Science.gov

Sample records for factor confers stromal

  1. What Are the Risk Factors for Gastrointestinal Stromal Tumors?

    MedlinePlus

    ... Gastrointestinal Stromal Tumors Be Prevented? Gastrointestinal Stromal Tumor (GIST) Causes, Risk Factors, and Prevention What Are the ... few known risk factors for gastrointestinal stromal tumors (GISTs). Being older These tumors can occur in people ...

  2. Human placental eXpanded (PLX) mesenchymal-like adherent stromal cells confer neuroprotection to nerve growth factor (NGF)-differentiated PC12 cells exposed to ischemia by secretion of IL-6 and VEGF.

    PubMed

    Lahiani, Adi; Zahavi, Efrat; Netzer, Nir; Ofir, Racheli; Pinzur, Lena; Raveh, Shani; Arien-Zakay, Hadar; Yavin, Ephraim; Lazarovici, Philip

    2015-02-01

    Mesenchymal stem cells are potent candidates in stroke therapy due to their ability to secrete protective anti-inflammatory cytokines and growth factors. We investigated the neuroprotective effects of human placental mesenchymal-like adherent stromal cells (PLX) using an established ischemic model of nerve growth factor (NGF)-differentiated pheochromocytoma PC12 cells exposed to oxygen and glucose deprivation (OGD) followed by reperfusion. Under optimal conditions, 2 × 10⁵ PLX cells, added in a trans-well system, conferred 30-60% neuroprotection to PC12 cells subjected to ischemic insult. PC12 cell death, measured by LDH release, was reduced by PLX cells or by conditioned medium derived from PLX cells exposed to ischemia, suggesting the active release of factorial components. Since neuroprotection is a prominent function of the cytokine IL-6 and the angiogenic factor VEGF165, we measured their secretion using selective ELISA of the cells under ischemic or normoxic conditions. IL-6 and VEGF165 secretion by co-culture of PC12 and PLX cells was significantly higher under ischemic compared to normoxic conditions. Exogenous supplementation of 10 ng/ml each of IL-6 and VEGF165 to insulted PC12 cells conferred neuroprotection, reminiscent of the neuroprotective effect of PLX cells or their conditioned medium. Growth factors as well as co-culture conditioned medium effects were reduced by 70% and 20% upon pretreatment with 240 ng/ml Semaxanib (anti VEGF165) and/or 400 ng/ml neutralizing anti IL-6 antibody, respectively. Therefore, PLX-induced neuroprotection in ischemic PC12 cells may be partially explained by IL-6 and VEGF165 secretion. These findings may also account for the therapeutic effects seen in clinical trials after treatment with these cells.

  3. Stromal cell derived factor-1 (SDF-1) targeting reperfusion reduces myocardial infarction in isolated rat hearts.

    PubMed

    Jang, Young-Ho; Kim, June-Hong; Ban, Changill; Ahn, Kyohan; Cheong, Jae-Hun; Kim, Hyung-Hoi; Kim, Jung-Soo; Park, Yong-Hyun; Kim, Jun; Chun, Kook-Jin; Lee, Gyeong-Ho; Kim, Miju; Kim, Cheolmin; Xu, Zhelong

    2012-10-01

    Recent studies have shown that stromal cell derived factor-1 (SDF-1), first known as a cytokine involved in recruiting stem cells into injured organs, confers myocardial protection in myocardial infarction, which is not dependent on stem cell recruitment but related with modulation of ischemia-reperfusion (I/R) injury. However, the effect of SDF has been studied only in a preischemic exposure model, which is not clinically relevant if SDF is to be used as a therapeutic agent. Our study was aimed at evaluating whether or not SDF-1 confers cardioprotection during the reperfusion period. Hearts from SD rats were isolated and perfused with the Langendorff system. Proximal left coronary artery ligation, reperfusion, and SDF perfusion in KH buffer was done according to study protocol. Area of necrosis (AN) relative to area at risk (AR) was the primary endpoint of the study. Significant reduction of AN/AR by SDF in an almost dose-dependent manner was noted during both the preischemic exposure and reperfusion periods. In particular, infusion of a high concentration of SDF (25 nM/L) resulted in a dramatic reduction of infarct size, which was greater than that achieved with ischemic pre- or postconditioning. SDF perfusion during reperfusion was associated with a similar significant reduction of infarct size as preischemic SDF exposure. Further studies are warranted to assess the potential of SDF as a therapeutic agent for reducing I/R injury in clinical practice.

  4. Patient factors influencing the concentration of stromal vascular fraction (SVF) for adipose-derived stromal cell (ASC) therapy in dogs.

    PubMed

    Astor, Donniel E; Hoelzler, Michael G; Harman, Robert; Bastian, Richard P

    2013-07-01

    The objective of this study was to determine whether patient factors influence the concentration of the stromal vascular fraction (SVF) in fat for adipose-derived stromal cell (ASC) therapy in dogs. A total of 1265 dogs underwent adipose collection surgeries by veterinarians for processing by the Vet-Stem laboratory and data on cell counts and patient factors were collected. Body condition score (BCS) and breed size did not significantly affect the viable cells per gram (VCPG) of adipose tissue that represents the viable SVF. Age significantly affected the VCPG, with dogs in age quartile 1 having a significantly higher VCPG than those in quartile 2 (P = 0.003) and quartile 4 (P = 0.002). Adipose tissue collected at the falciform location had significantly fewer VCPG than tissue collected at the thoracic wall and inguinal locations (P < 0.001). When the interaction of gender and location was evaluated, there were significantly fewer VCPG in tissue collected at the falciform location than at the thoracic wall and inguinal locations in female spayed dogs (P < 0.001) and male neutered dogs (P < 0.001), but not in female intact dogs (P = 0.743) or male intact dogs (P = 0.208). It was concluded that specific patient factors should be taken into consideration in order to obtain the maximal yield of VCPG from an adipose collection procedure.

  5. Prostaglandin E2 regulates macrophage colony stimulating factor secretion by human bone marrow stromal cells.

    PubMed

    Besse, A; Trimoreau, F; Faucher, J L; Praloran, V; Denizot, Y

    1999-07-08

    Bone marrow stromal cells regulate marrow haematopoiesis by secreting growth factors such as macrophage colony stimulating factor (M-CSF) that regulates the proliferation, differentiation and several functions of cells of the mononuclear-phagocytic lineage. By using a specific ELISA we found that their constitutive secretion of M-CSF is enhanced by tumour necrosis factor-alpha (TNF-alpha). The lipid mediator prostaglandin E2 (PGE2) markedly reduces in a time- and dose-dependent manner the constitutive and TNF-alpha-induced M-CSF synthesis by bone marrow stromal cells. In contrast, other lipid mediators such as 12-HETE, 15-HETE, leukotriene B4, leukotriene C4 and lipoxin A4 have no effect. EP2/EP4 selective agonists (11-deoxy PGE1 and 1-OH PGE1) and EP2 agonist (19-OH PGE2) inhibit M-CSF synthesis by bone marrow stromal cells while an EP1/EP3 agonist (sulprostone) has no effect. Stimulation with PGE2 induces an increase of intracellular cAMP levels in bone marrow stromal cells. cAMP elevating agents (forskolin and cholera toxin) mimic the PGE2-induced inhibition of M-CSF production. In conclusion, PGE2 is a potent regulator of M-CSF production by human bone marrow stromal cells, its effects being mediated via cAMP and PGE receptor EP2/EP4 subtypes.

  6. Modulation of Mammary Stromal Cell Lactate Dynamics by Ambient Glucose and Epithelial Factors.

    PubMed

    Tobar, Nicolas; Porras, Omar; Smith, Patricio C; Barros, L Felipe; Martínez, Jorge

    2017-01-01

    Hyperglycemia is a risk factor for a variety of human cancers. Increased access to glucose and that tumor metabolize glucose by a glycolytic process even in the presence of oxygen (Warburg effect), provide a framework to analyze a particular set of metabolic adaptation mechanisms that may explain this phenomenon. In the present work, using a mammary stromal cell line derived from healthy tissue that was subjected to a long-term culture in low (5 mM) or high (25 mM) glucose, we analyzed kinetic parameters of lactate transport using a FRET biosensor. Our results indicate that the glucose pre-culture and soluble epithelial factors constitute a stimulus for lactate stromal production, factors that also modify the kinetic parameters and the monocarboxylate transporters expression in stromal cells. We also observed a vectorial flux of lactate from stroma to epithelial cells in a co-culture setting and found that the uptake of lactate by epithelial cells correlates with the degree of malignancy. Glucose preconditioning of the stromal cell stimulated epithelial motility. Our findings suggest that lactate generated by stromal cells in the high glucose condition stimulate epithelial migration. Overall, our results support the notion that glucose not only provides a substrate for tumor nutrition but also behaves as a signal promoting malignancy. J. Cell. Physiol. 232: 136-144, 2017. © 2016 Wiley Periodicals, Inc.

  7. Stromal-epithelial interaction study: The effect of corneal epithelial cells on growth factor expression in stromal cells using organotypic culture model.

    PubMed

    Kobayashi, Takeshi; Shiraishi, Atsushi; Hara, Yuko; Kadota, Yuko; Yang, Lujun; Inoue, Tomoyuki; Shirakata, Yuji; Ohashi, Yuichi

    2015-06-01

    Interactions between stromal and epithelial cells play important roles in the development, homeostasis, and pathological conditions of the cornea. Soluble cytokines are critical factors in stromal-epithelial interactions, and growth factors secreted from corneal stromal cells contribute to the regulation of proliferation and differentiation of corneal epithelial cells (CECs). However, the manner in which the expression of growth factors is regulated in stromal cells has not been completely determined. To study stromal-epithelial cell interactions, we used an organotypic culture model. Human or rabbit CECs (HCECs or RCECs) were cultured on amniotic membranes placed on human corneal fibroblasts (HCFs) embedded in a collagen gel. The properties of the organotypic culture were examined by hematoxylin-eosin staining and immunofluorescence. In the organotypic culture, HCECs or RCECs were stratified into two-three layers after five days and five-seven layers after nine days. However, stratification was not observed when the HCECs were seeded on a collagen gel without fibroblasts. K3/K12 were expressed on day 9. The HCF-embedded collagen gels were collected on days 3, 5, or 9 after seeding the RCECs, and mRNA expression of growth factors FGF7, HGF, NGF, EGF, TGF-α, SCF, TGF-β1, TGF-β2, and TGF-β3 were quantified by real-time PCR. mRNA expression of the growth factors in HCFs cultured with RCECs were compared with those cultured without RCECs, as well as in monolayer cultures. mRNA expression of TGF-α was markedly increased in HCFs cultured with RCECs. However, mRNA expression of the TGF-β family was suppressed in HCFs cultured with RCECs. Principal component analysis revealed that mRNA expression of the growth factors in HCFs were generally similar when they were cultured with RCECs. In organotypic cultures, the morphological changes in the CECs and the expression patterns of the growth factors in the stromal cells clearly demonstrated stromal-epithelial cell

  8. Neuromodulatory loop mediated by nerve growth factor and interleukin 6 in thymic stromal cell cultures.

    PubMed Central

    Screpanti, I; Meco, D; Scarpa, S; Morrone, S; Frati, L; Gulino, A; Modesti, A

    1992-01-01

    Neural crest cell derivatives have been suggested to be involved in thymus development. We established nonlymphoid thymic stromal cell cultures capable of supporting T-cell differentiation. In these nonlymphoid cell cultures, we identified cells with phenotypic and biochemical markers specific for neuronal cells. Neurofilament mRNA and 68- and 160-kDa neurofilament proteins, as well as 74-kDa synapsin I isoform, were expressed in many of the cultured cells. For example, neurofilament immunoreactivity was detected in 20-30% of the cells. To see whether thymic neuronal-like cells were involved in a neural differentiation pathway, we investigated the effect of nerve growth factor (NGF) and interleukin 6 (IL-6), two known neurotrophic factors. The expression of the above-described neural markers was enhanced by NGF and IL-6, which we report to be produced in an autocrine way by thymic stromal cell cultures. Finally, we found that IL-6 gene expression in these cell cultures was enhanced by NGF. Evidence is thus offered of a neuromodulatory loop within the thymic stromal cell population supported by local production of NGF and IL-6 and involving neural cell elements. Interestingly, IL-6, which is known to be implicated in thymocyte differentiation, also displays a neuromodulatory activity on thymic stromal cells, suggesting a multivalent role for this cytokine within the thymus. Images PMID:1373490

  9. Bioengineered implantable scaffolds as a tool to study stromal-derived factors in metastatic cancer models.

    PubMed

    Bersani, Francesca; Lee, Jungwoo; Yu, Min; Morris, Robert; Desai, Rushil; Ramaswamy, Sridhar; Toner, Mehmet; Haber, Daniel A; Parekkadan, Biju

    2014-12-15

    Modeling the hematogenous spread of cancer cells to distant organs poses one of the greatest challenges in the study of human metastasis. Both tumor cell-intrinsic properties as well as interactions with reactive stromal cells contribute to this process, but identification of relevant stromal signals has been hampered by the lack of models allowing characterization of the metastatic niche. Here, we describe an implantable bioengineered scaffold, amenable to in vivo imaging, ex vivo manipulation, and serial transplantation for the continuous study of human metastasis in mice. Orthotopic or systemic inoculation of tagged human cancer cells into the mouse leads to the release of circulating tumor cells into the vasculature, which seed the scaffold, initiating a metastatic tumor focus. Mouse stromal cells can be readily recovered and profiled, revealing differential expression of cytokines, such as IL1β, from tumor-bearing versus unseeded scaffolds. Finally, this platform can be used to test the effect of drugs on suppressing initiation of metastatic lesions. This generalizable model to study cancer metastasis may thus identify key stromal-derived factors with important implications for basic and translational cancer research.

  10. Epigenetic Alterations Affecting Transcription Factors and Signaling Pathways in Stromal Cells of Endometriosis

    PubMed Central

    Yotova, Iveta; Hsu, Emily; Do, Catherine; Gaba, Aulona; Sczabolcs, Matthias; Dekan, Sabine; Kenner, Lukas; Wenzl, Rene; Tycko, Benjamin

    2017-01-01

    Endometriosis is characterized by growth of endometrial-like tissue outside the uterine cavity. Since its pathogenesis may involve epigenetic changes, we used Illumina 450K Methylation Beadchips to profile CpG methylation in endometriosis stromal cells compared to stromal cells from normal endometrium. We validated and extended the Beadchip data using bisulfite sequencing (bis-seq), and analyzed differential methylation (DM) at the CpG-level and by an element-level classification for groups of CpGs in chromatin domains. Genes found to have DM included examples encoding transporters (SLC22A23), signaling components (BDNF, DAPK1, ROR1, and WNT5A) and transcription factors (GATA family, HAND2, HOXA cluster, NR5A1, OSR2, TBX3). Intriguingly, among the TF genes with DM we also found JAZF1, a proto-oncogene affected by chromosomal translocations in endometrial stromal tumors. Using RNA-Seq we identified a subset of the DM genes showing differential expression (DE), with the likelihood of DE increasing with the extent of the DM and its location in enhancer elements. Supporting functional relevance, treatment of stromal cells with the hypomethylating drug 5aza-dC led to activation of DAPK1 and SLC22A23 and repression of HAND2, JAZF1, OSR2, and ROR1 mRNA expression. We found that global 5hmC is decreased in endometriotic versus normal epithelial but not stroma cells, and for JAZF1 and BDNF examined by oxidative bis-seq, found that when 5hmC is detected, patterns of 5hmC paralleled those of 5mC. Together with prior studies, these results define a consistent epigenetic signature in endometriosis stromal cells and nominate specific transcriptional and signaling pathways as therapeutic targets. PMID:28125717

  11. The Influence of Stromal Transforming Growth Factor-Beta Receptor Signaling on Mouse Mammary Neoplasia

    DTIC Science & Technology

    2004-08-01

    and -P3) are members of a family of peptide growth factors that include inhibins, bone morphogenic proteins (BMPs) and growth and differentiation...DNIIR) in the mammary epithelium and in stromal fibroblasts resulted in precocious lobuloalveolar development and increased lateral branching...necessary for proper ductal development during puberty . It has been suggested that TGF-P regulates pubertal mammary development through the epithelium and

  12. Highly aligned stromal collagen is a negative prognostic factor following pancreatic ductal adenocarcinoma resection

    PubMed Central

    Drifka, Cole R.; Loeffler, Agnes G.; Mathewson, Kara; Keikhosravi, Adib; Eickhoff, Jens C.; Liu, Yuming; Weber, Sharon M.

    2016-01-01

    Risk factors for pancreatic ductal adenocarcinoma (PDAC) progression after surgery are unclear, and additional prognostic factors are needed to inform treatment regimens and therapeutic targets. PDAC is characterized by advanced sclerosis of the extracellular matrix, and interactions between cancer cells, fibrillar collagen, and other stromal components play an integral role in progression. Changes in stromal collagen alignment have been shown to modulate cancer cell behavior and have important clinical value in other cancer types, but little is known about its role in PDAC and prognostic value. We hypothesized that the alignment of collagen is associated with PDAC patient survival. To address this, pathology-confirmed tissues from 114 PDAC patients that underwent curative-intent surgery were retrospectively imaged with Second Harmonic Generation (SHG) microscopy, quantified with fiber segmentation algorithms, and correlated to patient survival. The same tissue regions were analyzed for epithelial-to-mesenchymal (EMT), α-SMA, and syndecan-1 using complimentary immunohistostaining and visualization techniques. Significant inter-tumoral variation in collagen alignment was found, and notably high collagen alignment was observed in 12% of the patient cohort. Stratification of patients according to collagen alignment revealed that high alignment is an independent negative factor following PDAC resection (p = 0.0153, multivariate). We also found that epithelial expression of EMT and the stromal expression of α-SMA and syndecan-1 were positively correlated with collagen alignment. In summary, stromal collagen alignment may provide additional, clinically-relevant information about PDAC tumors and underscores the importance of stroma-cancer interactions. PMID:27776346

  13. Paracrine Factors Produced by Bone Marrow Stromal Cells Induce Apoptosis and Neuroendocrine Differentiation in Prostate Cancer Cells

    PubMed Central

    Zhang, Chu; Soori, Mehrnoosh; Miles, Fayth; Sikes, Robert A.; Carson, Daniel D.; Chung, Leland L.W.; Farach-Carson, Mary C.

    2010-01-01

    Background Preferential bony metastasis of human prostate cancer (PCa) cells contributes to disease mortality and morbidity. Local factors in bone stromal extracellular matrix microenvironment affect tumor growth through paracrine interactions between tumor and stromal cells. Methods Using co-culture and medium transfer, we used several methods to assess interactions between PCa and bone stromal cells using three PCa cell lines: PC3, LNCaP, and the LNCaP derivative, C4-2B. Results Co-culture of LNCaP and C4-2B cells with bone marrow stromal cell lines, HS27a and HS5, decreased cell number, as did culture with conditioned medium (CM) harvested from these two cell lines suggesting a soluble paracrine factor was responsible. PC3 cell growth was unaffected. CM harvested from bone stromal cell lines triggered apoptosis in LNCaP and C4-2B cell lines, but not in PC3 cells. Surviving C4-2B cells grown in bone stromal cell CM over several days were growth arrested, suggesting presence of a growth inhibitor. Apoptosis induced by CM was dose-dependent. Flow cytometry demonstrated that over a five day culture period in stromal cell CM, LNCaP and C4-2B cell lines, but not PC3 cells, underwent greater apoptosis than parallel cultures in SF medium. The LNCaP and C4-2B cells showed morphology and biomarker expression consistent with transdifferentiation towards a neuroendocrine phenotype after exposure to stromal cell CM. Conclusions The reactive bone stromal microenvironment initially is hostile to PCa cells producing widespread apoptosis. Activation of transdifferentiation in a subset of apoptotic resistant cells may support phenotypic adaptation during disease progression in bone, eventually favoring lethal disease. PMID:20665531

  14. Outcome and Prognostic Factors in Endometrial Stromal Tumors: A Rare Cancer Network Study

    SciTech Connect

    Schick, Ulrike; Bolukbasi, Yasmin; Thariat, Juliette; Abdah-Bortnyak, Roxolyana; Kuten, Abraham; Igdem, Sefik; Caglar, Hale; Ozsaran, Zeynep; Loessl, Kristina; Schleicher, Ursula; Zwahlen, Daniel; Villette, Sylviane; Vees, Hansjoerg

    2012-04-01

    Purpose: To provide further understanding regarding outcome and prognostic factors of endometrial stromal tumors (EST). Methods and Materials: A retrospective analysis was performed on the records of 59 women diagnosed with EST and treated with curative intent between 1983 and 2007 in the framework of the Rare Cancer Network. Results: Endometrial stromal sarcomas (ESS) were found in 44% and undifferentiated ESS (UES) in 49% of the cases. In 7% the grading was unclear. Of the total number of patients, 33 had Stage I, 4 Stage II, 20 Stage III, and 1 presented with Stage IVB disease. Adjuvant chemotherapy was administered to 12 patients, all with UES. External-beam radiotherapy (RT) was administered postoperatively to 48 women. The median follow-up was 41.4 months. The 5-year overall survival (OS) rate was 96.2% and 64.8% for ESS and UES, respectively, with a corresponding 5-year disease-free survival (DFS) rate of 49.4% and 43.4%, respectively. On multivariate analysis, adjuvant RT was an independent prognostic factor for OS (p = 0.007) and DFS (p = 0.013). Locoregional control, DFS, and OS were significantly associated with age ({<=}60 vs. >60 years), grade (ESS vs. UES), and International Federation of Gynecology and Obstetrics stage (I-II vs. III-IV). Positive lymph node staging had an impact on OS (p < 0.001). Conclusion: The prognosis of ESS differed from that of UES. Endometrial stromal sarcomas had an excellent 5-year OS, whereas the OS in UES was rather low. However, half of ESS patients had a relapse. For this reason, adjuvant treatment such as RT should be considered even in low-grade tumors. Multicenter randomized studies are still warranted to establish clear guidelines.

  15. Connective tissue growth factor is expressed in bone marrow stromal cells and promotes interleukin-7-dependent B lymphopoiesis.

    PubMed

    Cheung, Laurence C; Strickland, Deborah H; Howlett, Meegan; Ford, Jette; Charles, Adrian K; Lyons, Karen M; Brigstock, David R; Goldschmeding, Roel; Cole, Catherine H; Alexander, Warren S; Kees, Ursula R

    2014-07-01

    Hematopoiesis occurs in a complex bone marrow microenvironment in which bone marrow stromal cells provide critical support to the process through direct cell contact and indirectly through the secretion of cytokines and growth factors. We report that connective tissue growth factor (Ctgf, also known as Ccn2) is highly expressed in murine bone marrow stromal cells. In contrast, connective tissue growth factor is barely detectable in unfractionated adult bone marrow cells. While connective tissue growth factor has been implicated in hematopoietic malignancies, and is known to play critical roles in skeletogenesis and regulation of bone marrow stromal cells, its role in hematopoiesis has not been described. Here we demonstrate that the absence of connective tissue growth factor in mice results in impaired hematopoiesis. Using a chimeric fetal liver transplantation model, we show that absence of connective tissue growth factor has an impact on B-cell development, in particular from pro-B to more mature stages, which is linked to a requirement for connective tissue growth factor in bone marrow stromal cells. Using in vitro culture systems, we demonstrate that connective tissue growth factor potentiates B-cell proliferation and promotes pro-B to pre-B differentiation in the presence of interleukin-7. This study provides a better understanding of the functions of connective tissue growth factor within the bone marrow, showing the dual regulatory role of the growth factor in skeletogenesis and in stage-specific B lymphopoiesis.

  16. Role of stromal cell-derived factor 1α pathway in bone metastatic prostate cancer

    PubMed Central

    Gupta, Nisha; Duda, Dan G.

    2016-01-01

    Abstract Metastatic prostate cancer is one of the leading causes of cancer-related death in men. The primary site of metastasis from prostate cancers is the bone. During the last decade, multiple studies have pointed to the role of the stromal cell-derived factor 1 alpha (SDF1α)/CXCR4 axis in the metastatic spread of the disease, but the mechanisms that underlie this effect are still incompletely understood. In this review, we summarize the current understanding of the role of the SDF1α/CXCR4 pathway in bone metastatic prostate cancer. We also discuss the therapeutic potential of disrupting the interaction between prostate tumor cells and bone environment with focus on the SDF1α pathway. PMID:27533927

  17. Insulin-like Growth Factor (IGF) system and gastrointestinal stromal tumours (GIST): present and future.

    PubMed

    Nannini, Margherita; Biasco, Guido; Astolfi, Annalisa; Urbini, Milena; Pantaleo, Maria A

    2014-02-01

    In the last decades, the concept that Insulin-like Growth Factor (IGF) axis plays a key role in several steps of tumorigenesis, cancer growth and metastasis has been widely documented. The aberration of the IGF system has been described in many kinds of tumours, providing several lines of evidence in support of IGF receptor type 1 (IGF1R) as molecular target in cancer treatment. Gastrointestinal stromal tumors (GIST) are the most common mesenchymal tumor of the gastrointestinal tract, commonly characterized in most cases by KIT and PDGFRA gain mutations. Beyond to the well recognized KIT and PDGFRA gain mutations, in the last years other molecular aberrations have been investigated. Recently, several lines of evidence about the involvement of the IGF system in GIST have been accumulated. The aim of this review is to report all current data about the IGF system involvement in GIST, focusing on the current clinical implication and future perspectives.

  18. Paracrine Engineering of Human Explant-Derived Cardiac Stem Cells to Over-Express Stromal-Cell Derived Factor 1α Enhances Myocardial Repair.

    PubMed

    Tilokee, Everad L; Latham, Nicholas; Jackson, Robyn; Mayfield, Audrey E; Ye, Bin; Mount, Seth; Lam, Buu-Khanh; Suuronen, Erik J; Ruel, Marc; Stewart, Duncan J; Davis, Darryl R

    2016-07-01

    First generation cardiac stem cell products provide indirect cardiac repair but variably produce key cardioprotective cytokines, such as stromal-cell derived factor 1α, which opens the prospect of maximizing up-front paracrine-mediated repair. The mesenchymal subpopulation within explant derived human cardiac stem cells underwent lentiviral mediated gene transfer of stromal-cell derived factor 1α. Unlike previous unsuccessful attempts to increase efficacy by boosting the paracrine signature of cardiac stem cells, cytokine profiling revealed that stromal-cell derived factor 1α over-expression prevented lv-mediated "loss of cytokines" through autocrine stimulation of CXCR4+ cardiac stem cells. Stromal-cell derived factor 1α enhanced angiogenesis and stem cell recruitment while priming cardiac stem cells to readily adopt a cardiac identity. As compared to injection with unmodified cardiac stem cells, transplant of stromal-cell derived factor 1α enhanced cells into immunodeficient mice improved myocardial function and angiogenesis while reducing scarring. Increases in myocardial stromal-cell derived factor 1α content paralleled reductions in myocyte apoptosis but did not influence long-term engraftment or the fate of transplanted cells. Transplantation of stromal-cell derived factor 1α transduced cardiac stem cells increased the generation of new myocytes, recruitment of bone marrow cells, new myocyte/vessel formation and the salvage of reversibly damaged myocardium to enhance cardiac repair after experimental infarction. Stem Cells 2016;34:1826-1835.

  19. Human Adenomyosis Endometrium Stromal Cells Secreting More Nerve Growth Factor: Impact and Effect.

    PubMed

    Li, Yan; Zou, Shien; Xia, Xian; Zhang, Shaofen

    2015-09-01

    Abnormal expression of nerve growth factor (NGF) was found in adenomyosis (AM). We collected AM foci from patients and eutopic endometrium from non-AM controls. Endometrium stromal cells (ESCs) were cultured. Different levels of 17β-estradiol, tumor necrosis factor (TNF), CoCl2, and H2O2 were added to the culture system separately, then the expression level of NGF in ESCs was detected. After adding different levels of NGF, the proliferation and apoptosis of ESCs and aromatase expression were detected. We found that 17β-estradiol promoted NGF production in AM ESCs but not in control ESCs; TNF promoted NGF production in both AM and control ESCs; and CoCl2 inhibited NGF production in control ESCs, but had no effect in AM ESCs. Nerve growth factor promoted the proliferation and synthesis of aromatase in AM ESCs. In conclusion, locally increased estrogen levels and inflammation may cause increased NGF production in the uterus of patients with AM. Nerve growth factor stimulated the proliferation and increased aromatase expression of ESCs from AM foci, suggesting NGF might contribute to the pathology and etiology of AM.

  20. Stromal Cell-Derived Factor-1 Alpha is Cardioprotective After Myocardial Infarction

    PubMed Central

    Saxena, Ankur; Fish, Jason E.; White, Michael D.; Yu, Sangho; Smyth, James WP; Shaw, Robin M.; DiMaio, J. Michael; Srivastava, Deepak

    2009-01-01

    Background Heart disease is a leading cause of mortality throughout the world. Tissue damage from vascular occlusive events results in the replacement of contractile myocardium by nonfunctional scar tissue. The potential of new technologies to regenerate damaged myocardium is significant, although cell-based therapies must overcome several technical barriers. One possible cell-independent alternative is the direct administration of small proteins to damaged myocardium. Methods and Results Here we show that the secreted signaling protein stromal cell-derived factor-1 alpha (SDF-1α), which activates the cell-survival factor protein kinase B (PKB/Akt) via the G-protein-coupled receptor CXCR4, protected tissue after an acute ischemic event in mice and activated Akt within endothelial cells and myocytes of the heart. Significantly better cardiac function than in control mice was evident as early as 24 hours post-infarction as well as at 3, 14 and 28 days post-infarction. Prolonged survival of hypoxic myocardium was followed by an increase in levels of vascular endothelial growth factor (VEGF) protein and neo-angiogenesis. Consistent with improved cardiac function, mice exposed to SDF-1α demonstrated significantly decreased scar formation than control mice. Conclusions These findings suggest that SDF-1α may serve a tissue-protective and regenerative role for solid organs suffering a hypoxic insult. PMID:18427137

  1. A murine stromal cell line promotes the proliferation of the human factor-dependent leukemic cell line UT-7.

    PubMed

    Auffray, I; Dubart, A; Izac, B; Vainchenker, W; Coulombel, L

    1994-05-01

    In long-term human bone marrow cultures, stromal cells of human origin are usually used on the assumption that human primitive progenitor cells do not respond to cytokines produced by stromal cells from other species. There is accumulating evidence, however, that murine stromal cells also promote maintenance and differentiation of very primitive human stem cells, which suggests the existence of novel stromal activities that cross species barriers. In this study, we show that a murine bone marrow-derived stromal cell line, MS-5, allows the proliferation of the human leukemic cell line UT-7. The long-term growth of UT-7 is usually supported only by human interleukin-3 (IL-3), granulocyte-macrophage colony-stimulating factor (GM-CSF), or erythropoietin (Epo). None of these three cytokines was involved in the observed effect, since murine GM-CSF and IL-3 do not act on human cells and MS-5 cells do not produce Epo. Soluble stem cell factor (SCF) induced UT-7 cell proliferation. However, S1/S1 mutant fibroblasts also supported UT-7 cell growth and anti-c-kit antibodies only partially abolished UT-7 cell proliferative response to MS-5 cells. These observations excluded a major role of SCF in this system. MS-5-derived growth-promoting activity was diffusible, but attempts to grow UT-7 cells in high levels of known soluble murine stromal-derived cytokines active on human cells showed no or minimal response, suggesting that MS-5's proliferative effect was not mediated by known cytokines. Finally, involvement of an autocrine loop of activation induced by MS-5 was excluded: RT-PCR analysis did not detect increased transcripts for GM-CSF, IL-3, IL-6, SCF, or Epo in UT-7 cells cocultured for 2 to 6 days with MS-5. In addition, UT-7 cell proliferation on MS-5 was not inhibited by neutralizing antibodies against the human GM-CSF receptor or the human IL-6 receptor alpha chain. Whether UT-7 cell proliferation triggered by MS-5 reflects the existence of novel stromal cytokines or

  2. Control of human endometrial stromal cell motility by PDGF-BB, HB-EGF and trophoblast-secreted factors.

    PubMed

    Schwenke, Maren; Knöfler, Martin; Velicky, Philipp; Weimar, Charlotte H E; Kruse, Michelle; Samalecos, Annemarie; Wolf, Anja; Macklon, Nick S; Bamberger, Ana-Maria; Gellersen, Birgit

    2013-01-01

    Human implantation involves extensive tissue remodeling at the fetal-maternal interface. It is becoming increasingly evident that not only trophoblast, but also decidualizing endometrial stromal cells are inherently motile and invasive, and likely contribute to the highly dynamic processes at the implantation site. The present study was undertaken to further characterize the mechanisms involved in the regulation of endometrial stromal cell motility and to identify trophoblast-derived factors that modulate migration. Among local growth factors known to be present at the time of implantation, heparin-binding epidermal growth factor-like growth factor (HB-EGF) triggered chemotaxis (directed locomotion), whereas platelet-derived growth factor (PDGF)-BB elicited both chemotaxis and chemokinesis (non-directed locomotion) of endometrial stromal cells. Supernatants of the trophoblast cell line AC-1M88 and of first trimester villous explant cultures stimulated chemotaxis but not chemokinesis. Proteome profiling for cytokines and angiogenesis factors revealed neither PDGF-BB nor HB-EGF in conditioned media from trophoblast cells or villous explants, while placental growth factor, vascular endothelial growth factor and PDGF-AA were identified as prominent secretory products. Among these, only PDGF-AA triggered endometrial stromal cell chemotaxis. Neutralization of PDGF-AA in trophoblast conditioned media, however, did not diminish chemoattractant activity, suggesting the presence of additional trophoblast-derived chemotactic factors. Pathway inhibitor studies revealed ERK1/2, PI3 kinase/Akt and p38 signaling as relevant for chemotactic motility, whereas chemokinesis depended primarily on PI3 kinase/Akt activation. Both chemotaxis and chemokinesis were stimulated upon inhibition of Rho-associated, coiled-coil containing protein kinase. The chemotactic response to trophoblast secretions was not blunted by inhibition of isolated signaling cascades, indicating activation of

  3. Genetic factors conferring metastasis in osteosarcoma.

    PubMed

    Maximov, Vadim V; Aqeilan, Rami I

    2016-07-01

    Osteosarcoma (OS) is a deadly bone malignancy affecting mostly children and adolescents. OS has outstandingly complex genetic alterations likely due to p53-independent genomic instability. Based on analysis of recent published research we claim existence of various genetic mechanisms of osteosarcomagenesis conferring great variability to different OS properties including metastatic potential. We also propose a model explaining how diverse genetic mechanisms occur and providing a framework for future research. P53-independent preexisting genomic instability, which precedes and frequently causes TP53 genetic alterations, is central in our model. In addition, our analyses reveal a possible cooperation between aberrantly activated HIF-1α and AP-1 genetic pathways in OS metastasis. We also review the involvement of noncoding RNA genes in OS metastasis.

  4. Stromal cell-derived factor-1 potentiates bone morphogenetic protein-2 induced bone formation.

    PubMed

    Higashino, Kosaku; Viggeswarapu, Manjula; Bargouti, Maggie; Liu, Hui; Titus, Louisa; Boden, Scott D

    2011-02-01

    The mechanisms driving bone marrow stem cell mobilization are poorly understood. A recent murine study found that circulating bone marrow-derived osteoprogenitor cells (MOPCs) were recruited to the site of recombinant human bone morphogenetic protein-2 (BMP-2)-induced bone formation. Stromal cell-derived factor-1α (SDF-1α) and its cellular receptor CXCR4 have been shown to mediate the homing of stem cells to injured tissues. We hypothesized that chemokines, such as SDF-1, are also involved with mobilization of bone marrow cells. The CD45(-) fraction is a major source of MOPCs. In this report we determined that the addition of BMP-2 or SDF-1 to collagen implants increased the number of MOPCs in the peripheral blood. BMP-2-induced mobilization was blocked by CXCR4 antibody, confirming the role of SDF-1 in mobilization. We determined for the first time that addition of SDF-1 to implants containing BMP-2 enhances mobilization, homing of MOPCs to the implant, and ectopic bone formation induced by suboptimal BMP-2 doses. These results suggest that SDF-1 increases the number of osteoprogenitor cells that are mobilized from the bone marrow and then home to the implant. Thus, addition of SDF-1 to BMP-2 may improve the efficiency of BMPs in vivo, making their routine use for orthopaedic applications more affordable and available to more patients.

  5. THE ROLE OF STROMAL DERIVED FACTOR-1 – CXCR7 AXIS IN DEVELOPMENT AND CANCER

    PubMed Central

    Maksym, Radoslaw B.; Tarnowski, Maciej; Grymula, Katarzyna; Tarnowska, Joanna; Wysoczynski, Marcin; Liu, Riu; Czerny, Boguslaw; Ratajczak, Janina; Kucia, Magda; Ratajczak, Mariusz Z.

