Rick, Margaret E; Moll, Stephan; Taylor, Mark A; Krizek, Dennis M; White, Gilbert C; Aronson, David L
2002-10-01
A simple collagen binding assay (CBA) for measuring activity of the von Willebrand factor cleaving protease in clinical samples is described, and results of fifty masked plasmapheresis samples rom patients with TTP/HUS and other diseases are presented. There was 97.5% concordance between the CBA and a multimer gel assay. The CBA identified low protease activity in 78% of patients who had a clinical syndrome consistent with TTP/HUS and in 2 of 10 sick controls, giving it a positive predictive value of 0.94. The heterogeneity regarding the presence or absence of vWF protease activity in patients with TTP/HUS was confirmed by finding a low negative predictive value of 0.50 with the CBA. The CBA detected inhibitors of the protease in 26 of 29 patients (90%) with TTP/HUS and low protease activity levels. The CBA is a useful clinical assay for examining von Willebrand factor protease activity and detecting inhibitors against the protease.
Structural Basis for the Kexin-like Serine Protease from Aeromonas sobria as Sepsis-causing Factor*
Kobayashi, Hidetomo; Utsunomiya, Hiroko; Yamanaka, Hiroyasu; Sei, Yoshihisa; Katunuma, Nobuhiko; Okamoto, Keinosuke; Tsuge, Hideaki
2009-01-01
The anaerobic bacterium Aeromonas sobria is known to cause potentially lethal septic shock. We recently proposed that A. sobria serine protease (ASP) is a sepsis-related factor that induces vascular leakage, reductions in blood pressure via kinin release, and clotting via activation of prothrombin. ASP preferentially cleaves peptide bonds that follow dibasic amino acid residues, as do Kex2 (Saccharomyces cerevisiae serine protease) and furin, which are representative kexin family proteases. Here, we revealed the crystal structure of ASP at 1.65 Å resolution using the multiple isomorphous replacement method with anomalous scattering. Although the overall structure of ASP resembles that of Kex2, it has a unique extra occluding region close to its active site. Moreover, we found that a nicked ASP variant is cleaved within the occluding region. Nicked ASP shows a greater ability to cleave small peptide substrates than the native enzyme. On the other hand, the cleavage pattern for prekallikrein differs from that of ASP, suggesting the occluding region is important for substrate recognition. The extra occluding region of ASP is unique and could serve as a useful target to facilitate development of novel antisepsis drugs. PMID:19654332
Resistance of Actin to Cleavage during Apoptosis
NASA Astrophysics Data System (ADS)
Song, Qizhong; Wei, Tie; Lees-Miller, Susan; Alnemri, Emad; Watters, Dianne; Lavin, Martin F.
1997-01-01
A small number of cellular proteins present in the nucleus, cytosol, and membrane fraction are specifically cleaved by the interleukin-1β -converting enzyme (ICE)-like family of proteases during apoptosis. Previous results have demonstrated that one of these, the cytoskeletal protein actin, is degraded in rat PC12 pheochromocytoma cells upon serum withdrawal. Extracts from etoposide-treated U937 cells are also capable of cleaving actin. It was assumed that cleavage of actin represented a general phenomenon, and a mechanism coordinating proteolytic, endonucleolytic, and morphological aspects of apoptosis was proposed. We demonstrate here that actin is resistant to degradation in several different human cells induced to undergo apoptosis in response to a variety of stimuli, including Fas ligation, serum withdrawal, cytotoxic T-cell killing, and DNA damage. On the other hand, cell-free extracts from these cells and the ICE-like protease CPP32 were capable of cleaving actin in vitro. We conclude that while actin contains cleavage sites for ICE-like proteases, it is not degraded in vivo in human cells either because of lack of access of these proteases to actin or due to the presence of other factors that prevent degradation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fyfe, Cameron D.; Grinter, Rhys; Josts, Inokentijs
The X-ray structure of protease-cleaved E. coli α-2-macroglobulin is described, which reveals a putative mechanism of activation and conformational change essential for protease inhibition. Bacterial α-2-macroglobulins have been suggested to function in defence as broad-spectrum inhibitors of host proteases that breach the outer membrane. Here, the X-ray structure of protease-cleaved Escherichia coli α-2-macroglobulin is described, which reveals a putative mechanism of activation and conformational change essential for protease inhibition. In this competitive mechanism, protease cleavage of the bait-region domain results in the untethering of an intrinsically disordered region of this domain which disrupts native interdomain interactions that maintain E. colimore » α-2-macroglobulin in the inactivated form. The resulting global conformational change results in entrapment of the protease and activation of the thioester bond that covalently links to the attacking protease. Owing to the similarity in structure and domain architecture of Escherichia coli α-2-macroglobulin and human α-2-macroglobulin, this protease-activation mechanism is likely to operate across the diverse members of this group.« less
Efficient Cleavage of Ribosome-Associated Poly(A)-Binding Protein by Enterovirus 3C Protease
Kuyumcu-Martinez, N. Muge; Joachims, Michelle; Lloyd, Richard E.
2002-01-01
Poliovirus (PV) causes a rapid and drastic inhibition of host cell cap-dependent protein synthesis during infection while preferentially allowing cap-independent translation of its own genomic RNA via an internal ribosome entry site element. Inhibition of cap-dependent translation is partly mediated by cleavage of an essential translation initiation factor, eIF4GI, during PV infection. In addition to cleavage of eIF4GI, cleavage of eIF4GII and poly(A)-binding protein (PABP) has been recently proposed to contribute to complete host translation shutoff; however, the relative importance of eIF4GII and PABP cleavage has not been determined. At times when cap-dependent translation is first blocked during infection, only 25 to 35% of the total cellular PABP is cleaved; therefore, we hypothesized that the pool of PABP associated with polysomes may be preferentially targeted by viral proteases. We have investigated what cleavage products of PABP are produced in vivo and the substrate determinants for cleavage of PABP by 2A protease (2Apro) or 3C protease (3Cpro). Our results show that PABP in ribosome-enriched fractions is preferentially cleaved in vitro and in vivo compared to PABP in other fractions. Furthermore, we have identified four N-terminal PABP cleavage products produced during PV infection and have shown that viral 3C protease generates three of the four cleavage products. Also, 3Cpro is more efficient in cleaving PABP in ribosome-enriched fractions than 2Apro in vitro. In addition, binding of PABP to poly(A) RNA stimulates 3Cpro-mediated cleavage and inhibits 2Apro-mediated cleavage. These results suggest that 3Cpro plays a major role in processing PABP during virus infection and that the interaction of PABP with translation initiation factors, ribosomes, or poly(A) RNA may promote its cleavage by viral 2A and 3C proteases. PMID:11836384
Substance P and vasoactive intestinal peptide degradation by mast cell tryptase and chymase.
Caughey, G H; Leidig, F; Viro, N F; Nadel, J A
1988-01-01
The peptides substance P (SP) and vasoactive intestinal peptide (VIP) released from peptidergic neurons have potent effects on gland secretion and on smooth muscle tone. Because mast cells release proteases during degranulation, and are located in many of the same tissue microenvironments into which SP and VIP are released, we wished to examine whether mast cell proteases, by cleaving and thus inactivating these peptides, could modulate their effects. We used active site-titrated preparations of the two major neutral proteases of mast cell granules, tryptase and chymase, to determine the sites and rates of cleavage of SP and VIP. The proteases were purified from dog mastocytomas. Tryptase cleaved VIP rapidly at two sites with a kcat/Km of 2.2 X 10(5) sec-1 M-1, but had no effect on SP. Chymase cleaved both SP and VIP at primarily a single site with kcat/Km of 3.9 X 10(4) and 5.4 X 10(4) sec-1 M-1, respectively. Thus, these data show that mast cell proteases degrade SP and VIP. The differences in peptidase activity between tryptase and chymase suggest that the consequences of protease release could vary according to mast cell protease phenotype and location in various tissues and species. Tryptase, by cleaving the bronchodilator VIP but not the bronchoconstrictor SP, might promote bronchial hyper-responsiveness in asthma by decreasing the nonadrenergic neural inhibitory influence mediated by VIP. In skin and other tissues, chymase might interrupt axon reflex-mediated neurogenic inflammation by cleaving SP.
Martin, Erik W.; Buzza, Marguerite S.; Driesbaugh, Kathryn H.; Liu, Shihui; Fortenberry, Yolanda M.; Leppla, Stephen H.; Antalis, Toni M.
2015-01-01
The membrane-anchored serine proteases are a unique group of trypsin-like serine proteases that are tethered to the cell surface via transmembrane domains or glycosyl-phosphatidylinositol-anchors. Overexpressed in tumors, with pro-tumorigenic properties, they are attractive targets for protease-activated prodrug-like anti-tumor therapies. Here, we sought to engineer anthrax toxin protective antigen (PrAg), which is proteolytically activated on the cell surface by the proprotein convertase furin to instead be activated by tumor cell-expressed membrane-anchored serine proteases to function as a tumoricidal agent. PrAg's native activation sequence was mutated to a sequence derived from protein C inhibitor (PCI) that can be cleaved by membrane-anchored serine proteases, to generate the mutant protein PrAg-PCIS. PrAg-PCIS was resistant to furin cleavage in vitro, yet cytotoxic to multiple human tumor cell lines when combined with FP59, a chimeric anthrax toxin lethal factor-Pseudomonas exotoxin fusion protein. Molecular analyses showed that PrAg-PCIS can be cleaved in vitro by several serine proteases including the membrane-anchored serine protease testisin, and mediates increased killing of testisin-expressing tumor cells. Treatment with PrAg-PCIS also potently attenuated the growth of testisin-expressing xenograft tumors in mice. The data indicates PrAg can be engineered to target tumor cell-expressed membrane-anchored serine proteases to function as a potent tumoricidal agent. PMID:26392335
Lack of cleavage of immunoglobulin A (IgA) from rhesus monkeys by bacterial IgA1 proteases.
Reinholdt, J; Kilian, M
1991-01-01
Bacterial immunoglobulin A1 (IgA1) proteases cleaving IgA1 and secretory IgA1 molecules in the hinge region are believed to be important virulence factors. Previous studies have indicated that IgA of humans, gorillas, and chimpanzees are the exclusive substrates of these enzymes. In a recent study, IgA from the rhesus monkey was found to be susceptible to the IgA1 protease activity of Streptococcus pneumoniae. In an attempt to reproduce this observation, we found that neither five isolates of S. pneumoniae nor other IgA1 protease-producing bacteria representing different cleavage specificities caused cleavage of rhesus monkey IgA. Hence, the rhesus monkey does not appear to be a suitable animal model for studies of IgA1 proteases as virulence factors. Images PMID:2037384
Watson, Douglas S.; Feng, Xizhi; Askew, David S.; Jambunathan, Kalyani; Kodukula, Krishna; Galande, Amit K.
2011-01-01
Background The filamentous fungus Aspergillus fumigatus (AF) can cause devastating infections in immunocompromised individuals. Early diagnosis improves patient outcomes but remains challenging because of the limitations of current methods. To augment the clinician's toolkit for rapid diagnosis of AF infections, we are investigating AF secreted proteases as novel diagnostic targets. The AF genome encodes up to 100 secreted proteases, but fewer than 15 of these enzymes have been characterized thus far. Given the large number of proteases in the genome, studies focused on individual enzymes may overlook potential diagnostic biomarkers. Methodology and Principal Findings As an alternative, we employed a combinatorial library of internally quenched fluorogenic probes (IQFPs) to profile the global proteolytic secretome of an AF clinical isolate in vitro. Comparative protease activity profiling revealed 212 substrate sequences that were cleaved by AF secreted proteases but not by normal human serum. A central finding was that isoleucine, leucine, phenylalanine, and tyrosine predominated at each of the three variable positions of the library (44.1%, 59.1%, and 57.0%, respectively) among substrate sequences cleaved by AF secreted proteases. In contrast, fewer than 10% of the residues at each position of cleaved sequences were cationic or anionic. Consensus substrate motifs were cleaved by thermostable serine proteases that retained activity up to 50°C. Precise proteolytic cleavage sites were reliably determined by a simple, rapid mass spectrometry-based method, revealing predominantly non-prime side specificity. A comparison of the secreted protease activities of three AF clinical isolates revealed consistent protease substrate specificity fingerprints. However, secreted proteases of A. flavus, A. nidulans, and A. terreus strains exhibited striking differences in their proteolytic signatures. Conclusions This report provides proof-of-principle for the use of protease substrate specificity profiling to define the proteolytic secretome of Aspergillus fumigatus. Expansion of this technique to protease secretion during infection could lead to development of novel approaches to fungal diagnosis. PMID:21695046
USDA-ARS?s Scientific Manuscript database
Chitinase modifying proteins (cmps) are fungal proteases that truncate plant class IV chitinases by cleaving near their amino termini. We previously described Fv-cmp, a fungalysin protease that cleaves a conserved glycine-cysteine bond within the hevein domain. Here we describe a new type of cmp—pol...
Chymase Cleavage of Stem Cell Factor Yields a Bioactive, Soluble Product
NASA Astrophysics Data System (ADS)
Longley, B. Jack; Tyrrell, Lynda; Ma, Yongsheng; Williams, David A.; Halaban, Ruth; Langley, Keith; Lu, Hsieng S.; Schechter, Norman M.
1997-08-01
Stem cell factor (SCF) is produced by stromal cells as a membrane-bound molecule, which may be proteolytically cleaved at a site close to the membrane to produce a soluble bioactive form. The proteases producing this cleavage are unknown. In this study, we demonstrate that human mast cell chymase, a chymotrypsin-like protease, cleaves SCF at a novel site. Cleavage is at the peptide bond between Phe-158 and Met-159, which are encoded by exon 6 of the SCF gene. This cleavage results in a soluble bioactive product that is 7 amino acids shorter at the C terminus than previously identified soluble SCF. This research shows the identification of a physiologically relevant enzyme that specifically cleaves SCF. Because mast cells express the KIT protein, the receptor for SCF, and respond to SCF by proliferation and degranulation, this observation identifies a possible feedback loop in which chymase released from mast cell secretory granules may solubilize SCF bound to the membrane of surrounding stromal cells. The liberated soluble SCF may in turn stimulate mast cell proliferation and differentiated functions; this loop could contribute to abnormal accumulations of mast cells in the skin and hyperpigmentation at sites of chronic cutaneous inflammation.
Bacillus subtilis Intramembrane Protease RasP Activity in Escherichia coli and In Vitro.
Parrell, Daniel; Zhang, Yang; Olenic, Sandra; Kroos, Lee
2017-10-01
RasP is a predicted intramembrane metalloprotease of Bacillus subtilis that has been proposed to cleave the stress response anti-sigma factors RsiW and RsiV, the cell division protein FtsL, and remnant signal peptides within their transmembrane segments. To provide evidence for direct effects of RasP on putative substrates, we developed a heterologous coexpression system. Since expression of catalytically inactive RasP E21A inhibited expression of other membrane proteins in Escherichia coli , we added extra transmembrane segments to RasP E21A, which allowed accumulation of most other membrane proteins. A corresponding active version of RasP appeared to promiscuously cleave coexpressed membrane proteins, except those with a large periplasmic domain. However, stable cleavage products were not observed, even in clpP mutant E. coli Fusions of transmembrane segment-containing parts of FtsL and RsiW to E. coli maltose-binding protein (MBP) also resulted in proteins that appeared to be RasP substrates upon coexpression in E. coli , including FtsL with a full-length C-terminal domain (suggesting that prior cleavage by a site 1 protease is unnecessary) and RsiW designed to mimic the PrsW site 1 cleavage product (suggesting that further trimming by extracytoplasmic protease is unnecessary). Purified RasP cleaved His 6 -MBP-RsiW(73-118) in vitro within the RsiW transmembrane segment based on mass spectrometry analysis, demonstrating that RasP is an intramembrane protease. Surprisingly, purified RasP failed to cleave His 6 -MBP-FtsL(23-117). We propose that the lack of α-helix-breaking residues in the FtsL transmembrane segment creates a requirement for the membrane environment and/or an additional protein(s) in order for RasP to cleave FtsL. IMPORTANCE Intramembrane proteases govern important signaling pathways in nearly all organisms. In bacteria, they function in stress responses, cell division, pathogenesis, and other processes. Their membrane-associated substrates are typically inferred from genetic studies in the native bacterium. Evidence for direct effects has come sometimes from coexpression of the enzyme and potential substrate in a heterologous host and rarely from biochemical reconstitution of cleavage in vitro We applied these two approaches to the B. subtilis enzyme RasP and its proposed substrates RsiW and FtsL. We discovered potential pitfalls and solutions in heterologous coexpression experiments in E. coli , providing evidence that both substrates are cleaved by RasP in vivo but, surprisingly, that only RsiW was cleaved in vitro , suggesting that FtsL has an additional requirement. Copyright © 2017 American Society for Microbiology.
Zhang, Di; Tözsér, József; Waugh, David S.
2009-01-01
Alphaviruses cause serious diseases that pose a potential health threat to both humans and livestock. The nonstructural protein 2 (nsp2) encoded by alphaviruses is a multifunctional enzyme that is essential for viral replication and maturation. Its 39-kDa C-terminal domain (nsp2pro) is a cysteine protease that is responsible for cleaving a viral polyprotein at three sites to generate nonstructural proteins 1, 2, 3 and 4. In the present study, we evaluated nsp2pro domains from the following three sources as reagents for site-specific cleavage of fusion proteins: Venezuelan Equine Encephalitis Virus (VEEV), Semliki Forest Virus (SFV) and Sindbis Virus (SIN). All three alphavirus proteases cleaved model fusion protein substrates with high specificity but they were much less efficient enzymes than potyviral proteases from tobacco etch virus (TEV) and tobacco vein mottling virus (TVMV). Oligopeptide substrates were also cleaved with very low efficiency by the alphavirus proteases. We conclude that, in general, alphavirus nsp2pro proteases are not very useful tools for the removal of affinity tags from recombinant proteins although they do remain promising therapeutic targets for the treatment of a variety of diseases. PMID:19013248
Lin, Jung-Chen; Lin, Shih-Ching; Chen, Wen-Yu; Yen, Yu-Ting; Lai, Chin-Wen; Tao, Mi-Hua; Lin, Yi-Ling; Miaw, Shi-Chuen; Wu-Hsieh, Betty A
2014-08-01
Hemorrhagic manifestations occur frequently accompanying a wide range of dengue disease syndromes. Much work has focused on the contribution of immune factors to the pathogenesis of hemorrhage, but how dengue virus (DENV) participates in the pathogenic process has never been explored. Although there is no consensus that apoptosis is the basis of vascular permeability in human dengue infections, we showed in dengue hemorrhage mouse model that endothelial cell apoptosis is important to hemorrhage development in mice. To explore the molecular basis of the contribution of DENV to endothelial cell death, we show in this study that DENV protease interacts with cellular IκBα and IκBβ and cleaves them. By inducing IκBα and IκBβ cleavage and IκB kinase activation, DENV protease activates NF-κB, which results in endothelial cell death. Intradermal inoculation of DENV protease packaged in adenovirus-associated virus-9 induces endothelial cell death and dermal hemorrhage in mice. Although the H51 activity site is not involved in the interaction between DENV protease and IκB-α/β, the enzymatic activity is critical to the ability of DENV protease to induce IκBα and IκBβ cleavage and trigger hemorrhage development. Moreover, overexpression of IκBα or IκBβ protects endothelial cells from DENV-induced apoptosis. In this study, we show that DENV protease participates in the pathogenesis of dengue hemorrhage and discover IκBα and IκBβ to be the new cellular targets that are cleaved by DENV protease. Copyright © 2014 by The American Association of Immunologists, Inc.
Yepes, Diego; Jacob, Anette; Dauber, Marc; Costina, Victor; Hofheinz, Ralf; Neumaier, Michael; Findeisen, Peter
2011-07-01
The progression of many solid tumors is characterized by the release of tumor-associated proteases, such as cancer procoagulant, MMP2 and MMP7. Consequently, the detection of tumor-specific proteolytic activity in serum specimens has recently been proposed as a new diagnostic tool in oncology. However, tumor-associated proteases are highly diluted in serum specimens and it is challenging to identify substrates that are specifically cleaved. In this study, we describe the systematic optimization of a synthetic peptide substrate using a positional scanning synthetic combinatorial library (PS-SCL) approach. The initial reporter peptide (RP) comprises of the cleavage site, WKPYDAAD, that is part of the coagulation factor X, the natural substrate of the tumor-associated cysteine protease cancer procoagulant (EC 3.4.22.26). Specifically, the amino acid substitution of aspartatic acid (D) in position P1' against asparagine (N) improved the processing of respective RPs in serum specimens from patients with colorectal tumors compared to healthy controls. Proteolytic fragments of RPs accumulated during prolonged incubation with serum specimens and were quantified with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Finally, the optimized RP with the cleaved motif WKPYNAAD was combined with the RPs, VPLSLTMG and IPVSLRSG, that were cleaved by the tumor-associated proteases, MMP2 and MMP7, respectively. The diagnostic accuracy of MS-based protease profiling was evaluated for this triplex RP mix in a cohort of 50 serum specimens equally divided into colorectal cancer patients and healthy control individuals. Multiparametric analysis showed an AUC value of 0.90 for the receiver operating characteristic curve and was superior to the classification accuracy of the single markers. Our results demonstrate that RPs for MS-based protease profiling can systematically be optimized with a PS-SCL. Furthermore, the combination of different RPs can additionally increase the classification accuracy of functional protease profiling, and this in turn could lead to improved diagnosis, monitoring and prognosis of malignant disease.
Discovery and characterization of a novel plant pathogen protease
USDA-ARS?s Scientific Manuscript database
Chitinase modifying proteins are fungal proteases that attack specific plant defense chitinases. At least three unrelated types of proteases have evolved to have this function. They all truncate the targeted chitinases by cleaving near their amino termini, but each protease type targets a different ...
Gold nanoparticles-based protease assay
Guarise, Cristian; Pasquato, Lucia; De Filippis, Vincenzo; Scrimin, Paolo
2006-01-01
We describe here a simple assay that allows the visual detection of a protease. The method takes advantage of the high molar absorptivity of the plasmon band of gold colloids and is based on the color change of their solution when treated with dithiols. We used C- and N-terminal cysteinyl derivatives of a peptide substrate exploiting its selective recognition and cleavage by a specific protease. Contrary to the native ones, cleaved peptides are unable to induce nanoparticles aggregation; hence, the color of the solution does not change. The detection of two proteases is reported: thrombin (involved in blood coagulation and thrombosis) and lethal factor (an enzyme component of the toxin produced by Bacillus anthracis). The sensitivity of this nanoparticle-based assay is in the low nanomolar range. PMID:16537471
Gold nanoparticles-based protease assay.
Guarise, Cristian; Pasquato, Lucia; De Filippis, Vincenzo; Scrimin, Paolo
2006-03-14
We describe here a simple assay that allows the visual detection of a protease. The method takes advantage of the high molar absorptivity of the plasmon band of gold colloids and is based on the color change of their solution when treated with dithiols. We used C- and N-terminal cysteinyl derivatives of a peptide substrate exploiting its selective recognition and cleavage by a specific protease. Contrary to the native ones, cleaved peptides are unable to induce nanoparticles aggregation; hence, the color of the solution does not change. The detection of two proteases is reported: thrombin (involved in blood coagulation and thrombosis) and lethal factor (an enzyme component of the toxin produced by Bacillus anthracis). The sensitivity of this nanoparticle-based assay is in the low nanomolar range.
Entamoeba histolytica cathepsin-like enzymes : interactions with the host gut.
Kissoon-Singh, Vanessa; Mortimer, Leanne; Chadee, Kris
2011-01-01
Cysteine proteases of the protozoan parasite Entamoeba histolytica are key virulence factors involved in overcoming host defences. These proteases are cathepsin-like enzymes with a cathepsin-L like structure, but cathepsin-B substrate specificity. In the host intestine, amoeba cysteine proteases cleave colonic mucins and degrade secretory immunoglobulin (Ig) A and IgG rendering them ineffective. They also act on epithelial tight junctions and degrade the extracellular matrix to promote Cell death. They are involved in the destruction of red blood cells and the evasion of neutrophils and macrophages and they activate pro-inflammatory cytokines IL- 1β and IL-18. In short, amoeba cysteine proteases manipulate and destroy host defences to facilitate nutrient acquisition, parasite colonization and/or invasion. Strategies to inhibit the activity of amoeba cysteine proteases could contribute significantly to host protection against E. histolytica.
Matrix Metalloproteinases as Regulators of Periodontal Inflammation
Franco, Cavalla; Patricia, Hernández-Ríos; Timo, Sorsa; Claudia, Biguetti; Marcela, Hernández
2017-01-01
Periodontitis are infectious diseases characterized by immune-mediated destruction of periodontal supporting tissues and tooth loss. Matrix metalloproteinases (MMPs) are key proteases involved in destructive periodontal diseases. The study and interest in MMP has been fuelled by emerging evidence demonstrating the broad spectrum of molecules that can be cleaved by them and the myriad of biological processes that they can potentially regulate. The huge complexity of MMP functions within the ‘protease web’ is crucial for many physiologic and pathologic processes, including immunity, inflammation, bone resorption, and wound healing. Evidence points out that MMPs assemble in activation cascades and besides their classical extracellular matrix substrates, they cleave several signalling molecules—such as cytokines, chemokines, and growth factors, among others—regulating their biological functions and/or bioavailability during periodontal diseases. In this review, we provide an overview of emerging evidence of MMPs as regulators of periodontal inflammation. PMID:28218665
Matrix Metalloproteinases as Regulators of Periodontal Inflammation.
Franco, Cavalla; Patricia, Hernández-Ríos; Timo, Sorsa; Claudia, Biguetti; Marcela, Hernández
2017-02-17
Periodontitis are infectious diseases characterized by immune-mediated destruction of periodontal supporting tissues and tooth loss. Matrix metalloproteinases (MMPs) are key proteases involved in destructive periodontal diseases. The study and interest in MMP has been fuelled by emerging evidence demonstrating the broad spectrum of molecules that can be cleaved by them and the myriad of biological processes that they can potentially regulate. The huge complexity of MMP functions within the 'protease web' is crucial for many physiologic and pathologic processes, including immunity, inflammation, bone resorption, and wound healing. Evidence points out that MMPs assemble in activation cascades and besides their classical extracellular matrix substrates, they cleave several signalling molecules-such as cytokines, chemokines, and growth factors, among others-regulating their biological functions and/or bioavailability during periodontal diseases. In this review, we provide an overview of emerging evidence of MMPs as regulators of periodontal inflammation.
Janek, Katharina; Niewienda, Agathe; Wöstemeyer, Johannes; Voigt, Jürgen
2016-11-15
Particular peptides generated from the vicilin-class(7S) globulin of the cocoa beans by acid-induced proteolysis during cocoa fermentation are essential precursors of the cocoa-specific aroma notes. As revealed by in vitro studies, the formation of the cocoa-specific aroma precursors depends on the particular cleavage specificity of the cocoa aspartic protease, which cannot be substituted by pepsin. Therefore, we have investigated the effects of aspartic protease inhibitors on both enzymes and comparatively studied their cleavage specificities using different protein substrates and MALDI-TOF mass spectrometric analyses of the generated oligopeptides. Three classes of cleavage sites have been identified and characterized: (I) sequences exclusively cleaved by the cocoa enzyme, (II) sequences cleaved by both pepsin and the cocoa enzyme, and (III) those cleaved exclusively by pepsin. In contrast to most aspartic proteases from other origins, basic amino acid residues, particularly lysine, were found to be abundant in the specific cleavage sites of the cocoa enzyme. Copyright © 2016 Elsevier Ltd. All rights reserved.
Vassar, Robert; Kuhn, Peer-Hendrik; Haass, Christian; Kennedy, Matthew E; Rajendran, Lawrence; Wong, Philip C; Lichtenthaler, Stefan F
2014-07-01
The β-site APP cleaving enzymes 1 and 2 (BACE1 and BACE2) were initially identified as transmembrane aspartyl proteases cleaving the amyloid precursor protein (APP). BACE1 is a major drug target for Alzheimer's disease because BACE1-mediated cleavage of APP is the first step in the generation of the pathogenic amyloid-β peptides. BACE1, which is highly expressed in the nervous system, is also required for myelination by cleaving neuregulin 1. Several recent proteomic and in vivo studies using BACE1- and BACE2-deficient mice demonstrate a much wider range of physiological substrates and functions for both proteases within and outside of the nervous system. For BACE1 this includes axon guidance, neurogenesis, muscle spindle formation, and neuronal network functions, whereas BACE2 was shown to be involved in pigmentation and pancreatic β-cell function. This review highlights the recent progress in understanding cell biology, substrates, and functions of BACE proteases and discusses the therapeutic options and potential mechanism-based liabilities, in particular for BACE inhibitors in Alzheimer's disease. The protease BACE1 is a major drug target in Alzheimer disease. Together with its homolog BACE2, both proteases have an increasing number of functions within and outside of the nervous system. This review highlights recent progress in understanding cell biology, substrates, and functions of BACE proteases and discusses the therapeutic options and potential mechanism-based liabilities, in particular for BACE inhibitors in Alzheimer disease. © 2014 International Society for Neurochemistry.
Bertram, Stephanie; Glowacka, Ilona; Müller, Marcel A.; Lavender, Hayley; Gnirss, Kerstin; Nehlmeier, Inga; Niemeyer, Daniela; He, Yuxian; Simmons, Graham; Drosten, Christian; Soilleux, Elizabeth J.; Jahn, Olaf; Steffen, Imke; Pöhlmann, Stefan
2011-01-01
The highly pathogenic severe acute respiratory syndrome coronavirus (SARS-CoV) poses a constant threat to human health. The viral spike protein (SARS-S) mediates host cell entry and is a potential target for antiviral intervention. Activation of SARS-S by host cell proteases is essential for SARS-CoV infectivity but remains incompletely understood. Here, we analyzed the role of the type II transmembrane serine proteases (TTSPs) human airway trypsin-like protease (HAT) and transmembrane protease, serine 2 (TMPRSS2), in SARS-S activation. We found that HAT activates SARS-S in the context of surrogate systems and authentic SARS-CoV infection and is coexpressed with the viral receptor angiotensin-converting enzyme 2 (ACE2) in bronchial epithelial cells and pneumocytes. HAT cleaved SARS-S at R667, as determined by mutagenesis and mass spectrometry, and activated SARS-S for cell-cell fusion in cis and trans, while the related pulmonary protease TMPRSS2 cleaved SARS-S at multiple sites and activated SARS-S only in trans. However, TMPRSS2 but not HAT expression rendered SARS-S-driven virus-cell fusion independent of cathepsin activity, indicating that HAT and TMPRSS2 activate SARS-S differentially. Collectively, our results show that HAT cleaves and activates SARS-S and might support viral spread in patients. PMID:21994442
Fibrinolytic and procoagulant activities of Yersinia pestis and Salmonella enterica.
Korhonen, T K
2015-06-01
Pla of the plague bacterium Yersinia pestis and PgtE of the enteropathogen Salmonella enterica are surface-exposed, transmembrane β-barrel proteases of the omptin family that exhibit a complex array of interactions with the hemostatic systems in vitro, and both proteases are established virulence factors. Pla favors fibrinolysis by direct activation of plasminogen, inactivation of the serpins plasminogen activator inhibitor-1 and α2-antiplasmin, inactivation of the thrombin-activable fibrinolysis inhibitor, and activation of single-chain urokinase. PgtE is structurally very similar but exhibits partially different functions and differ in expression control. PgtE proteolysis targets control aspects of fibrinolysis, and mimicry of matrix metalloproteinases enhances cell migration that should favor the intracellular spread of the bacterium. Enzymatic activity of both proteases is strongly influenced by the environment-induced variations in lipopolysaccharide that binds to the β-barrel. Both proteases cleave the tissue factor pathway inhibitor and thus also express procoagulant activity. © 2015 International Society on Thrombosis and Haemostasis.
Truncation of a P1 leader proteinase facilitates potyvirus replication in a non-permissive host.
Shan, Hongying; Pasin, Fabio; Tzanetakis, Ioannis E; Simón-Mateo, Carmen; García, Juan Antonio; Rodamilans, Bernardo
2018-06-01
The Potyviridae family is a major group of plant viruses that includes c. 200 species, most of which have narrow host ranges. The potyvirid P1 leader proteinase self-cleaves from the remainder of the viral polyprotein and shows large sequence variability linked to host adaptation. P1 proteins can be classified as Type A or Type B on the basis, amongst other things, of their dependence or not on a host factor to develop their protease activity. In this work, we studied Type A proteases from the Potyviridae family, characterizing their host factor requirements. Our in vitro cleavage analyses of potyvirid P1 proteases showed that the N-terminal domain is relevant for host factor interaction and suggested that the C-terminal domain is also involved. In the absence of plant factors, the N-terminal end of Plum pox virus P1 antagonizes protease self-processing. We performed extended deletion mutagenesis analysis to define the N-terminal antagonistic domain of P1. In viral infections, removal of the P1 protease antagonistic domain led to a gain-of-function phenotype, strongly increasing local infection in a non-permissive host. Altogether, our results shed new insights into the adaptation and evolution of potyvirids. © 2017 BSPP AND JOHN WILEY & SONS LTD.
Tumor Targeting and Drug Delivery by Anthrax Toxin.
Bachran, Christopher; Leppla, Stephen H
2016-07-01
Anthrax toxin is a potent tripartite protein toxin from Bacillus anthracis. It is one of the two virulence factors and causes the disease anthrax. The receptor-binding component of the toxin, protective antigen, needs to be cleaved by furin-like proteases to be activated and to deliver the enzymatic moieties lethal factor and edema factor to the cytosol of cells. Alteration of the protease cleavage site allows the activation of the toxin selectively in response to the presence of tumor-associated proteases. This initial idea of re-targeting anthrax toxin to tumor cells was further elaborated in recent years and resulted in the design of many modifications of anthrax toxin, which resulted in successful tumor therapy in animal models. These modifications include the combination of different toxin variants that require activation by two different tumor-associated proteases for increased specificity of toxin activation. The anthrax toxin system has proved to be a versatile system for drug delivery of several enzymatic moieties into cells. This highly efficient delivery system has recently been further modified by introducing ubiquitin as a cytosolic cleavage site into lethal factor fusion proteins. This review article describes the latest developments in this field of tumor targeting and drug delivery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Lanying; Kao, Richard Y.; Zhou, Yusen
The spike (S) protein of SARS coronavirus (SARS-CoV) has been known to recognize and bind to host receptors, whose conformational changes then facilitate fusion between the viral envelope and host cell membrane, leading to viral entry into target cells. However, other functions of SARS-CoV S protein such as proteolytic cleavage and its implications to viral infection are incompletely understood. In this study, we demonstrated that the infection of SARS-CoV and a pseudovirus bearing the S protein of SARS-CoV was inhibited by a protease inhibitor Ben-HCl. Also, the protease Factor Xa, a target of Ben-HCl abundantly expressed in infected cells, wasmore » able to cleave the recombinant and pseudoviral S protein into S1 and S2 subunits, and the cleavage was inhibited by Ben-HCl. Furthermore, this cleavage correlated with the infectivity of the pseudovirus. Taken together, our study suggests a plausible mechanism by which SARS-CoV cleaves its S protein to facilitate viral infection.« less
Huang, Li; Liu, Qinfang; Zhang, Lijie; Zhang, Quan; Hu, Liang; Li, Changyao; Wang, Shengnan; Li, Jiangnan; Zhang, Yuanfeng; Yu, Huibin; Wang, Yan; Zhong, Zhaohua; Xiong, Tao; Xia, Xueshan; Wang, Xiaojun; Yu, Li; Deng, Guohua; Cai, Xuehui; Cui, Shangjin; Weng, Changjiang
2015-01-01
TRAF family member-associated NF-κB activator (TANK) is a negative regulator of canonical NF-κB signaling in the Toll-like receptor- and B-cell receptor-mediated signaling pathways. However, functions of TANK in viral infection-mediated NF-κB activation remain unclear. Here, we reported that TANK was cleaved by encephalomyocarditis virus 3C at the 197 and 291 glutamine residues, which depends on its cysteine protease activity. In addition, encephalomyocarditis virus 3C impaired the ability of TANK to inhibit TRAF6-mediated NF-κB signaling. Interestingly, we found that several viral proteases encoded by the foot and mouth disease virus, porcine reproductive and respiratory syndrome virus, and equine arteritis virus also cleaved TANK. Our results suggest that TANK is a novel target of some viral proteases, indicating that some positive RNA viruses have evolved to utilize their major proteases to regulate NF-κB activation. PMID:26363073
Wagner, Ines; Wang, Heng; Weissert, Philipp M; Straube, Werner L; Shevchenko, Anna; Gentzel, Marc; Brito, Goncalo; Tazaki, Akira; Oliveira, Catarina; Sugiura, Takuji; Shevchenko, Andrej; Simon, András; Drechsel, David N; Tanaka, Elly M
2017-03-27
Limb amputation in the newt induces myofibers to dedifferentiate and re-enter the cell cycle to generate proliferative myogenic precursors in the regeneration blastema. Here we show that bone morphogenetic proteins (BMPs) and mature BMPs that have been further cleaved by serum proteases induce cell cycle entry by dedifferentiating newt muscle cells. Protease-activated BMP4/7 heterodimers that are present in serum strongly induced myotube cell cycle re-entry with protease cleavage yielding a 30-fold potency increase of BMP4/7 compared with canonical BMP4/7. Inhibition of BMP signaling via muscle-specific dominant-negative receptor expression reduced cell cycle entry in vitro and in vivo. In vivo inhibition of serine protease activity depressed cell cycle re-entry, which in turn was rescued by cleaved-mimic BMP. This work identifies a mechanism of BMP activation that generates blastema cells from differentiated muscle. Copyright © 2017 Elsevier Inc. All rights reserved.
Beck, Zachary Q.; Lin, Ying-Chuan; Elder, John H.
2001-01-01
We have used a random hexamer phage library to delineate similarities and differences between the substrate specificities of human immunodeficiency virus type 1 (HIV-1) and feline immunodeficiency virus (FIV) proteases (PRs). Peptide sequences were identified that were specifically cleaved by each protease, as well as sequences cleaved equally well by both enzymes. Based on amino acid distinctions within the P3-P3′ region of substrates that appeared to correlate with these cleavage specificities, we prepared a series of synthetic peptides within the framework of a peptide sequence cleaved with essentially the same efficiency by both HIV-1 and FIV PRs, Ac-KSGVF↓VVNGLVK-NH2 (arrow denotes cleavage site). We used the resultant peptide set to assess the influence of specific amino acid substitutions on the cleavage characteristics of the two proteases. The findings show that when Asn is substituted for Val at the P2 position, HIV-1 PR cleaves the substrate at a much greater rate than does FIV PR. Likewise, Glu or Gln substituted for Val at the P2′ position also yields peptides specifically susceptible to HIV-1 PR. In contrast, when Ser is substituted for Val at P1′, FIV PR cleaves the substrate at a much higher rate than does HIV-1 PR. In addition, Asn or Gln at the P1 position, in combination with an appropriate P3 amino acid, Arg, also strongly favors cleavage by FIV PR over HIV PR. Structural analysis identified several protease residues likely to dictate the observed specificity differences. Interestingly, HIV PR Asp30 (Ile-35 in FIV PR), which influences specificity at the S2 and S2′ subsites, and HIV-1 PR Pro-81 and Val-82 (Ile-98 and Gln-99 in FIV PR), which influence specificity at the S1 and S1′ subsites, are residues which are often involved in development of drug resistance in HIV-1 protease. The peptide substrate KSGVF↓VVNGK, cleaved by both PRs, was used as a template for the design of a reduced amide inhibitor, Ac-GSGVFΨ(CH2NH)VVNGL-NH2. This compound inhibited both FIV and HIV-1 PRs with approximately equal efficiency. These findings establish a molecular basis for distinctions in substrate specificity between human and feline lentivirus PRs and offer a framework for development of efficient broad-based inhibitors. PMID:11533208
IGF1R as a Key Target in High Risk, Metastatic Medulloblastoma
Svalina, Matthew N.; Kikuchi, Ken; Abraham, Jinu; Lal, Sangeet; Davare, Monika A.; Settelmeyer, Teagan P.; Young, Michael C.; Peckham, Jennifer L.; Cho, Yoon-Jae; Michalek, Joel E.; Hernandez, Brian S.; Berlow, Noah E.; Jackson, Melanie; Guillaume, Daniel J.; Selden, Nathan R.; Bigner, Darell D.; Nazemi, Kellie J.; Green, Sarah C.; Corless, Christopher L.; Gultekin, Sakir; Mansoor, Atiya; Rubin, Brian P.; Woltjer, Randall; Keller, Charles
2016-01-01
Risk or presence of metastasis in medulloblastoma causes substantial treatment-related morbidity and overall mortality. Through the comparison of cytokines and growth factors in the cerebrospinal fluid (CSF) of metastatic medulloblastoma patients with factors also in conditioned media of metastatic MYC amplified medulloblastoma or leptomeningeal cells, we were led to explore the bioactivity of IGF1 in medulloblastoma by elevated CSF levels of IGF1, IGF-sequestering IGFBP3, IGFBP3-cleaving proteases (MMP and tPA), and protease modulators (TIMP1 and PAI-1). IGF1 led not only to receptor phosphorylation but also accelerated migration/adhesion in MYC amplified medulloblastoma cells in the context of appropriate matrix or meningothelial cells. Clinical correlation suggests a peri-/sub-meningothelial source of IGF-liberating proteases that could facilitate leptomeningeal metastasis. In parallel, studies of key factors responsible for cell autonomous growth in MYC amplified medulloblastoma prioritized IGF1R inhibitors. Together, our studies identify IGF1R as a high value target for clinical trials in high risk medulloblastoma. PMID:27255663
IGF1R as a Key Target in High Risk, Metastatic Medulloblastoma.
Svalina, Matthew N; Kikuchi, Ken; Abraham, Jinu; Lal, Sangeet; Davare, Monika A; Settelmeyer, Teagan P; Young, Michael C; Peckham, Jennifer L; Cho, Yoon-Jae; Michalek, Joel E; Hernandez, Brian S; Berlow, Noah E; Jackson, Melanie; Guillaume, Daniel J; Selden, Nathan R; Bigner, Darell D; Nazemi, Kellie J; Green, Sarah C; Corless, Christopher L; Gultekin, Sakir; Mansoor, Atiya; Rubin, Brian P; Woltjer, Randall; Keller, Charles
2016-06-03
Risk or presence of metastasis in medulloblastoma causes substantial treatment-related morbidity and overall mortality. Through the comparison of cytokines and growth factors in the cerebrospinal fluid (CSF) of metastatic medulloblastoma patients with factors also in conditioned media of metastatic MYC amplified medulloblastoma or leptomeningeal cells, we were led to explore the bioactivity of IGF1 in medulloblastoma by elevated CSF levels of IGF1, IGF-sequestering IGFBP3, IGFBP3-cleaving proteases (MMP and tPA), and protease modulators (TIMP1 and PAI-1). IGF1 led not only to receptor phosphorylation but also accelerated migration/adhesion in MYC amplified medulloblastoma cells in the context of appropriate matrix or meningothelial cells. Clinical correlation suggests a peri-/sub-meningothelial source of IGF-liberating proteases that could facilitate leptomeningeal metastasis. In parallel, studies of key factors responsible for cell autonomous growth in MYC amplified medulloblastoma prioritized IGF1R inhibitors. Together, our studies identify IGF1R as a high value target for clinical trials in high risk medulloblastoma.
Inactivation of Peroxiredoxin 6 by the Pla Protease of Yersinia pestis
Zimbler, Daniel L.; Eddy, Justin L.; Schroeder, Jay A.
2015-01-01
Pneumonic plague represents the most severe form of disease caused by Yersinia pestis due to its ease of transmission, rapid progression, and high mortality rate. The Y. pestis outer membrane Pla protease is essential for the development of pneumonic plague; however, the complete repertoire of substrates cleaved by Pla in the lungs is not known. In this study, we describe a proteomic screen to identify host proteins contained within the bronchoalveolar lavage fluid of mice that are cleaved and/or processed by Y. pestis in a Pla-dependent manner. We identified peroxiredoxin 6 (Prdx6), a host factor that contributes to pulmonary surfactant metabolism and lung defense against oxidative stress, as a previously unknown substrate of Pla. Pla cleaves Prdx6 at three distinct sites, and these cleavages disrupt both the peroxidase and phospholipase A2 activities of Prdx6. In addition, we found that infection with wild-type Y. pestis reduces the abundance of extracellular Prdx6 in the lungs compared to that after infection with Δpla Y. pestis, suggesting that Pla cleaves Prdx6 in the pulmonary compartment. However, following infection with either wild-type or Δpla Y. pestis, Prdx6-deficient mice exhibit no differences in bacterial burden, host immune response, or lung damage from wild-type mice. Thus, while Pla is able to disrupt Prdx6 function in vitro and reduce Prdx6 levels in vivo, the cleavage of Prdx6 has little detectable impact on the progression or outcome of pneumonic plague. PMID:26553463
Polyglycine hydrolases secreted by pathogenic fungi
USDA-ARS?s Scientific Manuscript database
Pathogens are known to produce proteases that target host defense proteins. Here we describe polyglycine hydrolases, fungal proteases that selectively cleave glycine-glycine peptide bonds within the polyglycine interdomain linker of targeted plant defense chitinases. Polyglycine hydrolases were puri...
Rick, M E; Austin, H; Leitman, S F; Krizek, D M; Aronson, D L
2004-02-01
Decreased von Willebrand factor cleaving protease activity (VWFCP, ADAMTS 13) leads to persistence of unusually large multimers of von Willebrand factor that bind to platelets, causing platelet aggregates, microangiopathic hemolysis, and thrombocytopenia in patients with thrombotic thrombocytopenic purpura (TTP). The clinical value of measuring ADAMTS 13 and its inhibitor is not fully defined; the case reported here illustrates the usefulness of the assay to help confirm the clinical diagnosis in a patient with other potential causes for thrombotic microangiopathy; the assay also helped in making treatment decisions. A patient with systemic lupus erythematosis (SLE) presented with fever and abdominal pain, thrombocytopenia, and anemia. Thrombotic microangiopathy was diagnosed by the appearance of schistocytes, decreasing platelet count, and evidence of hemolysis. ADAMTS 13 was decreased and an inhibitor was demonstrated in the patient's initial blood sample within 24 hr of admission. Plasma exchange was initiated, and serial assays showed increased ADAMTS 13 activity and decreased inhibitor after each plasma exchange; there was a rebound in inhibitor and a decrease in ADAMTS 13 activity prior to the next exchange that lessened over time. Increasing levels of protease activity correlated with clinical and laboratory improvement. Measurement of ADAMTS 13 activity and its inhibitor aided in the diagnosis of this complicated case of a patient with other potential causes for microangiopathic hemolysis. Subsequent levels correlated with the clinical course, and disappearance of the inhibitor indicated that long-term plasma exchange or other immunosuppressive treatment was not needed.
Pearson, Jaclyn S; Giogha, Cristina; Mühlen, Sabrina; Nachbur, Ueli; Pham, Chi L L; Zhang, Ying; Hildebrand, Joanne M; Oates, Clare V; Lung, Tania Wong Fok; Ingle, Danielle; Dagley, Laura F; Bankovacki, Aleksandra; Petrie, Emma J; Schroeder, Gunnar N; Crepin, Valerie F; Frankel, Gad; Masters, Seth L; Vince, James; Murphy, James M; Sunde, Margaret; Webb, Andrew I; Silke, John; Hartland, Elizabeth L
2017-01-13
Cell death signalling pathways contribute to tissue homeostasis and provide innate protection from infection. Adaptor proteins such as receptor-interacting serine/threonine-protein kinase 1 (RIPK1), receptor-interacting serine/threonine-protein kinase 3 (RIPK3), TIR-domain-containing adapter-inducing interferon-β (TRIF) and Z-DNA-binding protein 1 (ZBP1)/DNA-dependent activator of IFN-regulatory factors (DAI) that contain receptor-interacting protein (RIP) homotypic interaction motifs (RHIM) play a key role in cell death and inflammatory signalling 1-3 . RHIM-dependent interactions help drive a caspase-independent form of cell death termed necroptosis 4,5 . Here, we report that the bacterial pathogen enteropathogenic Escherichia coli (EPEC) uses the type III secretion system (T3SS) effector EspL to degrade the RHIM-containing proteins RIPK1, RIPK3, TRIF and ZBP1/DAI during infection. This requires a previously unrecognized tripartite cysteine protease motif in EspL (Cys47, His131, Asp153) that cleaves within the RHIM of these proteins. Bacterial infection and/or ectopic expression of EspL leads to rapid inactivation of RIPK1, RIPK3, TRIF and ZBP1/DAI and inhibition of tumour necrosis factor (TNF), lipopolysaccharide or polyinosinic:polycytidylic acid (poly(I:C))-induced necroptosis and inflammatory signalling. Furthermore, EPEC infection inhibits TNF-induced phosphorylation and plasma membrane localization of mixed lineage kinase domain-like pseudokinase (MLKL). In vivo, EspL cysteine protease activity contributes to persistent colonization of mice by the EPEC-like mouse pathogen Citrobacter rodentium. The activity of EspL defines a family of T3SS cysteine protease effectors found in a range of bacteria and reveals a mechanism by which gastrointestinal pathogens directly target RHIM-dependent inflammatory and necroptotic signalling pathways.
Kirzek, D M; Rick, M E
2001-03-01
A method for evaluating the activity of the von Willebrand factor (vWF) protease is described, and a clinical application is illustrated. The procedure utilizes gel electrophoresis, Western blotting, and luminographic detection methods to evaluate the distribution of vWF multimers before and after incubation of clinical samples under conditions that favor proteolysis by this enzyme. Physiologically, the high-molecular-weight multimers of vWF are cleaved by the vWF protease under conditions of high shear stress in parts of the arterial circulation; cleavage of vWF multimers is also observed after exposure of vWF to denaturing agents in vitro and thus can serve as a laboratory test for the activity of the protease. vWF protease activity is decreased or absent in patients with thrombotic thrombocytopenic purpura due to an inhibiting autoantibody, and this leads to high levels of noncleaved vWF and to life-threatening thrombosis, thrombocytopenia and anemia. The assay evaluates the activity of the protease by assessing the cleavage of vWF multimers after patient plasmas are incubated in vitro under denaturing conditions. With the use of these electrophoresis and Western blotting techniques, patient plasmas can be rapidly assessed for the activity of the vWF protease which may aid in the treatment strategy for these patients.
Network Analyses Reveal Pervasive Functional Regulation Between Proteases in the Human Protease Web
Fortelny, Nikolaus; Cox, Jennifer H.; Kappelhoff, Reinhild; Starr, Amanda E.; Lange, Philipp F.; Pavlidis, Paul; Overall, Christopher M.
2014-01-01
Proteolytic processing is an irreversible posttranslational modification affecting a large portion of the proteome. Protease-cleaved mediators frequently exhibit altered activity, and biological pathways are often regulated by proteolytic processing. Many of these mechanisms have not been appreciated as being protease-dependent, and the potential in unraveling a complex new dimension of biological control is increasingly recognized. Proteases are currently believed to act individually or in isolated cascades. However, conclusive but scattered biochemical evidence indicates broader regulation of proteases by protease and inhibitor interactions. Therefore, to systematically study such interactions, we assembled curated protease cleavage and inhibition data into a global, computational representation, termed the protease web. This revealed that proteases pervasively influence the activity of other proteases directly or by cleaving intermediate proteases or protease inhibitors. The protease web spans four classes of proteases and inhibitors and so links both recently and classically described protease groups and cascades, which can no longer be viewed as operating in isolation in vivo. We demonstrated that this observation, termed reachability, is robust to alterations in the data and will only increase in the future as additional data are added. We further show how subnetworks of the web are operational in 23 different tissues reflecting different phenotypes. We applied our network to develop novel insights into biologically relevant protease interactions using cell-specific proteases of the polymorphonuclear leukocyte as a system. Predictions from the protease web on the activity of matrix metalloproteinase 8 (MMP8) and neutrophil elastase being linked by an inactivating cleavage of serpinA1 by MMP8 were validated and explain perplexing Mmp8 −/− versus wild-type polymorphonuclear chemokine cleavages in vivo. Our findings supply systematically derived and validated evidence for the existence of the protease web, a network that affects the activity of most proteases and thereby influences the functional state of the proteome and cell activity. PMID:24865846
Huang, Li; Liu, Qinfang; Zhang, Lijie; Zhang, Quan; Hu, Liang; Li, Changyao; Wang, Shengnan; Li, Jiangnan; Zhang, Yuanfeng; Yu, Huibin; Wang, Yan; Zhong, Zhaohua; Xiong, Tao; Xia, Xueshan; Wang, Xiaojun; Yu, Li; Deng, Guohua; Cai, Xuehui; Cui, Shangjin; Weng, Changjiang
2015-11-13
TRAF family member-associated NF-κB activator (TANK) is a negative regulator of canonical NF-κB signaling in the Toll-like receptor- and B-cell receptor-mediated signaling pathways. However, functions of TANK in viral infection-mediated NF-κB activation remain unclear. Here, we reported that TANK was cleaved by encephalomyocarditis virus 3C at the 197 and 291 glutamine residues, which depends on its cysteine protease activity. In addition, encephalomyocarditis virus 3C impaired the ability of TANK to inhibit TRAF6-mediated NF-κB signaling. Interestingly, we found that several viral proteases encoded by the foot and mouth disease virus, porcine reproductive and respiratory syndrome virus, and equine arteritis virus also cleaved TANK. Our results suggest that TANK is a novel target of some viral proteases, indicating that some positive RNA viruses have evolved to utilize their major proteases to regulate NF-κB activation. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
USDA-ARS?s Scientific Manuscript database
Infection by a variety of viruses alters the nuclear-cytoplasmic trafficking of certain host cell proteins. In our continued search for interacting factors, we reported the re-localization of RNA helicase A (RHA) from the nucleus to the cytoplasm in cells infected with foot-and-mouth disease virus ...
2015-01-01
Many pathogenic bacteria utilize the type III secretion system (T3SS) to translocate effector proteins directly into host cells, facilitating colonization. In enterohemmorhagic Escherichia coli (EHEC), a subset of T3SS effectors is essential for suppression of the inflammatory response in hosts, including humans. Identified as a zinc protease that cleaves NF-κB transcription factors, NleC is one such effector. Here, we investigate NleC substrate specificity, showing that four residues around the cleavage site in the DNA-binding loop of the NF-κB subunit RelA strongly influence the cleavage rate. Class I NF-κB subunit p50 is cleaved at a reduced rate consistent with conservation of only three of these four residues. However, peptides containing 10 residues on each side of the scissile bond were not efficiently cleaved by NleC, indicating that elements distal from the cleavage site are also important for substrate recognition. We present the crystal structure of NleC and show that it mimics DNA structurally and electrostatically. Consistent with this model, mutation of phosphate-mimicking residues in NleC reduces the level of RelA cleavage. We propose that global recognition of NF-κB subunits by DNA mimicry combined with a high sequence selectivity for the cleavage site results in exquisite NleC substrate specificity. The structure also shows that despite undetectable similarity of its sequence to those of other Zn2+ proteases beyond its conserved HExxH Zn2+-binding motif, NleC is a member of the Zincin protease superfamily, albeit divergent from its structural homologues. In particular, NleC displays a modified Ψ-loop motif that may be important for folding and refolding requirements implicit in T3SS translocation. PMID:25040221
Eddy, J L; Schroeder, J A; Zimbler, D L; Caulfield, A J; Lathem, W W
2016-09-01
Essentials Effect of plasminogen activator inhibitor (PAI)-1 on plague and its Y. pestis cleavage is unknown. An intranasal mouse model of infection was used to determine the role of PAI-1 in pneumonic plague. PAI-1 is cleaved and inactivated by the Pla protease of Y. pestis in the lung airspace. PAI-1 impacts both bacterial outgrowth and the immune response to respiratory Y. pestis infection. Click to hear Dr Bock discuss pathogen activators of plasminogen. Background The hemostatic regulator plasminogen activator inhibitor-1 (PAI-1) inactivates endogenous plasminogen activators and aids in the immune response to bacterial infection. Yersinia pestis, the causative agent of plague, produces the Pla protease, a virulence factor that is required during plague. However, the specific hemostatic proteins cleaved by Pla in vivo that contribute to pathogenesis have not yet been fully elucidated. Objectives To determine whether PAI-1 is cleaved by the Pla protease during pneumonic plague, and to define the impact of PAI-1 on Y. pestis respiratory infection in the presence or absence of Pla. Methods An intranasal mouse model of pneumonic plague was used to assess the levels of total and active PAI-1 in the lung airspace, and the impact of PAI-1 deficiency on bacterial pathogenesis, the host immune response and plasmin generation following infection with wild-type or ∆pla Y. pestis. Results We found that Y. pestis cleaves and inactivates PAI-1 in the lungs in a Pla-dependent manner. The loss of PAI-1 enhances Y. pestis outgrowth in the absence of Pla, and is associated with increased conversion of plasminogen to plasmin. Furthermore, we found that PAI-1 regulates immune cell recruitment, cytokine production and tissue permeability during pneumonic plague. Conclusions Our data demonstrate that PAI-1 is an in vivo target of the Pla protease in the lungs, and that PAI-1 is a key regulator of the pulmonary innate immune response. We conclude that the inactivation of PAI-1 by Y. pestis alters the host environment to promote virulence during pneumonic plague. © 2016 The Authors. Journal of Thrombosis and Haemostasis published by Wiley Periodicals, Inc. on behalf of International Society on Thrombosis and Haemostasis.
Pettit, S C; Moody, M D; Wehbie, R S; Kaplan, A H; Nantermet, P V; Klein, C A; Swanstrom, R
1994-12-01
The proteolytic processing sites of the human immunodeficiency virus type 1 (HIV-1) Gag precursor are cleaved in a sequential manner by the viral protease. We investigated the factors that regulate sequential processing. When full-length Gag protein was digested with recombinant HIV-1 protease in vitro, four of the five major processing sites in Gag were cleaved at rates that differ by as much as 400-fold. Three of these four processing sites were cleaved independently of the others. The CA/p2 site, however, was cleaved approximately 20-fold faster when the adjacent downstream p2/NC site was blocked from cleavage or when the p2 domain of Gag was deleted. These results suggest that the presence of a C-terminal p2 tail on processing intermediates slows cleavage at the upstream CA/p2 site. We also found that lower pH selectively accelerated cleavage of the CA/p2 processing site in the full-length precursor and as a peptide primarily by a sequence-based mechanism rather than by a change in protein conformation. Deletion of the p2 domain of Gag results in released virions that are less infectious despite the presence of the processed final products of Gag. These findings suggest that the p2 domain of HIV-1 Gag regulates the rate of cleavage at the CA/p2 processing site during sequential processing in vitro and in infected cells and that p2 may function in the proper assembly of virions.
Inactivation of Peroxiredoxin 6 by the Pla Protease of Yersinia pestis.
Zimbler, Daniel L; Eddy, Justin L; Schroeder, Jay A; Lathem, Wyndham W
2016-01-01
Pneumonic plague represents the most severe form of disease caused by Yersinia pestis due to its ease of transmission, rapid progression, and high mortality rate. The Y. pestis outer membrane Pla protease is essential for the development of pneumonic plague; however, the complete repertoire of substrates cleaved by Pla in the lungs is not known. In this study, we describe a proteomic screen to identify host proteins contained within the bronchoalveolar lavage fluid of mice that are cleaved and/or processed by Y. pestis in a Pla-dependent manner. We identified peroxiredoxin 6 (Prdx6), a host factor that contributes to pulmonary surfactant metabolism and lung defense against oxidative stress, as a previously unknown substrate of Pla. Pla cleaves Prdx6 at three distinct sites, and these cleavages disrupt both the peroxidase and phospholipase A2 activities of Prdx6. In addition, we found that infection with wild-type Y. pestis reduces the abundance of extracellular Prdx6 in the lungs compared to that after infection with Δpla Y. pestis, suggesting that Pla cleaves Prdx6 in the pulmonary compartment. However, following infection with either wild-type or Δpla Y. pestis, Prdx6-deficient mice exhibit no differences in bacterial burden, host immune response, or lung damage from wild-type mice. Thus, while Pla is able to disrupt Prdx6 function in vitro and reduce Prdx6 levels in vivo, the cleavage of Prdx6 has little detectable impact on the progression or outcome of pneumonic plague. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
El-Assaad, Atlal; Dawy, Zaher; Nemer, Georges; Hajj, Hazem; Kobeissy, Firas H
2017-01-01
Degradomics is a novel discipline that involves determination of the proteases/substrate fragmentation profile, called the substrate degradome, and has been recently applied in different disciplines. A major application of degradomics is its utility in the field of biomarkers where the breakdown products (BDPs) of different protease have been investigated. Among the major proteases assessed, calpain and caspase proteases have been associated with the execution phases of the pro-apoptotic and pro-necrotic cell death, generating caspase/calpain-specific cleaved fragments. The distinction between calpain and caspase protein fragments has been applied to distinguish injury mechanisms. Advanced proteomics technology has been used to identify these BDPs experimentally. However, it has been a challenge to identify these BDPs with high precision and efficiency, especially if we are targeting a number of proteins at one time. In this chapter, we present a novel bioinfromatic detection method that identifies BDPs accurately and efficiently with validation against experimental data. This method aims at predicting the consensus sequence occurrences and their variants in a large set of experimentally detected protein sequences based on state-of-the-art sequence matching and alignment algorithms. After detection, the method generates all the potential cleaved fragments by a specific protease. This space and time-efficient algorithm is flexible to handle the different orientations that the consensus sequence and the protein sequence can take before cleaving. It is O(mn) in space complexity and O(Nmn) in time complexity, with N number of protein sequences, m length of the consensus sequence, and n length of each protein sequence. Ultimately, this knowledge will subsequently feed into the development of a novel tool for researchers to detect diverse types of selected BDPs as putative disease markers, contributing to the diagnosis and treatment of related disorders.
Le Gall, Sylvain M; Szabo, Roman; Lee, Melody; Kirchhofer, Daniel; Craik, Charles S; Bugge, Thomas H; Camerer, Eric
2016-06-23
The coagulation cascade is designed to sense tissue injury by physical separation of the membrane-anchored cofactor tissue factor (TF) from inactive precursors of coagulation proteases circulating in plasma. Once TF on epithelial and other extravascular cells is exposed to plasma, sequential activation of coagulation proteases coordinates hemostasis and contributes to host defense and tissue repair. Membrane-anchored serine proteases (MASPs) play critical roles in the development and homeostasis of epithelial barrier tissues; how MASPs are activated in mature epithelia is unknown. We here report that proteases of the extrinsic pathway of blood coagulation transactivate the MASP matriptase, thus connecting coagulation initiation to epithelial proteolysis and signaling. Exposure of TF-expressing cells to factors (F) VIIa and Xa triggered the conversion of latent pro-matriptase to an active protease, which in turn cleaved the pericellular substrates protease-activated receptor-2 (PAR2) and pro-urokinase. An activation pathway-selective PAR2 mutant resistant to direct cleavage by TF:FVIIa and FXa was activated by these proteases when cells co-expressed pro-matriptase, and matriptase transactivation was necessary for efficient cleavage and activation of wild-type PAR2 by physiological concentrations of TF:FVIIa and FXa. The coagulation initiation complex induced rapid and prolonged enhancement of the barrier function of epithelial monolayers that was dependent on matriptase transactivation and PAR2 signaling. These observations suggest that the coagulation cascade engages matriptase to help coordinate epithelial defense and repair programs after injury or infection, and that matriptase may contribute to TF-driven pathogenesis in cancer and inflammation.
Complement Evasion by Pathogenic Leptospira.
Fraga, Tatiana Rodrigues; Isaac, Lourdes; Barbosa, Angela Silva
2016-01-01
Leptospirosis is a neglected infectious disease caused by spirochetes from the genus Leptospira . Pathogenic microorganisms, notably those which reach the blood circulation such as Leptospira , have evolved multiple strategies to escape the host complement system, which is important for innate and acquired immunity. Leptospira avoid complement-mediated killing through: (i) recruitment of host complement regulators; (ii) acquisition of host proteases that cleave complement proteins on the bacterial surface; and, (iii) secretion of proteases that inactivate complement proteins in the Leptospira surroundings. The recruitment of host soluble complement regulatory proteins includes the acquisition of Factor H (FH) and FH-like-1 (alternative pathway), C4b-binding protein (C4BP) (classical and lectin pathways), and vitronectin (Vn) (terminal pathway). Once bound to the leptospiral surface, FH and C4BP retain cofactor activity of Factor I in the cleavage of C3b and C4b, respectively. Vn acquisition by leptospires may result in terminal pathway inhibition by blocking C9 polymerization. The second evasion mechanism lies in plasminogen (PLG) binding to the leptospiral surface. In the presence of host activators, PLG is converted to enzymatically active plasmin, which is able to degrade C3b, C4b, and C5 at the surface of the pathogen. A third strategy used by leptospires to escape from complement system is the active secretion of proteases. Pathogenic, but not saprophytic leptospires, are able to secrete metalloproteases that cleave C3 (central complement molecule), Factor B (alternative pathway), and C4 and C2 (classical and lectin pathways). The purpose of this review is to fully explore these complement evasion mechanisms, which act together to favor Leptospira survival and multiplication in the host.
Complement Evasion by Pathogenic Leptospira
Fraga, Tatiana Rodrigues; Isaac, Lourdes; Barbosa, Angela Silva
2016-01-01
Leptospirosis is a neglected infectious disease caused by spirochetes from the genus Leptospira. Pathogenic microorganisms, notably those which reach the blood circulation such as Leptospira, have evolved multiple strategies to escape the host complement system, which is important for innate and acquired immunity. Leptospira avoid complement-mediated killing through: (i) recruitment of host complement regulators; (ii) acquisition of host proteases that cleave complement proteins on the bacterial surface; and, (iii) secretion of proteases that inactivate complement proteins in the Leptospira surroundings. The recruitment of host soluble complement regulatory proteins includes the acquisition of Factor H (FH) and FH-like-1 (alternative pathway), C4b-binding protein (C4BP) (classical and lectin pathways), and vitronectin (Vn) (terminal pathway). Once bound to the leptospiral surface, FH and C4BP retain cofactor activity of Factor I in the cleavage of C3b and C4b, respectively. Vn acquisition by leptospires may result in terminal pathway inhibition by blocking C9 polymerization. The second evasion mechanism lies in plasminogen (PLG) binding to the leptospiral surface. In the presence of host activators, PLG is converted to enzymatically active plasmin, which is able to degrade C3b, C4b, and C5 at the surface of the pathogen. A third strategy used by leptospires to escape from complement system is the active secretion of proteases. Pathogenic, but not saprophytic leptospires, are able to secrete metalloproteases that cleave C3 (central complement molecule), Factor B (alternative pathway), and C4 and C2 (classical and lectin pathways). The purpose of this review is to fully explore these complement evasion mechanisms, which act together to favor Leptospira survival and multiplication in the host. PMID:28066433
USDA-ARS?s Scientific Manuscript database
Polyglycine hydrolases are secreted fungal proteases that cleave glycine-glycine peptide bonds in the inter-domain linker region of specific plant defense chitinases. Previously, we reported the catalytic activity of polyglycine hydrolases from the phytopathogens Epicoccum sorghi (Es-cmp) and Cochli...
Koshikawa, Naohiko; Mizushima, Hiroto; Minegishi, Tomoko; Iwamoto, Ryo; Mekada, Eisuke; Seiki, Motoharu
2010-07-15
Epidermal growth factor (EGF) receptors (ErbB) and EGF family members represent promising targets for cancer therapy. Heparin-binding EGF (HB-EGF) is a member of the EGF family and is an important target for therapy in some types of human cancers. Processing of HB-EGF by proprotein convertases, and successively, by ADAM family proteases, generates a soluble growth factor that requires heparin as a cofactor. Although heparin potentiates HB-EGF activity in vitro, it is not clear how the heparin-binding activity of HB-EGF is regulated. Here, we show that membrane type 1-matrix metalloproteinase (MT1-MMP; MMP14), a potent invasion-promoting protease, markedly enhances HB-EGF-dependent tumor formation in mice. MT1-MMP additionally cleaves HB-EGF and removes the NH(2)-terminal 20 amino acids that are important for binding heparin. Consequently, the processing of HB-EGF by MT1-MMP converts HB-EGF into a heparin-independent growth factor with enhanced mitogenic activity, and thereby, expression of both proteins costimulates tumor cell growth in vitro and in vivo. The ErbB family of receptors expressed in human gastric carcinoma cells play a role in mediating enhanced HB-EGF activity by MT1-MMP during invasive cell growth in collagen. Thus, we shed light on a new mechanism whereby HB-EGF activity is regulated that should be considered when designing HB-EGF-targeted cancer therapy. (c)2010 AACR.
Szláma, György; Trexler, Mária; Patthy, László
2013-01-01
Myostatin, a negative regulator of skeletal muscle growth, is produced from myostatin precursor by multiple steps of proteolytic processing. After cleavage by a furin-type protease, the propeptide and growth factor domains remain associated, forming a noncovalent complex, the latent myostatin complex. Mature myostatin is liberated from latent myostatin by bone morphogenetic protein 1/tolloid proteases. Here, we show that, in reporter assays, latent myostatin preparations have significant myostatin activity, as the noncovalent complex dissociates at an appreciable rate, and both mature and semilatent myostatin (a complex in which the dimeric growth factor domain interacts with only one molecule of myostatin propeptide) bind to myostatin receptor. The interaction of myostatin receptor with semilatent myostatin is efficiently blocked by WAP, Kazal, immunoglobulin, Kunitz and NTR domain-containing protein 1 or growth and differentiation factor-associated serum protein 2 (WFIKKN1), a large extracellular multidomain protein that binds both mature myostatin and myostatin propeptide [Kondás et al. (2008) J Biol Chem 283, 23677–23684]. Interestingly, the paralogous protein WAP, Kazal, immunoglobulin, Kunitz and NTR domain-containing protein 2 or growth and differentiation factor-associated serum protein 1 (WFIKKN2) was less efficient than WFIKKN1 as an antagonist of the interactions of myostatin receptor with semilatent myostatin. Our studies have shown that this difference is attributable to the fact that only WFIKKN1 has affinity for the propeptide domain, and this interaction increases its potency in suppressing the receptor-binding activity of semilatent myostatin. As the interaction of WFIKKN1 with various forms of myostatin permits tighter control of myostatin activity until myostatin is liberated from latent myostatin by bone morphogenetic protein 1/tolloid proteases, WFIKKN1 may have greater potential as an antimyostatic agent than WFIKKN2. Structured digital abstract Furin cleaves Promyostatin by protease assay (View interaction) myostatin binds to PRO by surface plasmon resonance (View interaction) BMP-1 cleaves Promyostatin by protease assay (View interaction) ACR IIB physically interacts with Latent Myostatin by surface plasmon resonance (View interaction) Promyostatin and Promyostatin bind by comigration in gel electrophoresis (View interaction) WFIKKN1 binds to Latent Myostatin by pull down (View interaction) ACR IIB binds to Mature Myostatin by surface plasmon resonance (View Interaction: 1, 2, 3) WFIKKN1 binds to Myostatin Prodomain by surface plasmon resonance (View Interaction: 1, 2, 3) PMID:23829672
Kee, Nalise Low Ah; Krause, Jason; Blatch, Gregory L; Muramoto, Koji; Sakka, Kazuo; Sakka, Makiko; Naudé, Ryno J; Wagner, Leona; Wolf, Raik; Rahfeld, Jens-Ulrich; Demuth, Hans-Ulrich; Mielicki, Wojciech P; Frost, Carminita L
2015-10-01
Proteases are essential for tumour progression and many are over-expressed during this time. The main focus of research was the role of these proteases in degradation of the basement membrane and extracellular matrix (ECM), thereby enabling metastasis to occur. Cancer procoagulant (CP), a protease present in malignant tumours, but not normal tissue, is a known activator of coagulation factor X (FX). The present study investigated the function of CP in cancer progression by focussing on its enzymatic specificity. FX cleavage was confirmed using SDS-PAGE and MALDI-TOF MS and compared to the proteolytic action of CP on ECM proteins, including collagen type IV, laminin and fibronectin. Contrary to previous reports, CP cleaved FX at the conventional activation site (between Arg-52 and Ile-53). Additionally, degradation of FX by CP occurred at a much slower rate than degradation by conventional activators. Complete degradation of the heavy chain of FX was only visible after 24 h, while degradation by RVV was complete after 30 min, supporting postulations that the procoagulant function of CP may be of secondary importance to its role in cancer progression. Of the ECM proteins tested, only fibronectin was cleaved. The substrate specificity of CP was further investigated by screening synthetic peptide substrates using a novel direct CP assay. The results indicate that CP is not essential for either cancer-associated blood coagulation or the degradation of ECM proteins. Rather, they suggest that this protease may be required for the proteolytic activation of membrane receptors.
Efficient sortase-mediated N-terminal labeling of TEV protease cleaved recombinant proteins.
Sarpong, Kwabena; Bose, Ron
2017-03-15
A major challenge in attaching fluorophores or other handles to proteins is the availability of a site-specific labeling strategy that provides stoichiometric modification without compromising protein integrity. We developed a simple approach that combines TEV protease cleavage, sortase modification and affinity purification to N-terminally label proteins. To achieve stoichiometrically-labeled protein, we included a short affinity tag in the fluorophore-containing peptide for post-labeling purification of the modified protein. This strategy can be easily applied to any recombinant protein with a TEV site and we demonstrate this on Epidermal Growth Factor Receptor (EGFR) and Membrane Scaffold Protein (MSP) constructs. Copyright © 2017 Elsevier Inc. All rights reserved.
Structural, kinetic, and thermodynamic studies of specificity designed HIV-1 protease.
Alvizo, Oscar; Mittal, Seema; Mayo, Stephen L; Schiffer, Celia A
2012-07-01
HIV-1 protease recognizes and cleaves more than 12 different substrates leading to viral maturation. While these substrates share no conserved motif, they are specifically selected for and cleaved by protease during viral life cycle. Drug resistant mutations evolve within the protease that compromise inhibitor binding but allow the continued recognition of all these substrates. While the substrate envelope defines a general shape for substrate recognition, successfully predicting the determinants of substrate binding specificity would provide additional insights into the mechanism of altered molecular recognition in resistant proteases. We designed a variant of HIV protease with altered specificity using positive computational design methods and validated the design using X-ray crystallography and enzyme biochemistry. The engineered variant, Pr3 (A28S/D30F/G48R), was designed to preferentially bind to one out of three of HIV protease's natural substrates; RT-RH over p2-NC and CA-p2. In kinetic assays, RT-RH binding specificity for Pr3 increased threefold compared to the wild-type (WT), which was further confirmed by isothermal titration calorimetry. Crystal structures of WT protease and the designed variant in complex with RT-RH, CA-p2, and p2-NC were determined. Structural analysis of the designed complexes revealed that one of the engineered substitutions (G48R) potentially stabilized heterogeneous flap conformations, thereby facilitating alternate modes of substrate binding. Our results demonstrate that while substrate specificity could be engineered in HIV protease, the structural pliability of protease restricted the propagation of interactions as predicted. These results offer new insights into the plasticity and structural determinants of substrate binding specificity of the HIV-1 protease. Copyright © 2012 The Protein Society.
Liu, Xin; Ropp, Susan L.; Jackson, Richard J.; Frey, Teryl K.
1998-01-01
The rubella virus (RUB) nonstructural (NS) protease is a papain-like cysteine protease (PCP) located in the NS-protein open reading frame (NSP-ORF) that cleaves the NSP-ORF translation product at a single site to produce two products, P150 (the N-terminal product) and P90 (the C-terminal product). The RUB NS protease was found not to function following translation in vitro in a standard rabbit reticulocyte lysate system, although all of the other viral PCPs do so. However, in the presence of divalent cations such as Zn2+, Cd2+, and Co2+, the RUB NS protease functioned efficiently, indicating that these cations are required either as direct cofactors in catalytic activity or for correct acquisition of three-dimensional conformation of the protease. Since other viral and cell PCPs do not require cations for activity and the RUB NS protease contains a putative zinc binding motif, the latter possibility is more likely. Previous in vivo expression studies of the RUB NS protease failed to demonstrate trans cleavage activity (J.-P. Chen et al., J. Virol. 70:4707–4713, 1996). To study whether trans cleavage could be detected in vitro, a protease catalytic site mutant and a mutant in which the C-terminal 31 amino acids of P90 were deleted were independently introduced into plasmid constructs that express the complete NSP-ORF. Cotranslation of these mutants in vitro yielded both the native and the mutated forms of P90, indicating that the protease present in the mutated construct cleaved the catalytic-site mutant precursor. Thus, RUB NS protease can function in trans. PMID:9557742
Potential Roles of Protease Inhibitors in Cancer Progression.
Yang, Peng; Li, Zhuo-Yu; Li, Han-Qing
2015-01-01
Proteases are important molecules that are involved in many key physiological processes. Protease signaling pathways are strictly controlled, and disorders in protease activity can result in pathological changes such as cardiovascular and inflammatory diseases, cancer and neurological disorders. Many proteases have been associated with increasing tumor metastasis in various human cancers, suggesting important functional roles in the metastatic process because of their ability to degrade the extracellular matrix barrier. Proteases are also capable of cleaving non-extracellular matrix molecules. Inhibitors of proteases to some extent can reduce invasion and metastasis of cancer cells, and slow down cancer progression. In this review, we focus on the role of a few proteases and their inhibitors in tumors as a basis for cancer prognostication and therapy.
Békés, Miklós; Rut, Wioletta; Kasperkiewicz, Paulina; Mulder, Monique P C; Ovaa, Huib; Drag, Marcin; Lima, Christopher D; Huang, Tony T
2015-06-01
Ubiquitin (Ub) and the Ub-like (Ubl) modifier interferon-stimulated gene 15 (ISG15) participate in the host defence of viral infections. Viruses, including the severe acute respiratory syndrome human coronavirus (SARS hCoV), have co-opted Ub-ISG15 conjugation pathways for their own advantage or have evolved effector proteins to counter pro-inflammatory properties of Ub-ISG15-conjugated host proteins. In the present study, we compare substrate specificities of the papain-like protease (PLpro) from the recently emerged Middle East respiratory syndrome (MERS) hCoV to the related protease from SARS, SARS PLpro. Through biochemical assays, we show that, similar to SARS PLpro, MERS PLpro is both a deubiquitinating (DUB) and a deISGylating enzyme. Further analysis of the intrinsic DUB activity of these viral proteases revealed unique differences between the recognition and cleavage specificities of polyUb chains. First, MERS PLpro shows broad linkage specificity for the cleavage of polyUb chains, whereas SARS PLpro prefers to cleave Lys48-linked polyUb chains. Secondly, MERS PLpro cleaves polyUb chains in a 'mono-distributive' manner (one Ub at a time) and SARS PLpro prefers to cleave Lys48-linked polyUb chains by sensing a di-Ub moiety as a minimal recognition element using a 'di-distributive' cleavage mechanism. The di-distributive cleavage mechanism for SARS PLpro appears to be uncommon among USP (Ub-specific protease)-family DUBs, as related USP family members from humans do not display such a mechanism. We propose that these intrinsic enzymatic differences between SARS and MERS PLpro will help to identify pro-inflammatory substrates of these viral DUBs and can guide in the design of therapeutics to combat infection by coronaviruses.
Makadiya, Nirajkumar; Gaba, Amit; Tikoo, Suresh K
2015-09-01
The L6 region of bovine adenovirus type 3 (BAdV-3) encodes a non-structural protein named 100K. Rabbit antiserum raised against BAdV-3 100K recognized a protein of 130 kDa at 12-24 h and proteins of 130, 100, 95 and 15 kDa at 36-48 h after BAdV-3 infection. The 100K species localized to the nucleus and the cytoplasm of BAdV-3-infected cells. In contrast, 100K localized predominantly to the cytoplasm of the transfected cells. However, BAdV-3 infection of cells transfected with 100K-enhanced yellow fluorescent protein-expressing plasmid detected fluorescent protein in the nucleus of the cells, suggesting that other viral proteins may be required for the nuclear localization of 100K. Interaction of BAdV-3 100K with BAdV-3 33K protein did not alter the cytoplasmic localization of 100K. However, co-expression of BAdV-3 100K and BAdV-3 protease localized 100K to the nucleolus of the transfected cells. Subsequent analysis suggested that BAdV-3 protease cleaves 100K at two identified potential protease cleavage sites (aa 740-745 and 781-786) in transfected or BAdV-3-infected cells. The cleaved C terminus (107 aa) was localized to the nucleolus of the transfected cells. Further analysis suggested that the cleaved C terminus contains a bipartite nuclear localization signal and utilizes import receptor importin-α3 of the classical importin-α/β transport pathway for nuclear transport. Successful isolation of recombinant BAdV-3 expressing mutant 100K (substitution of alanine for glycine in the potential protease cleavage site) suggested that cytoplasmic cleavage of BAdV-3 100K by adenoviral protease is not essential for virus replication.
Loxham, M; Smart, D E; Bedke, N J; Smithers, N P; Filippi, I; Blume, C; Swindle, E J; Tariq, K; Howarth, P H; Holgate, S T; Davies, D E
2018-03-01
CX3CL1 has been implicated in allergen-induced airway CD4 + T-lymphocyte recruitment in asthma. As epidemiological evidence supports a viral infection-allergen synergy in asthma exacerbations, we postulated that rhinovirus (RV) infection in the presence of allergen augments epithelial CX3CL1 release. Fully differentiated primary bronchial epithelial cultures were pretreated apically with house dust mite (HDM) extract and infected with rhinovirus-16 (RV16). CX3CL1 was measured by enzyme-linked immunosorbent assay and western blotting, and shedding mechanisms assessed using inhibitors, protease-activated receptor-2 (PAR-2) agonist, and recombinant CX3CL1-expressing HEK293T cells. Basolateral CX3CL1 release was unaffected by HDM but stimulated by RV16; inhibition by fluticasone or GM6001 implicated nuclear factor-κB and ADAM (A Disintegrin and Metalloproteinase) sheddases. Conversely, apical CX3CL1 shedding was stimulated by HDM and augmented by RV16. Although fluticasone or GM6001 reduced RV16+HDM-induced apical CX3CL1 release, heat inactivation or cysteine protease inhibition completely blocked CX3CL1 shedding. The HDM effect was via enzymatic cleavage of CX3CL1, not PAR-2 activation, yielding a product mitogenic for smooth muscle cells. Extracts of Alternaria fungus caused similar CX3CL1 shedding. We have identified a novel mechanism whereby allergenic proteases cleave CX3CL1 from the apical epithelial surface to yield a biologically active product. RV16 infection augmented HDM-induced CX3CL1 shedding-this may contribute to synergy between allergen exposure and RV infection in triggering asthma exacerbations and airway remodeling.
Into, T; Inomata, M; Kanno, Y; Matsuyama, T; Machigashira, M; Izumi, Y; Imamura, T; Nakashima, M; Noguchi, T; Matsushita, K
2006-01-01
Chronic periodontitis is correlated with Porphyromonas gingivalis infection. In this study, we found that the expression of secretory leucocyte protease inhibitor (SLPI), an endogenous inhibitor for neutrophil-derived proteases, was reduced in gingival tissues with chronic periodontitis associated with P. gingivalis infection. The addition of vesicles of P. gingivalis decreased the amount of SLPI in the media of primary human gingival keratinocytes compared to untreated cultures. We therefore investigated how arginine-specific gingipains (Rgps) affect the functions of SLPI, because Rgps are the major virulence factors in the vesicles and cleave a wide range of in-host proteins. We found that Rgps digest SLPI in vitro, suppressing the release of SLPI. Rgps proteolysis of SLPI disrupted SLPI functions, which normally suppresses neutrophil elastase and neutralizes pro-inflammatory effects of bacterial cell wall compounds in cultured human gingival fibroblasts. The protease inhibitory action of SLPI was not exerted towards Rgps. These results suggest that Rgps reduce the protective effects of SLPI on neutrophil proteases and bacterial proinflammatory compounds, by which disease in gingival tissue may be accelerated at the sites with P. gingivalis infection. PMID:16907925
Spoerry, Christian; Seele, Jana; Valentin-Weigand, Peter; Baums, Christoph G.; von Pawel-Rammingen, Ulrich
2016-01-01
Streptococcus suis is a major endemic pathogen of pigs causing meningitis, arthritis, and other diseases. Zoonotic S. suis infections are emerging in humans causing similar pathologies as well as severe conditions such as toxic shock-like syndrome. Recently, we discovered an IdeS family protease of S. suis that exclusively cleaves porcine IgM and represents the first virulence factor described, linking S. suis to pigs as their natural host. Here we report the identification and characterization of a novel, unrelated protease of S. suis that exclusively targets porcine IgG. This enzyme, designated IgdE for immunoglobulin G-degrading enzyme of S. suis, is a cysteine protease distinct from previous characterized streptococcal immunoglobulin degrading proteases of the IdeS family and mediates efficient cleavage of the hinge region of porcine IgG with a high degree of specificity. The findings that all S. suis strains investigated possess the IgG proteolytic activity and that piglet serum samples contain specific antibodies against IgdE strongly indicate that the protease is expressed in vivo during infection and represents a novel and putative important bacterial virulence/colonization determinant, and a thus potential therapeutic target. PMID:26861873
Spoerry, Christian; Seele, Jana; Valentin-Weigand, Peter; Baums, Christoph G; von Pawel-Rammingen, Ulrich
2016-04-08
Streptococcus suisis a major endemic pathogen of pigs causing meningitis, arthritis, and other diseases. ZoonoticS. suisinfections are emerging in humans causing similar pathologies as well as severe conditions such as toxic shock-like syndrome. Recently, we discovered an IdeS family protease ofS. suisthat exclusively cleaves porcine IgM and represents the first virulence factor described, linkingS. suisto pigs as their natural host. Here we report the identification and characterization of a novel, unrelated protease ofS. suisthat exclusively targets porcine IgG. This enzyme, designated IgdE forimmunoglobulinG-degradingenzyme ofS. suis, is a cysteine protease distinct from previous characterized streptococcal immunoglobulin degrading proteases of the IdeS family and mediates efficient cleavage of the hinge region of porcine IgG with a high degree of specificity. The findings that allS. suisstrains investigated possess the IgG proteolytic activity and that piglet serum samples contain specific antibodies against IgdE strongly indicate that the protease is expressedin vivoduring infection and represents a novel and putative important bacterial virulence/colonization determinant, and a thus potential therapeutic target. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Ben Abdallah Chabchoub, R; Boukedi, A; Bensalah, M; Maalej, B; Gargour, L; Turk, F; Ben Halima, N; Wolf, M; Veyradier, A; Mahfoudh, A
2013-08-01
Hemolytic and uremic syndrome (HUS) is a classical form of thrombotic microangiopathies characterized by the association of hemolytic anemia with schizocytes, thrombocytopenia, and acute renal failure. Two forms of HUS have been described: the typical form that occurs after ingestion of a strain of bacteria, usually Escherichia coli types, which expresses verotoxin (also called shiga-like toxin), typically followed by bloody diarrhea, and atypical HUS, which is rare during childhood and can also be revealed by bloody diarrhea. We report a case of a 25-month-old infant who presented with hematuria and pallor after an episode of diarrhea. Biological tests revealed anemia, thrombocytopenia, and renal failure. The diagnosis of typical HUS was made, but the causal microorganism was not identified. Progression was favorable within 5 days of plasma transfusions. Two months later, the patient presented with the same symptoms and neurological impairment without any diarrhea. Von Willebrand factor-cleaving protease activity (ADAMTS 13) was low. Therefore, the diagnosis of atypical HUS by severe deficiency of ADAMTS 13 was suggested. The treatment was based on plasma transfusions resulting in remission. Atypical HUS associated with severe ADAMTS 13 deficiency rarely occurs in childhood. The prognosis, usually threatening, has been completely transformed thanks to a better understanding of the pathogenesis and to therapeutic progress. Copyright © 2013. Published by Elsevier SAS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jinsil; Ha, Hye-Jeong; Kim, Sujin
Lipid homeostasis in mammalian cells is regulated by sterol regulatory element-binding protein (SREBP) transcription factors that are activated through sequential cleavage by Golgi Site-1 and Site-2 proteases. Fission yeast SREBP, Sre1, engages a different mechanism involving the Golgi Dsc E3 ligase complex, but it is not clearly understood exactly how Sre1 is proteolytically cleaved and activated. In this study, we screened the Schizosaccharomyces pombe non-essential haploid deletion collection to identify missing components of the Sre1 cleavage machinery. Our screen identified an additional component of the SREBP pathway required for Sre1 proteolysis named rhomboid protein 2 (Rbd2). We show that anmore » rbd2 deletion mutant fails to grow under hypoxic and hypoxia-mimetic conditions due to lack of Sre1 activity and that this growth phenotype is rescued by Sre1N, a cleaved active form of Sre1. We found that the growth inhibition phenotype under low oxygen conditions is specific to the strain with deletion of rbd2, not any other fission yeast rhomboid-encoding genes. Our study also identified conserved residues of Rbd2 that are required for Sre1 proteolytic cleavage. All together, our results suggest that Rbd2 is a functional SREBP protease with conserved residues required for Sre1 cleavage and provide an important piece of the puzzle to understand the mechanisms for Sre1 activation and the regulation of various biological and pathological processes involving SREBPs. - Highlights: • An rbd2-deleted yeast strain shows defects in growth in response to low oxygen levels. • rbd2-deficient cells fail to generate cleaved Sre1 (Sre1N) under hypoxic conditions. • Expression of Sre1N rescues the rbd2 deletion mutant growth phenotype. • Rbd2 contains conserved residues potentially critical for catalytic activity. • Mutation of the conserved Rbd2 catalytic residues leads to defects in Sre1 cleavage.« less
Nanoplatforms for highly sensitive fluorescence detection of cancer-related proteases.
Wang, Hongwang; Udukala, Dinusha N; Samarakoon, Thilani N; Basel, Matthew T; Kalita, Mausam; Abayaweera, Gayani; Manawadu, Harshi; Malalasekera, Aruni; Robinson, Colette; Villanueva, David; Maynez, Pamela; Bossmann, Leonie; Riedy, Elizabeth; Barriga, Jenny; Wang, Ni; Li, Ping; Higgins, Daniel A; Zhu, Gaohong; Troyer, Deryl L; Bossmann, Stefan H
2014-02-01
Numerous proteases are known to be necessary for cancer development and progression including matrix metalloproteinases (MMPs), tissue serine proteases, and cathepsins. The goal of this research is to develop an Fe/Fe3O4 nanoparticle-based system for clinical diagnostics, which has the potential to measure the activity of cancer-associated proteases in biospecimens. Nanoparticle-based "light switches" for measuring protease activity consist of fluorescent cyanine dyes and porphyrins that are attached to Fe/Fe3O4 nanoparticles via consensus sequences. These consensus sequences can be cleaved in the presence of the correct protease, thus releasing a fluorescent dye from the Fe/Fe3O4 nanoparticle, resulting in highly sensitive (down to 1 × 10(-16) mol l(-1) for 12 proteases), selective, and fast nanoplatforms (required time: 60 min).
