. Europium-labeled epidermal growth factor and neurotensin: novel probes for receptor-binding studies.

    PubMed

    Mazor, Ohad; Hillairet de Boisferon, Marc; Lombet, Alain; Gruaz-Guyon, Anne; Gayer, Batya; Skrzydelsky, Delphine; Kohen, Fortune; Forgez, Patricia; Scherz, Avigdor; Rostene, William; Salomon, Yoram

    2002-02-01

    We investigated the possibility of labeling two biologically active peptides, epidermal growth factor (EGF) and neurotensin (NT), with europium (Eu)-diethylenetriaminepentaacetic acid. More specifically, we tested them as probes in studying receptor binding using time-resolved fluorescence of Eu3+. The relatively simple synthesis yields ligands with acceptable binding characteristics similar to isotopically labeled derivatives. The binding affinity (Kd) of labeled Eu-EGF to human A431 epidermal carcinoid cells was 3.6 +/- 1.2 nM, similar to the reported Kd values of EGF, whereas the Kd of Eu-NT to human HT29 colon cancer cells (7.4 +/- 0.5 nM) or to Chinese hamster ovary (CHO) cells transfected with the high-affinity NT receptor (CHO-NT1) were about 10-fold higher than the Kd values of NT. The bioactivity of the Eu-labeled EGF as determined by stimulation of cultured murine D1 hematopoietic cell proliferation was nearly the same as that obtained with native EGF. The maximal stimulation of Ca2+ influx with NT and Eu-NT in CHO-NT1 cells was similar, but the respective K0.5 values were 20 pM and 1 nM, corresponding to differences in the binding affinities previously described. The results of these studies indicate that Eu labeling of peptide hormones and growth factor molecules ranging from 10(3) to 10(5) Da can be conveniently accomplished. Importantly, the Eu-labeled products are stable for approximately 2 years and are completely safe for laboratory use compared to the biohazardous radioligands. Thus, Eu-labeled peptides present an attractive alternative for commonly used radiolabeled ligands in biological studies in general and in receptor assays in particular.

  8. A web server for analysis, comparison and prediction of protein ligand binding sites.

    PubMed

    Singh, Harinder; Srivastava, Hemant Kumar; Raghava, Gajendra P S

    2016-03-25

    One of the major challenges in the field of system biology is to understand the interaction between a wide range of proteins and ligands. In the past, methods have been developed for predicting binding sites in a protein for a limited number of ligands. In order to address this problem, we developed a web server named 'LPIcom' to facilitate users in understanding protein-ligand interaction. Analysis, comparison and prediction modules are available in the "LPIcom' server to predict protein-ligand interacting residues for 824 ligands. Each ligand must have at least 30 protein binding sites in PDB. Analysis module of the server can identify residues preferred in interaction and binding motif for a given ligand; for example residues glycine, lysine and arginine are preferred in ATP binding sites. Comparison module of the server allows comparing protein-binding sites of multiple ligands to understand the similarity between ligands based on their binding site. This module indicates that ATP, ADP and GTP ligands are in the same cluster and thus their binding sites or interacting residues exhibit a high level of similarity. Propensity-based prediction module has been developed for predicting ligand-interacting residues in a protein for more than 800 ligands. In addition, a number of web-based tools have been integrated to facilitate users in creating web logo and two-sample between ligand interacting and non-interacting residues. In summary, this manuscript presents a web-server for analysis of ligand interacting residue. This server is available for public use from URL http://crdd.osdd.net/raghava/lpicom .

  9. SELMAP - SELEX affinity landscape MAPping of transcription factor binding sites using integrated microfluidics

    PubMed Central

    Chen, Dana; Orenstein, Yaron; Golodnitsky, Rada; Pellach, Michal; Avrahami, Dorit; Wachtel, Chaim; Ovadia-Shochat, Avital; Shir-Shapira, Hila; Kedmi, Adi; Juven-Gershon, Tamar; Shamir, Ron; Gerber, Doron

    2016-01-01

    Transcription factors (TFs) alter gene expression in response to changes in the environment through sequence-specific interactions with the DNA. These interactions are best portrayed as a landscape of TF binding affinities. Current methods to study sequence-specific binding preferences suffer from limited dynamic range, sequence bias, lack of specificity and limited throughput. We have developed a microfluidic-based device for SELEX Affinity Landscape MAPping (SELMAP) of TF binding, which allows high-throughput measurement of 16 proteins in parallel. We used it to measure the relative affinities of Pho4, AtERF2 and Btd full-length proteins to millions of different DNA binding sites, and detected both high and low-affinity interactions in equilibrium conditions, generating a comprehensive landscape of the relative TF affinities to all possible DNA 6-mers, and even DNA10-mers with increased sequencing depth. Low quantities of both the TFs and DNA oligomers were sufficient for obtaining high-quality results, significantly reducing experimental costs. SELMAP allows in-depth screening of hundreds of TFs, and provides a means for better understanding of the regulatory processes that govern gene expression. PMID:27628341

  10. Developmental roles of 21 Drosophila transcription factors are determined by quantitative differences in binding to an overlapping set of thousands of genomic regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacArthur, Stewart; Li, Xiao-Yong; Li, Jingyi

    2009-05-15

    BACKGROUND: We previously established that six sequence-specific transcription factors that initiate anterior/posterior patterning in Drosophila bind to overlapping sets of thousands of genomic regions in blastoderm embryos. While regions bound at high levels include known and probable functional targets, more poorly bound regions are preferentially associated with housekeeping genes and/or genes not transcribed in the blastoderm, and are frequently found in protein coding sequences or in less conserved non-coding DNA, suggesting that many are likely non-functional. RESULTS: Here we show that an additional 15 transcription factors that regulate other aspects of embryo patterning show a similar quantitative continuum of functionmore » and binding to thousands of genomic regions in vivo. Collectively, the 21 regulators show a surprisingly high overlap in the regions they bind given that they belong to 11 DNA binding domain families, specify distinct developmental fates, and can act via different cis-regulatory modules. We demonstrate, however, that quantitative differences in relative levels of binding to shared targets correlate with the known biological and transcriptional regulatory specificities of these factors. CONCLUSIONS: It is likely that the overlap in binding of biochemically and functionally unrelated transcription factors arises from the high concentrations of these proteins in nuclei, which, coupled with their broad DNA binding specificities, directs them to regions of open chromatin. We suggest that most animal transcription factors will be found to show a similar broad overlapping pattern of binding in vivo, with specificity achieved by modulating the amount, rather than the identity, of bound factor.« less

  11. A fractal analysis of protein to DNA binding kinetics using biosensors.

    PubMed

    Sadana, Ajit

    2003-08-01

    A fractal analysis of a confirmative nature only is presented for the binding of estrogen receptor (ER) in solution to its corresponding DNA (estrogen response element, ERE) immobilized on a sensor chip surface [J. Biol. Chem. 272 (1997) 11384], and for the cooperative binding of human 1,25-dihydroxyvitamin D(3) receptor (VDR) to DNA with the 9-cis-retinoic acid receptor (RXR) [Biochemistry 35 (1996) 3309]. Ligands were also used to modulate the first reaction. Data taken from the literature may be modeled by using a single- or a dual-fractal analysis. Relationships are presented for the binding rate coefficient as a function of either the analyte concentration in solution or the fractal dimension that exists on the biosensor surface. The binding rate expressions developed exhibit a wide range of dependence on the degree of heterogeneity that exists on the surface, ranging from sensitive (order of dependence equal to 1.202) to very sensitive (order of dependence equal to 12.239). In general, the binding rate coefficient increases as the degree of heterogeneity or the fractal dimension of the surface increases. The predictive relationships presented provide further physical insights into the reactions occurring on the biosensor surface. Even though these reactions are occurring on the biosensor surface, the relationships presented should assist in understanding and in possibly manipulating the reactions occurring on cellular surfaces.

  12. Haplotypes of heparin-binding epidermal-growth-factor-like growth factor gene are associated with pre-eclampsia.

    PubMed

    Harendra, Galhenagey Gayani; Jayasekara, Rohan W; Dissanayake, Vajira H W

    2012-01-01

    Heparin-binding epidermal-growth-factor-like growth factor (HBEGF) plays an important role in placentation, including impaired placentation, the primary defect seen in pre-eclampsia. We carried out a case-control disease-association study to examine the association of single nucleotide polymorphisms (SNP) in the HBEGF gene and haplotypes defined by them with pre-eclampsia in a Sinhalese population in Sri Lanka. A total of 175 women with pre-eclampsia and 171 matched normotensive controls were genotyped for six SNP selected in silico as having putative functional effects using mass array Sequenom iplex methodology and a newly designed polymerase chain reaction-restriction fragment length polymorphism assay. The individual SNP were not associated with pre-eclampsia. The haplotypes defined by them, however, showed both predisposing (rs13385T,rs2074613G,rs2237076G,rs2074611C,rs4150196A,rs1862176A; odds ratio,1.65; 95% confidence interval1.04-2.60; P=0.032) and protective (rs13385C,rs2074613G,rs2237076A,rs2074611C,rs4150196A,rs1862176A; odds ratio,0.20; 95% confidence interval, 0.04-0.89; P=0.034) effects. These results confirm that polymorphisms in the HGEGF gene are associated with pre-eclampsia. The haplotypes are likely to exert their effects through the numerous transcription regulation factors binding to the polymorphic sites, namely GATA-1, GATA-3, MZF-1 and AML-1a. © 2011 The Authors. Journal of Obstetrics and Gynaecology Research © 2011 Japan Society of Obstetrics and Gynecology.

  13. Analysis of Ethylene Receptors: Ethylene-Binding Assays.

    PubMed

    Binder, Brad M; Schaller, G Eric

    2017-01-01

    Plant ethylene receptors bind ethylene with high affinity. Most of the characterization of ethylene binding to the receptors has been carried out using a radioligand-binding assay on functional receptors expressed in yeast. In this chapter, we describe methods for expressing ethylene receptors in yeast and conducting ethylene-binding assays on intact yeast and yeast membranes. The ethylene-binding assays can be modified to analyze ethylene binding to intact plants and other organisms as well as membranes isolated from any biological source.

  14. Genomic Heat Shock Element Sequences Drive Cooperative Human Heat Shock Factor 1 DNA Binding and Selectivity*

    PubMed Central

    Jaeger, Alex M.; Makley, Leah N.; Gestwicki, Jason E.; Thiele, Dennis J.

    2014-01-01

    The heat shock transcription factor 1 (HSF1) activates expression of a variety of genes involved in cell survival, including protein chaperones, the protein degradation machinery, anti-apoptotic proteins, and transcription factors. Although HSF1 activation has been linked to amelioration of neurodegenerative disease, cancer cells exhibit a dependence on HSF1 for survival. Indeed, HSF1 drives a program of gene expression in cancer cells that is distinct from that activated in response to proteotoxic stress, and HSF1 DNA binding activity is elevated in cycling cells as compared with arrested cells. Active HSF1 homotrimerizes and binds to a DNA sequence consisting of inverted repeats of the pentameric sequence nGAAn, known as heat shock elements (HSEs). Recent comprehensive ChIP-seq experiments demonstrated that the architecture of HSEs is very diverse in the human genome, with deviations from the consensus sequence in the spacing, orientation, and extent of HSE repeats that could influence HSF1 DNA binding efficacy and the kinetics and magnitude of target gene expression. To understand the mechanisms that dictate binding specificity, HSF1 was purified as either a monomer or trimer and used to evaluate DNA-binding site preferences in vitro using fluorescence polarization and thermal denaturation profiling. These results were compared with quantitative chromatin immunoprecipitation assays in vivo. We demonstrate a role for specific orientations of extended HSE sequences in driving preferential HSF1 DNA binding to target loci in vivo. These studies provide a biochemical basis for understanding differential HSF1 target gene recognition and transcription in neurodegenerative disease and in cancer. PMID:25204655

  15. Inter-species chimeras of leukaemia inhibitory factor define a major human receptor-binding determinant.

    PubMed Central

    Owczarek, C M; Layton, M J; Metcalf, D; Lock, P; Willson, T A; Gough, N M; Nicola, N A

    1993-01-01

    Human leukaemia inhibitory factor (hLIF) binds to both human and mouse LIF receptors (LIF-R), while mouse LIF (mLIF) binds only to mouse LIF-R. Moreover, hLIF binds with higher affinity to the mLIF-R than does mLIF. In order to define the regions of the hLIF molecule responsible for species-specific interaction with the hLIF-R and for the unusual high-affinity binding to the mLIF-R, a series of 15 mouse/human LIF hybrids has been generated. Perhaps surprisingly, both of these properties mapped to the same region of the hLIF molecule. The predominant contribution was from residues in the loop linking the third and fourth helices, with lesser contributions from residues in the third helix and the loop connecting the second and third helices in the predicted three-dimensional structure. Since all chimeras retained full biological activity and receptor-binding activity on mouse cells, and there was little variation in the specific biological activity of the purified proteins, it can be concluded that the overall secondary and tertiary structures of each chimera were intact. This observation also implied that the primary binding sites on mLIF and hLIF for the mLIF-R were unaltered by inter-species domain swapping. Consequently, the site on the hLIF molecule that confers species-specific binding to the hLIF-R and higher affinity binding to the mLIF-R, must constitute an additional interaction site to that used by both mLIF and hLIF to bind to the mLIF-R. These studies define a maximum of 15 amino acid differences between hLIF and mLIF that are responsible for the different properties of these proteins. Images PMID:8253075

  16. MeDReaders: a database for transcription factors that bind to methylated DNA.

    PubMed

    Wang, Guohua; Luo, Ximei; Wang, Jianan; Wan, Jun; Xia, Shuli; Zhu, Heng; Qian, Jiang; Wang, Yadong

    2018-01-04

    Understanding the molecular principles governing interactions between transcription factors (TFs) and DNA targets is one of the main subjects for transcriptional regulation. Recently, emerging evidence demonstrated that some TFs could bind to DNA motifs containing highly methylated CpGs both in vitro and in vivo. Identification of such TFs and elucidation of their physiological roles now become an important stepping-stone toward understanding the mechanisms underlying the methylation-mediated biological processes, which have crucial implications for human disease and disease development. Hence, we constructed a database, named as MeDReaders, to collect information about methylated DNA binding activities. A total of 731 TFs, which could bind to methylated DNA sequences, were manually curated in human and mouse studies reported in the literature. In silico approaches were applied to predict methylated and unmethylated motifs of 292 TFs by integrating whole genome bisulfite sequencing (WGBS) and ChIP-Seq datasets in six human cell lines and one mouse cell line extracted from ENCODE and GEO database. MeDReaders database will provide a comprehensive resource for further studies and aid related experiment designs. The database implemented unified access for users to most TFs involved in such methylation-associated binding actives. The website is available at http://medreader.org/. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Trigger Factor and DnaK possess overlapping substrate pools and binding specificities.

    PubMed

    Deuerling, Elke; Patzelt, Holger; Vorderwülbecke, Sonja; Rauch, Thomas; Kramer, Günter; Schaffitzel, Elke; Mogk, Axel; Schulze-Specking, Agnes; Langen, Hanno; Bukau, Bernd

    2003-03-01

    Ribosome-associated Trigger Factor (TF) and the DnaK chaperone system assist the folding of newly synthesized proteins in Escherichia coli. Here, we show that DnaK and TF share a common substrate pool in vivo. In TF-deficient cells, deltatig, depleted for DnaK and DnaJ the amount of aggregated proteins increases with increasing temperature, amounting to 10% of total soluble protein (approximately 340 protein species) at 37 degrees C. A similar population of proteins aggregated in DnaK depleted tig+ cells, albeit to a much lower extent. Ninety-four aggregated proteins isolated from DnaK- and DnaJ-depleted deltatig cells were identified by mass spectrometry and found to include essential cytosolic proteins. Four potential in vivo substrates were screened for chaperone binding sites using peptide libraries. Although TF and DnaK recognize different binding motifs, 77% of TF binding peptides also associated with DnaK. In the case of the nascent polypeptides TF and DnaK competed for binding, however, with competitive advantage for TF. In vivo, the loss of TF is compensated by the induction of the heat shock response and thus enhanced levels of DnaK. In summary, our results demonstrate that the co-operation of the two mechanistically distinct chaperones in protein folding is based on their overlap in substrate specificities.

  18. Two residues in the basic region of the yeast transcription factor Yap8 are crucial for its DNA-binding specificity.

    PubMed

    Amaral, Catarina; Pimentel, Catarina; Matos, Rute G; Arraiano, Cecília M; Matzapetakis, Manolis; Rodrigues-Pousada, Claudina

    2013-01-01

    In Saccharomyces cerevisiae, the transcription factor Yap8 is a key determinant in arsenic stress response. Contrary to Yap1, another basic region-leucine zipper (bZIP) yeast regulator, Yap8 has a very restricted DNA-binding specificity and only orchestrates the expression of ACR2 and ACR3 genes. In the DNA-binding basic region, Yap8 has three distinct amino acids residues, Leu26, Ser29 and Asn31, at sites of highly conserved positions in the other Yap family of transcriptional regulators and Pap1 of Schizosaccharomyces pombe. To evaluate whether these residues are relevant to Yap8 specificity, we first built a homology model of the complex Yap8bZIP-DNA based on Pap1-DNA crystal structure. Several Yap8 mutants were then generated in order to confirm the contribution of the residues predicted to interact with DNA. Using bioinformatics analysis together with in vivo and in vitro approaches, we have identified several conserved residues critical for Yap8-DNA binding. Moreover, our data suggest that Leu26 is required for Yap8 binding to DNA and that this residue together with Asn31, hinder Yap1 response element recognition by Yap8, thus narrowing its DNA-binding specificity. Furthermore our results point to a role of these two amino acids in the stability of the Yap8-DNA complex.

  19. Protein microarray analysis reveals BAFF-binding autoantibodies in systemic lupus erythematosus

    PubMed Central

    Price, Jordan V.; Haddon, David J.; Kemmer, Dodge; Delepine, Guillaume; Mandelbaum, Gil; Jarrell, Justin A.; Gupta, Rohit; Balboni, Imelda; Chakravarty, Eliza F.; Sokolove, Jeremy; Shum, Anthony K.; Anderson, Mark S.; Cheng, Mickie H.; Robinson, William H.; Browne, Sarah K.; Holland, Steven M.; Baechler, Emily C.; Utz, Paul J.

    2013-01-01

    Autoantibodies against cytokines, chemokines, and growth factors inhibit normal immunity and are implicated in inflammatory autoimmune disease and diseases of immune deficiency. In an effort to evaluate serum from autoimmune and immunodeficient patients for Abs against cytokines, chemokines, and growth factors in a high-throughput and unbiased manner, we constructed a multiplex protein microarray for detection of serum factor–binding Abs and used the microarray to detect autoantibody targets in SLE. We designed a nitrocellulose-surface microarray containing human cytokines, chemokines, and other circulating proteins and demonstrated that the array permitted specific detection of serum factor–binding probes. We used the arrays to detect previously described autoantibodies against cytokines in samples from individuals with autoimmune polyendocrine syndrome type 1 and chronic mycobacterial infection. Serum profiling from individuals with SLE revealed that among several targets, elevated IgG autoantibody reactivity to B cell–activating factor (BAFF) was associated with SLE compared with control samples. BAFF reactivity correlated with the severity of disease-associated features, including IFN-α–driven SLE pathology. Our results showed that serum factor protein microarrays facilitate detection of autoantibody reactivity to serum factors in human samples and that BAFF-reactive autoantibodies may be associated with an elevated inflammatory disease state within the spectrum of SLE. PMID:24270423

  20. Saturation analysis of ChIP-seq data for reproducible identification of binding peaks

    PubMed Central

    Hansen, Peter; Hecht, Jochen; Ibrahim, Daniel M.; Krannich, Alexander; Truss, Matthias; Robinson, Peter N.

    2015-01-01

    Chromatin immunoprecipitation coupled with next-generation sequencing (ChIP-seq) is a powerful technology to identify the genome-wide locations of transcription factors and other DNA binding proteins. Computational ChIP-seq peak calling infers the location of protein–DNA interactions based on various measures of enrichment of sequence reads. In this work, we introduce an algorithm, Q, that uses an assessment of the quadratic enrichment of reads to center candidate peaks followed by statistical analysis of saturation of candidate peaks by 5′ ends of reads. We show that our method not only is substantially faster than several competing methods but also demonstrates statistically significant advantages with respect to reproducibility of results and in its ability to identify peaks with reproducible binding site motifs. We show that Q has superior performance in the delineation of double RNAPII and H3K4me3 peaks surrounding transcription start sites related to a better ability to resolve individual peaks. The method is implemented in C+l+ and is freely available under an open source license. PMID:26163319

  1. From carpet bombing to cruise missiles: the 'second-order' mechanisms used by transcription factors to ensure specific DNA binding in vivo.

    PubMed

    Kodadek, T

    1995-05-01

    Transcription factors generally have only modest specificity for their target sites, yet must find them in a sea of non-specific DNA. Some transcription factors are expressed at very high levels, to ensure that, despite losses to non-specific binding, the promoter is still occupied (the carpet-bombing strategy). Others increase their binding specificity by collaborating with other factors in a variety of ways.

  2. New Binding Mode to TNF-Alpha Revealed by Ubiquitin-Based Artificial Binding Protein

    PubMed Central

    Hoffmann, Andreas; Kovermann, Michael; Lilie, Hauke; Fiedler, Markus; Balbach, Jochen; Rudolph, Rainer; Pfeifer, Sven

    2012-01-01

    A variety of approaches have been employed to generate binding proteins from non-antibody scaffolds. Utilizing a beta-sheet of the human ubiquitin for paratope creation we obtained binding proteins against tumor necrosis factor (TNF)-alpha. The bioactive form of this validated pharmacological target protein is a non-covalently linked homo-trimer. This structural feature leads to the observation of a certain heterogeneity concerning the binding mode of TNF-alpha binding molecules, for instance in terms of monomer/trimer specificity. We analyzed a ubiquitin-based TNF-alpha binder, selected by ribosome display, with a particular focus on its mode of interaction. Using enzyme-linked immunosorbent assays, specific binding to TNF-alpha with nanomolar affinity was observed. In isothermal titration calorimetry we obtained comparable results regarding the affinity and detected an exothermic reaction with one ubiquitin-derived binding molecule binding one TNF-alpha trimer. Using NMR spectroscopy and other analytical methods the 1∶3 stoichiometry could be confirmed. Detailed binding analysis showed that the interaction is affected by the detergent Tween-20. Previously, this phenomenon was reported only for one other type of alternative scaffold-derived binding proteins – designed ankyrin repeat proteins – without further investigation. As demonstrated by size exclusion chromatography and NMR spectroscopy, the presence of the detergent increases the association rate significantly. Since the special architecture of TNF-alpha is known to be modulated by detergents, the access to the recognized epitope is indicated to be restricted by conformational transitions within the target protein. Our results suggest that the ubiquitin-derived binding protein targets a new epitope on TNF-alpha, which differs from the epitopes recognized by TNF-alpha neutralizing antibodies. PMID:22363609

  3. DNA-magnetic Particle Binding Analysis by Dynamic and Electrophoretic Light Scattering.

    PubMed

    Haddad, Yazan; Dostalova, Simona; Kudr, Jiri; Zitka, Ondrej; Heger, Zbynek; Adam, Vojtech

    2017-11-09

    Isolation of DNA using magnetic particles is a field of high importance in biotechnology and molecular biology research. This protocol describes the evaluation of DNA-magnetic particles binding via dynamic light scattering (DLS) and electrophoretic light scattering (ELS). Analysis by DLS provides valuable information on the physicochemical properties of particles including particle size, polydispersity, and zeta potential. The latter describes the surface charge of the particle which plays major role in electrostatic binding of materials such as DNA. Here, a comparative analysis exploits three chemical modifications of nanoparticles and microparticles and their effects on DNA binding and elution. Chemical modifications by branched polyethylenimine, tetraethyl orthosilicate and (3-aminopropyl)triethoxysilane are investigated. Since DNA exhibits a negative charge, it is expected that zeta potential of particle surface will decrease upon binding of DNA. Forming of clusters should also affect particle size. In order to investigate the efficiency of these particles in isolation and elution of DNA, the particles are mixed with DNA in low pH (~6), high ionic strength and dehydration environment. Particles are washed on magnet and then DNA is eluted by Tris-HCl buffer (pH = 8). DNA copy number is estimated using quantitative polymerase chain reaction (PCR). Zeta potential, particle size, polydispersity and quantitative PCR data are evaluated and compared. DLS is an insightful and supporting method of analysis that adds a new perspective to the process of screening of particles for DNA isolation.

  4. Novel Strategy for Discrimination of Transcription Factor Binding Motifs Employing Mathematical Neural Network

    NASA Astrophysics Data System (ADS)

    Sugimoto, Asuka; Sumi, Takuya; Kang, Jiyoung; Tateno, Masaru

    2017-07-01

    Recognition in biological macromolecular systems, such as DNA-protein recognition, is one of the most crucial problems to solve toward understanding the fundamental mechanisms of various biological processes. Since specific base sequences of genome DNA are discriminated by proteins, such as transcription factors (TFs), finding TF binding motifs (TFBMs) in whole genome DNA sequences is currently a central issue in interdisciplinary biophysical and information sciences. In the present study, a novel strategy to create a discriminant function for discrimination of TFBMs by constituting mathematical neural networks (NNs) is proposed, together with a method to determine the boundary of signals (TFBMs) and noise in the NN-score (output) space. This analysis also leads to the mathematical limitation of discrimination in the recognition of features representing TFBMs, in an information geometrical manifold. Thus, the present strategy enables the identification of the whole space of TFBMs, right up to the noise boundary.

  5. pH modulates the binding of early growth response protein 1 transcription factor to DNA.

    PubMed

    Mikles, David C; Bhat, Vikas; Schuchardt, Brett J; Deegan, Brian J; Seldeen, Kenneth L; McDonald, Caleb B; Farooq, Amjad

    2013-08-01

    The transcription factor early growth response protein (EGR)1 orchestrates a plethora of signaling cascades involved in cellular homeostasis, and its downregulation has been implicated in the development of prostate cancer. Herein, using a battery of biophysical tools, we show that the binding of EGR1 to DNA is tightly regulated by solution pH. Importantly, the binding affinity undergoes an enhancement of more than an order of magnitude with an increase in pH from 5 to 8, implying that the deprotonation of an ionizable residue accounts for such behavior. This ionizable residue is identified as His382 by virtue of the fact that its replacement by nonionizable residues abolishes the pH dependence of the binding of EGR1 to DNA. Notably, His382 inserts into the major groove of DNA, and stabilizes the EGR1-DNA interaction via both hydrogen bonding and van der Waals contacts. Remarkably, His382 is mainly conserved across other members of the EGR family, implying that histidine protonation-deprotonation may serve as a molecular switch for modulating the protein-DNA interactions that are central to this family of transcription factors. Collectively, our findings reveal an unexpected but a key step in the molecular recognition of the EGR family of transcription factors, and suggest that they may act as sensors of pH within the intracellular environment. © 2013 FEBS.

  6. Phenazine virulence factor binding to extracellular DNA is important for Pseudomonas aeruginosa biofilm formation.

    PubMed

    Das, Theerthankar; Kutty, Samuel K; Tavallaie, Roya; Ibugo, Amaye I; Panchompoo, Janjira; Sehar, Shama; Aldous, Leigh; Yeung, Amanda W S; Thomas, Shane R; Kumar, Naresh; Gooding, J Justin; Manefield, Mike

    2015-02-11

    Bacterial resistance to conventional antibiotics necessitates the identification of novel leads for infection control. Interference with extracellular phenomena, such as quorum sensing, extracellular DNA integrity and redox active metabolite release, represents a new frontier to control human pathogens such as Pseudomonas aeruginosa and hence reduce mortality. Here we reveal that the extracellular redox active virulence factor pyocyanin produced by P. aeruginosa binds directly to the deoxyribose-phosphate backbone of DNA and intercalates with DNA nitrogenous base pair regions. Binding results in local perturbations of the DNA double helix structure and enhanced electron transfer along the nucleic acid polymer. Pyocyanin binding to DNA also increases DNA solution viscosity. In contrast, antioxidants interacting with DNA and pyocyanin decrease DNA solution viscosity. Biofilms deficient in pyocyanin production and biofilms lacking extracellular DNA show similar architecture indicating the interaction is important in P. aeruginosa biofilm formation.

  7. Optimized Standard Operating Procedures for the Analysis of Cerebrospinal Fluid Aβ42 and the Ratios of Aβ Isoforms Using Low Protein Binding Tubes.

    PubMed

    Vanderstichele, Hugo Marcel Johan; Janelidze, Shorena; Demeyer, Leentje; Coart, Els; Stoops, Erik; Herbst, Victor; Mauroo, Kimberley; Brix, Britta; Hansson, Oskar

    2016-05-31

    Reduced cerebrospinal fluid (CSF) concentration of amyloid-β1-42 (Aβ1-42) reflects the presence of amyloidopathy in brains of subjects with Alzheimer's disease (AD). To qualify the use of Aβ1-42/Aβ1-40 for improvement of standard operating procedures (SOP) for measurement of CSF Aβ with a focus on CSF collection, storage, and analysis. Euroimmun ELISAs for CSF Aβ isoforms were used to set up a SOP with respect to recipient properties (low binding, polypropylene), volume of tubes, freeze/thaw cycles, addition of detergents (Triton X-100, Tween-20) in collection or storage tubes or during CSF analysis. Data were analyzed with linear repeated measures and mixed effects models. Optimization of CSF analysis included a pre-wash of recipients (e.g., tubes, 96-well plates) before sample analysis. Using the Aβ1-42/Aβ1-40 ratio, in contrast to Aβ1-42, eliminated effects of tube type, additional freeze/thaw cycles, or effect of CSF volumes for polypropylene storage tubes. 'Low binding' tubes reduced the loss of Aβ when aliquoting CSF or in function of additional freeze/thaw cycles. Addition of detergent in CSF collection tubes resulted in an almost complete absence of variation in function of collection procedures, but affected the concentration of Aβ isoforms in the immunoassay. The ratio of Aβ1-42/Aβ1-40 is a more robust biomarker than Aβ1-42 toward (pre-) analytical interfering factors. Further, 'low binding' recipients and addition of detergent in collection tubes are able to remove effects of SOP-related confounding factors. Integration of the Aβ1-42/Aβ1-40 ratio and 'low-binding tubes' into guidance criteria may speed up worldwide standardization of CSF biomarker analysis.

  8. A Single Rainbow Trout Cobalamin-binding Protein Stands in for Three Human Binders

    PubMed Central

    Greibe, Eva; Fedosov, Sergey; Sorensen, Boe S.; Højrup, Peter; Poulsen, Steen S.; Nexo, Ebba

    2012-01-01

    Cobalamin uptake and transport in mammals are mediated by three cobalamin-binding proteins: haptocorrin, intrinsic factor, and transcobalamin. The nature of cobalamin-binding proteins in lower vertebrates remains to be elucidated. The aim of this study was to characterize the cobalamin-binding proteins of the rainbow trout (Oncorhynchus mykiss) and to compare their properties with those of the three human cobalamin-binding proteins. High cobalamin-binding capacity was found in trout stomach (210 pmol/g), roe (400 pmol/g), roe fluid (390 nmol/liter), and plasma (2500 nmol/liter). In all cases, it appeared to be the same protein based on analysis of partial sequences and immunological responses. The trout cobalamin-binding protein was purified from roe fluid, sequenced, and further characterized. Like haptocorrin, the trout cobalamin-binding protein was stable at low pH and had a high binding affinity for the cobalamin analog cobinamide. Like haptocorrin and transcobalamin, the trout cobalamin-binding protein was present in plasma and recognized ligands with altered nucleotide moiety. Like intrinsic factors, the trout cobalamin-binding protein was present in the stomach and resisted degradation by trypsin and chymotrypsin. It also resembled intrinsic factor in the composition of conserved residues in the primary cobalamin-binding site in the C terminus. The trout cobalamin-binding protein was glycosylated and displayed spectral properties comparable with those of haptocorrin and intrinsic factor. In conclusion, only one soluble cobalamin-binding protein was identified in the rainbow trout, a protein that structurally behaves like an intermediate between the three human cobalamin-binding proteins. PMID:22872637

  9. Analysis of sequencing data for probing RNA secondary structures and protein-RNA binding in studying posttranscriptional regulations.

    PubMed

    Hu, Xihao; Wu, Yang; Lu, Zhi John; Yip, Kevin Y

    2016-11-01

    High-throughput sequencing has been used to study posttranscriptional regulations, where the identification of protein-RNA binding is a major and fast-developing sub-area, which is in turn benefited by the sequencing methods for whole-transcriptome probing of RNA secondary structures. In the study of RNA secondary structures using high-throughput sequencing, bases are modified or cleaved according to their structural features, which alter the resulting composition of sequencing reads. In the study of protein-RNA binding, methods have been proposed to immuno-precipitate (IP) protein-bound RNA transcripts in vitro or in vivo By sequencing these transcripts, the protein-RNA interactions and the binding locations can be identified. For both types of data, read counts are affected by a combination of confounding factors, including expression levels of transcripts, sequence biases, mapping errors and the probing or IP efficiency of the experimental protocols. Careful processing of the sequencing data and proper extraction of important features are fundamentally important to a successful analysis. Here we review and compare different experimental methods for probing RNA secondary structures and binding sites of RNA-binding proteins (RBPs), and the computational methods proposed for analyzing the corresponding sequencing data. We suggest how these two types of data should be integrated to study the structural properties of RBP binding sites as a systematic way to better understand posttranscriptional regulations. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  10. A purified transcription factor (TIF-IB) binds to essential sequences of the mouse rDNA promoter.

    PubMed Central

    Clos, J; Buttgereit, D; Grummt, I

    1986-01-01

    A transcription factor that is specific for mouse rDNA has been partially purified from Ehrlich ascites cells. This factor [designated transcription initiation factor (TIF)-IB] is required for accurate in vitro synthesis of mouse rRNA in addition to RNA polymerase I and another regulatory factor, TIF-IA. TIF-IB activity is present in extracts both from growing and nongrowing cells in comparable amounts. Prebinding competition experiments with wild-type and mutant templates suggest that TIF-IB interacts with the core control element of the rDNA promoter, which is located immediately upstream of the initiation site. The specific binding of TIF-IB to the RNA polymerase I promoter is demonstrated by exonuclease III protection experiments. The 3' border of the sequences protected by TIF-IB is shown to be on the coding strand at position -21 and on the noncoding strand at position -7. The results suggest that direct binding of TIF-IB to sequences in the core promoter element is the mechanism by which this factor imparts promoter selectivity to RNA polymerase I. Images PMID:3456157

  11. Predicting the binding preference of transcription factors to individual DNA k-mers.

    PubMed

    Alleyne, Trevis M; Peña-Castillo, Lourdes; Badis, Gwenael; Talukder, Shaheynoor; Berger, Michael F; Gehrke, Andrew R; Philippakis, Anthony A; Bulyk, Martha L; Morris, Quaid D; Hughes, Timothy R

    2009-04-15

    Recognition of specific DNA sequences is a central mechanism by which transcription factors (TFs) control gene expression. Many TF-binding preferences, however, are unknown or poorly characterized, in part due to the difficulty associated with determining their specificity experimentally, and an incomplete understanding of the mechanisms governing sequence specificity. New techniques that estimate the affinity of TFs to all possible k-mers provide a new opportunity to study DNA-protein interaction mechanisms, and may facilitate inference of binding preferences for members of a given TF family when such information is available for other family members. We employed a new dataset consisting of the relative preferences of mouse homeodomains for all eight-base DNA sequences in order to ask how well we can predict the binding profiles of homeodomains when only their protein sequences are given. We evaluated a panel of standard statistical inference techniques, as well as variations of the protein features considered. Nearest neighbour among functionally important residues emerged among the most effective methods. Our results underscore the complexity of TF-DNA recognition, and suggest a rational approach for future analyses of TF families.

  12. Two DNA-binding factors recognize specific sequences at silencers, upstream activating sequences, autonomously replicating sequences, and telomeres in Saccharomyces cerevisiae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buchman, A.R.; Kimmerly, W.J.; Rine, J.

    1988-01-01

    Two DNA-binding factors from Saccharomyces cerevisiae have been characterized, GRFI (general regulatory factor I) and ABFI (ARS-binding factor I), that recognize specific sequences within diverse genetic elements. GRFI bound to sequences at the negative regulatory elements (silencers) of the silent mating type loci HML E and HMR E and to the upstream activating sequence (UAS) required for transcription of the MAT ..cap alpha.. genes. A putative conserved UAS located at genes involved in translation (RPG box) was also recognized by GRFI. In addition, GRFI bound with high affinity to sequences within the (C/sub 1-3/A)-repeat region at yeast telomeres. Binding sitesmore » for GRFI with the highest affinity appeared to be of the form 5'-(A/G)(A/C)ACCCAN NCA(T/C)(T/C)-3', where N is any nucleotide. ABFI-binding sites were located next to autonomously replicating sequences (ARSs) at controlling elements of the silent mating type loci HMR E, HMR I, and HML I and were associated with ARS1, ARS2, and the 2..mu..m plasmid ARS. Two tandem ABFI binding sites were found between the HIS3 and DED1 genes, several kilobase pairs from any ARS, indicating that ABFI-binding sites are not restricted to ARSs. The sequences recognized by AFBI showed partial dyad-symmetry and appeared to be variations of the consensus 5'-TATCATTNNNNACGA-3'. GRFI and ABFI were both abundant DNA-binding factors and did not appear to be encoded by the SIR genes, whose product are required for repression of the silent mating type loci. Together, these results indicate that both GRFI and ABFI play multiple roles within the cell.« less

  13. Selective binding and oligomerization of the murine granulocyte colony-stimulating factor receptor by a low molecular weight, nonpeptidyl ligand.

    PubMed

    Doyle, Michael L; Tian, Shin-Shay; Miller, Stephen G; Kessler, Linda; Baker, Audrey E; Brigham-Burke, Michael R; Dillon, Susan B; Duffy, Kevin J; Keenan, Richard M; Lehr, Ruth; Rosen, Jon; Schneeweis, Lumelle A; Trill, John; Young, Peter R; Luengo, Juan I; Lamb, Peter

    2003-03-14

    Granulocyte colony-stimulating factor regulates neutrophil production by binding to a specific receptor, the granulocyte colony-stimulating factor receptor, expressed on cells of the granulocytic lineage. Recombinant forms of granulocyte colony-stimulating factor are used clinically to treat neutropenias. As part of an effort to develop granulocyte colony-stimulating factor mimics with the potential for oral bioavailability, we previously identified a nonpeptidyl small molecule (SB-247464) that selectively activates murine granulocyte colony-stimulating factor signal transduction pathways and promotes neutrophil formation in vivo. To elucidate the mechanism of action of SB-247464, a series of cell-based and biochemical assays were performed. The activity of SB-247464 is strictly dependent on the presence of zinc ions. Titration microcalorimetry experiments using a soluble murine granulocyte colony-stimulating factor receptor construct show that SB-247464 binds to the extracellular domain of the receptor in a zinc ion-dependent manner. Analytical ultracentrifugation studies demonstrate that SB-247464 induces self-association of the N-terminal three-domain fragment in a manner that is consistent with dimerization. SB-247464 induces internalization of granulocyte colony-stimulating factor receptor on intact cells, consistent with a mechanism involving receptor oligomerization. These data show that small nonpeptidyl compounds are capable of selectively binding and inducing productive oligomerization of cytokine receptors.

  14. High-throughput analysis of peptide binding modules

    PubMed Central

    Liu, Bernard A.; Engelmann, Brett; Nash, Piers D.

    2014-01-01

    Modular protein interaction domains that recognize linear peptide motifs are found in hundreds of proteins within the human genome. Some protein interaction domains such as SH2, 14-3-3, Chromo and Bromo domains serve to recognize post-translational modification of amino acids (such as phosphorylation, acetylation, methylation etc.) and translate these into discrete cellular responses. Other modules such as SH3 and PDZ domains recognize linear peptide epitopes and serve to organize protein complexes based on localization and regions of elevated concentration. In both cases, the ability to nucleate specific signaling complexes is in large part dependent on the selectivity of a given protein module for its cognate peptide ligand. High throughput analysis of peptide-binding domains by peptide or protein arrays, phage display, mass spectrometry or other HTP techniques provides new insight into the potential protein-protein interactions prescribed by individual or even whole families of modules. Systems level analyses have also promoted a deeper understanding of the underlying principles that govern selective protein-protein interactions and how selectivity evolves. Lastly, there is a growing appreciation for the limitations and potential pitfalls of high-throughput analysis of protein-peptide interactomes. This review will examine some of the common approaches utilized for large-scale studies of protein interaction domains and suggest a set of standards for the analysis and validation of datasets from large-scale studies of peptide-binding modules. We will also highlight how data from large-scale studies of modular interaction domain families can provide insight into systems level properties such as the linguistics of selective interactions. PMID:22610655

  15. Protein-Binding RNA Aptamers Affect Molecular Interactions Distantly from Their Binding Sites

    PubMed Central

    Dupont, Daniel M.; Thuesen, Cathrine K.; Bøtkjær, Kenneth A.; Behrens, Manja A.; Dam, Karen; Sørensen, Hans P.; Pedersen, Jan S.; Ploug, Michael; Jensen, Jan K.; Andreasen, Peter A.

    2015-01-01

    Nucleic acid aptamer selection is a powerful strategy for the development of regulatory agents for molecular intervention. Accordingly, aptamers have proven their diligence in the intervention with serine protease activities, which play important roles in physiology and pathophysiology. Nonetheless, there are only a few studies on the molecular basis underlying aptamer-protease interactions and the associated mechanisms of inhibition. In the present study, we use site-directed mutagenesis to delineate the binding sites of two 2´-fluoropyrimidine RNA aptamers (upanap-12 and upanap-126) with therapeutic potential, both binding to the serine protease urokinase-type plasminogen activator (uPA). We determine the subsequent impact of aptamer binding on the well-established molecular interactions (plasmin, PAI-1, uPAR, and LRP-1A) controlling uPA activities. One of the aptamers (upanap-126) binds to the area around the C-terminal α-helix in pro-uPA, while the other aptamer (upanap-12) binds to both the β-hairpin of the growth factor domain and the kringle domain of uPA. Based on the mapping studies, combined with data from small-angle X-ray scattering analysis, we construct a model for the upanap-12:pro-uPA complex. The results suggest and highlight that the size and shape of an aptamer as well as the domain organization of a multi-domain protein such as uPA, may provide the basis for extensive sterical interference with protein ligand interactions considered distant from the aptamer binding site. PMID:25793507

  16. The actinobacterial transcription factor RbpA binds to the principal sigma subunit of RNA polymerase

    PubMed Central

    Tabib-Salazar, Aline; Liu, Bing; Doughty, Philip; Lewis, Richard A.; Ghosh, Somadri; Parsy, Marie-Laure; Simpson, Peter J.; O’Dwyer, Kathleen; Matthews, Steve J.; Paget, Mark S.