    2009-01-01

    Cancer metastasis is a major clinical problem that contributes to unsuccessful therapy. Augmenting evidence indicates that metastasizing cancer cells employ several mechanisms that are involved in developmental trafficking of normal stem cells. Stromal-derived factor-1 (SDF-1) is an important α-chemokine that binds to the G-protein-coupled seven-transmembrane span CXCR4. The SDF-1-CXCR4 axis regulates trafficking of normal and malignant cells. SDF-1 is an important chemoattractant for a variety of cells including hematopoietic stem/progenitor cells. For many years, it was believed that CXCR4 was the only receptor for SDF-1. However, several reports recently provided evidence that SDF-1 also binds to another seven-transmembrane span receptor called CXCR7, sharing this receptor with another chemokine family member called Interferon-inducible T-cell chemoattractant (I-TAC). Thus, with CXCR7 identified as a new receptor for SDF-1, the role of the SDF-1-CXCR4 axis in regulating several biological processes becomes more complex. Based on the available literature, this review addresses the biological significance of SDF-1’s interaction with CXCR7, which may act as a kind of decoy or signaling receptor depending on cell type. Augmenting evidence suggests that CXCR7 is involved in several aspects of tumorogenesis and could become an important target for new anti-metastatic and anti-cancer drugs. PMID:19835865

  6. Stromal-derived factor 1 signalling regulates radial and tangential migration in the developing cerebral cortex.

    PubMed

    Liapi, Anastasia; Pritchett, James; Jones, Owen; Fujii, Nobutaka; Parnavelas, John G; Nadarajah, Bagirathy

    2008-01-01

    Stromal-derived factor 1 (SDF-1), a known chemoattractant, and its receptor CXCR4 are widely expressed in the developing and adult cerebral cortex. Recent studies have highlighted potential roles for SDF-1 during early cortical development. In view of the current findings, our histological analysis has revealed a distinct pattern of SDF-1 expression in the developing cerebral cortex at a time when cell proliferation and migration are at peak. To determine the role of chemokine signalling during early cortical development, embryonic rat brain slices were exposed to a medium containing secreted SDF-1 to perturb the endogenous levels of chemokine. Alternatively, brain slices were treated with 40 muM of T140 or AMD3100, known antagonists of CXCR4. Using these experimental approaches, we demonstrate that chemokine signalling is imperative for the maintenance of the early cortical plate. In addition, we provide evidence that both neurogenesis and radial migration are concomitantly regulated by this signalling system. Conversely, interneurons, although not dependent on SDF-1 signalling to transgress the telencephalic boundary, require the chemokine to maintain their tangential migration. Collectively, our results demonstrate that SDF-1 with its distinct pattern of expression is essential and uniquely positioned to regulate key developmental events that underlie the formation of the cerebral cortex.

  7. Stromal cell–derived factor 2 is critical for Hsp90-dependent eNOS activation

    PubMed Central

    Siragusa, Mauro; Fröhlich, Florian; Park, Eon Joo; Schleicher, Michael; Walther, Tobias C.; Sessa, William C.

    2016-01-01

    Endothelial nitric oxide synthase (eNOS) catalyzes the conversion of l-arginine and molecular oxygen into l-citrulline and nitric oxide (NO), a gaseous second messenger that influences cardiovascular physiology and disease. Several mechanisms regulate eNOS activity and function, including phosphorylation at Ser and Thr residues and protein-protein interactions. Combining a tandem affinity purification approach and mass spectrometry, we identified stromal cell–derived factor 2 (SDF2) as a component of the eNOS macromolecular complex in endothelial cells. SDF2 knockdown impaired agonist-stimulated NO synthesis and decreased the phosphorylation of eNOS at Ser1177, a key event required for maximal activation of eNOS. Conversely, SDF2 overexpression dose-dependently increased NO synthesis through a mechanism involving Akt and calcium (induced with ionomycin), which increased the phosphorylation of Ser1177 in eNOS. NO synthesis by iNOS (inducible NOS) and nNOS (neuronal NOS) was also enhanced upon SDF2 overexpression. We found that SDF2 was a client protein of the chaperone protein Hsp90, interacting preferentially with the M domain of Hsp90, which is the same domain that binds to eNOS. In endothelial cells exposed to vascular endothelial growth factor (VEGF), SDF2 was required for the binding of Hsp90 and calmodulin to eNOS, resulting in eNOS phosphorylation and activation. Thus, our data describe a function for SDF2 as a component of the Hsp90-eNOS complex that is critical for signal transduction in endothelial cells. PMID:26286023

  8. Genistein promotes DNA demethylation of the steroidogenic factor 1 (SF-1) promoter in endometrial stromal cells

    SciTech Connect

    Matsukura, Hiroshi; Aisaki, Ken-ichi; Igarashi, Katsuhide; Matsushima, Yuko; Kanno, Jun; Muramatsu, Masaaki; Sudo, Katsuko; Sato, Noriko

    2011-08-26

    Highlights: {yields} Genistein (GEN) is a phytoestrogen found in soy products. {yields} GEN demethylated/unsilenced the steroidogenic factor 1 gene in endometrial tissue. {yields} GEN thus altered mRNA expression in uteri of ovariectomized (OVX) mice. {yields} A high-resolution melting assay was used to screen for epigenetic change. {yields} We isolated an endometrial cell clone that was epigenetically modulated by GEN. -- Abstract: It has recently been demonstrated that genistein (GEN), a phytoestrogen in soy products, is an epigenetic modulator in various types of cells; but its effect on endometrium has not yet been determined. We investigated the effects of GEN on mouse uterine cells, in vivo and in vitro. Oral administration of GEN for 1 week induced mild proliferation of the endometrium in ovariectomized (OVX) mice, which was accompanied by the induction of steroidogenic factor 1 (SF-1) gene expression. GEN administration induced demethylation of multiple CpG sites in the SF-1 promoter; these sites are extensively methylated and thus silenced in normal endometrium. The GEN-mediated promoter demethylation occurred predominantly on the luminal side, as opposed to myometrium side, indicating that the epigenetic change was mainly shown in regenerated cells. Primary cultures of endometrial stromal cell colonies were screened for GEN-mediated alterations of DNA methylation by a high-resolution melting (HRM) method. One out of 20 colony-forming cell clones showed GEN-induced demethylation of SF-1. This clone exhibited a high proliferation capacity with continuous colony formation activity through multiple serial clonings. We propose that only a portion of endometrial cells are capable of receiving epigenetic modulation by GEN.

  9. Modulation properties of factors released by bone marrow stromal cells on activated microglia: an in vitro study

    PubMed Central

    Cizkova, Dasa; Devaux, Stéphanie; Le Marrec-Croq, Françoise; Franck, Julien; Slovinska, Lucia; Blasko, Juraj; Rosocha, Jan; Spakova, Timea; Lefebvre, Christophe; Fournier, Isabelle; Salzet, Michel

    2014-01-01

    In the present paper we develop a new non-cell based (cell-free) therapeutic approach applied to BV2 microglial cells and spinal cord derived primary microglia (PM) using conditioned media from rat bone marrow stromal cells (BMSCs-CM). First we collected conditioned media (CM) from either naive or injured rat spinal cord tissue (SCI-CM, inflammatory stimulation agent) and from rat bone marrow stromal cells (BMSCs-CM, therapeutic immunomodulation agent). They were both subsequently checked for the presence of chemokines and growth, neurotrophic and neural migration factors using proteomics analysis. The data clearly showed that rat BMSCs-CM contain in vitro growth factors, neural migration factors, osteogenic factors, differentiating factors and immunomodulators, whereas SCI-CM contain chemokines, chemoattractant factors and neurotrophic factors. Afterwards we determined whether the BMSCs-CM affect chemotactic activity, NO production, morphological and pro-apoptotic changes of either BV2 or PM cells once activated with SCI-CM. Our results confirm the anti-migratory and NO-inhibitory effects of BMSCs-CM on SCI-CM-activated microglia with higher impact on primary microglia. The cytotoxic effect of BMSCs-CM occurred only on SCI-CM-stimulated BV2 cells and PM, not on naive BV2 cells, nor on PM. Taken together, the molecular cocktail found in BMSCs-CM is favorable for immunomodulatory properties. PMID:25524416

  10. Stromal cell-derived factor-1 (SDF-1) as a target in liver diseases.

    PubMed

    Liepelt, Anke; Tacke, Frank

    2016-08-01

    The chemokine stromal cell-derived factor-1 (SDF-1) or CXCL12 is constitutively expressed in healthy liver. However, its expression increases following acute or chronic liver injury. Liver sinusoidal endothelial cells (LSEC), hepatic stellate cells (HSC), and malignant hepatocytes are important sources of SDF-1/CXCL12 in liver diseases. CXCL12 is able to activate two chemokine receptors with different downstream signaling pathways, CXCR4 and CXCR7. CXCR7 expression is relevant on LSEC, while HSC, mesenchymal stem cells, and tumor cells mainly respond via CXCR4. Here, we summarize recent developments in the field of liver diseases involving this chemokine and its receptors. SDF-1-dependent signaling contributes to modulating acute liver injury and subsequent tissue regeneration. By activating HSC and recruiting mesenchymal cells from bone marrow, CXCL12 can promote liver fibrosis progression, while CXCL12-CXCR7 interactions endorse proregenerative responses in chronic injury. Moreover, the SDF-1 pathway is linked to development of hepatocellular carcinoma (HCC) by promoting tumor growth, angiogenesis, and HCC metastasis. High hepatic CXCR4 expression has been suggested as a biomarker indicating poor prognosis of HCC patients. Tumor-infiltrating myeloid-derived suppressor cells (MDSC) also express CXCR4 and migrate toward CXCL12. Thus CXCL12 inhibition might not only directly block HCC growth but also modulate the tumor microenvironment (angiogenesis, MDSC), thereby sensitizing HCC patients to conventional or emerging novel cancer therapies (e.g., sorafenib, regorafenib, nivolumab, pembrolizumab). We herein summarize the current knowledge on the complex interplay between CXCL12 and CXCR4/CXCR7 in liver diseases and discuss approaches on the therapeutic targeting of these axes in hepatitis, fibrosis, and liver cancer.

  11. Structure and chromosomal localization of the human stromal cell-derived factor 1 (SDF1) gene

    SciTech Connect

    Shirozu, Michio; Takano, Toru; Tada, Hideaki; Honjo, Tasuku

    1995-08-10

    Stromal cell-derived factors 1{alpha} and 1{beta} are small cytokines belonging to the intercrine CXC subfamily and originally isolated from a murine bone-marrow stroma cell line by the signal sequence trap method. cDNA and genomic clones of human SDF1{alpha} and SDF1{beta} (SDF1A and SDF1B) were isolated and characterized. cDNAs of SDF1{alpha} and SDF1{beta} encode proteins of 89 and 93 amino acids, respectively. SDF1{alpha} and SDF1{beta} sequences are more than 92% identical to those of the human counterparts. The genomic structure of the SDF1 gene revealed that human SDF1{alpha} and SDF1{beta} are encoded by a single gene and arise by alternative splicing. SDF1{alpha} and SDF1{beta} are encoded by 3 and 4 exons, respectively. Ubiquitous expression of the SDF1 gene, except in blood cells, was consistent with the presence of the GC-rich sequence in the 5{prime}-flanking region of the SDF1 gene, as is often the case in the {open_quotes}housekeeping{close_quotes} genes. Although genes encoding other members of the intercrine family are localized on chromosome 4q or 17q, the human SDF1 gene was mapped to chromosome 10q by fluorescence in situ hybridization. Strong evolutionary conservation and unique chromosomal localization of the SDF1 gene suggest that SDF1{alpha} and SDF1{beta} may have important functions distinct from those of other members of the intercrine family. 37 refs., 5 figs.

  12. Continuous delivery of stromal cell-derived factor-1 from alginate scaffolds accelerates wound healing.

    PubMed

    Rabbany, Sina Y; Pastore, Joseph; Yamamoto, Masaya; Miller, Tim; Rafii, Shahin; Aras, Rahul; Penn, Marc

    2010-01-01

    Proper wound diagnosis and management is an increasingly important clinical challenge and is a large and growing unmet need. Pressure ulcers, hard-to-heal wounds, and problematic surgical incisions are emerging at increasing frequencies. At present, the wound-healing industry is experiencing a paradigm shift towards innovative treatments that exploit nanotechnology, biomaterials, and biologics. Our study utilized an alginate hydrogel patch to deliver stromal cell-derived factor-1 (SDF-1), a naturally occurring chemokine that is rapidly overexpressed in response to tissue injury, to assess the potential effects SDF-1 therapy on wound closure rates and scar formation. Alginate patches were loaded with either purified recombinant human SDF-1 protein or plasmid expressing SDF-1 and the kinetics of SDF-1 release were measured both in vitro and in vivo in mice. Our studies demonstrate that although SDF-1 plasmid- and protein-loaded patches were able to release therapeutic product over hours to days, SDF-1 protein was released faster (in vivo K(d) 0.55 days) than SDF-1 plasmid (in vivo K(d) 3.67 days). We hypothesized that chronic SDF-1 delivery would be more effective in accelerating the rate of dermal wound closure in Yorkshire pigs with acute surgical wounds, a model that closely mimics human wound healing. Wounds treated with SDF-1 protein (n = 10) and plasmid (n = 6) loaded patches healed faster than sham (n = 4) or control (n = 4). At day 9, SDF-1-treated wounds significantly accelerated wound closure (55.0 +/- 14.3% healed) compared to nontreated controls (8.2 +/- 6.0%, p < 0.05). Furthermore, 38% of SDF-1-treated wounds were fully healed at day 9 (vs. none in controls) with very little evidence of scarring. These data suggest that patch-mediated SDF-1 delivery may ultimately provide a novel therapy for accelerating healing and reducing scarring in clinical wounds.

  13. Using polarization-sensitive optical coherence tomography to identify tumor stromal fibrosis and increase tumor biopsy yield (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hariri, Lida P.; Adams, David C.; Miller, Alyssa J.; Mino-Kenudson, Mari; Suter, Melissa J.

    2016-03-01

    Tissue biopsy is the principal method used to diagnose tumors in a variety of organ systems. It is essential to maximize tumor yield in biopsy specimens for both clinical diagnostic and research purposes. This is particularly important in tumors where additional tissue is needed for molecular analysis to identify patients who would benefit from mutation-specific targeted therapy, such as in lung carcinomas. Inadvertent sampling of fibrotic stroma within tumor nodules contaminates biopsies, decreases tumor yield, and can impede diagnosis. The ability to assess tumor composition and guide biopsy site selection in real time is likely to improve diagnostic yield. Polarization sensitive OCT (PS-OCT) measures birefringence in organized tissues, such as collagen, and could be used to distinguish tumor from fibrosis. In this study, PS-OCT was obtained in 65 lung nodule samples from surgical resection specimens containing varying ratios of tumor and fibrosis. PS-OCT was obtained with either a custom-built helical scanning catheter (0.8 or 1.6mm in diameter) or a dual-axis bench top scanner. Strong birefringence was observed in nodules containing dense fibrosis, with no birefringence in adjacent regions of tumor. Tumors admixed with early, loosely-organized collagen demonstrated mild-to-moderate birefringence, and tumors with little collagen content showed little to no birefringent signal. PS-OCT provides significant insights into tumor nodule composition, and has potential to differentiate tumor from stromal fibrosis during biopsy site selection to increase diagnostic tumor yield.

  14. Transforming growth factor-{beta} inhibits CCAAT/enhancer-binding protein expression and PPAR{gamma} activity in unloaded bone marrow stromal cells

    SciTech Connect

    Ahdjoudj, S.; Kaabeche, K.; Holy, X.; Fromigue, O.; Modrowski, D.; Zerath, E.; Marie, P.J. . E-mail: pierre.marie@larib.inserm.fr

    2005-02-01

    The molecular mechanisms regulating the adipogenic differentiation of bone marrow stromal cells in vivo remain largely unknown. In this study, we investigated the regulatory effects of transforming growth factor beta-2 (TGF-{beta}2) on transcription factors involved in adipogenic differentiation induced by hind limb suspension in rat bone marrow stromal cells in vivo. Time course real-time quantitative reverse-transcription polymerase chain reaction (RT-PCR) analysis of gene expression showed that skeletal unloading progressively increases the expression of CCAAT/enhancer-binding protein (C/EBP){alpha} and C/EBP{beta} {alpha} at 5 days in bone marrow stromal cells resulting in increased peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}2) transcripts at 7 days. TGF-{beta}2 administration in unloaded rats corrected the rise in C/EBP{alpha} and C/EBP{beta} transcripts induced by unloading in bone marrow stromal cells. This resulted in inhibition of PPAR{gamma}2 expression that was associated with increased Runx2 expression. Additionally, the inhibition of C/EBP{alpha} and C/EBP{beta} expression by TGF-{beta}2 was associated with increased PPAR{gamma} serine phosphorylation in bone marrow stromal cells, a mechanism that inhibits PPAR{gamma} transactivating activity. The sequential inhibitory effect of TGF-{beta}2 on C/EBP{alpha}, C/EBP{beta}, and PPAR{gamma}2 resulted in reduced LPL expression and abolition of bone marrow stromal cell adipogenic differentiation, which contributed to prevent bone loss induced by skeletal unloading. We conclude that TGF-{beta}2 inhibits the excessive adipogenic differentiation of bone marrow stromal cells induced by skeletal unloading by inhibiting C/EBP{alpha}, C/EBP{beta}, and PPAR{gamma} expression and activity, which provides a sequential mechanism by which TGF-{beta}2 regulates adipogenic differentiation of bone marrow stromal cells in vivo.

  15. Modeling extracellular matrix (ECM) alterations in ovarian cancer by multiphoton excited fabrication of stromal models (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Campagnola, Paul J.; Ajeti, Visar; Lara, Jorge; Eliceiri, Kevin W.; Patankar, Mansh

    2016-04-01

    A profound remodeling of the extracellular matrix (ECM) occurs in human ovarian cancer but it unknown how this affects tumor growth, where this understanding could lead to better diagnostics and therapeutic approaches. We investigate the role of these ECM alterations by using multiphoton excited (MPE) polymerization to fabricate biomimetic models to investigate operative cell-matrix interactions in invasion/metastasis. First, we create nano/microstructured gradients mimicking the basal lamina to study adhesion/migration dynamics of ovarian cancer cells of differing metastatic potential. We find a strong haptotactic response that depends on both contact guidance and ECM binding cues. While we found enhanced migration for more invasive cells, the specifics of alignment and directed migration also depend on cell polarity. We further use MPE fabrication to create collagen scaffolds with complex, 3D submicron morphology. The stromal scaffold designs are derived directly from "blueprints" based on SHG images of normal, high risk, and malignant ovarian tissues. The models are seeded with different cancer cell lines and this allows decoupling of the roles of cell characteristics (metastatic potential) and ECM structure and composition (normal vs cancer) on adhesion/migration dynamics. We found the malignant stroma structure promotes enhanced migration and proliferation and also cytoskeletal alignment. Creating synthetic models based on fibers patterns further allows decoupling the topographic roles of the fibers themselves vs their alignment within the tissue. These models cannot be synthesized by other conventional fabrication methods and we suggest the MPE image-based fabrication method will enable a variety of studies in cancer biology.

  16. Hematopoiesis on cellulose ester membranes. XI. Induction of new bone and a hematopoietic microenvironment by matrix factors secreted by marrow stromal cells.

    PubMed

    Knospe, W H; Husseini, S G; Fried, W

    1989-07-01

    Cellulose ester membranes (CEM) were coated with stromal cells from bone marrow (BM) or bone and implanted intraperitoneally (IP) in CAF1 mice for intervals of 1 to 6 months. Previous studies indicated that matrix factors [glycoproteins (GPs), proteoglycans (PGs), and glycosaminoglycans (GAGs)] were secreted by the regenerating stromal cells and adsorbed by the CEM. After 1 to 6 months, the CEMs were removed, scraped free of adherent cells, and irradiated in vitro with 40 Gy. The scraped and irradiated CEMs were then reimplanted IP or subcutaneously (SC) for periods of 1 to 6 months in secondary syngeneic murine hosts. They were then removed for histologic study. CEMs reimplanted in SC sites developed bone and hematopoiesis as early as 1 month after implantation. Maximum hematopoiesis and bone formation was observed after 3 months. CEMs coated during the initial implantation with bone-derived stromal cells contained more bone and hematopoietic cells than did CEMs coated with marrow-derived stromal cells after SC implementation. Neither the CEMs coated with bone stromal cells nor those coated with marrow stromal cells developed new bone or trilineal hematopoiesis after being implanted IP. A few CEMs contained small foci of granulopoiesis only. We conclude that noncellular matrix substances deposited on CEMs by bone, and to a lesser degree by marrow cells, can induce prestromal cells in the SC tissues to produce a microenvironment suitable for trilineal hematopoiesis.

  17. Identification of Sonic Hedgehog-Induced Stromal Factors That Stimulate Prostate Tumor Growth

    DTIC Science & Technology

    2007-11-01

    features of the mesenchymal-epithelial interactions of development may play a critical role in the development of benign prostatic hyperplasia and in the...proceeds (Hayward et al., 1996). Myofibroblasts are present in the adult prostate at sites of benign prostatic hyperplasia (BPH) and in prostate...Wang, S.Y., Vazquez, D.V., C, C.X., Zhang, S., and Tang, L. (2007) Prostatic stromal cells derived from benign prostatic hyperplasia specimens possess

  18. Plexiform Fibrohistiocytic Tumor on the Ear: Case Report and Immunohistochemical Investigation of Stromal Factor

    PubMed Central

    Shido, Kosuke; Fujimura, Taku; Kakizaki, Aya; Furudate, Sadanori; Asano, Masayuki; Aiba, Setsuya

    2016-01-01

    Plexiform fibrohistiocytic tumor (PFT) is a rare mesenchymal neoplasm of intermediate malignant potential with a high local recurrence rate. In this report, we describe a case of PFT on the ear, which showed a dense deposition of periostin (POSTN) in the stromal areas of the tumor. In addition, dense infiltration of CD163+CD206– tumor-associated macrophages (TAMs) was detected in the same areas as POSTN. Since POSTN was previously reported to possess immunomodulatory effects on TAMs, our present report suggested the significance of the POSTN/TAMs axis in the progression of PFT. PMID:27293390

  19. Stromal Cell-Derived Factor 1 Polymorphism in Retinal Vein Occlusion

    PubMed Central

    Szigeti, Andrea; Ecsedy, Mónika; Schneider, Miklós; Lénárt, Lilla; Lesch, Balázs; Nagy, Zoltán Zsolt

    2016-01-01

    Background Stromal cell-derived factor 1 (SDF1) has crucial role in the regulation of angiogenesis and ocular neovascularisation (NV). The purpose of this study was to evaluate the association between SDF1-3’G(801)A polymorphism and NV complications of retinal vein occlusion (RVO). Methods 130 patients with RVO (median age: 69.0, range 35–93 years; male/female– 58/72; 55 patients had central RVO, 75 patients had branch RVO) were enrolled in this study. In the RVO group, 40 (30.8%) patients were diagnosed with NV complications of RVO and 90 (69.2%) patients without NVs. The median follow up period was 40.3 months (range: 18–57 months). The SDF1-3’G(801)A polymorphism was detected by PCR-RFLP. Allelic prevalence was related to reference values obtained in the control group consisted of 125 randomly selected, age and gender matched, unrelated volunteers (median age: 68.0, range 36–95 years; male/female– 53/72). Statistical analysis of the allele and genotype differences between groups (RVO patients vs controls; RVO patients with NV vs RVO patients without NV) was determined by chi-squared test. P value of <0.05 was considered statistically significant. Results Hardy-Weinberg criteria was fulfilled in all groups. The SDF1-3’G(801)A allele and genotype frequencies of RVO patients were similar to controls (SDF1-3’A allele: 22.3% vs 20.8%; SDF1-3’(801)AA: 5.4% vs 4.8%, SDF1-3’(801)GG: 60.8% vs 63.2%). The frequency of SDF1-3’(801)AA and SDF1-3’(801)GA genotypes, as well as the SDF1-3’(801)A allele frequency were higher in RVO patients with NV versus in patients without NV complication (SDF1-3’(801)AA+AG genotypes: 57.5% vs 31.1%, p = 0.008; SDF1-3’(801)A allele: 35.0% vs 16.7%, p = 0.002) or versus controls (SDF1-3’(801)AA+AG genotypes 57.5% vs 36.8%, p = 0.021; SDF1-3’(801)A allele: 35.0% vs 20.8% p = 0.01). Carrying of SDF1-3’(801)A allele increased the risk of neovascularisation complications of RVO by 2.69 (OR, 95% CI = 1.47–4

  20. Growth differentiation factor 6 derived from mesenchymal stem/stromal cells reduces age-related functional deterioration in multiple tissues

    PubMed Central

    Hisamatsu, Daisuke; Ohno-Oishi, Michiko; Nakamura, Shiho; Mabuchi, Yo; Naka-Kaneda, Hayato

    2016-01-01

    The senescence-associated secretory phenotype (SASP) has attracted attention as a mechanism that connects cellular senescence to tissue dysfunction, and specific SASP factors have been identified as systemic pro-aging factors. However, little is known about the age-dependent changes in the secretory properties of stem cells. Young, but not old, mesenchymal stem/stromal cells (MSCs) are a well-known source of critical regenerative factors, but the identity of these factors remains elusive. In this study, we identified growth differentiation factor 6 (Gdf6; also known as Bmp13 and CDMP-2) as a regenerative factor secreted from young MSCs. The expression of specific secretory factors, including Gdf6, was regulated by the microRNA (miRNA) miR-17, whose expression declined with age. Upregulation of Gdf6 restored the osteogenic capacity of old MSCs in vitro and exerted positive effects in vivo on aging-associated pathologies such as reduced lymphopoiesis, insufficient muscle repair, reduced numbers of neural progenitors in the brain, and chronic inflammation. Our results suggest that manipulation of miRNA could enable control of the SASP, and that regenerative factors derived from certain types of young cells could be used to treat geriatric diseases. PMID:27311402

  1. The role of p38 mitogen-activated protein kinase in serum-induced leukemia inhibitory factor secretion by bone marrow stromal cells from pediatric myelodysplastic syndromes.

    PubMed

    da Costa, Simone V; Roela, Rosimeire A; Junqueira, Mara Souza; Arantes, Camila; Brentani, M Mitzi

    2010-04-01

    Stromal cells from pediatric myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) associated with MDS (MDS-AML) present high expression of leukemia inhibitor factor (LIF). We demonstrated using mitogen-activated protein kinase (MAPK) inhibitors that in stromal cells from pediatric MDS and MDS-AML, p38MAPK was critical in serum-induced secretion of LIF. The serum induction of phosphorylated p38MAPK form was observed only in stromal cells from healthy children, whereas in MDS and MDS-AML basal levels were maintained suggesting constitutive p38MAPK activation. Our study suggested the possible importance in pediatric MDS of p38MAPK signaling pathway which may be a future therapeutic target.

  2. Stromal cell-derived factor-1 promotes migration of cells from the upper rhombic lip in cerebellar development.

    PubMed

    Yu, Tao; Huang, Hai; Li, Hui-Fang

    2010-10-01

    During cerebellar development, the chemokine stromal cell-derived factor-1 alpha (SDF-1 alpha) has been shown to play an important role in recruiting cells from the upper rhombic lip (URL) and external granule cell layer (EGL). However, its function in cerebellar development is still poorly understood. Our results have demonstrated that SDF-1 is necessary for EGL development, and URL cells stream to the SDF-1 source in vitro. Results of embryonic URL explant assays and transwell assays indicated that SDF-1 induces neural cell migration from the URL region in chemotactic and chemokinetic responses. The time-lapse results showed that the migration speed of granule cell progenitors out of the URL was accelerated by the addition of recombinant SDF-1 alpha. Collectively, our study shows that SDF-1 increases the motility of URL cells in the absence of a gradient and promotes the migration of granule cell progenitors during cerebellar development.

  3. Distinct Stromal Cell Factor Combinations Can Separately Control Hematopoietic Stem Cell Survival, Proliferation, and Self-Renewal

    PubMed Central

    Wohrer, Stefan; Knapp, David J.H.F.; Copley, Michael R.; Benz, Claudia; Kent, David G.; Rowe, Keegan; Babovic, Sonja; Mader, Heidi; Oostendorp, Robert A.J.; Eaves, Connie J.

    2014-01-01

    Summary Hematopoietic stem cells (HSCs) are identified by their ability to sustain prolonged blood cell production in vivo, although recent evidence suggests that durable self-renewal (DSR) is shared by HSC subtypes with distinct self-perpetuating differentiation programs. Net expansions of DSR-HSCs occur in vivo, but molecularly defined conditions that support similar responses in vitro are lacking. We hypothesized that this might require a combination of factors that differentially promote HSC viability, proliferation, and self-renewal. We now demonstrate that HSC survival and maintenance of DSR potential are variably supported by different Steel factor (SF)-containing cocktails with similar HSC-mitogenic activities. In addition, stromal cells produce other factors, including nerve growth factor and collagen 1, that can antagonize the apoptosis of initially quiescent adult HSCs and, in combination with SF and interleukin-11, produce >15-fold net expansions of DSR-HSCs ex vivo within 7 days. These findings point to the molecular basis of HSC control and expansion. PMID:24910437

  4. Insulin-like growth factor 1 receptor is a potential therapeutic target for gastrointestinal stromal tumors

    PubMed Central

    Tarn, Chi; Rink, Lori; Merkel, Erin; Flieder, Douglas; Pathak, Harsh; Koumbi, Daphne; Testa, Joseph R.; Eisenberg, Burton; von Mehren, Margaret; Godwin, Andrew K.

    2008-01-01

    A subset of gastrointestinal stromal tumors (GISTs) lack gain-of-function mutations in c-KIT and PDGFRα. These so-called wild-type (WT) GISTs tend to be less responsive to imatinib-based therapies and have a poor prognosis. We identified amplification of IGF1R in a SNP analysis of GIST and thus studied its potential as a therapeutic target in WT and mutant GIST. Expression of IGF1R and downstream effectors in clinical GIST samples was examined by using immunoblots and immunohistochemistry. The roles of IGF1R signaling in GIST and viability were analyzed by using NVP-AEW541, an inhibitor of IGF1R, alone and in combination with imatinib, or via siRNA silencing of IGF1R. IGF1R was strongly overexpressed, and IGF1R amplification was detected at a significantly higher frequency in WT GISTs, including a pediatric WT GIST, compared with mutant GISTs (P = 0.0173 and P = 0.0163, respectively). Inhibition of IGF1R activity in vitro with NVP-AEW541 or down-regulation of expression with siIGF1R led to cytotoxicity and induced apoptosis in GIST cell lines via AKT and MAPK signaling. Combination of NVP-AEW541 and imatinib in GIST cell lines induced a strong cytotoxicity response. Our results reveal that IGF1R is amplified and the protein is overexpressed in WT and pediatric GISTs. We also demonstrate that the aberrant expression of IGF1R may be associated with oncogenesis in WT GISTs and suggest an alternative and/or complementary therapeutic regimen in the clinical management of all GISTs, especially in a subset of tumors that respond less favorably to imatinib-based therapy. PMID:18550829

  5. Interferon-γ differentially modulates the impact of tumor necrosis factor-α on human endometrial stromal cells.

    PubMed

    Spratte, Julia; Oemus, Anne; Zygmunt, Marek; Fluhr, Herbert

    2015-09-01

    The pro-inflammatory T helper (Th)-1 cytokines, tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ), are immunological factors relevant at the feto-maternal interface and involved in the pathophysiology of implantation disorders. The synergistic action of the two cytokines has been described with regard to apoptotic cell death and inflammatory responses in different cell types, but little is known regarding the human endometrium. Therefore, we examined the interaction of TNF-α and IFN-γ in human endometrial stromal cells (ESCs). ESCs were isolated from specimens obtained during hysterectomy and decidualized in vitro. Cells were incubated with TNF-α, IFN-γ or signaling-inhibitor. Insulin-like growth factor binding protein (IGFBP)-1, prolactin (PRL), leukemia inhibitory factor (LIF), interleukin (IL)-6, IL-8, regulated on activation normal T-cell expressed and secreted protein (RANTES) and monocyte chemotactic protein (MCP)-1 were measured using ELISA and real-time RT-PCR. Nuclear factor of transcription (NF)-κB and its inhibitor (IκBα) were analyzed by in-cell western assay and transcription factor assay. TNF-α inhibited and IFN-γ did not affect the decidualization of ESCs. In contrast, IFN-gamma differentially modulated the stimulating effect of TNF-alpha on cytokines by enhancing IL-6, RANTES and MCP-1 and attenuating LIF mRNA expression. These effects were time- and dose-dependent. IFN-γ had no impact on the initial activation of NF-κB signaling. Histone-deacetylase activity was involved in the modulating effect of IFN-γ on RANTES secretion. These observations showed a distinct pattern of interaction of the Th-1 cytokines, TNF-α and IFN-γ in the human endometrium, which could play an important role in the pathophysiology of implantation disorders.

  6. Requirement of soluble factors produced by bone marrow stromal cells on the growth of novel established human myeloma cell line.

    PubMed

    Aikawa, Shingo; Hatta, Yoshihiro; Tanaka, Megumi; Kaneita, Yoshitaka; Yasukawa, Kiyotaka; Sawada, Umihiko; Horie, Takashi; Tsuboi, Isao; Aizawa, Shin

    2003-03-01

    The growth of myeloma cells is believed to be mediated by functional interactions between tumor cells and the marrow environment involving the action of several cytokines. We report on the establishment and characterization of a new human myeloma cell line (TAB1) that can be long-term maintained in the presence of conditioned medium of bone marrow stromal cells (BMCM) and a BMCM independent variant, C2-2. Both cell lines have plasma cell morphology and express plasma cell antigens (CD38, PCA-1 and immunoglobulin kappa light chain). In the absence of BMCM, TAB1 cells undergoing apoptosis were observed. Among the adherent molecules tested, these cells expressed VLA-4, ICAM-1 and H-CAM, but not VLA-5, suggesting that these were mostly immature plasmacytes. Introduction with exogenous IL-6 and/or GM-CSF, which were detected in BMCM, partially supported the proliferation of TAB1 cells. Treatment with anti-IL-6 antibody partially inhibited the proliferation of TAB1 cells cultured with BMCM. These findings strongly suggest that TAB1 required at least two or more factors on their growth in vitro; IL-6 was one of the factors necessary for cell growth. Further studies are required to clarify the precise molecules which support TAB1 cell growth in combination with IL-6, however, TAB1 and its variant C2-2 cells may offer an attractive model to unravel novel molecular mechanisms involved in bone marrow stroma-dependent growth of myeloma cells.

  7. Cell Injury-Induced Release of Fibroblast Growth Factor 2: Relevance to Intracerebral Mesenchymal Stromal Cell Transplantations

    PubMed Central

    Vinodkumar, Deepti; McGrogan, Michael; Bates, Damien

    2015-01-01

    Beneficial effects of intracerebral transplantation of mesenchymal stromal cells (MSC) and their derivatives are believed to be mediated mostly by factors produced by engrafted cells. However, the mesenchymal cell engraftment rate is low, and the majority of grafted cells disappear within a short post-transplantation period. Here, we hypothesize that dying transplanted cells can affect surrounding tissues by releasing their active intracellular components. To elucidate the type, amounts, and potency of these putative intracellular factors, freeze/thaw extracts of MSC or their derivatives were tested in enzyme-linked immunosorbent assays and bioassays. We found that fibroblast growth factor (FGF)2 and FGF1, but not vascular endothelial growth factor and monocyte chemoattractant protein 1 levels were high in extracts despite being low in conditioned media. Extracts induced concentration-dependent proliferation of rat cortical neural progenitor cells and human umbilical vein endothelial cells; these proliferative responses were specifically blocked by FGF2-neutralizing antibody. In the neuropoiesis assay with rat cortical cells, both MSC extracts and killed cells induced expression of nestin, but not astrocyte differentiation. However, suspensions of killed cells strongly potentiated the astrogenic effects of live MSC. In transplantation-relevant MSC injury models (peripheral blood cell-mediated cytotoxicity and high cell density plating), MSC death coincided with the release of intracellular FGF2. The data showed that MSC contain a major depot of active FGF2 that is released upon cell injury and is capable of acutely stimulating neuropoiesis and angiogenesis. We therefore propose that both dying and surviving grafted MSC contribute to tissue regeneration. PMID:25873141

  8. Soluble Receptor for Advanced Glycation End Products Improves Stromal Cell–Derived Factor-1 Activity in Model Diabetic Environments

    PubMed Central

    Olekson, Melissa Przyborowski; Faulknor, Renea A.; Hsia, Henry C.; Schmidt, Ann Marie; Berthiaume, François

    2016-01-01

    Objective: In diabetes, hyperglycemia causes the accumulation of advanced glycation end products (AGEs) that trigger reactive oxygen species (ROS) generation through binding the receptor for AGEs (RAGE). Because exogenous growth factors have had little success in enhancing chronic wound healing, we investigated whether hyperglycemia-induced AGEs interfere with cellular responses to extracellular signals. We used stromal cell–derived factor-1 (SDF-1), an angiogenic chemokine also known to promote stem cell recruitment in skin wounds. Approach: Human leukemia-60 (HL-60) cells and mouse peripheral blood mononuclear cells (PBMCs), which express the SDF-1 receptor CXCR-4, were incubated for 24 h in medium supplemented with 25 mM d-glucose. Soluble RAGE (sRAGE) was used to block RAGE activation. Response to SDF-1 was measured in cellular migration and ROS assays. A diabetic murine excisional wound model measured SDF-1 liposome and sRAGE activity in vivo. Results: Hyperglycemia led to significant accumulation of AGEs, decreased SDF-1–directed migration, and elevated baseline ROS levels; it suppressed the ROS spike normally triggered by SDF-1. sRAGE decreased the ROS baseline and restored both the SDF-1–mediated spike and cell migration. Topically applied sRAGE alone promoted healing and enhanced the effect of exogenous SDF-1 on diabetic murine wounds. Innovation: While there is interest in using growth factors to improve wound healing, this strategy is largely ineffective in diabetic wounds. We show that sRAGE may restore signaling, thus potentiating the effect of exogenously applied growth factors. Conclusion: Blocking RAGE with sRAGE restores SDF-1–mediated cellular responses in hyperglycemic environments and may potentiate the effectiveness of SDF-1 applied in vivo. PMID:28078186

  9. Involvement of phosphatidylinositol 3-kinase in stromal cell-derived factor-1 alpha-induced lymphocyte polarization and chemotaxis.