Ng, Melinda; Ndungo, Esther; Jangra, Rohit K.; Cai, Yingyun; Postnikova, Elena; Radoshitzky, Sheli R.; Dye, John M.; de Arellano, Eva Ramírez; Negredo, Ana; Palacios, Gustavo; Kuhn, Jens H.; Chandran, Kartik
2014-01-01
Lloviu virus (LLOV), a phylogenetically divergent filovirus, is the proposed etiologic agent of die-offs of Schreiber’s long-fingered bats (Miniopterus schreibersii) in western Europe. Studies of LLOV remain limited because the infectious agent has not yet been isolated. Here, we generated a recombinant vesicular stomatitis virus expressing the LLOV spike glycoprotein (GP) and used it to show that LLOV GP resembles other filovirus GP proteins in structure and function. LLOV GP must be cleaved by endosomal cysteine proteases during entry, but is much more protease-sensitive than EBOV GP. The EBOV/MARV receptor, Niemann Pick C1 (NPC1), is also required for LLOV entry, and its second luminal domain is recognized with high affinity by a cleaved form of LLOV GP, suggesting that receptor binding would not impose a barrier to LLOV infection of humans and non-human primates. The use of NPC1 as an intracellular entry receptor may be a universal property of filoviruses. PMID:25310500
Weiss, André; Joerss, Hanna; Brockmeyer, Jens
2014-01-01
EspPα and EspI are serine protease autotransporters found in enterohemorrhagic Escherichia coli. They both belong to the SPATE autotransporter family and are believed to contribute to pathogenicity via proteolytic cleavage and inactivation of different key host proteins during infection. Here, we describe the specific cleavage and functional inactivation of serine protease inhibitors (serpins) by EspPα and compare this activity with the related SPATE EspI. Serpins are structurally related proteins that regulate vital protease cascades, such as blood coagulation and inflammatory host response. For the rapid determination of serpin cleavage sites, we applied direct MALDI-TOF-MS or ESI-FTMS analysis of coincubations of serpins and SPATE proteases and confirmed observed cleavage positions using in-gel-digest of SDS-PAGE-separated degradation products. Activities of both serpin and SPATE protease were assessed in a newly developed photometrical assay using chromogenic peptide substrates. EspPα cleaved the serpins α1-protease inhibitor (α1-PI), α1-antichymotrypsin, angiotensinogen, and α2-antiplasmin. Serpin cleavage led to loss of inhibitory function as demonstrated for α1-PI while EspPα activity was not affected. Notably, EspPα showed pronounced specificity and cleaved procoagulatory serpins such as α2-antiplasmin while the anticoagulatory antithrombin III was not affected. Together with recently published research, this underlines the interference of EspPα with hemostasis or inflammatory responses during infection, while the observed interaction of EspI with serpins is likely to be not physiologically relevant. EspPα-mediated serpin cleavage occurred always in flexible loops, indicating that this structural motif might be required for substrate recognition. PMID:25347319
A Look Inside HIV Resistance through Retroviral Protease Interaction Maps
Kontijevskis, Aleksejs; Prusis, Peteris; Petrovska, Ramona; Yahorava, Sviatlana; Mutulis, Felikss; Mutule, Ilze; Komorowski, Jan; Wikberg, Jarl E. S
2007-01-01
Retroviruses affect a large number of species, from fish and birds to mammals and humans, with global socioeconomic negative impacts. Here the authors report and experimentally validate a novel approach for the analysis of the molecular networks that are involved in the recognition of substrates by retroviral proteases. Using multivariate analysis of the sequence-based physiochemical descriptions of 61 retroviral proteases comprising wild-type proteases, natural mutants, and drug-resistant forms of proteases from nine different viral species in relation to their ability to cleave 299 substrates, the authors mapped the physicochemical properties and cross-dependencies of the amino acids of the proteases and their substrates, which revealed a complex molecular interaction network of substrate recognition and cleavage. The approach allowed a detailed analysis of the molecular–chemical mechanisms involved in substrate cleavage by retroviral proteases. PMID:17352531
Yang, Hanjiang; Wahlmüller, Felix Christof; Sarg, Bettina; Furtmüller, Margareta; Geiger, Margarethe
2015-01-01
Protein C inhibitor (PCI) is a serpin with broad protease reactivity. It binds glycosaminoglycans and certain phospholipids that can modulate its inhibitory activity. PCI can penetrate through cellular membranes via binding to phosphatidylethanolamine. The exact mechanism of PCI internalization and the intracellular role of the serpin are not well understood. Here we showed that testisin, a glycosylphosphatidylinositol-anchored serine protease, cleaved human PCI and mouse PCI (mPCI) at their reactive sites as well as at sites close to their N terminus. This cleavage was observed not only with testisin in solution but also with cell membrane-anchored testisin on U937 cells. The cleavage close to the N terminus released peptides rich in basic amino acids. Synthetic peptides corresponding to the released peptides of human PCI (His1–Arg11) and mPCI (Arg1–Ala18) functioned as cell-penetrating peptides. Because intact mPCI but not testisin-cleaved mPCI was internalized by Jurkat T cells, a truncated mPCI mimicking testisin-cleaved mPCI was created. The truncated mPCI lacking 18 amino acids at the N terminus was not taken up by Jurkat T cells. Therefore our model suggests that testisin or other proteases could regulate the internalization of PCI by removing its N terminus. This may represent one of the mechanisms regulating the intracellular functions of PCI. PMID:25488662
Cleavage Entropy as Quantitative Measure of Protease Specificity
Fuchs, Julian E.; von Grafenstein, Susanne; Huber, Roland G.; Margreiter, Michael A.; Spitzer, Gudrun M.; Wallnoefer, Hannes G.; Liedl, Klaus R.
2013-01-01
A purely information theory-guided approach to quantitatively characterize protease specificity is established. We calculate an entropy value for each protease subpocket based on sequences of cleaved substrates extracted from the MEROPS database. We compare our results with known subpocket specificity profiles for individual proteases and protease groups (e.g. serine proteases, metallo proteases) and reflect them quantitatively. Summation of subpocket-wise cleavage entropy contributions yields a measure for overall protease substrate specificity. This total cleavage entropy allows ranking of different proteases with respect to their specificity, separating unspecific digestive enzymes showing high total cleavage entropy from specific proteases involved in signaling cascades. The development of a quantitative cleavage entropy score allows an unbiased comparison of subpocket-wise and overall protease specificity. Thus, it enables assessment of relative importance of physicochemical and structural descriptors in protease recognition. We present an exemplary application of cleavage entropy in tracing substrate specificity in protease evolution. This highlights the wide range of substrate promiscuity within homologue proteases and hence the heavy impact of a limited number of mutations on individual substrate specificity. PMID:23637583
Broad spectrum activity of a lectin-like bacterial serine protease family on human leukocytes.
Ayala-Lujan, Jorge Luis; Vijayakumar, Vidhya; Gong, Mei; Smith, Rachel; Santiago, Araceli E; Ruiz-Perez, Fernando
2014-01-01
The serine protease autotransporter from Enterobacteriaceae (SPATE) family, which number more than 25 proteases with apparent diverse functions, have been phylogenetically divided into two distinct classes, designated 1 and 2. We recently demonstrated that Pic and Tsh, two members of the class-2 SPATE family produced by intestinal and extraintestinal pathogenic E. coli, were able to cleave a number of O-glycosylated proteins on neutrophils and lymphocytes resulting in impaired leukocyte functions. Here we show that most members of the class-2 SPATE family have lectin-like properties and exhibit differential protease activity reliant on glycoprotein type and cell lineage. Protease activity was seen in virtually all tested O-glycosylated proteins including CD34, CD55, CD164, TIM1, TIM3, TIM4 and C1-INH. We also show that although SPATE proteins bound and cleaved glycoproteins more efficiently on granulocytes and monocytes, they also targeted glycoproteins on B, T and natural killer lymphocytes. Finally, we found that the characteristic domain-2 of class-2 SPATEs is not required for glycoprotease activity, but single amino acid mutations in Pic domain-1 to those residues naturally occurring in domain-1 of SepA, were sufficient to hamper Pic glycoprotease activity. This study shows that most class-2 SPATEs have redundant activities and suggest that they may function as immunomodulators at several levels of the immune system.
Broad Spectrum Activity of a Lectin-Like Bacterial Serine Protease Family on Human Leukocytes
Ayala-Lujan, Jorge Luis; Vijayakumar, Vidhya; Gong, Mei; Smith, Rachel; Santiago, Araceli E.; Ruiz-Perez, Fernando
2014-01-01
The serine protease autotransporter from Enterobacteriaceae (SPATE) family, which number more than 25 proteases with apparent diverse functions, have been phylogenetically divided into two distinct classes, designated 1 and 2. We recently demonstrated that Pic and Tsh, two members of the class-2 SPATE family produced by intestinal and extraintestinal pathogenic E. coli, were able to cleave a number of O-glycosylated proteins on neutrophils and lymphocytes resulting in impaired leukocyte functions. Here we show that most members of the class-2 SPATE family have lectin-like properties and exhibit differential protease activity reliant on glycoprotein type and cell lineage. Protease activity was seen in virtually all tested O-glycosylated proteins including CD34, CD55, CD164, TIM1, TIM3, TIM4 and C1-INH. We also show that although SPATE proteins bound and cleaved glycoproteins more efficiently on granulocytes and monocytes, they also targeted glycoproteins on B, T and natural killer lymphocytes. Finally, we found that the characteristic domain-2 of class-2 SPATEs is not required for glycoprotease activity, but single amino acid mutations in Pic domain-1 to those residues naturally occurring in domain-1 of SepA, were sufficient to hamper Pic glycoprotease activity. This study shows that most class-2 SPATEs have redundant activities and suggest that they may function as immunomodulators at several levels of the immune system. PMID:25251283
Flume Computer-Aided Design (CAD): Integrated CAD for Microflume Components and Systems
2002-04-01
31 3.3: Matching the Mix Ratio (Part B...sizes) will be optimized based on the required flow rates and mixing ratios of the different species. The influence of etch depth is investigated on a...Inhibition Study In this network, the target protein is mixed with protease (i.e. enzyme that cleaves the target protein) and the protease inhibitor (the
Plasmepsin V licenses Plasmodium proteins for export into the host erythrocyte.
Russo, Ilaria; Babbitt, Shalon; Muralidharan, Vasant; Butler, Tamira; Oksman, Anna; Goldberg, Daniel E
2010-02-04
During their intraerythrocytic development, malaria parasites export hundreds of proteins to remodel their host cell. Nutrient acquisition, cytoadherence and antigenic variation are among the key virulence functions effected by this erythrocyte takeover. Proteins destined for export are synthesized in the endoplasmic reticulum (ER) and cleaved at a conserved (PEXEL) motif, which allows translocation into the host cell via an ATP-driven translocon called the PTEX complex. We report that plasmepsin V, an ER aspartic protease with distant homology to the mammalian processing enzyme BACE, recognizes the PEXEL motif and cleaves it at the correct site. This enzyme is essential for parasite viability and ER residence is essential for its function. We propose that plasmepsin V is the PEXEL protease and is an attractive enzyme for antimalarial drug development.
Békés, Miklós; Rut, Wioletta; Kasperkiewicz, Paulina; Mulder, Monique P. C.; Ovaa, Huib; Drag, Marcin; Lima, Christopher D.; Huang, Tony T.
2015-01-01
Ubiquitin (Ub) and the ubiquitin-like modifier interferon stimulated gene 15 (ISG15) participate in the host defense of viral infections. Viruses, including the Severe Acute Respiratory Syndrome human coronavirus (SARS hCoV), have co-opted Ub/ISG15-conjugation pathways for their own advantage or have evolved effector proteins to counter pro-inflammatory properties of Ub/ISG15-conjugated host proteins. Here, we compare substrate specificities of the papain-like protease (PLpro) from the recently emerged Middle Eastern Respiratory Syndrome (MERS) hCoV to the related protease from SARS, SARS PLpro. Through biochemical assays, we show that similar to SARS PLpro, MERS PLpro is both a deubiquitinating and a deISGylating enzyme. Further analysis of the intrinsic deubiquitinating enzyme (DUB) activity of these viral proteases revealed unique differences between the recognition and cleavage specificities of polyUb chains. First, MERS PLpro shows broad linkage specificity for the cleavage of polyUb chains, while SARS PLpro prefers to cleave Lys48-linked polyUb chains. Second, MERS PLpro cleaves polyUb chains in a “mono-distributive” manner (one Ub at a time), and SARS PLpro prefers to cleave K48-linked poly-Ub chains by sensing a di-Ub moiety as a minimal recognition element using a “di-distributive” cleavage mechanism. The di-distributive cleavage mechanism for SARS PLpro appears to be uncommon among USP-family DUBs, as related USP family members from humans do not display such a mechanism. We propose that these intrinsic enzymatic differences between SARS and MERS PLpro will help identify pro-inflammatory substrates of these viral DUBs and can guide in the design of therapeutics to combat infection by coronaviruses. PMID:25764917
Morici, Nuccia; Cantoni, Silvia; Panzeri, Francesco; Sacco, Alice; Rusconi, Chiara; Stucchi, Miriam; Oliva, Fabrizio; Cattaneo, Marco
2017-07-01
Deficiency of the von Willebrand factor-cleaving protease ADAMTS13 is central to the pathophysiology of thrombotic thrombocytopenic purpura (TTP), a microangiopathic syndrome that presents as an acute medical emergency. In this review we will explore the evidence of a two-way relationship between TTP and ACS. Moreover, we will review the evidence emerged from epidemiological studies of an inverse relationship between the plasma levels of ADAMTS13 and the risk of ACS. Pubmed, MEDLINE and EMBASE, CINHAL, COCHRANE and Google Scholar databases were searched from inception to January 2017. The search yielded 43 studies representing 23 unique patient cases, 5 case series, 5 cohort studies and 10 case-control studies. Most ACS cases developing in the setting of TTP resolved with standard treatment of the underlying microangiopathy, with only a few requiring coronary invasive management. Antiplatelet therapy was not usually prescribed and all of the currently used P2Y 12 were felt to be a potential trigger for a TTP-like syndrome, although our review revealed that the occurrence of TTP in patients treated with new P2Y 12 antagonists is rare. Most studies confirmed the inverse association among ADAMTS13 levels and ACS. The heart is a definite target organ in TTP. The clinical spectrum of its involvement is probably influenced by local factors that add on to the systemic deficiency characteristic of TTP. It follows that patients with TTP should be carefully monitored for ACS events, especially when multiple risk factors for coronary disease exist. Copyright © 2017 Elsevier Ltd. All rights reserved.
Activation of Influenza A Viruses by Host Proteases from Swine Airway Epithelium
Peitsch, Catharina; Klenk, Hans-Dieter; Garten, Wolfgang
2014-01-01
Pigs are important natural hosts of influenza A viruses, and due to their susceptibility to swine, avian, and human viruses, they may serve as intermediate hosts supporting adaptation and genetic reassortment. Cleavage of the influenza virus surface glycoprotein hemagglutinin (HA) by host cell proteases is essential for viral infectivity. Most influenza viruses, including human and swine viruses, are activated at a monobasic HA cleavage site, and we previously identified TMPRSS2 and HAT to be relevant proteases present in human airways. We investigated the proteolytic activation of influenza viruses in primary porcine tracheal and bronchial epithelial cells (PTEC and PBEC, respectively). Human H1N1 and H3N2 viruses replicated efficiently in PTECs and PBECs, and viruses containing cleaved HA were released from infected cells. Moreover, the cells supported the proteolytic activation of HA at the stage of entry. We found that swine proteases homologous to TMPRSS2 and HAT, designated swTMPRSS2 and swAT, respectively, were expressed in several parts of the porcine respiratory tract. Both proteases cloned from primary PBECs were shown to activate HA with a monobasic cleavage site upon coexpression and support multicycle replication of influenza viruses. swAT was predominantly localized at the plasma membrane, where it was present as an active protease that mediated activation of incoming virus. In contrast, swTMPRSS2 accumulated in the trans-Golgi network, suggesting that it cleaves HA in this compartment. In conclusion, our data show that HA activation in porcine airways may occur by similar proteases and at similar stages of the viral life cycle as in human airways. PMID:24155384
Schaal, René; Kupfahl, Claudio; Buchheidt, Dieter; Neumaier, Michael; Findeisen, Peter
2007-11-01
Reliable and early diagnosis of life-threatening invasive mycoses in neutropenic patients caused by fungi of the Aspergillus species remains challenging because current clinical diagnostic tools lack in sensitivity and/or specificity. During invasive growth a variety of fungal proteases are secreted into the bloodstream and protease profiling with reporter peptides might improve diagnosis of invasive aspergillosis in serum specimens. To characterise the specific protease activity of Aspergillus fumigatus and Aspergillus niger we analyzed Aspergillus culture supernatants, human serum and the mixture of both. A systematic screening for optimised protease substrates was performed using a random peptide library consisting of 360 synthetic peptides featuring fluorescence resonance energy transfer (FRET). We could identify numerous peptides that are selectively cleaved by fungus-specific proteases. These reporter peptides might be feasible for future protease profiling of serum specimens to improve diagnosis and monitoring of invasive aspergillosis.
Kong, Lulu; Lu, Anrui; Guan, Jingmin; Yang, Bing; Li, Muwang; Hillyer, Julián F; Ramarao, Nalini; Söderhäll, Kenneth; Liu, Chaoliang; Ling, Erjun
2015-01-01
Thermolysin, a metallopeptidase secreted by pathogenic microbes, is concluded as an important virulence factor due to cleaving purified host proteins in vitro. Using the silkworm Bombyx mori as a model system, we found that thermolysin injection into larvae induces the destruction of the coagulation response and the activation of hemolymph melanization, which results in larval death. Thermolysin triggers the rapid degradation of insect and mammalian plasma proteins at a level that is considerably greater than expected in vitro and/or in vivo. To more specifically explore the mechanism, thermolysin-induced changes to key proteins belonging to the insect melanization pathway were assessed as a window for observing plasma protein cleavage. The application of thermolysin induced the rapid cleavage of the melanization negative regulator serpin-3, but did not directly activate the melanization rate-limiting enzyme prophenoloxidase (PPO) or the terminal serine proteases responsible for PPO activation. Terminal serine proteases of melanization are activated indirectly after thermolysin exposure. We hypothesize that thermolysin induces the rapid degradation of serpins and the activation of proteases directly or indirectly, boosting uncontrolled plasma protein degradation in insects and mammalians. © 2014 Wiley Periodicals, Inc.
Au, Ka-Yee; Wang, Rui-Rui; Wong, Yuen-Ting; Wong, Kam-Bo; Zheng, Yong-Tang; Shaw, Pang-Chui
2014-03-01
Ricin is a type II ribosome-inactivating protein (RIP) that potently inactivates eukaryotic ribosomes by removing a specific adenine residue at the conserved α-sarcin/ricin loop of 28S ribosomal RNA (rRNA). Here, we try to increase the specificity of the enzymatically active ricin A chain (RTA) towards human immunodeficiency virus type 1 (HIV-1) by adding a loop with HIV protease recognition site to RTA. HIV-specific RTA variants were constructed by inserting a peptide with HIV-protease recognition site either internally or at the C-terminal region of wild type RTA. Cleavability of variants by viral protease was tested in vitro and in HIV-infected cells. The production of viral p24 antigen and syncytium in the presence of C-terminal variants was measured to examine the anti-HIV activities of the variants. C-terminal RTA variants were specifically cleaved by HIV-1 protease both in vitro and in HIV-infected cells. Upon proteolysis, the processed variants showed enhanced antiviral effect with low cytotoxicity towards uninfected cells. RTA variants with HIV protease recognition sequence engineered at the C-terminus were cleaved and the products mediated specific inhibitory effect towards HIV replication. Current cocktail treatment of HIV infection fails to eradicate the virus from patients. Here we illustrate the feasibility of targeting an RIP towards HIV-infected cells by incorporation of HIV protease cleavage sequence. This approach may be generalized to other RIPs and is promising in drug design for combating HIV. Copyright © 2013 Elsevier B.V. All rights reserved.
Lindberg, Pia; Devine, Ellenor; Stensjö, Karin
2012-01-01
The maturation process of [NiFe] hydrogenases includes a proteolytic cleavage of the large subunit. We constructed a mutant of Nostoc strain PCC 7120 in which hupW, encoding a putative hydrogenase-specific protease, is inactivated. Our results indicate that the protein product of hupW selectively cleaves the uptake hydrogenase in this cyanobacterium. PMID:22020512
Magnussen, Synnove Norvoll; Hadler-Olsen, Elin; Costea, Daniela Elena; Berg, Eli; Jacobsen, Cristiane Cavalcanti; Mortensen, Bente; Salo, Tuula; Martinez-Zubiaurre, Inigo; Winberg, Jan-Olof; Uhlin-Hansen, Lars; Svineng, Gunbjorg
2017-05-19
Urokinase plasminogen activator (uPA) receptor (uPAR) is up-regulated at the invasive tumour front of human oral squamous cell carcinoma (OSCC), indicating a role for uPAR in tumour progression. We previously observed elevated expression of uPAR at the tumour-stroma interface in a mouse model for OSCC, which was associated with increased proteolytic activity. The tumour microenvironment regulated uPAR expression, as well as its glycosylation and cleavage. Both full-length- and cleaved uPAR (uPAR (II-III)) are involved in highly regulated processes such as cell signalling, proliferation, migration, stem cell mobilization and invasion. The aim of the current study was to analyse tumour associated factors and their effect on uPAR cleavage, and the potential implications for cell proliferation, migration and invasion. Mouse uPAR was stably overexpressed in the mouse OSCC cell line AT84. The ratio of full-length versus cleaved uPAR as analysed by Western blotting and its regulation was assessed by addition of different protease inhibitors and transforming growth factor - β1 (TGF-β1). The role of uPAR cleavage in cell proliferation and migration was analysed using real-time cell analysis and invasion was assessed using the myoma invasion model. We found that when uPAR was overexpressed a proportion of the receptor was cleaved, thus the cells presented both full-length uPAR and uPAR (II-III). Cleavage was mainly performed by serine proteases and urokinase plasminogen activator (uPA) in particular. When the OSCC cells were stimulated with TGF-β1, the production of the uPA inhibitor PAI-1 was increased, resulting in a reduction of uPAR cleavage. By inhibiting cleavage of uPAR, cell migration was reduced, and by inhibiting uPA activity, invasion was reduced. We could also show that medium containing soluble uPAR (suPAR), and cleaved soluble uPAR (suPAR (II-III)), induced migration in OSCC cells with low endogenous levels of uPAR. These results show that soluble factors in the tumour microenvironment, such as TGF-β1, PAI-1 and uPA, can influence the ratio of full length and uPAR (II-III) and thereby potentially effect cell migration and invasion. Resolving how uPAR cleavage is controlled is therefore vital for understanding how OSCC progresses and potentially provides new targets for therapy.
Pettit, Steve C; Lindquist, Jeffrey N; Kaplan, Andrew H; Swanstrom, Ronald
2005-01-01
We have examined the kinetics of processing of the HIV-1 Gag-Pro-Pol precursor in an in vitro assay with mature protease added in trans. The processing sites were cleaved at different rates to produce distinct intermediates. The initial cleavage occurred at the p2/NC site. Intermediate cleavages occurred at similar rates at the MA/CA and RT/IN sites, and to a lesser extent at sites upstream of RT. Late cleavages occurred at the sites flanking the protease (PR) domain, suggesting sequestering of these sites. We observed paired intermediates indicative of half- cleavage of RT/RH site, suggesting that the RT domain in Gag-Pro-Pol was in a dimeric form under these assay conditions. These results clarify our understanding of the processing kinetics of the Gag-Pro-Pol precursor and suggest regulated cleavage. Our results further suggest that early dimerization of the PR and RT domains may serve as a regulatory element to influence the kinetics of processing within the Pol domain. PMID:16262906
Pettit, Steve C; Lindquist, Jeffrey N; Kaplan, Andrew H; Swanstrom, Ronald
2005-11-01
We have examined the kinetics of processing of the HIV-1 Gag-Pro-Pol precursor in an in vitro assay with mature protease added in trans. The processing sites were cleaved at different rates to produce distinct intermediates. The initial cleavage occurred at the p2/NC site. Intermediate cleavages occurred at similar rates at the MA/CA and RT/IN sites, and to a lesser extent at sites upstream of RT. Late cleavages occurred at the sites flanking the protease (PR) domain, suggesting sequestering of these sites. We observed paired intermediates indicative of half- cleavage of RT/RH site, suggesting that the RT domain in Gag-Pro-Pol was in a dimeric form under these assay conditions. These results clarify our understanding of the processing kinetics of the Gag-Pro-Pol precursor and suggest regulated cleavage. Our results further suggest that early dimerization of the PR and RT domains may serve as a regulatory element to influence the kinetics of processing within the Pol domain.
The IL-8 Protease SpyCEP/ScpC of Group A Streptococcus Promotes Resistance to Neutrophil Killing
Zinkernagel, Annelies S.; Timmer, Anjuli M.; Pence, Morgan A.; Locke, Jeffrey B.; Buchanan, John T.; Turner, Claire E.; Mishalian, Inbal; Sriskandan, Shiranee; Hanski, Emanuel; Nizet, Victor
2009-01-01
SUMMARY Interleukin-8 (IL-8) promotes neutrophil-mediated host defense through its chemoattractant and immunostimulatory activities. The Group A Streptococcus (GAS) protease SpyCEP (also called ScpC) cleaves IL-8, and SpyCEP expression is strongly upregulated in vivo in the M1T1 GAS strains associated with life-threatening systemic disease including necrotizing fasciitis. Coupling allelic replacement with heterologous gene expression, we show that SpyCEP is necessary and sufficient for IL-8 degradation. SpyCEP decreased IL-8-dependent neutrophil endothelial transmigration and bacterial killing, the latter by reducing neutrophil extracellular trap formation. The knockout mutant lacking SpyCEP was attenuated for virulence in murine infection models, and SpyCEP expression conferred protection to coinfecting bacteria. We also show that the zoonotic pathogen Streptococcus iniae possesses a functional homolog of SpyCEP (Cepl) that cleaves IL-8, promotes neutrophil resistance, and contributes to virulence. By inactivating the multifunctional host defense peptide IL-8, the SpyCEP protease impairs neutrophil clearance mechanisms, contributing to the pathogenesis of invasive streptococcal infection. PMID:18692776
Straus, Marco R.; Whittaker, Gary R.
2017-01-01
Cleavage activation of the hemagglutinin (HA) protein by host proteases is a crucial step in the infection process of influenza A viruses (IAV). However, IAV exists in eighteen different HA subtypes in nature and their cleavage sites vary considerably. There is uncertainty regarding which specific proteases activate a given HA in the human respiratory tract. Understanding the relationship between different HA subtypes and human-specific proteases will be valuable in assessing the pandemic potential of circulating viruses. Here we utilized fluorogenic peptides mimicking the HA cleavage motif of representative IAV strains causing disease in humans or of zoonotic/pandemic potential and tested them with a range of proteases known to be present in the human respiratory tract. Our results show that peptides from the H1, H2 and H3 subtypes are cleaved efficiently by a wide range of proteases including trypsin, matriptase, human airway tryptase (HAT), kallikrein-related peptidases 5 (KLK5) and 12 (KLK12) and plasmin. Regarding IAVs currently of concern for human adaptation, cleavage site peptides from H10 viruses showed very limited cleavage by respiratory tract proteases. Peptide mimics from H6 viruses showed broader cleavage by respiratory tract proteases, while H5, H7 and H9 subtypes showed variable cleavage; particularly matriptase appeared to be a key protease capable of activating IAVs. We also tested HA substrate specificity of Factor Xa, a protease required for HA cleavage in chicken embryos and relevant for influenza virus production in eggs. Overall our data provide novel tool allowing the assessment of human adaptation of IAV HA subtypes. PMID:28358853
Szabó, András; Ludwig, Maren; Hegyi, Eszter; Szépeová, Renata; Witt, Heiko; Sahin-Tóth, Miklós
2015-07-10
Human chymotrypsin C (CTRC) protects against pancreatitis by degrading trypsinogen and thereby curtailing harmful intra-pancreatic trypsinogen activation. Loss-of-function mutations in CTRC increase the risk for chronic pancreatitis. Here we describe functional analysis of eight previously uncharacterized natural CTRC variants tested for potential defects in secretion, proteolytic stability, and catalytic activity. We found that all variants were secreted from transfected cells normally, and none suffered proteolytic degradation by trypsin. Five variants had normal enzymatic activity, whereas variant p.R29Q was catalytically inactive due to loss of activation by trypsin and variant p.S239C exhibited impaired activity possibly caused by disulfide mispairing. Surprisingly, variant p.G214R had increased activity on a small chromogenic peptide substrate but was markedly defective in cleaving bovine β-casein or the natural CTRC substrates human cationic trypsinogen and procarboxypeptidase A1. Mutation p.G214R is analogous to the evolutionary mutation in human mesotrypsin, which rendered this trypsin isoform resistant to proteinaceous inhibitors and conferred its ability to cleave these inhibitors. Similarly to the mesotrypsin phenotype, CTRC variant p.G214R was inhibited poorly by eglin C, ecotin, or a CTRC-specific variant of SGPI-2, and it readily cleaved the reactive-site peptide bonds in eglin C and ecotin. We conclude that CTRC variants p.R29Q, p.G214R, and p.S239C are risk factors for chronic pancreatitis. Furthermore, the mesotrypsin-like CTRC variant highlights how the same natural mutation in homologous pancreatic serine proteases can evolve a new physiological role or lead to pathology, determined by the biological context of protease function. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
A new fusion protein platform for quantitatively measuring activity of multiple proteases
2014-01-01
Background Recombinant proteins fused with specific cleavage sequences are widely used as substrate for quantitatively analyzing the activity of proteases. Here we propose a new fusion platform for multiple proteases, by using diaminopropionate ammonia-lyase (DAL) as the fusion protein. It was based on the finding that a fused His6-tag could significantly decreases the activities of DAL from E. coli (eDAL) and Salmonella typhimurium (sDAL). Previously, we have shown that His6GST-tagged eDAL could be used to determine the activity of tobacco etch virus protease (TEVp) under different temperatures or in the denaturant at different concentrations. In this report, we will assay different tags and cleavage sequences on DAL for expressing yield in E. coli, stability of the fused proteins and performance of substrate of other common proteases. Results We tested seven different protease cleavage sequences (rhinovirus 3C, TEV protease, factor Xa, Ssp DnaB intein, Sce VMA1 intein, thrombin and enterokinase), three different tags (His6, GST, CBD and MBP) and two different DALs (eDAL and sDAL), for their performance as substrate to the seven corresponding proteases. Among them, we found four active DAL-fusion substrates suitable for TEVp, factor Xa, thrombin and DnaB intein. Enterokinase cleaved eDAL at undesired positions and did not process sDAL. Substitution of GST with MBP increase the expression level of the fused eDAL and this fusion protein was suitable as a substrate for analyzing activity of rhinovirus 3C. We demonstrated that SUMO protease Ulp1 with a N-terminal His6-tag or MBP tag displayed different activity using the designed His6SUMO-eDAL as substrate. Finally, owing to the high level of the DAL-fusion protein in E. coli, these protein substrates can also be detected directly from the crude extract. Conclusion The results show that our designed DAL-fusion proteins can be used to quantify the activities of both sequence- and conformational-specific proteases, with sufficient substrate specificity. PMID:24649897
Structural and enzymatic characterization of a host-specificity determinant from Salmonella
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kohler, Amanda C.; Spanò, Stefania; Galán, Jorge E.
The Salmonella effector protein GtgE functions as a cysteine protease to cleave a subset of the Rab-family GTPases and to prevent delivery of antimicrobial agents to the Salmonella-containing vacuole. GtgE is an effector protein from Salmonella Typhimurium that modulates trafficking of the Salmonella-containing vacuole. It exerts its function by cleaving the Rab-family GTPases Rab29, Rab32 and Rab38, thereby preventing the delivery of antimicrobial factors to the bacteria-containing vacuole. Here, the crystal structure of GtgE at 1.65 Å resolution is presented, and structure-based mutagenesis and in vivo infection assays are used to identify its catalytic triad. A panel of cysteine proteasemore » inhibitors were examined and it was determined that N-ethylmaleimide, antipain and chymostatin inhibit GtgE activity in vitro. These findings provide the basis for the development of novel therapeutic strategies to combat Salmonella infections.« less
Functional Implications of Domain Organization Within Prokaryotic Rhomboid Proteases.
Panigrahi, Rashmi; Lemieux, M Joanne
2015-01-01
Intramembrane proteases are membrane embedded enzymes that cleave transmembrane substrates. This interesting class of enzyme and its water mediated substrate cleavage mechanism occurring within the hydrophobic lipid bilayer has drawn the attention of researchers. Rhomboids are a family of ubiquitous serine intramembrane proteases. Bacterial forms of rhomboid proteases are mainly composed of six transmembrane helices that are preceded by a soluble N-terminal domain. Several crystal structures of the membrane domain of the E. coli rhomboid protease ecGlpG have been solved. Independently, the ecGlpG N-terminal cytoplasmic domain structure was solved using both NMR and protein crystallography. Despite these structures, we still do not know the structure of the full-length protein, nor do we know the functional role of these domains in the cell. This chapter will review the structural and functional roles of the different domains associated with prokaryotic rhomboid proteases. Lastly, we will address questions remaining in the field.
Ye, Xu; Pan, Ting; Wang, Dang; Fang, Liurong; Ma, Jun; Zhu, Xinyu; Shi, Yanling; Zhang, Keshan; Zheng, Haixue; Chen, Huanchun; Li, Kui; Xiao, Shaobo
2018-01-01
Foot-and-mouth disease (FMD) is a highly contagious, severe viral illness notifiable to the World Organization for Animal Health. The causative agent, FMD virus (FMDV), replicates rapidly and efficiently inhibits host translation and the innate immune response for it has developed multiple tactics to evade host defenses and takes over gene expression machinery in the host cell. Here, we report a systemic analysis of the proteome and phosphoproteome of FMDV-infected cells. Bioinformatics analysis suggested that FMDV infection shuts off host cap-dependent translation, but leaves intact internal ribosome entry site (IRES)-mediated translation for viral proteins. Interestingly, several FMDV IRES-transacting factors, including G3BP stress granule assembly factor 1 (G3BP1), were dephosphorylated during FMDV infection. Ectopic expression of G3BP1 inhibited FMDV IRES activity, promoted assembly of stress granules, and activated innate immune responses, collectively suppressing FMDV replication. To counteract these host protective responses, FMDV-induced dephosphorylation of G3BP1, compromising its inhibitory effect on viral IRES. In addition, FMDV also proteolytically cleaved G3BP1 by its 3C protease (3Cpro). G3BP1 was cleaved at glutamic acid-284 (E284) by FMDV 3Cpro, and this cleavage completely lost the abilities of G3BP1 to activate innate immunity and to inhibit FMDV replication. Together, these data provide new insights into the post-translational mechanisms by which FMDV limits host stress and antiviral responses and indicate that G3BP1 dephosphorylation and its proteolysis by viral protease are important factors in the failure of host defense against FMDV infection.
Christian, Jan; Vier, Juliane; Paschen, Stefan A.; Häcker, Georg
2010-01-01
Chlamydiae are obligate intracellular bacteria that frequently cause human disease. Chlamydiae replicate in a membranous vacuole in the cytoplasm termed inclusion but have the ability to transport proteins into the host cell cytosol. Chlamydial replication is associated with numerous changes of host cell functions, and these changes are often linked to proteolytic events. It has been shown earlier that the member of the NF-κB family of inflammation-associated transcription factors, p65/RelA, is cleaved during chlamydial infection, and a chlamydial protease has been implicated. We here provide evidence that the chlamydial protease chlamydial protease-like activity factor (CPAF) is responsible for degradation of p65/RelA during infection. This degradation was seen in human and in mouse cells infected with either Chlamydia trachomatis or Chlamydia pneumoniae where it correlated with the expression of CPAF and CPAF activity. Isolated expression of active C. trachomatis or C. pneumoniae CPAF in human or mouse cells yielded a p65 fragment of indistinguishable size from the one generated during infection. Expression of active CPAF in human cells caused a mild reduction in IκBα phosphorylation but a strong reduction in NF-κB reporter activity in response to interleukin-1β. Infection with C. trachomatis likewise reduced this responsiveness. IL-1β-dependent secretion of IL-8 was further reduced by CPAF expression. Secretion of CPAF is, thus, a mechanism that reduces host cell sensitivity to a proinflammatory stimulus, which may facilitate bacterial growth in vivo. PMID:21041296
Mirza, Shaper; Wilson, Landon; Benjamin, William H.; Novak, Jan; Barnes, Stephen; Hollingshead, Susan K.; Briles, David E.
2011-01-01
It is known that apolactoferrin, the iron-free form of human lactoferrin, can kill many species of bacteria, including Streptococcus pneumoniae. Lactoferricin, an N-terminal peptide of apolactoferrin, and fragments of it are even more bactericidal than apolactoferrin. In this study we found that apolactoferrin must be cleaved by a serine protease in order for it to kill pneumococci. The serine protease inhibitors were able to block killing by apolactoferrin but did not block killing by a lactoferrin-derived peptide. Thus, the killing of pneumococci by apolactoferrin appears to require a protease to release a lactoferricin-like peptide(s). Incubation of apolactoferrin with growing pneumococci resulted in a 12-kDa reduction in its molecular mass, of which about 7 to 8 kDa of the reduction was protease dependent. Capsular type 2 and 19F strains with mutations in the gene encoding the major cell wall-associated serine protease, prtA, lost much of their ability to degrade apolactoferrin and were relatively resistant to killing by apolactoferrin (P < 0.001). Recombinant PrtA was also able to cleave apolactoferrin, reducing its mass by about 8 kDa, and greatly enhance the killing activity of the solution containing the apolactoferrin and its cleavage products. Mass spectroscopy revealed that PrtA makes a major cut between amino acids 78 and 79 of human lactoferrin, removing the N-terminal end of the molecule (about 8.6 kDa). The simplest interpretation of these data is that the mechanism by which apolactoferrin kills Streptococcus pneumoniae requires the release of a lactoferricin-like peptide(s) and that it is this peptide(s), and not the intact apolactoferrin, which kills pneumococci. PMID:21422179
Spoerry, Christian; Hessle, Pontus; Lewis, Melanie J.; Paton, Lois; Woof, Jenny M.
2016-01-01
Recently we have discovered an IgG degrading enzyme of the endemic pig pathogen S. suis designated IgdE that is highly specific for porcine IgG. This protease is the founding member of a novel cysteine protease family assigned C113 in the MEROPS peptidase database. Bioinformatical analyses revealed putative members of the IgdE protease family in eight other Streptococcus species. The genes of the putative IgdE family proteases of S. agalactiae, S. porcinus, S. pseudoporcinus and S. equi subsp. zooepidemicus were cloned for production of recombinant protein into expression vectors. Recombinant proteins of all four IgdE family proteases were proteolytically active against IgG of the respective Streptococcus species hosts, but not against IgG from other tested species or other classes of immunoglobulins, thereby linking the substrate specificity to the known host tropism. The novel IgdE family proteases of S. agalactiae, S. pseudoporcinus and S. equi showed IgG subtype specificity, i.e. IgdE from S. agalactiae and S. pseudoporcinus cleaved human IgG1, while IgdE from S. equi was subtype specific for equine IgG7. Porcine IgG subtype specificities of the IgdE family proteases of S. porcinus and S. pseudoporcinus remain to be determined. Cleavage of porcine IgG by IgdE of S. pseudoporcinus is suggested to be an evolutionary remaining activity reflecting ancestry of the human pathogen to the porcine pathogen S. porcinus. The IgG subtype specificity of bacterial proteases indicates the special importance of these IgG subtypes in counteracting infection or colonization and opportunistic streptococci neutralize such antibodies through expression of IgdE family proteases as putative immune evasion factors. We suggest that IgdE family proteases might be valid vaccine targets against streptococci of both human and veterinary medical concerns and could also be of therapeutic as well as biotechnological use. PMID:27749921
The Flavivirus Protease As a Target for Drug Discovery
Brecher, Matthew; Zhang, Jing; Li, Hongmin
2014-01-01
Many flaviviruses are significant human pathogens causing considerable disease burdens, including encephalitis and hemorrhagic fever, in the regions in which they are endemic. A paucity of treatments for flaviviral infections has driven interest in drug development targeting proteins essential to flavivirus replication, such as the viral protease. During viral replication, the flavivirus genome is translated as a single polyprotein precursor, which must be cleaved into individual proteins by a complex of the viral protease, NS3, and its cofactor, NS2B. Because this cleavage is an obligate step of the viral life-cycle, the flavivirus protease is an attractive target for antiviral drug development. In this review, we will survey recent drug development studies targeting the NS3 active site, as well as studies targeting an NS2B/NS3 interaction site determined from flavivirus protease crystal structures. PMID:24242363
The flavivirus protease as a target for drug discovery.
Brecher, Matthew; Zhang, Jing; Li, Hongmin
2013-12-01
Many flaviviruses are significant human pathogens causing considerable disease burdens, including encephalitis and hemorrhagic fever, in the regions in which they are endemic. A paucity of treatments for flaviviral infections has driven interest in drug development targeting proteins essential to flavivirus replication, such as the viral protease. During viral replication, the flavivirus genome is translated as a single polyprotein precursor, which must be cleaved into individual proteins by a complex of the viral protease, NS3, and its cofactor, NS2B. Because this cleavage is an obligate step of the viral life-cycle, the flavivirus protease is an attractive target for antiviral drug development. In this review, we will survey recent drug development studies targeting the NS3 active site, as well as studies targeting an NS2B/NS3 interaction site determined from flavivirus protease crystal structures.
Salgado-Pabon, Wilmara; Meyerholz, David K.; White, Mark J.; Schlievert, Patrick M.
2016-01-01
ABSTRACT The Spl proteases are a group of six serine proteases that are encoded on the νSaβ pathogenicity island and are unique to Staphylococcus aureus. Despite their interesting biochemistry, their biological substrates and functions in virulence have been difficult to elucidate. We found that an spl operon mutant of the community-associated methicillin-resistant S. aureus USA300 strain LAC induced localized lung damage in a rabbit model of pneumonia, characterized by bronchopneumonia observed histologically. Disease in the mutant-infected rabbits was restricted in distribution compared to that in wild-type USA300-infected rabbits. We also found that SplA is able to cleave the mucin 16 glycoprotein from the surface of the CalU-3 lung cell line, suggesting a possible mechanism for wild-type USA300 spreading pneumonia to both lungs. Investigation of the secreted and surface proteomes of wild-type USA300 and the spl mutant revealed multiple alterations in metabolic proteins and virulence factors. This study demonstrates that the Spls modulate S. aureus physiology and virulence, identifies a human target of SplA, and suggests potential S. aureus targets of the Spl proteases. IMPORTANCE Staphylococcus aureus is a versatile human pathogen that produces an array of virulence factors, including several proteases. Of these, six proteases called the Spls are the least characterized. Previous evidence suggests that the Spls are expressed during human infection; however, their function is unknown. Our study shows that the Spls are required for S. aureus to cause disseminated lung damage during pneumonia. Further, we present the first example of a human protein cut by an Spl protease. Although the Spls were predicted not to cut staphylococcal proteins, we also show that an spl mutant has altered abundance of both secreted and surface-associated proteins. This work provides novel insight into the function of Spls during infection and their potential ability to degrade both staphylococcal and human proteins. PMID:27747296
Lu, Guangwen; Wang, Qihui; Gao, George F
2015-08-01
Both severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) are zoonotic pathogens that crossed the species barriers to infect humans. The mechanism of viral interspecies transmission is an important scientific question to be addressed. These coronaviruses contain a surface-located spike (S) protein that initiates infection by mediating receptor-recognition and membrane fusion and is therefore a key factor in host specificity. In addition, the S protein needs to be cleaved by host proteases before executing fusion, making these proteases a second determinant of coronavirus interspecies infection. Here, we summarize the progress made in the past decade in understanding the cross-species transmission of SARS-CoV and MERS-CoV by focusing on the features of the S protein, its receptor-binding characteristics, and the cleavage process involved in priming. Copyright © 2015 Elsevier Ltd. All rights reserved.
Reinke, Lennart Michel; Hartleib, Anika; Nehlmeier, Inga; Gierer, Stefanie; Hoffmann, Markus; Hofmann-Winkler, Heike; Winkler, Michael
2017-01-01
The spike (S) protein of severe acute respiratory syndrome coronavirus (SARS-CoV) mediates viral entry into target cells. Cleavage and activation of SARS S by a host cell protease is essential for infectious viral entry and the responsible enzymes are potential targets for antiviral intervention. The type II transmembrane serine protease TMPRSS2 cleaves and activates SARS S in cell culture and potentially also in the infected host. Here, we investigated which determinants in SARS S control cleavage and activation by TMPRSS2. We found that SARS S residue R667, a previously identified trypsin cleavage site, is also required for S protein cleavage by TMPRSS2. The cleavage fragments produced by trypsin and TMPRSS2 differed in their decoration with N-glycans, suggesting that these proteases cleave different SARS S glycoforms. Although R667 was required for SARS S cleavage by TMPRSS2, this residue was dispensable for TMPRSS2-mediated S protein activation. Conversely, residue R797, previously reported to be required for SARS S activation by trypsin, was dispensable for S protein cleavage but required for S protein activation by TMPRSS2. Collectively, these results show that different residues in SARS S control cleavage and activation by TMPRSS2, suggesting that these processes are more complex than initially appreciated. PMID:28636671
Reinke, Lennart Michel; Spiegel, Martin; Plegge, Teresa; Hartleib, Anika; Nehlmeier, Inga; Gierer, Stefanie; Hoffmann, Markus; Hofmann-Winkler, Heike; Winkler, Michael; Pöhlmann, Stefan
2017-01-01
The spike (S) protein of severe acute respiratory syndrome coronavirus (SARS-CoV) mediates viral entry into target cells. Cleavage and activation of SARS S by a host cell protease is essential for infectious viral entry and the responsible enzymes are potential targets for antiviral intervention. The type II transmembrane serine protease TMPRSS2 cleaves and activates SARS S in cell culture and potentially also in the infected host. Here, we investigated which determinants in SARS S control cleavage and activation by TMPRSS2. We found that SARS S residue R667, a previously identified trypsin cleavage site, is also required for S protein cleavage by TMPRSS2. The cleavage fragments produced by trypsin and TMPRSS2 differed in their decoration with N-glycans, suggesting that these proteases cleave different SARS S glycoforms. Although R667 was required for SARS S cleavage by TMPRSS2, this residue was dispensable for TMPRSS2-mediated S protein activation. Conversely, residue R797, previously reported to be required for SARS S activation by trypsin, was dispensable for S protein cleavage but required for S protein activation by TMPRSS2. Collectively, these results show that different residues in SARS S control cleavage and activation by TMPRSS2, suggesting that these processes are more complex than initially appreciated.
2009-01-01
Background The last step in the maturation process of the large subunit of [NiFe]-hydrogenases is a proteolytic cleavage of the C-terminal by a hydrogenase specific protease. Contrary to other accessory proteins these hydrogenase proteases are believed to be specific whereby one type of hydrogenases specific protease only cleaves one type of hydrogenase. In cyanobacteria this is achieved by the gene product of either hupW or hoxW, specific for the uptake or the bidirectional hydrogenase respectively. The filamentous cyanobacteria Nostoc punctiforme ATCC 29133 and Nostoc sp strain PCC 7120 may contain a single uptake hydrogenase or both an uptake and a bidirectional hydrogenase respectively. Results In order to examine these proteases in cyanobacteria, transcriptional analyses were performed of hupW in Nostoc punctiforme ATCC 29133 and hupW and hoxW in Nostoc sp. strain PCC 7120. These studies revealed numerous transcriptional start points together with putative binding sites for NtcA (hupW) and LexA (hoxW). In order to investigate the diversity and specificity among hydrogeanse specific proteases we constructed a phylogenetic tree which revealed several subgroups that showed a striking resemblance to the subgroups previously described for [NiFe]-hydrogenases. Additionally the proteases specificity was also addressed by amino acid sequence analysis and protein-protein docking experiments with 3D-models derived from bioinformatic studies. These studies revealed a so called "HOXBOX"; an amino acid sequence specific for protease of Hox-type which might be involved in docking with the large subunit of the hydrogenase. Conclusion Our findings suggest that the hydrogenase specific proteases are under similar regulatory control as the hydrogenases they cleave. The result from the phylogenetic study also indicates that the hydrogenase and the protease have co-evolved since ancient time and suggests that at least one major horizontal gene transfer has occurred. This co-evolution could be the result of a close interaction between the protease and the large subunit of the [NiFe]-hydrogenases, a theory supported by protein-protein docking experiments performed with 3D-models. Finally we present data that may explain the specificity seen among hydrogenase specific proteases, the so called "HOXBOX"; an amino acid sequence specific for proteases of Hox-type. This opens the door for more detailed studies of the specificity found among hydrogenase specific proteases and the structural properties behind it. PMID:19284580
Griffiths, James S; Thompson, Aiysha; Stott, Matthew; Benny, Ankita; Lewis, Natalie A; Taylor, Philip R; Forton, Julian; Herrick, Sarah; Orr, Selinda J; McGreal, Eamon P
2018-06-01
Patients with cystic fibrosis (CF) experience chronic or recurrent bacterial and fungal lung infections. Many patients with CF cannot effectively clear Aspergillus from their lungs. This may result in IgE sensitization and the development of allergic bronchopulmonary aspergillosis, or invasive infections, such as Aspergillus bronchitis. Lung disease in patients with CF is associated with neutrophil-dominated inflammation and elevated levels of the serine protease, neutrophil elastase (NE). Various C-type lectin-like receptors (CLRs), including Dectin-1 and Dectin-2, are involved in the immune response to Aspergillus. Here, we show that purified NE cleaves Dectin-1 in an isoform-specific manner. Bronchoalveolar lavage fluid from patients with CF, which contains high NE activity, induces Dectin-1 cleavage. Similarly, filtrate from a protease-producing strain of Aspergillus fumigatus induces isoform-specific cleavage of Dectin-1. Dectin-1 knockout (KO) cells and NE-treated cells demonstrated reduced phagocytosis of zymosan, a fungal cell wall preparation. In addition, NE cleaves 2 other CLRs, Dectin-2 and Mincle, and fungal-induced cytokine production was reduced in Dectin-1 KO cells, Dectin-2 KO cells, and NE-treated cells. Thus, Dectin-1 and Dectin-2 cleavage by NE and/or A. fumigatus-derived proteases results in an aberrant antifungal immune response that likely contributes to disease pathology in patients with CF.-Griffiths, J. S., Thompson, A., Stott, M., Benny, A., Lewis, N. A., Taylor, P. R., Forton, J., Herrick, S., Orr, S. J., McGreal, E. P. Differential susceptibility of Dectin-1 isoforms to functional inactivation by neutrophil and fungal proteases.
Purification and characterization of a cysteine protease from corms of freesia, Freesia reflacta.
Kaneda, M; Yonezawa, H; Uchikoba, T
1997-09-01
A protease (freesia protease B) has been purified to electrophoretic homogeneity from corms of freesia, Freesia reflacta by five steps of chromatography. Its M(r) was estimated to be about 26,000 by SDS-PAGE. The optimum pH of the enzyme was 6.0-7.0 at 30 degrees C using casein as a substrate. The enzyme was strongly inhibited by p-chloromercuribenzoic acid but not by phenylmethanesulphonylfluoride and EDTA. These results indicate that freesia protease B is a cysteine protease. Nine sites of oxidized insulin B-chain were cleaved by freesia protease B in 24 h of hydrolysis. The four cleavage sites among them resembled those of papain. From the digestion of five peptidyl substrates the specificity of freesia protease B was found to be approximately broad, but the preferential cleavage sites were negatively charged residues at P1 positions. Freesia protease B preferred also the large hydrophobic amino acid residues at the P2 position, in a similar manner to papain. The amino terminal sequence of freesia protease B was identical with those of papain in regard to the conservative residues of cysteine protease.
Protease-mediated drug delivery
NASA Astrophysics Data System (ADS)
Dickson, Eva F.; Goyan, Rebecca L.; Kennedy, James C.; Mackay, M.; Mendes, M. A. K.; Pottier, Roy H.
2003-12-01
Drugs used in disease treatment can cause damage to both malignant and normal tissue. This toxicity limits the maximum therapeutic dose. Drug targeting is of high interest to increase the therapeutic efficacy of the drug without increasing systemic toxicity. Certain tissue abnormalities, disease processes, cancers, and infections are characterized by high levels of activity of specific extracellular and/or intracellular proteases. Abnormally high activity levels of specific proteases are present at sites of physical or chemical trauma, blood clots, malignant tumors, rheumatoid arthritis, inflammatory bowel disease, gingival disease, glomerulonerphritis, and acute pancreatitis. Abnormal protease activity is suspected in development of liver thrombosis, pulmonary emphysema, atherosclerosis, and muscular dystrophy. Inactiviating disease-associated proteases by the administration of appropriate protease inhibitors has had limited success. Instead, one could use such proteases to target drugs to treat the condition. Protease mediated drug delivery offers such a possibility. Solubilizing groups are attached to insoluble drugs via a polypeptide chain which is specifically cleavable by certian proteases. When the solubilized drug enounters the protease, the solubilizing moieties are cleaved, and the drug precipitates at the disease location. Thus, a smaller systemic dosage could result in a therapeutic drug concentration at the treatment site with less systemic toxicity.
2011-01-01
Background Omptins are a family of outer membrane proteases that have spread by horizontal gene transfer in Gram-negative bacteria that infect vertebrates or plants. Despite structural similarity, the molecular functions of omptins differ in a manner that reflects the life style of their host bacteria. To simulate the molecular adaptation of omptins, we applied site-specific mutagenesis to make Epo of the plant pathogenic Erwinia pyrifoliae exhibit virulence-associated functions of its close homolog, the plasminogen activator Pla of Yersinia pestis. We addressed three virulence-associated functions exhibited by Pla, i.e., proteolytic activation of plasminogen, proteolytic degradation of serine protease inhibitors, and invasion into human cells. Results Pla and Epo expressed in Escherichia coli are both functional endopeptidases and cleave human serine protease inhibitors, but Epo failed to activate plasminogen and to mediate invasion into a human endothelial-like cell line. Swapping of ten amino acid residues at two surface loops of Pla and Epo introduced plasminogen activation capacity in Epo and inactivated the function in Pla. We also compared the structure of Pla and the modeled structure of Epo to analyze the structural variations that could rationalize the different proteolytic activities. Epo-expressing bacteria managed to invade human cells only after all extramembranous residues that differ between Pla and Epo and the first transmembrane β-strand had been changed. Conclusions We describe molecular adaptation of a protease from an environmental setting towards a virulence factor detrimental for humans. Our results stress the evolvability of bacterial β-barrel surface structures and the environment as a source of progenitor virulence molecules of human pathogens. PMID:21310089
Taking a position on intramembrane proteolysis.
Lemieux, M Joanne
2018-03-30
Decades of work have contributed to our in-depth mechanistic understanding of soluble proteases, but much less is known about the catalytic mechanism of intramembrane proteolysis due to inherent difficulties in both preparing and analyzing integral membrane enzymes and transmembrane substrates. New work from Naing et al. tackles this challenge by examining the catalytic parameters of an aspartyl intramembrane protease homologous to the enzyme that cleaves amyloid precursor protein, finding that both chemistry and register contribute to specificity in substrate cleavage. © 2018 Joanne Lemieux.
Staphylococcus aureus Manipulates Innate Immunity through Own and Host-Expressed Proteases.
Pietrocola, Giampiero; Nobile, Giulia; Rindi, Simonetta; Speziale, Pietro
2017-01-01
Neutrophils, complement system and skin collectively represent the main elements of the innate immune system, the first line of defense of the host against many common microorganisms. Bacterial pathogens have evolved strategies to counteract all these defense activities. Specifically, Staphylococcus aureus , a major human pathogen, secretes a variety of immune evasion molecules including proteases, which cleave components of the innate immune system or disrupt the integrity of extracellular matrix and intercellular connections of tissues. Additionally, S. aureus secretes proteins that can activate host zymogens which, in turn, target specific defense components. Secreted proteins can also inhibit the anti-bacterial function of neutrophils or complement system proteases, potentiating S. aureus chances of survival. Here, we review the current understanding of these proteases and modulators of host proteases in the functioning of innate immunity and describe the importance of these mechanisms in the pathology of staphylococcal diseases.
Staphylococcus aureus Manipulates Innate Immunity through Own and Host-Expressed Proteases
Pietrocola, Giampiero; Nobile, Giulia; Rindi, Simonetta; Speziale, Pietro
2017-01-01
Neutrophils, complement system and skin collectively represent the main elements of the innate immune system, the first line of defense of the host against many common microorganisms. Bacterial pathogens have evolved strategies to counteract all these defense activities. Specifically, Staphylococcus aureus, a major human pathogen, secretes a variety of immune evasion molecules including proteases, which cleave components of the innate immune system or disrupt the integrity of extracellular matrix and intercellular connections of tissues. Additionally, S. aureus secretes proteins that can activate host zymogens which, in turn, target specific defense components. Secreted proteins can also inhibit the anti-bacterial function of neutrophils or complement system proteases, potentiating S. aureus chances of survival. Here, we review the current understanding of these proteases and modulators of host proteases in the functioning of innate immunity and describe the importance of these mechanisms in the pathology of staphylococcal diseases. PMID:28529927
Inhibition of polygylcine hydrolases by substrate analog peptides
USDA-ARS?s Scientific Manuscript database
Polyglycine hydrolases are proteases secreted by fungal pathogens that target corn defense chitinases. They cleave interdomain glycine-glycine bonds within a polyglycine linker, separating substrate chitinases into two single domain proteins. Polyglycine hydrolases consist of 640 amino acids with a ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coates, Leighton; Cooper, Jon; Hussey, Robert
2008-01-01
Noroviruses are the predominant cause of human epidemic nonbacterial gastroenteritis. Viral replication requires a cysteine protease that cleaves a 200 kDa viral polyprotein into its constituent functional parts. Here, the crystallization of the recombinant protease from the Southampton norovirus is described. While the native crystals were found to diffract only to medium resolution (2.9 {angstrom}), cocrystals of an inhibitor complex diffracted X-rays to 1.7 {angstrom} resolution. The polypeptide inhibitor (Ac-EFQLQ-propenyl ethyl ester) possesses an amino-acid sequence designed to match the substrate specificity of the enzyme, but was synthesized with a reactive Michael acceptor group at the C-terminal end.
1991-01-01
Many precursors of mitochondrial proteins are processed in two successive steps by independent matrix peptidases (MPP and MIP), whereas others are cleaved in a single step by MPP alone. To explain this dichotomy, we have constructed deletions of all or part of the octapeptide characteristic of a twice cleaved precursor (human ornithine transcarbamylase [pOTC]), have exchanged leader peptide sequences between once-cleaved (human methylmalonyl-CoA mutase [pMUT]; yeast F1ATPase beta-subunit [pF1 beta]) and twice-cleaved (pOTC; rat malate dehydrogenase (pMDH); Neurospora ubiquinol-cytochrome c reductase iron-sulfur subunit [pFe/S]) precursors, and have incubated these proteins with purified MPP and MIP. When the octapeptide of pOTC was deleted, or when the entire leader peptide of a once-cleaved precursor (pMUT or pF1 beta) was joined to the mature amino terminus of a twice-cleaved precursor (pOTC or pFe/S), no cleavage was produced by either protease. Cleavage of these constructs by MPP was restored by re- inserting as few as two amino-terminal residues of the octapeptide or of the mature amino terminus of a once-cleaved precursor. We conclude that the mature amino terminus of a twice-cleaved precursor is structurally incompatible with cleavage by MPP; such proteins have evolved octapeptides cleaved by MIP to overcome this incompatibility. PMID:1672532
Tarr, Sarah J; Cryar, Adam; Thalassinos, Konstantinos; Haldar, Kasturi; Osborne, Andrew R
2013-01-01
The malaria parasite exports proteins across its plasma membrane and a surrounding parasitophorous vacuole membrane, into its host erythrocyte. Most exported proteins contain a Host Targeting motif (HT motif) that targets them for export. In the parasite secretory pathway, the HT motif is cleaved by the protease plasmepsin V, but the role of the newly generated N-terminal sequence in protein export is unclear. Using a model protein that is cleaved by an exogenous viral protease, we show that the new N-terminal sequence, normally generated by plasmepsin V cleavage, is sufficient to target a protein for export, and that cleavage by plasmepsin V is not coupled directly to the transfer of a protein to the next component in the export pathway. Mutation of the fourth and fifth positions of the HT motif, as well as amino acids further downstream, block or affect the efficiency of protein export indicating that this region is necessary for efficient export. We also show that the fifth position of the HT motif is important for plasmepsin V cleavage. Our results indicate that plasmepsin V cleavage is required to generate a new N-terminal sequence that is necessary and sufficient to mediate protein export by the malaria parasite. PMID:23279267
Per a 10 activates human derived epithelial cell line in a protease dependent manner via PAR-2.
Kale, Sagar L; Arora, Naveen
2015-04-01
Protease activity of Per a 10 has been shown to modulate dendritic cells toward Th-2 polarization and to induce airway inflammation. To elucidate the role of serine protease activity of Per a 10 in inducing biochemical responses in epithelial cells. Per a 10 was inactivated by heat treatment (ΔPer a 10) or AEBSF (iPer a 10). A549 cells were exposed to either enzymatically active/inactive Per a 10. The supernatant was analyzed for the secretion of proinflammatory cytokines by ELISA. Ca(2+) mobilization was analyzed by flow cytometry. A PAR-2 derived synthetic peptide 28GTNRSSKGRSLIGKVDGTSHVTGKGVTC54 was incubated with Per a 10 and the resultant cleaved products were analyzed by LC-MS. PAR-2 activation was inhibited by PAR-2 cleavage inhibiting antibody. ΔPer a 10 was completely inactivated whereas iPer a 10 showed some residual activity. nPer a 10 having protease activity increased the secretion of IL-6, IL-8 and GMCSF from A549 in a dose and time dependent manner whereas iPer a 10 has reduced cytokine secretion. ΔPer a 10 and rPer a 10 were unable to activate the cells. nPer a 10 mobilized intracellular Ca(2+). nPer a 10 cleaved the PAR-2 derived peptide between arginine and serine residues (36R-S37) to expose PAR-2 ligand SLIGKV, as determined by LC-MS. Incubating with anti-PAR-2 cleavage antibody showed diminished cytokine secretion when treated with nPer a 10. Serine protease activity of Per a 10 activates A549 cells to secrete proinflammatory cytokines by PAR-2 activation and Ca(2+)mobilization and can be exploited therapeutically. Copyright © 2014 Elsevier GmbH. All rights reserved.
Two Paralogous Families of a Two-Gene Subtilisin Operon Are Widely Distributed in Oral Treponemes
Correia, Frederick F.; Plummer, Alvin R.; Ellen, Richard P.; Wyss, Chris; Boches, Susan K.; Galvin, Jamie L.; Paster, Bruce J.; Dewhirst, Floyd E.
2003-01-01
Certain oral treponemes express a highly proteolytic phenotype and have been associated with periodontal diseases. The periodontal pathogen Treponema denticola produces dentilisin, a serine protease of the subtilisin family. The two-gene operon prcA-prtP is required for expression of active dentilisin (PrtP), a putative lipoprotein attached to the treponeme's outer membrane or sheath. The purpose of this study was to examine the diversity and structure of treponemal subtilisin-like proteases in order to better understand their distribution and function. The complete sequences of five prcA-prtP operons were determined for Treponema lecithinolyticum, “Treponema vincentii,” and two canine species. Partial operon sequences were obtained for T. socranskii subsp. 04 as well as 450- to 1,000-base fragments of prtP genes from four additional treponeme strains. Phylogenetic analysis demonstrated that the sequences fall into two paralogous families. The first family includes the sequence from T. denticola. Treponemes possessing this operon family express chymotrypsin-like protease activity and can cleave the substrate N-succinyl-alanyl-alanyl-prolyl-phenylalanine-p-nitroanilide (SAAPFNA). Treponemes possessing the second paralog family do not possess chymotrypsin-like activity or cleave SAAPFNA. Despite examination of a range of protein and peptide substrates, the specificity of the second protease family remains unknown. Each of the fully sequenced prcA and prtP genes contains a 5′ hydrophobic leader sequence with a treponeme lipobox. The two paralogous families of treponeme subtilisins represent a new subgroup within the subtilisin family of proteases and are the only subtilisin lipoprotein family. The present study demonstrated that the subtilisin paralogs comprising a two-gene operon are widely distributed among treponemes. PMID:14617650
Assessing activity of Hepatitis A virus 3C protease using a cyclized luciferase-based biosensor.
Zhou, Junwei; Wang, Dang; Xi, Yongqiang; Zhu, Xinyu; Yang, Yuting; Lv, Mengting; Luo, Chuanzhen; Chen, Jiyao; Ye, Xu; Fang, Liurong; Xiao, Shaobo
2017-07-08
Hepatitis A is an acute infection caused by Hepatitis A virus (HAV), which is widely distributed throughout the world. The HAV 3C cysteine protease (3C pro ), an important nonstructural protein, is responsible for most cleavage within the viral polyprotein and is critical for the processes of viral replication. Our group has previously demonstrated that HAV 3C pro cleaves human NF-κB essential modulator (NEMO), a kinase required in interferon signaling. Based on this finding, we generated four luciferase-based biosensors containing the NEMO sequence (PVLKAQ↓ADIYKA) that is cleaved by HAV 3C pro and/or the Nostoc punctiforme DnaE intein, to monitor the activity of HAV 3C pro in human embryonic kidney cells (HEK-293T). Western blotting showed that HAV 3C pro recognized and cleaved the NEMO cleavage sequence incorporated in the four biosensors, whereas only one cyclized luciferase-based biosensor (233-DnaE-HAV, 233DH) showed a measurable and reliable increase in firefly luciferase activity, with very low background, in the presence of HAV 3C pro . With this biosensor (233DH), we monitored HAV 3C pro activity in HEK-293T cells, and tested it against a catalytically deficient mutant HAV 3C pro and other virus-encoded proteases. The results showed that the activity of this luciferase biosensor is specifically dependent on HAV 3C pro . Collectively, our data demonstrate that the luciferase biosensor developed here might provide a rapid, sensitive, and efficient evaluation of HAV 3C pro activity, and should extend our better understanding of the biological relevance of HAV 3C pro . Copyright © 2017 Elsevier Inc. All rights reserved.
Regulatory Proteolysis in Arabidopsis-Pathogen Interactions.
Pogány, Miklós; Dankó, Tamás; Kámán-Tóth, Evelin; Schwarczinger, Ildikó; Bozsó, Zoltán
2015-09-24
Approximately two and a half percent of protein coding genes in Arabidopsis encode enzymes with known or putative proteolytic activity. Proteases possess not only common housekeeping functions by recycling nonfunctional proteins. By irreversibly cleaving other proteins, they regulate crucial developmental processes and control responses to environmental changes. Regulatory proteolysis is also indispensable in interactions between plants and their microbial pathogens. Proteolytic cleavage is simultaneously used both by plant cells, to recognize and inactivate invading pathogens, and by microbes, to overcome the immune system of the plant and successfully colonize host cells. In this review, we present available results on the group of proteases in the model plant Arabidopsis thaliana whose functions in microbial pathogenesis were confirmed. Pathogen-derived proteolytic factors are also discussed when they are involved in the cleavage of host metabolites. Considering the wealth of review papers available in the field of the ubiquitin-26S proteasome system results on the ubiquitin cascade are not presented. Arabidopsis and its pathogens are conferred with abundant sets of proteases. This review compiles a list of those that are apparently involved in an interaction between the plant and its pathogens, also presenting their molecular partners when available.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar G.; Swaminathan S.; Kumaran, D.
Clostridium botulinum neurotoxins are classified as Category A bioterrorism agents by the Centers for Disease Control and Prevention (CDC). The seven serotypes (A-G) of the botulinum neurotoxin, the causative agent of the disease botulism, block neurotransmitter release by specifically cleaving one of the three SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins and induce flaccid paralysis. Using a structure-based drug-design approach, a number of peptide inhibitors were designed and their inhibitory activity against botulinum serotype A (BoNT/A) protease was determined. The most potent peptide, RRGF, inhibited BoNT/A protease with an IC{sub 50} of 0.9 {micro}M and a K{sub i} ofmore » 358 nM. High-resolution crystal structures of various peptide inhibitors in complex with the BoNT/A protease domain were also determined. Based on the inhibitory activities and the atomic interactions deduced from the cocrystal structures, the structure-activity relationship was analyzed and a pharmacophore model was developed. Unlike the currently available models, this pharmacophore model is based on a number of enzyme-inhibitor peptide cocrystal structures and improved the existing models significantly, incorporating new features.« less
Chymotrypsin C (Caldecrin) Is Associated with Enamel Development
Lacruz, R.S.; Smith, C.E.; Smith, S.M.; Hu, P.; Bringas, P.; Sahin-Tóth, M.; Moradian-Oldak, J.; Paine, M.L.
2011-01-01
Two main proteases cleave enamel extracellular matrix proteins during amelogenesis. Matrix metalloprotease-20 (Mmp20) is the predominant enzyme expressed during the secretory stage, while kallikrein-related peptidase-4 (Klk4) is predominantly expressed during maturation. Mutations to both Mmp20 and Klk4 result in abnormal enamel phenotypes. During a recent whole-genome microarray analysis of rat incisor enamel organ cells derived from the secretory and maturation stages of amelogenesis, the serine protease chymotrypsin C (caldecrin, Ctrc) was identified as significantly up-regulated (> 11-fold) during enamel maturation. Prior reports indicate that Ctrc expression is pancreas-specific, albeit low levels were also noted in brain. We here report on the expression of Ctrc in the enamel organ. Quantitative PCR (qPCR) and Western blot analysis were used to confirm the expression of Ctrc in the developing enamel organ. The expression profile of Ctrc is similar to that of Klk4, increasing markedly during the maturation stage relative to the secretory stage, although levels of Ctrc mRNA are lower than for Klk4. The discovery of a new serine protease possibly involved in enamel development has important implications for our understanding of the factors that regulate enamel biomineralization. PMID:21828354
Kumar, Gyanendra; Kumaran, Desigan; Ahmed, S Ashraf; Swaminathan, Subramanyam
2012-05-01
Clostridium botulinum neurotoxins are classified as Category A bioterrorism agents by the Centers for Disease Control and Prevention (CDC). The seven serotypes (A-G) of the botulinum neurotoxin, the causative agent of the disease botulism, block neurotransmitter release by specifically cleaving one of the three SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins and induce flaccid paralysis. Using a structure-based drug-design approach, a number of peptide inhibitors were designed and their inhibitory activity against botulinum serotype A (BoNT/A) protease was determined. The most potent peptide, RRGF, inhibited BoNT/A protease with an IC(50) of 0.9 µM and a K(i) of 358 nM. High-resolution crystal structures of various peptide inhibitors in complex with the BoNT/A protease domain were also determined. Based on the inhibitory activities and the atomic interactions deduced from the cocrystal structures, the structure-activity relationship was analyzed and a pharmacophore model was developed. Unlike the currently available models, this pharmacophore model is based on a number of enzyme-inhibitor peptide cocrystal structures and improved the existing models significantly, incorporating new features. © 2012 International Union of Crystallography
Guerrero, Andres; Dallas, David C.; Contreras, Stephanie; Chee, Sabrina; Parker, Evan A.; Sun, Xin; Dimapasoc, Lauren; Barile, Daniela; German, J. Bruce; Lebrilla, Carlito B.
2014-01-01
An extensive mass spectrometry analysis of the human milk peptidome has revealed almost 700 endogenous peptides from 30 different proteins. Two in-house computational tools were created and used to visualize and interpret the data through both alignment of the peptide quasi-molecular ion intensities and estimation of the differential enzyme participation. These results reveal that the endogenous proteolytic activity in the mammary gland is remarkably specific and well conserved. Certain proteins—not necessarily the most abundant ones—are digested by the proteases present in milk, yielding endogenous peptides from selected regions. Our results strongly suggest that factors such as the presence of specific proteases, the position and concentration of cleavage sites, and, more important, the intrinsic disorder of segments of the protein drive this proteolytic specificity in the mammary gland. As a consequence of this selective hydrolysis, proteins that typically need to be cleaved at specific positions in order to exert their activity are properly digested, and bioactive peptides encoded in certain protein sequences are released. Proteins that must remain intact in order to maintain their activity in the mammary gland or in the neonatal gastrointestinal tract are unaffected by the hydrolytic environment present in milk. These results provide insight into the intrinsic structural mechanisms that facilitate the selectivity of the endogenous milk protease activity and might be useful to those studying the peptidomes of other biofluids. PMID:25172956
Extracellular HtrA serine proteases: An emerging new strategy in bacterial pathogenesis.
Backert, Steffen; Bernegger, Sabine; Skórko-Glonek, Joanna; Wessler, Silja
2018-03-26
The HtrA family of chaperones and serine proteases is important for regulating stress responses and controlling protein quality in the periplasm of bacteria. HtrA is also associated with infectious diseases since inactivation of htrA genes results in significantly reduced virulence properties by various bacterial pathogens. These virulence features of HtrA can be attributed to reduced fitness of the bacteria, higher susceptibility to environmental stress and/or diminished secretion of virulence factors. In some Gram-negative and Gram-positive pathogens, HtrA itself can be exposed to the extracellular environment promoting bacterial colonisation and invasion of host tissues. Most of our knowledge on the function of exported HtrAs stems from research on Helicobacter pylori, Campylobacter jejuni, Borrelia burgdorferi, Bacillus anthracis, and Chlamydia species. Here, we discuss recent progress showing that extracellular HtrAs are able to cleave cell-to-cell junction factors including E-cadherin, occludin, and claudin-8, as well as extracellular matrix proteins such as fibronectin, aggrecan, and proteoglycans, disrupting the epithelial barrier and producing substantial host cell damage. We propose that the export of HtrAs is a newly discovered strategy, also applied by additional bacterial pathogens. Consequently, exported HtrA proteases represent highly attractive targets for antibacterial treatment by inhibiting their proteolytic activity or application in vaccine development. © 2018 John Wiley & Sons Ltd.
Wilcox, C A; Fuller, R S
1991-10-01
The Kex2 protease of the yeast Saccharomyces cerevisiae is a prototypical eukaryotic prohormone-processing enzyme that cleaves precursors of secreted peptides at pairs of basic residues. Here we have established the pathway of posttranslational modification of Kex2 protein using immunoprecipitation of the biosynthetically pulse-labeled protein from a variety of wild-type and mutant yeast strains as the principal methodology. Kex2 protein is initially synthesized as a prepro-enzyme that undergoes cotranslational signal peptide cleavage and addition of Asn-linked core oligosaccharide and Ser/Thr-linked mannose in the ER. The earliest detectable species, I1 (approximately 129 kD), undergoes rapid amino-terminal proteolytic removal of a approximately 9-kD pro-segment yielding species I2 (approximately 120 kD) before arrival at the Golgi complex. Transport to the Golgi complex is marked by extensive elaboration of Ser/Thr-linked chains and minor modification of Asn-linked oligosaccharide. During the latter phase of its lifetime, Kex2 protein undergoes a gradual increase in apparent molecular weight. This final modification serves as a marker for association of Kex2 protease with a late compartment of the yeast Golgi complex in which it is concentrated about 27-fold relative to other secretory proteins.
Olson, Emilia S.; Whitney, Michael A.; Friedman, Beth; Aguilera, Todd A.; Crisp, Jessica L.; Baik, Fred M.; Jiang, Tao; Baird, Stephen M.; Tsimikas, Sotirios; Tsien, Roger Y.
2012-01-01
Thrombin and other coagulation enzymes have been shown to be important during atherosclerotic disease development. Study of these proteases is currently limited because of lack of robust molecular imaging agents for imaging protease activity in vivo. Activatable cell penetrating peptides (ACPPs) have been used to monitor MMP activity in tumors and, in principle, can be modified to detect other proteases. We have developed a probe that incorporates the peptide sequence DPRSFL from the proteinase activated receptor 1 (PAR-1) into an ACPP and shown that it is preferentially cleaved by purified thrombin. Active thrombin in serum cleaves DPRSFL–ACPP with >90% inhibition by lepirudin or argatroban. The DPRSFL–ACPP cleavage product accumulated in advanced atherosclerotic lesions in living mice, with 85% reduction in retention upon pre-injection of mice with hirudin. Uptake of the ACPP cleavage product was highest in plaques with histological features associated with more severe disease. Freshly resected human atheromas bathed in DPRSFL–ACPP retained 63% greater cleavage product compared to control ACPP. In conclusion, DPRSFL–ACPP can be used to study thrombin activity in coagulation and atherosclerosis with good spatial and temporal resolution. Thrombin-sensitive ACPPs may be developed into probes for early detection and intraoperative imaging of high risk atherosclerotic plaques. PMID:22534729
Olson, Emilia S; Whitney, Michael A; Friedman, Beth; Aguilera, Todd A; Crisp, Jessica L; Baik, Fred M; Jiang, Tao; Baird, Stephen M; Tsimikas, Sotirios; Tsien, Roger Y; Nguyen, Quyen T
2012-06-01
Thrombin and other coagulation enzymes have been shown to be important during atherosclerotic disease development. Study of these proteases is currently limited because of lack of robust molecular imaging agents for imaging protease activity in vivo. Activatable cell penetrating peptides (ACPPs) have been used to monitor MMP activity in tumors and, in principle, can be modified to detect other proteases. We have developed a probe that incorporates the peptide sequence DPRSFL from the proteinase activated receptor 1 (PAR-1) into an ACPP and shown that it is preferentially cleaved by purified thrombin. Active thrombin in serum cleaves DPRSFL-ACPP with >90% inhibition by lepirudin or argatroban. The DPRSFL-ACPP cleavage product accumulated in advanced atherosclerotic lesions in living mice, with 85% reduction in retention upon pre-injection of mice with hirudin. Uptake of the ACPP cleavage product was highest in plaques with histological features associated with more severe disease. Freshly resected human atheromas bathed in DPRSFL-ACPP retained 63% greater cleavage product compared to control ACPP. In conclusion, DPRSFL-ACPP can be used to study thrombin activity in coagulation and atherosclerosis with good spatial and temporal resolution. Thrombin-sensitive ACPPs may be developed into probes for early detection and intraoperative imaging of high risk atherosclerotic plaques.
Cousin, Hélène; Abbruzzese, Genevieve; Kerdavid, Erin; Gaultier, Alban; Alfandari, Dominique
2011-01-01
Summary ADAMs are transmembrane metalloproteases that control cell behavior by cleaving both cell adhesion and signaling molecules. The cytoplasmic domain of ADAMs can regulate the proteolytic activity by controlling the subcellular localization and/or the activation of the protease domain. Here we show that the cytoplasmic domain of ADAM13 is cleaved and translocates into the nucleus. Preventing this translocation renders the protein incapable of promoting cranial neural crest (CNC) cell migration in vivo, without affecting its proteolytic activity. In addition, the cytoplasmic domain of ADAM13 regulates the expression of multiple genes in CNC, including the protease Calpain8-a. Restoring the expression of Calpain8-a is sufficient to rescue CNC migration in the absence of the ADAM13 cytoplasmic domain. This study shows that the cytoplasmic domain of ADAM metalloproteases can perform essential functions in the nucleus of cells and may contribute substantially to the overall function of the protein. PMID:21316592
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott, Jack D.; Li, Sarah W.; Brunskill, Andrew P. J.
Verubecestat 3 (MK-8931), a diaryl amide-substituted 3-imino-1,2,4-thiadiazinane 1,1-dioxide derivative, is a high-affinity β-site amyloid precursor protein cleaving enzyme 1 (BACE1) inhibitor currently undergoing Phase 3 clinical evaluation for the treatment of mild to moderate and prodromal Alzheimer’s disease. Although not selective over the closely related aspartyl protease BACE2, verubecestat has high selectivity for BACE1 over other key aspartyl proteases, notably cathepsin D, and profoundly lowers CSF and brain Aβ levels in rats and nonhuman primates and CSF Aβ levels in humans. In this annotation, we describe the discovery of 3, including design, validation, and selected SAR around the novel iminothiadiazinanemore » dioxide core as well as aspects of its preclinical and Phase 1 clinical characterization.« less
DPP8/9 inhibition induces pro-caspase-1-dependent monocyte and macrophage pyroptosis
Okondo, Marian C.; Johnson, Darren C.; Sridharan, Ramya; Go, Eun Bin; Chui, Ashley J.; Wang, Mitchell S.; Poplawski, Sarah E.; Wu, Wengen; Liu, Yuxin; Lai, Jack H.; Sanford, David G.; Arciprete, Michael O.; Golub, Todd R.; Bachovchin, William W.; Bachovchin, Daniel A.
2017-01-01
Val-boroPro (talabostat, PT-100), a nonselective inhibitor of post-proline cleaving serine proteases, stimulates mammalian immune systems through an unknown mechanism of action. Despite this lack of mechanistic understanding, Val-boroPro has attracted significant interest as a potential anticancer agent, reaching Phase III trials in humans. Here we show that Val-boroPro stimulates the immune system by triggering a proinflammatory form of cell death in monocytes and macrophages known as pyroptosis. We demonstrate that the inhibition of two serine proteases, DPP8 and DPP9, activates the proprotein form of caspase-1 independent of the inflammasome adaptor ASC. Activated pro-caspase-1 does not efficiently process itself or IL-1β, but does cleave and activate gasdermin D to induce pyroptosis. Mice lacking caspase-1 do not show immune stimulation after treatment with Val-boroPro. Our data identifies the first small molecule that induces pyroptosis and reveals a new checkpoint that controls the activation of the innate immune system. PMID:27820798
Portela, Maristela B; Souza, Ivete P R; Abreu, Celina M; Bertolini, Martinna; Holandino, Carla; Alviano, Celuta S; Santos, André L S; Soares, Rosangela M A
2010-11-01
There are several kinds of oral soft tissue lesions that are common manifestations observed in human immunodeficiency virus (HIV)-infected children; for example, linear gingival erythema (LGE) that is a distinctive fiery red band along the margin of the gingivae. The etiology and pathogenesis of LGE are questionable, but a candidal origin has been suggested. Proteases are key virulence attributes produced by a variety of pathogenic fungi, including Candida. The objective of the present study is to identify the protease production in Candida species including, C. albicans (n=5), C. dubliniensis (n=1) and C. tropicalis (n=1), isolated directly from typical LGE lesions observed in six HIV-positive children, and also to test the effect of a serine protease inhibitor on the interaction of Candida spp. and epithelial cells in vitro. The ability of Candida strains to release proteases in the culture supernatant fluids was visualized by gelatin-SDS-PAGE. Gel strips containing 30-fold concentrated supernatant (1.5×10(8) yeasts) were incubated at 37°C for 48 h in 50 mM sodium phosphate buffer, pH 5.5. The concentrated supernatants were also incubated with fibronectin, laminin, immunoglobulin G, bovine serum albumin and human serum albumin. The effect of serine protease inhibitor on the interaction of Candida spp. and epithelial cells (MA 104) was measured after pre-treatment of fungi with the inhibitor (phenylmethylsulphonyl fluoride, PMSF). All the extracellular proteases were completely inhibited by PMSF, identifying these activities as serine-type proteases. Interestingly, a common 62-kDa serine protease was observed in all Candida strains. The culture supernatants, rich in serine protease activities, cleaved several soluble proteinaceous substrates. Additionally, we demonstrated that pre-treatment of C. albicans, C. dubliniensis and C. tropicalis with PMSF diminished the interaction with epithelial cells. Collectively, our results show that Candida spp. isolated from LGE lesions produced and secreted serine proteases and these enzymes may be involved in the initial colonization events. © 2010 John Wiley & Sons A/S.
Masked Chimeric Antigen Receptor for Tumor-Specific Activation.
Han, Xiaolu; Bryson, Paul D; Zhao, Yifan; Cinay, Gunce E; Li, Si; Guo, Yunfei; Siriwon, Natnaree; Wang, Pin
2017-01-04
Adoptive cellular therapy based on chimeric antigen receptor (CAR)-engineered T (CAR-T) cells is a powerful form of cancer immunotherapy. CAR-T cells can be redirected to specifically recognize tumor-associated antigens (TAAs) and induce high levels of antitumor activity. However, they may also display "on-target off-tumor" toxicities, resulting from low-level expression of TAAs in healthy tissues. These adverse effects have raised considerable safety concerns and limited the clinical application of this otherwise promising therapeutic modality. To minimize such side effects, we have designed an epidermal growth factor receptor (EGFR)-specific masked CAR (mCAR), which consists of a masking peptide that blocks the antigen-binding site and a protease-sensitive linker. Proteases commonly active in the tumor microenvironment can cleave the linker and disengage the masking peptide, thereby enabling CAR-T cells to recognize target antigens only at the tumor site. In vitro mCAR showed dramatically reduced antigen binding and antigen-specific activation in the absence of proteases, but normal levels of binding and activity upon treatment with certain proteases. Masked CAR-T cells also showed antitumor efficacy in vivo comparable to that of unmasked CAR. Our study demonstrates the feasibility of improving the safety profile of conventional CARs and may also inspire future design of CAR molecules targeting broadly expressed TAAs. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.
Liu, Cheng; Li, Shiying; Gu, Yanjuan; Xiong, Huahua; Wong, Wing-Tak; Sun, Lei
2018-05-07
Tumor proteases have been recognized as significant regulators in the tumor microenvironment, but the current strategies for in vivo protease imaging have tended to focus on the development of a probe design rather than the investigation of a novel imaging strategy by leveraging the imaging technique and probe. Herein, it is the first report to investigate the ability of multispectral photoacoustic imaging (PAI) to estimate the distribution of protease cleavage sites inside living tumor tissue by using an activatable photoacoustic (PA) probe. The protease MMP-2 is selected as the target. In this probe, gold nanocages (GNCs) with an absorption peak at ~ 800 nm and fluorescent dye molecules with an absorption peak at ~ 680 nm are conjugated via a specific enzymatic peptide substrate. Upon enzymatic activation by MMP-2, the peptide substrate is cleaved and the chromophores are released. Due to the different retention speeds of large GNCs and small dye molecules, the probe alters its intrinsic absorption profile and produces a distinct change in the PA signal. A multispectral PAI technique that can distinguish different chromophores based on intrinsic PA spectral signatures is applied to estimate the signal composition changes and indicate the cleavage interaction sites. Finally, the multispectral PAI technique with the activatable probe is tested in solution, cultured cells, and a subcutaneous tumor model in vivo. Our experiment in solution with enzyme ± inhibitor, cell culture ± inhibitor, and in vivo tumor model with administration of the developed probe ± inhibitor demonstrated the probe was cleaved by the targeted enzyme. Particularly, the in vivo estimation of the cleavage site distribution was validated with the result of ex vivo immunohistochemistry analysis. This novel synergy of the multispectral PAI technique and the activatable probe is a potential strategy for the distribution estimation of tumor protease activity in vivo.
High resolution structure of cleaved Serpin 42 Da from Drosophila melanogaster.
Ellisdon, Andrew M; Zhang, Qingwei; Henstridge, Michelle A; Johnson, Travis K; Warr, Coral G; Law, Ruby Hp; Whisstock, James C
2014-04-24
The Drosophila melanogaster Serpin 42 Da gene (previously Serpin 4) encodes a serine protease inhibitor that is capable of remarkable functional diversity through the alternative splicing of four different reactive centre loop exons. Eight protein isoforms of Serpin 42 Da have been identified to date, targeting the protease inhibitor to both different proteases and cellular locations. Biochemical and genetic studies suggest that Serpin 42 Da inhibits target proteases through the classical serpin 'suicide' inhibition mechanism, however the crystal structure of a representative Serpin 42 Da isoform remains to be determined. We report two high-resolution crystal structures of Serpin 42 Da representing the A/B isoforms in the cleaved conformation, belonging to two different space-groups and diffracting to 1.7 Å and 1.8 Å. Structural analysis reveals the archetypal serpin fold, with the major elements of secondary structure displaying significant homology to the vertebrate serpin, neuroserpin. Key residues known to have central roles in the serpin inhibitory mechanism are conserved in both the hinge and shutter regions of Serpin 42 Da. Furthermore, these structures identify important conserved interactions that appear to be of crucial importance in allowing the Serpin 42 Da fold to act as a versatile template for multiple reactive centre loops that have different sequences and protease specificities. In combination with previous biochemical and genetic studies, these structures confirm for the first time that the Serpin 42 Da isoforms are typical inhibitory serpin family members with the conserved serpin fold and inhibitory mechanism. Additionally, these data reveal the remarkable structural plasticity of serpins, whereby the basic fold is harnessed as a template for inhibition of a large spectrum of proteases by reactive centre loop exon 'switching'. This is the first structure of a Drosophila serpin reported to date, and will provide a platform for future mutational studies in Drosophila to ascertain the functional role of each of the Serpin 42 Da isoforms.
The in vitro cleavage of the hAtg proteins by cell death proteases.
Norman, Joanna M; Cohen, Gerald M; Bampton, Edward T W
2010-11-01
It is becoming increasingly clear that there is crosstalk between the apoptotic and autophagic pathways, with autophagy helping to contribute to cell death by providing energy to allow the energy-requiring programmed cell death process to complete, as well as degrading cellular material in its own right. Recent evidence has suggested that Atg proteins can themselves be targets of caspases, providing potential regulation of autophagy as well as uncovering novel functions for fragments derived from Atg proteins. However, to date there has not been a detailed examination of which Atg proteins may be the targets of which death proteases. We show that the majority of human Atg (hAtg) proteins can be cleaved by calpain 1, which is activated in some apoptotic paradigms, as well as other forms of death. We also show that hAtg3 is cleaved by caspases-3, -6 and -8, hAtg6 (Beclin 1) is cleaved by caspase-3 and -6, while hAtg9, hAtg7 and the hAtg4 homologues can be cleaved by caspase-3. Cleavage of Beclin 1 was also seen in apoptosis of HeLa cells induced by staurosporine and TRAIL, along with cleavage of Atg3 and Atg4C. There were subtle effects of caspase inhibition on GFP-LC3 lipidation but more marked effects on the formation of GFP-LC3 puncta (a marker of autophagosome formation) and p62 degradation, indicating that caspase cleavage of autophagy-related proteins can affect the autophagic process. Notably we show that p62 is a target for caspase-6 and -8 cleavage.
Zariffard, M Reza; Anastos, Kathryn; French, Audrey L; Munyazesa, Elisaphane; Cohen, Mardge; Landay, Alan L; Spear, Gregory T
2015-01-01
Interleukin-8 (IL-8, CXCL8) plays important roles in immune responses at mucosal sites including in the lower genital tract. Since several types of bacteria produce proteases that cleave IL-8 and many types of bacteria can be present in lower genital tract microbiota, we assessed genital fluids for IL-8 cleavage/alteration. Genital fluids collected by lavage from 200 women (23 HIV-seronegative and 177 HIV-seropositive) were tested for IL-8 cleavage/alteration by ELISA. IL-8 cleaving/altering activity was observed in fluids from both HIV-positive (28%) and HIV-negative women (35%). There was no clear relationship between the activity and the types of bacteria present in the lower genital tract as determined by high-throughput sequencing of the 16S rRNA gene. Protease inhibitors specific for matrix metalloproteinases (MMPs) reduced the activity and a multiplex assay that detects both inactive and active MMPs showed the presence of multiple MMPs, including MMP-1, -3, -7, -8, -9, -10 and -12 in genital secretions from many of the women. The IL-8-cleaving/altering activity significantly correlated with active MMP-9 as well as with cleavage of a substrate that is acted on by several active MMPs. These studies show that multiple MMPs are present in the genital tract of women and strongly suggest that MMP-9 in genital secretions can cleave IL-8 at this mucosal site. These studies suggest that MMP-mediated cleavage of IL-8 can modulate inflammatory responses in the lower genital tract.