    2013-01-01

    RbpA is a small non–DNA-binding transcription factor that associates with RNA polymerase holoenzyme and stimulates transcription in actinobacteria, including Streptomyces coelicolor and Mycobacterium tuberculosis. RbpA seems to show specificity for the vegetative form of RNA polymerase as opposed to alternative forms of the enzyme. Here, we explain the basis of this specificity by showing that RbpA binds directly to the principal σ subunit in these organisms, but not to more diverged alternative σ factors. Nuclear magnetic resonance spectroscopy revealed that, although differing in their requirement for structural zinc, the RbpA orthologues from S. coelicolor and M. tuberculosis share a common structural core domain, with extensive, apparently disordered, N- and C-terminal regions. The RbpA–σ interaction is mediated by the C-terminal region of RbpA and σ domain 2, and S. coelicolor RbpA mutants that are defective in binding σ are unable to stimulate transcription in vitro and are inactive in vivo. Given that RbpA is essential in M. tuberculosis and critical for growth in S. coelicolor, these data support a model in which RbpA plays a key role in the σ cycle in actinobacteria. PMID:23605043

  17. Analysis of In Vivo Chromatin and Protein Interactions of Arabidopsis Transcript Elongation Factors.

    PubMed

    Pfab, Alexander; Antosz, Wojciech; Holzinger, Philipp; Bruckmann, Astrid; Griesenbeck, Joachim; Grasser, Klaus D

    2017-01-01

    A central step to elucidate the function of proteins commonly comprises the analysis of their molecular interactions in vivo. For nuclear regulatory proteins this involves determining protein-protein interactions as well as mapping of chromatin binding sites. Here, we present two protocols to identify protein-protein and chromatin interactions of transcript elongation factors (TEFs) in Arabidopsis. The first protocol (Subheading 3.1) describes protein affinity-purification coupled to mass spectrometry (AP-MS) that utilizes suspension cultured cells as experimental system. This approach provides an unbiased view of proteins interacting with epitope-tagged TEFs. The second protocol (Subheading 3.2) depicts details about a chromatin immunoprecipitation (ChIP) procedure to characterize genomic binding sites of TEFs. These methods should be valuable tools for the analysis of a broad variety of nuclear proteins.

  18. Principal component analysis of chemical shift perturbation data of a multiple-ligand-binding system for elucidation of respective binding mechanism.

    PubMed

    Konuma, Tsuyoshi; Lee, Young-Ho; Goto, Yuji; Sakurai, Kazumasa

    2013-01-01

    Chemical shift perturbations (CSPs) in NMR spectra provide useful information about the interaction of a protein with its ligands. However, in a multiple-ligand-binding system, determining quantitative parameters such as a dissociation constant (K(d) ) is difficult. Here, we used a method we named CS-PCA, a principal component analysis (PCA) of chemical shift (CS) data, to analyze the interaction between bovine β-lactoglobulin (βLG) and 1-anilinonaphthalene-8-sulfonate (ANS), which is a multiple-ligand-binding system. The CSP on the binding of ANS involved contributions from two distinct binding sites. PCA of the titration data successfully separated the CSP pattern into contributions from each site. Docking simulations based on the separated CSP patterns provided the structures of βLG-ANS complexes for each binding site. In addition, we determined the K(d) values as 3.42 × 10⁻⁴ M² and 2.51 × 10⁻³ M for Sites 1 and 2, respectively. In contrast, it was difficult to obtain reliable K(d) values for respective sites from the isothermal titration calorimetry experiments. Two ANS molecules were found to bind at Site 1 simultaneously, suggesting that the binding occurs cooperatively with a partial unfolding of the βLG structure. On the other hand, the binding of ANS to Site 2 was a simple attachment without a significant conformational change. From the present results, CS-PCA was confirmed to provide not only the positions and the K(d) values of binding sites but also information about the binding mechanism. Thus, it is anticipated to be a general method to investigate protein-ligand interactions. Copyright © 2012 Wiley Periodicals, Inc.

  19. PolyaPeak: Detecting Transcription Factor Binding Sites from ChIP-seq Using Peak Shape Information

    PubMed Central

    Wu, Hao; Ji, Hongkai

    2014-01-01

    ChIP-seq is a powerful technology for detecting genomic regions where a protein of interest interacts with DNA. ChIP-seq data for mapping transcription factor binding sites (TFBSs) have a characteristic pattern: around each binding site, sequence reads aligned to the forward and reverse strands of the reference genome form two separate peaks shifted away from each other, and the true binding site is located in between these two peaks. While it has been shown previously that the accuracy and resolution of binding site detection can be improved by modeling the pattern, efficient methods are unavailable to fully utilize that information in TFBS detection procedure. We present PolyaPeak, a new method to improve TFBS detection by incorporating the peak shape information. PolyaPeak describes peak shapes using a flexible Pólya model. The shapes are automatically learnt from the data using Minorization-Maximization (MM) algorithm, then integrated with the read count information via a hierarchical model to distinguish true binding sites from background noises. Extensive real data analyses show that PolyaPeak is capable of robustly improving TFBS detection compared with existing methods. An R package is freely available. PMID:24608116

  20. Identification and Structural Basis of Binding to Host Lung Glycogen by Streptococcal Virulence Factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lammerts van Bueren,A.; Higgins, M.; Wang, D.

    2007-01-01

    The ability of pathogenic bacteria to recognize host glycans is often essential to their virulence. Here we report structure-function studies of previously uncharacterized glycogen-binding modules in the surface-anchored pullulanases from Streptococcus pneumoniae (SpuA) and Streptococcus pyogenes (PulA). Multivalent binding to glycogen leads to a strong interaction with alveolar type II cells in mouse lung tissue. X-ray crystal structures of the binding modules reveal a novel fusion of tandem modules into single, bivalent functional domains. In addition to indicating a structural basis for multivalent attachment, the structure of the SpuA modules in complex with carbohydrate provides insight into the molecular basismore » for glycogen specificity. This report provides the first evidence that intracellular lung glycogen may be a novel target of pathogenic streptococci and thus provides a rationale for the identification of the streptococcal {alpha}-glucan-metabolizing machinery as virulence factors.« less

  1. Phenazine virulence factor binding to extracellular DNA is important for Pseudomonas aeruginosa biofilm formation

    PubMed Central

    Das, Theerthankar; Kutty, Samuel K.; Tavallaie, Roya; Ibugo, Amaye I.; Panchompoo, Janjira; Sehar, Shama; Aldous, Leigh; Yeung, Amanda W. S.; Thomas, Shane R.; Kumar, Naresh; Gooding, J. Justin; Manefield, Mike

    2015-01-01

    Bacterial resistance to conventional antibiotics necessitates the identification of novel leads for infection control. Interference with extracellular phenomena, such as quorum sensing, extracellular DNA integrity and redox active metabolite release, represents a new frontier to control human pathogens such as Pseudomonas aeruginosa and hence reduce mortality. Here we reveal that the extracellular redox active virulence factor pyocyanin produced by P. aeruginosa binds directly to the deoxyribose-phosphate backbone of DNA and intercalates with DNA nitrogenous base pair regions. Binding results in local perturbations of the DNA double helix structure and enhanced electron transfer along the nucleic acid polymer. Pyocyanin binding to DNA also increases DNA solution viscosity. In contrast, antioxidants interacting with DNA and pyocyanin decrease DNA solution viscosity. Biofilms deficient in pyocyanin production and biofilms lacking extracellular DNA show similar architecture indicating the interaction is important in P. aeruginosa biofilm formation. PMID:25669133

  2. Adhesion properties of Lactobacillus rhamnosus mucus-binding factor to mucin and extracellular matrix proteins.

    PubMed

    Nishiyama, Keita; Nakamata, Koichi; Ueno, Shintaro; Terao, Akari; Aryantini, Ni Putu Desy; Sujaya, I Nengah; Fukuda, Kenji; Urashima, Tadasu; Yamamoto, Yuji; Mukai, Takao

    2015-01-01

    We previously described potential probiotic Lactobacillus rhamnosus strains, isolated from fermented mare milk produced in Sumbawa Island, Indonesia, which showed high adhesion to porcine colonic mucin (PCM) and extracellular matrix (ECM) proteins. Recently, mucus-binding factor (MBF) was found in the GG strain of L. rhamnosus as a mucin-binding protein. In this study, we assessed the ability of recombinant MBF protein from the FSMM22 strain, one of the isolates of L. rhamnosus from fermented Sumbawa mare milk, to adhere to PCM and ECM proteins by overlay dot blot and Biacore assays. MBF bound to PCM, laminin, collagen IV, and fibronectin with submicromolar dissociation constants. Adhesion of the FSMM22 mbf mutant strain to PCM and ECM proteins was significantly less than that of the wild-type strain. Collectively, these results suggested that MBF contribute to L. rhamnosus host colonization via mucin and ECM protein binding.

  3. Analysis of the interactions between GMF and Arp2/3 complex in two binding sites by molecular dynamics simulation.

    PubMed

    Popinako, A; Antonov, M; Dibrova, D; Chemeris, A; Sokolova, O S

    2018-02-05

    The Arp2/3 complex plays a key role in nucleating actin filaments branching. The glia maturation factor (GMF) competes with activators for interacting with the Arp2/3 complex and initiates the debranching of actin filaments. In this study, we performed a comparative analysis of interactions between GMF and the Arp2/3 complex and identified new amino acid residues involved in GMF binding to the Arp2/3 complex at two separate sites, revealed by X-ray and single particle EM techniques. Using molecular dynamics simulations we demonstrated the quantitative and qualitative changes in hydrogen bonds upon binding with GMF. We identified the specific amino acid residues in GMF and Arp2/3 complex that stabilize the interactions and estimated the mean force profile for the GMF using umbrella sampling. Phylogenetic and structural analyses of the recently defined GMF binding site on the Arp3 subunit indicate a new mechanism for Arp2/3 complex inactivation that involves interactions between the Arp2/3 complex and GMF at two binding sites. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Potential ligand-binding residues in rat olfactory receptors identified by correlated mutation analysis

    NASA Technical Reports Server (NTRS)

    Singer, M. S.; Oliveira, L.; Vriend, G.; Shepherd, G. M.

    1995-01-01

    A family of G-protein-coupled receptors is believed to mediate the recognition of odor molecules. In order to identify potential ligand-binding residues, we have applied correlated mutation analysis to receptor sequences from the rat. This method identifies pairs of sequence positions where residues remain conserved or mutate in tandem, thereby suggesting structural or functional importance. The analysis supported molecular modeling studies in suggesting several residues in positions that were consistent with ligand-binding function. Two of these positions, dominated by histidine residues, may play important roles in ligand binding and could confer broad specificity to mammalian odor receptors. The presence of positive (overdominant) selection at some of the identified positions provides additional evidence for roles in ligand binding. Higher-order groups of correlated residues were also observed. Each group may interact with an individual ligand determinant, and combinations of these groups may provide a multi-dimensional mechanism for receptor diversity.

  5. Assessment of the binding performance of histamine-imprinted microspheres by frontal analysis capillary electrophoresis.

    PubMed

    Romano, Edwin F; Quirino, Joselito P; Holdsworth, John L; So, Regina C; Holdsworth, Clovia I

    2017-05-01

    Frontal analysis capillary electrophoresis was used to evaluate the binding performance of molecularly imprinted microspheres (MIM) toward its template histamine and analogs at pH 7, and compared to the high performance liquid chromatographic method. In both methods, batch binding was employed and the binding parameters were calculated from the measured concentration of unbound amine analytes and afforded comparable histamine equilibrium dissociation constants (K d ∼ 0.4 mM). FACE was easily carried out at shorter binding equilibration time (i.e. 30 min) and without the need to separate the microspheres, circumventing laborious and, in the case of the system under study, inefficient sample filtration. It also allowed for competitive binding studies by virtue of its ability to distinctly separate intact microspheres and all tested amines which could not be resolved in HPLC. K d 's for nonimprinted (control) microspheres (NIM) from FACE and HPLC were also comparable (∼ 0.6 mM) but at higher histamine concentrations, HPLC gave lower histamine binding. This discrepancy was attributed to inefficient filtration of the batch binding samples prior to HPLC analysis resulting in an over-estimation of the concentration of free histamine brought about by the presence of unfiltered histamine-bound microspheres. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Targeting the heparin-binding domain of fibroblast growth factor receptor 1 as a potential cancer therapy.

    PubMed

    Ling, Ling; Tan, Si Kee; Goh, Ting Hwee; Cheung, Edwin; Nurcombe, Victor; van Wijnen, Andre J; Cool, Simon M

    2015-07-23

    Aberrant activation of fibroblast growth factor receptors (FGFRs) deregulates cell proliferation and promotes cell survival, and may predispose to tumorigenesis. Therefore, selective inactivation of FGFRs is an important strategy for cancer therapy. Here as a proof-of-concept study, we developed a FGFR1 neutralizing antisera, IMB-R1, employing a novel strategy aimed at preventing the access of essential heparan sulfate (HS) co-receptors to the heparin-binding domain on FGFR1. The mRNA and protein expression level of FGFR1 and other FGFRs were examined in several lines of breast cancer and osteosarcoma cells and corresponding normal cells using Taqman real-time quantitative PCR and Western blot analysis. The specificity of IMB-R1 against FGFR1 was assessed with various ELISA-based approaches and Receptor Tyrosine Kinase array. Proliferation assay and apoptosis analysis were performed to assess the effect of IMB-R1 on cancer cell growth and apoptosis, respectively, in comparison with known FGFR1 inhibitors. The IMB-R1 induced alteration of intracellular signaling and gene expression were analysed using Western blot and microarray approaches. Immunohistochemical staining of FGFR1 using IMB-R1 were carried out in different cancer tissues from clinical patients. Throughout the study, statistical differences were determined by Student's t test where appropriate and reported when a p value was less than 0.05. We demonstrate that IMB-R1 is minimally cross-reactive for other FGFRs, and that it potently and specifically inhibits binding of heparin to FGFR1. Furthermore, IMB-R1 blocks the interaction of FGF2 with FGFR1, the kinase activity of FGFR1 and activation of intracellular FGFR signaling. Cancer cells treated with IMB-R1 displayed impaired FGF2 signaling, were unable to grow and instead underwent apoptosis. IMB-R1-induced cell death correlated with a disruption of antioxidative defense networks and increased expression of several tumor suppressors and apoptotic

  7. Effects of cytosine methylation on transcription factor binding sites

    PubMed Central

    2014-01-01

    Background DNA methylation in promoters is closely linked to downstream gene repression. However, whether DNA methylation is a cause or a consequence of gene repression remains an open question. If it is a cause, then DNA methylation may affect the affinity of transcription factors (TFs) for their binding sites (TFBSs). If it is a consequence, then gene repression caused by chromatin modification may be stabilized by DNA methylation. Until now, these two possibilities have been supported only by non-systematic evidence and they have not been tested on a wide range of TFs. An average promoter methylation is usually used in studies, whereas recent results suggested that methylation of individual cytosines can also be important. Results We found that the methylation profiles of 16.6% of cytosines and the expression profiles of neighboring transcriptional start sites (TSSs) were significantly negatively correlated. We called the CpGs corresponding to such cytosines “traffic lights”. We observed a strong selection against CpG “traffic lights” within TFBSs. The negative selection was stronger for transcriptional repressors as compared with transcriptional activators or multifunctional TFs as well as for core TFBS positions as compared with flanking TFBS positions. Conclusions Our results indicate that direct and selective methylation of certain TFBS that prevents TF binding is restricted to special cases and cannot be considered as a general regulatory mechanism of transcription. PMID:24669864

  8. Arsenic Directly Binds to and Activates the Yeast AP-1-Like Transcription Factor Yap8

    PubMed Central

    Kumar, Nallani Vijay; Yang, Jianbo; Pillai, Jitesh K.; Rawat, Swati; Solano, Carlos; Kumar, Abhay; Grøtli, Morten; Stemmler, Timothy L.; Rosen, Barry P.

    2015-01-01

    The AP-1-like transcription factor Yap8 is critical for arsenic tolerance in the yeast Saccharomyces cerevisiae. However, the mechanism by which Yap8 senses the presence of arsenic and activates transcription of detoxification genes is unknown. Here we demonstrate that Yap8 directly binds to trivalent arsenite [As(III)] in vitro and in vivo and that approximately one As(III) molecule is bound per molecule of Yap8. As(III) is coordinated by three sulfur atoms in purified Yap8, and our genetic and biochemical data identify the cysteine residues that form the binding site as Cys132, Cys137, and Cys274. As(III) binding by Yap8 does not require an additional yeast protein, and Yap8 is regulated neither at the level of localization nor at the level of DNA binding. Instead, our data are consistent with a model in which a DNA-bound form of Yap8 acts directly as an As(III) sensor. Binding of As(III) to Yap8 triggers a conformational change that in turn brings about a transcriptional response. Thus, As(III) binding to Yap8 acts as a molecular switch that converts inactive Yap8 into an active transcriptional regulator. This is the first report to demonstrate how a eukaryotic protein couples arsenic sensing to transcriptional activation. PMID:26711267

  9. Arsenic Directly Binds to and Activates the Yeast AP-1-Like Transcription Factor Yap8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Nallani Vijay; Yang, Jianbo; Pillai, Jitesh K.

    The AP-1-like transcription factor Yap8 is critical for arsenic tolerance in the yeastSaccharomyces cerevisiae. However, the mechanism by which Yap8 senses the presence of arsenic and activates transcription of detoxification genes is unknown. Here we demonstrate that Yap8 directly binds to trivalent arsenite [As(III)]in vitroandin vivoand that approximately one As(III) molecule is bound per molecule of Yap8. As(III) is coordinated by three sulfur atoms in purified Yap8, and our genetic and biochemical data identify the cysteine residues that form the binding site as Cys132, Cys137, and Cys274. As(III) binding by Yap8 does not require an additional yeast protein, and Yap8more » is regulated neither at the level of localization nor at the level of DNA binding. Instead, our data are consistent with a model in which a DNA-bound form of Yap8 acts directly as an As(III) sensor. Binding of As(III) to Yap8 triggers a conformational change that in turn brings about a transcriptional response. Thus, As(III) binding to Yap8 acts as a molecular switch that converts inactive Yap8 into an active transcriptional regulator. This is the first report to demonstrate how a eukaryotic protein couples arsenic sensing to transcriptional activation.« less

  10. Characterisation and expression analysis of B-cell activating factor (BAFF) in spiny dogfish (Squalus acanthias): cartilaginous fish BAFF has a unique extra exon that may impact receptor binding.

    PubMed

    Li, Ronggai; Dooley, Helen; Wang, Tiehui; Secombes, Christopher J; Bird, Steve

    2012-04-01

    B-cell activating factor (BAFF), also known as tumour necrosis factor (TNF) ligand superfamily member 13B, is an important immune regulator with critical roles in B-cell survival, proliferation, differentiation and immunoglobulin secretion. A BAFF gene has been cloned from spiny dogfish (Squalus acanthias) and its expression studied. The dogfish BAFF encodes for an anchored type-II transmembrane protein of 288 aa with a putative furin protease cleavage site and TNF family signature as seen in BAFFs from other species. The identity of dogfish BAFF has also been confirmed by conserved cysteine residues, and phylogenetic tree analysis. The dogfish BAFF gene has an extra exon not seen in teleost fish, birds and mammals that encodes for 29 aa and may impact on receptor binding. The dogfish BAFF is highly expressed in immune tissues, such as spleen, and is up-regulated by PWM in peripheral blood leucocytes, suggesting a potentially important role in the immune system. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Association of circulating insulin-like growth factor 1 and insulin-like growth factor binding protein 3 with the risk of ovarian cancer: A systematic review and meta-analysis.

    PubMed

    Wang, Qiao; Bian, C E; Peng, Hongling; He, Lei; Zhao, Xia

    2015-05-01

    Insulin-like growth factor 1 (IGF-1) and its main binding protein (IGFBP-3) in blood have been associated with the risk of several types of cancer. However, epidemiological studies have inconsistent results regarding the association of circulating IGF-1/IGFBP-3 levels with ovarian cancer risk. A systematic review of the prospective studies was conducted using meta-analysis to evaluate the existing evidence. Pubmed and Embase databases were searched to identify the relevant studies published before May 1, 2014. Four highly qualified studies with a total of 627 cases and 1,358 controls were finally included in the meta-analysis. Random effects meta-analysis was conducted by combining study-specific odds ratios (ORs) of ovarian cancer for the highest verses lowest exposure levels. A dose-response association was further assessed by relating the log of ORs for different exposure levels. As a result, the pooled ORs for the highest verses lowest categories of IGF-1/IGFBP-3 were 0.85 [95% confidence interval (CI), 0.51-1.40]/0.78 (95% CI, 0.43-1.40). In the subgroup analyses, the pooled ORs of IGF-1/IGFBP-3 were 1.89 (95% CI, 0.64-5.59)/1.08 (95% CI, 0.50-2.32) for the subgroup with cases diagnosed at <55 years, and 0.74 (95% CI, 0.50-1.08)/0.98 (95% CI, 0.73-1.33) for the subgroup with cases diagnosed at ≥55 years. No linear association between circulating IGF-1/IGFBP-3 levels and ovarian cancer risk was identified. As no significant association of IGF-1/IGFBP-3 with ovarian cancer risk was identified in the present meta-analysis of existing studies, more studies with greater quality are required in the future.

  12. Binding free energy analysis of protein-protein docking model structures by evERdock.

    PubMed

    Takemura, Kazuhiro; Matubayasi, Nobuyuki; Kitao, Akio

    2018-03-14

    To aid the evaluation of protein-protein complex model structures generated by protein docking prediction (decoys), we previously developed a method to calculate the binding free energies for complexes. The method combines a short (2 ns) all-atom molecular dynamics simulation with explicit solvent and solution theory in the energy representation (ER). We showed that this method successfully selected structures similar to the native complex structure (near-native decoys) as the lowest binding free energy structures. In our current work, we applied this method (evERdock) to 100 or 300 model structures of four protein-protein complexes. The crystal structures and the near-native decoys showed the lowest binding free energy of all the examined structures, indicating that evERdock can successfully evaluate decoys. Several decoys that show low interface root-mean-square distance but relatively high binding free energy were also identified. Analysis of the fraction of native contacts, hydrogen bonds, and salt bridges at the protein-protein interface indicated that these decoys were insufficiently optimized at the interface. After optimizing the interactions around the interface by including interfacial water molecules, the binding free energies of these decoys were improved. We also investigated the effect of solute entropy on binding free energy and found that consideration of the entropy term does not necessarily improve the evaluations of decoys using the normal model analysis for entropy calculation.

  13. Binding free energy analysis of protein-protein docking model structures by evERdock

    NASA Astrophysics Data System (ADS)

    Takemura, Kazuhiro; Matubayasi, Nobuyuki; Kitao, Akio

    2018-03-01

    To aid the evaluation of protein-protein complex model structures generated by protein docking prediction (decoys), we previously developed a method to calculate the binding free energies for complexes. The method combines a short (2 ns) all-atom molecular dynamics simulation with explicit solvent and solution theory in the energy representation (ER). We showed that this method successfully selected structures similar to the native complex structure (near-native decoys) as the lowest binding free energy structures. In our current work, we applied this method (evERdock) to 100 or 300 model structures of four protein-protein complexes. The crystal structures and the near-native decoys showed the lowest binding free energy of all the examined structures, indicating that evERdock can successfully evaluate decoys. Several decoys that show low interface root-mean-square distance but relatively high binding free energy were also identified. Analysis of the fraction of native contacts, hydrogen bonds, and salt bridges at the protein-protein interface indicated that these decoys were insufficiently optimized at the interface. After optimizing the interactions around the interface by including interfacial water molecules, the binding free energies of these decoys were improved. We also investigated the effect of solute entropy on binding free energy and found that consideration of the entropy term does not necessarily improve the evaluations of decoys using the normal model analysis for entropy calculation.

  14. Linear ordered collagen scaffolds loaded with collagen-binding basic fibroblast growth factor facilitate recovery of sciatic nerve injury in rats.

    PubMed

    Ma, Fukai; Xiao, Zhifeng; Chen, Bing; Hou, Xianglin; Dai, Jianwu; Xu, Ruxiang

    2014-04-01

    Natural biological functional scaffolds, consisting of biological materials filled with promoting elements, provide a promising strategy for the regeneration of peripheral nerve defects. Collagen conduits have been used widely due to their excellent biological properties. Linear ordered collagen scaffold (LOCS) fibers are good lumen fillers that can guide nerve regeneration in an ordered direction. In addition, basic fibroblast growth factor (bFGF) is important in the recovery of nerve injury. However, the traditional method for delivering bFGF to the lesion site has no long-term effect because of its short half-life and rapid diffusion. Therefore, we fused a specific collagen-binding domain (CBD) peptide to the N-terminal of native basic fibroblast growth factor (NAT-bFGF) to retain bFGF on the collagen scaffolds. In this study, a natural biological functional scaffold was constructed using collagen tubes filled with collagen-binding bFGF (CBD-bFGF)-loaded LOCS to promote regeneration in a 5-mm rat sciatic nerve transection model. Functional evaluation, histological investigation, and morphometric analysis indicated that the natural biological functional scaffold retained more bFGF at the injury site, guided axon growth, and promoted nerve regeneration as well as functional restoration.

  15. Accounting for unintended binding events in the analysis of quartz crystal microbalance kinetic data.

    PubMed

    Heller, Gabriella T; Zwang, Theodore J; Sarapata, Elizabeth A; Haber, Michael A; Sazinsky, Matthew H; Radunskaya, Ami E; Johal, Malkiat S

    2014-05-01

    Previous methods for analyzing protein-ligand binding events using the quartz crystal microbalance with dissipation monitoring (QCM-D) fail to account for unintended binding that inevitably occurs during surface measurements and obscure kinetic information. In this article, we present a system of differential equations that accounts for both reversible and irreversible unintended interactions. This model is tested on three protein-ligand systems, each of which has different features, to establish the feasibility of using the QCM-D for protein binding analysis. Based on this analysis, we were able to obtain kinetic information for the intended interaction that is consistent with those obtained in literature via bulk-phase methods. In the appendix, we include a method for decoupling these from the intended binding events and extracting relevant affinity information. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. KIT mutations correlate with adverse survival in children with core-binding factor acute myeloid leukemia.

    PubMed

    Chen, Xi; Dou, Hu; Wang, Xingjuan; Huang, Yi; Lu, Ling; Bin, Junqing; Su, Yongchun; Zou, Lin; Yu, Jie; Bao, Liming

    2018-04-01

    The prevalence and clinical relevance of KIT mutations in childhood core-binding factor (CBF) acute myeloid leukemia (AML) have not been well characterized. In this study, a total of 212 children with de novo AML were enrolled from a Chinese population and 50 (23.5%) of the patients were deemed CBF-AML. KIT mutations were identified in 30% of the CBF-AML cohort. The KIT mutations were clustered in exon 17 and exon 8, and KIT mutations in exons 8 and 17 were correlated with a shorter overall survival (OS) (5-year OS: 30.0 ± 14.5% vs. 73.0 ± 8.5%, p = .007) and event-free survival (EFS) (5-year EFS: 30.0 ± 14.5% vs. 73.0 ± 8.5%, p = .003). Multivariate analysis revealed KIT mutations as an independent risk factor in CBF-AML. Our results suggest that KIT mutations are a molecular marker for an inferior prognosis in pediatric CBF-AML.

  17. Does atrial natriuretic factor protect against right ventricular overload II. Tissue binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ou, L.C.; Yen, S.; Sardella, G.L.

    1989-10-01

    Previous studies have led us to hypothesize that the physiological significance of the diuretic and pulmonary vaso-relaxant effects of atrial natriuretic factor (ANF) is to protect the right heart. This study was designed to evaluate the relative importance of various peripheral tissues as sites of ANF action by tracing the temporal pattern of distribution of {sup 125}I-ANF and quantitating the specific binding sites. An in vivo approach, utilizing trace amount of {sup 125}I-ANF was adopted to simulate physiological conditions. {sup 125}I-ANF injected either intravenously or intra-arterially was quickly bound to peripheral tissues with less than 5% remaining in the circulationmore » after 1 min. The relative binding capacity was greatest in the lung, followed by the kidney, right ventricle, adrenal gland, and left ventricle. The magnitude of specific ANF binding sites per gram of tissue weight followed a similar order. The data demonstrate that ANF released under all circumstances is quickly bound to the target organs, particularly the lung and the kidney, and suggest that these two organs could be the most important target organs of ANF. This evidence provides further support for the proposed hypothesis that a major evolutionary role of ANF is the protection of the right ventricle from mechanical loads.« less

  18. Diagnostic value of urinary tissue inhibitor of metalloproteinase-2 and insulin-like growth factor binding protein 7 for acute kidney injury: a meta-analysis.

    PubMed

    Jia, Hui-Miao; Huang, Li-Feng; Zheng, Yue; Li, Wen-Xiong

    2017-03-25

    Tissue inhibitor of metalloproteinase-2 (TIMP-2) and insulin-like growth factor binding protein 7 (IGFBP7), inducers of G 1 cell cycle arrest, are two recently discovered good biomarkers for early diagnosis of acute kidney injury (AKI). To obtain a more robust performance measurement, the present meta-analysis was performed, pooling existing studies. Literature in the MEDLINE (via PubMed), Ovid, Embase, and Cochrane Library databases was systematically searched from inception to 12 October 2016. Studies that met the set inclusion and exclusion criteria were identified by two independent investigators. The diagnostic value of urinary [TIMP-2] × [IGFBP7] for AKI was evaluated by pooled sensitivity, specificity, likelihood ratio (LR), diagnostic odds ratio (DOR), and summary receiver operating characteristic (SROC) curve analyses. The causes of heterogeneity were explored by sensitivity and subgroup analyses. A total of nine published and eligible studies assessing 1886 cases were included in this meta-analysis. Early diagnostic value of urinary [TIMP-2] × [IGFBP7] for AKI was assessed using a random-effects model. Pooled sensitivity and specificity with corresponding 95% CIs were 0.83 (95% CI 0.79-0.87, heterogeneity I 2  = 68.8%) and 0.55 (95% CI 0.52-0.57, I 2  = 92.9%), respectively. Pooled positive LR, negative LR, and DOR were 2.37 (95% CI 1.87-2.99, I 2  = 82.6%), 0.30 (95% CI 0.21-0.41, I 2  = 43.4%), and 9.92 (95% CI 6.09-16.18, I 2  = 38.5%), respectively. The AUC estimated by SROC was 0.846 (SE 0.027) with a Q* value of 0.777 (SE 0.026). Sensitivity analysis indicated that one study significantly affected the stability of pooled results. Subgroup analysis showed that population setting and AKI threshold were the key factors causing heterogeneity in pooled sensitivity and specificity. On the basis of recent evidence, urinary [TIMP-2] × [IGFBP7] is an effective predictive factor of AKI. PROSPERO registration number: CRD

  19. A DNA-binding protein from Candida albicans that binds to the RPG box of Saccharomyces cerevisiae and the telomeric repeat sequence of C. albicans.

    PubMed

    Ishii, N; Yamamoto, M; Lahm, H W; Iizumi, S; Yoshihara, F; Nakayama, H; Arisawa, M; Aoki, Y

    1997-02-01

    Electromobility shift assays with a DNA probe containing the Saccharomyces cerevisiae ENO1 RPG box identified a specific DNA-binding protein in total protein extracts of Candida albicans. The protein, named Rbf1p (RPG-box-binding protein 1), bound to other S. cerevisiae RPG boxes, although the nucleotide recognition profile was not completely the same as that of S. cerevisiae Rap 1p (repressor-activator protein 1), an RPG-box-binding protein. The repetitive sequence of the C. albicans chromosomal telomere also competed with RPG-box binding to Rbf1p. For further analysis, we purified Rbf1p 57,600-fold from C. albicans total protein extracts, raised mAbs against the purified protein and immunologically cloned the gene, whose ORF specified a protein of 527 aa. The bacterially expressed protein showed RPG-box-binding activity with the same profile as that of the purified one. The Rbf1p, containing two glutamine-rich regions that are found in many transcription factors, showed transcriptional activation capability in S. cerevisiae and was predominantly observed in nuclei. These results suggest that Rbf1p is a transcription factor with telomere-binding activity in C. albicans.

  20. Nuclear actions of insulin-like growth factor binding protein-3.

    PubMed

    Baxter, Robert C

    2015-09-10

    In addition to its actions outside the cell, cellular uptake and nuclear import of insulin-like growth factor binding protein-3 (IGFBP-3) has been recognized for almost two decades, but knowledge of its nuclear actions has been slow to emerge. IGFBP-3 has a functional nuclear localization signal and interacts with the nuclear transport protein importin-β. Within the nucleus IGFBP-3 appears to have a role in transcriptional regulation. It can bind to the nuclear receptor, retinoid X receptor-α and several of its dimerization partners, including retinoic acid receptor, vitamin D receptor (VDR), and peroxisome proliferator-activated receptor-γ (PPARγ). These interactions modulate the functions of these receptors, for example inhibiting VDR-dependent transcription in osteoblasts and PPARγ-dependent transcription in adipocytes. Nuclear IGFBP-3 can be detected by immunohistochemistry in cancer and other tissues, and its presence in the nucleus has been shown in many cell culture studies to be necessary for its pro-apoptotic effect, which may also involve interaction with the nuclear receptor Nur77, and export from the nucleus. IGFBP-3 is p53-inducible and in response to DNA damage, forms a complex with the epidermal growth factor receptor (EGFR), translocating to the nucleus to interact with DNA-dependent protein kinase. Inhibition of EGFR kinase activity or downregulation of IGFBP-3 can inhibit DNA double strand-break repair by nonhomologous end joining. IGFBP-3 thus has the ability to influence many cell functions through its interactions with intranuclear pathways, but the importance of these interactions in vivo, and their potential to be targeted for therapeutic benefit, require further investigation. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. The intracellular domain of teneurin-1 induces the activity of microphthalmia-associated transcription factor (MITF) by binding to transcriptional repressor HINT1.

    PubMed

    Schöler, Jonas; Ferralli, Jacqueline; Thiry, Stéphane; Chiquet-Ehrismann, Ruth

    2015-03-27

    Teneurins are large type II transmembrane proteins that are necessary for the normal development of the CNS. Although many studies highlight the significance of teneurins, especially during development, there is only limited information known about the molecular mechanisms of function. Previous studies have shown that the N-terminal intracellular domain (ICD) of teneurins can be cleaved at the membrane and subsequently translocates to the nucleus, where it can influence gene transcription. Because teneurin ICDs do not contain any intrinsic DNA binding sequences, interaction partners are required to affect transcription. Here, we identified histidine triad nucleotide binding protein 1 (HINT1) as a human teneurin-1 ICD interaction partner in a yeast two-hybrid screen. This interaction was confirmed in human cells, where HINT1 is known to inhibit the transcription of target genes by directly binding to transcription factors at the promoter. In a whole transcriptome analysis of BS149 glioblastoma cells overexpressing the teneurin-1 ICD, several microphthalmia-associated transcription factor (MITF) target genes were found to be up-regulated. Directly comparing the transcriptomes of MITF versus TEN1-ICD-overexpressing BS149 cells revealed 42 co-regulated genes, including glycoprotein non-metastatic b (GPNMB). Using real-time quantitative PCR to detect endogenous GPNMB expression upon overexpression of MITF and HINT1 as well as promoter reporter assays using GPNMB promoter constructs, we could demonstrate that the teneurin-1 ICD binds HINT1, thus switching on MITF-dependent transcription of GPNMB. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Differential compartmentalization of Streptococcus pyogenes virulence factors and host protein binding properties as a mechanism for host adaptation.

    PubMed

    Kilsgård, Ola; Karlsson, Christofer; Malmström, Erik; Malmström, Johan

    2016-11-01

    Streptococcus pyogenes is an important human pathogen responsible for substantial morbidity and mortality worldwide. Although S. pyogenes is a strictly human pathogen with no other known animal reservoir, several murine infection models exist to explore different aspects of the bacterial pathogenesis. Inoculating mice with wild-type S. pyogenes strains can result in the generation of new bacterial phenotypes that are hypervirulent compared to the original inoculum. In this study, we used a serial mass spectrometry based proteomics strategy to investigate if these hypervirulent strains have an altered distribution of virulence proteins across the intracellular, surface associated and secreted bacterial compartments and if any change in compartmentalization can alter the protein-protein interaction network between bacteria and host proteins. Quantitative analysis of the S. pyogenes surface and secreted proteomes revealed that animal passaged strains are associated with significantly higher amount of virulence factors on the bacterial surface and in the media. This altered virulence factor compartmentalization results in increased binding of several mouse plasma proteins to the bacterial surface, a trend that was consistent for mouse plasma from several different mouse strains. In general, both the wild-type strain and animal passaged strain were capable of binding high amounts of human plasma proteins. However, compared to the non-passaged strains, the animal passaged strains displayed an increased ability to bind mouse plasma proteins, in particular for M protein binders, indicating that the increased affinity for mouse blood plasma proteins is a consequence of host adaptation of this pathogen to a new host. In conclusion, plotting the total amount of virulence factors against the total amount of plasma proteins associated to the bacterial surface could clearly separate out animal passaged strains from wild type strains indicating a virulence model that could

  3. Transcriptomic analysis of neuregulin-1 regulated genes following ischemic stroke by computational identification of promoter binding sites: A role for the ETS-1 transcription factor.

    PubMed

    Surles-Zeigler, Monique C; Li, Yonggang; Distel, Timothy J; Omotayo, Hakeem; Ge, Shaokui; Ford, Byron D

    2018-01-01

    Ischemic stroke is a major cause of mortality in the United States. We previously showed that neuregulin-1 (NRG1) was neuroprotective in rat models of ischemic stroke. We used gene expression profiling to understand the early cellular and molecular mechanisms of NRG1's effects after the induction of ischemia. Ischemic stroke was induced by middle cerebral artery occlusion (MCAO). Rats were allocated to 3 groups: (1) control, (2) MCAO and (3) MCAO + NRG1. Cortical brain tissues were collected three hours following MCAO and NRG1 treatment and subjected to microarray analysis. Data and statistical analyses were performed using R/Bioconductor platform alongside Genesis, Ingenuity Pathway Analysis and Enrichr software packages. There were 2693 genes differentially regulated following ischemia and NRG1 treatment. These genes were organized by expression patterns into clusters using a K-means clustering algorithm. We further analyzed genes in clusters where ischemia altered gene expression, which was reversed by NRG1 (clusters 4 and 10). NRG1, IRS1, OPA3, and POU6F1 were central linking (node) genes in cluster 4. Conserved Transcription Factor Binding Site Finder (CONFAC) identified ETS-1 as a potential transcriptional regulator of NRG1 suppressed genes following ischemia. A transcription factor activity array showed that ETS-1 activity was increased 2-fold, 3 hours following ischemia and this activity was attenuated by NRG1. These findings reveal key early transcriptional mechanisms associated with neuroprotection by NRG1 in the ischemic penumbra.

  4. Epigenetic functions enriched in transcription factors binding to mouse recombination hotspots.

    PubMed

    Wu, Min; Kwoh, Chee-Keong; Przytycka, Teresa M; Li, Jing; Zheng, Jie

    2012-06-21

    The regulatory mechanism of recombination is a fundamental problem in genomics, with wide applications in genome-wide association studies, birth-defect diseases, molecular evolution, cancer research, etc. In mammalian genomes, recombination events cluster into short genomic regions called "recombination hotspots". Recently, a 13-mer motif enriched in hotspots is identified as a candidate cis-regulatory element of human recombination hotspots; moreover, a zinc finger protein, PRDM9, binds to this motif and is associated with variation of recombination phenotype in human and mouse genomes, thus is a trans-acting regulator of recombination hotspots. However, this pair of cis and trans-regulators covers only a fraction of hotspots, thus other regulators of recombination hotspots remain to be discovered. In this paper, we propose an approach to predicting additional trans-regulators from DNA-binding proteins by comparing their enrichment of binding sites in hotspots. Applying this approach on newly mapped mouse hotspots genome-wide, we confirmed that PRDM9 is a major trans-regulator of hotspots. In addition, a list of top candidate trans-regulators of mouse hotspots is reported. Using GO analysis we observed that the top genes are enriched with function of histone modification, highlighting the epigenetic regulatory mechanisms of recombination hotspots.

  5. Epigenetic functions enriched in transcription factors binding to mouse recombination hotspots

    PubMed Central

    2012-01-01

    The regulatory mechanism of recombination is a fundamental problem in genomics, with wide applications in genome-wide association studies, birth-defect diseases, molecular evolution, cancer research, etc. In mammalian genomes, recombination events cluster into short genomic regions called "recombination hotspots". Recently, a 13-mer motif enriched in hotspots is identified as a candidate cis-regulatory element of human recombination hotspots; moreover, a zinc finger protein, PRDM9, binds to this motif and is associated with variation of recombination phenotype in human and mouse genomes, thus is a trans-acting regulator of recombination hotspots. However, this pair of cis and trans-regulators covers only a fraction of hotspots, thus other regulators of recombination hotspots remain to be discovered. In this paper, we propose an approach to predicting additional trans-regulators from DNA-binding proteins by comparing their enrichment of binding sites in hotspots. Applying this approach on newly mapped mouse hotspots genome-wide, we confirmed that PRDM9 is a major trans-regulator of hotspots. In addition, a list of top candidate trans-regulators of mouse hotspots is reported. Using GO analysis we observed that the top genes are enriched with function of histone modification, highlighting the epigenetic regulatory mechanisms of recombination hotspots. PMID:22759569

  6. Sequence characterization of S100A8 gene reveals structural differences of protein and transcriptional factor binding sites in water buffalo and yak.