    PubMed

    Vicente-Manzanares, M; Rey, M; Jones, D R; Sancho, D; Mellado, M; Rodriguez-Frade, J M; del Pozo, M A; Yáñez-Mó, M; de Ana, A M; Martínez-A, C; Mérida, I; Sánchez-Madrid, F

    1999-10-01

    The role of phosphatidylinositol 3-kinase (PI3-kinase), an important enzyme involved in signal transduction events, has been studied in the polarization and chemotaxis of lymphocytes induced by the chemokine stromal cell-derived factor-1 alpha (SDF-1 alpha). This chemokine was able to directly activate p85/p110 PI3-kinase in whole human PBL and to induce the association of PI3-kinase to the SDF-1 alpha receptor, CXCR4, in a pertussis toxin-sensitive manner. Two unrelated chemical inhibitors of PI3-kinase, wortmannin and Ly294002, prevented ICAM-3 and ERM protein moesin polarization as well as the chemotaxis of PBL in response to SDF-1 alpha. However, they did not interfere with the reorganization of either tubulin or the actin cytoskeleton. Moreover, the transient expression of a dominant negative form of the PI3-kinase 85-kDa regulatory subunit in the constitutively polarized Peer T cell line inhibited ICAM-3 polarization and markedly reduced SDF-1 alpha-induced chemotaxis. Conversely, overexpression of a constitutively activated mutant of the PI3-kinase 110-kDa catalytic subunit in the round-shaped PM-1 T cell line induced ICAM-3 polarization. These results underline the role of PI3-kinase in the regulation of lymphocyte polarization and motility and indicate that PI3-kinase plays a selective role in the regulation of adhesion and ERM proteins redistribution in the plasma membrane of lymphocytes.

  10. Stromal cell-derived factor-1 mediates changes of bone marrow stem cells during the bone repair process.

    PubMed

    Okada, Kiyotaka; Kawao, Naoyuki; Yano, Masato; Tamura, Yukinori; Kurashimo, Shinzi; Okumoto, Katsumi; Kojima, Kotarou; Kaji, Hiroshi

    2016-01-01

    Osteoblasts, osteoclasts, chondrocytes, and macrophages that participate in the bone repair process are derived from hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs). However, the roles of these stem cells during the repair of injured bone tissue are still unclear. In the present study, we examined the effects of bone defect on HSCs and MSCs in bone marrow and spleen in 75 mice and its mechanism. We analyzed the HSC and MSC populations in these tissues of a mouse with femoral bone damage by using flow cytometry. The number of HSCs in the bone marrow of mice with damaged femurs was significantly lower than the number of these cells in the bone marrow of the contralateral intact femurs on day 2 after injury. Meanwhile, the number of MSCs in the bone marrow of mice with damaged femurs was significantly higher than that of the contralateral femurs. Both intraperitoneal administration of AMD3100, a C-X-C chemokine receptor 4 (CXCR4) antagonist, and local treatment with an anti-stromal cell-derived factor-1 (SDF-1) antibody blunted the observed decrease in HSC and increase in MSC populations within the bone marrow of injured femurs. In conclusion, the present study revealed that there is a concurrent decrease and increase in the numbers of HSCs and MSCs, respectively, in the bone marrow during repair of mouse femoral bone damage. Furthermore, the SDF-1/CXCR4 system was implicated as contributing to the changes in these stem cell populations upon bone injury.

  11. Carbon nanotubes functionalized with fibroblast growth factor accelerate proliferation of bone marrow-derived stromal cells and bone formation

    NASA Astrophysics Data System (ADS)

    Hirata, Eri; Ménard-Moyon, Cécilia; Venturelli, Enrica; Takita, Hiroko; Watari, Fumio; Bianco, Alberto; Yokoyama, Atsuro

    2013-11-01

    Multi-walled carbon nanotubes (MWCNTs) were functionalized with fibroblast growth factor (FGF) and the advantages of their use as scaffolds for bone augmentation were evaluated in vitro and in vivo. The activity of FGF was assessed by measuring the effect on the proliferation of rat bone marrow stromal cells (RBMSCs). The presence of FGF enhanced the proliferation of RBMSCs and the FGF covalently conjugated to the nanotubes (FGF-CNT) showed the same effect as FGF alone. In addition, FGF-CNT coated sponges were implanted between the parietal bone and the periosteum of rats and the formation of new bone was investigated. At day 14 after implantation, a larger amount of newly formed bone was clearly observed in most pores of FGF-CNT coated sponges. These findings indicated that MWCNTs accelerated new bone formation in response to FGF, as well as the integration of particles into new bone during its formation. Scaffolds coated with FGF-CNT could be considered as promising novel substituting materials for bone regeneration in future tissue engineering applications.

  12. Compound K attenuates stromal cell-derived growth factor 1 (SDF-1)-induced migration of C6 glioma cells

    PubMed Central

    Kim, Hyuck; Roh, Hyo Sun; Kim, Jai Eun; Park, Sun Dong; Park, Won Hwan

    2016-01-01

    BACKGROUND/OBJECTIVES Stromal cell-derived growth factor 1 (SDF-1), also known as chemokine ligand 12, and chemokine receptor type 4 are involved in cancer cell migration. Compound K (CK), a metabolite of protopanaxadiol-type ginsenoside by gut microbiota, is reported to have therapeutic potential in cancer therapy. However, the inhibitory effect of CK on SDF-1 pathway-induced migration of glioma has not yet been established. MATERIALS/METHODS Cytotoxicity of CK in C6 glioma cells was determined using an EZ-Cytox cell viability assay kit. Cell migration was tested using the wound healing and Boyden chamber assay. Phosphorylation levels of protein kinase C (PKC)α and extracellular signal-regulated kinase (ERK) were measured by western blot assay, and matrix metallopeptidases (MMP) were measured by gelatin-zymography analysis. RESULTS CK significantly reduced the phosphorylation of PKCα and ERK1/2, expression of MMP9 and MMP2, and inhibited the migration of C6 glioma cells under SDF-1-stimulated conditions. CONCLUSIONS CK is a cell migration inhibitor that inhibits C6 glioma cell migration by regulating its downstream signaling molecules including PKCα, ERK1/2, and MMPs. PMID:27247721

  13. Functional and differential proteomic analyses to identify platelet derived factors affecting ex vivo expansion of mesenchymal stromal cells

    PubMed Central

    2013-01-01

    Background Multilineage differentiation, immunomodulation and secretion of trophic factors render mesenchymal stromal cells (MSC) highly attractive for clinical application. Human platelet derivatives such as pooled human platelet lysate (pHPL) and thrombin-activated platelet releasate in plasma (tPRP) have been introduced as alternatives to fetal bovine serum (FBS) to achieve GMP-compliance. However, whereas both pHPL and tPRP support similar proliferation kinetics of lipoaspirate-derived MSC (LA-MSC), only pHPL significantly accelerates bone marrow-derived MSC (BM-MSC) expansion. To identify functionally bioactive factors affecting ex vivo MSC expansion, a differential proteomic approach was performed and identified candidate proteins were evaluated within a bioassay. Results Two dimensional difference gel electrophoresis (2D-DIGE), MALDI-TOF analyses and complementary Western blotting revealed 20 differential protein species. 14 candidate proteins occured at higher concentrations in pHPL compared to tPRP and 6 at higher concentrations in tPRP. The candidate proteins fibrinogen and apolipoprotein A1 differentially affected LA- and BM-MSC proliferation. In a second set of experiments, reference cytokines known to foster proliferation in FBS were tested for their effects in the human supplements. Interestingly although these cytokines promoted proliferation in FBS, they failed to do so when added to the humanized system. Conclusions The differential proteomic approach identified novel platelet derived factors differentially acting on human MSC proliferation. Complementary testing of reference cytokines revealed a lack of stimulation in the human supplements compared to FBS. The data describe a new coherent approach to combine proteomic technologies with functional testing to develop novel, humanized, GMP-compliant conditions for MSC expansion. PMID:24168020

  14. Tumor necrosis factor improves vascularization in osteogenic grafts engineered with human adipose-derived stem/stromal cells.

    PubMed

    Hutton, Daphne L; Kondragunta, Renu; Moore, Erika M; Hung, Ben P; Jia, Xiaofeng; Grayson, Warren L

    2014-01-01

    The innate immune response following bone injury plays an important role in promoting cellular recruitment, revascularization, and other repair mechanisms. Tumor necrosis factor-α (TNF) is a prominent pro-inflammatory cytokine in this cascade, and has been previously shown to improve bone formation and angiogenesis in a dose- and timing-dependent manner. This ability to positively impact both osteogenesis and vascular growth may benefit bone tissue engineering, as vasculature is essential to maintaining cell viability in large grafts after implantation. Here, we investigated the effects of exogenous TNF on the induction of adipose-derived stem/stromal cells (ASCs) to engineer pre-vascularized osteogenic tissue in vitro with respect to dose, timing, and co-stimulation with other inflammatory mediators. We found that acute (2-day), low-dose exposure to TNF promoted vascularization, whereas higher doses and continuous exposure inhibited vascular growth. Co-stimulation with platelet-derived growth factor (PDGF), another key factor released following bone injury, increased vascular network formation synergistically with TNF. ASC-seeded grafts were then cultured within polycaprolactone-fibrin composite scaffolds and implanted in nude rats for 2 weeks, resulting in further tissue maturation and increased angiogenic ingrowth in TNF-treated grafts. VEGF-A expression levels were significantly higher in TNF-treated grafts immediately prior to implantation, indicating a long-term pro-angiogenic effect. These findings demonstrate that TNF has the potential to promote vasculogenesis in engineered osteogenic grafts both in vitro and in vivo. Thus, modulation and/or recapitulation of the immune response following bone injury may be a beneficial strategy for bone tissue engineering.

  15. Identification of Pathways Mediating Growth Differentiation Factor5-Induced Tenogenic Differentiation in Human Bone Marrow Stromal Cells.

    PubMed

    Tan, Sik-Loo; Ahmad, Tunku Sara; Ng, Wuey-Min; Azlina, Amir Abbas; Azhar, Mahmood Merican; Selvaratnam, Lakshmi; Kamarul, Tunku

    2015-01-01

    To date, the molecular signalling mechanisms which regulate growth factors-induced MSCs tenogenic differentiation remain largely unknown. Therefore, a study to determine the global gene expression profile of tenogenic differentiation in human bone marrow stromal cells (hMSCs) using growth differentiation factor 5 (GDF5) was conducted. Microarray analyses were conducted on hMSCs cultures supplemented with 100 ng/ml of GDF5 and compared to undifferentiated hMSCs and adult tenocytes. Results of QuantiGene® Plex assay support the use and interpretation of the inferred gene expression profiles and pathways information. From the 27,216 genes assessed, 873 genes (3.21% of the overall human transcriptome) were significantly altered during the tenogenic differentiation process (corrected p<0.05). The genes identified as potentially associated with tenogenic differentiation were ARHGAP29, CCL2, integrin alpha 8 and neurofilament medium polypeptides. These genes, were mainly associated with cytoskeleton reorganization (stress fibers formation) signaling. Pathway analysis demonstrated the potential molecular pathways involved in tenogenic differentiation were: cytoskeleton reorganization related i.e. keratin filament signaling and activin A signaling; cell adhesion related i.e. chemokine and adhesion signaling; and extracellular matrix related i.e. arachidonic acid production signaling. Further investigation using atomic force microscopy and confocal laser scanning microscopy demonstrated apparent cytoskeleton reorganization in GDF5-induced hMSCs suggesting that cytoskeleton reorganization signaling is an important event involved in tenogenic differentiation. Besides, a reduced nucleostemin expression observed suggested a lower cell proliferation rate in hMSCs undergoing tenogenic differentiation. Understanding and elucidating the tenogenic differentiation signalling pathways are important for future optimization of tenogenic hMSCs for functional tendon cell-based therapy and

  16. Identification of Pathways Mediating Growth Differentiation Factor5-Induced Tenogenic Differentiation in Human Bone Marrow Stromal Cells

    PubMed Central

    Tan, Sik-Loo; Ahmad, Tunku Sara; Ng, Wuey-Min; Azlina, Amir Abbas; Azhar, Mahmood Merican; Selvaratnam, Lakshmi; Kamarul, Tunku

    2015-01-01

    To date, the molecular signalling mechanisms which regulate growth factors-induced MSCs tenogenic differentiation remain largely unknown. Therefore, a study to determine the global gene expression profile of tenogenic differentiation in human bone marrow stromal cells (hMSCs) using growth differentiation factor 5 (GDF5) was conducted. Microarray analyses were conducted on hMSCs cultures supplemented with 100 ng/ml of GDF5 and compared to undifferentiated hMSCs and adult tenocytes. Results of QuantiGene® Plex assay support the use and interpretation of the inferred gene expression profiles and pathways information. From the 27,216 genes assessed, 873 genes (3.21% of the overall human transcriptome) were significantly altered during the tenogenic differentiation process (corrected p<0.05). The genes identified as potentially associated with tenogenic differentiation were ARHGAP29, CCL2, integrin alpha 8 and neurofilament medium polypeptides. These genes, were mainly associated with cytoskeleton reorganization (stress fibers formation) signaling. Pathway analysis demonstrated the potential molecular pathways involved in tenogenic differentiation were: cytoskeleton reorganization related i.e. keratin filament signaling and activin A signaling; cell adhesion related i.e. chemokine and adhesion signaling; and extracellular matrix related i.e. arachidonic acid production signaling. Further investigation using atomic force microscopy and confocal laser scanning microscopy demonstrated apparent cytoskeleton reorganization in GDF5-induced hMSCs suggesting that cytoskeleton reorganization signaling is an important event involved in tenogenic differentiation. Besides, a reduced nucleostemin expression observed suggested a lower cell proliferation rate in hMSCs undergoing tenogenic differentiation. Understanding and elucidating the tenogenic differentiation signalling pathways are important for future optimization of tenogenic hMSCs for functional tendon cell-based therapy and

  17. Increased Migration of Human Mesenchymal Stromal Cells by Autocrine Motility Factor (AMF) Resulted in Enhanced Recruitment towards Hepatocellular Carcinoma

    PubMed Central

    Aquino, Jorge B.; Malvicini, Mariana; Rizzo, Manglio; Peixoto, Estanislao; Andriani, Oscar; Alaniz, Laura; Piccioni, Flavia; Bolontrade, Marcela; Podhajcer, Osvaldo

    2014-01-01

    Background and Aims Several reports described the migration of human mesenchymal stromal cells (MSCs) towards tumor-released factors. Autocrine motility factor (AMF) is produced by several tumors including hepatocellular carcinoma (HCC). The aim of this study was to analyze AMF involvement on MSC migration towards human HCC. Methods Production of AMF by HCC tumors was evaluated by western analysis. The effects of AMF on MSCs from different sources (bone marrow, adipose tissue and perivascular cells from umbilical cord) were analyzed using in vitro migration assay; metalloproteinase 2 (MMP2) activity and expression of critical genes were studied by zymography and qRT-PCR, respectively. To assess AMF involvement on the in vivo MSC migration, noninvasive fluorescence imaging was performed. To test the effect of AMF-primed MSCs on tumor development, in vitro proliferation and spheroids growth and in vivo tumor volume were evaluated. Results AMF produced by HCC was found to induce migration of different MSCs in vitro and to enhance their MMP2 activity. Stimulation of MSCs with recombinant AMF (rAMF) also induced the in vitro adhesion to endothelial cells in coincidence with changes in the expression levels of MMP3, AMF receptor, caveolin-1, and -2 and GDI-2. Importantly, stimulation of MSCs with rAMF increased the in vivo migration of MSCs towards experimental HCC tumors. AMF-priming of MSCs did not induce a pro-tumorigenic effect on HCC cells neither in vivo nor in vitro. Conclusion AMF plays a role in MSC recruitment towards HCC. However, its ability to increase MSC migration to HCC for therapeutic purposes merits further evaluation. PMID:24736611

  18. The Interferon-Inducible Host Factor Bone Marrow Stromal Antigen 2/Tetherin Restricts Virion Release, but Is It Actually a Viral Restriction Factor?

    PubMed Central

    Andrew, Amy

    2011-01-01

    Viruses face a variety of obstacles when infecting a new host. The past few years have brought exciting new insights into the function of restriction factors, which form part of the host's innate immune system. One of the most recently identified restriction factors is bone marrow stromal antigen 2 (BST-2)/tetherin. BST-2 is an interferon-inducible gene whose expression dramatically reduces the release of viruses from infected cells. This effect of BST-2 is not specific to human immunodeficiency virus but affects a broad range of enveloped viruses. Since the identification of BST-2 as a restriction factor in 2008, much progress has been made in understanding the molecular properties and functional characteristics of this host factor. The goal of this review was to provide an update on our current understanding of the role of BST-2 in regulating virus release and to discuss its role in controlling virus spread during productive infection with special emphasis on human immunodeficiency virus-1. PMID:21166593

  19. Mathematically-Engineered Stromal Cell-Derived Factor 1alpha Stem Cell Cytokine Analogue Enhances Mechanical Properties of Infarcted Myocardium

    PubMed Central

    Jr, John W. MacArthur; Trubelja, Alen; Shudo, Yasuhiro; Hsiao, Philip; Fairman, Alex; Yang, Elaine; Hiesinger, William; Atluri, Pavan; Woo, Y Joseph

    2014-01-01

    Background The biomechanical response to a myocardial infarction consists of ventricular remodeling that leads to dilation, loss of contractile function, abnormal stress patterns and ultimately heart failure. We hypothesized that intramyocardial injection of our previously designed pro-angiogenic chemokine, an engineered stromal cell derived factor 1alpha analogue(ESA), improves mechanical properties of the heart post-infarction. Methods Male rats (n=54) underwent either sham surgery (n=17) with no coronary artery ligation or ligation of the LAD (n=37). Rats in the MI group were then randomized to receive either saline (0.1cc, n=18) or ESA (6μg/kg, n=19) injected into the myocardium at 4 predetermined spots around the borderzone. Echocardiograms were performed preoperatively and before the terminal surgery. After 4 weeks the hearts were explanted and longitudinally sectioned. Uniaxial tensile testing was completed using an Instron 5543 Microtester. Optical strain was evaluated utilizing custom image acquisition software, Digi-Velpo, and analyzed in MATLAB. Results Compared to the saline control group at 4 weeks, the ESA injected hearts had higher ejection fractions (71.8% ± 9.0 vs. 55.3% ± 12.6, p= 0.0004) smaller end-diastolic left ventricular internal dimensions (0.686cm ± 0.110 vs. 0.763cm ± 0.160, p= 0.04), higher cardiac output (36ml/min ± 11.6 vs. 26.9ml/min ± 7.3, p= 0.05) and the tensile modulus was lower(251kPa ± 56 vs. 301kPa ± 81, p= 0.04). The tensile modulus for the sham group was 195kPa ± 56, indicating ESA injection results in a less stiff ventricle. Conclusions Direct injection of ESA alters the biomechanical response to MI, improving the mechanical properties in the post-infarct heart. PMID:23244259

  20. The CXC Chemokine Receptor 4 Ligands Ubiquitin and Stromal Cell-derived Factor-1α Function through Distinct Receptor Interactions*

    PubMed Central

    Saini, Vikas; Staren, Daniel M.; Ziarek, Joshua J.; Nashaat, Zayd N.; Campbell, Edward M.; Volkman, Brian F.; Marchese, Adriano; Majetschak, Matthias

    2011-01-01

    Recently, we identified extracellular ubiquitin as an endogenous CXC chemokine receptor (CXCR) 4 agonist. However, the receptor selectivity and molecular basis of the CXCR4 agonist activity of ubiquitin are unknown, and functional consequences of CXCR4 activation with ubiquitin are poorly defined. Here, we provide evidence that ubiquitin and the cognate CXCR4 ligand stromal cell-derived factor (SDF)-1α do not share CXCR7 as a receptor. We further demonstrate that ubiquitin does not utilize the typical two-site binding mechanism of chemokine-receptor interactions, in which the receptor N terminus is important for ligand binding. CXCR4 activation with ubiquitin and SDF-1α lead to similar Gαi-responses and to a comparable magnitude of phosphorylation of ERK-1/2, p90 ribosomal S6 kinase-l and Akt, although phosphorylations occur more transiently after activation with ubiquitin. Despite the similarity of signal transduction events after activation of CXCR4 with both ligands, ubiquitin possesses weaker chemotactic activity than SDF-lα in cell migration assays and does not interfere with productive entry of HIV-1 into P4.R5 multinuclear activation of galactosidase indicator cells. Unlike SDF-1α, ubiquitin lacks interactions with an N-terminal CXCR4 peptide in NMR spectroscopy experiments. Binding and signaling studies in the presence of antibodies against the N terminus and extracellular loops 2/3 of CXCR4 confirm that the ubiquitin CXCR4 interaction is independent of the N-terminal receptor domain, whereas blockade of extracellular loops 2/3 prevents receptor binding and activation. Our findings define ubiquitin as a CXCR4 agonist, which does not interfere with productive cellular entry of HIV-1, and provide new mechanistic insights into interactions between CXCR4 and its natural ligands. PMID:21757744

  1. Stromal cell-derived factor-1 promotes human adipose tissue-derived stem cell survival and chronic wound healing

    PubMed Central

    LI, QIANG; GUO, YANPING; CHEN, FEIFEI; LIU, JING; JIN, PEISHENG

    2016-01-01

    Adipose tissue-derived stem cells (ADSCs) hold great potential for the stem cell-based therapy of cutaneous wound healing. Stromal cell-derived factor-1 (SDF-1) activates CXC chemokine receptor (CXCR)4+ and CXCR7+ cells and plays an important role in wound healing. Increasing evidence suggests a critical role for SDF-1 in cell apoptosis and the survival of mesenchymal stem cells. However, the function of SDF-1 in the apoptosis and wound healing ability of ADSCs is not well understood. The aim of this study was to analyze the effect of SDF-1 on the apoptosis and therapeutic effect of ADSCs in cutaneous chronic wounds in vitro and in vivos. By flow cytometric analysis, it was found that hypoxia and serum free promoted the apoptosis of ADSCs. When pretreated with SDF-1, the apoptosis of ADSCs induced by hypoxia and serum depletion was partly recovered. Furthermore, in vivo experiments established that the post-implantation cell survival and chronic wound healing ability of ADSCs were increased following pretreatment with SDF-1 in a diabetic mouse model of chronic wound healing. To explore the potential mechanism underlying the effect of SDF-1 on ADSC apoptosis, western blot analysis was employed and the results indicate that SDF-1 may protect against cell apoptosis in hypoxic and serum-free conditions through activation of the caspase signaling pathway in ADSCs. This study provides evidence that SDF-1 pretreatment can increase the therapeutic effect of ADSCs in cutaneous chronic wounds in vitro and in vivo. PMID:27347016

  2. Circulating Stromal Cell-Derived Factor 1α Levels in Heart Failure: A Matter of Proper Sampling

    PubMed Central

    Baerts, Lesley; Waumans, Yannick; Brandt, Inger; Jungraithmayr, Wolfgang; Van der Veken, Pieter; Vanderheyden, Marc; De Meester, Ingrid

    2015-01-01

    Background The chemokine Stromal cell-derived factor 1α (SDF1α, CXCL12) is currently under investigation as a biomarker for various cardiac diseases. The correct interpretation of SDF1α levels is complicated by the occurrence of truncated forms that possess an altered biological activity. Methodology We studied the immunoreactivities of SDF1α forms and evaluated the effect of adding a DPP4 inhibitor in sampling tubes on measured SDF1α levels. Using optimized sampling, we measured DPP4 activity and SDF1α levels in patients with varying degrees of heart failure. Results The immunoreactivities of SDF1α and its degradation products were determined with three immunoassays. A one hour incubation of SDF1α with DPP4 at 37°C resulted in 2/3 loss of immunoreactivity in each of the assays. Incubation with serum gave a similar result. Using appropriate sampling, SDF1α levels were found to be significantly higher in those heart failure patients with a severe loss of left ventricular function. DPP4 activity in serum was not altered in the heart failure population. However, the DPP4 activity was found to be significantly decreased in patients with high SDF1α levels Conclusions We propose that all samples for SDF1α analysis should be collected in the presence of at least a DPP4 inhibitor. In doing so, we found higher SDF1α levels in subgroups of patients with heart failure. Our work supports the need for further research on the clinical relevance of SDF1α levels in cardiac disease. PMID:26544044

  3. Dermal fibroblast expression of stromal cell-derived factor-1 (SDF-1) promotes epidermal keratinocyte proliferation in normal and diseased skin.

    PubMed

    Quan, Chunji; Cho, Moon Kyun; Shao, Yuan; Mianecki, Laurel E; Liao, Eric; Perry, Daniel; Quan, Taihao

    2015-12-01

    Stromal cells provide a crucial microenvironment for overlying epithelium. Here we investigated the expression and function of a stromal cell-specific protein, stromal cell-derived factor-1 (SDF-1), in normal human skin and in the tissues of diseased skin. Immunohistology and laser capture microdissection (LCM)-coupled quantitative real-time RT-PCR revealed that SDF-1 is constitutively and predominantly expressed in dermal stromal cells in normal human skin in vivo. To our surprise, an extremely high level of SDF-1 transcription was observed in the dermis of normal human skin in vivo, evidenced by much higher mRNA expression level than type I collagen, the most abundant and highly expressed protein in human skin. SDF-1 was also upregulated in the tissues of many human skin disorders including psoriasis, basal cell carcinoma (BCC), and squamous cell carcinoma (SCC). Double immunostaining for SDF-1 and HSP47 (heat shock protein 47), a marker of fibroblasts, revealed that fibroblasts were the major source of stroma-cell-derived SDF-1 in both normal and diseased skin. Functionally, SDF-1 activates the ERK (extracellular-signal-regulated kinases) pathway and functions as a mitogen to stimulate epidermal keratinocyte proliferation. Both overexpression of SDF-1 in dermal fibroblasts and treatment with rhSDF-1 to the skin equivalent cultures significantly increased the number of keratinocyte layers and epidermal thickness. Conversely, the stimulative function of SDF-1 on keratinocyte proliferation was nearly completely eliminated by interfering with CXCR4, a specific receptor of SDF-1, or by knock-down of SDF-1 in fibroblasts. Our data reveal that extremely high levels of SDF-1 provide a crucial microenvironment for epidermal keratinocyte proliferation in both physiologic and pathologic skin conditions.

  4. Safety of repeated transplantations of neurotrophic factors-secreting human mesenchymal stromal stem cells

    PubMed Central

    2014-01-01

    Background Therapies based on mesenchymal stem cells (MSC) have been shown to have potential benefit in several clinical studies. We have shown that, using a medium-based approach, MSC can be induced to secrete elevated levels of neurotropic factors, which have been shown to have protective effects in animal models of neurodegenerative diseases. These cells, designated MSC-NTF cells (Neurotrophic factor-secreting MSC, also known as NurOwn™) derived from the patient's own bone marrow, have been recently used for Phase I/II and Phase IIa clinical studies in patients with Amyotrophic Lateral Sclerosis (ALS). In these studies, ALS patients were subjected to a single administration of autologous MSC-NTF cells. The data from these studies indicate that the single administration of MSC-NTF cells is safe and well tolerated. In a recently published case report, it was shown that repeated MSC-NTF injections in an ALS patient treated on a compassionate basis were safe and well tolerated [Muscle Nerve 49:455-457, 2014]. Methods In the current study we studied the toxicity and tolerability of three consecutive intramuscular injections (IM) of cryopreserved human MSC-NTF cells in C57BL/B6 mice to investigate the effect of repeated administration of these cells. Results Monitoring of clinical signs and immune reactions showed that repeated injections of the cells did not lead to any serious adverse events. Pathology, histology and blood biochemistry parameters tested were found to be within normal ranges with no sign of tumor formation. Conclusions Based on these results we conclude that repeated injections of human MSC-NTF are well tolerated in mice. The results of this study suggest that if the outcomes of additional clinical studies point to the need for repeated treatments, such option can be considered safe. PMID:25097724

  5. Granulocyte colony-stimulating factor inhibits CXCR4/SDF-1α signaling and overcomes stromal-mediated drug resistance in the HL-60 cell line.

    PubMed

    Sheng, Xianfu; Zhong, Hua; Wan, Haixia; Zhong, Jihua; Chen, Fangyuan

    2016-07-01

    Combining cytarabine, aclarubicin and granulocyte colony-stimulating factor (G-CSF) has demonstrated marked efficacy in the treatment of elderly and relapsed/refractory patients with acute myeloid leukemia (AML); however, the role of G-CSF remains poorly understood. The present study aimed to investigate the ability of G-CSF to overcome stromal-mediated drug resistance and the underlying molecular mechanism. Two types of co-culture models were established in the HS-5 human bone marrow/stromal and HL-60 human promyelocytic leukemia cell lines, in order to imitate the interactions between stromal and leukemia cells in vitro, which is mediated by the stromal cell-derived factor (SDF)-1α signaling axis. In the present study, HL-60 cells were attracted and adhered to HS-5 cells using migration assay and flow cytometry, respectively; however, these interactions were inhibited by treatment with G-CSF and/or the C-X-C chemokine receptor type 4 (CXCR4) antagonist, AMD3100. Co-culture with HS-5 cells, including direct and indirect contact, protected HL-60 cells against spontaneous apoptosis or drug-induced apoptosis; however, these protective effects were disrupted by treatment with G-CSF and/or AMD3100. Notably, G-CSF and/or AMD3100 did not alter cell viability or apoptosis when HL-60 cells were cultured with medium alone. In addition, G-CSF significantly reduced the expression levels of surface CXCR4 protein, total CXCR4 protein and CXCR4 mRNA, and significantly upregulated the expression of microRNA (miR)-146a. Conversely, AMD3100 significantly reduced surface CXCR4 expression levels, but not the total CXCR4, CXCR4 mRNA or miR-146a expression levels. The results of the present study suggested that interfering with the CXCR4/SDF-1α signaling axis via G-CSF inhibited the migration and adhesion of HL-60 cells to HS-5 cells and eliminated HS5 cell-mediated protective effects. Furthermore, G-CSF administration reduced CXCR4 expression levels by upregulating the expression of

  6. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy

    NASA Technical Reports Server (NTRS)

    Askari, Arman T.; Unzek, Samuel; Popovic, Zoran B.; Goldman, Corey K.; Forudi, Farhad; Kiedrowski, Matthew; Rovner, Aleksandr; Ellis, Stephen G.; Thomas, James D.; DiCorleto, Paul E.; Topol, Eric J.; Penn, Marc S.

    2003-01-01

    BACKGROUND: Myocardial regeneration via stem-cell mobilisation at the time of myocardial infarction is known to occur, although the mechanism for stem-cell homing to infarcted tissue subsequently and whether this approach can be used for treatment of ischaemic cardiomyopathy are unknown. We investigated these issues in a Lewis rat model (ligation of the left anterior descending artery) of ischaemic cardiomyopathy. METHODS: We studied the effects of stem-cell mobilisation by use of granulocyte colony-stimulating factor (filgrastim) with or without transplantation of syngeneic cells. Shortening fraction and myocardial strain by tissue doppler imaging were quantified by echocardiography. FINDINGS: Stem-cell mobilisation with filgrastim alone did not lead to engraftment of bone-marrow-derived cells. Stromal-cell-derived factor 1 (SDF-1), required for stem-cell homing to bone marrow, was upregulated immediately after myocardial infarction and downregulated within 7 days. 8 weeks after myocardial infarction, transplantation into the peri-infarct zone of syngeneic cardiac fibroblasts stably transfected to express SDF-1 induced homing of CD117-positive stem cells to injured myocardium after filgrastim administration (control vs SDF-1-expressing cardiac fibroblasts mean 7.2 [SD 3.4] vs 33.2 [6.0] cells/mm2, n=4 per group, p<0.02) resulting in greater left-ventricular mass (1.24 [0.29] vs 1.57 [0.27] g) and better cardiac function (shortening fraction 9.2 [4.9] vs 17.2 [4.2]%, n=8 per group, p<0.05). INTERPRETATION: These findings show that SDF-1 is sufficient to induce therapeutic stem-cell homing to injured myocardium and suggest a strategy for directed stem-cell engraftment into injured tissues. Our findings also indicate that therapeutic strategies focused on stem-cell mobilisation for regeneration of myocardial tissue must be initiated within days of myocardial infarction unless signalling for stem-cell homing is re-established.

  7. Chemokines, macrophage inflammatory protein-2 and stromal cell-derived factor-1{alpha}, suppress amyloid {beta}-induced neurotoxicity

    SciTech Connect

    Raman, Dayanidhi; Milatovic, Snjezana-Zaja; Milatovic, Dejan; Fan, Guo-Huang; Richmond, Ann

    2011-11-15

    Alzheimer's disease (AD) is characterized by a progressive cognitive decline and accumulation of neurotoxic oligomeric peptides amyloid-{beta} (A{beta}). Although the molecular events are not entirely known, it has become evident that inflammation, environmental and other risk factors may play a causal, disruptive and/or protective role in the development of AD. The present study investigated the ability of the chemokines, macrophage inflammatory protein-2 (MIP-2) and stromal cell-derived factor-1{alpha} (SDF-1{alpha}), the respective ligands for chemokine receptors CXCR2 and CXCR4, to suppress A{beta}-induced neurotoxicity in vitro and in vivo. Pretreatment with MIP-2 or SDF-1{alpha} significantly protected neurons from A{beta}-induced dendritic regression and apoptosis in vitro through activation of Akt, ERK1/2 and maintenance of metalloproteinase ADAM17 especially with SDF-1{alpha}. Intra-cerebroventricular (ICV) injection of A{beta} led to reduction in dendritic length and spine density of pyramidal neurons in the CA1 area of the hippocampus and increased oxidative damage 24 h following the exposure. The A{beta}-induced morphometric changes of neurons and increase in biomarkers of oxidative damage, F{sub 2}-isoprostanes, were significantly inhibited by pretreatment with the chemokines MIP-2 or SDF-1{alpha}. Additionally, MIP-2 or SDF-1{alpha} was able to suppress the aberrant mislocalization of p21-activated kinase (PAK), one of the proteins involved in the maintenance of dendritic spines. Furthermore, MIP-2 also protected neurons against A{beta} neurotoxicity in CXCR2-/- mice, potentially through observed up regulation of CXCR1 mRNA. Understanding the neuroprotective potential of chemokines is crucial in defining the role for their employment during the early stages of neurodegeneration. -- Research highlights: Black-Right-Pointing-Pointer Neuroprotective ability of the chemokines MIP2 and CXCL12 against A{beta} toxicity. Black-Right-Pointing-Pointer MIP-2 or

  8. Low Intensity Pulsed Ultrasound Enhanced Mesenchymal Stem Cell Recruitment through Stromal Derived Factor-1 Signaling in Fracture Healing

    PubMed Central

    Wei, Fang-Yuan; Leung, Kwok-Sui; Li, Gang; Qin, Jianghui; Chow, Simon Kwoon-Ho; Huang, Shuo; Sun, Ming-Hui; Qin, Ling; Cheung, Wing-Hoi

    2014-01-01

    Low intensity pulsed ultrasound (LIPUS) has been proven effective in promoting fracture healing but the underlying mechanisms are not fully depicted. We examined the effect of LIPUS on the recruitment of mesenchymal stem cells (MSCs) and the pivotal role of stromal cell-derived factor-1/C-X-C chemokine receptor type 4 (SDF-1/CXCR4) pathway in response to LIPUS stimulation, which are essential factors in bone fracture healing. For in vitro study, isolated rat MSCs were divided into control or LIPUS group. LIPUS treatment was given 20 minutes/day at 37°C for 3 days. Control group received sham LIPUS treatment. After treatment, intracellular CXCR4 mRNA, SDF-1 mRNA and secreted SDF-1 protein levels were quantified, and MSCs migration was evaluated with or without blocking SDF-1/CXCR4 pathway by AMD3100. For in vivo study, fractured 8-week-old young rats received intracardiac administration of MSCs were assigned to LIPUS treatment, LIPUS+AMD3100 treatment or vehicle control group. The migration of transplanted MSC to the fracture site was investigated by ex vivo fluorescent imaging. SDF-1 protein levels at fracture site and in serum were examined. Fracture healing parameters, including callus morphology, micro-architecture of the callus and biomechanical properties of the healing bone were investigated. The in vitro results showed that LIPUS upregulated SDF-1 and CXCR4 expressions in MSCs, and elevated SDF-1 protein level in the conditioned medium. MSCs migration was promoted by LIPUS and partially inhibited by AMD3100. In vivo study demonstrated that LIPUS promoted MSCs migration to the fracture site, which was associated with an increase of local and serum SDF-1 level, the changes in callus formation, and the improvement of callus microarchitecture and mechanical properties; whereas the blockade of SDF-1/CXCR4 signaling attenuated the LIPUS effects on the fractured bones. These results suggested SDF-1 mediated MSCs migration might be one of the crucial mechanisms

  9. A murine uterine transcriptome, responsive to steroid receptor coactivator-2, reveals transcription factor 23 as essential for decidualization of human endometrial stromal cells.