Ghilardi, Carmen; Silini, Antonietta; Figini, Sara; Anastasia, Alessia; Lupi, Monica; Fruscio, Robert; Giavazzi, Raffaella; Bani, Maria Rosa
2015-09-29
Proteases contribute to cancer in many ways, including tumor vascularization and metastasis, and their pharmacological inhibition is a potential anticancer strategy. We report that human endothelial cells (EC) express the trypsinogen 4 isoform of the serine protease 3 (PRSS3), and lack both PRSS2 and PRSS1. Trypsinogen 4 expression was upregulated by the combined action of VEGF-A, FGF-2 and EGF, angiogenic factors representative of the tumor microenvironment. Suppression of trypsinogen 4 expression by siRNA inhibited the angiogenic milieu-induced migration of EC from cancer specimens (tumor-EC), but did not affect EC from normal tissues. We identified tissue factor pathway inhibitor-2 (TFPI-2), a matrix associated inhibitor of cell motility, as the functional target of trypsinogen 4, which cleaved TFPI-2 and removed it from the matrix put down by tumor-EC. Silencing tumor-EC for trypsinogen 4 accumulated TFPI2 in the matrix. Showing that angiogenic factors stimulate trypsinogen 4 expression, which hydrolyses TFPI-2 favoring a pro-migratory situation, our study suggests a new pathway linking tumor microenvironment signals to endothelial cell migration, which is essential for angiogenesis and blood vessel remodeling. Abolishing trypsinogen 4 functions might be an exploitable strategy as anticancer, particularly anti-vascular, therapy.
Substrate Sorting by a Supercharged Nanoreactor
2017-01-01
Compartmentalization of proteases enables spatially and temporally controlled protein degradation in cells. Here we show that an engineered lumazine synthase protein cage, which possesses a negatively supercharged lumen, can exploit electrostatic effects to sort substrates for an encapsulated protease. This proteasome-like nanoreactor preferentially cleaves positively charged polypeptides over both anionic and zwitterionic substrates, inverting the inherent substrate specificity of the guest enzyme approximately 480 fold. Our results suggest that supercharged nanochambers could provide a simple and potentially general means of conferring substrate specificity to diverse encapsulated catalysts. PMID:29278496
Shang, Luqing; Zhang, Shumei; Yang, Xi; Sun, Jixue; Li, Linfeng; Cui, Zhengjie; He, Qiuhong; Guo, Yu; Sun, Yuna; Yin, Zheng
2015-04-01
Enterovirus 71 (EV71), a primary pathogen of hand, foot, and mouth disease (HFMD), affects primarily infants and children. Currently, there are no effective drugs against HFMD. EV71 3C protease performs multiple tasks in the viral replication, which makes it an ideal antiviral target. We synthesized a small set of fluorogenic model peptides derived from cleavage sites of EV71 polyprotein and examined their efficiencies of cleavage by EV71 3C protease. The novel peptide P08 [(2-(N-methylamino)benzoyl) (NMA)-IEALFQGPPK(DNP)FR] was determined to be the most efficiently cleaved by EV71 3C protease, with a kinetic constant kcat/Km of 11.8 ± 0.82 mM(-1) min(-1). Compared with literature reports, P08 gave significant improvement in the signal/background ratio, which makes it an attractive substrate for assay development. A Molecular dynamics simulation study elaborated the interactions between substrate P08 and EV71 3C protease. Arg39, which is located at the bottom of the S2 pocket of EV71 3C protease, may participate in the proteolysis process of substrates. With an aim to evaluate EV71 3C protease inhibitors, a reliable and robust biochemical assay with a Z' factor of 0.87 ± 0.05 was developed. A novel compound (compound 3) (50% inhibitory concentration [IC50] = 1.89 ± 0.25 μM) was discovered using this assay, which effectively suppressed the proliferation of EV 71 (strain Fuyang) in rhabdomyosarcoma (RD) cells with a highly selective index (50% effective concentration [EC50] = 4.54 ± 0.51 μM; 50% cytotoxic concentration [CC50] > 100 μM). This fast and efficient assay for lead discovery and optimization provides an ideal platform for anti-EV71 drug development targeting 3C protease. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Roh, Kyung-Baeg; Kim, Chan-Hee; Lee, Hanna; Kwon, Hyun-Mi; Park, Ji-Won; Ryu, Ji-Hwan; Kurokawa, Kenji; Ha, Nam-Chul; Lee, Won-Jae; Lemaitre, Bruno; Söderhäll, Kenneth; Lee, Bok-Luel
2009-01-01
The insect Toll signaling pathway is activated upon recognition of Gram-positive bacteria and fungi, resulting in the expression of antimicrobial peptides via NF-κB-like transcription factor. This activation is mediated by a serine protease cascade leading to the processing of Spätzle, which generates the functional ligand of the Toll receptor. Recently, we identified three serine proteases mediating Toll pathway activation induced by lysine-type peptidoglycan of Gram-positive bacteria. However, the identities of the downstream serine protease components of Gram-negative-binding protein 3 (GNBP3), a receptor for a major cell wall component β-1,3-glucan of fungi, and their order of activation have not been characterized yet. Here, we identified three serine proteases that are required for Toll activation by β-1,3-glucan in the larvae of a large beetle, Tenebrio molitor. The first one is a modular serine protease functioning immediately downstream of GNBP3 that proteolytically activates the second one, a Spätzle-processing enzyme-activating enzyme that in turn activates the third serine protease, a Spätzle-processing enzyme. The active form of Spätzle-processing enzyme then cleaves Spätzle into the processed Spätzle as Toll ligand. In addition, we show that injection of β-1,3-glucan into Tenebrio larvae induces production of two antimicrobial peptides, Tenecin 1 and Tenecin 2, which are also inducible by injection of the active form of Spätzle-processing enzyme-activating enzyme or processed Spätzle. These results demonstrate a three-step proteolytic cascade essential for the Toll pathway activation by fungal β-1,3-glucan in Tenebrio larvae, which is shared with lysine-type peptidoglycan-induced Toll pathway activation. PMID:19473968
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kato, Takayuki, E-mail: tkato@med.osaka-cu.ac.jp; Ikemoto, Masaru; Hato, Fumihiko
2009-04-10
Extracellular signal-regulated kinase and p38 have been shown to be cleaved in human neutrophils undergoing apoptosis induced by tumor necrosis factor-{alpha} and cycloheximide. However, the cleavage products of these molecules were undetected when apoptotic neutrophils were pretreated with phenylmethylsulfonyl fluoride or disrupted by nitrogen cavitation before preparation of cell lysates. The electron microscopy revealed that granules in apoptotic neutrophils were significantly swollen than those in control cells. These findings suggest that granule membrane may become destabilized during neutrophil apoptosis, leading to rapid proteolysis of these molecules by granule-derived serine proteases during preparation of cell lysates with the conventional lysis buffer.
Coppola, Julia M; Hamilton, Christin A; Bhojani, Mahaveer S; Larsen, Martha J; Ross, Brian D; Rehemtulla, Alnawaz
2007-05-01
Noninvasive real-time quantification of cellular protease activity allows monitoring of enzymatic activity and identification of activity modulators within the protease's natural milieu. We developed a protease activity assay based on differential localization of a recombinant reporter consisting of a Golgi retention signal and a protease cleavage sequence fused to alkaline phosphatase (AP). When expressed in mammalian cells, this protein localizes to Golgi bodies and, on protease-mediated cleavage, AP translocates to the extracellular medium where its activity is measured. We used this system to monitor the Golgi-associated protease furin, a pluripotent enzyme with a key role in tumorigenesis, viral propagation of avian influenza, ebola, and HIV as well as in activation of anthrax, pseudomonas, and diphtheria toxins. This technology was adapted for high-throughput screening of 39,000-compound small molecule libraries, leading to identification of furin inhibitors. Furthermore, this strategy was used to identify inhibitors of another Golgi protease, the beta-site amyloid precursor protein (APP)-cleaving enzyme (BACE). BACE cleavage of the APP leads to formation of the Abeta peptide, a key event that leads to Alzheimer's disease. In conclusion, we describe a customizable noninvasive technology for real-time assessment of Golgi protease activity used to identify inhibitors of furin and BACE.
Riestra, Angelica M.; Gandhi, Shiv; Sweredoski, Michael J.; Moradian, Annie; Hess, Sonja; Urban, Sinisa; Johnson, Patricia J.
2015-01-01
Trichomonas vaginalis is an extracellular eukaryotic parasite that causes the most common, non-viral sexually transmitted infection worldwide. Although disease burden is high, molecular mechanisms underlying T. vaginalis pathogenesis are poorly understood. Here, we identify a family of putative T. vaginalis rhomboid proteases and demonstrate catalytic activity for two, TvROM1 and TvROM3, using a heterologous cell cleavage assay. The two T. vaginalis intramembrane serine proteases display different subcellular localization and substrate specificities. TvROM1 is a cell surface membrane protein and cleaves atypical model rhomboid protease substrates, whereas TvROM3 appears to localize to the Golgi apparatus and recognizes a typical model substrate. To identify TvROM substrates, we interrogated the T. vaginalis surface proteome using both quantitative proteomic and bioinformatic approaches. Of the nine candidates identified, TVAG_166850 and TVAG_280090 were shown to be cleaved by TvROM1. Comparison of amino acid residues surrounding the predicted cleavage sites of TvROM1 substrates revealed a preference for small amino acids in the predicted transmembrane domain. Over-expression of TvROM1 increased attachment to and cytolysis of host ectocervical cells. Similarly, mutations that block the cleavage of a TvROM1 substrate lead to its accumulation on the cell surface and increased parasite adherence to host cells. Together, these data indicate a role for TvROM1 and its substrate(s) in modulating attachment to and lysis of host cells, which are key processes in T. vaginalis pathogenesis. PMID:26684303
Chitinase modifying proteins from phylogenetically distinct lineages of Brassica pathogens
USDA-ARS?s Scientific Manuscript database
Chitinase modifying proteins (CMPs) are secreted fungal proteases that truncate specific plant class IV chitinases by cleaving peptide bonds in their amino termini. We recently identified a CMP from the Zea mays (maize) pathogen Fusarium verticillioides and found that it is a member of the fungalysi...
Coppola, Julia M.; Hamilton, Christin A.; Bhojani, Mahaveer S.; Larsen, Martha J.; Ross, Brian D.; Rehemtulla, Alnawaz
2007-01-01
Non-invasive real time quantification of cellular protease activity allows monitoring of enzymatic activity and identification of activity modulators within the protease’s natural milieu. We developed a protease-activity assay based on differential localization of a recombinant reporter consisting of a Golgi retention signal and a protease cleavage sequence fused to alkaline phosphatase (AP). When expressed in mammalian cells, this protein localizes to Golgi bodies and, upon protease mediated cleavage, AP translocates to the extracellular medium where its activity is measured. We used this system to monitor the Golgi-associated protease furin, a pluripotent enzyme with a key role in tumorigenesis, viral propagation of avian influenza, ebola, and HIV, and in activation of anthrax, pseudomonas, and diphtheria toxins. This technology was adapted for high throughput screening of 30,000 compound small molecule libraries, leading to identification of furin inhibitors. Further, this strategy was utilized to identify inhibitors of another Golgi protease, the β-site APP-cleaving enzyme (BACE). BACE cleavage of the amyloid precursor protein leads to formation of the Aβ peptide, a key event that leads to Alzheimer’s disease. In conclusion, we describe a customizable, non-invasive technology for real time assessment of Golgi protease activity used to identify inhibitors of furin and BACE. PMID:17316541
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alloy, Alexandre P.; Kayode, Olumide; Wang, Ruiying
Human mesotrypsin is highly homologous to other mammalian trypsins, and yet it is functionally unique in possessing resistance to inhibition by canonical serine protease inhibitors and in cleaving these inhibitors as preferred substrates. Arg-193 and Ser-39 have been identified as contributors to the inhibitor resistance and cleavage capability of mesotrypsin, but it is not known whether these residues fully account for the unusual properties of mesotrypsin. Here, we use human cationic trypsin as a template for engineering a gain of catalytic function, assessing mutants containing mesotrypsin-like mutations for resistance to inhibition by bovine pancreatic trypsin inhibitor (BPTI) and amyloid precursormore » protein Kunitz protease inhibitor (APPI), and for the ability to hydrolyze these inhibitors as substrates. We find that Arg-193 and Ser-39 are sufficient to confer mesotrypsin-like resistance to inhibition; however, compared with mesotrypsin, the trypsin-Y39S/G193R double mutant remains 10-fold slower at hydrolyzing BPTI and 2.5-fold slower at hydrolyzing APPI. We identify two additional residues in mesotrypsin, Lys-74 and Asp-97, which in concert with Arg-193 and Ser-39 confer the full catalytic capability of mesotrypsin for proteolysis of BPTI and APPI. Novel crystal structures of trypsin mutants in complex with BPTI suggest that these four residues function cooperatively to favor conformational dynamics that assist in dissociation of cleaved inhibitors. Our results reveal that efficient inhibitor cleavage is a complex capability to which at least four spatially separated residues of mesotrypsin contribute. As a result, these findings suggest that inhibitor cleavage represents a functional adaptation of mesotrypsin that may have evolved in response to positive selection pressure.« less
Alloy, Alexandre P.; Kayode, Olumide; Wang, Ruiying; ...
2015-07-14
Human mesotrypsin is highly homologous to other mammalian trypsins, and yet it is functionally unique in possessing resistance to inhibition by canonical serine protease inhibitors and in cleaving these inhibitors as preferred substrates. Arg-193 and Ser-39 have been identified as contributors to the inhibitor resistance and cleavage capability of mesotrypsin, but it is not known whether these residues fully account for the unusual properties of mesotrypsin. Here, we use human cationic trypsin as a template for engineering a gain of catalytic function, assessing mutants containing mesotrypsin-like mutations for resistance to inhibition by bovine pancreatic trypsin inhibitor (BPTI) and amyloid precursormore » protein Kunitz protease inhibitor (APPI), and for the ability to hydrolyze these inhibitors as substrates. We find that Arg-193 and Ser-39 are sufficient to confer mesotrypsin-like resistance to inhibition; however, compared with mesotrypsin, the trypsin-Y39S/G193R double mutant remains 10-fold slower at hydrolyzing BPTI and 2.5-fold slower at hydrolyzing APPI. We identify two additional residues in mesotrypsin, Lys-74 and Asp-97, which in concert with Arg-193 and Ser-39 confer the full catalytic capability of mesotrypsin for proteolysis of BPTI and APPI. Novel crystal structures of trypsin mutants in complex with BPTI suggest that these four residues function cooperatively to favor conformational dynamics that assist in dissociation of cleaved inhibitors. Our results reveal that efficient inhibitor cleavage is a complex capability to which at least four spatially separated residues of mesotrypsin contribute. As a result, these findings suggest that inhibitor cleavage represents a functional adaptation of mesotrypsin that may have evolved in response to positive selection pressure.« less
Impact of the Pla protease substrate α2-antiplasmin on the progression of primary pneumonic plague.
Eddy, Justin L; Schroeder, Jay A; Zimbler, Daniel L; Bellows, Lauren E; Lathem, Wyndham W
2015-12-01
Many pathogens usurp the host hemostatic system during infection to promote pathogenesis. Yersinia pestis, the causative agent of plague, expresses the plasminogen activator protease Pla, which has been shown in vitro to target and cleave multiple proteins within the fibrinolytic pathway, including the plasmin inhibitor α2-antiplasmin (A2AP). It is not known, however, if Pla inactivates A2AP in vivo; the role of A2AP during respiratory Y. pestis infection is not known either. Here, we show that Y. pestis does not appreciably cleave A2AP in a Pla-dependent manner in the lungs during experimental pneumonic plague. Furthermore, following intranasal infection with Y. pestis, A2AP-deficient mice exhibit no difference in survival time, bacterial burden in the lungs, or dissemination from wild-type mice. Instead, we found that in the absence of Pla, A2AP contributes to the control of the pulmonary inflammatory response during infection by reducing neutrophil recruitment and cytokine production, resulting in altered immunopathology of the lungs compared to A2AP-deficient mice. Thus, our data demonstrate that A2AP is not significantly affected by the Pla protease during pneumonic plague, and although A2AP participates in immune modulation in the lungs, it has limited impact on the course or ultimate outcome of the infection. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Impact of the Pla Protease Substrate α2-Antiplasmin on the Progression of Primary Pneumonic Plague
Eddy, Justin L.; Schroeder, Jay A.; Zimbler, Daniel L.; Bellows, Lauren E.
2015-01-01
Many pathogens usurp the host hemostatic system during infection to promote pathogenesis. Yersinia pestis, the causative agent of plague, expresses the plasminogen activator protease Pla, which has been shown in vitro to target and cleave multiple proteins within the fibrinolytic pathway, including the plasmin inhibitor α2-antiplasmin (A2AP). It is not known, however, if Pla inactivates A2AP in vivo; the role of A2AP during respiratory Y. pestis infection is not known either. Here, we show that Y. pestis does not appreciably cleave A2AP in a Pla-dependent manner in the lungs during experimental pneumonic plague. Furthermore, following intranasal infection with Y. pestis, A2AP-deficient mice exhibit no difference in survival time, bacterial burden in the lungs, or dissemination from wild-type mice. Instead, we found that in the absence of Pla, A2AP contributes to the control of the pulmonary inflammatory response during infection by reducing neutrophil recruitment and cytokine production, resulting in altered immunopathology of the lungs compared to A2AP-deficient mice. Thus, our data demonstrate that A2AP is not significantly affected by the Pla protease during pneumonic plague, and although A2AP participates in immune modulation in the lungs, it has limited impact on the course or ultimate outcome of the infection. PMID:26438794
Circulating FGF21 proteolytic processing mediated by fibroblast activation protein
Zhen, Eugene Y.; Jin, Zhaoyan; Ackermann, Bradley L.; Thomas, Melissa K.; Gutierrez, Jesus A.
2015-01-01
Fibroblast growth factor 21 (FGF21), a hormone implicated in the regulation of glucose homoeostasis, insulin sensitivity, lipid metabolism and body weight, is considered to be a promising therapeutic target for the treatment of metabolic disorders. Despite observations that FGF21 is rapidly proteolysed in circulation rending it potentially inactive, little is known regarding mechanisms by which FGF21 protein levels are regulated. We systematically investigated human FGF21 protein processing using mass spectrometry. In agreement with previous reports, circulating human FGF21 was found to be cleaved primarily after three proline residues at positions 2, 4 and 171. The extent of FGF21 processing was quantified in a small cohort of healthy human volunteers. Relative abundance of FGF21 proteins cleaved after Pro-2, Pro-4 and Pro-171 ranged from 16 to 30%, 10 to 25% and 10 to 34%, respectively. Dipeptidyl peptidase IV (DPP-IV) was found to be the primary protease responsible for N-terminal cleavages after residues Pro-2 and Pro-4. Importantly, fibroblast activation protein (FAP) was implicated as the protease responsible for C-terminal cleavage after Pro-171, rendering the protein inactive. The requirement of FAP for FGF21 proteolysis at the C-terminus was independently demonstrated by in vitro digestion, immunodepletion of FAP in human plasma, administration of an FAP-specific inhibitor and by human FGF21 protein processing patterns in FAP knockout mouse plasma. The discovery that FAP is responsible for FGF21 inactivation extends the FGF21 signalling pathway and may enable novel approaches to augment FGF21 actions for therapeutic applications. PMID:26635356
Botulinum neurotoxin: a marvel of protein design.
Montal, Mauricio
2010-01-01
Botulinum neurotoxin (BoNT), the causative agent of botulism, is acknowledged to be the most poisonous protein known. BoNT proteases disable synaptic vesicle exocytosis by cleaving their cytosolic SNARE (soluble NSF attachment protein receptor) substrates. BoNT is a modular nanomachine: an N-terminal Zn(2+)-metalloprotease, which cleaves the SNAREs; a central helical protein-conducting channel, which chaperones the protease across endosomes; and a C-terminal receptor-binding module, consisting of two subdomains that determine target specificity by binding to a ganglioside and a protein receptor on the cell surface and triggering endocytosis. For BoNT, functional complexity emerges from its modular design and the tight interplay between its component modules--a partnership with consequences that surpass the simple sum of the individual component's action. BoNTs exploit this design at each step of the intoxication process, thereby achieving an exquisite toxicity. This review summarizes current knowledge on the structure of individual modules and presents mechanistic insights into how this protein machine evolved to this level of sophistication. Understanding the design principles underpinning the function of such a dynamic modular protein remains a challenging task.
DPP8 and DPP9 inhibition induces pro-caspase-1-dependent monocyte and macrophage pyroptosis.
Okondo, Marian C; Johnson, Darren C; Sridharan, Ramya; Go, Eun Bin; Chui, Ashley J; Wang, Mitchell S; Poplawski, Sarah E; Wu, Wengen; Liu, Yuxin; Lai, Jack H; Sanford, David G; Arciprete, Michael O; Golub, Todd R; Bachovchin, William W; Bachovchin, Daniel A
2017-01-01
Val-boroPro (Talabostat, PT-100), a nonselective inhibitor of post-proline cleaving serine proteases, stimulates mammalian immune systems through an unknown mechanism of action. Despite this lack of mechanistic understanding, Val-boroPro has attracted substantial interest as a potential anticancer agent, reaching phase 3 trials in humans. Here we show that Val-boroPro stimulates the immune system by triggering a proinflammatory form of cell death in monocytes and macrophages known as pyroptosis. We demonstrate that the inhibition of two serine proteases, DPP8 and DPP9, activates the pro-protein form of caspase-1 independent of the inflammasome adaptor ASC. Activated pro-caspase-1 does not efficiently process itself or IL-1β but does cleave and activate gasdermin D to induce pyroptosis. Mice lacking caspase-1 do not show immune stimulation after treatment with Val-boroPro. Our data identify what is to our knowledge the first small molecule that induces pyroptosis and reveals a new checkpoint that controls the activation of the innate immune system.
Recombinant cathepsin E has no proteolytic activity at neutral pH.
Zaidi, Nousheen; Herrmann, Timo; Voelter, Wolfgang; Kalbacher, Hubert
2007-08-17
Cathepsin E (CatE) is a major intracellular aspartic protease reported to be involved in cellular protein degradation and several pathological processes. Distinct cleavage specificities of CatE at neutral and acidic pH have been reported previously in studies using CatE purified from human gastric mucosa. Here, in contrast, we have analyzed the proteolytic activity of recombinant CatE at acidic and neutral pH using two separate approaches, RP-HPLC and FRET-based proteinase assays. Our data clearly indicate that recombinant CatE does not possess any proteolytic activity at all at neutral pH and was unable to cleave the peptides glucagon, neurotensin, and dynorphin A that were previously reported to be cleaved by CatE at neutral pH. Even in the presence of ATP, which is known to stabilize CatE, no proteolytic activity was observed. These discrepant results might be due to some contaminating factor present in the enzyme preparations used in previous studies or may reflect differences between recombinant CatE and the native enzyme.
Identification of BACE2 as an avid ß-amyloid-degrading protease
2012-01-01
Background Proteases that degrade the amyloid ß-protein (Aß) have emerged as key players in the etiology and potential treatment of Alzheimer’s disease (AD), but it is unlikely that all such proteases have been identified. To discover new Aß-degrading proteases (AßDPs), we conducted an unbiased, genome-scale, functional cDNA screen designed to identify proteases capable of lowering net Aß levels produced by cells, which were subsequently characterized for Aß-degrading activity using an array of downstream assays. Results The top hit emerging from the screen was ß-site amyloid precursor protein-cleaving enzyme 2 (BACE2), a rather unexpected finding given the well-established role of its close homolog, BACE1, in the production of Aß. BACE2 is known to be capable of lowering Aß levels via non-amyloidogenic processing of APP. However, in vitro, BACE2 was also found to be a particularly avid AßDP, with a catalytic efficiency exceeding all known AßDPs except insulin-degrading enzyme (IDE). BACE1 was also found to degrade Aß, albeit ~150-fold less efficiently than BACE2. Aß is cleaved by BACE2 at three peptide bonds—Phe19-Phe20, Phe20-Ala21, and Leu34-Met35—with the latter cleavage site being the initial and principal one. BACE2 overexpression in cultured cells was found to lower net Aß levels to a greater extent than multiple, well-established AßDPs, including neprilysin (NEP) and endothelin-converting enzyme-1 (ECE1), while showing comparable effectiveness to IDE. Conclusions This study identifies a new functional role for BACE2 as a potent AßDP. Based on its high catalytic efficiency, its ability to degrade Aß intracellularly, and other characteristics, BACE2 represents a particulary strong therapeutic candidate for the treatment or prevention of AD. PMID:22986058
Rustgi, Sachin; Boex-Fontvieille, Edouard; Reinbothe, Christiane; von Wettstein, Diter; Reinbothe, Steffen
2017-01-01
Proteolytic enzymes (proteases) participate in a vast range of physiological processes, ranging from nutrient digestion to blood coagulation, thrombosis, and beyond. In plants, proteases are implicated in host recognition and pathogen infection, induced defense (immunity), and the deterrence of insect pests. Because proteases irreversibly cleave peptide bonds of protein substrates, their activity must be tightly controlled in time and space. Here, we report an example of how nature evolved alternative mechanisms to fine-tune the activity of a cysteine protease dubbed RD21 (RESPONSIVE TO DESICCATION-21). One mechanism in the model plant Arabidopsis thaliana studied here comprises irreversible inhibition of RD21’s activity by Serpin1, whereas the other mechanism is a result of the reversible inhibition of RD21 activity by a Kunitz protease inhibitor named water-soluble chlorophyll-binding protein (WSCP). Activity profiling, complex isolation, and homology modeling data revealed unique interactions of RD21 with Serpin1 and WSCP, respectively. Expression studies identified only partial overlaps in Serpin1 and WSCP accumulation that explain how RD21 contributes to the innate immunity of mature plants and arthropod deterrence of seedlings undergoing skotomorphogenesis and greening. PMID:28179567
Juggling jobs: roles and mechanisms of multifunctional protease inhibitors in plants.
Grosse-Holz, Friederike M; van der Hoorn, Renier A L
2016-05-01
Multifunctional protease inhibitors juggle jobs by targeting different enzymes and thereby often controlling more than one biological process. Here, we discuss the biological functions, mechanisms and evolution of three types of multifunctional protease inhibitors in plants. The first type is double-headed inhibitors, which feature two inhibitory sites targeting proteases with different specificities (e.g. Bowman-Birk inhibitors) or even different hydrolases (e.g. α-amylase/protease inhibitors preventing both early germination and seed predation). The second type consists of multidomain inhibitors which evolved by intragenic duplication and are released by processing (e.g. multicystatins and potato inhibitor II, implicated in tuber dormancy and defence, respectively). The third type consists of promiscuous inhibitory folds which resemble mouse traps that can inhibit different proteases cleaving the bait they offer (e.g. serpins, regulating cell death, and α-macroglobulins). Understanding how multifunctional inhibitors juggle biological jobs increases our knowledge of the connections between the networks they regulate. These examples show that multifunctionality evolved independently from a remarkable diversity of molecular mechanisms that can be exploited for crop improvement and provide concepts for protein design. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Rustgi, Sachin; Boex-Fontvieille, Edouard; Reinbothe, Christiane; von Wettstein, Diter; Reinbothe, Steffen
2017-02-28
Proteolytic enzymes (proteases) participate in a vast range of physiological processes, ranging from nutrient digestion to blood coagulation, thrombosis, and beyond. In plants, proteases are implicated in host recognition and pathogen infection, induced defense (immunity), and the deterrence of insect pests. Because proteases irreversibly cleave peptide bonds of protein substrates, their activity must be tightly controlled in time and space. Here, we report an example of how nature evolved alternative mechanisms to fine-tune the activity of a cysteine protease dubbed RD21 (RESPONSIVE TO DESICCATION-21). One mechanism in the model plant Arabidopsis thaliana studied here comprises irreversible inhibition of RD21's activity by Serpin1, whereas the other mechanism is a result of the reversible inhibition of RD21 activity by a Kunitz protease inhibitor named water-soluble chlorophyll-binding protein (WSCP). Activity profiling, complex isolation, and homology modeling data revealed unique interactions of RD21 with Serpin1 and WSCP, respectively. Expression studies identified only partial overlaps in Serpin1 and WSCP accumulation that explain how RD21 contributes to the innate immunity of mature plants and arthropod deterrence of seedlings undergoing skotomorphogenesis and greening.
Leu, Chia-Hsing; Yang, Mei-Lin; Chung, Nai-Hui; Huang, Yen-Jang; Su, Yu-Chu; Chen, Yi-Cheng; Lin, Chia-Cheng; Shieh, Gia-Shing; Chang, Meng-Ya; Wang, Shainn-Wei; Chang, Yao; Chao, Julie; Chao, Lee
2015-01-01
Proteolytic cleavage of the hemagglutinin (HA) of influenza virus by host trypsin-like proteases is required for viral infectivity. Some serine proteases are capable of cleaving influenza virus HA, whereas some serine protease inhibitors (serpins) inhibit the HA cleavage in various cell types. Kallikrein-related peptidase 1 (KLK1, also known as tissue kallikrein) is a widely distributed serine protease. Kallistatin, a serpin synthesized mainly in the liver and rapidly secreted into the circulation, forms complexes with KLK1 and inhibits its activity. Here, we investigated the roles of KLK1 and kallistatin in influenza virus infection. We show that the levels of KLK1 increased, whereas those of kallistatin decreased, in the lungs of mice during influenza virus infection. KLK1 cleaved H1, H2, and H3 HA molecules and consequently enhanced viral production. In contrast, kallistatin inhibited KLK1-mediated HA cleavage and reduced viral production. Cells transduced with the kallistatin gene secreted kallistatin extracellularly, which rendered them more resistant to influenza virus infection. Furthermore, lentivirus-mediated kallistatin gene delivery protected mice against lethal influenza virus challenge by reducing the viral load, inflammation, and injury in the lung. Taking the data together, we determined that KLK1 and kallistatin contribute to the pathogenesis of influenza virus by affecting the cleavage of the HA peptide and inflammatory responses. This study provides a proof of principle for the potential therapeutic application of kallistatin or other KLK1 inhibitors for influenza. Since proteolytic activation also enhances the infectivity of some other viruses, kallistatin and other kallikrein inhibitors may be explored as antiviral agents against these viruses. PMID:26149981
Balakrishnan, Meenakshi P; Cilenti, Lucia; Mashak, Zineb; Popat, Paiyal; Alnemri, Emad S; Zervos, Antonis S
2009-08-01
Omi/HtrA2 is a mitochondrial serine protease that has a dual function: while confined in the mitochondria, it promotes cell survival, but when released into the cytoplasm, it participates in caspase-dependent as well as caspase-independent cell death. To investigate the mechanism of Omi/HtrA2's function, we set out to isolate and characterize novel substrates for this protease. We have identified Thanatos-associated protein 5 (THAP5) as a specific interactor and substrate of Omi/HtrA2 in cells undergoing apoptosis. This protein is an uncharacterized member of the THAP family of proteins. THAP5 has a unique pattern of expression and is found predominantly in the human heart, although a very low expression is also seen in the human brain and muscle. THAP5 protein is localized in the nucleus and, when ectopically expressed, induces cell cycle arrest. During apoptosis, THAP5 protein is degraded, and this process can be blocked using a specific Omi/HtrA2 inhibitor, leading to reduced cell death. In patients with coronary artery disease, THAP5 protein levels substantially decrease in the myocardial infarction area, suggesting a potential role of this protein in human heart disease. This work identifies human THAP5 as a cardiac-specific nuclear protein that controls cell cycle progression. Furthermore, during apoptosis, THAP5 is cleaved and removed by the proapoptotic Omi/HtrA2 protease. Taken together, we provide evidence to support that THAP5 and its regulation by Omi/HtrA2 provide a new link between cell cycle control and apoptosis in cardiomyocytes.
Sreedhar, Roopesh; Kaul Tiku, Purnima
2016-01-01
Cupin superfamily is one of the most diverse super families. This study reports the purification and characterization of a novel cupin domain containing protease from rice bran for the first time. Hypothetical protein OsI_13867 was identified and named as cupincin. Cupincin was purified to 4.4 folds with a recovery of 4.9%. Cupincin had an optimum pH and temperature of pH 4.0 and 60 °C respectively. Cupincin was found to be a homotrimer, consisting of three distinct subunits with apparent molecular masses of 33.45 kDa, 22.35 kDa and 16.67 kDa as determined by MALDI-TOF, whereas it eluted as a single unit with an apparent molecular mass of 135.33 ± 3.52 kDa in analytical gel filtration and migrated as a single band in native page, suggesting its homogeneity. Sequence identity of cupincin was deduced by determining the amino-terminal sequence of the polypeptide chains and by and de novo sequencing. For understanding the hydrolysing mechanism of cupincin, its three-dimensional model was developed. Structural analysis indicated that cupincin contains His313, His326 and Glu318 with zinc ion as the putative active site residues, inhibition of enzyme activity by 1,10-phenanthroline and atomic absorption spectroscopy confirmed the presence of zinc ion. The cleavage specificity of cupincin towards oxidized B-chain of insulin was highly specific; cleaving at the Leu15-Tyr16 position, the specificity was also determined using neurotensin as a substrate, where it cleaved only at the Glu1-Tyr2 position. Limited proteolysis of the protease suggests a specific function for cupincin. These results demonstrated cupincin as a completely new protease.
Sreedhar, Roopesh; Kaul Tiku, Purnima
2016-01-01
Cupin superfamily is one of the most diverse super families. This study reports the purification and characterization of a novel cupin domain containing protease from rice bran for the first time. Hypothetical protein OsI_13867 was identified and named as cupincin. Cupincin was purified to 4.4 folds with a recovery of 4.9%. Cupincin had an optimum pH and temperature of pH 4.0 and 60°C respectively. Cupincin was found to be a homotrimer, consisting of three distinct subunits with apparent molecular masses of 33.45 kDa, 22.35 kDa and 16.67 kDa as determined by MALDI-TOF, whereas it eluted as a single unit with an apparent molecular mass of 135.33 ± 3.52 kDa in analytical gel filtration and migrated as a single band in native page, suggesting its homogeneity. Sequence identity of cupincin was deduced by determining the amino-terminal sequence of the polypeptide chains and by and de novo sequencing. For understanding the hydrolysing mechanism of cupincin, its three-dimensional model was developed. Structural analysis indicated that cupincin contains His313, His326 and Glu318 with zinc ion as the putative active site residues, inhibition of enzyme activity by 1,10-phenanthroline and atomic absorption spectroscopy confirmed the presence of zinc ion. The cleavage specificity of cupincin towards oxidized B-chain of insulin was highly specific; cleaving at the Leu15-Tyr16 position, the specificity was also determined using neurotensin as a substrate, where it cleaved only at the Glu1-Tyr2 position. Limited proteolysis of the protease suggests a specific function for cupincin. These results demonstrated cupincin as a completely new protease. PMID:27064905
Mead, Timothy J.; Koch, Christopher D.; Biscotti, Charles V.; Falcone, Tommaso; Apte, Suneel S.
2017-01-01
Context: Leiomyomas have abundant extracellular matrix (ECM), with upregulation of versican, a large proteoglycan. Objective: We investigated ADAMTS (a disintegrin-like and metalloprotease with thrombospondin type 1 motifs) protease-mediated versican cleavage in myometrium and leiomyoma and the effect of versican knockdown in leiomyoma cells. Design: We used quantitative reverse transcription polymerase chain reaction (qRT-PCR), western blotting, immunohistochemistry, and RNA in situ hybridization for analysis of myometrium, leiomyoma and immortalized myometrium and leiomyoma cells. Short interfering RNA (siRNA) was used to knockdown versican in leiomyoma cells. Setting: This study was performed in an academic laboratory. Patients: Study subjects were women with symptomatic or asymptomatic leiomyoma. Main Outcome Measures: We quantified messenger RNAs (mRNAs) for versican splice variants. We identified ADAMTS-cleaved versican in myometrium and leiomyoma and ADAMTS messenger RNAs and examined the effect of VCAN siRNA on smooth muscle differentiation and expression of estrogen and progesterone receptors. Results: The women in the symptomatic group (n = 7) had larger leiomyoma (P = 0.01), heavy menstrual bleeding (P < 0.01), and lower hemoglobin levels (P = 0.02) compared with the asymptomatic group (n = 7), but were similar in age and menopausal status. Versican V0 and V1 isoforms were upregulated in the leiomyomas of symptomatic versus asymptomatic women (P = 0.03 and P = 0.04, respectively). Abundant cleaved versican was detected in leiomyoma and myometrium, as well as in myometrial and leiomyoma cell lines. ADAMTS4 (P = 0.03) and ADAMTS15 (P = 0.04) were upregulated in symptomatic leiomyomas. VCAN siRNA did not effect cell proliferation, apoptosis, or smooth muscle markers, but reduced ESR1 and PR-A expression (P = 0.001 and P = 0.002, respectively). Conclusions: Versican in myometrium, leiomyomas and in the corresponding immortalized cells is cleaved by ADAMTS proteases. VCAN siRNA suppresses production of estrogen receptor 1 and progesterone receptor-A. These findings have implications for leiomyoma growth. PMID:28323982
Gueye, Ndeye-Aicha; Mead, Timothy J; Koch, Christopher D; Biscotti, Charles V; Falcone, Tommaso; Apte, Suneel S
2017-05-01
Leiomyomas have abundant extracellular matrix (ECM), with upregulation of versican, a large proteoglycan. We investigated ADAMTS (a disintegrin-like and metalloprotease with thrombospondin type 1 motifs) protease-mediated versican cleavage in myometrium and leiomyoma and the effect of versican knockdown in leiomyoma cells. We used quantitative reverse transcription polymerase chain reaction (qRT-PCR), western blotting, immunohistochemistry, and RNA in situ hybridization for analysis of myometrium, leiomyoma and immortalized myometrium and leiomyoma cells. Short interfering RNA (siRNA) was used to knockdown versican in leiomyoma cells. This study was performed in an academic laboratory. Study subjects were women with symptomatic or asymptomatic leiomyoma. We quantified messenger RNAs (mRNAs) for versican splice variants. We identified ADAMTS-cleaved versican in myometrium and leiomyoma and ADAMTS messenger RNAs and examined the effect of VCAN siRNA on smooth muscle differentiation and expression of estrogen and progesterone receptors. The women in the symptomatic group (n = 7) had larger leiomyoma (P = 0.01), heavy menstrual bleeding (P < 0.01), and lower hemoglobin levels (P = 0.02) compared with the asymptomatic group (n = 7), but were similar in age and menopausal status. Versican V0 and V1 isoforms were upregulated in the leiomyomas of symptomatic versus asymptomatic women (P = 0.03 and P = 0.04, respectively). Abundant cleaved versican was detected in leiomyoma and myometrium, as well as in myometrial and leiomyoma cell lines. ADAMTS4 (P = 0.03) and ADAMTS15 (P = 0.04) were upregulated in symptomatic leiomyomas. VCAN siRNA did not effect cell proliferation, apoptosis, or smooth muscle markers, but reduced ESR1 and PR-A expression (P = 0.001 and P = 0.002, respectively). Versican in myometrium, leiomyomas and in the corresponding immortalized cells is cleaved by ADAMTS proteases. VCAN siRNA suppresses production of estrogen receptor 1 and progesterone receptor-A. These findings have implications for leiomyoma growth. Copyright © 2017 by the Endocrine Society
Yoshikawa, Rokusuke; Takeuchi, Junko S; Yamada, Eri; Nakano, Yusuke; Misawa, Naoko; Kimura, Yuichi; Ren, Fengrong; Miyazawa, Takayuki; Koyanagi, Yoshio; Sato, Kei
2017-06-01
The interplay between viral and host proteins has been well studied to elucidate virus-host interactions and their relevance to virulence. Mammalian genes encode apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3) proteins, which act as intrinsic restriction factors against lentiviruses. To overcome APOBEC3-mediated antiviral actions, lentiviruses have evolutionarily acquired an accessory protein, viral infectivity factor (Vif), and Vif degrades host APOBEC3 proteins via a ubiquitin/proteasome-dependent pathway. Although the Vif-APOBEC3 interaction and its evolutionary significance, particularly those of primate lentiviruses (including HIV) and primates (including humans), have been well investigated, those of nonprimate lentiviruses and nonprimates are poorly understood. Moreover, the factors that determine lentiviral pathogenicity remain unclear. Here, we focus on feline immunodeficiency virus (FIV), a pathogenic lentivirus in domestic cats, and the interaction between FIV Vif and feline APOBEC3 in terms of viral virulence and evolution. We reveal the significantly reduced diversity of FIV subtype B compared to that of other subtypes, which may associate with the low pathogenicity of this subtype. We also demonstrate that FIV subtype B Vif is less active with regard to feline APOBEC3 degradation. More intriguingly, we further reveal that FIV protease cleaves feline APOBEC3 in released virions. Taken together, our findings provide evidence that a lentivirus encodes two types of anti-APOBEC3 factors, Vif and viral protease. IMPORTANCE During the history of mammalian evolution, mammals coevolved with retroviruses, including lentiviruses. All pathogenic lentiviruses, excluding equine infectious anemia virus, have acquired the vif gene via evolution to combat APOBEC3 proteins, which are intrinsic restriction factors against exogenous lentiviruses. Here we demonstrate that FIV, a pathogenic lentivirus in domestic cats, antagonizes feline APOBEC3 proteins by both Vif and a viral protease. Furthermore, the Vif proteins of an FIV subtype (subtype B) have attenuated their anti-APOBEC3 activity through evolution. Our findings can be a clue to elucidate the complicated evolutionary processes by which lentiviruses adapt to mammals. Copyright © 2017 Yoshikawa et al.
Yoshikawa, Rokusuke; Takeuchi, Junko S.; Yamada, Eri; Nakano, Yusuke; Misawa, Naoko; Kimura, Yuichi; Ren, Fengrong; Miyazawa, Takayuki; Koyanagi, Yoshio
2017-01-01
ABSTRACT The interplay between viral and host proteins has been well studied to elucidate virus-host interactions and their relevance to virulence. Mammalian genes encode apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3) proteins, which act as intrinsic restriction factors against lentiviruses. To overcome APOBEC3-mediated antiviral actions, lentiviruses have evolutionarily acquired an accessory protein, viral infectivity factor (Vif), and Vif degrades host APOBEC3 proteins via a ubiquitin/proteasome-dependent pathway. Although the Vif-APOBEC3 interaction and its evolutionary significance, particularly those of primate lentiviruses (including HIV) and primates (including humans), have been well investigated, those of nonprimate lentiviruses and nonprimates are poorly understood. Moreover, the factors that determine lentiviral pathogenicity remain unclear. Here, we focus on feline immunodeficiency virus (FIV), a pathogenic lentivirus in domestic cats, and the interaction between FIV Vif and feline APOBEC3 in terms of viral virulence and evolution. We reveal the significantly reduced diversity of FIV subtype B compared to that of other subtypes, which may associate with the low pathogenicity of this subtype. We also demonstrate that FIV subtype B Vif is less active with regard to feline APOBEC3 degradation. More intriguingly, we further reveal that FIV protease cleaves feline APOBEC3 in released virions. Taken together, our findings provide evidence that a lentivirus encodes two types of anti-APOBEC3 factors, Vif and viral protease. IMPORTANCE During the history of mammalian evolution, mammals coevolved with retroviruses, including lentiviruses. All pathogenic lentiviruses, excluding equine infectious anemia virus, have acquired the vif gene via evolution to combat APOBEC3 proteins, which are intrinsic restriction factors against exogenous lentiviruses. Here we demonstrate that FIV, a pathogenic lentivirus in domestic cats, antagonizes feline APOBEC3 proteins by both Vif and a viral protease. Furthermore, the Vif proteins of an FIV subtype (subtype B) have attenuated their anti-APOBEC3 activity through evolution. Our findings can be a clue to elucidate the complicated evolutionary processes by which lentiviruses adapt to mammals. PMID:28331087
Dysregulation of Protease and Protease Inhibitors in a Mouse Model of Human Pelvic Organ Prolapse
Budatha, Madhusudhan; Silva, Simone; Montoya, Teodoro Ignacio; Suzuki, Ayako; Shah-Simpson, Sheena; Wieslander, Cecilia Karin; Yanagisawa, Masashi; Word, Ruth Ann; Yanagisawa, Hiromi
2013-01-01
Mice deficient for the fibulin-5 gene (Fbln5−/−) develop pelvic organ prolapse (POP) due to compromised elastic fibers and upregulation of matrix metalloprotease (MMP)-9. Here, we used casein zymography, inhibitor profiling, affinity pull-down, and mass spectrometry to discover additional protease upregulated in the vaginal wall of Fbln5−/− mice, herein named V1 (25 kDa). V1 was a serine protease with trypsin-like activity similar to protease, serine (PRSS) 3, a major extrapancreatic trypsinogen, was optimum at pH 8.0, and predominantly detected in estrogenized vaginal epithelium of Fbln5−/− mice. PRSS3 was (a) localized in epithelial secretions, (b) detected in media of vaginal organ culture from both Fbln5−/− and wild type mice, and (c) cleaved fibulin-5 in vitro. Expression of two serine protease inhibitors [Serpina1a (α1-antitrypsin) and Elafin] was dysregulated in Fbln5−/− epithelium. Finally, we confirmed that PRSS3 was expressed in human vaginal epithelium and that SERPINA1 and Elafin were downregulated in vaginal tissues from women with POP. These data collectively suggest that the balance between proteases and their inhibitors contributes to support of the pelvic organs in humans and mice. PMID:23437119
Phage-protease-peptide: a novel trifecta enabling multiplex detection of viable bacterial pathogens.
Alcaine, S D; Tilton, L; Serrano, M A C; Wang, M; Vachet, R W; Nugen, S R
2015-10-01
Bacteriophages represent rapid, readily targeted, and easily produced molecular probes for the detection of bacterial pathogens. Molecular biology techniques have allowed researchers to make significant advances in the bioengineering of bacteriophage to further improve speed and sensitivity of detection. Despite their host specificity, bacteriophages have not been meaningfully leveraged in multiplex detection of bacterial pathogens. We propose a proof-of-principal phage-based scheme to enable multiplex detection. Our scheme involves bioengineering bacteriophage to carry a gene for a specific protease, which is expressed during infection of the target cell. Upon lysis, the protease is released to cleave a reporter peptide, and the signal detected. Here we demonstrate the successful (i) modification of T7 bacteriophage to carry tobacco etch virus (TEV) protease; (ii) expression of TEV protease by Escherichia coli following infection by our modified T7, an average of 2000 units of protease per phage are produced during infection; and (iii) proof-of-principle detection of E. coli in 3 h after a primary enrichment via TEV protease activity using a fluorescent peptide and using a designed target peptide for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis (MALDI-TOF MS) analysis. This proof-of-principle can be translated to other phage-protease-peptide combinations to enable multiplex bacterial detection and readily adopted on multiple platforms, like MALDI-TOF MS or fluorescent readers, commonly found in labs.
Computer Aided Screening of Phytochemicals from Garcinia against the Dengue NS2B/NS3 Protease.
Qamar, Tahir Ul; Mumtaz, Arooj; Ashfaq, Usman Ali; Azhar, Samia; Fatima, Tabeer; Hassan, Muhammad; Hussain, Syed Sajid; Akram, Waheed; Idrees, Sobia
2014-01-01
Dengue virus NS2/NS3 protease because of its ability to cleave viral proteins is considered as an attractive target to screen antiviral agents. Medicinal plants contain a variety of phytochemicals that can be used as drug against different diseases and infections. Therefore, this study was designed to uncover possible phytochemical of different classes (Aromatic, Carbohydrates, Lignin, Saponins, Steroids, Tannins, Terpenoids, Xanthones) that could be used as inhibitors against the NS2B/NS3 protease of DENV. With the help of molecular docking, Garcinia phytochemicals found to be bound deeply inside the active site of DENV NS2B/NS3 protease among all tested phytochemicals and had interactions with catalytic triad (His51, Asp75, Ser135). Thus, it can be concluded from the study that these Gracinia phytochemicals could serve as important inhibitors to inhibit the viral replication inside the host cell. Further in-vitro investigations require confirming their efficacy.
Computer Aided Screening of Phytochemicals from Garcinia against the Dengue NS2B/NS3 Protease
Qamar, Tahir ul; Mumtaz, Arooj; Ashfaq, Usman Ali; Azhar, Samia; Fatima, Tabeer; Hassan, Muhammad; Hussain, Syed Sajid; Akram, Waheed; Idrees, Sobia
2014-01-01
Dengue virus NS2/NS3 protease because of its ability to cleave viral proteins is considered as an attractive target to screen antiviral agents. Medicinal plants contain a variety of phytochemicals that can be used as drug against different diseases and infections. Therefore, this study was designed to uncover possible phytochemical of different classes (Aromatic, Carbohydrates, Lignin, Saponins, Steroids, Tannins, Terpenoids, Xanthones) that could be used as inhibitors against the NS2B/NS3 protease of DENV. With the help of molecular docking, Garcinia phytochemicals found to be bound deeply inside the active site of DENV NS2B/NS3 protease among all tested phytochemicals and had interactions with catalytic triad (His51, Asp75, Ser135). Thus, it can be concluded from the study that these Gracinia phytochemicals could serve as important inhibitors to inhibit the viral replication inside the host cell. Further in-vitro investigations require confirming their efficacy. PMID:24748749
Plant Viral Proteases: Beyond the Role of Peptide Cutters
Rodamilans, Bernardo; Shan, Hongying; Pasin, Fabio; García, Juan Antonio
2018-01-01
Almost half of known plant viral species rely on proteolytic cleavages as key co- and post-translational modifications throughout their infection cycle. Most of these viruses encode their own endopeptidases, proteases with high substrate specificity that internally cleave large polyprotein precursors for the release of functional sub-units. Processing of the polyprotein, however, is not an all-or-nothing process in which endopeptidases act as simple peptide cutters. On the contrary, spatial-temporal modulation of these polyprotein cleavage events is crucial for a successful viral infection. In this way, the processing of the polyprotein coordinates viral replication, assembly and movement, and has significant impact on pathogen fitness and virulence. In this mini-review, we give an overview of plant viral proteases emphasizing their importance during viral infections and the varied functionalities that result from their proteolytic activities.
USDA-ARS?s Scientific Manuscript database
Maize ChitA chitinase is composed of a small, hevein-like domain attached to a carboxy-terminal chitinase domain. During fungal ear rot, the hevein-like domain is cleaved by secreted fungal proteases to produce truncated forms of ChitA. Here, we report a structural and biochemical characterization o...
2008-01-01
proteases that cleave their substrates after aspartic acid residues (cysteine aspartase). Thus, in these assays, free fluorescent AMC, generated as a...for her technical assistance and also thank Drs. Alan Brimfield and Clarence A. Broomfield of the US Army Medical Research Institute of Chemical
Huang, Li; Xiong, Tao; Yu, Huibin; Zhang, Quan; Zhang, Kunli; Li, Changyao; Hu, Liang; Zhang, Yuanfeng; Zhang, Lijie; Liu, Qinfang; Wang, Shengnan; He, Xijun; Bu, Zhigao; Cai, Xuehui; Cui, Shangjin; Li, Jiangnan; Weng, Changjiang
2017-06-09
TRAF family member-associated NF-κB activator (TANK) is a scaffold protein that assembles into the interferon (IFN) regulator factor 3 (IRF3)-phosphorylating TANK-binding kinase 1 (TBK1)-(IκB) kinase ε (IKKε) complex, where it is involved in regulating phosphorylation of the IRF3 and IFN production. However, the functions of TANK in encephalomyocarditis virus (EMCV) infection-induced type I IFN production are not fully understood. Here, we demonstrated that, instead of stimulating type I IFN production, the EMCV-HB10 strain infection potently inhibited Sendai virus- and polyI:C-induced IRF3 phosphorylation and type I IFN production in HEK293T cells. Mechanistically, EMCV 3C protease (EMCV 3C) cleaved TANK and disrupted the TANK-TBK1-IKKε-IRF3 complex, which resulted in the reduction in IRF3 phosphorylation and type I IFN production. Taken together, our findings demonstrate that EMCV adopts a novel strategy to evade host innate immune responses through cleavage of TANK. © 2017 The Author(s).
Huang, Li; Xiong, Tao; Yu, Huibin; Zhang, Quan; Zhang, Kunli; Li, Changyao; Hu, Liang; Zhang, Yuanfeng; Zhang, Lijie; Liu, Qinfang; Wang, Shengnan; He, Xijun; Bu, Zhigao; Cai, Xuehui
2017-01-01
TRAF family member-associated NF-κB activator (TANK) is a scaffold protein that assembles into the interferon (IFN) regulator factor 3 (IRF3)-phosphorylating TANK-binding kinase 1 (TBK1)–(IκB) kinase ε (IKKε) complex, where it is involved in regulating phosphorylation of the IRF3 and IFN production. However, the functions of TANK in encephalomyocarditis virus (EMCV) infection-induced type I IFN production are not fully understood. Here, we demonstrated that, instead of stimulating type I IFN production, the EMCV-HB10 strain infection potently inhibited Sendai virus- and polyI:C-induced IRF3 phosphorylation and type I IFN production in HEK293T cells. Mechanistically, EMCV 3C protease (EMCV 3C) cleaved TANK and disrupted the TANK–TBK1–IKKε–IRF3 complex, which resulted in the reduction in IRF3 phosphorylation and type I IFN production. Taken together, our findings demonstrate that EMCV adopts a novel strategy to evade host innate immune responses through cleavage of TANK. PMID:28487378
Loganathan, G; Dawra, R K; Pugazhenthi, S; Wiseman, A C; Sanders, M A; Saluja, A K; Sutherland, D E R; Hering, B J; Balamurugan, A N
2010-01-01
Exocrine tissue is commonly cotransplanted with islets in autografting and allotransplantation of impure preparations. Proteases and insulin are released by acinar cells and islets, respectively, during pretransplantation culture and also systemically after transplantation. We hypothesized that released proteases could cleave insulin molecules and that addition of alpha-1 antitrypsin (A1AT) to impure islet cultures would block this cleavage, improving islet recovery and function. Trypsin, chymotrypsin, and elastase (TCE) activity and insulin levels were measured in culture supernates of pure (n = 5) and impure (n = 5) islet fractions, which were isolated from deceased donors. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was used to detect insulin after incubation with proteases. We assessed the effects of A1AT supplementation (0.5 mg/mL; n = 4] on TCE activity, insulin levels, culture recovery, and islet quality. The ultrastructure of islets exposed to TCE versus control medium was examined using electron microscopy (EM). Protease (TCE) activity in culture supernatants was indirectly proportional to the percentage purity of islets: pure, impure, or highly impure. Increasingly lower levels of insulin were detected in culture supernatants when higher protease activity levels were present. Insulin levels measured from supernatants of impure and highly impure islet preparations were 61 +/- 23.7% and 34 +/- 33% of that in pure preparations, respectively. Incubation with commercially available proteases (TCE) or exocrine acinar cell supernatant cleaved insulin molecules as assessed using SDS-PAGE. Addition of A1AT to impure islet preparations reduced protease activity and restored normal insulin levels as detected using enzyme-linked immunosorbent assay (ELISA) and SDS-PAGE of culture supernates. A1AT improved insulin levels to 98% +/- 1.3% in impure and 78% +/- 34.2% in highly impure fractions compared with pure islet fractions. A1AT supplementation improved postculture recovery of islets in impure preparations compared with nontreated controls (72% +/- 9% vs 47% +/- 15%). Islet viability as measured using membrane integrity assays was similar in both the control (98% +/- 2%) and the A1AT-treated groups (99% +/- 1%). EM results revealed a reduction or absence of secretory granules after exposure to proteases (TCE). Culture of impure human islet fractions in the presence of A1AT prevented insulin cleavage and improved islet recovery. A1AT supplementation of islet culture media, therefore, may increase the proportion of human islet products that meet release criteria for transplantation. Copyright 2010 Elsevier Inc. All rights reserved.
Manning, Michael L; Williams, Simon A; Jelinek, Christine A; Kostova, Maya B; Denmeade, Samuel R
2013-03-15
Prostate-specific Ag (PSA) is a serine protease that is expressed exclusively by normal and malignant prostate epithelial cells. The continued high-level expression of PSA by the majority of men with both high- and low-grade prostate cancer throughout the course of disease progression, even in the androgen-ablated state, suggests that PSA has a role in the pathogenesis of disease. Current experimental and clinical evidence suggests that chronic inflammation, regardless of the cause, may predispose men to prostate cancer. The responsibility of the immune system in immune surveillance and eventually tumor progression is well appreciated but not completely understood. In this study, we used a mass spectrometry-based evaluation of prostatic fluid obtained from diseased prostates after removal by radical prostatectomy to identify potential immunoregulatory proteins. This analysis revealed the presence of Igs and the complement system proteins C3, factor B, and clusterin. Verification of these findings by Western blot confirmed the high-level expression of C3 in the prostatic fluid and the presence of a previously uncharacterized C-terminal C3 cleavage product. Biochemical analysis of this C3 cleavage fragment revealed a putative PSA cleavage site after tyrosine-1348. Purified PSA was able to cleave iC3b and the related complement protein C5. These results suggest a previously uncharacterized function of PSA as an immunoregulatory protease that could help to create an environment hospitable to malignancy through proteolysis of the complement system.
Hydrolytic properties and substrate specificity of the foot-and-mouth disease leader protease.
Santos, Jorge A N; Gouvea, Iuri E; Júdice, Wagner A S; Izidoro, Mario A; Alves, Fabiana M; Melo, Robson L; Juliano, Maria A; Skern, Tim; Juliano, Luiz
2009-08-25
Foot-and-mouth disease virus, a global animal pathogen, possesses a single-stranded RNA genome that, on release into the infected cell, is immediately translated into a single polyprotein. This polyprotein product is cleaved during synthesis by proteinases contained within it into the mature viral proteins. The first cleavage is performed by the leader protease (Lb(pro)) between its own C-terminus and the N-terminus of VP4. Lb(pro) also specifically cleaves the two homologues of cellular eukaryotic initiation factor (eIF) 4G, preventing translation of capped mRNA. Viral protein synthesis is initiated internally and is thus unaffected. We used a panel of specifically designed FRET peptides to examine the effects of pH and ionic strength on Lb(pro) activity and investigate the size of the substrate binding site and substrate specificity. Compared to the class prototypes, papain and the cathepsins, Lb(pro) possesses several unusual characteristics, including a high sensitivity to salt and a very specific substrate binding site extending up to P(7). Indeed, almost all substitutions investigated were detrimental to Lb(pro) activity. Analysis of structural data showed that Lb(pro) binds residues P(1)-P(3) in an extended conformation, whereas residues P(4)-P(7) are bound in a short 3(10) helix. The specificity of Lb(pro) as revealed by the substituted peptides could be explained for all positions except P(5). Strikingly, Lb(pro) residues L178 and L143 contribute to the architecture of more than one substrate binding pocket. The diverse functions of these two Lb(pro) residues explain why Lb(pro) is one of the smallest, but simultaneously most specific, papain-like enzymes.
Buckley, Seamus J; Collins, Patrick J; O'Connor, Brendan F
2004-07-01
The discovery of a potentially novel proline-specific peptidase from bovine serum is presented which is capable of cleaving the dipeptidyl peptidase IV (DPIV) substrate Gly-Pro-MCA. The enzyme was isolated and purified with the use of Phenyl Sepharose Hydrophobic Interaction, Sephacryl S-300 Gel Filtration, and Q-Sephacryl Anion Exchange, producing an overall purification factor of 257. SDS PAGE resulted in a monomeric molecular mass of 158kDa while size exclusion chromatography generated a native molecular mass of 328kDa. The enzyme remained active over a broad pH range with a distinct preference for a neutral pH range of 7-8.5. Chromatofocusing and isoelectric focusing (IEF) revealed the enzyme's isoelectric point to be 4.74. DPIV-like activity was not inhibited by serine protease inhibitors but was by the metallo-protease inhibitors, the phenanthrolines. The enzyme was also partially inhibited by bestatin. Substrate specificity studies proved that the enzyme is capable of sequential cleavage of bovine beta-Casomorphin and Substance P. The peptidase cleaved the standard DPIV substrate, Gly-Pro-MCA with a K(M) of 38.4 microM, while Lys-Pro-MCA was hydrolysed with a K(M) of 103 microM. The DPIV-like activity was specifically inhibited by both Diprotin A and B, non-competitively, generating a K(i) of 1.4 x 10(-4) M for both inhibitors. Ile-Thiazolidide and Ile-Pyrrolidide both inhibited competitively with an inhibition constant of 3.7 x 10(-7) and 7.5 x 10(-7) M, respectively. It is concluded that bovine serum DPIV-like activity share many biochemical properties with DPIV and DPIV-like enzymes but not exclusively, suggesting that the purified peptidase may play an important novel role in bioactive oligopeptide degradation.
Development of a peptide substrate for detection of Sunn pest damage in wheat flour.
Hançerlioğulları, Begüm Zeynep; Köksel, Hamit; Dudak, Fahriye Ceyda
2018-05-07
Since the common protease substrates did not give satisfactory results for the determination of Sunn pest protease activity in damaged wheat, different peptide substrates derived from the repeat sequences of high molecular weight glutenin subunits were synthesized. Hydrolysis of peptides by pest protease was determined by HPLC. Among three peptides having the same consensus motifs, peptide1 (PGQGQQGYYPTSPQQ) showed the best catalytic efficiency. A novel assay was described for monitoring the enzymatic activity of protease extracted from damaged wheat flour. The selected peptide was labeled with a fluorophore (EDANS) and quencher (Dabcyl) to display fluorescence resonance energy transfer (FRET). The proteolytic activity was measured by the change in fluorescence intensity that occurred when the protease cleaved the peptide substrate. Furthermore, the developed assay was modified for rapid and easy detection of bug damage in flour. Flour samples were suspended in water and mixed with fluorescence peptide substrate. After centrifugation, the fluorescence intensities of the supernatants were determined which is proportional with the protease content of the flour. The total analysis time for the developed assay is estimated as 15 minutes. The developed assay permits a significant decrease in time and labor, offering sensitive detection of Sunn pest damage in wheat flour. This article is protected by copyright. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aleshin,A.; Shiryaev, S.; Strongin, A.
2007-01-01
Pathogenic members of the flavivirus family, including West Nile Virus (WNV) and Dengue Virus (DV), are growing global threats for which there are no specific treatments. The two-component flaviviral enzyme NS2B-NS3 cleaves the viral polyprotein precursor within the host cell, a process that is required for viral replication. Here, we report the crystal structure of WNV NS2B-NS3pro both in a substrate-free form and in complex with the trypsin inhibitor aprotinin/BPTI. We show that aprotinin binds in a substrate-mimetic fashion in which the productive conformation of the protease is fully formed, providing evidence for an 'induced fit' mechanism of catalysis andmore » allowing us to rationalize the distinct substrate specificities of WNV and DV proteases. We also show that the NS2B cofactor of WNV can adopt two very distinct conformations and that this is likely to be a general feature of flaviviral proteases, providing further opportunities for regulation. Finally, by comparing the flaviviral proteases with the more distantly related Hepatitis C virus, we provide insights into the evolution of the Flaviviridae fold. Our work should expedite the design of protease inhibitors to treat a range of flaviviral infections.« less
Cusick, John K; Hager, Elizabeth; Gill, Ronald E
2015-01-01
The BsgA protease is required for the earliest morphological changes observed in Myxococcus xanthus development. We hypothesize that the BsgA protease is required to cleave an inhibitor of the developmental program, and isolation of genetic bypass suppressors of a bsgA mutant was used to identify signaling components controlling development downstream of the BsgA protease. Strain M955 was created by transposon mutagenesis of a bsgA mutant followed by screening for strains that could develop despite the absence of the BsgA protease. Strain M955 was able to aggregate, form fruiting bodies, and partially restored the production of viable spores in comparison to the parental bsgA mutant. The bsgA Tn5Ω955 strain partially restored developmental expression to a subset of genes normally induced during development, and expressed one developmentally induced fusion at higher amounts during vegetative growth in comparison to wild-type cells. The transposon in strain M955 was localized to a Ribonuclease D homolog that appears to exist in an operon with a downstream aminopeptidase-encoding gene. The identification of a third distinct bypass suppressor of the BsgA protease suggests that the BsgA protease may regulate a potentially complex pathway during the initiation of the M. xanthus developmental program. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
AoS28D, a proline-Xaa carboxypeptidase secreted by Aspergillus oryzae.
Salamin, Karine; Eugster, Philippe J; Jousson, Olivier; Waridel, Patrice; Grouzmann, Eric; Monod, Michel
2017-05-01
Prolyl peptidases of the MEROPS S28 family are of particular interest because they are key enzymes in the digestion of proline-rich peptides. A BLAST analysis of the Aspergillus oryzae genome revealed sequences coding for four proteases of the S28 family. Three of these proteases, AoS28A, AoS28B, and AoS28C, were previously characterized as acidic prolyl endopeptidases. The fourth protease, AoS28D, showed high sequence divergence with other S28 proteases and belongs to a phylogenetically distinct cluster together with orthologous proteases from other Aspergillus species. The objective of the present paper was to characterize AoS28D protease in terms of substrate specificity and activity. AoS28D produced by gene overexpression in A. oryzae and in Pichia pastoris was a 70-kDa glycoprotein with a 10-kDa sugar moiety. In contrast with other S28 proteases, AoS28D did not hydrolyze internal Pro-Xaa bonds of several tested peptides. Similarly, to human lysosomal Pro-Xaa carboxypeptidase, AoS28D demonstrated selectivity for cleaving C-terminal Pro-Xaa bonds which are resistant to carboxypeptidases of the S10 family concomitantly secreted by A. oryzae. Therefore, AoS28D could act in synergy with these enzymes during sequential degradation of a peptide from its C-terminus.
Dhanavade, Maruti J; Jalkute, Chidambar B; Barage, Sagar H; Sonawane, Kailas D
2013-12-01
Cysteine protease is known to degrade amyloid beta peptide which is a causative agent of Alzheimer's disease. This cleavage mechanism has not been studied in detail at the atomic level. Hence, a three-dimensional structure of cysteine protease from Xanthomonas campestris was constructed by homology modeling using Geno3D, SWISS-MODEL, and MODELLER 9v7. All the predicted models were analyzed by PROCHECK and PROSA. Three-dimensional model of cysteine protease built by MODELLER 9v7 shows similarity with human cathepsin B crystal structure. This model was then used further for docking and simulation studies. The molecular docking study revealed that Cys17, His87, and Gln88 residues of cysteine protease form an active site pocket similar to human cathepsin B. Then the docked complex was refined by molecular dynamic simulation to confirm its stable behavior over the entire simulation period. The molecular docking and MD simulation studies showed that the sulfhydryl hydrogen atom of Cys17 of cysteine protease interacts with carboxylic oxygen of Lys16 of Aβ peptide indicating the cleavage site. Thus, the cysteine protease model from X. campestris having similarity with human cathepsin B crystal structure may be used as an alternate approach to cleave Aβ peptide a causative agent of Alzheimer's disease. © 2013 Elsevier Ltd. All rights reserved.
Bhatnagar, R; Batra, S
2001-01-01
Anthrax is primarily a disease of herbivores caused by gram-positive, aerobic, spore-forming Bacillus anthracis. Humans are accidental hosts through the food of animal origin and animal products. Anthrax is prevelant in most parts of the globe, and cases of anthrax have been reported from almost every country. Three forms of the disease have been recognized: cutaneous (through skin), gastrointestinal (through alimentary tract), and pulmonary (by inhalation of spores). The major virulence factors of Bacillus anthracis are a poly-D glutamic acid capsule and a three-component protein exotoxin. The genes coding for the toxin and the enzymes responsible for capsule production are carried on plasmid pXO1 and pXO2, respectively. The three proteins of the exotoxin are protective antigen (PA, 83 kDa), lethal factor (LF, 90 kDa), and edema factor (EF, 89 kDa). The toxins follow the A-B model with PA being the B moeity and LF/EF, the alternative A moeities. LF and EF are individually nontoxic, but in combination with PA form two toxins causing different pathogenic responses in animals and cultured cells. PA + LF forms the lethal toxin and PA + EF forms the edema toxin. During the process of intoxication, PA binds to the cell surface receptor and is cleaved at the sequence RKKR (167) by cell surface proteases such as furin generating a cell-bound, C-terminal 63 kDa protein (PA63). PA63 possesses a binding site to which LF or EF bind with high affinity. The complex is then internalized by receptor-mediated endocytosis. Acidification of the vesicle leads to instertion of PA63 into the endosomal membrane and translocation of LF/EF across the bilayer into the cytosol where they exert their toxic effects. EF has a calcium- and calmodulin-dependent adenylate cyclase activity. Recent reports indicate that LF is a protease that cleaves the amino terminus of mitogen-activated protein kinase kinases 1 and 2 (MAPKK1 and 2), and this cleavage inactivates MAPKK1 and thus inhibits the mitogen-activated protein kinase signal transduction pathway. We describe in detail the studies so far done on unraveling the molecular mechanisms of pathogenesis of Bacillus anthracis.
Tyrosine Phosphorylation of Botulinum Neurotoxin Protease Domains
2012-06-01
trifluoroacetic acid; Tm: melting temperature; TMB, 3,3′,5,5′-tetramethylbenzidine; UPLC , ultra performance liquid chromatography; VAMP, vesicle...activity determination by UPLC . Alternately, in large-scale preparations, phosphoryla- tion reaction was stopped by removing the Src with sepharose beads...peptides. ENZYMATIC ACTIVITY ASSAYS Activity assays were based on UPLC separation and measurement of the cleaved products from a 17-residue SNAP-25
Multiplex profiling of tumor-associated proteolytic activity in serum of colorectal cancer patients.
Yepes, Diego; Costina, Victor; Pilz, Lothar R; Hofheinz, Ralf; Neumaier, Michael; Findeisen, Peter
2014-06-01
The monitoring of tumor-associated protease activity in blood specimens has recently been proposed as new diagnostic tool in cancer research. In this paper, we describe the screening of a peptide library for identification of reporter peptides (RPs) that are selectively cleaved in serum specimens from colorectal cancer patients and investigate the benefits of RP multiplexing. A library of 144 RPs was constructed that contained amino acid sequences of abundant plasma proteins. Proteolytic cleavage of RPs was monitored with MS. Five RPs that were selectively cleaved in serum specimens from tumor patients were selected for further validation in serum specimens of colorectal tumor patients (n = 30) and nonmalignant controls (n = 60). RP spiking and subsequent quantification of proteolytic fragments with LC-MS showed good reproducibility with CVs always below 26%. The linear discriminant analysis and PCA revealed that a combination of RPs for diagnostic classification is superior to single markers. Classification accuracy reached 88% (79/90) when all five markers were combined. Functional protease profiling with RPs might improve the laboratory-based diagnosis, monitoring and prognosis of malignant disease, and has to be evaluated thoroughly in future studies. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Functions of KLK4 and MMP-20 in dental enamel formation
Lu, Yuhe; Papagerakis, Petros; Yamakoshi, Yasuo; Hu, Jan C-C.; Bartlett, John D.; Simmer, James P.
2009-01-01
Two proteases are secreted into the enamel matrix of developing teeth. The early protease is enamelysin (MMP-20). The late protease is kallikrein 4 (KLK4). Mutations in MMP20 and KLK4 both cause autosomal recessive amelogenesis imperfecta, a condition featuring soft, porous enamel containing residual protein. MMP-20 is secreted along with enamel proteins by secretory stage ameloblasts. Enamel protein cleavage products accumulate in the space between the crystal ribbons, helping to support them. MMP-20 steadily cleaves accumulated enamel proteins, so their concentration decreases with depth. Kallikrein 4 is secreted by transition and maturation stage ameloblasts. KLK4 aggressively degrades the retained organic matrix following the termination of enamel protein secretion. The principle functions of MMP-20 and KLK4 in dental enamel formation are to facilitate the orderly replacement of organic matrix with mineral, generating an enamel layer that is harder, less porous, and unstained by retained enamel proteins. PMID:18627287
Protease-Mediated Maturation of HIV: Inhibitors of Protease and the Maturation Process.
Adamson, Catherine S
2012-01-01
Protease-mediated maturation of HIV-1 virus particles is essential for virus infectivity. Maturation occurs concomitant with immature virus particle release and is mediated by the viral protease (PR), which sequentially cleaves the Gag and Gag-Pol polyproteins into mature protein domains. Maturation triggers a second assembly event that generates a condensed conical capsid core. The capsid core organizes the viral RNA genome and viral proteins to facilitate viral replication in the next round of infection. The fundamental role of proteolytic maturation in the generation of mature infectious particles has made it an attractive target for therapeutic intervention. Development of small molecules that target the PR active site has been highly successful and nine protease inhibitors (PIs) have been approved for clinical use. This paper provides an overview of their development and clinical use together with a discussion of problems associated with drug resistance. The second-half of the paper discusses a novel class of antiretroviral drug termed maturation inhibitors, which target cleavage sites in Gag not PR itself. The paper focuses on bevirimat (BVM) the first-in-class maturation inhibitor: its mechanism of action and the implications of naturally occurring polymorphisms that confer reduced susceptibility to BVM in phase II clinical trials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eisenmesser, Elan Z.; Capodagli, Glenn; Armstrong, Geoffrey S.
Crimean-Congo Hemorrhagic fever virus (CCHFV) is one of several lethal viruses that encodes for a viral ovarian tumor domain (vOTU), which serves to cleave and remove multiple proteins involved in cellular signaling such as ubiquitin (Ub) and interferon stimulated gene produce 15 (ISG15). Such manipulation of the host cell machinery serves to downregulate the host response and, therefore, complete characterization of these proteases is important. While several structures of the CCHFV vOTU protease have been solved, both free and bound to Ub and ISG15, few structural differences have been found and little insight has been gained as to the dynamicmore » plasticity of this protease. Therefore, we have used NMR relaxation experiments to probe the dynamics of CCHV vOTU, both alone and in complex with Ub, thereby discovering a highly dynamic protease that exhibits conformational exchange within the same regions found to engage its Ub substrate. These experiments reveal a structural plasticity around the N-terminal regions of CCHV vOTU, which are unique to vOTUs, and provide a rationale for engaging multiple substrates with the same binding site.« less
Production of foot-and-mouth disease virus capsid proteins by the TEV protease.
Puckette, Michael; Smith, Justin D; Gabbert, Lindsay; Schutta, Christopher; Barrera, José; Clark, Benjamin A; Neilan, John G; Rasmussen, Max
2018-06-10
Protective immunity to viral pathogens often includes production of neutralizing antibodies to virus capsid proteins. Many viruses produce capsid proteins by expressing a precursor polyprotein and related protease from a single open reading frame. The foot-and-mouth disease virus (FMDV) expresses a 3C protease (3Cpro) that cleaves a P1 polyprotein intermediate into individual capsid proteins, but the FMDV 3Cpro also degrades many host cell proteins and reduces the viability of host cells, including subunit vaccine production cells. To overcome the limitations of using the a wild-type 3Cpro in FMDV subunit vaccine expression systems, we altered the protease restriction sequences within a FMDV P1 polyprotein to enable production of FMDV capsid proteins by the Tobacco Etch Virus NIa protease (TEVpro). Separate TEVpro and modified FMDV P1 proteins were produced from a single open reading frame by an intervening FMDV 2A sequence. The modified FMDV P1 polyprotein was successfully processed by the TEVpro in both mammalian and bacterial cells. More broadly, this method of polyprotein production and processing may be adapted to other recombinant expression systems, especially plant-based expression. Published by Elsevier B.V.
Lidell, Martin E.; Moncada, Darcy M.; Chadee, Kris; Hansson, Gunnar C.
2006-01-01
In order for the protozoan parasite Entamoeba histolytica (E.h.) to cause invasive intestinal and extraintestinal infection, which leads to significant morbidity and mortality, it must disrupt the protective mucus layer by a previously unknown mechanism. We hypothesized that cysteine proteases secreted from the amoeba disrupt the mucin polymeric network, thereby overcoming the protective mucus barrier. The MUC2 mucin is the major structural component of the colonic mucus gel. Heavily O-glycosylated and protease-resistant mucin domains characterize gel-forming mucins. Their N- and C-terminal cysteine-rich domains are involved in mucin polymerization, and these domains are likely to be targeted by proteases because they are less glycosylated, thereby exposing their peptide chains. By treating recombinant cysteine-rich domains of MUC2 with proteases from E.h. trophozoites, we showed that the C-terminal domain was specifically targeted at two sites by cysteine proteases, whereas the N-terminal domain was resistant to proteolysis. The major cleavage site is predicted to depolymerize the MUC2 polymers, thereby disrupting the protective mucus gel. The ability of the cysteine proteases to dissolve mucus gels was confirmed by treating mucins from a MUC2-producing cell line with amoeba proteases. These findings suggest a major role for E.h. cysteine proteases in overcoming the protective mucus barrier in the pathogenesis of invasive amoebiasis. In this report, we identify a specific cleavage mechanism used by an enteric pathogen to disrupt the polymeric nature of the mucin gel. PMID:16754877
Lidell, Martin E; Moncada, Darcy M; Chadee, Kris; Hansson, Gunnar C
2006-06-13
In order for the protozoan parasite Entamoeba histolytica (E.h.) to cause invasive intestinal and extraintestinal infection, which leads to significant morbidity and mortality, it must disrupt the protective mucus layer by a previously unknown mechanism. We hypothesized that cysteine proteases secreted from the amoeba disrupt the mucin polymeric network, thereby overcoming the protective mucus barrier. The MUC2 mucin is the major structural component of the colonic mucus gel. Heavily O-glycosylated and protease-resistant mucin domains characterize gel-forming mucins. Their N- and C-terminal cysteine-rich domains are involved in mucin polymerization, and these domains are likely to be targeted by proteases because they are less glycosylated, thereby exposing their peptide chains. By treating recombinant cysteine-rich domains of MUC2 with proteases from E.h. trophozoites, we showed that the C-terminal domain was specifically targeted at two sites by cysteine proteases, whereas the N-terminal domain was resistant to proteolysis. The major cleavage site is predicted to depolymerize the MUC2 polymers, thereby disrupting the protective mucus gel. The ability of the cysteine proteases to dissolve mucus gels was confirmed by treating mucins from a MUC2-producing cell line with amoeba proteases. These findings suggest a major role for E.h. cysteine proteases in overcoming the protective mucus barrier in the pathogenesis of invasive amoebiasis. In this report, we identify a specific cleavage mechanism used by an enteric pathogen to disrupt the polymeric nature of the mucin gel.
Alteration of Substrate and Inhibitor Specificity of Feline Immunodeficiency Virus Protease
Lin, Ying-Chuan; Beck, Zachary; Lee, Taekyu; Le, Van-Duc; Morris, Garrett M.; Olson, Arthur J.; Wong, Chi-Huey; Elder, John H.
2000-01-01
Feline immunodeficiency virus (FIV) protease is structurally very similar to human immunodeficiency virus (HIV) protease but exhibits distinct substrate and inhibitor specificities. We performed mutagenesis of subsite residues of FIV protease in order to define interactions that dictate this specificity. The I37V, N55M, M56I, V59I, and Q99V mutants yielded full activity. The I37V, N55M, V59I, and Q99V mutants showed a significant increase in activity against the HIV-1 reverse transcriptase/integrase and P2/nucleocapsid junction peptides compared with wild-type (wt) FIV protease. The I37V, V59I, and Q99V mutants also showed an increase in activity against two rapidly cleaved peptides selected by cleavage of a phage display library with HIV-1 protease. Mutations at Q54K, I98P, and L101I dramatically reduced activity. Mutants containing a I35D or I57G substitution showed no activity against either FIV or HIV substrates. FIV proteases all failed to cut HIV-1 matrix/capsid, P1/P6, P6/protease, and protease/reverse transcriptase junctions, indicating that none of the substitutions were sufficient to change the specificity completely. The I37V, N55M, M56I, V59I, and Q99V mutants, compared with wt FIV protease, all showed inhibitor specificity more similar to that of HIV-1 protease. The data also suggest that FIV protease prefers a hydrophobic P2/P2′ residue like Val over Asn or Glu, which are utilized by HIV-1 protease, and that S2/S2′ might play a critical role in distinguishing FIV and HIV-1 protease by specificity. The findings extend our observations regarding the interactions involved in substrate binding and aid in the development of broad-based inhibitors. PMID:10775609
Vatter, Heather A; Di, Han; Donaldson, Eric F; Radu, Gertrud U; Maines, Taronna R; Brinton, Margo A
2014-08-01
The N-terminal region of simian hemorrhagic fever virus (SHFV) nonstructural polyprotein 1a is predicted to encode three papain-like proteases (PLP1α, PLP1β, and PLP1γ). Catalytic residues and cleavage sites for each of the SHFV PLP1s were predicted by alignment of the SHFV PLP1 region sequences with each other as well as with those of other arteriviruses, and the predicted catalytic residues were shown to be proximal by homology modeling of the SHFV nsp1s on porcine respiratory and reproductive syndrome virus (PRRSV) nsp1 crystal structures. The functionality of the predicted catalytic Cys residues and cleavage sites was tested by analysis of the autoproteolytic products generated in in vitro transcription/translation reactions done with wild-type or mutant SHFV nsp1 constructs. Cleavage sites were also analyzed by mass spectroscopy analysis of selected immunoprecipitated cleavage products. The data showed that each of the three SHFV PLP1s is an active protease. Cys63 was identified as the catalytic Cys of SHFV PLP1α and is adjacent to an Ala instead of the canonical Tyr observed in other arterivirus PLP1s. SHFV PLP1γ is able to cleave at both downstream and upstream nsp1 junction sites. Although intermediate precursor polyproteins as well as alternative products generated by each of the SHFV PLP1s cleaving at sites within the N-terminal region of nsp1β were produced in the in vitro reactions, Western blotting of SHFV-infected, MA104 cell lysates with SHFV nsp1 protein-specific antibodies detected only the three mature nsp1 proteins. SHFV is unique among arteriviruses in having three N-terminal papain-like protease 1 (PLP1) domains. Other arteriviruses encode one or two active PLP1s. This is the first functional study of the SHFV PLP1s. Analysis of the products of in vitro autoprocessing of an N-terminal SHFV nonstructural 1a polypeptide fragment showed that each of the three SHFV PLP1s is active, and the predicted catalytic Cys residues and cleavage sites for each PLP1 were confirmed by testing mutant constructs. Several unique features of the SHFV PLP1s were discovered. The SHFV PLP1α catalytic Cys63 is unique among arterivirus PLP1s in being adjacent to an Ala instead of a Trp. Other arterivirus PLP1s cleave only in cis at a single downstream site, but SHFV PLP1γ can cleave at both the downstream nsp1γ-nsp2 and upstream nsp1β-nsp1γ junctions. The three mature nsp1 proteins were produced both in the in vitro reactions and in infected cells. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Papareddy, Praveen; Kalle, Martina; Sørensen, Ole E; Lundqvist, Katarina; Mörgelin, Matthias; Malmsten, Martin; Schmidtchen, Artur
2012-01-01
Tissue factor pathway inhibitor 2 (TFPI-2) is a matrix-associated serine protease inhibitor with an enigmatic function in vivo. Here, we describe that TFPI-2 is present in fibrin of wounds and also expressed in skin, where it is up-regulated upon wounding. Neutrophil elastase cleaved TFPI-2, and a C-terminal fragment was found to bind to bacteria. Similarly, a prototypic peptide representing this C-terminal part, EDC34, bound to bacteria and bacterial lipopolysaccharide, and induced bacterial permeabilization. The peptide also induced leakage in artificial liposomes, and displayed a random coil conformation upon interactions with liposomes as well as lipopolysaccharide. EDC34 was antibacterial against both Gram-negative and Gram-positive bacteria in physiological buffer conditions. The results demonstrate that the C-terminus of TFPI-2 encodes for antimicrobial activity, and may be released during wounding.
A Bottom-Up Proteomic Approach to Identify Substrate Specificity of Outer-Membrane Protease OmpT.
Wood, Sarah E; Sinsinbar, Gaurav; Gudlur, Sushanth; Nallani, Madhavan; Huang, Che-Fan; Liedberg, Bo; Mrksich, Milan
2017-12-22
Identifying peptide substrates that are efficiently cleaved by proteases gives insights into substrate recognition and specificity, guides development of inhibitors, and improves assay sensitivity. Peptide arrays and SAMDI mass spectrometry were used to identify a tetrapeptide substrate exhibiting high activity for the bacterial outer-membrane protease (OmpT). Analysis of protease activity for the preferred residues at the cleavage site (P1, P1') and nearest-neighbor positions (P2, P2') and their positional interdependence revealed FRRV as the optimal peptide with the highest OmpT activity. Substituting FRRV into a fragment of LL37, a natural substrate of OmpT, led to a greater than 400-fold improvement in OmpT catalytic efficiency, with a k cat /K m value of 6.1×10 6 L mol -1 s -1 . Wild-type and mutant OmpT displayed significant differences in their substrate specificities, demonstrating that even modest mutants may not be suitable substitutes for the native enzyme. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Schneider, Lars A.; Schlenner, Susan M.; Feyerabend, Thorsten B.; Wunderlin, Markus; Rodewald, Hans-Reimer
2007-01-01
Mast cells are protective against snake venom sarafotoxins that belong to the endothelin (ET) peptide family. The molecular mechanism underlying this recently recognized innate defense pathway is unknown, but secretory granule proteases have been invoked. To specifically disrupt a single protease function without affecting expression of other proteases, we have generated a mouse mutant selectively lacking mast cell carboxypeptidase A (Mc-cpa) activity. Using this mutant, we have now identified Mc-cpa as the essential protective mast cell enzyme. Mass spectrometry of peptide substrates after cleavage by normal or mutant mast cells showed that removal of a single amino acid, the C-terminal tryptophan, from ET and sarafotoxin by Mc-cpa is the principle molecular mechanism underlying this very rapid mast cell response. Mast cell proteases can also cleave ET and sarafotoxin internally, but such “nicking” is not protective because intramolecular disulfide bridges maintain peptide function. We conclude that mast cells attack ET and sarafotoxin exactly at the structure required for toxicity, and hence sarafotoxins could not “evade” Mc-cpa's substrate specificity without loss of toxicity. PMID:17923505
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romano, Keith P.; Laine, Jennifer M.; Deveau, Laura M.
Hepatitis C NS3/4A protease is a prime therapeutic target that is responsible for cleaving the viral polyprotein at junctions 3-4A, 4A4B, 4B5A, and 5A5B and two host cell adaptor proteins of the innate immune response, TRIF and MAVS. In this study, NS3/4A crystal structures of both host cell cleavage sites were determined and compared to the crystal structures of viral substrates. Two distinct protease conformations were observed and correlated with substrate specificity: (i) 3-4A, 4A4B, 5A5B, and MAVS, which are processed more efficiently by the protease, form extensive electrostatic networks when in complex with the protease, and (ii) TRIF andmore » 4B5A, which contain polyproline motifs in their full-length sequences, do not form electrostatic networks in their crystal complexes. These findings provide mechanistic insights into NS3/4A substrate recognition, which may assist in a more rational approach to inhibitor design in the face of the rapid acquisition of resistance.« less
Taga, Yuki; Hayashida, Osamu; Kusubata, Masashi; Ogawa-Goto, Kiyoko; Hattori, Shunji
2017-09-01
Wheat gluten is a Pro-rich protein complex comprising glutenins and gliadins. Previous studies have reported that oral intake of enzymatic hydrolysates of gluten has beneficial effects, such as suppression of muscle injury and improvement of hepatitis. Here, we utilized ginger protease that preferentially cleaves peptide bonds with Pro at the P 2 position to produce a novel type of wheat gluten hydrolysate. Ginger protease efficiently hydrolyzed gluten, particularly under weak acidic conditions, to peptides with an average molecular weight of <600 Da. In addition, the gluten hydrolysate contained substantial amounts of tripeptides, including Gln-Pro-Gln, Gln-Pro-Gly, Gln-Pro-Phe, Leu-Pro-Gln, and Ser-Pro-Gln (e.g. 40.7 mg/g at pH 5.2). These gluten-derived tripeptides showed high inhibitory activity on dipeptidyl peptidase-IV with IC 50 values of 79.8, 70.9, 71.7, 56.7, and 78.9 μM, respectively, suggesting that the novel gluten hydrolysate prepared using ginger protease can be used as a functional food for patients with type 2 diabetes.
Rendón-Ramírez, Adela; Shukla, Manish; Oda, Masataka; Chakraborty, Sandeep; Minda, Renu; Dandekar, Abhaya M; Ásgeirsson, Bjarni; Goñi, Félix M; Rao, Basuthkar J
2013-01-01
Proteolytic enzymes have evolved several mechanisms to cleave peptide bonds. These distinct types have been systematically categorized in the MEROPS database. While a BLAST search on these proteases identifies homologous proteins, sequence alignment methods often fail to identify relationships arising from convergent evolution, exon shuffling, and modular reuse of catalytic units. We have previously established a computational method to detect functions in proteins based on the spatial and electrostatic properties of the catalytic residues (CLASP). CLASP identified a promiscuous serine protease scaffold in alkaline phosphatases (AP) and a scaffold recognizing a β-lactam (imipenem) in a cold-active Vibrio AP. Subsequently, we defined a methodology to quantify promiscuous activities in a wide range of proteins. Here, we assemble a module which encapsulates the multifarious motifs used by protease families listed in the MEROPS database. Since APs and proteases are an integral component of outer membrane vesicles (OMV), we sought to query other OMV proteins, like phospholipase C (PLC), using this search module. Our analysis indicated that phosphoinositide-specific PLC from Bacillus cereus is a serine protease. This was validated by protease assays, mass spectrometry and by inhibition of the native phospholipase activity of PI-PLC by the well-known serine protease inhibitor AEBSF (IC50 = 0.018 mM). Edman degradation analysis linked the specificity of the protease activity to a proline in the amino terminal, suggesting that the PI-PLC is a prolyl peptidase. Thus, we propose a computational method of extending protein families based on the spatial and electrostatic congruence of active site residues.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishikado, Hideto; Fujimura, Tsutomu; Taka, Hikari
Th2 type immune responses are essential for protective immunity against parasites and play crucial roles in allergic disorders. Helminth parasites secrete a variety of proteases for their infectious cycles including for host entry, tissue migration, and suppression of host immune effector cell function. Furthermore, a number of pathogen-derived antigens, as well as allergens such as papain, belong to the family of cysteine proteases. Although the link between protease activity and Th2 type immunity is well documented, the mechanisms by which proteases regulate host immune responses are largely unknown. Here, we demonstrate that the cysteine proteases papain and bromelain selectively cleavemore » the α subunit of the IL-3 receptor (IL-3Rα/CD123) on the surface of murine basophils. The decrease in CD123 expression on the cell surface, and the degradation of the extracellular domain of recombinant CD123 were dependent on the protease activity of papain and bromelain. Pre-treatment of murine basophils with papain resulted in inhibition of IL-3-IL-3R signaling and suppressed IL-3- but not thymic stromal lymphopoietin-induced expansion of basophils in vitro. Our unexpected findings illuminate a novel mechanism for the regulation of basophil functions by protease antigens. Because IL-3 plays pivotal roles in the activation and proliferation of basophils and in protective immunity against helminth parasites, pathogen-derived proteases might contribute to the pathogenesis of infections by regulating IL-3-mediated functions in basophils. - Highlights: • We identified the murine IL3R as a novel target of papain-family cysteine proteases. • Papain-family cysteine proteases cleaved IL3Rα/CD123 on murine basophils. • Papain suppressed IL3- but not TSLP-induced expansion of murine basophils. • The inactivation of IL3R might be a strategy for pathogens to suppress host immunity.« less
Inhibition of Prevotella and Capnocytophaga immunoglobulin A1 proteases by human serum.