    PubMed

    Kathiravan, P; Goyal, S; Kataria, R S; Mishra, B P; Jayakumar, S; Joshi, B K

    2011-01-01

    The present study was undertaken to characterize the structure of S100A8 gene and its promoter in water buffalo and yak. Sequence data of 2.067 kb, 2.071 kb, and 2.052 kb with respect to complete S100A8 gene including 5' flanking region was generated in river buffalo, swamp buffalo, and yak, respectively. BLAST analysis of coding DNA sequences (CDS) of S100A8 gene revealed 95% homology of buffalo sequence with cattle, 85% with pig and horse, 83% with dog, 72-73% with murines, and around 79% with primates and humans. Phylogenetic analysis of predicted CDS revealed distinct clustering of murines, primates, and domestic animals with bovines and bubalines forming a subcluster among farm animals. In silico translation of predicted CDS revealed a sequence of 89 amino acids with 7 amino acid changes between cattle and buffalo and 2 changes between cattle and yak. The search for Pfam family revealed the N-terminal calcium binding domain and the noncanonical EF hand domain in the carboxy terminus, with more variations being observed in the N-terminal domain among different species. Two amino acid changes observed in carboxy terminal EF hand domain resulted in altered secondary structure of yak S100A8 protein. Analysis of S100A8 gene promoter revealed 14 putative motifs for transcriptional factor binding sites. Two putative motifs viz. C/EBP and v-Myb were found to be absent in swamp buffalo as compared to river buffalo and cattle. Differences in the structure of S100A8 protein and the transcriptional factor binding sites identified in the present study need to be analyzed further for their functional significance in yak and swamp buffalo respectively. Copyright © Taylor & Francis Group, LLC

  7. The VBP and a1/EBP leucine zipper factors bind overlapping subsets of avian retroviral long terminal repeat CCAAT/enhancer elements.

    PubMed

    Smith, C D; Baglia, L A; Curristin, S M; Ruddell, A

    1994-10-01

    Two long terminal repeat (LTR) enhancer-binding proteins which may regulate high rates of avian leukosis virus (ALV) LTR-enhanced c-myc transcription during bursal lymphomagenesis have been identified (A. Ruddell, M. Linial, and M. Groudine, Mol. Cell. Biol. 9:5660-5668, 1989). The genes encoding the a1/EBP and a3/EBP binding factors were cloned by expression screening of a lambda gt11 cDNA library from chicken bursal lymphoma cells. The a1/EBP cDNA encodes a novel leucine zipper transcription factor (W. Bowers and A. Ruddell, J. Virol. 66:6578-6586, 1992). The partial a3/EBP cDNA clone encodes amino acids 84 to 313 of vitellogenin gene-binding protein (VBP), a leucine zipper factor that binds the avian vitellogenin II gene promoter (S. Iyer, D. Davis, and J. Burch, Mol. Cell. Biol. 11:4863-4875, 1991). Multiple VBP mRNAs are expressed in B cells in a pattern identical to that previously observed for VBP in other cell types. The LTR-binding activities of VBP, a1/EBP, and B-cell nuclear extract protein were compared and mapped by gel shift, DNase I footprinting, and methylation interference assays. The purified VBP and a1/EBP bacterial fusion proteins bind overlapping but distinct subsets of CCAAT/enhancer elements in the closely related ALV and Rous sarcoma virus (RSV) LTR enhancers. Protein binding to these CCAAT/enhancer elements accounts for most of the labile LTR enhancer-binding activity observed in B-cell nuclear extracts. VBP and a1/EBP could mediate the high rates of ALV and RSV LTR-enhanced transcription in bursal lymphoma cells and many other cell types.

  8. Energetics of Glutathione Binding to Human Eukaryotic Elongation Factor 1 Gamma: Isothermal Titration Calorimetry and Molecular Dynamics Studies.

    PubMed

    Tshabalala, Thabiso N; Tomescu, Mihai-Silviu; Prior, Allan; Balakrishnan, Vijayakumar; Sayed, Yasien; Dirr, Heini W; Achilonu, Ikechukwu

    2016-12-01

    The energetics of ligand binding to human eukaryotic elongation factor 1 gamma (heEF1γ) was investigated using reduced glutathione (GSH), oxidised glutathione (GSSG), glutathione sulfonate and S-hexylglutathione as ligands. The experiments were conducted using isothermal titration calorimetry, and the findings were supported using computational studies. The data show that the binding of these ligands to heEF1γ is enthalpically favourable and entropically driven (except for the binding of GSSG). The full length heEF1γ binds GSSG with lower affinity (K d  = 115 μM), with more hydrogen-bond contacts (ΔH = -73.8 kJ/mol) and unfavourable entropy (-TΔS = 51.7 kJ/mol) compared to the glutathione transferase-like N-terminus domain of heEF1γ, which did not show preference to any specific ligand. Computational free binding energy calculations from the 10 ligand poses show that GSSG and GSH consistently bind heEF1γ, and that both ligands bind at the same site with a folded bioactive conformation. This study reveals the possibility that heEF1γ is a glutathione-binding protein.

  9. Refrigeration-Induced Binding of von Willebrand Factor Facilitates Fast Clearance of Refrigerated Platelets.

    PubMed

    Chen, Wenchun; Druzak, Samuel A; Wang, Yingchun; Josephson, Cassandra D; Hoffmeister, Karin M; Ware, Jerry; Li, Renhao

    2017-12-01

    Apheresis platelets for transfusion treatment are currently stored at room temperature because after refrigeration platelets are rapidly cleared on transfusion. In this study, the role of von Willebrand factor (VWF) in the clearance of refrigerated platelets is addressed. Human and murine platelets were refrigerated in gas-permeable bags at 4°C for 24 hours. VWF binding, platelet signaling events, and platelet post-transfusion recovery and survival were measured. After refrigeration, the binding of plasma VWF to platelets was drastically increased, confirming earlier studies. The binding was blocked by peptide OS1 that bound specifically to platelet glycoprotein (GP)Ibα and was absent in VWF - / - plasma. Although surface expression of GPIbα was reduced after refrigeration, refrigeration-induced VWF binding under physiological shear induced unfolding of the GPIbα mechanosensory domain on the platelet, as evidenced by increased exposure of a linear epitope therein. Refrigeration and shear treatment also induced small elevation of intracellular Ca 2+ , phosphatidylserine exposure, and desialylation of platelets, which were absent in VWF -/- platelets or inhibited by OS1, which is a monomeric 11-residue peptide (CTERMALHNLC). Furthermore, refrigerated VWF -/- platelets displayed increased post-transfusion recovery and survival than wild-type ones. Similarly, adding OS1 to transgenic murine platelets expressing only human GPIbα during refrigeration improved their post-transfusion recovery and survival. Refrigeration-induced binding of VWF to platelets facilitates their rapid clearance by inducing GPIbα-mediated signaling. Our results suggest that inhibition of the VWF-GPIbα interaction may be a potential strategy to enable refrigeration of platelets for transfusion treatment. © 2017 American Heart Association, Inc.

  10. Functional cloning of the proto-oncogene brain factor-1 (BF-1) as a Smad-binding antagonist of transforming growth factor-beta signaling.

    PubMed

    Rodriguez, C; Huang, L J; Son, J K; McKee, A; Xiao, Z; Lodish, H F

    2001-08-10

    Using the plasminogen activator inhibitor (PAI) promoter to drive the expression of a reporter gene (mouse CD2), we devised a system to clone negative regulators of the transforming growth factor-beta (TGF-beta) signaling pathway. We infected a TGF-beta-responsive cell line (MvLu1) with a retroviral cDNA library, selecting by fluorescence-activated cell sorter single cells displaying low PAI promoter activity in response to TGF-beta. Using this strategy we cloned the proto-oncogene brain factor-1 (BF-1). BF-1 represses the PAI promoter in part by associating with both unphosphorylated Smad3 (in the cytoplasm) and phosphorylated Smad3 (in the nucleus), thus preventing its binding to DNA. BF-1 also associates with Smad1, -2, and -4; the Smad MH2 domain binds to BF-1, and the C-terminal segment of BF-1 is uniquely and solely required for binding to Smads. Further, BF-1 represses another TGF-beta-induced promoter (p15), it up-regulates a TGF-beta-repressed promoter (Cyclin A), and it reverses the growth arrest caused by TGF-beta. Our results suggest that BF-1 is a general inhibitor of TGF-beta signaling and as such may play a key role during brain development.

  11. SNP-array lesions in core binding factor acute myeloid leukemia

    PubMed Central

    Duployez, Nicolas; Boudry-Labis, Elise; Roumier, Christophe; Boissel, Nicolas; Petit, Arnaud; Geffroy, Sandrine; Helevaut, Nathalie; Celli-Lebras, Karine; Terré, Christine; Fenneteau, Odile; Cuccuini, Wendy; Luquet, Isabelle; Lapillonne, Hélène; Lacombe, Catherine; Cornillet, Pascale; Ifrah, Norbert; Dombret, Hervé; Leverger, Guy; Jourdan, Eric; Preudhomme, Claude

    2018-01-01

    Acute myeloid leukemia (AML) with t(8;21) and inv(16), together referred as core binding factor (CBF)-AML, are recognized as unique entities. Both rearrangements share a common pathophysiology, the disruption of the CBF, and a relatively good prognosis. Experiments have demonstrated that CBF rearrangements were insufficient to induce leukemia, implying the existence of cooperating events. To explore these aberrations, we performed single nucleotide polymorphism (SNP)-array in a well-annotated cohort of 198 patients with CBF-AML. Excluding breakpoint-associated lesions, the most frequent events included loss of a sex chromosome (53%), deletions at 9q21 (12%) and 7q36 (9%) in patients with t(8;21) compared with trisomy 22 (13%), trisomy 8 (10%) and 7q36 deletions (12%) in patients with inv(16). SNP-array revealed novel recurrent genetic alterations likely to be involved in CBF-AML leukemogenesis. ZBTB7A mutations (20% of t(8;21)-AML) were shown to be a target of copy-neutral losses of heterozygosity (CN-LOH) at chromosome 19p. FOXP1 focal deletions were identified in 5% of inv(16)-AML while sequence analysis revealed that 2% carried FOXP1 truncating mutations. Finally, CCDC26 disruption was found in both subtypes (4.5% of the whole cohort) and possibly highlighted a new lesion associated with aberrant tyrosine kinase signaling in this particular subtype of leukemia. PMID:29464086

  12. SNP-array lesions in core binding factor acute myeloid leukemia.

    PubMed

    Duployez, Nicolas; Boudry-Labis, Elise; Roumier, Christophe; Boissel, Nicolas; Petit, Arnaud; Geffroy, Sandrine; Helevaut, Nathalie; Celli-Lebras, Karine; Terré, Christine; Fenneteau, Odile; Cuccuini, Wendy; Luquet, Isabelle; Lapillonne, Hélène; Lacombe, Catherine; Cornillet, Pascale; Ifrah, Norbert; Dombret, Hervé; Leverger, Guy; Jourdan, Eric; Preudhomme, Claude

    2018-01-19

    Acute myeloid leukemia (AML) with t(8;21) and inv(16), together referred as core binding factor (CBF)-AML, are recognized as unique entities. Both rearrangements share a common pathophysiology, the disruption of the CBF, and a relatively good prognosis. Experiments have demonstrated that CBF rearrangements were insufficient to induce leukemia, implying the existence of cooperating events. To explore these aberrations, we performed single nucleotide polymorphism (SNP)-array in a well-annotated cohort of 198 patients with CBF-AML. Excluding breakpoint-associated lesions, the most frequent events included loss of a sex chromosome (53%), deletions at 9q21 (12%) and 7q36 (9%) in patients with t(8;21) compared with trisomy 22 (13%), trisomy 8 (10%) and 7q36 deletions (12%) in patients with inv(16). SNP-array revealed novel recurrent genetic alterations likely to be involved in CBF-AML leukemogenesis. ZBTB7A mutations (20% of t(8;21)-AML) were shown to be a target of copy-neutral losses of heterozygosity (CN-LOH) at chromosome 19p. FOXP1 focal deletions were identified in 5% of inv(16)-AML while sequence analysis revealed that 2% carried FOXP1 truncating mutations. Finally, CCDC26 disruption was found in both subtypes (4.5% of the whole cohort) and possibly highlighted a new lesion associated with aberrant tyrosine kinase signaling in this particular subtype of leukemia.

  13. Dynamics of TBP binding to the TATA box

    NASA Astrophysics Data System (ADS)

    Schluesche, Peter; Heiss, Gregor; Meisterernst, Michael; Lamb, Don C.

    2008-02-01

    Gene expression is highly controlled and regulated in living cells. One of the first steps in gene transcription is recognition of the promoter site by the TATA box Binding Protein (TBP). TBP recruits other transcriptions factors and eventually the RNA polymerase II to transcribe the DNA in mRNA. We developed a single pair Förster Resonance Energy Transfer (spFRET) assay to investigate the mechanism of gene regulation. Here, we apply this assay to investigate the initial binding process of TBP to the adenovirus major late (AdML) promoter site. From the spFRET measurements, we were able to identify two conformations of the TBP-DNA complex that correspond to TBP bound in the correct and the opposite orientation. Increased incubation times or the presence of the transcription factor TFIIA improved the alignment of TBP on the promoter site. Binding of TBP to the TATA box shows a rich dynamics with abrupt transitions between multiple FRET states. A frame-wise histogram analysis revealed the presence of at least six discrete states, showing that TBP binding is more complicated than previously thought. Hence, the spFRET assay is very sensitive to the conformation of the TBP-DNA complex and is very promising tool for investigating the pathway of TBP binding in detail.

  14. A systematic analysis of factors localized to damaged chromatin reveals PARP-dependent recruitment of transcription factors

    PubMed Central

    Izhar, Lior; Adamson, Britt; Ciccia, Alberto; Lewis, Jedd; Pontano-Vaites, Laura; Leng, Yumei; Liang, Anthony C.; Westbrook, Thomas F.; Harper, J. Wade; Elledge, Stephen J.

    2015-01-01

    Localization to sites of DNA damage is a hallmark of DNA damage response (DDR) proteins. To identify new DDR factors, we screened epitope-tagged proteins for localization to sites of chromatin damaged by UV laser microirradiation and found >120 proteins that localize to damaged chromatin. These include the BAF tumor suppressor complex and the ALS candidate protein TAF15. TAF15 contains multiple domains that bind damaged chromatin in a PARP-dependent manner, suggesting a possible role as glue that tethers multiple PAR chains together. Many positives were transcription factors and >70% of randomly tested transcription factors localized to sites of DNA damage and approximately 90% were PARP-dependent for localization. Mutational analyses showed that localization to damaged chromatin is DNA-binding domain-dependent. By examining Hoechst staining patterns at damage sites, we see evidence of chromatin decompaction that is PARP-dependent. We propose that PARP-regulated chromatin remodeling at sites of damage allows transient accessibility of DNA-binding proteins. PMID:26004182

  15. DNA Binding and Phosphorylation Regulate the Core Structure of the NF-κB p50 Transcription Factor

    NASA Astrophysics Data System (ADS)

    Vonderach, Matthias; Byrne, Dominic P.; Barran, Perdita E.; Eyers, Patrick A.; Eyers, Claire E.

    2018-06-01

    The NF-κB transcription factors are known to be extensively phosphorylated, with dynamic site-specific modification regulating their ability to dimerize and interact with DNA. p50, the proteolytic product of p105 (NF-κB1), forms homodimers that bind DNA but lack intrinsic transactivation function, functioning as repressors of transcription from κB promoters. Here, we examine the roles of specific phosphorylation events catalysed by either protein kinase A (PKAc) or Chk1, in regulating the functions of p50 homodimers. LC-MS/MS analysis of proteolysed p50 following in vitro phosphorylation allows us to define Ser328 and Ser337 as PKAc- and Chk1-mediated modifications, and pinpoint an additional four Chk1 phosphosites: Ser65, Thr152, Ser242 and Ser248. Native mass spectrometry (MS) reveals Chk1- and PKAc-regulated disruption of p50 homodimer formation through Ser337. Additionally, we characterise the Chk1-mediated phosphosite, Ser242, as a regulator of DNA binding, with a S242D p50 phosphomimetic exhibiting a > 10-fold reduction in DNA binding affinity. Conformational dynamics of phosphomimetic p50 variants, including S242D, are further explored using ion-mobility MS (IM-MS). Finally, comparative theoretical modelling with experimentally observed p50 conformers, in the absence and presence of DNA, reveals that the p50 homodimer undergoes conformational contraction during electrospray ionisation that is stabilised by complex formation with κB DNA.

  16. DNA Binding and Phosphorylation Regulate the Core Structure of the NF-κB p50 Transcription Factor.

    PubMed

    Vonderach, Matthias; Byrne, Dominic P; Barran, Perdita E; Eyers, Patrick A; Eyers, Claire E

    2018-06-05

    The NF-κB transcription factors are known to be extensively phosphorylated, with dynamic site-specific modification regulating their ability to dimerize and interact with DNA. p50, the proteolytic product of p105 (NF-κB1), forms homodimers that bind DNA but lack intrinsic transactivation function, functioning as repressors of transcription from κB promoters. Here, we examine the roles of specific phosphorylation events catalysed by either protein kinase A (PKA c ) or Chk1, in regulating the functions of p50 homodimers. LC-MS/MS analysis of proteolysed p50 following in vitro phosphorylation allows us to define Ser328 and Ser337 as PKA c - and Chk1-mediated modifications, and pinpoint an additional four Chk1 phosphosites: Ser65, Thr152, Ser242 and Ser248. Native mass spectrometry (MS) reveals Chk1- and PKA c -regulated disruption of p50 homodimer formation through Ser337. Additionally, we characterise the Chk1-mediated phosphosite, Ser242, as a regulator of DNA binding, with a S242D p50 phosphomimetic exhibiting a > 10-fold reduction in DNA binding affinity. Conformational dynamics of phosphomimetic p50 variants, including S242D, are further explored using ion-mobility MS (IM-MS). Finally, comparative theoretical modelling with experimentally observed p50 conformers, in the absence and presence of DNA, reveals that the p50 homodimer undergoes conformational contraction during electrospray ionisation that is stabilised by complex formation with κB DNA. Graphical Abstract ᅟ.

  17. Identification of Human Lineage-Specific Transcriptional Coregulators Enabled by a Glossary of Binding Modules and Tunable Genomic Backgrounds.

    PubMed

    Mariani, Luca; Weinand, Kathryn; Vedenko, Anastasia; Barrera, Luis A; Bulyk, Martha L

    2017-09-27

    Transcription factors (TFs) control cellular processes by binding specific DNA motifs to modulate gene expression. Motif enrichment analysis of regulatory regions can identify direct and indirect TF binding sites. Here, we created a glossary of 108 non-redundant TF-8mer "modules" of shared specificity for 671 metazoan TFs from publicly available and new universal protein binding microarray data. Analysis of 239 ENCODE TF chromatin immunoprecipitation sequencing datasets and associated RNA sequencing profiles suggest the 8mer modules are more precise than position weight matrices in identifying indirect binding motifs and their associated tethering TFs. We also developed GENRE (genomically equivalent negative regions), a tunable tool for construction of matched genomic background sequences for analysis of regulatory regions. GENRE outperformed four state-of-the-art approaches to background sequence construction. We used our TF-8mer glossary and GENRE in the analysis of the indirect binding motifs for the co-occurrence of tethering factors, suggesting novel TF-TF interactions. We anticipate that these tools will aid in elucidating tissue-specific gene-regulatory programs. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Analysis of RNA binding by the dengue virus NS5 RNA capping enzyme.

    PubMed

    Henderson, Brittney R; Saeedi, Bejan J; Campagnola, Grace; Geiss, Brian J

    2011-01-01

    Flaviviruses are small, capped positive sense RNA viruses that replicate in the cytoplasm of infected cells. Dengue virus and other related flaviviruses have evolved RNA capping enzymes to form the viral RNA cap structure that protects the viral genome and directs efficient viral polyprotein translation. The N-terminal domain of NS5 possesses the methyltransferase and guanylyltransferase activities necessary for forming mature RNA cap structures. The mechanism for flavivirus guanylyltransferase activity is currently unknown, and how the capping enzyme binds its diphosphorylated RNA substrate is important for deciphering how the flavivirus guanylyltransferase functions. In this report we examine how flavivirus NS5 N-terminal capping enzymes bind to the 5' end of the viral RNA using a fluorescence polarization-based RNA binding assay. We observed that the K(D) for RNA binding is approximately 200 nM Dengue, Yellow Fever, and West Nile virus capping enzymes. Removal of one or both of the 5' phosphates reduces binding affinity, indicating that the terminal phosphates contribute significantly to binding. RNA binding affinity is negatively affected by the presence of GTP or ATP and positively affected by S-adensyl methoninine (SAM). Structural superpositioning of the dengue virus capping enzyme with the Vaccinia virus VP39 protein bound to RNA suggests how the flavivirus capping enzyme may bind RNA, and mutagenesis analysis of residues in the putative RNA binding site demonstrate that several basic residues are critical for RNA binding. Several mutants show differential binding to 5' di-, mono-, and un-phosphorylated RNAs. The mode of RNA binding appears similar to that found with other methyltransferase enzymes, and a discussion of diphosphorylated RNA binding is presented.

  19. The yeast transcription elongation factor Spt4/5 is a sequence‐specific RNA binding protein

    PubMed Central

    Blythe, Amanda J.; Yazar‐Klosinski, Berra; Webster, Michael W.; Chen, Eefei; Vandevenne, Marylène; Bendak, Katerina; Mackay, Joel P.; Hartzog, Grant A.

    2016-01-01

    Abstract The heterodimeric transcription elongation factor Spt4/Spt5 (Spt4/5) tightly associates with RNAPII to regulate both transcriptional elongation and co‐transcriptional pre‐mRNA processing; however, the mechanisms by which Spt4/5 acts are poorly understood. Recent studies of the human and Drosophila Spt4/5 complexes indicate that they can bind nucleic acids in vitro. We demonstrate here that yeast Spt4/5 can bind in a sequence‐specific manner to single stranded RNA containing AAN repeats. Furthermore, we show that the major protein determinants for RNA‐binding are Spt4 together with the NGN domain of Spt5 and that the KOW domains are not required for RNA recognition. These findings attribute a new function to a domain of Spt4/5 that associates directly with RNAPII, making significant steps towards elucidating the mechanism behind transcriptional control by Spt4/5. PMID:27376968

  20. Mechanisms of extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor signal transduction pathway in depressive disorder☆

    PubMed Central

    Wang, Hongyan; Zhang, Yingquan; Qiao, Mingqi

    2013-01-01

    The extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor signal transduction pathway plays an important role in the mechanism of action of antidepressant drugs and has dominated recent studies on the pathogenesis of depression. In the present review we summarize the known roles of extracellular signal-regulated kinase, cAMP response element-binding protein and brain-derived neurotrophic factor in the pathogenesis of depression and in the mechanism of action of antidepressant medicines. The extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor pathway has potential to be used as a biological index to help diagnose depression, and as such it is considered as an important new target in the treatment of depression. PMID:25206732

  1. Conformational stability of the epidermal growth factor (EGF) receptor as influenced by glycosylation, dimerization and EGF hormone binding.

    PubMed

    Taylor, Eric S; Pol-Fachin, Laercio; Lins, Roberto D; Lower, Steven K

    2017-04-01

    The epidermal growth factor receptor (EGFR) is an important transmembrane glycoprotein kinase involved the initiation or perpetuation of signal transduction cascades within cells. These processes occur after EGFR binds to a ligand [epidermal growth factor (EGF)], thus inducing its dimerization and tyrosine autophosphorylation. Previous publications have highlighted the importance of glycosylation and dimerization for promoting proper function of the receptor and conformation in membranes; however, the effects of these associations on the protein conformational stability have not yet been described. Molecular dynamics simulations were performed to characterize the conformational preferences of the monomeric and dimeric forms of the EGFR extracellular domain upon binding to EGF in the presence and absence of N-glycan moieties. Structural stability analyses revealed that EGF provides the most conformational stability to EGFR, followed by glycosylation and dimerization, respectively. The findings also support that EGF-EGFR binding takes place through a large-scale induced-fitting mechanism. Proteins 2017; 85:561-570. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Cloning of Human Tumor Necrosis Factor (TNF) Receptor cDNA and Expression of Recombinant Soluble TNF-Binding Protein

    NASA Astrophysics Data System (ADS)

    Gray, Patrick W.; Barrett, Kathy; Chantry, David; Turner, Martin; Feldmann, Marc

    1990-10-01

    The cDNA for one of the receptors for human tumor necrosis factor (TNF) has been isolated. This cDNA encodes a protein of 455 amino acids that is divided into an extracellular domain of 171 residues and a cytoplasmic domain of 221 residues. The extracellular domain has been engineered for expression in mammalian cells, and this recombinant derivative binds TNFα with high affinity and inhibits its cytotoxic activity in vitro. The TNF receptor exhibits similarity with a family of cell surface proteins that includes the nerve growth factor receptor, the human B-cell surface antigen CD40, and the rat T-cell surface antigen OX40. The TNF receptor contains four cysteine-rich subdomains in the extra-cellular portion. Mammalian cells transfected with the entire TNF receptor cDNA bind radiolabeled TNFα with an affinity of 2.5 x 10-9 M. This binding can be competitively inhibited with unlabeled TNFα or lymphotoxin (TNFβ).

  3. Temporal expression of the human alcohol dehydrogenase gene family during liver development correlates with differential promoter activation by hepatocyte nuclear factor 1, CCAAT/enhancer-binding protein alpha, liver activator protein, and D-element-binding protein.

    PubMed Central

    van Ooij, C; Snyder, R C; Paeper, B W; Duester, G

    1992-01-01

    The human class I alcohol dehydrogenase (ADH) gene family consists of ADH1, ADH2, and ADH3, which are sequentially activated in early fetal, late fetal, and postnatal liver, respectively. Analysis of ADH promoters revealed differential activation by several factors previously shown to control liver transcription. In cotransfection assays, the ADH1 promoter, but not the ADH2 or ADH3 promoter, was shown to respond to hepatocyte nuclear factor 1 (HNF-1), which has previously been shown to regulate transcription in early liver development. The ADH2 promoter, but not the ADH1 or ADH3 promoter, was shown to respond to CCAAT/enhancer-binding protein alpha (C/EBP alpha), a transcription factor particularly active during late fetal liver and early postnatal liver development. The ADH1, ADH2, and ADH3 promoters all responded to the liver transcription factors liver activator protein (LAP) and D-element-binding protein (DBP), which are most active in postnatal liver. For all three promoters, the activation by LAP or DBP was higher than that seen by HNF-1 or C/EBP alpha, and a significant synergism between C/EBP alpha and LAP was noticed for the ADH2 and ADH3 promoters when both factors were simultaneously cotransfected. A hierarchy of ADH promoter responsiveness to C/EBP alpha and LAP homo- and heterodimers is suggested. In all three ADH genes, LAP bound to the same four sites previously reported for C/EBP alpha (i.e., -160, -120, -40, and -20 bp), but DBP bound strongly only to the site located at -40 bp relative to the transcriptional start. Mutational analysis of ADH2 indicated that the -40 bp element accounts for most of the promoter regulation by the bZIP factors analyzed. These studies suggest that HNF-1 and C/EBP alpha help establish ADH gene family transcription in fetal liver and that LAP and DBP help maintain high-level ADH gene family transcription in postnatal liver. Images PMID:1620113

  4. Pattern analysis uncovers a chronic ethanol-induced disruption of the switch-like dynamics of C/EBP-β and C/EBP-α genome-wide binding during liver regeneration

    PubMed Central

    Kuttippurathu, Lakshmi; Patra, Biswanath; Cook, Daniel; Hoek, Jan B.

    2017-01-01

    Chronic ethanol intake impairs liver regeneration through a system-wide alteration in the regulatory networks driving the response to injury. Our study focused on the initial phase of response to 2/3rd partial hepatectomy (PHx) to investigate how adaptation to chronic ethanol intake affects the genome-wide binding profiles of the transcription factors C/EBP-β and C/EBP-α. These factors participate in complementary and often opposing functions for maintaining cellular differentiation, regulating metabolism, and governing cell growth during liver regeneration. We analyzed ChIP-seq data with a comparative pattern count (COMPACT) analysis, which exhaustively enumerates temporal patterns of discretized binding profiles to identify dominant as well as subtle patterns that may not be apparent from conventional clustering analyses. We found that adaptation to chronic ethanol intake significantly alters the genome-wide binding profile of C/EBP-β and C/EBP-α before and following PHx. A subset of these ethanol-induced changes include C/EBP-β binding to promoters of genes involved in the profibrogenic transforming growth factor-β pathway, and both C/EBP-β and C/EBP-α binding to promoters of genes involved in the cell cycle, apoptosis, homeostasis, and metabolic processes. The shift in C/EBP binding loci, coupled with an ethanol-induced increase in C/EBP-β binding at 6 h post-resection, indicates that ethanol adaptation may change both the amount and nature of C/EBP binding postresection. Taken together, our results suggest that chronic ethanol consumption leads to a spatially and temporally reorganized activity at many genomic loci, resulting in a shift in the dynamic balance and coordination of cellular processes underlying regenerative response. PMID:27815535

  5. The Acetylase/Deacetylase Couple CREB-binding Protein/Sirtuin 1 Controls Hypoxia-inducible Factor 2 Signaling*

    PubMed Central

    Chen, Rui; Xu, Min; Hogg, Richard T.; Li, Jiwen; Little, Bertis; Gerard, Robert D.; Garcia, Joseph A.

    2012-01-01

    Hypoxia-inducible factors (HIFs) are oxygen-sensitive transcription factors. HIF-1α plays a prominent role in hypoxic gene induction. HIF-2α target genes are more restricted but include erythropoietin (Epo), one of the most highly hypoxia-inducible genes in mammals. We previously reported that HIF-2α is acetylated during hypoxia but is rapidly deacetylated by the stress-responsive deacetylase Sirtuin 1. We now demonstrate that the lysine acetyltransferases cAMP-response element-binding protein-binding protein (CBP) and p300 are required for efficient Epo induction during hypoxia. However, despite close structural similarity, the roles of CBP and p300 differ in HIF signaling. CBP acetylates HIF-2α, is a major coactivator for HIF-2-mediated Epo induction, and is required for Sirt1 augmentation of HIF-2 signaling during hypoxia in Hep3B cells. In comparison, p300 is a major contributor for HIF-1 signaling as indicated by induction of Pgk1. Whereas CBP can bind with HIF-2α independent of the HIF-2α C-terminal activation domain via enzyme/substrate interactions, p300 only complexes with HIF-2α through the C-terminal activation domain. Maximal CBP/HIF-2 signaling requires intact CBP acetyltransferase activity in both Hep3B cells as well as in mice. PMID:22807441

  6. Peptidyl Prolyl Isomerase PIN1 Directly Binds to and Stabilizes Hypoxia-Inducible Factor-1α

    PubMed Central

    Han, Hyeong-jun; Kwon, Nayoung; Choi, Min-A; Jung, Kyung Oh; Piao, Juan-Yu; Ngo, Hoang Kieu Chi; Kim, Su-Jung; Kim, Do-Hee; Chung, June-Key; Cha, Young-Nam; Youn, Hyewon; Choi, Bu Young; Min, Sang-Hyun; Surh, Young-Joon

    2016-01-01

    Peptidyl prolyl isomerase (PIN1) regulates the functional activity of a subset of phosphoproteins through binding to phosphorylated Ser/Thr-Pro motifs and subsequently isomerization of the phosphorylated bonds. Interestingly, PIN1 is overexpressed in many types of malignancies including breast, prostate, lung and colon cancers. However, its oncogenic functions have not been fully elucidated. Here, we report that PIN1 directly interacts with hypoxia-inducible factor (HIF)-1α in human colon cancer (HCT116) cells. PIN1 binding to HIF-1α occurred in a phosphorylation-dependent manner. We also found that PIN1 interacted with HIF-1α at both exogenous and endogenous levels. Notably, PIN1 binding stabilized the HIF-1α protein, given that their levels were significantly increased under hypoxic conditions. The stabilization of HIF-1α resulted in increased transcriptional activity, consequently upregulating expression of vascular endothelial growth factor, a major contributor to angiogenesis. Silencing of PIN1 or pharmacologic inhibition of its activity abrogated the angiogenesis. By utilizing a bioluminescence imaging technique, we were able to demonstrate that PIN1 inhibition dramatically reduced the tumor volume in a subcutaneous mouse xenograft model and angiogenesis as well as hypoxia-induced transcriptional activity of HIF-1α. These results suggest that PIN1 interacting with HIF-1α is a potential cancer chemopreventive and therapeutic target. PMID:26784107

  7. Analysis of ice-binding sites in fish type II antifreeze protein by quantum mechanics.

    PubMed

    Cheng, Yuhua; Yang, Zuoyin; Tan, Hongwei; Liu, Ruozhuang; Chen, Guangju; Jia, Zongchao

    2002-10-01

    Many organisms living in cold environments can survive subzero temperatures by producing antifreeze proteins (AFPs) or antifreeze glycoproteins. In this paper we investigate the ice-binding surface of type II AFP by quantum mechanical methods, which, to the best of our knowledge, represents the first time that molecular orbital computational approaches have been applied to AFPs. Molecular mechanical approaches, including molecular docking, energy minimization, and molecular dynamics simulation, were used to obtain optimal systems for subsequent quantum mechanical analysis. We selected 17 surface patches covering the entire surface of the type II AFP and evaluated the interaction energy between each of these patches and two different ice planes using semi-empirical quantum mechanical methods. We have demonstrated the weak orbital overlay phenomenon and the change of bond orders in ice. These results consistently indicate that a surface patch containing 19 residues (K37, L38, Y20, E22, Y21, I19, L57, T56, F53, M127, T128, F129, R17, C7, N6, P5, G10, Q1, and W11) is the most favorable ice-binding site for both a regular ice plane and an ice plane where water O atoms are randomly positioned. Furthermore, for the first time the computation results provide new insights into the weakening of the ice lattice upon AFP binding, which may well be a primary factor leading to AFP-induced ice growth inhibition.

  8. Analysis of ice-binding sites in fish type II antifreeze protein by quantum mechanics.

    PubMed Central

    Cheng, Yuhua; Yang, Zuoyin; Tan, Hongwei; Liu, Ruozhuang; Chen, Guangju; Jia, Zongchao

    2002-01-01

    Many organisms living in cold environments can survive subzero temperatures by producing antifreeze proteins (AFPs) or antifreeze glycoproteins. In this paper we investigate the ice-binding surface of type II AFP by quantum mechanical methods, which, to the best of our knowledge, represents the first time that molecular orbital computational approaches have been applied to AFPs. Molecular mechanical approaches, including molecular docking, energy minimization, and molecular dynamics simulation, were used to obtain optimal systems for subsequent quantum mechanical analysis. We selected 17 surface patches covering the entire surface of the type II AFP and evaluated the interaction energy between each of these patches and two different ice planes using semi-empirical quantum mechanical methods. We have demonstrated the weak orbital overlay phenomenon and the change of bond orders in ice. These results consistently indicate that a surface patch containing 19 residues (K37, L38, Y20, E22, Y21, I19, L57, T56, F53, M127, T128, F129, R17, C7, N6, P5, G10, Q1, and W11) is the most favorable ice-binding site for both a regular ice plane and an ice plane where water O atoms are randomly positioned. Furthermore, for the first time the computation results provide new insights into the weakening of the ice lattice upon AFP binding, which may well be a primary factor leading to AFP-induced ice growth inhibition. PMID:12324437

  9. SH2 domains of the p85 alpha subunit of phosphatidylinositol 3-kinase regulate binding to growth factor receptors.

    PubMed Central

    McGlade, C J; Ellis, C; Reedijk, M; Anderson, D; Mbamalu, G; Reith, A D; Panayotou, G; End, P; Bernstein, A; Kazlauskas, A

    1992-01-01

    The binding of cytoplasmic signaling proteins such as phospholipase C-gamma 1 and Ras GTPase-activating protein to autophosphorylated growth factor receptors is directed by their noncatalytic Src homology region 2 (SH2) domains. The p85 alpha regulatory subunit of phosphatidylinositol (PI) 3-kinase, which associates with several receptor protein-tyrosine kinases, also contains two SH2 domains. Both p85 alpha SH2 domains, when expressed individually as fusion proteins in bacteria, bound stably to the activated beta receptor for platelet-derived growth factor (PDGF). Complex formation required PDGF stimulation and was dependent on receptor tyrosine kinase activity. The bacterial p85 alpha SH2 domains recognized activated beta PDGF receptor which had been immobilized on a filter, indicating that SH2 domains contact autophosphorylated receptors directly. Several receptor tyrosine kinases within the PDGF receptor subfamily, including the colony-stimulating factor 1 receptor and the Steel factor receptor (Kit), also associate with PI 3-kinase in vivo. Bacterially expressed SH2 domains derived from the p85 alpha subunit of PI 3-kinase bound in vitro to the activated colony-stimulating factor 1 receptor and to Kit. We infer that the SH2 domains of p85 alpha bind to high-affinity sites on these receptors, whose creation is dependent on receptor autophosphorylation. The SH2 domains of p85 are therefore primarily responsible for the binding of PI 3-kinase to activated growth factor receptors. Images PMID:1372092

  10. Dynamic in vivo binding of transcription factors to cis-regulatory modules of cer and gsc in the stepwise formation of the Spemann–Mangold organizer

    PubMed Central

    Sudou, Norihiro; Yamamoto, Shinji; Ogino, Hajime; Taira, Masanori

    2012-01-01

    How multiple developmental cues are integrated on cis-regulatory modules (CRMs) for cell fate decisions remains uncertain. The Spemann–Mangold organizer in Xenopus embryos expresses the transcription factors Lim1/Lhx1, Otx2, Mix1, Siamois (Sia) and VegT. Reporter analyses using sperm nuclear transplantation and DNA injection showed that cerberus (cer) and goosecoid (gsc) are activated by the aforementioned transcription factors through CRMs conserved between X. laevis and X. tropicalis. ChIP-qPCR analysis for the five transcription factors revealed that cer and gsc CRMs are initially bound by both Sia and VegT at the late blastula stage, and subsequently bound by all five factors at the gastrula stage. At the neurula stage, only binding of Lim1 and Otx2 to the gsc CRM, among others, persists, which corresponds to their co-expression in the prechordal plate. Based on these data, together with detailed expression pattern analysis, we propose a new model of stepwise formation of the organizer, in which (1) maternal VegT and Wnt-induced Sia first bind to CRMs at the blastula stage; then (2) Nodal-inducible Lim1, Otx2, Mix1 and zygotic VegT are bound to CRMs in the dorsal endodermal and mesodermal regions where all these genes are co-expressed; and (3) these two regions are combined at the gastrula stage to form the organizer. Thus, the in vivo dynamics of multiple transcription factors highlight their roles in the initiation and maintenance of gene expression, and also reveal the stepwise integration of maternal, Nodal and Wnt signaling on CRMs of organizer genes to generate the organizer. PMID:22492356

  11. Dynamic in vivo binding of transcription factors to cis-regulatory modules of cer and gsc in the stepwise formation of the Spemann-Mangold organizer.

    PubMed

    Sudou, Norihiro; Yamamoto, Shinji; Ogino, Hajime; Taira, Masanori

    2012-05-01

    How multiple developmental cues are integrated on cis-regulatory modules (CRMs) for cell fate decisions remains uncertain. The Spemann-Mangold organizer in Xenopus embryos expresses the transcription factors Lim1/Lhx1, Otx2, Mix1, Siamois (Sia) and VegT. Reporter analyses using sperm nuclear transplantation and DNA injection showed that cerberus (cer) and goosecoid (gsc) are activated by the aforementioned transcription factors through CRMs conserved between X. laevis and X. tropicalis. ChIP-qPCR analysis for the five transcription factors revealed that cer and gsc CRMs are initially bound by both Sia and VegT at the late blastula stage, and subsequently bound by all five factors at the gastrula stage. At the neurula stage, only binding of Lim1 and Otx2 to the gsc CRM, among others, persists, which corresponds to their co-expression in the prechordal plate. Based on these data, together with detailed expression pattern analysis, we propose a new model of stepwise formation of the organizer, in which (1) maternal VegT and Wnt-induced Sia first bind to CRMs at the blastula stage; then (2) Nodal-inducible Lim1, Otx2, Mix1 and zygotic VegT are bound to CRMs in the dorsal endodermal and mesodermal regions where all these genes are co-expressed; and (3) these two regions are combined at the gastrula stage to form the organizer. Thus, the in vivo dynamics of multiple transcription factors highlight their roles in the initiation and maintenance of gene expression, and also reveal the stepwise integration of maternal, Nodal and Wnt signaling on CRMs of organizer genes to generate the organizer.

  12. Factor Analysis via Components Analysis

    ERIC Educational Resources Information Center

    Bentler, Peter M.; de Leeuw, Jan

    2011-01-01

    When the factor analysis model holds, component loadings are linear combinations of factor loadings, and vice versa. This interrelation permits us to define new optimization criteria and estimation methods for exploratory factor analysis. Although this article is primarily conceptual in nature, an illustrative example and a small simulation show…

  13. FBI-1, a factor that binds to the HIV-1 inducer of short transcripts (IST), is a POZ domain protein.

    PubMed

    Morrison, D J; Pendergrast, P S; Stavropoulos, P; Colmenares, S U; Kobayashi, R; Hernandez, N

    1999-03-01

    The HIV-1 promoter directs the synthesis of two classes of transcripts, short, non-polyadenylated transcripts and full-length, polyadenylated transcripts. The synthesis of short transcripts is activated by a bipartite DNA element, the inducer of short transcripts or IST, located downstream of the HIV-1 transcriptional start site, while the synthesis of full-length transcripts is activated by the viral activator Tat. Tat binds to the RNA element TAR, which is encoded largely between the two IST half-elements. Upon activation by Tat, the synthesis of short RNAs is repressed. We have previously purified a factor called FBI-1 (for factor that binds to IST) whose binding to wild-type and mutated ISTs correlated well with the abilities of these ISTs to direct the synthesis of short transcripts. Here, we report the cloning of cDNAs encoding FBI-1. FBI-1 contains a POZ domain at its N-terminus and four Krüppel-type zinc fingers at its C-terminus. The C-terminus is sufficient for specific binding, and FBI-1 can form homomers through its POZ domain and, in vivo, through its zinc finger domain as well. In addition, FBI-1 associates with Tat, suggesting that repression of the short transcripts by Tat may be mediated through interactions between the two factors.

  14. Nature differences of humic acids fractions induced by extracted sequence as explanatory factors for binding characteristics of heavy metals.