    PubMed

    Kommagani, Ramakrishna; Szwarc, Maria M; Kovanci, Ertug; Creighton, Chad J; O'Malley, Bert W; Demayo, Francesco J; Lydon, John P

    2014-04-01

    Recent data from human and mouse studies strongly support an indispensable role for steroid receptor coactivator-2 (SRC-2)-a member of the p160/SRC family of coregulators-in progesterone-dependent endometrial stromal cell decidualization, an essential cellular transformation process that regulates invasion of the developing embryo into the maternal compartment. To identify the key progesterone-induced transcriptional changes that are dependent on SRC-2 and required for endometrial decidualization, we performed comparative genome-wide transcriptional profiling of endometrial tissue RNA from ovariectomized SRC-2(flox/flox) (SRC-2(f/f) [control]) and PR(cre/+)/SRC-2(flox/flox) (SRC-2(d/d) [SRC-2-depleted]) mice, acutely treated with vehicle or progesterone. Although data mining revealed that only a small subset of the total progesterone-dependent transcriptional changes is dependent on SRC-2 (∼13%), key genes previously reported to mediate progesterone-driven endometrial stromal cell decidualization are present within this subset. Along with providing a more detailed molecular portrait of the decidual transcriptional program governed by SRC-2, the degree of functional diversity of these progesterone mediators underscores the pleiotropic regulatory role of SRC-2 in this tissue. To showcase the utility of this powerful informational resource to uncover novel signaling paradigms, we stratified the total SRC-2-dependent subset of progesterone-induced transcriptional changes in terms of novel gene expression and identified transcription factor 23 (Tcf23), a basic-helix-loop-helix transcription factor, as a new progesterone-induced target gene that requires SRC-2 for full induction. Importantly, using primary human endometrial stromal cells in culture, we demonstrate that TCF23 function is essential for progesterone-dependent decidualization, providing crucial translational support for this transcription factor as a new decidual mediator of progesterone action.

  10. Transforming growth factor β-activated kinase 1 negatively regulates interleukin-1α-induced stromal-derived factor-1 expression in vascular smooth muscle cells

    SciTech Connect

    Yang, Bin; Li, Wei; Zheng, Qichang; Qin, Tao; Wang, Kun; Li, Jinjin; Guo, Bing; Yu, Qihong; Wu, Yuzhe; Gao, Yang; Cheng, Xiang; Hu, Shaobo; Kumar, Stanley Naveen; Liu, Sanguang; Song, Zifang

    2015-07-17

    Stromal-derived Factor-1 (SDF-1) derived from vascular smooth muscle cells (VSMCs) contributes to vascular repair and remodeling in various vascular diseases. In this study, the mechanism underlying regulation of SDF-1 expression by interleukin-1α (IL-1α) was investigated in primary rat VSMCs. We found IL-1α promotes SDF-1 expression by up-regulating CCAAT-enhancer-binding protein β (C/EBPβ) in an IκB kinase β (IKKβ) signaling-dependent manner. Moreover, IL-1α-induced expression of C/EBPβ and SDF-1 was significantly potentiated by knockdown of transforming growth factor β-activated kinase 1 (TAK1), an upstream activator of IKKβ signaling. In addition, we also demonstrated that TAK1/p38 mitogen-activated protein kinase (p38 MAPK) signaling exerted negative effect on IL-1α-induced expression of C/EBPβ and SDF-1 through counteracting ROS-dependent up-regulation of nuclear factor erythroid 2-related factor 2 (NRF2). In conclusion, TAK1 acts as an important regulator of IL-1α-induced SDF-1 expression in VSMCs, and modulating activity of TAK1 may serve as a potential strategy for modulating vascular repair and remodeling. - Highlights: • IL-1α induces IKKβ signaling-dependent SDF-1 expression by up-regulating C/EBPβ. • Activation of TAK1 by IL-1α negatively regulates C/EBPβ-dependent SDF-1 expression. • IL-1α-induced TAK1/p38 MAPK signaling counteracts ROS-dependent SDF-1 expression. • TAK1 counteracts IL-1α-induced SDF-1 expression by attenuating NRF2 up-regulation.

  11. Stromal derived factor‐1 and granulocyte‐colony stimulating factor treatment improves regeneration of Pax7−/− mice skeletal muscles

    PubMed Central

    Kowalski, Kamil; Archacki, Rafał; Archacka, Karolina; Stremińska, Władysława; Paciorek, Anna; Gołąbek, Magdalena; Ciemerych, Maria A.

    2015-01-01

    Abstract Background The skeletal muscle has the ability to regenerate after injury. This process is mediated mainly by the muscle specific stem cells, that is, satellite cells. In case of extensive damage or under pathological conditions, such as muscular dystrophy, the process of muscle reconstruction does not occur properly. The aim of our study was to test whether mobilized stem cells, other than satellite cells, could participate in skeletal muscle reconstruction. Methods Experiments were performed on wild‐type mice and mice lacking the functional Pax7 gene, that is, characterized by the very limited satellite cell population. Gastrocnemius mice muscles were injured by cardiotoxin injection, and then the animals were treated by stromal derived factor‐1 (Sdf‐1) with or without granulocyte‐colony stimulating factor (G‐CSF) for 4 days. The muscles were subjected to thorough assessment of the tissue regeneration process using histological and in vitro methods, as well as evaluation of myogenic factors' expression at the transcript and protein levels. Results Stromal derived factor‐1 alone and Sdf‐1 in combination with G‐CSF significantly improved the regeneration of Pax7−/− skeletal muscles. The Sdf‐1 and G‐CSF treatment caused an increase in the number of mononucleated cells associated with muscle fibres. Further analysis showed that Sdf‐1 and G‐CSF treatment led to the rise in the number of CD34+ and Cxcr4+ cells and expression of Cxcr7. Conclusions Stromal derived factor‐1 and G‐CSF stimulated regeneration of the skeletal muscles deficient in satellite cells. We suggest that mobilized CD34+, Cxcr4+, and Cxcr7+ cells can efficiently participate in the skeletal muscle reconstruction and compensate for the lack of satellite cells. PMID:27239402

  12. Nerve growth factor is involved in the supportive effect by bone marrow--derived stromal cells of the factor-dependent human cell line UT-7.

    PubMed

    Auffray, I; Chevalier, S; Froger, J; Izac, B; Vainchenker, W; Gascan, H; Coulombel, L

    1996-09-01

    We previously demonstrated that murine MS-5 and SI/SI4 cell lines induce the proliferation of human factor-dependent UT-7 cells in the absence of normally required human cytokines and also stimulate the differentiation of CD34+/CD38-LTC-ICs. We report in this study that the effect of MS-5 cells on UT-7 cells can be completely explained by the synergistic action of nerve growth factor (NGF) and stem cell factor (SCF) produced by these murine stromal cells. Purified murine NGF was able to support short-term clone formation and long-term growth of UT-7 cells in suspension cultures as efficiently as rhu-granulocyte-macrophage colony-stimulating factor. NGF action was mediated through the TrkA receptor, in which messenger RNA (mRNA) was easily detected in UT-7 cells by Northern blot. MS-5 cells strongly expressed NGF mRNA in Northern blot, and direct implication of MS-5-derived NGF in the induction of UT-7 cells proliferation was demonstrated in inhibition assays with an anti-NGF monoclonal antibody (MoAb) that neutralized by 84% +/- 4.1% (n = 5) UT-7 clone formation. However, NGF did not act alone, and several arguments demonstrated the synergistic action of MS-5-derived SCF: (1) an anti-c-kit partially inhibited UT-7 cells clone formation in coculture assays, (2) SCF and NGF synergized in an H3-TdR incorporation assay, and (3) the stimulatory effect of 10x-concentrated MS-5 supernatant was completely inhibited by an anti-c-kit but not by an anti-NGF, and levels of soluble NGF (1.2 ng/mL) detected by enzyme-linked immunosorbent assay in 10x supernatant of MS-5 cells cultures were below the biologically active concentrations. In contrast, although MS-5 cells also promoted the differentiation of very primitive CD34+/CD38- human stem cells both in colony assays and long-term cultures, we could not incriminate MS-5-derived NGF in the observed effect: an anti-NGF MoAb did not inhibit the synergistic effect of MS-5 cells in colony assays or long-term cultures nor did soluble

  13. 50 Years in the sun of Bürgenstock--on the success factors of a famous conference.

    PubMed

    Müller, Klaus

    2015-04-20

    The secret of success: This year the famous "Bürgenstock Conference" will take place for the 50th time. This conference has become internationally one of the, if not the, most highly regarded conference in chemistry, chemical biology, and physical chemistry. What are the success factors of this conference? These as well as a number of perhaps more hidden figures and facts are discussed.

  14. Piloting Vertical Flight Aircraft: A Conference on Flying Qualities and Human Factors

    NASA Technical Reports Server (NTRS)

    Blanken, Christopher L. (Editor); Whalley, Matthew S. (Editor)

    1993-01-01

    This document contains papers from a specialists' meeting entitled 'Piloting Vertical Flight Aircraft: A Conference on Flying Qualities and Human Factors.' Vertical flight aircraft, including helicopters and a variety of Vertical Takeoff and Landing (VTOL) concepts, place unique requirements on human perception, control, and performance for the conduct of their design missions. The intent of this conference was to examine, for these vehicles, advances in: (1) design of flight control systems for ADS-33C standards; (2) assessment of human factors influences of cockpit displays and operational procedures; (3) development of VTOL design and operational criteria; and (4) development of theoretical methods or models for predicting pilot/vehicle performance and mission suitability. A secondary goal of the conference was to provide an initial venue for enhanced interaction between human factors and handling qualities specialists.

  15. Gastric stromal tumor.

    PubMed

    Ovali, Gülgün Yilmaz; Tarhan, Serdar; Serter, Selim; Pabuşçu, Yüksel

    2005-06-01

    Gastric stromal tumors are rare neoplasms of the stomach. In this report we present a gastric stromal tumor with an exophytic growth pattern, and describe magnetic resonance imaging and endoscopic ultrasonography findings.

  16. Growth Factor-Activated Stem Cell Circuits and Stromal Signals Cooperatively Accelerate Non-Integrated iPSC Reprogramming of Human Myeloid Progenitors

    PubMed Central

    Park, Tea Soon; Huo, Jeffrey S.; Peters, Ann; Talbot, C. Conover; Verma, Karan; Zimmerlin, Ludovic; Kaplan, Ian M.; Zambidis, Elias T.

    2012-01-01

    Nonviral conversion of skin or blood cells into clinically useful human induced pluripotent stem cells (hiPSC) occurs in only rare fractions (∼0.001%–0.5%) of donor cells transfected with non-integrating reprogramming factors. Pluripotency induction of developmentally immature stem-progenitors is generally more efficient than differentiated somatic cell targets. However, the nature of augmented progenitor reprogramming remains obscure, and its potential has not been fully explored for improving the extremely slow pace of non-integrated reprogramming. Here, we report highly optimized four-factor reprogramming of lineage-committed cord blood (CB) myeloid progenitors with bulk efficiencies of ∼50% in purified episome-expressing cells. Lineage-committed CD33+CD45+CD34− myeloid cells and not primitive hematopoietic stem-progenitors were the main targets of a rapid and nearly complete non-integrated reprogramming. The efficient conversion of mature myeloid populations into NANOG+TRA-1-81+ hiPSC was mediated by synergies between hematopoietic growth factor (GF), stromal activation signals, and episomal Yamanaka factor expression. Using a modular bioinformatics approach, we demonstrated that efficient myeloid reprogramming correlated not to increased proliferation or endogenous Core factor expressions, but to poised expression of GF-activated transcriptional circuits that commonly regulate plasticity in both hematopoietic progenitors and embryonic stem cells (ESC). Factor-driven conversion of myeloid progenitors to a high-fidelity pluripotent state was further accelerated by soluble and contact-dependent stromal signals that included an implied and unexpected role for Toll receptor-NFκB signaling. These data provide a paradigm for understanding the augmented reprogramming capacity of somatic progenitors, and reveal that efficient induced pluripotency in other cell types may also require extrinsic activation of a molecular framework that commonly regulates self

  17. Granulocyte-Colony-Stimulating Factor Stimulation of Bone Marrow Mesenchymal Stromal Cells Promotes CD34+ Cell Migration Via a Matrix Metalloproteinase-2-Dependent Mechanism

    PubMed Central

    Ponte, Adriana López; Ribeiro-Fleury, Tatiana; Chabot, Valérie; Gouilleux, Fabrice; Langonné, Alain; Hérault, Olivier; Charbord, Pierre

    2012-01-01

    Human hematopoietic stem/progenitor cells (HSPCs) can be mobilized into the circulation using granulocyte-colony stimulating factor (G-CSF), for graft collection in view of hematopoietic transplantation. This process has been related to bone marrow (BM) release of serine proteases and of the matrix metalloproteinase-9 (MMP-9). Yet, the role of these mediators in HSC egress from their niches remains questionable, because they are produced by nonstromal cells (mainly neutrophils and monocytes/macrophages) that are not a part of the niche. We show here that the G-CSF receptor (G-CSFR) is expressed by human BM mesenchymal stromal/stem cells (MSCs), and that G-CSF prestimulation of MSCs enhances the in vitro trans-stromal migration of CD34+ cells. Zymography analysis indicates that pro-MMP-2 (but not pro-MMP-9) is expressed in MSCs, and that G-CSF treatment increases its expression and induces its activation at the cell membrane. We further demonstrate that G-CSF-stimulated migration depends on G-CSFR expression and is mediated by a mechanism that involves MMPs. These results suggest a molecular model whereby G-CSF infusion may drive, by the direct action on MSCs, HSPC egress from BM niches via synthesis and activation of MMPs. In this model, MMP-2 instead of MMP-9 is implicated, which constitutes a major difference with mouse mobilization models. PMID:22651889

  18. Transforming growth factor-β synthesized by stromal cells and cancer cells participates in bone resorption induced by oral squamous cell carcinoma

    SciTech Connect

    Nakamura, Ryosuke; Kayamori, Kou; Oue, Erika; Sakamoto, Kei; Harada, Kiyoshi; Yamaguchi, Akira

    2015-03-20

    Transforming growth factor beta (TGF-β) plays a significant role in the regulation of the tumor microenvironment. To explore the role of TGF-β in oral cancer-induced bone destruction, we investigated the immunohistochemical localization of TGF-β and phosphorylated Smad2 (p-Smad2) in 12 surgical specimens of oral squamous cell carcinoma (OSCC). These studies revealed TGF-β and p-Smad2 expression in cancer cells in all tested cases. Several fibroblasts located between cancer nests and resorbing bone expressed TGF-β in 10 out of 12 cases and p-Smad2 in 11 out of 12 cases. Some osteoclasts also exhibited p ∼ Smad2 expression. The OSCC cell line, HSC3, and the bone marrow-derived fibroblastic cell line, ST2, synthesized substantial levels of TGF-β. Culture media derived from HSC3 cells could stimulate Tgf-β1 mRNA expression in ST2 cells. Recombinant TGF-β1 could stimulate osteoclast formation induced by receptor activator of nuclear factor kappa-B ligand (RANKL) in RAW264 cells. TGF-β1 could upregulate the expression of p-Smad2 in RAW264 cells, and this action was suppressed by the addition of a neutralizing antibody against TGF-β or by SB431542. Transplantation of HSC3 cells onto the calvarial region of athymic mice caused bone destruction, associated with the expression of TGF-β and p-Smad2 in both cancer cells and stromal cells. The bone destruction was substantially inhibited by the administration of SB431542. The present study demonstrated that TGF-β synthesized by both cancer cells and stromal cells participates in the OSCC-induced bone destruction. - Highlights: • Cancer cell, fibroblastic cells, and osteoclasts at bone resorbing area by oral cancer exhibited TGF-β and p-Smad2. • TGF-β1 stimulated osteoclastogenesis induced by RAKL in RAW264 cell. • Xenograft model of oral cancer-induced bone resorption was substantially inhibited by SB431542. • TGF-β synthesized by both cancer cells and stromal cells participates in the OSCC

  19. Implication of Tumor Microenvironment in Chemoresistance: Tumor-Associated Stromal Cells Protect Tumor Cells from Cell Death

    PubMed Central

    Castells, Magali; Thibault, Benoît; Delord, Jean-Pierre; Couderc, Bettina

    2012-01-01

    Tumor development principally occurs following the accumulation of genetic and epigenetic alterations in tumor cells. These changes pave the way for the transformation of chemosensitive cells to chemoresistant ones by influencing the uptake, metabolism, or export of drugs at the cellular level. Numerous reports have revealed the complexity of tumors and their microenvironment with tumor cells located within a heterogeneous population of stromal cells. These stromal cells (fibroblasts, endothelial or mesothelial cells, adipocytes or adipose tissue-derived stromal cells, immune cells and bone marrow-derived stem cells) could be involved in the chemoresistance that is acquired by tumor cells via several mechanisms: (i) cell–cell and cell–matrix interactions influencing the cancer cell sensitivity to apoptosis; (ii) local release of soluble factors promoting survival and tumor growth (crosstalk between stromal and tumor cells); (iii) direct cell-cell interactions with tumor cells (crosstalk or oncologic trogocytosis); (iv) generation of specific niches within the tumor microenvironment that facilitate the acquisition of drug resistance; or (v) conversion of the cancer cells to cancer-initiating cells or cancer stem cells. This review will focus on the implication of each member of the heterogeneous population of stromal cells in conferring resistance to cytotoxins and physiological mediators of cell death. PMID:22949815

  20. Sustained Release of Engineered Stromal Cell–Derived Factor 1-α From Injectable Hydrogels Effectively Recruits Endothelial Progenitor Cells and Preserves Ventricular Function After Myocardial Infarction

    PubMed Central

    MacArthur, John W.; Purcell, Brendan P.; Shudo, Yasuhiro; Cohen, Jeffrey E.; Fairman, Alex; Trubelja, Alen; Patel, Jay; Hsiao, Philip; Yang, Elaine; Lloyd, Kelsey; Hiesinger, William; Atluri, Pavan; Burdick, Jason A.; Woo, Y. Joseph

    2014-01-01

    Background Exogenously delivered chemokines have enabled neovasculogenic myocardial repair in models of ischemic cardiomyopathy; however, these molecules have short half-lives in vivo. In this study, we hypothesized that the sustained delivery of a synthetic analog of stromal cell–derived factor 1-α (engineered stromal cell–derived factor analog [ESA]) induces continuous homing of endothelial progenitor cells and improves left ventricular function in a rat model of myocardial infarction. Methods and Results Our previously designed ESA peptide was synthesized by the addition of a fluorophore tag for tracking. Hyaluronic acid was chemically modified with hydroxyethyl methacrylate to form hydrolytically degradable hydrogels through free-radical–initiated crosslinking. ESA was encapsulated in hyaluronic acid hydrogels during gel formation, and then ESA release, along with gel degradation, was monitored for more than 4 weeks in vitro. Chemotactic properties of the eluted ESA were assessed at multiple time points using rat endothelial progenitor cells in a transwell migration assay. Finally, adult male Wistar rats (n=33) underwent permanent ligation of the left anterior descending (LAD) coronary artery, and 100 μL of saline, hydrogel alone, or hydrogel+25 μg ESA was injected into the borderzone. ESA fluorescence was monitored in animals for more than 4 weeks, after which vasculogenic, geometric, and functional parameters were assessed to determine the therapeutic benefit of each treatment group. ESA release was sustained for 4 weeks in vitro, remained active, and enhanced endothelial progenitor cell chemotaxis. In addition, ESA was detected in the rat heart >3 weeks when delivered within the hydrogels and significantly improved vascularity, ventricular geometry, ejection fraction, cardiac output, and contractility compared with controls. Conclusions We have developed a hydrogel delivery system that sustains the release of a bioactive endothelial progenitor cell

  1. Platelet-Derived Growth Factor BB Enhances Osteogenesis of Adipose-Derived But Not Bone Marrow-Derived Mesenchymal Stromal/Stem Cells.

    PubMed

    Hung, Ben P; Hutton, Daphne L; Kozielski, Kristen L; Bishop, Corey J; Naved, Bilal; Green, Jordan J; Caplan, Arnold I; Gimble, Jeffrey M; Dorafshar, Amir H; Grayson, Warren L

    2015-09-01

    Tissue engineering using mesenchymal stem cells (MSCs) holds great promise for regenerating critically sized bone defects. While the bone marrow-derived MSC is the most widely studied stromal/stem cell type for this application, its rarity within bone marrow and painful isolation procedure have motivated investigation of alternative cell sources. Adipose-derived stromal/stem cells (ASCs) are more abundant and more easily procured; furthermore, they also possess robust osteogenic potency. While these two cell types are widely considered very similar, there is a growing appreciation of possible innate differences in their biology and response to growth factors. In particular, reports indicate that their osteogenic response to platelet-derived growth factor BB (PDGF-BB) is markedly different: MSCs responded negatively or not at all to PDGF-BB while ASCs exhibited enhanced mineralization in response to physiological concentrations of PDGF-BB. In this study, we directly tested whether a fundamental difference existed between the osteogenic responses of MSCs and ASCs to PDGF-BB. MSCs and ASCs cultured under identical osteogenic conditions responded disparately to 20 ng/ml of PDGF-BB: MSCs exhibited no difference in mineralization while ASCs produced more calcium per cell. siRNA-mediated knockdown of PDGFRβ within ASCs abolished their ability to respond to PDGF-BB. Gene expression was also different; MSCs generally downregulated and ASCs generally upregulated osteogenic genes in response to PDGF-BB. ASCs transduced to produce PDGF-BB resulted in more regenerated bone within a critically sized murine calvarial defect compared to control ASCs, indicating PDGF-BB used specifically in conjunction with ASCs might enhance tissue engineering approaches for bone regeneration.

  2. Transforming growth factor-β synthesized by stromal cells and cancer cells participates in bone resorption induced by oral squamous cell carcinoma.

    PubMed

    Nakamura, Ryosuke; Kayamori, Kou; Oue, Erika; Sakamoto, Kei; Harada, Kiyoshi; Yamaguchi, Akira

    2015-03-20

    Transforming growth factor beta (TGF-β) plays a significant role in the regulation of the tumor microenvironment. To explore the role of TGF-β in oral cancer-induced bone destruction, we investigated the immunohistochemical localization of TGF-β and phosphorylated Smad2 (p-Smad2) in 12 surgical specimens of oral squamous cell carcinoma (OSCC). These studies revealed TGF-β and p-Smad2 expression in cancer cells in all tested cases. Several fibroblasts located between cancer nests and resorbing bone expressed TGF-β in 10 out of 12 cases and p-Smad2 in 11 out of 12 cases. Some osteoclasts also exhibited p ∼ Smad2 expression. The OSCC cell line, HSC3, and the bone marrow-derived fibroblastic cell line, ST2, synthesized substantial levels of TGF-β. Culture media derived from HSC3 cells could stimulate Tgf-β1 mRNA expression in ST2 cells. Recombinant TGF-β1 could stimulate osteoclast formation induced by receptor activator of nuclear factor kappa-B ligand (RANKL) in RAW264 cells. TGF-β1 could upregulate the expression of p-Smad2 in RAW264 cells, and this action was suppressed by the addition of a neutralizing antibody against TGF-β or by SB431542. Transplantation of HSC3 cells onto the calvarial region of athymic mice caused bone destruction, associated with the expression of TGF-β and p-Smad2 in both cancer cells and stromal cells. The bone destruction was substantially inhibited by the administration of SB431542. The present study demonstrated that TGF-β synthesized by both cancer cells and stromal cells participates in the OSCC-induced bone destruction.

  3. The effect of growth factor supplementation on corneal stromal cell phenotype in vitro using a serum-free media.

    PubMed

    Lynch, Amy P; O'Sullivan, Finbarr; Ahearne, Mark

    2016-10-01

    In order to expand cells quickly and in high numbers for corneal tissue engineering applications corneal stromal cells, or keratocytes, are often cultured in the presence of serum. However, keratocytes become fibroblastic when exposed to serum leading to a downregulation of corneal stromal specific markers. The purpose of this current study was to determine if corneal stromal cells, made fibroblastic by serum, could display native quiescent keratocyte characteristics when cultured under serum-free conditions supplemented by different growth factors. Markers specific to a native keratocyte phenotype such as keratocan and aldehyde dehydrogenase 3A1 (ALDH3A1) and those specific to a fibrotic phenotype such as α-smooth muscle actin (αSMA) and collagen type III were examined. Cells were cultured in monolayer, self-assembled pellets or collagen hydrogels. Growth factors known to modulate keratocyte phenotype were chosen to supplement the serum free media, specifically insulin-like growth factor 1 (IGF-1) and transforming growth factor beta 1 and 3 (Tβ1 and Tβ3). The effects of serum-free media, growth factors and culture system on cell proliferation and morphology and extracellular matrix (ECM) synthesis were evaluated. The expression of keratocyte markers was evaluated by real-time PCR, immunofluorescent staining and western blotting. In addition, cell migration was tested using scratch assays. When serum was removed from the cells they displayed a reduction in proliferation and ECM synthesis (not significant), in addition to a significant decrease in migratory capacity (p < 0.05). Serum-free media promoted increased expression of keratocan (130.68 ± 47.44-fold increase; p < 0.05) and collagen type I (15.58 ± 9.49-fold increase; p < 0.05). However, there was no significant change in ALDH3A1 and αSMA expression, while collagen type III expression was significantly increased (44.66 ± 25.61-fold increase; p < 0.05). In addition, cells retained an

  4. Dexamethasone Regulates EphA5, a Potential Inhibitory Factor with Osteogenic Capability of Human Bone Marrow Stromal Cells

    PubMed Central

    Yamada, Tsuyoshi; Yoshii, Toshitaka; Yasuda, Hiroaki; Okawa, Atsushi; Sotome, Shinichi

    2016-01-01

    We previously demonstrated the importance of quality management procedures for the handling of human bone marrow stromal cells (hBMSCs) and provided evidence for the existence of osteogenic inhibitor molecules in BMSCs. One candidate inhibitor is the ephrin type-A receptor 5 (EphA5), which is expressed in hBMSCs and upregulated during long-term culture. In this study, forced expression of EphA5 diminished the expression of osteoblast phenotypic markers. Downregulation of endogenous EphA5 by dexamethasone treatment promoted osteoblast marker expression. EphA5 could be involved in the normal growth regulation of BMSCs and could be a potential marker for replicative senescence. Although Eph forward signaling stimulated by ephrin-B-Fc promoted the expression of ALP mRNA in BMSCs, exogenous addition of EphA5-Fc did not affect the ALP level. The mechanism underlying the silencing of EphA5 in early cultures remains unclear. EphA5 promoter was barely methylated in hBMSCs while histone deacetylation could partially suppress EphA5 expression in early-passage cultures. In repeatedly passaged cultures, the upregulation of EphA5 independent of methylation could competitively inhibit osteogenic signal transduction pathways such as EphB forward signaling. Elucidation of the potential inhibitory function of EphA5 in hBMSCs may provide an alternative approach for lineage differentiation in cell therapy strategies and regenerative medicine. PMID:27057165

  5. Influence of Factors of Cryopreservation and Hypothermic Storage on Survival and Functional Parameters of Multipotent Stromal Cells of Placental Origin

    PubMed Central

    Pogozhykh, Olena; Mueller, Thomas; Prokopyuk, Olga

    2015-01-01

    Human placenta is a highly perspective source of multipotent stromal cells (MSCs) both for the purposes of patient specific auto-banking and allogeneic application in regenerative medicine. Implementation of new GMP standards into clinical practice enforces the search for relevant methods of cryopreservation and short-term hypothermic storage of placental MSCs. In this paper we analyze the effect of different temperature regimes and individual components of cryoprotective media on viability, metabolic and culture properties of placental MSCs. We demonstrate (I) the possibility of short-term hypothermic storage of these cells; (II) determine DMSO and propanediol as the most appropriate cryoprotective agents; (III) show the possibility of application of volume expanders (plasma substituting solutions based on dextran or polyvinylpyrrolidone); (IV) reveal the priority of ionic composition over the serum content in cryopreservation media; (V) determine a cooling rate of 1°C/min down to -40°C followed by immersion into liquid nitrogen as the optimal cryopreservation regime for this type of cells. This study demonstrates perspectives for creation of new defined cryopreservation methods towards GMP standards. PMID:26431528

  6. Stromal Effects on Mammary Gland Development and Breast Cancer

    NASA Astrophysics Data System (ADS)

    Wiseman, Bryony S.; Werb, Zena

    2002-05-01

    Breast cancer manifests itself in the mammary epithelium, yet there is a growing recognition that mammary stromal cells also play an important role in tumorigenesis. During its developmental cycle, the mammary gland displays many of the properties associated with breast cancer, and many of the stromal factors necessary for mammary development also promote or protect against breast cancer. Here we review our present knowledge of the specific factors and cell types that contribute to epithelial-stromal crosstalk during mammary development. To find cures for diseases like breast cancer that rely on epithelial-stromal crosstalk, we must understand how these different cell types communicate with each other.

  7. The role of environmental factors in medically unexplained symptoms and related syndromes: conference summary and recommendations.

    PubMed Central

    Kipen, Howard M; Fiedler, Nancy

    2002-01-01

    This monograph of peer-reviewed articles is based on presentations at the conference "Environmental Factors in Medically Unexplained Physical Symptoms and Related Syndromes" held 10-12 January 2001 in Piscataway, New Jersey, USA. The purpose of the conference was to determine research priorities for elucidating the role of environmental factors in medically unexplained symptoms and symptom syndromes. These include conditions such as chronic fatigue syndrome, multiple chemical sensitivities, sick building syndrome, Gulf War illness, and the like. Approximately 1 1/2 days were devoted to plenary talks and 1 day was devoted to break-out sessions to discuss epidemiologic, psychosocial, and experimental research. Recommendations were made for a series of epidemiologic, psychosocial, and experimental research approaches, with acknowledgment that nosology issues are clearly fundamental to advancing understanding of these conditions. PMID:12194891

  8. Constitutive stabilization of hypoxia-inducible factor alpha selectively promotes the self-renewal of mesenchymal progenitors and maintains mesenchymal stromal cells in an undifferentiated state.

    PubMed

    Park, In-Ho; Kim, Kwang-Ho; Choi, Hyun-Kyung; Shim, Jae-Seung; Whang, Soo-Young; Hahn, Sang June; Kwon, Oh-Joo; Oh, Il-Hoan

    2013-09-27

    With the increasing use of culture-expanded mesenchymal stromal cells (MSCs) for cell therapies, factors that regulate the cellular characteristics of MSCs have been of major interest. Oxygen concentration has been shown to influence the functions of MSCs, as well as other normal and malignant stem cells. However, the underlying mechanisms of hypoxic responses and the precise role of hypoxia-inducible factor-1α (Hif-1α), the master regulatory protein of hypoxia, in MSCs remain unclear, due to the limited span of Hif-1α stabilization and the complex network of hypoxic responses. In this study, to further define the significance of Hif-1α in MSC function during their self-renewal and terminal differentiation, we established adult bone marrow (BM)-derived MSCs that are able to sustain high level expression of ubiquitin-resistant Hif-1α during such long-term biological processes. Using this model, we show that the stabilization of Hif-1α proteins exerts a selective influence on colony-forming mesenchymal progenitors promoting their self-renewal and proliferation, without affecting the proliferation of the MSC mass population. Moreover, Hif-1α stabilization in MSCs led to the induction of pluripotent genes (oct-4 and klf-4) and the inhibition of their terminal differentiation into osteogenic and adipogenic lineages. These results provide insights into the previously unrecognized roles of Hif-1α proteins in maintaining the primitive state of primary MSCs and on the cellular heterogeneities in hypoxic responses among MSC populations.

  9. Identification of two distinct subsets of long-term nonprogressors with divergent viral activity by stromal-derived factor 1 chemokine gene polymorphism analysis.

    PubMed

    Balotta, C; Bagnarelli, P; Corvasce, S; Mazzucchelli, R; Colombo, M C; Papagno, L; Santambrogio, S; Ridolfo, A L; Violin, M; Berlusconi, A; Velleca, R; Facchi, G; Moroni, M; Clementi, M; Galli, M

    1999-08-01

    Stromal-derived factor (SDF)-1, the natural ligand for CXCR4, is present in a common polymorphic variant defined by a G-->A transition in the 3' untranslated region of the gene. In persons infected with human immunodeficiency virus type 1 (HIV-1), the homozygous genotype (SDF1-3'A/3'A) has been postulated to interfere with the appearance of T-tropic syncytium-inducing strains. The polymorphism of SDF1 was correlated with HIV-1 phenotype, plasma viremia, and unspliced and multiply spliced specific transcripts in 158 virologically characterized HIV-1-infected patients (39 recent seroconverters, 75 typical progressors, and 44 AIDS patients) and in 42 HIV-1-infected long-term nonprogressors (LTNPs). Analysis of SDF1 allele distribution revealed that SDF1-3'A/3'A status is associated with low CD4 cell count (P=.0449) but not with a specific HIV-1 phenotype. In LTNPs, SDF1-+/+ condition defined a subset of persons with lower HIV-1 replication than in heterozygous subjects. The low viral activity in SDF1-+/+ LTNPs suggests that other factors play a major role in vivo in determining the course of HIV-1 infection.

  10. Lim Mineralization Protein 3 Induces the Osteogenic Differentiation of Human Amniotic Fluid Stromal Cells through Kruppel-Like Factor-4 Downregulation and Further Bone-Specific Gene Expression

    PubMed Central

    Barba, Marta; Pirozzi, Filomena; Saulnier, Nathalie; Vitali, Tiziana; Natale, Maria Teresa; Logroscino, Giandomenico; Robbins, Paul D.; Gambotto, Andrea; Neri, Giovanni; Michetti, Fabrizio; Pola, Enrico; Lattanzi, Wanda

    2012-01-01

    Multipotent mesenchymal stem cells with extensive self-renewal properties can be easily isolated and rapidly expanded in culture from small volumes of amniotic fluid. These cells, namely, amniotic fluid-stromal cells (AFSCs), can be regarded as an attractive source for tissue engineering purposes, being phenotypically and genetically stable, plus overcoming all the safety and ethical issues related to the use of embryonic/fetal cells. LMP3 is a novel osteoinductive molecule acting upstream to the main osteogenic pathways. This study is aimed at delineating the basic molecular events underlying LMP3-induced osteogenesis, using AFSCs as a cellular model to focus on the molecular features underlying the multipotency/differentiation switch. For this purpose, AFSCs were isolated and characterized in vitro and transfected with a defective adenoviral vector expressing the human LMP3. LMP3 induced the successful osteogenic differentiation of AFSC by inducing the expression of osteogenic markers and osteospecific transcription factors. Moreover, LMP3 induced an early repression of the kruppel-like factor-4, implicated in MSC stemness maintenance. KLF4 repression was released upon LMP3 silencing, indicating that this event could be reasonably considered among the basic molecular events that govern the proliferation/differentiation switch during LMP3-induced osteogenic differentiation of AFSC. PMID:23097599

  11. Human umbilical cord perivascular cells exhibited enhanced migration capacity towards hepatocellular carcinoma in comparison with bone marrow mesenchymal stromal cells: a role for autocrine motility factor receptor.

    PubMed

    Bayo, Juan; Fiore, Esteban; Aquino, Jorge B; Malvicini, Mariana; Rizzo, Manglio; Peixoto, Estanislao; Alaniz, Laura; Piccioni, Flavia; Bolontrade, Marcela; Podhajcer, Osvaldo; Garcia, Mariana G; Mazzolini, Guillermo

    2014-01-01

    Hepatocellular carcinoma (HCC) is the third cause of cancer-related death worldwide. Unfortunately, the incidence and mortality associated with HCC are increasing. Therefore, new therapeutic strategies are urgently needed and the use of mesenchymal stromal cells (MSCs) as carrier of therapeutic genes is emerging as a promising option. Different sources of MSCs are being studied for cell therapy and bone marrow-derived cells are the most extensively explored; however, birth associated-tissues represent a very promising source. The aim of this work was to compare the in vitro and in vivo migration capacity between bone marrow MSCs (BM-MSCs) and human umbilical cord perivascular cells (HUCPVCs) towards HCC. We observed that HUCPVCs presented higher in vitro and in vivo migration towards factors released by HCC. The expression of autocrine motility factor (AMF) receptor, genes related with the availability of the receptor on the cell surface (caveolin-1 and -2) and metalloproteinase 3, induced by the receptor activation and important for cell migration, was increased in HUCPVCs. The chemotactic response towards recombinant AMF was increased in HUCPVCs compared to BM-MSCs, and its inhibition in the conditioned medium from HCC induced higher decrease in HUCPVC migration than in BM-MSC. Our results indicate that HUCPVCs could be a useful cellular source to deliver therapeutic genes to HCC.