Frandsen, E V; Kjeldsen, M; Kilian, M
1997-07-01
Oral Prevotella and Capnocytophaga species, regularly isolated from periodontal pockets and associated with extraoral infections, secret specific immunoglobulin A1 (IgA1) proteases cleaving human IgA1 in the hinge region into intact Fab and Fc fragments. To investigate whether these enzymes are subject to inhibition in vivo in humans, we tested 34 sera from periodontally diseased and healthy individuals in an enzyme-linked immunosorbent assay for the presence and titers of inhibition of seven Prevotella and Capnocytophaga proteases. All or nearly all of the sera inhibited the IgA1 protease activity of Prevotella buccae, Prevotella oris, and Prevotella loescheii. A minor proportion of the sera inhibited Prevotella buccalis, Prevotella denticola, and Prevotella melaninogenica IgA1 proteases, while no sera inhibited Capnocytophaga ochracea IgA1 protease. All inhibition titers were low, ranging from 5 to 55, with titer being defined as the reciprocal of the dilution of serum causing 50% inhibition of one defined unit of protease activity. No correlation between periodontal disease status and the presence, absence, or titer of inhibition was observed. The nature of the low titers of inhibition in all sera of the IgA1 proteases of P. buccae, P. oris, and P. loescheii was further examined. In size exclusion chromatography, inhibitory activity corresponded to the peak volume of IgA. Additional inhibition of the P. oris IgA1 protease was found in fractions containing both IgA and IgG. Purification of the IgG fractions of five sera by passage of the sera on a protein G column resulted in recovery of inhibitory IgG antibodies against all three IgA1 proteases, with the highest titer being for the P. oris enzyme. These finding indicate that inhibitory activity is associated with enzyme-neutralizing antibodies.
Cathepsin K: a cysteine protease with unique kinin-degrading properties
2004-01-01
Taking into account a previous report of an unidentified enzyme from macrophages acting as a kininase, the ability of cysteine proteases to degrade kinins has been investigated. Wild-type fibroblast lysates from mice, by contrast with cathepsin K-deficient lysates, hydrolysed BK (bradykinin), and released two metabolites, BK-(1–4) and BK-(5–9). Cathepsin K, but not cathepsins B, H, L and S, cleaved kinins at the Gly4–Phe5 bond and the bradykinin-mimicking substrate Abz (o-aminobenzoic acid)-RPPGFSPFR-3-NO2-Tyr (3-nitrotyrosine) more efficiently (pH 6.0: kcat/Km=12500 mM−1·s−1; pH 7.4: kcat/Km=6930 mM−1·s−1) than angiotensin-converting enzyme hydrolysed BK. Conversely Abz-RPPGFSPFR-3-NO2-Tyr was not cleaved by the Y67L (Tyr67→Leu)/L205A (Leu205→Ala) cathepsin K mutant, indicating that kinin degradation mostly depends on the S2 substrate specificity. Kininase activity was further evaluated on bronchial smooth muscles. BK, but not its metabolites BK(1-4) and BK(5-9), induced a dose-dependent contraction, which was abolished by Hoe140, a B2-type receptor antagonist. Cathepsin K impaired BK-dependent contraction of normal and chronic hypoxic rats, whereas cathepsins B and L did not. Taking together vasoactive properties of kinins and the potency of cathepsin K to modulate BK-dependent contraction of smooth muscles, the present data support the notion that cathepsin K may act as a kininase, a unique property among mammalian cysteine proteases. PMID:15265002
Huilin Li
2017-12-09
Proteins that cleave other proteins using a molecule of water, protease complexes are exquisite macromolecular machines involved in a multitude of physiological and cellular reactions. Our structural studies shed light into the inner workings of multi-protein assemblies, and they reveal a surprisingly common strategy for controlled proteolysis employed by the two drastically different machines. Further research will facilitate rational design of drugs for treating Tb infection and Alzheimer's disease.
HIV-1 Protease in the Fission Yeast Schizosaccharomyces pombe.
Benko, Zsigmond; Elder, Robert T; Li, Ge; Liang, Dong; Zhao, Richard Y
2016-01-01
HIV-1 protease (PR) is an essential viral enzyme. Its primary function is to proteolyze the viral Gag-Pol polyprotein for production of viral enzymes and structural proteins and for maturation of infectious viral particles. Increasing evidence suggests that PR cleaves host cellular proteins. However, the nature of PR-host cellular protein interactions is elusive. This study aimed to develop a fission yeast (Schizosaccharomyces pombe) model system and to examine the possible interaction of HIV-1 PR with cellular proteins and its potential impact on cell proliferation and viability. A fission yeast strain RE294 was created that carried a single integrated copy of the PR gene in its chromosome. The PR gene was expressed using an inducible nmt1 promoter so that PR-specific effects could be measured. HIV-1 PR from this system cleaved the same indigenous viral p6/MA protein substrate as it does in natural HIV-1 infections. HIV-1 PR expression in fission yeast cells prevented cell proliferation and induced cellular oxidative stress and changes in mitochondrial morphology that led to cell death. Both these PR activities can be prevented by a PR-specific enzymatic inhibitor, indinavir, suggesting that PR-mediated proteolytic activities and cytotoxic effects resulted from enzymatic activities of HIV-1 PR. Through genome-wide screening, a serine/threonine kinase, Hhp2, was identified that suppresses HIV-1 PR-induced protease cleavage and cell death in fission yeast and in mammalian cells, where it prevented PR-induced apoptosis and cleavage of caspase-3 and caspase-8. This is the first report to show that HIV-1 protease is functional as an enzyme in fission yeast, and that it behaves in a similar manner as it does in HIV-1 infection. HIV-1 PR-induced cell death in fission yeast could potentially be used as an endpoint for mechanistic studies, and this system could be used for developing a high-throughput system for drug screenings.
Lefrançais, Emma; Duval, Anais; Mirey, Emilie; Roga, Stéphane; Espinosa, Eric; Cayrol, Corinne; Girard, Jean-Philippe
2014-01-01
Interleukin-33 (IL-33) is an alarmin cytokine from the IL-1 family. IL-33 activates many immune cell types expressing the interleukin 1 receptor-like 1 (IL1RL1) receptor ST2, including group-2 innate lymphoid cells (ILC2s, natural helper cells, nuocytes), the major producers of IL-5 and IL-13 during type-2 innate immune responses and allergic airway inflammation. IL-33 is likely to play a critical role in asthma because the IL33 and ST2/IL1RL1 genes have been reproducibly identified as major susceptibility loci in large-scale genome-wide association studies. A better understanding of the mechanisms regulating IL-33 activity is thus urgently needed. Here, we investigated the role of mast cells, critical effector cells in allergic disorders, known to interact with ILC2s in vivo. We found that serine proteases secreted by activated mast cells (chymase and tryptase) generate mature forms of IL-33 with potent activity on ILC2s. The major forms produced by mast cell proteases, IL-3395–270, IL-33107–270, and IL-33109–270, were 30-fold more potent than full-length human IL-331–270 for activation of ILC2s ex vivo. They induced a strong expansion of ILC2s and eosinophils in vivo, associated with elevated concentrations of IL-5 and IL-13. Murine IL-33 is also cleaved by mast cell tryptase, and a tryptase inhibitor reduced IL-33–dependent allergic airway inflammation in vivo. Our study identifies the central cleavage/activation domain of IL-33 (amino acids 66–111) as an important functional domain of the protein and suggests that interference with IL-33 cleavage and activation by mast cell and other inflammatory proteases could be useful to reduce IL-33–mediated responses in allergic asthma and other inflammatory diseases. PMID:25313073
Ai, X; Butts, B; Vora, K; Li, W; Tache-Talmadge, C; Fridman, A; Mehmet, H
2011-01-01
Apoptosis research has been significantly aided by the generation of antibodies against caspase-cleaved peptide neo-epitopes. However, most of these antibodies recognize the N-terminal fragment and are specific for the protein in question. The aim of this project was to create antibodies, which could identify caspase-cleaved proteins without a priori knowledge of the cleavage sites or even the proteins themselves. We hypothesized that many caspase-cleavage products might have a common antigenic shape, given that they must all fit into the same active site of caspases. Rabbits were immunized with the eight most prevalent exposed C-terminal tetrapeptide sequences following caspase cleavage. After purification of the antibodies we demonstrated (1) their specificity for exposed C-terminal (but not internal) peptides, (2) their ability to detect known caspase-cleaved proteins from apoptotic cell lysates or supernatants from apoptotic cell culture and (3) their ability to detect a caspase-cleaved protein whose tetrapeptide sequence differs from the eight tetrapeptides used to generate the antibodies. These antibodies have the potential to identify novel neo-epitopes produced by caspase cleavage and so can be used to identify pathway-specific caspase cleavage events in a specific cell type. Additionally this methodology may be applied to generate antibodies against products of other proteases, which have a well-defined and non-promiscuous cleavage activity. PMID:21881607
Purification of two high molecular weight proteases from rabbit reticulocyte lysate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hough, R.; Pratt, G.; Rechsteiner, M.
1987-05-01
The authors have purified two large proteases from rabbit reticulocyte lysate. The enzymes are so similar in their chromatographic behavior that each is the only significant contaminant of the other during the final stages of purification. At pH 7.8, both hydrolyze /sup 125/I-..cap alpha..-casein and 4-methylcoumaryl-7-amide (MCA) derivatives with tyrosine, phenylalanine or arginine at the P/sub 1/ position. The larger, ATP-dependent enzyme degrades ubiquitin-lysozyme conjugates, but it does not degrade unmodified lysozyme. Hydrolysis of Suc-Leu-Leu-Val-Tyr-MCA by this enzyme is also stimulated two-fold in the presence of ATP. The protease has a molecular weight of 950,000 based on sedimentation, gel filtrationmore » and non-denaturing PAGE. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that the protease is composed of a number of subunits with molecular masses between 32 and 110 kDa. Densitometric analysis showed equivalent amounts of the two larger chains, and the presence of one copy of each in the native enzyme would be consistent with an M/sub r/ of 950,000. The smaller protease has a molecular weight of 700,000 and is composed of 8 to 10 subunits ranging from 21,000 to 32,000. It cleaves ubiquitin-lysozyme conjugates only slightly, and hydrolysis of conjugates or fluorogenic peptide substrates is not stimulated by ATP. This protease appears similar, if not identical, to the multicatalytic protease complex first purified by Wilk and Orlowski.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buarque, Diego S.; Spindola, Leticia M.N.; Martins, Rafael M.
2011-09-23
Highlights: {yields} Tigutcystatin inhibits Trypanosoma cruzi cysteine proteases with high specificity. {yields} Tigutcystatin expression is up-regulated in response to T. cruzi infection. {yields} It is the first cysteine proteases inhibitor characterized from a triatomine insect. -- Abstract: The insect Triatoma infestans is a vector of Trypanosoma cruzi, the etiological agent of Chagas disease. A cDNA library was constructed from T. infestans anterior midgut, and 244 clones were sequenced. Among the EST sequences, an open reading frame (ORF) with homology to a cystatin type 2 precursor was identified. Then, a 288-bp cDNA fragment encoding mature cystatin (lacking signal peptide) named Tigutcystatinmore » was cloned fused to a N-terminal His tag in pET-14b vector, and the protein expressed in Escherichia coli strain Rosetta gami. Tigutcystatin purified and cleaved by thrombin to remove His tag presented molecular mass of 11 kDa and 10,137 Da by SDS-PAGE and MALDI-TOF mass spectrometry, respectively. Purified Tigutcystatin was shown to be a tight inhibitor towards cruzain, a T. cruzi cathepsin L-like enzyme (K{sub i} = 3.29 nM) and human cathepsin L (K{sub i} = 3.78 nM). Tissue specific expression analysis showed that Tigutcystatin was mostly expressed in anterior midgut, although amplification in small intestine was also detected by semi quantitative RT-PCR. qReal time PCR confirmed that Tigutcystatin mRNA is significantly up-regulated in anterior midgut when T. infestans is infected with T. cruzi. Together, these results indicate that Tigutcystatin may be involved in modulation of T. cruzi in intestinal tract by inhibiting parasite cysteine proteases, which represent the virulence factors of this protozoan.« less
Characterization and milk coagulating properties of Cynanchum otophyllum Schneid. proteases.
Luo, Jie; Xiao, Chen; Zhang, Hao; Ren, Fazheng; Lei, Xingen; Yang, Zibiao; Yu, Zhengquan
2018-04-01
The herbaceous plant Cynanchum otophyllum Schneid. is widely used as a milk coagulant to make a Chinese traditional milk product, milk cake. However, the milk-clotting compounds and their mechanism remain unclear. In this study, crude proteases were extracted from the dried leaves of Cynanchum otophyllum Schneid. using citric acid-phosphate buffer and then partially purified by weak anion exchange chromatography. Two proteases, QA and QC, with molecular weights of 14 and 27 kDa, respectively, were shown to exhibit milk-clotting activity. A study of the effects of pH and temperature on the milk-clotting activity and proteolytic activity of the proteases showed that they exhibited good pH stability from pH 5.5 to 7.5 and good thermal stability at temperatures from 50 to 70°C. The QA and QC were the cysteine proteases, able to hydrolyze β-casein and κ-casein completely, and α-casein partially. The cleavage site on κ-casein determined by Orbitrap (Thermo Fisher Scientific, San Jose, CA) analysis showed that QA and QC could cleave κ-casein at Ser132-Thr133. Overall, the results suggest that the Cynanchum otophyllum Schneid. proteases are a promising milk-clotting enzyme that could be used for manufacturing milk cake and cheese. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Identification of the cellular receptor for anthrax toxin
NASA Astrophysics Data System (ADS)
Bradley, Kenneth A.; Mogridge, Jeremy; Mourez, Michael; Collier, R. John; Young, John A. T.
2001-11-01
The tripartite toxin secreted by Bacillus anthracis, the causative agent of anthrax, helps the bacterium evade the immune system and can kill the host during a systemic infection. Two components of the toxin enzymatically modify substrates within the cytosol of mammalian cells: oedema factor (OF) is an adenylate cyclase that impairs host defences through a variety of mechanisms including inhibiting phagocytosis; lethal factor (LF) is a zinc-dependent protease that cleaves mitogen-activated protein kinase kinase and causes lysis of macrophages. Protective antigen (PA), the third component, binds to a cellular receptor and mediates delivery of the enzymatic components to the cytosol. Here we describe the cloning of the human PA receptor using a genetic complementation approach. The receptor, termed ATR (anthrax toxin receptor), is a type I membrane protein with an extracellular von Willebrand factor A domain that binds directly to PA. In addition, a soluble version of this domain can protect cells from the action of the toxin.
Structure and activation of pro-activin A
Wang, Xuelu; Fischer, Gerhard; Hyvönen, Marko
2016-01-01
Activins are growth factors with multiple roles in the development and homeostasis. Like all TGF-β family of growth factors, activins are synthesized as large precursors from which mature dimeric growth factors are released proteolytically. Here we have studied the activation of activin A and determined crystal structures of the unprocessed precursor and of the cleaved pro-mature complex. Replacing the natural furin cleavage site with a HRV 3C protease site, we show how the protein gains its bioactivity after proteolysis and is as active as the isolated mature domain. The complex remains associated in conditions used for biochemical analysis with a dissociation constant of 5 nM, but the pro-domain can be actively displaced from the complex by follistatin. Our high-resolution structures of pro-activin A share features seen in the pro-TGF-β1 and pro-BMP-9 structures, but reveal a new oligomeric arrangement, with a domain-swapped, cross-armed conformation for the protomers in the dimeric protein. PMID:27373274
Joachims, Michelle; Van Breugel, Pieter C.; Lloyd, Richard E.
1999-01-01
Many enteroviruses, members of the family Picornaviridae, cause a rapid and drastic inhibition of host cell protein synthesis during infection, a process referred to as host cell shutoff. Poliovirus, one of the best-studied enteroviruses, causes marked inhibition of host cell translation while preferentially allowing translation of its own genomic mRNA. An abundance of experimental evidence has accumulated to indicate that cleavage of an essential translation initiation factor, eIF4G, during infection is responsible at least in part for this shutoff. However, evidence from inhibitors of viral replication suggests that an additional event is necessary for the complete translational shutoff observed during productive infection. This report examines the effect of poliovirus infection on a recently characterized 3′ end translational stimulatory protein, poly(A)-binding protein (PABP). PABP is involved in stimulating translation initiation in lower eukaryotes by its interaction with the poly(A) tail on mRNAs and has been proposed to facilitate 5′-end–3′-end interactions in the context of the closed-loop translational model. Here, we show that PABP is specifically degraded during poliovirus infection and that it is cleaved in vitro by both poliovirus 2A and 3C proteases and coxsackievirus B3 2A protease. Further, PABP cleavage by 2A protease is accompanied by concurrent loss of translational activity in an in vitro-translation assay. Similar loss of translational activity also occurs simultaneously with partial 3C protease-mediated cleavage of PABP in translation assays. Further, PABP is not degraded during infections in the presence of guanidine-HCl, which blocks the complete development of host translation shutoff. These results provide preliminary evidence that cleavage of PABP may contribute to inhibition of host translation in infected HeLa cells, and they are consistent with the hypothesis that PABP plays a role in facilitating translation initiation in higher eukaryotes. PMID:9847378
Involvement of human decidual cell-expressed tissue factor in uterine hemostasis and abruption.
Lockwood, C J; Paidas, M; Murk, W K; Kayisli, U A; Gopinath, A; Huang, S J; Krikun, G; Schatz, F
2009-11-01
Vascular injury increases access and binding of plasma-derived factor VII to perivascular cell membrane-bound tissue factor (TF). The resulting TF/VIIa complex promotes hemostasis by cleaving pro-thrombin to thrombin leading to the fibrin clot. In human pregnancy, decidual cell-expressed TF prevents decidual hemorrhage (abruption). During placentation, trophoblasts remodel decidual spiral arteries into high conductance vessels. Shallow trophoblast invasion impedes decidual vascular conversion, producing an inadequate uteroplacental blood flow that elicits abruption-related placental ischemia. Thrombin induces several biological effects via cell surface protease activated receptors. In first trimester human DCs thrombin increases synthesis of sFlt-1, which elicits placental ischemia by impeding angiogenesis-related decidual vascular remodeling. During pregnacy, the fibrillar collagen-rich amnion and choriodecidua extracellular matrix (ECM) provides greater than additive tensile strength and structural integrity. Thrombin acts as an autocrine/paracrine mediator that degrades these ECMs by augmenting decidual cell expression of: 1) matrix metalloproteinases and 2) interleukin-8, a key mediator of abruption-associated decidual infiltration of neutrophils, which express several ECM degrading proteases. Among the cell types at the maternal fetal interface at term, TF expression is highest in decidual cells indicating that this TF meets the hemostatic demands of labor and delivery. TF expression in cultured term decidual cells is enhanced by progestin and thrombin suggesting that the maintenance of elevated circulating progesterone provides hemostatic protection and that abruption-generated thrombin acts in an autocrine/paracrine fashion on decidual cells to promote hemostasis via enhanced TF expression.
Puckette, Michael; Clark, Benjamin A; Smith, Justin D; Turecek, Traci; Martel, Erica; Gabbert, Lindsay; Pisano, Melia; Hurtle, William; Pacheco, Juan M; Barrera, José; Neilan, John G; Rasmussen, Max
2017-11-15
The foot-and-mouth disease virus (FMDV) afflicts livestock in more than 80 countries, limiting food production and global trade. Production of foot-and-mouth disease (FMD) vaccines requires cytosolic expression of the FMDV 3C protease to cleave the P1 polyprotein into mature capsid proteins, but the FMDV 3C protease is toxic to host cells. To identify less-toxic isoforms of the FMDV 3C protease, we screened 3C mutants for increased transgene output in comparison to wild-type 3C using a Gaussia luciferase reporter system. The novel point mutation 3C(L127P) increased yields of recombinant FMDV subunit proteins in mammalian and bacterial cells expressing P1-3C transgenes and retained the ability to process P1 polyproteins from multiple FMDV serotypes. The 3C(L127P) mutant produced crystalline arrays of FMDV-like particles in mammalian and bacterial cells, potentially providing a practical method of rapid, inexpensive FMD vaccine production in bacteria. IMPORTANCE The mutant FMDV 3C protease L127P significantly increased yields of recombinant FMDV subunit antigens and produced virus-like particles in mammalian and bacterial cells. The L127P mutation represents a novel advancement for economical FMD vaccine production. Copyright © 2017 Puckette et al.
Mesotrypsin Has Evolved Four Unique Residues to Cleave Trypsin Inhibitors as Substrates.
Alloy, Alexandre P; Kayode, Olumide; Wang, Ruiying; Hockla, Alexandra; Soares, Alexei S; Radisky, Evette S
2015-08-28
Human mesotrypsin is highly homologous to other mammalian trypsins, and yet it is functionally unique in possessing resistance to inhibition by canonical serine protease inhibitors and in cleaving these inhibitors as preferred substrates. Arg-193 and Ser-39 have been identified as contributors to the inhibitor resistance and cleavage capability of mesotrypsin, but it is not known whether these residues fully account for the unusual properties of mesotrypsin. Here, we use human cationic trypsin as a template for engineering a gain of catalytic function, assessing mutants containing mesotrypsin-like mutations for resistance to inhibition by bovine pancreatic trypsin inhibitor (BPTI) and amyloid precursor protein Kunitz protease inhibitor (APPI), and for the ability to hydrolyze these inhibitors as substrates. We find that Arg-193 and Ser-39 are sufficient to confer mesotrypsin-like resistance to inhibition; however, compared with mesotrypsin, the trypsin-Y39S/G193R double mutant remains 10-fold slower at hydrolyzing BPTI and 2.5-fold slower at hydrolyzing APPI. We identify two additional residues in mesotrypsin, Lys-74 and Asp-97, which in concert with Arg-193 and Ser-39 confer the full catalytic capability of mesotrypsin for proteolysis of BPTI and APPI. Novel crystal structures of trypsin mutants in complex with BPTI suggest that these four residues function cooperatively to favor conformational dynamics that assist in dissociation of cleaved inhibitors. Our results reveal that efficient inhibitor cleavage is a complex capability to which at least four spatially separated residues of mesotrypsin contribute. These findings suggest that inhibitor cleavage represents a functional adaptation of mesotrypsin that may have evolved in response to positive selection pressure. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Glowacka, Ilona; Bertram, Stephanie; Müller, Marcel A.; Allen, Paul; Soilleux, Elizabeth; Pfefferle, Susanne; Steffen, Imke; Tsegaye, Theodros Solomon; He, Yuxian; Gnirss, Kerstin; Niemeyer, Daniela; Schneider, Heike; Drosten, Christian; Pöhlmann, Stefan
2011-01-01
The spike (S) protein of the severe acute respiratory syndrome coronavirus (SARS-CoV) can be proteolytically activated by cathepsins B and L upon viral uptake into target cell endosomes. In contrast, it is largely unknown whether host cell proteases located in the secretory pathway of infected cells and/or on the surface of target cells can cleave SARS S. We along with others could previously show that the type II transmembrane protease TMPRSS2 activates the influenza virus hemagglutinin and the human metapneumovirus F protein by cleavage. Here, we assessed whether SARS S is proteolytically processed by TMPRSS2. Western blot analysis revealed that SARS S was cleaved into several fragments upon coexpression of TMPRSS2 (cis-cleavage) and upon contact between SARS S-expressing cells and TMPRSS2-positive cells (trans-cleavage). cis-cleavage resulted in release of SARS S fragments into the cellular supernatant and in inhibition of antibody-mediated neutralization, most likely because SARS S fragments function as antibody decoys. trans-cleavage activated SARS S on effector cells for fusion with target cells and allowed efficient SARS S-driven viral entry into targets treated with a lysosomotropic agent or a cathepsin inhibitor. Finally, ACE2, the cellular receptor for SARS-CoV, and TMPRSS2 were found to be coexpressed by type II pneumocytes, which represent important viral target cells, suggesting that SARS S is cleaved by TMPRSS2 in the lung of SARS-CoV-infected individuals. In summary, we show that TMPRSS2 might promote viral spread and pathogenesis by diminishing viral recognition by neutralizing antibodies and by activating SARS S for cell-cell and virus-cell fusion. PMID:21325420
Trypsin activation pathway of rotavirus infectivity.
Arias, C F; Romero, P; Alvarez, V; López, S
1996-01-01
The infectivity of rotaviruses is increased by and most probably is dependent on trypsin treatment of the virus. This proteolytic treatment specifically cleaves VP4, the protein that forms the spikes on the surface of the virions, to polypeptides VP5 and VP8. This cleavage has been reported to occur in rotavirus SA114fM at two conserved, closely spaced arginine residues located at VP4 amino acids 241 and 247. In this work, we have characterized the VP4 cleavage products of rotavirus SA114S generated by in vitro treatment of the virus with increasing concentrations of trypsin and with proteases AspN and alpha-chymotrypsin. The VP8 and VP5 polypeptides were analyzed by gel electrophoresis and by Western blotting (immunoblotting) with antibodies raised to synthetic peptides that mimic the terminal regions of VP4 generated by the trypsin cleavage. It was shown that in addition to arginine residues 241 and 247, VP4 is cleaved at arginine residue 231. These three sites were found to have different susceptibilities to trypsin, Arg-241 > Arg-231 > Arg-247, with the enhancement of infectivity correlating with cleavage at Arg-247 rather than at Arg-231 or Arg-241. Proteases AspN and alpha-chymotrypsin cleaved VP4 at Asp-242 and Tyr-246, respectively, with no significant enhancement of infectivity, although this enhancement could be achieved by further treatment of the virus with trypsin. The VP4 end products of trypsin treatment were a homogeneous VP8 polypeptide comprising VP4 amino acids 1 to 231 and a heterogeneous VP5, which is formed by two polypeptide species (present at a ratio of approximately 1:5) as a result of cleavage at either Arg-241 or Arg-247. A pathway for the trypsin activation of rotavirus infectivity is proposed. PMID:8709201
KLK6 proteolysis is implicated in the turnover and uptake of extracellular alpha-synuclein species.
Pampalakis, Georgios; Sykioti, Vasia-Samantha; Ximerakis, Methodios; Stefanakou-Kalakou, Ioanna; Melki, Ronald; Vekrellis, Kostas; Sotiropoulou, Georgia
2017-02-28
KLK6 is a serine protease highly expressed in the nervous system. In synucleinopathies, including Parkinson disease, the levels of KLK6 inversely correlate with α-synuclein in CSF. Recently, we suggested that recombinant KLK6 mediates the degradation of extracellular α-synuclein directly and via a proteolytic cascade that involves unidentified metalloproteinase(s). Here, we show that recombinant and naturally secreted KLK6 can readily cleave α-synuclein fibrils that have the potential for cell-to-cell propagation in "a prion-like mechanism". Importantly, KLK6-deficient primary cortical neurons have increased ability for α-synuclein fibril uptake. We also demonstrate that KLK6 activates proMMP2, which in turn can cleave α-synuclein. The repertoire of proteases activated by KLK6 in a neuronal environment was analyzed by degradomic profiling, which also identified ADAMTS19 and showed that KLK6 has a limited number of substrates indicating specific biological functions such as the regulation of α-synuclein turnover. We generated adenoviral vectors for KLK6 delivery and demonstrated that the levels of extracellular α-synuclein can be reduced by neuronally secreted KLK6. Our findings open the possibility to exploit KLK6 as a novel therapeutic target for Parkinson disease and other synucleinopathies.
KLK6 proteolysis is implicated in the turnover and uptake of extracellular alpha-synuclein species
Pampalakis, Georgios; Sykioti, Vasia-Samantha; Ximerakis, Methodios; Stefanakou-Kalakou, Ioanna; Melki, Ronald; Vekrellis, Kostas; Sotiropoulou, Georgia
2017-01-01
KLK6 is a serine protease highly expressed in the nervous system. In synucleinopathies, including Parkinson disease, the levels of KLK6 inversely correlate with α-synuclein in CSF. Recently, we suggested that recombinant KLK6 mediates the degradation of extracellular α-synuclein directly and via a proteolytic cascade that involves unidentified metalloproteinase(s). Here, we show that recombinant and naturally secreted KLK6 can readily cleave α-synuclein fibrils that have the potential for cell-to-cell propagation in “a prion-like mechanism”. Importantly, KLK6-deficient primary cortical neurons have increased ability for α-synuclein fibril uptake. We also demonstrate that KLK6 activates proMMP2, which in turn can cleave α-synuclein. The repertoire of proteases activated by KLK6 in a neuronal environment was analyzed by degradomic profiling, which also identified ADAMTS19 and showed that KLK6 has a limited number of substrates indicating specific biological functions such as the regulation of α-synuclein turnover. We generated adenoviral vectors for KLK6 delivery and demonstrated that the levels of extracellular α-synuclein can be reduced by neuronally secreted KLK6. Our findings open the possibility to exploit KLK6 as a novel therapeutic target for Parkinson disease and other synucleinopathies. PMID:27845893
Békés, Miklós; van der Heden van Noort, Gerbrand J; Ekkebus, Reggy; Ovaa, Huib; Huang, Tony T; Lima, Christopher D
2016-05-19
Deubiquitinating enzymes (DUBs) recognize and cleave linkage-specific polyubiquitin (polyUb) chains, but mechanisms underlying specificity remain elusive in many cases. The severe acute respiratory syndrome (SARS) coronavirus papain-like protease (PLpro) is a DUB that cleaves ISG15, a two-domain Ub-like protein, and Lys48-linked polyUb chains, releasing diUb(Lys48) products. To elucidate this specificity, we report the 2.85 Å crystal structure of SARS PLpro bound to a diUb(Lys48) activity-based probe. SARS PLpro binds diUb(Lys48) in an extended conformation via two contact sites, S1 and S2, which are proximal and distal to the active site, respectively. We show that specificity for polyUb(Lys48) chains is predicated on contacts in the S2 site and enhanced by an S1-S1' preference for a Lys48 linkage across the active site. In contrast, ISG15 specificity is dominated by contacts in the S1 site. Determinants revealed for polyUb(Lys48) specificity should prove useful in understanding PLpro deubiquitinating activities in coronavirus infections. Copyright © 2016 Elsevier Inc. All rights reserved.
Botulinum neurotoxin type C protease induces apoptosis in differentiated human neuroblastoma cells.
Rust, Aleksander; Leese, Charlotte; Binz, Thomas; Davletov, Bazbek
2016-05-31
Neuroblastomas constitute a major cause of cancer-related deaths in young children. In recent years, a number of translation-inhibiting enzymes have been evaluated for killing neuroblastoma cells. Here we investigated the potential vulnerability of human neuroblastoma cells to protease activity derived from botulinum neurotoxin type C. We show that following retinoic acid treatment, human neuroblastoma cells, SiMa and SH-SY5Y, acquire a neuronal phenotype evidenced by axonal growth and expression of neuronal markers. Botulinum neurotoxin type C which cleaves neuron-specific SNAP25 and syntaxin1 caused apoptotic death only in differentiated neuroblastoma cells. Direct comparison of translation-inhibiting enzymes and the type C botulinum protease revealed one order higher cytotoxic potency of the latter suggesting a novel neuroblastoma-targeting pathway. Our mechanistic insights revealed that loss of ubiquitous SNAP23 due to differentiation coupled to SNAP25 cleavage due to botulinum activity may underlie the apoptotic death of human neuroblastoma cells.
Mast cell proteases as pharmacological targets
Caughey, George H.
2015-01-01
Mast cells are rich in proteases, which are the major proteins of intracellular granules and are released with histamine and heparin by activated cells. Most of these proteases are active in the granule as well outside of the mast cell when secreted, and can cleave targets near degranulating mast cells and in adjoining tissue compartments. Some proteases released from mast cells reach the bloodstream and may have far-reaching actions. In terms of relative amounts, the major mast cell proteases include the tryptases, chymases, cathepsin G, carboxypeptidase A3, dipeptidylpeptidase I/cathepsin C, and cathepsins L and S. Some mast cells also produce granzyme B, plasminogen activators, and matrix metalloproteinases. Tryptases and chymases are almost entirely mast cell-specific, whereas other proteases, such as cathepsins G, C, and L are expressed by a variety of inflammatory cells. Carboxypeptidase A3 expression is a property shared by basophils and mast cells. Other proteases, such as mastins, are largely basophil-specific, although human basophils are protease-deficient compared with their murine counterparts. The major classes of mast cell proteases have been targeted for development of therapeutic inhibitors. Also, a human β-tryptase has been proposed as a potential drug itself, to inactivate of snake venins. Diseases linked to mast cell proteases include allergic diseases, such as asthma, eczema, and anaphylaxis, but also include non-allergic diseases such inflammatory bowel disease, autoimmune arthritis, atherosclerosis, aortic aneurysms, hypertension, myocardial infarction, heart failure, pulmonary hypertension and scarring diseases of lungs and other organs. In some cases, studies performed in mouse models suggest protective or homeostatic roles for specific proteases (or groups of proteases) in infections by bacteria, worms and other parasites, and even in allergic inflammation. At the same time, a clearer picture has emerged of differences in the properties and patterns of expression of proteases expressed in human mast cell subsets, and in humans versus other mammals. These considerations are influencing prioritization of specific protease targets for therapeutic inhibition, as well as options of pre-clinical models, disease indications, and choice of topical versus systemic routes of inhibitor administration. PMID:25958181
Identification of surface-exposed domains on the reducing side of photosystem I
NASA Technical Reports Server (NTRS)
Xu, Q.; Guikema, J. A.; Chitnis, P. R.; Spooner, B. S. (Principal Investigator)
1994-01-01
Photosystem I (PSI) is a multisubunit enzyme that catalyzes the light-driven oxidation of plastocyanin or cytochrome c6 and the concomitant photoreduction of ferredoxin or flavodoxin. To identify the surface-exposed domains in PSI of the cyanobacterium Synechocystis sp. PCC 6803, we mapped the regions in PsaE, PsaD, and PsaF that are accessible to proteases and N-hydroxysuccinimidobiotin (NHS-biotin). Upon exposure of PSI complexes to a low concentration of endoproteinase glutamic acid (Glu)-C, PsaE was cleaved to 7.1- and 6.6-kD N-terminal fragments without significant cleavage of other subunits. Glu63 and Glu67, located near the C terminus of PsaE, were the most likely cleavage sites. At higher protease concentrations, the PsaE fragments were further cleaved and an N-terminal 9.8-kD PsaD fragment accumulated, demonstrating the accessibility of Glu residue(s) in the C-terminal domain of PsaD to the protease. Besides these major, primary cleavage products, several secondary cleavage sites on PsaD, PsaE, and PsaF were also identified. PsaF resisted proteolysis when PsaD and PsaE were intact. Glu88 and Glu124 of PsaF became susceptible to endoproteinase Glu-C upon extensive cleavage of PsaD and PsaE. Modification of PSI proteins with NHS-biotin and subsequent cleavage by endoproteinase Glu-C or thermolysin showed that the intact PsaE and PsaD, but not their major degradation products lacking C-terminal domains, were heavily biotinylated. Therefore, lysine-74 at the C terminus of PsaE was accessible for biotinylation. Similarly, lysine-107, or lysine-118, or both in PsaD could be modified by NHS-biotin.
Maryanoff, Bruce E; Zhang, Han-Cheng; Andrade-Gordon, Patricia; Derian, Claudia K
2003-03-01
Protease-activated receptors (PARs) represent a unique family of seven-transmembrane G-protein-coupled receptors, which are enzymatically cleaved to expose a new extracellular N-terminus that acts as a tethered activating ligand. PAR-1 is cleaved and activated by the serine protease alpha-thrombin, is expressed in various tissues (e.g. platelets and vascular cells), and is involved in cellular responses associated with hemostasis, proliferation, and tissue injury. By using a de novo design approach, we have discovered a series of potent heterocycle-based peptide-miimetic antagonists of PAR-1, exemplified by advanced leads RWJ-56110 (22) and RWJ-58259 (32). These compounds are potent, selective PAR-1 antagonists, devoid of PAR-1 agonist and thrombin inhibitory activity: they bind to PAR-1, interfere with calcium mobilization and cellular functions associated with PAR-1, and do not affect PAR-2, PAR-3, or PAR-4. RWJ-56110 was determined to be a direct inhibitor of PAR-1 activation and internalization, without affecting PAR-1 N-terminal cleavage. At high concentrations of alpha-thrombin, RWJ-56110 fully blocked activation responses in human vascular cells, but not in human platelets; whereas, at high concentrations of TRAP-6, RWJ-56110 blocked activation responses in both cell types. This result is consistent with the presence of another thrombin receptor on human platelets, namely PAR-4. RWJ-56110 and RWJ-58259 clearly interrupt the binding of a tethered ligand to its receptor. RWJ-58259 demonstrated antirestenotic activity in a rat balloon angioplasty model and antithrombotic activity in a cynomolgus monkey arterial injury model. Such PAR-1 antagonists should not only serve as useful tools to delineate the physiological and pathophysiological roles of PAR-1, but also may have therapeutic potential for treating thrombosis and restenosis in humans.
Dislich, Bastian; Wohlrab, Felix; Bachhuber, Teresa; Müller, Stephan A.; Kuhn, Peer-Hendrik; Hogl, Sebastian; Meyer-Luehmann, Melanie; Lichtenthaler, Stefan F.
2015-01-01
Analysis of murine cerebrospinal fluid (CSF) by quantitative mass spectrometry is challenging because of low CSF volume, low total protein concentration, and the presence of highly abundant proteins such as albumin. We demonstrate that the CSF proteome of individual mice can be analyzed in a quantitative manner to a depth of several hundred proteins in a robust and simple workflow consisting of single ultra HPLC runs on a benchtop mass spectrometer. The workflow is validated by a comparative analysis of BACE1−/− and wild-type mice using label-free quantification. The protease BACE1 cleaves the amyloid precursor protein (APP) as well as several other substrates and is a major drug target in Alzheimer's disease. We identified a total of 715 proteins with at least 2 unique peptides and quantified 522 of those proteins in CSF from BACE1−/− and wild-type mice. Several proteins, including the known BACE1 substrates APP, APLP1, CHL1 and contactin-2 showed lower abundance in the CSF of BACE1−/− mice, demonstrating that BACE1 substrate identification is possible from CSF. Additionally, ectonucleotide pyrophosphatase 5 was identified as a novel BACE1 substrate and validated in cells using immunoblots and by an in vitro BACE1 protease assay. Likewise, receptor-type tyrosine-protein phosphatase N2 and plexin domain-containing 2 were confirmed as BACE1 substrates by in vitro assays. Taken together, our study shows the deepest characterization of the mouse CSF proteome to date and the first quantitative analysis of the CSF proteome of individual mice. The BACE1 substrates identified in CSF may serve as biomarkers to monitor BACE1 activity in Alzheimer patients treated with BACE inhibitors. PMID:26139848
Toft-Hansen, Henrik; Rasmussen, Karina S; Staal, Anne; Roggen, Erwin L; Sollid, Ludvig M; Lillevang, Søren T; Barington, Torben; Husby, Steffen
2014-08-01
Celiac disease (CD) is characterized by an inappropriate immunological reaction against gluten driven by gluten-specific CD4+ T cells. We screened 25 proteases and tested 10 for their potential to degrade gluten in vitro. Five proteases were further tested for their ability to prevent the proliferative response by a gluten-specific CD4+ T cell clone and seven gluten-reactive T cell lines to protease-digested gluten peptides. A proline-specific endo-peptidase from Aspergillus niger (AnP2) was particularly efficient at diminishing proliferation after stimulation with cleaved antigen, and could completely block the response against both native and deamidated gluten peptides. We found that AnP2 was efficient down to a 1:64 protease:substrate ratio (w:w). When AnP2 was tested in assays using seven gluten-reactive T cell lines from individual CD patients (three adults and four children), the response to gluten was diminished in all cases. Our study indicates a therapeutic benefit of AnP2 to CD patients. Copyright © 2014 Elsevier Inc. All rights reserved.
Krstic, Dimitrije; Rodriguez, Myriam; Knuesel, Irene
2012-01-01
The extracellular signaling protein Reelin, indispensable for proper neuronal migration and cortical layering during development, is also expressed in the adult brain where it modulates synaptic functions. It has been shown that proteolytic processing of Reelin decreases its signaling activity and promotes Reelin aggregation in vitro, and that proteolytic processing is affected in various neurological disorders, including Alzheimer's disease (AD). However, neither the pathophysiological significance of dysregulated Reelin cleavage, nor the involved proteases and their modulators are known. Here we identified the serine protease tissue plasminogen activator (tPA) and two matrix metalloproteinases, ADAMTS-4 and ADAMTS-5, as Reelin cleaving enzymes. Moreover, we assessed the influence of several endogenous protease inhibitors, including tissue inhibitors of metalloproteinases (TIMPs), α-2-Macroglobulin, and multiple serpins, as well as matrix metalloproteinase 9 (MMP-9) on Reelin cleavage, and described their complex interplay in the regulation of this process. Finally, we could demonstrate that in the murine hippocampus, the expression levels and localization of Reelin proteases largely overlap with that of Reelin. While this pattern remained stable during normal aging, changes in their protein levels coincided with accelerated Reelin aggregation in a mouse model of AD. PMID:23082219
NASA Astrophysics Data System (ADS)
Shin, Moo-Kwang; Kang, Byunghoon; Yoon, Nam-Kyung; Kim, Myeong-Hoon; Ki, Jisun; Han, Seungmin; Ahn, Jung-Oh; Haam, Seungjoo
2016-12-01
Immobilizing enzymes on artificially fabricated carriers for their efficient use and easy removal from reactants has attracted enormous interest for decades. Specifically, binding platforms using inorganic nanoparticles have been widely explored because of the benefits of their large surface area, easy surface modification, and high stability in various pH and temperatures. Herein, we fabricated Fe3O4 encapsulated ‘sea-urchin’ shaped nickel-silicate nanoparticles with a facile synthetic route. The enzymes were then rapidly and easily immobilized with poly-histidine tags (His-tags) and nickel ion affinity. Porous nickel silicate covered nanoparticles achieved a high immobilization capacity (85 μg mg-1) of His-tagged tobacco etch virus (TEV) protease. To investigate immobilized TEV protease enzymatic activity, we analyzed the cleaved quantity of maltose binding protein-exendin-fused immunoglobulin fusion protein, which connected with the TEV protease-specific cleavage peptide sequence. Moreover, TEV protease immobilized nanocomplexes conveniently removed and recollected from the reactant by applying an external magnetic field, maintained their enzymatic activity after reuse. Therefore, our newly developed nanoplatform for His-tagged enzyme immobilization provides advantageous features for biotechnological industries including recombinant protein processing.
Three Pairs of Protease-Serpin Complexes Cooperatively Regulate the Insect Innate Immune Responses*
Jiang, Rui; Kim, Eun-Hye; Gong, Ji-Hee; Kwon, Hyun-Mi; Kim, Chan-Hee; Ryu, Kyoung-Hwa; Park, Ji-Won; Kurokawa, Kenji; Zhang, Jinghai; Gubb, David; Lee, Bok-Luel
2009-01-01
Serpins are known to be necessary for the regulation of several serine protease cascades. However, the mechanisms of how serpins regulate the innate immune responses of invertebrates are not well understood due to the uncertainty of the identity of the serine proteases targeted by the serpins. We recently reported the molecular activation mechanisms of three serine protease-mediated Toll and melanin synthesis cascades in a large beetle, Tenebrio molitor. Here, we purified three novel serpins (SPN40, SPN55, and SPN48) from the hemolymph of T. molitor. These serpins made specific serpin-serine protease pairs with three Toll cascade-activating serine proteases, such as modular serine protease, Spätzle-processing enzyme-activating enzyme, and Spätzle-processing enzyme and cooperatively blocked the Toll signaling cascade and β-1,3-glucan-mediated melanin biosynthesis. Also, the levels of SPN40 and SPN55 were dramatically increased in vivo by the injection of a Toll ligand, processed Spätzle, into Tenebrio larvae. This increase in SPN40 and SPN55 levels indicates that these serpins function as inducible negative feedback inhibitors. Unexpectedly, SPN55 and SPN48 were cleaved at Tyr and Glu residues in reactive center loops, respectively, despite being targeted by trypsin-like Spätzle-processing enzyme-activating enzyme and Spätzle-processing enzyme. These cleavage patterns are also highly similar to those of unusual mammalian serpins involved in blood coagulation and blood pressure regulation, and they may contribute to highly specific and timely inactivation of detrimental serine proteases during innate immune responses. Taken together, these results demonstrate the specific regulatory evidences of innate immune responses by three novel serpins. PMID:19858208
Frandsen, E V; Reinholdt, J; Kjeldsen, M; Kilian, M
1995-10-01
Immunoglobulin A1 (IgA1) proteases secreted by oral Prevotella and Capnocytophaga species specifically cleave IgA1 at the same peptide bond in the hinge region, leaving intact monomeric Fab and Fc fragments. Assuming that Prevotella- and Capnocytophaga-induced Fab fragments of IgA1 expose a specific immunogenic neoepitope at the cleavage site, we established an enzyme-linked immunosorbent assay to measure human serum antibodies to this neoepitope as indirect evidence of in vivo activity of Prevotella and Capnocytophaga IgA1 proteases. The assay used a monoclonal antibody with specificity for the neoepitope, and the ability to block binding of the monoclonal antibody to the neoepitope was investigated. Absorption of sera with Prevotella melaninogenica-induced Fab fragments of IgA1 resulted in removal of antibodies blocking binding of the monoclonal antibody, whereas absorption with Fab fragments induced by bacterial IgA1 proteases of other cleavage specificities did not remove blocking antibodies. Consequently, we assume that the antibodies detected had been induced by a neoepitope an the Fab fragment of IgA1 exposed exclusively after cleavage with IgA1 proteases from Prevotella and Capnocytophaga, indicating in vivo activity of these IgA1 proteases. Evidence, though indirect, of in vivo activity of Prevotella and Capnocytophaga IgA1 proteases was present in 42 of 92 sera examined and in a significantly higher proportion of sera from adults with periodontal disease compared with control individuals. No correlation with disease was observed for the juvenile periodontitis groups.
2011-09-01
epithelial tumors, including breast, cervix , esophagus, liver, mesothelium, prostate, and colorectal cancers [36,38,61–69]. Interestingly, in the case of...Proteolytic Processing of Laminin-332 by Hepsin and Matriptase and Its Role in Prostate Cancer Progression Manisha Tripathi The Vanderbilt University...Nashville, TN 37203 Laminin-332 is lost in prostate cancer progression. Laminin-332 is known to be cleaved by various cell surface proteases
El Najjar, Farah; Lampe, Levi; Baker, Michelle L.; Wang, Lin-Fa; Dutch, Rebecca Ellis
2015-01-01
Bats of different species play a major role in the emergence and transmission of highly pathogenic viruses including Ebola virus, SARS-like coronavirus and the henipaviruses. These viruses require proteolytic activation of surface envelope glycoproteins needed for entry, and cellular cathepsins have been shown to be involved in proteolysis of glycoproteins from these distinct virus families. Very little is currently known about the available proteases in bats. To determine whether the utilization of cathepsins by bat-borne viruses is related to the nature of proteases in their natural hosts, we examined proteolytic processing of several viral fusion proteins in cells derived from two fruit bat species, Pteropus alecto and Rousettus aegyptiacus. Our work shows that fruit bat cells have homologs of cathepsin and furin proteases capable of cleaving and activating both the cathepsin-dependent Hendra virus F and the furin-dependent parainfluenza virus 5 F proteins. Sequence analysis comparing Pteropus alecto furin and cathepsin L to proteases from other mammalian species showed a high degree of conservation; however significant amino acid variation occurs at the C-terminus of Pteropus alecto furin. Further analysis of furin-like proteases from fruit bats revealed that these proteases are catalytically active and resemble other mammalian furins in their response to a potent furin inhibitor. However, kinetic analysis suggests that differences may exist in the cellular localization of furin between different species. Collectively, these results indicate that the unusual role of cathepsin proteases in the life cycle of bat-borne viruses is not due to the lack of active furin-like proteases in these natural reservoir species; however, differences may exist between furin proteases present in fruit bats compared to furins in other mammalian species, and these differences may impact protease usage for viral glycoprotein processing. PMID:25706132
Inhibition of Prevotella and Capnocytophaga immunoglobulin A1 proteases by human serum.
Frandsen, E V; Kjeldsen, M; Kilian, M
1997-01-01
Oral Prevotella and Capnocytophaga species, regularly isolated from periodontal pockets and associated with extraoral infections, secret specific immunoglobulin A1 (IgA1) proteases cleaving human IgA1 in the hinge region into intact Fab and Fc fragments. To investigate whether these enzymes are subject to inhibition in vivo in humans, we tested 34 sera from periodontally diseased and healthy individuals in an enzyme-linked immunosorbent assay for the presence and titers of inhibition of seven Prevotella and Capnocytophaga proteases. All or nearly all of the sera inhibited the IgA1 protease activity of Prevotella buccae, Prevotella oris, and Prevotella loescheii. A minor proportion of the sera inhibited Prevotella buccalis, Prevotella denticola, and Prevotella melaninogenica IgA1 proteases, while no sera inhibited Capnocytophaga ochracea IgA1 protease. All inhibition titers were low, ranging from 5 to 55, with titer being defined as the reciprocal of the dilution of serum causing 50% inhibition of one defined unit of protease activity. No correlation between periodontal disease status and the presence, absence, or titer of inhibition was observed. The nature of the low titers of inhibition in all sera of the IgA1 proteases of P. buccae, P. oris, and P. loescheii was further examined. In size exclusion chromatography, inhibitory activity corresponded to the peak volume of IgA. Additional inhibition of the P. oris IgA1 protease was found in fractions containing both IgA and IgG. Purification of the IgG fractions of five sera by passage of the sera on a protein G column resulted in recovery of inhibitory IgG antibodies against all three IgA1 proteases, with the highest titer being for the P. oris enzyme. These finding indicate that inhibitory activity is associated with enzyme-neutralizing antibodies. PMID:9220164
Banda, Nirmal K.; Takahashi, Minoru; Takahashi, Kazue; Stahl, Gregory L.; Hyatt, Stephanie; Glogowska, Magdalena; Wiles, Timothy A.; Endo, Yuichi; Fujita, Teizo; Holers, V. Michael; Arend, William P.
2011-01-01
Mannose-binding lectin-associated serine proteases-1/3 (MASP-1/3) are essential in activating the alternative pathway (AP) of complement through cleaving pro-factor D (pro-Df) into mature Df. MASP are believed to require binding to mannose binding lectins (MBL) or ficolins (FCN) to carry out their biological activities. Murine sera have been reported to contain MBL-A, MBL-C, and FCN-A, but not FCN-B that exists endogenously in monocytes and is thought not to bind MASP-1. We examined some possible mechanisms whereby MASP-1/3 might activate the AP. Collagen antibody-induced arthritis, a murine model of inflammatory arthritis dependent on the AP, was unchanged in mice lacking MBL-A, MBL-C, and FCN-A (MBL−/−/FCN A−/− mice) in comparison to wild-type mice. The in vitro induction of the AP by adherent mAb to collagen II was intact using sera from MBL−/−/FCN A−/− mice. Furthermore, sera from MBL−/−/FCN A−/− mice lacked pro-Df and possessed only mature Df. Gel filtration of sera from MBL−/−/FCN A−/− mice showed the presence of MASP-1 protein in fractions containing proteins smaller than the migration of MBL-A and MBL-C in sera from C4−/− mice, suggesting possible binding of MASP-1 to an unknown protein. Lastly, we show that FCN-B was present in the sera of MBL−/−/FCN A−/−mice and that it was bound to MASP-1. We conclude that MASP-1 does not require binding to MBL-A, MBL-C, or FCN-A to activate the AP. MASP-1 may cleave pro-Df into mature Df through binding to FCN-B or to an unknown protein, or may function as an unbound soluble protein. PMID:21943708
Nguyen, Thanh G.; Honson, Nicolette S.; Arns, Steven; Davis, Tara L.; Dhe-Paganon, Sirano; Kovacic, Suzana; Kumar, Nag S.; Pfeifer, Tom A.
2014-01-01
Abstract The cysteine protease ATG4B plays a role in key steps of the autophagy process and is of interest as a potential therapeutic target. At an early step, ATG4B cleaves proLC3 isoforms to form LC3-I for subsequent lipidation to form LC3-II and autophagosome membrane insertion. ATG4B also cleaves phosphatidylethanolamine (PE) from LC3-II to regenerate LC3-I, enabling its recycling for further membrane biogenesis. Here, we report several novel assays for monitoring the enzymatic activity of ATG4B. An assay based on mass spectrometric analysis and quantification of cleavage of the substrate protein LC3-B was developed and, while useful for mechanistic studies, was not suitable for high throughput screening (HTS). A doubly fluorescent fluorescence resonance energy transfer (FRET) ligand YFP-LC3B-EmGFP (FRET-LC3) was constructed and shown to be an excellent substrate for ATG4B with rates of cleavage similar to that for LC3B itself. A HTS assay to identify candidate inhibitors of ATG4B utilizing FRET-LC3 as a substrate was developed and validated with a satisfactory Z′ factor and high signal-to-noise ratio suitable for screening small molecule libraries. Pilot screens of the 1,280-member library of pharmacologically active compounds (LOPAC™) and a 3,481-member library of known drugs (KD2) gave hit rates of 0.6% and 0.5% respectively, and subsequent titrations confirmed ATG4B inhibitory activity for three compounds, both in the FRET and mass spectrometry assays. The FRET- and mass spectrometry–based assays we have developed will allow for both HTS for inhibitors of ATG4B and mechanistic approaches to study inhibition of a major component of the autophagy pathway. PMID:24735444
Mazon, Hortense; Marcillat, Olivier; Forest, Eric; Vial, Christian
2005-12-01
Hydrogen/deuterium exchange coupled to mass spectrometry has been used to investigate the structure and dynamics of native dimeric cytosolic muscle creatine kinase. The protein was incubated in D2O for various time. After H/D exchange and rapid quenching of the reaction, the partially deuterated protein was cleaved in parallel by two different proteases (pepsin or type XIII protease from Aspergillus saitoi) to increase the sequence coverage and spatial resolution of deuterium incorporation. The resulting peptides were analyzed by liquid chromatography coupled to mass spectrometry. In comparison with the 3D structure of MM-CK, the analysis of the two independent proteolysis deuteration patterns allowed us to get new insights into CK local dynamics as compared to a previous study using pepsin [Mazon et al. Protein Science 13 (2004) 476-486]. In particular, we obtained more information on the kinetics and extent of deuterium exchange in the N- and C-terminal extremities represented by the 1-22 and 362-380 pepsin peptides. Indeed, we observed a very different behaviour of the 1-12 and 13-22 type XIII protease peptides, and similarly for the 362-373 and 374-380 peptides. Moreover, comparison of the deuteration patterns of type XIII protease segments of the large 90-126 pepsin peptide led us to identify a small relatively dynamic region (108-114).
The purification and characterization of an 88-kDa Porphyromonas endodontalis 35406 protease.
Rosen, G; Shoshani, M; Naor, R; Sela, M N
2001-12-01
A Porphyromonas endodontalis ATCC 35406 protease was purified from Triton X-114 cell extracts by preparative SDS-PAGE followed by electroelution. The purified enzyme exhibits a molecular size of 88 kDa and was dissociated into two polypeptides of 43 and 41 kDa upon heating in the presence of sodium dodecyl sulfate with or without a reducing agent. The protease (pH optimum 7.5-8.0) degraded the extracellular matrix proteins fibrinogen and fibronectin. Collagen IV was also degraded at 37 degrees C but not at 28 degrees C. The protease also cleaved the bioactive peptide angiotensin at amino acid residue phenylalanine-8 and tyrosine-4 but failed to hydrolyze bradykinin, vasopressin and synthetic chromogenic substrates with phenylalanine or tyrosine at the P1 position. In addition, two peptidases were detected in P. endodontalis cells: a proline aminopeptidase that remained associated with the cell pellet after detergent extraction and peptidase/s that partitioned into the Triton X-114 phase after phase separation and degraded the bioactive peptides bradykinin and vasopressin. These P. endodontalis peptidases and proteases may play an important role in both the nutrition and pathogenicity of these assacharolytic microorganisms. The inactivation of bioactive peptides and degradation of extracellular matrix proteins by bacterial enzymes may contribute to the damage of host tissues accompanied with endodontic infections.
Regulation of gamma-Secretase in Alzheimer's Disease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Shuxia; Zhou, Hua; Walian, Peter
2007-02-07
The {gamma}-secretase complex is an intramembrane aspartyl protease that cleaves its substrates along their transmembrane regions. Sequential proteolytic processing of amyloid precursor protein by {beta}- and {gamma}-secretase produces amyloid {beta}-peptides, which are the major components of amyloid plaques in the brains of Alzheimer's disease patients. The {gamma}-secretase complex is therefore believed to be critical in the pathogenesis of Alzheimer's disease. Here we review the range of factors found to affect the nature and degree of {gamma}-secretase complex activity; these include {gamma}-secretase complex assembly and activation, the integral regulatory subunit CD147, transient or weak binding partners, the levels of cholesterol andmore » sphingolipids in cell membranes, and inflammatory cytokines. Integrated knowledge of the molecular mechanisms supporting the actions of these factors is expected to lead to a comprehensive understanding of the functional regulation of the {gamma}-secretase complex, and this, in turn, should facilitate the development of novel therapeutic strategies for the treatment of Alzheimer's disease.« less
Involvement of human decidual cell-expressed tissue factor in uterine hemostasis and abruption
Lockwood, C.J.; Paidas, M.; Murk, W.K.; Kayisli, U.A.; Gopinath, A.; Krikun, G.; Huang, S.J.; Schatz, F.
2009-01-01
Vascular injury increases access and binding of plasma-derived factor VII to perivascular cell membrane-bound tissue factor (TF). The resulting TF/VIIa complex promotes hemostasis by cleaving pro-thrombin to thrombin leading to the fibrin clot. In human pregnancy, decidual cell-expressed TF prevents decidual hemorrhage (abruption). During placentation, trophoblasts remodel decidual spiral arteries into high conductance vessels. Shallow trophoblast invasion impedes decidual vascular conversion, producing an inadequate uteroplacental blood flow that elicits abruption-related placental ischemia. Thrombin induces several biological effects via cell surface protease activated receptors. In first trimester human DCs thrombin increases synthesis of sFlt-1, which elicits placental ischemia by impeding angiogenesis-related decidual vascular remodeling. During pregnacy, the fibrillar collagen-rich amnion and choriodecidua extracellular matrix (ECM) provides greater than additive tensile strength and structural integrity. Thrombin acts as an autocrine/paracrine mediator that degrades these ECMs by augmenting decidual cell expression of: 1) matrix metalloproteinases and 2) interleukin-8, a key mediator of abruption-associated decidual infiltration of neutrophils, which express several ECM degrading proteases. Our recent observations that: 1) among the cell types at the maternal fetal interface at term TF expression is highest in decidual cells indicates that this TF meets the hemostatic demands of labor and delivery; 2) TF expression in cultured term decidual cells is enhanced by progestin and thrombin suggest that maintenance of elevated circulating progesterone at term provides hemostatic protection, whereas abruption-generated thrombin can act in autocrine/paracrine fashion on DCs to promote hemostasis via enhanced TF expression. PMID:19720393
Naing, Swe-Htet; Kalyoncu, Sibel; Smalley, David M.; Kim, Hyojung; Tao, Xingjian; George, Josh B.; Jonke, Alex P.; Oliver, Ryan C.; Urban, Volker S.; Torres, Matthew P.; Lieberman, Raquel L.
2018-01-01
Mechanistic details of intramembrane aspartyl protease (IAP) chemistry, which is central to many biological and pathogenic processes, remain largely obscure. Here, we investigated the in vitro kinetics of a microbial intramembrane aspartyl protease (mIAP) fortuitously acting on the renin substrate angiotensinogen and the C-terminal transmembrane segment of amyloid precursor protein (C100), which is cleaved by the presenilin subunit of γ-secretase, an Alzheimer disease (AD)-associated IAP. mIAP variants with substitutions in active-site and putative substrate-gating residues generally exhibit impaired, but not abolished, activity toward angiotensinogen and retain the predominant cleavage site (His–Thr). The aromatic ring, but not the hydroxyl substituent, within Tyr of the catalytic Tyr–Asp (YD) motif plays a catalytic role, and the hydrolysis reaction incorporates bulk water as in soluble aspartyl proteases. mIAP hydrolyzes the transmembrane region of C100 at two major presenilin cleavage sites, one corresponding to the AD-associated Aβ42 peptide (Ala–Thr) and the other to the non-pathogenic Aβ48 (Thr–Leu). For the former site, we observed more favorable kinetics in lipid bilayer–mimicking bicelles than in detergent solution, indicating that substrate–lipid and substrate–enzyme interactions both contribute to catalytic rates. High-resolution MS analyses across four substrates support a preference for threonine at the scissile bond. However, results from threonine-scanning mutagenesis of angiotensinogen demonstrate a competing positional preference for cleavage. Our results indicate that IAP cleavage is controlled by both positional and chemical factors, opening up new avenues for selective IAP inhibition for therapeutic interventions. PMID:29382721
Autocatalytic activity and substrate specificity of the pestivirus N-terminal protease N{sup pro}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gottipati, Keerthi; Acholi, Sudheer; Ruggli, Nicolas
Pestivirus N{sup pro} is the first protein translated in the viral polypeptide, and cleaves itself off co-translationally generating the N-terminus of the core protein. Once released, N{sup pro} blocks the host's interferon response by inducing degradation of interferon regulatory factor-3. N{sup pro'}s intracellular autocatalytic activity and lack of trans-activity have hampered in vitro cleavage studies to establish its substrate specificity and the roles of individual residues. We constructed N{sup pro}-GFP fusion proteins that carry the authentic cleavage site and determined the autoproteolytic activities of N{sup pro} proteins containing substitutions at the predicted catalytic sites Glu22 and Cys69, at Arg100 thatmore » forms a salt bridge with Glu22, and at the cleavage site Cys168. Contrary to previous reports, we show that N{sup pro'}s catalytic activity does not involve Glu22, which may instead be involved in protein stability. Furthermore, N{sup pro} does not have specificity for Cys168 at the cleavage site even though this residue is conserved throughout the pestivirus genus. - Highlights: • N{sup pro'}s autoproteolysis is studied using N{sup pro}-GFP fusion proteins. • N-terminal 17 amino acids are dispensable without loss of protease activity. • The putative catalytic residue Glu22 is not involved in protease catalysis. • No specificity for Cys168 at the cleavage site despite evolutionary conservation. • N{sup pro} prefers small amino acids with non-branched beta carbons at the P1 position.« less
Almogren, Adel; Senior, Bernard W; Kerr, Michael A
2007-01-01
A detailed investigation of the binding of secretory component to immunoglobulin A (IgA) in human secretory IgA2 (S-IgA2) was made possible by the development of a new method of purifying S-IgA1, S-IgA2 and free secretory component from human colostrum using thiophilic gel chromatography and chromatography on Jacalin-agarose. Sodium dodecyl sulphate–polyacrylamide gel electrophoresis of unreduced pure S-IgA2 revealed that, unlike in S-IgA1, a significant proportion of the secretory component was bound non-covalently in S-IgA2. When S-IgA1 was incubated with a protease purified from Proteus mirabilis the secretory component, but not the α-chain, was cleaved. This is in contrast to serum IgA1, in which the α-chain was cleaved under the same conditions – direct evidence that secretory component does protect the α-chain from proteolytic cleavage in S-IgA. Comparisons between the products of cleavage with P. mirabilis protease of free secretory component and bound secretory component in S-IgA1 and S-IgA2 also indicated that, contrary to the general assumption, the binding of secretory component to IgA is different in S-IgA2 from that in S-IgA1. PMID:17156102
Imamura, Takahisa; Murakami, Yoji; Nitta, Hidetoshi
2017-09-26
Aeromonas sobria serine protease (ASP) is secreted from Aeromonas sobria, a pathogen causing gastroenteritis and sepsis. ASP resembles Saccharomyces cerevisiae Kex2, a member of the subtilisin family, and preferentially cleaves peptide bonds at the C-terminal side of paired basic amino acid residues; also accepting unpaired arginine at the P1 site. Unlike Kex2, however, ASP lacks an intramolecular chaperone N-terminal propeptide, instead utilizes the external chaperone ORF2 for proper folding, therefore, ASP and its homologues constitute a new subfamily in the subtilisin family. Through activation of the kallikrein/kinin system, ASP induces vascular leakage, and presumably causes edema and septic shock. ASP accelerates plasma clotting by α-thrombin generation from prothrombin, whereas it impairs plasma clottability by fibrinogen degradation, together bringing about blood coagulation disorder that occurs in disseminated intravascular coagulation, a major complication of sepsis. From complement C5 ASP liberates C5a that induces neutrophil recruitment and superoxide release, and mast cell degranulation, which are associated with pus formation, tissue injury and diarrhea, respectively. Nicked two-chain ASP also secreted from A. sobria is more resistant to inactivation by α2-macroglobulin than single-chain ASP, thereby raising virulence activities. Thus, ASP is a potent virulence factor and may participate in the pathogenesis of A. sobria infection.
Activation of cell-surface proteases promotes necroptosis, inflammation and cell migration.
Cai, Zhenyu; Zhang, Anling; Choksi, Swati; Li, Weihua; Li, Tao; Zhang, Xue-Min; Liu, Zheng-Gang
2016-08-01
Necroptosis is a programmed, caspase-independent cell death that is morphologically similar to necrosis. TNF-induced necroptosis is mediated by receptor-interacting protein kinases, RIP1 and RIP3, and the mixed lineage kinase domain-like (MLKL). After being phosphorylated by RIP3, MLKL is translocated to the plasma membrane and mediates necroptosis. However, the execution of necroptosis and its role in inflammation and other cellular responses remain largely elusive. In this study, we report that MLKL-mediated activation of cell-surface proteases of the a disintegrin and metalloprotease (ADAM) family promotes necroptosis, inflammation and cell migration. ADAMs are specifically activated at the early stage of necroptosis when MLKL is phosphorylated and translocated to the cell plasma membrane. Activation of ADAMs induces ectodomain shedding of diverse cell-surface proteins including adhesion molecules, receptors, growth factors and cytokines. Importantly, the shedding of cell-surface proteins disrupts cell adhesion and accelerates necroptosis, while the soluble fragments of the cleaved proteins trigger the inflammatory responses. We also demonstrate that the shedding of E-cadherin ectodomain from necroptotic cells promotes cell migration. Thus, our study provides a novel mechanism of necroptosis-induced inflammation and new insights into the physiological and pathological functions of this unique form of cell death.
Engineering botulinum neurotoxin domains for activation by toxin light chain.
Stancombe, Patrick R; Masuyer, Geoffrey; Birch-Machin, Ian; Beard, Matthew; Foster, Keith A; Chaddock, John A; Acharya, K Ravi
2012-02-01
Targeted secretion inhibitors (TSI) are a new class of biopharmaceuticals designed from a botulinum neurotoxin protein scaffold. The backbone consists of the 50-kDa endopeptidase light chain and translocation domain (N-terminal portion of the heavy chain), lacks neuronal toxicity, but retains the ability to target cytoplasmic soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. TSI are produced as single-chain proteins and then cleaved post-translationally to generate functional heterodimers. Precise proteolytic cleavage is essential to activate the protein to a dichain form. TSI are themselves highly specific proteases. We have exploited this activity to create self-activating enzymes by replacing the native proteolytic site with a substrate SNARE peptide for the TSI protease. We have also created cross-activating backbones. By replacing the proteolytic activation site in one backbone with the substrate SNARE peptide for another serotype, controlled activation is achieved. SNARE peptides encompassing the whole of the coiled-coil region enabled complete activation and assembly of the dichain backbone. These engineered TSI backbones are capable of translocating their enzymatic domains to target intracellular SNARE proteins. They are also investigative tools with which to further the understanding of endopeptidase activity of light chain in SNARE interactions. © 2011 Syntaxin Ltd. Journal compilation © 2011 FEBS.
Activation of cell-surface proteases promotes necroptosis, inflammation and cell migration
Cai, Zhenyu; Zhang, Anling; Choksi, Swati; Li, Weihua; Li, Tao; Zhang, Xue-Min; Liu, Zheng-Gang
2016-01-01
Necroptosis is a programmed, caspase-independent cell death that is morphologically similar to necrosis. TNF-induced necroptosis is mediated by receptor-interacting protein kinases, RIP1 and RIP3, and the mixed lineage kinase domain-like (MLKL). After being phosphorylated by RIP3, MLKL is translocated to the plasma membrane and mediates necroptosis. However, the execution of necroptosis and its role in inflammation and other cellular responses remain largely elusive. In this study, we report that MLKL-mediated activation of cell-surface proteases of the a disintegrin and metalloprotease (ADAM) family promotes necroptosis, inflammation and cell migration. ADAMs are specifically activated at the early stage of necroptosis when MLKL is phosphorylated and translocated to the cell plasma membrane. Activation of ADAMs induces ectodomain shedding of diverse cell-surface proteins including adhesion molecules, receptors, growth factors and cytokines. Importantly, the shedding of cell-surface proteins disrupts cell adhesion and accelerates necroptosis, while the soluble fragments of the cleaved proteins trigger the inflammatory responses. We also demonstrate that the shedding of E-cadherin ectodomain from necroptotic cells promotes cell migration. Thus, our study provides a novel mechanism of necroptosis-induced inflammation and new insights into the physiological and pathological functions of this unique form of cell death. PMID:27444869
Isolation and characterization of chicken bile matrix metalloproteinase.
Packialakshmi, B; Liyanage, R; Rasaputra, K S; Lay, Jackson O; Rath, N C
2014-06-01
Avian bile is rich in matrix metalloproteinases (MMP), the enzymes that cleave extracellular matrix proteins such as collagens and proteoglycans. Changes in bile MMP expression have been correlated with hepatic and gall bladder pathologies, but the significance of their expression in normal, healthy bile is not understood. We hypothesized that the MMP in bile may aid the digestion of native collagens that are resistant to conventional gastric proteases. Hence, the objective of this study was to characterize the bile MMP and check its regulation in association with dietary factors. We used substrate zymography, azocoll protease assay, and gelatin affinity chromatography to identify and purify the MMP from chicken bile. Using zymography and SDS PAGE, 5 bands at 70, 64, 58, 50, and 42 kDa were detected. The bands corresponding to 64, 50, and 42 kDa were identified as MMP2 using trypsin in-gel digestion and matrix-assisted laser desorption time-of-flight mass spectrometry and peptide mass fingerprinting. Chickens fed diets containing gelatin supplements showed higher levels of MMP expression in the bile by both azocoll assay and zymography. We conclude that the bile MMP may be associated with the digestion of collagens and other extracellular matrix proteins in avian diets. Poultry Science Association Inc.
D Santos, Anderson Fragoso; Pacheco, Clarissa Almeida; Valle, Roberta D Santos; Seldin, Lucy; D Santos, André Luis Souza
2014-12-01
The screening for hydrolases-producing, halotolerant, and spore-forming gram-positive bacteria from the root, rhizosphere, and non-rhizosphere soil of Blutaparon portulacoides, a plant found in the Restinga de Jurubatiba located at the northern region of Rio de Janeiro State, Brazil, resulted in the isolation of 22 strains. These strains were identified as Halobacillus blutaparonensis (n = 2), Oceanobacillus picturae (n = 5), and Oceanobacillus iheyensis (n = 15), and all showed the ability to produce different extracellular enzymes. A total of 20 isolates (90.9 %) showed activity for protease, 5 (22.7 %) for phytase, 3 (13.6 %) for cellulase, and 2 (9.1 %) for amylase. Some bacterial strains were capable of producing three (13.6 %) or two (9.1 %) distinct hydrolytic enzymes. However, no bacterial strain with ability to produce esterase and DNase was observed. The isolate designated M9, belonging to the species H. blutaparonensis, was the best producer of protease and also yielded amylase and phytase. This strain was chosen for further studies regarding its protease activity. The M9 strain produced similar amounts of protease when grown either without or with different NaCl concentrations (from 0.5 to 10 %). A simple inspection of the cell-free culture supernatant by gelatin-sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) revealed the presence of three major alkaline proteases of 40, 50, and 70 kDa, which were fully inhibited by phenylmethylsulfonyl fluoride (PMSF) and tosyl-L-phenylalanine chloromethyl ketone (TPCK) (two classical serine protease inhibitors). The secreted proteases were detected in a wide range of temperature (from 4 to 45 °C) and their hydrolytic activities were stimulated by NaCl (up to 10 %). The serine proteases produced by the M9 strain cleaved gelatin, casein, albumin, and hemoglobin, however, in different extensions. Collectively, these results suggest the potential use of the M9 strain in biotechnological and/or industrial processes.
Bornholdt, Zachary A; Ndungo, Esther; Fusco, Marnie L; Bale, Shridhar; Flyak, Andrew I; Crowe, James E; Chandran, Kartik; Saphire, Erica Ollmann
2016-02-23
The filovirus surface glycoprotein (GP) mediates viral entry into host cells. Following viral internalization into endosomes, GP is cleaved by host cysteine proteases to expose a receptor-binding site (RBS) that is otherwise hidden from immune surveillance. Here, we present the crystal structure of proteolytically cleaved Ebola virus GP to a resolution of 3.3 Å. We use this structure in conjunction with functional analysis of a large panel of pseudotyped viruses bearing mutant GP proteins to map the Ebola virus GP endosomal RBS at molecular resolution. Our studies indicate that binding of GP to its endosomal receptor Niemann-Pick C1 occurs in two distinct stages: the initial electrostatic interactions are followed by specific interactions with a hydrophobic trough that is exposed on the endosomally cleaved GP1 subunit. Finally, we demonstrate that monoclonal antibodies targeting the filovirus RBS neutralize all known filovirus GPs, making this conserved pocket a promising target for the development of panfilovirus therapeutics. Ebola virus uses its glycoprotein (GP) to enter new host cells. During entry, GP must be cleaved by human enzymes in order for receptor binding to occur. Here, we provide the crystal structure of the cleaved form of Ebola virus GP. We demonstrate that cleavage exposes a site at the top of GP and that this site binds the critical domain C of the receptor, termed Niemann-Pick C1 (NPC1). We perform mutagenesis to find parts of the site essential for binding NPC1 and map distinct roles for an upper, charged crest and lower, hydrophobic trough in cleaved GP. We find that this 3-dimensional site is conserved across the filovirus family and that antibody directed against this site is able to bind cleaved GP from every filovirus tested and neutralize viruses bearing those GPs. Copyright © 2016 Bornholdt et al.
Accelerated Neuronal Cell Recovery from Botulinum Neurotoxin Intoxication by Targeted Ubiquitination
Kuo, Chueh-Ling; Oyler, George A.; Shoemaker, Charles B.
2011-01-01
Botulinum neurotoxin (BoNT), a Category A biodefense agent, delivers a protease to motor neuron cytosol that cleaves one or more soluble NSF attachment protein receptors (SNARE) proteins involved in neurotransmission to cause a flaccid paralysis. No antidotes exist to reverse symptoms of BoNT intoxication so severely affected patients require artificial respiration with prolonged intensive care. Time to recovery depends on toxin serotype because the intraneuronal persistence of the seven known BoNT serotypes varies widely from days to many months. Our therapeutic antidote strategy is to develop ‘targeted F-box’ (TFB) agents that target the different intraneuronal BoNT proteases for accelerated degradation by the ubiquitin proteasome system (UPS), thus promoting rapid recovery from all serotypes. These agents consist of a camelid heavy chain-only VH (VHH) domain specific for a BoNT protease fused to an F-box domain recognized by an intraneuronal E3-ligase. A fusion protein containing the 14 kDa anti-BoNT/A protease VHH, ALcB8, joined to a 15 kDa F-box domain region of TrCP (D5) was sufficient to cause increased ubiquitination and accelerate turnover of the targeted BoNT/A protease within neurons. Neuronal cells expressing this TFB, called D5-B8, were also substantially resistant to BoNT/A intoxication and recovered from intoxication at least 2.5 fold quicker than control neurons. Fusion of D5 to a VHH specific for BoNT/B protease (BLcB10) led to accelerated turnover of the targeted protease within neurons, thus demonstrating the modular nature of these therapeutic agents and suggesting that development of similar therapeutic agents specific to all botulinum serotypes should be readily achievable. PMID:21629663
Kuo, Chueh-Ling; Oyler, George A; Shoemaker, Charles B
2011-01-01
Botulinum neurotoxin (BoNT), a Category A biodefense agent, delivers a protease to motor neuron cytosol that cleaves one or more soluble NSF attachment protein receptors (SNARE) proteins involved in neurotransmission to cause a flaccid paralysis. No antidotes exist to reverse symptoms of BoNT intoxication so severely affected patients require artificial respiration with prolonged intensive care. Time to recovery depends on toxin serotype because the intraneuronal persistence of the seven known BoNT serotypes varies widely from days to many months. Our therapeutic antidote strategy is to develop 'targeted F-box' (TFB) agents that target the different intraneuronal BoNT proteases for accelerated degradation by the ubiquitin proteasome system (UPS), thus promoting rapid recovery from all serotypes. These agents consist of a camelid heavy chain-only V(H) (VHH) domain specific for a BoNT protease fused to an F-box domain recognized by an intraneuronal E3-ligase. A fusion protein containing the 14 kDa anti-BoNT/A protease VHH, ALcB8, joined to a 15 kDa F-box domain region of TrCP (D5) was sufficient to cause increased ubiquitination and accelerate turnover of the targeted BoNT/A protease within neurons. Neuronal cells expressing this TFB, called D5-B8, were also substantially resistant to BoNT/A intoxication and recovered from intoxication at least 2.5 fold quicker than control neurons. Fusion of D5 to a VHH specific for BoNT/B protease (BLcB10) led to accelerated turnover of the targeted protease within neurons, thus demonstrating the modular nature of these therapeutic agents and suggesting that development of similar therapeutic agents specific to all botulinum serotypes should be readily achievable.
Xue, Xiaoguang; Wu, Jin; Ricklin, Daniel; Forneris, Federico; Di Crescenzio, Patrizia; Schmidt, Christoph Q; Granneman, Joke; Sharp, Thomas H; Lambris, John D; Gros, Piet
2017-08-01
The complement system labels microbes and host debris for clearance. Degradation of surface-bound C3b is pivotal to direct immune responses and protect host cells. How the serine protease factor I (FI), assisted by regulators, cleaves either two or three distant peptide bonds in the CUB domain of C3b remains unclear. We present a crystal structure of C3b in complex with FI and regulator factor H (FH; domains 1-4 with 19-20). FI binds C3b-FH between FH domains 2 and 3 and a reoriented C3b C-terminal domain and docks onto the first scissile bond, while stabilizing its catalytic domain for proteolytic activity. One cleavage in C3b does not affect its overall structure, whereas two cleavages unfold CUB and dislodge the thioester-containing domain (TED), affecting binding of regulators and thereby determining the number of cleavages. These data explain how FI generates late-stage opsonins iC3b or C3dg in a context-dependent manner, to react to foreign, danger or healthy self signals.
Rogers, Oliver C; Anthony, Lizamma; Rosen, D Marc; Brennen, W Nathaniel; Denmeade, Samuel R
2018-04-27
Prostate cancer is the most diagnosed malignancy and the second leading cause of cancer-related death in American men. While localized therapy is highly curative, treatments for metastatic prostate cancer are largely palliative. Thus, new innovative therapies are needed to target metastatic tumors. Prostate-Specific Antigen (PSA) is a chymotrypsin-like protease with a unique substrate specificity that is secreted by both normal and malignant prostate epithelial cells. Previous studies demonstrated the presence of high levels (μM-mM) of enzymatically active PSA is present in the extracellular fluid of the prostate cancer microenvironment. Because of this, PSA is an attractive target for a protease activated pro-toxin therapeutic strategy. Because prostate cancers typically grow very slowly, a strategy employing a proliferation-independent cytotoxic payload is preferred. Recently, it was shown that the human protease Granzyme B (GZMB), at low micromolar concentrations in the extracellular space, can cleave an array of extracellular matrix (ECM) proteins thus perturbing cell growth, signaling, motility, and integrity. It is also well established that other human proteases such as trypsin can induce similar effects. Because both enzymes require N-terminal proteolytic activation, we propose to convert these proteins into PSA-activated cytotoxins. In this study, we examine the enzymatic and cell targeting parameters of these PSA-activated cytotoxic serine proteases. These pro-enzymes were activated robustly by PSA and induced ECM damage that led to the death of prostate cancer cells in vitro thus supporting the potential use of this strategy as means to target metastatic prostate cancers.
Rogers, Oliver C.; Anthony, Lizamma; Rosen, D. Marc; Brennen, W. Nathaniel; Denmeade, Samuel R.
2018-01-01
Prostate cancer is the most diagnosed malignancy and the second leading cause of cancer-related death in American men. While localized therapy is highly curative, treatments for metastatic prostate cancer are largely palliative. Thus, new innovative therapies are needed to target metastatic tumors. Prostate-Specific Antigen (PSA) is a chymotrypsin-like protease with a unique substrate specificity that is secreted by both normal and malignant prostate epithelial cells. Previous studies demonstrated the presence of high levels (μM-mM) of enzymatically active PSA is present in the extracellular fluid of the prostate cancer microenvironment. Because of this, PSA is an attractive target for a protease activated pro-toxin therapeutic strategy. Because prostate cancers typically grow very slowly, a strategy employing a proliferation-independent cytotoxic payload is preferred. Recently, it was shown that the human protease Granzyme B (GZMB), at low micromolar concentrations in the extracellular space, can cleave an array of extracellular matrix (ECM) proteins thus perturbing cell growth, signaling, motility, and integrity. It is also well established that other human proteases such as trypsin can induce similar effects. Because both enzymes require N-terminal proteolytic activation, we propose to convert these proteins into PSA-activated cytotoxins. In this study, we examine the enzymatic and cell targeting parameters of these PSA-activated cytotoxic serine proteases. These pro-enzymes were activated robustly by PSA and induced ECM damage that led to the death of prostate cancer cells in vitro thus supporting the potential use of this strategy as means to target metastatic prostate cancers. PMID:29854290
Maaninka, Katariina; Nguyen, Su Duy; Mäyränpää, Mikko I; Plihtari, Riia; Rajamäki, Kristiina; Lindsberg, Perttu J; Kovanen, Petri T; Öörni, Katariina
2018-04-13
Subendothelial interaction of LDL with extracellular matrix drives atherogenesis. This interaction can be strengthened by proteolytic modification of LDL. Mast cells (MCs) are present in atherosclerotic lesions, and upon activation, they degranulate and release a variety of neutral proteases. Here we studied the ability of MC proteases to cleave apoB-100 of LDL and affect the binding of LDL to proteoglycans. Mature human MCs were differentiated from human peripheral blood-derived CD34 + progenitors in vitro and activated with calcium ionophore to generate MC-conditioned medium. LDL was incubated in the MC-conditioned medium or with individual MC proteases, and the binding of native and modified LDL to isolated human aortic proteoglycans or to human atherosclerotic plaques ex vivo was determined. MC proteases in atherosclerotic human coronary artery lesions were detected by immunofluorescence and qPCR. Activated human MCs released the neutral proteases tryptase, chymase, carboxypeptidase A3, cathepsin G, and granzyme B. Of these, cathepsin G degraded most efficiently apoB-100, induced LDL fusion, and enhanced binding of LDL to isolated human aortic proteoglycans and human atherosclerotic lesions ex vivo. Double immunofluoresence staining of human atherosclerotic coronary arteries for tryptase and cathepsin G indicated that lesional MCs contain cathepsin G. In the lesions, expression of cathepsin G correlated with the expression of tryptase and chymase, but not with that of neutrophil proteinase 3. The present study suggests that cathepsin G in human atherosclerotic lesions is largely derived from MCs and that activated MCs may contribute to atherogenesis by enhancing LDL retention. Copyright © 2018 Elsevier B.V. All rights reserved.
Kirkeby, Line; Rasmussen, Trine Tang; Reinholdt, Jesper; Kilian, Mogens
2000-01-01
Certain bacteria, including overt pathogens as well as commensals, produce immunoglobulin A1 (IgA1) proteases. By cleaving IgA1, including secretory IgA1, in the hinge region, these enzymes may interfere with the barrier functions of mucosal IgA antibodies, as indicated by experiments in vitro. Previous studies have suggested that cleavage of IgA1 in nasal secretions may be associated with the development and perpetuation of atopic disease. To clarify the potential effect of IgA1 protease-producing bacteria in the nasal cavity, we have analyzed immunoglobulin isotypes in nasal secretions of 11 healthy humans, with a focus on IgA, and at the same time have characterized and quantified IgA1 protease-producing bacteria in the nasal flora of the subjects. Samples in the form of nasal wash were collected by using a washing liquid that contained lithium as an internal reference. Dilution factors and, subsequently, concentrations in undiluted secretions could thereby be calculated. IgA, mainly in the secretory form, was found by enzyme-linked immunosorbent assay to be the dominant isotype in all subjects, and the vast majority of IgA (median, 91%) was of the A1 subclass, corroborating results of previous analyses at the level of immunoglobulin-producing cells. Levels of serum-type immunoglobulins were low, except for four subjects in whom levels of IgG corresponded to 20 to 66% of total IgA. Cumulative levels of IgA, IgG, and IgM in undiluted secretions ranged from 260 to 2,494 (median, 777) μg ml−1. IgA1 protease-producing bacteria (Haemophilus influenzae, Streptococcus pneumoniae, or Streptococcus mitis biovar 1) were isolated from the nasal cavities of seven subjects at 2.1 × 103 to 7.2 × 106 CFU per ml of undiluted secretion, corresponding to 0.2 to 99.6% of the flora. Nevertheless, α-chain fragments characteristic of IgA1 protease activity were not detected in secretions from any subject by immunoblotting. Neutralizing antibodies to IgA1 proteases of autologous isolates were detected in secretions from five of the seven subjects but not in those from two subjects harboring IgA1 protease-producing S. mitis biovar 1. α-chain fragments different from Fcα and Fdα were detected in some samples, possibly reflecting nonspecific proteolytic activity of microbial or host origin. These results add to previous evidence for a role of secretory immunity in the defense of the nasal mucosa but do not help identify conditions under which bacterial IgA1 proteases may interfere with this defense. PMID:10618273
Gnirss, Kerstin; Kühl, Annika; Karsten, Christina; Glowacka, Ilona; Bertram, Stephanie; Kaup, Franziska; Hofmann, Heike; Pöhlmann, Stefan
2012-03-01
Ebola (EBOV) and Marburg virus (MARV) cause severe hemorrhagic fever. The host cell proteases cathepsin B and L activate the Zaire ebolavirus glycoprotein (GP) for cellular entry and constitute potential targets for antiviral intervention. However, it is unclear if different EBOV species and MARV equally depend on cathepsin B/L activity for infection of cell lines and macrophages, important viral target cells. Here, we show that cathepsin B/L inhibitors markedly reduce 293T cell infection driven by the GPs of all EBOV species, independent of the type II transmembrane serine protease TMPRSS2, which cleaved but failed to activate EBOV-GPs. Similarly, a cathepsin B/L inhibitor blocked macrophage infection mediated by different EBOV-GPs. In contrast, MARV-GP-driven entry exhibited little dependence on cathepsin B/L activity. Still, MARV-GP-mediated entry was efficiently blocked by leupeptin. These results suggest that cathepsins B/L promote entry of EBOV while MARV might employ so far unidentified proteases for GP activation. Copyright © 2011 Elsevier Inc. All rights reserved.
Simmons, Graham; Zmora, Pawel; Gierer, Stefanie; Heurich, Adeline; Pöhlmann, Stefan
2013-12-01
The severe acute respiratory syndrome (SARS) pandemic revealed that zoonotic transmission of animal coronaviruses (CoV) to humans poses a significant threat to public health and warrants surveillance and the development of countermeasures. The activity of host cell proteases, which cleave and activate the SARS-CoV spike (S) protein, is essential for viral infectivity and constitutes a target for intervention. However, the identities of the proteases involved have been unclear. Pioneer studies identified cathepsins and type II transmembrane serine proteases as cellular activators of SARS-CoV and demonstrated that several emerging viruses might exploit these enzymes to promote their spread. Here, we will review the proteolytic systems hijacked by SARS-CoV for S protein activation, we will discuss their contribution to viral spread in the host and we will outline antiviral strategies targeting these enzymes. This paper forms part of a series of invited articles in Antiviral Research on "From SARS to MERS: 10years of research on highly pathogenic human coronaviruses.'' Copyright © 2013 Elsevier B.V. All rights reserved.
The Hydra small ubiquitin-like modifier.
Khan, Umair; Mehere, Prajwalini; Deivasigamani, Senthilkumar; Ratnaparkhi, Girish S
2013-09-01
SUMO is a protein posttranslational modifier. SUMO cycle components are believed to be conserved in all eukaryotes. Proteomic analyses have lead to the identification a wealth of SUMO targets that are involved in almost every cellular function in eukaryotes. In this article, we describe the characterization of SUMO Cycle components in Hydra, a Cnidarian with an ability to regenerate body parts. In cells, the translated SUMO polypeptide cannot conjugate to a substrate protein unless the C-terminal tail is cleaved, exposing the di-Glycine motif. This critical task is done by SUMO proteases that in addition to SUMO maturation are also involved in deconjugating SUMO from its substrate. We describe the identification, bioinformatics analysis, cloning, and biochemical characterization of Hydra SUMO cycle components, with a focus on SUMO and SUMO proteases. We demonstrate that the ability of SUMO proteases to process immature SUMO is conserved from Hydra to flies. A transgenic Hydra, expressing a SUMO-GFP fusion protein under a constitutive actin promoter, is generated in an attempt to monitor the SUMO Cycle in vivo as also to purify and identify SUMO targets in Hydra. Copyright © 2013 Wiley Periodicals, Inc.