    PubMed

    Shi, Wenjing; Lü, Changwei; He, Jiang; En, He; Gao, Manshu; Zhao, Boyi; Zhou, Bin; Zhou, Haijun; Liu, Hualin; Zhang, Yu

    2018-06-15

    The composition and structure of Humic acid (HA) is so heterogeneous that it brings significant barriers to investigate the interaction between HA and heavy metal ions. The isolation of HA with relatively homogeneity is a key to reveal the binding mechanisms between HA and heavy metals. In this work, ten HA fractions (HAs) were obtained by sequential alkali extraction procedure and nature differences of the extracted HAs were considered as explanatory factors for binding characteristics of Cu 2+ , Pb 2+ and Cd 2+ . The results indicate that more large molecular weight (MW) HA subunits, less carboxyl and phenolic group contents, weaker aromaticity and polarity were measured with increasing extractions, inducing weaker binding capacity of HAs. Ligand binding and bi-Langmuir models indicated that the sorption capacity and binding affinity of earlier extracted HAs were higher than the latter ones. The peak area changes at 3427, 1599, and 619 cm -1 pre- and post-adsorption in FTIR spectra suggested carboxyl, phenolic and nitrogen-containing groups were involved in the adsorption process. At the same time, the peak area difference between HAs and HAs-metal (ΔS) of phenolic groups were 8.22-20.50, 6.81-21.11 and 10.66-19.80% for Cu 2+ , Pb 2+ and Cd 2+ , respectively, ΔS of carboxyl groups 6.64-17.03, 8.96-16.82 and 9.45-17.85% for Cu 2+ , Pb 2+ and Cd 2+ , respectively, ΔS of nitrogen-containing groups 0.33-0.48, 0.20-1.38 and 0.31-0.59% for Cu 2+ , Pb 2+ and Cd 2+ , respectively. ΔS of phenolic and carboxyl groups were larger than those of nitrogen-containing groups, implying that these two groups were the predominant binding sites suppliers for metal ions, which were also supported by the results of correlation analysis. This work is helpful to insight the environmental impacts of natural organic matter and the fate of heavy metals in natural environment. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. footprintDB: a database of transcription factors with annotated cis elements and binding interfaces.

    PubMed

    Sebastian, Alvaro; Contreras-Moreira, Bruno

    2014-01-15

    Traditional and high-throughput techniques for determining transcription factor (TF) binding specificities are generating large volumes of data of uneven quality, which are scattered across individual databases. FootprintDB integrates some of the most comprehensive freely available libraries of curated DNA binding sites and systematically annotates the binding interfaces of the corresponding TFs. The first release contains 2422 unique TF sequences, 10 112 DNA binding sites and 3662 DNA motifs. A survey of the included data sources, organisms and TF families was performed together with proprietary database TRANSFAC, finding that footprintDB has a similar coverage of multicellular organisms, while also containing bacterial regulatory data. A search engine has been designed that drives the prediction of DNA motifs for input TFs, or conversely of TF sequences that might recognize input regulatory sequences, by comparison with database entries. Such predictions can also be extended to a single proteome chosen by the user, and results are ranked in terms of interface similarity. Benchmark experiments with bacterial, plant and human data were performed to measure the predictive power of footprintDB searches, which were able to correctly recover 10, 55 and 90% of the tested sequences, respectively. Correctly predicted TFs had a higher interface similarity than the average, confirming its diagnostic value. Web site implemented in PHP,Perl, MySQL and Apache. Freely available from http://floresta.eead.csic.es/footprintdb.

  16. oPOSSUM: identification of over-represented transcription factor binding sites in co-expressed genes

    PubMed Central

    Ho Sui, Shannan J.; Mortimer, James R.; Arenillas, David J.; Brumm, Jochen; Walsh, Christopher J.; Kennedy, Brian P.; Wasserman, Wyeth W.

    2005-01-01

    Targeted transcript profiling studies can identify sets of co-expressed genes; however, identification of the underlying functional mechanism(s) is a significant challenge. Established methods for the analysis of gene annotations, particularly those based on the Gene Ontology, can identify functional linkages between genes. Similar methods for the identification of over-represented transcription factor binding sites (TFBSs) have been successful in yeast, but extension to human genomics has largely proved ineffective. Creation of a system for the efficient identification of common regulatory mechanisms in a subset of co-expressed human genes promises to break a roadblock in functional genomics research. We have developed an integrated system that searches for evidence of co-regulation by one or more transcription factors (TFs). oPOSSUM combines a pre-computed database of conserved TFBSs in human and mouse promoters with statistical methods for identification of sites over-represented in a set of co-expressed genes. The algorithm successfully identified mediating TFs in control sets of tissue-specific genes and in sets of co-expressed genes from three transcript profiling studies. Simulation studies indicate that oPOSSUM produces few false positives using empirically defined thresholds and can tolerate up to 50% noise in a set of co-expressed genes. PMID:15933209

  17. Binding mode analysis, dynamic simulation and binding free energy calculations of the MurF ligase from Acinetobacter baumannii.

    PubMed

    Ahmad, Sajjad; Raza, Saad; Uddin, Reaz; Azam, Syed Sikander

    2017-10-01

    MurF ligase catalyzes the final cytoplasmic step of bacterial peptidoglycan biosynthesis and, as such, is a validated target for therapeutic intervention. Herein, we performed molecular docking to identify putative inhibitors of Acinetobacter baumannii MurF (AbMurF). Based on comparative docking analysis, compound 114 (ethyl pyridine substituted 3-cyanothiophene) was predicted to potentially be the most active ligand. Computational pharmacokinetic characterization of drug-likeness of the compound showed it to fulfil all the parameters of Muegge and the MDDR rule. A molecular dynamic simulation of 114 indicated the complex to be stable on the basis of an average root mean square deviation (RMSD) value of 2.09Å for the ligand. The stability of the complex was further supported by root mean square fluctuation (RMSF), beta factor and radius of gyration values. Analyzing the complex using radial distribution function (RDF) and a novel analytical tool termed the axial frequency distribution (AFD) illustrated that after simulation the ligand is positioned in close vicinity of the protein active site where Thr42 and Asp43 participate in hydrogen bonding and stabilization of the complex. Binding free energy calculations based on the Poisson-Boltzmann or Generalized-Born Surface Area Continuum Solvation (MM(PB/GB)SA) method indicated the van der Waals contribution to the overall binding energy of the complex to be dominant along with electrostatic contributions involving the hot spot amino acids from the protein active site. The present results indicate that the screened compound 114 may act as a parent structure for designing potent derivatives against AbMurF in specific and MurF of other bacterial pathogens in general. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Collagen-binding vascular endothelial growth factor attenuates CCl4-induced liver fibrosis in mice

    PubMed Central

    Wu, Kangkang; Huang, Rui; Wu, Hongyan; Liu, Yong; Yang, Chenchen; Cao, Shufeng; Hou, Xianglin; Chen, Bing; Dai, Jianwu; Wu, Chao

    2016-01-01

    Vascular endothelial growth factor (VEGF) serves an important role in promoting angiogenesis and tissue regeneration. However, the lack of an effective delivery system that can target this growth factor to the injured site reduces its therapeutic efficacy. Therefore, in the current study, collagen-binding VEGF was constructed by fusing a collagen-binding domain (CBD) to the N-terminal of native VEGF. The CBD-VEGF can specifically bind to collagen which is the major component of the extracellular matrix in fibrotic liver. The anti-fibrotic effects of this novel material were investigated by the carbon tetrachloride (CCl4)-induced liver fibrotic mouse model. Mice were injected with CCl4 intraperitoneally to induce liver fibrosis. CBD-VEGF was injected directly into the liver tissue of mice. The liver tissues were stained with hematoxylin and eosin for general observation or with Masson's trichrome staining for detection of collagen deposition. The hepatic stellate cell activation, blood vessel formation and hepatocyte proliferation were measured by immunohistochemical staining for α-smooth muscle actin, CD31 and Ki67 in the liver tissue. The fluorescent TUNEL assay was performed to evaluate the hepatocyte apoptosis. The present study identified that the CBD-VEGF injection could significantly promote vascularization of the liver tissue of fibrotic mice and attenuate liver fibrosis. Furthermore, hepatocyte apoptosis and hepatic stellate cell activation were attenuated by CBD-VEGF treatment. CBD-VEGF treatment could additionally promote hepatocyte regeneration in the liver tissue of fibrotic mice. Thus, it was suggested that CBD-VEGF may be used as a novel therapeutic intervention for liver fibrosis. PMID:27748931

  19. A Systematic Analysis of Factors Localized to Damaged Chromatin Reveals PARP-Dependent Recruitment of Transcription Factors.

    PubMed

    Izhar, Lior; Adamson, Britt; Ciccia, Alberto; Lewis, Jedd; Pontano-Vaites, Laura; Leng, Yumei; Liang, Anthony C; Westbrook, Thomas F; Harper, J Wade; Elledge, Stephen J

    2015-06-09

    Localization to sites of DNA damage is a hallmark of DNA damage response (DDR) proteins. To identify DDR factors, we screened epitope-tagged proteins for localization to sites of chromatin damaged by UV laser microirradiation and found >120 proteins that localize to damaged chromatin. These include the BAF tumor suppressor complex and the amyotrophic lateral sclerosis (ALS) candidate protein TAF15. TAF15 contains multiple domains that bind damaged chromatin in a poly-(ADP-ribose) polymerase (PARP)-dependent manner, suggesting a possible role as glue that tethers multiple PAR chains together. Many positives were transcription factors; > 70% of randomly tested transcription factors localized to sites of DNA damage, and of these, ∼90% were PARP dependent for localization. Mutational analyses showed that localization to damaged chromatin is DNA-binding-domain dependent. By examining Hoechst staining patterns at damage sites, we see evidence of chromatin decompaction that is PARP dependent. We propose that PARP-regulated chromatin remodeling at sites of damage allows transient accessibility of DNA-binding proteins. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Toward Improved Force-Field Accuracy through Sensitivity Analysis of Host-Guest Binding Thermodynamics

    PubMed Central

    Yin, Jian; Fenley, Andrew T.; Henriksen, Niel M.; Gilson, Michael K.

    2015-01-01

    Improving the capability of atomistic computer models to predict the thermodynamics of noncovalent binding is critical for successful structure-based drug design, and the accuracy of such calculations remains limited by non-optimal force field parameters. Ideally, one would incorporate protein-ligand affinity data into force field parametrization, but this would be inefficient and costly. We now demonstrate that sensitivity analysis can be used to efficiently tune Lennard-Jones parameters of aqueous host-guest systems for increasingly accurate calculations of binding enthalpy. These results highlight the promise of a comprehensive use of calorimetric host-guest binding data, along with existing validation data sets, to improve force field parameters for the simulation of noncovalent binding, with the ultimate goal of making protein-ligand modeling more accurate and hence speeding drug discovery. PMID:26181208

  1. BloodChIP: a database of comparative genome-wide transcription factor binding profiles in human blood cells.

    PubMed

    Chacon, Diego; Beck, Dominik; Perera, Dilmi; Wong, Jason W H; Pimanda, John E

    2014-01-01

    The BloodChIP database (http://www.med.unsw.edu.au/CRCWeb.nsf/page/BloodChIP) supports exploration and visualization of combinatorial transcription factor (TF) binding at a particular locus in human CD34-positive and other normal and leukaemic cells or retrieval of target gene sets for user-defined combinations of TFs across one or more cell types. Increasing numbers of genome-wide TF binding profiles are being added to public repositories, and this trend is likely to continue. For the power of these data sets to be fully harnessed by experimental scientists, there is a need for these data to be placed in context and easily accessible for downstream applications. To this end, we have built a user-friendly database that has at its core the genome-wide binding profiles of seven key haematopoietic TFs in human stem/progenitor cells. These binding profiles are compared with binding profiles in normal differentiated and leukaemic cells. We have integrated these TF binding profiles with chromatin marks and expression data in normal and leukaemic cell fractions. All queries can be exported into external sites to construct TF-gene and protein-protein networks and to evaluate the association of genes with cellular processes and tissue expression.

  2. Radioligand binding analysis of α 2 adrenoceptors with [11C]yohimbine in brain in vivo: Extended Inhibition Plot correction for plasma protein binding.

    PubMed

    Phan, Jenny-Ann; Landau, Anne M; Jakobsen, Steen; Wong, Dean F; Gjedde, Albert

    2017-11-22

    We describe a novel method of kinetic analysis of radioligand binding to neuroreceptors in brain in vivo, here applied to noradrenaline receptors in rat brain. The method uses positron emission tomography (PET) of [ 11 C]yohimbine binding in brain to quantify the density and affinity of α 2 adrenoceptors under condition of changing radioligand binding to plasma proteins. We obtained dynamic PET recordings from brain of Spraque Dawley rats at baseline, followed by pharmacological challenge with unlabeled yohimbine (0.3 mg/kg). The challenge with unlabeled ligand failed to diminish radioligand accumulation in brain tissue, due to the blocking of radioligand binding to plasma proteins that elevated the free fractions of the radioligand in plasma. We devised a method that graphically resolved the masking of unlabeled ligand binding by the increase of radioligand free fractions in plasma. The Extended Inhibition Plot introduced here yielded an estimate of the volume of distribution of non-displaceable ligand in brain tissue that increased with the increase of the free fraction of the radioligand in plasma. The resulting binding potentials of the radioligand declined by 50-60% in the presence of unlabeled ligand. The kinetic unmasking of inhibited binding reflected in the increase of the reference volume of distribution yielded estimates of receptor saturation consistent with the binding of unlabeled ligand.

  3. Hemoadsorption removes tumor necrosis factor, interleukin-6, and interleukin-10, reduces nuclear factor-kappaB DNA binding, and improves short-term survival in lethal endotoxemia.

    PubMed

    Kellum, John A; Song, Mingchen; Venkataraman, Ramesh

    2004-03-01

    Previous studies have shown that inflammatory mediators can be removed from the circulation with hemofiltration and that adsorption plays an important role. Because adsorptive capacity of hollow-fiber dialyzers is limited, we sought to determine whether hemoadsorption using high surface area beads would result in greater mediator removal and improved survival in experimental sepsis. Randomized controlled laboratory experiment. University laboratory. Sixty-six adult Sprague-Dawley rats. We conducted two ex vivo and two in vivo experiments. For in vivo experiments, we administered Escherichia coli endotoxin (20 mg/kg) by intravenous infusion and then randomized each animal to receive either hemoadsorption or a sham circuit for 4 hrs. Hemoadsorption was performed for 4 hrs using an arterial-venous circuit and a CytoSorb cartridge containing 10 g of polystyrene divinyl benzene copolymer beads with a biocompatible polyvinylpyrrolidone coating. Survival time was measured to a maximum of 12 hrs. In a separate set of experiments, we studied 12 animals using the same protocol except that we killed all animals at 4 hrs and removed standardized sections of liver for analysis of nuclear factor-kappaB DNA binding. Mean survival time among hemoadsorption-treated animals was 629+/-114 vs. 518+/-120 mins for sham-treated animals (p <.01). Overall survival (defined at 12 hrs) was also significantly better in the hemoadsorption group, seven of 20 vs. one of 20 (p <.05). Plasma interleukin-6 and interleukin-10 concentrations and liver nuclear factor-kappaB DNA binding were significantly reduced by hemoadsorption. Ex vivo experiments showed no endotoxin adsorption but strengthened our in vivo observations by showing rapid adsorption of tumor necrosis factor, interleukin-6, and interleukin-10. Hemoadsorption was associated with reduced inflammation and improved survival in this murine model of septic shock.

  4. Signatures of van der Waals binding: A coupling-constant scaling analysis

    NASA Astrophysics Data System (ADS)

    Jiao, Yang; Schröder, Elsebeth; Hyldgaard, Per

    2018-02-01

    The van der Waals (vdW) density functional (vdW-DF) method [Rep. Prog. Phys. 78, 066501 (2015), 10.1088/0034-4885/78/6/066501] describes dispersion or vdW binding by tracking the effects of an electrodynamic coupling among pairs of electrons and their associated exchange-correlation holes. This is done in a nonlocal-correlation energy term Ecnl, which permits density functional theory calculation in the Kohn-Sham scheme. However, to map the nature of vdW forces in a fully interacting materials system, it is necessary to also account for associated kinetic-correlation energy effects. Here, we present a coupling-constant scaling analysis, which permits us to compute the kinetic-correlation energy Tcnl that is specific to the vdW-DF account of nonlocal correlations. We thus provide a more complete spatially resolved analysis of the electrodynamical-coupling nature of nonlocal-correlation binding, including vdW attraction, in both covalently and noncovalently bonded systems. We find that kinetic-correlation energy effects play a significant role in the account of vdW or dispersion interactions among molecules. Furthermore, our mapping shows that the total nonlocal-correlation binding is concentrated to pockets in the sparse electron distribution located between the material fragments.

  5. Diminished survival of human cytotrophoblast cells exposed to hypoxia/reoxygenation injury and associated reduction of heparin-binding epidermal growth factor-like growth factor.

    PubMed

    Leach, Richard E; Kilburn, Brian A; Petkova, Anelia; Romero, Roberto; Armant, D Randall

    2008-04-01

    The antiapoptotic action of heparin-binding epidermal growth factor (HBEGF)-like growth factor and its regulation by O(2) constitutes a key factor for trophoblast survival. The hypothesis that cytotrophoblast survival is compromised by exposure to hypoxia-reoxygenation (H/R) injury, which may contribute to preeclampsia and some missed abortions, prompted us to investigate HBEGF regulation and its role as a survival factor during H/R in cytotrophoblast cells. A transformed human first-trimester cytotrophoblast cell line HTR-8/SVneo was exposed to H/R (2% O(2) followed by 20% O(2)) and assessed for HBEGF expression and cell death. Cellular HBEGF declined significantly within 30 minutes of reoxygenation after culture at 2% O(2). H/R significantly reduced proliferation and increased cell death when compared with trophoblast cells cultured continuously at 2% or 20% O(2). Restoration of cell survival also was achieved by adding recombinant HBEGF during reoxygenation. HBEGF inhibited apoptosis through its binding to either human epidermal receptor (HER)-1 or HER4, its cognate receptors. These results provide evidence that cytotrophoblast exposure to H/R induces apoptosis and decreased cell proliferation. HBEGF accumulation is diminished under these conditions, whereas restoration of HBEGF signaling improves trophoblast survival.

  6. Site of ADP-ribosylation and the RNA-binding site are situated in different domains of the elongation factor EF-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davydova, E.K.

    1987-01-01

    One of the proteins participating in the process of elongation of polypeptide chains - elongation factor 2 (EF-2) - can be ADP-ribosylated at a unique amino acid residue - diphthamide. Since the ADP-ribosylation of EF-2 at dipthamide leads to a loss of affinity of the factor for RNA while the presence of RNA inhibits the ADP-ribosylation reaction, it seemed probable to the authors that diphthamide participated directly in the binding of EF-2 to DNA. The experiments presented in this article showed that this was not the case: diphthamide and the RNA-binding site are situated on different domains of EF-2. Thus,more » ADP-ribosylation of factor EF-2 in one domain leads to a loss of the ability to bind to RNA in the other. The authors investigated the mutual arrangement of diphthamide and the RNA-binding site on the EF-2 molecule by preparing a factor from rabbit reticulocytes and subjecting it to proteolytic digestion with elastase. The factor was incubated with elastase for 15 min at 37/sup 0/C at an enzyme:substrate ratio of 1:100 in buffer solution containing 20 mM Tris-HCl, pH 7.6, 10 mM KCl, 1 mM MgCl/sub 2/, and 2 mM dithiothreitol. The reaction was stopped by adding para-methylsulfonyl fluoride to 50 micro-M. The authors obtained a preparation as a result of proteolysis and applied it on a column with RNA-Sepharose and separated into two fractions: RNA-binding and without affinity for RNA. The initial preparation and its fractions were subjected to exhaustive ADP-ribosylation in the presence of diphtheria toxin and (U-/sup 14/C) nicotinaide adenine dinucleotide ((/sup 14/C)NAD) (296 mCi/mmole). The samples were analyzed electrophoretically in a polyacrylamide gel gradient in the presence of sodium dodecyl sulfate. For the detection of (/sup 14/C) ADP-ribosylated components, the gels were dried and exposed with RM-V x-ray film.« less

  7. Analysis of Factors Influencing Hydration Site Prediction Based on Molecular Dynamics Simulations

    PubMed Central

    2015-01-01

    Water contributes significantly to the binding of small molecules to proteins in biochemical systems. Molecular dynamics (MD) simulation based programs such as WaterMap and WATsite have been used to probe the locations and thermodynamic properties of hydration sites at the surface or in the binding site of proteins generating important information for structure-based drug design. However, questions associated with the influence of the simulation protocol on hydration site analysis remain. In this study, we use WATsite to investigate the influence of factors such as simulation length and variations in initial protein conformations on hydration site prediction. We find that 4 ns MD simulation is appropriate to obtain a reliable prediction of the locations and thermodynamic properties of hydration sites. In addition, hydration site prediction can be largely affected by the initial protein conformations used for MD simulations. Here, we provide a first quantification of this effect and further indicate that similar conformations of binding site residues (RMSD < 0.5 Å) are required to obtain consistent hydration site predictions. PMID:25252619

  8. Analysis of factors influencing hydration site prediction based on molecular dynamics simulations.

    PubMed

    Yang, Ying; Hu, Bingjie; Lill, Markus A

    2014-10-27

    Water contributes significantly to the binding of small molecules to proteins in biochemical systems. Molecular dynamics (MD) simulation based programs such as WaterMap and WATsite have been used to probe the locations and thermodynamic properties of hydration sites at the surface or in the binding site of proteins generating important information for structure-based drug design. However, questions associated with the influence of the simulation protocol on hydration site analysis remain. In this study, we use WATsite to investigate the influence of factors such as simulation length and variations in initial protein conformations on hydration site prediction. We find that 4 ns MD simulation is appropriate to obtain a reliable prediction of the locations and thermodynamic properties of hydration sites. In addition, hydration site prediction can be largely affected by the initial protein conformations used for MD simulations. Here, we provide a first quantification of this effect and further indicate that similar conformations of binding site residues (RMSD < 0.5 Å) are required to obtain consistent hydration site predictions.

  9. A Chromatin Insulator-Like Element in the Herpes Simplex Virus Type 1 Latency-Associated Transcript Region Binds CCCTC-Binding Factor and Displays Enhancer-Blocking and Silencing Activities

    PubMed Central

    Amelio, Antonio L.; McAnany, Peterjon K.; Bloom, David C.

    2006-01-01

    A previous study demonstrated that the latency-associated transcript (LAT) promoter and the LAT enhancer/reactivation critical region (rcr) are enriched in acetyl histone H3 (K9, K14) during herpes simplex virus type 1 (HSV-1) latency, whereas all lytic genes analyzed (ICP0, UL54, ICP4, and DNA polymerase) are not (N. J. Kubat, R. K. Tran, P. McAnany, and D. C. Bloom, J. Virol. 78:1139-1149, 2004). This suggests that the HSV-1 latent genome is organized into histone H3 (K9, K14) hyperacetylated and hypoacetylated regions corresponding to transcriptionally permissive and transcriptionally repressed chromatin domains, respectively. Such an organization implies that chromatin insulators, similar to those of cellular chromosomes, may separate distinct transcriptional domains of the HSV-1 latent genome. In the present study, we sought to identify cis elements that could partition the HSV-1 genome into distinct chromatin domains. Sequence analysis coupled with chromatin immunoprecipitation and luciferase reporter assays revealed that (i) the long and short repeats and the unique-short region of the HSV-1 genome contain clustered CTCF (CCCTC-binding factor) motifs, (ii) CTCF motif clusters similar to those in HSV-1 are conserved in other alphaherpesviruses, (iii) CTCF binds to these motifs on latent HSV-1 genomes in vivo, and (iv) a 1.5-kb region containing the CTCF motif cluster in the LAT region possesses insulator activities, specifically, enhancer blocking and silencing. The finding that CTCF, a cellular protein associated with chromatin insulators, binds to motifs on the latent genome and insulates the LAT enhancer suggests that CTCF may facilitate the formation of distinct chromatin boundaries during herpesvirus latency. PMID:16474142

  10. ThrR, a DNA-binding transcription factor involved in controlling threonine biosynthesis in Bacillus subtilis.

    PubMed

    Rosenberg, Jonathan; Müller, Peter; Lentes, Sabine; Thiele, Martin J; Zeigler, Daniel R; Tödter, Dominik; Paulus, Henry; Brantl, Sabine; Stülke, Jörg; Commichau, Fabian M

    2016-09-01

    The threonine dehydratase IlvA is part of the isoleucine biosynthesis pathway in the Gram-positive model bacterium Bacillus subtilis. Consequently, deletion of ilvA causes isoleucine auxotrophy. It has been reported that ilvA pseudo-revertants having a derepressed hom-thrCB operon appear in the presence of threonine. Here we have characterized two classes of ilvA pseudo-revertants. In the first class the hom-thrCB operon was derepressed unmasking the threonine dehydratase activity of the threonine synthase ThrC. In the second class of mutants, threonine biosynthesis was more broadly affected. The first class of ilvA pseudo-revertants had a mutation in the Phom promoter (P*hom ), resulting in constitutive expression of the hom-thrCB operon. In the second class of ilvA pseudo-revertants, the thrR gene encoding a putative DNA-binding protein was inactivated, also resulting in constitutive expression of the hom-thrCB operon. Here we demonstrate that ThrR is indeed a DNA-binding transcription factor that regulates the hom-thrCB operon and the thrD aspartokinase gene. DNA binding assays uncovered the DNA-binding site of ThrR and revealed that the repressor competes with the RNA polymerase for DNA binding. This study also revealed that ThrR orthologs are ubiquitous in genomes from the Gram-positive phylum Firmicutes and in some Gram-negative bacteria. © 2016 John Wiley & Sons Ltd.

  11. Computational analysis of protein-protein interfaces involving an alpha helix: insights for terphenyl-like molecules binding.

    PubMed

    Isvoran, Adriana; Craciun, Dana; Martiny, Virginie; Sperandio, Olivier; Miteva, Maria A

    2013-06-14

    Protein-Protein Interactions (PPIs) are key for many cellular processes. The characterization of PPI interfaces and the prediction of putative ligand binding sites and hot spot residues are essential to design efficient small-molecule modulators of PPI. Terphenyl and its derivatives are small organic molecules known to mimic one face of protein-binding alpha-helical peptides. In this work we focus on several PPIs mediated by alpha-helical peptides. We performed computational sequence- and structure-based analyses in order to evaluate several key physicochemical and surface properties of proteins known to interact with alpha-helical peptides and/or terphenyl and its derivatives. Sequence-based analysis revealed low sequence identity between some of the analyzed proteins binding alpha-helical peptides. Structure-based analysis was performed to calculate the volume, the fractal dimension roughness and the hydrophobicity of the binding regions. Besides the overall hydrophobic character of the binding pockets, some specificities were detected. We showed that the hydrophobicity is not uniformly distributed in different alpha-helix binding pockets that can help to identify key hydrophobic hot spots. The presence of hydrophobic cavities at the protein surface with a more complex shape than the entire protein surface seems to be an important property related to the ability of proteins to bind alpha-helical peptides and low molecular weight mimetics. Characterization of similarities and specificities of PPI binding sites can be helpful for further development of small molecules targeting alpha-helix binding proteins.

  12. Promoter selection in human mitochondria involves binding of a transcription factor to orientation-independent upstream regulatory elements.

    PubMed

    Fisher, R P; Topper, J N; Clayton, D A

    1987-07-17

    Selective transcription of human mitochondrial DNA requires a transcription factor (mtTF) in addition to an essentially nonselective RNA polymerase. Partially purified mtTF is able to sequester promoter-containing DNA in preinitiation complexes in the absence of mitochondrial RNA polymerase, suggesting a DNA-binding mechanism for factor activity. Functional domains, required for positive transcriptional regulation by mtTF, are identified within both major promoters of human mtDNA through transcription of mutant promoter templates in a reconstituted in vitro system. These domains are essentially coextensive with DNA sequences protected from nuclease digestion by mtTF-binding. Comparison of the sequences of the two mtTF-responsive elements reveals significant homology only when one sequence is inverted; the binding sites are in opposite orientations with respect to the predominant direction of transcription. Thus mtTF may function bidirectionally, requiring additional protein-DNA interactions to dictate transcriptional polarity. The mtTF-responsive elements are arrayed as direct repeats, separated by approximately 80 bp within the displacement-loop region of human mitochondrial DNA; this arrangement may reflect duplication of an ancestral bidirectional promoter, giving rise to separate, unidirectional promoters for each strand.

  13. Myocardin-Related Transcription Factor A Activation by Competition with WH2 Domain Proteins for Actin Binding

    PubMed Central

    Weissbach, Julia; Schikora, Franziska; Weber, Anja; Kessels, Michael

    2016-01-01

    The myocardin-related transcription factors (MRTFs) are coactivators of serum response factor (SRF)-mediated gene expression. Activation of MRTF-A occurs in response to alterations in actin dynamics and critically requires the dissociation of repressive G-actin–MRTF-A complexes. However, the mechanism leading to the release of MRTF-A remains unclear. Here we show that WH2 domains compete directly with MRTF-A for actin binding. Actin nucleation-promoting factors, such as N-WASP and WAVE2, as well as isolated WH2 domains, including those of Spire2 and Cobl, activate MRTF-A independently of changes in actin dynamics. Simultaneous inhibition of Arp2-Arp3 or mutation of the CA region only partially reduces MRTF-A activation by N-WASP and WAVE2. Recombinant WH2 domains and the RPEL domain of MRTF-A bind mutually exclusively to cellular and purified G-actin in vitro. The competition by different WH2 domains correlates with MRTF-SRF activation. Following serum stimulation, nonpolymerizable actin dissociates from MRTF-A, and de novo formation of the G-actin–RPEL complex is impaired by a transferable factor. Our work demonstrates that WH2 domains activate MRTF-A and contribute to target gene regulation by a competitive mechanism, independently of their role in actin filament formation. PMID:26976641

  14. Transcriptome Profiling of Pediatric Core Binding Factor AML

    PubMed Central

    Hsu, Chih-Hao; Nguyen, Cu; Yan, Chunhua; Ries, Rhonda E.; Chen, Qing-Rong; Hu, Ying; Ostronoff, Fabiana; Stirewalt, Derek L.; Komatsoulis, George; Levy, Shawn

    2015-01-01

    The t(8;21) and Inv(16) translocations disrupt the normal function of core binding factors alpha (CBFA) and beta (CBFB), respectively. These translocations represent two of the most common genomic abnormalities in acute myeloid leukemia (AML) patients, occurring in approximately 25% pediatric and 15% of adult with this malignancy. Both translocations are associated with favorable clinical outcomes after intensive chemotherapy, and given the perceived mechanistic similarities, patients with these translocations are frequently referred to as having CBF-AML. It remains uncertain as to whether, collectively, these translocations are mechanistically the same or impact different pathways in subtle ways that have both biological and clinical significance. Therefore, we used transcriptome sequencing (RNA-seq) to investigate the similarities and differences in genes and pathways between these subtypes of pediatric AMLs. Diagnostic RNA from patients with t(8;21) (N = 17), Inv(16) (N = 14), and normal karyotype (NK, N = 33) were subjected to RNA-seq. Analyses compared the transcriptomes across these three cytogenetic subtypes, using the NK cohort as the control. A total of 1291 genes in t(8;21) and 474 genes in Inv(16) were differentially expressed relative to the NK controls, with 198 genes differentially expressed in both subtypes. The majority of these genes (175/198; binomial test p-value < 10−30) are consistent in expression changes among the two subtypes suggesting the expression profiles are more similar between the CBF cohorts than in the NK cohort. Our analysis also revealed alternative splicing events (ASEs) differentially expressed across subtypes, with 337 t(8;21)-specific and 407 Inv(16)-specific ASEs detected, the majority of which were acetylated proteins (p = 1.5x10-51 and p = 1.8x10-54 for the two subsets). In addition to known fusions, we identified and verified 16 de novo fusions in 43 patients, including three fusions involving NUP98 in six patients

  15. Genome-wide DNA methylation measurements in prostate tissues uncovers novel prostate cancer diagnostic biomarkers and transcription factor binding patterns.

    PubMed

    Kirby, Marie K; Ramaker, Ryne C; Roberts, Brian S; Lasseigne, Brittany N; Gunther, David S; Burwell, Todd C; Davis, Nicholas S; Gulzar, Zulfiqar G; Absher, Devin M; Cooper, Sara J; Brooks, James D; Myers, Richard M

    2017-04-17

    Current diagnostic tools for prostate cancer lack specificity and sensitivity for detecting very early lesions. DNA methylation is a stable genomic modification that is detectable in peripheral patient fluids such as urine and blood plasma that could serve as a non-invasive diagnostic biomarker for prostate cancer. We measured genome-wide DNA methylation patterns in 73 clinically annotated fresh-frozen prostate cancers and 63 benign-adjacent prostate tissues using the Illumina Infinium HumanMethylation450 BeadChip array. We overlaid the most significantly differentially methylated sites in the genome with transcription factor binding sites measured by the Encyclopedia of DNA Elements consortium. We used logistic regression and receiver operating characteristic curves to assess the performance of candidate diagnostic models. We identified methylation patterns that have a high predictive power for distinguishing malignant prostate tissue from benign-adjacent prostate tissue, and these methylation signatures were validated using data from The Cancer Genome Atlas Project. Furthermore, by overlaying ENCODE transcription factor binding data, we observed an enrichment of enhancer of zeste homolog 2 binding in gene regulatory regions with higher DNA methylation in malignant prostate tissues. DNA methylation patterns are greatly altered in prostate cancer tissue in comparison to benign-adjacent tissue. We have discovered patterns of DNA methylation marks that can distinguish prostate cancers with high specificity and sensitivity in multiple patient tissue cohorts, and we have identified transcription factors binding in these differentially methylated regions that may play important roles in prostate cancer development.

  16. A Novel RNA Polymerase I Transcription Initiation Factor, TIF-IE, Commits rRNA Genes by Interaction with TIF-IB, Not by DNA Binding

    PubMed Central

    Al-Khouri, Anna Maria; Paule, Marvin R.

    2002-01-01

    In the small, free-living amoeba Acanthamoeba castellanii, rRNA transcription requires, in addition to RNA polymerase I, a single DNA-binding factor, transcription initiation factor IB (TIF-IB). TIF-IB is a multimeric protein that contains TATA-binding protein (TBP) and four TBP-associated factors that are specific for polymerase I transcription. TIF-IB is required for accurate and promoter-specific initiation of rRNA transcription, recruiting and positioning the polymerase on the start site by protein-protein interaction. In A. castellanii, partially purified TIF-IB can form a persistent complex with the ribosomal DNA (rDNA) promoter while homogeneous TIF-IB cannot. An additional factor, TIF-IE, is required along with homogeneous TIF-IB for the formation of a stable complex on the rDNA core promoter. We show that TIF-IE by itself, however, does not bind to the rDNA promoter and thus differs in its mechanism from the upstream binding factor and upstream activating factor, which carry out similar complex-stabilizing functions in vertebrates and yeast, respectively. In addition to its presence in impure TIF-IB, TIF-IE is found in highly purified fractions of polymerase I, with which it associates. Renaturation of polypeptides excised from sodium dodecyl sulfate-polyacrylamide gels showed that a 141-kDa polypeptide possesses all the known activities of TIF-IE. PMID:11784852

  17. A novel RNA polymerase I transcription initiation factor, TIF-IE, commits rRNA genes by interaction with TIF-IB, not by DNA binding.

    PubMed

    Al-Khouri, Anna Maria; Paule, Marvin R

    2002-02-01

    In the small, free-living amoeba Acanthamoeba castellanii, rRNA transcription requires, in addition to RNA polymerase I, a single DNA-binding factor, transcription initiation factor IB (TIF-IB). TIF-IB is a multimeric protein that contains TATA-binding protein (TBP) and four TBP-associated factors that are specific for polymerase I transcription. TIF-IB is required for accurate and promoter-specific initiation of rRNA transcription, recruiting and positioning the polymerase on the start site by protein-protein interaction. In A. castellanii, partially purified TIF-IB can form a persistent complex with the ribosomal DNA (rDNA) promoter while homogeneous TIF-IB cannot. An additional factor, TIF-IE, is required along with homogeneous TIF-IB for the formation of a stable complex on the rDNA core promoter. We show that TIF-IE by itself, however, does not bind to the rDNA promoter and thus differs in its mechanism from the upstream binding factor and upstream activating factor, which carry out similar complex-stabilizing functions in vertebrates and yeast, respectively. In addition to its presence in impure TIF-IB, TIF-IE is found in highly purified fractions of polymerase I, with which it associates. Renaturation of polypeptides excised from sodium dodecyl sulfate-polyacrylamide gels showed that a 141-kDa polypeptide possesses all the known activities of TIF-IE.

  18. An insect-inspired model for visual binding II: functional analysis and visual attention.

    PubMed

    Northcutt, Brandon D; Higgins, Charles M

    2017-04-01

    We have developed a neural network model capable of performing visual binding inspired by neuronal circuitry in the optic glomeruli of flies: a brain area that lies just downstream of the optic lobes where early visual processing is performed. This visual binding model is able to detect objects in dynamic image sequences and bind together their respective characteristic visual features-such as color, motion, and orientation-by taking advantage of their common temporal fluctuations. Visual binding is represented in the form of an inhibitory weight matrix which learns over time which features originate from a given visual object. In the present work, we show that information represented implicitly in this weight matrix can be used to explicitly count the number of objects present in the visual image, to enumerate their specific visual characteristics, and even to create an enhanced image in which one particular object is emphasized over others, thus implementing a simple form of visual attention. Further, we present a detailed analysis which reveals the function and theoretical limitations of the visual binding network and in this context describe a novel network learning rule which is optimized for visual binding.

  19. Sensitive and accurate identification of protein–DNA binding events in ChIP-chip assays using higher order derivative analysis

    PubMed Central

    Barrett, Christian L.; Cho, Byung-Kwan

    2011-01-01

    Immuno-precipitation of protein–DNA complexes followed by microarray hybridization is a powerful and cost-effective technology for discovering protein–DNA binding events at the genome scale. It is still an unresolved challenge to comprehensively, accurately and sensitively extract binding event information from the produced data. We have developed a novel strategy composed of an information-preserving signal-smoothing procedure, higher order derivative analysis and application of the principle of maximum entropy to address this challenge. Importantly, our method does not require any input parameters to be specified by the user. Using genome-scale binding data of two Escherichia coli global transcription regulators for which a relatively large number of experimentally supported sites are known, we show that ∼90% of known sites were resolved to within four probes, or ∼88 bp. Over half of the sites were resolved to within two probes, or ∼38 bp. Furthermore, we demonstrate that our strategy delivers significant quantitative and qualitative performance gains over available methods. Such accurate and sensitive binding site resolution has important consequences for accurately reconstructing transcriptional regulatory networks, for motif discovery, for furthering our understanding of local and non-local factors in protein–DNA interactions and for extending the usefulness horizon of the ChIP-chip platform. PMID:21051353

  20. Identification of neuronal target genes for CCAAT/Enhancer Binding Proteins

    PubMed Central

    Kfoury, N.; Kapatos, G.

    2009-01-01

    CCAAT/Enhancer Binding Proteins (C/EBPs) play pivotal roles in development and plasticity of the nervous system. Identification of the physiological targets of C/EBPs (C/EBP target genes) should therefore provide insight into the underlying biology of these processes. We used unbiased genome-wide mapping to identify 115 C/EBPβ target genes in PC12 cells that include transcription factors, neurotransmitter receptors, ion channels, protein kinases and synaptic vesicle proteins. C/EBPβ binding sites were located primarily within introns, suggesting novel regulatory functions, and were associated with binding sites for other developmentally important transcription factors. Experiments using dominant negatives showed C/EBPβ to repress transcription of a subset of target genes. Target genes in rat brain were subsequently found to preferentially bind C/EBPα, β and δ. Analysis of the hippocampal transcriptome of C/EBPβ knockout mice revealed dysregulation of a high percentage of transcripts identified as C/EBP target genes. These results support the hypothesis that C/EBPs play non-redundant roles in the brain. PMID:19103292

  1. Insulin growth factor (IGF) 1, IGF-binding proteins and ovarian cancer risk: A systematic review and meta-analysis.

    PubMed

    Gianuzzi, Ximena; Palma-Ardiles, Gabriela; Hernandez-Fernandez, Wendy; Pasupuleti, Vinay; Hernandez, Adrian V; Perez-Lopez, Faustino R

    2016-12-01

    Insulin resistance (IR) has been implicated in carcinogenesis, but there is no consensus regarding its involvement in ovarian cancer. We performed a systematic review and meta-analysis to evaluate the association between IR and ovarian cancer. Searches were conducted in five databases for studies evaluating IR markers (levels of serum insulin, C peptide, insulin growth factor [IGF] 1 and IGF-binding proteins [IGFBPs], homeostatic model assessment insulin resistance, and quantitative insulin-sensitivity check index) and ovarian cancer risk. Study selection, data extraction and an assessment of risk of bias were performed independently by three researchers. The associations between IR markers and ovarian cancer were quantified as mean differences (MDs) or standardized MDs (SMDs) and their 95% CIs using random-effects models. Fourteen case-control studies satisfied our inclusion criteria (n=8130). There was little information on IR markers with the exception of the IGF system. Ovarian cancer was associated with lower IGF-1 levels (SMD -0.43ng/mL, 95% CI -0.67 to -0.18; p=0.0006), and lower IGFBP-3 levels (SMD -0.11ng/mL, 95% CI -0.21 to -0.00; p=0.04). However, ovarian cancer was associated with higher levels of IGFBP-2 and IGFBP-1 (MD 527.3ng/mL, 95%CI 473.6, 581.0; p<0.00001, and MD 3.47ng/mL, 95%CI 1.42, 5.52; p=0.0009 respectively). Subgroup analyses by menopausal status and age (≤55 vs >55y) for IGF-1 and IGFBP-3 showed the subgroups were similar, although heterogeneity remained high. The evidence suggests that levels of IGF-1 and IGFBP-3 are lower in patients with ovarian cancer. In contrast, higher levels of IGBP-2 and IGBP-1 are found in patients with ovarian cancer. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Loop III region of platelet-derived growth factor (PDGF) B-chain mediates binding to PDGF receptors and heparin.