  12. Human Umbilical Cord Perivascular Cells Exhibited Enhanced Migration Capacity towards Hepatocellular Carcinoma in Comparison with Bone Marrow Mesenchymal Stromal Cells: A Role for Autocrine Motility Factor Receptor

    PubMed Central

    Aquino, Jorge B.; Malvicini, Mariana; Bolontrade, Marcela; Podhajcer, Osvaldo; Garcia, Mariana G.; Mazzolini, Guillermo

    2014-01-01

    Hepatocellular carcinoma (HCC) is the third cause of cancer-related death worldwide. Unfortunately, the incidence and mortality associated with HCC are increasing. Therefore, new therapeutic strategies are urgently needed and the use of mesenchymal stromal cells (MSCs) as carrier of therapeutic genes is emerging as a promising option. Different sources of MSCs are being studied for cell therapy and bone marrow-derived cells are the most extensively explored; however, birth associated-tissues represent a very promising source. The aim of this work was to compare the in vitro and in vivo migration capacity between bone marrow MSCs (BM-MSCs) and human umbilical cord perivascular cells (HUCPVCs) towards HCC. We observed that HUCPVCs presented higher in vitro and in vivo migration towards factors released by HCC. The expression of autocrine motility factor (AMF) receptor, genes related with the availability of the receptor on the cell surface (caveolin-1 and -2) and metalloproteinase 3, induced by the receptor activation and important for cell migration, was increased in HUCPVCs. The chemotactic response towards recombinant AMF was increased in HUCPVCs compared to BM-MSCs, and its inhibition in the conditioned medium from HCC induced higher decrease in HUCPVC migration than in BM-MSC. Our results indicate that HUCPVCs could be a useful cellular source to deliver therapeutic genes to HCC. PMID:25147818

  13. Stretching human mesenchymal stromal cells on stiffness-customized collagen type I generates a smooth muscle marker profile without growth factor addition

    NASA Astrophysics Data System (ADS)

    Rothdiener, Miriam; Hegemann, Miriam; Uynuk-Ool, Tatiana; Walters, Brandan; Papugy, Piruntha; Nguyen, Phong; Claus, Valentin; Seeger, Tanja; Stoeckle, Ulrich; Boehme, Karen A.; Aicher, Wilhelm K.; Stegemann, Jan P.; Hart, Melanie L.; Kurz, Bodo; Klein, Gerd; Rolauffs, Bernd

    2016-10-01

    Using matrix elasticity and cyclic stretch have been investigated for inducing mesenchymal stromal cell (MSC) differentiation towards the smooth muscle cell (SMC) lineage but not in combination. We hypothesized that combining lineage-specific stiffness with cyclic stretch would result in a significantly increased expression of SMC markers, compared to non-stretched controls. First, we generated dense collagen type I sheets by mechanically compressing collagen hydrogels. Atomic force microscopy revealed a nanoscale stiffness range known to support myogenic differentiation. Further characterization revealed viscoelasticity and stable biomechanical properties under cyclic stretch with >99% viable adherent human MSC. MSCs on collagen sheets demonstrated a significantly increased mRNA but not protein expression of SMC markers, compared to on culture flasks. However, cyclic stretch of MSCs on collagen sheets significantly increased both mRNA and protein expression of α-smooth muscle actin, transgelin, and calponin versus plastic and non-stretched sheets. Thus, lineage-specific stiffness and cyclic stretch can be applied together for inducing MSC differentiation towards SMCs without the addition of recombinant growth factors or other soluble factors. This represents a novel stimulation method for modulating the phenotype of MSCs towards SMCs that could easily be incorporated into currently available methodologies to obtain a more targeted control of MSC phenotype.

  14. Intra-articular injection of human meniscus stem/progenitor cells promotes meniscus regeneration and ameliorates osteoarthritis through stromal cell-derived factor-1/CXCR4-mediated homing.

    PubMed

    Shen, Weiliang; Chen, Jialin; Zhu, Ting; Chen, Longkun; Zhang, Wei; Fang, Zhi; Heng, Boon Chin; Yin, Zi; Chen, Xiao; Ji, Junfeng; Chen, Weishan; Ouyang, Hong-Wei

    2014-03-01

    Meniscus injury is frequently encountered in clinical practice. Current surgical therapy involving partial or complete meniscectomy relieves pain in the short-term but often leads to osteoarthritis (OA) in the long-term. In this study, we report a new strategy of articular cartilage protection by intra-articular injection of novel human meniscus stem/progenitor cells (hMeSPCs). We found that hMeSPCs displayed both mesenchymal stem cell characteristics and high expression levels of collagen II. In the rat meniscus injury model, hMeSPC transplantation not only led to more neo-tissue formation and better-defined shape but also resulted in more rounded cells and matured extracellular matrix. Stromal cell-derived factor-1 (SDF-1) enhanced the migration of hMeSPCs, whereas AMD3100 abolished the chemotactic effects of SDF-1 on hMeSPCs, both in vitro and in vivo. In an experimental OA model, transplantation of hMeSPCs effectively protected articular cartilage, as evidenced by reduced expression of OA markers such as collagen I, collagen X, and hypoxia-inducible factor 2α but increased expression of collagen II. Our study demonstrated for the first time that intra-articular injection of hMeSPCs enhanced meniscus regeneration through the SDF-1/CXCR4 axis. Our study highlights a new strategy of intra-articular injection of hMeSPCs for meniscus regeneration.

  15. Cyclooxygenase-2 or tumor necrosis factor-α inhibitors attenuate the mechanotransductive effects of pulsed focused ultrasound to suppress mesenchymal stromal cell homing to healthy and dystrophic muscle.

    PubMed

    Tebebi, Pamela A; Burks, Scott R; Kim, Saejeong J; Williams, Rashida A; Nguyen, Ben A; Venkatesh, Priyanka; Frenkel, Victor; Frank, Joseph A

    2015-04-01

    Maximal homing of infused stem cells to diseased tissue is critical for regenerative medicine. Pulsed focused ultrasound (pFUS) is a clinically relevant platform to direct stem cell migration. Through mechanotransduction, pFUS establishes local gradients of cytokines, chemokines, trophic factors (CCTF) and cell adhesion molecules (CAM) in treated skeletal muscle that subsequently infused mesenchymal stromal cells (MSC) can capitalize to migrate into the parenchyma. Characterizing molecular responses to mechanical pFUS effects revealed tumor necrosis factor-alpha (TNFα) drives cyclooxygenase-2 (COX2) signaling to locally increase CCTF/CAM that are necessary for MSC homing. pFUS failed to increase chemoattractants and induce MSC homing to treated muscle in mice pretreated with ibuprofen (nonspecific COX inhibitor) or etanercept (TNFα inhibitor). pFUS-induced MSC homing was also suppressed in COX2-knockout mice, demonstrating ibuprofen blocked the mechanically induced CCTF/CAM by acting on COX2. Anti-inflammatory drugs, including ibuprofen, are administered to muscular dystrophy (MD) patients, and ibuprofen also suppressed pFUS-induced homing to muscle in a mouse model of MD. Drug interactions with cell therapies remain unexplored and are not controlled for during clinical cell therapy trials. This study highlights potentially negative drug-host interactions that suppress stem cell homing and could undermine cell-based approaches for regenerative medicine.

  16. Stretching human mesenchymal stromal cells on stiffness-customized collagen type I generates a smooth muscle marker profile without growth factor addition

    PubMed Central

    Rothdiener, Miriam; Hegemann, Miriam; Uynuk-Ool, Tatiana; Walters, Brandan; Papugy, Piruntha; Nguyen, Phong; Claus, Valentin; Seeger, Tanja; Stoeckle, Ulrich; Boehme, Karen A.; Aicher, Wilhelm K.; Stegemann, Jan P.; Hart, Melanie L.; Kurz, Bodo; Klein, Gerd; Rolauffs, Bernd

    2016-01-01

    Using matrix elasticity and cyclic stretch have been investigated for inducing mesenchymal stromal cell (MSC) differentiation towards the smooth muscle cell (SMC) lineage but not in combination. We hypothesized that combining lineage-specific stiffness with cyclic stretch would result in a significantly increased expression of SMC markers, compared to non-stretched controls. First, we generated dense collagen type I sheets by mechanically compressing collagen hydrogels. Atomic force microscopy revealed a nanoscale stiffness range known to support myogenic differentiation. Further characterization revealed viscoelasticity and stable biomechanical properties under cyclic stretch with >99% viable adherent human MSC. MSCs on collagen sheets demonstrated a significantly increased mRNA but not protein expression of SMC markers, compared to on culture flasks. However, cyclic stretch of MSCs on collagen sheets significantly increased both mRNA and protein expression of α-smooth muscle actin, transgelin, and calponin versus plastic and non-stretched sheets. Thus, lineage-specific stiffness and cyclic stretch can be applied together for inducing MSC differentiation towards SMCs without the addition of recombinant growth factors or other soluble factors. This represents a novel stimulation method for modulating the phenotype of MSCs towards SMCs that could easily be incorporated into currently available methodologies to obtain a more targeted control of MSC phenotype. PMID:27775041

  17. Effects of transforming growth factor beta1 released from biodegradable polymer microparticles on marrow stromal osteoblasts cultured on poly(propylene fumarate) substrates.

    PubMed

    Peter, S J; Lu, L; Kim, D J; Stamatas, G N; Miller, M J; Yaszemski, M J; Mikos, A G

    2000-06-05

    Recombinant human transforming growth factor beta1 (TGF-beta1) was incorporated into microparticles of blends of poly(DL-lactic-co-glycolic acid) (PLGA) and poly(ethylene glycol) (PEG) to create a delivery vehicle for the growth factor. The entrapment efficiency of TGF-beta1 in the microparticles containing 5% PEG was 40.3 +/- 1.2% for a TGF-beta1 loading density of 6.0 ng/1 mg of microparticles. For the same loading, 17.9 +/- 0.6 and 32.1 +/- 2.5% of the loaded TGF-beta1 was released after 1 and 8 days, respectively, followed by a plateau for the remaining 3 weeks. Rat marrow stromal cells showed a dose response to TGF-beta1 released from the microparticles similar to that of added TGF-beta1, indicating the activity of TGF-beta1 was retained during microparticle fabrication and after TGF-beta1 release. An optimal TGF-beta1 dosage of 1.0 ng/mL was determined through a 3-day dose response study for maximal alkaline phosphatase (ALP) activity. The TGF-beta1 released from the microparticles loaded with 6.0 ng TGF-beta1/1 mg of microparticles for the optimal dosage of TGF-beta1 enhanced the proliferation and osteoblastic differentiation of marrow stromal cells cultured on poly(propylene fumarate) substrates. The cells showed significantly increased total cell number, ALP activity, and osteocalcin production with values reaching 138,700 +/- 3300 cells/cm(2), 22.8 +/- 1.5 x 10(-7) micromol/min/cell, and 15.9 +/- 1.5 x 10(-6) ng/cell, respectively, after 21 days as compared to cells cultured under control conditions without TGF-beta1. These results suggest that controlled release of TGF-beta1 from the PLGA/PEG blend microparticles may find applications in modulating cellular response during bone healing at a skeletal defect site.

  18. Self-renewal and pluripotency is maintained in human embryonic stem cells by co-culture with human fetal liver stromal cells expressing hypoxia inducible factor 1alpha.

    PubMed

    Ji, Lei; Liu, Yu-xiao; Yang, Chao; Yue, Wen; Shi, Shuang-shuang; Bai, Ci-xian; Xi, Jia-fei; Nan, Xue; Pei, Xue-Tao

    2009-10-01

    Human embryonic stem (hES) cells are typically maintained on mouse embryonic fibroblast (MEF) feeders or with MEF-conditioned medium. However, these xenosupport systems greatly limit the therapeutic applications of hES cells because of the risk of cross-transfer of animal pathogens. The stem cell niche is a unique tissue microenvironment that regulates the self-renewal and differentiation of stem cells. Recent evidence suggests that stem cells are localized in the microenvironment of low oxygen. We hypothesized that hypoxia could maintain the undifferentiated phenotype of embryonic stem cells. We have co-cultured a human embryonic cell line with human fetal liver stromal cells (hFLSCs) feeder cells stably expressing hypoxia-inducible factor-1 alpha (HIF-1alpha), which is known as the key transcription factor in hypoxia. The results suggested HIF-1alpha was critical for preventing differentiation of hES cells in culture. Consistent with this observation, hypoxia upregulated the expression of Nanog and Oct-4, the key factors expressed in undifferentiated stem cells. We further demonstrated that HIF-1alpha could upregulate the expression of some soluble factors including bFGF and SDF-1alpha, which are released into the microenvironment to maintain the undifferentiated status of hES cells. This suggests that the targets of HIF-1alpha are secreted soluble factors rather than a cell-cell contact mechanism, and defines an important mechanism for the inhibition of hESCs differentiation by hypoxia. Our findings developed a transgene feeder co-culture system and will provide a more reliable alternative for future therapeutic applications of hES cells.

  19. Enhancement of osteoblastic differentiation of mesenchymal stromal cells cultured by selective combination of bone morphogenetic protein-2 (BMP-2) and fibroblast growth factor-2 (FGF-2).

    PubMed

    Maegawa, Naoki; Kawamura, Kenji; Hirose, Motohiro; Yajima, Hiroshi; Takakura, Yoshinori; Ohgushi, Hajime

    2007-01-01

    It is well known that bone marrow contains mesenchymal stromal cells (MSCs), which can show osteoblastic differentiation when cultured in osteogenic medium containing ascorbic acid, beta-glycerophosphate and dexamethasone. The differentiation results in the appearance of osteoblasts, together with the formation of bone matrix; thus, in vitro cultured bone (osteoblasts/bone matrix) could be fabricated by MSC culture. This type of cultured bone has already been used in clinical cases involving orthopaedic problems. To improve the therapeutic effect of the cultured bone, we investigated the culture conditions that contributed to extensive osteoblastic differentiation. Rat bone marrow was primarily cultured to expand the number of MSCs and further cultured in osteogenic medium for 12 days. The culture was also conducted in a medium supplemented with either bone morphogenetic protein-2 (BMP-2) or fibroblast growth factor (FGF-2), or with sequential combinations of both supplements. Among them, the sequential supplementation of FGF-2 followed by BMP-2 showed high alkaline phosphatase activity, sufficient bone-specific osteocalcein expression and abundant bone matrix formation of the MSC culture. These data implied that the number of responding cells or immature osteoblasts was increased by the supplementation of FGF-2 in the early phase of the culture and that these cells can show osteoblastic differentiation, of which capability was augmented by BMP-2 in the late phase. The sequential supplementation of these cytokines into MSC culture might be suitable for the fabrication of ideal cultured bone for use in bone tissue engineering.

  20. Connective Tissue Growth Factor in Regulation of RhoA Mediated Cytoskeletal Tension Associated Osteogenesis of Mouse Adipose-Derived Stromal Cells

    PubMed Central

    Xu, Yue; Wagner, Diane R.; Bekerman, Elena; Chiou, Michael; James, Aaron W.; Carter, Dennis; Longaker, Michael T.

    2010-01-01

    Background Cytoskeletal tension is an intracellular mechanism through which cells convert a mechanical signal into a biochemical response, including production of cytokines and activation of various signaling pathways. Methods/Principal Findings Adipose-derived stromal cells (ASCs) were allowed to spread into large cells by seeding them at a low-density (1,250 cells/cm2), which was observed to induce osteogenesis. Conversely, ASCs seeded at a high-density (25,000 cells/cm2) featured small cells that promoted adipogenesis. RhoA and actin filaments were altered by changes in cell size. Blocking actin polymerization by Cytochalasin D influenced cytoskeletal tension and differentiation of ASCs. To understand the potential regulatory mechanisms leading to actin cytoskeletal tension, cDNA microarray was performed on large and small ASCs. Connective tissue growth factor (CTGF) was identified as a major regulator of osteogenesis associated with RhoA mediated cytoskeletal tension. Subsequently, knock-down of CTGF by siRNA in ASCs inhibited this osteogenesis. Conclusions/Significance We conclude that CTGF is important in the regulation of cytoskeletal tension mediated ASC osteogenic differentiation. PMID:20585662

  1. In vitro formation of neuroclusters in microfluidic devices and cell migration as a function of stromal-derived growth factor 1 gradients.

    PubMed

    McCutcheon, Sean; Unachukwu, Uchenna; Thakur, Ankush; Majeska, Robert; Redenti, Stephen; Vazquez, Maribel

    2017-01-02

    Central nervous system (CNS) cells cultured in vitro as neuroclusters are useful models of tissue regeneration and disease progression. However, the role of cluster formation and collective migration of these neuroclusters to external stimuli has been largely unstudied in vitro. Here, 3 distinct CNS cell types, medulloblastoma (MB), medulloblastoma-derived glial progenitor cells (MGPC), and retinal progenitor cells (RPC), were examined with respect to cluster formation and migration in response to Stromal-Derived Growth Factor (SDF-1). A microfluidic platform was used to distinguish collective migration of neuroclusters from that of individual cells in response to controlled concentration profiles of SDF-1. Cell lines were also compared with respect to expression of CXCR4, the receptor for SDF-1, and the gap junction protein Connexin 43 (Cx43). All cell types spontaneously formed clusters and expressed both CXCR4 and Cx43. RPC clusters exhibited collective chemotactic migration (i.e. movement as clusters) along SDF-1 concentration gradients. MGPCs clusters did not exhibit adhesion-based migration, and migration of MB clusters was inconsistent. This study demonstrates how controlled microenvironments can be used to examine the formation and collective migration of CNS-derived neuroclusters in varied cell populations.

  2. Stromal cell-derived factor 1 (SDF-1) and its receptor CXCR4 in the formation of postburn hypertrophic scar (HTS).

    PubMed

    Ding, Jie; Hori, Keijiro; Zhang, Rainny; Marcoux, Yvonne; Honardoust, Dariush; Shankowsky, Heather A; Tredget, Edward E

    2011-01-01

    Recent data support the involvement of stromal cell-derived factor 1 (SDF-1) in the homing of bone marrow-derived stem cells to wound sites during skeletal, myocardial, vascular, lung, and skin wound repair as well as some fibrotic disorders via its receptor CXCR4. In this study, the role of SDF-1/CXCR4 signaling in the formation of hypertrophic scar (HTS) following burn injury and after treatment with systemic interferon α2b (IFNα2b) is investigated. Studies show SDF-1/CXCR4 signaling was up-regulated in burn patients, including SDF-1 level in HTS tissue and serum as well as CD14+ CXCR4+ cells in the peripheral blood mononuclear cells. In vitro, dermal fibroblasts constitutively expressed SDF-1 and deep dermal fibroblasts expressed more SDF-1 than superficial fibroblasts. Lipopolysaccharide increased SDF-1 gene expression in fibroblasts. Also, recombinant SDF-1 and lipopolysaccharide stimulated fibroblast-conditioned medium up-regulated peripheral blood mononuclear cell mobility. In the burn patients with HTS who received subcutaneous IFNα2b treatment, increased SDF-1/CXCR4 signaling was found prior to treatment which was down-regulated after IFNα2b administration, coincident with enhanced remodeling of their HTS. Our results suggest that SDF-1/CXCR4 signaling is involved in the development of HTS by promoting migration of activated CD14+ CXCR4+ cells from the bloodstream to wound sites, where they may differentiate into fibrocyte and myofibroblasts and contribute to the development of HTS.

  3. Human mast cells transmigrate through human umbilical vein endothelial monolayers and selectively produce IL-8 in response to stromal cell-derived factor-1 alpha.

    PubMed

    Lin, T J; Issekutz, T B; Marshall, J S

    2000-07-01

    Mature mast cells are generally considered to be less mobile cells residing within tissue sites. However, mast cell numbers are known to increase in the context of inflammation, and mast cells are recognized to be important in regulating local neutrophil infiltration. CXC chemokines may play a critical role in this process. In this study two human mast cell-like lines, HMC-1 and KU812, and human cord blood-derived primary cultured mast cells were employed to examine role of stromal cell-derived factor-1 (SDF-1) in regulating mast cell migration and mediator production. It was demonstrated that human mast cells constitutively express mRNA and protein for CXCR4. Stimulation of human mast cells with SDF-1, the only known ligand for CXCR4, induced a significant increase in intracellular calcium levels. In vitro, SDF-1 alpha mediated dose-dependent migration of human cord blood-derived mast cells and HMC-1 cells across HUVEC monolayers. Although SDF-1 alpha did not induce mast cell degranulation, it selectively stimulated production of the neutrophil chemoattractant IL-8 without affecting TNF-alpha, IL-1beta, IL-6, GM-CSF, IFN-gamma, or RANTES production, providing further evidence of the selective modulation of mast cell function by this chemokine. These findings provide a novel, SDF-1-dependent mechanism for mast cell transendothelial migration and functional regulation, which may have important implications for the local regulation of mast cells in disease.

  4. Stromal cell-derived factor-1{alpha} (SDF-1{alpha}/CXCL12) stimulates ovarian cancer cell growth through the EGF receptor transactivation

    SciTech Connect

    Porcile, Carola; Bajetto, Adriana . E-mail: bajetto@cba.unige.it; Barbieri, Federica; Barbero, Simone; Bonavia, Rudy; Biglieri, Marianna; Pirani, Paolo; Florio, Tullio . E-mail: florio@cba.unige.it; Schettini, Gennaro

    2005-08-15

    Ovarian cancer (OC) is the leading cause of death in gynecologic diseases in which there is evidence for a complex chemokine network. Chemokines are a family of proteins that play an important role in tumor progression influencing cell proliferation, angiogenic/angiostatic processes, cell migration and metastasis, and, finally, regulating the immune cells recruitment into the tumor mass. We previously demonstrated that astrocytes and glioblastoma cells express both the chemokine receptor CXCR4 and its ligand stromal cell-derived factor-1 (SDF-1), and that SDF-1{alpha} treatment induced cell proliferation, supporting the hypothesis that chemokines may play an important role in tumor cells' growth in vitro. In the present study, we report that CXCR4 and SDF-1 are expressed in OC cell lines. We demonstrate that SDF-1{alpha} induces a dose-dependent proliferation in OC cells, by the specific interaction with CXCR4 and a biphasic activation of ERK1/2 and Akt kinases. Our results further indicate that CXCR4 activation induces EGF receptor (EGFR) phosphorylation that in turn was linked to the downstream intracellular kinases activation, ERK1/2 and Akt. In addition, we provide evidence for cytoplasmic tyrosine kinase (c-Src) involvement in the SDF-1/CXCR4-EGFR transactivation. These results suggest a possible important 'cross-talk' between SDF-1/CXCR4 and EGFR intracellular pathways that may link signals of cell proliferation in ovarian cancer.

  5. Stromal Cell-Derived Factor-1α Plays a Crucial Role Based on Neuroprotective Role in Neonatal Brain Injury in Rats

    PubMed Central

    Mori, Miki; Matsubara, Keiichi; Matsubara, Yuko; Uchikura, Yuka; Hashimoto, Hisashi; Fujioka, Toru; Matsumoto, Takashi

    2015-01-01

    Owing to progress in perinatal medicine, the survival of preterm newborns has markedly increased. However, the incidence of cerebral palsy has risen in association with increased preterm birth. Cerebral palsy is largely caused by cerebral hypoxic ischemia (HI), for which there are no effective medical treatments. We evaluated the effects of stromal cell-derived factor-1α (SDF-1α) on neonatal brain damage in rats. Left common carotid (LCC) arteries of seven-day-old Wistar rat pups were ligated, and animals were exposed to hypoxic gas to cause cerebral HI. Behavioral tests revealed that the memory and spatial perception abilities were disturbed in HI animals, and that SDF-1α treatment improved these cognitive functions. Motor coordination was also impaired after HI but was unimproved by SDF-1α treatment. SDF-1α reduced intracranial inflammation and induced cerebral remyelination, as indicated by the immunohistochemistry results. These data suggest that SDF-1α specifically influences spatial perception abilities in neonatal HI encephalopathy. PMID:26251894

  6. Stromal cell-derived factor-1 receptor CXCR4-overexpressing bone marrow mesenchymal stem cells accelerate wound healing by migrating into skin injury areas.

    PubMed

    Yang, Dazhi; Sun, Shijin; Wang, Zhengguo; Zhu, Peifang; Yang, Zailiang; Zhang, Bo

    2013-06-01

    Stromal cell-derived factor-1 (SDF-1) and its membrane receptor C-X-C chemokine receptor type 4 (CXCR4) are involved in the homing and migration of multiple stem cell types, neovascularization, and cell proliferation. This study investigated the hypothesis that bone marrow-derived mesenchymal stem cells (BMSCs) accelerate skin wound healing in the mouse model by overexpression of CXCR4 in BMSCs. We compared SDF-1 expression and skin wound healing times of BALB/c mice, severe combined immunodeficiency (SCID) mice, and immune system-deficient nude mice after (60)Co radiation-induced injury of their bone marrow. The occurrence of transplanted adenovirus-transfected CXCR4-overexpressing male BMSCs in the wound area was compared with the occurrence of untransfected male BALB/c BMSCs in (60)Co-irradiated female mice skin wound healing areas by Y chromosome marker analyses. The wound healing time of BALB/c mice was 14.00±1.41 days, whereas for the nude and SCID mice it was 17.16±1.17 days and 19.83±0.76 days, respectively. Male BMSCs could be detected in the surrounding areas of (60)Co-irradiated female BALB/c mice wounds, and CXCR4-overexpressing BMSCs accelerated the wound healing time. CXCR4-overexpressing BMSCs migrate in an enhanced manner to skin wounds in a SDF-1-expression-dependent manner, thereby reducing the skin wound healing time.

  7. Stromal cell-derived factor-1 is upregulated by dipeptidyl peptidase-4 inhibition and has protective roles in progressive diabetic nephropathy.

    PubMed

    Takashima, Satoru; Fujita, Hiroki; Fujishima, Hiromi; Shimizu, Tatsunori; Sato, Takehiro; Morii, Tsukasa; Tsukiyama, Katsushi; Narita, Takuma; Takahashi, Takamune; Drucker, Daniel J; Seino, Yutaka; Yamada, Yuichiro

    2016-10-01

    The role of stromal cell-derived factor-1 (SDF-1) in the pathogenesis of diabetic nephropathy and its modification by dipeptidyl peptidase-4 (DPP-4) inhibition are uncertain. Therefore, we studied this independent of glucagon-like peptide-1 receptor (GLP-1R) signaling using two Akita diabetic mouse models, the diabetic-resistant C57BL/6-Akita and diabetic-prone KK/Ta-Akita. Increased SDF-1 expression was found in glomerular podocytes and distal nephrons in the diabetic-prone mice, but not in kidneys from diabetic-resistant mice. The DPP-4 inhibitor linagliptin, but not the GLP-1R agonist liraglutide, further augmented renal SDF-1 expression in both Glp1r(+/+) and Glp1r(-/-) diabetic-prone mice. Along with upregulation of renal SDF-1 expression, the progression of albuminuria, glomerulosclerosis, periglomerular fibrosis, podocyte loss, and renal oxidative stress was suppressed in linagliptin-treated Glp1r(+/+) diabetic-prone mice. Linagliptin treatment increased urinary sodium excretion and attenuated the increase in glomerular filtration rate which reflects glomerular hypertension and hyperfiltration. In contrast, selective SDF-1 receptor blockade with AMD3100 reduced urinary sodium excretion and aggravated glomerular hypertension in the Glp1r(+/+) diabetic-prone mice. Thus, DPP-4 inhibition, independent of GLP-1R signaling, contributes to protection of the diabetic kidney through SDF-1-dependent antioxidative and antifibrotic effects and amelioration of adverse renal hemodynamics.

  8. Basic Fibroblast Growth Factor Inhibits Apoptosis and Promotes Proliferation of Adipose-Derived Mesenchymal Stromal Cells Isolated from Patients with Type 2 Diabetes by Reducing Cellular Oxidative Stress

    PubMed Central

    2017-01-01

    Type 2 diabetes (T2D) is a chronic metabolic disorder affecting increasing number of people in developed countries. Therefore new strategies for treatment of T2D and its complications are of special interest. Nowadays, cellular therapies involving mesenchymal stromal cells that reside in adipose tissue (ASCs) constitute a promising approach; however, there are still many obstacles concerning safety and effectiveness that need to be overcome before ASCs could be engaged for the treatment of diabetes mellitus. One of the challenges is preventing ASCs from deterioration caused by elevated oxidative stress present in diabetes milieu. In the current study we investigated the effect of basic fibroblast growth factor (bFGF) treatment on ASCs isolated from patients with diagnosed T2D. We demonstrate here that cell exposition to bFGF in 5 and 10 ng/mL dosages results in improved morphology, increased proliferative activity, reduced cellular senescence and apoptosis, and decreased oxidative stress, indicating recovery of ASCs' function impaired by T2D. Therefore our results provide a support for bFGF as a potential therapeutic agent for improving stem cell-based approaches for the treatment of diabetes mellitus and its complications. PMID:28168007

  9. Soluble toll-like receptor 4 reversed attenuating effect of Chinese herbal Xiao-Qing-Long-Tang on allergen induced nerve growth factor and thymic stromal lymphopoietin

    PubMed Central

    CHANG, REN-SHIU; WANG, YU-CHIN; KAO, SHUNG-TE

    2013-01-01

    Xiao-Qing-Long-Tang (XQLT) is known to regulate allergic immune reactions. The aim of this study was to investigate the effects of XQLT on allergen-induced cytokines and associated signaling pathways. An acute allergic mouse model was used to investigate the effects of XQLT on nerve growth factor (NGF) during an allergic reaction, while human pulmonary alveolar epithelial cells (HPAEpiCs) were used to investigate the effects of XQLT on Dermatophagoides pteronyssinus group 2 (Der p 2)-induced NGF, p75 neurotrophin receptor (p75NTR) and thymic stromal lymphopoietin (TSLP) expression. XQLT was demonstrated to inhibit NGF- and p75NTR-related allergic reactions in the mouse model. XQLT also reduced the expression of Toll-like receptor 4 (TLR4) in the lungs of the model mice. XQLT inhibited Der p 2-induced NGF, TSLP and p75NTR expression in the HPAEpiC cell line. The use of recombinant soluble TLR4 (sTLR4) in a competitive assay partially attenuated the inhibitory effect of XQLT on NGF, TSLP and p75NTR expression in HPAEpiC cells. The inhibitory effect of XQLT on the Ser536 phosphorylation of p65 (nuclear factor-κB; NF-κB), a TLR4-induced factor, was also attenuated by sTLR4. In conclusion, XQLT inhibited Der p allergen-induced NGF, p75NTR and TSLP expression. This inhibition was attenuated by sTLR4. The mechanism of action of XQLT may be correlated with TLR4, a primary receptor in the innate immune system. The findings of this study may focus the search for pharmacological targets of XQLT onto TLR4, which is important in the allergen presentation pathway. PMID:24223644

  10. Plasma rich in growth factors (PRGF) eye drops stimulates scarless regeneration compared to autologous serum in the ocular surface stromal fibroblasts.

    PubMed

    Anitua, E; de la Fuente, M; Muruzabal, F; Riestra, A; Merayo-Lloves, J; Orive, G

    2015-06-01

    Autologous serum (AS) eye drops was the first blood-derived product used for the treatment of corneal pathologies but nowadays PRGF arises as a novel interesting alternative to this type of diseases. The purpose of this study was to evaluate and compare the biological outcomes of autologous serum eye drops or Plasma rich in growth factors (PRGF) eye drops on corneal stromal keratocytes (HK) and conjunctival fibroblasts (HConF). To address this, blood from healthy donors was collected and processed to obtain autologous serum (AS) eye drops and plasma rich in growth factors (PRGF) eye drops. Blood-derivates were aliquoted and stored at -80°C until use. PDGF-AB, VEGF, EGF, FGFb and TGF-β1 were quantified. The potential of PRGF and AS in promoting wound healing was evaluated by means of proliferation and migration assays in HK and HConF. Fibroblast cells were induced to myofibroblast differentiation after treatment with 2.5ng/mL of TGF-β1. The capability of PRGF and AS to prevent and inhibit TGF-β1-induced differentiation was evaluated. Results showed significant higher levels of all growth factors analyzed in PRGF eye drops compared to AS. Moreover, PRGF eye drops enhanced significantly the biological outcomes of both HK and HConF, and reduced TGF-β1-induced myofibroblast differentiation in contrast to autologous serum eye drops (AS). In summary, these results suggest that PRGF exerts enhanced biological outcomes than AS. PRGF may improve the treatment of ocular surface wound healing minimizing the scar formation compared to AS. Results obtained herein suggest that PRGF protects and reverses the myofibroblast phenotype while promotes cell proliferation and migration.

  11. Early in-situ cellularization of a supramolecular vascular graft is modified by synthetic stromal cell-derived factor-1α derived peptides.

    PubMed

    Muylaert, Dimitri E P; van Almen, Geert C; Talacua, Hanna; Fledderus, Joost O; Kluin, Jolanda; Hendrikse, Simone I S; van Dongen, Joost L J; Sijbesma, Eline; Bosman, Anton W; Mes, Tristan; Thakkar, Shraddha H; Smits, Anthal I P M; Bouten, Carlijn V C; Dankers, Patricia Y W; Verhaar, Marianne C

    2016-01-01

    In an in-situ approach towards tissue engineered cardiovascular replacement grafts, cell-free scaffolds are implanted that engage in endogenous tissue formation. Bioactive molecules can be incorporated into such grafts to facilitate cellular recruitment. Stromal cell derived factor 1α (SDF1α) is a powerful chemoattractant of lymphocytes, monocytes and progenitor cells and plays an important role in cellular signaling and tissue repair. Short SDF1α-peptides derived from its receptor-activating domain are capable of activating the SDF1α-specific receptor CXCR4. Here, we show that SDF1α-derived peptides can be chemically modified with a supramolecular four-fold hydrogen bonding ureido-pyrimidinone (UPy) moiety, that allows for the convenient incorporation of the UPy-SDF1α-derived peptides into a UPy-modified polymer scaffold. We hypothesized that a UPy-modified material bioactivated with these UPy-SDF1α-derived peptides can retain and stimulate circulating cells in an anti-inflammatory, pro-tissue formation signaling environment. First, the early recruitment of human peripheral blood mononuclear cells to the scaffolds was analyzed in vitro in a custom-made mesofluidic device applying physiological pulsatile fluid flow. Preferential adhesion of lymphocytes with reduced expression of inflammatory factors TNFα, MCP1 and lymphocyte activation marker CD25 was found in the bioactivated scaffolds, indicating a reduction in inflammatory signaling. As a proof of concept, in-vivo implantation of the bioactivated scaffolds as rat abdominal aorta interposition grafts showed increased cellularity by CD68+ cells after 7 days. These results indicate that a completely synthetic, cell-free biomaterial can attract and stimulate specific leukocyte populations through supramolecular incorporation of short bioactive SDF1α derived peptides.

  12. Stromal Cell-Derived Growth Factor-1 Alpha-Elastin Like Peptide Fusion Protein Promotes Cell Migration and Revascularization of Experimental Wounds in Diabetic Mice

    PubMed Central

    Yeboah, Agnes; Maguire, Tim; Schloss, Rene; Berthiaume, Francois; Yarmush, Martin L.

    2017-01-01

    Objective: In previous work, we demonstrated the development of a novel fusion protein containing stromal cell-derived growth factor-1 alpha juxtaposed to an elastin-like peptide (SDF1-ELP), which has similar bioactivity, but is more stable in elastase than SDF1. Herein, we compare the ability of a single topical application of SDF1-ELP to that of SDF1 in healing 1 × 1 cm excisional wounds in diabetic mice. Approach: Human Leukemia-60 cells were used to demonstrate the chemotactic potential of SDF1-ELP versus SDF1 in vitro. Human umbilical vascular endothelial cells were used to demonstrate the angiogenic potential of SDF1-ELP versus SDF1 in vitro. The bioactivity of SDF1-ELP versus SDF1 after incubation in ex-vivo diabetic wound fluid was compared. The in-vivo effectiveness of SDF1-ELP versus SDF1 was compared in diabetic mice wound model by monitoring for the number of CD31+ cells in harvested wound tissues. Results: SDF1-ELP promotes the migration of cells and induces vascularization similar to SDF1 in vitro. SDF1-ELP is more stable in wound fluids compared to SDF1. In vivo, SDF1-ELP induced a higher number of vascular endothelial cells (CD31+ cells) compared to SDF1 and other controls, suggesting increased vascularization. Innovation: While growth factors have been shown to improve wound healing, this strategy is largely ineffective in chronic wounds. In this work, we show that SDF1-ELP is a promising agent for the treatment of chronic skin wounds. Conclusion: The superior in vivo performance and stability of SDF1-ELP makes it a promising agent for the treatment of chronic skin wounds. PMID:28116224

  13. Nuclear Receptor Co-Regulator Krüppel-like Factor 9 in Human Endometrial Stromal Cell Differentiation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The biological actions of ligand-bound estrogen (E) and progesterone (P) receptors are dependent on coregulator partner proteins. We have identified Krüppel-like Factor 9 (KLF9) as important for E and P actions in endometrial cells. Ablation of KLF9 in mice resulted in subfertility due partly to alt...