Schneider, Katharina S; Groß, Christina J; Dreier, Roland F; Saller, Benedikt S; Mishra, Ritu; Gorka, Oliver; Heilig, Rosalie; Meunier, Etienne; Dick, Mathias S; Ćiković, Tamara; Sodenkamp, Jan; Médard, Guillaume; Naumann, Ronald; Ruland, Jürgen; Kuster, Bernhard; Broz, Petr; Groß, Olaf
2017-12-26
Inflammasomes activate the protease caspase-1, which cleaves interleukin-1β and interleukin-18 to generate the mature cytokines and controls their secretion and a form of inflammatory cell death called pyroptosis. By generating mice expressing enzymatically inactive caspase-1 C284A , we provide genetic evidence that caspase-1 protease activity is required for canonical IL-1 secretion, pyroptosis, and inflammasome-mediated immunity. In caspase-1-deficient cells, caspase-8 can be activated at the inflammasome. Using mice either lacking the pyroptosis effector gasdermin D (GSDMD) or expressing caspase-1 C284A , we found that GSDMD-dependent pyroptosis prevented caspase-8 activation at the inflammasome. In the absence of GSDMD-dependent pyroptosis, the inflammasome engaged a delayed, alternative form of lytic cell death that was accompanied by the release of large amounts of mature IL-1 and contributed to host protection. Features of this cell death modality distinguished it from apoptosis, suggesting it may represent a distinct form of pro-inflammatory regulated necrosis. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Ayach, Maya; Bressanelli, Stéphane
2015-04-01
Processing of the polyprotein of Turnip yellow mosaic virus is mediated by the protease PRO. PRO cleaves at two places, one of which is at the C-terminus of the PRO domain of another polyprotein molecule. In addition to this processing activity, PRO possesses an ubiquitin hydrolase (DUB) activity. The crystal structure of PRO has previously been reported in its polyprotein-processing mode with the C-terminus of one PRO inserted into the catalytic site of the next PRO, generating PRO polymers in the crystal packing of the trigonal space group. Here, two mutants designed to disrupt specific PRO-PRO interactions were generated, produced and purified. Crystalline plates were obtained by seeding and cross-seeding from initial `sea urchin'-like microcrystals of one mutant. The plates diffracted to beyond 2 Å resolution at a synchrotron source and complete data sets were collected for the two mutants. Data processing and analysis indicated that both mutant crystals belonged to the same monoclinic space group, with two molecules of PRO in the asymmetric unit.
Cockroach protease allergen induces allergic airway inflammation via epithelial cell activation
Kale, Sagar L.; Agrawal, Komal; Gaur, Shailendra Nath; Arora, Naveen
2017-01-01
Protease allergens are known to enhance allergic inflammation but their exact role in initiation of allergic reactions at mucosal surfaces still remains elusive. This study was aimed at deciphering the role of serine protease activity of Per a 10, a major cockroach allergen in initiation of allergic inflammation at mucosal surfaces. We demonstrate that Per a 10 increases epithelial permeability by disruption of tight junction proteins, ZO-1 and occludin, and enhances the migration of Monocyte derived dendritic cell precursors towards epithelial layer as exhibited by trans-well studies. Per a 10 exposure also leads to secretion of IL-33, TSLP and intracellular Ca2+ dependent increase in ATP levels. Further, in vivo experiments revealed that Per a 10 administration in mice elevated allergic inflammatory parameters along with high levels of IL-33, TSLP, IL-1α and uric acid in the mice lungs. We next demonstrated that Per a 10 cleaves CD23 (low affinity IgE receptor) from the surface of PBMCs and purified B cells and CD25 (IL-2 receptor) from the surface of PBMCs and purified T cells in an activity dependent manner, which might favour Th2 responses. In conclusion, protease activity of Per a 10 plays a significant role in initiation of allergic airway inflammation at the mucosal surfaces. PMID:28198394
Zhu, Shuyun; Liu, Zhongyuan; Hu, Lianzhe; Yuan, Yali; Xu, Guobao
2012-12-14
Proteases play a central role in several widespread diseases. Thus, there is a great need for the fast and sensitive detection of various proteolytic enzymes. Herein, we have developed a carbon nanotube (CNT)-based protease biosensing platform that uses peptides as a fluorescence probe for the first time. Single-walled carbon nanohorns (SWCNHs) and thrombin were used to demonstrate this detection strategy. SWCNHs can adsorb a fluorescein-based dye (FAM)-labeled peptide (FAM-pep) and quench the fluorescence of FAM. In contrast, thrombin can cleave FAM-pep on SWCNHs and recover the fluorescence of FAM, which allows the sensitive detection of thrombin. This biosensor has a high sensitivity and selectivity toward thrombin, with a detection limit of 100 pM. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Presenilins and γ-Secretase: Structure, Function, and Role in Alzheimer Disease
De Strooper, Bart; Iwatsubo, Takeshi; Wolfe, Michael S.
2012-01-01
Presenilins were first discovered as sites of missense mutations responsible for early-onset Alzheimer disease (AD). The encoded multipass membrane proteins were subsequently found to be the catalytic components of γ-secretases, membrane-embedded aspartyl protease complexes responsible for generating the carboxyl terminus of the amyloid β-protein (Aβ) from the amyloid protein precursor (APP). The protease complex also cleaves a variety of other type I integral membrane proteins, most notably the Notch receptor, signaling from which is involved in many cell differentiation events. Although γ-secretase is a top target for developing disease-modifying AD therapeutics, interference with Notch signaling should be avoided. Compounds that alter Aβ production by γ-secretase without affecting Notch proteolysis and signaling have been identified and are currently at various stages in the drug development pipeline. PMID:22315713
1993-10-30
hammerhead ribozymes (7-9) and a hairpin ribozyme (10) directed against HIV-l RNA has been shown to confer significant resistance to HIV-I infection...antisense oligodeoxynucleotides (ODN) directed to the Rev Response Element (RRE) and ribozymes that target viral mRNAs. The ribozyme approach, in...particular, has yielded extremely encouraging positive data. We showed that a hairpin ribozyme designed to cleave HIV-1 RNA in the 5’ leader sequence
The Evolving Field of Biodefence: Therapeutic Developments and Diagnostics
2005-04-01
several ways. One method would be to interfere with the furin -medi- ated cleavage of PA to its active form (PA 63 ) following host-cell receptor binding4...b | The inactive form of protective antigen (PA83) binds to a host-cell receptor, where it is cleaved by a furin -related protease, to give active PA63...explore whether a putative target, such as furin cleavage site of Ebola virus, is essential for viral infection88. Compared with filoviruses, poxvirus
Proteolytic Activation Transforms Heparin Cofactor II into a Host Defense Molecule
Kalle, Martina; Papareddy, Praveen; Kasetty, Gopinath; Tollefsen, Douglas M.; Malmsten, Martin; Mörgelin, Matthias
2013-01-01
The abundant serine proteinase inhibitor heparin cofactor II (HCII) has been proposed to inhibit extravascular thrombin. However, the exact physiological role of this plasma protein remains enigmatic. In this study, we demonstrate a previously unknown role for HCII in host defense. Proteolytic cleavage of the molecule induced a conformational change, thereby inducing endotoxin-binding and antimicrobial properties. Analyses employing representative peptide epitopes mapped these effects to helices A and D. Mice deficient in HCII showed increased susceptibility to invasive infection by Pseudomonas aeruginosa, along with a significantly increased cytokine response. Correspondingly, decreased levels of HCII were observed in wild-type animals challenged with bacteria or endotoxin. In humans, proteolytically cleaved HCII forms were detected during wounding and in association with bacteria. Thus, the protease-induced uncovering of cryptic epitopes in HCII, which transforms the molecule into a host defense factor, represents a previously unknown regulatory mechanism in HCII biology and innate immunity. PMID:23656734
Proteolytic activation transforms heparin cofactor II into a host defense molecule.
Kalle, Martina; Papareddy, Praveen; Kasetty, Gopinath; Tollefsen, Douglas M; Malmsten, Martin; Mörgelin, Matthias; Schmidtchen, Artur
2013-06-15
The abundant serine proteinase inhibitor heparin cofactor II (HCII) has been proposed to inhibit extravascular thrombin. However, the exact physiological role of this plasma protein remains enigmatic. In this study, we demonstrate a previously unknown role for HCII in host defense. Proteolytic cleavage of the molecule induced a conformational change, thereby inducing endotoxin-binding and antimicrobial properties. Analyses employing representative peptide epitopes mapped these effects to helices A and D. Mice deficient in HCII showed increased susceptibility to invasive infection by Pseudomonas aeruginosa, along with a significantly increased cytokine response. Correspondingly, decreased levels of HCII were observed in wild-type animals challenged with bacteria or endotoxin. In humans, proteolytically cleaved HCII forms were detected during wounding and in association with bacteria. Thus, the protease-induced uncovering of cryptic epitopes in HCII, which transforms the molecule into a host defense factor, represents a previously unknown regulatory mechanism in HCII biology and innate immunity.
Activation of innate immunity by prostate specific antigen (PSA).
Kodak, James A; Mann, Dean L; Klyushnenkova, Elena N; Alexander, Richard B
2006-11-01
Prostate specific antigen (PSA) is a serine protease secreted by the prostatic epithelium. The only known function of the protein is to cleave seminogelin. We wished to determine if PSA activated peripheral blood mononuclear cells (PBMC). PBMC and selected sub-populations were cultured with purified PSA. Secretion of IFNgamma was measured by cytokine capture flow cytometry and enzyme-linked immunosorbent assay. We observed secretion of IFNgamma and a proliferative response in PBMC cultured with PSA. We found that NK cells were the source of the IFNgamma but NK cells were not directly stimulated by PSA. Rather, a soluble factor secreted primarily by CD14 monocytes in response to PSA stimulated NK cells to secrete IFNgamma. PSA induces a pro-inflammatory response that results in the secretion of INFgamma by NK cells. The presence of large amounts of PSA could contribute to the common finding of inflammatory infiltrates in the prostate.
[The maturation steps of human immunodeficiency virus and the role of proteolysis].
Bukrinskaia, A G; Grigor'ev, V B; Korablina, E V; Gur'ev, E L; Vorkunova, G K
2010-01-01
HIV-1 virions are as immature noninfectious particles lacking a central core. Shortly after budding, virions temporally mature and acquire cores and infectious activity. The cause of maturation remains poorly studied. We have revealed that the virions produced early after infection following 24-36 hours, never mature and remain noninfectious, and only virions produced 48-72 hours after infection mature. The mature virions contain 3 times more genomic viral RNA than "early" virus. The "early" virions contain the same proteolytically cleaved Gag proteins as mature virions in contrast to the accepted version. The virus protease inhibitor Indinavir sulfate (IS) fully blocks infectivity when added early after infection. The early proteolysis of Gag precursor in the infected cells and inclusion into the virions of cellularly cleaved matrix protein (cMA) are shown in the IS-treated cells. cMA is associated with genomic viral RNA.
Synaptosomal degradation of substance P and some other neuropeptides.
Arzumanyan, A M; Arutunyan, A A; Akopyan, T N
1985-12-01
Synaptosomes purified from spinal cord and from different rat brain areas exhibit peptide hydrolase activity, cleaving substance P (SP), bradykinin, THRH, LHRH, and neurotensin. The lowest activity for all the peptides tested was found in spinal cord, while the region with the highest degrading activity depended on the substrate: for substance P, it was striatum and cortex; for bradykinin, hypothalamus, and medulla oblongata; for THRH, striatum; for LHRH, midbrain; and for neurotensin, hippocampus. Degradation of substance P takes place at the plasma membrane of synaptosomes. Synaptosome ghosts cleave substance P (pH optimum 7-9, Km-2.5 X 10(-5) M, Vmax-130 nmol . hr-1 . mg protein-1) and also a number of its C-terminal fragments. Effects of the inhibitors show that several different classes of peptidases and proteases are involved in the degradation process. Peptide cleavage represents the probable pathway of synaptosomal inactivation of substance P.
Further LDL cholesterol lowering through targeting PCSK9 for coronary artery disease.
Cao, Guoqing; Qian, Yue-Wei; Kowala, Mark C; Konrad, Robert J
2008-12-01
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a serine protease that belongs to the proprotein convertase family. PCSK9 is synthesized as a zymogen and its prodomain is cleaved by its own catalytic activity. The cleaved prodomain forms a protein complex with the rest of the PCSK9 carboxyl terminus within the endoplasmic reticulum and is secreted. Secreted PCSK9 has been shown to be able to reduce low-density lipoprotein receptor (LDLR) levels in vitro and in vivo. Thus PCSK9 has emerged as an important player modulating LDLR levels and plasma LDL cholesterol. Furthermore, PCSK9 deficiency leads to significantly lowered LDL cholesterol levels in humans and provides dramatic protection against coronary heart disease. We review here the current understanding of PCSK9 and its potential as a therapeutic target through which to reduce LDL cholesterol for prevention and treatment of coronary heart disease.
Activity, specificity, and probe design for the smallpox virus protease K7L.
Aleshin, Alexander E; Drag, Marcin; Gombosuren, Naran; Wei, Ge; Mikolajczyk, Jowita; Satterthwait, Arnold C; Strongin, Alex Y; Liddington, Robert C; Salvesen, Guy S
2012-11-16
The K7L gene product of the smallpox virus is a protease implicated in the maturation of viral proteins. K7L belongs to protease Clan CE, which includes distantly related cysteine proteases from eukaryotes, pathogenic bacteria, and viruses. Here, we describe its recombinant high level expression, biochemical mechanism, substrate preference, and regulation. Earlier studies inferred that the orthologous I7L vaccinia protease cleaves at an AG-X motif in six viral proteins. Our data for K7L suggest that the AG-X motif is necessary but not sufficient for optimal cleavage activity. Thus, K7L requires peptides extended into the P7 and P8 positions for efficient substrate cleavage. Catalytic activity of K7L is substantially enhanced by homodimerization, by the substrate protein P25K as well as by glycerol. RNA and DNA also enhance cleavage of the P25K protein but not of synthetic peptides, suggesting that nucleic acids augment the interaction of K7L with its protein substrate. Library-based peptide preference analyses enabled us to design an activity-based probe that covalently and selectively labels K7L in lysates of transfected and infected cells. Our study thus provides proof-of-concept for the design of inhibitors and probes that may contribute both to a better understanding of the role of K7L in the virus life cycle and the design of novel anti-virals.
Identification and Mechanistic Analysis of a Novel Tick-Derived Inhibitor of Thrombin
Jablonka, Willy; Kotsyfakis, Michalis; Mizurini, Daniella M.; Monteiro, Robson Q.; Lukszo, Jan; Drake, Steven K.; Ribeiro, José M. C.; Andersen, John F.
2015-01-01
A group of peptides from the salivary gland of the tick Hyalomma marginatum rufipes, a vector of Crimean Congo hemorrhagic fever show weak similarity to the madanins, a group of thrombin-inhibitory peptides from a second tick species, Haemaphysalis longicornis. We have evaluated the anti-serine protease activity of one of these H. marginatum peptides that has been given the name hyalomin-1. Hyalomin-1 was found to be a selective inhibitor of thrombin, blocking coagulation of plasma and inhibiting S2238 hydrolysis in a competitive manner with an inhibition constant (Ki) of 12 nM at an ionic strength of 150 mM. It also blocks the thrombin-mediated activation of coagulation factor XI, thrombin-mediated platelet aggregation, and the activation of coagulation factor V by thrombin. Hyalomin-1 is cleaved at a canonical thrombin cleavage site but the cleaved products do not inhibit coagulation. However, the C-terminal cleavage product showed non-competitive inhibition of S2238 hydrolysis. A peptide combining the N-terminal parts of the molecule with the cleavage region did not interact strongly with thrombin, but a 24-residue fragment containing the cleavage region and the C-terminal fragment inhibited the enzyme in a competitive manner and also inhibited coagulation of plasma. These results suggest that the peptide acts by binding to the active site as well as exosite I or the autolysis loop of thrombin. Injection of 2.5 mg/kg of hyalomin-1 increased arterial occlusion time in a mouse model of thrombosis, suggesting this peptide could be a candidate for clinical use as an antithrombotic. PMID:26244557
The proteases HtrA2/Omi and UCH-L1 regulate TNF-induced necroptosis
2013-01-01
Background In apoptosis, proteolysis by caspases is the primary mechanism for both initiation and execution of programmed cell death (PCD). In contrast, the impact of proteolysis on the regulation and execution of caspase-independent forms of PCD (programmed necrosis, necroptosis) is only marginally understood. Likewise, the identity of the involved proteases has remained largely obscure. Here, we have investigated the impact of proteases in TNF-induced necroptosis. Results The serine protease inhibitor TPKC protected from TNF-induced necroptosis in multiple murine and human cells systems whereas inhibitors of metalloproteinases or calpain/cysteine and cathepsin proteases had no effect. A screen for proteins labeled by a fluorescent TPCK derivative in necroptotic cells identified HtrA2/Omi (a serine protease previously implicated in PCD) as a promising candidate. Demonstrating its functional impact, pharmacological inhibition or genetic deletion of HtrA2/Omi protected from TNF-induced necroptosis. Unlike in apoptosis, HtrA2/Omi did not cleave another protease, ubiquitin C-terminal hydrolase (UCH-L1) during TNF-induced necroptosis, but rather induced monoubiquitination indicative for UCH-L1 activation. Correspondingly, pharmacologic or RNA interference-mediated inhibition of UCH-L1 protected from TNF-induced necroptosis. We found that UCH-L1 is a mediator of caspase-independent, non-apoptotic cell death also in diseased kidney podocytes by measuring cleavage of the protein PARP-1, caspase activity, cell death and cell morphology. Indicating a role of TNF in this process, podocytes with stably downregulated UCH-L1 proved resistant to TNF-induced necroptosis. Conclusions The proteases HtrA2/Omi and UCH-L1 represent two key components of TNF-induced necroptosis, validating the relevance of proteolysis not only for apoptosis, but also for caspase-independent PCD. Since UCH-L1 clearly contributes to the non-apoptotic death of podocytes, interference with the necroptotic properties of HtrA2/Omi and UCH-L1 may prove beneficial for the treatment of patients, e.g. in kidney failure. PMID:24090154
PAR-1 and PAR-2 Expression Is Enhanced in Inflamed Odontoblast Cells.
Alvarez, M M P; Moura, G E; Machado, M F M; Viana, G M; de Souza Costa, C A; Tjäderhane, L; Nader, H B; Tersariol, I L S; Nascimento, F D
2017-12-01
Protease-activated receptors (PARs) are G protein-coupled receptors, which are activated by proteolytical cleavage of the amino-terminus and act as sensors for extracellular proteases. We hypothesized that PAR-1 and PAR-2 can be modulated by inflammatory stimulus in human dental pulp cells. PAR-1 and PAR-2 gene expression in human pulp tissue and MDPC-23 cells were analyzed by quantitative polymerase chain reaction. Monoclonal PAR-1 and PAR-2 antibodies were used to investigate the cellular expression of these receptors using Western blot, flow cytometry, and confocal microscopy in MDPC-23 cells. Immunofluorescence assays of human intact and carious teeth were performed to assess the presence of PAR-1 and PAR-2 in the dentin-pulp complex. The results show for the first time that human odontoblasts and MDPC-23 cells constitutively express PAR-1 and PAR-2. PAR-2 activation increased significantly the messenger RNA expression of matrix metalloproteinase (MMP)-2, MMP-9, MMP-13, and MMP-14 in MDPC-23 cells ( P < 0.05), while the expression of these enzymes decreased significantly in the PAR-1 agonist group ( P < 0.05). The high-performance liquid chromatography and matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry analysis showed the presence of MMP-13 activity cleaving PAR-1 at specific, noncanonical site TLDPRS 42 ↓F 43 LL in human dental pulp tissues. Also, we detected a presence of a trypsin-like activity cleaving PAR-2 at canonical site SKGR 20 ↓S 21 LIGRL in pulp tissues. Confocal microscopy analysis of human dentin-pulp complex showed intense positive staining of PAR-1 and PAR-2 in the odontoblast processes in dentinal tubules of carious teeth compared to intact ones. The present results support the hypothesis of activation of the upregulated PAR-1 and PAR-2 by endogenous proteases abundant during the inflammatory response in dentin-pulp complex.
Costa, Rita; Ferreira-da-Silva, Frederico; Saraiva, Maria J.; Cardoso, Isabel
2008-01-01
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the deposition of amyloid β-peptide (A-Beta) in the brain. Transthyretin (TTR) is a tetrameric protein of about 55 kDa mainly produced in the liver and choroid plexus of the brain. The known physiological functions of TTR are the transport of thyroid hormone T4 and retinol, through binding to the retinol binding protein. TTR has also been established as a cryptic protease able to cleave ApoA-I in vitro. It has been described that TTR is involved in preventing A-Beta fibrilization, both by inhibiting and disrupting A-Beta fibrils, with consequent abrogation of toxicity. We further characterized the nature of the TTR/A-Beta interaction and found that TTR, both recombinant or isolated from human sera, was able to proteolytically process A-Beta, cleaving the peptide after aminoacid residues 1, 2, 3, 10, 13, 14,16, 19 and 27, as determined by mass spectrometry, and reversed phase chromatography followed by N-terminal sequencing. A-Beta peptides (1–14) and (15–42) showed lower amyloidogenic potential than the full length counterpart, as assessed by thioflavin binding assay and ultrastructural analysis by transmission electron microscopy. A-Beta cleavage by TTR was inhibited in the presence of an αAPP peptide containing the Kunitz Protease Inhibitor (KPI) domain but not in the presence of the secreted αAPP derived from the APP isoform 695 without the KPI domain. TTR was also able to degrade aggregated forms of A-Beta peptide. Our results confirmed TTR as a protective molecule in AD, and prompted A-Beta proteolysis by TTR as a protective mechanism in this disease. TTR may prove to be a useful therapeutic agent for preventing or retarding the cerebral amyloid plaque formation implicated in AD pathology. PMID:18682830
SARS-CoV 3CL protease cleaves its C-terminal autoprocessing site by novel subsite cooperativity.
Muramatsu, Tomonari; Takemoto, Chie; Kim, Yong-Tae; Wang, Hongfei; Nishii, Wataru; Terada, Takaho; Shirouzu, Mikako; Yokoyama, Shigeyuki
2016-11-15
The 3C-like protease (3CL pro ) of severe acute respiratory syndrome coronavirus (SARS-CoV) cleaves 11 sites in the polyproteins, including its own N- and C-terminal autoprocessing sites, by recognizing P4-P1 and P1'. In this study, we determined the crystal structure of 3CL pro with the C-terminal prosequence and the catalytic-site C145A mutation, in which the enzyme binds the C-terminal prosequence of another molecule. Surprisingly, Phe at the P3' position [Phe(P3')] is snugly accommodated in the S3' pocket. Mutations of Phe(P3') impaired the C-terminal autoprocessing, but did not affect N-terminal autoprocessing. This difference was ascribed to the P2 residue, Phe(P2) and Leu(P2), in the C- and N-terminal sites, as follows. The S3' subsite is formed by Phe(P2)-induced conformational changes of 3CL pro and the direct involvement of Phe(P2) itself. In contrast, the N-terminal prosequence with Leu(P2) does not cause such conformational changes for the S3' subsite formation. In fact, the mutation of Phe(P2) to Leu in the C-terminal autoprocessing site abolishes the dependence on Phe(P3'). These mechanisms explain why Phe is required at the P3' position when the P2 position is occupied by Phe rather than Leu, which reveals a type of subsite cooperativity. Moreover, the peptide consisting of P4-P1 with Leu(P2) inhibits protease activity, whereas that with Phe(P2) exhibits a much smaller inhibitory effect, because Phe(P3') is missing. Thus, this subsite cooperativity likely exists to avoid the autoinhibition of the enzyme by its mature C-terminal sequence, and to retain the efficient C-terminal autoprocessing by the use of Phe(P2).
Inhibition of influenza virus infection and hemagglutinin cleavage by the protease inhibitor HAI-2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamilton, Brian S.; Chung, Changik; Cyphers, Soreen Y.
Highlights: • Biochemical and cell biological analysis of HAI-2 as an inhibitor of influenza HA cleavage activation. • Biochemical and cell biological analysis of HAI-2 as an inhibitor of influenza virus infection. • Comparative analysis of HAI-2 for vesicular stomatitis virus and human parainfluenza virus type-1. • Analysis of the activity of HAI-2 in a mouse model of influenza. - Abstract: Influenza virus remains a significant concern to public health, with the continued potential for a high fatality pandemic. Vaccination and antiviral therapeutics are effective measures to circumvent influenza virus infection, however, multiple strains have emerged that are resistant tomore » the antiviral therapeutics currently on the market. With this considered, investigation of alternative antiviral therapeutics is being conducted. One such approach is to inhibit cleavage activation of the influenza virus hemagglutinin (HA), which is an essential step in the viral replication cycle that permits viral-endosome fusion. Therefore, targeting trypsin-like, host proteases responsible for HA cleavage in vivo may prove to be an effective therapeutic. Hepatocyte growth factor activator inhibitor 2 (HAI-2) is naturally expressed in the respiratory tract and is a potent inhibitor of trypsin-like serine proteases, some of which have been determined to cleave HA. In this study, we demonstrate that HAI-2 is an effective inhibitor of cleavage of HA from the human-adapted H1 and H3 subtypes. HAI-2 inhibited influenza virus H1N1 infection in cell culture, and HAI-2 administration showed protection in a mouse model of influenza. HAI-2 has the potential to be an effective, alternative antiviral therapeutic for influenza.« less
Chella Krishnan, Karthickeyan; Mukundan, Santhosh; Landero Figueroa, Julio A.; Caruso, Joseph A.
2014-01-01
Streptococcal cysteine protease (SpeB), the major secreted protease produced by group A streptococcus (GAS), cleaves both host and bacterial proteins and contributes importantly to the pathogenesis of invasive GAS infections. Modulation of SpeB expression and/or its activity during invasive GAS infections has been shown to affect bacterial virulence and infection severity. Expression of SpeB is regulated by the GAS CovR-CovS two-component regulatory system, and we demonstrated that bacteria with mutations in the CovR-CovS two-component regulatory system are selected for during localized GAS infections and that these bacteria lack SpeB expression and exhibit a hypervirulent phenotype. Additionally, in a separate study, we showed that expression of SpeB can also be modulated by human transferrin- and/or lactoferrin-mediated iron chelation. Accordingly, the goal of this study was to investigate the possible roles of iron and other metals in modulating SpeB expression and/or activity in a manner that would potentiate bacterial virulence. Here, we report that the divalent metals zinc and copper inhibit SpeB activity at the posttranslational level. Utilizing online metal-binding site prediction servers, we identified two putative metal-binding sites in SpeB, one of which involves the catalytic-dyad residues 47Cys and 195His. Based on our findings, we propose that zinc and/or copper availability in the bacterial microenvironment can modulate the proteolytic activity of SpeB in a manner that preserves the integrity of several other virulence factors essential for bacterial survival and dissemination within the host and thereby may exacerbate the severity of invasive GAS infections. PMID:24799625
Wünsch, Désirée; Hahlbrock, Angelina; Heiselmayer, Christina; Bäcker, Sandra; Heun, Patrick; Goesswein, Dorothee; Stöcker, Walter; Schirmeister, Tanja; Schneider, Günter; Krämer, Oliver H; Knauer, Shirley K; Stauber, Roland H
2015-05-01
Human Taspase1 is essential for development and cancer by processing critical regulators, such as the mixed-lineage leukemia protein. Likewise, its ortholog, trithorax, is cleaved by Drosophila Taspase1 (dTaspase1), implementing a functional coevolution. To uncover novel mechanism regulating protease function, we performed a functional analysis of dTaspase1 and its comparison to the human ortholog. dTaspase1 contains an essential nucleophile threonine(195), catalyzing cis cleavage into its α- and β-subunits. A cell-based assay combined with alanine scanning mutagenesis demonstrated that the target cleavage motif for dTaspase1 (Q(3)[F/I/L/M](2)D(1)↓G(1')X(2')X(3')) differs significantly from the human ortholog (Q(3)[F,I,L,V](2)D(1)↓G(1')x(2')D(3')D(4')), predicting an enlarged degradome containing 70 substrates for Drosophila. In contrast to human Taspase1, dTaspase1 shows no discrete localization to the nucleus/nucleolus due to the lack of the importin-α/nucleophosmin1 interaction domain (NoLS) conserved in all vertebrates. Consequently, dTaspase1 interacts with neither the Drosophila nucleoplasmin-like protein nor human nucleophosmin1. The impact of localization on the protease's degradome was confirmed by demonstrating that dTaspase1 did not efficiently process nuclear substrates, such as upstream stimulatory factor 2. However, genetic introduction of the NoLS into dTaspase1 restored its nucleolar localization, nucleophosmin1 interaction, and efficient cleavage of nuclear substrates. We report that evolutionary functional divergence separating vertebrates from invertebrates can be achieved for proteases by a transport/localization-regulated mechanism. © FASEB.
van Kasteren, Puck B; Bailey-Elkin, Ben A; James, Terrence W; Ninaber, Dennis K; Beugeling, Corrine; Khajehpour, Mazdak; Snijder, Eric J; Mark, Brian L; Kikkert, Marjolein
2013-02-26
Protein ubiquitination regulates important innate immune responses. The discovery of viruses encoding deubiquitinating enzymes (DUBs) suggests they remove ubiquitin to evade ubiquitin-dependent antiviral responses; however, this has never been conclusively demonstrated in virus-infected cells. Arteriviruses are economically important positive-stranded RNA viruses that encode an ovarian tumor (OTU) domain DUB known as papain-like protease 2 (PLP2). This enzyme is essential for arterivirus replication by cleaving a site within the viral replicase polyproteins and also removes ubiquitin from cellular proteins. To dissect this dual specificity, which relies on a single catalytic site, we determined the crystal structure of equine arteritis virus PLP2 in complex with ubiquitin (1.45 Å). PLP2 binds ubiquitin using a zinc finger that is uniquely integrated into an exceptionally compact OTU-domain fold that represents a new subclass of zinc-dependent OTU DUBs. Notably, the ubiquitin-binding surface is distant from the catalytic site, which allowed us to mutate this surface to significantly reduce DUB activity without affecting polyprotein cleavage. Viruses harboring such mutations exhibited WT replication kinetics, confirming that PLP2-mediated polyprotein cleavage was intact, but the loss of DUB activity strikingly enhanced innate immune signaling. Compared with WT virus infection, IFN-β mRNA levels in equine cells infected with PLP2 mutants were increased by nearly an order of magnitude. Our findings not only establish PLP2 DUB activity as a critical factor in arteriviral innate immune evasion, but the selective inactivation of DUB activity also opens unique possibilities for developing improved live attenuated vaccines against arteriviruses and other viruses encoding similar dual-specificity proteases.
Cysteine Cathepsins Activate ELR Chemokines and Inactivate Non-ELR Chemokines*
Repnik, Urska; Starr, Amanda E.; Overall, Christopher M.; Turk, Boris
2015-01-01
Cysteine cathepsins are primarily lysosomal proteases involved in general protein turnover, but they also have specific proteolytic functions in antigen presentation and bone remodeling. Cathepsins are most stable at acidic pH, although growing evidence indicates that they have physiologically relevant activity also at neutral pH. Post-translational proteolytic processing of mature chemokines is a key, yet underappreciated, level of chemokine regulation. Although the role of selected serine proteases and matrix metalloproteases in chemokine processing has long been known, little has been reported about the role of cysteine cathepsins. Here we evaluated cleavage of CXC ELR (CXCL1, -2, -3, -5, and -8) and non-ELR (CXCL9–12) chemokines by cysteine cathepsins B, K, L, and S at neutral pH by high resolution Tris-Tricine SDS-PAGE and matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Whereas cathepsin B cleaved chemokines especially in the C-terminal region, cathepsins K, L, and S cleaved chemokines at the N terminus with glycosaminoglycans modulating cathepsin processing of chemokines. The functional consequences of the cleavages were determined by Ca2+ mobilization and chemotaxis assays. We show that cysteine cathepsins inactivate and in some cases degrade non-ELR CXC chemokines CXCL9–12. In contrast, cathepsins specifically process ELR CXC chemokines CXCL1, -2, -3, -5, and -8 N-terminally to the ELR motif, thereby generating agonist forms. This study suggests that cysteine cathepsins regulate chemokine activity and thereby leukocyte recruitment during protective or pathological inflammation. PMID:25833952
Hepatitis E virus persists in the presence of a type III interferon response.
Yin, Xin; Li, Xinlei; Ambardekar, Charuta; Hu, Zhimin; Lhomme, Sébastien; Feng, Zongdi
2017-05-01
The RIG-I-like RNA helicase (RLR)-mediated interferon (IFN) response plays a pivotal role in the hepatic antiviral immunity. The hepatitis A virus (HAV) and the hepatitis C virus (HCV) counter this response by encoding a viral protease that cleaves the mitochondria antiviral signaling protein (MAVS), a common signaling adaptor for RLRs. However, a third hepatotropic RNA virus, the hepatitis E virus (HEV), does not appear to encode a functional protease yet persists in infected cells. We investigated HEV-induced IFN responses in human hepatoma cells and primary human hepatocytes. HEV infection resulted in persistent virus replication despite poor spread. This was companied by a type III IFN response that upregulated multiple IFN-stimulated genes (ISGs), but type I IFNs were barely detected. Blocking type III IFN production or signaling resulted in reduced ISG expression and enhanced HEV replication. Unlike HAV and HCV, HEV did not cleave MAVS; MAVS protein size, mitochondrial localization, and function remained unaltered in HEV-replicating cells. Depletion of MAVS or MDA5, and to a less extent RIG-I, also diminished IFN production and increased HEV replication. Furthermore, persistent activation of the JAK/STAT signaling rendered infected cells refractory to exogenous IFN treatment, and depletion of MAVS or the receptor for type III IFNs restored the IFN responsiveness. Collectively, these results indicate that unlike other hepatotropic RNA viruses, HEV does not target MAVS and its persistence is associated with continuous production of type III IFNs.
Lam, Kwok-Ho; Sikorra, Stefan; Weisemann, Jasmin; Maatsch, Hannah; Perry, Kay; Rummel, Andreas; Binz, Thomas; Jin, Rongsheng
2018-04-23
The extreme toxicity of botulinum neurotoxins (BoNTs) relies on their specific cleavage of SNARE proteins, which eventually leads to muscle paralysis. One newly identified mosaic toxin, BoNT/HA (aka H or FA), cleaves VAMP-2 at a unique position between residues L54 and E55, but the molecular basis underlying VAMP-2-recognition of BoNT/HA remains poorly characterized. Here, we report a ∼2.09 Å resolution crystal structure of the light chain protease domain of BoNT/HA (LC/HA). Structural comparison between LC/HA and LC of BoNT/F1 (LC/F1) reveals distinctive hydrophobic and electrostatic features near the active sites, which may explain their different VAMP-2 cleavage sites. When compared to BoNT/F5 that cleaves VAMP-2 at the same site as BoNT/HA, LC/HA displays higher affinity for VAMP-2, which could be caused by their different surface charge properties surrounding a VAMP-2 exosite-binding cleft. Furthermore, systematic mutagenesis studies on VAMP-2 and structural modeling demonstrate that residues R47 to K59 spanning the cleavage site in VAMP-2 may adopt a novel extended conformation when interacting with LC/HA and LC/F5. Taken together, our structure provides new insights into substrate-recognition of BoNT/HA and paves the way for rational design of small molecule or peptide inhibitors against LC/HA.
van der Post, Sjoerd; Subramani, Durai B.; Bäckström, Malin; Johansson, Malin E. V.; Vester-Christensen, Malene B.; Mandel, Ulla; Bennett, Eric P.; Clausen, Henrik; Dahlén, Gunnar; Sroka, Aneta; Potempa, Jan; Hansson, Gunnar C.
2013-01-01
The colonic epithelial surface is protected by an inner mucus layer that the commensal microflora cannot penetrate. We previously demonstrated that Entamoeba histolytica secretes a protease capable of dissolving this layer that is required for parasite penetration. Here, we asked whether there are bacteria that can secrete similar proteases. We screened bacterial culture supernatants for such activity using recombinant fragments of the MUC2 mucin, the major structural component, and the only gel-forming mucin in the colonic mucus. MUC2 has two central heavily O-glycosylated mucin domains that are protease-resistant and has cysteine-rich N and C termini responsible for polymerization. Culture supernatants of Porphyromonas gingivalis, a bacterium that secretes proteases responsible for periodontitis, cleaved the MUC2 C-terminal region, whereas the N-terminal region was unaffected. The active enzyme was isolated and identified as Arg-gingipain B (RgpB). Two cleavage sites were localized to IR↓TT and NR↓QA. IR↓TT cleavage will disrupt the MUC2 polymers. Because this site has two potential O-glycosylation sites, we tested whether recombinant GalNAc-transferases (GalNAc-Ts) could glycosylate a synthetic peptide covering the IRTT sequence. Only GalNAc-T3 was able to glycosylate the second Thr in IRTT, rendering the sequence resistant to cleavage by RgpB. Furthermore, when GalNAc-T3 was expressed in CHO cells expressing the MUC2 C terminus, the second threonine was glycosylated, and the protein became resistant to RgpB cleavage. These findings suggest that bacteria can produce proteases capable of dissolving the inner protective mucus layer by specific cleavages in the MUC2 mucin and that this cleavage can be modulated by site-specific O-glycosylation. PMID:23546879
Retroviral proteases and their roles in virion maturation.
Konvalinka, Jan; Kräusslich, Hans-Georg; Müller, Barbara
2015-05-01
Proteolytic processing of viral polyproteins is essential for retrovirus infectivity. Retroviral proteases (PR) become activated during or after assembly of the immature, non-infectious virion. They cleave viral polyproteins at specific sites, inducing major structural rearrangements termed maturation. Maturation converts retroviral enzymes into their functional form, transforms the immature shell into a metastable state primed for early replication events, and enhances viral entry competence. Not only cleavage at all PR recognition sites, but also an ordered sequence of cleavages is crucial. Proteolysis is tightly regulated, but the triggering mechanisms and kinetics and pathway of morphological transitions remain enigmatic. Here, we outline PR structures and substrate specificities focusing on HIV PR as a therapeutic target. We discuss design and clinical success of HIV PR inhibitors, as well as resistance development towards these drugs. Finally, we summarize data elucidating the role of proteolysis in maturation and highlight unsolved questions regarding retroviral maturation. Copyright © 2015 Elsevier Inc. All rights reserved.
Casp8p41 generated by HIV protease kills CD4 T cells through direct Bak activation
Sainski, Amy M.; Dai, Haiming; Natesampillai, Sekar; Pang, Yuan-Ping; Bren, Gary D.; Cummins, Nathan W.; Correia, Cristina; Meng, X. Wei; Tarara, James E.; Ramirez-Alvarado, Marina; Katzmann, David J.; Ochsenbauer, Christina; Kappes, John C.
2014-01-01
Previous studies have shown that human immunodeficiency virus (HIV) protease cleaves procaspase 8 to a fragment, termed Casp8p41, that lacks caspase activity but nonetheless contributes to T cell apoptosis. Herein, we show that Casp8p41 contains a domain that interacts with the BH3-binding groove of pro-apoptotic Bak to cause Bak oligomerization, Bak-mediated membrane permeabilization, and cell death. Levels of active Bak are higher in HIV-infected T cells that express Casp8p41. Conversely, targeted mutations in the Bak-interacting domain diminish Bak binding and Casp8p41-mediated cell death. Similar mutations in procaspase 8 impair the ability of HIV to kill infected T cells. These observations support a novel paradigm in which HIV converts a normal cellular constituent into a direct activator that functions like a BH3-only protein. PMID:25246614
Clipping of arginine-methylated histone tails by JMJD5 and JMJD7
Liu, Haolin; Wang, Chao; Lee, Schuyler; Deng, Yu; Wither, Matthew; Oh, Sangphil; Ning, Fangkun; Dege, Carissa; Zhang, Qianqian; Liu, Xinjian; Johnson, Aaron M.; Zang, Jianye; Janknecht, Ralf; Hansen, Kirk; Marrack, Philippa; Li, Chuan-Yuan; Kappler, John W.; Hagman, James; Zhang, Gongyi
2017-01-01
Two of the unsolved, important questions about epigenetics are: do histone arginine demethylases exist, and is the removal of histone tails by proteolysis a major epigenetic modification process? Here, we report that two orphan Jumonji C domain (JmjC)-containing proteins, JMJD5 and JMJD7, have divalent cation-dependent protease activities that preferentially cleave the tails of histones 2, 3, or 4 containing methylated arginines. After the initial specific cleavage, JMJD5 and JMJD7, acting as aminopeptidases, progressively digest the C-terminal products. JMJD5-deficient fibroblasts exhibit dramatically increased levels of methylated arginines and histones. Furthermore, depletion of JMJD7 in breast cancer cells greatly decreases cell proliferation. The protease activities of JMJD5 and JMJD7 represent a mechanism for removal of histone tails bearing methylated arginine residues and define a potential mechanism of transcription regulation. PMID:28847961
Hybrid Molecular Structure of the Giant Protease Tripeptidyl Peptidase II
Chuang, Crystal K.; Rockel, Beate; Seyit, Gönül; Walian, Peter J.; Schönegge, Anne–Marie; Peters, Jürgen; Zwart, Petrus H.; Baumeister, Wolfgang; Jap, Bing K.
2010-01-01
Tripeptidyl peptidase II (TPP II) is the largest known eukaryotic protease (6MDa). It is believed to act downstream of the 26S proteasome cleaving tripeptides from the N– termini of longer peptides and it is implicated in numerous cellular processes. Here we report the structure of Drosophila TPP II determined by a hybrid approach: The structure of the dimer was solved by x–ray crystallography and docked into the three– dimensional map of the holocomplex obtained by single-particle cryo-electron microscopy. The resulting structure reveals the compartmentalization of the active sites inside a system of chambers and suggests the existence of a molecular ruler determining the size of the cleavage products. Furthermore, the structure suggests a model for activation of TPP II involving the relocation of a flexible loop and a repositioning of the active–site serine, coupling it to holocomplex assembly and active site sequestration. PMID:20676100
Hamson, Elizabeth J; Keane, Fiona M; Tholen, Stefan; Schilling, Oliver; Gorrell, Mark D
2014-06-01
Fibroblast activation protein (FAP) is best known for its heightened expression in tumour stroma. This atypical serine protease has both dipeptidyl peptidase and endopeptidase activities, cleaving substrates at a post-proline bond. FAP expression is difficult to detect in non-diseased adult organs, but is greatly upregulated in sites of tissue remodelling, which include liver fibrosis, lung fibrosis, atherosclerosis, arthritis, tumours and embryonic tissues. Due to its restricted expression pattern and dual enzymatic activities, FAP is emerging as a unique therapeutic target. However, methods to exploit and target this protease are advancing more rapidly than knowledge of the fundamental biology of FAP. This review highlights this imbalance, emphasising the need to better define the substrate repertoire and expression patterns of FAP to elucidate its role in biological and pathological processes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Growth-active peptides are produced from alpha-lactalbumin and lysozyme.
Kanda, Yoshikazu; Hisayasu, Sanae; Abe, Yasuko; Katsura, Kenichiro; Mashimo, Keico
2007-07-19
We determined the growth-active domains of milk-growth factor (MGF), human alpha-lactalbumin (HMLA) and human lysozyme (HMLZ), and their sequences. Fetal calf serum (FCS) showed inhibitors against proteases. The growth-stimulation of IMR90 cells in CG medium (free-serum) without FCS was induced in a dose-dependent manner up to 400 ng/ml of HMLA, HMLZ or chicken lysozyme (ChLZ), and also in a time-dependent manner until 48 h but was induced gradually until 1000 ng/ml of bovine alpha-lactalbumin (BVLA). The HMLAL6-peptide (HMLAL6), a cleaved product from HMLA by Endpeptidase Lys C, was growth-stimulative. The sequence of HMLAL6 was matched to 35 amino-acid residues (from No. 59 to No. 93 of HMLA), owing to the sequences of HMLAL6R3, HMLAL6R5 and HMLAL6R7 after the reduction of HMLAL6. The sequences of the reduced peptides from MGFL7-peptide (MGFL7: a cleaved product from MGF by Endpeptidase lysine C matched to those of the peptides from HMLAL6, and were similarly identified as the partial sequence of HMLA (59-93, H(2)N-L.W.C.?.K./S.S.Q.V.P.Q.S.R.N.I.?.D.I.S.?.D.K./F.L. D.D.D.I.T.D.D.I.M.?.A.-COOH). The sequence of HMLZ is similar to that of HMLA. HMLZT7-peptide (HMLZT7), a cleaved product of HMLZ by trypsin, was confirmed to have growth-stimulating activity and it's sequence was partially identified as Y. W.?.N.D.G.K.T.P.G.A.V.N.A.?.H.L. -, owing to the results of HMLZT7R1 (reduction of HMLZT7) and HMLZA7R2 (reduction of HMLZA7-peptide (HMLZA7) cleaved product of HMLZ by Endpeptidase Arg C) and is accordingly the sequence from No. 63 to No. 97 of HMLZ. Therefore, the peptides produced from LA and LZ by proteolysis may play a role of growth-stimulation.
Identification of a Novel Host-Specific IgM Protease in Streptococcus suis
Seele, Jana; Singpiel, Alena; Spoerry, Christian; von Pawel-Rammingen, Ulrich; Valentin-Weigand, Peter
2013-01-01
Streptococcus suis serotype 2 is a highly invasive, extracellular pathogen in pigs with the capacity to cause severe infections in humans. This study was initiated by the finding that IgM degradation products are released after opsonization of S. suis. The objective of this work was to identify the bacterial factor responsible for IgM degradation. The results of this study showed that a member of the IdeS family, designated IdeSsuis (Immunoglobulin M-degrading enzyme of S. suis), is responsible and sufficient for IgM cleavage. Recombinant IdeSsuis was found to degrade only IgM but neither IgG nor IgA. Interestingly, Western blot analysis revealed that IdeSsuis is host specific, as it exclusively cleaves porcine IgM but not IgM from six other species, including a closely related member of the Suidae family. As demonstrated by flow cytometry and immunofluorescence microscopy, IdeSsuis modulates binding of IgM to the bacterial surface. IdeSsuis is the first prokaryotic IgM-specific protease described, indicating that this enzyme is involved in a so-far-unknown mechanism of host-pathogen interaction at an early stage of the host immune response. Furthermore, cleavage of porcine IgM by IdeSsuis is the first identified phenotype reflecting functional adaptation of S. suis to pigs as the main host. PMID:23243300
Nakakuki, Masanori; Kawano, Hiroyuki; Notsu, Tatsuto; Imada, Kazunori; Mizuguchi, Kiyoshi; Shimano, Hitoshi
2014-05-01
The proteolytic cascade is the key step in transactivation of sterol regulatory element-binding proteins (SREBPs), a transcriptional factor of lipid synthesis. Proteolysis of SREBP-2 is strictly regulated by sterols, but that of SREBP-1c was not strongly sterol-regulated, but inhibited by polyunsaturated fatty acids (PUFAs). In this study, the proteolytic processing of SREBP-1 and -2 was examined by transfection studies of cDNA-encoding mutants in which all the known cleavage sites were disrupted. In cultured cells, sterol-regulated SREBP-2 processing was completely eliminated by mutation of cleavage sites. In contrast, the corresponding SREBP-1c mutants as well as wild type exhibited large amounts of cleaved products in the nuclear extracts from culture cells and murine liver in vivo. The nuclear form of the mutant SREBP-1c was induced by delipidated condition and suppressed by eicosapentaenoic acid, an n-3 PUFA, but not by sterols. This novel processing mechanism was affected by neither SREBP cleavage-activating protein (SCAP) nor insulin-induced gene (Insig)-1, unlike SREBP-2, but abolished by a serine protease inhibitor. Through analysis of deletion mutant, a site-2 protease recognition sequence (DRSR) was identified to be involved in this novel processing. These findings suggest that SREBP-1c cleavage could be subjected to a novel PUFA-regulated cleavage system in addition to the sterol-regulatory SCAP/Insig system.
Franco, A A; Kothary, M H; Gopinath, G; Jarvis, K G; Grim, C J; Hu, L; Datta, A R; McCardell, B A; Tall, B D
2011-04-01
Cronobacter spp. are emerging neonatal pathogens in humans, associated with outbreaks of meningitis and sepsis. To cause disease, they must survive in blood and invade the central nervous system by penetrating the blood-brain barrier. C. sakazakii BAA-894 possesses an ~131-kb plasmid (pESA3) that encodes an outer membrane protease (Cpa) that has significant identity to proteins that belong to the Pla subfamily of omptins. Members of this subfamily of proteins degrade a number of serum proteins, including circulating complement, providing protection from the complement-dependent serum killing. Moreover, proteins of the Pla subfamily can cause uncontrolled plasmin activity by converting plasminogen to plasmin and inactivating the plasmin inhibitor α2-antiplasmin (α2-AP). These reactions enhance the spread and invasion of bacteria in the host. In this study, we found that an isogenic cpa mutant showed reduced resistance to serum in comparison to its parent C. sakazakii BAA-894 strain. Overexpression of Cpa in C. sakazakii or Escherichia coli DH5α showed that Cpa proteolytically cleaved complement components C3, C3a, and C4b. Furthermore, a strain of C. sakazakii overexpressing Cpa caused a rapid activation of plasminogen and inactivation of α2-AP. These results strongly suggest that Cpa may be an important virulence factor involved in serum resistance, as well as in the spread and invasion of C. sakazakii.
Manduca sexta serpin-12 controls the prophenoloxidase activation system in larval hemolymph.
Yang, Fan; Wang, Yang; Sumathipala, Niranji; Cao, Xiaolong; Kanost, Michael R; Jiang, Haobo
2018-08-01
Insect prophenoloxidase activation is coordinated by a serine protease network, which is regulated by serine protease inhibitors of the serpin superfamily. The enzyme system also leads to proteolytic processing of a Spätzle precursor. Binding of Spätzle to a Toll receptor turns on a signaling pathway to induce the synthesis of defense proteins. Previous studies of the tobacco hornworm Manduca sexta have revealed key members of the protease cascade, which generates phenoloxidase for melanogenesis and Spätzle to induce immunity-related genes. Here we provide evidence that M. sexta serpin-12 regulates hemolymph protease-14 (HP14), an initiating protease of the cascade. This inhibitor, unlike the other serpins characterized in M. sexta, has an amino-terminal extension rich in hydrophilic residues and an unusual P1 residue (Leu 429 ) right before the scissile bond cleaved by a target protease. Serpins with similarities to serpin-12, including Drosophila Necrotic, were identified in a wide range of insects including flies, moths, wasps, beetles, and two hemimetabolous species. The serpin-12 mRNA is present at low, constitutive levels in larval fat body and hemocytes and becomes more abundant after an immune challenge. We produced the serpin-12 core domain (serpin-12ΔN) in insect cells and in Escherichia coli and demonstrated its inhibition of human cathepsin G, bovine α-chymotrypsin, and porcine pancreatic elastase. MALDI-TOF analysis of the reaction mixtures confirmed the predicted P1 residue of Leu 429 . Supplementation of larval plasma samples with the serpin-12ΔN decreased prophenoloxidase activation elicited by microbial cells and reduced the proteolytic activation of the protease precursors of HP6, HP8, PAPs, and other serine protease-related proteins. After incubation of plasma stimulated with peptidoglycan, a 72 kDa protein appeared, which was recognized by polyclonal antibodies against both serpin-12 and HP14, suggesting that a covalent serpin-protease complex formed when serpin-12 inhibited HP14. Together, these data suggest that M. sexta serpin-12 inhibits HP14 to regulate melanization and antimicrobial peptide induction. Copyright © 2018 Elsevier Ltd. All rights reserved.
Neisseria Heparin Binding Antigen is targeted by the human alternative pathway C3-convertase
Di Fede, Martina; Biagini, Massimiliano; Cartocci, Elena; Parillo, Carlo; Greco, Alessandra; Martinelli, Manuele; Marchi, Sara; Pezzicoli, Alfredo; Delany, Isabel
2018-01-01
Neisserial Heparin Binding Antigen (NHBA) is a surface-exposed lipoprotein specific for Neisseria and constitutes one of the three main protein antigens of the Bexsero vaccine. Meningococcal and human proteases, cleave NHBA protein upstream or downstream of a conserved Arg-rich region, respectively. The cleavage results in the release of the C-terminal portion of the protein. The C-terminal fragment originating from the processing of meningococcal proteases, referred to as C2 fragment, exerts a toxic effect on endothelial cells altering the endothelial permeability. In this work, we reported that recombinant C2 fragment has no influence on the integrity of human airway epithelial cell monolayers, consistent with previous findings showing that Neisseria meningitidis traverses the epithelial barrier without disrupting the junctional structures. We showed that epithelial cells constantly secrete proteases responsible for a rapid processing of C2 fragment, generating a new fragment that does not contain the Arg-rich region, a putative docking domain reported to be essential for C2-mediated toxic effect. Moreover, we found that the C3-convertase of the alternative complement pathway is one of the proteases responsible for this processing. Overall, our data provide new insights on the cleavage of NHBA protein during meningococcal infection. NHBA cleavage may occur at different stages of the infection, and it likely has a different role depending on the environment the bacterium is interacting with. PMID:29579105
Antibody blocks acquisition of bacterial colonization through agglutination
Roche, A. M.; Richard, A. L.; Rahkola, J. T.; Janoff, E. N.; Weiser, J. N.
2014-01-01
Invasive infection often begins with asymptomatic colonization of mucosal surfaces. A murine model of bacterial colonization with Streptococcus pneumoniae was used to study the mechanism for mucosal protection by immunoglobulin. In previously colonized immune mice, bacteria were rapidly sequestered within large aggregates in the nasal lumen. To further examine the role of bacterial agglutination in protection by specific antibodies, mice were passively immunized with IgG purified from anti-pneumococcal sera or pneumococcal type-specific monoclonal human IgA (hIgA1 or hIgA2). Systemically-delivered IgG accessed the mucosal surface and blocked acquisition of colonization and transmission between littermates. Optimal protection by IgG was independent of Fc fragment and complement and, therefore, did not involve an opsonophagocytic mechanism. Enzymatic digestion or reduction of IgG prior to administration showed that protection required divalent binding that maintained its agglutinating effect. Divalent hIgA1 is cleaved by the pneumococcal member of a family of bacterial proteases that generate monovalent Fabα fragments. Thus, passive immunization with hIgA1 blocked colonization by an IgA1-protease deficient mutant (agglutinated), but not the protease-producing wild-type parent (not agglutinated), whereas protease-resistant hIgA2 agglutinated and blocked colonization by both. Our findings highlight the importance of agglutinating antibodies in mucosal defense and reveal how successful pathogens evade this effect. PMID:24962092
Evolution of a mass spectrometry-grade protease with PTM-directed specificity.
Tran, Duc T; Cavett, Valerie J; Dang, Vuong Q; Torres, Héctor L; Paegel, Brian M
2016-12-20
Mapping posttranslational modifications (PTMs), which diversely modulate biological functions, represents a significant analytical challenge. The centerpiece technology for PTM site identification, mass spectrometry (MS), requires proteolytic cleavage in the vicinity of a PTM to yield peptides for sequencing. This requirement catalyzed our efforts to evolve MS-grade mutant PTM-directed proteases. Citrulline, a PTM implicated in epigenetic and immunological function, made an ideal first target, because citrullination eliminates arginyl tryptic sites. Bead-displayed trypsin mutant genes were translated in droplets, the mutant proteases were challenged to cleave bead-bound fluorogenic probes of citrulline-dependent proteolysis, and the resultant beads (1.3 million) were screened. The most promising mutant efficiently catalyzed citrulline-dependent peptide bond cleavage (k cat /K M = 6.9 × 10 5 M -1 ⋅s -1 ). The resulting C-terminally citrullinated peptides generated characteristic isotopic patterns in MALDI-TOF MS, and both a fragmentation product y 1 ion corresponding to citrulline (176.1030 m/z) and diagnostic peak pairs in the extracted ion chromatograms of LC-MS/MS analysis. Using these signatures, we identified citrullination sites in protein arginine deiminase 4 (12 sites) and in fibrinogen (25 sites, two previously unknown). The unique mass spectral features of PTM-dependent proteolytic digest products promise a generalized PTM site-mapping strategy based on a toolbox of such mutant proteases, which are now accessible by laboratory evolution.
Mitsui, Shinichi; Okui, Akira; Kominami, Katsuya; Konishi, Eiichi; Uemura, Hidetoshi; Yamaguchi, Nozomi
2005-10-01
We have isolated a cDNA that encodes a novel serine protease, prosemin, from human brain. The cDNA of human prosemin is 1306 bp, encoding 317 amino acids. It showed significant homology with the sequence of a chromosome 16 cosmid clone (accession no. NT_037887.4). The prosemin gene contains six exons and five introns. The amino acid sequence of prosemin shows significant homology to prostasin, gamma-tryptase, and testisin (43%, 41%, and 38% identity, respectively), the genes of which are also located on chromosome 16. Northern hybridization showed that prosemin is expressed predominantly in the pancreas and weakly in the prostate and cerebellum. However, western blot and RT-PCR analyses showed that prosemin is expressed and secreted from various kinds of cancer cells, such as glioma, pancreas, prostate, and ovarian cell lines. Prosemin is secreted in the cystic fluid of clinical ovarian cancers. Furthermore, immunohistochemistry showed prosemin protein localized in the apical parts of ovarian carcinomas. Recombinant prosemin was expressed in COS cells and was purified by immunoaffinity chromatography. Recombinant prosemin preferentially cleaved benzyloxycarbonyl (Z)-His-Glu-Lys-methylcoumaryl amidide (MCA) and t-butyloxycarbonyl (Boc)-Gln-Ala-Arg-MCA. Our results suggest that prosemin is a novel serine protease of the chromosome 16 cluster that is highly expressed in the pancreas. The usefulness of this serine protease as a candidate tumor marker should be further examined.
Choi, Jun-Hui; Kim, Dae-Won; Park, Se-Eun; Choi, Bong-Suk; Sapkota, Kumar; Kim, Seung; Kim, Sung-Jun
2014-10-01
A thrombolytic protease named kitamase possessing anticoagulant property was purified from edible and medicinal plant Aster yomena (Kitam.) Honda. Kitamase showed a molecular weight of 50 kDa by SDS-PAGE and displayed a strong fibrin zymogram lysis band corresponding to the similar molecular mass. The enzyme was active at high temperatures (50°C). The fibrinolytic activity of kitamase was strongly inhibited by EDTA, EGTA, TPCK and PMSF, inhibited by Zn(2+). The Km and Vmax values for substrate S-2251 were determined as 4.31 mM and 23.81 mM/mg respectively. It dissolved fibrin clot directly and specifically cleaved the α, Aα and γ-γ chains of fibrin and fibrinogen. In addition, kitamase delayed the coagulation time and increased activated partial thromboplastin time and prothrombin time. Kitamase exerted a significant protective effect against collagen and epinephrine induced pulmonary thromboembolism in mice. These results suggest that kitamase may have the property of metallo-protease like enzyme, novel fibrino(geno)lytic enzyme and a potential to be a therapeutic agent for thrombosis. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
A novel serine protease predominately expressed in macrophages.
Chen, Cailin; Darrow, Andrew L; Qi, Jian-Shen; D'Andrea, Michael R; Andrade-Gordon, Patricia
2003-01-01
We have identified a novel serine protease designated EOS by sequence identity searches. The deduced protein contains 284 amino acids with an active form containing 248 amino acids starting from an Ile-Val-Gly-Gly motif. The active form comprises a catalytic triad of conserved amino acids: His77, Asp126 and Ser231. It shares 44% identity with beta-tryptase and belongs to the S1 trypsin-like serine-protease family. Interestingly, this gene also maps to human chromosome 16p13.3. The purified protease showed amidolytic activity, cleaving its substrates before arginine residues. Tissue distribution by immunohistochemistry analysis demonstrated that EOS is highly expressed in spleen and moderately expressed in intestine, colon, lung and brain. We confirmed this expression pattern at the mRNA level by performing in situ hybridization. The results from both immunohistochemistry and in situ hybridization indicate that EOS is associated with macrophages. We corroborated this observation by double immunofluorescence using the anti-EOS antibody and an anti-CD68 antibody, a macrophage specific marker. Furthermore, we have detected a dramatic increase in immune staining of EOS in cultured U937 cells treated with PMA, which represent activated macrophages. This up-regulation is also reflected by elevated EOS mRNA in the PMA-treated U937 cells detected by Northern blotting. Since macrophages have important roles in various pathological conditions, such as wound healing, atherosclerosis and numerous inflammatory diseases, the localization of this novel serine protease to active macrophages may help to further the elucidation of the roles of this gene product in modulating these disorders. PMID:12795636
Assenberg, René; Mastrangelo, Eloise; Walter, Thomas S; Verma, Anil; Milani, Mario; Owens, Raymond J; Stuart, David I; Grimes, Jonathan M; Mancini, Erika J
2009-12-01
The flavivirus genome comprises a single strand of positive-sense RNA, which is translated into a polyprotein and cleaved by a combination of viral and host proteases to yield functional proteins. One of these, nonstructural protein 3 (NS3), is an enzyme with both serine protease and NTPase/helicase activities. NS3 plays a central role in the flavivirus life cycle: the NS3 N-terminal serine protease together with its essential cofactor NS2B is involved in the processing of the polyprotein, whereas the NS3 C-terminal NTPase/helicase is responsible for ATP-dependent RNA strand separation during replication. An unresolved question remains regarding why NS3 appears to encode two apparently disconnected functionalities within one protein. Here we report the 2.75-A-resolution crystal structure of full-length Murray Valley encephalitis virus NS3 fused with the protease activation peptide of NS2B. The biochemical characterization of this construct suggests that the protease has little influence on the helicase activity and vice versa. This finding is in agreement with the structural data, revealing a single protein with two essentially segregated globular domains. Comparison of the structure with that of dengue virus type 4 NS2B-NS3 reveals a relative orientation of the two domains that is radically different between the two structures. Our analysis suggests that the relative domain-domain orientation in NS3 is highly variable and dictated by a flexible interdomain linker. The possible implications of this conformational flexibility for the function of NS3 are discussed.
Fuchs, Julian E; von Grafenstein, Susanne; Huber, Roland G; Wallnoefer, Hannes G; Liedl, Klaus R
2014-04-01
Proteases are prototypes of multispecific protein-protein interfaces. Proteases recognize and cleave protein and peptide substrates at a well-defined position in a substrate binding groove and a plethora of experimental techniques provide insights into their substrate recognition. We investigate the caspase family of cysteine proteases playing a key role in programmed cell death and inflammation, turning caspases into interesting drug targets. Specific ligand binding to one particular caspase is difficult to achieve, as substrate specificities of caspase isoforms are highly similar. In an effort to rationalize substrate specificity of two closely related caspases, we investigate the substrate promiscuity of the effector Caspases 3 and 7 by data mining (cleavage entropy) and by molecular dynamics simulations. We find a strong correlation between binding site rigidity and substrate readout for individual caspase subpockets explaining more stringent substrate readout of Caspase 7 via its narrower conformational space. Caspase 3 subpockets S3 and S4 show elevated local flexibility explaining the more unspecific substrate readout of that isoform in comparison to Caspase 7. We show by in silico exchange mutations in the S3 pocket of the proteases that a proline residue in Caspase 7 contributes to the narrowed conformational space of the binding site. These findings explain the substrate specificities of caspases via a mechanism of conformational selection and highlight the crucial importance of binding site local dynamics in substrate recognition of proteases. Proteins 2014; 82:546-555. © 2013 Wiley Periodicals, Inc. Copyright © 2013 The Authors Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.
Analysis of Assembly and Budding of Lujo Virus
Urata, Shuzo; Weyer, Jacqueline; Storm, Nadia; Miyazaki, Yukiko; van Vuren, Petrus Jansen; Paweska, Janusz Tadeusz
2015-01-01
The recently identified arenavirus Lujo virus (LUJV) causes fatal hemorrhagic fever in humans. We analyzed its mechanism of viral release driven by matrix protein Z and the cell surface glycoprotein precursor GPC. The L domains in Z are required for efficient virus-like particle release, but Tsg101, ALIX/AIP1, and Vps4A/B are unnecessary for budding. LUJV GPC is cleaved by site 1 protease (S1P) at the RKLM motif, and treatment with the S1P inhibitor PF-429242 reduced LUJV production. PMID:26719243
Complete amino acid sequence of the myoglobin from the Pacific sei whale, Balaenoptera borealis.
Jones, B N; Rothgeb, T M; England, R D; Gurd, F R
1979-04-25
The complete amino acid sequence of the major component myoglobin from Pacific sei whale, Balaenoptera borealis, was determined by specific cleavage of the protein to obtain large peptides which are readily degraded by the automatic sequencer. The acetimidated apomyoglobin was selectively cleaved at its two methionyl residues with cyanogen bromide and at its three arginyl residues by trypsin. From the sequence analysis of four of these peptides and the apomyoglobin, over 75% of the covalent structure of the protein was obtained. The remainder of the primary structure was determined by the sequence analysis of peptides that resulted from further digestion of the amino-terminal and central cyanogen bromide fragments. The amino-terminal fragment was specifically cleaved at its two tryptophanyl residues with N-chlorosuccinimide and the central cyanogen bromide fragment was cleaved at its glutamyl residues with staphylococcal protease and at its single tyrosyl residue with N-bromosuccinimide. The primary structure of this myoglobin proved identical with that from the gray whale but differs from that of the finback whale at four positions, from that of the minke whale at three positions and from the myoglobin of the humpback whale at one position. The above sequence identities and differences reflect the close taxonomic relationship of these five species of Cetacea.
Prabhu, Yogikala; Burgos, Patricia V.; Schindler, Christina; Farías, Ginny G.; Magadár, Javier G.; Bonifacino, Juan S.
2012-01-01
The β-site amyloid precursor protein (APP)–cleaving enzyme 1 (BACE1) is a transmembrane aspartyl protease that catalyzes the proteolytic processing of APP and other plasma membrane protein precursors. BACE1 cycles between the trans-Golgi network (TGN), the plasma membrane, and endosomes by virtue of signals contained within its cytosolic C-terminal domain. One of these signals is the DXXLL-motif sequence DISLL, which controls transport between the TGN and endosomes via interaction with GGA proteins. Here we show that the DISLL sequence is embedded within a longer [DE]XXXL[LI]-motif sequence, DDISLL, which mediates internalization from the plasma membrane by interaction with the clathrin-associated, heterotetrameric adaptor protein 2 (AP-2) complex. Mutation of this signal or knockdown of either AP-2 or clathrin decreases endosomal localization and increases plasma membrane localization of BACE1. Remarkably, internalization-defective BACE1 is able to cleave an APP mutant that itself cannot be delivered to endosomes. The drug brefeldin A reversibly prevents BACE1-catalyzed APP cleavage, ruling out that this reaction occurs in the endoplasmic reticulum (ER) or ER–Golgi intermediate compartment. Taken together, these observations support the notion that BACE1 is capable of cleaving APP in late compartments of the secretory pathway. PMID:22553349
Mycobacterium tuberculosis GroEL2 Modulates Dendritic Cell Responses.
Georgieva, Maria; Sia, Jonathan Kevin; Bizzell, Erica; Madan-Lala, Ranjna; Rengarajan, Jyothi
2018-02-01
Mycobacterium tuberculosis successfully subverts the host immune response to promote disease progression. In addition to its known intracellular niche in macrophages, M. tuberculosis interferes with the functions of dendritic cells (DCs), which are the primary antigen-presenting cells of the immune system. We previously showed that M. tuberculosis dampens proinflammatory responses and impairs DC functions through the cell envelope-associated serine protease Hip1. Here we present data showing that M. tuberculosis GroEL2, a substrate of Hip1, modulates DC functions. The full-length GroEL2 protein elicited robust proinflammatory responses from DCs and promoted DC maturation and antigen presentation to T cells. In contrast, the cleaved form of GroEL2, which predominates in M. tuberculosis , was poorly immunostimulatory and was unable to promote DC maturation and antigen presentation. Moreover, DCs exposed to full-length, but not cleaved, GroEL2 induced strong antigen-specific gamma interferon (IFN-γ), interleukin-2 (IL-2), and IL-17A cytokine responses from CD4 + T cells. Moreover, the expression of cleaved GroEL2 in the hip1 mutant restored the robust T cell responses to wild-type levels, suggesting that proteolytic cleavage of GroEL2 allows M. tuberculosis to prevent optimal DC-T cell cross talk during M. tuberculosis infection. Copyright © 2018 American Society for Microbiology.
Robakis, Thalia; Bak, Beata; Lin, Shu-huei; Bernard, Daniel J.; Scheiffele, Peter
2008-01-01
Precursor proteolysis is a crucial mechanism for regulating protein structure and function. Signal peptidase (SP) is an enzyme with a well defined role in cleaving N-terminal signal sequences but no demonstrated function in the proteolysis of cellular precursor proteins. We provide evidence that SP mediates intraprotein cleavage of IgSF1, a large cellular Ig domain protein that is processed into two separate Ig domain proteins. In addition, our results suggest the involvement of signal peptide peptidase (SPP), an intramembrane protease, which acts on substrates that have been previously cleaved by SP. We show that IgSF1 is processed through sequential proteolysis by SP and SPP. Cleavage is directed by an internal signal sequence and generates two separate Ig domain proteins from a polytopic precursor. Our findings suggest that SP and SPP function are not restricted to N-terminal signal sequence cleavage but also contribute to the processing of cellular transmembrane proteins. PMID:18981173
Matrix metalloproteinase-1 facilitates MSC migration via cleavage of IGF-2/IGFBP2 complex.
Guan, Shou P; Lam, Alan T L; Newman, Jennifer P; Chua, Kevin L M; Kok, Catherine Y L; Chong, Siao T; Chua, Melvin L K; Lam, Paula Y P
2018-01-01
The specific mechanism underlying the tumor tropism of human mesenchymal stem cells (MSCs) for cancer is not well defined. We previously showed that the migration potential of MSCs correlated with the expression and protease activity of matrix metalloproteinase (MMP)-1. Furthermore, highly tumor-tropic MSCs expressed higher levels of MMP-1 and insulin-like growth factor (IGF)-2 than poorly migrating MSCs. In this study, we examined the functional roles of IGF-2 and MMP-1 in mediating the tumor tropism of MSCs. Exogenous addition of either recombinant IGF-2 or MMP-1 could stimulate MSC migration. The correlation between IGF-2, MMP-1 expression, and MSC migration suggests that MMP-1 may play a role in regulating MSC migration via the IGF-2 signaling cascade. High concentrations of IGF binding proteins (IGFBPs) can inhibit IGF-stimulated functions by blocking its binding to its receptors and proteolysis of IGFBP is an important mechanism for the regulation of IGF signaling. We thus hypothesized that MMP-1 acts as an IGFBP2 proteinase, resulting in the cleavage of IGF-2/IGFBP2 complex and extracellular release of free IGF-2. Indeed, our results showed that conditioned media from highly migrating MSCs, which expressed high levels of MMP-1, cleaved the IGF-2/IGFBP2 complex. Taken together, these results showed that the MMP-1 secreted by highly tumor-tropic MSCs cleaved IGF-2/IGFBP2 complex. Free IGF-2 released from the complex may facilitate MSC migration toward tumor.
Nakano, Takafumi; Irie, Keiichi; Hayakawa, Kazuhide; Sano, Kazunori; Nakamura, Yoshihiko; Tanaka, Masayoshi; Yamashita, Yuta; Satho, Tomomitsu; Fujioka, Masayuki; Muroi, Carl; Matsuo, Koichi; Ishikura, Hiroyasu; Futagami, Kojiro; Mishima, Kenichi
2015-10-22
Tissue plasminogen activator (tPA) is the only approved therapy for acute ischemic stroke. However, delayed tPA treatment increases the risk of cerebral hemorrhage and can result in exacerbation of nerve injury. ADAMTS13, a von Willebrand factor (VWF) cleaving protease, has a protective effect against ischemic brain injury and may reduce bleeding risk by cleaving VWF. We examined whether ADAMTS13 has a longer therapeutic time window in ischemic stroke than tPA in mice subjected to middle cerebral artery occlusion (MCAO). ADAMTS13 (0.1mg/kg) or tPA (10mg/kg) was administered i.v., immediately after reperfusion of after 2-h or 4-h MCAO for comparison of the therapeutic time windows in ischemic stroke. Infarct volume, hemorrhagic volume, plasma high-mobility group box1 (HMGB1) levels and cerebral blood flow were measured 24h after MCAO. Both ADAMTS13 and tPA improved the infarct volume without hemorrhagic complications in 2-h MCAO mice. On the other hand, ADAMTS13 reduced the infarct volume and plasma HMGB1 levels, and improved cerebral blood flow without hemorrhagic complications in 4-h MCAO mice, but tPA was not effective and these animals showed massive intracerebral hemorrhage. These results indicated that ADAMTS13 has a longer therapeutic time window in ischemic stroke than tPA, and ADAMTS13 may be useful as a new therapeutic agent for ischemic stroke. Copyright © 2015 Elsevier B.V. All rights reserved.
Peden, Alexander H; Sarode, Deep P; Mulholland, Carl R; Barria, Marcelo A; Ritchie, Diane L; Ironside, James W; Head, Mark W
2014-10-21
Variably protease sensitive prionopathy (VPSPr) is a recently described, sporadic human prion disease that is pathologically and biochemically distinct from the currently recognised sporadic Creutzfeldt-Jakob disease (sCJD) subtypes. The defining biochemical features of the abnormal form of the prion protein (PrPSc) in VPSPr are increased sensitivity to proteolysis and the presence of an N- and C-terminally cleaved ~8 kDa protease resistant PrPSc (PrPres) fragment. The biochemical and neuropathological profile of VPSPr has been proposed to resemble either Gerstmann-Sträussler-Scheinker syndrome (GSS) or familial CJD with the PRNP-V180I mutation. However, in some cases of VPSPr two protease resistant bands have been observed in Western blots that co-migrate with those of type 2 PrPres, suggesting that a proportion of the PrPSc present in VPSPr has properties similar to those of sCJD. Here, we have used conformation dependent immunoassay to confirm the presence of PrPSc in VPSPr that is more protease sensitive compared with sCJD. However, CDI also shows that a proportion of PrPSc in VPSPr resists PK digestion of its C-terminus, distinguishing it from GSS associated with ~8 kDa PrPres, and showing similarity to sCJD. Intensive investigation of a single VPSPr case with frozen tissue from multiple brain regions shows a broad, region-specific spectrum of protease sensitivity and differential stability of PrPSc in the absence of PK treatment. Finally, using protein misfolding cyclic amplification and real-time quaking induced conversion, we show that VPSPr PrPSc has the potential to seed conversion in vitro and that seeding activity is dispersed through a broad range of aggregate sizes. We further propose that seeding activity is associated with the ~19 and ~23 kDa PrPres rather than the ~8 kDa fragment. Therefore, PrPSc in VPSPr is heterogeneous in terms of protease sensitivity and stability to denaturation with the chaotrope GdnHCl and includes a proportion with similar properties to that found in sCJD.
Label-free electrochemical biosensing of small-molecule inhibition on O-GlcNAc glycosylation.
Yang, Yu; Gu, Yuxin; Wan, Bin; Ren, Xiaomin; Guo, Liang-Hong
2017-09-15
O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) plays a critical role in modulating protein function in many cellular processes and human diseases such as Alzheimer's disease and type II diabetes, and has emerged as a promising new target. Specific inhibitors of OGT could be valuable tools to probe the biological functions of O-GlcNAcylation, but a lack of robust nonradiometric assay strategies to detect glycosylation, has impeded efforts to identify such compounds. Here we have developed a novel label-free electrochemical biosensor for the detection of peptide O-GlcNAcylation using protease-protection strategy and electrocatalytic oxidation of tyrosine mediated by osmium bipyridine as a signal reporter. There is a large difference in the abilities of proteolysis of the glycosylated and the unglycosylated peptides by protease, thus providing a sensing mechanism for OGT activity. When the O-GlcNAcylation is achieved, the glycosylated peptides cannot be cleaved by proteinase K and result in a high current response on indium tin oxide (ITO) electrode. However, when the O-GlcNAcylation is successfully inhibited using a small molecule, the unglycosylated peptides can be cleaved easily and lead to low current signal. Peptide O-GlcNAcylation reaction was performed in the presence of a well-defined small-molecule OGT inhibitor. The results indicated that the biosensor could be used to screen the OGT inhibitors effectively. Our label-free electrochemical method is a promising candidate for protein glycosylation pathway research in screening small-molecule inhibitors of OGT. Copyright © 2017 Elsevier B.V. All rights reserved.
Mattsson, Johanna M.; Ravela, Suvi; Hekim, Can; Jonsson, Magnus; Malm, Johan; Närvänen, Ale; Stenman, Ulf-Håkan; Koistinen, Hannu
2014-01-01
Prostate-specific antigen (PSA or kallikrein-related peptidase-3, KLK3) exerts chymotrypsin-like proteolytic activity. The main biological function of PSA is the liquefaction of the clot formed after ejaculation by cleavage of semenogelins I and II in seminal fluid. PSA also cleaves several other substrates, which may explain its putative functions in prostate cancer and its antiangiogenic activity. We compared the proteolytic efficiency of PSA towards several protein and peptide substrates and studied the effect of peptides stimulating the activity of PSA with these substrates. An endothelial cell tube formation model was used to analyze the effect of PSA-degraded protein fragments on angiogenesis. We showed that PSA degrades semenogelins I and II much more efficiently than other previously identified protein substrates, e.g., fibronectin, galectin-3 and IGFBP-3. We identified nidogen-1 as a new substrate for PSA. Peptides B2 and C4 that stimulate the activity of PSA towards small peptide substrates also enhanced the proteolytic activity of PSA towards protein substrates. Nidogen-1, galectin-3 or their fragments produced by PSA did not have any effect on endothelial cell tube formation. Although PSA cleaves several other protein substrates, in addition to semenogelins, the physiological importance of this activity remains speculative. The PSA levels in prostate are very high, but several other highly active proteases, such as hK2 and trypsin, are also expressed in the prostate and may cleave protein substrates that are weakly cleaved by PSA. PMID:25237904
Maruyama, Haruhiko; Kaneko, Michiko; Otake, Taiga; Kano, Rui; Yamaya, Yoshiki; Watari, Toshihiro; Hasegawa, Atsuhiko; Kamata, Hiroshi
2014-03-01
A disintegrin-like and metalloprotease with thrombospondin type 1 repeat motifs 13 (ADAMTS13) is a von Willebrand factor (vWF)-cleaving protease. Deficiencies in ADAMTS13 activity are known to cause thrombotic diseases in human beings. The present study evaluated whether the human ADAMTS13 activity enzyme-linked immunosorbent assay (ELISA) kit containing human vWF73 (a minimal substrate) and anti-N10 antibody (which specifically recognizes the decapeptide of the C-terminal edge of cleaved vWF by human ADAMTS13) is applicable to the measurement of canine plasma ADAMTS13 activity. Human vWF73 fused with a GST-tag and a His-tag (GST-hvWF73-His) was reacted with recombinant canine (rc)ADAMTS13, canine plasma, and human plasma, and then used in Western blotting using anti-N10 antibody. Linearity and intra- and interassay reproducibility of the human ADAMTS13 activity ELISA kit in canine plasma were further evaluated. Finally, plasma ADAMTS13 activity was measured in 13 healthy dogs and 6 dogs with bacteremia using the human ADAMTS13 activity ELISA kit. Cleaved products with a 28-kDa GST-hvWF73-His were detected specifically in rcADAMTS13 as well as in human ADAMTS13, and also in canine plasma by anti-N10 antibody, showing excellent linearity. Intra-assay coefficient of variation (CV) was 3.0-12.4%, and interassay CV was 11.5-12.5%. The ADAMTS13 activity was significantly lower in dogs with bacteremia than in healthy dogs (P = 0.0025). The current study revealed that the human ADAMTS13 activity ELISA kit is applicable for measurement of canine plasma ADAMTS13 activity to elucidate the pathology of thrombotic diseases in dogs.
Ghilardi, Carmen; Silini, Antonietta; Figini, Sara; Anastasia, Alessia; Lupi, Monica; Fruscio, Robert; Giavazzi, Raffaella; Bani, MariaRosa
2015-01-01
Proteasescontribute to cancer in many ways, including tumor vascularization and metastasis, and their pharmacological inhibition is a potential anticancer strategy. We report that human endothelial cells (EC) express the trypsinogen 4 isoform of the serine protease 3 (PRSS3), and lack both PRSS2 and PRSS1. Trypsinogen 4 expression was upregulated by the combined action of VEGF-A, FGF-2 and EGF, angiogenic factors representative of the tumor microenvironment. Suppression of trypsinogen 4 expression by siRNA inhibited the angiogenic milieu-induced migration of EC from cancer specimens (tumor-EC), but did not affect EC from normal tissues. We identified tissue factor pathway inhibitor-2 (TFPI-2), a matrix associated inhibitor of cell motility, as the functional target of trypsinogen 4, which cleaved TFPI-2 and removed it from the matrix put down by tumor-EC. Silencing tumor-EC for trypsinogen 4 accumulated TFPI2 in the matrix. Showing that angiogenic factors stimulate trypsinogen 4 expression, which hydrolyses TFPI-2 favoring a pro-migratory situation, our study suggests a new pathway linking tumor microenvironment signals to endothelial cell migration, which is essential for angiogenesis and blood vessel remodeling. Abolishing trypsinogen 4 functions might be an exploitable strategy as anticancer, particularly anti-vascular, therapy. PMID:26318044
Carbonic anhydrases, EPF2 and a novel protease mediate CO2 control of stomatal development.
Engineer, Cawas B; Ghassemian, Majid; Anderson, Jeffrey C; Peck, Scott C; Hu, Honghong; Schroeder, Julian I
2014-09-11
Environmental stimuli, including elevated carbon dioxide levels, regulate stomatal development; however, the key mechanisms mediating the perception and relay of the CO2 signal to the stomatal development machinery remain elusive. To adapt CO2 intake to water loss, plants regulate the development of stomatal gas exchange pores in the aerial epidermis. A diverse range of plant species show a decrease in stomatal density in response to the continuing rise in atmospheric CO2 (ref. 4). To date, one mutant that exhibits deregulation of this CO2-controlled stomatal development response, hic (which is defective in cell-wall wax biosynthesis, ref. 5), has been identified. Here we show that recently isolated Arabidopsis thaliana β-carbonic anhydrase double mutants (ca1 ca4) exhibit an inversion in their response to elevated CO2, showing increased stomatal development at elevated CO2 levels. We characterized the mechanisms mediating this response and identified an extracellular signalling pathway involved in the regulation of CO2-controlled stomatal development by carbonic anhydrases. RNA-seq analyses of transcripts show that the extracellular pro-peptide-encoding gene EPIDERMAL PATTERNING FACTOR 2 (EPF2), but not EPF1 (ref. 9), is induced in wild-type leaves but not in ca1 ca4 mutant leaves at elevated CO2 levels. Moreover, EPF2 is essential for CO2 control of stomatal development. Using cell-wall proteomic analyses and CO2-dependent transcriptomic analyses, we identified a novel CO2-induced extracellular protease, CRSP (CO2 RESPONSE SECRETED PROTEASE), as a mediator of CO2-controlled stomatal development. Our results identify mechanisms and genes that function in the repression of stomatal development in leaves during atmospheric CO2 elevation, including the carbonic-anhydrase-encoding genes CA1 and CA4 and the secreted protease CRSP, which cleaves the pro-peptide EPF2, in turn repressing stomatal development. Elucidation of these mechanisms advances the understanding of how plants perceive and relay the elevated CO2 signal and provides a framework to guide future research into how environmental challenges can modulate gas exchange in plants.
Carbonic anhydrases, EPF2 and a novel protease mediate CO2 control of stomatal development
Engineer, Cawas B.; Ghassemian, Majid; Anderson, Jeffrey C.; Peck, Scott C.; Hu, Honghong; Schroeder, Julian I.
2014-01-01
Environmental stimuli, including elevated carbon dioxide levels, regulate stomatal development1–3; however, the key mechanisms mediating the perception and relay of the CO2 signal to the stomatal development machinery remain elusive. To adapt CO2 intake to water loss, plants regulate the development of stomatal gas exchange pores in the aerial epidermis. A diverse range of plant species show a decrease in stomatal density in response to the continuing rise in atmospheric CO2 (ref. 4). To date, one mutant that exhibits deregulation of this CO2-controlled stomatal development response, hic (which is defective in cell-wall wax biosynthesis, ref. 5), has been identified. Here we show that recently isolated Arabidopsis thaliana β-carbonic anhydrase double mutants (ca1 ca4)6 exhibit aninversion in their response to elevated CO2, showing increased stomatal development at elevated CO2 levels. We characterized the mechanisms mediating this response and identified an extracellular signalling pathway involved in the regulation of CO2-controlled stomatal development by carbonic anhydrases. RNA-seq analyses of transcripts show that the extracellular pro-peptide-encoding gene EPIDERMAL PATTERNING FACTOR 2 (EPF2)7,8, but not EPF1 (ref. 9), is induced in wild-type leaves but not inca1 ca4 mutant leaves at elevated CO2 levels. Moreover, EPF2 is essential for CO2 control of stomatal development. Using cell-wall proteomic analyses and CO2-dependent transcriptomic analyses, we identified a novel CO2-induced extracellular protease, CRSP (CO2 RESPONSE SECRETED PROTEASE), as a mediator of CO2-controlled stomatal development. Our results identify mechanisms and genes that function in the repression of stomatal development in leaves during atmospheric CO2 elevation, including the carbonic-anhydrase-encoding genes CA1 and CA4 and the secreted protease CRSP, which cleaves the pro-peptide EPF2, in turn repressing stomatal development. Elucidation of these mechanisms advances the understanding of how plants perceive and relay the elevated CO2 signal and provides a framework to guide future research into how environmental challenges can modulate gas exchange in plants. PMID:25043023
Strittmatter, Gerhard E; Garstkiewicz, Martha; Sand, Jennifer; Grossi, Serena; Beer, Hans-Dietmar
2016-01-01
Inflammasomes comprise a group of protein complexes, which activate the protease caspase-1 upon sensing a variety of stress factors. Active caspase-1 in turn cleaves and thereby activates the pro-inflammatory cytokines prointerleukin (IL)-1β and -18, and induces unconventional protein secretion (UPS) of mature IL-1β, IL-18, as well as of many other proteins involved in and required for induction of inflammation. Human primary keratinocytes (HPKs) represent epithelial cells able to activate caspase-1 in an inflammasome-dependent manner upon irradiation with a physiological dose of ultraviolet B (UVB) light. Here, we describe the isolation of keratinocytes from human skin, their cultivation, and induction of caspase-1-dependent UPS upon UVB irradiation as well as its siRNA- and chemical-mediated inhibition. In contrast to inflammasome activation of professional immune cells, UVB-irradiated HPKs represent a robust and physiological cell culture system for the analysis of UPS induced by active caspase-1.
Li, Yong; Xia, Wei; Liu, Ying; Remmer, Henriette A; Voorhees, John; Fisher, Gary J
2013-01-01
Exposure of human skin to solar ultraviolet (UV) irradiation induces matrix metalloproteinase-1 (MMP-1) activity, which degrades type I collagen fibrils. Type I collagen is the most abundant protein in skin and constitutes the majority of skin connective tissue (dermis). Degradation of collagen fibrils impairs the structure and function of skin that characterize skin aging. Decorin is the predominant proteoglycan in human dermis. In model systems, decorin binds to and protects type I collagen fibrils from proteolytic degradation by enzymes such as MMP-1. Little is known regarding alterations of decorin in response to UV irradiation. We found that solar-simulated UV irradiation of human skin in vivo stimulated substantial decorin degradation, with kinetics similar to infiltration of polymorphonuclear (PMN) cells. Proteases that were released from isolated PMN cells degraded decorin in vitro. A highly selective inhibitor of neutrophil elastase blocked decorin breakdown by proteases released from PMN cells. Furthermore, purified neutrophil elastase cleaved decorin in vitro and generated fragments with similar molecular weights as those resulting from protease activity released from PMN cells, and as observed in UV-irradiated human skin. Cleavage of decorin by neutrophil elastase significantly augmented fragmentation of type I collagen fibrils by MMP-1. Taken together, these data indicate that PMN cell proteases, especially neutrophil elastase, degrade decorin, and this degradation renders collagen fibrils more susceptible to MMP-1 cleavage. These data identify decorin degradation and neutrophil elastase as potential therapeutic targets for mitigating sun exposure-induced collagen fibril degradation in human skin.
Laitinen, Olli H; Svedin, Emma; Kapell, Sebastian; Hankaniemi, Minna M; Larsson, Pär G; Domsgen, Erna; Stone, Virginia M; Määttä, Juha A E; Hyöty, Heikki; Hytönen, Vesa P; Flodström-Tullberg, Malin
2018-05-01
Enteroviruses (EVs), such as the Coxsackie B-viruses (CVBs), are common human pathogens, which can cause severe diseases including meningitis, myocarditis and neonatal sepsis. EVs encode two proteases (2A pro and 3C pro ), which perform the proteolytic cleavage of the CVB polyprotein and also cleave host cell proteins to facilitate viral replication. The 2A pro cause direct damage to the infected heart and tools to investigate 2A pro and 3C pro expression may contribute new knowledge on virus-induced pathologies. Here, we developed new antibodies to CVB-encoded 2A pro and 3C pro ; Two monoclonal 2A pro antibodies and one 3C pro antibody were produced. Using cells infected with selected viruses belonging to the EV A, B and C species and immunocytochemistry, we demonstrate that the 3C pro antibody detects all of the EV species B (EV-B) viruses tested and that the 2A pro antibody detects all EV-B viruses apart from Echovirus 9. We furthermore show that the new antibodies work in Western blotting, immunocyto- and immunohistochemistry, and flow cytometry to detect CVBs. Confocal microscopy demonstrated the expression kinetics of 2A pro and 3C pro , and revealed a preferential cytosolic localization of the proteases in CVB3 infected cells. In summary, the new antibodies detect proteases that belong to EV species B in cells and tissue using multiple applications. Copyright © 2018 Elsevier B.V. All rights reserved.
Protease-deficient herpes simplex virus protects mice from lethal herpesvirus infection.