    PubMed Central

    Schilling, D; Reid IV, J D; Hujer, A; Morgan, D; Demoll, E; Bummer, P; Fenstermaker, R A; Kaetzel, D M

    1998-01-01

    Site-directed mutagenesis of the platelet-derived growth factor (PDGF) B-chain was conducted to determine the importance of cationic amino acid residues (Arg160-Lys161-Lys162; RKK) located within the loop III region in mediating the biological and cell-association properties of the molecule. Binding to both PDGF alpha-and beta-receptors was inhibited by the conversion of all three cationic residues into anionic glutamates (RKK-->EEE), whereas an RKK-->SSS mutant also exhibited a modest loss in affinity for beta-receptors. Replacements with serine at either Arg160 (RKK-->SKK) or at all three positions (RKK-->SSS) had little effect on binding to alpha-receptors. Replacements with either glutamic or serine residues at any of the three positions also resulted in significant inhibition of heparin-binding activity. Furthermore, the RKK-->EEE mutant exhibited decreased association with the cell surface and accumulated in the culture medium as 29-32 kDa forms. Stable transfection of U87 astrocytoma cells with RKK-->EEE mutants of either the A-chain or the B-chain inhibited malignant growth in athymic nude mice. Despite altered receptor-binding activities, each of the loop III mutants retained full mitogenic activity when applied to cultured Swiss 3T3 cells. CD spectrophotometric analysis of the RKK-->EEE mutant revealed a secondary structure indistinguishable from the wild type, with a high degree of beta-sheet structure and random coil content (50% and 43% respectively). These findings indicate an important role of the Arg160-Lys161-Lys162 sequence in mediating the biological and cell-associative activities of the PDGF-BB homodimer, and reveal that the mitogenic activity of PDGF-BB is insufficient to mediate its full oncogenic properties. PMID:9677323

  3. The Influence of Adnectin Binding on the Extracellular Domain of Epidermal Growth Factor Receptor

    NASA Astrophysics Data System (ADS)

    Iacob, Roxana E.; Chen, Guodong; Ahn, Joomi; Houel, Stephane; Wei, Hui; Mo, Jingjie; Tao, Li; Cohen, Daniel; Xie, Dianlin; Lin, Zheng; Morin, Paul E.; Doyle, Michael L.; Tymiak, Adrienne A.; Engen, John R.

    2014-12-01

    The precise and unambiguous elucidation and characterization of interactions between a high affinity recognition entity and its cognate protein provides important insights for the design and development of drugs with optimized properties and efficacy. In oncology, one important target protein has been shown to be the epidermal growth factor receptor (EGFR) through the development of therapeutic anticancer antibodies that are selective inhibitors of EGFR activity. More recently, smaller protein derived from the 10th type III domain of human fibronectin termed an adnectin has also been shown to inhibit EGFR in clinical studies. The mechanism of EGFR inhibition by either an adnectin or an antibody results from specific binding of the high affinity protein to the extracellular portion of EGFR (exEGFR) in a manner that prevents phosphorylation of the intracellular kinase domain of the receptor and thereby blocks intracellular signaling. Here, the structural changes induced upon binding were studied by probing the solution conformations of full length exEGFR alone and bound to a cognate adnectin through hydrogen/deuterium exchange mass spectrometry (HDX MS). The effects of binding in solution were identified and compared with the structure of a bound complex determined by X-ray crystallography.

  4. Binding sites for abundant nuclear factors modulate RNA polymerase I-dependent enhancer function in Saccharomyces cerevisiae.

    PubMed

    Kang, J J; Yokoi, T J; Holland, M J

    1995-12-01

    The 190-base pair (bp) rDNA enhancer within the intergenic spacer sequences of Saccharomyces cerevisiae rRNA cistrons activates synthesis of the 35S-rRNA precursor about 20-fold in vivo (Mestel,, R., Yip, M., Holland, J. P., Wang, E., Kang, J., and Holland, M. J. (1989) Mol. Cell. Biol. 9, 1243-1254). We now report identification and analysis of transcriptional activities mediated by three cis-acting sites within a 90-bp portion of the rDNA enhancer designated the modulator region. In vivo, these sequences mediated termination of transcription by RNA polymerase I and potentiated the activity of the rDNA enhancer element. Two trans-acting factors, REB1 and REB2, bind independently to sites within the modulator region (Morrow, B. E., Johnson, S. P., and Warner, J. R. (1989) J. Biol. Chem. 264, 9061-9068). We show that REB2 is identical to the ABF1 protien. Site-directed mutagenesis of REB1 and ABF1 binding sites demonstrated uncoupling of RNA polymerase I-dependent termination from transcriptional activation in vivo. We conclude that REB1 and ABF1 are required for RNA polymerase I-dependent termination and enhancer function, respectively, Since REB1 and ABF1 proteins also regulate expression of class II genes and other nuclear functions, our results suggest further similarities between RNA polymerase I and II regulatory mechanisms. Two rDNA enhancers flanking a rDNA minigene stimulated RNA polymerase I transcription in a "multiplicative" fashion. Deletion mapping analysis showed that similar cis-acting sequences were required for enhancer function when positioned upstream or downstream from a rDNA minigene.

  5. Thermodynamic analysis of the interaction of factor VIII with von Willebrand factor.

    PubMed

    Dimitrov, Jordan D; Christophe, Olivier D; Kang, Jonghoon; Repessé, Yohann; Delignat, Sandrine; Kaveri, Srinivas V; Lacroix-Desmazes, Sébastien

    2012-05-22

    Factor VIII (FVIII) is a glycoprotein that plays an important role in the intrinsic pathway of coagulation. In circulation, FVIII is protected upon binding to von Willebrand factor (VWF), a chaperone molecule that regulates its half-life, distribution, and activity. Despite the biological significance of this interaction, its molecular mechanisms are not fully characterized. We determined the equilibrium and activation thermodynamics of the interaction between FVIII and VWF. The equilibrium affinity determined by surface plasmon resonance was temperature-dependent with a value of 0.8 nM at 35 °C. The FVIII-VWF interaction was characterized by very fast association (8.56 × 10(6) M(-1) s(-1)) and fast dissociation (6.89 × 10(-3) s(-1)) rates. Both the equilibrium association and association rate constants, but not the dissociation rate constant, were dependent on temperature. Binding of FVIII to VWF was characterized by favorable changes in the equilibrium and activation entropy (TΔS° = 89.4 kJ/mol, and -TΔS(++) = -8.9 kJ/mol) and unfavorable changes in the equilibrium and activation enthalpy (ΔH° = 39.1 kJ/mol, and ΔH(++) = 44.1 kJ/mol), yielding a negative change in the equilibrium Gibbs energy. Binding of FVIII to VWF in solid-phase assays demonstrated a high sensitivity to acidic pH and a sensitivity to ionic strength. Our data indicate that the interaction between FVIII and VWF is mediated mainly by electrostatic forces, and that it is not accompanied by entropic constraints, suggesting the absence of conformational adaptation but the presence of rigid "pre-optimized" binding surfaces.

  6. FBI-1, a factor that binds to the HIV-1 inducer of short transcripts (IST), is a POZ domain protein.

    PubMed Central

    Morrison, D J; Pendergrast, P S; Stavropoulos, P; Colmenares, S U; Kobayashi, R; Hernandez, N

    1999-01-01

    The HIV-1 promoter directs the synthesis of two classes of transcripts, short, non-polyadenylated transcripts and full-length, polyadenylated transcripts. The synthesis of short transcripts is activated by a bipartite DNA element, the inducer of short transcripts or IST, located downstream of the HIV-1 transcriptional start site, while the synthesis of full-length transcripts is activated by the viral activator Tat. Tat binds to the RNA element TAR, which is encoded largely between the two IST half-elements. Upon activation by Tat, the synthesis of short RNAs is repressed. We have previously purified a factor called FBI-1 (for factor that binds to IST) whose binding to wild-type and mutated ISTs correlated well with the abilities of these ISTs to direct the synthesis of short transcripts. Here, we report the cloning of cDNAs encoding FBI-1. FBI-1 contains a POZ domain at its N-terminus and four Krüppel-type zinc fingers at its C-terminus. The C-terminus is sufficient for specific binding, and FBI-1 can form homomers through its POZ domain and, in vivo, through its zinc finger domain as well. In addition, FBI-1 associates with Tat, suggesting that repression of the short transcripts by Tat may be mediated through interactions between the two factors. PMID:9973611

  7. Insulin and heparin-binding epidermal growth factor-like growth factor synergistically promote astrocyte survival and proliferation in serum-free medium.

    PubMed

    Jia, Mei; Shi, Zhongfang; Yan, Xu; Xu, Lixin; Dong, Liping; Li, Jiaxin; Wang, Yujiao; Yang, Shaohua; Yuan, Fang

    2018-06-08

    In vitro systems allowing maintenance and experimentation on primary astrocyte cultures have been used for decades. Astrocyte cultures are most maintained in serum-containing medium which has been found to alter the morphology and gene profiles of astrocytes. Here, we reported a new serum-free medium for astrocyte culture, which consisted of DMEM and NB media supplemented with insulin and heparin-binding epidermal growth factor-like growth factor (HB-EGF) (SF-I-H medium). Meanwhile FBS-containing (FBS) medium composed of DMEM medium containing 10% FBS were used for comparison study. Cerebral cortex was harvested from postnatal day 1 Wistar rats and brain cells were isolated and seeded to poly-L-lysine coated culture dishes after 15 min differential velocity adherence. Compared with FBS medium, astrocytes in SF-I-H medium are smaller and exhibited process bearing morphologies. MTT assays showed that cell density and proliferation rate were higher in SF-I-H medium than in FBS medium all the time, and flow cytometry analysis revealed that SF-I-H medium promoted cell mitosis in a manner comparable to FBS medium. Consistently, western blot analysis further revealed that insulin and HB-EGF synergistically activated the PI3K-AKT and MAPK-ERK1/2 signaling cascades as FBS. Astrocytes cultured in SF-I-H medium grow faster than FBS medium. Taken together, our results indicated that SF-I-H medium, in which cell morphology was similar with astrocytes in brain, was more effective for astrocyte survival and proliferation than FBS medium, providing a new cell model to study astrocyte functions without the interference of serum. Copyright © 2018. Published by Elsevier B.V.

  8. Acute handling disturbance modulates plasma insulin-like growth factor binding proteins in rainbow trout (Oncorhynchus mykiss)

    USDA-ARS?s Scientific Manuscript database

    The effects of acute stressor exposure on proximal (growth hormone; GH) and distal (insulin-like growth factor-I; IGF-I and IGF-binding proteins) components of the somatotropic axis are poorly understood in finfish. We exposed rainbow trout (Oncorhynchus mykiss) to a 5-minute handling disturbance to...

  9. Analysis of Nuclear Factor-κB (NF-κB) Essential Modulator (NEMO) Binding to Linear and Lysine-linked Ubiquitin Chains and Its Role in the Activation of NF-κB*

    PubMed Central

    Kensche, Tobias; Tokunaga, Fuminori; Ikeda, Fumiyo; Goto, Eiji; Iwai, Kazuhiro; Dikic, Ivan

    2012-01-01

    Nuclear factor-κB (NF-κB) essential modulator (NEMO), a component of the inhibitor of κB kinase (IKK) complex, controls NF-κB signaling by binding to ubiquitin chains. Structural studies of NEMO provided a rationale for the specific binding between the UBAN (ubiquitin binding in ABIN and NEMO) domain of NEMO and linear (Met-1-linked) di-ubiquitin chains. Full-length NEMO can also interact with Lys-11-, Lys-48-, and Lys-63-linked ubiquitin chains of varying length in cells. Here, we show that purified full-length NEMO binds preferentially to linear ubiquitin chains in competition with lysine-linked ubiquitin chains of defined length, including long Lys-63-linked deca-ubiquitins. Linear di-ubiquitins were sufficient to activate both the IKK complex in vitro and to trigger maximal NF-κB activation in cells. In TNFα-stimulated cells, NEMO chimeras engineered to bind exclusively to Lys-63-linked ubiquitin chains mediated partial NF-κB activation compared with cells expressing NEMO that binds to linear ubiquitin chains. We propose that NEMO functions as a high affinity receptor for linear ubiquitin chains and a low affinity receptor for long lysine-linked ubiquitin chains. This phenomenon could explain quantitatively distinct NF-κB activation patterns in response to numerous cell stimuli. PMID:22605335

  10. Structural Analysis of Botulinum Neurotoxin Type G Receptor Binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmitt, John; Karalewitz, Andrew; Benefield, Desire A.

    2010-10-19

    Botulinum neurotoxin (BoNT) binds peripheral neurons at the neuromuscular junction through a dual-receptor mechanism that includes interactions with ganglioside and protein receptors. The receptor identities vary depending on BoNT serotype (A-G). BoNT/B and BoNT/G bind the luminal domains of synaptotagmin I and II, homologous synaptic vesicle proteins. We observe conditions under which BoNT/B binds both Syt isoforms, but BoNT/G binds only SytI. Both serotypes bind ganglioside G{sub T1b}. The BoNT/G receptor-binding domain crystal structure provides a context for examining these binding interactions and a platform for understanding the physiological relevance of different Syt receptor isoforms in vivo.

  11. Serum lipopolysaccharide-binding protein prediction of severe bacterial infection in cirrhotic patients with ascites.

    PubMed

    Albillos, Agustín; de-la-Hera, Antonio; Alvarez-Mon, Melchor

    2004-05-15

    Serum lipopolysaccharide-binding protein is increased in a subset of non-infected ascitic cirrhotic patients, a finding previously related to bacterial passage from the gut to the circulation without overt infection. We prospectively analysed the risk factors associated with a first episode of severe bacterial infection in 84 ascitic cirrhotics, followed up for a median of 46 weeks. The cumulative probability of such infection in patients with raised and normal lipopolysaccharide-binding protein was 32.4% and 8.0% (p=0.004), respectively. Increased lipopolysaccharide-binding protein was the only factor independently associated with severe bacterial infection in a multivariate analysis (relative risk 4.49, 95% CI 1.42-14.1). Monitoring of serum lipopolysaccharide-binding protein could, therefore, help to target cirrhotic patients with ascites for antibiotic prophylaxis.

  12. Binding of mitomycin C to blood proteins: A spectroscopic analysis and molecular docking

    NASA Astrophysics Data System (ADS)

    Jang, Jongchol; Liu, Hui; Chen, Wei; Zou, Guolin

    2009-06-01

    Mitomycin C (MMC) was the first recognized bioreductive alkylating agent, and has been widely used clinically for antitumor therapy. The binding of MMC to two human blood proteins, human serum albumin (HSA) and human hemoglobin (HHb), have been investigated by fluorescence quenching, synchronous fluorescence, circular dichroism (CD) spectroscopy and molecular docking methods. The fluorescence data showed that binding of MMC to proteins caused strong fluorescence quenching of proteins through a static quenching way, and each protein had only one binding site for the drug. The binding constants of MMC to HSA and HHb at 298 K were 2.71 × 10 4 and 2.56 × 10 4 L mol -1, respectively. Thermodynamic analysis suggested that both hydrophobic interaction and hydrogen bonding played major roles in the binding of MMC to HSA or HHb. The CD spectroscopy indicated that the secondary structures of the two proteins were not changed in the presence of MMC. The study of molecular docking showed that MMC was located in the entrance of site I of HSA, and in the central cavity of HHb.

  13. Expression of serum insulin-like growth factors, insulin-like growth factor-binding proteins, and the growth hormone-binding protein in heterozygote relatives of Ecuadorian growth hormone receptor deficient patients.

    PubMed

    Fielder, P J; Guevara-Aguirre, J; Rosenbloom, A L; Carlsson, L; Hintz, R L; Rosenfeld, R G

    1992-04-01

    Recently, an isolated population of apparent GH-receptor deficient (GHRD) patients has been identified in the Loja province of southern Ecuador. These individuals presented many of the physical and biochemical phenotypes characteristic of Laron-Syndrome and are believed to have a defect in the GH-receptor gene. In this study, we have compared the biochemical phenotypes between the affected individuals and their parents, considered to be obligate heterozygotes for the disorder. Serum GH, insulin-like growth factor I and II (IGF-I and IGF-II) levels were measured by RIA Insulin-like growth factor binding proteins. (IGFBPs) were measured by Western ligand blotting (WLB) of serum samples, following separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and relative quantitation of serum IGFBPs was performed with a scanning laser densitometer. Serum GH-binding protein (GHBP) levels were measured with a ligand-mediated immunofunctional assay using a monoclonal antibody raised against the GHBP. These values were then compared to values obtained from normal, sex-matched adult Ecuadorian controls, to determine if the above parameters were abnormal in the heterozygotes. The serum IGF-I levels of the GHRD patients were less than 13% of control values for adults and 2% for children. However, the IGF-I levels of both the mothers and fathers were not significantly different from that of the control population. The serum IGF-II levels of the GHRD patients were approximately 20% of control values for adults and 12% for the children. The IGF-II levels of the mothers were reduced, but were not significantly different from that of the control population. However, IGF-II levels of the fathers were significantly lower than those of controls (64% of control male levels). WLB analysis of serum IGFBP levels of the affected subjects demonstrated increased IGFBP-2 and decreased IGFBP-3, suggesting an inverse relationship between these IGFBPs. The GHRD patients who had the

  14. Clinical value of octamer-binding transcription factor 4 as a prognostic marker in patients with digestive system cancers: A systematic review and meta-analysis.

    PubMed

    Chen, Zhiqiang; Zhang, Long; Zhu, Qin; Wang, Xiaowei; Wu, Jindao; Wang, Xuehao

    2017-03-01

    The role of octamer-binding transcription factor 4 (Oct4) has been implicated in the clinical prognosis of various kinds of digestive system cancers, but the results remain controversial. The purpose of this meta-analysis is to assess the potential role of Oct4 as a prognostic marker in digestive system tumors. Relevant articles were retrieved from Pubmed, Web of Science, and Cochrane Library up to July 2016. The software Stata 12.0 was used to analyze the outcomes, including overall survival (OS), disease-free survival, recurrence-free survival, and clinicopathological characteristics. A total of 13 eligible studies with 1538 patients were included. Elevated Oct4 expression was significantly associated with poor OS (pooled hazard ratio [HR] = 2.183, 95% confidence interval [CI]: 1.824-2.612), disease-free survival (pooled HR = 1.973, 95% CI: 1.538-2.532), and recurrence-free survival (pooled HR = 2.209, 95% CI: 1.461-3.338) of digestive system malignancies. Subgroup analyses showed that cancer type, sample size, study quality, and laboratory detection method did not alter the significant prognostic value of Oct4. Additionally, Oct4 expression was found to be an independent predictive factor for OS (HR = 2.068, 95% CI: 1.633-2.619). No significant association was found between Oct4 and clinicopathological features of digestive system malignancies. This study provided evidence of Oct4 and/or its closely related homolog protein as a predictive factor for patients with digestive system cancers. More large-scale clinical studies on the prognostic value of Oct4 are warranted. © 2016 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  15. Kinetic analysis of central ( sup 11 C)raclopride binding to D2-dopamine receptors studied by PET--a comparison to the equilibrium analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farde, L.; Eriksson, L.; Blomquist, G.

    1989-10-01

    (11C)Raclopride binding to central D2-dopamine receptors in humans has previously been examined by positron emission tomography (PET). Based on the rapid occurrence of binding equilibrium, a saturation analysis has been developed for the determination of receptor density (Bmax) and affinity (Kd). For analysis of PET measurements obtained with other ligands, a kinetic three-compartment model has been used. In the present study, the brain uptake of (11C)raclopride was analyzed further by applying both a kinetic and an equilibrium analysis to data obtained from four PET experiments in each of three healthy subjects. First regional CBV was determined. In the second andmore » third experiment, (11C)-raclopride with high and low specific activity was used. In a fourth experiment, the (11C)raclopride enantiomer (11C)FLB472 was used to examine the concentration of free radioligand and nonspecific binding in brain. Radio-activity in arterial blood was measured using an automated blood sampling system. Bmax and Kd values for (11C)raclopride binding could be determined also with the kinetic analysis. As expected theoretically, those values were similar to those obtained with the equilibrium analysis. In addition, the kinetic analysis allowed separate determination of the association and dissociation rate constants, kon and koff, respectively. Examination of (11C)raclopride and (11C)FLB472 uptake in brain regions devoid of specific D2-dopamine receptor binding indicated a fourth compartment in which uptake was reversible, nonstereoselective, and nonsaturable in the dose range studied.« less

  16. Mismatch repair factor MSH2-MSH3 binds and alters the conformation of branched DNA structures predicted to form during genetic recombination.

    PubMed

    Surtees, Jennifer A; Alani, Eric

    2006-07-14

    Genetic studies in Saccharomyces cerevisiae predict that the mismatch repair (MMR) factor MSH2-MSH3 binds and stabilizes branched recombination intermediates that form during single strand annealing and gene conversion. To test this model, we constructed a series of DNA substrates that are predicted to form during these recombination events. We show in an electrophoretic mobility shift assay that S. cerevisiae MSH2-MSH3 specifically binds branched DNA substrates containing 3' single-stranded DNA and that ATP stimulates its release from these substrates. Chemical footprinting analyses indicate that MSH2-MSH3 specifically binds at the double-strand/single-strand junction of branched substrates, alters its conformation and opens up the junction. Therefore, MSH2-MSH3 binding to its substrates creates a unique nucleoprotein structure that may signal downstream steps in repair that include interactions with MMR and nucleotide excision repair factors.

  17. Effect of antemortem and postmortem factors on ( sup 3 H)MK-801 binding in the human brain: Transient elevation during early childhood

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kornhuber, J.; Mack-Burkhardt, F.; Konradi, C.

    1989-01-01

    The effect of a number of antemortem and postmortem factors on ({sup 3}H)MK-801 binding was investigated under equilibrium conditions in the frontal cortex of human brains of 38 controls. Binding values transiently increased during the early postnatal period reaching a maximum at the age of about 2 years. After age 10 years ({sup 3}H)MK-801 binding sites disappeared at 5.7% per decade. The storage time of brain tissue had a reducing effect on these binding sites. There was no effect of gender, brain weight or postmortem time interval and the binding sites were bilaterally symmetrically distributed in the frontal cortex.

  18. Insulin-like Growth Factor 1 Regulates the Expression of ATP-Binding Cassette Transporter A1 in Pancreatic Beta Cells.

    PubMed

    Lyu, J; Imachi, H; Iwama, H; Zhang, H; Murao, K

    2016-05-01

    ATP-binding cassette transporter A1 (ABCA1) in pancreatic beta cells influences insulin secretion and cholesterol homeostasis. The present study investigates whether insulin-like growth factor 1 (IGF-1), which mediates stimulation of ABCA1 gene expression, could also interfere with the phosphatidylinositol 3-kinase (PI3-K) cascade.ABCA1 expression was examined by real-time polymerase chain reaction (PCR), Western blot analysis, and a reporter gene assay in rat insulin-secreting INS-1 cells incubated with IGF-1. The binding of forkhead box O1 (FoxO1) protein to the ABCA1 promoter was assessed by a chromatin immunoprecipitation (ChIP) assay. ABCA1 protein levels increased in response to rising concentrations of IGF-1. Real-time PCR analysis showed a significant increase in ABCA1 mRNA expression. However, both effects were suppressed after silencing the IGF-1 receptor. In parallel with its effect on endogenous ABCA1 mRNA levels, IGF-1 induced the activity of a reporter construct containing the ABCA1 promoter, while it was abrogated by LY294002, a specific inhibitor of PI3-K. Constitutively active Akt stimulated activity of the ABCA1 promoter, and a dominant-negative mutant of Akt or mutagenesis of the FoxO1 response element in the ABCA1 promoter abolished the ability of IGF-1 to stimulate promoter activity. A ChIP assay showed that FoxO1 mediated its transcriptional activity by directly binding to the ABCA1 promoter region. The knockdown of FoxO1 disrupted the effect of IGF-1 on ABCA1 expression. Furthermore, IGF-1 promoted cholesterol efflux and reduced the pancreatic lipotoxicity. These results demonstrate that the PI3-K/Akt/FoxO1 pathway contributes to the regulation of ABCA1 expression in response to IGF-1 stimulation. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Structural analysis of ibuprofen binding to human adipocyte fatty-acid binding protein (FABP4).

    PubMed

    González, Javier M; Fisher, S Zoë

    2015-02-01

    Inhibition of human adipocyte fatty-acid binding protein (FABP4) has been proposed as a treatment for type 2 diabetes, fatty liver disease and atherosclerosis. However, FABP4 displays a naturally low selectivity towards hydrophobic ligands, leading to the possibility of side effects arising from cross-inhibition of other FABP isoforms. In a search for structural determinants of ligand-binding selectivity, the binding of FABP4 towards a group of small molecules structurally related to the nonsteroidal anti-inflammatory drug ibuprofen was analyzed through X-ray crystallography. Several specific hydrophobic interactions are shown to enhance the binding affinities of these compounds, whereas an aromatic edge-to-face interaction is proposed to determine the conformation of bound ligands, highlighting the importance of aromatic interactions in hydrophobic environments.

  20. Neisseria conserved protein DMP19 is a DNA mimic protein that prevents DNA binding to a hypothetical nitrogen-response transcription factor

    PubMed Central

    Wang, Hao-Ching; Ko, Tzu-Ping; Wu, Mao-Lun; Ku, Shan-Chi; Wu, Hsing-Ju; Wang, Andrew H.-J.

    2012-01-01

    DNA mimic proteins occupy the DNA binding sites of DNA-binding proteins, and prevent these sites from being accessed by DNA. We show here that the Neisseria conserved hypothetical protein DMP19 acts as a DNA mimic. The crystal structure of DMP19 shows a dsDNA-like negative charge distribution on the surface, suggesting that this protein should be added to the short list of known DNA mimic proteins. The crystal structure of another related protein, NHTF (Neisseria hypothetical transcription factor), provides evidence that it is a member of the xenobiotic-response element (XRE) family of transcriptional factors. NHTF binds to a palindromic DNA sequence containing a 5′-TGTNAN11TNACA-3′ recognition box that controls the expression of an NHTF-related operon in which the conserved nitrogen-response protein [i.e. (Protein-PII) uridylyltransferase] is encoded. The complementary surface charges between DMP19 and NHTF suggest specific charge–charge interaction. In a DNA-binding assay, we found that DMP19 can prevent NHTF from binding to its DNA-binding sites. Finally, we used an in situ gene regulation assay to provide evidence that NHTF is a repressor of its down-stream genes and that DMP19 can neutralize this effect. We therefore conclude that the interaction of DMP19 and NHTF provides a novel gene regulation mechanism in Neisseria spps. PMID:22373915

  1. Structure of pleiotrophin- and hepatocyte growth factor-binding sulfated hexasaccharide determined by biochemical and computational approaches.

    PubMed

    Li, Fuchuan; Nandini, Chilkunda D; Hattori, Tomohide; Bao, Xingfeng; Murayama, Daisuke; Nakamura, Toshikazu; Fukushima, Nobuhiro; Sugahara, Kazuyuki

    2010-09-03

    Endogenous pleiotrophin and hepatocyte growth factor (HGF) mediate the neurite outgrowth-promoting activity of chondroitin sulfate (CS)/dermatan sulfate (DS) hybrid chains isolated from embryonic pig brain. CS/DS hybrid chains isolated from shark skin have a different disaccharide composition, but also display these activities. In this study, pleiotrophin- and HGF-binding domains in shark skin CS/DS were investigated. A high affinity CS/DS fraction was isolated using a pleiotrophin-immobilized column. It showed marked neurite outgrowth-promoting activity and strong inhibitory activity against the binding of pleiotrophin to immobilized CS/DS chains from embryonic pig brain. The inhibitory activity was abolished by chondroitinase ABC or B, and partially reduced by chondroitinase AC-I. A pentasulfated hexasaccharide with a novel structure was isolated from the chondroitinase AC-I digest using pleiotrophin affinity and anion exchange chromatographies. It displayed a potent inhibitory effect on the binding of HGF to immobilized shark skin CS/DS chains, suggesting that the pleiotrophin- and HGF-binding domains at least partially overlap in the CS/DS chains involved in the neuritogenic activity. Computational chemistry using molecular modeling and calculations of the electrostatic potential of the hexasaccharide and two pleiotrophin-binding octasaccharides previously isolated from CS/DS hybrid chains of embryonic pig brain identified an electronegative zone potentially involved in the molecular recognition of the oligosaccharides by pleiotrophin. Homology modeling of pleiotrophin based on a related midkine protein structure predicted the binding pocket of pleiotrophin for the oligosaccharides and provided new insights into the molecular mechanism of the interactions between the oligosaccharides and pleiotrophin.

  2. Exploring high-affinity binding properties of octamer peptides by principal component analysis of tetramer peptides.

    PubMed

    Kume, Akiko; Kawai, Shun; Kato, Ryuji; Iwata, Shinmei; Shimizu, Kazunori; Honda, Hiroyuki

    2017-02-01

    To investigate the binding properties of a peptide sequence, we conducted principal component analysis (PCA) of the physicochemical features of a tetramer peptide library comprised of 512 peptides, and the variables were reduced to two principal components. We selected IL-2 and IgG as model proteins and the binding affinity to these proteins was assayed using the 512 peptides mentioned above. PCA of binding affinity data showed that 16 and 18 variables were suitable for localizing IL-2 and IgG high-affinity binding peptides, respectively, into a restricted region of the PCA plot. We then investigated whether the binding affinity of octamer peptide libraries could be predicted using the identified region in the tetramer PCA. The results show that octamer high-affinity binding peptides were also concentrated in the tetramer high-affinity binding region of both IL-2 and IgG. The average fluorescence intensity of high-affinity binding peptides was 3.3- and 2.1-fold higher than that of low-affinity binding peptides for IL-2 and IgG, respectively. We conclude that PCA may be used to identify octamer peptides with high- or low-affinity binding properties from data from a tetramer peptide library. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  3. Colocalization of insulin-like growth factor-binding protein with insulin-like growth factor I.

    PubMed

    Kobayashi, S; Clemmons, D R; Venkatachalam, M A

    1991-07-01

    We report the localization of insulin-like growth factor I (IGF-I) and a 25-kDa form of insulin-like growth factor-binding protein (IGF-BP-1) in adult rat kidney. The antigens were localized using a rabbit anti-human IGF-I antibody, and a rabbit anti-human IGF-BP-1 antibody raised against human 25-kDa IGF-BP-1 purified from amniotic fluid. Immunohistochemistry by the avidin-biotin peroxidase conjugate technique showed that both peptides are located in the same nephron segments, in the same cell types. The most intense staining was in papillary collecting ducts. There was moderate staining also in cortical collecting ducts and medullary thick ascending limbs of Henle's loop. In collecting ducts the antigens were shown to be present in principal cells but not in intercalated cells. In distal convoluted tubules, cortical thick ascending limbs, and in structures presumptively identified as thin limbs of Henle's loops there was only modest staining. The macula densa, however, lacked immunoreactivity. Colocalization of IGF-I and IGF-BP-1 in the same cells supports the notion, derived from studies on cultured cells, that the actions of IGF-I may be modified by IGF-BPs that are present in the same location.

  4. Structural characterization of metal binding to a cold-adapted frataxin.

    PubMed

    Noguera, Martín E; Roman, Ernesto A; Rigal, Juan B; Cousido-Siah, Alexandra; Mitschler, André; Podjarny, Alberto; Santos, Javier

    2015-06-01

    Frataxin is an evolutionary conserved protein that participates in iron metabolism. Deficiency of this small protein in humans causes a severe neurodegenerative disease known as Friedreich's ataxia. A number of studies indicate that frataxin binds iron and regulates Fe-S cluster biosynthesis. Previous structural studies showed that metal binding occurs mainly in a region of high density of negative charge. However, a comprehensive characterization of the binding sites is required to gain further insights into the mechanistic details of frataxin function. In this work, we have solved the X-ray crystal structures of a cold-adapted frataxin from a psychrophilic bacterium in the presence of cobalt or europium ions. We have identified a number of metal-binding sites, mainly solvent exposed, several of which had not been observed in previous studies on mesophilic homologues. No major structural changes were detected upon metal binding, although the structures exhibit significant changes in crystallographic B-factors. The analysis of these B-factors, in combination with crystal packing and RMSD among structures, suggests the existence of localized changes in the internal motions. Based on these results, we propose that bacterial frataxins possess binding sites of moderate affinity for a quick capture and transfer of iron to other proteins and for the regulation of Fe-S cluster biosynthesis, modulating interactions with partner proteins.

  5. Factor Analysis and Counseling Research

    ERIC Educational Resources Information Center

    Weiss, David J.

    1970-01-01

    Topics discussed include factor analysis versus cluster analysis, analysis of Q correlation matrices, ipsativity and factor analysis, and tests for the significance of a correlation matrix prior to application of factor analytic techniques. Techniques for factor extraction discussed include principal components, canonical factor analysis, alpha…

  6. Binding of puerarin to human serum albumin: a spectroscopic analysis and molecular docking.

    PubMed

    He, Yang; Wang, Yiwei; Tang, Lifei; Liu, Hui; Chen, Wei; Zheng, Zhongliang; Zou, Guolin

    2008-03-01

    Puerarin is a widely used compound in Chinese traditional medicine and exhibits many pharmacological activities. Binding of puerarin to human serum albumin (HSA) was investigated by ultraviolet absorbance, fluorescence, circular dichroism and molecular docking. Puerarin caused a static quenching of intrinsic fluorescence of HSA, the quenching data was analyzed by Stern-Volmer equation. There was one primary puerarin binding site on HSA with a binding constant of 4.12 x 10(4) M(-1) at 298 K. Thermodynamic analysis by Van Hoff equation found enthalpy change (DeltaH(0)) and entropy change (DeltaS(0)) were -28.01 kJ/mol and -5.63 J/mol K respectively, which indicated the hydrogen bond and Van der Waas interaction were the predominant forces in the binding process. Competitive experiments showed a displacement of warfarin by puerarin, which revealed that the binding site was located at the drug site I. Puerarin was about 2.22 nm far from the tryptophan according to the observed fluorescence resonance energy transfer between HSA and puerarin. Molecular docking suggested the hydrophobic residues such as tyrosine (Tyr) 150, Tyr 148, Tyr 149 and polar residues such as lysine (Lys) 199, Lys 195, arginine 257 and histidine 242 played an important role in the binding reaction.

  7. Specific electrostatic interactions between charged amino acid residues regulate binding of von Willebrand factor to blood platelets.

    PubMed

    Interlandi, Gianluca; Yakovenko, Olga; Tu, An-Yue; Harris, Jeff; Le, Jennie; Chen, Junmei; López, José A; Thomas, Wendy E

    2017-11-10

    The plasma protein von Willebrand factor (VWF) is essential for hemostasis initiation at sites of vascular injury. The platelet-binding A1 domain of VWF is connected to the VWF N-terminally located D'D3 domain through a relatively unstructured amino acid sequence, called here the N-terminal linker. This region has previously been shown to inhibit the binding of VWF to the platelet surface receptor glycoprotein Ibα (GpIbα). However, the molecular mechanism underlying the inhibitory function of the N-terminal linker has not been elucidated. Here, we show that an aspartate at position 1261 is the most critical residue of the N-terminal linker for inhibiting binding of the VWF A1 domain to GpIbα on platelets in blood flow. Through a combination of molecular dynamics simulations, mutagenesis, and A1-GpIbα binding experiments, we identified a network of salt bridges between Asp 1261 and the rest of A1 that lock the N-terminal linker in place such that it reduces binding to GpIbα. Mutations aimed at disrupting any of these salt bridges activated binding unless the mutated residue also formed a salt bridge with GpIbα, in which case the mutations inhibited the binding. These results show that interactions between charged amino acid residues are important both to directly stabilize the A1-GpIbα complex and to indirectly destabilize the complex through the N-terminal linker. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. von Willebrand factor (VWF) propeptide binding to VWF D'D3 domain attenuates platelet activation and adhesion.

    PubMed

    Madabhushi, Sri R; Shang, Chengwei; Dayananda, Kannayakanahalli M; Rittenhouse-Olson, Kate; Murphy, Mary; Ryan, Thomas E; Montgomery, Robert R; Neelamegham, Sriram

    2012-05-17

    Noncovalent association between the von Willebrand factor (VWF) propeptide (VWFpp) and mature VWF aids N-terminal multimerization and protein compartmentalization in storage granules. This association is currently thought to dissipate after secretion into blood. In the present study, we examined this proposition by quantifying the affinity and kinetics of VWFpp binding to mature VWF using surface plasmon resonance and by developing novel anti-VWF D'D3 mAbs. Our results show that the only binding site for VWFpp in mature VWF is in its D'D3 domain. At pH 6.2 and 10mM Ca(2+), conditions mimicking intracellular compartments, VWFpp-VWF binding occurs with high affinity (K(D) = 0.2nM, k(off) = 8 × 10(-5) s(-1)). Significant, albeit weaker, binding (K(D) = 25nM, k(off) = 4 × 10(-3) s(-1)) occurs under physiologic conditions of pH 7.4 and 2.5mM Ca(2+). This interaction was also observed in human plasma (K(D) = 50nM). The addition of recombinant VWFpp in both flow-chamber-based platelet adhesion assays and viscometer-based shear-induced platelet aggregation and activation studies reduced platelet adhesion and activation partially. Anti-D'D3 mAb DD3.1, which blocks VWFpp binding to VWF-D'D3, also abrogated platelet adhesion, as shown by shear-induced platelet aggregation and activation studies. Our data demonstrate that VWFpp binding to mature VWF occurs in the circulation, which can regulate the hemostatic potential of VWF by reducing VWF binding to platelet GpIbα.

  9. A high ratio of insulin-like growth factor II/insulin-like growth factor binding protein 2 messenger RNA as a marker for anaplasia in meningiomas.

    PubMed

    Nordqvist, A C; Peyrard, M; Pettersson, H; Mathiesen, T; Collins, V P; Dumanski, J P; Schalling, M

    1997-07-01

    Insulin-like growth factors (IGFs) I and II have been implicated as autocrine or paracrine growth promoters. These growth factors bind to specific receptors, and the response is modulated by interaction with IGF-binding proteins (IGFBPs). We observed a strong correlation between anaplastic/atypical histopathology and a high IGF-II/IGFBP-2 mRNA ratio in a set of 68 sporadic meningiomas. A strong correlation was also found between clinical outcome and IGF-II/IGFBP-2 ratio, whereas previously used histochemical markers were less correlated to outcome. We suggest that a high IGF-II/IGFBP-2 mRNA ratio may be a sign of biologically aggressive behavior in meningiomas that can influence treatment strategies. We propose that low IGFBP-2 levels in combination with increased levels of IGF-II would result in more free IGF-II and consequently greater stimulation of proliferation.

  10. The structure of binding curves and practical identifiability of equilibrium ligand-binding parameters

    PubMed Central

    Middendorf, Thomas R.

    2017-01-01

    A critical but often overlooked question in the study of ligands binding to proteins is whether the parameters obtained from analyzing binding data are practically identifiable (PI), i.e., whether the estimates obtained from fitting models to noisy data are accurate and unique. Here we report a general approach to assess and understand binding parameter identifiability, which provides a toolkit to assist experimentalists in the design of binding studies and in the analysis of binding data. The partial fraction (PF) expansion technique is used to decompose binding curves for proteins with n ligand-binding sites exactly and uniquely into n components, each of which has the form of a one-site binding curve. The association constants of the PF component curves, being the roots of an n-th order polynomial, may be real or complex. We demonstrate a fundamental connection between binding parameter identifiability and the nature of these one-site association constants: all binding parameters are identifiable if the constants are all real and distinct; otherwise, at least some of the parameters are not identifiable. The theory is used to construct identifiability maps from which the practical identifiability of binding parameters for any two-, three-, or four-site binding curve can be assessed. Instructions for extending the method to generate identifiability maps for proteins with more than four binding sites are also given. Further analysis of the identifiability maps leads to the simple rule that the maximum number of structurally identifiable binding parameters (shown in the previous paper to be equal to n) will also be PI only if the binding curve line shape contains n resolved components. PMID:27993951

  11. A Multiprotein Binding Interface in an Intrinsically Disordered Region of the Tumor Suppressor Protein Interferon Regulatory Factor-1*

    PubMed Central

    Narayan, Vikram; Halada, Petr; Hernychová, Lenka; Chong, Yuh Ping; Žáková, Jitka; Hupp, Ted R.; Vojtesek, Borivoj; Ball, Kathryn L.

    2011-01-01

    The interferon-regulated transcription factor and tumor suppressor protein IRF-1 is predicted to be largely disordered outside of the DNA-binding domain. One of the advantages of intrinsically disordered protein domains is thought to be their ability to take part in multiple, specific but low affinity protein interactions; however, relatively few IRF-1-interacting proteins have been described. The recent identification of a functional binding interface for the E3-ubiquitin ligase CHIP within the major disordered domain of IRF-1 led us to ask whether this region might be employed more widely by regulators of IRF-1 function. Here we describe the use of peptide aptamer-based affinity chromatography coupled with mass spectrometry to define a multiprotein binding interface on IRF-1 (Mf2 domain; amino acids 106–140) and to identify Mf2-binding proteins from A375 cells. Based on their function as known transcriptional regulators, a selection of the Mf2 domain-binding proteins (NPM1, TRIM28, and YB-1) have been validated using in vitro and cell-based assays. Interestingly, although NPM1, TRIM28, and YB-1 all bind to the Mf2 domain, they have differing amino acid specificities, demonstrating the degree of combinatorial diversity and specificity available through linear interaction motifs. PMID:21245151

  12. A multiprotein binding interface in an intrinsically disordered region of the tumor suppressor protein interferon regulatory factor-1.

    PubMed

    Narayan, Vikram; Halada, Petr; Hernychová, Lenka; Chong, Yuh Ping; Žáková, Jitka; Hupp, Ted R; Vojtesek, Borivoj; Ball, Kathryn L

    2011-04-22

    The interferon-regulated transcription factor and tumor suppressor protein IRF-1 is predicted to be largely disordered outside of the DNA-binding domain. One of the advantages of intrinsically disordered protein domains is thought to be their ability to take part in multiple, specific but low affinity protein interactions; however, relatively few IRF-1-interacting proteins have been described. The recent identification of a functional binding interface for the E3-ubiquitin ligase CHIP within the major disordered domain of IRF-1 led us to ask whether this region might be employed more widely by regulators of IRF-1 function. Here we describe the use of peptide aptamer-based affinity chromatography coupled with mass spectrometry to define a multiprotein binding interface on IRF-1 (Mf2 domain; amino acids 106-140) and to identify Mf2-binding proteins from A375 cells. Based on their function as known transcriptional regulators, a selection of the Mf2 domain-binding proteins (NPM1, TRIM28, and YB-1) have been validated using in vitro and cell-based assays. Interestingly, although NPM1, TRIM28, and YB-1 all bind to the Mf2 domain, they have differing amino acid specificities, demonstrating the degree of combinatorial diversity and specificity available through linear interaction motifs.