  14. 5th Ovarian Cancer Consensus Conference: Individualized Therapy and Patient Factors.

    PubMed

    McGee, J; Bookman, M; Harter, P; Marth, C; McNeish, I; Moore, K N; Poveda, A; Hilpert, F; Hasegawa, K; Bacon, M; Gatsonis, C; Brand, A; Kridelka, F; Berek, J; Ottevanger, N; Levy, T; Silverberg, S; Kim, B-G; Hirte, H; Okamoto, A; Stuart, G; Ochiai, K

    2017-01-24

    This manuscript reports the consensus statements regarding the design and conduct of clinical trials in patients with newly diagnosed and recurrent epithelial ovarian cancer (EOC), following deliberation at the 5th Ovarian Cancer Consensus Conference (OCCC), held in Tokyo in November 2015. Three important questions were identified for discussion prior to the meeting and achieved consensus during the meeting: 1) What are the most important factors to be evaluated prior to initial therapy? 2) What are the most important factors to be evaluated specifically in recurrent disease? 3) Are there specific considerations for special patient subpopulations? In addition, we report a list of important unmet needs compiled during the consensus process, which is intended to guide future research initiatives.

  15. Systemic BMSC homing in the regeneration of pulp-like tissue and the enhancing effect of stromal cell-derived factor-1 on BMSC homing

    PubMed Central

    Zhang, Li-Xia; Shen, Li-Li; Ge, Shao-Hua; Wang, Li-Mei; Yu, Xi-Jiao; Xu, Quan-Chen; Yang, Pi-Shan; Yang, Cheng-Zhe

    2015-01-01

    Pulp regeneration caused by endogenous cells homing has become the new research spot in endodontics. However, the source of functional cells that are involved in and contributed to the reconstituting process has not been identified. In this study, the possible role of systemical BMSC in pulp regeneration and the effect of stromal cell-derived factor-1 (SDF-1) on stem cell recruitment and angiogenesis were evaluated. 54 mice were divided into three groups: SDF-1 group (subcutaneous pockets containing roots with SDF-1 absorbed neutralized collagen gel and the green fluorescent protein (GFP) positive BMSCs transplantation via the tail vein), SDF-1-free group (pockets containing roots with gel alone and GFP + BMSCs transplantation) and Control group (pockets containing roots with gel alone). The animals were sacrificed after the roots were implanted into subcutaneous pockets for 3 weeks. Histomorphometric analysis was performed to evaluate the regenerated tissue in the canal by hematoxylin and eosin (HE) staining. The homing of the transplanted BMSCs was monitored with a fluorescence microscope and immunohistochemical analysis. The expression of ALP in new formed tissue was detected immunohistochemically. Dental-pulp-like tissue and new vessels were regenerated and GFP-positive BMSCs and expression of ALP could be observed in both SDF-1 group and SDF-1-free group. Furthermore, more GFP+ cells, stronger expression of ALP and stronger angiogenesis were found in the SDF-1 group than in the SDF-1-free group. To conclude, systemic BMSC can home to the root canal and participate in dental-pulp-like tissue regeneration. Intracanal application of SDF-1 may enhance BMSC homing efficiency and angiogenesis. PMID:26617734

  16. Spliced stromal cell-derived factor-1α analog stimulates endothelial progenitor cell migration and improves cardiac function in a dose-dependent manner after myocardial infarction

    PubMed Central

    Hiesinger, William; Frederick, John R.; Atluri, Pavan; McCormick, Ryan C.; Marotta, Nicole; Muenzer, Jeffrey R.; Woo, Y. Joseph

    2011-01-01

    Objectives Stromal cell-derived factor (SDF)-1α is a potent endogenous endothelial progenitor cell (EPC) chemokine and key angiogenic precursor. Recombinant SDF-1α has been demonstrated to improve neovasculogenesis and cardiac function after myocardial infarction (MI) but SDF-1α is a bulky protein with a short half-life. Small peptide analogs might provide translational advantages, including ease of synthesis, low manufacturing costs, and the potential to control delivery within tissues using engineered biomaterials. We hypothesized that a minimized peptide analog of SDF-1α, designed by splicing the N-terminus (activation and binding) and C-terminus (extracellular stabilization) with a truncated amino acid linker, would induce EPC migration and preserve ventricular function after MI. Methods EPC migration was first determined in vitro using a Boyden chamber assay. For in vivo analysis, male rats (n=48) underwent left anterior descending coronary artery ligation. At infarction, the rats were randomized into 4 groups and received peri-infarct intramyocardial injections of saline, 3 μg/kg of SDF-1α, 3 μg/kg of spliced SDF analog, or 6 μg/kg spliced SDF analog. After 4 weeks, the rats underwent closed chest pressure volume conductance catheter analysis. Results EPCs showed significantly increased migration when placed in both a recombinant SDF-1α and spliced SDF analog gradient. The rats treated with spliced SDF analog at MI demonstrated a significant dose-dependent improvement in end-diastolic pressure, stroke volume, ejection fraction, cardiac output, and stroke work compared with the control rats. Conclusions A spliced peptide analog of SDF-1α containing both the N- and C- termini of the native protein induced EPC migration, improved ventricular function after acute MI, and provided translational advantages compared with recombinant human SDF-1α. PMID:20951261

  17. Systemic BMSC homing in the regeneration of pulp-like tissue and the enhancing effect of stromal cell-derived factor-1 on BMSC homing.

    PubMed

    Zhang, Li-Xia; Shen, Li-Li; Ge, Shao-Hua; Wang, Li-Mei; Yu, Xi-Jiao; Xu, Quan-Chen; Yang, Pi-Shan; Yang, Cheng-Zhe

    2015-01-01

    Pulp regeneration caused by endogenous cells homing has become the new research spot in endodontics. However, the source of functional cells that are involved in and contributed to the reconstituting process has not been identified. In this study, the possible role of systemical BMSC in pulp regeneration and the effect of stromal cell-derived factor-1 (SDF-1) on stem cell recruitment and angiogenesis were evaluated. 54 mice were divided into three groups: SDF-1 group (subcutaneous pockets containing roots with SDF-1 absorbed neutralized collagen gel and the green fluorescent protein (GFP) positive BMSCs transplantation via the tail vein), SDF-1-free group (pockets containing roots with gel alone and GFP + BMSCs transplantation) and Control group (pockets containing roots with gel alone). The animals were sacrificed after the roots were implanted into subcutaneous pockets for 3 weeks. Histomorphometric analysis was performed to evaluate the regenerated tissue in the canal by hematoxylin and eosin (HE) staining. The homing of the transplanted BMSCs was monitored with a fluorescence microscope and immunohistochemical analysis. The expression of ALP in new formed tissue was detected immunohistochemically. Dental-pulp-like tissue and new vessels were regenerated and GFP-positive BMSCs and expression of ALP could be observed in both SDF-1 group and SDF-1-free group. Furthermore, more GFP+ cells, stronger expression of ALP and stronger angiogenesis were found in the SDF-1 group than in the SDF-1-free group. To conclude, systemic BMSC can home to the root canal and participate in dental-pulp-like tissue regeneration. Intracanal application of SDF-1 may enhance BMSC homing efficiency and angiogenesis.

  18. Resveratrol as a natural anti-tumor necrosis factor-α molecule: implications to dendritic cells and their crosstalk with mesenchymal stromal cells.

    PubMed

    Silva, Andreia M; Oliveira, Marta I; Sette, Laura; Almeida, Catarina R; Oliveira, Maria J; Barbosa, Mário A; Santos, Susana G

    2014-01-01

    Dendritic cells (DC) are promising targets for inducing tolerance in inflammatory conditions. Thus, this study aims to investigate the effects of the natural anti-inflammatory molecule resveratrol on human DC at phenotypic and functional levels, including their capacity to recruit mesenchymal stem/stromal cells (MSC). Primary human monocyte-derived DC and bone marrow MSC were used. DC immunophenotyping revealed that small doses of resveratrol (10 µM) reduce cell activation in response to tumor necrosis factor (TNF)-α, significantly decreasing surface expression of CD83 and CD86. Functionally, IL-12/IL-23 secretion induced by TNF-α was significantly reduced by resveratrol, while IL-10 levels increased. Resveratrol also inhibited T cell proliferation, in response to TNF-α-stimulated DC. The underlying mechanism was investigated by Western blot and imaging flow cytometry (ImageStreamX), and likely involves impairment of nuclear translocation of the p65 NF-κB subunit. Importantly, results obtained demonstrate that DC are able to recruit MSC through extracellular matrix components, and that TNF-α impairs DC-mediated recruitment. Matrix metalloproteinases (MMP) produced by both cell populations were visualized by gelatin zymography. Finally, time-lapse microscopy analysis revealed a significant decrease on DC and MSC motility in co-cultures, indicating cell interaction, and TNF-α further decreased MSC motility, while resveratrol recovered it. Thus, the current study points out the potential of resveratrol as a natural anti-TNF-α drug, capable of modulating DC phenotype and function, as well as DC-mediated MSC recruitment.

  19. Ultrasound-targeted stromal cell-derived factor-1-loaded microbubble destruction promotes mesenchymal stem cell homing to kidneys in diabetic nephropathy rats.

    PubMed

    Wu, Shengzheng; Li, Lu; Wang, Gong; Shen, Weiwei; Xu, Yali; Liu, Zheng; Zhuo, Zhongxiong; Xia, Hongmei; Gao, Yunhua; Tan, Kaibin

    2014-01-01

    Mesenchymal stem cell (MSC) therapy has been considered a promising strategy to cure diabetic nephropathy (DN). However, insufficient MSCs can settle in injured kidneys, which constitute one of the major barriers to the effective implementation of MSC therapy. Stromal cell-derived factor-1 (SDF-1) plays a vital role in MSC migration and involves activation, mobilization, homing, and retention, which are presumably related to the poor homing in DN therapy. Ultrasound-targeted microbubble destruction has become one of the most promising strategies for the targeted delivery of drugs and genes. To improve MSC homing to DN kidneys, we present a strategy to increase SDF-1 via ultrasound-targeted microbubble destruction. In this study, we developed SDF-1-loaded microbubbles (MB(SDF-1)) via covalent conjugation. The characterization and bioactivity of MB(SDF-1) were assessed in vitro. Target release in the targeted kidneys was triggered with diagnostic ultrasound in combination with MB(SDF-1). The related bioeffects were also elucidated. Early DN was induced in rats with streptozotocin. Green fluorescent protein-labeled MSCs were transplanted intravenously following the target release of SDF-1 in the kidneys of normal and DN rats. The homing efficacy was assessed by detecting the implanted exogenous MSCs at 24 hours. The in vitro results showed an impressive SDF-1 loading efficacy of 79% and a loading content of 15.8 μg/mL. MB(SDF-1) remained bioactive as a chemoattractant. In the in vivo study, SDF-1 was successfully released in the targeted kidneys. The homing efficacy of MSCs to DN kidneys after the target release of SDF-1 was remarkably ameliorated at 24 hours compared with control treatments in normal rats and DN rats. In conclusion, ultrasound-targeted MB(SDF-1) destruction could promote the homing of MSCs to early DN kidneys and provide a novel potential therapeutic approach for DN kidney repair.

  20. Stromal cell-derived factor-1-directed bone marrow mesenchymal stem cell migration in response to inflammatory and/or hypoxic stimuli

    PubMed Central

    Yu, Yang; Wu, Rui-Xin; Gao, Li-Na; Xia, Yu; Tang, Hao-Ning; Chen, Fa-Ming

    2016-01-01

    ABSTRACT Directing cell trafficking toward a target site of interest is critical for advancing stem cell therapy in clinical theranostic applications. In this study, we investigated the effects of inflammatory and/or hypoxic stimuli on the migration of bone marrow mesenchymal stem cells (BMMSCs) during in vitro culture and after in vivo implantation. Using tablet scratch experiments and observations from a transwell system, we found that both inflammatory and hypoxic stimuli significantly enhanced cell migration. However, the combination of inflammatory and hypoxic stimuli did not result in a synergistic effect. The presence of stromal cell-derived factor-1 (SDF-1) significantly enhanced cell migration irrespective of the incubation conditions, and these positive effects could be blocked by treatment with AMD3100. Based on a time course experiment, we found that preconditioning cells with either inflammatory or hypoxic stimuli for 24 h or with both stimuli for 12 h led to high levels of chemokine receptor type 4 (CXCR4) expression. In vivo studies further demonstrated that pretreatment of BMMSCs with inflammatory and/or hypoxic stimuli resulted in an increased number of systemically injected cells migrating toward skin injuries, and local SDF-1 administration significantly increased cell migration. These findings suggest that in vitro control of either inflammatory or hypoxic stimuli has significant potential to enhance SDF-1-directed BMMSC migration via the upregulation of CXCR4 expression. Although combining the stimuli did not necessarily lead to a synergistic effect, the potential to reduce the dose and time required for cell preconditioning indicates that combinations of various strategies warrant further exploration. PMID:26745021

  1. Quantification of Intact and Truncated Stromal Cell-Derived Factor-1α in Circulation by Immunoaffinity Enrichment and Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Wang, Weixun; Choi, Bernard K.; Li, Wenyu; Lao, Zhege; Lee, Anita Y. H.; Souza, Sandra C.; Yates, Nathan A.; Kowalski, Timothy; Pocai, Alessandro; Cohen, Lucinda H.

    2014-04-01

    Stromal cell-derived factor 1α (SDF-1α) or CXCL12 is a small pro-inflammatory chemoattractant cytokine and a substrate of dipeptidyl peptidase IV (DPP-IV). Proteolytic cleavage by DPP-IV inactivates SDF-1α and attenuates its interaction with CXCR4, its cell surface receptor. To enable investigation of suppression of such inactivation with pharmacologic inhibition of DPP-IV, we developed quantitative mass spectrometric methods that differentiate intact SDF-1α from its inactive form. Using top-down strategy in quantification, we demonstrated the unique advantage of keeping SDF-1α's two disulfide bridges intact in the analysis. To achieve the optimal sensitivity required for quantification of intact and truncated SDF-1α at endogenous levels in blood, we coupled nano-flow tandem mass spectrometry with antibody-based affinity enrichment. The assay has a quantitative range of 20 pmol/L to 20 nmol/L in human plasma as well as in rhesus monkey plasma. With only slight modification, the same assay can be used to quantify SDF-1α in mice. Using two in vivo animal studies as examples, we demonstrated that it was critical to differentiate intact SDF-1α from its truncated form in the analysis of biomarkers for pharmacologic inhibition of DPP-IV activity. These novel methods enable translational research on suppression of SDF-1 inactivation with DPP-IV inhibition and can be applied to relevant clinical samples in the future to yield new insights on change of SDF-1α levels in disease settings and in response to therapeutic interventions.

  2. Sustained myocardial production of stromal cell-derived factor-1α was associated with left ventricular adverse remodeling in patients with myocardial infarction.

    PubMed

    Uematsu, Manabu; Yoshizaki, Toru; Shimizu, Takuya; Obata, Jun-ei; Nakamura, Takamitsu; Fujioka, Daisuke; Watanabe, Kazuhiro; Watanabe, Yosuke; Kugiyama, Kiyotaka

    2015-11-15

    The role of stromal cell-derived factor-1α (SDF-1α) expressed in infarcted myocardium is unknown in humans. We examined whether SDF-1α produced in an infarcted myocardial lesion may play a role in left ventricle (LV) remodeling and dysfunction in patients with acute myocardial infarction (AMI). We measured SDF-1α levels in plasma obtained from aortic root (AO) and anterior interventricular vein (AIV) in the early phase (2 wk after MI) and the chronic phase (6 mo after MI) in 80 patients with anterior MI. An increment in SDF-1α level from AO to AIV, reflecting SDF-1α release from infarcted myocardium, was more frequent in patients with MI in the early phase of MI [n = 52 (65%), P = 0.03] but not in the chronic phase of MI [n = 46 (58%), P = 0.11] compared with that in control patients [n = 6/17 (35%)]. On linear regression analysis, the transmyocardial gradient in SDF-1α level in the chronic phase of MI was correlated with percentage changes in LV end-diastolic volume index (r = 0.39, P < 0.001), LV end-systolic volume index (r = 0.38, P < 0.001), and LV ejection fraction (r = -0.26, P = 0.01) 6 mo after AMI. By contrast, the transmyocardial gradient of SDF-1α in the early phase of MI had no significant correlations. In conclusion, the production of SDF-1α in infarcted myocardium in the chronic phase of MI was associated with LV adverse remodeling and progressive dysfunction in AMI survivors.

  3. Platelet lysate and granulocyte-colony stimulating factor serve safe and accelerated expansion of human bone marrow stromal cells for stroke therapy.

    PubMed

    Yamauchi, Tomohiro; Saito, Hisayasu; Ito, Masaki; Shichinohe, Hideo; Houkin, Kiyohiro; Kuroda, Satoshi

    2014-12-01

    Autologous human bone marrow stromal cells (hBMSCs) should be expanded in the animal serum-free condition within clinically relevant periods in order to secure safe and effective cell therapy for ischemic stroke. This study was aimed to assess whether the hBMSCs enhance their proliferation capacity and provide beneficial effect in the infarct brain when cultured with platelet lysate (PL) and granulocyte-colony stimulating factor (G-CSF). The hBMSCs were cultured in the fetal calf serum (FCS)-, PL-, or PL/G-CSF-containing medium. Cell growth kinetics was analyzed. The hBMSCs-PL, hBMSC-PL/G-CSF, or vehicle was stereotactically transplanted into the ipsilateral striatum of the rats subjected to permanent middle cerebral artery occlusion 7 days after the insult. Motor function was assessed for 8 weeks, and the fate of transplanted hBMSCs was examined using immunohistochemistry. As the results, the hBMSCs-PL/G-CSF showed more enhanced proliferation than the hBMSCs-FCS and hBMSCs-PL. Transplantation of hBMSCs expanded with the PL- or PL/G-CSF-containing medium equally promoted functional recovery compared with the vehicle group. Histological analysis revealed that there were no significant differences in their migration, survival, and neural differentiation in the infarct brain between the hBMSCs-PL and hBMSCs-PL/G-CSF. These findings strongly suggest that the combination of PL and G-CSF may accelerate hBMSC expansion and serve safe cell therapy for patients with ischemic stroke at clinically relevant timing.

  4. Recruitment of mesenchymal stem cells and macrophages by dual release of stromal cell-derived factor-1 and a macrophage recruitment agent enhances wound closure.

    PubMed

    Kim, Yang-Hee; Tabata, Yasuhiko

    2016-04-01

    In this study, the wound closure of mouse skin defects was examined in terms of recruitment of mesenchymal stem cells (MSC) and macrophages. For the cells recruitment, stromal derived factor-1 (SDF-1) of a MSC recruitment agent and sphingosine-1 phosphate agonist (SEW2871) of a macrophages recruitment agent were incorporated into gelatin hydrogels, and then released in a controlled fashion. When applied to a skin wound defect of mice, gelatin hydrogels incorporating mixed 500 ng SDF-1 and 0.4, 0.8, or 1.6 mg SEW2871-micelles recruited a higher number of both MSC and macrophages than those incorporating SDF-1 or phosphate buffered saline. However, the number of M1 phenotype macrophages for the hydrogel incorporating mixed SDF-1 and SEW2871-micelles recruited was remarkably low to a significant extent compared with that for those hydrogel incorporating 0.4, 0.8, or 1.6 mg SEW2871-micelles. On the other hand, the number of M2 macrophages 3 days after the implantation of the hydrogels incorporating SDF-1 and 0.4 mg SEW2871-micelles significantly increased compared with that for other hydrogels. In vivo experiments revealed the hydrogels incorporating SDF-1 and 0.4 mg SEW2871-micelles promoted the wound closure of skin defect to a significant stronger extent than those incorporating SEW2871-micelles, SDF-1, and a mixture of SDF-1 and higher doses of SEW2871-micelles. It is concluded that the in vivo recruitment of MSC and macrophages to the defects may contribute to the tissue regeneration of skin wound.

  5. Sonic hedgehog signals to multiple prostate stromal stem cells that replenish distinct stromal subtypes during regeneration

    PubMed Central

    Peng, Yu-Ching; Levine, Charles M.; Zahid, Sarwar; Wilson, E. Lynette; Joyner, Alexandra L.

    2013-01-01

    The adult mouse prostate has a seemingly endless capacity for regeneration, and sonic hedgehog (SHH) signaling has been implicated in this stem cell-driven process. However, it is not clear whether SHH acts on the epithelium or stromal cells that secrete factors required for epithelial expansion. Because little is known about stromal stem cells compared with their epithelial counterparts, we used in vivo mouse genetics tools to characterize four prostate stromal subtypes and their stem cells. Using knockin reporter alleles, we uncovered that SHH signals from prostate basal epithelial cells to adjacent stromal cells. Furthermore, the SHH target gene Gli1 is preferentially expressed in subepithelial fibroblast-like cells, one of four prostate stromal subtypes and the subtype closest to the epithelial source of SHH. Using Genetic Inducible Fate Mapping to mark adult Gli1- or Smooth muscle actin-expressing cells and follow their fate during regeneration, we uncovered that Gli1-expressing cells exhibit long-term self-renewal capacity during multiple rounds of androgen-mediated regeneration after castration-induced involution, and depleted smooth muscle cells are mainly replenished by preexisting smooth muscle cells. Based on our Genetic Inducible Fate Mapping studies, we propose a model where SHH signals to multiple stromal stem cells, which are largely unipotent in vivo. PMID:24218555

  6. A GC-rich element confers epidermal growth factor responsiveness to transcription from the gastrin promoter.

    PubMed Central

    Merchant, J L; Demediuk, B; Brand, S J

    1991-01-01

    Epidermal growth factor (EGF) and transforming growth factor alpha are important determinants of mucosal integrity in the gastrointestinal tract, and they act both directly and indirectly to prevent ulceration in the stomach. Consistent with this physiological role, EGF stimulates transcription of gastrin, a peptide hormone which regulates gastric acid secretion and mucosal growth. EGF stimulation of gastrin transcription is mediated by a GC-rich gastrin EGF response element (gERE) (GGGGCGGGGTGGGGGG) which lies between -54 and -68 in the human gastrin promoter. The gERE sequence also confers weaker responsiveness to phorbol ester stimulation. The gERE sequence differs from previously described EGF response elements. The gERE DNA sequence specifically interacts with a GH4 DNA-binding protein distinct from previously described transcription factors (Egr-1 and AP2) which bind GC-rich sequences and mediate transcriptional activation by growth factors. Furthermore, the gERE element does not bind the Sp1 transcription factor even though the gERE sequence contains a high-affinity Sp1-binding site (GGCGGG). Images PMID:2017173

  7. Schwann cells induce neuronal differentiation of bone marrow stromal cells.

    PubMed

    Zurita, Mercedes; Vaquero, Jesús; Oya, Santiago; Miguel, Miriam

    2005-04-04

    Bone marrow stromal cells are multipotent stem cells that have the potential to differentiate into bone, cartilage, fat and muscle. Recently, bone marrow stromal cells have been shown to have the capacity to differentiate into neurons under specific experimental conditions, using chemical factors. We now describe how bone marrow stromal cells can be induced to differentiate into neuron-like cells when they are co-cultured with Schwann cells. When compared with chemical differentiation, expression of neuronal differentiation markers begins later, but one week after beginning co-culture, most bone marrow stromal cells showed a typical neuronal morphology. Our present findings support the transdifferentiation of bone marrow stromal cells, and the potential utility of these cells for the treatment of degenerative and acquired disorders of the nervous system.

  8. Effects of lipid-related factors on adipocyte differentiation of bovine stromal-vascular cells in primary culture.

    PubMed

    Wu, P; Sato, K; Suzuta, F; Hikasa, Y; Kagota, K

    2000-09-01

    The effects of several factors related to lipids on bovine adipocyte differentiation were investigated in primary culture. Adipocyte differentiation was assessed by development of glycerol-3-phosphate dehydrogenase (GPDH) activity and morphological observation. Addition of triglyceride mixture (Intralipid), caprylic acid and very low-, low- and high-density lipoproteins (VLDL, LDL and HDL) stimulated bovine preadipocyte differentiation in serum-free condition. Especially, VLDL strongly increased both cell protein contents and GPDH activity, suggesting that it stimulated both proliferation and differentiation of bovine preadipocytes. Under Intralipid-induced condition, differentiation of preadipocytes from subcutaneous adipose tissues was more evident than those from omental adipose tissues. However, such depot difference was not observed in medium supplemented with indomethacin, which is a peroxisome proliferator-activated receptor (PPAR) gamma agonist. This suggests that the differentiation capacity of bovine preadipocytes was different between depots and such difference is dependent on the ability to utilize lipids as endogenous PPARgamma ligands. Therefore, lipid metabolites have the stimulatory effects on bovine adipocyte differentiation in vitro, and lipoproteins, especially VLDL, may play an important role in development of bovine adipose tissues in vivo.

  9. A DC-81-indole conjugate agent suppresses melanoma A375 cell migration partially via interrupting VEGF production and stromal cell-derived factor-1{alpha}-mediated signaling

    SciTech Connect

    Hsieh, Ming-Chu; Hu, Wan-Ping; Yu, Hsin-Su; Wu, Wen-Chuan; Chang, Long-Sen; Kao, Ying-Hsien; Wang, Jeh-Jeng

    2011-09-01

    Pyrrolo[2,1-c][1,4]benzodiazepine (PBD) chemicals are antitumor antibiotics inhibiting nucleic acid synthesis. An indole carboxylate-PBD hybrid with six-carbon spacer structure (IN6CPBD) has been previously demonstrated to induce melanoma cell apoptosis and reduce metastasis in mouse lungs. This study aimed at investigating the efficacy of the other hybrid compound with four-carbon spacer (IN4CPBD) and elucidating its anti-metastatic mechanism. Human melanoma A375 cells with IN4CPBD treatment underwent cytotoxicity and apoptosis-associated assays. Transwell migration assay, Western blotting, and ELISA were used for mechanistic study. IN4CPBD exhibited potent melanoma cytotoxicity through interrupting G1/S cell cycle progression, increasing DNA fragmentation and hypodipoidic DNA contents, and reducing mitochondrial membrane potential. Caspase activity elevation suggested that both intrinsic and extrinsic pathways were involved in IN4CPBD-induced melanoma apoptosis. IN4CPBD up-regulated p53 and p21, thereby concomitantly derailing the equilibrium between Bcl-2 and Bax levels. Transwell migration assay demonstrated that stromal cell-derived factor-1{alpha} (SDF-1{alpha}) stimulated A375 cell motility, while kinase inhibitors treatment confirmed that Rho/ROCK, Akt, ERK1/2, and p38 MAPK pathways were involved in SDF-1{alpha}-enhanced melanoma migration. IN4CPBD not only abolished the SDF-1{alpha}-enhanced chemotactic motility but also suppressed constitutive MMP-9 and VEGF expression. Mechanistically, IN4CPBD down-regulated Akt, ERK1/2, and p38 MAPK total proteins and MYPT1 phosphorylation. In conclusion, beyond the fact that IN4CPBD induces melanoma cell apoptosis at cytotoxic dose, the interruption in the VEGF expression and the SDF-1{alpha}-related signaling at cytostatic dose may partially constitute the rationale for its in vivo anti-metastatic potency. - Research Highlights: > A novel carboxylate-PBD hybrid as anti-melanoma drug. > IN4CPBD interrupts melanoma cell

  10. Regulation of growth by a nerve growth factor-like protein which modulates paracrine interactions between a neoplastic epithelial cell line and stromal cells of the human prostate.

    PubMed

    Djakiew, D; Delsite, R; Pflug, B; Wrathall, J; Lynch, J H; Onoda, M

    1991-06-15

    Nerve growth factor-like substance(s) were identified in both conditioned media of a human prostatic tumor epithelial cell line (TSU-pr1) and a human prostatic stromal cell line (HPS) by Western blot analysis and bioassay of neurite outgrowth of PC12 cells. Nerve growth factor-beta (NGF) immunofluorescence was also localized to secretory vesicles in the cytoplasm of both the TSU-pr1 and HPS cells. Western blot of the TSU-pr1 and HPS cell-secreted protein identified an Mr 65,000 major protein which immunoreacted with murine NGF antibody. NGF Western blot of HPS cell-secreted protein also identified an Mr 42,000 minor band under reduced and nonreduced conditions and an Mr 61,000 minor band under reduced conditions. The secreted protein from the TSU-pr1 cells (50 micrograms/ml) and HPS (50 micrograms/ml), as well as murine NGF (50 ng/ml) or human recombinant NGF (50 ng/ml), stimulated neurite outgrowth from PC12 cells. This neurite outgrowth activity was partially inhibited by treatment with NGF antibody. Neither the serum containing growth medium nor bovine serum albumin (50 micrograms/ml) stimulated neurite outgrowth. The NGF-like secretory protein appeared to play a role in the paracrine regulation of prostatic growth between TSU-pr1 cells and HPS cells. The relative growth of TSU-pr1 cells, as indicated by [3H]thymidine incorporation, in response to HPS secretory protein was stimulated 2.8-fold in a dose-dependent manner. In the converse interaction, the relative growth of HPS cells in response to TSU-pr1 secretory protein was stimulated 1.8-fold in a dose-dependent manner. Immunoneutralization of TSU-pr1 and HPS secretory protein was performed with antibody against NGF, acidic fibroblast growth factor, and basic fibroblast growth factor. Removal of the NGF-like protein from the maximal stimulatory dose of TSU-pr1 secretory protein (100 micrograms/ml) with NGF antibody reduced HPS proliferation to 52% of maximal levels, and immunoneutralization of the NGF

  11. Nerve regeneration by human corneal stromal keratocytes and stromal fibroblasts

    PubMed Central

    Yam, Gary Hin-Fai; Williams, Geraint P.; Setiawan, Melina; Yusoff, Nur Zahirah Binte M.; Lee, Xiao-wen; Htoon, Hla Myint; Zhou, Lei; Fuest, Matthias; Mehta, Jodhbir S.

    2017-01-01

    Laser refractive surgeries reshape corneal stroma to correct refractive errors, but unavoidably affect corneal nerves. Slow nerve regeneration and atypical neurite morphology cause desensitization and neuro-epitheliopathy. Following injury, surviving corneal stromal keratocytes (CSKs) are activated to stromal fibroblasts (SFs). How these two different cell types influence nerve regeneration is elusive. Our study evaluated the neuro-regulatory effects of human SFs versus CSKs derived from the same corneal stroma using an in vitro chick dorsal root ganglion model. The neurite growth was assessed by a validated concentric circle intersection count method. Serum-free conditioned media (CM) from SFs promoted neurite growth dose-dependently, compared to that from CSKs. We detected neurotrophic and pro-inflammatory factors (interleukin-8, interleukin-15, monocyte chemoattractant protein-1, eotaxin, RANTES) in SFCM by Bio-Plex Human Cytokine assay. More than 130 proteins in SFCM and 49 in CSKCM were identified by nanoLC-MS/MS. Proteins uniquely present in SFCM had reported neuro-regulatory activities and were predicted to regulate neurogenesis, focal adhesion and wound healing. Conclusively, this was the first study showing a physiological relationship between nerve growth and the metabolically active SFs versus quiescent CSKs from the same cornea source. The dose-dependent effect on neurite growth indicated that nerve regeneration could be influenced by SF density. PMID:28349952

  12. Co-delivery and controlled release of stromal cell-derived factor-1α chemically conjugated on collagen scaffolds enhances bone morphogenetic protein-2-driven osteogenesis in rats

    PubMed Central

    SUN, HAIPENG; WANG, JINMING; DENG, FEILONG; LIU, YUN; ZHUANG, XIUMEI; XU, JIAYUN; LI, LONG

    2016-01-01

    There has been considerable focus in investigations on the delivery systems and clinical applications of bone morphogenetic protein-2 (BMP-2) for novel bone formation. However, current delivery systems require high levels of BMP-2 to exert a biological function. There are several concerns in using of high levels of BMP-2, including safety and the high cost of treatment. Therefore, the development of strategies to decrease the levels of BMP-2 required in these delivery systems is required. In our previous studies, a controlled-release system was developed, which used Traut's reagent and the cross-linker, 4-(N-maleimi-domethyl) cyclohexane-1-carboxylic acid 3-sulfo-N-hydroxysuccinimide ester sodium salt (Sulfo-SMCC), to chemically conjugate BMP-2 directly on collagen discs. In the current study, retention efficiency and release kinetics of stromal cell-derived factor-1α (SDF-1α) cross-linked on collagen scaffolds were detected. In addition, the osteogenic activity of SDF-1α and suboptimal doses of BMP-2 cross-linked on collagen discs following subcutaneous implantation in rats were evaluated. Independent two-tailed t-tests and one-way analysis of variance were used for analysis. In the present study, the controlled release of SDF-1α chemically conjugated on collagen scaffolds was demonstrated. By optimizing the concentrations of Traut's reagent and the Sulfo-SMCC cross-linker, a significantly higher level of SDF-1α was covalently retained on the collagen scaffold, compared with that retained using a physical adsorption method. Mesenchymal stem cell homing indicated that the biological function of the SDF-1α cross-linked on the collagen scaffolds remained intact. In rats, co-treatment with SDF-1α and a suboptimal dose of BMP-2 cross-linked on collagen scaffolds using this chemically conjugated method induced higher levels of ectopic bone formation, compared with the physical adsorption method. No ectopic bone formation was observed following treatment with a

  13. Expression of platelet-bound stromal-cell derived factor-1 (SDF-1) and number of CD34(+) progenitor cells in patients with congestive heart failure.

    PubMed

    Jorbenadze, Rezo; Schleicher, Erwin; Bigalke, Boris; Stellos, Konstantinos; Gawaz, Meinrad

    2014-01-01

    Platelet-bound stromal cell-derived factor-1 (SDF-1) plays a crucial role in attachment of circulating CD34(+) progenitor cells to the vascular wall, facilitating tissue healing after injury. However there is no evidence about expression of platelet-bound SDF-1 in patients with congestive heart failure (CHF). The aim of our study was to evaluate expression of platelet-bound SDF-1 and number of CD34(+) progenitor cells in patients with CHF. Forty-eight patients with idiopathic dilated cardiomyopathy (DCM) and 61 patients with ischaemic cardiomyopathy (ICM) were consecutively enrolled into the study. Blood taken from 109 consecutive patients was studied for surface expression of platelet-bound SDF-1 and number of CD34(+) progenitor cells by flow cytometry. The highest expression of platelet-bound SDF-1 was observed in patients with severe impairment of left ventricular systolic function compared with patients with mild or moderate impairment of left ventricular systolic function (mild vs. moderate vs. severe impairment of left ventricular systolic function: MFI ± SD: 35.6 ± 34 vs. 101.45 ± 73 vs. 124.86 ± 86.7, Kruskal-Wallis p < 0.001). Similar to platelet-bound SDF-1 number of CD34(+) progenitor cells was the highest in severe impairment of left ventricular systolic function (mild vs. moderate vs. severe impairment of left ventricular systolic function: mean ± SD: 260.4 ± 177.5 vs. 580.7 ± 340.5 vs. 640.82 ± 370.6, Kruskal-Wallis p < 0.001). Platelet-bound SDF-1 expression was associated with number of circulating CD34(+) progenitor cells (r = 0.454, p < 0.001) in patients with CHF. Expression of platelet-bound SDF-1 and number of CD34(+) cells were higher in patients with DCM compared with patients with ICM (p < 0.001 for both) and inversely correlated with age and aspirin therapy. Platelet-bound SDF-1 and CD34(+) progenitor cells are especially increased in patients with severe impairment of left

  14. Modulation of Stromal Cell-Derived Factor-1/CXC Chemokine Receptor 4 Axis Enhances rhBMP-2-Induced Ectopic Bone Formation

    PubMed Central

    Wise, Joel K.; Sumner, Dale Rick

    2012-01-01

    Enhancement of in vivo mobilization and homing of endogenous mesenchymal stem cells (MSCs) to an injury site is an innovative strategy for improvement of bone tissue engineering and repair. The present study was designed to determine whether mobilization by AMD3100 and/or local homing by delivery of stromal cell-derived factor-1 (SDF-1) enhances recombinant human bone morphogenetic protein-2 (rhBMP-2) induced ectopic bone formation in an established rat model. Rats received an injection of either saline or AMD3100 treatment 1 h before harvesting of bone marrow for in vitro colony-forming unit-fibroblasts (CFU-F) culture or the in vivo subcutaneous implantation of absorbable collagen sponges (ACSs) loaded with saline, recombinant human bone morphogenetic protein-2 (rhBMP-2), SDF-1, or the combination of SDF-1 and rhBMP-2. AMD3100 treatment resulted in a significant decrease in CFU-F number, compared with saline, which confirmed that a single systemic AMD3100 treatment rapidly mobilized MSCs from the bone marrow. At 28 and 56 days, bone formation in the explanted ACS was assessed by microcomputed tomography (μCT) and histology. At 28 days, AMD3100 and/or SDF-1 had no statistically significant effect on bone volume (BV) or bone mineral content (BMC), but histology revealed more active bone formation with treatment of AMD3100, loading of SDF-1, or the combination of both AMD3100 and SDF-1, compared with saline-treated rhBMP-2 loaded ACS. At 56 days, the addition of AMD3100 treatment, loading of SDF-1, or the combination of both resulted in a statistically significant stimulatory effect on BV and BMC, compared with the saline-treated rhBMP-2 loaded ACS. Histology of the 56-day ACS were consistent with the μCT analysis, exhibiting more mature and mineralized bone formation with AMD3100 treatment, SDF-1 loading, or the combination of both, compared with the saline-treated rhBMP-2 loaded ACS. The present study is the first that provides evidence of the efficacy of AMD

  15. Noncontiguous domains of the alpha-factor receptor of yeasts confer ligand specificity.

    PubMed

    Sen, M; Marsh, L

    1994-01-14

    The Saccharomyces cerevisiae alpha-factor receptor has a 3400-fold higher affinity for the S. cerevisiae alpha-factor peptide (c-alpha-f) than for the Saccharomyces kluyveri alpha-factor peptide (k-alpha-f) as determined by competition for [3H] c-alpha-f binding. The S. kluyveri alpha-factor receptor has an approximately 2-fold higher affinity for k-alpha-f than for c-alpha-f. The S. kluyveri receptor gene (k-STE2) is incompletely regulated by S. cerevisiae mating type and poorly expressed on the surface of an S. cerevisiae mating type a strain. A chimeric receptor (c/k1) with amino acid residues 1-45 derived from S. cerevisiae and amino acid residues 46-427 from S. kluyveri exhibits the binding specificity of the S. kluyveri receptor. However, chimeric receptors containing residues 1-168 (c/k2) or 1-250 (c/k3) from S. cerevisiae and the remainder from the S. kluyveri receptor exhibit specificities similar to one another, but intermediate between the parent S. cerevisiae and S. kluyveri receptors. The relative ability of c-alpha-f and k-alpha-f to induce growth arrest in strains expressing chimeric receptors parallels relative affinity. Thus, two noncontiguous domains that include putative extracellular loops 1 and 3 and associated transmembrane segments, but exclude the extracellular NH2 terminus and loop 2, appear to contribute to alpha-factor receptor ligand specificity. COOH-terminal regions of the S. kluyveri receptor appear to confer a desensitization defect when expressed in S. cerevisiae. The S. cerevisiae receptor truncated at residue 296 retains ligand specificity for growth arrest.