Hippenmeyer, P J; Rankin, A M; Luckow, V A; Neises, G R
1997-01-01
Null mutants and attenuated mutants of herpes simplex virus (HSV) have been shown to induce immunity against challenge from wild-type virus. Null viruses with a defect in late gene products would be expected to express more viral genes than viruses with defects in essential early gene products and thus induce a better immune response. Herpesviruses encode a late gene product (serine protease) that is autocatalytic and cleaves the capsid assembly protein during viral replication. To determine whether a virus with a mutation in this gene could induce immunity, we constructed a recombinant virus containing the gusA reporter gene in the protease domain of the HSV type 1 UL26 open reading frame (ORF). Consistent with previous results (M. Gao, L. Matusick-Kumar, W. Hurlburt, S. F. DiTusa, W. W. Newcomb, J. C. Brown, P. J. McCann, I. Deckman, and R. J. Colonno, J. Virol. 68:3702-3712, 1994), recombinant virus could be isolated only from helper cell lines expressing the product of the UL26 ORF. Mice inoculated with the recombinant virus were unaffected by doses of virus that were lethal to mice infected with wild-type virus. Mice which were previously inoculated with the recombinant virus were also protected by a subsequent challenge with wild-type virus in a dose-dependent manner. These results indicate that recombinant viruses lacking the protease gene are avirulent but render protection from subsequent challenge. PMID:8995617
Reihill, James A; Walker, Brian; Hamilton, Robert A; Ferguson, Timothy E G; Elborn, J Stuart; Stutts, M Jackson; Harvey, Brian J; Saint-Criq, Vinciane; Hendrick, Siobhan M; Martin, S Lorraine
2016-09-15
In cystic fibrosis (CF) a reduction in airway surface liquid (ASL) height compromises mucociliary clearance, favoring mucus plugging and chronic bacterial infection. Inhibitors of the epithelial sodium channel (ENaC) have therapeutic potential in CF airways to reduce hyperstimulated sodium and fluid absorption to levels that can restore airway hydration. To determine whether a novel compound (QUB-TL1) designed to inhibit protease/ENaC signaling in CF airways restores ASL volume and mucociliary function. Protease activity was measured using fluorogenic activity assays. Differentiated primary airway epithelial cell cultures (F508del homozygotes) were used to determined ENaC activity (Ussing chamber recordings), ASL height (confocal microscopy), and mucociliary function (by tracking the surface flow of apically applied microbeads). Cell toxicity was measured using a lactate dehydrogenase assay. QUB-TL1 inhibits extracellularly located channel activating proteases (CAPs), including prostasin, matriptase, and furin, the activities of which are observed at excessive levels at the apical surface of CF airway epithelial cells. QUB-TL1-mediated CAP inhibition results in diminished ENaC-mediated Na(+) absorption in CF airway epithelial cells caused by internalization of a prominent pool of cleaved (active) ENaCγ from the cell surface. Importantly, diminished ENaC activity correlates with improved airway hydration status and mucociliary clearance. We further demonstrate QUB-TL1-mediated furin inhibition, which is in contrast to other serine protease inhibitors (camostat mesylate and aprotinin), affords protection against neutrophil elastase-mediated ENaC activation and Pseudomonas aeruginosa exotoxin A-induced cell death. QUB-TL1 corrects aberrant CAP activities, providing a mechanism to delay or prevent the development of CF lung disease in a manner independent of CF transmembrane conductance regulator mutation.
Chu, Yuan; Liu, Yang; Shen, Dongxu; Hong, Fang; Wang, Guirong; An, Chunju
2015-06-01
Exposure to entomopathogenic fungi is one approach for insect pest control. Little is known about the immune interactions between fungus and its insect host. Melanization is a prominent immune response in insects in defending against pathogens such as bacteria and fungi. Clip domain serine proteases in insect plasma have been implicated in the activation of prophenoloxidase, a key enzyme in the melanization. The relationship between host melanization and the infection by a fungus needs to be established. We report here that the injection of entomopathogenic fungus Beauveria bassiana induced both melanin synthesis and phenoloxidase activity in its host insect, the Asian corn borer, Ostrinia furnacalis (Guenée). qRT-PCR analysis showed several distinct patterns of expression of 13 clip-domain serine proteases in response to the challenge of fungi, with seven increased, two decreased, and four unchanged. Of special interest among these clip-domain serine protease genes are SP1 and SP13, the orthologs of Manduca sexta HP6 and PAP1 which are involved in the prophenoloxidase activation pathway. Recombinant O. furnacalis SP1 was found to activate proSP13 and induce the phenoloxidase activity in corn borer plasma. Additionally, SP13 was determined to directly cleave prophenoloxidase and therefore act as the prophenoloxidase activating protease. Our work thus reveals a biochemical mechanism in the melanization in corn borer associated with the challenge by B. bassiana injection. These insights could provide valuable information for better understanding the immune responses of Asian corn borer against B. bassiana. Copyright © 2015 Elsevier Inc. All rights reserved.
Recombinant Passenger Proteins Can Be Conveniently Purified by One-Step Affinity Chromatography.
Wang, Hua-zhen; Chu, Zhi-zhan; Chen, Chang-chao; Cao, Ao-cheng; Tong, Xin; Ouyang, Can-bin; Yuan, Qi-hang; Wang, Mi-nan; Wu, Zhong-kun; Wang, Hai-hong; Wang, Sheng-bin
2015-01-01
Fusion tag is one of the best available tools to date for enhancement of the solubility or improvement of the expression level of recombinant proteins in Escherichia coli. Typically, two consecutive affinity purification steps are often necessitated for the purification of passenger proteins. As a fusion tag, acyl carrier protein (ACP) could greatly increase the soluble expression level of Glucokinase (GlcK), α-Amylase (Amy) and GFP. When fusion protein ACP-G2-GlcK-Histag and ACP-G2-Amy-Histag, in which a protease TEV recognition site was inserted between the fusion tag and passenger protein, were coexpressed with protease TEV respectively in E. coli, the efficient intracellular processing of fusion proteins was achieved. The resulting passenger protein GlcK-Histag and Amy-Histag accumulated predominantly in a soluble form, and could be conveniently purified by one-step Ni-chelating chromatography. However, the fusion protein ACP-GFP-Histag was processed incompletely by the protease TEV coexpressed in vivo, and a large portion of the resulting target protein GFP-Histag aggregated in insoluble form, indicating that the intracellular processing may affect the solubility of cleaved passenger protein. In this context, the soluble fusion protein ACP-GFP-Histag, contained in the supernatant of E. coli cell lysate, was directly subjected to cleavage in vitro by mixing it with the clarified cell lysate of E. coli overexpressing protease TEV. Consequently, the resulting target protein GFP-Histag could accumulate predominantly in a soluble form, and be purified conveniently by one-step Ni-chelating chromatography. The approaches presented here greatly simplify the purification process of passenger proteins, and eliminate the use of large amounts of pure site-specific proteases.
Recombinant Passenger Proteins Can Be Conveniently Purified by One-Step Affinity Chromatography
Wang, Hua-zhen; Chu, Zhi-zhan; Chen, Chang-chao; Cao, Ao-cheng; Tong, Xin; Ouyang, Can-bin; Yuan, Qi-hang; Wang, Mi-nan; Wu, Zhong-kun; Wang, Hai-hong; Wang, Sheng-bin
2015-01-01
Fusion tag is one of the best available tools to date for enhancement of the solubility or improvement of the expression level of recombinant proteins in Escherichia coli. Typically, two consecutive affinity purification steps are often necessitated for the purification of passenger proteins. As a fusion tag, acyl carrier protein (ACP) could greatly increase the soluble expression level of Glucokinase (GlcK), α-Amylase (Amy) and GFP. When fusion protein ACP-G2-GlcK-Histag and ACP-G2-Amy-Histag, in which a protease TEV recognition site was inserted between the fusion tag and passenger protein, were coexpressed with protease TEV respectively in E. coli, the efficient intracellular processing of fusion proteins was achieved. The resulting passenger protein GlcK-Histag and Amy-Histag accumulated predominantly in a soluble form, and could be conveniently purified by one-step Ni-chelating chromatography. However, the fusion protein ACP-GFP-Histag was processed incompletely by the protease TEV coexpressed in vivo, and a large portion of the resulting target protein GFP-Histag aggregated in insoluble form, indicating that the intracellular processing may affect the solubility of cleaved passenger protein. In this context, the soluble fusion protein ACP-GFP-Histag, contained in the supernatant of E. coli cell lysate, was directly subjected to cleavage in vitro by mixing it with the clarified cell lysate of E. coli overexpressing protease TEV. Consequently, the resulting target protein GFP-Histag could accumulate predominantly in a soluble form, and be purified conveniently by one-step Ni-chelating chromatography. The approaches presented here greatly simplify the purification process of passenger proteins, and eliminate the use of large amounts of pure site-specific proteases. PMID:26641240
Rose, Ruth S.; Rangarajan, Minnie; Aduse-Opoku, Joseph; Hashim, Ahmed; Curtis, Michael A.
2012-01-01
Type I signal peptidases (SPases) cleave signal peptides from proteins during translocation across biological membranes and hence play a vital role in cellular physiology. SPase activity is also of fundamental importance to the pathogenesis of infection for many bacteria, including Pseudomonas aeruginosa, which utilizes a variety of secreted virulence factors, such as proteases and toxins. P. aeruginosa possesses two noncontiguous SPase homologues, LepB (PA0768) and PA1303, which share 43% amino acid identity. Reverse transcription (RT)-PCR showed that both proteases were expressed, while a FRET-based assay using a peptide based on the signal sequence cleavage region of the secreted LasB elastase showed that recombinant LepB and PA1303 enzymes were both active. LepB is positioned within a genetic locus that resembles the locus containing the extensively characterized SPase of E. coli and is of similar size and topology. It was also shown to be essential for viability and to have high sequence identity with SPases from other pseudomonads (≥78%). In contrast, PA1303, which is small for a Gram-negative SPase (20 kDa), was found to be dispensable. Mutation of PA1303 resulted in an altered protein secretion profile and increased N-butanoyl homoserine lactone production and influenced several quorum-sensing-controlled phenotypic traits, including swarming motility and the production of rhamnolipid and elastinolytic activity. The data indicate different cellular roles for these P. aeruginosa SPase paralogues; the role of PA1303 is integrated with the quorum-sensing cascade and includes the suppression of virulence factor secretion and virulence-associated phenotypes, while LepB is the primary SPase. PMID:22730125
Sadir, Rabia; Imberty, Anne; Baleux, Françoise; Lortat-Jacob, Hugues
2004-10-15
Stromal cell-derived factor-1 (SDF-1) is a CXC chemokine that is constitutively expressed in most tissues and displayed on the cell surface in association with heparan sulfate (HS). Its numerous biological effects are mediated by a specific G protein-coupled receptor, CXCR4. A number of cells inactivate SDF-1 by specific processing of the N-terminal domain of the chemokine. In particular, CD26/dipeptidyl peptidase IV (DPP IV), a serine protease that co-distributes with CXCR4 at the cell surface, mediates the selective removal of the N-terminal dipeptide of SDF-1. We report here that heparin and HS specifically prevent the processing of SDF-1 by DPP IV expressed by Caco-2 cells. The level of processing increases with the level of differentiation of these cells, which correlates with an increase of DPP IV activity. A mutant SDF-1 that does not interact with HS is readily cleaved by DPP IV, a process that is not inhibited by HS, demonstrating that a productive interaction between HS and SDF-1 is required for the protection to take place. Moreover, we found that protection depends on the degree of polymerization of the HS sulfated S-domains. Finally a structural model of SDF-1, in complex with HS oligosaccharides of defined length, rationalizes the experimental data. The mechanisms by which HS regulates SDF-1 may thus include, in addition to its ability to locally concentrate the chemokine at the cell surface, a control of selective protease cleavage events that directly affect the chemokine activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deprez-Poulain, Rebecca; Hennuyer, Nathalie; Bosc, Damien
Insulin-degrading enzyme (IDE) is a protease that cleaves insulin and other bioactive peptides such as amyloid-β. Knockout and genetic studies have linked IDE to Alzheimer’s disease and type-2 diabetes. As the major insulin-degrading protease, IDE is a candidate drug target in diabetes. Here we have used kinetic target-guided synthesis to design the first catalytic site inhibitor of IDE suitable for in vivo studies (BDM44768). Crystallographic and small angle X-ray scattering analyses show that it locks IDE in a closed conformation. Among a panel of metalloproteases, BDM44768 selectively inhibits IDE. Acute treatment of mice with BDM44768 increases insulin signalling and surprisinglymore » impairs glucose tolerance in an IDE-dependent manner. These results confirm that IDE is involved in pathways that modulate short-term glucose homeostasis, but casts doubt on the general usefulness of the inhibition of IDE catalytic activity to treat diabetes.« less
Deprez-Poulain, Rebecca; Hennuyer, Nathalie; Bosc, Damien; ...
2015-09-23
Insulin-degrading enzyme (IDE) is a protease that cleaves insulin and other bioactive peptides such as amyloid-β. Knockout and genetic studies have linked IDE to Alzheimer’s disease and type-2 diabetes. As the major insulin-degrading protease, IDE is a candidate drug target in diabetes. Here we have used kinetic target-guided synthesis to design the first catalytic site inhibitor of IDE suitable for in vivo studies (BDM44768). Crystallographic and small angle X-ray scattering analyses show that it locks IDE in a closed conformation. Among a panel of metalloproteases, BDM44768 selectively inhibits IDE. Acute treatment of mice with BDM44768 increases insulin signalling and surprisinglymore » impairs glucose tolerance in an IDE-dependent manner. These results confirm that IDE is involved in pathways that modulate short-term glucose homeostasis, but casts doubt on the general usefulness of the inhibition of IDE catalytic activity to treat diabetes.« less
Inhibition of delta-secretase improves cognitive functions in mouse models of Alzheimer's disease
Zhang, Zhentao; Obianyo, Obiamaka; Dall, Elfriede; Du, Yuhong; Fu, Haian; Liu, Xia; Kang, Seong Su; Song, Mingke; Yu, Shan-Ping; Cabrele, Chiara; Schubert, Mario; Li, Xiaoguang; Wang, Jian-Zhi; Brandstetter, Hans; Ye, Keqiang
2017-01-01
δ-secretase, also known as asparagine endopeptidase (AEP) or legumain, is a lysosomal cysteine protease that cleaves both amyloid precursor protein (APP) and tau, mediating the amyloid-β and tau pathology in Alzheimer's disease (AD). Here we report the therapeutic effect of an orally bioactive and brain permeable δ-secretase inhibitor in mouse models of AD. We performed a high-throughput screen and identified a non-toxic and selective δ-secretase inhibitor, termed compound 11, that specifically blocks δ-secretase but not other related cysteine proteases. Co-crystal structure analysis revealed a dual active site-directed and allosteric inhibition mode of this compound class. Chronic treatment of tau P301S and 5XFAD transgenic mice with this inhibitor reduces tau and APP cleavage, ameliorates synapse loss and augments long-term potentiation, resulting in protection of memory. Therefore, these findings demonstrate that this δ-secretase inhibitor may be an effective clinical therapeutic agent towards AD. PMID:28345579
Baxter, Ellen W; Conway, Kelly A; Kennis, Ludo; Bischoff, François; Mercken, Marc H; Winter, Hans L De; Reynolds, Charles H; Tounge, Brett A; Luo, Chi; Scott, Malcolm K; Huang, Yifang; Braeken, Mirielle; Pieters, Serge M A; Berthelot, Didier J C; Masure, Stefan; Bruinzeel, Wouter D; Jordan, Alfonzo D; Parker, Michael H; Boyd, Robert E; Qu, Junya; Alexander, Richard S; Brenneman, Douglas E; Reitz, Allen B
2007-09-06
A new aspartic protease inhibitory chemotype bearing a 2-amino-3,4-dihydroquinazoline ring was identified by high-throughput screening for the inhibition of BACE-1. X-ray crystallography revealed that the exocyclic amino group participated in a hydrogen bonding array with the two catalytic aspartic acids of BACE-1 (Asp(32), Asp(228)). BACE-1 inhibitory potency was increased (0.9 microM to 11 nM K(i)) by substitution into the unoccupied S(1)' pocket.
Franco, A. A.; Kothary, M. H.; Gopinath, G.; Jarvis, K. G.; Grim, C. J.; Hu, L.; Datta, A. R.; McCardell, B. A.; Tall, B. D.
2011-01-01
Cronobacter spp. are emerging neonatal pathogens in humans, associated with outbreaks of meningitis and sepsis. To cause disease, they must survive in blood and invade the central nervous system by penetrating the blood-brain barrier. C. sakazakii BAA-894 possesses an ∼131-kb plasmid (pESA3) that encodes an outer membrane protease (Cpa) that has significant identity to proteins that belong to the Pla subfamily of omptins. Members of this subfamily of proteins degrade a number of serum proteins, including circulating complement, providing protection from the complement-dependent serum killing. Moreover, proteins of the Pla subfamily can cause uncontrolled plasmin activity by converting plasminogen to plasmin and inactivating the plasmin inhibitor α2-antiplasmin (α2-AP). These reactions enhance the spread and invasion of bacteria in the host. In this study, we found that an isogenic cpa mutant showed reduced resistance to serum in comparison to its parent C. sakazakii BAA-894 strain. Overexpression of Cpa in C. sakazakii or Escherichia coli DH5α showed that Cpa proteolytically cleaved complement components C3, C3a, and C4b. Furthermore, a strain of C. sakazakii overexpressing Cpa caused a rapid activation of plasminogen and inactivation of α2-AP. These results strongly suggest that Cpa may be an important virulence factor involved in serum resistance, as well as in the spread and invasion of C. sakazakii. PMID:21245266
Chen, Yeming; Zhao, Luping; Cao, Yanyun; Kong, Xiangzhen; Hua, Yufei
2014-01-29
After oil bodies (OBs) were extracted from ungerminated soybean by pH 6.8 extraction, it was found that 24 and 18 kDa oleosins were hydrolyzed in the extracted OBs, which contained many OB extrinsic proteins (i.e., lipoxygenase, β-conglycinin, γ-conglycinin, β-amylase, glycinin, Gly m Bd 30K (Bd 30K), and P34 probable thiol protease (P34)) as well as OB intrinsic proteins. In this study, some properties (specificity, optimal pH and temperature) of the proteases of 24 and 18 kDa oleosins and the oleosin hydrolysis in soybean germination were examined, and the high relationship between Bd 30K/P34 and the proteases was also discussed. The results showed (1) the proteases were OB extrinsic proteins, which had high specificity to hydrolyze 24 and 18 kDa oleosins, and cleaved the specific peptide bonds to form limited hydrolyzed products; (2) 24 and 18 kDa oleosins were not hydrolyzed in the absence of Bd 30K and P34 (or some Tricine-SDS-PAGE undetectable proteins); (3) the protease of 24 kDa oleosin had strong resistance to alkaline pH while that of 18 kDa oleosin had weak resistance to alkaline pH, and Bd 30K and P34, resolved into two spots on two-dimensional electrophoresis gel, also showed the same trend; (4) 16 kDa oleosin as well as 24 and 18 kDa oleosins were hydrolyzed in soybean germination, and Bd 30K and P34 were always contained in the extracted OBs from germinated soybean even when all oleosins were hydrolyzed; (5) the optimal temperature and pH of the proteases were respectively determined as in the ranges of 35-50 °C and pH 6.0-6.5, while 60 °C or pH 11.0 could denature them.
Degradation and Stabilization of Peptide Hormones in Human Blood Specimens
Yi, Jizu; Warunek, David; Craft, David
2015-01-01
Plasma hormone peptides, including GLP-1, GIP, Glucagon, and OXM, possess multiple physiological roles and potential therapeutic and diagnostic utility as biomarkers in the research of metabolic disorders. These peptides are subject to proteolytic degradation causing preanalytical variations. Stabilization for accurate quantitation of these active peptides in ex vivo blood specimens is essential for drug and biomarker development. We investigated the protease-driven instability of these peptides in conventional serum, plasma, anticoagulated whole blood, as well as whole blood and plasma stabilized with protease inhibitors. The peptide was monitored by both time-course Matrix-Assisted Laser Desorption Ionization Time-to-Flight Mass Spectrometry (MALDI –TOF MS) and Ab-based assay (ELISA or RIA). MS enabled the identification of proteolytic fragments. In non-stabilized blood samples, the results clearly indicated that dipeptidyl peptidase-IV (DPP-IV) removed the N-terminal two amino acid residues from GLP-1, GIP and OXM(1-37) and not-yet identified peptidase(s) cleave(s) the full-length OXM(1-37) and its fragments. DPP-IV also continued to remove two additional N-terminal residues of processed OXM(3–37) to yield OXM(5–37). Importantly, both DPP-IV and other peptidase(s) activities were inhibited efficiently by the protease inhibitors included in the BD P800* tube. There was preservation of GLP-1, GIP, OXM and glucagon in the P800 plasma samples with half-lives > 96, 96, 72, and 45 hours at room temperature (RT), respectively. In the BD P700* plasma samples, the stabilization of GLP-1 was also achieved with half-life > 96 hours at RT. The stabilization of these variable peptides increased their utility in drug and/or biomarker development. While stability results of GLP-1 obtained with Ab-based assay were consistent with those obtained by MS analysis, the Ab-based results of GIP, Glucagon, and OXM did not reflect the time-dependent degradations revealed by MS analysis. Therefore, we recommended characterizing the degradation of the peptide using the MS-based method when investigating the stability of a specific peptide. PMID:26222180
Jagdeo, Julienne M.; Dufour, Antoine; Klein, Theo; Solis, Nestor; Kleifeld, Oded; Kizhakkedathu, Jayachandran; Luo, Honglin; Overall, Christopher M.
2018-01-01
ABSTRACT Enteroviruses encode proteinases that are essential for processing of the translated viral polyprotein. In addition, viral proteinases also target host proteins to manipulate cellular processes and evade innate antiviral responses to promote replication and infection. Although some host protein substrates of enterovirus proteinases have been identified, the full repertoire of targets remains unknown. We used a novel quantitative in vitro proteomics-based approach, termed terminal amine isotopic labeling of substrates (TAILS), to identify with high confidence 72 and 34 new host protein targets of poliovirus and coxsackievirus B3 (CVB3) 3C proteinases (3Cpros) in HeLa cell and cardiomyocyte HL-1 cell lysates, respectively. We validated a subset of candidate substrates that are targets of poliovirus 3Cpro in vitro including three common protein targets, phosphoribosylformylglycinamidine synthetase (PFAS), hnRNP K, and hnRNP M, of both proteinases. 3Cpro-targeted substrates were also cleaved in virus-infected cells but not noncleavable mutant proteins designed from the TAILS-identified cleavage sites. Knockdown of TAILS-identified target proteins modulated infection both negatively and positively, suggesting that cleavage by 3Cpro promotes infection. Indeed, expression of a cleavage-resistant mutant form of the endoplasmic reticulum (ER)-Golgi vesicle-tethering protein p115 decreased viral replication and yield. As the first comprehensive study to identify and validate functional enterovirus 3Cpro substrates in vivo, we conclude that N-terminomics by TAILS is an effective strategy to identify host targets of viral proteinases in a nonbiased manner. IMPORTANCE Enteroviruses are positive-strand RNA viruses that encode proteases that cleave the viral polyprotein into the individual mature viral proteins. In addition, viral proteases target host proteins in order to modulate cellular pathways and block antiviral responses in order to facilitate virus infection. Although several host protein targets have been identified, the entire list of proteins that are targeted is not known. In this study, we used a novel unbiased proteomics approach to identify ∼100 novel host targets of the enterovirus 3C protease, thus providing further insights into the network of cellular pathways that are modulated to promote virus infection. PMID:29437971
Hewings, David S; Flygare, John A; Bogyo, Matthew; Wertz, Ingrid E
2017-05-01
The reversible post-translational modification of proteins by ubiquitin and ubiquitin-like proteins regulates almost all cellular processes, by affecting protein degradation, localization, and complex formation. Deubiquitinases (DUBs) are proteases that remove ubiquitin modifications or cleave ubiquitin chains. Most DUBs are cysteine proteases, which makes them well suited for study by activity-based probes. These DUB probes report on deubiquitinase activity by reacting covalently with the active site in an enzyme-catalyzed manner. They have proven to be important tools to study DUB selectivity and proteolytic activity in different settings, to identify novel DUBs, and to characterize deubiquitinase inhibitors. Inspired by the efficacy of activity-based probes for DUBs, several groups have recently reported probes for the ubiquitin conjugation machinery (E1, E2, and E3 enzymes). Many of these enzymes, while not proteases, also posses active site cysteine residues and can be targeted by covalent probes. In this review, we will discuss how features of the probe (cysteine-reactive group, recognition element, and reporter tag) affect reactivity and suitability for certain experimental applications. We will also review the diverse applications of the current probes, and discuss the need for new probe types to study emerging aspects of ubiquitin biology. © 2017 Federation of European Biochemical Societies.
Defining the genetics of thrombotic microangiopathies.
Vieira-Martins, Paula; El Sissy, Carine; Bordereau, Pauline; Gruber, Aurelia; Rosain, Jeremie; Fremeaux-Bacchi, Veronique
2016-04-01
The spectrum of the thrombotic microangiopathies (TMA) encompasses a heterogeneous group of disorders with hereditary and acquired forms. Endothelial cell injury in the microvasculature is common to all TMAs, whatever the pathophysiological process. In this review we describe genetic mutations characteristic of certain TMAs and review their contributions to disease. Recent identification of novel pathologic mutations has been enabled by exome studies. The monogenic forms of TMA are more frequently caused by recessive alterations in von Willebrand factor cleaving protease ADAMST13, leading to congenital thrombotic thrombocytopenic purpura, or cobalamine C and DGKE genes, leading to an atypical hemolytic-uremic syndrome (aHUS)-like TMA. aHUS, whether idiopathic or linked to a known complement amplifying condition, is a TMA that primarily affects kidney function. It often results from a combination of an underlying genetic susceptibility with environmental factors activating the alternative complement pathway. Pathogenic variants in at least five complement genes coding for complement factor H (CFH) complement factor I (CFI), MCP (CD46), C3 and complement factor B (CFB) have been demonstrated to increase the risk of developing aHUS, but several more genes have been implicated. A new challenge is to separate disease-associated genetic variants from the broader background of variants or polymorphisms present in all human genomes that are rare, potentially functional, but may or may not be pathogenic. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lu, Wuguang; Cao, Peng; Lei, Huangzong; Zhang, Shuangquan
2010-03-01
Heparin-binding epidermal growth factor (HB-EGF) can stimulate the division of various cell types and has potential clinical applications that stimulate growth and differentiation. HB-EGF has an EGF-like domain typical of all members of the EGF family. The high expression of active HB-EGF in Escherichia coli has not been successful as the protein contains three intra-molecular disulfide bonds, the same as other members of the EGF super family that are difficult to form correctly in the bacterial intracellular environment. This work fused the non-glycosylated HB-EGF gene with a small ubiquitin-related modifier gene (SUMO) by over-lap PCR. The resulting fusion gene SUMO-HBEGF was highly expressed in BL21(DE3) that the soluble SUMO-HBEGF was up to 30% of the total cellular protein. The fusion protein was purified by Ni-NTA affinity chromatography and cleaved by a SUMO-specific protease Ulp1 to obtain the native HB-EGF, which was further purified by Ni-NTA affinity chromatography. MTT assays indicated the purified HB-EGF, as well as SUMO-HBEGF, had mitogenic activity in a dose-dependent manner.
Rodríguez-Fernández, Lucía; Ferrer-Vicens, Iván; García, Concha; Oltra, Sara S; Zaragozá, Rosa; Viña, Juan R; García-Trevijano, Elena R
2016-09-15
Cleavage of adhesion proteins is the first step for physiological clearance of undesired cells during postlactational regression of the mammary gland, but also for cell migration in pathological states such as breast cancer. The intracellular Ca(2+)-dependent proteases, calpains (CAPNs), are known to cleave adhesion proteins. The isoform-specific function of CAPN1 and CAPN2 was explored and compared in two models of cell adhesion disruption: mice mammary gland during weaning-induced involution and breast cancer cell lines according to tumor subtype classification. In both models, E-cadherin, β-catenin, p-120, and talin-1 were cleaved as assessed by western blot analysis. Both CAPNs were able to cleave adhesion proteins from lactating mammary gland in vitro Nevertheless, CAPN2 was the only isoform found to co-localize with E-cadherin in cell junctions at the peak of lactation. CAPN2/E-cadherin in vivo interaction, analyzed by proximity ligation assay, was dramatically increased during involution. Calpain inhibitor administration prevented the cytosolic accumulation of truncated E-cadherin cleaved by CAPN2. Conversely, in breast cancer cells, CAPN2 was restricted to the nuclear compartment. The isoform-specific expression of CAPNs and CAPN activity was dependent on the breast cancer subtype. However, CAPN1 and CAPN2 knockdown cells showed that cleavage of adhesion proteins and cell migration was mediated by CAPN1, independently of the breast cancer cell line used. Data presented here suggest that the subcellular distribution of CAPN1 and CAPN2 is a major issue in target-substrate recognition; therefore, it determines the isoform-specific role of CAPNs during disruption of cell adhesion in either a physiological or a pathological context. © 2016 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.
Guinea Pig Chymase Is Leucine-specific
Caughey, George H.; Beauchamp, Jeremy; Schlatter, Daniel; Raymond, Wilfred W.; Trivedi, Neil N.; Banner, David; Mauser, Harald; Fingerle, Jürgen
2008-01-01
To explore guinea pigs as models of chymase biology, we cloned and expressed the guinea pig ortholog of human chymase. In contrast to rats and mice, guinea pigs appear to express just one chymase, which belongs to the α clade, like primate chymases and mouse mast cell protease-5. The guinea pig enzyme autolyzes at Leu residues in the loop where human chymase autolyzes at Phe. In addition, guinea pig α-chymase selects P1 Leu in a combinatorial peptide library and cleaves Ala-Ala-Pro-Leu-4-nitroanilide but has negligible activity toward substrates with P1 Phe and does not cleave angiotensin I. This contrasts with human chymase, which cleaves after Phe or Tyr, prefers P1 Phe in peptidyl 4-nitroanilides, and avidly hydrolyzes angiotensin I at Phe8 to generate bioactive angiotensin II. The guinea pig enzyme also is inactivated more effectively by α1-antichymotrypsin, which features P1 Leu in the reactive loop. Unlike mouse, rat, and hamster α-chymases, guinea pig chymase lacks elastase-like preference for P1 Val or Ala. Partially humanized A216G guinea pig chymase acquires human-like P1 Phe- and angiotensin-cleaving capacity. Molecular models suggest that the wild type active site is crowded by the Ala216 side chain, which potentially blocks access by bulky P1 aromatic residues. On the other hand, the guinea pig pocket is deeper than in Val-selective chymases, explaining the preference for the longer aliphatic side chain of Leu. These findings are evidence that chymase-like peptidase specificity is sensitive to small changes in structure and provide the first example of a vertebrate Leu-selective peptidase. PMID:18353771
tif-1 mutation alters polynucleotide recognition by the recA protein of Escherichia coli.
McEntee, K; Weinstock, G M
1981-01-01
The requirements for polynucleotide-dependent hydrolysis of ATP and for proteolytic cleavage of phage lambda repressor have been examined for both the wild-type (recA+ protein) and the tif-1 mutant form [tif(recA) protein] of the recA gene product. The recA+ and tif(recA) proteins catalyze both reactions in the presence of long single-stranded DNAs or certain deoxyhomopolymers. However, short oligonucleotides [(dT)12, (dA)14] stimulate neither the protease nor the ATPase activities of the recA+ protein. In contrast, these short oligonucleotides activate tif(recA) protein to cleave lambda repressor without stimulating its ATPase activity. Moreover, both the ATPase and protease activities of the tif(recA) protein are stimulated by poly(rU) and poly(rC) whereas the recA+ protein does not respond to these ribopolymers. We have purified the recA protein from a strain in which the tif mutation is intragenically suppressed. This mutant protein (recA629) is inactive in the presence of (dT)12, (dA)14, poly(rU), and poly(rC) for lambda repressor cleavage and ATP hydrolysis. These results argue that the tif-1 mutation (or mutations) alters the DNA binding site of the recA protein. We suggest that in vivo the tif(recA) protein is activated for cleaving repressors of SOS genes by complex formation with short single-stranded regions or gaps that normally occur near the growing fork of replicating chromosomes and are too short for activating the recA+ enzyme. This mechanism can account for the expression of SOS functions in the absence of DNA damage in tif mutant strains. Images PMID:7031642
Concannon, Caoimhin G.; Rehm, Markus; Kögel, Donat; Prehn, Jochen H. M.
2008-01-01
Background The BH3-only protein Bid is an important component of death receptor-mediated caspase activation. Bid is cleaved by caspase-8 or -10 into t-Bid, which translocates to mitochondria and triggers the release of caspase-activating factors. Bid has also been reported to be cleaved by other proteases. Methodology/Principal Findings To test the hypothesis that Bid is a central mediator of stress-induced apoptosis, we investigated the effects of a small molecule Bid inhibitor on stress-induced apoptosis, and generated HeLa cells deficient for Bid. Stable knockdown of bid lead to a pronounced resistance to Fas/CD95- and TRAIL-induced caspase activation and apoptosis, and significantly increased clonogenic survival. While Bid-deficient cells were equally sensitive to ER stress-induced apoptosis, they showed moderate, but significantly reduced levels of apoptosis, as well as increased clonogenic survival in response to the genotoxic drugs Etoposide, Oxaliplatin, and Doxorubicin. Similar effects were observed using the Bid inhibitor BI6C9. Interestingly, Bid-deficient cells were dramatically protected from apoptosis when subtoxic concentrations of ER stressors, Etoposide or Oxaliplatin were combined with subtoxic TRAIL concentrations. Conclusions/Significance Our data demonstrate that Bid is central for death receptor-induced cell death and participates in anti-cancer drug-induced apoptosis in human cervical cancer HeLa cells. They also show that the synergistic effects of TRAIL in combination with either ER stressors or genotoxic anti-cancer drugs are nearly exclusively mediated via an increased activation of Bid-induced apoptosis signalling. PMID:18665234
Serpin-9 and -13 regulate hemolymph proteases during immune responses of Manduca sexta.
He, Yan; Wang, Yang; Zhao, Picheng; Rayaprolu, Subrahmanyam; Wang, Xiuhong; Cao, Xiaolong; Jiang, Haobo
2017-11-01
Serpins are a superfamily of proteins, most of which inhibit cognate serine proteases by forming inactive acyl-enzyme complexes. In the tobacco hornworm Manduca sexta, serpin-1, -3 through -7 negatively regulate a hemolymph serine protease system that activates precursors of the serine protease homologs (SPHs), phenoloxidases (POs), Spätzles, and other cytokines. Here we report the cloning and characterization of M. sexta serpin-9 and -13. Serpin-9, a 402-residue protein most similar to Drosophila Spn77Ba, has R 366 at the P1 position right before the cleavage site; Serpin-13, a 444-residue ortholog of Drosophila Spn28Dc, is longer than the other seven serpins and has R 410 as the P1 residue. Both serpins are mainly produced in fat body and secreted into plasma to function. While their mRNA and protein levels were not up-regulated upon immune challenge, they blocked protease activities and affected proPO activation in hemolymph. Serpin-9 inhibited human neutrophil elastase, cathepsin G, trypsin, and chymotrypsin to different extents; serpin-13 reduced trypsin activity to approximately 10% at a molar ratio of 4:1 (serpin: enzyme). Serpin-9 was cleaved at Arg 366 by the enzymes with different specificity, but serpin-13 had four P1 sites (Arg 410 for trypsin-like proteases, Gly 406 and Ala 409 for the elastase and Thr 404 for cathepsin G). Supplementation of induced cell-free hemolymph (IP, P for plasma) with recombinant serpin-9 did not noticeably affect proPO activation, but slightly reduced the PO activity increase after 0-50% ammonium sulfate fraction of the IP had been elicited by bacteria. In comparison, addition of recombinant serpin-13 significantly inhibited proPO activation in IP and the suppression was stronger in the fraction of IP. Serpin-9- and -13-containing protein complexes were isolated from IP using their antibodies. Hemolymph protease-1 precursor (proHP1), HP6 and HP8 were found to be associated with serpin-9, whereas proHP1, HP2 and HP6 were pulled downed with serpin-13. These results indicate that both serpins regulate immune proteases in hemolymph of M. sexta larvae. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rowe, Peter S.N.; Matsumoto, Naoko; Jo, Oak D.; Shih, Remi N.J.; Oconnor, Jeannine; Roudier, Martine P.; Bain, Steve; Liu, Shiguang; Harrison, Jody; Yanagawa, Norimoto
2012-01-01
Increased expression of several osteoblastic proteases and MEPE (a bone matrix protein) occurs in X-linked hypophosphatemic rickets (hyp). This is associated with an increased release of a protease-resistant MEPE peptide (ASARM peptide), a potent inhibitor of mineralization. Cathepsin B cleaves MEPE releasing ASARM peptide and hyp osteoblast/osteocyte cells hypersecrete cathepsin D, an activator of cathepsin B. Our aims were to determine whether cathepsin inhibitors correct the mineralization defect in vivo and whether hyp-bone ASARM peptide levels are reduced after protease treatment. Normal littermates and hyp mice (n = 6) were injected intraperitoneally once a day for 4 weeks with pepstatin, CAO74 or vehicle. Animals were then sacrificed and bones plus serum removed for comprehensive analysis. All hyp mice groups (treated and untreated) remained hypophosphatemic with serum 1,25 vitamin D3 inappropriately normal. Serum PTH was significantly elevated in all hyp mice groups relative to normal mice (P = 0.0017). Untreated hyp mice had six-fold elevated levels of serum alkaline-phosphatase and two-fold elevated levels of ASARM peptides relative to normal mice (P < 0.001). In contrast, serum alkaline phosphatase and serum ASARM peptides were significantly reduced (normalized) in hyp mice treated with CA074 or pepstatin. Serum FGF23 levels remained high in all hyp animal groups (P < 0.0001). Hyp mice treated with protease inhibitors showed dramatic reductions in unmineralized osteoid (femurs) compared to control hyp mice (Goldner staining). Also, hyp animals treated with protease inhibitors showed marked and significant improvements in growth plate width (42%), osteoid thickness (40%) and cortical area (40%) (P < 0.002). The mineralization apposition rate, bone formation rate and mineralization surface were normalized by protease-treatment. High-resolution pQCT mineral histomorphometry measurements and uCT also confirmed a marked mineralization improvement. Finally, the growth plate and cortical bone of hyp femurs contained a massive accumulation of osteoblast-derived ASARM peptide(s) that was reduced in hyp animals treated with CA074 or pepstatin. This study confirms in vivo administration of cathepsin inhibitors improves bone mineralization in hyp mice. This may be due to a protease inhibitor mediated decrease in proteolytic degradation of the extracellular matrix and a reduced release of ASARM peptides (potent mineralization inhibitors). PMID:16762607
The Origins of Specificity in the Microcin-Processing Protease TldD/E.
Ghilarov, Dmitry; Serebryakova, Marina; Stevenson, Clare E M; Hearnshaw, Stephen J; Volkov, Dmitry S; Maxwell, Anthony; Lawson, David M; Severinov, Konstantin
2017-10-03
TldD and TldE proteins are involved in the biosynthesis of microcin B17 (MccB17), an Escherichia coli thiazole/oxazole-modified peptide toxin targeting DNA gyrase. Using a combination of biochemical and crystallographic methods we show that E. coli TldD and TldE interact to form a heterodimeric metalloprotease. TldD/E cleaves the N-terminal leader sequence from the modified MccB17 precursor peptide, to yield mature antibiotic, while it has no effect on the unmodified peptide. Both proteins are essential for the activity; however, only the TldD subunit forms a novel metal-containing active site within the hollow core of the heterodimer. Peptide substrates are bound in a sequence-independent manner through β sheet interactions with TldD and are likely cleaved via a thermolysin-type mechanism. We suggest that TldD/E acts as a "molecular pencil sharpener": unfolded polypeptides are fed through a narrow channel into the active site and processively truncated through the cleavage of short peptides from the N-terminal end. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Karlsson, Christofer A Q; Järnum, Sofia; Winstedt, Lena; Kjellman, Christian; Björck, Lars; Linder, Adam; Malmström, Johan A
2018-06-01
Infectious diseases are characterized by a complex interplay between host and pathogen, but how these interactions impact the host proteome is unclear. Here we applied a combined mass spectrometry-based proteomics strategy to investigate how the human proteome is transiently modified by the pathogen Streptococcus pyogenes , with a particular focus on bacterial cleavage of IgG in vivo In invasive diseases, S. pyogenes evokes a massive host response in blood, whereas superficial diseases are characterized by a local leakage of several blood plasma proteins at the site of infection including IgG. S. pyogenes produces IdeS, a protease cleaving IgG in the lower hinge region and we find highly effective IdeS-cleavage of IgG in samples from local IgG poor microenvironments. The results show that IdeS contributes to the adaptation of S. pyogenes to its normal ecological niches. Additionally, the work identifies novel clinical opportunities for in vivo pathogen detection. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
Deschodt-Lanckman, M; Bui, N D; Koulischer, D; Paroutaud, P; Strosberg, A D
1983-01-01
Solubilization of rat synaptic membranes by Triton X-100, followed by DEAE-cellulose chromatography allowed the identification of different CCK-8 cleaving enzymes. The first one (in the order of elution) removed the N-terminal aspartic acid residue of CCK-8 and was active on L-aspartic acid beta naphtylamide, suggesting that a corresponded to an aminopeptidase A. Two aminopeptidases of broad specificity hydrolyzed sequentially all the peptide bonds of CCK-8 as far as the release of free tryptophan. The removal of the sulfated tyrosine residue of CCK-8 occurred at a slower rate than that of the unsulfated residue. Another peptidase converted CCK-8 into its C-terminal heptapeptide. This enzyme had a lower affinity for the sulfated octapeptide in comparison with the unsulfated form (app Km of respectively 180 and 40 muM). The CCK-7 generating proteases displayed a moderate regional variation in five rat brain areas, with the highest activity in olfactory bulbs membranes and the lowest in cerebellar membranes. This distribution followed (with a lower amplitude) that of the CCK receptors.
Caspase-2 Is Localized at the Golgi Complex and Cleaves Golgin-160 during Apoptosis
Mancini, Marie; Machamer, Carolyn E.; Roy, Sophie; Nicholson, Donald W.; Thornberry, Nancy A.; Casciola-Rosen, Livia A.; Rosen, Antony
2000-01-01
Caspases are an extended family of cysteine proteases that play critical roles in apoptosis. Animals deficient in caspases-2 or -3, which share very similar tetrapeptide cleavage specificities, exhibit very different phenotypes, suggesting that the unique features of individual caspases may account for distinct regulation and specialized functions. Recent studies demonstrate that unique apoptotic stimuli are transduced by distinct proteolytic pathways, with multiple components of the proteolytic machinery clustering at distinct subcellular sites. We demonstrate here that, in addition to its nuclear distribution, caspase-2 is localized to the Golgi complex, where it cleaves golgin-160 at a unique site not susceptible to cleavage by other caspases with very similar tetrapeptide specificities. Early cleavage at this site precedes cleavage at distal sites by other caspases. Prevention of cleavage at the unique caspase-2 site delays disintegration of the Golgi complex after delivery of a pro-apoptotic signal. We propose that the Golgi complex, like mitochondria, senses and integrates unique local conditions, and transduces pro-apoptotic signals through local caspases, which regulate local effectors. PMID:10791974
New trends and affinity tag designs for recombinant protein purification.
Wood, David W
2014-06-01
Engineered purification tags can facilitate very efficient purification of recombinant proteins, resulting in high yields and purities in a few standard steps. Over the years, many different purification tags have been developed, including short peptides, epitopes, folded protein domains, non-chromatographic tags and more recently, compound multifunctional tags with optimized capabilities. Although classic proteases are still primarily used to remove the tags from target proteins, new self-cleaving methods are gaining traction as a highly convenient alternative. In this review, we discuss some of these emerging trends, and examine their potential impacts and remaining challenges in recombinant protein research. Copyright © 2014 Elsevier Ltd. All rights reserved.
Role of hepsin in factor VII activation in zebrafish.
Khandekar, Gauri; Jagadeeswaran, Pudur
2014-01-01
Factor VII, the initiator of the extrinsic coagulation cascade, circulates in human plasma mainly in its zymogen form, factor VII and in small amounts in its activated form, factor VIIa. However, the mechanism of initial generation of factor VIIa is not known despite intensive research using currently available model systems. Earlier findings suggested serine proteases factor VII activating protease and hepsin play a role in activating factor VII, however, it has remained controversial. In this paper we estimated the levels of factor VIIa and factor VII for the first time in zebrafish adult population and also reevaluated the role of the above two serine proteases in activating factor VII in vivo using zebrafish as a model system. Knockdown of factor VII activating protease and hepsin was performed followed by assaying for their effect on factor VIIa concentration and extrinsic coagulation as measured by the kinetic prothrombin time. Factor VII activating protease knockdown showed no change in kinetic prothrombin time and no effect on factor VIIa levels while hepsin knockdown increased the kinetic prothrombin time and significantly reduced the factor VIIa plasma levels. Our results thus indicate that hepsin plays a physiologically important role in factor VII activation and hemostasis in zebrafish. © 2013.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ratia, Kiira; Pegan, Scott; Takayama, Jun
We report the discovery and optimization of a potent inhibitor against the papain-like protease (PLpro) from the coronavirus that causes severe acute respiratory syndrome (SARS-CoV). This unique protease is not only responsible for processing the viral polyprotein into its functional units but is also capable of cleaving ubiquitin and ISG15 conjugates and plays a significant role in helping SARS-CoV evade the human immune system. We screened a structurally diverse library of 50,080 compounds for inhibitors of PLpro and discovered a noncovalent lead inhibitor with an IC{sub 50} value of 20 {mu}M, which was improved to 600 nM via synthetic optimization.more » The resulting compound, GRL0617, inhibited SARS-CoV viral replication in Vero E6 cells with an EC{sub 50} of 15 {mu}M and had no associated cytotoxicity. The X-ray structure of PLpro in complex with GRL0617 indicates that the compound has a unique mode of inhibition whereby it binds within the S4-S3 subsites of the enzyme and induces a loop closure that shuts down catalysis at the active site. These findings provide proof-of-principle that PLpro is a viable target for development of antivirals directed against SARS-CoV, and that potent noncovalent cysteine protease inhibitors can be developed with specificity directed toward pathogenic deubiquitinating enzymes without inhibiting host DUBs.« less
Janciauskiene, S
2001-03-26
Serine proteinase inhibitors (Serpins) are irreversible suicide inhibitors of proteases that regulate diverse physiological processes such as coagulation, fibrinolysis, complement activation, angiogenesis, apoptosis, inflammation, neoplasia and viral pathogenesis. The molecular structure and physical properties of serpins permit these proteins to adopt a number of variant conformations under physiological conditions including the native inhibitory form and several inactive, non-inhibitory forms, such as complexes with protease or other ligands, cleaved, polymerised and oxidised. Alterations of a serpin which affect its structure and/or secretion and thus reduce its functional levels may result in pathology. Serpin dysfunction has been implicated in thrombosis, emphysema, liver cirrhosis, immune hypersensitivity and mental disorders. The loss of inhibitory activity of serpins necessarily results in an imbalance between proteases and their inhibitors, but it may also have other physiological effects through the generation of abnormal concentrations of modified, non-inhibitory forms of serpins. Although these forms of inhibitory serpins are detected in tissues and fluids recovered from inflammatory sites, the important questions of which conditions result in generation of different molecular forms of serpins, what biological function these forms have, and which of them are directly linked to pathologies and/or may be useful markers for characterisation of disease states, remain to be answered. Elucidation of the biological activities of non-inhibitory forms of serpins may provide useful insights into the pathogenesis of diseases and suggest new therapeutic strategies.
Live-cell visualization of gasdermin D-driven pyroptotic cell death.
Rathkey, Joseph K; Benson, Bryan L; Chirieleison, Steven M; Yang, Jie; Xiao, Tsan S; Dubyak, George R; Huang, Alex Y; Abbott, Derek W
2017-09-01
Pyroptosis is a form of cell death important in defenses against pathogens that can also result in a potent and sometimes pathological inflammatory response. During pyroptosis, GSDMD (gasdermin D), the pore-forming effector protein, is cleaved, forms oligomers, and inserts into the membranes of the cell, resulting in rapid cell death. However, the potent cell death induction caused by GSDMD has complicated our ability to understand the biology of this protein. Studies aimed at visualizing GSDMD have relied on expression of GSDMD fragments in epithelial cell lines that naturally lack GSDMD expression and also lack the proteases necessary to cleave GSDMD. In this work, we performed mutagenesis and molecular modeling to strategically place tags and fluorescent proteins within GSDMD that support native pyroptosis and facilitate live-cell imaging of pyroptotic cell death. Here, we demonstrate that these fusion proteins are cleaved by caspases-1 and -11 at Asp-276. Mutations that disrupted the predicted p30-p20 autoinhibitory interface resulted in GSDMD aggregation, supporting the oligomerizing activity of these mutations. Furthermore, we show that these novel GSDMD fusions execute inflammasome-dependent pyroptotic cell death in response to multiple stimuli and allow for visualization of the morphological changes associated with pyroptotic cell death in real time. This work therefore provides new tools that not only expand the molecular understanding of pyroptosis but also enable its direct visualization. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Calpain expression and activity during lens fiber cell differentiation.
De Maria, Alicia; Shi, Yanrong; Kumar, Nalin M; Bassnett, Steven
2009-05-15
In animal models, the dysregulated activity of calcium-activated proteases, calpains, contributes directly to cataract formation. However, the physiological role of calpains in the healthy lens is not well defined. In this study, we examined the expression pattern of calpains in the mouse lens. Real time PCR and Western blotting data indicated that calpain 1, 2, 3, and 7 were expressed in lens fiber cells. Using controlled lysis, depth-dependent expression profiles for each calpain were obtained. These indicated that, unlike calpain 1, 2, and 7, which were most abundant in cells near the lens surface, calpain 3 expression was strongest in the deep cortical region of the lens. We detected calpain activities in vitro and showed that calpains were active in vivo by microinjecting fluorogenic calpain substrates into cortical fiber cells. To identify endogenous calpain substrates, membrane/cytoskeleton preparations were treated with recombinant calpain, and cleaved products were identified by two-dimensional difference electrophoresis/mass spectrometry. Among the calpain substrates identified by this approach was alphaII-spectrin. An antibody that specifically recognized calpain-cleaved spectrin was used to demonstrate that spectrin is cleaved in vivo, late in fiber cell differentiation, at or about the time that lens organelles are degraded. The generation of the calpain-specific spectrin cleavage product was not observed in lens tissue from calpain 3-null mice, indicating that calpain 3 is uniquely activated during lens fiber differentiation. Our data suggest a role for calpains in the remodeling of the membrane cytoskeleton that occurs with fiber cell maturation.
Qian, Suhong; Fan, Wenchun; Liu, Tingting; Wu, Mengge; Zhang, Huawei; Cui, Xiaofang; Zhou, Yun; Hu, Junjie; Wei, Shaozhong; Chen, Huanchun
2017-01-01
ABSTRACT Seneca Valley virus (SVV) is an oncolytic RNA virus belonging to the Picornaviridae family. Its nucleotide sequence is highly similar to those of members of the Cardiovirus genus. SVV is also a neuroendocrine cancer-selective oncolytic picornavirus that can be used for anticancer therapy. However, the interaction between SVV and its host is yet to be fully characterized. In this study, SVV inhibited antiviral type I interferon (IFN) responses by targeting different host adaptors, including mitochondrial antiviral signaling (MAVS), Toll/interleukin 1 (IL-1) receptor domain-containing adaptor inducing IFN-β (TRIF), and TRAF family member-associated NF-κB activator (TANK), via viral 3C protease (3Cpro). SVV 3Cpro mediated the cleavage of MAVS, TRIF, and TANK at specific sites, which required its protease activity. The cleaved MAVS, TRIF, and TANK lost the ability to regulate pattern recognition receptor (PRR)-mediated IFN production. The cleavage of TANK also facilitated TRAF6-induced NF-κB activation. SVV was also found to be sensitive to IFN-β. Therefore, SVV suppressed antiviral IFN production to escape host antiviral innate immune responses by cleaving host adaptor molecules. IMPORTANCE Host cells have developed various defenses against microbial pathogen infection. The production of IFN is the first line of defense against microbial infection. However, viruses have evolved many strategies to disrupt this host defense. SVV, a member of the Picornavirus genus, is an oncolytic virus that shows potential functions in anticancer therapy. It has been demonstrated that IFN can be used in anticancer therapy for certain tumors. However, the relationship between oncolytic virus and innate immune response in anticancer therapy is still not well known. In this study, we showed that SVV has evolved as an effective mechanism to inhibit host type I IFN production by using its 3Cpro to cleave the molecules MAVS, TRIF, and TANK directly. These molecules are crucial for the Toll-like receptor 3 (TLR3)-mediated and retinoic acid-inducible gene I (RIG-I)-like receptor (RLR)-mediated signaling pathway. We also found that SVV is sensitive to IFN-β. These findings increase our understanding of the interaction between SVV and host innate immunity. PMID:28566380
Qian, Suhong; Fan, Wenchun; Liu, Tingting; Wu, Mengge; Zhang, Huawei; Cui, Xiaofang; Zhou, Yun; Hu, Junjie; Wei, Shaozhong; Chen, Huanchun; Li, Xiangmin; Qian, Ping
2017-08-15
Seneca Valley virus (SVV) is an oncolytic RNA virus belonging to the Picornaviridae family. Its nucleotide sequence is highly similar to those of members of the Cardiovirus genus. SVV is also a neuroendocrine cancer-selective oncolytic picornavirus that can be used for anticancer therapy. However, the interaction between SVV and its host is yet to be fully characterized. In this study, SVV inhibited antiviral type I interferon (IFN) responses by targeting different host adaptors, including mitochondrial antiviral signaling (MAVS), Toll/interleukin 1 (IL-1) receptor domain-containing adaptor inducing IFN-β (TRIF), and TRAF family member-associated NF-κB activator (TANK), via viral 3C protease (3C pro ). SVV 3C pro mediated the cleavage of MAVS, TRIF, and TANK at specific sites, which required its protease activity. The cleaved MAVS, TRIF, and TANK lost the ability to regulate pattern recognition receptor (PRR)-mediated IFN production. The cleavage of TANK also facilitated TRAF6-induced NF-κB activation. SVV was also found to be sensitive to IFN-β. Therefore, SVV suppressed antiviral IFN production to escape host antiviral innate immune responses by cleaving host adaptor molecules. IMPORTANCE Host cells have developed various defenses against microbial pathogen infection. The production of IFN is the first line of defense against microbial infection. However, viruses have evolved many strategies to disrupt this host defense. SVV, a member of the Picornavirus genus, is an oncolytic virus that shows potential functions in anticancer therapy. It has been demonstrated that IFN can be used in anticancer therapy for certain tumors. However, the relationship between oncolytic virus and innate immune response in anticancer therapy is still not well known. In this study, we showed that SVV has evolved as an effective mechanism to inhibit host type I IFN production by using its 3C pro to cleave the molecules MAVS, TRIF, and TANK directly. These molecules are crucial for the Toll-like receptor 3 (TLR3)-mediated and retinoic acid-inducible gene I (RIG-I)-like receptor (RLR)-mediated signaling pathway. We also found that SVV is sensitive to IFN-β. These findings increase our understanding of the interaction between SVV and host innate immunity. Copyright © 2017 American Society for Microbiology.
Characterization of SPP inhibitors suppressing propagation of HCV and protozoa
Hirano, Junki; Okamoto, Toru; Sugiyama, Yukari; Suzuki, Tatsuya; Kusakabe, Shinji; Tokunaga, Makoto; Fukuhara, Takasuke; Sasai, Miwa; Tougan, Takahiro; Matsunaga, Yasue; Yamashita, Kazuo; Sakai, Yusuke; Yamamoto, Masahiro; Horii, Toshihiro; Standley, Daron M.; Moriishi, Kohji; Moriya, Kyoji; Koike, Kazuhiko; Matsuura, Yoshiharu
2017-01-01
Signal peptide peptidase (SPP) is an intramembrane aspartic protease involved in the maturation of the core protein of hepatitis C virus (HCV). The processing of HCV core protein by SPP has been reported to be critical for the propagation and pathogenesis of HCV. Here we examined the inhibitory activity of inhibitors for γ-secretase, another intramembrane cleaving protease, against SPP, and our findings revealed that the dibenzoazepine-type structure in the γ-secretase inhibitors is critical for the inhibition of SPP. The spatial distribution showed that the γ-secretase inhibitor compound YO-01027 with the dibenzoazepine structure exhibits potent inhibiting activity against SPP in vitro and in vivo through the interaction of Val223 in SPP. Treatment with this SPP inhibitor suppressed the maturation of core proteins of all HCV genotypes without the emergence of drug-resistant viruses, in contrast to the treatment with direct-acting antivirals. YO-01027 also efficiently inhibited the propagation of protozoa such as Plasmodium falciparum and Toxoplasma gondii. These data suggest that SPP is an ideal target for the development of therapeutics not only against chronic hepatitis C but also against protozoiasis. PMID:29187532
Matrix metalloproteases and PAR1 activation
Austin, Karyn M.; Covic, Lidija
2013-01-01
Cardiovascular diseases, including atherothrombosis, are the leading cause of morbidity and mortality in the United States, Europe, and the developed world. Matrix metalloproteases (MMPs) have recently emerged as important mediators of platelet and endothelial function, and atherothrombotic disease. Protease-activated receptor-1 (PAR1) is a G protein-coupled receptor that is classically activated through cleavage of the N-terminal exodomain by the serine protease thrombin. Most recently, 2 MMPs have been discovered to have agonist activity for PAR1. Unexpectedly, MMP-1 and MMP-13 cleave the N-terminal exodomain of PAR1 at noncanonical sites, which result in distinct tethered ligands that activate G-protein signaling pathways. PAR1 exhibits metalloprotease-specific signaling patterns, known as biased agonism, that produce distinct functional outputs by the cell. Here we contrast the mechanisms of canonical (thrombin) and noncanonical (MMP) PAR1 activation, the contribution of MMP-PAR1 signaling to diseases of the vasculature, and the therapeutic potential of inhibiting MMP-PAR1 signaling with MMP inhibitors, including atherothrombotic disease, in-stent restenosis, heart failure, and sepsis. PMID:23086754
Molecular Basis of Substrate Recognition and Degradation by Human Presequence Protease
King, John V.; Liang, Wenguang G.; Scherpelz, Kathryn P.; Schilling, Alexander B.; Meredith, Stephen C.; Tang, Wei-Jen
2014-01-01
Summary Human Presequence Protease (hPreP) is an M16 metalloprotease localized in mitochondria. There, hPreP facilitates proteostasis by utilizing a ∼13,300Å3 catalytic chamber to degrade a diverse array of potentially toxic peptides, including mitochondrial presequences and amyloid-β (Aβ), the latter of which contributes to Alzheimer's disease pathogenesis. Here we report crystal structures for hPreP alone and in complex with Aβ, which show that hPreP uses size-exclusion and charge complementation for substrate recognition. These structures also reveal hPreP-specific features that permit a diverse array of peptides, with distinct distributions of charged and hydrophobic residues, to be specifically captured, cleaved, and their amyloidogenic features destroyed. SAXS analysis demonstrates that hPreP in solution exists in dynamic equilibrium between closed and open states, with the former being preferred. Furthermore, Aβ binding induces the closed state and hPreP dimerization. Together, these data reveal the molecular basis for flexible yet specific substrate recognition and degradation by hPreP. PMID:24931469
Gasdermin D Exerts Anti-inflammatory Effects by Promoting Neutrophil Death.
Kambara, Hiroto; Liu, Fei; Zhang, Xiaoyu; Liu, Peng; Bajrami, Besnik; Teng, Yan; Zhao, Li; Zhou, Shiyi; Yu, Hongbo; Zhou, Weidong; Silberstein, Leslie E; Cheng, Tao; Han, Mingzhe; Xu, Yuanfu; Luo, Hongbo R
2018-03-13
Gasdermin D (GSDMD) is considered a proinflammatory factor that mediates pyroptosis in macrophages to protect hosts from intracellular bacteria. Here, we reveal that GSDMD deficiency paradoxically augmented host responses to extracellular Escherichia coli, mainly by delaying neutrophil death, which established GSDMD as a negative regulator of innate immunity. In contrast to its activation in macrophages, in which activated inflammatory caspases cleave GSDMD to produce an N-terminal fragment (GSDMD-cNT) to trigger pyroptosis, GSDMD cleavage and activation in neutrophils was caspase independent. It was mediated by a neutrophil-specific serine protease, neutrophil elastase (ELANE), released from cytoplasmic granules into the cytosol in aging neutrophils. ELANE-mediated GSDMD cleavage was upstream of the caspase cleavage site and produced a fully active ELANE-derived NT fragment (GSDMD-eNT) that induced lytic cell death as efficiently as GSDMD-cNT. Thus, GSDMD is pleiotropic, exerting both pro- and anti-inflammatory effects that make it a potential target for antibacterial and anti-inflammatory therapies. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Torktaz, Ibrahim; Mohamadhashem, Faezeh; Esmaeili, Abolghasem; Behjati, Mohaddeseh; Sharifzadeh, Sara
2013-01-01
Metastasis is a crucial aspect of cancer. Macrophage stimulating protein (MSP) is a single chain protein and can be cleaved by serum proteases. MSP has several roles in metastasis. In this in silico study, MSP as a metastatic agent was considered as a drug target. Crystallographic structure of MSP was retrieved from protein data bank. To find a chemical inhibitor of MSP, a library of KEGG compounds was screened and 1000 shape complemented ligands were retrieved with FindSite algorithm. Molegro Virtual Docker (MVD) software was used for docking simulation of shape complemented ligands against MSP. Moldock score was used as scoring function for virtual screening and potential inhibitors with more negative binding energy were obtained. PLANS scoring function was used for revaluation of virtual screening data. The top found chemical had binding affinity of -183.55 based on MolDock score and equal to -66.733 PLANTs score to MSP structure. Based on pharmacophore model of potential inhibitor, this study suggests that the chemical which was found in this research and its derivate can be used for subsequent laboratory studies.
Ahn, J-E; Lovingshimer, M R; Salzman, R A; Presnail, J K; Lu, A L; Koiwa, H; Zhu-Salzman, K
2007-06-01
Cowpea bruchids, when challenged by consumption of the soybean cysteine protease inhibitor scN, reconfigure expression of their major CmCP digestive proteases and resume normal feeding and development. Previous evidence indicated that insects selectively induced CmCPs from subfamily B, that were more efficient in autoprocessing and possessed not only higher proteolytic, but also scN-degrading activities. In contrast, dietary scN only marginally up-regulated genes from the more predominant CmCP subfamily A that were inferior to subfamily B. To gain further molecular insight into this adaptive adjustment, we performed domain swapping between the two respective subfamily members B1 and A16, the latter unable to autoprocess or degrade scN even after intermolecular processing. Swapping the propeptides did not qualitatively alter autoprocessing in either protease isoform. Incorporation of either the N- (pAmBA) or C-terminal (pAmAB) mature B1 segment into A16, however, was sufficient to prime autoprocessing of A16 to its mature form. Further, the swap at the N-terminal mature A16 protein region (pAmBA) resulted in four amino acid changes. Replacement of these amino acid residues by the corresponding B1 residues, singly and pair-wise, revealed that autoprocessing activation in pAmBA resulted from cumulative and/or coordinated individual effects. Bacterially expressed isolated propeptides (pA16 and pB1) differed in their ability to inhibit mature B1 enzyme. Lower inhibitory activity in pB1 is likely attributable to its lack of protein stability. This instability in the cleaved propeptide is necessary, although insufficient by itself, for scN-degradation by the mature B1 enzyme. Taken together, cowpea bruchids modulate proteolysis of their digestive enzymes by controlling proCmCP cleavage and propeptide stability, which explains at least in part the plasticity cowpea bruchids demonstrate in response to protease inhibitors.
Hohl, Mathias; Stintzi, Annick; Schaller, Andreas
2017-04-14
The propeptides of subtilisin-like serine proteinases (subtilases, SBTs) serve dual functions as intramolecular chaperones that are required for enzyme folding and as inhibitors of the mature proteases. SBT propeptides are homologous to the I9 family of protease inhibitors that have only been described in fungi. Here we report the identification and characterization of subtilisin propeptide-like inhibitor 1 (SPI-1) from Arabidopsis thaliana Sequence similarity and the shared β-α-β-β-α-β core structure identified SPI-1 as a member of the I9 inhibitor family and as the first independent I9 inhibitor in higher eukaryotes. SPI-1 was characterized as a high-affinity, tight-binding inhibitor of Arabidopsis subtilase SBT4.13 with K d and K i values in the picomolar range. SPI-1 acted as a stable inhibitor of SBT4.13 over the physiologically relevant range of pH, and its inhibitory profile included many other SBTs from plants but not bovine chymotrypsin or bacterial subtilisin A. Upon binding to SBT4.13, the C-terminal extension of SPI-1 was proteolytically cleaved. The last four amino acids at the newly formed C terminus of SPI-1 matched both the cleavage specificity of SBT4.13 and the consensus sequence of Arabidopsis SBTs at the junction of the propeptide with the catalytic domain. The data suggest that the C terminus of SPI-1 acts as a competitive inhibitor of target proteases as it remains bound to the active site in a product-like manner. SPI-1 thus resembles SBT propeptides with respect to its mode of protease inhibition. However, in contrast to SBT propeptides, SPI-1 could not substitute as a folding assistant for SBT4.13. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Factors affecting the protease activity of venom from jellyfish Rhopilema esculentum Kishinouye.
Li, Cuiping; Yu, Huahua; Liu, Song; Xing, Ronge; Guo, Zhanyong; Li, Pengcheng
2005-12-15
In this paper, the effects of some chemical and physical factors such as temperature, pH values, glycerol, and divalent metal cations on the protease activity of venom from jellyfish, Rhopilema esculentum Kishinouye, were assayed. Protease activity was dependent on temperature and pH values. Zn(2+), Mg(2+), and Mn(2+) in sodium phosphate buffer (0.02M, pH 8.0) could increase protease activity. Mn(2+) had the best effects among the three metal cations and the effect was about 20 times of that of Zn(2+) or Mg(2+) and its maximal protease activity was 2.3x10(5)U/mL. EDTA could increase protease activity. PMSF had hardly affected protease activity. O-Phenanthroline and glycerol played an important part in inhibiting protease activity and their maximal inhibiting rates were 87.5% and 82.1%, respectively.
Functional protease profiling for laboratory based diagnosis of invasive aspergillosis.
Sabbagh, Bassel; Costina, Victor; Buchheidt, Dieter; Reinwald, Mark; Neumaier, Michael; Findeisen, Peter
2015-07-01
Invasive aspergillosis (IA) remains difficult to diagnose in immunocompromised patients, because diagnostic criteria according to EORTC/MSG guidelines are often not met and have low sensitivity. Hence there is an urgent need to improve diagnostic procedures by developing novel approaches. In the present study, we present a proof of concept experiment for the monitoring of Aspergillus associated protease activity in serum specimens for diagnostic purpose. Synthetic peptides that are selectively cleaved by proteases secreted from Aspergillus species were selected from our own experiments and published data. These so called reporter peptides (RP, n=5) were added to serum specimens from healthy controls (HC, n=101) and patients with proven (IA, n=9) and possible (PIA, n=144) invasive aspergillosis. Spiked samples were incubated ex vivo under strictly standardized conditions. Proteolytic fragments were analyzed using MALDI-TOF mass spectrometry. Spiked specimens of IA patients had highest concentrations of RP-fragments followed by PIA and HC. The median signal intensity was 116.546 (SD, 53.063) for IA and 5.009 (SD, 8.432) for HC. A cut-off >36.910 was chosen that performed with 100% specificity and sensitivity. Patients with PIA had either values above [53% (76/144)] or below [47% (67/144)] this chosen cut-off. The detection of respective reporter peptide fragments can easily be performed by MALDI TOF mass spectrometry. In this proof of concept study we were able to demonstrate that serum specimens of patients with IA have increased proteolytic activity towards selected reporter peptides. However, the diagnostic value of functional protease profiling has to be validated in further prospective studies. It is likely that a combination of existing and new methods will be required to achieve optimal performance for diagnosis of IA in the future.
Picornavirus 2A protease regulates stress granule formation to facilitate viral translation
Yang, Xiaodan; Hu, Zhulong; Fan, Shanshan; Zhang, Qiang; Zhong, Yi; Guo, Dong; Qin, Yali
2018-01-01
Stress granules (SGs) contain stalled messenger ribonucleoprotein complexes and are related to the regulation of mRNA translation. Picornavirus infection can interfere with the formation of SGs. However, the detailed molecular mechanisms and functions of picornavirus-mediated regulation of SG formation are not clear. Here, we found that the 2A protease of a picornavirus, EV71, induced atypical stress granule (aSG), but not typical stress granule (tSG), formation via cleavage of eIF4GI. Furthermore, 2A was required and sufficient to inhibit tSGs induced by EV71 infection, sodium arsenite, or heat shock. Infection of 2A protease activity-inactivated recombinant EV71 (EV71-2AC110S) failed to induce aSG formation and only induced tSG formation, which is PKR and eIF2α phosphorylation-dependent. By using a Renilla luciferase mRNA reporter system and RNA fluorescence in situ hybridization assay, we found that EV71-induced aSGs were beneficial to viral translation through sequestering only cellular mRNAs, but not viral mRNAs. In addition, we found that the 2A protease of other picornaviruses such as poliovirus and coxsackievirus also induced aSG formation and blocked tSG formation. Taken together, our results demonstrate that, on one hand, EV71 infection induces tSG formation via the PKR-eIF2α pathway, and on the other hand, 2A, but not 3C, blocks tSG formation. Instead, 2A induces aSG formation by cleaving eIF4GI to sequester cellular mRNA but release viral mRNA, thereby facilitating viral translation. PMID:29415027
Insights into the Structure of the Vip3Aa Insecticidal Protein by Protease Digestion Analysis
Bel, Yolanda; Banyuls, Núria; Chakroun, Maissa; Escriche, Baltasar; Ferré, Juan
2017-01-01
Vip3 proteins are secretable proteins from Bacillus thuringiensis whose mode of action is still poorly understood. In this study, the activation process for Vip3 proteins was closely examined in order to better understand the Vip3Aa protein stability and to shed light on its structure. The Vip3Aa protoxin (of 89 kDa) was treated with trypsin at concentrations from 1:100 to 120:100 (trypsin:Vip3A, w:w). If the action of trypsin was not properly neutralized, the results of SDS-PAGE analysis (as well as those with Agrotis ipsilon midgut juice) equivocally indicated that the protoxin could be completely processed. However, when the proteolytic reaction was efficiently stopped, it was revealed that the protoxin was only cleaved at a primary cleavage site, regardless of the amount of trypsin used. The 66 kDa and the 19 kDa peptides generated by the proteases co-eluted after gel filtration chromatography, indicating that they remain together after cleavage. The 66 kDa fragment was found to be extremely resistant to proteases. The trypsin treatment of the protoxin in the presence of SDS revealed the presence of secondary cleavage sites at S-509, and presumably at T-466 and V-372, rendering C-terminal fragments of approximately 29, 32, and 42 kDa, respectively. The fact that the predicted secondary structure of the Vip3Aa protein shows a cluster of beta sheets in the C-terminal region of the protein might be the reason behind the higher stability to proteases compared to the rest of the protein, which is mainly composed of alpha helices. PMID:28387713
Hennig, Andreas; Florea, Mara; Roth, Doris; Enderle, Thilo; Nau, Werner M
2007-01-15
Fluorescence protease assays were investigated with peptide substrates containing a 2,3-diazabicyclo[2.2.2]oct-2-ene-labeled asparagine (Dbo) as a fluorescent amino acid. The special characteristic of the fluorophore Dbo is its exceedingly long fluorescence lifetime (ca. 300 ns in water under air), which allows the use of nanosecond time-resolved fluorescence (Nano-TRF) detection to efficiently suppress shorter-lived background emission. In addition, the natural amino acids tryptophan and tyrosine can be employed as intramolecular fluorescence quenchers, which facilitates substrate design. Fourteen synthetic peptide substrates (composed of 2-19 amino acids) and five enzymes (trypsin, pepsin, carboxypeptidase A, leucine aminopeptidase, and chymotrypsin) were investigated and, in all 28 examined combinations, enzymatic activity was detected by monitoring the increase in steady state fluorescence with time and determining the reaction rates as kcat/Km values, which ranged from 0.2 to 80x10(6) M-1 min-1. The results suggest an excellent compatibility of the very small and hydrophilic fluorescent probe Dbo with solid-phase peptide synthesis and the investigated proteases. For all 14 peptides the fluorescence lifetimes before and after enzymatic cleavage were measured and Nano-TRF measurements were performed in 384-well microplates. The fluorescence lifetimes of the different peptides provide the basis for the rational design of Dbo-based fluorescent substrates for protease assays. Measurements in Nano-TRF mode revealed, in addition to efficient suppression of background fluorescence, an increased differentiation between cleaved and uncleaved substrate. The Dbo-based assays can be adapted for high-throughput screening.
Chuang, Wen-Hsiao; Liu, Ping-Chung; Hung, Chia-Yu; Lee, Kuo-Kau
2014-12-01
Alpha-2-macroglobulin (α-2-M) is a broad spectrum protease inhibitor which is abundant in the plasma of vertebrates and several invertebrates. The α-2-M was purified from cobia (Rachycentron canadum) plasma by a four-step procedure: poly ethylene glycol fractionation, affinity chromatography, hydrophobic interaction chromatography and ion exchange chromatography on Fast Protein liquid chromatography system in the present study. It migrated as one protein band with a molecular mass of about 360 kDa in the native state, whereas in SDS-PAGE it was about 180 kDa under non-reducing condition. This result revealed that the native protein was a dimer. In addition, it was cleaved into two different fragments of molecular mass about 93 and 87 kDa when reduced by dithiothreitol (DTT). The anti-protease activity of the purified α-2-M was apparently decreased as temperature elevated above 50 °C. The α-2-M exhibited highest protease inhibitory activity at pH 9. The results indicate that the α-2-M is a heat-labile and alkaline protease inhibitor. The purified α-2-M exhibited more than 50% protease inhibitory activity against extracellular products (ECP) of Vibrio alginolytius isolated from diseased cobia. It seems that the protease activities in ECP may be affected by the plasma α-2-M. The protease inhibitory activities of cobia plasma or purified α-2-M were decreased when incubated with 10 mM methylamine for 30 min. The α-2-M cDNA consisted of 4611 bp with an open reading frame of 4374 bp had been cloned from cobia liver. This sequence contained thioester domain (GCGEQ) and thirteen predicted N-linked glycosylation sites. In addition, the amino acid sequence of thioester domain and genes of adjacent regions of cobia α-2-M were further compared with sequences of known fish species in GenBank. The unweighted pair group method using arithmetic average (UPGMA) was employed to construct the phylogenetic trees of α-2-M among different fish species (freshwater fish, sea water fish and primitive fish), and all these fish species were then clustered into three groups. The cobia α-2-M was closer to that of sea water fish than that of freshwater fish compared basing on its similarity of amino acid sequence and phylogenetic analysis of the partial gene. Copyright © 2014 Elsevier Ltd. All rights reserved.
Jagdeo, Julienne M; Dufour, Antoine; Klein, Theo; Solis, Nestor; Kleifeld, Oded; Kizhakkedathu, Jayachandran; Luo, Honglin; Overall, Christopher M; Jan, Eric
2018-04-15
Enteroviruses encode proteinases that are essential for processing of the translated viral polyprotein. In addition, viral proteinases also target host proteins to manipulate cellular processes and evade innate antiviral responses to promote replication and infection. Although some host protein substrates of enterovirus proteinases have been identified, the full repertoire of targets remains unknown. We used a novel quantitative in vitro proteomics-based approach, termed t erminal a mine i sotopic l abeling of s ubstrates (TAILS), to identify with high confidence 72 and 34 new host protein targets of poliovirus and coxsackievirus B3 (CVB3) 3C proteinases (3C pro s) in HeLa cell and cardiomyocyte HL-1 cell lysates, respectively. We validated a subset of candidate substrates that are targets of poliovirus 3C pro in vitro including three common protein targets, phosphoribosylformylglycinamidine synthetase (PFAS), hnRNP K, and hnRNP M, of both proteinases. 3C pro -targeted substrates were also cleaved in virus-infected cells but not noncleavable mutant proteins designed from the TAILS-identified cleavage sites. Knockdown of TAILS-identified target proteins modulated infection both negatively and positively, suggesting that cleavage by 3C pro promotes infection. Indeed, expression of a cleavage-resistant mutant form of the endoplasmic reticulum (ER)-Golgi vesicle-tethering protein p115 decreased viral replication and yield. As the first comprehensive study to identify and validate functional enterovirus 3C pro substrates in vivo , we conclude that N-terminomics by TAILS is an effective strategy to identify host targets of viral proteinases in a nonbiased manner. IMPORTANCE Enteroviruses are positive-strand RNA viruses that encode proteases that cleave the viral polyprotein into the individual mature viral proteins. In addition, viral proteases target host proteins in order to modulate cellular pathways and block antiviral responses in order to facilitate virus infection. Although several host protein targets have been identified, the entire list of proteins that are targeted is not known. In this study, we used a novel unbiased proteomics approach to identify ∼100 novel host targets of the enterovirus 3C protease, thus providing further insights into the network of cellular pathways that are modulated to promote virus infection. Copyright © 2018 Jagdeo et al.
Silva, Roberta N; Oliveira, Lilian C G; Parise, Carolina B; Oliveira, Juliana R; Severino, Beatrice; Corvino, Angela; di Vaio, Paola; Temussi, Piero A; Caliendo, Giuseppe; Santagada, Vincenzo; Juliano, Luiz; Juliano, Maria A
2017-05-01
Human kallikrein 6 (KLK6) is highly expressed in the central nervous system and with elevated level in demyelinating disease. KLK6 has a very restricted specificity for arginine (R) and hydrolyses myelin basic protein, protein activator receptors and human ionotropic glutamate receptor subunits. Here we report a previously unreported activity of KLK6 on peptides containing clusters of basic amino acids, as in synthetic fluorogenic peptidyl-Arg-7-amino-4-carbamoylmethylcoumarin (peptidyl-ACC) peptides and FRET peptides in the format of Abz-peptidyl-Q-EDDnp (where Abz=ortho-aminobenzoic acid and Q-EDDnp=glutaminyl-N-(2,4-dinitrophenyl) ethylenediamine), in which pairs or sequences of basic amino acids (R or K) were introduced. Surprisingly, KLK6 hydrolyzed the fluorogenic peptides Bz-A-R ↓ R-ACC and Z-R ↓ R-MCA between the two R groups, resulting in non-fluorescent products. FRET peptides containing furin processing sequences of human MMP-14, nerve growth factor (NGF), Neurotrophin-3 (NT-3) and Neurotrophin-4 (NT-4) were cleaved by KLK6 at the same position expected by furin. Finally, KLK6 cleaved FRET peptides derived from human proenkephalin after the KR, the more frequent basic residues flanking enkephalins in human proenkephalin sequence. This result suggests the ability of KLK6 to release enkephalin from proenkephalin precursors and resembles furin a canonical processing proteolytic enzyme. Molecular models of peptides were built into the KLK6 structure and the marked preference of the cut between the two R of the examined peptides was related to the extended conformation of the substrates. Copyright © 2017 Elsevier B.V. All rights reserved.
Induced Neural Differentiation of MMP-2 Cleaved (RADA)4 Drug Delivery Systems.
Koss, K; Tsui, C; Unsworth, L D
2016-12-10
(RADA) 4 self-assembling peptides (SAPs) are promising for neural nanoscaffolds with on-demand drug delivery capabilities due to their automated synthesis, in-situ assembly, and potential for interaction with and release of biomolecules. Neuroinflammation cued on-demand drug release, due to up-regulated proteases, may well be vital in the treatment of several neurological diseases. In these conditions, releasing neurotrophic growth factors (NTFs) could potentially lead to neuroprotection and neurogenesis. As such, (RADA) 4 was made with the high and low activity matrix metalloproteinase 2 (MMP-2) cleaved sequences, GPQG+IASQ (CP1) and GPQG+PAGQ (CP2), the brain-derived NTF secretion stimulating peptide MVG (DP1) and the ciliary NTF analogue DGGL (DP2). PC-12 cell culture was performed to assess bioactive substrate cell adhesion and NTF specific neuronal differentiation. The laminin-derived IKVAV peptide, known for neural cell attachment and interaction, was tethered to (RADA) 4 -IKVAV and mixed in increasing increments with (RADA) 4 for this purpose. With 1 nanomolar MMP-2 treatment, product formation was observed to increase over a three day period, with (RADA) 4 /(RADA) 4 -CP1/CP2 mixture, however there was little difference between groups. Smaller CP1/CP2 concentrations displayed comparable (RADA) 4 nanoscale morphology to higher concentrations. Acetylcholine esterase and neural differentiation was observed over 3 days with 1 nM MMP-2 treatment according to the following makeup: 8/1/1 (RADA)4/(RADA)4-IKVAV/(RADA)4-CP1/CP2-DP1/DP2. Signalling gradually increased in all groups, and neurite outgrowth was visible after three days. Copyright © 2016 Elsevier B.V. All rights reserved.
Proteolysis suppresses spontaneous prion generation in yeast.
Okamoto, Atsushi; Hosoda, Nao; Tanaka, Anri; Newnam, Gary P; Chernoff, Yury O; Hoshino, Shin-Ichi
2017-12-08
Prions are infectious proteins that cause fatal neurodegenerative disorders including Creutzfeldt-Jakob and bovine spongiform encephalopathy (mad cow) diseases. The yeast [ PSI + ] prion is formed by the translation-termination factor Sup35, is the best-studied prion, and provides a useful model system for studying such diseases. However, despite recent progress in the understanding of prion diseases, the cellular defense mechanism against prions has not been elucidated. Here, we report that proteolytic cleavage of Sup35 suppresses spontaneous de novo generation of the [ PSI + ] prion. We found that during yeast growth in glucose media, a maximum of 40% of Sup35 is cleaved at its N-terminal prion domain. This cleavage requires the vacuolar proteases PrA-PrB. Cleavage occurs in a manner dependent on translation but independently of autophagy between the glutamine/asparagine-rich (Q/N-rich) stretch critical for prion formation and the oligopeptide-repeat region required for prion maintenance, resulting in the removal of the Q/N-rich stretch from the Sup35 N terminus. The complete inhibition of Sup35 cleavage, by knocking out either PrA ( pep4 Δ) or PrB ( prb1 Δ), increased the rate of de novo formation of [ PSI + ] prion up to ∼5-fold, whereas the activation of Sup35 cleavage, by overproducing PrB, inhibited [ PSI + ] formation. On the other hand, activation of the PrB pathway neither cleaved the amyloid conformers of Sup35 in [ PSI + ] strains nor eliminated preexisting [ PSI + ]. These findings point to a mechanism antagonizing prion generation in yeast. Our results underscore the usefulness of the yeast [ PSI + ] prion as a model system to investigate defense mechanisms against prion diseases and other amyloidoses. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Vagnini, Laura D.; Nascimento, Adriana M.; Canas, Maria do Carmo T.; Renzi, Adriana; Oliveira-Pelegrin, Gabriela R.; Petersen, Claudia G.; Mauri, Ana L.; Oliveira, João Batista A.; Baruffi, Ricardo L.R.; Cavagna, Mario; Franco, José G.
2015-01-01
Objective The aim of this study was to investigate the relationship between herpesvirus-associated ubiquitin-specific protease (HAUSP A/G, rs1529916), tumor protein p53 (TP53 Arg/Pro, rs1042522), leukemia inhibitory factor (LIF G/T, rs929271), glycoprotein 130 (gp130 A/T, rs1900173) and vascular endothelial growth factor (VEGF G/A, rs1570360) polymorphisms and recurrent implantation failure (RIF) in Brazilian women. Subjects and Methods A total of 120 women with RIF (i.e. those with ≥5 cleaved embryos transferred and a minimum of 2 failed in vitro fertilization/intracytoplasmic sperm injection attempts) were included. The control group involved 89 women who had experienced at least 1 live birth (without any infertility treatment). DNA was extracted from the peripheral blood of all participants, and the abovementioned single-nucleotide polymorphisms (SNPs) were genotyped by real-time polymerase chain reaction. The data were evaluated using Fisher's test. Results A significant difference between the RIF and control groups was found in the VEGF gene where the GG genotype showed a 2.1-fold increased chance of not being included in the RIF group, while the presence of an A allele increased this risk 1.6-fold. No significant differences were found for the other polymorphisms. Conclusion This study showed an association between the VEGF -1154G/A polymorphism and RIF in Brazilian women. PMID:26305668
Qu, Yanyan; Olonisakin, Tolani; Bain, William; Zupetic, Jill; Brown, Rebecca; Hulver, Mei; Xiong, Zeyu; Shanks, Robert M.Q.; Bomberger, Jennifer M.; Cooper, Vaughn S.; Zegans, Michael E.; Han, Jongyoon; Pilewski, Joseph; Ray, Anuradha; Ray, Prabir; Lee, Janet S.
2018-01-01
Acute lung injury is characterized by excessive extracellular matrix proteolysis and neutrophilic inflammation. A major risk factor for lung injury is bacterial pneumonia. However, host factors that protect against pathogen-induced and host-sustained proteolytic injury following infection are poorly understood. Pseudomonas aeruginosa (PA) is a major cause of nosocomial pneumonia and secretes proteases to amplify tissue injury. We show that thrombospondin-1 (TSP-1), a matricellular glycoprotein released during inflammation, dose-dependently inhibits PA metalloendoprotease LasB, a virulence factor. TSP-1–deficient (Thbs1–/–) mice show reduced survival, impaired host defense, and increased lung permeability with exaggerated neutrophil activation following acute intrapulmonary PA infection. Administration of TSP-1 from platelets corrects the impaired host defense and aberrant injury in Thbs1–/– mice. Although TSP-1 is cleaved into 2 fragments by PA, TSP-1 substantially inhibits Pseudomonas elastolytic activity. Administration of LasB inhibitor, genetic disabling of the PA type II secretion system, or functional deletion of LasB improves host defense and neutrophilic inflammation in mice. Moreover, TSP-1 provides an additional line of defense by directly subduing host-derived proteolysis, with dose-dependent inhibition of neutrophil elastase from airway neutrophils of mechanically ventilated critically ill patients. Thus, a host matricellular protein provides dual levels of protection against pathogen-initiated and host-sustained proteolytic injury following microbial trigger. PMID:29415890
Proteases from Entamoeba spp. and Pathogenic Free-Living Amoebae as Virulence Factors
Serrano-Luna, Jesús; Piña-Vázquez, Carolina; Reyes-López, Magda; Ortiz-Estrada, Guillermo
2013-01-01
The standard reference for pathogenic and nonpathogenic amoebae is the human parasite Entamoeba histolytica; a direct correlation between virulence and protease expression has been demonstrated for this amoeba. Traditionally, proteases are considered virulence factors, including those that produce cytopathic effects in the host or that have been implicated in manipulating the immune response. Here, we expand the scope to other amoebae, including less-pathogenic Entamoeba species and highly pathogenic free-living amoebae. In this paper, proteases that affect mucin, extracellular matrix, immune system components, and diverse tissues and cells are included, based on studies in amoebic cultures and animal models. We also include proteases used by amoebae to degrade iron-containing proteins because iron scavenger capacity is currently considered a virulence factor for pathogens. In addition, proteases that have a role in adhesion and encystation, which are essential for establishing and transmitting infection, are discussed. The study of proteases and their specific inhibitors is relevant to the search for new therapeutic targets and to increase the power of drugs used to treat the diseases caused by these complex microorganisms. PMID:23476670
In vivo Magnetic Resonance Imaging of Tumor Protease Activity
Haris, Mohammad; Singh, Anup; Mohammed, Imran; Ittyerah, Ranjit; Nath, Kavindra; Nanga, Ravi Prakash Reddy; Debrosse, Catherine; Kogan, Feliks; Cai, Kejia; Poptani, Harish; Reddy, Damodar; Hariharan, Hari; Reddy, Ravinder
2014-01-01
Increased expression of cathepsins has diagnostic as well as prognostic value in several types of cancer. Here, we demonstrate a novel magnetic resonance imaging (MRI) method, which uses poly-L-glutamate (PLG) as an MRI probe to map cathepsin expression in vivo, in a rat brain tumor model. This noninvasive, high-resolution and non-radioactive method exploits the differences in the CEST signals of PLG in the native form and cathepsin mediated cleaved form. The method was validated in phantoms with known physiological concentrations, in tumor cells and in an animal model of brain tumor along with immunohistochemical analysis. Potential applications in tumor diagnosis and evaluation of therapeutic response are outlined. PMID:25124082
de Souza, Devandir Antonio; Borges, Antonio Carlos; Santana, Ana Carolina; Oliver, Constance; Jamur, Maria Célia
2015-01-01
Mast cell proteases are thought to be involved with tumor progression and neo-vascularization. However, their exact role is still unclear. The present study was undertaken to further elucidate the function of specific subtypes of recombinant mouse mast cell proteases (rmMCP-6 and 7) in neo-vascularization. SVEC4-10 cells were cultured on Geltrex® with either rmMCP-6 or 7 and tube formation was analyzed by fluorescence microscopy and scanning electron microscopy. Additionally, the capacity of these proteases to induce the release of angiogenic factors and pro and anti-angiogenic proteins was analyzed. Both rmMCP-6 and 7 were able to stimulate tube formation. Scanning electron microscopy showed that incubation with the proteases induced SVEC4-10 cells to invade the gel matrix. However, the expression and activity of metalloproteases were not altered by incubation with the mast cell proteases. Furthermore, rmMCP-6 and rmMCP-7 were able to induce the differential release of angiogenic factors from the SVEC4-10 cells. rmMCP-7 was more efficient in stimulating tube formation and release of angiogenic factors than rmMCP-6. These results suggest that the subtypes of proteases released by mast cells may influence endothelial cells during in vivo neo-vascularization. PMID:26633538
Genetics of the First Seven Proprotein Convertase Enzymes in Health and Disease
Turpeinen, Hannu; Ortutay, Zsuzsanna; Pesu, Marko
2013-01-01
Members of the substilisin/kexin like proprotein convertase (PCSK) protease family cleave and convert immature pro-proteins into their biologically active forms. By cleaving for example prohormones, cytokines and cell membrane proteins, PCSKs participate in maintaining the homeostasis in a healthy human body. Conversely, erratic enzymatic function is thought to contribute to the pathogenesis of a wide variety of diseases, including obesity and hypercholestrolemia. The first characterized seven PCSK enzymes (PCSK1-2, FURIN, PCSK4-7) process their substrates at a motif made up of paired basic amino acid residues. This feature results in a variable degree of biochemical redundancy in vitro, and consequently, shared substrate molecules between the different PCSK enzymes. This redundancy has confounded our understanding of the specific biological functions of PCSKs. The physiological roles of these enzymes have been best illustrated by the phenotypes of genetically engineered mice and patients that carry mutations in the PCSK genes. Recent developments in genome-wide methodology have generated a large amount of novel information on the genetics of the first seven proprotein convertases. In this review we summarize the reported genetic alterations and their associated phenotypes. PMID:24396277
Odagiri, Haruki; Kadomatsu, Tsuyoshi; Endo, Motoyoshi; Masuda, Tetsuro; Morioka, Masaki Suimye; Fukuhara, Shigetomo; Miyamoto, Takeshi; Kobayashi, Eisuke; Miyata, Keishi; Aoi, Jun; Horiguchi, Haruki; Nishimura, Naotaka; Terada, Kazutoyo; Yakushiji, Toshitake; Manabe, Ichiro; Mochizuki, Naoki; Mizuta, Hiroshi; Oike, Yuichi
2014-01-21
The tumor microenvironment can enhance the invasive capacity of tumor cells. We showed that expression of angiopoietin-like protein 2 (ANGPTL2) in osteosarcoma (OS) cell lines increased and the methylation of its promoter decreased with time when grown as xenografts in mice compared with culture. Compared with cells grown in normal culture conditions, the expression of genes encoding DNA demethylation-related enzymes increased in tumor cells implanted into mice or grown in hypoxic, serum-starved culture conditions. ANGPTL2 expression in OS cell lines correlated with increased tumor metastasis and decreased animal survival by promoting tumor cell intravasation mediated by the integrin α5β1, p38 mitogen-activated protein kinase, and matrix metalloproteinases. The tolloid-like 1 (TLL1) protease cleaved ANGPTL2 into fragments in vitro that did not enhance tumor progression when overexpressed in xenografts. Expression of TLL1 was weak in OS patient tumors, suggesting that ANGPTL2 may not be efficiently cleaved upon secretion from OS cells. These findings demonstrate that preventing ANGPTL2 signaling stimulated by the tumor microenvironment could inhibit tumor cell migration and metastasis.