  13. Fibrinogen binding sites P336 and Y338 of clumping factor A are crucial for Staphylococcus aureus virulence.

    PubMed

    Josefsson, Elisabet; Higgins, Judy; Foster, Timothy J; Tarkowski, Andrej

    2008-05-21

    We have earlier shown that clumping factor A (ClfA), a fibrinogen binding surface protein of Staphylococcus aureus, is an important virulence factor in septic arthritis. When two amino acids in the ClfA molecule, P(336) and Y(338), were changed to serine and alanine, respectively, the fibrinogen binding property was lost. ClfAP(336)Y(338) mutants have been constructed in two virulent S. aureus strains Newman and LS-1. The aim of this study was to analyze if these two amino acids which are vital for the fibrinogen binding of ClfA are of importance for the ability of S. aureus to generate disease. Septic arthritis or sepsis were induced in mice by intravenous inoculation of bacteria. The clfAP(336)Y(338) mutant induced significantly less arthritis than the wild type strain, both with respect to severity and frequency. The mutant infected mice developed also a much milder systemic inflammation, measured as lower mortality, weight loss, bacterial growth in kidneys and lower IL-6 levels. The data were verified with a second mutant where clfAP(336) and Y(338) were changed to alanine and serine respectively. When sepsis was induced by a larger bacterial inoculum, the clfAP(336)Y(338) mutants induced significantly less septic death. Importantly, immunization with the recombinant A domain of ClfAP(336)SY(338)A mutant but not with recombinant ClfA, protected against septic death. Our data strongly suggest that the fibrinogen binding activity of ClfA is crucial for the ability of S. aureus to provoke disease manifestations, and that the vaccine potential of recombinant ClfA is improved by removing its ability to bind fibrinogen.

  14. Myocardin-Related Transcription Factor A Activation by Competition with WH2 Domain Proteins for Actin Binding.

    PubMed

    Weissbach, Julia; Schikora, Franziska; Weber, Anja; Kessels, Michael; Posern, Guido

    2016-05-15

    The myocardin-related transcription factors (MRTFs) are coactivators of serum response factor (SRF)-mediated gene expression. Activation of MRTF-A occurs in response to alterations in actin dynamics and critically requires the dissociation of repressive G-actin-MRTF-A complexes. However, the mechanism leading to the release of MRTF-A remains unclear. Here we show that WH2 domains compete directly with MRTF-A for actin binding. Actin nucleation-promoting factors, such as N-WASP and WAVE2, as well as isolated WH2 domains, including those of Spire2 and Cobl, activate MRTF-A independently of changes in actin dynamics. Simultaneous inhibition of Arp2-Arp3 or mutation of the CA region only partially reduces MRTF-A activation by N-WASP and WAVE2. Recombinant WH2 domains and the RPEL domain of MRTF-A bind mutually exclusively to cellular and purified G-actin in vitro The competition by different WH2 domains correlates with MRTF-SRF activation. Following serum stimulation, nonpolymerizable actin dissociates from MRTF-A, and de novo formation of the G-actin-RPEL complex is impaired by a transferable factor. Our work demonstrates that WH2 domains activate MRTF-A and contribute to target gene regulation by a competitive mechanism, independently of their role in actin filament formation. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  15. Abundance, diversity and domain architecture variability in prokaryotic DNA-binding transcription factors.

    PubMed

    Perez-Rueda, Ernesto; Hernandez-Guerrero, Rafael; Martinez-Nuñez, Mario Alberto; Armenta-Medina, Dagoberto; Sanchez, Israel; Ibarra, J Antonio

    2018-01-01

    Gene regulation at the transcriptional level is a central process in all organisms, and DNA-binding transcription factors, known as TFs, play a fundamental role. This class of proteins usually binds at specific DNA sequences, activating or repressing gene expression. In general, TFs are composed of two domains: the DNA-binding domain (DBD) and an extra domain, which in this work we have named "companion domain" (CD). This latter could be involved in one or more functions such as ligand binding, protein-protein interactions or even with enzymatic activity. In contrast to DBDs, which have been widely characterized both experimentally and bioinformatically, information on the abundance, distribution, variability and possible role of the CDs is scarce. Here, we investigated these issues associated with the domain architectures of TFs in prokaryotic genomes. To this end, 19 families of TFs in 761 non-redundant bacterial and archaeal genomes were evaluated. In this regard we found four main groups based on the abundance and distribution in the analyzed genomes: i) LysR and TetR/AcrR; ii) AraC/XylS, SinR, and others; iii) Lrp, Fis, ArsR, and others; and iv) a group that included only two families, ArgR and BirA. Based on a classification of the organisms according to the life-styles, a major abundance of regulatory families in free-living organisms, in contrast with pathogenic, extremophilic or intracellular organisms, was identified. Finally, the protein architecture diversity associated to the 19 families considering a weight score for domain promiscuity evidenced which regulatory families were characterized by either a large diversity of CDs, here named as "promiscuous" families given the elevated number of variable domains found in those TFs, or a low diversity of CDs. Altogether this information helped us to understand the diversity and distribution of the 19 Prokaryotes TF families. Moreover, initial steps were taken to comprehend the variability of the extra domain

  16. Selectivity in glycosaminoglycan binding dictates the distribution and diffusion of fibroblast growth factors in the pericellular matrix

    PubMed Central

    Marcello, Marco

    2016-01-01

    The range of biological outcomes generated by many signalling proteins in development and homeostasis is increased by their interactions with glycosaminoglycans, particularly heparan sulfate (HS). This interaction controls the localization and movement of these signalling proteins, but whether such control depends on the specificity of the interactions is not known. We used five fibroblast growth factors with an N-terminal HaloTag (Halo-FGFs) for fluorescent labelling, with well-characterized and distinct HS-binding properties, and measured their binding and diffusion in pericellular matrix of fixed rat mammary 27 fibroblasts. Halo-FGF1, Halo-FGF2 and Halo-FGF6 bound to HS, whereas Halo-FGF10 also interacted with chondroitin sulfate/dermatan sulfate, and FGF20 did not bind detectably. The distribution of bound FGFs in the pericellular matrix was not homogeneous, and for FGF10 exhibited striking clusters. Fluorescence recovery after photobleaching showed that FGF2 and FGF6 diffused faster, whereas FGF1 diffused more slowly, and FGF10 was immobile. The results demonstrate that the specificity of the interactions of proteins with glycosaminoglycans controls their binding and diffusion. Moreover, cells regulate the spatial distribution of different protein-binding sites in glycosaminoglycans independently of each other, implying that the extracellular matrix has long-range structure. PMID:27009190

  17. An integrated computational approach of molecular dynamics simulations, receptor binding studies and pharmacophore mapping analysis in search of potent inhibitors against tuberculosis.

    PubMed

    Agarwal, Shivangi; Verma, Ekta; Kumar, Vivek; Lall, Namrita; Sau, Samaresh; Iyer, Arun K; Kashaw, Sushil K

    2018-05-03

    Tuberculosis is an infectious chronic disease caused by obligate pathogen Mycobacterium tuberculosis that affects millions of people worldwide. Although many first and second line drugs are available for its treatment, but their irrational use has adversely lead to the emerging cases of multiple drug resistant and extensively drug-resistant tuberculosis. Therefore, there is an intense need to develop novel potent analogues for its treatment. This has prompted us to develop potent analogues against TB. The Mycobacterium tuberculosis genome provides us with number of validated targets to combat against TB. Study of Mtb genome disclosed six epoxide hydrolases (A to F) which convert harmful epoxide into diols and act as a potential drug target for rational drug design. Our current strategy is to develop such analogues which inhibits epoxide hydrolase enzyme present in Mtb genome. To achieve this, we adopted an integrated computational approach involving QSAR, pharmacophore mapping, molecular docking and molecular dynamics simulation studies. The approach envisaged vital information about the role of molecular descriptors, essential pharmacophoric features and binding energy for compounds to bind into the active site of epoxide hydrolase. Molecular docking analysis revealed that analogues exhibited significant binding to Mtb epoxide hydrolase. Further, three docked complexes 2s, 37s and 15s with high, moderate and low docking scores respectively were selected for molecular dynamics simulation studies. RMSD analysis revealed that all complexes are stable with average RMSD below 2 Å throughout the 10 ns simulations. The B-factor analysis showed that the active site residues of epoxide hydrolase are flexible enough to interact with inhibitor. Moreover, to confirm the binding of these urea derivatives, MM-GBSA binding energy analysis were performed. The calculations showed that 37s has more binding affinity (ΔGtotal = -52.24 kcal/mol) towards epoxide hydrolase

  18. Binding of serum response factor to cystic fibrosis transmembrane conductance regulator CArG-like elements, as a new potential CFTR transcriptional regulation pathway

    PubMed Central

    René, Céline; Taulan, Magali; Iral, Florence; Doudement, Julien; L'Honoré, Aurore; Gerbon, Catherine; Demaille, Jacques; Claustres, Mireille; Romey, Marie-Catherine

    2005-01-01

    CFTR expression is tightly controlled by a complex network of ubiquitous and tissue-specific cis-elements and trans-factors. To better understand mechanisms that regulate transcription of CFTR, we examined transcription factors that specifically bind a CFTR CArG-like motif we have previously shown to modulate CFTR expression. Gel mobility shift assays and chromatin immunoprecipitation analyses demonstrated the CFTR CArG-like motif binds serum response factor both in vitro and in vivo. Transient co-transfections with various SRF expression vector, including dominant-negative forms and small interfering RNA, demonstrated that SRF significantly increases CFTR transcriptional activity in bronchial epithelial cells. Mutagenesis studies suggested that in addition to SRF other co-factors, such as Yin Yang 1 (YY1) previously shown to bind the CFTR promoter, are potentially involved in the CFTR regulation. Here, we show that functional interplay between SRF and YY1 might provide interesting perspectives to further characterize the underlying molecular mechanism of the basal CFTR transcriptional activity. Furthermore, the identification of multiple CArG binding sites in highly conserved CFTR untranslated regions, which form specific SRF complexes, provides direct evidence for a considerable role of SRF in the CFTR transcriptional regulation into specialized epithelial lung cells. PMID:16170155

  19. Protein Cofactors Are Essential for High-Affinity DNA Binding by the Nuclear Factor κB RelA Subunit.

    PubMed

    Mulero, Maria Carmen; Shahabi, Shandy; Ko, Myung Soo; Schiffer, Jamie M; Huang, De-Bin; Wang, Vivien Ya-Fan; Amaro, Rommie E; Huxford, Tom; Ghosh, Gourisankar

    2018-05-22

    Transcription activator proteins typically contain two functional domains: a DNA binding domain (DBD) that binds to DNA with sequence specificity and an activation domain (AD) whose established function is to recruit RNA polymerase. In this report, we show that purified recombinant nuclear factor κB (NF-κB) RelA dimers bind specific κB DNA sites with an affinity significantly lower than that of the same dimers from nuclear extracts of activated cells, suggesting that additional nuclear cofactors might facilitate DNA binding by the RelA dimers. Additionally, recombinant RelA binds DNA with relatively low affinity at a physiological salt concentration in vitro. The addition of p53 or RPS3 (ribosomal protein S3) increases RelA:DNA binding affinity 2- to >50-fold depending on the protein and ionic conditions. These cofactor proteins do not form stable ternary complexes, suggesting that they stabilize the RelA:DNA complex through dynamic interactions. Surprisingly, the RelA-DBD alone fails to bind DNA under the same solution conditions even in the presence of cofactors, suggesting an important role of the RelA-AD in DNA binding. Reduced RelA:DNA binding at a physiological ionic strength suggests that multiple cofactors might be acting simultaneously to mitigate the electrolyte effect and stabilize the RelA:DNA complex in vivo. Overall, our observations suggest that the RelA-AD and multiple cofactor proteins function cooperatively to prime the RelA-DBD and stabilize the RelA:DNA complex in cells. Our study provides a mechanism for nuclear cofactor proteins in NF-κB-dependent gene regulation.

  20. Differential Receptor Binding and Regulatory Mechanisms for the Lymphangiogenic Growth Factors Vascular Endothelial Growth Factor (VEGF)-C and -D*

    PubMed Central

    Davydova, Natalia; Harris, Nicole C.; Roufail, Sally; Paquet-Fifield, Sophie; Ishaq, Musarat; Streltsov, Victor A.; Williams, Steven P.; Karnezis, Tara; Stacker, Steven A.; Achen, Marc G.

    2016-01-01

    VEGF-C and VEGF-D are secreted glycoproteins that induce angiogenesis and lymphangiogenesis in cancer, thereby promoting tumor growth and spread. They exhibit structural homology and activate VEGFR-2 and VEGFR-3, receptors on endothelial cells that signal for growth of blood vessels and lymphatics. VEGF-C and VEGF-D were thought to exhibit similar bioactivities, yet recent studies indicated distinct signaling mechanisms (e.g. tumor-derived VEGF-C promoted expression of the prostaglandin biosynthetic enzyme COX-2 in lymphatics, a response thought to facilitate metastasis via the lymphatic vasculature, whereas VEGF-D did not). Here we explore the basis of the distinct bioactivities of VEGF-D using a neutralizing antibody, peptide mapping, and mutagenesis to demonstrate that the N-terminal α-helix of mature VEGF-D (Phe93–Arg108) is critical for binding VEGFR-2 and VEGFR-3. Importantly, the N-terminal part of this α-helix, from Phe93 to Thr98, is required for binding VEGFR-3 but not VEGFR-2. Surprisingly, the corresponding part of the α-helix in mature VEGF-C did not influence binding to either VEGFR-2 or VEGFR-3, indicating distinct determinants of receptor binding by these growth factors. A variant of mature VEGF-D harboring a mutation in the N-terminal α-helix, D103A, exhibited enhanced potency for activating VEGFR-3, was able to promote increased COX-2 mRNA levels in lymphatic endothelial cells, and had enhanced capacity to induce lymphatic sprouting in vivo. This mutant may be useful for developing protein-based therapeutics to drive lymphangiogenesis in clinical settings, such as lymphedema. Our studies shed light on the VEGF-D structure/function relationship and provide a basis for understanding functional differences compared with VEGF-C. PMID:27852824

  1. Factoring local sequence composition in motif significance analysis.

    PubMed

    Ng, Patrick; Keich, Uri

    2008-01-01

    We recently introduced a biologically realistic and reliable significance analysis of the output of a popular class of motif finders. In this paper we further improve our significance analysis by incorporating local base composition information. Relying on realistic biological data simulation, as well as on FDR analysis applied to real data, we show that our method is significantly better than the increasingly popular practice of using the normal approximation to estimate the significance of a finder's output. Finally we turn to leveraging our reliable significance analysis to improve the actual motif finding task. Specifically, endowing a variant of the Gibbs Sampler with our improved significance analysis we demonstrate that de novo finders can perform better than has been perceived. Significantly, our new variant outperforms all the finders reviewed in a recently published comprehensive analysis of the Harbison genome-wide binding location data. Interestingly, many of these finders incorporate additional information such as nucleosome positioning and the significance of binding data.

  2. Engineering cofactor and ligand binding in an artificial neuroglobin

    NASA Astrophysics Data System (ADS)

    Zhang, Lei

    HP-7 is one artificial mutated oxygen transport protein, which operates via a mechanism akin to human neuroglobin and cytoglobin. This protein destabilizes one of two heme-ligating histidine residues by coupling histidine side chain ligation with the burial of three charged glutamate residues on the same helix. Replacement of these glutamate residues with alanine, which has a neutral hydrophobicity, slows gaseous ligand binding 22-fold, increases the affinity of the distal histidine ligand by a factor of thirteen, and decreases the binding affinity of carbon monoxide, a nonreactive oxygen analogue, three-fold. Paradoxically, it also decreases heme binding affinity by a factor of three in the reduced state and six in the oxidized state. Application of a two-state binding model, in which an initial pentacoordinate binding event is followed by a protein conformational change to hexacoordinate, provides insight into the mechanism of this seemingly counterintuitive result: the initial pentacoordinate encounter complex is significantly destabilized by the loss of the glutamate side chains, and the increased affinity for the distal histidine only partially compensates. These results point to the importance of considering each oxidation and conformational state in the design of functional artificial proteins. We have also examined the effects these mutations have on function. The K d of the nonnreactive oxygen analogue carbon monoxide (CO) is only decreased three-fold, despite the large increase in distal histidine affinity engendered by the 22-fold decrease in the histidine ligand off-rate. This is a result of the four-fold increase in affinity for CO binding to the pentacoordinate state. Oxygen binds to HP7 with a Kd of 117 µM, while the mutant rapidly oxidizes when exposed to oxygen. EPR analysis of both ferric hemoproteins demonstrates that the mutation increases disorder at the heme binding site. NMR-detected deuterium exchange demonstrates that the mutation causes a

  3. Structure-based Analysis to Hu-DNA Binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swinger,K.; Rice, P.

    2007-01-01

    HU and IHF are prokaryotic proteins that induce very large bends in DNA. They are present in high concentrations in the bacterial nucleoid and aid in chromosomal compaction. They also function as regulatory cofactors in many processes, such as site-specific recombination and the initiation of replication and transcription. HU and IHF have become paradigms for understanding DNA bending and indirect readout of sequence. While IHF shows significant sequence specificity, HU binds preferentially to certain damaged or distorted DNAs. However, none of the structurally diverse HU substrates previously studied in vitro is identical with the distorted substrates in the recently publishedmore » Anabaena HU(AHU)-DNA cocrystal structures. Here, we report binding affinities for AHU and the DNA in the cocrystal structures. The binding free energies for formation of these AHU-DNA complexes range from 10-14.5 kcal/mol, representing K{sub d} values in the nanomolar to low picomolar range, and a maximum stabilization of at least 6.3 kcal/mol relative to complexes with undistorted, non-specific DNA. We investigated IHF binding and found that appropriate structural distortions can greatly enhance its affinity. On the basis of the coupling of structural and relevant binding data, we estimate the amount of conformational strain in an IHF-mediated DNA kink that is relieved by a nick (at least 0.76 kcal/mol) and pinpoint the location of the strain. We show that AHU has a sequence preference for an A+T-rich region in the center of its DNA-binding site, correlating with an unusually narrow minor groove. This is similar to sequence preferences shown by the eukaryotic nucleosome.« less

  4. Analysis of zinc binding sites in protein crystal structures.

    PubMed

    Alberts, I L; Nadassy, K; Wodak, S J

    1998-08-01

    The geometrical properties of zinc binding sites in a dataset of high quality protein crystal structures deposited in the Protein Data Bank have been examined to identify important differences between zinc sites that are directly involved in catalysis and those that play a structural role. Coordination angles in the zinc primary coordination sphere are compared with ideal values for each coordination geometry, and zinc coordination distances are compared with those in small zinc complexes from the Cambridge Structural Database as a guide of expected trends. We find that distances and angles in the primary coordination sphere are in general close to the expected (or ideal) values. Deviations occur primarily for oxygen coordinating atoms and are found to be mainly due to H-bonding of the oxygen coordinating ligand to protein residues, bidentate binding arrangements, and multi-zinc sites. We find that H-bonding of oxygen containing residues (or water) to zinc bound histidines is almost universal in our dataset and defines the elec-His-Zn motif. Analysis of the stereochemistry shows that carboxyl elec-His-Zn motifs are geometrically rigid, while water elec-His-Zn motifs show the most geometrical variation. As catalytic motifs have a higher proportion of carboxyl elec atoms than structural motifs, they provide a more rigid framework for zinc binding. This is understood biologically, as a small distortion in the zinc position in an enzyme can have serious consequences on the enzymatic reaction. We also analyze the sequence pattern of the zinc ligands and residues that provide elecs, and identify conserved hydrophobic residues in the endopeptidases that also appear to contribute to stabilizing the catalytic zinc site. A zinc binding template in protein crystal structures is derived from these observations.

  5. Expanding RNA binding specificity and affinity of engineered PUF domains.

    PubMed

    Zhao, Yang-Yang; Mao, Miao-Wei; Zhang, Wen-Jing; Wang, Jue; Li, Hai-Tao; Yang, Yi; Wang, Zefeng; Wu, Jia-Wei

    2018-05-18

    Specific manipulation of RNA is necessary for the research in biotechnology and medicine. The RNA-binding domains of Pumilio/fem-3 mRNA binding factors (PUF domains) are programmable RNA binding scaffolds used to engineer artificial proteins that specifically modulate RNAs. However, the native PUF domains generally recognize 8-nt RNAs, limiting their applications. Here, we modify the PUF domain of human Pumilio1 to engineer PUFs that recognize RNA targets of different length. The engineered PUFs bind to their RNA targets specifically and PUFs with more repeats have higher binding affinity than the canonical eight-repeat domains; however, the binding affinity reaches the peak at those with 9 and 10 repeats. Structural analysis on PUF with nine repeats reveals a higher degree of curvature, and the RNA binding unexpectedly and dramatically opens the curved structure. Investigation of the residues positioned in between two RNA bases demonstrates that tyrosine and arginine have favored stacking interactions. Further tests on the availability of the engineered PUFs in vitro and in splicing function assays indicate that our engineered PUFs bind RNA targets with high affinity in a programmable way.

  6. Expanding RNA binding specificity and affinity of engineered PUF domains

    PubMed Central

    Zhao, Yang-Yang; Zhang, Wen-Jing; Wang, Jue; Li, Hai-Tao; Yang, Yi; Wang, Zefeng; Wu, Jia-Wei

    2018-01-01

    Abstract Specific manipulation of RNA is necessary for the research in biotechnology and medicine. The RNA-binding domains of Pumilio/fem-3 mRNA binding factors (PUF domains) are programmable RNA binding scaffolds used to engineer artificial proteins that specifically modulate RNAs. However, the native PUF domains generally recognize 8-nt RNAs, limiting their applications. Here, we modify the PUF domain of human Pumilio1 to engineer PUFs that recognize RNA targets of different length. The engineered PUFs bind to their RNA targets specifically and PUFs with more repeats have higher binding affinity than the canonical eight-repeat domains; however, the binding affinity reaches the peak at those with 9 and 10 repeats. Structural analysis on PUF with nine repeats reveals a higher degree of curvature, and the RNA binding unexpectedly and dramatically opens the curved structure. Investigation of the residues positioned in between two RNA bases demonstrates that tyrosine and arginine have favored stacking interactions. Further tests on the availability of the engineered PUFs in vitro and in splicing function assays indicate that our engineered PUFs bind RNA targets with high affinity in a programmable way. PMID:29490074

  7. A chemokine-binding domain in the tumor necrosis factor receptor from variola (smallpox) virus

    PubMed Central

    Alejo, Alí; Ruiz-Argüello, M. Begoña; Ho, Yin; Smith, Vincent P.; Saraiva, Margarida; Alcami, Antonio

    2006-01-01

    Variola virus (VaV) is the causative agent of smallpox, one of the most devastating diseases encountered by man, that was eradicated in 1980. The deliberate release of VaV would have catastrophic consequences on global public health. However, the mechanisms that contribute to smallpox pathogenesis are poorly understood at the molecular level. The ability of viruses to evade the host defense mechanisms is an important determinant of viral pathogenesis. Here we show that the tumor necrosis factor receptor (TNFR) homologue CrmB encoded by VaV functions not only as a soluble decoy TNFR but also as a highly specific binding protein for several chemokines that mediate recruitment of immune cells to mucosal surfaces and the skin, sites of virus entry and viral replication at late stages of smallpox. CrmB binds chemokines through its C-terminal domain, which is unrelated to TNFRs, was named smallpox virus-encoded chemokine receptor (SECRET) domain and uncovers a family of poxvirus chemokine inhibitors. An active SECRET domain was found in another viral TNFR (CrmD) and three secreted proteins encoded by orthopoxviruses. These findings identify a previously undescribed chemokine-binding and inhibitory domain unrelated to host chemokine receptors and a mechanism of immune modulation in VaV that may influence smallpox pathogenesis. PMID:16581912

  8. A chemokine-binding domain in the tumor necrosis factor receptor from variola (smallpox) virus.

    PubMed

    Alejo, Alí; Ruiz-Argüello, M Begoña; Ho, Yin; Smith, Vincent P; Saraiva, Margarida; Alcami, Antonio

    2006-04-11

    Variola virus (VaV) is the causative agent of smallpox, one of the most devastating diseases encountered by man, that was eradicated in 1980. The deliberate release of VaV would have catastrophic consequences on global public health. However, the mechanisms that contribute to smallpox pathogenesis are poorly understood at the molecular level. The ability of viruses to evade the host defense mechanisms is an important determinant of viral pathogenesis. Here we show that the tumor necrosis factor receptor (TNFR) homologue CrmB encoded by VaV functions not only as a soluble decoy TNFR but also as a highly specific binding protein for several chemokines that mediate recruitment of immune cells to mucosal surfaces and the skin, sites of virus entry and viral replication at late stages of smallpox. CrmB binds chemokines through its C-terminal domain, which is unrelated to TNFRs, was named smallpox virus-encoded chemokine receptor (SECRET) domain and uncovers a family of poxvirus chemokine inhibitors. An active SECRET domain was found in another viral TNFR (CrmD) and three secreted proteins encoded by orthopoxviruses. These findings identify a previously undescribed chemokine-binding and inhibitory domain unrelated to host chemokine receptors and a mechanism of immune modulation in VaV that may influence smallpox pathogenesis.

  9. A natural variant of the cysteine protease virulence factor of group A Streptococcus with an arginine-glycine-aspartic acid (RGD) motif preferentially binds human integrins alphavbeta3 and alphaIIbbeta3.

    PubMed

    Stockbauer, K E; Magoun, L; Liu, M; Burns, E H; Gubba, S; Renish, S; Pan, X; Bodary, S C; Baker, E; Coburn, J; Leong, J M; Musser, J M

    1999-01-05

    The human pathogenic bacterium group A Streptococcus produces an extracellular cysteine protease [streptococcal pyrogenic exotoxin B (SpeB)] that is a critical virulence factor for invasive disease episodes. Sequence analysis of the speB gene from 200 group A Streptococcus isolates collected worldwide identified three main mature SpeB (mSpeB) variants. One of these variants (mSpeB2) contains an Arg-Gly-Asp (RGD) sequence, a tripeptide motif that is commonly recognized by integrin receptors. mSpeB2 is made by all isolates of the unusually virulent serotype M1 and several other geographically widespread clones that frequently cause invasive infections. Only the mSpeB2 variant bound to transfected cells expressing integrin alphavbeta3 (also known as the vitronectin receptor) or alphaIIbbeta3 (platelet glycoprotein IIb-IIIa), and binding was blocked by a mAb that recognizes the streptococcal protease RGD motif region. In addition, mSpeB2 bound purified platelet integrin alphaIIbbeta3. Defined beta3 mutants that are altered for fibrinogen binding were defective for SpeB binding. Synthetic peptides with the mSpeB2 RGD motif, but not the RSD sequence present in other mSpeB variants, blocked binding of mSpeB2 to transfected cells expressing alphavbeta3 and caused detachment of cultured human umbilical vein endothelial cells. The results (i) identify a Gram-positive virulence factor that directly binds integrins, (ii) identify naturally occurring variants of a documented Gram-positive virulence factor with biomedically relevant differences in their interactions with host cells, and (iii) add to the theme that subtle natural variation in microbial virulence factor structure alters the character of host-pathogen interactions.

  10. ADAM binding protein Eve-1 is required for ectodomain shedding of epidermal growth factor receptor ligands.

    PubMed

    Tanaka, Motonari; Nanba, Daisuke; Mori, Seiji; Shiba, Fumio; Ishiguro, Hiroshi; Yoshino, Koichiro; Matsuura, Nariaki; Higashiyama, Shigeki

    2004-10-01

    A disintegrin and metalloproteases (ADAMs) are implicated in the ectodomain shedding of epidermal growth factor receptor (EGFR) ligands in EGFR transactivation. However, the activation mechanisms of ADAMs remain elusive. To analyze the regulatory mechanisms of ADAM activation, we performed yeast two-hybrid screening using the cytoplasmic domain of ADAM12 as bait, and identified a protein that we designated Eve-1. Two cDNAs were cloned and characterized. They encode alternatively spliced isoforms of Eve-1, called Eve-1a and Eve-1b, that have four and five tandem Src homology 3 (SH3) domains in the carboxyl-terminal region, respectively, and seven proline-rich SH3 domain binding motifs in the amino-terminal region. The short forms of Eve-1, Eve-1c and Eve-1d, translated at Met-371 are human counterparts of mouse Sh3d19. Northern blot analysis demonstrated that Eve-1 is abundantly expressed in skeletal muscle and heart. Western blot analysis revealed the dominant production of Eve-1c in human cancer cell lines. Knockdown of Eve-1 by small interfering RNA in HT1080 cells reduced the shedding of proHB-EGF induced by angiotensin II and 12-O-tetradecanoylphorbol-13-acetate, as well as the shedding of pro-transforming growth factor-alpha, promphiregulin, and proepiregulin by 12-O-tetradecanoylphorbol-13-acetate, suggesting that Eve-1 plays a role in positively regulating the activity of ADAMs in the signaling of EGFR-ligand shedding.

  11. DNA binding triggers tetramerization of the glucocorticoid receptor in live cells

    PubMed Central

    Presman, Diego M.; Ganguly, Sourav; Schiltz, R. Louis; Johnson, Thomas A.; Karpova, Tatiana S.; Hager, Gordon L.

    2016-01-01

    Transcription factors dynamically bind to chromatin and are essential for the regulation of genes. Although a large percentage of these proteins appear to self-associate to form dimers or higher order oligomers, the stoichiometry of DNA-bound transcription factors has been poorly characterized in vivo. The glucocorticoid receptor (GR) is a ligand-regulated transcription factor widely believed to act as a dimer or a monomer. Using a unique set of imaging techniques coupled with a cell line containing an array of DNA binding elements, we show that GR is predominantly a tetramer when bound to its target DNA. We find that DNA binding triggers an interdomain allosteric regulation within the GR, leading to tetramerization. We therefore propose that dynamic changes in GR stoichiometry represent a previously unidentified level of regulation in steroid receptor activation. Quaternary structure analysis of other members of the steroid receptor family (estrogen, androgen, and progesterone receptors) reveals variation in oligomerization states among this family of transcription factors. Because GR’s oligomerization state has been implicated in therapy outcome, our findings open new doors to the rational design of novel GR ligands and redefine the quaternary structure of steroid receptors. PMID:27382178

  12. Effect of DNA Binding on Geminate CO Recombination Kinetics in CO-sensing Transcription Factor CooA*

    PubMed Central

    Benabbas, Abdelkrim; Karunakaran, Venugopal; Youn, Hwan; Poulos, Thomas L.; Champion, Paul M.

    2012-01-01

    Carbon monoxide oxidation activator (CooA) proteins are heme-based CO-sensing transcription factors. Here we study the ultrafast dynamics of geminate CO rebinding in two CooA homologues, Rhodospirillum rubrum (RrCooA) and Carboxydothermus hydrogenoformans (ChCooA). The effects of DNA binding and the truncation of the DNA-binding domain on the CO geminate recombination kinetics were specifically investigated. The CO rebinding kinetics in these CooA complexes take place on ultrafast time scales but remain non-exponential over many decades in time. We show that this non-exponential kinetic response is due to a quenched enthalpic barrier distribution resulting from a distribution of heme geometries that is frozen or slowly evolving on the time scale of CO rebinding. We also show that, upon CO binding, the distal pocket of the heme in the CooA proteins relaxes to form a very efficient hydrophobic trap for CO. DNA binding further tightens the narrow distal pocket and slightly weakens the iron-proximal histidine bond. Comparison of the CO rebinding kinetics of RrCooA, truncated RrCooA, and DNA-bound RrCooA proteins reveals that the uncomplexed and inherently flexible DNA-binding domain adds additional structural heterogeneity to the heme doming coordinate. When CooA forms a complex with DNA, the flexibility of the DNA-binding domain decreases, and the distribution of the conformations available in the heme domain becomes restricted. The kinetic studies also offer insights into how the architecture of the heme environment can tune entropic barriers in order to control the geminate recombination of CO in heme proteins, whereas spin selection rules play a minor or non-existent role. PMID:22544803

  13. Effect of DNA binding on geminate CO recombination kinetics in CO-sensing transcription factor CooA.

    PubMed

    Benabbas, Abdelkrim; Karunakaran, Venugopal; Youn, Hwan; Poulos, Thomas L; Champion, Paul M

    2012-06-22

    Carbon monoxide oxidation activator (CooA) proteins are heme-based CO-sensing transcription factors. Here we study the ultrafast dynamics of geminate CO rebinding in two CooA homologues, Rhodospirillum rubrum (RrCooA) and Carboxydothermus hydrogenoformans (ChCooA). The effects of DNA binding and the truncation of the DNA-binding domain on the CO geminate recombination kinetics were specifically investigated. The CO rebinding kinetics in these CooA complexes take place on ultrafast time scales but remain non-exponential over many decades in time. We show that this non-exponential kinetic response is due to a quenched enthalpic barrier distribution resulting from a distribution of heme geometries that is frozen or slowly evolving on the time scale of CO rebinding. We also show that, upon CO binding, the distal pocket of the heme in the CooA proteins relaxes to form a very efficient hydrophobic trap for CO. DNA binding further tightens the narrow distal pocket and slightly weakens the iron-proximal histidine bond. Comparison of the CO rebinding kinetics of RrCooA, truncated RrCooA, and DNA-bound RrCooA proteins reveals that the uncomplexed and inherently flexible DNA-binding domain adds additional structural heterogeneity to the heme doming coordinate. When CooA forms a complex with DNA, the flexibility of the DNA-binding domain decreases, and the distribution of the conformations available in the heme domain becomes restricted. The kinetic studies also offer insights into how the architecture of the heme environment can tune entropic barriers in order to control the geminate recombination of CO in heme proteins, whereas spin selection rules play a minor or non-existent role.

  14. PhOBF1, a petunia OCS element binding factor, plays an important role in antiviral RNA silencing

    USDA-ARS?s Scientific Manuscript database

    Virus-induced gene silencing (VIGS) is a common strategy of reverse genetics for characterizing function of genes in plant. The detailed mechanism governing RNA silencing efficiency triggered by virus is largely unclear. Here, we revealed that a petunia (Petunia hybrida) ocs element binding factor, ...

  15. Acanthamoeba castellanii contains a ribosomal RNA enhancer binding protein which stimulates TIF-IB binding and transcription under stringent conditions.

    PubMed

    Yang, Q; Radebaugh, C A; Kubaska, W; Geiss, G K; Paule, M R

    1995-11-11

    The intergenic spacer (IGS) of Acanthamoeba castellanii rRNA genes contains repeated elements which are weak enhancers for transcription by RNA polymerase I. A protein, EBF, was identified and partially purified which binds to the enhancers and to several other sequences within the IGS, but not to other DNA fragments, including the rRNA core promoter. No consensus binding sequence could be discerned in these fragments and bound factor is in rapid equilibrium with unbound. EBF has functional characteristics similar to vertebrate upstream binding factors (UBF). Not only does it bind to the enhancer and other IGS elements, but it also stimulates binding of TIF-IB, the fundamental transcription initiation factor, to the core promoter and stimulates transcription from the promoter. Attempts to identify polypeptides with epitopes similar to rat or Xenopus laevis UBF suggest that structurally the protein from A.castellanii is not closely related to vertebrate UBF.

  16. Network analysis reveals the recognition mechanism for complex formation of mannose-binding lectins

    NASA Astrophysics Data System (ADS)

    Jian, Yiren; Zhao, Yunjie; Zeng, Chen

    The specific carbohydrate binding of lectin makes the protein a powerful molecular tool for various applications including cancer cell detection due to its glycoprotein profile on the cell surface. Most biologically active lectins are dimeric. To understand the structure-function relation of lectin complex, it is essential to elucidate the short- and long-range driving forces behind the dimer formation. Here we report our molecular dynamics simulations and associated dynamical network analysis on a particular lectin, i.e., the mannose-binding lectin from garlic. Our results, further supported by sequence coevolution analysis, shed light on how different parts of the complex communicate with each other. We propose a general framework for deciphering the recognition mechanism underlying protein-protein interactions that may have potential applications in signaling pathways.

  17. Vascular endothelial growth factor from Trimeresurus jerdonii venom specifically binds to VEGFR-2.

    PubMed

    Zhong, Shurong; Wu, Jianbo; Cui, Yunpeng; Li, Rui; Zhu, Shaowen; Rong, Mingqiang; Lu, Qiumin; Lai, Ren

    2015-09-01

    Vascular endothelial growth factors (VEGFs) play important roles in angiogenesis. In this study, a vascular endothelial growth factor named TjsvVEGF was purified from the venom of Trimeresurus jerdonii by gel filtration, affinity, ion-exchange and high-performance liquid chromatography. TjsvVEGF was a homodimer with an apparent molecular mass of 29 kDa. The cDNA encoding TjsvVEGF was obtained by PCR. The open reading frame of the cloned TjsvVEGF was composed of 432 bp coding for a signal peptide of 24 amino acid residues and a mature protein of 119 amino acid residues. Compared with other snake venom VEGFs, the nucleotide and deduced protein sequences of the cloned TjsvVEGF were conserved. TjsvVEGF showed low heparin binding activity and strong capillary permeability increasing activity. The KD of TjsvVEGF to VEFGR-2 is 413 pM. However, the binding of TjsvVEGF to VEGFR-1 is too weak to detect. Though TjsvVEGF had high sequence identities (about 90%) with Crotalinae VEGFs, the receptor preference of TjsvVEGF was similar to Viperinae VEGFs which had lower sequence identities (about 60%) with it. TjsvVEGF might serve as a useful tool for the study of structure-function relationships of VEGFs and their receptors. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  18. [Interaction of human factor X with thromboplastin].

    PubMed

    Kiselev, S V; Zubairov, D M; Timarbaev, V N

    2003-01-01

    The binding of 125I-labeled human factor X to native and papaine-treated tissue tromboplastin in the presence of CaCl2 or EDTA was studied. The Scatchard analysis suggests the existence of high (Kd=l,8 x10(-9) M) and low affinity binding sites on the thromboplastin surface. The removal of Ca2+ reduced affinity of factor X to the high affinity sites. This was accompanied by some increase of their number. Proteolysis by papaine decreased affinity of high affinity sites and caused the increase of their number in the presence of Ca2+. In the absence of Ca2+ the affinity remained unchanged, but the number of sites decreased. At low concentrations of factor X positive cooperativity for high affinity binding sites was observed. It did not depend on the presence of Ca2+. The results indirectly confirm the role of hydrophobic interactons in Ca2+ dependent binding of factor X to thromboplastin and the fact that heterogeneity of this binding is determined by mesophase structure of the thromboplastin phospholipids.

  19. Detecting cooperative sequences in the binding of RNA Polymerase-II

    NASA Astrophysics Data System (ADS)

    Glass, Kimberly; Rozenberg, Julian; Girvan, Michelle; Losert, Wolfgang; Ott, Ed; Vinson, Charles

    2008-03-01

    Regulation of the expression level of genes is a key biological process controlled largely by the 1000 base pair (bp) sequence preceding each gene (the promoter region). Within that region transcription factor binding sites (TFBS), 5-10 bp long sequences, act individually or cooperate together in the recruitment of, and therefore subsequent gene transcription by, RNA Polymerase-II (RNAP). We have measured the binding of RNAP to promoters on a genome-wide basis using Chromatin Immunoprecipitation (ChIP-on-Chip) microarray assays. Using all 8-base pair long sequences as a test set, we have identified the DNA sequences that are enriched in promoters with high RNAP binding values. We are able to demonstrate that virtually all sequences enriched in such promoters contain a CpG dinucleotide, indicating that TFBS that contain the CpG dinucleotide are involved in RNAP binding to promoters. Further analysis shows that the presence of pairs of CpG containing sequences cooperate to enhance the binding of RNAP to the promoter.

  20. Collagen and Stretch Modulate Autocrine Secretion of Insulin-like Growth Factor-1 and Insulin-like Growth Factor Binding Proteins from Differentiated Skeletal Muscle Cells

    NASA Technical Reports Server (NTRS)

    Perrone, Carmen E.; Fenwick-Smith, Daniela; Vandenburgh, Herman H.

    1995-01-01

    Stretch-induced skeletal muscle growth may involve increased autocrine secretion of insulin-like growth factor-1 (IGF-1) since IGF-1 is a potent growth factor for skeletal muscle hypertrophy, and stretch elevates IGF-1 mRNA levels in vivo. In tissue cultures of differentiated avian pectoralis skeletal muscle cells, nanomolar concentrations of exogenous IGF-1 stimulated growth in mechanically stretched but not static cultures. These cultures released up to 100 pg of endogenously produced IGF-1/micro-g of protein/day, as well as three major IGF binding proteins of 31, 36, and 43 kilodaltons (kDa). IGF-1 was secreted from both myofibers and fibroblasts coexisting in the muscle cultures. Repetitive stretch/relaxation of the differentiated skeletal muscle cells stimulated the acute release of IGF-1 during the first 4 h after initiating mechanical activity, but caused no increase in the long-term secretion over 24-72 h of IGF-1, or its binding proteins. Varying the intensity and frequency of stretch had no effect on the long-term efflux of IGF-1. In contrast to stretch, embedding the differentiated muscle cells in a three-dimensional collagen (Type I) matrix resulted in a 2-5-fold increase in long-term IGF-1 efflux over 24-72 h. Collagen also caused a 2-5-fold increase in the release of the IGF binding proteins. Thus, both the extracellular matrix protein type I collagen and stretch stimulate the autocrine secretion of IGF-1, but with different time kinetics. This endogenously produced growth factor may be important for the growth response of skeletal myofibers to both types of external stimuli.

  1. Further purification of human pituitary-derived chondrocyte growth factor: heparin-binding and cross-reactivity with antiserum to basic FGF.

    PubMed

    Too, C K; Murphy, P R; Hamel, A M; Friesen, H G

    1987-05-14

    The previously described human pituitary-derived chondrocyte growth factor (CGF), mitogenic for rabbit fetal chondrocytes, was found to bind to heparin-Sepharose and was eluted with 1.5M NaCl. Further characterization of CGF demonstrated a molecular weight of 18-20 kD and cross-reactivity with antiserum to synthetic bovine basic fibroblast growth factor (FGF1-24). When human pituitaries were homogenized in 0.15 ammonium sulfate (pH 5.5) and the extract chromatographed on heparin-Sepharose, 98% of the mitogenic activity was adsorbed to heparin and eluted with 3M NaCl. These findings indicate that CGF is closely related or identical to basic FGF and that the bulk of mitogenic activity in the human pituitary extracts binds to heparin.

  2. Computational Analysis of the Ligand Binding Site of the Extracellular ATP Receptor, DORN1

    DOE PAGES

    Nguyen, Cuong The; Tanaka, Kiwamu; Cao, Yangrong; ...