  16. Neurogenic differentiation factor NeuroD confers protection against radiation-induced intestinal injury in mice

    PubMed Central

    Li, Ming; Du, Aonan; Xu, Jing; Ma, Yanchao; Cao, Han; Yang, Chao; Yang, Xiao-Dong; Xing, Chun-Gen; Chen, Ming; Zhu, Wei; Zhang, Shuyu; Cao, Jianping

    2016-01-01

    The gastrointestinal tract, especially the small intestine, is particularly sensitive to radiation, and is prone to radiation-induced injury as a result. Neurogenic differentiation factor (NeuroD) is an evolutionarily-conserved basic helix-loop-helix (bHLH) transcription factor. NeuroD contains a protein transduction domain (PTD), which allows it to be exogenously delivered across the membrane of mammalian cells, whereupon its transcription activity can be unleashed. Whether NeuroD has therapeutic effects for radiation-induced injury remains unclear. In the present study, we prepared a NeuroD-EGFP recombinant protein, and explored its protective effects on the survival and intestinal damage induced by ionizing radiation. Our results showed that NeuroD-EGFP could be transduced into small intestine epithelial cells and tissues. NeuroD-EGFP administration significantly increased overall survival of mice exposed to lethal total body irradiation (TBI). This recombinant NeuroD also reduced radiation-induced intestinal mucosal injury and apoptosis, and improved crypt survival. Expression profiling of NeuroD-EGFP-treated mice revealed upregulation of tissue inhibitor of metalloproteinase 1 (TIMP-1), a known inhibitor of apoptosis in mammalian cells. In conclusion, NeuroD confers protection against radiation-induced intestinal injury, and provides a novel therapeutic clinical option for the prevention of intestinal side effects of radiotherapy and the treatment of victims of incidental exposure. PMID:27436572

  17. Mutational activation of BRAF confers sensitivity to transforming growth factor beta inhibitors in human cancer cells

    PubMed Central

    Spender, Lindsay C.; Ferguson, G. John; Liu, Sijia; Cui, Chao; Girotti, Maria Romina; Sibbet, Gary; Higgs, Ellen B.; Shuttleworth, Morven K.; Hamilton, Tom; Lorigan, Paul; Weller, Michael; Vincent, David F.; Sansom, Owen J.; Frame, Margaret; Dijke, Peter ten; Marais, Richard; Inman, Gareth J.

    2016-01-01

    Recent data implicate elevated transforming growth factor-β (TGFβ) signalling in BRAF inhibitor drug-resistance mechanisms, but the potential for targeting TGFβ signalling in cases of advanced melanoma has not been investigated. We show that mutant BRAFV600E confers an intrinsic dependence on TGFβ/TGFβ receptor 1 (TGFBR1) signalling for clonogenicity of murine melanocytes. Pharmacological inhibition of the TGFBR1 blocked the clonogenicity of human mutant BRAF melanoma cells through SMAD4-independent inhibition of mitosis, and also inhibited metastasis in xenografted zebrafish. When investigating the therapeutic potential of combining inhibitors of mutant BRAF and TGFBR1, we noted that unexpectedly, low-dose PLX-4720 (a vemurafenib analogue) promoted proliferation of drug-naïve melanoma cells. Pharmacological or pharmacogenetic inhibition of TGFBR1 blocked growth promotion and phosphorylation of SRC, which is frequently associated with vemurafenib-resistance mechanisms. Importantly, vemurafenib-resistant patient derived cells retained sensitivity to TGFBR1 inhibition, suggesting that TGFBR1 could be targeted therapeutically to combat the development of vemurafenib drug-resistance. PMID:27835901

  18. What's New in Gastrointestinal Stromal Tumor Research and Treatment?

    MedlinePlus

    ... Stromal Tumor (GIST) About Gastrointestinal Stromal Tumor What’s New in Gastrointestinal Stromal Tumor Research and Treatment? There ... the Key Statistics About Gastrointestinal Stromal Tumors? What’s New in Gastrointestinal Stromal Tumor Research and Treatment? More ...

  19. RhoA and Rac1 GTPases play major and differential roles in stromal cell–derived factor-1–induced cell adhesion and chemotaxis in multiple myeloma

    PubMed Central

    Azab, Abdel Kareem; Azab, Feda; Blotta, Simona; Pitsillides, Costas M.; Thompson, Brian; Runnels, Judith M.; Roccaro, Aldo M.; Ngo, Hai T.; Melhem, Molly R.; Sacco, Antonio; Jia, Xiaoying; Anderson, Kenneth C.; Lin, Charles P.; Rollins, Barrett J.

    2009-01-01

    The interaction of multiple myeloma (MM) cells with the bone marrow (BM) milieu plays a crucial role in MM pathogenesis. Stromal cell–derived factor-1 (SDF1) regulates homing of MM cells to the BM. In this study, we examined the role of RhoA and Rac1 GTPases in SDF1-induced adhesion and chemotaxis of MM. We found that both RhoA and Rac1 play key roles in SDF1-induced adhesion of MM cells to BM stromal cells, whereas RhoA was involved in chemotaxis and motility. Furthermore, both ROCK and Rac1 inhibitors reduced SDF1-induced polymerization of actin and activation of LIMK, SRC, FAK, and cofilin. Moreover, RhoA and Rac1 reduced homing of MM cells to BM niches. In conclusion, we characterized the role of RhoA and Rac1 GTPases in SDF1-induced adhesion, chemotaxis, and homing of MM cells to the BM, providing the framework for targeting RhoA and Rac1 GTPases as novel MM therapy. PMID:19443661

  20. Interactions between stromal cell--derived keratinocyte growth factor and epithelial transforming growth factor in immune-mediated crypt cell hyperplasia.

    PubMed Central

    Bajaj-Elliott, M; Poulsom, R; Pender, S L; Wathen, N C; MacDonald, T T

    1998-01-01

    Immune reactions in the gut are associated with increased epithelial cell proliferation. Here we have studied the role of keratinocyte growth factor (KGF; FGF7) and transforming growth factor-alpha (TGF-alpha) in the epithelial cell hyperplasia seen in explants of fetal human small intestine after activation of lamina propria T cells with the superantigen Staphylococcus aureus enterotoxin B (SEB). After the addition of SEB to the explants there is a 10-fold increase in KGF mRNA by 72 h of culture. KGF transcripts were abundant in the lamina propria using in situ hybridization and the culture supernatants contained elevated amounts of KGF protein. SEB had no direct effect on KGF mRNA and protein production by cultured lamina propria mesenchymal cells, but both were upregulated by TNF-alpha. Accompanying the increase in KGF there was also an increase in TGF-alpha precursor proteins in the culture supernatants and the phosphorylated form of the EGFR receptor was also detected in the tissue. Increased TGF-alpha precursor proteins were also detected in the supernatants of control explants stimulated with KGF alone. The direct addition of KGF and TGF-alpha enhanced epithelial cell proliferation and antibodies against KGF and TGF-alpha partially inhibited SEB-induced crypt hyperplasia. These results suggest molecular cross-talk between the KGF/KGFR and the TGF-alpha/EGFR in immune-mediated crypt cell hyperplasia. PMID:9788959

  1. Effect of hydrocortisone on multipotent human mesenchymal stromal cells.

    PubMed

    Shipunova, N N; Petinati, N A; Drize, N I

    2013-05-01

    We studied the effect of natural glucocorticosteroid hydrocortisone on total cell production, cloning efficiency, and expression of genes important for the function of mesenchymal stromal cells. Addition of hydrocortisone to the culture medium reduces the total cell yield by 2 times and significantly increased cloning efficiency by 2-3 times; this effect was more pronounced in multipotent mesenchymal stromal cells obtained from female donors. Hydrocortisone had no effect on the expression of immunomodulatory factors produced by multipotent mesenchymal stromal cells. Hydrocortisone inhibits the expression of bone differentiation markers, increases the expression of the early adipocyte differentiation marker at the beginning of culturing, and dramatically stimulates the expression of the late adipocyte differentiation marker throughout the culturing period. The findings suggest that hydrocortisone activates multipotent mesenchymal stromal cells.

  2. The Role of Stromally Produced Cathepsin D in Promoting Prostate Tumorigenesis

    DTIC Science & Technology

    2014-11-01

    beta (TGF-β) and stromal cell derived factor-1 ( SDF -1) as being overexpressed in CAF cells. These factors were 11 Figure 7. Stromal specific...expressed in cancer associated fibroblasts (CAFs) (including cyclin D1 [CD1], TGFß and SDF -1) induce tumorigenesis and malignant transformation in tissue

  3. Multipotent human stromal cells improve cardiac function after myocardial infarction in mice without long-term engraftment

    SciTech Connect

    Iso, Yoshitaka; Spees, Jeffrey L.; E-mail: Jeffrey.Spees@uvm.edu; Serrano, Claudia; Bakondi, Benjamin; Pochampally, Radhika; Song, Yao-Hua; Sobel, Burton E.; Delafontaine, Patrick; Prockop, Darwin J. . E-mail: dprocko@tulane.edu

    2007-03-16

    The aim of this study was to determine whether intravenously administered multipotent stromal cells from human bone marrow (hMSCs) can improve cardiac function after myocardial infarction (MI) without long-term engraftment and therefore whether transitory paracrine effects or secreted factors are responsible for the benefit conferred. hMSCs were injected systemically into immunodeficient mice with acute MI. Cardiac function and fibrosis after MI in the hMSC-treated group were significantly improved compared with controls. However, despite the cardiac improvement, there was no evident hMSC engraftment in the heart 3 weeks after MI. Microarray assays and ELISAs demonstrated that multiple protective factors were expressed and secreted from the hMSCs in culture. Factors secreted by hMSCs prevented cell death of cultured cardiomyocytes and endothelial cells under conditions that mimicked tissue ischemia. The favorable effects of hMSCs appear to reflect the impact of secreted factors rather than engraftment, differentiation, or cell fusion.

  4. Dose-dependent insulin regulation of insulin-like growth factor binding protein-1 in human endometrial stromal cells is mediated by distinct signaling pathways.

    PubMed

    Lathi, R B; Hess, A P; Tulac, S; Nayak, N R; Conti, M; Giudice, L C

    2005-03-01

    IGF binding protein-1 (IGFBP-1) is a major product of decidualized human endometrial stromal cells and decidua, and as a modulator of IGF action and/or by independent mechanisms, it regulates cell growth and differentiation and embryonic implantation in these tissues. IGFBP-1 secretion is primarily stimulated by progesterone and cAMP and is inhibited by insulin and IGFs. The signaling pathways mediating the latter are not well defined, and the current study was conducted to determine which pathways mediate the effects of insulin on IGFBP-1 mRNA and protein expression by human endometrial stromal cells decidualized in vitro by progesterone. Cells were cultured and treated with different combinations of insulin; wortmannin, an inhibitor of the phosphatidylinositide-3-kinase (PI3-kinase) pathway; and PD98059, an inhibitor of the MAPK pathway. IGFBP-1 mRNA was determined by real-time PCR, and protein secretion in the conditioned medium was measured by ELISA. Activation of the PI3-kinase and the MAPK pathways was assessed by the detection of phosphorylated AKT and ERK in Western blots, respectively. Insulin inhibited IGFBP-1 mRNA and protein secretion in a dose-dependent fashion, with an ED(50) for the latter 0.127 ng/ml (21.6 pm). Inhibitor studies revealed that at low doses, insulin acts through the PI3-kinase pathway, whereas at higher levels it also activates the MAPK pathway in the inhibition of IGFBP-1. The data demonstrate that human endometrium is a target for insulin action in the regulation of IGFBP-1. At physiological levels insulin likely plays a homeostatic role for energy metabolism in the endometrium, and in hyperinsulinemic states, insulin action on the endometrium may activate cellular mitosis via the MAPK pathway and perhaps predispose this tissue to hyperplasia and/or cancer.

  5. Epidemiology, natural history, and risk factors: panel report from the Ninth International Research Conference on Otitis Media.

    PubMed

    Daly, Kathleen A; Hoffman, Howard J; Kvaerner, Kari Jorunn; Kvestad, Ellen; Casselbrant, Margaretha L; Homoe, Preben; Rovers, Maroeska M

    2010-03-01

    The 2007 Recent Advances in Otitis Media Research Conference Panel Report provides an update on otitis media (OM) research published from 2003 to 2007. This report summarizes important trends in disease incidence and prevalence, describes established and newly identified risk factors for acute and chronic OM and OM with effusion, and conveys information on newly discovered genetic factors. In this report, researchers have described declining rates of OM diagnosis, antibiotic prescriptions, offices visits for OM, and middle ear surgery since the licensure and routine use of pneumococcal conjugate vaccine in infants. The panel report also recommends short and long term goals for current and future OM research.

  6. Abstracts presented at the 7th World Alliance for Risk Factor Surveillance (WARFS) Global Conference. October 16-19, 2011. Toronto, Ontario, Canada.

    PubMed

    2012-01-01

    The 7th World Alliance for Risk Factor Surveillance (WARFS) Global Conference, hosted by the Public Health Agency of Canada, was held in Toronto, Ontario, Canada, from October 16 to 19, 2011. Previous WARFS conferences were held in USA (1999), Finland (2001), Australia (2003), Uruguay (2005) and Italy (2007, 2009). WARFS is a global working group on surveillance under the International Union for Health Promotion and Education (IUHPE) It supports the development of risk factor surveillance as a tool for evidence-based public health, acknowledging the importance of this source of information to inform, monitor and evaluate disease prevention and health promotion policies and programs. The theme of the 2011 Global Conference was the role of surveillance in the promotion of health. The Global Conference had 146 registered participants, making it the second most attended WARFS conference in its history. Over the three days, participants attended oral and poster presentations from 30 countries. The conference would not have been possible without the hard work of the International Scientific Committee and the Local Organizing Committee. To highlight the importance and the significance of this conference at an international level, Chronic Diseases and Injuries in Canada (CDIC) is pleased to publish this supplementary issue, which contains 70 abstracts presented at the 7th WARFS Global Conference. In the spirit the Global Conference, this collection of abstracts brings together surveillance material on risk factors, chronic diseases, infectious diseases and injuries from around the world. By making these abstracts widely available, CDIC hopes to further the conference objectives through a continued dialogue between those interested in linking risk factor surveillance to health promotion.

  7. Traumatic ulcerative granuloma with stromal eosinophilia - Mystery of pathogenesis revisited.

    PubMed

    Sarangarajan, R; Vaishnavi Vedam, V K; Sivadas, G; Sarangarajan, Anuradha; Meera, S

    2015-08-01

    Oral ulcers are a common symptom in clinical practice. Among various causative factors, different types of ulcers in oral cavity exist. Among this, traumatic ulcerative granuloma with stromal eosinophilia (TUGSE) appears to be quite neglected by the clinicians due to the limited knowledge and awareness. On reviewing with a detailed approach to titles and abstracts of articles eliminating duplicates, 40 relevant articles were considered. Randomized studies, review articles, case reports and abstracts were included while conference papers and posters were excluded. Of importance, TUGSE cases been reported only to a minimal extent in the literature. Lack of its awareness tends to lead clinicians to a misconception of cancer. Thus, this particular lesion needs to be differentiated from other malignant lesions to provide a proper mode of treatment. The present article reviews various aspects of the TUGSE with emphasis on the clinical manifestation, pathogenesis, histological, and immunohistochemical study. This study provides the clinician contemporaries, a humble expansion to their knowledge of the disease, based on the searched literature, enabling a more comprehensive management of this rare occurrence.

  8. Efficient generation of smooth muscle cells from adipose-derived stromal cells by 3D mechanical stimulation can substitute the use of growth factors in vascular tissue engineering.

    PubMed

    Parvizi, Mojtaba; Bolhuis-Versteeg, Lydia A M; Poot, André A; Harmsen, Martin C

    2016-07-01

    Occluding artery disease causes a high demand for bioartificial replacement vessels. We investigated the combined use of biodegradable and creep-free poly (1,3-trimethylene carbonate) (PTMC) with smooth muscle cells (SMC) derived by biochemical or mechanical stimulation of adipose tissue-derived stromal cells (ASC) to engineer bioartificial arteries. Biochemical induction of cultured ASC to SMC was done with TGF-β1 for 7d. Phenotype and function were assessed by qRT-PCR, immunodetection and collagen contraction assays. The influence of mechanical stimulation on non-differentiated and pre-differentiated ASC, loaded in porous tubular PTMC scaffolds, was assessed after culturing under pulsatile flow for 14d. Assays included qRT-PCR, production of extracellular matrix and scanning electron microscopy. ASC adhesion and TGF-β1-driven differentiation to contractile SMC on PTMC did not differ from tissue culture polystyrene controls. Mesenchymal and SMC markers were increased compared to controls. Interestingly, pre-differentiated ASC had only marginal higher contractility than controls. Moreover, in 3D PTMC scaffolds, mechanical stimulation yielded well-aligned ASC-derived SMC which deposited ECM. Under the same conditions, pre-differentiated ASC-derived SMC maintained their SMC phenotype. Our results show that mechanical stimulation can replace TGF-β1 pre-stimulation to generate SMC from ASC and that pre-differentiated ASC keep their SMC phenotype with increased expression of SMC markers.

  9. Targeting stromal androgen receptor suppresses prolactin-driven benign prostatic hyperplasia (BPH).

    PubMed

    Lai, Kuo-Pao; Huang, Chiung-Kuei; Fang, Lei-Ya; Izumi, Kouji; Lo, Chi-Wen; Wood, Ronald; Kindblom, Jon; Yeh, Shuyuan; Chang, Chawnshang

    2013-10-01

    Stromal-epithelial interaction plays a pivotal role to mediate the normal prostate growth, the pathogenesis of benign prostatic hyperplasia (BPH), and prostate cancer development. Until now, the stromal androgen receptor (AR) functions in the BPH development, and the underlying mechanisms remain largely unknown. Here we used a genetic knockout approach to ablate stromal fibromuscular (fibroblasts and smooth muscle cells) AR in a probasin promoter-driven prolactin transgenic mouse model (Pb-PRL tg mice) that could spontaneously develop prostate hyperplasia to partially mimic human BPH development. We found Pb-PRL tg mice lacking stromal fibromuscular AR developed smaller prostates, with more marked changes in the dorsolateral prostate lobes with less proliferation index. Mechanistically, prolactin mediated hyperplastic prostate growth involved epithelial-stromal interaction through epithelial prolactin/prolactin receptor signals to regulate granulocyte macrophage-colony stimulating factor expression to facilitate stromal cell growth via sustaining signal transducer and activator of transcription-3 activity. Importantly, the stromal fibromuscular AR could modulate such epithelial-stromal interacting signals. Targeting stromal fibromuscular AR with the AR degradation enhancer, ASC-J9(®), led to the reduction of prostate size, which could be used in future therapy.

  10. Angiotensin II enhances epithelial-to-mesenchymal transition through the interaction between activated hepatic stellate cells and the stromal cell-derived factor-1/CXCR4 axis in intrahepatic cholangiocarcinoma.

    PubMed

    Okamoto, Koichi; Tajima, Hidehiro; Nakanuma, Shinichi; Sakai, Seisho; Makino, Isamu; Kinoshita, Jun; Hayashi, Hironori; Nakamura, Keishi; Oyama, Katsunobu; Nakagawara, Hisatoshi; Fujita, Hideto; Takamura, Hiroyuki; Ninomiya, Itasu; Kitagawa, Hirohisa; Fushida, Sachio; Fujimura, Takashi; Harada, Shinichi; Wakayama, Tomohiko; Iseki, Shoichi; Ohta, Tetsuo

    2012-08-01

    We previously reported that hepatic stellate cells (HSCs) activated by angiotensin II (AngII) facilitate stromal fibrosis and tumor progression in intrahepatic cholangiocarcinoma (ICC). AngII has been known as a growth factor which can promote epithelial-to-mesenchymal transition (EMT) in renal epithelial cells, alveolar epithelial cells and peritoneal mesothelial cells. However, in the past, the relationship between AngII and stromal cell-derived factor-1 (SDF-1) in the microenvironment around cancer and the role of AngII on EMT of cancer cells has not been reported in detail. SDF-1 and its specific receptor, CXCR4, are now receiving attention as a mechanism of cell progression and metastasis. In this study, we examined whether activated HSCs promote tumor fibrogenesis, tumor progression and distant metastasis by mediating EMT via the AngII/AngII type 1 receptor (AT-1) and the SDF-1/CXCR4 axis. Two human ICC cell lines and a human HSC line, LI-90, express CXCR4. Significantly higher concentration of SDF-1α was released into the supernatant of LI-90 cells to which AngII had been added. SDF-1α increased the proliferative activity of HSCs and enhanced the activation of HSCs as a growth factor. Furthermore, addition of SDF-1α and AngII enhanced the increase of the migratory capability and vimentin expression, reduced E-cadherin expression, and translocated the expression of β-catenin into the nucleus and cytoplasm in ICC cells. Co-culture with HSCs also enhanced the migratory capability of ICC cells. These findings suggest that SDF-1α, released from activated HSCs and AngII, play important roles in cancer progression, tumor fibrogenesis, and migration in autocrine and paracrine fashion by mediating EMT. Our mechanistic findings may provide pivotal insights into the molecular mechanism of the AngII and SDF-1α-initiated signaling pathway that regulates fibrogenesis in cancerous stroma, tumor progression and meta-stasis of tumor cells expressing AT-1 and CXCR4.

  11. Ex Vivo Stromal Cell-Derived Factor 1-Mediated Differentiation of Mouse Bone Marrow Mesenchymal Stem Cells into Hepatocytes Is Enhanced by Chinese Medicine Yiguanjian Drug-Containing Serum

    PubMed Central

    Fu, Linlin; Pang, Bingyao; Zhu, Ying; Wang, Ling; Leng, Aijing; Chen, Hailong

    2016-01-01

    Yiguanjian is administered in traditional Chinese medicine for liver diseases and has been demonstrated to reduce liver fibrosis. This study investigated the effect of Yiguanjian drug-containing serum (YGJ) with Stromal Cell-Derived Factor 1 (SDF-1) and Hepatocyte Growth Factor (HGF) on the differentiation of murine bone-marrow-derived mesenchymal cells (BM-MSCs) into hepatocytes in vitro. Adherent MSCs were isolated from murine bone marrow. Differentiation was induced by 20 ng/mL HGF, 50 ng/mL SDF-1, and 20% Yiguanjian drug-containing serum for 7 to 28 days, and mature hepatocytes' marker albumin (ALB) and cholangiocytes' marker cytokeratin-18 (CK-18) were assessed by immunocytochemistry and western blot. BM-MSCs exhibited homogeneous spindle shape growth after subculture and stained positive for CD90 and negative for CD34. After induction with HGF + normal serum or YGJ for 14 days, HGF + SDF-1 + normal serum for 7 days, or HGF + SDF-1 + YGJ for 5 days, MSCs' morphology changed gradually and begun to resemble hepatocyte-like cells. Cultures supplemented with HGF + SDF-1 + YGJ contained significantly higher proportions of ALB and CK-18 positive cells than cultures supplemented with HGF + SDF-1 + normal serum at day 7. These observations corroborated the results of western blot. In conclusion, Yiguanjian drug-containing serum could facilitate the differentiation of murine BM-MSCs into hepatocytes in vitro and has a synergistic effect with SDF-1 and HGF. PMID:27190538

  12. Upregulation of long non-coding RNA HIF 1α-anti-sense 1 induced by transforming growth factor-β-mediated targeting of sirtuin 1 promotes osteoblastic differentiation of human bone marrow stromal cells

    PubMed Central

    XU, YAO; WANG, SHILONG; TANG, CHAOLIANG; CHEN, WENJUN

    2015-01-01

    The present study aimed to investigate the regulatory mechanism of long non-coding RNA hypoxia-inducible factor 1α-anti-sense 1 (lncRNA HIF1α-AS1) in osteoblast differentiation as well as its targeting by sirtuin 1 (SIRT1), which may be inhibited by transforming growth factor (TGF)-β in bone marrow stromal cells (BMSCs). Real-time polymerase chain reaction (PCR), western blot analysis, lncRNA PCR arrays and chromatin immunoprecipitation were performed in order to examine the interference of SIRT1 expression by TGF-β, the effects of SIRT1 overexpression on lncRNA HIF1α-AS1 and the regulation of the expression of homeobox (HOX)D10, which promotes BMSC differentiation, by lncRNA HIF1α-AS1. The results showed that TGF-β interfered with SIRT1 expression. Furthermore, lncRNA HIF1α-AS1 was significantly downregulated following overexpression of SIRT1. In addition, low expression of HIF1α-AS1 was sufficient to block the expression of HOXD10. The present study further demonstrated that downregulation of HOXD10 by HIF1α-AS1 interfered with acetylation, and subsequently resulted in the inhibition of osteoblast differentiation. These results suggested that HIF1α-AS1 is an essential mediator of osteoblast differentiation, and may thus represent a gene-therapeutic agent for the treatment of human bone diseases. PMID:26460121

  13. Stromal cells in chronic inflammation and tertiary lymphoid organ formation.

    PubMed

    Buckley, Christopher D; Barone, Francesca; Nayar, Saba; Bénézech, Cecile; Caamaño, Jorge

    2015-01-01

    Inflammation is an unstable state. It either resolves or persists. Why inflammation persists and the factors that define tissue tropism remain obscure. Increasing evidence suggests that tissue-resident stromal cells not only provide positional memory but also actively regulate the differential accumulation of inflammatory cells within inflamed tissues. Furthermore, at many sites of chronic inflammation, structures that mimic secondary lymphoid tissues are observed, suggesting that chronic inflammation and lymphoid tissue formation share common activation programs. Similarly, blood and lymphatic endothelial cells contribute to tissue homeostasis and disease persistence in chronic inflammation. This review highlights our increasing understanding of the role of stromal cells in inflammation and summarizes the novel immunological role that stromal cells exert in the persistence of inflammatory diseases.

  14. Mesenchymal stromal cell cryopreservation.

    PubMed

    Renzi, Sabrina; Lombardo, Tina; Dotti, Silvia; Dessì, Sara S; De Blasio, Pasquale; Ferrari, Maura

    2012-06-01

    The advent of stem cells and stem cell-based therapies for specific diseases requires particular knowledge of laboratory procedures, which not only guarantee the continuous production of cells, but also provide them an identity and integrity as close as possible to their origin. Their cryopreservation at temperatures below -80°C and typically below -140°C is of paramount importance. This target can be achieved by incorporating high molar concentrations of cryoprotectant mixtures that preserve cells from deleterious ice crystal formation. Usually, dimethyl sulfoxide (DMSO) and animal proteins are used as protectant reagents, but unexpected changes in stem cell fate and downstream toxicity effects have been reported, limiting their wide use in clinical settings. In scientific reviews, there are not much data regarding viability of mesenchymal stromal cells (MSCs) after the freezing/thawing process. During our routine analysis, a poor resistance to cryopreservation of these cells was observed, as well as their weak ability to replicate. This is an important point in the study of MSCs; moreover, it represents a limit for preservation and long-term storage. For this reason, MSCs isolated from equine, ovine, and rodent bone marrow and equine adipose tissue were compared using different cryopreservation solutions for this study of vitality. Our findings showed the best results regarding cell viability using a solution of fetal bovine serum with addition of 10% DMSO. In particular, we noted an increase in survival of equine bone marrow MSCs. This parameter has been evaluated by Trypan blue staining at fixed times (0, 24, and 48 hours post-thaw). This result highlights the fact that equine bone marrow MSCs are the frailest we analyzed. Therefore, it could be useful to delve further into this topic in order to improve the storage possibility for these cells and their potential use in cell-based therapies.

  15. Analysis of genetic polymorphisms in CCR5, CCR2, stromal cell-derived factor-1, RANTES, and dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin in seronegative individuals repeatedly exposed to HIV-1.

    PubMed

    Liu, Huanliang; Hwangbo, Yon; Holte, Sarah; Lee, Jean; Wang, Chunhui; Kaupp, Nicole; Zhu, Haiying; Celum, Connie; Corey, Lawrence; McElrath, M Juliana; Zhu, Tuofu

    2004-09-15

    To determine the influence of host genetics on human immunodeficiency virus (HIV) type 1 infection, we examined 94 repeatedly exposed seronegative (ES) individuals for polymorphisms in multiple genes and compared the results with those for 316 HIV-1-seropositive and 425 HIV-1-seronegative individuals. The frequency of homozygous C-C chemokine receptor (CCR) 5- Delta 32 was higher in ES (3.2%) than in HIV-1-seropositive individuals (0.0%; P=.012). However, the CCR5-59029A, CCR2-64I, stromal cell-derived factor (SDF)-1-3'A, RANTES (regulated on activation, normally T cell-expressed and -secreted)-403A, and RANTES-28G polymorphisms were not associated with resistance to HIV-1 infection. Furthermore, we identified novel variants in the DC-SIGN (dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin) repeat region and observed that heterozygous DC-SIGN reduced the risk of HIV-1 infection (3.2% in ES individuals vs. 0.0% in HIV-1-seropositive individuals; P=.011).

  16. A role for the Rho-p160 Rho coiled-coil kinase axis in the chemokine stromal cell-derived factor-1alpha-induced lymphocyte actomyosin and microtubular organization and chemotaxis.

    PubMed

    Vicente-Manzanares, Miguel; Cabrero, José Román; Rey, Mercedes; Pérez-Martínez, Manuel; Ursa, Angeles; Itoh, Kazuyuki; Sánchez-Madrid, Francisco

    2002-01-01

    The possible involvement of the Rho-p160ROCK (Rho coiled-coil kinase) pathway in the signaling induced by the chemokine Stromal cell-derived factor (SDF)-1alpha has been studied in human PBL. SDF-1alpha induced activation of RhoA, but not that of Rac. RhoA activation was followed by p160ROCK activation mediated by RhoA, which led to myosin light chain (MLC) phosphorylation, which was dependent on RhoA and p160ROCK activities. The kinetics of MLC activation was similar to that of RhoA and p160ROCK. The role of this cascade in overall cell morphology and functional responses to the chemokine was examined employing different chemical inhibitors. Inhibition of either RhoA or p160ROCK did not block SDF-1alpha-induced short-term actin polymerization, but induced the formation of long spikes arising from the cell body, which were found to be microtubule based. This morphological change was associated with an increase in microtubule instability, which argues for an active microtubule polymerization in the formation of these spikes. Inhibition of the Rho-p160ROCK-MLC kinase signaling cascade at different steps blocked lymphocyte migration and the chemotaxis induced by SDF-1alpha. Our results indicate that the Rho-p160ROCK axis plays a pivotal role in the control of the cell shape as a step before lymphocyte migration toward a chemotactic gradient.

  17. Changes in ventricular remodelling and clinical status during the year following a single administration of stromal cell-derived factor-1 non-viral gene therapy in chronic ischaemic heart failure patients: the STOP-HF randomized Phase II trial

    PubMed Central

    Chung, Eugene S.; Miller, Leslie; Patel, Amit N.; Anderson, Russell David; Mendelsohn, Farrell O.; Traverse, Jay; Silver, Kevin H.; Shin, Julia; Ewald, Gregory; Farr, Mary Jane; Anwaruddin, Saif; Plat, Francis; Fisher, Scott J.; AuWerter, Alexander T.; Pastore, Joseph M.; Aras, Rahul; Penn, Marc S.

    2015-01-01

    Background Stromal cell-derived factor-1 (SDF-1) promotes tissue repair through mechanisms of cell survival, endogenous stem cell recruitment, and vasculogenesis. Stromal Cell-Derived Factor-1 Plasmid Treatment for Patients with Heart Failure (STOP-HF) is a Phase II, double-blind, randomized, placebo-controlled trial to evaluate safety and efficacy of a single treatment of plasmid stromal cell-derived factor-1 (pSDF-1) delivered via endomyocardial injection to patients with ischaemic heart failure (IHF). Methods Ninety-three subjects with IHF on stable guideline-based medical therapy and left ventricular ejection fraction (LVEF) ≤40%, completed Minnesota Living with Heart Failure Questionnaire (MLWHFQ) and 6-min walk distance (6 MWD), were randomized 1 : 1 : 1 to receive a single treatment of either a 15 or 30 mg dose of pSDF-1 or placebo via endomyocardial injections. Safety and efficacy parameters were assessed at 4 and 12 months after injection. Left ventricular functional and structural measures were assessed by contrast echocardiography and quantified by a blinded independent core laboratory. Stromal Cell-Derived Factor-1 Plasmid Treatment for Patients with Heart Failure was powered based on change in 6 MWD and MLWHFQ at 4 months. Results Subject profiles at baseline were (mean ± SD): age 65 ± 9 years, LVEF 28 ± 7%, left ventricular end-systolic volume (LVESV) 167 ± 66 mL, N-terminal pro brain natriuretic peptide (BNP) (NTproBNP) 1120 ± 1084 pg/mL, MLWHFQ 50 ± 20 points, and 6 MWD 289 ± 99 m. Patients were 11 ± 9 years post most recent myocardial infarction. Study injections were delivered without serious adverse events in all subjects. Sixty-two patients received drug with no unanticipated serious product-related adverse events. The primary endpoint was a composite of change in 6 MWD and MLWHFQ from baseline to 4 months follow-up. The primary endpoint was not met (P = 0.89). For the patients treated with pSDF-1, there was a trend toward an

  18. Conference on Bio-Social Factors in the Development and Learning of Disadvantaged Children. Conference Proceedings (Syracuse, New York, April 19-21, 1967).

    ERIC Educational Resources Information Center

    Yeshiva Univ., New York, NY. Ferkauf Graduate School of Humanities and Social Sciences.

    These conference proceedings contain two major papers. The paper by Susan S. Stodolsky and Gerald S. Lesser, "Learning Patterns in the Disadvantaged," reports a study of effects of social class and ethnic group influences on levels and patterns of mental ability. Scores for verbal ability, reasoning, number facility, and space conceptualization of…

  19. Human mesenchymal stromal cells suppress T-cell proliferation independent of heme oxygenase-1.

    PubMed

    Patel, Seema R; Copland, Ian B; Garcia, Marco A; Metz, Richard; Galipeau, Jacques

    2015-04-01

    Mesenchymal stromal cells deploy immune suppressive properties amenable for use as cell therapy for inflammatory disorders. It is now recognized that mesenchymal stromal cells necessitate priming with an inflammatory milieu, in particular interferon-γ, to exert augmented immunosuppressive effects. It has been recently suggested that the heme-catabolizing enzyme heme oxygenase-1 is an essential component of the mesenchymal stromal cell-driven immune suppressive response. Because mesenchymal stromal cells upregulate indoleamine 2,3-dioxygenase expression on interferon-γ priming and indoleamine 2,3-dioxygenase requires heme as a cofactor for optimal catabolic function, we investigated the potential antagonism of heme oxygenase-1 activity on indoleamine 2, 3-dioxygenase and the impact on mesenchymal stromal cell immune plasticity. We herein sought to evaluate the molecular genetic effect of cytokine priming on human mesenchymal stromal cell heme oxygenase-1 expression and its functional role in differentially primed mesenchymal stromal cells. Contrary to previous reports, messenger RNA and protein analyses demonstrated that mesenchymal stromal cells derived from normal subjects (n = 6) do not express heme oxygenase-1 at steady state or after interferon-γ, tumor necrosis factor-α, and/or transforming growth factor-β priming. Pharmacological inhibition of heme oxygenase-1 with the use of tin protoporphyrin did not significantly abrogate the ability of mesenchymal stromal cells to suppress T-cell proliferation in vitro. Overall, these results unequivocally demonstrate that under steady state and after cytokine priming, human mesenchymal stromal cells immunoregulate T-cell proliferation independent of heme oxygenase-1.