Conversion of amides to esters by the nickel-catalysed activation of amide C-N bonds.
Hie, Liana; Fine Nathel, Noah F; Shah, Tejas K; Baker, Emma L; Hong, Xin; Yang, Yun-Fang; Liu, Peng; Houk, K N; Garg, Neil K
2015-08-06
Amides are common functional groups that have been studied for more than a century. They are the key building blocks of proteins and are present in a broad range of other natural and synthetic compounds. Amides are known to be poor electrophiles, which is typically attributed to the resonance stability of the amide bond. Although amides can readily be cleaved by enzymes such as proteases, it is difficult to selectively break the carbon-nitrogen bond of an amide using synthetic chemistry. Here we demonstrate that amide carbon-nitrogen bonds can be activated and cleaved using nickel catalysts. We use this methodology to convert amides to esters, which is a challenging and underdeveloped transformation. The reaction methodology proceeds under exceptionally mild reaction conditions, and avoids the use of a large excess of an alcohol nucleophile. Density functional theory calculations provide insight into the thermodynamics and catalytic cycle of the amide-to-ester transformation. Our results provide a way to harness amide functional groups as synthetic building blocks and are expected to lead to the further use of amides in the construction of carbon-heteroatom or carbon-carbon bonds using non-precious-metal catalysis.
Induced-fit Mechanism for Prolyl Endopeptidase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Min; Chen, Changqing; Davies, David R.
2010-11-15
Prolyl peptidases cleave proteins at proline residues and are of importance for cancer, neurological function, and type II diabetes. Prolyl endopeptidase (PEP) cleaves neuropeptides and is a drug target for neuropsychiatric diseases such as post-traumatic stress disorder, depression, and schizophrenia. Previous structural analyses showing little differences between native and substrate-bound structures have suggested a lock-and-key catalytic mechanism. We now directly demonstrate from seven structures of Aeromonus punctata PEP that the mechanism is instead induced fit: the native enzyme exists in a conformationally flexible opened state with a large interdomain opening between the {beta}-propeller and {alpha}/{beta}-hydrolase domains; addition of substrate tomore » preformed native crystals induces a large scale conformational change into a closed state with induced-fit adjustments of the active site, and inhibition of this conformational change prevents substrate binding. Absolute sequence conservation among 28 orthologs of residues at the active site and critical residues at the interdomain interface indicates that this mechanism is conserved in all PEPs. This finding has immediate implications for the use of conformationally targeted drug design to improve specificity of inhibition against this family of proline-specific serine proteases.« less
Karch, Sandra; Broichhagen, Johannes; Schneider, Julia; Böning, Daniel; Hartmann, Stephanie; Schmid, Benjamin; Tripal, Philipp; Palmisano, Ralf; Alzheimer, Christian; Johnsson, Kai; Huth, Tobias
2018-06-25
β-site APP-cleaving enzyme 1 (BACE1) is a major player in the pathogenesis of Alzheimer's disease. Structural and functional fluorescence microscopy offers a powerful approach to learn about the physiology and pathophysiology of this protease. Up to now, however, common labeling techniques either require genetic manipulation, use large antibodies, or are not compatible with live cell imaging. Fluorescent small molecules that specifically bind to the protein of interest can overcome these limitations. Herein, we introduce SiR-BACE1, a conjugate of the BACE1 inhibitor S-39 and SiR647, as a novel fluorogenic, tag-free, and antibody-free label for BACE1. We present its chemical development, characterize its photo-physical and pharmacologic properties, and evaluate its behavior in solution, in over-expression systems, and in native brain tissue. We demonstrate its applicability in confocal, stimulated emission depletion (STED), and dynamic single molecule microscopy. First functional studies with SiR-BACE1 on the surface mobility of BACE1 revealed a markedly confined diffusion pattern.
Enteric bacterial proteases in inflammatory bowel disease- pathophysiology and clinical implications
Carroll, Ian M; Maharshak, Nitsan
2013-01-01
Numerous reports have identified a dysbiosis in the intestinal microbiota in patients suffering from inflammatory bowel diseases (IBD), yet the mechanism(s) in which this complex microbial community initiates or perpetuates inflammation remains unclear. The purpose of this review is to present evidence for one such mechanism that implicates enteric microbial derived proteases in the pathogenesis of IBD. We highlight and discuss studies demonstrating that proteases and protease receptors are abundant in the digestive system. Additionally, we investigate studies demonstrating an association between increased luminal protease activity and activation of protease receptors, ultimately resulting in increased intestinal permeability and exacerbation of colitis in animal models as well as in human IBD. Proteases are essential for the normal functioning of bacteria and in some cases can serve as virulence factors for pathogenic bacteria. Although not classified as traditional virulence factors, proteases originating from commensal enteric bacteria also have a potential association with intestinal inflammation via increased enteric permeability. Reports of increased protease activity in stools from IBD patients support a possible mechanism for a dysbiotic enteric microbiota in IBD. A better understanding of these pathways and characterization of the enteric bacteria involved, their proteases, and protease receptors may pave the way for new therapeutic approaches for these diseases. PMID:24431894
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qasim, Mohammad A., E-mail: qasimm@ipfw.edu; Song, Jikui; Markley, John L.
Research highlights: {yields} Large pK shifts in ionizable groups when buried in the protein interior. {yields} Substrate dependent shifts in pH optimum for serine proteases. {yields} Lys side chain is a stronger acid in serine protease S{sub 1} pocket than Asp side chain. -- Abstract: Enzymatic hydrolysis of the synthetic substrate succinyl-Ala-Ala-Pro-Xxx-pNA (where Xxx = Leu, Asp or Lys) catalyzed by bovine chymotrypsin (CHYM) or Streptomyces griseus protease B (SGPB) has been studied at different pH values in the pH range 3-11. The pH optima for substrates having Leu, Asp, and Lys have been found to be 7.5-8.0, 5.5-6.0, andmore » {approx}10, respectively. At the normally reported pH optimum (pH 7-8) of CHYM and SGPB, the substrate with Leu at the reactive site is more than 25,000-fold more reactive than that with Asp. However, when fully protonated, Asp is nearly as good a substrate as Leu. The pK values of the side chains of Asp and Lys in the hydrophobic S{sub 1} pocket of CHYM and SGPB have been calculated from pH-dependent hydrolysis data and have been found to be about 9 for Asp and 7.4 and 9.7 for Lys for CHYM and SGPB, respectively. The results presented in this communication suggest a possible application of CHYM like enzymes in cleaving peptide bonds contributed by acidic amino acids between pH 5 and 6.« less
Structure of the cleavage-activated prefusion form of the parainfluenza virus 5 fusion protein.
Welch, Brett D; Liu, Yuanyuan; Kors, Christopher A; Leser, George P; Jardetzky, Theodore S; Lamb, Robert A
2012-10-09
The paramyxovirus parainfluenza virus 5 (PIV5) enters cells by fusion of the viral envelope with the plasma membrane through the concerted action of the fusion (F) protein and the receptor binding protein hemagglutinin-neuraminidase. The F protein folds initially to form a trimeric metastable prefusion form that is triggered to undergo large-scale irreversible conformational changes to form the trimeric postfusion conformation. It is thought that F refolding couples the energy released with membrane fusion. The F protein is synthesized as a precursor (F0) that must be cleaved by a host protease to form a biologically active molecule, F1,F2. Cleavage of F protein is a prerequisite for fusion and virus infectivity. Cleavage creates a new N terminus on F1 that contains a hydrophobic region, known as the FP, which intercalates target membranes during F protein refolding. The crystal structure of the soluble ectodomain of the uncleaved form of PIV5 F is known; here we report the crystal structure of the cleavage-activated prefusion form of PIV5 F. The structure shows minimal movement of the residues adjacent to the protease cleavage site. Most of the hydrophobic FP residues are buried in the uncleaved F protein, and only F103 at the newly created N terminus becomes more solvent-accessible after cleavage. The conformational freedom of the charged arginine residues that compose the protease recognition site increases on cleavage of F protein.
Mechanism for controlling the monomer-dimer conversion of SARS coronavirus main protease.
Wu, Cheng Guo; Cheng, Shu Chun; Chen, Shiang Chuan; Li, Juo Yan; Fang, Yi Hsuan; Chen, Yau Hung; Chou, Chi Yuan
2013-05-01
The Severe acute respiratory syndrome coronavirus (SARS-CoV) main protease (M(pro)) cleaves two virion polyproteins (pp1a and pp1ab); this essential process represents an attractive target for the development of anti-SARS drugs. The functional unit of M(pro) is a homodimer and each subunit contains a His41/Cys145 catalytic dyad. Large amounts of biochemical and structural information are available on M(pro); nevertheless, the mechanism by which monomeric M(pro) is converted into a dimer during maturation still remains poorly understood. Previous studies have suggested that a C-terminal residue, Arg298, interacts with Ser123 of the other monomer in the dimer, and mutation of Arg298 results in a monomeric structure with a collapsed substrate-binding pocket. Interestingly, the R298A mutant of M(pro) shows a reversible substrate-induced dimerization that is essential for catalysis. Here, the conformational change that occurs during substrate-induced dimerization is delineated by X-ray crystallography. A dimer with a mutual orientation of the monomers that differs from that of the wild-type protease is present in the asymmetric unit. The presence of a complete substrate-binding pocket and oxyanion hole in both protomers suggests that they are both catalytically active, while the two domain IIIs show minor reorganization. This structural information offers valuable insights into the molecular mechanism associated with substrate-induced dimerization and has important implications with respect to the maturation of the enzyme.
Inhibitor Bound Dengue NS2B-NS3pro Reveals Multiple Dynamic Binding Modes.
Gibbs, Alan C; Steele, Ruth; Liu, Gaohua; Tounge, Brett A; Montelione, Gaetano T
2018-03-13
Dengue virus poses a significant global health threat as the source of increasingly deleterious dengue fever, dengue hemorrhagic fever, and dengue shock syndrome. As no specific antiviral treatment exists for dengue infection, considerable effort is being applied to discover therapies and drugs for maintenance and prevention of these afflictions. The virus is primarily transmitted by mosquitoes, and infection occurs following viral endocytosis by host cells. Upon entering the cell, viral RNA is translated into a large multisubunit polyprotein which is post-translationally cleaved into mature, structural and nonstructural (NS) proteins. The viral genome encodes the enzyme to carry out cleavage of the large polyprotein, specifically the NS2B-NS3pro cofactor-protease complex-a target of high interest for drug design. One class of recently discovered NS2B-NS3pro inhibitors is the substrate-based trifluoromethyl ketone containing peptides. These compounds interact covalently with the active site Ser135 via a hemiketal adduct. A detailed picture of the intermolecular protease/inhibitor interactions of the hemiketal adduct is crucial for rational drug design. We demonstrate, through the use of protein- and ligand-detected solution-state 19 F and 1 H NMR methods, an unanticipated multibinding mode behavior of a representative of this class of inhibitors to dengue NS2B-NS3pro. Our results illustrate the highly dynamic nature of both the covalently bound ligand and protease protein structure, and the need to consider these dynamics when designing future inhibitors in this class.
Structure of the cleavage-activated prefusion form of the parainfluenza virus 5 fusion protein
Welch, Brett D.; Liu, Yuanyuan; Kors, Christopher A.; Leser, George P.; Jardetzky, Theodore S.; Lamb, Robert A.
2012-01-01
The paramyxovirus parainfluenza virus 5 (PIV5) enters cells by fusion of the viral envelope with the plasma membrane through the concerted action of the fusion (F) protein and the receptor binding protein hemagglutinin-neuraminidase. The F protein folds initially to form a trimeric metastable prefusion form that is triggered to undergo large-scale irreversible conformational changes to form the trimeric postfusion conformation. It is thought that F refolding couples the energy released with membrane fusion. The F protein is synthesized as a precursor (F0) that must be cleaved by a host protease to form a biologically active molecule, F1,F2. Cleavage of F protein is a prerequisite for fusion and virus infectivity. Cleavage creates a new N terminus on F1 that contains a hydrophobic region, known as the FP, which intercalates target membranes during F protein refolding. The crystal structure of the soluble ectodomain of the uncleaved form of PIV5 F is known; here we report the crystal structure of the cleavage-activated prefusion form of PIV5 F. The structure shows minimal movement of the residues adjacent to the protease cleavage site. Most of the hydrophobic FP residues are buried in the uncleaved F protein, and only F103 at the newly created N terminus becomes more solvent-accessible after cleavage. The conformational freedom of the charged arginine residues that compose the protease recognition site increases on cleavage of F protein. PMID:23012473
Mycobacterium tuberculosis Hip1 modulates macrophage responses through proteolysis of GroEL2.
Naffin-Olivos, Jacqueline L; Georgieva, Maria; Goldfarb, Nathan; Madan-Lala, Ranjna; Dong, Lauren; Bizzell, Erica; Valinetz, Ethan; Brandt, Gabriel S; Yu, Sarah; Shabashvili, Daniil E; Ringe, Dagmar; Dunn, Ben M; Petsko, Gregory A; Rengarajan, Jyothi
2014-05-01
Mycobacterium tuberculosis (Mtb) employs multiple strategies to evade host immune responses and persist within macrophages. We have previously shown that the cell envelope-associated Mtb serine hydrolase, Hip1, prevents robust macrophage activation and dampens host pro-inflammatory responses, allowing Mtb to delay immune detection and accelerate disease progression. We now provide key mechanistic insights into the molecular and biochemical basis of Hip1 function. We establish that Hip1 is a serine protease with activity against protein and peptide substrates. Further, we show that the Mtb GroEL2 protein is a direct substrate of Hip1 protease activity. Cleavage of GroEL2 is specifically inhibited by serine protease inhibitors. We mapped the cleavage site within the N-terminus of GroEL2 and confirmed that this site is required for proteolysis of GroEL2 during Mtb growth. Interestingly, we discovered that Hip1-mediated cleavage of GroEL2 converts the protein from a multimeric to a monomeric form. Moreover, ectopic expression of cleaved GroEL2 monomers into the hip1 mutant complemented the hyperinflammatory phenotype of the hip1 mutant and restored wild type levels of cytokine responses in infected macrophages. Our studies point to Hip1-dependent proteolysis as a novel regulatory mechanism that helps Mtb respond rapidly to changing host immune environments during infection. These findings position Hip1 as an attractive target for inhibition for developing immunomodulatory therapeutics against Mtb.
Mycobacterium tuberculosis Hip1 Modulates Macrophage Responses through Proteolysis of GroEL2
Madan-Lala, Ranjna; Dong, Lauren; Bizzell, Erica; Valinetz, Ethan; Brandt, Gabriel S.; Yu, Sarah; Shabashvili, Daniil E.; Ringe, Dagmar; Dunn, Ben M.; Petsko, Gregory A.; Rengarajan, Jyothi
2014-01-01
Mycobacterium tuberculosis (Mtb) employs multiple strategies to evade host immune responses and persist within macrophages. We have previously shown that the cell envelope-associated Mtb serine hydrolase, Hip1, prevents robust macrophage activation and dampens host pro-inflammatory responses, allowing Mtb to delay immune detection and accelerate disease progression. We now provide key mechanistic insights into the molecular and biochemical basis of Hip1 function. We establish that Hip1 is a serine protease with activity against protein and peptide substrates. Further, we show that the Mtb GroEL2 protein is a direct substrate of Hip1 protease activity. Cleavage of GroEL2 is specifically inhibited by serine protease inhibitors. We mapped the cleavage site within the N-terminus of GroEL2 and confirmed that this site is required for proteolysis of GroEL2 during Mtb growth. Interestingly, we discovered that Hip1-mediated cleavage of GroEL2 converts the protein from a multimeric to a monomeric form. Moreover, ectopic expression of cleaved GroEL2 monomers into the hip1 mutant complemented the hyperinflammatory phenotype of the hip1 mutant and restored wild type levels of cytokine responses in infected macrophages. Our studies point to Hip1-dependent proteolysis as a novel regulatory mechanism that helps Mtb respond rapidly to changing host immune environments during infection. These findings position Hip1 as an attractive target for inhibition for developing immunomodulatory therapeutics against Mtb. PMID:24830429
Lei, Jennifer; Priddy, Lauren B.; Lim, Jeremy J.; Massee, Michelle; Koob, Thomas J.
2017-01-01
Objective: The use of bioactive extracellular matrix (ECM) grafts such as amniotic membranes is an attractive treatment option for enhancing wound repair. In this study, the concentrations, activity, and distribution of matrix components, growth factors, proteases, and inhibitors were evaluated in PURION® Processed, micronized, dehydrated human amnion/chorion membrane (dHACM; MiMedx Group, Inc.). Approach: ECM components in dHACM tissue were assessed by using immunohistochemical staining, and growth factors, cytokines, proteases, and inhibitors were quantified by using single and multiplex ELISAs. The activities of proteases that were native to the tissue were determined via gelatin zymography and EnzChek® activity assay. Results: dHACM tissue contained the ECM components collagens I and IV, hyaluronic acid, heparin sulfate proteoglycans, fibronectin, and laminin. In addition, numerous growth factors, cytokines, chemokines, proteases, and protease inhibitors that are known to play a role in the wound-healing process were quantified in dHACM. Though matrix metalloproteinases (MMPs) were present in dHACM tissues, inhibitors of MMPs overwhelmingly outnumbered the MMP enzymes by an overall molar ratio of 28:1. Protease activity assays revealed that the MMPs in the tissue existed primarily either in their latent form or complexed with inhibitors. Innovation: This is the first study to characterize components that function in wound healing, including inhibitor and protease content and activity, in micronized dHACM. Conclusion: A variety of matrix components and growth factors, as well as proteases and their inhibitors, were identified in micronized dHACM, providing a better understanding of how micronized dHACM tissue can be used to effectively promote wound repair. PMID:28224047
Lei, Jennifer; Priddy, Lauren B; Lim, Jeremy J; Massee, Michelle; Koob, Thomas J
2017-02-01
Objective: The use of bioactive extracellular matrix (ECM) grafts such as amniotic membranes is an attractive treatment option for enhancing wound repair. In this study, the concentrations, activity, and distribution of matrix components, growth factors, proteases, and inhibitors were evaluated in PURION ® Processed, micronized, dehydrated human amnion/chorion membrane (dHACM; MiMedx Group, Inc.). Approach: ECM components in dHACM tissue were assessed by using immunohistochemical staining, and growth factors, cytokines, proteases, and inhibitors were quantified by using single and multiplex ELISAs. The activities of proteases that were native to the tissue were determined via gelatin zymography and EnzChek ® activity assay. Results: dHACM tissue contained the ECM components collagens I and IV, hyaluronic acid, heparin sulfate proteoglycans, fibronectin, and laminin. In addition, numerous growth factors, cytokines, chemokines, proteases, and protease inhibitors that are known to play a role in the wound-healing process were quantified in dHACM. Though matrix metalloproteinases (MMPs) were present in dHACM tissues, inhibitors of MMPs overwhelmingly outnumbered the MMP enzymes by an overall molar ratio of 28:1. Protease activity assays revealed that the MMPs in the tissue existed primarily either in their latent form or complexed with inhibitors. Innovation: This is the first study to characterize components that function in wound healing, including inhibitor and protease content and activity, in micronized dHACM. Conclusion: A variety of matrix components and growth factors, as well as proteases and their inhibitors, were identified in micronized dHACM, providing a better understanding of how micronized dHACM tissue can be used to effectively promote wound repair.
Rothan, Hussin A; Mohamed, Zulqarnain; Suhaeb, Abdulrazzaq M; Rahman, Noorsaadah Abd; Yusof, Rohana
2013-11-01
Dengue virus infects millions of people worldwide, and there is no vaccine or anti-dengue therapeutic available. Antimicrobial peptides have been shown to possess effective antiviral activity against various viruses. One of the main limitations of developing these peptides as potent antiviral drugs is the high cost of production. In this study, high yield production of biologically active plectasin peptide was inexpensively achieved by producing tandem plectasin peptides as inclusion bodies in E. coli. Antiviral activity of the recombinant peptide towards dengue serotype-2 NS2B-NS3 protease (DENV2 NS2B-NS3pro) was assessed as a target to inhibit dengue virus replication in Vero cells. Single units of recombinant plectasin were collected after applying consecutive steps of refolding, cleaving by Factor Xa, and nickel column purification to obtain recombinant proteins of high purity. The maximal nontoxic dose (MNTD) of the recombinant peptide against Vero cells was 20 μM (100 μg/mL). The reaction velocity of DENV2 NS2B-NS3pro decreased significantly after increasing concentrations of recombinant plectasin were applied to the reaction mixture. Plectasin peptide noncompetitively inhibited DENV2 NS2B-NS3pro at Ki value of 5.03 ± 0.98 μM. The percentage of viral inhibition was more than 80% at the MNTD value of plectasin. In this study, biologically active recombinant plectasin which was able to inhibit dengue protease and viral replication in Vero cells was successfully produced in E. coli in a time- and cost- effective method. These findings are potentially important in the development of potent therapeutics against dengue infection.
Mohamed, Zulqarnain; Suhaeb, Abdulrazzaq M.; Rahman, Noorsaadah Abd; Yusof, Rohana
2013-01-01
Abstract Dengue virus infects millions of people worldwide, and there is no vaccine or anti-dengue therapeutic available. Antimicrobial peptides have been shown to possess effective antiviral activity against various viruses. One of the main limitations of developing these peptides as potent antiviral drugs is the high cost of production. In this study, high yield production of biologically active plectasin peptide was inexpensively achieved by producing tandem plectasin peptides as inclusion bodies in E. coli. Antiviral activity of the recombinant peptide towards dengue serotype-2 NS2B-NS3 protease (DENV2 NS2B-NS3pro) was assessed as a target to inhibit dengue virus replication in Vero cells. Single units of recombinant plectasin were collected after applying consecutive steps of refolding, cleaving by Factor Xa, and nickel column purification to obtain recombinant proteins of high purity. The maximal nontoxic dose (MNTD) of the recombinant peptide against Vero cells was 20 μM (100 μg/mL). The reaction velocity of DENV2 NS2B-NS3pro decreased significantly after increasing concentrations of recombinant plectasin were applied to the reaction mixture. Plectasin peptide noncompetitively inhibited DENV2 NS2B-NS3pro at Ki value of 5.03±0.98 μM. The percentage of viral inhibition was more than 80% at the MNTD value of plectasin. In this study, biologically active recombinant plectasin which was able to inhibit dengue protease and viral replication in Vero cells was successfully produced in E. coli in a time- and cost- effective method. These findings are potentially important in the development of potent therapeutics against dengue infection. PMID:24044366
Dille, Stephanie; Kleinschnitz, Eva-Maria; Kontchou, Collins Waguia; Nölke, Thilo
2015-01-01
The Chlamydiales are an order of obligate intracellular bacteria sharing a developmental cycle inside a cytosolic vacuole, with very diverse natural hosts, from amoebae to mammals. The clinically most important species is Chlamydia trachomatis. Many uncertainties remain as to how Chlamydia organizes its intracellular development and replication. The discovery of new Chlamydiales species from other families permits the comparative analysis of cell-biological events and may indicate events that are common to all or peculiar to some species and more or less tightly linked to “chlamydial” development. We used this approach in the infection of human cells with Waddlia chondrophila, a species from the family Waddliaceae whose natural host is uncertain. Compared to C. trachomatis, W. chondrophila had slightly different growth characteristics, including faster cytotoxicity. The embedding in cytoskeletal structures was not as pronounced as for the C. trachomatis inclusion. C. trachomatis infection generates proteolytic activity by the protease Chlamydia protease-like activity factor (CPAF), which degrades host substrates upon extraction; these substrates were not cleaved in the case of W. chondrophila. Unlike Chlamydia, W. chondrophila did not protect against staurosporine-induced apoptosis. C. trachomatis infection causes Golgi apparatus fragmentation and redirects post-Golgi sphingomyelin transport to the inclusion; both were absent from W. chondrophila-infected cells. When host cells were infected with both species, growth of both species was reduced. This study highlights differences between bacterial species that both depend on obligate intracellular replication inside an inclusion. Some features seem principally dispensable for intracellular development of Chlamydiales in vitro but may be linked to host adaptation of Chlamydia and the higher virulence of C. trachomatis. PMID:26056386
Phillips, Jonathan E.; Gomer, Richard H.
2015-01-01
Neuronal ceroid lipofuscinosis (NCL) is the most common childhood-onset neurodegenerative disease. NCL is inevitably fatal, and there is currently no treatment available. Children with NCL show a progressive decline in movement, vision and mental abilities, and an accumulation of autofluorescent deposits in neurons and other cell types. Late-infantile NCL is caused by mutations in the lysosomal protease tripeptidyl peptidase 1 (TPP1). TPP1 cleaves tripeptides from the N-terminus of proteins in vitro, but little is known about the physiological function of TPP1. TPP1 shows wide conservation in vertebrates but it is not found in Drosophila, Caenorhabditis elegans or Saccharomyces cerevisiae. Here, we characterize ddTpp1, a TPP1 ortholog present in the social amoeba Dictyostelium discoideum. Lysates from cells lacking ddTpp1 show a reduced but not abolished ability to cleave a TPP1 substrate, suggesting that other Dictyostelium enzymes can perform this cleavage. ddTpp1 and human TPP1 localize to the lysosome in Dictyostelium, indicating conserved function and trafficking. Cells that lack ddTpp1 show precocious multicellular development and a reduced ability to form spores during development. When cultured in autophagy-stimulating conditions, cells lacking ddTpp1 rapidly decrease in size and are less viable than wild-type cells, suggesting that one function of ddTpp1 could be to limit autophagy. Cells that lack ddTpp1 exhibit strongly impaired development in the presence of the lysosome-perturbing drug chloroquine, and this phenotype can be suppressed through a secondary mutation in the gene that we name suppressor of tpp1− A (stpA), which encodes a protein with some similarity to mammalian oxysterol-binding proteins (OSBPs). Taken together, these results suggest that targeting specific proteins could be a viable way to suppress the effects of loss of TPP1 function. PMID:25540127
Vergis, James M.; Wiener, Michael C.
2011-01-01
Recombinant proteins typically include one or more affinity tags to facilitate purification and/or detection. Expression constructs with affinity tags often include an engineered protease site for tag removal. Like other enzymes, the activities of proteases can be affected by buffer conditions. The buffers used for integral membrane proteins contain detergents, which are required to maintain protein solubility. We examined the detergent sensitivity of six commonly-used proteases (Enterokinase, Factor Xa, Human Rhinovirus 3C Protease, SUMOstar, Tobacco Etch Virus Protease, and Thrombin) by use of a panel of ninety-four individual detergents. Thrombin activity was insensitive to the entire panel of detergents, thus suggesting it as the optimal choice for use with membrane proteins. Enterokinase and Factor Xa were only affected by a small number of detergents, making them good choices as well. PMID:21539919
The flavivirus NS2B-NS3 protease-helicase as a target for antiviral drug development.
Luo, Dahai; Vasudevan, Subhash G; Lescar, Julien
2015-06-01
The flavivirus NS3 protein is associated with the endoplasmic reticulum membrane via its close interaction with the central hydrophilic region of the NS2B integral membrane protein. The multiple roles played by the NS2B-NS3 protein in the virus life cycle makes it an attractive target for antiviral drug discovery. The N-terminal region of NS3 and its cofactor NS2B constitute the protease that cleaves the viral polyprotein. The NS3 C-terminal domain possesses RNA helicase, nucleoside and RNA triphosphatase activities and is involved both in viral RNA replication and virus particle formation. In addition, NS2B-NS3 serves as a hub for the assembly of the flavivirus replication complex and also modulates viral pathogenesis and the host immune response. Here, we review biochemical and structural advances on the NS2B-NS3 protein, including the network of interactions it forms with NS5 and NS4B and highlight recent drug development efforts targeting this protein. This article forms part of a symposium in Antiviral Research on flavivirus drug discovery. Copyright © 2015 Elsevier B.V. All rights reserved.
Aberrant proteolytic processing and therapeutic strategies in Alzheimer disease.
Tomita, Taisuke
2017-05-01
Amyloid-β peptide (Aβ) and tau are major components of senile plaques and neurofibrillary tangles, respectively, deposited in the brains of Alzheimer disease (AD) patients. Aβ is derived from amyloid-β precursor protein that is sequentially cleaved by two aspartate proteases, β- and γ-secretases. Secreted Aβ is then catabolized by several proteases. Several lines of evidence suggest that accumulation of Aβ by increased production or decreased degradation induces the tau-mediated neuronal toxicity and symptomatic manifestations of AD. Thus, the dynamics of cerebral Aβ, called as "Aβ economy", would be the mechanistic basis of AD pathogenesis. Partial loss of γ-secretase activity leads to the increased generation of toxic Aβ isoforms, indicating that activation of γ-secretase would provide a beneficial effect for AD. After extensive discovery and development efforts, BACE1, which is a β-secretase enzyme, has emerged as a prime drug target for lowering brain Aβ levels. Recent studies revealed the decreased clearance of Aβ in sporadic AD patients, suggesting the importance of the catabolic mechanism in the pathogenesis of AD. I will discuss with these proteolytic mechanisms involved in the regulation of Aβ economy, and development of effective treatment and diagnostics for AD. Copyright © 2017 Elsevier Ltd. All rights reserved.
Allosteric regulation of rhomboid intramembrane proteolysis.
Arutyunova, Elena; Panwar, Pankaj; Skiba, Pauline M; Gale, Nicola; Mak, Michelle W; Lemieux, M Joanne
2014-09-01
Proteolysis within the lipid bilayer is poorly understood, in particular the regulation of substrate cleavage. Rhomboids are a family of ubiquitous intramembrane serine proteases that harbour a buried active site and are known to cleave transmembrane substrates with broad specificity. In vitro gel and Förster resonance energy transfer (FRET)-based kinetic assays were developed to analyse cleavage of the transmembrane substrate psTatA (TatA from Providencia stuartii). We demonstrate significant differences in catalytic efficiency (kcat/K0.5) values for transmembrane substrate psTatA (TatA from Providencia stuartii) cleavage for three rhomboids: AarA from P. stuartii, ecGlpG from Escherichia coli and hiGlpG from Haemophilus influenzae demonstrating that rhomboids specifically recognize this substrate. Furthermore, binding of psTatA occurs with positive cooperativity. Competitive binding studies reveal an exosite-mediated mode of substrate binding, indicating allostery plays a role in substrate catalysis. We reveal that exosite formation is dependent on the oligomeric state of rhomboids, and when dimers are dissociated, allosteric substrate activation is not observed. We present a novel mechanism for specific substrate cleavage involving several dynamic processes including positive cooperativity and homotropic allostery for this interesting class of intramembrane proteases. © 2014 The Authors.
Allosteric regulation of rhomboid intramembrane proteolysis
Arutyunova, Elena; Panwar, Pankaj; Skiba, Pauline M; Gale, Nicola; Mak, Michelle W; Lemieux, M Joanne
2014-01-01
Proteolysis within the lipid bilayer is poorly understood, in particular the regulation of substrate cleavage. Rhomboids are a family of ubiquitous intramembrane serine proteases that harbour a buried active site and are known to cleave transmembrane substrates with broad specificity. In vitro gel and Förster resonance energy transfer (FRET)-based kinetic assays were developed to analyse cleavage of the transmembrane substrate psTatA (TatA from Providencia stuartii). We demonstrate significant differences in catalytic efficiency (kcat/K0.5) values for transmembrane substrate psTatA (TatA from Providencia stuartii) cleavage for three rhomboids: AarA from P. stuartii, ecGlpG from Escherichia coli and hiGlpG from Haemophilus influenzae demonstrating that rhomboids specifically recognize this substrate. Furthermore, binding of psTatA occurs with positive cooperativity. Competitive binding studies reveal an exosite-mediated mode of substrate binding, indicating allostery plays a role in substrate catalysis. We reveal that exosite formation is dependent on the oligomeric state of rhomboids, and when dimers are dissociated, allosteric substrate activation is not observed. We present a novel mechanism for specific substrate cleavage involving several dynamic processes including positive cooperativity and homotropic allostery for this interesting class of intramembrane proteases. PMID:25009246
Mechanism of Peptide Binding and Cleavage by the Human Mitochondrial Peptidase Neurolysin.
Teixeira, Pedro F; Masuyer, Geoffrey; Pinho, Catarina M; Branca, Rui M M; Kmiec, Beata; Wallin, Cecilia; Wärmländer, Sebastian K T S; Berntsson, Ronnie P-A; Ankarcrona, Maria; Gräslund, Astrid; Lehtiö, Janne; Stenmark, Pål; Glaser, Elzbieta
2018-02-02
Proteolysis plays an important role in mitochondrial biogenesis, from the processing of newly imported precursor proteins to the degradation of mitochondrial targeting peptides. Disruption of peptide degradation activity in yeast, plant and mammalian mitochondria is known to have deleterious consequences for organism physiology, highlighting the important role of mitochondrial peptidases. In the present work, we show that the human mitochondrial peptidase neurolysin (hNLN) can degrade mitochondrial presequence peptides as well as other fragments up to 19 amino acids long. The crystal structure of hNLN E475Q in complex with the products of neurotensin cleavage at 2.7Å revealed a closed conformation with an internal cavity that restricts substrate length and highlighted the mechanism of enzyme opening/closing that is necessary for substrate binding and catalytic activity. Analysis of peptide degradation in vitro showed that hNLN cooperates with presequence protease (PreP or PITRM1) in the degradation of long targeting peptides and amyloid-β peptide, Aβ1-40, associated with Alzheimer disease, particularly cleaving the hydrophobic fragment Aβ35-40. These findings suggest that a network of proteases may be required for complete degradation of peptides localized in mitochondria. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bromelain treatment reduces CD25 expression on activated CD4+ T cells in vitro✩
Secor, Eric R.; Singh, Anurag; Guernsey, Linda A.; McNamara, Jeff T.; Zhan, Lijun; Maulik, Nilanjana; Thrall, Roger S.
2009-01-01
Bromelain (Br), an extract from pineapple stem with cysteine protease activity, exerts anti-inflammatory effects in a number of inflammatory models. We have previously shown that Br treatment decreased activated CD4+ T cells and has a therapeutic role in an ovalbumin-induced murine model of allergic airway disease. The current study was designed to determine the effect of Br on CD4+ T cell activation, specifically the expression of CD25 in vitro. CD25 is up regulated upon T cell activation, found as a soluble fraction (sCD25) and is a therapeutic target in inflammation, autoimmunity and allergy. Br treatment of anti-CD3 stimulated CD4+ T cells reduced CD25 expression in a dose and time dependent manner. This reduction of CD25 was dependent on the proteolytic action of Br as the addition of E64 (a cysteine protease inhibitor) abrogated this response. The concentration of sCD25 was increased in supernatants of Br treated activated CD4+ T cells as compared to control cells, suggesting that Br proteolytically cleaved cell-surface CD25. This novel mechanism of action identifies how Br may exert its therapeutic benefits in inflammatory conditions. PMID:19162239
Moser, M; Menz, G; Blaser, K; Crameri, R
1994-01-01
A 32-kDa nonglycosylated alkaline protease (EC 3.4.1.14) with elastolytic activity, secreted by the opportunistic pathogen Aspergillus fumigatus ATCC 42202, is suggested to be a virulence factor of this fungus. The enzyme is a serine protease of the subtilisin family, and its cDNA nucleotide sequence has recently been reported. We have cloned the cDNA encoding the mature protease into a high-level Escherichia coli expression plasmid and produced the recombinant protease as a fusion protein with a six-adjacent-histidine affinity tag at the carboxy terminus. Subsequently, the recombinant protease was purified to homogeneity, with affinity chromatography yielding 30 to 40 mg of recombinant protease per liter of E. coli culture. Refolded recombinant protease, in comparison with native protease, demonstrated weak enzymatic activity but similar immunochemical characteristics as analyzed by antigen-specific enzyme-linked immunosorbent assay (ELISA), competition ELISA, and immunoblotting assays. To assess the allergenic potential of the protease, sera from patients with allergic bronchopulmonary aspergillosis and sera from healthy control individuals were analyzed by ELISA and immunoblotting techniques. Sera from patients with allergic bronchopulmonary aspergillosis did not have protease-specific immunoglobulin E (IgE) antibodies and, remarkably, did not show significantly elevated protease-specific IgG antibody levels compared with those in sera from healthy control individuals. This suggests that the alkaline protease from A. fumigatus does not elicit IgE antibodies and has weak immunogenicity, a property which may explain fungus persistence in allergic individuals. Images PMID:8112866
Predictive model of thrombospondin-1 and vascular endothelial growth factor in breast tumor tissue.
Rohrs, Jennifer A; Sulistio, Christopher D; Finley, Stacey D
2016-01-01
Angiogenesis, the formation of new blood capillaries from pre-existing vessels, is a hallmark of cancer. Thus far, strategies for reducing tumor angiogenesis have focused on inhibiting pro-angiogenic factors, while less is known about the therapeutic effects of mimicking the actions of angiogenesis inhibitors. Thrombospondin-1 (TSP1) is an important endogenous inhibitor of angiogenesis that has been investigated as an anti-angiogenic agent. TSP1 impedes the growth of new blood vessels in many ways, including crosstalk with pro-angiogenic factors. Due to the complexity of TSP1 signaling, a predictive systems biology model would provide quantitative understanding of the angiogenic balance in tumor tissue. Therefore, we have developed a molecular-detailed, mechanistic model of TSP1 and vascular endothelial growth factor (VEGF), a promoter of angiogenesis, in breast tumor tissue. The model predicts the distribution of the angiogenic factors in tumor tissue, revealing that TSP1 is primarily in an inactive, cleaved form due to the action of proteases, rather than bound to its cellular receptors or to VEGF. The model also predicts the effects of enhancing TSP1's interactions with its receptors and with VEGF. To provide additional predictions that can guide the development of new anti-angiogenic drugs, we simulate administration of exogenous TSP1 mimetics that bind specific targets. The model predicts that the CD47-binding TSP1 mimetic dramatically decreases the ratio of receptor-bound VEGF to receptor-bound TSP1, in favor of anti-angiogenesis. Thus, we have established a model that provides a quantitative framework to study the response to TSP1 mimetics.
Co-evolution of insect proteases and plant protease inhibitors.
Jongsma, Maarten A; Beekwilder, Jules
2011-08-01
Plants are at the basis of the food chain, but there is no such thing as a "free lunch" for herbivores. To promote reproductive success, plants evolved multi-layered defensive tactics to avoid or discourage herbivory. To the detriment of plants, herbivores, in turn, evolved intricate strategies to find, eat, and successfully digest essential plant parts to raise their own offspring. In this battle the digestive tract is the arena determining final victory or defeat as measured by growth or starvation of the herbivore. Earlier, specific molecular opponents were identified as proteases and inhibitors: digestive proteases of herbivores evolved structural motifs to occlude plant protease inhibitors, or alternatively, the insects evolved proteases capable of specifically degrading the host plant inhibitors. In response plant inhibitors evolved hyper-variable and novel protein folds to remain active against potential herbivores. At the level of protease regulation in herbivorous insects, it was shown that inhibition-insensitive digestive proteases are up-regulated when sensitive proteases are inhibited. The way this regulation operates in mammals is known as negative feedback by gut-luminal factors, so-called 'monitor peptides' that are sensitive to the concentration of active enzymes. We propose that regulation of gut enzymes by endogenous luminal factors has been an open invitation to plants to "hijack" this regulation by evolving receptor antagonists, although yet these plant factors have not been identified. In future research the question of the co-evolution of insect proteases and plant inhibitors should, therefore, be better approached from a systems level keeping in mind that evolution is fundamentally opportunistic and that the plant's fitness is primarily improved by lowering the availability of essential amino acids to an herbivore by any available mechanism.
Forage polyphenol oxidase and ruminant livestock nutrition
Lee, Michael R. F.
2014-01-01
Polyphenol oxidase (PPO) is predominately associated with the detrimental effect of browning fruit and vegetables, however, interest within PPO containing forage crops (crops to be fed to animals) has grown since the browning reaction was associated with reduced nitrogen (N) losses in silo and the rumen. The reduction in protein breakdown in silo of red clover (high PPO forage) increased the quality of protein, improving N-use efficiency [feed N into product N (e.g., Milk): NUE] when fed to ruminants. A further benefit of red clover silage feeding is a significant reduction in lipolysis (cleaving of glycerol-based lipid) in silo and an increase in the deposition of beneficial C18 polyunsaturated fatty acid (PUFA) in animal products, which has also been linked to PPO activity. PPOs protection of plant protein and glycerol based-PUFA in silo is related to the deactivation of plant proteases and lipases. This deactivation occurs through PPO catalyzing the conversion of diphenols to quinones which bind with cellular nucleophiles such as protein reforming a protein-bound phenol (PBP). If the protein is an enzyme (e.g., protease or lipase) the complexing denatures the enzyme. However, PPO is inactive in the anaerobic rumen and therefore any subsequent protection of plant protein and glycerol based-PUFA in the rumen must be as a result of events that occurred to the forage pre-ingestion. Reduced activity of plant proteases and lipases would have little effect on NUE and glycerol based-PUFA in the rumen due to the greater concentration of rumen microbial proteases and lipases. The mechanism for PPOs protection of plant protein in the rumen is a consequence of complexing plant protein, rather than protease deactivation per se. These complexed proteins reduce protein digestibility in the rumen and subsequently increase undegraded dietary protein flow to the small intestine. The mechanism for protecting glycerol-based PUFA has yet to be fully elucidated but may be associated with entrapment within PBP reducing access to microbial lipases or differences in rumen digestion kinetics of the forage and therefore not related to PPO activity. PMID:25538724
Proteases Revisited: Roles and Therapeutic Implications in Fibrosis
Kryczka, Jakub
2017-01-01
Proteases target many substrates, triggering changes in distinct biological processes correlated with cell migration, EMT/EndMT and fibrosis. Extracellular protease activity, demonstrated by secreted and membrane-bound protease forms, leads to ECM degradation, activation of other proteases (i.e., proteolysis of nonactive zymogens), decomposition of cell-cell junctions, release of sequestered growth factors (TGF-β and VEGF), activation of signal proteins and receptors, degradation of inflammatory inhibitors or inflammation-related proteins, and changes in cell mechanosensing and motility. Intracellular proteases, mainly caspases and cathepsins, modulate lysosome activity and signal transduction pathways. Herein, we discuss the current knowledge on the multidimensional impact of proteases on the development of fibrosis. PMID:28642633
Lipid Rafts Act as Specialized Domains for Tetanus Toxin Binding and Internalization into Neurons
Herreros, Judit; Ng, Tony; Schiavo, Giampietro
2001-01-01
Tetanus (TeNT) is a zinc protease that blocks neurotransmission by cleaving the synaptic protein vesicle-associated membrane protein/synaptobrevin. Although its intracellular catalytic activity is well established, the mechanism by which this neurotoxin interacts with the neuronal surface is not known. In this study, we characterize p15s, the first plasma membrane TeNT binding proteins and we show that they are glycosylphosphatidylinositol-anchored glycoproteins in nerve growth factor (NGF)-differentiated PC12 cells, spinal cord cells, and purified motor neurons. We identify p15 as neuronal Thy-1 in NGF-differentiated PC12 cells. Fluorescence lifetime imaging microscopy measurements confirm the close association of the binding domain of TeNT and Thy-1 at the plasma membrane. We find that TeNT is recruited to detergent-insoluble lipid microdomains on the surface of neuronal cells. Finally, we show that cholesterol depletion affects a raft subpool and blocks the internalization and intracellular activity of the toxin. Our results indicate that TeNT interacts with target cells by binding to lipid rafts and that cholesterol is required for TeNT internalization and/or trafficking in neurons. PMID:11598183
Review article: anti-inflammatory mechanisms of action of Saccharomyces boulardii.
Pothoulakis, C
2009-10-15
Saccharomyces boulardii, a well-studied probiotic, can be effective in inflammatory gastrointestinal diseases with diverse pathophysiology, such as inflammatory bowel disease (IBD), and bacterially mediated or enterotoxin-mediated diarrhoea and inflammation. To discuss the mechanisms of action involved in the intestinal anti-inflammatory action of S. boulardii. Review of the literature related to the anti-inflammatory effects of this probiotic. Several mechanisms of action have been identified directed against the host and pathogenic microorganisms. S. boulardii and S. boulardii secreted-protein(s) inhibit production of proinflammatory cytokines by interfering with the global mediator of inflammation nuclear factor kappaB, and modulating the activity of the mitogen-activated protein kinases ERK1/2 and p38. S. boulardii activates expression of peroxisome proliferator-activated receptor-gamma (PPAR-gamma) that protects from gut inflammation and IBD. S. boulardii also suppresses 'bacteria overgrowth' and host cell adherence, releases a protease that cleaves C. difficile toxin A and its intestinal receptor and stimulates antibody production against toxin A. Recent results indicate that S. boulardii may interfere with IBD pathogenesis by trapping T cells in mesenteric lymph nodes. The multiple anti-inflammatory mechanisms exerted by S. boulardii provide molecular explanations supporting its effectiveness in intestinal inflammatory states.
Torktaz, Ibrahim; Mohamadhashem, Faezeh; Esmaeili, Abolghasem; Behjati, Mohaddeseh; Sharifzadeh, Sara
2013-01-01
Introduction: Metastasis is a crucial aspect of cancer. Macrophage stimulating protein (MSP) is a single chain protein and can be cleaved by serum proteases. MSP has several roles in metastasis. In this in silico study, MSP as a metastatic agent was considered as a drug target. Methods: Crystallographic structure of MSP was retrieved from protein data bank. To find a chemical inhibitor of MSP, a library of KEGG compounds was screened and 1000 shape complemented ligands were retrieved with FindSite algorithm. Molegro Virtual Docker (MVD) software was used for docking simulation of shape complemented ligands against MSP. Moldock score was used as scoring function for virtual screening and potential inhibitors with more negative binding energy were obtained. PLANS scoring function was used for revaluation of virtual screening data. Results: The top found chemical had binding affinity of -183.55 based on MolDock score and equal to -66.733 PLANTs score to MSP structure. Conclusion: Based on pharmacophore model of potential inhibitor, this study suggests that the chemical which was found in this research and its derivate can be used for subsequent laboratory studies. PMID:24163807
Baum, A; Hansen, P W; Nørgaard, L; Sørensen, John; Mikkelsen, J D
2016-08-01
In this study, we introduce enzymatic perturbation combined with Fourier transform infrared (FTIR) spectroscopy as a concept for quantifying casein in subcritical heated skim milk using chemometric multiway analysis. Chymosin is a protease that cleaves specifically caseins. As a result of hydrolysis, all casein proteins clot to form a creamy precipitate, and whey proteins remain in the supernatant. We monitored the cheese-clotting reaction in real time using FTIR and analyzed the resulting evolution profiles to establish calibration models using parallel factor analysis and multiway partial least squares regression. Because we observed casein-specific kinetic changes, the retrieved models were independent of the chemical background matrix and were therefore robust against possible covariance effects. We tested the robustness of the models by spiking the milk solutions with whey, calcium, and cream. This method can be used at different stages in the dairy production chain to ensure the quality of the delivered milk. In particular, the cheese-making industry can benefit from such methods to optimize production control. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Clotting of mammalian fibrinogens by papain: a re-examination.
Doolittle, Russell F
2014-10-28
Papain has long been known to cause the gelation of mammalian fibrinogens. It has also been reported that papain-fibrin is insoluble in dispersing solvents like strong urea or sodium bromide solutions, similar to what is observed with thrombin-generated clots in the presence of factor XIIIa and calcium. In those old studies, both the gelation and subsequent clot stabilization were attributed to papain, although the possibility that the second step might be due to contaminating factor XIII in fibrinogen preparations was considered. I have revisited this problem in light of knowledge acquired over the past half-century about thiol proteases like papain, which mostly cleave peptide bonds, and transglutaminases like factor XIIIa that catalyze the formation of ε-lysyl-γ-glutamyl cross-links. Recombinant fibrinogen, inherently free of factor XIII and other plasma proteins, formed a stable gel when treated with papain alone. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that the intermolecular cross-linking in papain-fibrin leads to γ-chain dimers, trimers, and tetramers, just as is the case with thrombin-factor XIIIa-stabilized fibrin. Mass spectrometry of bands excised from gels showed that the cross-linked material is quite different from what occurs with factor XIIIa, however. With papain, the cross-linking occurs between γ chains in neighboring protofibrils becoming covalently linked in a "head-to-tail" fashion by a transpeptidation reaction involving the α-amino group of γ-Tyr1 and a papain cleavage site at γ-Gly403 near the carboxy terminus, rather than by the (reciprocal) "tail-to-tail" manner that occurs with factor XIIIa and that depends on cross-links between γ-Lys406 and γ-Gln398.
Le Goff, Arnaud; Ji, Zongling; Leclercq, Bérénice; Bourette, Roland P.; Mougel, Alexandra; Guerardel, Cateline; de Launoit, Yvan; Vicogne, Jérôme; Goormachtigh, Gautier; Fafeur, Véronique
2012-01-01
The GRB2-associated binder 1 (GAB1) docking/scaffold protein is a key mediator of the MET-tyrosine kinase receptor activated by hepatocyte growth factor/scatter factor (HGF/SF). Activated MET promotes recruitment and tyrosine phosphorylation of GAB1, which in turn recruits multiple proteins and mediates MET signaling leading to cell survival, motility, and morphogenesis. We previously reported that, without its ligand, MET is a functional caspase target during apoptosis, allowing the generation of a p40-MET fragment that amplifies apoptosis. In this study we established that GAB1 is also a functional caspase target by evidencing a caspase-cleaved p35-GAB1 fragment that contains the MET binding domain. GAB1 is cleaved by caspases before MET, and the resulting p35-GAB1 fragment is phosphorylated by MET upon HGF/SF binding and can interact with a subset of GAB1 partners, PI3K, and GRB2 but not with SHP2. This p35-GAB1 fragment favors cell survival by maintaining HGF/SF-induced MET activation of AKT and by hindering p40-MET pro-apoptotic function. These data demonstrate an anti-apoptotic role of caspase-cleaved GAB1 in HGF/SF-MET signaling. PMID:22915589
Targeting homeostasis in drug delivery using bioresponsive hydrogel microforms.
Wilson, A Nolan; Guiseppi-Elie, Anthony
2014-01-30
A drug delivery platform comprising a biocompatible, bioresponsive hydrogel and possessing a covalently tethered peptide-drug conjugate was engineered to achieve stasis, via a closed control loop, of the external biochemical activity of the actuating protease. The delivery platform contains a peptide-drug conjugate covalently tethered to the hydrogel matrix, which in the presence of the appropriate protease, was cleaved and the drug released into the bathing environment. This platform was developed and investigated in silico using a finite element modeling (FEM) approach. Firstly, the primary governing phenomena guiding drug release profiles were investigated, and it was confirmed that under transport-limited conditions, the diffusion of the enzyme within the hydrogel and the coupled enzyme kinetics accurately model the system and are in agreement with published results. Secondly, the FEM model was used to investigate the release of a competitive protease inhibitor, MAG283, via cleavage of Acetyl-Pro-Leu-Gly|Leu-MAG-283 by MMP9 in order to achieve targeted homeostasis of MMP-9 activity, such as in the pathophysiology of chronic wounds, via closed-loop feedback control. The key engineering parameters for the delivery device are the radii of the hydrogel microspheres and the concentration of the peptide-inhibitor conjugate. Homeostatic drug delivery, where the focus turns away from the drug release rate and turns toward achieving targeted control of biochemical activity within a biochemical pathway, is an emerging approach in drug delivery methodologies for which the potential has not yet been fully realized. Copyright © 2013 Elsevier B.V. All rights reserved.
Endoprotease profiling with double-tagged peptide substrates: a new diagnostic approach in oncology.
Peccerella, Teresa; Lukan, Nadine; Hofheinz, Ralf; Schadendorf, Dirk; Kostrezewa, Markus; Neumaier, Michael; Findeisen, Peter
2010-02-01
The measurement of disease-related proteolytic activity in complex biological matrices like serum is of emerging interest to improve the diagnosis of malignant diseases. We developed a mass spectrometry (MS)-based functional proteomic profiling approach that tracks degradation of artificial endoprotease substrates in serum specimens. The synthetic reporter peptides that are cleaved by tumor-associated endopeptidases were systematically optimized with regard to flanking affinity tags, linkers, and stabilizing elements. Serum specimens were incubated with reporter peptides under standardized conditions and the peptides subsequently extracted with affinity chromatography before MS. In a pilot study an optimized reporter peptide with the cleavage motif WKPYDAADL was added to serum specimens from colorectal tumor patients (n = 50) and healthy controls (n = 50). This reporter peptide comprised a known cleavage site for the cysteine-endopeptidase "cancer procoagulant." Serial affinity chromatography using biotin- and 6xHis tags was superior to the single affinity enrichment using only 6xHis tags. Furthermore, protease-resistant stop elements ensured signal accumulation after prolonged incubation. In contrast, signals from reporter peptides without stop elements vanished completely after prolonged incubation owing to their total degradation. Reporter-peptide spiking showed good reproducibility, and the difference in proteolytic activity between serum specimens from cancer patients and controls was highly significant (P < 0.001). The introduction of a few structural key elements (affinity tags, linkers, d-amino acids) into synthetic reporter peptides increases the diagnostic sensitivity for MS-based protease profiling of serum specimens. This new approach might lead to functional MS-based protease profiling for improved disease classification.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Partha, Sarathy K.; Ravulapalli, Ravikiran; Allingham, John S.
2014-08-21
Calpains are Ca 2+dependent intracellular cysteine proteases that cleave a wide range of protein substrates to help implement Ca 2+ signaling in the cell. The major isoforms of this enzyme family, calpain-1 and calpain-2, are heterodimers of a large and a small subunit, with the main dimer interface being formed through their C-terminal penta-EF hand (PEF) domains. Calpain-3, or p94, is a skeletal muscle-specific isoform that is genetically linked to limb-girdle muscular dystrophy. Biophysical and modeling studies with the PEF domain of calpain-3 support the suggestion that full-length calpain-3 exists as a homodimer. Here, we report the crystallization of calpain-3'smore » PEF domain and its crystal structure in the presence of Ca 2+, which provides evidence for the homodimer architecture of calpain-3 and supports the molecular model that places a protease core at either end of the elongated dimer. Unlike other calpain PEF domain structures, the calpain-3 PEF domain contains a Ca 2+ bound at the EF5-hand used for homodimer association. Three of the four Ca 2+-binding EF-hands of the PEF domains are concentrated near the protease core, and have the potential to radically change the local charge within the dimer during Ca 2+ signaling. Examination of the homodimer interface shows that there would be steric clashes if the calpain-3 large subunit were to try to pair with a calpain small subunit.« less
Enhanced enteroviral infectivity via viral protease-mediated cleavage of Grb2-associated binder 1
Deng, Haoyu; Fung, Gabriel; Shi, Junyan; Xu, Suowen; Wang, Chen; Yin, Meimei; Hou, Jun; Zhang, Jingchun; Jin, Zheng-Gen; Luo, Honglin
2015-01-01
Coxsackievirus B3 (CVB3), an important human causative pathogen for viral myocarditis, pancreatitis, and meningitis, has evolved different strategies to manipulate the host signaling machinery to ensure successful viral infection. We previously revealed a crucial role for the ERK1/2 signaling pathway in regulating viral infectivity. However, the detail mechanism remains largely unknown. Grb2-associated binder 1 (GAB1) is an important docking protein responsible for intracellular signaling assembly and transduction. In this study, we demonstrated that GAB1 was proteolytically cleaved after CVB3 infection at G175 and G436 by virus-encoded protease 2Apro, independent of caspase activation. Knockdown of GAB1 resulted in a significant reduction of viral protein expression and virus titers. Moreover, we showed that virus-induced cleavage of GAB1 is beneficial to viral growth as the N-terminal proteolytic product of GAB1 (GAB1-N1–174) further enhances ERK1/2 activation and promotes viral replication. Our results collectively suggest that CVB3 targets host GAB1 to generate a GAB1-N1–174 fragment that enhances viral infectivity, at least in part, via activation of the ERK pathway. The findings in this study suggest a novel mechanism that CVB3 employs to subvert the host signaling and facilitate consequent viral replication.—Deng, H., Fung, G., Shi, J., Xu, S., Wang, C., Yin, M., Hou, J., Zhang, J., Jin, Z.-G., Luo, H. Enhanced enteroviral infectivity via viral protease-mediated cleavage of Grb2-associated binder 1. PMID:26183772
A de novo variant in the ASPRV1 gene in a dog with ichthyosis.
Bauer, Anina; Waluk, Dominik P; Galichet, Arnaud; Timm, Katrin; Jagannathan, Vidhya; Sayar, Beyza S; Wiener, Dominique J; Dietschi, Elisabeth; Müller, Eliane J; Roosje, Petra; Welle, Monika M; Leeb, Tosso
2017-03-01
Ichthyoses are a heterogeneous group of inherited cornification disorders characterized by generalized dry skin, scaling and/or hyperkeratosis. Ichthyosis vulgaris is the most common form of ichthyosis in humans and caused by genetic variants in the FLG gene encoding filaggrin. Filaggrin is a key player in the formation of the stratum corneum, the uppermost layer of the epidermis and therefore crucial for barrier function. During terminal differentiation of keratinocytes, the precursor profilaggrin is cleaved by several proteases into filaggrin monomers and eventually processed into free amino acids contributing to the hydration of the cornified layer. We studied a German Shepherd dog with a novel form of ichthyosis. Comparing the genome sequence of the affected dog with 288 genomes from genetically diverse non-affected dogs we identified a private heterozygous variant in the ASPRV1 gene encoding "aspartic peptidase, retroviral-like 1", which is also known as skin aspartic protease (SASPase). The variant was absent in both parents and therefore due to a de novo mutation event. It was a missense variant, c.1052T>C, affecting a conserved residue close to an autoprocessing cleavage site, p.(Leu351Pro). ASPRV1 encodes a retroviral-like protease involved in profilaggrin-to-filaggrin processing. By immunofluorescence staining we showed that the filaggrin expression pattern was altered in the affected dog. Thus, our findings provide strong evidence that the identified de novo variant is causative for the ichthyosis in the affected dog and that ASPRV1 plays an essential role in skin barrier formation. ASPRV1 is thus a novel candidate gene for unexplained human forms of ichthyoses.
Tae, G S; Black, M T; Cramer, W A; Vallon, O; Bogorad, L
1988-12-27
Protease accessibility and antibody to a COOH-terminal peptide were used as probes for the in situ topography of the Mr 10,000 psbE gene product (alpha subunit) of the chloroplast cytochrome b-559. Exposure of thylakoid membranes to trypsin or Staphylococcus aureus V8 protease cleaved the alpha subunit to a slightly smaller polypeptide (delta Mr approximately -1000) as detected on Western blots, without loss of reactivity to COOH-terminal antibody. The disappearance of the parent Mr 10,000 polypeptide from thylakoids in the presence of trypsin correlated with the appearance of the smaller polypeptide with delta Mr = -750, the conversion having a half-time of approximately 15 min. Exposure of inside-out vesicles to trypsin resulted in almost complete loss of reactivity to the antibody, showing that the COOH terminus is exposed on the lumenal side of the membrane. Removal of the extrinsic polypeptides of the oxygen-evolving complex resulted in an increase of the accessibility of the alpha subunit to trypsin. These data establish that the alpha subunit of cytochrome b-559 crosses the membrane once, as predicted from its single, 26-residue, hydrophobic domain. The NH2 terminus of the alpha polypeptide is on the stromal side of the membrane, where it is accessible, most likely at Arg-7 or Glu-6/Asp-11, to trypsin or V8 protease, respectively. As a consequence of this orientation, the single histidine residue in the alpha subunit is located on the stromal side of the hydrophobic domain.(ABSTRACT TRUNCATED AT 250 WORDS)
Bernhards, Casey B.; Chen, Yan; Toutkoushian, Hannah
2014-01-01
Bacterial endospores can remain dormant for decades yet can respond to nutrients, germinate, and resume growth within minutes. An essential step in the germination process is degradation of the spore cortex peptidoglycan wall, and the SleB protein in Bacillus species plays a key role in this process. Stable incorporation of SleB into the spore requires the YpeB protein, and some evidence suggests that the two proteins interact within the dormant spore. Early during germination, YpeB is proteolytically processed to a stable fragment. In this work, the primary sites of YpeB cleavage were identified in Bacillus anthracis, and it was shown that the stable products are comprised of the C-terminal domain of YpeB. Modification of the predominant YpeB cleavage sites reduced proteolysis, but cleavage at other sites still resulted in loss of full-length YpeB. A B. anthracis strain lacking the HtrC protease did not generate the same stable YpeB products. In B. anthracis and Bacillus subtilis htrC mutants, YpeB was partially stabilized during germination but was still degraded at a reduced rate by other, unidentified proteases. Purified HtrC cleaved YpeB to a fragment similar to that observed in vivo, and this cleavage was stimulated by Mn2+ or Ca2+ ions. A lack of HtrC did not stabilize YpeB or SleB during spore formation in the absence of the partner protein, indicating other proteases are involved in their degradation during sporulation. PMID:25384476
PAR-1 contributes to the innate immune response during viral infection
Antoniak, Silvio; Owens, A. Phillip; Baunacke, Martin; Williams, Julie C.; Lee, Rebecca D.; Weithäuser, Alice; Sheridan, Patricia A.; Malz, Ronny; Luyendyk, James P.; Esserman, Denise A.; Trejo, JoAnn; Kirchhofer, Daniel; Blaxall, Burns C.; Pawlinski, Rafal; Beck, Melinda A.; Rauch, Ursula; Mackman, Nigel
2013-01-01
Coagulation is a host defense system that limits the spread of pathogens. Coagulation proteases, such as thrombin, also activate cells by cleaving PARs. In this study, we analyzed the role of PAR-1 in coxsackievirus B3–induced (CVB3-induced) myocarditis and influenza A infection. CVB3-infected Par1–/– mice expressed reduced levels of IFN-β and CXCL10 during the early phase of infection compared with Par1+/+ mice that resulted in higher viral loads and cardiac injury at day 8 after infection. Inhibition of either tissue factor or thrombin in WT mice also significantly increased CVB3 levels in the heart and cardiac injury compared with controls. BM transplantation experiments demonstrated that PAR-1 in nonhematopoietic cells protected mice from CVB3 infection. Transgenic mice overexpressing PAR-1 in cardiomyocytes had reduced CVB3-induced myocarditis. We found that cooperative signaling between PAR-1 and TLR3 in mouse cardiac fibroblasts enhanced activation of p38 and induction of IFN-β and CXCL10 expression. Par1–/– mice also had decreased CXCL10 expression and increased viral levels in the lung after influenza A infection compared with Par1+/+ mice. Our results indicate that the tissue factor/thrombin/PAR-1 pathway enhances IFN-β expression and contributes to the innate immune response during single-stranded RNA viral infection. PMID:23391721
Dälken, Benjamin; Jabulowsky, Robert A.; Oberoi, Pranav; Benhar, Itai; Wels, Winfried S.
2010-01-01
Background The apoptosis-inducing serine protease granzyme B (GrB) is an important factor contributing to lysis of target cells by cytotoxic lymphocytes. Expression of enzymatically active GrB in recombinant form is a prerequisite for functional analysis and application of GrB for therapeutic purposes. Methods and Findings We investigated the influence of bacterial maltose-binding protein (MBP) fused to GrB via a synthetic furin recognition motif on the expression of the MBP fusion protein also containing an N-terminal α-factor signal peptide in the yeast Pichia pastoris. MBP markedly enhanced the amount of GrB secreted into culture supernatant, which was not the case when GrB was fused to GST. MBP-GrB fusion protein was cleaved during secretion by an endogenous furin-like proteolytic activity in vivo, liberating enzymatically active GrB without the need of subsequent in vitro processing. Similar results were obtained upon expression of a recombinant fragment of the ErbB2/HER2 receptor protein or GST as MBP fusions. Conclusions Our results demonstrate that combination of MBP as a solubility enhancer with specific in vivo cleavage augments secretion of processed and functionally active proteins from yeast. This strategy may be generally applicable to improve folding and increase yields of recombinant proteins. PMID:21203542
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu-Zhong Zhang; Ewart, G.; Capaldi, R.A.
The arrangement of three subunits of beef heart cytochrome c oxidase, subunits Va, VIa, and VIII, has been explored by chemical labeling and protease digestion studies. Subunit Va is an extrinsic protein located on the C side of the mitochondrial inner membrane. This subunit was found to label with N-(4-azido-2-nitrophenyl)-2-aminoethane({sup 35}S)sulfonate and sodium methyl 4-({sup 3}H)formylphenyl phosphate in reconstituted vesicles in which 90% of cytochrome c oxidase complexes were oriented with the C domain outermost. Subunit VIa was cleaved by trypsin both in these reconstituted vesicles and in submitochondrial particles, indicating a transmembrane orientation. The epitope for a monoclonal antibodymore » (mAb) to subunit VIa was lost or destroyed when cleavage occurred in reconstituted vesicles. This epitope was localized to the C-terminal part of the subunit by antibody binding to a fusion protein consisting of glutathione S-transferase (G-ST) and the C-terminal amino acids 55-85 of subunit VIa. No antibody binding was obtained with a fusion protein containing G-ST and the N-terminal amino acids 1-55. The mAb reaction orients subunit VIa with its C-terminus in the C-domain. Subunit VIII was cleaved by trypsin in submitochondrial particles but not in reconstituted vesicles. N-Terminal sequencing of the subunit VIII cleavage produce from submitochondrial particles gave the same sequence as the untreated subunit, i.e., ITA, indicating that it is the C-terminus which is cleaved from the M side. Subunits Va and VIII each contain N-terminal extensions or leader sequences in the precursor polypeptides; subunit VIa is made without an N-terminal extension.« less
Catalytic Properties of Botulinum Neurotoxins Subtypes A3 and A4
Henkel, James S.; Jacobson, Mark; Tepp, William; Pier, Christina; Johnson, Eric A.; Barbieri, Joseph T.
2009-01-01
Botulinum toxins (BoNT) are zinc proteases (serotypes A-G) which cause flaccid paralysis through the cleavage of SNARE proteins within motor neurons. BoNT/A was originally organized into two subtypes: BoNT/A1 and BoNT/A2, which are ~ 95 % homologous and possess similar catalytic activities. Subsequently, two additional subtypes were identified; BoNT/A3 (Loch Maree), and BoNT/A4 (657Ba), which have 81 and 88% homology with BoNT/A1, respectively. Alignment studies predicted that BoNT/A3 and BoNT/A4 were sufficiently different to BoNT/A1 to affect SNAP25 binding and cleavage. Recombinant Light Chain (LC) of BoNT/A3 (LC/A3) and BoNT/A4 (LC/A4) were subjected to biochemical analysis. LC/A3 cleaved SNAP25 at 50% the rate of LC/A1, but cleaved SNAPtide® at a faster rate than LC/A1, while LC/A4 cleaved SNAP25 and SNAPtide® at slower rates than LC/A1. LC/A3 and LC/A4 had similar Kms for SNAP25 relative to LC/A1, while the kcat for LC/A4 was 10- fold slower than LC/A1, suggesting a defect in substrate cleavage. Neither LC/A3 nor LC/A4 possessed autocatalytic activity, a property of LC/A1 and LC/A2. Thus, the four subtypes of BoNT/A bind SNAP25 with similar affinity but have different catalytic capacities for SNAP25 cleavage, SNAPtide® cleavage, and autocatalysis. The catalytic properties identified among the subtypes of LC/A may influence strategies for the development of small molecule- or peptide- inhibitors as therapies against botulism. PMID:19256469
γ-secretase composed of PS1/Pen2/Aph1a can cleave Notch and APP in the absence of Nicastrin
Zhao, Guojun; Liu, Zhenyi; Ilagan, Ma. Xenia G.; Kopan, Raphael
2010-01-01
γ-secretase is a multiprotein intramembrane-cleaving protease with a growing list of protein substrates including the Notch receptors and the amyloid precursor protein. The four components of γ-secretase complex - presenilin (PS), nicastrin (NCT), Pen2, and Aph1 - are all thought to be essential for activity. The catalytic domain resides within PS proteins; NCT has been suggested to be critical for substrate recognition; the contributions of Pen2 and Aph1 remain unclear. The role of NCT has been challenged recently by the observation that a critical residue (E332) in NCT, thought to be essential for γ-secretase activity, is instead involved in complex maturation. Here we report that NCT is dispensable for γ-secretase activity. NCT-independent γ-secretase activity can be detected in two independent NCT-deficient MEF lines, and blocked by the γ-secretase inhibitors DAPT and L-685,458. This catalytic activity requires prior ectodomain shedding of the substrate, and can cleave ligand-activated endogenous Notch receptors, indicating presence at the plasma membrane. siRNA knockdown experiments demonstrated that NCT-independent γ-secretase activity requires the presence of PS1, Pen2 and Aph1a but can tolerate knockdown of PS2 or Aph1b. We conclude that a PS1/Pen2/Aph1a trimeric complex is an active enzyme, displaying similar biochemical properties to those of γ-secretase and roughly 50% of its activity when normalized to PS1 NTF levels. This PS1/Pen2/Aph1a complex, however, is highly unstable. Thus, NCT acts to stabilize γ-secretase, but is not required for substrate recognition. PMID:20130175
Role of tissue factor and protease-activated receptors in a mouse model of endotoxemia.
Pawlinski, Rafal; Pedersen, Brian; Schabbauer, Gernot; Tencati, Michael; Holscher, Todd; Boisvert, William; Andrade-Gordon, Patricia; Frank, Rolf Dario; Mackman, Nigel
2004-02-15
Sepsis is associated with a systemic activation of coagulation and an excessive inflammatory response. Anticoagulants have been shown to inhibit both coagulation and inflammation in sepsis. In this study, we used both genetic and pharmacologic approaches to analyze the role of tissue factor and protease-activated receptors in coagulation and inflammation in a mouse endotoxemia model. We used mice expressing low levels of the procoagulant molecule, tissue factor (TF), to analyze the effects of TF deficiency either in all tissues or selectively in hematopoietic cells. Low TF mice had reduced coagulation, inflammation, and mortality compared with control mice. Similarly, a deficiency of TF expression by hematopoietic cells reduced lipopolysaccharide (LPS)-induced coagulation, inflammation, and mortality. Inhibition of the down-stream coagulation protease, thrombin, reduced fibrin deposition and prolonged survival without affecting inflammation. Deficiency of either protease activated receptor-1 (PAR-1) or protease activated receptor-2 (PAR-2) alone did not affect inflammation or survival. However, a combination of thrombin inhibition and PAR-2 deficiency reduced inflammation and mortality. These data demonstrate that hematopoietic cells are the major pathologic site of TF expression during endotoxemia and suggest that multiple protease-activated receptors mediate crosstalk between coagulation and inflammation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Mingyuan; Kim, Chi Yong; Rowland, Raymond R.R.
2014-06-15
Type I interferons (IFNs-α/β) play a key role for the antiviral state of host, and the porcine arterivirus; porcine reproductive and respiratory syndrome virus (PRRSV), has been shown to down-regulate the production of IFNs during infection. Non-structural protein (nsp) 1 of PRRSV has been identified as a viral IFN antagonist, and the nsp1α subunit of nsp1 has been shown to degrade the CREB-binding protein (CBP) and to inhibit the formation of enhanceosome thus resulting in the suppression of IFN production. The study was expanded to other member viruses in the family Arteriviridae: equine arteritis virus (EAV), murine lactate dehydrogenase-elevating virusmore » (LDV), and simian hemorrhagic fever virus (SHFV). While PRRSV–nsp1 and LDV–nsp1 were auto-cleaved to produce the nsp1α and nsp1β subunits, EAV–nsp1 remained uncleaved. SHFV–nsp1 was initially predicted to be cleaved to generate three subunits (nsp1α, nsp1β, and nsp1γ), but only two subunits were generated as SHFV–nsp1αβ and SHFV–nsp1γ. The papain-like cysteine protease (PLP) 1α motif in nsp1α remained inactive for SHFV, and only the PLP1β motif of nsp1β was functional to generate SHFV–nsp1γ subunit. All subunits of arterivirus nsp1 were localized in the both nucleus and cytoplasm, but PRRSV–nsp1β, LDV–nsp1β, EAV–nsp1, and SHFV–nsp1γ were predominantly found in the nucleus. All subunits of arterivirus nsp1 contained the IFN suppressive activity and inhibited both interferon regulatory factor 3 (IRF3) and NF-κB mediated IFN promoter activities. Similar to PRRSV–nsp1α, CBP degradation was evident in cells expressing LDV–nsp1α and SHFV–nsp1γ, but no such degradation was observed for EAV–nsp1. Regardless of CBP degradation, all subunits of arterivirus nsp1 suppressed the IFN-sensitive response element (ISRE)-promoter activities. Our data show that the nsp1-mediated IFN modulation is a common strategy for all arteriviruses but their mechanism of action may differ from each other. - Highlights: • LDV–nsp1 was cleaved to nsp1α and nsp1β whereas EAV–nsp1 was uncleaved. • SHFV–nsp1 was cleaved to nsp1αβ and nsp1γ. • PRRSV–nsp1β, LDV–nsp1β, EAV–nsp1, and SHFV–nsp1γ were nuclear proteins. • PRRSV–nsp1α, LDV–nsp1α, and SHFV–nsp1γ caused CBP degradation. • All nsp1 subunits contained interferon and ISRE suppressive activities.« less
Cho, Yong Suk; Stevens, Leslie M; Stein, David
2010-06-22
The establishment of Drosophila embryonic dorsal-ventral (DV) polarity relies on serine proteolytic activity in the perivitelline space between the embryonic membrane and the eggshell. Gastrulation Defective cleaves and activates Snake, which processes and activates Easter, which cleaves Spätzle to form the activating ligand for the Toll receptor. Ventral restriction of ligand formation depends on the Pipe sulfotransferase, which is expressed in ventral cells of the follicular epithelium surrounding the developing oocyte. Pipe modifies components of the developing eggshell to produce a ventral cue embedded in the vitelline membrane. This ventral cue is believed to promote one or more of the proteolysis steps in the perivitelline space. By examining the processing of transgenic, tagged versions of the perivitelline proteins during DV patterning, we find that the proteolysis of Easter by Snake is the first Pipe-dependent step and therefore the key ventrally restricted event in the protease cascade. We also find that Snake and Easter associate together in a complex in both wild-type and pipe mutant-derived embryos. This observation suggests a mechanism in which the sulfated target of Pipe promotes a productive interaction between Snake and Easter, perhaps by facilitating conformational changes in a complex containing the two proteins. Copyright 2010 Elsevier Ltd. All rights reserved.
Conversion of Amides to Esters by the Nickel-Catalyzed Activation of Amide C–N Bonds
Hie, Liana; Fine Nathel, Noah F.; Shah, Tejas K.; Baker, Emma L.; Hong, Xin; Yang, Yun-Fang; Liu, Peng; Houk, K. N.; Garg, Neil K.
2015-01-01
Amides are common functional groups that have been well studied for more than a century.1 They serve as the key building blocks of proteins and are present in an broad range of other natural and synthetic compounds. Amides are known to be poor electrophiles, which is typically attributed to resonance stability of the amide bond.1,2 Whereas Nature can easily cleave amides through the action of enzymes, such as proteases,3 the ability to selectively break the C–N bond of an amide using synthetic chemistry is quite difficult. In this manuscript, we demonstrate that amide C–N bonds can be activated and cleaved using nickel catalysts. We have used this methodology to convert amides to esters, which is a challenging and underdeveloped transformation. The reaction methodology proceeds under exceptionally mild reaction conditions, and avoids the use of a large excess of an alcohol nucleophile. Density functional theory (DFT) calculations provide insight into the thermodynamics and catalytic cycle of this unusual transformation. Our results provide a new strategy to harness amide functional groups as synthons and are expected fuel the further use of amides for the construction of carbon–heteroatom or carbon–carbon bonds using non-precious metal catalysis. PMID:26200342
GSK3 and Polo-like kinase regulate ADAM13 function during cranial neural crest cell migration
Abbruzzese, Genevieve; Cousin, Hélène; Salicioni, Ana Maria; Alfandari, Dominique
2014-01-01
ADAMs are cell surface metalloproteases that control multiple biological processes by cleaving signaling and adhesion molecules. ADAM13 controls cranial neural crest (CNC) cell migration both by cleaving cadherin-11 to release a promigratory extracellular fragment and by controlling expression of multiple genes via its cytoplasmic domain. The latter activity is regulated by γ-secretase cleavage and the translocation of the cytoplasmic domain into the nucleus. One of the genes regulated by ADAM13, the protease calpain8, is essential for CNC migration. Although the nuclear function of ADAM13 is evolutionarily conserved, it is unclear whether the transcriptional regulation is also performed by other ADAMs and how this process may be regulated. We show that ADAM13 function to promote CNC migration is regulated by two phosphorylation events involving GSK3 and Polo-like kinase (Plk). We further show that inhibition of either kinase blocks CNC migration and that the respective phosphomimetic forms of ADAM13 can rescue these inhibitions. However, these phosphorylations are not required for ADAM13 proteolysis of its substrates, γ-secretase cleavage, or nuclear translocation of its cytoplasmic domain. Of significance, migration of the CNC can be restored in the absence of Plk phosphorylation by expression of calpain-8a, pointing to impaired nuclear activity of ADAM13. PMID:25298404
Rat liver mitochondrial intermediate peptidase (MIP): purification and initial characterization.
Kalousek, F; Isaya, G; Rosenberg, L E
1992-01-01
A number of nuclearly encoded mitochondrial protein precursors that are transported into the matrix and inner membrane are cleaved in two sequential steps by two distinct matrix peptidases, mitochondrial processing peptidase (MPP) and mitochondrial intermediate peptidase (MIP). We have isolated and purified MIP from rat liver mitochondrial matrix. The enzyme, purified 2250-fold, is a monomer of 75 kDa and cleaves all tested mitochondrial intermediate proteins to their mature forms. About 20% of the final MIP preparation consists of equimolar amounts of two peptides of 47 kDa and 28 kDa, which are apparently the products of a single cleavage of the 75 kDa protein. These peptides are not separable from the 75 kDa protein, nor from each other, under any conditions used in the purification. The peptidase has a broad pH optimum between pH 6.6 and 8.9 and is inactivated by N-ethylmaleimide (NEM) and other sulfhydryl group reagents. The processing activity is divalent cation-dependent; it is stimulated by manganese, magnesium or calcium ions and reversibly inhibited by EDTA. Zinc, cobalt and iron strongly inhibit MIP activity. This pattern of cation dependence and inhibition is not clearly consistent with that of any known family of proteases. Images PMID:1322290
Zuo, Xialin; Hou, Qinghua; Jin, Jizi; Zhan, Lixuan; Li, Xinyu; Sun, Weiwen; Lin, Kunqin; Xu, En
2016-09-01
Secondary degeneration in areas beyond ischemic foci can inhibit poststroke recovery. The cysteine protease Cathepsin B (CathB) regulates cell death and intracellular protein catabolism. To investigate the roles of CathB in the development of secondary degeneration in the ventroposterior nucleus (VPN) of the ipsilateral thalamus after focal cerebral infarction, infarct volumes, immunohistochemistry and immunofluorescence, and Western blotting analyses were conducted in a distal middle cerebral artery occlusion (dMCAO) stroke model in adult rats. We observed marked neuron loss and gliosis in the ipsilateral thalamus after dMCAO, and the expression of CathB and cleaved caspase-3 in the VPN was significantly upregulated; glial cells were the major source of CathB. Although it had no effect on infarct volume, delayed intracerebroventricular treatment with the membrane-permeable CathB inhibitor CA-074Me suppressed the expression of CathB and cleaved caspase-3 in ipsilateral VPN and accordingly alleviated the secondary degeneration. These data indicate that CathB mediates a novel mechanism of secondary degeneration in the VPN of the ipsilateral thalamus after focal cortical infarction and suggest that CathB might be a therapeutic target for the prevention of secondary degeneration in patients after stroke. © 2016 American Association of Neuropathologists, Inc. All rights reserved.
Antihistone Properties of C1 Esterase Inhibitor Protect against Lung Injury.
Wygrecka, Malgorzata; Kosanovic, Djuro; Wujak, Lukasz; Reppe, Katrin; Henneke, Ingrid; Frey, Helena; Didiasova, Miroslava; Kwapiszewska, Grazyna; Marsh, Leigh M; Baal, Nelli; Hackstein, Holger; Zakrzewicz, Dariusz; Müller-Redetzky, Holger C; de Maat, Steven; Maas, Coen; Nolte, Marc W; Panousis, Con; Schermuly, Ralph T; Seeger, Werner; Witzenrath, Martin; Schaefer, Liliana; Markart, Philipp
2017-07-15
Acute respiratory distress syndrome is characterized by alveolar epithelial cell injury, edema formation, and intraalveolar contact phase activation. To explore whether C1 esterase inhibitor (C1INH), an endogenous inhibitor of the contact phase, may protect from lung injury in vivo and to decipher the possible underlying mechanisms mediating protection. The ability of C1INH to control the inflammatory processes was studied in vitro and in vivo. Here, we demonstrate that application of C1INH alleviates bleomycin-induced lung injury via direct interaction with extracellular histones. In vitro, C1INH was found to bind all histone types. Interaction with histones was independent of its protease inhibitory activity, as demonstrated by the use of reactive-center-cleaved C1INH, but dependent on its glycosylation status. C1INH sialylated-N- and -O-glycans were not only essential for its interaction with histones but also to protect against histone-induced cell death. In vivo, histone-C1INH complexes were detected in bronchoalveolar lavage fluid from patients with acute respiratory distress syndrome and multiple models of lung injury. Furthermore, reactive-center-cleaved C1INH attenuated pulmonary damage evoked by intravenous histone instillation. Collectively, C1INH administration provides a new therapeutic option for disorders associated with histone release.
Tjhung, Katrina F; Deiss, Frédérique; Tran, Jessica; Chou, Ying; Derda, Ratmir
2015-01-01
In this paper, we describe multivalent display of peptide and protein sequences typically censored from traditional N-terminal display on protein pIII of filamentous bacteriophage M13. Using site-directed mutagenesis of commercially available M13KE phage cloning vector, we introduced sites that permit efficient cloning using restriction enzymes between domains N1 and N2 of the pIII protein. As infectivity of phage is directly linked to the integrity of the connection between N1 and N2 domains, intra-domain phage display (ID-PhD) allows for simple quality control of the display and the natural variations in the displayed sequences. Additionally, direct linkage to phage propagation allows efficient monitoring of sequence cleavage, providing a convenient system for selection and evolution of protease-susceptible or protease-resistant sequences. As an example of the benefits of such an ID-PhD system, we displayed a negatively charged FLAG sequence, which is known to be post-translationally excised from pIII when displayed on the N-terminus, as well as positively charged sequences which suppress production of phage when displayed on the N-terminus. ID-PhD of FLAG exhibited sub-nanomolar apparent Kd suggesting multivalent nature of the display. A TEV-protease recognition sequence (TEVrs) co-expressed in tandem with FLAG, allowed us to demonstrate that 99.9997% of the phage displayed the FLAG-TEVrs tandem and can be recognized and cleaved by TEV-protease. The residual 0.0003% consisted of phage clones that have excised the insert from their genome. ID-PhD is also amenable to display of protein mini-domains, such as the 33-residue minimized Z-domain of protein A. We show that it is thus possible to use ID-PhD for multivalent display and selection of mini-domain proteins (Affibodies, scFv, etc.).
Hook, Gregory; Hook, Vivian; Kindy, Mark
2015-01-01
The cysteine protease cathepsin B is a potential drug target for reducing brain amyloid-β peptides (Aβ) and improving memory in Alzheimer’s disease (AD), because reduction of cathepsin B in transgenic mice expressing human wild-type amyloid-β protein precursor (AβPP) results in significantly decreased brain Aβ. Cathepsin B cleaves the wild-type β-secretase site sequence in AβPP to produce Aβ and cathepsin B inhibitors administered to animal models expressing AβPP containing the wild-type β-secretase site sequence reduce brain Aβ in a manner consistent with β-secretase inhibition. But such inhibitors could act either by direct inhibition of cathepsin B β-secretase activity or by off-target inhibition of the other β-secretase, the aspartyl protease BACE1. To evaluate that issue, we orally administered a cysteine protease inhibitor, E64d, to normal guinea pigs or transgenic mice expressing human AβPP, both of which express the human wild-type β-secretase site sequence. In guinea pigs, oral E64d administration caused a dose-dependent reduction of up to 92% in brain, CSF and plasma of Aβ(40) and Aβ(42), a reduction of up to 50% in the C-terminal β-secretase fragment (CTFβ), and a 91% reduction in brain cathepsin B activity but increased brain BACE1 activity by 20%. In transgenic AD mice, oral E64d administration improved memory deficits and reduced brain Aβ(40) and Aβ(42), amyloid plaque, brain CTFβ, and brain cathepsin B activity but increased brain BACE1 activity. We conclude that E64d likely reduces brain Aβ by inhibiting cathepsin B and not BACE1 β-secretase activity and that E64d therefore may have potential for treating AD patients. PMID:21613740
O'Sullivan, Sinead A; Gasparini, Fabrizio; Mir, Anis K; Dev, Kumlesh K
2016-08-22
The fractalkine (CX3CR1) ligand is expressed in astrocytes and reported to be neuroprotective. When cleaved from the membrane, soluble fractalkine (sCX3CL1) activates the receptor CX3CR1. Although somewhat controversial, CX3CR1 is reported to be expressed in neurons and microglia. The membrane-bound form of CX3CL1 additionally acts as an adhesion molecule for microglia and infiltrating white blood cells. Much research has been done on the role of fractalkine in neuronal cells; however, little is known about the regulation of the CX3CL1 ligand in astrocytes. The mechanisms involved in the up-regulation and cleavage of CX3CL1 from human astrocytes were investigated using immunocytochemistry, Q-PCR and ELISA. All statistical analysis was performed using GraphPad Prism 5. A combination of ADAM17 (TACE) and ADAM10 protease inhibitors was found to attenuate IL-1β-, TNF-α- and IFN-γ-induced sCX3CL1 levels in astrocytes. A specific ADAM10 (but not ADAM17) inhibitor also attenuated these effects, suggesting ADAM10 proteases induce release of sCX3CL1 from stimulated human astrocytes. A p38 MAPK inhibitor also attenuated the levels of sCX3CL1 upon treatment with IL-1β, TNF-α or IFN-γ. In addition, an IKKβ inhibitor significantly reduced the levels of sCX3CL1 induced by IL-1β or TNF-α in a concentration-dependent manner, suggesting a role for the NF-kB pathway. In conclusion, this study shows that the release of soluble astrocytic fractalkine is regulated by ADAM10 proteases with p38 MAPK also playing a role in the fractalkine shedding event. These findings are important for understanding the role of CX3CL1 in healthy and stimulated astrocytes and may benefit our understanding of this pathway in neuro-inflammatory and neurodegenerative diseases.
Caulfield, Robert H; Tyler, Michael P H; Austyn, Jon M; Dziewulski, Peter; McGrouther, Duncan A
2008-06-01
In the management of partial thickness burns, it is difficult to balance between conservative management and surgical intervention. Our hypothesis was that a triangular relationship exists between protease/anti-protease profile at the burn wound surface, angiogenesis and re-epithelialisation. By manipulation of the biochemical profile at the wound level, we determined to affect the nature and extent of angiogenesis and resulting re-epithelialisation. We performed a randomised longitudinal observational study on partial thickness burns in adult patients presenting to two regional burns units. Our results demonstrated that a high-protease wound environment is associated with lower levels of the angiogenic factor VEGF, a lower more uniform change in wound bloodflow and a uniform well healed wound with an architecturally normal epidermis. In addition, we found that a low protease wound environment is associated with higher levels of the angiogenic factor VEGF, a higher wound bloodflow throughout the wound healing period and a more chaotic, hypercellular, overkeratinised, and chaotic thickened epidermis.
Extracellular proteases of Trichoderma species. A review.
Kredics, L; Antal, Zsuzsanna; Szekeres, A; Hatvani, L; Manczinger, L; Vágvölgyi, Cs; Nagy, Erzsébet
2005-01-01
Cellulolytic, xylanolytic, chitinolytic and beta-1,3-glucanolytic enzyme systems of species belonging to the filamentous fungal genus Trichoderma have been investigated in details and are well characterised. The ability of Trichoderma strains to produce extracellular proteases has also been known for a long time, however, the proteolytic enzyme system is relatively unknown in this genus. Fortunately, in the recent years more and more attention is focused on the research in this field. The role of Trichoderma proteases in the biological control of plant pathogenic fungi and nematodes has been demonstrated, and it is also suspected that they may be important for the competitive saprophytic ability of green mould isolates and may represent potential virulence factors of Trichoderma strains as emerging fungal pathogens of clinical importance. The aim of this review is to summarize the information available about the extracellular proteases of Trichoderma. Numerous studies are available about the extracellular proteolytic enzyme profiles of Trichoderma strains and about the effect of abiotic environmental factors on protease activities. A number of protease enzymes have been purified to homogeneity and some protease encoding genes have been cloned and characterized. These results will be reviewed and the role of Trichoderma proteases in biological control as well as their advantages and disadvantages in biotechnology will be discussed.
Homaei, Ahmad; Lavajoo, Fatemeh; Sariri, Reyhaneh
2016-07-01
Marine environment consists of the largest sources diversified genetic pool of material with an enormous potential for a wide variety of enzymes including proteases. A protease hydrolyzes the peptide bond and most of proteases possess many industrial applications. Marine proteases differ considerably from those found in internal or external organs of invertebrates and vertebrates. In common with all enzymes, external factors such as temperature, pH and type of media are important for the activity, catalytic efficiency, stability and proper functioning of proteases. In this review valuable characteristics of proteases in marine organisms and their applications are gathered from a wide literature survey. Considering their biochemical significance and their increasing importance in biotechnology, a thorough understanding of marine proteases functioning could be of prime importance. Copyright © 2016 Elsevier B.V. All rights reserved.