    2016-09-01

    DORN1 (also known as P2K1) is a plant receptor for extracellular ATP, which belongs to a large gene family of legume-type (L-type) lectin receptor kinases. Extracellular ATP binds to DORN1 with strong affinity through its lectin domain, and the binding triggers a variety of intracellular activities in response to biotic and abiotic stresses. However, information on the tertiary structure of the ligand binding site of DORN1is lacking, which hampers efforts to fully elucidate the mechanism of receptor action. Available data of the crystal structures from more than 50 L-type lectins enable us to perform an in silico study of molecularmore » interaction between DORN1 and ATP. In this study, we employed a computational approach to develop a tertiary structure model of the DORN1 lectin domain. A blind docking analysis demonstrated that ATP binds to a cavity made by four loops (defined as loops A B, C and D) of the DORN1 lectin domain with high affinity. In silico target docking of ATP to the DORN1 binding site predicted interaction with 12 residues, located on the four loops, via hydrogen bonds and hydrophobic interactions. The ATP binding pocket is structurally similar in location to the carbohydrate binding pocket of the canonical L-type lectins. However, four of the residues predicted to interact with ATP are not conserved between DORN1 and the other carbohydrate-binding lectins, suggesting that diversifying selection acting on these key residues may have led to the ATP binding activity of DORN1. Finally, the in silico model was validated by in vitro ATP binding assays using the purified extracellular lectin domain of wild-type DORN1, as well as mutated DORN1 lacking key ATP binding residues.« less

  3. Computational Analysis of the Ligand Binding Site of the Extracellular ATP Receptor, DORN1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Cuong The; Tanaka, Kiwamu; Cao, Yangrong

    DORN1 (also known as P2K1) is a plant receptor for extracellular ATP, which belongs to a large gene family of legume-type (L-type) lectin receptor kinases. Extracellular ATP binds to DORN1 with strong affinity through its lectin domain, and the binding triggers a variety of intracellular activities in response to biotic and abiotic stresses. However, information on the tertiary structure of the ligand binding site of DORN1is lacking, which hampers efforts to fully elucidate the mechanism of receptor action. Available data of the crystal structures from more than 50 L-type lectins enable us to perform an in silico study of molecularmore » interaction between DORN1 and ATP. In this study, we employed a computational approach to develop a tertiary structure model of the DORN1 lectin domain. A blind docking analysis demonstrated that ATP binds to a cavity made by four loops (defined as loops A B, C and D) of the DORN1 lectin domain with high affinity. In silico target docking of ATP to the DORN1 binding site predicted interaction with 12 residues, located on the four loops, via hydrogen bonds and hydrophobic interactions. The ATP binding pocket is structurally similar in location to the carbohydrate binding pocket of the canonical L-type lectins. However, four of the residues predicted to interact with ATP are not conserved between DORN1 and the other carbohydrate-binding lectins, suggesting that diversifying selection acting on these key residues may have led to the ATP binding activity of DORN1. Finally, the in silico model was validated by in vitro ATP binding assays using the purified extracellular lectin domain of wild-type DORN1, as well as mutated DORN1 lacking key ATP binding residues.« less

  4. Clinical benefit using sperm hyaluronic acid binding technique in ICSI cycles: a systematic review and meta-analysis.

    PubMed

    Beck-Fruchter, Ronit; Shalev, Eliezer; Weiss, Amir

    2016-03-01

    The human oocyte is surrounded by hyaluronic acid, which acts as a natural selector of spermatozoa. Human sperm that express hyaluronic acid receptors and bind to hyaluronic acid have normal shape, minimal DNA fragmentation and low frequency of chromosomal aneuploidies. Use of hyaluronic acid binding assays in intracytoplasmic sperm injection (ICSI) cycles to improve clinical outcomes has been studied, although none of these studies had sufficient statistical power. In this systematic review and meta-analysis, electronic databases were searched up to June 2015 to identify studies of ICSI cycles in which spermatozoa able to bind hyaluronic acid was selected. The main outcomes were fertilization rate and clinical pregnancy rate. Secondary outcomes included cleavage rate, embryo quality, implantation rate, spontaneous abortion and live birth rate. Seven studies and 1437 cycles were included. Use of hyaluronic acid binding sperm selection technique yielded no improvement in fertilization and pregnancy rates. A meta-analysis of all available studies showed an improvement in embryo quality and implantation rate; an analysis of prospective studies only showed an improvement in embryo quality. Evidence does not support routine use of hyaluronic acid binding assays in all ICSI cycles. Identification of patients that might benefit from this technique needs further study. Copyright © 2015 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  5. Double-Stranded RNA-Binding Protein Regulates Vascular Endothelial Growth Factor mRNA Stability, Translation, and Breast Cancer Angiogenesis▿

    PubMed Central

    Vumbaca, Frank; Phoenix, Kathryn N.; Rodriguez-Pinto, Daniel; Han, David K.; Claffey, Kevin P.

    2008-01-01

    Vascular endothelial growth factor (VEGF) is a key angiogenic factor expressed under restricted nutrient and oxygen conditions in most solid tumors. The expression of VEGF under hypoxic conditions requires transcription through activated hypoxia-inducible factor 1 (HIF-1), increased mRNA stability, and facilitated translation. This study identified double-stranded RNA-binding protein 76/NF90 (DRBP76/NF90), a specific isoform of the DRBP family, as a VEGF mRNA-binding protein which plays a key role in VEGF mRNA stability and protein synthesis under hypoxia. The DRBP76/NF90 protein binds to a human VEGF 3′ untranslated mRNA stability element. RNA interference targeting the DRBP76/NF90 isoform limited hypoxia-inducible VEGF mRNA and protein expression with no change in HIF-1-dependent transcriptional activity. Stable repression of DRBP76/NF90 in MDA-MB-435 breast cancer cells demonstrated reduced polysome-associated VEGF mRNA levels under hypoxic conditions and reduced mRNA stability. Transient overexpression of the DRBP76/NF90 protein increased both VEGF mRNA and protein levels synthesized under normoxic and hypoxic conditions. Cells with stable repression of the DRBP76/NF90 isoform showed reduced tumorigenic and angiogenic potential in an orthotopic breast tumor model. These data demonstrate that the DRBP76/NF90 isoform facilitates VEGF expression by promoting VEGF mRNA loading onto polysomes and translation under hypoxic conditions, thus promoting breast cancer growth and angiogenesis in vivo. PMID:18039850

  6. Azadirachtin interacts with the tumor necrosis factor (TNF) binding domain of its receptors and inhibits TNF-induced biological responses.

    PubMed

    Thoh, Maikho; Kumar, Pankaj; Nagarajaram, Hampathalu A; Manna, Sunil K

    2010-02-19

    The role of azadirachtin, an active component of a medicinal plant Neem (Azadirachta indica), on TNF-induced cell signaling in human cell lines was investigated. Azadirachtin blocks TNF-induced activation of nuclear factor kappaB (NF-kappaB) and also expression of NF-kappaB-dependent genes such as adhesion molecules and cyclooxygenase 2. Azadirachtin inhibits the inhibitory subunit of NF-kappaB (IkappaB alpha) phosphorylation and thereby its degradation and RelA (p65) nuclear translocation. It blocks IkappaB alpha kinase (IKK) activity ex vivo, but not in vitro. Surprisingly, azadirachtin blocks NF-kappaB DNA binding activity in transfected cells with TNF receptor-associated factor (TRAF)2, TNF receptor-associated death domain (TRADD), IKK, or p65, but not with TNFR, suggesting its effect is at the TNFR level. Azadirachtin blocks binding of TNF, but not IL-1, IL-4, IL-8, or TNF-related apoptosis-inducing ligand (TRAIL) with its respective receptors. Anti-TNFR antibody or TNF protects azadirachtin-mediated down-regulation of TNFRs. Further, in silico data suggest that azadirachtin strongly binds in the TNF binding site of TNFR. Overall, our data suggest that azadirachtin modulates cell surface TNFRs thereby decreasing TNF-induced biological responses. Thus, azadirachtin exerts an anti-inflammatory response by a novel pathway, which may be beneficial for anti-inflammatory therapy.

  7. Azadirachtin Interacts with the Tumor Necrosis Factor (TNF) Binding Domain of Its Receptors and Inhibits TNF-induced Biological Responses*

    PubMed Central

    Thoh, Maikho; Kumar, Pankaj; Nagarajaram, Hampathalu A.; Manna, Sunil K.

    2010-01-01

    The role of azadirachtin, an active component of a medicinal plant Neem (Azadirachta indica), on TNF-induced cell signaling in human cell lines was investigated. Azadirachtin blocks TNF-induced activation of nuclear factor κB (NF-κB) and also expression of NF-κB-dependent genes such as adhesion molecules and cyclooxygenase 2. Azadirachtin inhibits the inhibitory subunit of NF-κB (IκBα) phosphorylation and thereby its degradation and RelA (p65) nuclear translocation. It blocks IκBα kinase (IKK) activity ex vivo, but not in vitro. Surprisingly, azadirachtin blocks NF-κB DNA binding activity in transfected cells with TNF receptor-associated factor (TRAF)2, TNF receptor-associated death domain (TRADD), IKK, or p65, but not with TNFR, suggesting its effect is at the TNFR level. Azadirachtin blocks binding of TNF, but not IL-1, IL-4, IL-8, or TNF-related apoptosis-inducing ligand (TRAIL) with its respective receptors. Anti-TNFR antibody or TNF protects azadirachtin-mediated down-regulation of TNFRs. Further, in silico data suggest that azadirachtin strongly binds in the TNF binding site of TNFR. Overall, our data suggest that azadirachtin modulates cell surface TNFRs thereby decreasing TNF-induced biological responses. Thus, azadirachtin exerts an anti-inflammatory response by a novel pathway, which may be beneficial for anti-inflammatory therapy. PMID:20018848

  8. a Migration Well Model for the Binding of Ligands to Heme Proteins.

    NASA Astrophysics Data System (ADS)

    Beece, Daniel Kenneth

    The binding of carbon monoxide and dioxygen to heme proteins can be viewed as occurring in distinct stages: diffusion in the solvent, migration through the matrix, and occupation of the pocket before the final binding step. A model is presented which can explain the dominant kinetic behavior of several different heme protein-ligand systems. The model assumes that a ligand molecule in the solvent sequentially encounters discrete energy barriers on the way to the binding site. The rate to surmount each barrier is distributed, except for the pseudofirst order rate corresponding to the step into the protein from the solvent. The migration through the matrix is equivalent to a small number of distinct jumps. Quantitative analysis of the data permit estimates of the barrier heights, preexponentials and solvent coupling factors for each rate. A migration coefficient and a matrix occupation factor are defined.

  9. ProMateus—an open research approach to protein-binding sites analysis

    PubMed Central

    Neuvirth, Hani; Heinemann, Uri; Birnbaum, David; Tishby, Naftali; Schreiber, Gideon

    2007-01-01

    The development of bioinformatic tools by individual labs results in the abundance of parallel programs for the same task. For example, identification of binding site regions between interacting proteins is done using: ProMate, WHISCY, PPI-Pred, PINUP and others. All servers first identify unique properties of binding sites and then incorporate them into a predictor. Obviously, the resulting prediction would improve if the most suitable parameters from each of those predictors would be incorporated into one server. However, because of the variation in methods and databases, this is currently not feasible. Here, the protein-binding site prediction server is extended into a general protein-binding sites research tool, ProMateus. This web tool, based on ProMate's infrastructure enables the easy exploration and incorporation of new features and databases by the user, providing an evaluation of the benefit of individual features and their combination within a set framework. This transforms the individual research into a community exercise, bringing out the best from all users for optimized predictions. The analysis is demonstrated on a database of protein protein and protein-DNA interactions. This approach is basically different from that used in generating meta-servers. The implications of the open-research approach are discussed. ProMateus is available at http://bip.weizmann.ac.il/promate. PMID:17488838

  10. CCCTC-Binding Factor Acts as a Heterochromatin Barrier on Herpes Simplex Viral Latent Chromatin and Contributes to Poised Latent Infection

    PubMed Central

    2018-01-01

    ABSTRACT Herpes simplex virus 1 (HSV-1) establishes latent infection in neurons via a variety of epigenetic mechanisms that silence its genome. The cellular CCCTC-binding factor (CTCF) functions as a mediator of transcriptional control and chromatin organization and has binding sites in the HSV-1 genome. We constructed an HSV-1 deletion mutant that lacked a pair of CTCF-binding sites (CTRL2) within the latency-associated transcript (LAT) coding sequences and found that loss of these CTCF-binding sites did not alter lytic replication or levels of establishment of latent infection, but their deletion reduced the ability of the virus to reactivate from latent infection. We also observed increased heterochromatin modifications on viral chromatin over the LAT promoter and intron. We therefore propose that CTCF binding at the CTRL2 sites acts as a chromatin insulator to keep viral chromatin in a form that is poised for reactivation, a state which we call poised latency. PMID:29437926

  11. Changes at the nuclear lamina alter binding of pioneer factor Foxa2 in aged liver.

    PubMed

    Whitton, Holly; Singh, Larry N; Patrick, Marissa A; Price, Andrew J; Osorio, Fernando G; López-Otín, Carlos; Bochkis, Irina M

    2018-06-01

    Increasing evidence suggests that regulation of heterochromatin at the nuclear envelope underlies metabolic disease susceptibility and age-dependent metabolic changes, but the mechanism is unknown. Here, we profile lamina-associated domains (LADs) using lamin B1 ChIP-Seq in young and old hepatocytes and find that, although lamin B1 resides at a large fraction of domains at both ages, a third of lamin B1-associated regions are bound exclusively at each age in vivo. Regions occupied by lamin B1 solely in young livers are enriched for the forkhead motif, bound by Foxa pioneer factors. We also show that Foxa2 binds more sites in Zmpste24 mutant mice, a progeroid laminopathy model, similar to increased Foxa2 occupancy in old livers. Aged and Zmpste24-deficient livers share several features, including nuclear lamina abnormalities, increased Foxa2 binding, de-repression of PPAR- and LXR-dependent gene expression, and fatty liver. In old livers, additional Foxa2 binding is correlated to loss of lamin B1 and heterochromatin (H3K9me3 occupancy) at these loci. Our observations suggest that changes at the nuclear lamina are linked to altered Foxa2 binding, enabling opening of chromatin and de-repression of genes encoding lipid synthesis and storage targets that contribute to etiology of hepatic steatosis. © 2018 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  12. Acanthamoeba castellanii contains a ribosomal RNA enhancer binding protein which stimulates TIF-IB binding and transcription under stringent conditions.

    PubMed Central

    Yang, Q; Radebaugh, C A; Kubaska, W; Geiss, G K; Paule, M R

    1995-01-01

    The intergenic spacer (IGS) of Acanthamoeba castellanii rRNA genes contains repeated elements which are weak enhancers for transcription by RNA polymerase I. A protein, EBF, was identified and partially purified which binds to the enhancers and to several other sequences within the IGS, but not to other DNA fragments, including the rRNA core promoter. No consensus binding sequence could be discerned in these fragments and bound factor is in rapid equilibrium with unbound. EBF has functional characteristics similar to vertebrate upstream binding factors (UBF). Not only does it bind to the enhancer and other IGS elements, but it also stimulates binding of TIF-IB, the fundamental transcription initiation factor, to the core promoter and stimulates transcription from the promoter. Attempts to identify polypeptides with epitopes similar to rat or Xenopus laevis UBF suggest that structurally the protein from A.castellanii is not closely related to vertebrate UBF. Images PMID:7501455

  13. Platelet-activating factor (PAF) receptor-binding antagonist activity of Malaysian medicinal plants.

    PubMed

    Jantan, I; Rafi, I A A; Jalil, J

    2005-01-01

    Forty-nine methanol extracts of 37 species of Malaysian medicinal plants were investigated for their inhibitory effects on platelet-activating factor (PAF) binding to rabbit platelets, using 3H-PAF as a ligand. Among them, the extracts of six Zingiberaceae species (Alpinia galanga Swartz., Boesenbergia pandurata Roxb., Curcuma ochorrhiza Val., C. aeruginosa Roxb., Zingiber officinale Rosc. and Z. zerumbet Koenig.), two Cinnamomum species (C. altissimum Kosterm. and C. pubescens Kochummen.), Goniothalamus malayanus Hook. f. Momordica charantia Linn. and Piper aduncum L. are potential sources of new PAF antagonists, as they showed significant inhibitory effects with IC50 values ranging from 1.2 to 18.4 microg ml(-1).

  14. Binding Energy and Enzymatic Catalysis.

    ERIC Educational Resources Information Center

    Hansen, David E.; Raines, Ronald T.

    1990-01-01

    Discussed is the fundamental role that the favorable free energy of binding of the rate-determining transition state plays in catalysis. The principle that all of the catalytic factors discussed are realized by the use of this binding energy is reviewed. (CW)

  15. Analysis of DNA binding by human factor xeroderma pigmentosum complementation group A (XPA) provides insight into its interactions with nucleotide excision repair substrates.

    PubMed

    Sugitani, Norie; Voehler, Markus W; Roh, Michelle S; Topolska-Woś, Agnieszka M; Chazin, Walter J

    2017-10-13

    Xeroderma pigmentosum (XP) complementation group A (XPA) is an essential scaffolding protein in the multiprotein nucleotide excision repair (NER) machinery. The interaction of XPA with DNA is a core function of this protein; a number of mutations in the DNA-binding domain (DBD) are associated with XP disease. Although structures of the central globular domain of human XPA and data on binding of DNA substrates have been reported, the structural basis for XPA's DNA-binding activity remains unknown. X-ray crystal structures of the central globular domain of yeast XPA (Rad14) with lesion-containing DNA duplexes have provided valuable insights, but the DNA substrates used for this study do not correspond to the substrates of XPA as it functions within the NER machinery. To better understand the DNA-binding activity of human XPA in NER, we used NMR to investigate the interaction of its DBD with a range of DNA substrates. We found that XPA binds different single-stranded/double-stranded junction DNA substrates with a common surface. Comparisons of our NMR-based mapping of binding residues with the previously reported Rad14-DNA crystal structures revealed similarities and differences in substrate binding between XPA and Rad14. This includes direct evidence for DNA contacts to the residues extending C-terminally from the globular core, which are lacking in the Rad14 construct. Moreover, mutation of the XPA residue corresponding to Phe-262 in Rad14, previously reported as being critical for DNA binding, had only a moderate effect on the DNA-binding activity of XPA. The DNA-binding properties of several disease-associated mutations in the DBD were investigated. These results suggest that for XPA mutants exhibiting altered DNA-binding properties, a correlation exists between the extent of reduction in DNA-binding affinity and the severity of symptoms in XP patients. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Genome-wide identification of novel expression signatures reveal distinct patterns and prevalence of binding motifs for p53, nuclear factor-κB and other signal transcription factors in head and neck squamous cell carcinoma

    PubMed Central

    Yan, Bin; Yang, Xinping; Lee, Tin-Lap; Friedman, Jay; Tang, Jun; Van Waes, Carter; Chen, Zhong

    2007-01-01

    Background Differentially expressed gene profiles have previously been observed among pathologically defined cancers by microarray technologies, including head and neck squamous cell carcinomas (HNSCCs). However, the molecular expression signatures and transcriptional regulatory controls that underlie the heterogeneity in HNSCCs are not well defined. Results Genome-wide cDNA microarray profiling of ten HNSCC cell lines revealed novel gene expression signatures that distinguished cancer cell subsets associated with p53 status. Three major clusters of over-expressed genes (A to C) were defined through hierarchical clustering, Gene Ontology, and statistical modeling. The promoters of genes in these clusters exhibited different patterns and prevalence of transcription factor binding sites for p53, nuclear factor-κB (NF-κB), activator protein (AP)-1, signal transducer and activator of transcription (STAT)3 and early growth response (EGR)1, as compared with the frequency in vertebrate promoters. Cluster A genes involved in chromatin structure and function exhibited enrichment for p53 and decreased AP-1 binding sites, whereas clusters B and C, containing cytokine and antiapoptotic genes, exhibited a significant increase in prevalence of NF-κB binding sites. An increase in STAT3 and EGR1 binding sites was distributed among the over-expressed clusters. Novel regulatory modules containing p53 or NF-κB concomitant with other transcription factor binding motifs were identified, and experimental data supported the predicted transcriptional regulation and binding activity. Conclusion The transcription factors p53, NF-κB, and AP-1 may be important determinants of the heterogeneous pattern of gene expression, whereas STAT3 and EGR1 may broadly enhance gene expression in HNSCCs. Defining these novel gene signatures and regulatory mechanisms will be important for establishing new molecular classifications and subtyping, which in turn will promote development of targeted

  17. Discovering Hematopoietic Mechanisms Through Genome-Wide Analysis of GATA Factor Chromatin Occupancy

    PubMed Central

    Fujiwara, Tohru; O'Geen, Henriette; Keles, Sunduz; Blahnik, Kimberly; Linnemann, Amelia K.; Kang, Yoon-A; Choi, Kyunghee; Farnham, Peggy J.; Bresnick, Emery H.

    2009-01-01

    SUMMARY GATA factors interact with simple DNA motifs (WGATAR) to regulate critical processes, including hematopoiesis, but very few WGATAR motifs are occupied in genomes. Given the rudimentary knowledge of mechanisms underlying this restriction, and how GATA factors establish genetic networks, we used ChIP-seq to define GATA-1 and GATA-2 occupancy genome-wide in erythroid cells. Coupled with genetic complementation analysis and transcriptional profiling, these studies revealed a rich collection of targets containing a characteristic binding motif of greater complexity than WGATAR. GATA factors occupied loci encoding multiple components of the Scl/TAL1 complex, a master regulator of hematopoiesis and leukemogenic target. Mechanistic analyses provided evidence for cross-regulatory and autoregulatory interactions among components of this complex, including GATA-2 induction of the hematopoietic corepressor ETO-2 and an ETO-2 negative autoregulatory loop. These results establish fundamental principles underlying GATA factor mechanisms in chromatin and illustrate a complex network of considerable importance for the control of hematopoiesis. PMID:19941826

  18. Functional characterization of transcription factor binding sites for HNF1-alpha, HNF3-beta (FOXA2), HNF4-alpha, Sp1 and Sp3 in the human prothrombin gene enhancer.

    PubMed

    Ceelie, H; Spaargaren-Van Riel, C C; De Jong, M; Bertina, R M; Vos, H L

    2003-08-01

    Prothrombin is a key component in blood coagulation. Overexpression of prothrombin leads to an increased risk of venous thrombosis. Therefore, the study of the transcriptional regulation of the prothrombin gene may help to identify mechanisms of overexpression. The aim of our study was to localize the regions within the prothrombin enhancer responsible for its activity, to identify the proteins binding to these regions, and to establish their functional importance. We constructed a set of prothrombin promoter 5' deletion constructs containing the firefly luciferase reporter gene, which were transiently transfected in HepG2, HuH7 and HeLa cells. Putative transcription factor (TF) binding sites were evaluated by electrophoretic mobility shift assays. The functional importance of each TF binding site was evaluated by site directed mutagenesis and transient transfection of the mutant constructs. We confirmed the major contribution of the enhancer region to the transcriptional activity of the prothrombin promoter. Analysis of this region revealed putative binding sites for hepatocyte nuclear factor HNF4, HNF3-beta and specificity protein(Sp)1. We identified six different TFs binding to three evolutionary conserved sites in the enhancer: HNF4-alpha (site 1), HNF1-alpha, HNF3-beta and an as yet unidentified TF (site 2) and the ubiquitously expressed TFs Sp1 and Sp3 (site 3). Mutagenesis studies showed that loss of binding of HNF3-beta resulted in a considerable decrease of enhancer activity, whereas loss of HNF4-alpha or Sp1/Sp3 resulted in milder reductions. The prothrombin enhancer plays a major role in regulation of prothrombin expression. Six different TFs are able to bind to this region. At least three of these TFs, HNF4-alpha, HNF3-beta and Sp1/Sp3, are important in regulation of prothrombin expression.

  19. Genome-Wide Binding Analysis of the Transcription Activator IDEAL PLANT ARCHITECTURE1 Reveals a Complex Network Regulating Rice Plant Architecture[W

    PubMed Central

    Lu, Zefu; Yu, Hong; Xiong, Guosheng; Wang, Jing; Jiao, Yongqing; Liu, Guifu; Jing, Yanhui; Meng, Xiangbing; Hu, Xingming; Qian, Qian; Fu, Xiangdong; Wang, Yonghong; Li, Jiayang

    2013-01-01

    IDEAL PLANT ARCHITECTURE1 (IPA1) is critical in regulating rice (Oryza sativa) plant architecture and substantially enhances grain yield. To elucidate its molecular basis, we first confirmed IPA1 as a functional transcription activator and then identified 1067 and 2185 genes associated with IPA1 binding sites in shoot apices and young panicles, respectively, through chromatin immunoprecipitation sequencing assays. The SQUAMOSA PROMOTER BINDING PROTEIN-box direct binding core motif GTAC was highly enriched in IPA1 binding peaks; interestingly, a previously uncharacterized indirect binding motif TGGGCC/T was found to be significantly enriched through the interaction of IPA1 with proliferating cell nuclear antigen PROMOTER BINDING FACTOR1 or PROMOTER BINDING FACTOR2. Genome-wide expression profiling by RNA sequencing revealed IPA1 roles in diverse pathways. Moreover, our results demonstrated that IPA1 could directly bind to the promoter of rice TEOSINTE BRANCHED1, a negative regulator of tiller bud outgrowth, to suppress rice tillering, and directly and positively regulate DENSE AND ERECT PANICLE1, an important gene regulating panicle architecture, to influence plant height and panicle length. The elucidation of target genes of IPA1 genome-wide will contribute to understanding the molecular mechanisms underlying plant architecture and to facilitating the breeding of elite varieties with ideal plant architecture. PMID:24170127

  20. Cyclic Peptidic Mimetics of Apollo Peptides Targeting Telomeric Repeat Binding Factor 2 (TRF2) and Apollo Interaction.

    PubMed

    Chen, Xia; Liu, Liu; Chen, Yong; Yang, Yuting; Yang, Chao-Yie; Guo, Tianyue; Lei, Ming; Sun, Haiying; Wang, Shaomeng

    2018-05-10

    Telomeric repeat binding factor 2 (TRF2) is a telomere-associated protein that plays an important role in the formation of the 3' single strand DNA overhang and the "T loop", two structures critical for the stability of the telomeres. Apollo is a 5'-exonuclease recruited by TRF2 to the telomere and contributes to the formation of the 3' single strand DNA overhang. Knocking down of Apollo can induce DNA damage response similar to that caused by the knocking down of TRF2. In this Letter, we report the design and synthesis of a class of cyclic peptidic mimetics of the TRFH binding motif of Apollo (Apollo TBM ). We found conformational control of the C terminal residues of Apollo TBM can effectively improve the binding affinity. We have obtained a crystal structure of a cyclic peptidic Apollo peptide mimetic ( 34 ) complexed with TRF2, which provides valuable guidance to the future design of TRF2 inhibitors.

  1. Role of G protein-coupled estrogen receptor-1, matrix metalloproteinases 2 and 9, and heparin binding epidermal growth factor-like growth factor in estradiol-17β-stimulated bovine satellite cell proliferation.

    PubMed

    Kamanga-Sollo, E; Thornton, K J; White, M E; Dayton, W R

    2014-10-01

    In feedlot steers, estradiol-17β (E2) and combined E2 and trenbolone acetate (a testosterone analog) implants enhance rate and efficiency of muscle growth; and, consequently, these compounds are widely used as growth promoters. Although the positive effects of E2 on rate and efficiency of bovine muscle growth are well established, the mechanisms involved in these effects are not well understood. Combined E2 and trenbolone acetate implants result in significantly increased muscle satellite cell number in feedlot steers. Additionally, E2 treatment stimulates proliferation of cultured bovine satellite cells (BSC). Studies in nonmuscle cells have shown that binding of E2 to G protein-coupled estrogen receptor (GPER)-1 results in activation of matrix metalloproteinases 2 and 9 (MMP2/9) resulting in proteolytic release of heparin binding epidermal growth factor-like growth factor (hbEGF) from the cell surface. Released hbEGF binds to and activates the epidermal growth factor receptor resulting in increased proliferation. To assess if GPER-1, MMP2/9, and/or hbEGF are involved in the mechanism of E2-stimulated BSC proliferation, we have examined the effects of G36 (a specific inhibitor of GPER-1), CRM197 (a specific inhibitor of hbEGF), and MMP-2/MMP-9 Inhibitor II (an inhibitor of MMP2/9 activity) on E2-stimulated BSC proliferation. Inhibition of GPER-1, MMP2/9, or hbEGF suppresses E2-stimulated BSC proliferation (P < 0.001) suggesting that all these are required in order for E2 to stimulate BSC proliferation. These results strongly suggest that E2 may stimulate BSC proliferation by binding to GPER-1 resulting in MMP2/9-catalyzed release of cell membrane-bound hbEGF and subsequent activation of epidermal growth factor receptor by binding of released hbEGF. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. The transcription factor CCAAT-binding factor CBF/NF-Y regulates the proximal promoter activity in the human alpha 1(XI) collagen gene (COL11A1).

    PubMed

    Matsuo, Noritaka; Yu-Hua, Wang; Sumiyoshi, Hideaki; Sakata-Takatani, Keiko; Nagato, Hitoshi; Sakai, Kumiko; Sakurai, Mami; Yoshioka, Hidekatsu

    2003-08-29

    We have characterized the proximal promoter region of the human COL11A1 gene. Transient transfection assays indicate that the segment from -199 to +1 is necessary for the activation of basal transcription. Electrophoretic mobility shift assays (EMSAs) demonstrated that the ATTGG sequence, within the -147 to -121 fragment, is critical to bind nuclear proteins in the proximal COL11A1 promoter. We demonstrated that the CCAAT binding factor (CBF/NF-Y) bound to this region using an interference assay with consensus oligonucleotides and a supershift assay with specific antibodies in an EMSA. In a chromatin immunoprecipitation assay and EMSA using DNA-affinity-purified proteins, CBF/NF-Y proteins directly bound this region in vitro and in vivo. We also showed that four tandem copies of the CBF/NF-Y-binding fragment produced higher transcriptional activity than one or two copies, whereas the absence of a CBF/NF-Y-binding fragment suppressed the COL11A1 promoter activity. Furthermore, overexpression of a dominant-negative CBF-B/NF-YA subunit significantly inhibited promoter activity in both transient and stable cells. These results indicate that the CBF/NF-Y proteins regulate the transcription of COL11A1 by directly binding to the ATTGG sequence in the proximal promoter region.

  3. Identification of Nucleic Acid Binding Sites on Translin-Associated Factor X (TRAX) Protein

    PubMed Central

    Gupta, Gagan Deep; Kumar, Vinay

    2012-01-01

    Translin and TRAX proteins play roles in very important cellular processes such as DNA recombination, spatial and temporal expression of mRNA, and in siRNA processing. Translin forms a homomeric nucleic acid binding complex and binds to ssDNA and RNA. However, a mutant translin construct that forms homomeric complex lacking nucleic acid binding activity is able to form fully active heteromeric translin-TRAX complex when co-expressed with TRAX. A substantial progress has been made in identifying translin sites that mediate its binding activity, while TRAX was thought not to bind DNA or RNA on its own. We here for the first time demonstrate nucleic acid binding to TRAX by crosslinking radiolabeled ssDNA to heteromeric translin-TRAX complex using UV-laser. The TRAX and translin, photochemically crosslinked with ssDNA, were individually detected on SDS-PAGE. We mutated two motifs in TRAX and translin, designated B2 and B3, to help define the nucleic acid binding sites in the TRAX sequence. The most pronounced effect was observed in the mutants of B3 motif that impaired nucleic acid binding activity of the heteromeric complexes. We suggest that both translin and TRAX are binding competent and contribute to the nucleic acid binding activity. PMID:22427937

  4. Diversity, expansion, and evolutionary novelty of plant DNA-binding transcription factor families.

    PubMed

    Lehti-Shiu, Melissa D; Panchy, Nicholas; Wang, Peipei; Uygun, Sahra; Shiu, Shin-Han

    2017-01-01

    Plant transcription factors (TFs) that interact with specific sequences via DNA-binding domains are crucial for regulating transcriptional initiation and are fundamental to plant development and environmental response. In addition, expansion of TF families has allowed functional divergence of duplicate copies, which has contributed to novel, and in some cases adaptive, traits in plants. Thus, TFs are central to the generation of the diverse plant species that we see today. Major plant agronomic traits, including those relevant to domestication, have also frequently arisen through changes in TF coding sequence or expression patterns. Here our goal is to provide an overview of plant TF evolution by first comparing the diversity of DNA-binding domains and the sizes of these domain families in plants and other eukaryotes. Because TFs are among the most highly expanded gene families in plants, the birth and death process of TFs as well as the mechanisms contributing to their retention are discussed. We also provide recent examples of how TFs have contributed to novel traits that are important in plant evolution and in agriculture.This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks, edited by Dr. Erich Grotewold and Dr. Nathan Springer. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Identification of heparin-binding EGF-like growth factor as a target in intercellular regulation of epidermal basal cell growth by suprabasal retinoic acid receptors.

    PubMed Central

    Xiao, J H; Feng, X; Di, W; Peng, Z H; Li, L A; Chambon, P; Voorhees, J J

    1999-01-01

    The role of retinoic acid receptors (RARs) in intercellular regulation of cell growth was assessed by targeting a dominant-negative RARalpha mutant (dnRARalpha) to differentiated suprabasal cells of mouse epidermis. dnRARalpha lacks transcriptional activation but not DNA-binding and receptor dimerization functions. Analysis of transgenic mice revealed that dnRARalpha dose-dependently impaired induction of basal cell proliferation and epidermal hyperplasia by all-trans RA (tRA). dnRARalpha formed heterodimers with endogenous retinoid X receptor-alpha (RXRalpha) over RA response elements in competition with remaining endogenous RARgamma-RXRalpha heterodimers, and dose-dependently impaired retinoid-dependent gene transcription. To identify genes regulated by retinoid receptors and involved in cell growth control, we analyzed the retinoid effects on expression of the epidermal growth factor (EGF) receptor, EGF, transforming growth factor-alpha, heparin-binding EGF-like growth factor (HB-EGF) and amphiregulin genes. In normal epidermis, tRA rapidly and selectively induced expression of HB-EGF but not the others. This induction occurred exclusively in suprabasal cells. In transgenic epidermis, dnRARalpha dose-dependently inhibited tRA induction of suprabasal HB-EGF and subsequent basal cell hyperproliferation. Together, our observations suggest that retinoid receptor heterodimers located in differentiated suprabasal cells mediate retinoid induction of HB-EGF, which in turn stimulates basal cell growth via intercellular signaling. These events may underlie retinoid action in epidermal regeneration during wound healing. PMID:10075925

  6. Diagnostic and prognostic value of factor VIII binding antibodies in acquired hemophilia A: data from the GTH-AH 01/2010 study.

    PubMed

    Werwitzke, S; Geisen, U; Nowak-Göttl, U; Eichler, H; Stephan, B; Scholz, U; Holstein, K; Klamroth, R; Knöbl, P; Huth-Kühne, A; Bomke, B; Tiede, A

    2016-05-01

    Essentials Factor VIII (FVIII) binding IgG detected by ELISA could be an alternative to the Bethesda assay. We studied the performance of anti-FVIII IgG ELISA in patients with acquired hemophilia and controls. Anti-FVIII IgG > 99th percentile of controls was highly sensitive and specific. Patients with high anti-FVIII IgG have a lower chance of achieving remission. Background Acquired hemophilia A is a severe bleeding disorder that requires fast and accurate diagnosis as it occurs often unexpectedly in previously healthy men and women of every age. The Nijmegen-modified Bethesda assay is the diagnostic reference standard for detecting neutralizing autoantibodies against factor VIII (FVIII), but is not widely available, not ideal for quantifying the complex type 2 inhibitors seen in acquired hemophilia, and suffers from high inter-laboratory variability. Objectives To assess the diagnostic and prognostic value of FVIII-binding antibodies as detected by ELISA compared with the Nijmegen Bethesda assay. Methods Samples from the time of first diagnosis and clinical data were available from 102 patients with acquired hemophilia enrolled in the prospective GTH-AH 01/2010 study. Controls (n = 102) were matched for gender and age. Diagnostic cut-offs were determined by receiver-operator curve analysis. The prognostic value was assessed in 92 of the 102 patients by Cox regression analysis of time to partial remission. Results Anti-FVIII IgG above the 99th percentile (> 15 arbitrary units per mL) revealed high sensitivity and specificity (both 0.99; 95% confidence interval, 0.95-1.0) for diagnosing acquired hemophilia. The likelihood of achieving partial remission was related to anti-FVIII IgG concentration (< 300 arbitrary units, 1.0; 300-1050, 0.65; > 1050, 0.39). The Bethesda titer was only associated with the likelihood of partial remission when analyzed in the central laboratory, but not when data from local GTH study sites were used. Conclusion Although the Nijmegen

  7. Cluster analysis of S. Cerevisiae nucleosome binding sites

    NASA Astrophysics Data System (ADS)

    Suvorova, Y.; Korotkov, E.

    2017-12-01

    It is well known that major part of a eukaryotic genome is wrapped around histone proteins forming nucleosomes. It was also demonstrated that the DNA sequence itself is playing an important role in the nucleosome positioning process. In this work, a cluster analysis of 67 517 nucleosome binding sites from the S. Cerevisiae genome was carried out. The classification method is based on the self-adjusting dinucleotides position weight matrix. As a result, 135 significant clusters were discovered that contain 43225 sequences (which constitutes 64% of the initial set). The meaning of the found classes is discussed, as well as the possibility of the further usage.

  8. Telomeric repeat-binding factor 2: a marker for survival and anti-EGFR efficacy in oral carcinoma

    PubMed Central

    Raybaud, Hélène; Sudaka, Anne; Chamorey, Emmanuel; Brolih, Sanja; Monteverde, Martino; Merlano, Marco; Nigro, Cristiana Lo; Ambrosetti, Damien; Pagès, Gilles

    2016-01-01

    Oral Squamous Cell Carcinoma (OSCC) is the most common oral cancer worldwide. Treatments including surgery, radio- and chemo-therapies mostly result in debilitating side effects. Thus, a more accurate evaluation of patients at risk of recurrence after radio/chemo treatment is important for preserving their quality of life. We assessed whether the Telomeric Repeat-binding Factor 2 (TERF2) influences tumor aggressiveness and treatment response. TERF2 is over-expressed in many cancers but its correlation to patient outcome remains controversial in OSCC. Our retrospective study on sixty-two patients showed that TERF2 overexpression has a negative impact on survival time. TERF2-dependent survival time was independent of tumor size in a multivariate analysis. In vitro, TERF2 knockdown by RNA interference had no effect on cell proliferation, migration, senescence and apoptosis. Instead, TERF2 knockdown increased the expression of cytokines implicated in inflammation and angiogenesis, except for vascular endothelial growth factor. TERF2 knockdown resulted in a decrease vascularization and growth of xenograft tumors. Finally, response to erlotinib/Tarceva and cetuximab/Erbitux treatment was increased in TRF2 knocked-down cells. Hence, TERF2 may represent an independent marker of survival for OSCC and a predictive marker for cetuximab/Erbitux and erlotinib/Tarceva efficacy. PMID:27329590

  9. Comparative Analysis of the Molecular Adjuvants and Their Binding Efficiency with CR1.

    PubMed

    Saranya, B; Saxena, Shweta; Saravanan, K M; Shakila, H

    2016-03-01

    There are so many obstacles in developing a vaccine or vaccine technology for diseases like cancer and human immunodeficiency virus infection. While developing vaccines that target specific infection, molecular adjuvants are indispensable. These molecular adjuvants act as a vaccine delivery vehicle to the immune system to increase the effectiveness of the specific antigens. In the present work, a computational study has been done on molecular adjuvants like IgGFc, GMCSF and C3d to find out how efficiently they are binding to CR1. Sequence, structure and mutational analysis are performed on the molecular adjuvants to understand the features important for their binding with the receptor. Results obtained from our study indicate that the adjuvant IgGFc complexed with the receptor CR1 has the best binding efficiency, which can be used further to develop better vaccine technologies.

  10. Specific binding of [(18)F]fluoroethyl-harmol to monoamine oxidase A in rat brain cryostat sections, and compartmental analysis of binding in living brain.

    PubMed

    Maschauer, Simone; Haller, Adelina; Riss, Patrick J; Kuwert, Torsten; Prante, Olaf; Cumming, Paul

    2015-12-01

    We investigated [(18)F]fluoroethyl-harmol ([(18)F]FEH) as a reversible and selective ligand for positron emission tomography (PET) studies of monoamine oxidase A (MAO-A). Binding of [(18)F]FEH in rat brain cryostat sections indicated high affinity (KD = 3 nM), and density (Bmax; 600 pmol/g). The plasma free fraction was 45%, and untransformed parent constituted only 13% of plasma radioactivity at 10 min after injection. Compartmental analysis of PET recordings in pargyline-treated rats showed high permeability to brain (K1; 0.32 mL/g/min) and slow washout (k2; 0.024/min), resulting in a uniformly high equilibrium distribution volume (VD; 20 mL/g). Using this VD to estimate unbound ligand in brain of untreated rats, the binding potential ranged from 4.2 in cerebellum to 7.2 in thalamus. We also calculated maps of rats receiving [(18)F]FEH at a range of specific activities, and then estimated saturation binding parameters in the living brain. In thalamus, striatum and frontal cortex KD was globally close to 300 nM and Bmax was close to 1600 pmol/g; the 100-fold discrepancy in affinity suggests a very low free fraction for [(18)F]FEH in the living brain. Based on a synthesis of findings, we calculate the endogenous dopamine concentration to be 0.4 μM in the striatal compartment containing MAO-A, thus unlikely to exert competition against [(18)F]FEH binding in vivo. In summary, [(18)F]FEH has good properties for the detection of MAO-A in the rat brain by PET, and may present logistic advantages for clinical research at centers lacking a medical cyclotron. We made a compartmental analysis of [(18)F]fluoroethylharmol ([(18)F]FEH) binding to monoamine oxidase A (MAO-A) in living rat brain and estimated the saturation binding parameters from the binding potential (BPND). The Bmax was of comparable magnitude to that in vitro, but with apparent affinity (300 nM), it was 100-fold lower in vivo. PET imaging with [(18) F]FEH is well suited for quantitation of MAO-A in living

  11. The Collagen-Binding Adhesin Is a Virulence Factor in Staphylococcus aureus Keratitis

    PubMed Central

    Rhem, Marcus N.; Lech, Elizabeth M.; Patti, Joseph M.; McDevitt, Damien; Höök, Magnus; Jones, Dan B.; Wilhelmus, Kirk R.

    2000-01-01

    A collagen-binding strain of Staphylococcus aureus produced suppurative inflammation in a rabbit model of soft contact lens-associated bacterial keratitis more often than its collagen-binding-negative isogenic mutant. Reintroduction of the cna gene on a multicopy plasmid into the mutant helped it regain its corneal adherence and infectivity. The topical application of a collagen-binding peptide before bacterial challenge decreased S. aureus adherence to deepithelialized corneas. These data suggest that the collagen-binding adhesin is involved in the pathogenesis of S. aureus infection of the cornea. PMID:10816547

  12. Membrane type 1-matrix metalloproteinase cleaves off the NH2-terminal portion of heparin-binding epidermal growth factor and converts it into a heparin-independent growth factor.

    PubMed

    Koshikawa, Naohiko; Mizushima, Hiroto; Minegishi, Tomoko; Iwamoto, Ryo; Mekada, Eisuke; Seiki, Motoharu

    2010-07-15

    Epidermal growth factor (EGF) receptors (ErbB) and EGF family members represent promising targets for cancer therapy. Heparin-binding EGF (HB-EGF) is a member of the EGF family and is an important target for therapy in some types of human cancers. Processing of HB-EGF by proprotein convertases, and successively, by ADAM family proteases, generates a soluble growth factor that requires heparin as a cofactor. Although heparin potentiates HB-EGF activity in vitro, it is not clear how the heparin-binding activity of HB-EGF is regulated. Here, we show that membrane type 1-matrix metalloproteinase (MT1-MMP; MMP14), a potent invasion-promoting protease, markedly enhances HB-EGF-dependent tumor formation in mice. MT1-MMP additionally cleaves HB-EGF and removes the NH(2)-terminal 20 amino acids that are important for binding heparin. Consequently, the processing of HB-EGF by MT1-MMP converts HB-EGF into a heparin-independent growth factor with enhanced mitogenic activity, and thereby, expression of both proteins costimulates tumor cell growth in vitro and in vivo. The ErbB family of receptors expressed in human gastric carcinoma cells play a role in mediating enhanced HB-EGF activity by MT1-MMP during invasive cell growth in collagen. Thus, we shed light on a new mechanism whereby HB-EGF activity is regulated that should be considered when designing HB-EGF-targeted cancer therapy. (c)2010 AACR.

  13. CCCTC-binding Factor Mediates Effects of Glucose On Beta Cell Survival

    PubMed Central

    Tsui, Shanli; Dai, Wei; Lu, Luo

    2013-01-01

    Objectives Pancreatic islet β-cell survival is important in regulating insulin activities and maintaining glucose homeostasis. Recently, Pax6 has been shown to be essential for many vital functions in β-cells, though the molecular mechanisms of its regulation in β-cells remain unclear. The present study investigates the novel effects of glucose- and insulin-induced CTCF activity on Pax6 gene expression as well as the subsequent effects of insulin-activated signaling pathways on β-cell proliferation. Material and methods Pancreatic β-TC-1-6 cells were cultured in DMEM medium and stimulated with high concentrations of glucose (5 to 125 mM) and cell viability was assessed by MTT assays. The effect of CTCF on Pax6 was evaluated in high glucose-induced and CCCTC-binding Factor (CTCF)/Erk suppressed cells by promoter reporter and Western analyses. Results Increases in glucose and insulin concentrations up-regulated CTCF and consequently down-regulated Pax6 in β-cell survival and proliferation. Knocking-down CTCF directly affected Pax6 transcription through CTCF binding and blocked the response to glucose. Altered Erk activity mediated the effects of CTCF on controlling Pax6 expression, which partially regulates β-cell proliferation. Conclusions CTCF functions as a molecular mediator between insulin-induced upstream Erk signaling and Pax6 expression in pancreatic β-cells. This pathway may contribute to regulation of β-cell survival and proliferation. PMID:24354619

  14. Prospective evaluation of gene mutations and minimal residual disease in patients with core binding factor acute myeloid leukemia.

    PubMed

    Jourdan, Eric; Boissel, Nicolas; Chevret, Sylvie; Delabesse, Eric; Renneville, Aline; Cornillet, Pascale; Blanchet, Odile; Cayuela, Jean-Michel; Recher, Christian; Raffoux, Emmanuel; Delaunay, Jacques; Pigneux, Arnaud; Bulabois, Claude-Eric; Berthon, Céline; Pautas, Cécile; Vey, Norbert; Lioure, Bruno; Thomas, Xavier; Luquet, Isabelle; Terré, Christine; Guardiola, Philippe; Béné, Marie C; Preudhomme, Claude; Ifrah, Norbert; Dombret, Hervé

    2013-03-21

    Not all patients with core binding factor acute myeloid leukemia (CBF-AML) display a good outcome. Modern risk factors include KIT and/or FLT3 gene mutations and minimal residual disease (MRD) levels, but their respective values have never been prospectively assessed. A total of 198 CBF-AML patients were randomized between a reinforced and a standard induction course, followed by 3 high-dose cytarabine consolidation courses. MRD levels were monitored prospectively. Gene mutations were screened at diagnosis. Despite a more rapid MRD decrease after reinforced induction, induction arm did not influence relapse-free survival (RFS) (64% in both arms; P = .91). Higher WBC, KIT, and/or FLT3-ITD/TKD gene mutations, and a less than 3-log MRD reduction after first consolidation, were associated with a higher specific hazard of relapse, but MRD remained the sole prognostic factor in multivariate analysis. At 36 months, cumulative incidence of relapse and RFS were 22% vs 54% (P < .001) and 73% vs 44% (P < .001) in patients who achieved 3-log MRD reduction vs the others. These results suggest that MRD, rather than gene mutations, should be used for future treatment stratifications in CBF-AML patients. This trial was registered at EudraCT as #2006-005163-26 and at www.clinicaltrials.gov as #NCT 00428558.

  15. The electrostatic role of the Zn-Cys2His2 complex in binding of operator DNA with transcription factors: mouse EGR-1 from the Cys2His2 family.

    PubMed

    Chirgadze, Y N; Boshkova, E A; Polozov, R V; Sivozhelezov, V S; Dzyabchenko, A V; Kuzminsky, M B; Stepanenko, V A; Ivanov, V V

    2018-01-07

    The mouse factor Zif268, known also as early growth response protein EGR-1, is a classical representative for the Cys2His2 transcription factor family. It is required for binding the RNA polymerase with operator dsDNA to initialize the transcription process. We have shown that only in this family of total six Zn-finger protein families the Zn complex plays a significant role in the protein-DNA binding. Electrostatic feature of this complex in the binding of factor Zif268 from Mus musculus with operator DNA has been considered. The factor consists of three similar Zn-finger units which bind with triplets of coding DNA. Essential contacts of the factor with the DNA phosphates are formed by three conservative His residues, one in each finger. We describe here the results of calculations of the electrostatic potentials for the Zn-Cys2His2 complex, Zn-finger unit 1, and the whole transcription factor. The potential of Zif268 has a positive area on the factor surface, and it corresponds exactly to the binding sites of each of Zn-finger units. The main part of these areas is determined by conservative His residues, which form contacts with the DNA phosphate groups. Our result shows that the electrostatic positive potential of this histidine residue is enhanced due to the Zn complex. The other contacts of the Zn-finger with DNA are related to nucleotide bases, and they are responsible for the sequence-specific binding with DNA. This result may be extended to all other members of the Cys2His2 transcription factor family.

  16. Cultured bovine brain capillary endothelial cells (BBCEC) - a blood-brain barrier model for studying the binding and internalization of insulin and insulin-like growth factor 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, B.T.; Borchardt, R.T.

    1987-05-01

    Cultured bovine brain capillary endothelial cells (BBCEC) have previously been reported by their laboratory as a working model for studying nutrient and drug transport and metabolism at the blood-brain barrier. In the present study, they have utilized this culture system to investigate the binding and internalization of (/sup 125/I)-labelled insulin (INS) and insulin-like growth factor 1(IGF-1) by BBCEC. After 2 hrs at 23/sup 0/C, the specific binding of INS and IGF-1 was 1.6% and 13.6%, respectively. At 37/sup 0/C, the maximum specific binding was 0.9% for INS and 5.8% for IGF-1. Using an acid-wash technique to assess peptide internalization, itmore » was observed that, at 37/sup 0/C, approximately 60% of the bound INS rapidly became resistant to acid treatment, a value which was constant over 2 hr. With IGF-1, a similar proportion of the bound material, 62%, became resistant by 30 min, but subsequently decreased to 45% by 2 hr. Scatchard analysis of competitive binding studies indicated the presence of two binding sites for each protein, having K/sub d/'s of 0.82 nM and 19.2 nM for INS and 0.39 nM and 3.66 nM for IGF-1. Little change in the amount of INS binding was observed over a four-day interval as the cultures became a confluent monolayer. The present report of binding and internalization of these proteins suggests that the BBCEC may utilize a receptor-mediated process to internalize and/or transport (transcytosis) INS and IGF-1 from the circulation.« less

  17. Chromatin Immunoprecipitation Sequencing (ChIP-Seq) for Transcription Factors and Chromatin Factors in Arabidopsis thaliana Roots: From Material Collection to Data Analysis.

    PubMed

    Cortijo, Sandra; Charoensawan, Varodom; Roudier, François; Wigge, Philip A

    2018-01-01

    Chromatin immunoprecipitation combined with next-generation sequencing (ChIP-seq) is a powerful technique to investigate in vivo transcription factor (TF) binding to DNA, as well as chromatin marks. Here we provide a detailed protocol for all the key steps to perform ChIP-seq in Arabidopsis thaliana roots, also working on other A. thaliana tissues and in most non-ligneous plants. We detail all steps from material collection, fixation, chromatin preparation, immunoprecipitation, library preparation, and finally computational analysis based on a combination of publicly available tools.

  18. Electrostatic Forces as Dominant Interactions Between Proteins and Polyanions: an ESI MS Study of Fibroblast Growth Factor Binding to Heparin Oligomers

    NASA Astrophysics Data System (ADS)

    Minsky, Burcu Baykal; Dubin, Paul L.; Kaltashov, Igor A.

    2017-04-01

    The interactions between fibroblast growth factors (FGFs) and their receptors (FGFRs) are facilitated by heparan sulfate (HS) and heparin (Hp), highly sulfated biological polyelectrolytes. The molecular basis of FGF interactions with these polyelectrolytes is highly complex due to the structural heterogeneity of HS/Hp, and many details still remain elusive, especially the significance of charge density and minimal chain length of HS/Hp in growth factor recognition and multimerization. In this work, we use electrospray ionization mass spectrometry (ESI MS) to investigate the association of relatively homogeneous oligoheparins (octamer, dp8, and decamer, dp10) with acidic fibroblast growth factor (FGF-1). This growth factor forms 1:1, 2:1, and 3:1 protein/heparinoid complexes with both dp8 and dp10, and the fraction of bound protein is highly dependent on protein/heparinoid molar ratio. Multimeric complexes are preferentially formed on the highly sulfated Hp oligomers. Although a variety of oligomers appear to be binding-competent, there is a strong correlation between the affinity and the overall level of sulfation (the highest charge density polyanions binding FGF most strongly via multivalent interactions). These results show that the interactions between FGF-1 and Hp oligomers are primarily directed by electrostatics, and also demonstrate the power of ESI MS as a tool to study multiple binding equilibria between proteins and structurally heterogeneous polyanions.

  19. Ligand binding analysis and screening by chemical denaturation shift.

    PubMed

    Schön, Arne; Brown, Richard K; Hutchins, Burleigh M; Freire, Ernesto

    2013-12-01

    The identification of small molecule ligands is an important first step in drug development, especially drugs that target proteins with no intrinsic activity. Toward this goal, it is important to have access to technologies that are able to measure binding affinities for a large number of potential ligands in a fast and accurate way. Because ligand binding stabilizes the protein structure in a manner dependent on concentration and binding affinity, the magnitude of the protein stabilization effect elicited by binding can be used to identify and characterize ligands. For example, the shift in protein denaturation temperature (Tm shift) has become a popular approach to identify potential ligands. However, Tm shifts cannot be readily transformed into binding affinities, and the ligand rank order obtained at denaturation temperatures (≥60°C) does not necessarily coincide with the rank order at physiological temperature. An alternative approach is the use of chemical denaturation, which can be implemented at any temperature. Chemical denaturation shifts allow accurate determination of binding affinities with a surprisingly wide dynamic range (high micromolar to sub nanomolar) and in situations where binding changes the cooperativity of the unfolding transition. In this article, we develop the basic analytical equations and provide several experimental examples. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Ligand Binding Analysis and Screening by Chemical Denaturation Shift

    PubMed Central

    Sch n, Arne; Brown, Richard K.; Hutchins, Burleigh M.; Freire, Ernesto

    2013-01-01

    The identification of small molecule ligands is an important first step in drug development, especially drugs that target proteins with no intrinsic activity. Towards this goal, it is important to have access to technologies that are able to measure binding affinities for a large number of potential ligands in a fast and accurate way. Since ligand binding stabilizes the protein structure in a manner dependent on concentration and binding affinity, the magnitude of the protein stabilization effect elicited by binding can be used to identify and characterize ligands. For example, the shift in protein denaturation temperature (Tm shift) has become a popular approach to identify potential ligands. However, Tm shifts cannot be readily transformed into binding affinities and the ligand rank order obtained at denaturation temperatures (60°C or higher) does not necessarily coincide with the rank order at physiological temperature. An alternative approach is the use of chemical denaturation, which can be implemented at any temperature. Chemical denaturation shifts allow accurate determination of binding affinities with a surprisingly wide dynamic range (high micromolar to sub nanomolar) and in situations in which binding changes the cooperativity of the unfolding transition. In this paper we develop the basic analytical equations and provide several experimental examples. PMID:23994566

  1. Low serum mannose-binding lectin as a risk factor for new onset diabetes mellitus after renal transplantation.

    PubMed

    Ibernon, Meritxell; Moreso, Francesc; Moreno, José M; Bestard, Oriol; Cruzado, Josep M; Grinyó, Josep M; Ricart, Wifredo; Fernández-Real, José M; Serón, Daniel

    2009-07-27

    Infections and new onset diabetes mellitus after transplantation (NODAT) are frequent complications after renal transplantation and may be related to innate immunity alterations. We evaluate the relationship among serum mannose-binding lectin (MBL), chronic inflammation, NODAT, and infection. Between March 2005 and October 2006, consecutive nondiabetic renal transplant recipients were recruited. MBL, soluble tumor necrosis factor receptor 2, and neutrophil gelatinase-associated lipocalin were determined before transplant and at 1 and 3 months. An oral glucose tolerance test was performed at 3 months. A total of 125 patients were recruited, and 111 patients had a functioning graft at 3 months. MBL levels remained unchanged after transplantation. Subjects with low MBL (lower tertile) had higher pretransplant soluble tumor necrosis factor receptor 2 (40+/-13 ng/mL vs. 35+/-11 ng/mL; P=0.05) and neutrophil gelatinase-associated lipocalin (638+/-114 ng/mL vs. 553+/-185 ng/mL; P=0.03), an increased incidence of bacterial/fungal infection (P=0.021), and an increased prevalence of NODAT at 3 months (44.4% vs. 22.6%; P=0.01). Multivariate analysis confirmed that MBL was a risk factor for NODAT (relative risk: 3.04, 95% confidence interval: 1.18-7.81; P=0.021) adjusting for age, pretransplant impaired fasting glucose, and body mass index. Low pretransplant MBL is associated with chronic inflammation, NODAT, and infection.

  2. Analysis of drug binding pockets and repurposing opportunities for twelve essential enzymes of ESKAPE pathogens.

    PubMed

    Naz, Sadia; Ngo, Tony; Farooq, Umar; Abagyan, Ruben

    2017-01-01

    The rapid increase in antibiotic resistance by various bacterial pathogens underlies the significance of developing new therapies and exploring different drug targets. A fraction of bacterial pathogens abbreviated as ESKAPE by the European Center for Disease Prevention and Control have been considered a major threat due to the rise in nosocomial infections. Here, we compared putative drug binding pockets of twelve essential and mostly conserved metabolic enzymes in numerous bacterial pathogens including those of the ESKAPE group and Mycobacterium tuberculosis . The comparative analysis will provide guidelines for the likelihood of transferability of the inhibitors from one species to another. Nine bacterial species including six ESKAPE pathogens, Mycobacterium tuberculosis along with Mycobacterium smegmatis and Eschershia coli , two non-pathogenic bacteria, have been selected for drug binding pocket analysis of twelve essential enzymes. The amino acid sequences were obtained from Uniprot, aligned using ICM v3.8-4a and matched against the Pocketome encyclopedia. We used known co-crystal structures of selected target enzyme orthologs to evaluate the location of their active sites and binding pockets and to calculate a matrix of pairwise sequence identities across each target enzyme across the different species. This was used to generate sequence maps. High sequence identity of enzyme binding pockets, derived from experimentally determined co-crystallized structures, was observed among various species. Comparison at both full sequence level and for drug binding pockets of key metabolic enzymes showed that binding pockets are highly conserved (sequence similarity up to 100%) among various ESKAPE pathogens as well as Mycobacterium tuberculosis . Enzymes orthologs having conserved binding sites may have potential to interact with inhibitors in similar way and might be helpful for design of similar class of inhibitors for a particular species. The derived pocket

  3. Using Horn's Parallel Analysis Method in Exploratory Factor Analysis for Determining the Number of Factors

    ERIC Educational Resources Information Center

    Çokluk, Ömay; Koçak, Duygu

    2016-01-01

    In this study, the number of factors obtained from parallel analysis, a method used for determining the number of factors in exploratory factor analysis, was compared to that of the factors obtained from eigenvalue and scree plot--two traditional methods for determining the number of factors--in terms of consistency. Parallel analysis is based on…

  4. Positive feedback between RNA-binding protein HuD and transcription factor SATB1 promotes neurogenesis.

    PubMed

    Wang, Feifei; Tidei, Joseph J; Polich, Eric D; Gao, Yu; Zhao, Huashan; Perrone-Bizzozero, Nora I; Guo, Weixiang; Zhao, Xinyu

    2015-09-08

    The mammalian embryonic lethal abnormal vision (ELAV)-like protein HuD is a neuronal RNA-binding protein implicated in neuronal development, plasticity, and diseases. Although HuD has long been associated with neuronal development, the functions of HuD in neural stem cell differentiation and the underlying mechanisms have gone largely unexplored. Here we show that HuD promotes neuronal differentiation of neural stem/progenitor cells (NSCs) in the adult subventricular zone by stabilizing the mRNA of special adenine-thymine (AT)-rich DNA-binding protein 1 (SATB1), a critical transcriptional regulator in neurodevelopment. We find that SATB1 deficiency impairs the neuronal differentiation of NSCs, whereas SATB1 overexpression rescues the neuronal differentiation phenotypes resulting from HuD deficiency. Interestingly, we also discover that SATB1 is a transcriptional activator of HuD during NSC neuronal differentiation. In addition, we demonstrate that NeuroD1, a neuronal master regulator, is a direct downstream target of SATB1. Therefore, HuD and SATB1 form a positive regulatory loop that enhances NeuroD1 transcription and subsequent neuronal differentiation. Our results here reveal a novel positive feedback network between an RNA-binding protein and a transcription factor that plays critical regulatory roles in neurogenesis.

  5. Genome-wide analysis of AR binding and comparison with transcript expression in primary human fetal prostate fibroblasts and cancer associated fibroblasts.

    PubMed

    Nash, Claire; Boufaied, Nadia; Mills, Ian G; Franco, Omar E; Hayward, Simon W; Thomson, Axel A

    2017-05-05

    The androgen receptor (AR) is a transcription factor, and key regulator of prostate development and cancer, which has discrete functions in stromal versus epithelial cells. AR expressed in mesenchyme is necessary and sufficient for prostate development while loss of stromal AR is predictive of prostate cancer progression. Many studies have characterized genome-wide binding of AR in prostate tumour cells but none have used primary mesenchyme or stroma. We applied ChIPseq to identify genomic AR binding sites in primary human fetal prostate fibroblasts and patient derived cancer associated fibroblasts, as well as the WPMY1 cell line overexpressing AR. We identified AR binding sites that were specific to fetal prostate fibroblasts (7534), cancer fibroblasts (629), WPMY1-AR (2561) as well as those common among all (783). Primary fibroblasts had a distinct AR binding profile versus prostate cancer cell lines and tissue, and showed a localisation to gene promoter binding sites 1 kb upstream of the transcriptional start site, as well as non-classical AR binding sequence motifs. We used RNAseq to define transcribed genes associated with AR binding sites and derived cistromes for embryonic and cancer fibroblasts as well as a cistrome common to both. These were compared to several in vivo ChIPseq and transcript expression datasets; which identified subsets of AR targets that were expressed in vivo and regulated by androgens. This analysis enabled us to deconvolute stromal AR targets active in stroma within tumour samples. Taken together, our data suggest that the AR shows significantly different genomic binding site locations in primary prostate fibroblasts compared to that observed in tumour cells. Validation of our AR binding site data with transcript expression in vitro and in vivo suggests that the AR target genes we have identified in primary fibroblasts may contribute to clinically significant and biologically important AR-regulated changes in prostate tissue

  6. Structure-Based Mutational Analysis of the C-Terminal DNA-Binding Domain of Human Immunodeficiency Virus Type 1 Integrase: Critical Residues for Protein Oligomerization and DNA Binding

    PubMed Central

    Lutzke, Ramon A. Puras; Plasterk, Ronald H. A.

    1998-01-01

    The C-terminal domain of human immunodeficiency virus type 1 (HIV-1) integrase (IN) is a dimer that binds to DNA in a nonspecific manner. The structure of the minimal region required for DNA binding (IN220–270) has been solved by nuclear magnetic resonance spectroscopy. The overall fold of the C-terminal domain of HIV-1 IN is similar to those of Src homology region 3 domains. Based on the structure of IN220–270, we studied the role of 15 amino acid residues potentially involved in DNA binding and oligomerization by mutational analysis. We found that two amino acid residues, arginine 262 and leucine 234, contribute to DNA binding in the context of IN220–270, as indicated by protein-DNA UV cross-link analysis. We also analyzed mutant proteins representing portions of the full-length IN protein. Amino acid substitution of residues located in the hydrophobic dimer interface, such as L241A and L242A, results in the loss of oligomerization of IN; consequently, the levels of 3′ processing, DNA strand transfer, and intramolecular disintegration are strongly reduced. These results suggest that dimerization of the C-terminal domain of IN is important for correct multimerization of IN. PMID:9573250

  7. C/EBPβ (CCAAT/enhancer-binding protein β) mediates progesterone production through transcriptional regulation in co-operation with SF-1 (steroidogenic factor-1).

    PubMed

    Mizutani, Tetsuya; Ju, Yunfeng; Imamichi, Yoshitaka; Osaki, Tsukasa; Yazawa, Takashi; Kawabe, Shinya; Ishikane, Shin; Matsumura, Takehiro; Kanno, Masafumi; Kamiki, Yasue; Kimura, Kohei; Minamino, Naoto; Miyamoto, Kaoru

    2014-06-15

    The transcription factor SF-1 (steroidogenic factor-1) is a master regulator of steroidogenesis. Previously, we have found that SF-1 induces the differentiation of mesenchymal stem cells into steroidogenic cells. To elucidate the molecular mechanisms of SF-1-mediated functions, we attempted to identify protein components of the SF-1 nuclear protein complex in differentiated cells. SF-1 immunoaffinity chromatography followed by MS/MS analysis was performed, and 24 proteins were identified. Among these proteins, we focused on C/EBPβ (CCAAT/enhancer-binding protein β), which is an essential transcription factor for ovulation and luteinization, as the transcriptional mechanisms of C/EBPβ working together with SF-1 are poorly understood. C/EBPβ knockdown attenuated cAMP-induced progesterone production in granulosa tumour-derived KGN cells by altering STAR (steroidogenic acute regulatory protein), CYP11A1 (cytochrome P450, family 11, subfamily A, polypeptide 1) and HSD3B2 (hydroxy-δ-5-steroid dehydrogenase, 3β- and steroid δ-isomerase 2) expression. EMSA and ChIP assays revealed novel C/EBPβ-binding sites in the upstream regions of the HSD3B2 and CYP11A1 genes. These interactions were enhanced by cAMP stimulation. Luciferase assays showed that C/EBPβ-responsive regions were found in each promoter and C/EBPβ is involved in the cAMP-induced transcriptional activity of these genes together with SF-1. These results indicate that C/EBPβ is an important mediator of progesterone production by working together with SF-1, especially under tropic hormone-stimulated conditions.

  8. Architecture of a Fur Binding Site: a Comparative Analysis

    PubMed Central

    Lavrrar, Jennifer L.; McIntosh, Mark A.

    2003-01-01

    Fur is an iron-binding transcriptional repressor that recognizes a 19-bp consensus site of the sequence 5′-GATAATGATAATCATTATC-3′. This site can be defined as three adjacent hexamers of the sequence 5′-GATAAT-3′, with the third being slightly imperfect (an F-F-F configuration), or as two hexamers in the forward orientation separated by one base pair from a third hexamer in the reverse orientation (an F-F-x-R configuration). Although Fur can bind synthetic DNA sequences containing the F-F-F arrangement, most natural binding sites are variations of the F-F-x-R arrangement. The studies presented here compared the ability of Fur to recognize synthetic DNA sequences containing two to four adjacent hexamers with binding to sequences containing variations of the F-F-x-R arrangement (including natural operator sequences from the entS and fepB promoter regions of Escherichia coli). Gel retardation assays showed that the F-F-x-R architecture was necessary for high-affinity Fur-DNA interactions and that contiguous hexamers were not recognized as effectively. In addition, the stoichiometry of Fur at each binding site was determined, showing that Fur interacted with its minimal 19-bp binding site as two overlapping dimers. These data confirm the proposed overlapping-dimer binding model, where the unit of interaction with a single Fur dimer is two inverted hexamers separated by a C:G base pair, with two overlapping units comprising the 19-bp consensus binding site required for the high-affinity interaction with two Fur dimers. PMID:12644489

  9. Relative binding and biochemical effects of heterodimeric and homodimeric isoforms of platelet-derived growth factor in osteoblast-enriched cultures from fetal rat bone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Centrella, M.; McCarthy, T.L.; Kusmik, W.F.

    1991-06-01

    Platelet-derived growth factor (PDGF) exists as a homodimer or a heterodimer comprising either PDGF-A or PDGF-B subunits, and each isoform occurs in various tissues, including bone. Although the stimulatory effects of PDGF-BB have been studied in cultures of bone cells and intact bone fragments, the influence of other isoforms that may arise locally or systematically in vivo, has not been reported. Therefore recombinant human PDGF-BB, PDGF-AB, and PDGF-AA were evaluated in osteoblast-enriched cultures from fetal rat bone. Within 24 hours these factors produced a graded response in bone cell DNA and protein synthesis, with half-maximal effects at approximately 0.6, 2.1,more » and 4.8 nM PDGF-BB, PDGF-AB, and PDGF-AA, respectively. Increases in collagen and noncollagen protein synthesis were abrogated when DNA synthesis was blocked with hydroxyurea. Furthermore, each factor reduced alkaline phosphatase activity, PDGF-BB being the most inhibitory. Binding studies with 125I-PDGF-BB or 125I-PDGF-AA and each unlabeled PDGF isoform produced discrete ligand binding and displacement patterns: 125I-PDGF-BB binding was preferentially displaced by PDGF-BB (Ki approximately 0.7 nM), less by PDGF-AB (Ki approximately 2.3 nM) and poorly by PDGF-AA. In contrast, 125I-PDGF-AA binding was measurably reduced by PDGF-AA (Ki approximately 4.0 nM), but was more effectively displaced by PDGF-BB or PDGF-AB (each with Ki approximately 0.7 nM). These studies indicate that each PDGF isoform produces biochemical effects proportional to binding site occupancy and suggest that receptors that favor PDGF-B subunit binding preferentially mediate these results in osteoblast-enriched bone cell cultures.« less

  10. Depletion of elongation initiation factor 4E binding proteins by CRISPR/Cas9 genome editing enhances antiviral response in porcine cells

    USDA-ARS?s Scientific Manuscript database

    Type I interferons (IFN) are key mediators of the innate antiviral response in mammalian cells. Elongation initiation factor 4E binding proteins (4E-BPs) are translational controllers of interferon regulatory factor 7 (IRF7), the master regulator of IFN transcription. The role of 4EBPs in the negat...

  11. Phosphorylation of Krüppel-like factor 3 (KLF3/BKLF) and C-terminal binding protein 2 (CtBP2) by homeodomain-interacting protein kinase 2 (HIPK2) modulates KLF3 DNA binding and activity.

    PubMed

    Dewi, Vitri; Kwok, Alister; Lee, Stella; Lee, Ming Min; Tan, Yee Mun; Nicholas, Hannah R; Isono, Kyo-ichi; Wienert, Beeke; Mak, Ka Sin; Knights, Alexander J; Quinlan, Kate G R; Cordwell, Stuart J; Funnell, Alister P W; Pearson, Richard C M; Crossley, Merlin

    2015-03-27

    Krüppel-like factor 3 (KLF3/BKLF), a member of the Krüppel-like factor (KLF) family of transcription factors, is a widely expressed transcriptional repressor with diverse biological roles. Although there is considerable understanding of the molecular mechanisms that allow KLF3 to silence the activity of its target genes, less is known about the signal transduction pathways and post-translational modifications that modulate KLF3 activity in response to physiological stimuli. We observed that KLF3 is modified in a range of different tissues and found that the serine/threonine kinase homeodomain-interacting protein kinase 2 (HIPK2) can both bind and phosphorylate KLF3. Mass spectrometry identified serine 249 as the primary phosphorylation site. Mutation of this site reduces the ability of KLF3 to bind DNA and repress transcription. Furthermore, we also determined that HIPK2 can phosphorylate the KLF3 co-repressor C-terminal binding protein 2 (CtBP2) at serine 428. Finally, we found that phosphorylation of KLF3 and CtBP2 by HIPK2 strengthens the interaction between these two factors and increases transcriptional repression by KLF3. Taken together, our results indicate that HIPK2 potentiates the activity of KLF3. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Characterization of a protein that binds multiple sequences in mammalian type C retrovirus enhancers.

    PubMed Central

    Sun, W; O'Connell, M; Speck, N A

    1993-01-01

    Mammalian type C retrovirus enhancer factor 1 (MCREF-1) is a nuclear protein that binds several directly repeated sequences (CNGGN6CNGG) in the Moloney and Friend murine leukemia virus (MLV) enhancers (N. R. Manley, M. O'Connell, W. Sun, N. A. Speck, and N. Hopkins, J. Virol. 67:1967-1975, 1993). In this paper, we describe the partial purification of MCREF-1 from calf thymus nuclei and further characterize the binding properties of MCREF-1. MCREF-1 binds four sites in the Moloney MLV enhancer and three sites in the Friend MLV enhancer. Ethylation interference analysis suggests that the MCREF-1 binding site spans two adjacent minor grooves of DNA. Images PMID:8445719

  13. A comparative analysis on the binding characteristics of various mammalian albumins towards a multitherapeutic agent, pinostrobin

    PubMed Central

    FEROZ, Shevin R.; SUMI, Rumana A.; MALEK, Sri N.A.; TAYYAB, Saad

    2014-01-01

    The interaction of pinostrobin (PS), a multitherapeutic agent with serum albumins of various mammalian species namely, goat, bovine, human, porcine, rabbit, sheep and dog was investigated using fluorescence quench titration and competitive drug displacement experiments. Analysis of the intrinsic fluorescence quenching data revealed values of the association constant, Ka in the range of 1.49 – 6.12 × 104 M−1, with 1:1 binding stoichiometry. Based on the PS–albumin binding characteristics, these albumins were grouped into two classes. Ligand displacement studies using warfarin as the site I marker ligand correlated well with the binding data. Albumins from goat and bovine were found to be closely similar to human albumin on the basis of PS binding characteristics. PMID:25519455

  14. Two nucleotide binding sites modulate ( sup 3 H) glyburide binding to rat cortex membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, D.E.; Gopalakrishnan, M.; Triggle, D.J.

    1991-03-11

    The effects of nucleotides on the binding of the ATP-dependent K{sup +}-channel antagonist ({sup 3}H)glyburide (GLB) to rat cortex membranes were examined. Nucleotide triphosphates (NTPs) and nucleotide diphosphate (NDPs) inhibited the binding of GLB. This effect was dependent on the presence of dithiothreitol (DTT). Inhibition of binding by NTPs, with the exception of ATP{gamma}S, was dependent on the presence of Mg{sup 2+}. GLB binding showed a biphasic response to ADP: up to 3 mM, ADP inhibited binding, and above this concentration GLB binding increased rapidly, and was restored to normal levels by 10 mM ADP. In the presence of Mg{supmore » 2+}, ADP did not stimulate binding. Saturation analysis in the presence of Mg{sup 2+} and increasing concentrations of ADP showed that ADP results primarily in a change of the B{sub max} for GLB binding. The differential effects of NTPS and NDPs indicate that two nucleotide binding sites regulate GLB binding.« less

  15. Mapping and analysis of Caenorhabditis elegans transcription factor sequence specificities

    PubMed Central

    Narasimhan, Kamesh; Lambert, Samuel A; Yang, Ally WH; Riddell, Jeremy; Mnaimneh, Sanie; Zheng, Hong; Albu, Mihai; Najafabadi, Hamed S; Reece-Hoyes, John S; Fuxman Bass, Juan I; Walhout, Albertha JM; Weirauch, Matthew T; Hughes, Timothy R

    2015-01-01

    Caenorhabditis elegans is a powerful model for studying gene regulation, as it has a compact genome and a wealth of genomic tools. However, identification of regulatory elements has been limited, as DNA-binding motifs are known for only 71 of the estimated 763 sequence-specific transcription factors (TFs). To address this problem, we performed protein binding microarray experiments on representatives of canonical TF families in C. elegans, obtaining motifs for 129 TFs. Additionally, we predict motifs for many TFs that have DNA-binding domains similar to those already characterized, increasing coverage of binding specificities to 292 C. elegans TFs (∼40%). These data highlight the diversification of binding motifs for the nuclear hormone receptor and C2H2 zinc finger families and reveal unexpected diversity of motifs for T-box and DM families. Motif enrichment in promoters of functionally related genes is consistent with known biology and also identifies putative regulatory roles for unstudied TFs. DOI: http://dx.doi.org/10.7554/eLife.06967.001 PMID:25905672

  16. Lupus Risk Variant Increases pSTAT1 Binding and Decreases ETS1 Expression

    PubMed Central

    Lu, Xiaoming; Zoller, Erin E.; Weirauch, Matthew T.; Wu, Zhiguo; Namjou, Bahram; Williams, Adrienne H.; Ziegler, Julie T.; Comeau, Mary E.; Marion, Miranda C.; Glenn, Stuart B.; Adler, Adam; Shen, Nan; Nath, Swapan K.; Stevens, Anne M.; Freedman, Barry I.; Tsao, Betty P.; Jacob, Chaim O.; Kamen, Diane L.; Brown, Elizabeth E.; Gilkeson, Gary S.; Alarcón, Graciela S.; Reveille, John D.; Anaya, Juan-Manuel; James, Judith A.; Sivils, Kathy L.; Criswell, Lindsey A.; Vilá, Luis M.; Alarcón-Riquelme, Marta E.; Petri, Michelle; Scofield, R. Hal; Kimberly, Robert P.; Ramsey-Goldman, Rosalind; Joo, Young Bin; Choi, Jeongim; Bae, Sang-Cheol; Boackle, Susan A.; Graham, Deborah Cunninghame; Vyse, Timothy J.; Guthridge, Joel M.; Gaffney, Patrick M.; Langefeld, Carl D.; Kelly, Jennifer A.; Greis, Kenneth D.; Kaufman, Kenneth M.; Harley, John B.; Kottyan, Leah C.

    2015-01-01

    Genetic variants at chromosomal region 11q23.3, near the gene ETS1, have been associated with systemic lupus erythematosus (SLE), or lupus, in independent cohorts of Asian ancestry. Several recent studies have implicated ETS1 as a critical driver of immune cell function and differentiation, and mice deficient in ETS1 develop an SLE-like autoimmunity. We performed a fine-mapping study of 14,551 subjects from multi-ancestral cohorts by starting with genotyped variants and imputing to all common variants spanning ETS1. By constructing genetic models via frequentist and Bayesian association methods, we identified 16 variants that are statistically likely to be causal. We functionally assessed each of these variants on the basis of their likelihood of affecting transcription factor binding, miRNA binding, or chromatin state. Of the four variants that we experimentally examined, only rs6590330 differentially binds lysate from B cells. Using mass spectrometry, we found more binding of the transcription factor signal transducer and activator of transcription 1 (STAT1) to DNA near the risk allele of rs6590330 than near the non-risk allele. Immunoblot analysis and chromatin immunoprecipitation of pSTAT1 in B cells heterozygous for rs6590330 confirmed that the risk allele increased binding to the active form of STAT1. Analysis with expression quantitative trait loci indicated that the risk allele of rs6590330 is associated with decreased ETS1 expression in Han Chinese, but not other ancestral cohorts. We propose a model in which the risk allele of rs6590330 is associated with decreased ETS1 expression and increases SLE risk by enhancing the binding of pSTAT1. PMID:25865496

  17. Disulfide bridge regulates ligand-binding site selectivity in liver bile acid-binding proteins.

    PubMed

    Cogliati, Clelia; Tomaselli, Simona; Assfalg, Michael; Pedò, Massimo; Ferranti, Pasquale; Zetta, Lucia; Molinari, Henriette; Ragona, Laura

    2009-10-01

    Bile acid-binding proteins (BABPs) are cytosolic lipid chaperones that play central roles in driving bile flow, as well as in the adaptation to various pathological conditions, contributing to the maintenance of bile acid homeostasis and functional distribution within the cell. Understanding the mode of binding of bile acids with their cytoplasmic transporters is a key issue in providing a model for the mechanism of their transfer from the cytoplasm to the nucleus, for delivery to nuclear receptors. A number of factors have been shown to modulate bile salt selectivity, stoichiometry, and affinity of binding to BABPs, e.g. chemistry of the ligand, protein plasticity and, possibly, the formation of disulfide bridges. Here, the effects of the presence of a naturally occurring disulfide bridge on liver BABP ligand-binding properties and backbone dynamics have been investigated by NMR. Interestingly, the disulfide bridge does not modify the protein-binding stoichiometry, but has a key role in modulating recognition at both sites, inducing site selectivity for glycocholic and glycochenodeoxycholic acid. Protein conformational changes following the introduction of a disulfide bridge are small and located around the inner binding site, whereas significant changes in backbone motions are observed for several residues distributed over the entire protein, both in the apo form and in the holo form. Site selectivity appears, therefore, to be dependent on protein mobility rather than being governed by steric factors. The detected properties further establish a parallelism with the behaviour of human ileal BABP, substantiating the proposal that BABPs have parallel functions in hepatocytes and enterocytes.

  18. Conformational and mechanical changes of DNA upon transcription factor binding detected by a QCM and transmission line model.

    PubMed

    de-Carvalho, Jorge; Rodrigues, Rogério M M; Tomé, Brigitte; Henriques, Sílvia F; Mira, Nuno P; Sá-Correia, Isabel; Ferreira, Guilherme N M

    2014-04-21

    A novel quartz crystal microbalance (QCM) analytical method is developed based on the transmission line model (TLM) algorithm to analyze the binding of transcription factors (TFs) to immobilized DNA oligoduplexes. The method is used to characterize the mechanical properties of biological films through the estimation of the film dynamic shear moduli, G and G, and the film thickness. Using the Saccharomyces cerevisiae transcription factor Haa1 (Haa1DBD) as a biological model two sensors were prepared by immobilizing DNA oligoduplexes, one containing the Haa1 recognition element (HRE(wt)) and another with a random sequence (HRE(neg)) used as a negative control. The immobilization of DNA oligoduplexes was followed in real time and we show that DNA strands initially adsorb with low or non-tilting, laying flat close to the surface, which then lift-off the surface leading to final film tilting angles of 62.9° and 46.7° for HRE(wt) and HRE(neg), respectively. Furthermore we show that the binding of Haa1DBD to HRE(wt) leads to a more ordered and compact film, and forces a 31.7° bending of the immobilized HRE(wt) oligoduplex. This work demonstrates the suitability of the QCM to monitor the specific binding of TFs to immobilized DNA sequences and provides an analytical methodology to study protein-DNA biophysics and kinetics.

  19. Determining the Number of Factors in P-Technique Factor Analysis

    ERIC Educational Resources Information Center

    Lo, Lawrence L.; Molenaar, Peter C. M.; Rovine, Michael

    2017-01-01

    Determining the number of factors is a critical first step in exploratory factor analysis. Although various criteria and methods for determining the number of factors have been evaluated in the usual between-subjects R-technique factor analysis, there is still question of how these methods perform in within-subjects P-technique factor analysis. A…

  20. Effects of retinoids on differentiation, lipid metabolism, epidermal growth factor, and low-density lipoprotein binding in squamous carcinoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ponec, M.; Weerheim, A.; Havekes, L.

    The relationship among keratinocyte differentiation capacity, lipid synthesis, low-density lipoprotein (LDL) metabolism, plasma membrane composition, and epidermal growth factor (EGF) binding has been studied in SCC-12F2 cells. The differentiation capacity of the cells, i.e., ionophore-induced cornified envelope formation, was inhibited by various retinoids and stimulated by hydrocortisone. Retinoids that caused a significant reduction of cornified envelope formation, i.e., retinoic acid and 13-cis-retinoic acid, caused only minor changes in lipid synthesis and plasma membrane composition. Arotinoid ethylsulfone, having a minor effect on cornified envelope formation, caused a drastic inhibition of cholesterol synthesis resulting in changes in the plasma membrane composition. Hydrocortisonemore » stimulated cornified envelope formation but had only minor effects on lipid synthesis and plasma membrane composition. Of all retinoids tested, only arotinoid ethylsulfone caused a drastic increase in EGF binding, while hydrocortisone had no effect. These results clearly demonstrate that the plasma membrane composition is not related to keratinocyte differentiation capacity, but most likely does determine EGF binding. Furthermore, EGF binding does not determine keratinocyte differentiation capacity.« less