Kromann-Hansen, Tobias; Oldenburg, Emil; Yung, Kristen Wing Yu; Ghassabeh, Gholamreza H.; Muyldermans, Serge; Declerck, Paul J.; Huang, Mingdong; Andreasen, Peter A.; Ngo, Jacky Chi Ki
2016-01-01
A peptide segment that binds the active site of a serine protease in a substrate-like manner may behave like an inhibitor or a substrate. However, there is sparse information on which factors determine the behavior a particular peptide segment will exhibit. Here, we describe the first x-ray crystal structure of a nanobody in complex with a serine protease. The nanobody displays a new type of interaction between an antibody and a serine protease as it inserts its complementary determining region-H3 loop into the active site of the protease in a substrate-like manner. The unique binding mechanism causes the nanobody to behave as a strong inhibitor as well as a poor substrate. Intriguingly, its substrate behavior is incomplete, as 30–40% of the nanobody remained intact and inhibitory after prolonged incubation with the protease. Biochemical analysis reveals that an intra-loop interaction network within the complementary determining region-H3 of the nanobody balances its inhibitor versus substrate behavior. Collectively, our results unveil molecular factors, which may be a general mechanism to determine the substrate versus inhibitor behavior of other protease inhibitors. PMID:27226628
Li, Youshan; Zhao, Ping; Liu, Huawei; Guo, Xiaomeng; He, Huawei; Zhu, Rui; Xiang, Zhonghuai; Xia, Qingyou
2015-02-01
Entomopathogenic fungi penetrate the insect cuticle using their abundant hydrolases. These hydrolases, which include cuticle-degrading proteases and chitinases, are important virulence factors. Our recent findings suggest that many serine protease inhibitors, especially TIL-type protease inhibitors, are involved in insect resistance to pathogenic microorganisms. To clarify the molecular mechanism underlying this resistance to entomopathogenic fungi and identify novel genes to improve the silkworm antifungal capacity, we conducted an in-depth study of serine protease inhibitors. Here, we cloned and expressed a novel silkworm TIL-type protease inhibitor, BmSPI39. In activity assays, BmSPI39 potently inhibited the virulence protease CDEP-1 of Beauveria bassiana, suggesting that it might suppress the fungal penetration of the silkworm integument by inhibiting the cuticle-degrading proteases secreted by the fungus. Phenol oxidase activation studies showed that melanization is involved in the insect immune response to fungal invasion, and that fungus-induced excessive melanization is suppressed by BmSPI39 by inhibiting the fungal cuticle-degrading proteases. To better understand the mechanism involved in the inhibition of fungal virulence by protease inhibitors, their effects on the germination of B. bassiana conidia was examined. BmSPI38 and BmSPI39 significantly inhibited the germination of B. bassiana conidia. Survival assays showed that BmSPI38 and BmSPI39 markedly improved the survival rates of silkworms, and can therefore be used as targeted resistance proteins in the silkworm. These results provided new insight into the molecular mechanisms whereby insect protease inhibitors confer resistance against entomopathogenic fungi, suggesting their potential application in medicinal or agricultural fields. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ahn, Mi Young; Hahn, Bum-Soo; Ryu, Kang Sun; Hwang, Jae Sam; Kim, Yeong Shik
2005-07-01
Catharsius protease-2 (CPM-2) was isolated from the body of dung beetles, Catharsius molossus, using a three step purification process (ammonium sulfate fractionation, gel filtration on Bio-Gel P-60, and affinity chromatography on DEAE Affi-Gel blue). The purified CPM-2, having a molecular weight of 24 kDa, was assessed homogeneously by SDS-polyacrylamide gel electrophoresis. The N-terminal amino acid sequence of CPM-2 was composed of X Val Gln Asp Phe Val Glu Glu Ile Leu. CPM-2 was inactivated by Cu2+ and Zn2+ and strongly inhibited by typical serine proteinase inhibitors such as TLCK, soybean trypsin inhibitor, aprotinin, benzamidine, and alpha1-antitrypsin. However, EDTA, EGTA, cysteine, beta-mercaptoethanol, E64, and elastatinal had little effect on enzyme activity. In addition, antiplasmin and antithrombin III were not sensitive to CPM-2. Based on the results of a fibrinolytic activity test, CPM-2 readily cleaved Aalpha- and Bbeta-chains of fibrinogen and fibrin, and gamma-chain of fibrinogen more slowly. The nonspecific action of the enzyme resulted in extensive hydrolysis, releasing a variety of fibrinopeptides of fibrinogen and fibrin. Polyclonal antibodies of CPM-2 were reactive to the native form of antigen. The ELISA was applied to detect quantities, in nanograms, of the antigen in CPM-2 protein.
Proteolysis of HCF-1 by Ser/Thr glycosylation-incompetent O-GlcNAc transferase:UDP-GlcNAc complexes
Kapuria, Vaibhav; Röhrig, Ute F.; Bhuiyan, Tanja; Borodkin, Vladimir S.; van Aalten, Daan M.F.; Zoete, Vincent; Herr, Winship
2016-01-01
In complex with the cosubstrate UDP-N-acetylglucosamine (UDP-GlcNAc), O-linked-GlcNAc transferase (OGT) catalyzes Ser/Thr O-GlcNAcylation of many cellular proteins and proteolysis of the transcriptional coregulator HCF-1. Such a dual glycosyltransferase–protease activity, which occurs in the same active site, is unprecedented and integrates both reversible and irreversible forms of protein post-translational modification within one enzyme. Although occurring within the same active site, we show here that glycosylation and proteolysis occur through separable mechanisms. OGT consists of tetratricopeptide repeat (TPR) and catalytic domains, which, together with UDP-GlcNAc, are required for both glycosylation and proteolysis. Nevertheless, a specific TPR domain contact with the HCF-1 substrate is critical for proteolysis but not Ser/Thr glycosylation. In contrast, key catalytic domain residues and even a UDP-GlcNAc oxygen important for Ser/Thr glycosylation are irrelevant for proteolysis. Thus, from a dual glycosyltransferase–protease, essentially single-activity enzymes can be engineered both in vitro and in vivo. Curiously, whereas OGT-mediated HCF-1 proteolysis is limited to vertebrate species, invertebrate OGTs can cleave human HCF-1. We present a model for the evolution of HCF-1 proteolysis by OGT. PMID:27056667
Batra, Jyotica; Szabó, András; Caulfield, Thomas R; Soares, Alexei S; Sahin-Tóth, Miklós; Radisky, Evette S
2013-04-05
Human chymotrypsin C (CTRC) is a pancreatic serine protease that regulates activation and degradation of trypsinogens and procarboxypeptidases by targeting specific cleavage sites within their zymogen precursors. In cleaving these regulatory sites, which are characterized by multiple flanking acidic residues, CTRC shows substrate specificity that is distinct from that of other isoforms of chymotrypsin and elastase. Here, we report the first crystal structure of active CTRC, determined at 1.9-Å resolution, revealing the structural basis for binding specificity. The structure shows human CTRC bound to the small protein protease inhibitor eglin c, which binds in a substrate-like manner filling the S6-S5' subsites of the substrate binding cleft. Significant binding affinity derives from burial of preferred hydrophobic residues at the P1, P4, and P2' positions of CTRC, although acidic P2' residues can also be accommodated by formation of an interfacial salt bridge. Acidic residues may also be specifically accommodated in the P6 position. The most unique structural feature of CTRC is a ring of intense positive electrostatic surface potential surrounding the primarily hydrophobic substrate binding site. Our results indicate that long-range electrostatic attraction toward substrates of concentrated negative charge governs substrate discrimination, which explains CTRC selectivity in regulating active digestive enzyme levels.
Kessenbrock, Kai; Fröhlich, Leopold; Sixt, Michael; Lämmermann, Tim; Pfister, Heiko; Bateman, Andrew; Belaaouaj, Azzaq; Ring, Johannes; Ollert, Markus; Fässler, Reinhard; Jenne, Dieter E.
2008-01-01
Neutrophil granulocytes form the body’s first line of antibacterial defense, but they also contribute to tissue injury and noninfectious, chronic inflammation. Proteinase 3 (PR3) and neutrophil elastase (NE) are 2 abundant neutrophil serine proteases implicated in antimicrobial defense with overlapping and potentially redundant substrate specificity. Here, we unraveled a cooperative role for PR3 and NE in neutrophil activation and noninfectious inflammation in vivo, which we believe to be novel. Mice lacking both PR3 and NE demonstrated strongly diminished immune complex–mediated (IC-mediated) neutrophil infiltration in vivo as well as reduced activation of isolated neutrophils by ICs in vitro. In contrast, in mice lacking just NE, neutrophil recruitment to ICs was only marginally impaired. The defects in mice lacking both PR3 and NE were directly linked to the accumulation of antiinflammatory progranulin (PGRN). Both PR3 and NE cleaved PGRN in vitro and during neutrophil activation and inflammation in vivo. Local administration of recombinant PGRN potently inhibited neutrophilic inflammation in vivo, demonstrating that PGRN represents a crucial inflammation-suppressing mediator. We conclude that PR3 and NE enhance neutrophil-dependent inflammation by eliminating the local antiinflammatory activity of PGRN. Our results support the use of serine protease inhibitors as antiinflammatory agents. PMID:18568075
Nugent, Marc; Yusef, Yamil R; Meng, Jianghui; Wang, Jiafu; Dolly, J Oliver
2018-06-12
Transient receptor potential (TRP) vallinoid 1 (TRPV1) and ankyrin 1 (TRPA1) are two transducing channels expressed on peripheral sensory nerves involved in pain sensation. Upregulation of their expression, stimulated by inflammatory cytokines and growth factors in animal pain models, correlate with the induction of nociceptive hyper-sensitivity. Herein, we firstly demonstrate by immuno-cytochemical labelling that TNFα augments the surface content of these channels on rat cultured dorsal root ganglion (DRG) neurons which, in turn, enhances the electrophysiological and functional responses of the latter to their specific agonists. A molecular basis underlying this TNFα-dependent enhancement was unveiled by pre-treating DRGs with a recently-published chimeric protein, consisting of the protease light chain (LC) of botulinum neurotoxin (BoNT) serotype E fused to full-length BoNT/A (LC/E-BoNT/A). This cleaves synaptosomal-associated protein of Mr 25k (SNAP-25) and reported previously to exhibit anti-nociceptive activity in a rat model of neuropathic pain. Low pM concentrations of this chimera were found to prevent the TNFα-stimulated delivery of TRPV1/A1 to the neuronal plasmalemma and, accordingly, decreased their incremental functional activities relative to those of control cells, an effect accompanied by SNAP-25 cleavage. Advantageously, LC/E-BoNT/A did not reduce the basal surface contents of the two channels or their pharmacological responses. Thus, use of multiple complementary methodologies provides evidence that LC/E-BoNT/A abolishes the TNFα-dependent augmented, but not resting, surface trafficking of TRPV1/A1. As TNFα is known to induce nociceptive hyper-sensitivity in vivo, our observed inhibition by LC/E-BoNT/A of its action in vitro could contribute to its potential alleviation of pain. Copyright © 2018 Elsevier Ltd. All rights reserved.
Transport and processing of the Rous sarcoma virus Gag protein in the endoplasmic reticulum.
Krishna, N K; Weldon, R A; Wills, J W
1996-01-01
The Gag proteins of replication-competent retroviruses direct budding at the plasma membrane and are cleaved by the viral protease (PR) just before or very soon after particle release. In contrast, defective retroviruses that bud into the endoplasmic reticulum (ER) have been found, and morphologically these appear to contain uncleaved Gag proteins. From this, it has been proposed that activation of PR may depend upon a host factor found only at the plasma membrane. However, if Gag proteins were cleaved by PR before the particle could pinch off the ER membrane, then the only particles that would remain visible are those that packaged smaller-than-normal amounts of PR, and these would have an immature morphology. To distinguish between these two hypotheses, we made use of the Rous sarcoma virus (RSV) Gag protein, the PR of RSV IS included on each Gag molecule. To target Gag to the ER, a signal peptide was installed at its amino terminus in place of the plasma membrane-binding domain. An intervening, hydrophobic, transmembrane anchor was included to keep Gag extended into the cytoplasm. We found that PR-mediated processing occurred, although the cleavage products were rapidly degraded. When the anchor was removed, allowing the entire protein to be inserted into the lumen of the ER, Gag processing occurred with a high level of efficiency, and the cleavage products were quite stable. Thus, PR activation does not require targeting of Gag molecules to the plasma membrane. Unexpectedly, molecules lacking the transmembrane anchor were rapidly secreted from the cell in a nonmembrane-enclosed form and in a manner that was very sensitive to brefeldin A and monensin. In contrast, the wild-type RSV and Moloney murine leukemia virus Gag proteins were completely insensitive to these inhibitors, suggesting that the normal mechanism of transport to the plasma membrane does not require interactions with the secretory pathway. PMID:8627676
Kataoka, Hiroaki; Kawaguchi, Makiko; Fukushima, Tsuyoshi; Shimomura, Takeshi
2018-03-01
The growth, survival, and metabolic activities of multicellular organisms at the cellular level are regulated by intracellular signaling, systemic homeostasis and the pericellular microenvironment. Pericellular proteolysis has a crucial role in processing bioactive molecules in the microenvironment and thereby has profound effects on cellular functions. Hepatocyte growth factor activator inhibitor type 1 (HAI-1) and HAI-2 are type I transmembrane serine protease inhibitors expressed by most epithelial cells. They regulate the pericellular activities of circulating hepatocyte growth factor activator and cellular type II transmembrane serine proteases (TTSPs), proteases required for the activation of hepatocyte growth factor (HGF)/scatter factor (SF). Activated HGF/SF transduces pleiotropic signals through its receptor tyrosine kinase, MET (coded by the proto-oncogene MET), which are necessary for cellular migration, survival, growth and triggering stem cells for accelerated healing. HAI-1 and HAI-2 are also required for normal epithelial functions through regulation of TTSP-mediated activation of other proteases and protease-activated receptor 2, and also through suppressing excess degradation of epithelial junctional proteins. This review summarizes current knowledge regarding the mechanism of pericellular HGF/SF activation and highlights emerging roles of HAIs in epithelial development and integrity, as well as tumorigenesis and progression of transformed epithelial cells. © 2018 Japanese Society of Pathology and John Wiley & Sons Australia, Ltd.
Enhanced stability of monomer fold correlates with extreme drug resistance of HIV-1 protease.
Louis, John M; Tözsér, József; Roche, Julien; Matúz, Krisztina; Aniana, Annie; Sayer, Jane M
2013-10-29
During treatment, mutations in HIV-1 protease (PR) are selected rapidly that confer resistance by decreasing affinity to clinical protease inhibitors (PIs). As these unique drug resistance mutations can compromise the fitness of the virus to replicate, mutations that restore conformational stability and activity while retaining drug resistance are selected on further evolution. Here we identify several compensating mechanisms by which an extreme drug-resistant mutant bearing 20 mutations (PR20) with >5-fold increased Kd and >4000-fold decreased affinity to the PI darunavir functions. (1) PR20 cleaves, albeit poorly, Gag polyprotein substrates essential for viral maturation. (2) PR20 dimer, which exhibits distinctly enhanced thermal stability, has highly attenuated autoproteolysis, thus likely prolonging its lifetime in vivo. (3) The enhanced stability of PR20 results from stabilization of the monomer fold. Both monomeric PR20(T26A) and dimeric PR20 exhibit Tm values 6-7.5 °C higher than those for their PR counterparts. Two specific mutations in PR20, L33F and L63P at sites of autoproteolysis, increase the Tm of monomeric PR(T26A) by ~8 °C, similar to PR20(T26A). However, without other compensatory mutations as seen in PR20, L33F and L63P substitutions, together, neither restrict autoproteolysis nor significantly reduce binding affinity to darunavir. To determine whether dimer stability contributes to binding affinity for inhibitors, we examined single-chain dimers of PR and PR(D25N) in which the corresponding identical monomer units were covalently linked by GGSSG sequence. Linking of the subunits did not appreciably change the ΔTm on inhibitor binding; thus stabilization by tethering appears to have little direct effect on enhancing inhibitor affinity.
Millet, Jean Kaoru; Whittaker, Gary R.
2014-01-01
Middle East respiratory syndrome coronavirus (MERS-CoV) is a newly identified betacoronavirus causing high morbidity and mortality in humans. The coronavirus spike (S) protein is the main determinant of viral entry, and although it was previously shown that MERS-CoV S can be activated by various proteases, the details of the mechanisms of proteolytic activation of fusion are still incompletely characterized. Here, we have uncovered distinctive characteristics of MERS-CoV S. We identify, by bioinformatics and peptide cleavage assays, two cleavage sites for furin, a ubiquitously expressed protease, which are located at the S1/S2 interface and at the S2′ position of the S protein. We show that although the S1/S2 site is proteolytically processed by furin during protein biosynthesis, the S2′ site is cleaved upon viral entry. MERS-CoV pseudovirion infection was shown to be enhanced by elevated levels of furin expression, and entry could be decreased by furin siRNA silencing. Enhanced furin activity appeared to partially override the low pH-dependent nature of MERS-CoV entry. Inhibition of furin activity was shown to decrease MERS-CoV S-mediated entry, as well as infection by the virus. Overall, we show that MERS-CoV has evolved an unusual two-step furin activation for fusion, suggestive of a role during the process of emergence into the human population. The ability of MERS-CoV to use furin in this manner, along with other proteases, may explain the polytropic nature of the virus. PMID:25288733
Intracellular Serine Protease Inhibitor SERPINB4 Inhibits Granzyme M-Induced Cell Death
de Koning, Pieter J. A.; Kummer, J. Alain; de Poot, Stefanie A. H.; Quadir, Razi; Broekhuizen, Roel; McGettrick, Anne F.; Higgins, Wayne J.; Devreese, Bart; Worrall, D. Margaret; Bovenschen, Niels
2011-01-01
Granzyme-mediated cell death is the major pathway for cytotoxic lymphocytes to kill virus-infected and tumor cells. In humans, five different granzymes (i.e. GrA, GrB, GrH, GrK, and GrM) are known that all induce cell death. Expression of intracellular serine protease inhibitors (serpins) is one of the mechanisms by which tumor cells evade cytotoxic lymphocyte-mediated killing. Intracellular expression of SERPINB9 by tumor cells renders them resistant to GrB-induced apoptosis. In contrast to GrB, however, no physiological intracellular inhibitors are known for the other four human granzymes. In the present study, we show that SERPINB4 formed a typical serpin-protease SDS-stable complex with both recombinant and native human GrM. Mutation of the P2-P1-P1′ triplet in the SERPINB4 reactive center loop completely abolished complex formation with GrM and N-terminal sequencing revealed that GrM cleaves SERPINB4 after P1-Leu. SERPINB4 inhibited GrM activity with a stoichiometry of inhibition of 1.6 and an apparent second order rate constant of 1.3×104 M−1s−1. SERPINB4 abolished cleavage of the macromolecular GrM substrates α-tubulin and nucleophosmin. Overexpression of SERPINB4 in tumor cells inhibited recombinant GrM-induced as well as NK cell-mediated cell death and this inhibition depended on the reactive center loop of the serpin. As SERPINB4 is highly expressed by squamous cell carcinomas, our results may represent a novel mechanism by which these tumor cells evade cytotoxic lymphocyte-induced GrM-mediated cell death. PMID:21857942
Dual functionality of β-tryptase protomers as both proteases and cofactors in the active tetramer.
Maun, Henry R; Liu, Peter S; Franke, Yvonne; Eigenbrot, Charles; Forrest, William F; Schwartz, Lawrence B; Lazarus, Robert A
2018-04-16
Human β-tryptase, a tetrameric trypsin-like serine protease, is an important mediator of the allergic inflammatory responses in asthma. During acute hypersensitivity reactions, mast cells degranulate, releasing active tetramer as a complex with proteoglycans. Extensive efforts have focused on developing therapeutic β-tryptase inhibitors, but its unique activation mechanism is less well explored. Tryptase is active only after proteolytic removal of the pro-domain followed by tetramer formation via two distinct symmetry-related interfaces. We show that the cleaved I16G mutant cannot tetramerize, likely due to impaired insertion of its N-terminus into its 'activation pocket', indicating allosteric linkage at multiple sites on each protomer. We engineered cysteines into each of the two distinct interfaces (Y75C for small or I99C for large) to assess the activity of each tetramer and disulfide-locked dimer. Using size-exclusion chromatography and enzymatic assays, we demonstrate that the two large tetramer interfaces regulate enzymatic activity, elucidating the importance of this protein-protein interaction for allosteric regulation. Notably, the I99C large interface dimer is active, even in the absence of heparin. We show that a monomeric β-tryptase mutant (I99C*:Y75A:Y37bA where C* is cysteinylated Cys99) cannot form a dimer or tetramer, yet is active, but only in the presence of heparin. Thus heparin both stabilizes the tetramer and allosterically conditions the active site. We hypothesize that each β-tryptase protomer in the tetramer has two distinct roles, acting both as a protease and as a cofactor for its neighboring protomer, to allosterically regulate enzymatic activity, providing a rationale for direct correlation of tetramer stability with proteolytic activity. Copyright © 2018, The American Society for Biochemistry and Molecular Biology.
Glandular kallikrein in the innate immune system of Atlantic salmon (Salmo salar).
Haussmann, D; Figueroa, J
2011-02-15
Glandular Kallikrein is a serine-protease with trypsin-like activity and is able to generate bioactive peptides from inactive precursors. We have evaluated the presence of this protease in the different organs of the Atlantic salmon (Salmo salar). The results clearly indicate that GK and PRL are generated in the same pituitary cells based on a co-localization by confocal microscopy. Based on probed cross-reactivity between C. striata and C. carpio glandular anti-GK antibodies, we used a homologous antibody to detect the presence of GK in several salmon tissues. We have evaluated the GK expression in healthy and defied fish. P. salmonis and V. ordalii. The GK immunoreaction in organs such as leukocytes, gills and skin is considerably increased in defied fish compared to healthy fish. This increase was present in the cells of the excretory kidney and in the intercellular tissue, where the development of hematopoietic and lymphocytic lines in fish take place. One of the most interesting organs to study was the skin, bearing in mind that this is a primary barrier to all pathogens. The skin of the defied fish exhibited an increase in immunoreactivity for glandular kallikrein similar to the protease found in mucus. An immunoreactive tissue kallikrein-like protein was identified and partially separated by perfusion chromatography. Enzymatic activity of salmon muscle prokallikrein was determined before and after trypsin activation. Kallikrein activity was characterized with respect to their ability to cleave the chromogenic leaving group, p-nitroanilide, from the peptidyl kallikrein and trypsin substrate. These findings constitute a important contribution to reveal the role of kallikrein in the innate immune system of fish. Copyright © 2010 Elsevier B.V. All rights reserved.
Serpina3n accelerates tissue repair in a diabetic mouse model of delayed wound healing.
Hsu, I; Parkinson, L G; Shen, Y; Toro, A; Brown, T; Zhao, H; Bleackley, R C; Granville, D J
2014-10-09
Chronic, non-healing wounds are a major complication of diabetes and are characterized by chronic inflammation and excessive protease activity. Although once thought to function primarily as a pro-apoptotic serine protease, granzyme B (GzmB) can also accumulate in the extracellular matrix (ECM) during chronic inflammation and cleave ECM proteins that are essential for proper wound healing, including fibronectin. We hypothesized that GzmB contributes to the pathogenesis of impaired diabetic wound healing through excessive ECM degradation. In the present study, the murine serine protease inhibitor, serpina3n (SA3N), was administered to excisional wounds created on the dorsum of genetically induced type-II diabetic mice. Wound closure was monitored and skin wound samples were collected for analyses. Wound closure, including both re-epithelialization and contraction, were significantly increased in SA3N-treated wounds. Histological and immunohistochemical analyses of SA3N-treated wounds revealed a more mature, proliferative granulation tissue phenotype as indicated by increased cell proliferation, vascularization, fibroblast maturation and differentiation, and collagen deposition. Skin homogenates from SA3N-treated wounds also exhibited greater levels of full-length intact fibronectin compared with that of vehicle wounds. In addition, GzmB-induced detachment of mouse embryonic fibroblasts correlated with a rounded and clustered phenotype that was prevented by SA3N. In summary, topical administration of SA3N accelerated wound healing. Our findings suggest that GzmB contributes to the pathogenesis of diabetic wound healing through the proteolytic cleavage of fibronectin that is essential for normal wound closure, and that SA3N promotes granulation tissue maturation and collagen deposition.
Kostova, Maya B; Brennen, William Nathaniel; Lopez, David; Anthony, Lizamma; Wang, Hao; Platz, Elizabeth; Denmeade, Samuel R
2018-08-01
Prostate cancer cells produce high levels of the serine protease Prostate-Specific Antigen (PSA). PSA is enzymatically active in the tumor microenvironment but is presumed to be enzymatically inactive in the blood due to complex formation with serum protease inhibitors α-1-antichymotrypsin and α-2-macroglobulin (A2M). PSA-A2M complexes cannot be measured by standard ELISA assays and are also rapidly cleared from the circulation. Thus the exact magnitude of PSA production by prostate cancer cells is not easily measured. The PSA complexed to A2M is unable to cleave proteins but maintains the ability to cleave small peptide substrates. Thus, in advanced prostate cancer, sufficient PSA-A2M may be in circulation to effect total A2M levels, levels of cytokines bound to A2M and hydrolyze small circulating peptide hormones. Total A2M levels in men with advanced prostate cancer and PSA levels above 1000 ng/mL were measured by ELISA and compared to controls. Additional ELISA assays were used to measure levels of IL-6 and TGF-beta which can bind to A2M. The ability of PSA-A2M complexes to hydrolyze protein and peptide substrates was analyzed ± PSA inhibitor. Enzymatic activity of PSA-A2M in serum of men with high PSA levels was also assayed. Serum A2M levels are inversely correlated with PSA levels in men with advanced prostate cancer. Il-6 Levels are significantly elevated in men with PSA >1000 ng/mL compared to controls with PSA <0.1 ng/mL. PSA-A2M complex in serum of men with PSA levels >1000 ng/mL can hydrolyze small fluorescently labeled peptide substrates but not large proteins that are PSA substrates. PSA can hydrolyze small peptide hormones like PTHrP and osteocalcin. PSA complexed to A2M retains the ability to degrade PTHrP. In advanced prostate cancer with PSA levels >1000 ng/mL, sufficient PSA-A2M is present in circulation to produce enzymatic activity against circulating small peptide hormones. Sufficient PSA is produced in advanced prostate cancer to alter total A2M levels, which can potentially alter levels of a variety of growth factors such as IL-6, TGF-beta, basic FGF, and PDGF. Alterations in levels of these cytokines and proteolytic degradation of small peptide hormones may have profound effect on host-cancer interaction. © 2018 Wiley Periodicals, Inc.
Extracellular proteases as targets for drug development
Cudic, Mare
2015-01-01
Proteases constitute one of the primary targets in drug discovery. In the present review, we focus on extracellular proteases (ECPs) because of their differential expression in many pathophysiological processes, including cancer, cardiovascular conditions, and inflammatory, pulmonary, and periodontal diseases. Many new ECP inhibitors are currently under clinical investigation and a significant increase in new therapies based on protease inhibition can be expected in the coming years. In addition to directly blocking the activity of a targeted protease, one can take advantage of differential expression in disease states to selectively deliver therapeutic or imaging agents. Recent studies in targeted drug development for the metalloproteases (matrix metalloproteinases, adamalysins, pappalysins, neprilysin, angiotensin-converting enzyme, metallocarboxypeptidases, and glutamate carboxypeptidase II), serine proteases (elastase, coagulation factors, tissue/urokinase plasminogen activator system, kallikreins, tryptase, dipeptidyl peptidase IV), cysteine proteases (cathepsin B), and renin system are discussed herein. PMID:19689354
Kromann-Hansen, Tobias; Oldenburg, Emil; Yung, Kristen Wing Yu; Ghassabeh, Gholamreza H; Muyldermans, Serge; Declerck, Paul J; Huang, Mingdong; Andreasen, Peter A; Ngo, Jacky Chi Ki
2016-07-15
A peptide segment that binds the active site of a serine protease in a substrate-like manner may behave like an inhibitor or a substrate. However, there is sparse information on which factors determine the behavior a particular peptide segment will exhibit. Here, we describe the first x-ray crystal structure of a nanobody in complex with a serine protease. The nanobody displays a new type of interaction between an antibody and a serine protease as it inserts its complementary determining region-H3 loop into the active site of the protease in a substrate-like manner. The unique binding mechanism causes the nanobody to behave as a strong inhibitor as well as a poor substrate. Intriguingly, its substrate behavior is incomplete, as 30-40% of the nanobody remained intact and inhibitory after prolonged incubation with the protease. Biochemical analysis reveals that an intra-loop interaction network within the complementary determining region-H3 of the nanobody balances its inhibitor versus substrate behavior. Collectively, our results unveil molecular factors, which may be a general mechanism to determine the substrate versus inhibitor behavior of other protease inhibitors. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Rayet, Béatrice; Lopez-Guerrero, José-Antonio; Rommelaere, Jean; Dinsart, Christiane
1998-01-01
The human promonocytic cell line U937 undergoes apoptosis upon treatment with tumor necrosis factor alpha (TNF-α). This cell line has previously been shown to be very sensitive to the lytic effect of the autonomous parvovirus H-1. Parvovirus infection leads to the activation of the CPP32 ICE-like cysteine protease which cleaves the enzyme poly(ADP-ribose)polymerase and induces morphologic changes that are characteristic of apoptosis in a way that is similar to TNF-α treatment. This effect is also observed when the U937 cells are infected with a recombinant H-1 virus which expresses the nonstructural (NS) proteins but in which the capsid genes are replaced by a reporter gene, indicating that the induction of apoptosis can be assigned to the cytotoxic nonstructural proteins in this cell system. The c-Myc protein, which is overexpressed in U937 cells, is rapidly downregulated during infection, in keeping with a possible role of this product in mediating the apoptotic cell death induced by H-1 virus infection. Interestingly, four clones (designated RU) derived from the U937 cell line and selected for their resistance to H-1 virus (J. A. Lopez-Guerrero et al., Blood 89:1642–1653, 1997) failed to decrease c-Myc expression upon treatment with differentiation agents and also resisted the induction of cell death after TNF-α treatment. Our data suggest that the RU clones have developed defense strategies against apoptosis, either by their failure to downregulate c-Myc and/or by activating antiapoptotic factors. PMID:9765434
Functional analysis of rhomboid proteases during Toxoplasma invasion.
Shen, Bang; Buguliskis, Jeffrey S; Lee, Tobie D; Sibley, L David
2014-10-21
Host cell invasion by Toxoplasma gondii and other apicomplexan parasites requires transmembrane adhesins that mediate binding to receptors on the substrate and host cell to facilitate motility and invasion. Rhomboid proteases (ROMs) are thought to cleave adhesins within their transmembrane segments, thus allowing the parasite to disengage from receptors and completely enter the host cell. To examine the specific roles of individual ROMs during invasion, we generated single, double, and triple knockouts for the three ROMs expressed in T. gondii tachyzoites. Analysis of these mutants demonstrated that ROM4 is the primary protease involved in adhesin processing and host cell invasion, whereas ROM1 or ROM5 plays negligible roles in these processes. Deletion of ROM4 blocked the shedding of adhesins such as MIC2 (microneme protein 2), causing them to accumulate on the surface of extracellular parasites. Increased surface adhesins led to nonproductive attachment, altered gliding motility, impaired moving junction formation, and reduced invasion efficiency. Despite the importance of ROM4 for efficient invasion, mutants lacking all three ROMs were viable and MIC2 was still efficiently removed from the surface of invaded mutant parasites, implying the existence of ROM-independent mechanisms for adhesin removal during invasion. Collectively, these results suggest that although ROM processing of adhesins is not absolutely essential, it is important for efficient host cell invasion by T. gondii. Importance: Apicomplexan parasites such as Toxoplasma gondii express surface proteins that bind host cell receptors to aid invasion. Many of these adhesins are subject to cleavage by rhomboid proteases (ROMs) within their transmembrane segments during invasion. Previous studies have demonstrated the importance of adhesin cleavage for parasite invasion and proposed that the ROMs responsible for processing would be essential for parasite survival. In T. gondii, ROM5 was thought to be the critical ROM for adhesin shedding due to its robust protease activity in vitro and posterior localization on the parasite surface. Here, we knocked out all three ROMs in T. gondii tachyzoites and found that ROM4, but not ROM5, was key for adhesin cleavage. However, none of the ROMs individually or in combination was essential for cell entry, further emphasizing that essential pathways such as invasion typically rely on redundant pathways to ensure survival. Copyright © 2014 Shen et al.
Transcriptional and proteomic analysis of the Aspergillus fumigatus ΔprtT protease-deficient mutant.
Hagag, Shelly; Kubitschek-Barreira, Paula; Neves, Gabriela W P; Amar, David; Nierman, William; Shalit, Itamar; Shamir, Ron; Lopes-Bezerra, Leila; Osherov, Nir
2012-01-01
Aspergillus fumigatus is the most common opportunistic mold pathogen of humans, infecting immunocompromised patients. The fungus invades the lungs and other organs, causing severe damage. Penetration of the pulmonary epithelium is a key step in the infectious process. A. fumigatus produces extracellular proteases to degrade the host structural barriers. The A. fumigatus transcription factor PrtT controls the expression of multiple secreted proteases. PrtT shows similarity to the fungal Gal4-type Zn(2)-Cys(6) DNA-binding domain of several transcription factors. In this work, we further investigate the function of this transcription factor by performing a transcriptional and a proteomic analysis of the ΔprtT mutant. Unexpectedly, microarray analysis revealed that in addition to the expected decrease in protease expression, expression of genes involved in iron uptake and ergosterol synthesis was dramatically decreased in the ΔprtT mutant. A second finding of interest is that deletion of prtT resulted in the upregulation of four secondary metabolite clusters, including genes for the biosynthesis of toxic pseurotin A. Proteomic analysis identified reduced levels of three secreted proteases (ALP1 protease, TppA, AFUA_2G01250) and increased levels of three secreted polysaccharide-degrading enzymes in the ΔprtT mutant possibly in response to its inability to derive sufficient nourishment from protein breakdown. This report highlights the complexity of gene regulation by PrtT, and suggests a potential novel link between the regulation of protease secretion and the control of iron uptake, ergosterol biosynthesis and secondary metabolite production in A. fumigatus.
Singh, Santosh K; Singh, Sanjay K; Tripathi, Vinayak R; Khare, Sunil K; Garg, Satyendra K
2011-12-28
Production of alkaline protease from various bacterial strains using statistical methods is customary now-a-days. The present work is first attempt for the production optimization of a solvent stable thermoalkaline protease by a psychrotrophic Pseudomonas putida isolate using conventional, response surface methods, and fermentor level optimization. The pre-screening medium amended with optimized (w/v) 1.0% glucose, 2.0% gelatin and 0.5% yeast extract, produced 278 U protease ml(-1) at 72 h incubation. Enzyme production increased to 431 Uml(-1) when Mg2+ (0.01%, w/v) was supplemented. Optimization of physical factors further enhanced protease to 514 Uml(-1) at pH 9.0, 25°C and 200 rpm within 60 h. The combined effect of conventionally optimized variables (glucose, yeast extract, MgSO4 and pH), thereafter predicted by response surface methodology yielded 617 U protease ml(-1) at glucose 1.25% (w/v), yeast extract 0.5% (w/v), MgSO4 0.01% (w/v) and pH 8.8. Bench-scale bioreactor level optimization resulted in enhanced production of 882 U protease ml(-1) at 0.8 vvm aeration and 150 rpm agitation during only 48 h incubation. The optimization of fermentation variables using conventional, statistical approaches and aeration/agitation at fermentor level resulted in ~13.5 folds increase (882 Uml(-1)) in protease production compared to un-optimized conditions (65 Uml(-1)). This is the highest level of thermoalkaline protease reported so far by any psychrotrophic bacterium.
Shepherd, Dawn; Booth, Sarah; Waithe, Dominic; Reis e Sousa, Caetano
2015-01-01
TLR7 mediates innate immune responses to viral RNA in endocytic compartments. Mouse and human (h)TLR7 undergo proteolytic cleavage, resulting in the generation of a C-terminal fragment that accumulates in endosomes and associates with the signaling adaptor MyD88 upon receptor triggering by TLR7 agonists. Although mouse TLR7 is cleaved in endosomes by acidic proteases, hTLR7 processing can occur at neutral pH throughout the secretory pathway through the activity of furin-like proprotein convertases. However, the mechanisms by which cleaved hTLR7 reaches the endosomal compartment remain unclear. In this study, we demonstrate that, after hTLR7 proteolytic processing, the liberated amino (N)-terminal fragment remains bound to the C terminus through disulfide bonds and provides key trafficking information that ensures correct delivery of the complex to endosomal compartments. In the absence of the N-terminal fragment, the C-terminal fragment is redirected to the cell surface, where it is functionally inactive. Our data reveal a novel role for the N terminus of hTLR7 as a molecular chaperone that provides processed hTLR7 with the correct targeting instructions to reach the endosomal compartment, hence ensuring its biological activity and preventing inadvertent cell surface responses to self-RNA. PMID:25917086
Koper, Tomasz; Polit, Agnieszka; Sobiecka-Szkatula, Anna; Wegrzyn, Katarzyna; Scire, Andrea; Figaj, Donata; Kadzinski, Leszek; Zarzecka, Urszula; Zurawa-Janicka, Dorota; Banecki, Bogdan; Lesner, Adam; Tanfani, Fabio; Lipinska, Barbara; Skorko-Glonek, Joanna
2015-01-01
Bacterial HtrAs are proteases engaged in extracytoplasmic activities during stressful conditions and pathogenesis. A model prokaryotic HtrA (HtrA/DegP from Escherichia coli) requires activation to cleave its substrates efficiently. In the inactive state of the enzyme, one of the regulatory loops, termed LA, forms inhibitory contacts in the area of the active center. Reduction of the disulfide bond located in the middle of LA stimulates HtrA activity in vivo suggesting that this S-S bond may play a regulatory role, although the mechanism of this stimulation is not known. Here, we show that HtrA lacking an S-S bridge cleaved a model peptide substrate more efficiently and exhibited a higher affinity for a protein substrate. An LA loop lacking the disulfide was more exposed to the solvent; hence, at least some of the interactions involving this loop must have been disturbed. The protein without S-S bonds demonstrated lower thermal stability and was more easily converted to a dodecameric active oligomeric form. Thus, the lack of the disulfide within LA affected the stability and the overall structure of the HtrA molecule. In this study, we have also demonstrated that in vitro human thioredoxin 1 is able to reduce HtrA; thus, reduction of HtrA can be performed enzymatically.
Luteolin restricts dengue virus replication through inhibition of the proprotein convertase furin.
Peng, Minhua; Watanabe, Satoru; Chan, Kitti Wing Ki; He, Qiuyan; Zhao, Ya; Zhang, Zhongde; Lai, Xiaoping; Luo, Dahai; Vasudevan, Subhash G; Li, Geng
2017-07-01
In many countries afflicted with dengue fever, traditional medicines are widely used as panaceas for illness, and here we describe the systematic evaluation of a widely known natural product, luteolin, originating from the "heat clearing" class of herbs. We show that luteolin inhibits the replication of all four serotypes of dengue virus, but the selectivity of the inhibition was weak. In addition, ADE-mediated dengue virus infection of human cell lines and primary PBMCs was inhibited. In a time-of-drug-addition study, luteolin was found to reduce infectious virus particle formation, but not viral RNA synthesis, in Huh-7 cells. During the virus life cycle, the host protease furin cleaves the pr moiety from prM protein of immature virus particles in the trans-Golgi network to produce mature virions. Analysis of virus particles from luteolin-treated cells revealed that prM was not cleaved efficiently. Biochemical interrogation of human furin showed that luteolin inhibited the enzyme activity in an uncompetitive manner, with Ki value of 58.6 μM, suggesting that treatment may restrict the virion maturation process. Luteolin also exhibited in vivo antiviral activity in mice infected with DENV, causing reduced viremia. Given the mode of action of luteolin and its widespread source, it is possible that it can be tested in combination with other dengue virus inhibitors. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Schmidt, Thomas P.; Perna, Anna M.; Fugmann, Tim; Böhm, Manja; Jan Hiss; Haller, Sarah; Götz, Camilla; Tegtmeyer, Nicole; Hoy, Benjamin; Rau, Tilman T.; Neri, Dario; Backert, Steffen; Schneider, Gisbert; Wessler, Silja
2016-03-01
The cell adhesion protein and tumour suppressor E-cadherin exhibits important functions in the prevention of gastric cancer. As a class-I carcinogen, Helicobacter pylori (H. pylori) has developed a unique strategy to interfere with E-cadherin functions. In previous studies, we have demonstrated that H. pylori secretes the protease high temperature requirement A (HtrA) which cleaves off the E-cadherin ectodomain (NTF) on epithelial cells. This opens cell-to-cell junctions, allowing bacterial transmigration across the polarised epithelium. Here, we investigated the molecular mechanism of the HtrA-E-cadherin interaction and identified E-cadherin cleavage sites for HtrA. Mass-spectrometry-based proteomics and Edman degradation revealed three signature motifs containing the [VITA]-[VITA]-x-x-D-[DN] sequence pattern, which were preferentially cleaved by HtrA. Based on these sites, we developed a substrate-derived peptide inhibitor that selectively bound and inhibited HtrA, thereby blocking transmigration of H. pylori. The discovery of HtrA-targeted signature sites might further explain why we detected a stable 90 kDa NTF fragment during H. pylori infection, but also additional E-cadherin fragments ranging from 105 kDa to 48 kDa in in vitro cleavage experiments. In conclusion, HtrA targets E-cadherin signature sites that are accessible in in vitro reactions, but might be partially masked on epithelial cells through functional homophilic E-cadherin interactions.
Review article: Anti-inflammatory mechanisms of action of Saccharomyces boulardii
Pothoulakis, C.
2009-01-01
SUMMARY Background Saccharomyces boulardii (S. boulardii), a well-studied probiotic, can be effective in inflammatory gastrointestinal diseases with diverse pathophysiology, such as Inflammatory Bowel Disease (IBD), and bacterially – or enterotoxin-mediated diarrhea and inflammation. Aim Discuss the mechanisms of action involved in the intestinal anti-inflammatory action of S. boulardii Methods Review of the literature related to the anti-inflammatory effects of this probiotic. Results Several mechanisms of action have been identified directed against the host and pathogenic microorganisms. S. boulardii and S. boulardii secreted protein(s) inhibit production of proinflammatory cytokines by interfering with the global mediator of inflammation nuclear factor κB, and modulating the activity of the mitogen-activated protein kinases ERK1/2 and p38. S. boulardii activates expression of peroxisome proliferator-activated receptor-gamma (PPAR-γ) that protects from gut inflammation and IBD. S. boulardii also suppresses “bacteria overgrowth” and host cell adherence, releases a protease that cleaves C. difficile toxin A and its intestinal receptor, and stimulates antibody production against toxin A. Recent results indicate that S. boulardii may interfere with IBD pathogenesis by trapping T cells in mesenteric lymph nodes. Conclusions The multiple anti-inflammatory mechanisms exerted by S. boulardii provide molecular explanations supporting its effectiveness in intestinal inflammatory states. PMID:19706150
Fong, Clifford W
2016-08-01
Studies of the cyclin-dependent kinase inhibitors and HIV-1 protease inhibitors have confirmed that ligand-protein binding is dependent on desolvation effects. It has been found that a four parameter linear model incorporating desolvation energy, lipophilicity, dipole moment and molecular volume of the ligands is a good model to describe the binding between ligands and kinases or proteases. The resistance shown by MDR proteases to the anti-viral drugs is multi-faceted involving varying changes in desolvation, lipophilicity and dipole moment interaction compared to the non-resistant protease. Desolvation has been shown to be the dominant factor influencing the effect of inhibitors against the cyclin-dependent kinases, but lipophilicity and dipole moment are also significant factors. The model can differentiate between the inhibitory activity of CDK2/cycE, CDK1/cycB and CDK4/cycD enzymes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Dengue and Zika viruses subvert reticulophagy by NS2B3-mediated cleavage of FAM134B.
Lennemann, Nicholas J; Coyne, Carolyn B
2017-02-01
The endoplasmic reticulum (ER) is exploited by several diverse viruses during their infectious life cycles. Flaviviruses, including dengue virus (DENV) and Zika virus (ZIKV), utilize the ER as a source of membranes to establish their replication organelles and to facilitate their assembly and eventual maturation along the secretory pathway. To maintain normal homeostasis, host cells have evolved highly efficient processes to dynamically regulate the ER, such as through reticulophagy, a selective form of autophagy that leads to ER degradation. Here, we identify the ER-localized reticulophagy receptor FAM134B as a host cell restriction factor for both DENV and ZIKV. We show that RNAi-mediated depletion of FAM134B significantly enhances both DENV and ZIKV replication at an early stage of the viral life cycle. Consistent with its role as an antiviral host factor, we found that several flaviviruses including DENV, ZIKV, and West Nile virus (WNV), utilize their NS3 virally-encoded proteases to directly cleave FAM134B at a single site within its reticulon homology domain (RHD). Mechanistically, we show that NS3-mediated cleavage of FAM134B blocks the formation of ER and viral protein-enriched autophagosomes, suggesting that the cleavage of FAM134B serves to specifically suppress the reticulophagy pathway. These findings thus point to an important role for FAM134B and reticulophagy in the regulation of flavivirus infection and suggest that these viruses specifically target these pathways to promote viral replication.
Curtis, Thomas D; Takeuchi, Ippei; Gram, Lone; Knudsen, Gitte M
2017-01-13
A major factor in the resilience of Listeria monocytogenes is the alternative sigma factor B (σ B ). Type II Toxin/Antitoxin (TA) systems are also known to have a role in the bacterial stress response upon activation via the ClpP or Lon proteases. Directly upstream of the σ B operon in L. monocytogenes is the TA system mazEF , which can cleave mRNA at UACMU sites. In this study, we showed that the mazEF TA locus does not affect the level of persister formation during treatment with antibiotics in lethal doses, but exerts different effects according to the sub-inhibitory stress added. Growth of a Δ mazEF mutant was enhanced relative to the wildtype in the presence of sub-inhibitory norfloxacin and at 42 °C, but was decreased when challenged with ampicillin and gentamicin. In contrast to studies in Staphylococcus aureus , we found that the mazEF locus did not affect transcription of genes within the σ B operon, but MazEF effected the expression of the σ B -dependent genes opuCA and lmo0880 , with a 0.22 and 0.05 fold change, respectively, compared to the wildtype under sub-inhibitory norfloxacin conditions. How exactly this system operates remains an open question, however, our data indicates it is not analogous to the system of S. aureus , suggesting a novel mode of action for MazEF in L. monocytogenes.
Hershko, Klilah; Simhadri, Vijaya L.; Blaisdell, Adam; Hunt, Ryan C.; Newell, Jordan; Tseng, Sandra C.; Hershko, Alon Y.; Choi, Jae Won; Sauna, Zuben E.; Wu, Andrew; Bram, Richard J.; Komar, Anton A.; Kimchi-Sarfaty, Chava
2012-01-01
The protease ADAMTS13 (a disintegrin and metalloprotease with thrombospondin type 1 repeat) cleaves multimers of von Willebrand factor, thus regulating platelet aggregation. ADAMTS13 deficiency leads to the fatal disorder thrombotic thrombocytopenic purpura (TTP). It has been observed that cyclosporin A (CsA) treatment, particularly in transplant patients, may sometimes be linked to the development of TTP. Until now, the reason for such a link was unclear. Here we provide evidence demonstrating that cyclophilin B (CypB) activity plays an important role in the secretion of active ADAMTS13. We found that CsA, an inhibitor of CypB, reduces the secretion of ADAMTS13 and leads to conformational changes in the protein resulting in diminished ADAMTS13 proteolytic activity. A direct, functional interaction between CypB (which possesses peptidyl-prolyl cis-trans isomerase (PPIase) and chaperone functions) and ADAMTS13 is demonstrated using immunoprecipitation and siRNA knockdown of CypB. Finally, CypB knock-out mice were found to have reduced ADAMTS13 levels. Taken together, our findings indicate that cyclophilin-mediated activity is an important factor affecting secretion and activity of ADAMTS13. The large number of proline residues in ADAMTS13 is consistent with the important role of cis-trans isomerization in the proper folding of this protein. These results altogether provide a novel mechanistic explanation for CsA-induced TTP in transplant patients. PMID:23144461
Hershko, Klilah; Simhadri, Vijaya L; Blaisdell, Adam; Hunt, Ryan C; Newell, Jordan; Tseng, Sandra C; Hershko, Alon Y; Choi, Jae Won; Sauna, Zuben E; Wu, Andrew; Bram, Richard J; Komar, Anton A; Kimchi-Sarfaty, Chava
2012-12-28
The protease ADAMTS13 (a disintegrin and metalloprotease with thrombospondin type 1 repeat) cleaves multimers of von Willebrand factor, thus regulating platelet aggregation. ADAMTS13 deficiency leads to the fatal disorder thrombotic thrombocytopenic purpura (TTP). It has been observed that cyclosporin A (CsA) treatment, particularly in transplant patients, may sometimes be linked to the development of TTP. Until now, the reason for such a link was unclear. Here we provide evidence demonstrating that cyclophilin B (CypB) activity plays an important role in the secretion of active ADAMTS13. We found that CsA, an inhibitor of CypB, reduces the secretion of ADAMTS13 and leads to conformational changes in the protein resulting in diminished ADAMTS13 proteolytic activity. A direct, functional interaction between CypB (which possesses peptidyl-prolyl cis-trans isomerase (PPIase) and chaperone functions) and ADAMTS13 is demonstrated using immunoprecipitation and siRNA knockdown of CypB. Finally, CypB knock-out mice were found to have reduced ADAMTS13 levels. Taken together, our findings indicate that cyclophilin-mediated activity is an important factor affecting secretion and activity of ADAMTS13. The large number of proline residues in ADAMTS13 is consistent with the important role of cis-trans isomerization in the proper folding of this protein. These results altogether provide a novel mechanistic explanation for CsA-induced TTP in transplant patients.
Mehrnoush, Amid; Mustafa, Shuhaimi; Sarker, Md. Zaidul Islam; Yazid, Abdul Manap Mohd
2012-01-01
Mango peel is a good source of protease but remains an industrial waste. This study focuses on the optimization of polyethylene glycol (PEG)/dextran-based aqueous two-phase system (ATPS) to purify serine protease from mango peel. The activity of serine protease in different phase systems was studied and then the possible relationship between the purification variables, namely polyethylene glycol molecular weight (PEG, 4000–12,000 g·mol−1), tie line length (−3.42–35.27%), NaCl (−2.5–11.5%) and pH (4.5–10.5) on the enzymatic properties of purified enzyme was investigated. The most significant effect of PEG was on the efficiency of serine protease purification. Also, there was a significant increase in the partition coefficient with the addition of 4.5% of NaCl to the system. This could be due to the high hydrophobicity of serine protease compared to protein contaminates. The optimum conditions to achieve high partition coefficient (84.2) purification factor (14.37) and yield (97.3%) of serine protease were obtained in the presence of 8000 g·mol−1 of PEG, 17.2% of tie line length and 4.5% of NaCl at pH 7.5. The enzymatic properties of purified serine protease using PEG/dextran ATPS showed that the enzyme could be purified at a high purification factor and yield with easy scale-up and fast processing. PMID:22489172
Mehrnoush, Amid; Mustafa, Shuhaimi; Sarker, Md Zaidul Islam; Yazid, Abdul Manap Mohd
2012-01-01
Mango peel is a good source of protease but remains an industrial waste. This study focuses on the optimization of polyethylene glycol (PEG)/dextran-based aqueous two-phase system (ATPS) to purify serine protease from mango peel. The activity of serine protease in different phase systems was studied and then the possible relationship between the purification variables, namely polyethylene glycol molecular weight (PEG, 4000-12,000 g·mol(-1)), tie line length (-3.42-35.27%), NaCl (-2.5-11.5%) and pH (4.5-10.5) on the enzymatic properties of purified enzyme was investigated. The most significant effect of PEG was on the efficiency of serine protease purification. Also, there was a significant increase in the partition coefficient with the addition of 4.5% of NaCl to the system. This could be due to the high hydrophobicity of serine protease compared to protein contaminates. The optimum conditions to achieve high partition coefficient (84.2) purification factor (14.37) and yield (97.3%) of serine protease were obtained in the presence of 8000 g·mol(-1) of PEG, 17.2% of tie line length and 4.5% of NaCl at pH 7.5. The enzymatic properties of purified serine protease using PEG/dextran ATPS showed that the enzyme could be purified at a high purification factor and yield with easy scale-up and fast processing.
Identification of candidate substrates of ubiquitin-specific protease 13 using 2D-DIGE
Wang, Jianmin; Liu, Yingli; Tang, Lijuan; Qi, Sufen; Mi, Yingjun; Liu, Dianwu; Tian, Qingbao
2017-01-01
The present study aimed to identify candidate substrates of ubiquitin-specific protease (USP)13 using two-dimensional fluorescence difference gel electrophoresis (2D-DIGE). USP13 is a well-characterized member of the USP family, which regulates diverse cellular functions by cleaving ubiquitin from ubiquitinated protein substrates. However, existing studies indicate that USP13 has no detectable hydrolytic activity in vitro. This finding implies that USP13 likely has different substrate specificity. In this study, a USP cleavage assay was performed using two different types of model substrates (glutathione S-transferase-Ub52 and ubiquitin-β-galactosidase) to detect the deubiquitinating enzyme (DUB) activity of USP13. In addition, a proteomic approach was taken by using 2D-DIGE to detect cellular proteins whose expressoin is significantly altered in 293T cell lines following the overexpression of USP13 or its C345S mutant (the catalytically inactive form). The data indicated that USP13 still has no detectable DUB activity in vitro nor does C345S. The results of 2D-DIGE demonstrated that the expression of several proteins increased or decreased significantly in 293T cells following the overexpression of USP13. Mass spec troscopy analysis of gel spots identified 7 proteins, including 4 proteins with an increased expression, namely vinculin, thimet oligopeptidase, cleavage and polyadenylation specific factor 3, and methylosome protein 50, and 3 proteins with a decreased expression, namely adenylosuccinate synthetase, annexin and phosphoglycerate mutase. In addition, in the samples of 293T cell lines after the overexpression of USP13 and USP13 C345S, vinculin exhibited an increased expression, suggesting that it may be a candidate substrate of USP13. However, sufficient follow-up validation studies are required in order to determine whether vinculin protein directly interacts with USP13. PMID:28498477
Kleifeld, Oded; Doucet, Alain; Prudova, Anna; auf dem Keller, Ulrich; Gioia, Magda; Kizhakkedathu, Jayachandran N; Overall, Christopher M
2011-09-22
Analysis of the sequence and nature of protein N termini has many applications. Defining the termini of proteins for proteome annotation in the Human Proteome Project is of increasing importance. Terminomics analysis of protease cleavage sites in degradomics for substrate discovery is a key new application. Here we describe the step-by-step procedures for performing terminal amine isotopic labeling of substrates (TAILS), a 2- to 3-d (depending on method of labeling) high-throughput method to identify and distinguish protease-generated neo-N termini from mature protein N termini with all natural modifications with high confidence. TAILS uses negative selection to enrich for all N-terminal peptides and uses primary amine labeling-based quantification as the discriminating factor. Labeling is versatile and suited to many applications, including biochemical and cell culture analyses in vitro; in vivo analyses using tissue samples from animal and human sources can also be readily performed. At the protein level, N-terminal and lysine amines are blocked by dimethylation (formaldehyde/sodium cyanoborohydride) and isotopically labeled by incorporating heavy and light dimethylation reagents or stable isotope labeling with amino acids in cell culture labels. Alternatively, easy multiplex sample analysis can be achieved using amine blocking and labeling with isobaric tags for relative and absolute quantification, also known as iTRAQ. After tryptic digestion, N-terminal peptide separation is achieved using a high-molecular-weight dendritic polyglycerol aldehyde polymer that binds internal tryptic and C-terminal peptides that now have N-terminal alpha amines. The unbound naturally blocked (acetylation, cyclization, methylation and so on) or labeled mature N-terminal and neo-N-terminal peptides are recovered by ultrafiltration and analyzed by tandem mass spectrometry (MS/MS). Hierarchical substrate winnowing discriminates substrates from the background proteolysis products and non-cleaved proteins by peptide isotope quantification and bioinformatics search criteria.
Hara, Mitsuko; Kirita, Akiko; Kondo, Wakako; Matsuura, Tomokazu; Nagatsuma, Keisuke; Dohmae, Naoshi; Ogawa, Shinji; Imajoh-Ohmi, Shinobu; Friedman, Scott L; Rifkin, Daniel B; Kojima, Soichi
2014-01-01
Byproducts of cytokine activation are sometimes useful as surrogate biomarkers for monitoring cytokine generation in patients. Transforming growth factor (TGF)-β plays a pivotal role in pathogenesis of hepatic fibrosis. TGF-β is produced as part of an inactive latent complex, in which the cytokine is trapped by its propeptide, the latency-associated protein (LAP). Therefore, to exert its biological activity, TGF-β must be released from the latent complex. Several proteases activate latent TGF-β by cutting LAP. We previously reported that Camostat Mesilate, a broad spectrum protease inhibitor, which is especially potent at inhibiting plasma kallikrein (PLK), prevented liver fibrosis in the porcine serum-induced liver fibrosis model in rats. We suggested that PLK may work as an activator of latent TGF-β during the pathogenesis of liver diseases in the animal models. However, it remained to be elucidated whether this activation mechanism also functions in fibrotic liver in patients. Here, we report that PLK cleaves LAP between R(58) and L(59) residues. We have produced monoclonal antibodies against two degradation products of LAP (LAP-DP) by PLK, and we have used these specific antibodies to immunostain LAP-DP in liver tissues from both fibrotic animals and patients. The N-terminal side LAP-DP ending at R(58) (R(58) LAP-DP) was detected in liver tissues, while the C-terminal side LAP-DP beginning at L(59) (L(59) LAP-DP) was not detectable. The R(58) LAP-DP was seen mostly in α-smooth muscle actin-positive activated stellate cells. These data suggest for the first time that the occurrence of a PLK-dependent TGF-β activation reaction in patients and indicates that the LAP-DP may be useful as a surrogate marker reflecting PLK-dependent TGF-β activation in fibrotic liver both in animal models and in patients.
Cysteine Protease Inhibitors as Chemotherapy: Lessons from a Parasite Target
NASA Astrophysics Data System (ADS)
Selzer, Paul M.; Pingel, Sabine; Hsieh, Ivy; Ugele, Bernhard; Chan, Victor J.; Engel, Juan C.; Bogyo, Matthew; Russell, David G.; Sakanari, Judy A.; McKerrow, James H.
1999-09-01
Papain family cysteine proteases are key factors in the pathogenesis of cancer invasion, arthritis, osteoporosis, and microbial infections. Targeting this enzyme family is therefore one strategy in the development of new chemotherapy for a number of diseases. Little is known, however, about the efficacy, selectivity, and safety of cysteine protease inhibitors in cell culture or in vivo. We now report that specific cysteine protease inhibitors kill Leishmania parasites in vitro, at concentrations that do not overtly affect mammalian host cells. Inhibition of Leishmania cysteine protease activity was accompanied by defects in the parasite's lysosome/endosome compartment resembling those seen in lysosomal storage diseases. Colocalization of anti-protease antibodies with biotinylated surface proteins and accumulation of undigested debris and protease in the flagellar pocket of treated parasites were consistent with a pathway of protease trafficking from flagellar pocket to the lysosome/endosome compartment. The inhibitors were sufficiently absorbed and stable in vivo to ameliorate the pathology associated with a mouse model of Leishmania infection.
Regulatory role of calpain in neuronal death
Cheng, Si-ying; Wang, Shu-chao; Lei, Ming; Wang, Zhen; Xiong, Kun
2018-01-01
Calpains are a group of calcium-dependent proteases that are over activated by increased intracellular calcium levels under pathological conditions. A wide range of substrates that regulate necrotic, apoptotic and autophagic pathways are affected by calpain. Calpain plays a very important role in neuronal death and various neurological disorders. This review introduces recent research progress related to the regulatory mechanisms of calpain in neuronal death. Various neuronal programmed death pathways including apoptosis, autophagy and regulated necrosis can be divided into receptor interacting protein-dependent necroptosis, mitochondrial permeability transition-dependent necrosis, pyroptosis and poly (ADP-ribose) polymerase 1-mediated parthanatos. Calpains cleave series of key substrates that may lead to cell death or participate in cell death. Regarding the investigation of calpain-mediated programed cell death, it is necessary to identify specific inhibitors that inhibit calpain mediated neuronal death and nervous system diseases. PMID:29623944
A plasmid-based reporter system for live cell imaging of dengue virus infected cells.
Medin, Carey L; Valois, Sierra; Patkar, Chinmay G; Rothman, Alan L
2015-01-01
Cell culture models are used widely to study the effects of dengue virus (DENV) on host cell function. Current methods of identification of cells infected with an unmodified DENV requires fixation and permeablization of cells to allow DENV-specific antibody staining. This method does not permit imaging of viable cells over time. In this report, a plasmid-based reporter was developed to allow non-destructive identification of DENV-infected cells. The plasmid-based reporter was demonstrated to be broadly applicable to the four DENV serotypes, including low-passaged strains, and was specifically cleaved by the viral protease with minimal interference on viral production. This study reveals the potential for this novel reporter system to advance the studies of virus-host interactions during DENV infection. Copyright © 2014 Elsevier B.V. All rights reserved.
Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases.
Massberg, Steffen; Grahl, Lenka; von Bruehl, Marie-Luise; Manukyan, Davit; Pfeiler, Susanne; Goosmann, Christian; Brinkmann, Volker; Lorenz, Michael; Bidzhekov, Kiril; Khandagale, Avinash B; Konrad, Ildiko; Kennerknecht, Elisabeth; Reges, Katja; Holdenrieder, Stefan; Braun, Siegmund; Reinhardt, Christoph; Spannagl, Michael; Preissner, Klaus T; Engelmann, Bernd
2010-08-01
Blood neutrophils provide the first line of defense against pathogens but have also been implicated in thrombotic processes. This dual function of neutrophils could reflect an evolutionarily conserved association between blood coagulation and antimicrobial defense, although the molecular determinants and in vivo significance of this association remain unclear. Here we show that major microbicidal effectors of neutrophils, the serine proteases neutrophil elastase and cathepsin G, together with externalized nucleosomes, promote coagulation and intravascular thrombus growth in vivo. The serine proteases and extracellular nucleosomes enhance tissue factor- and factor XII-dependent coagulation in a process involving local proteolysis of the coagulation suppressor tissue factor pathway inhibitor. During systemic infection, activation of coagulation fosters compartmentalization of bacteria in liver microvessels and reduces bacterial invasion into tissue. In the absence of a pathogen challenge, neutrophil-derived serine proteases and nucleosomes can contribute to large-vessel thrombosis, the main trigger of myocardial infarction and stroke. The ability of coagulation to suppress pathogen dissemination indicates that microvessel thrombosis represents a physiological tool of host defense.
Plasmids encoding therapeutic agents
Keener, William K [Idaho Falls, ID
2007-08-07
Plasmids encoding anti-HIV and anti-anthrax therapeutic agents are disclosed. Plasmid pWKK-500 encodes a fusion protein containing DP178 as a targeting moiety, the ricin A chain, an HIV protease cleavable linker, and a truncated ricin B chain. N-terminal extensions of the fusion protein include the maltose binding protein and a Factor Xa protease site. C-terminal extensions include a hydrophobic linker, an L domain motif peptide, a KDEL ER retention signal, another Factor Xa protease site, an out-of-frame buforin II coding sequence, the lacZ.alpha. peptide, and a polyhistidine tag. More than twenty derivatives of plasmid pWKK-500 are described. Plasmids pWKK-700 and pWKK-800 are similar to pWKK-500 wherein the DP178-encoding sequence is substituted by RANTES- and SDF-1-encoding sequences, respectively. Plasmid pWKK-900 is similar to pWKK-500 wherein the HIV protease cleavable linker is substituted by a lethal factor (LF) peptide-cleavable linker.
Vinyl Sulfones as Antiparasitic Agents and a Structural Basis for Drug Design*
Kerr, Iain D.; Lee, Ji H.; Farady, Christopher J.; Marion, Rachael; Rickert, Mathias; Sajid, Mohammed; Pandey, Kailash C.; Caffrey, Conor R.; Legac, Jennifer; Hansell, Elizabeth; McKerrow, James H.; Craik, Charles S.; Rosenthal, Philip J.; Brinen, Linda S.
2009-01-01
Cysteine proteases of the papain superfamily are implicated in a number of cellular processes and are important virulence factors in the pathogenesis of parasitic disease. These enzymes have therefore emerged as promising targets for antiparasitic drugs. We report the crystal structures of three major parasite cysteine proteases, cruzain, falcipain-3, and the first reported structure of rhodesain, in complex with a class of potent, small molecule, cysteine protease inhibitors, the vinyl sulfones. These data, in conjunction with comparative inhibition kinetics, provide insight into the molecular mechanisms that drive cysteine protease inhibition by vinyl sulfones, the binding specificity of these important proteases and the potential of vinyl sulfones as antiparasitic drugs. PMID:19620707
[Pathogenic factors of vibrios with special emphasis on Vibrio vulnificus].
Shinoda, Sumio
2005-07-01
Bacteria of the genus Vibrio are normal habitants of the aquatic environment and play roles for biocontrole of aquatic ecosystem, but some species are believed to be human pathogens. These species can be classified into two groups according to the types of diseases they cause: the gastrointestinal infections and the extraintestinal infections. The pathogenic species produce various pathogenic factors including enterotoxin, hemolysin, cytotoxin, protease, siderophore, adhesive factor, and hemagglutinin. We studied various pathogenic factors of vibrios with special emphasis on protease and hemolysin of V. vulnificus. V. vulnificus is now recognized as being among the most rapidly fatal of human pathogens, although the infection is appeared in patients having underlying disease(s) such as liver dysfunction, alcoholic cirrhosis or haemochromatosis. V. vulnificus protease (VVP) is thought to be a major toxic factor causing skin damage in the patients having septicemia. VVP is a metalloprotease and degrades a number of biologically important proteins including elastin, fibrinogen, and plasma proteinase inhibitors of complement components. VVP causes skin damages through activation of the Factor XII-plasma kallikrein-kinin cascade and/or exocytotic histamine release from mast cells, and a haemorrhagic lesion through digestion of the vascular basement membrane. Thus, the protease is the most probable candidate for tissue damage and bacterial invasion during an infection. Pathogenic roles and functional mechanism of other factors including hemolysins of V. vulnificus and V. mimicus are also shown in this review article.
Measurement of Factor V Activity in Human Plasma Using a Microplate Coagulation Assay
Tilley, Derek; Levit, Irina; Samis, John A.
2012-01-01
In response to injury, blood coagulation is activated and results in generation of the clotting protease, thrombin. Thrombin cleaves fibrinogen to fibrin which forms an insoluble clot that stops hemorrhage. Factor V (FV) in its activated form, FVa, is a critical cofactor for the protease FXa and accelerator of thrombin generation during fibrin clot formation as part of prothrombinase 1, 2. Manual FV assays have been described 3, 4, but they are time consuming and subjective. Automated FV assays have been reported 5-7, but the analyzer and reagents are expensive and generally provide only the clot time, not the rate and extent of fibrin formation. The microplate platform is preferred for measuring enzyme-catalyzed events because of convenience, time, cost, small volume, continuous monitoring, and high-throughput 8, 9. Microplate assays have been reported for clot lysis 10, platelet aggregation 11, and coagulation Factors 12, but not for FV activity in human plasma. The goal of the method was to develop a microplate assay that measures FV activity during fibrin formation in human plasma. This novel microplate method outlines a simple, inexpensive, and rapid assay of FV activity in human plasma. The assay utilizes a kinetic microplate reader to monitor the absorbance change at 405nm during fibrin formation in human plasma (Figure 1) 13. The assay accurately measures the time, initial rate, and extent of fibrin clot formation. It requires only μl quantities of plasma, is complete in 6 min, has high-throughput, is sensitive to 24-80pM FV, and measures the amount of unintentionally activated (1-stage activity) and thrombin-activated FV (2-stage activity) to obtain a complete assessment of its total functional activity (2-stage activity - 1-stage activity). Disseminated intravascular coagulation (DIC) is an acquired coagulopathy that most often develops from pre-existing infections 14. DIC is associated with a poor prognosis and increases mortality above the pre-existing pathology 15. The assay was used to show that in 9 patients with DIC, the FV 1-stage, 2-stage, and total activities were decreased, on average, by 54%, 44%, and 42%, respectively, compared with normal pooled human reference plasma (NHP). The FV microplate assay is easily adaptable to measure the activity of any coagulation factor. This assay will increase our understanding of FV biochemistry through a more accurate and complete measurement of its activity in research and clinical settings. This information will positively impact healthcare environments through earlier diagnosis and development of more effective treatments for coagulation disorders, such as DIC. PMID:22987015
Measurement of factor v activity in human plasma using a microplate coagulation assay.
Tilley, Derek; Levit, Irina; Samis, John A
2012-09-09
In response to injury, blood coagulation is activated and results in generation of the clotting protease, thrombin. Thrombin cleaves fibrinogen to fibrin which forms an insoluble clot that stops hemorrhage. Factor V (FV) in its activated form, FVa, is a critical cofactor for the protease FXa and accelerator of thrombin generation during fibrin clot formation as part of prothrombinase (1, 2). Manual FV assays have been described (3, 4), but they are time consuming and subjective. Automated FV assays have been reported (5-7), but the analyzer and reagents are expensive and generally provide only the clot time, not the rate and extent of fibrin formation. The microplate platform is preferred for measuring enzyme-catalyzed events because of convenience, time, cost, small volume, continuous monitoring, and high-throughput (8, 9). Microplate assays have been reported for clot lysis (10), platelet aggregation (11), and coagulation Factors (12), but not for FV activity in human plasma. The goal of the method was to develop a microplate assay that measures FV activity during fibrin formation in human plasma. This novel microplate method outlines a simple, inexpensive, and rapid assay of FV activity in human plasma. The assay utilizes a kinetic microplate reader to monitor the absorbance change at 405 nm during fibrin formation in human plasma (Figure 1) (13). The assay accurately measures the time, initial rate, and extent of fibrin clot formation. It requires only μl quantities of plasma, is complete in 6 min, has high-throughput, is sensitive to 24-80 pM FV, and measures the amount of unintentionally activated (1-stage activity) and thrombin-activated FV (2-stage activity) to obtain a complete assessment of its total functional activity (2-stage activity - 1-stage activity). Disseminated intravascular coagulation (DIC) is an acquired coagulopathy that most often develops from pre-existing infections (14). DIC is associated with a poor prognosis and increases mortality above the pre-existing pathology (15). The assay was used to show that in 9 patients with DIC, the FV 1-stage, 2-stage, and total activities were decreased, on average, by 54%, 44%, and 42%, respectively, compared with normal pooled human reference plasma (NHP). The FV microplate assay is easily adaptable to measure the activity of any coagulation factor. This assay will increase our understanding of FV biochemistry through a more accurate and complete measurement of its activity in research and clinical settings. This information will positively impact healthcare environments through earlier diagnosis and development of more effective treatments for coagulation disorders, such as DIC.
Mechanisms of Hepatocyte Growth Factor Activation in Cancer Tissues
Kawaguchi, Makiko; Kataoka, Hiroaki
2014-01-01
Hepatocyte growth factor/scatter factor (HGF/SF) plays critical roles in cancer progression through its specific receptor, MET. HGF/SF is usually synthesized and secreted as an inactive proform (pro-HGF/SF) by stromal cells, such as fibroblasts. Several serine proteases are reported to convert pro-HGF/SF to mature HGF/SF and among these, HGF activator (HGFA) and matriptase are the most potent activators. Increased activities of both proteases have been observed in various cancers. HGFA is synthesized mainly by the liver and secreted as an inactive pro-form. In cancer tissues, pro-HGFA is likely activated by thrombin and/or human kallikrein 1-related peptidase (KLK)-4 and KLK-5. Matriptase is a type II transmembrane serine protease that is expressed by most epithelial cells and is also synthesized as an inactive zymogen. Matriptase activation is likely to be mediated by autoactivation or by other trypsin-like proteases. Recent studies revealed that matriptase autoactivation is promoted by an acidic environment. Given the mildly acidic extracellular environment of solid tumors, matriptase activation may, thus, be accelerated in the tumor microenvironment. HGFA and matriptase activities are regulated by HGFA inhibitor (HAI)-1 (HAI-1) and/or HAI-2 in the pericellular microenvironment. HAIs may have an important role in cancer cell biology by regulating HGF/SF-activating proteases. PMID:25268161
Kagawa, T F; Cooney, J C; Baker, H M; McSweeney, S; Liu, M; Gubba, S; Musser, J M; Baker, E N
2000-02-29
Pathogenic bacteria secrete protein toxins that weaken or disable their host, and thereby act as virulence factors. We have determined the crystal structure of streptococcal pyrogenic exotoxin B (SpeB), a cysteine protease that is a major virulence factor of the human pathogen Streptococcus pyogenes and participates in invasive disease episodes, including necrotizing fasciitis. The structure, determined for the 40-kDa precursor form of SpeB at 1.6-A resolution, reveals that the protein is a distant homologue of the papain superfamily that includes the mammalian cathepsins B, K, L, and S. Despite negligible sequence identity, the protease portion has the canonical papain fold, albeit with major loop insertions and deletions. The catalytic site differs from most other cysteine proteases in that it lacks the Asn residue of the Cys-His-Asn triad. The prosegment has a unique fold and inactivation mechanism that involves displacement of the catalytically essential His residue by a loop inserted into the active site. The structure also reveals the surface location of an integrin-binding Arg-Gly-Asp (RGD) motif that is a feature unique to SpeB among cysteine proteases and is linked to the pathogenesis of the most invasive strains of S. pyogenes.
Browne, P; O'Cuinn, G
1983-12-01
The degradation of thyroliberin (less than Glu-His-Pro-NH2) to its component amino acids by the soluble fraction of guinea pig brain is catalysed by four enzymes namely a pyroglutamate aminopeptidase, a post-proline cleaving enzyme, a post-proline dipeptidyl aminopeptidase and a proline dipeptidase. 1. The pyroglutamate aminopeptidase was purified to over 90% homogeneity with a purification factor of 2868-fold and a yield of 5.7%. In addition to catalysing the hydrolysis of thyroliberin, acid thyroliberin and pyroglutamate-7-amido-4-methylcoumarin the pyroglutamate aminopeptidase catalysed the hydrolysis of the peptide bond adjacent to the pyroglutamic acid residue in luliberin, neurotensin bombesin, bradykinin-potentiating peptide B, the anorexogenic peptide and the dipeptides pyroglutamyl alanine and pyroglutamyl valine. Pyroglutamyl proline and eledoisin were not hydrolysed. 2. The post-proline cleaving enzyme was purified to apparent electrophoretic homogeneity with a purification factor of 2298-fold and a yield of 10.6%. The post-proline cleaving enzyme catalysed the hydrolysis of thyroliberin and N-benzyloxycarbonyl-glycylproline-7-amido-4-methylcoumarin. It did not catalyse the hydrolysis of glycylproline-7-amido-4-methylcoumarin or His-Pro-NH2. 3. The post-proline dipeptidyl aminopeptidase was partially purified with a purification factor of 301-fold and a yield of 8.9%. The post-proline dipeptidyl aminopeptidase catalysed the hydrolysis of His-Pro-NH2 and glycylproline-7-amido-4-methylcoumarin but did not exhibit any post-proline cleaving endopeptidase activity against thyroliberin or N-benzyloxycarbonyl-glycylproline-7-amido-4-methylcoumarin. 4. Studies with various functional reagents indicated that the pyroglutamate aminopeptidase could be specifically inhibited by 2-iodoacetamide (100% inhibition at an inhibitor concentration of 5 microM), the post-proline cleaving enzyme by bacitracin (IC50 = 42 microM) and the post-proline dipeptidyl aminopeptidase by puromycin (IC50 = 46 microM). Because of their specific inhibitory effects these three reagents were key elements in the elucidation of the overall pathway for the metabolism of thyroliberin by guinea pig brain tissue enzymes.
Chung, Nancy P Y; Matthews, Katie; Kim, Helen J; Ketas, Thomas J; Golabek, Michael; de Los Reyes, Kevin; Korzun, Jacob; Yasmeen, Anila; Sanders, Rogier W; Klasse, Per Johan; Wilson, Ian A; Ward, Andrew B; Marozsan, Andre J; Moore, John P; Cupo, Albert
2014-04-25
Recombinant soluble, cleaved HIV-1 envelope glycoprotein SOSIP.664 gp140 trimers based on the subtype A BG505 sequence are being studied structurally and tested as immunogens in animals. For these trimers to become a vaccine candidate for human trials, they would need to be made in appropriate amounts at an acceptable quality. Accomplishing such tasks by transient transfection is likely to be challenging. The traditional way to express recombinant proteins in large amounts is via a permanent cell line, usually of mammalian origin. Making cell lines that produce BG505 SOSIP.664 trimers requires the co-expression of the Furin protease to ensure that the cleavage site between the gp120 and gp41 subunits is fully utilized. We designed a vector capable of expressing Env and Furin, and used it to create Stable 293 T and CHO Flp-In™ cell lines through site-specific recombination. Both lines produce high quality, cleaved trimers at yields of up to 12-15 mg per 1 × 109 cells. Trimer expression at such levels was maintained for up to 30 days (10 passages) after initial seeding and was consistently superior to what could be achieved by transient transfection. Electron microscopy studies confirm that the purified trimers have the same native-like appearance as those derived by transient transfection and used to generate high-resolution structures. They also have appropriate antigenic properties, including the presentation of the quaternary epitope for the broadly neutralizing antibody PGT145. The BG505 SOSIP.664 trimer-expressing cell lines yield proteins of an appropriate quality for structural studies and animal immunogenicity experiments. The methodology is suitable for making similar lines under Good Manufacturing Practice conditions, to produce trimers for human clinical trials. Moreover, any env gene can be incorporated into this vector system, allowing the manufacture of SOSIP trimers from multiple genotypes, either by transient transfection or from stable cell lines.
Identification of food-grade subtilisins as gluten-degrading enzymes to treat celiac disease
Wei, Guoxian; Tian, Na; Siezen, Roland; Schuppan, Detlef
2016-01-01
Gluten are proline- and glutamine-rich proteins present in wheat, barley, and rye and contain the immunogenic sequences that drive celiac disease (CD). Rothia mucilaginosa, an oral microbial colonizer, can cleave these gluten epitopes. The aim was to isolate and identify the enzymes and evaluate their potential as novel enzyme therapeutics for CD. The membrane-associated R. mucilaginosa proteins were extracted and separated by DEAE chromatography. Enzyme activities were monitored with paranitroanilide-derivatized and fluorescence resonance energy transfer (FRET) peptide substrates, and by gliadin zymography. Epitope elimination was determined in R5 and G12 ELISAs. The gliadin-degrading Rothia enzymes were identified by LC-ESI-MS/MS as hypothetical proteins ROTMU0001_0241 (C6R5V9_9MICC), ROTMU0001_0243 (C6R5W1_9MICC), and ROTMU0001_240 (C6R5V8_9MICC). A search with the Basic Local Alignment Search Tool revealed that these are subtilisin-like serine proteases belonging to the peptidase S8 family. Alignment of the major Rothia subtilisins indicated that all contain the catalytic triad with Asp (D), His (H), and Ser (S) in the D-H-S order. They cleaved succinyl-Ala-Ala-Pro-Phe-paranitroanilide, a substrate for subtilisin with Pro in the P2 position, as in Tyr-Pro-Gln and Leu-Pro-Tyr in gluten, which are also cleaved. Consistently, FRET substrates of gliadin immunogenic epitopes comprising Xaa-Pro-Xaa motives were rapidly hydrolyzed. The Rothia subtilisins and two subtilisins from Bacillus licheniformis, subtilisin A and the food-grade Nattokinase, efficiently degraded the immunogenic gliadin-derived 33-mer peptide and the immunodominant epitopes recognized by the R5 and G12 antibodies. This study identified Rothia and food-grade Bacillus subtilisins as promising new candidates for enzyme therapeutics in CD. PMID:27469368
Stein, David; Charatsi, Iphigenie; Cho, Yong Suk; Zhang, Zhenyu; Nguyen, Jesse; DeLotto, Robert; Luschnig, Stefan; Moussian, Bernard
2010-11-09
Drosophila embryonic dorsal-ventral polarity is generated by a series of serine protease processing events in the egg perivitelline space. Gastrulation Defective processes Snake, which then cleaves Easter, which then processes Spätzle into the activating ligand for the Toll receptor. seele was identified in a screen for mutations that, when homozygous in ovarian germline clones, lead to the formation of progeny embryos with altered embryonic patterning; maternal loss of seele function leads to the production of moderately dorsalized embryos. By combining constitutively active versions of Gastrulation Defective, Snake, Easter, and Spätzle with loss-of-function alleles of seele, we find that Seele activity is dispensable for Spätzle-mediated activation of Toll but is required for Easter, Snake, and Gastrulation Defective to exert their effects on dorsal-ventral patterning. Moreover, Seele function is required specifically for secretion of Easter from the developing embryo into the perivitelline space and for Easter processing. Seele protein resides in the endoplasmic reticulum of blastoderm embryos, suggesting a role in the trafficking of Easter to the perivitelline space, prerequisite to its processing and function. Easter transport to the perivitelline space represents a previously unappreciated control point in the signal transduction pathway that controls Drosophila embryonic dorsal-ventral polarity. Copyright © 2010 Elsevier Ltd. All rights reserved.
Enterokinase Enhances Influenza A Virus Infection by Activating Trypsinogen in Human Cell Lines
Hayashi, Hideki; Kubo, Yoshinao; Izumida, Mai; Takahashi, Etsuhisa; Kido, Hiroshi; Sato, Ko; Yamaya, Mutsuo; Nishimura, Hidekazu; Nakayama, Kou; Matsuyama, Toshifumi
2018-01-01
Cleavage and activation of hemagglutinin (HA) by trypsin-like proteases in influenza A virus (IAV) are essential prerequisites for its successful infection and spread. In host cells, some transmembrane serine proteases such as TMPRSS2, TMPRSS4 and HAT, along with plasmin in the bloodstream, have been reported to cleave the HA precursor (HA0) molecule into its active forms, HA1 and HA2. Some trypsinogens can also enhance IAV proliferation in some cell types (e.g., rat cardiomyoblasts). However, the precise activation mechanism for this process is unclear, because the expression level of the physiological activator of the trypsinogens, the TMPRSS15 enterokinase, is expected to be very low in such cells, with the exception of duodenal cells. Here, we show that at least two variant enterokinases are expressed in various human cell lines, including A549 lung-derived cells. The exogenous expression of these enterokinases was able to enhance the proliferation of IAV in 293T human kidney cells, but the proliferation was reduced by knocking down the endogenous enterokinase in A549 cells. The enterokinase was able to enhance HA processing in the cells, which activated trypsinogen in vitro and in the IAV-infected cells also. Therefore, we conclude that enterokinase plays a role in IAV infection and proliferation by activating trypsinogen to process viral HA in human cell lines. PMID:29629340
Batra, Jyotica; Szabó, András; Caulfield, Thomas R.; Soares, Alexei S.; Sahin-Tóth, Miklós; Radisky, Evette S.
2013-01-01
Human chymotrypsin C (CTRC) is a pancreatic serine protease that regulates activation and degradation of trypsinogens and procarboxypeptidases by targeting specific cleavage sites within their zymogen precursors. In cleaving these regulatory sites, which are characterized by multiple flanking acidic residues, CTRC shows substrate specificity that is distinct from that of other isoforms of chymotrypsin and elastase. Here, we report the first crystal structure of active CTRC, determined at 1.9-Å resolution, revealing the structural basis for binding specificity. The structure shows human CTRC bound to the small protein protease inhibitor eglin c, which binds in a substrate-like manner filling the S6-S5′ subsites of the substrate binding cleft. Significant binding affinity derives from burial of preferred hydrophobic residues at the P1, P4, and P2′ positions of CTRC, although acidic P2′ residues can also be accommodated by formation of an interfacial salt bridge. Acidic residues may also be specifically accommodated in the P6 position. The most unique structural feature of CTRC is a ring of intense positive electrostatic surface potential surrounding the primarily hydrophobic substrate binding site. Our results indicate that long-range electrostatic attraction toward substrates of concentrated negative charge governs substrate discrimination, which explains CTRC selectivity in regulating active digestive enzyme levels. PMID:23430245
Abfalter, Carmen M; Schönauer, Esther; Ponnuraj, Karthe; Huemer, Markus; Gadermaier, Gabriele; Regl, Christof; Briza, Peter; Ferreira, Fatima; Huber, Christian G; Brandstetter, Hans; Posselt, Gernot; Wessler, Silja
2016-01-01
Bacterial collagenases differ considerably in their structure and functions. The collagenases ColH and ColG from Clostridium histolyticum and ColA expressed by Clostridium perfringens are well-characterized collagenases that cleave triple-helical collagen, which were therefore termed as ´true´ collagenases. ColA from Bacillus cereus (B. cereus) has been added to the collection of true collagenases. However, the molecular characteristics of B. cereus ColA are less understood. In this study, we identified ColA as a secreted true collagenase from B. cereus ATCC 14579, which is transcriptionally controlled by the regulon phospholipase C regulator (PlcR). B. cereus ATCC 14579 ColA was cloned to express recombinant wildtype ColA (ColAwt) and mutated to a proteolytically inactive (ColAE501A) version. Recombinant ColAwt was tested for gelatinolytic and collagenolytic activities and ColAE501A was used for the production of a polyclonal anti-ColA antibody. Comparison of ColAwt activity with homologous proteases in additional strains of B. cereus sensu lato (B. cereus s.l.) and related clostridial collagenases revealed that B. cereus ATCC 14579 ColA is a highly active peptidolytic and collagenolytic protease. These findings could lead to a deeper insight into the function and mechanism of bacterial collagenases which are used in medical and biotechnological applications.
Abfalter, Carmen M.; Schönauer, Esther; Ponnuraj, Karthe; Huemer, Markus; Gadermaier, Gabriele; Regl, Christof; Briza, Peter; Ferreira, Fatima; Huber, Christian G.; Brandstetter, Hans; Posselt, Gernot; Wessler, Silja
2016-01-01
Bacterial collagenases differ considerably in their structure and functions. The collagenases ColH and ColG from Clostridium histolyticum and ColA expressed by Clostridium perfringens are well-characterized collagenases that cleave triple-helical collagen, which were therefore termed as ´true´ collagenases. ColA from Bacillus cereus (B. cereus) has been added to the collection of true collagenases. However, the molecular characteristics of B. cereus ColA are less understood. In this study, we identified ColA as a secreted true collagenase from B. cereus ATCC 14579, which is transcriptionally controlled by the regulon phospholipase C regulator (PlcR). B. cereus ATCC 14579 ColA was cloned to express recombinant wildtype ColA (ColAwt) and mutated to a proteolytically inactive (ColAE501A) version. Recombinant ColAwt was tested for gelatinolytic and collagenolytic activities and ColAE501A was used for the production of a polyclonal anti-ColA antibody. Comparison of ColAwt activity with homologous proteases in additional strains of B. cereus sensu lato (B. cereus s.l.) and related clostridial collagenases revealed that B. cereus ATCC 14579 ColA is a highly active peptidolytic and collagenolytic protease. These findings could lead to a deeper insight into the function and mechanism of bacterial collagenases which are used in medical and biotechnological applications. PMID:27588686
Suzuki, T; Suzuki, N; Hosoya, T
1993-01-01
Nucleolin is a major nucleolar phosphoprotein and is presumably involved in rDNA transcription and ribosome biosynthesis. This protein is known to be very labile and to be cleaved by endogenous proteases into many small peptides. We found that, when rat liver nucleolar suspension (Nu-1) or nucleolin-rich extract (Nu-2) was incubated under conventional conditions, polyamines and histones interacted with the nucleolin to lead to its preferential degradation to 60 kDa phosphopeptide (p60). The peptide p60 was identified as a peptide containing the N-terminal half of the nucleolin molecule, as judged from peptide-map analysis. Whereas spermine binding to the purified nucleolin was decreased by KCl concentrations above 50 mM, histones (H1, H2B and H3) were able to bind to the nucleolin in the presence of up to 300 mM KCl. A distinct difference between H1 and other histones was found in that H1 could produce p60 from nucleolin in both Nu-1 and Nu-2, whereas H2B and H3 stimulated the degradation of nucleolin to p60 only when Nu-2 was used for the source of nucleolin. A possible relationship between p60 formation and rRNA synthesis is discussed, but its exact role remains to be studied. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:8424749
Tegtmeyer, Nicole; Moodley, Yoshan; Yamaoka, Yoshio; Pernitzsch, Sandy Ramona; Schmidt, Vanessa; Traverso, Francisco Rivas; Schmidt, Thomas P.; Rad, Roland; Yeoh, Khay Guan; Bow, Ho; Torres, Javier; Gerhard, Markus; Schneider, Gisbert; Wessler, Silja
2015-01-01
Summary HtrA proteases and chaperones exhibit important roles in periplasmic protein quality control and stress responses. The genetic inactivation of htrA has been described for many bacterial pathogens. However, in some cases such as the gastric pathogen H elicobacter pylori, HtrA is secreted where it cleaves the tumour‐suppressor E‐cadherin interfering with gastric disease development, but the generation of htrA mutants is still lacking. Here, we show that the htrA gene locus is highly conserved in worldwide strains. HtrA presence was confirmed in 992 H . pylori isolates in gastric biopsy material from infected patients. Differential RNA‐sequencing (dRNA‐seq) indicated that htrA is encoded in an operon with two subsequent genes, HP1020 and HP1021. Genetic mutagenesis and complementation studies revealed that HP1020 and HP1021, but not htrA, can be mutated. In addition, we demonstrate that suppression of HtrA proteolytic activity with a newly developed inhibitor is sufficient to effectively kill H . pylori, but not other bacteria. We show that H elicobacter htrA is an essential bifunctional gene with crucial intracellular and extracellular functions. Thus, we describe here the first microbe in which htrA is an indispensable gene, a situation unique in the bacterial kingdom. HtrA can therefore be considered a promising new target for anti‐bacterial therapy. PMID:26568477
Veselov, Alexey A; Abraham, Bobin George; Lemmetyinen, Helge; Karp, Matti T; Tkachenko, Nikolai V
2012-01-01
Fluorescent proteins have the inherent ability to act as sensing components which function both in vitro and inside living cells. We describe here a novel study on a covalent site-specific bonding of fluorescent proteins to form self-assembled monolayers (SAMs) on the surface of etched optical fibers (EOFs). Deposition of fluorescent proteins on EOFs gives the opportunity to increase the interaction of guided light with deposited molecules relative to plane glass surfaces. The EOF modification is carried out by surface activation using 3-aminopropylthrimethoxysilane (APTMS) and bifunctional crosslinker sulfosuccinimidyl 4-[N-maleimidomethyl]cyclohexane-1-carboxylate (sulfo-SMCC) which exposes sulfhydryl-reactive maleimide groups followed by covalent site-specific coupling of modified yellow fluorescent protein (YFP). Steady-state and fluorescence lifetime measurements confirm the formation of SAM. The sensor applications of YPF SAMs on EOF are demonstrated by the gradual increase of emission intensity upon addition of Ca(2+) ions in the concentration range from a few tens of micromolars up to a few tens of millimolars. The studies on the effect of pH, divalent cations, denaturing agents, and proteases reveal the stability of YFP on EOFs at normal physiological conditions. However, treatments with 0.5% SDS at pH 8.5 and protease trypsin are found to denaturate or cleave the YFP from fiber surfaces.