  20. Ectopic Expression of JcWRKY Transcription Factor Confers Salinity Tolerance via Salicylic Acid Signaling

    PubMed Central

    Agarwal, Parinita; Dabi, Mitali; Sapara, Komal K.; Joshi, Priyanka S.; Agarwal, Pradeep K.

    2016-01-01

    Plants, being sessile, have developed intricate signaling network to specifically respond to the diverse environmental stress. The plant-specific WRKY TFs form one of the largest TF family and are involved in diverse plant processes, involving growth, development and stress signaling through auto and cross regulation with different genes and TFs. Here, we report the functional characterization of a salicylic acid -inducible JcWRKY TF. The JcWRKY overexpression confers salinity tolerance in transgenic tobacco, as was evident by increased chlorophyll content and seed germination potential. The transgenic plants showed increased soluble sugar, membrane stability, reduced electrolyte leakage and generation of reactive oxygen species (H2O2 and O2•-) as compared to the wild type. Furthermore, the low SA treatment along with salinity improved the tolerance potential of the transgenics by maintaining ROS homeostasis and high K+/Na+ ratio. The transcript expression of SA biosynthetic gene ICS1 and antioxidative enzymes (CAT and SOD) showed upregulation during stress. Thus, the present study reflects that JcWRKY is working in co-ordination with SA signaling to orchestrate the different biochemical and molecular pathways to maneuvre salt stress tolerance of the transgenic plants. PMID:27799936

  1. Analysis of stromal cell secretomes reveals a critical role for stromal cell-derived HGF and fibronectin in angiogenesis

    PubMed Central

    Newman, Andrew C.; Chou, Wayne; Welch-Reardon, Katrina M.; Fong, Ashley H.; Popson, Stephanie A.; Phan, Duc Thien; Sandoval, Daniel R.; Nguyen, Dananh P.; Gershon, Paul D.; Hughes, Christopher C. W.

    2013-01-01

    Objective Angiogenesis requires tightly coordinated cross-talk between endothelial cells and stromal cells such as fibroblasts and smooth muscle cells. The specific molecular mechanisms moderating this process are still poorly understood. Method and Results Stromal cell-derived factors are essential for endothelial cell sprouting and lumen formation. We therefore compared the abilities of two primary fibroblast isolates and a primary smooth muscle cell isolate to promote in vitro angiogenesis and analyzed their secretomes using a combination of nanoLC-MS/MS, qPCR and ELISA. Each isolate exhibited a different level of angiogenic ability. Using quantitative MS, we then compared the secretomes of a fibroblast isolate exhibiting low angiogenic activity, a fibroblast isolate exhibiting high angiogenic activity and human umbilical vein endothelial cells. High angiogenic fibroblast supernatants exhibited an over-abundance of proteins associated with extracellular matrix constituents compared to low angiogenic fibroblasts or endothelial cells. Finally, siRNA technology and purified protein were used to confirm a role for stromal cell-derived hepatocyte growth factor and fibronectin in inducing endothelial cell sprouting. Conclusion Differences in stromal cell ability to induce angiogenesis are due to differences in the secreted proteomes of both extracellular matrix proteins and pro-angiogenic growth factors. PMID:23288153

  2. Mesenchymal stromal cells expressing ErbB-2/neu elicit protective antibreast tumor immunity in vivo, which is paradoxically suppressed by IFN-gamma and tumor necrosis factor-alpha priming.

    PubMed

    Romieu-Mourez, Raphaëlle; François, Moïra; Abate, Amanda; Boivin, Marie-Noëlle; Birman, Elena; Bailey, Dana; Bramson, Jonathan L; Forner, Kathy; Young, Yoon-Kow; Medin, Jeffrey A; Galipeau, Jacques

    2010-10-15

    It is unknown whether mesenchymal stromal cells (MSC) can regulate immune responses targeting tumor autoantigens of low immunogenicity. We tested here whether immunization with MSC could break immune tolerance towards the ErbB-2/HER-2/neu tumor antigen and the effects of priming with IFN-γ and tumor necrosis factor-α (TNF-α) on this process. BALB/c- and C57BL/6-derived MSC were lentivirally transduced to express a kinase-inactive rat neu mutant (MSC/Neu). Immunization of BALB/c mice with nontreated or IFN-γ-primed allogeneic or syngeneic MSC/Neu induced similar levels of anti-neu antibody titers; however, only syngeneic MSC/Neu induced protective neu-specific CD8(+) T cell responses. Compared to immunization with nontreated or IFN-γ-primed syngeneic MSC/Neu, the number of circulating neu-specific CD8(+) T cells and titers of anti-neu antibodies were observed to be decreased after immunizations with IFN-γ- plus TNF-α-primed MSC/Neu. In addition, syngeneic MSC/Neu seemed more efficient than IFN-γ-primed MSC/Neu at inducing a protective therapeutic antitumor immune response resulting in the regression of transplanted neu-expressing mammary tumor cells. In vitro antigen-presenting cell assays performed with paraformaldehyde-fixed or live MSC showed that priming with IFN-γ plus TNF-α, compared to priming with IFN-γ alone, increased antigen presentation as well as the production of immunosuppressive factors. These data suggest that whereas MSC could effectively serve as antigen-presenting cells to induce immune responses aimed at tumor autoantigens, these functions are critically regulated by IFN-γ and TNF-α.

  3. Social Factors in the Health of Families: A Public Health Social Work Responsibility. Proceedings of a Conference (Pittsburgh, Pennsylvania, March 23-26, 1986).

    ERIC Educational Resources Information Center

    St. Denis, Gerald C., Ed.

    This document contains a list of planning committee members, institute participants, an introduction by Gerald C. St. Denis a program agenda, and institute presentations from this conference. The following presentations are included: (1) "Social Factors in the Health of Families: A Public Health Social Work Responsibility" (Stanley F. Battle); (2)…

  4. Infant Mortality, Morbidity, and Childhood Handicapping Conditions: Psychosocial Factors. Based on Proceedings of a Bi-Regional Conference (Atlanta, Georgia, June 2-5, 1985).

    ERIC Educational Resources Information Center

    Watkins, Elizabeth L., Ed.; Melnick, Leslie R., Ed.

    In Part I, "Extent of Knowledge and Implications for Social Work Intervention," the following conference papers are presented: (1) "Unintended Pregnancy and Infant Mortality, Strategies and Interventions" (Alfred W. Brann, Jr.); (2) "Implications for Social Work Intervention in Biopsychosocial Factors Associated with Infant Mortality and…

  5. Proceedings of the Conference on Ecological and Cultural Factors Related to Emotional Disturbances in Puerto Rican Children and Youth, Barranquitas, Puerto Rico, December 8-10, 1971.

    ERIC Educational Resources Information Center

    Moran, Roberto E., Ed.

    The Conference on Ecological and Cultural Factors Related to Emotional Disturbance in Puerto Rican Children and Youth was the primary attempt to bring together a group of behavioral scientists, medical doctors, and educators, so that the scientific findings of the former--behavioral and medical scientists--may be used by the latter--educators--in…

  6. Functional Differentiation of Uterine Stromal Cells Involves Cross-regulation between Bone Morphogenetic Protein 2 and Kruppel-like Factor (KLF) Family Members KLF9 and KLF13

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The inability of the uterine epithelium to enter a state of receptivity for the embryo to implant is a significant underlying cause of early pregnancy loss. We previously showed that mice null for the Progesterone Receptor (PGR)-interacting protein Kruppel-like Factor (KLF) 9 are subfertile and exhi...

  7. Soluble Factors from Biofilms of Wound Pathogens Modulate Human Bone Marrow-derived Stromal Cell Differentiation, Migration, Angiogenesis, and Cytokine Secretion

    DTIC Science & Technology

    2015-03-28

    delayed and/or non-healing of the wound [1]. The pres- ence of microorganisms within tissues is a major risk factor for the development of chronic...cultures, bacteria adapt to and persist within chronic wounds as a heterogeneous population that is predominately attached to host tissues , known as a...element of intrinsic wound healing, and a highly attract- ive candidate for cell based therapies for tissue repair and regeneration. To date, numerous

  8. Effects of Platelet-Rich Plasma & Platelet-Rich Fibrin with and without Stromal Cell-Derived Factor-1 on Repairing Full-Thickness Cartilage Defects in Knees of Rabbits

    PubMed Central

    Bahmanpour, Soghra; Ghasemi, Maryam; Sadeghi-Naini, Mohsen; Kashani, Iraj Ragerdi

    2016-01-01

    Background: The purpose of this study was to create biomaterial scaffolds like platelet-rich plasma (PRP) and platelet-rich fibrin (PRF) containing stromal cell-derived factor-1 (SDF1) as a chemokine to induce hyaline cartilage regeneration of rabbit knee in a full thickness defect. Methods: We created a full thickness defect in the trochlear groove of thirty-six bilateral knees of eighteen mature male rabbits. The knees were randomly divided into six groups (group I: untreated control, group II: PRP, group III: PRF, group IV: Gelatin+SDF1, group V: PRP+SDF1, and group VI: PRF+SDF1). After four weeks, the tissue specimens were evaluated by macroscopic examination and histological grading, immunofluorescent staining for collagen type II, and analyzed for cartilage marker genes by real-time PCR. The data were compared using statistical methods (SPSS 20, Kruskal-Wallis test, Bonferroni post hoc test and P<0.05). Results: Macroscopic evaluations revealed that international cartilage repair society (ICRS) scores of the PRF+SDF1 group were higher than other groups. Microscopic analysis showed that the ICRS score of the PRP group was significantly lower than other groups. Immunofluorescent staining for collagen II demonstrated a remarkable distribution of type II collagen in the Gel+SDF1, PRP+SDF1 and PRF+SDF1 groups compared with other groups. Real-time PCR analysis revealed that mRNA expression of SOX9 and aggrecan were significantly greater in the PRF+SDF1, PRP+SDF1, Gel+SDF1 and PRF groups than the control group (P<0.05). Conclusion: Our results indicate that implantation of PRF scaffold containing SDF1 led to the greatest evaluation scores of full-thickness lesions in rabbits. PMID:27853331

  9. The NAC family transcription factor OsNAP confers abiotic stress response through the ABA pathway.

    PubMed

    Chen, Xu; Wang, Yaofeng; Lv, Bo; Li, Jie; Luo, Liqiong; Lu, Songchong; Zhang, Xuan; Ma, Hong; Ming, Feng

    2014-03-01

    Plants respond to environmental stresses by altering gene expression, and several genes have been found to mediate stress-induced expression, but many additional factors are yet to be identified. OsNAP is a member of the NAC transcription factor family; it is localized in the nucleus, and shows transcriptional activator activity in yeast. Analysis of the OsNAP transcript levels in rice showed that this gene was significantly induced by ABA and abiotic stresses, including high salinity, drought and low temperature. Rice plants overexpressing OsNAP did not show growth retardation, but showed a significantly reduced rate of water loss, enhanced tolerance to high salinity, drought and low temperature at the vegetative stage, and improved yield under drought stress at the flowering stage. Microarray analysis of transgenic plants overexpressing OsNAP revealed that many stress-related genes were up-regulated, including OsPP2C06/OsABI2, OsPP2C09, OsPP2C68 and OsSalT, and some genes coding for stress-related transcription factors (OsDREB1A, OsMYB2, OsAP37 and OsAP59). Our data suggest that OsNAP functions as a transcriptional activator that plays a role in mediating abiotic stress responses in rice.

  10. Frameshift Mutation Confers Function as Virulence Factor to Leucine-Rich Repeat Protein from Acidovorax avenae

    PubMed Central

    Kondo, Machiko; Hirai, Hiroyuki; Furukawa, Takehito; Yoshida, Yuki; Suzuki, Aika; Kawaguchi, Takemasa; Che, Fang-Sik

    2017-01-01

    Many plant pathogens inject type III (T3SS) effectors into host cells to suppress host immunity and promote successful infection. The bacterial pathogen Acidovorax avenae causes brown stripe symptom in many species of monocotyledonous plants; however, individual strains of each pathogen infect only one host species. T3SS-deleted mutants of A. avenae K1 (virulent to rice) or N1141 (virulent to finger millet) caused no symptom in each host plant, suggesting that T3SS effectors are involved in the symptom formation. To identify T3SS effectors as virulence factors, we performed whole-genome and predictive analyses. Although the nucleotide sequence of the novel leucine-rich repeat protein (Lrp) gene of N1141 had high sequence identity with K1 Lrp, the amino acid sequences of the encoded proteins were quite different due to a 1-bp insertion within the K1 Lrp gene. An Lrp-deleted K1 strain (KΔLrp) did not cause brown stripe symptom in rice (host plant for K1); by contrast, the analogous mutation in N1141 (NΔLrp) did not interfere with infection of finger millet. In addition, NΔLrp retained the ability to induce effector-triggered immunity (ETI), including hypersensitive response cell death and expression of ETI-related genes. These data indicated that K1 Lrp functions as a virulence factor in rice, whereas N1141 Lrp does not play a similar role in finger millet. Yeast two-hybrid screening revealed that K1 Lrp interacts with oryzain α, a pathogenesis-related protein of the cysteine protease family, whereas N1141 Lrp, which contains LRR domains, does not. This specific interaction between K1 Lrp and oryzain α was confirmed by Bimolecular fluorescence complementation assay in rice cells. Thus, K1 Lrp protein may have acquired its function as virulence factor in rice due to a frameshift mutation. PMID:28101092

  11. Nonequilibrium Green's functions theory for the alpha factor of quantum cascade lasers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Pereira, Mauro F.; Winge, David O.; Wacker, Andreas; Jumpertz, Louise; Michel, Florian; Pawlus, Robert; Elsaesser, Wolfgang E.; Schires, Kevin; Carras, Mathieu; Grillot, Frédéric

    2016-10-01

    The linewidth of a conventional laser is due to fluctuations in the laser field due to spontaneous emission and described by the Schalow-Townes formula. In addition to that, in a semiconductor laser there is a contribution arising from fluctuations in the refractive index induced by carrier density fluctuations. The later are quantitatively described by the linewidth enhancement or alpha factor [C. H. Henry, IEEE J. Quantum Electron. 18 (2), 259 (1982), W. W. Chow, S. W. Koch and M. Sargent III, Semiconductor-Laser Physics, Springer-Verlag (1994), M.F. Pereira Jr et al, J. Opt. Soc. Am. B10, 765 (1993). In this paper we investigate the alpha factor of quantum cascade lasers under actual operating conditions using the Nonequilibrium Greens Functions approach [A. Wacker et a, IEEE Journal of Sel. Top. in Quantum Electron.,19 1200611, (2013), T. Schmielau and M.F. Pereira, Appl. Phys. Lett. 95 231111, (2009)]. The simulations are compared with recent results obtained with different optical feedback techniques [L. Jumpertz et al, AIP ADVANCES 6, 015212 (2016)].

  12. Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice.

    PubMed

    Hu, Honghong; You, Jun; Fang, Yujie; Zhu, Xiaoyi; Qi, Zhuyun; Xiong, Lizhong

    2008-05-01

    Plants respond to adverse environment by initiating a series of signaling processes including activation of transcription factors that can regulate expression of arrays of genes for stress response and adaptation. NAC (NAM, ATAF, and CUC) is a plant specific transcription factor family with diverse roles in development and stress regulation. In this report, a stress-responsive NAC gene (SNAC2) isolated from upland rice IRA109 (Oryza sativa L. ssp japonica) was characterized for its role in stress tolerance. SNAC2 was proven to have transactivation and DNA-binding activities in yeast and the SNAC2-GFP fusion protein was localized in the rice nuclei. Northern blot and SNAC2 promoter activity analyses suggest that SNAC2 gene was induced by drought, salinity, cold, wounding, and abscisic acid (ABA) treatment. The SNAC2 gene was over-expressed in japonica rice Zhonghua 11 to test the effect on improving stress tolerance. More than 50% of the transgenic plants remained vigorous when all WT plants died after severe cold stress (4-8 degrees C for 5 days). The transgenic plants had higher cell membrane stability than wild type during the cold stress. The transgenic rice had significantly higher germination and growth rate than WT under high salinity conditions. Over-expression of SNAC2 can also improve the tolerance to PEG treatment. In addition, the SNAC2-overexpressing plants showed significantly increased sensitivity to ABA. DNA chip profiling analysis of transgenic plants revealed many up-regulated genes related to stress response and adaptation such as peroxidase, ornithine aminotransferase, heavy metal-associated protein, sodium/hydrogen exchanger, heat shock protein, GDSL-like lipase, and phenylalanine ammonia lyase. Interestingly, none of the up-regulated genes in the SNAC2-overexpressing plants matched the genes up-regulated in the transgenic plants over-expressing other stress responsive NAC genes reported previously. These data suggest SNAC2 is a novel stress

  13. What Are the Key Statistics about Gastrointestinal Stromal Tumors?

    MedlinePlus

    ... About Gastrointestinal Stromal Tumor What Are the Key Statistics About Gastrointestinal Stromal Tumors? Gastrointestinal stromal tumors (GISTs) ... They are slightly more common in men. Survival statistics for GIST are discussed in “ Survival rates for ...

  14. Guanine Nucleotide Exchange Factor OSG-1 Confers Functional Aging via Dysregulated Rho Signaling in Caenorhabditis elegans Neurons

    PubMed Central

    Duan, Zhibing; Sesti, Federico

    2015-01-01

    Rho signaling regulates a variety of biological processes, but whether it is implicated in aging remains an open question. Here we show that a guanine nucleotide exchange factor of the Dbl family, OSG-1, confers functional aging by dysregulating Rho GTPases activities in C. elegans. Thus, gene reporter analysis revealed widespread OSG-1 expression in muscle and neurons. Loss of OSG-1 gene function was not associated with developmental defects. In contrast, suppression of OSG-1 lessened loss of function (chemotaxis) in ASE sensory neurons subjected to conditions of oxidative stress generated during natural aging, by oxidative challenges, or by genetic mutations. RNAi analysis showed that OSG-1 was specific toward activation of RHO-1 GTPase signaling. RNAi further implicated actin-binding proteins ARX-3 and ARX-5, thus the actin cytoskeleton, as one of the targets of OSG-1/RHO-1 signaling. Taken together these data suggest that OSG-1 is recruited under conditions of oxidative stress, a hallmark of aging, and contributes to promote loss of neuronal function by affecting the actin cytoskeleton via altered RHO-1 activity. PMID:25527286

  15. GUY1 confers complete female lethality and is a strong candidate for a male-determining factor in Anopheles stephensi

    PubMed Central

    Criscione, Frank; Qi, Yumin; Tu, Zhijian

    2016-01-01

    Despite their importance in sexual differentiation and reproduction, Y chromosome genes are rarely described because they reside in repeat-rich regions that are difficult to study. Here, we show that Guy1, a unique Y chromosome gene of a major urban malaria mosquito Anopheles stephensi, confers 100% female lethality when placed on the autosomes. We show that the small GUY1 protein (56 amino acids in length) causes female lethality and that males carrying the transgene are reproductively more competitive than their non-transgenic siblings under laboratory conditions. The GUY1 protein is a primary signal from the Y chromosome that affects embryonic development in a sex-specific manner. Our results have demonstrated, for the first time in mosquitoes, the feasibility of stable transgenic manipulation of sex ratios using an endogenous gene from the male-determining chromosome. These results provide insights into the elusive M factor and suggest exciting opportunities to reduce mosquito populations and disease transmission. DOI: http://dx.doi.org/10.7554/eLife.19281.001 PMID:27644420

  16. Human factors in computing systems: focus on patient-centered health communication at the ACM SIGCHI conference.

    PubMed

    Wilcox, Lauren; Patel, Rupa; Chen, Yunan; Shachak, Aviv

    2013-12-01

    Health Information Technologies, such as electronic health records (EHR) and secure messaging, have already transformed interactions among patients and clinicians. In addition, technologies supporting asynchronous communication outside of clinical encounters, such as email, SMS, and patient portals, are being increasingly used for follow-up, education, and data reporting. Meanwhile, patients are increasingly adopting personal tools to track various aspects of health status and therapeutic progress, wishing to review these data with clinicians during consultations. These issues have drawn increasing interest from the human-computer interaction (HCI) community, with special focus on critical challenges in patient-centered interactions and design opportunities that can address these challenges. We saw this community presenting and interacting at the ACM SIGCHI 2013, Conference on Human Factors in Computing Systems, (also known as CHI), held April 27-May 2nd, 2013 at the Palais de Congrès de Paris in France. CHI 2013 featured many formal avenues to pursue patient-centered health communication: a well-attended workshop, tracks of original research, and a lively panel discussion. In this report, we highlight these events and the main themes we identified. We hope that it will help bring the health care communication and the HCI communities closer together.

  17. An S-locus independent pollen factor confers self-compatibility in 'Katy' apricot.

    PubMed

    Zuriaga, Elena; Muñoz-Sanz, Juan V; Molina, Laura; Gisbert, Ana D; Badenes, María L; Romero, Carlos

    2013-01-01

    Loss of pollen-S function in Prunus self-compatible cultivars has been mostly associated with deletions or insertions in the S-haplotype-specific F-box (SFB) genes. However, self-compatible pollen-part mutants defective for non-S-locus factors have also been found, for instance, in the apricot (Prunus armeniaca) cv. 'Canino'. In the present study, we report the genetic and molecular analysis of another self-compatible apricot cv. termed 'Katy'. S-genotype of 'Katy' was determined as S(1)S(2) and S-RNase PCR-typing of selfing and outcrossing populations from 'Katy' showed that pollen gametes bearing either the S(1)- or the S(2)-haplotype were able to overcome self-incompatibility (SI) barriers. Sequence analyses showed no SNP or indel affecting the SFB(1) and SFB(2) alleles from 'Katy' and, moreover, no evidence of pollen-S duplication was found. As a whole, the obtained results are compatible with the hypothesis that the loss-of-function of a S-locus unlinked factor gametophytically expressed in pollen (M'-locus) leads to SI breakdown in 'Katy'. A mapping strategy based on segregation distortion loci mapped the M'-locus within an interval of 9.4 cM at the distal end of chr.3 corresponding to ∼1.29 Mb in the peach (Prunus persica) genome. Interestingly, pollen-part mutations (PPMs) causing self-compatibility (SC) in the apricot cvs. 'Canino' and 'Katy' are located within an overlapping region of ∼273 Kb in chr.3. No evidence is yet available to discern if they affect the same gene or not, but molecular markers seem to indicate that both cultivars are genetically unrelated suggesting that every PPM may have arisen independently. Further research will be necessary to reveal the precise nature of 'Katy' PPM, but fine-mapping already enables SC marker-assisted selection and paves the way for future positional cloning of the underlying gene.

  18. A barley PHD finger transcription factor that confers male sterility by affecting tapetal development.

    PubMed

    Fernández Gómez, José; Wilson, Zoe A

    2014-08-01

    Controlling pollen development is of major commercial importance in generating hybrid crops and selective breeding, but characterized genes for male sterility in crops are rare, with no current examples in barley. However, translation of knowledge from model species is now providing opportunities to understand and manipulate such processes in economically important crops. We have used information from regulatory networks in Arabidopsis to identify and functionally characterize a barley PHD transcription factor MALE STERTILITY1 (MS1), which expresses in the anther tapetum and plays a critical role during pollen development. Comparative analysis of Arabidopsis, rice and Brachypodium genomes was used to identify conserved regions in MS1 for primer design to amplify the barley MS1 gene; RACE-PCR was subsequently used to generate the full-length sequence. This gene shows anther-specific tapetal expression, between late tetrad stage and early microspore release. HvMS1 silencing and overexpression in barley resulted in male sterility. Additionally, HvMS1 cDNA, controlled by the native Arabidopsis MS1 promoter, successfully complemented the homozygous ms1 Arabidopsis mutant. These results confirm the conservation of MS1 function in higher plants and in particular in temperate cereals. This has provided the first example of a characterized male sterility gene in barley, which presents a valuable tool for the future control of male fertility in barley for hybrid development.

  19. A novel insertion mutation on exon 20 of epidermal growth factor receptor, conferring resistance to erlotinib.

    PubMed

    Khan, Nawazish A; Mirshahidi, Saied; Mirshahidi, Hamid R

    2014-05-01

    The epidermal growth factor receptor (EGFR) is a transmembrane glycoprotein tyrosine kinase receptor. The small-molecule tyrosine kinase receptor inhibitors (TKIs) are in clinical use to treat non-small cell lung cancer with EGFR mutations. Variable tumor responses to erlotinib and gefitinib have been observed. The response to these TKIs varies by the type of EGFR mutations found in the tumor. The deletion on exon 19 and the L858R substitution on exon 21 constitute the most frequent mutations and are known to show good response to TKIs. However, mutations on exon 20 are less common and seem to respond poorly to TKIs. In clinical settings, the reported response of exon 20 mutations to reversible TKIs (both gefitinib and erlotinib) remains inconstant. The type of coexisting mutation seems to affect the response of these insertions to TKIs. We herein present a case of disease progression despite the use of erlotinib in a female patient who had a novel insertion mutation on exon 20. Our patient was a never-smoker and was identified to have a Pro772_His773insGlnCysPro mutation on exon 20. She had previously been treated with cisplatin and gemcitabine and then with carboplatin and pemetrexed. She was treated with erlotinib upon intolerance to second-line chemotherapy and did not respond. Our patient had a novel insertion mutation on exon 20, which was found to be resistant to erlotinib.

  20. Tumor cell and connective tissue cell interactions in human colorectal adenocarcinoma. Transfer of platelet-derived growth factor-AB/BB to stromal cells.

    PubMed Central

    Sundberg, C.; Branting, M.; Gerdin, B.; Rubin, K.

    1997-01-01

    Mechanisms underlying stimulation of platelet-derived growth factor (PDGF) beta-receptors expressed on connective tissue cells in human colorectal adenocarcinoma were investigated in this study. PDGF-AB/BB, but not PDGF receptors, was expressed by tumor cells in situ, as well as in tumor cell isolates of low passage from human colorectal adenocarcinoma. In an experimental co-culture system, conditioned medium from tumor cells only marginally activated PDGF beta-receptors expressed on fibroblasts. In contrast, co-culturing of the two cell types led to a marked PDGF beta-receptor activation. Functional PDGF-AB/BB was found to be associated with heparinase-I-sensitive components on the tumor cell surface. PDGF-AB/BB, isolated from heparinase-I-sensitive cell surface components, induced a marked activation of PDGF beta-receptors. Furthermore, co-culturing tumor cells together with fibroblasts led to a sustained activation of PDGF beta-receptors expressed on fibroblasts. Double immunofluorescence staining of tissue sections from human colorectal adenocarcinoma, combined with computer-aided image analysis, revealed that nonproliferating tumor cells were the predominant cellular source of PDGF-AB/BB in the tumor stroma. In addition, PDGF-AB/BB-expressing tumor cells were found juxtapositioned to microvascular cells expressing activated PDGF beta-receptors. Confocal microscopy revealed a cytoplasmic and cell-membrane-associated expression of PDGF-AB/BB in tumor cells situated in the stroma. In contrast, epithelial cells situated in normal or tumorous acinar structures revealed only a cell-membrane-associated PDGF-AB/BB expression. The is vitro and in situ results demonstrate that tumor cells not only facilitate but also have the ability to modulate connective tissue cell responsiveness to PDGF-AB/BB in a paracrine fashion, through direct cell-cell interactions in human colorectal adenocarcinoma. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:9250160

  1. Progesterone reduces the migration of mast cells toward the chemokine stromal cell-derived factor-1/CXCL12 with an accompanying decrease in CXCR4 receptors.

    PubMed

    Belot, Marie-Pierre; Abdennebi-Najar, Latifa; Gaudin, Françoise; Lieberherr, Michèle; Godot, Véronique; Taïeb, Joelle; Emilie, Dominique; Machelon, Véronique

    2007-05-01

    Mast cell recruitment is implicated in many physiological functions and several diseases. It depends on microenvironmental factors, including hormones. We have investigated the effect of progesterone on the migration of HMC-1(560) mast cells toward CXCL12, a chemokine that controls the migration of mast cells into tissues. HMC-1(560) mast cells were incubated with 1 nM to 1 microM progesterone for 24 h. Controls were run without progesterone. Cell migration toward CXCL12 was monitored with an in vitro assay, and statistical analysis of repeated experiments revealed that progesterone significantly reduced cell migration without increasing the number of apoptotic cells (P = 0.0084, n = 7). Differences between progesterone-treated and untreated cells were significant at 1 microM (P < 0.01, n = 7). Cells incubated with 1 microM progesterone showed no rearrangment of actin filaments in response to CXCL12. Progesterone also reduced the calcium response to CXCL12 and Akt phosphorylation. Cells incubated with progesterone had one-half the control concentrations of CXCR4 (mRNA, total protein, and membrane-bound protein). Progesterone also inhibited the migration of HMC-1(560) cells transfected with hPR-B-pSG5 plasmid, which contained 2.5 times as much PR-B as the control. These transfected cells responded differently (P < 0.05, n = 5) from untreated cells to 1 nM progesterone. We conclude that progesterone reduces mast cell migration toward CXCL12 and that CXCR4 may be a progesterone target in mast cells.

  2. Factor XII full and partial null in rat confers robust antithrombotic efficacy with no bleeding.

    PubMed

    Cai, Tian-Quan; Wu, Weizhen; Shin, Myung K; Xu, Yiming; Jochnowitz, Nina; Zhou, Yuchen; Hoos, Lizbeth; Bentley, Ross; Strapps, Walter; Thankappan, Anil; Metzger, Joseph M; Ogletree, Martin L; Tadin-Strapps, Marija; Seiffert, Dietmar A; Chen, Zhu

    2015-12-01

    This report aims at exploring quantitatively the relationship between FXII inhibition and thromboprotection. FXII full and partial null in rats were established via zinc finger nuclease-mediated knockout and siRNA-mediated knockdown, respectively. The rats were subsequently characterized in thrombosis and hemostasis models. Knockout rats exhibited complete thromboprotection in both the arteriovenous shunt model (∼100% clot weight reduction) and the FeCl3-induced arterial thrombosis model (no reduction in blood flow), without any increase in cuticle bleeding time compared with wild-type control rats. Ex-vivo aPTT and the ellagic acid-triggered thrombin generation assay (TGA) exhibited anticoagulant changes. In contrast, ex-vivo PT or high tissue factor-triggered TGA was indistinguishable from control. Rats receiving single doses (0, 0.01, 0.03, 0.1, 0.3, 1 mg/kg) of FXII siRNA exhibited dose-dependent knockdown in liver FXII mRNA and plasma FXII protein (95 and 99%, respectively, at 1 mg/kg) at day 7 post dosing. FXII knockdown was associated with dose-dependent thromboprotection (maximal efficacy achieved with 1 mg/kg in both models) and negligible change in cuticle bleeding times. Ex-vivo TGA triggered with low-level (0.5 μmol/l) ellagic acid tracked best with the knockdown levels and efficacy. Our findings confirm and extend literature reports of an attractive benefit-to-risk profile of targeting FXII for antithrombotic therapies. Titrating of FXII is instructive for its pharmacological inhibition. The knockout rat is valuable for evaluating both mechanism-based safety concerns and off-target effects of FXII(a) inhibitors. Detailed TGA analyses will inform on optimal trigger conditions in studying pharmacodynamic effects of FXII(a) inhibition.

  3. Transcription factor StWRKY1 regulates phenylpropanoid metabolites conferring late blight resistance in potato.

    PubMed

    Yogendra, Kalenahalli N; Kumar, Arun; Sarkar, Kobir; Li, Yunliang; Pushpa, Doddaraju; Mosa, Kareem A; Duggavathi, Raj; Kushalappa, Ajjamada C

    2015-12-01

    Quantitative resistance is polygenically controlled and durable, but the underlying molecular and biochemical mechanisms are poorly understood. Secondary cell wall thickening is a critical process in quantitative resistance, regulated by transcriptional networks. This paper provides compelling evidence on the functionality of StWRKY1 transcription factor, in a compatible interaction of potato-Phytophthora infestans, to extend our knowledge on the regulation of the metabolic pathway genes leading to strengthening the secondary cell wall. A metabolomics approach was used to identify resistance-related metabolites belonging to the phenylpropanoid pathway and their biosynthetic genes regulated by StWRKY1. The StWRKY1 gene in resistant potato was silenced to decipher its role in the regulation of phenylpropanoid pathway genes to strengthen the secondary cell wall. Sequencing of the promoter region of StWRKY1 in susceptible genotypes revealed the absence of heat shock elements (HSEs). Simultaneous induction of both the heat shock protein (sHSP17.8) and StWRKY1 following pathogen invasion enables functioning of the latter to interact with the HSE present in the resistant StWRKY1 promoter region. EMSA and luciferase transient expression assays further revealed direct binding of StWRKY1 to promoters of hydroxycinnamic acid amide (HCAA) biosynthetic genes encoding 4-coumarate:CoA ligase and tyramine hydroxycinnamoyl transferase. Silencing of the StWRKY1 gene was associated with signs of reduced late blight resistance by significantly increasing the pathogen biomass and decreasing the abundance of HCAAs. This study provides convincing evidence on the role of StWRKY1 in the regulation of downstream genes to biosynthesize HCAAs, which are deposited to reinforce secondary cell walls.

  4. Transcription factor StWRKY1 regulates phenylpropanoid metabolites conferring late blight resistance in potato

    PubMed Central

    Yogendra, Kalenahalli N.; Kumar, Arun; Sarkar, Kobir; Li, Yunliang; Pushpa, Doddaraju; Mosa, Kareem A.; Duggavathi, Raj; Kushalappa, Ajjamada C.

    2015-01-01

    Quantitative resistance is polygenically controlled and durable, but the underlying molecular and biochemical mechanisms are poorly understood. Secondary cell wall thickening is a critical process in quantitative resistance, regulated by transcriptional networks. This paper provides compelling evidence on the functionality of StWRKY1 transcription factor, in a compatible interaction of potato–Phytophthora infestans, to extend our knowledge on the regulation of the metabolic pathway genes leading to strengthening the secondary cell wall. A metabolomics approach was used to identify resistance-related metabolites belonging to the phenylpropanoid pathway and their biosynthetic genes regulated by StWRKY1. The StWRKY1 gene in resistant potato was silenced to decipher its role in the regulation of phenylpropanoid pathway genes to strengthen the secondary cell wall. Sequencing of the promoter region of StWRKY1 in susceptible genotypes revealed the absence of heat shock elements (HSEs). Simultaneous induction of both the heat shock protein (sHSP17.8) and StWRKY1 following pathogen invasion enables functioning of the latter to interact with the HSE present in the resistant StWRKY1 promoter region. EMSA and luciferase transient expression assays further revealed direct binding of StWRKY1 to promoters of hydroxycinnamic acid amide (HCAA) biosynthetic genes encoding 4-coumarate:CoA ligase and tyramine hydroxycinnamoyl transferase. Silencing of the StWRKY1 gene was associated with signs of reduced late blight resistance by significantly increasing the pathogen biomass and decreasing the abundance of HCAAs. This study provides convincing evidence on the role of StWRKY1 in the regulation of downstream genes to biosynthesize HCAAs, which are deposited to reinforce secondary cell walls. PMID:26417019

  5. Computational Protein Design to Re-Engineer Stromal Cell-Derived Factor-1α (SDF) Generates an Effective and Translatable Angiogenic Polypeptide Analog

    PubMed Central

    Hiesinger, William; Perez-Aguilar, Jose Manuel; Atluri, Pavan; Marotta, Nicole A.; Frederick, John R.; Fitzpatrick, J. Raymond; McCormick, Ryan C.; Muenzer, Jeffrey R.; Yang, Elaine C.; Levit, Rebecca D.; Yuan, Li-Jun; MacArthur, John W.; Saven, Jeffery G.; Woo, Y. Joseph

    2014-01-01

    BACKGROUND After ischemic injury, cardiac secretion of the potent endothelial progenitor stem cell (EPC) chemokine SDF stimulates endogenous neovascularization and myocardial repair, a process insufficiently robust to repair major infarcts. Experimentally, exogenous administration of recombinant SDF enhances neovasculogenesis and cardiac function after MI. However, SDF has a short half-life, is bulky, and very expensive. Smaller analogs of SDF may provide translational advantages including enhanced stability and function, ease of synthesis, lower cost, and potential modulated delivery via engineered biomaterials. In this study, computational protein design was used to create a more efficient evolution of the native SDF protein. METHODS and RESULTS Protein structure model was used to engineer an SDF polypeptide analog (ESA) that splices the N-terminus (activation and binding) and C-terminus (extracellular stabilization) with a diproline segment designed to limit the conformational flexibility of the peptide backbone and retain the relative orientation of these segments observed in the native structure of SDF. EPCs in ESA gradient, assayed by Boyden chamber, showed significantly increased migration compared to both SDF and control gradients (ESA 567±74 cells/HPF vs SDF 438±46 p=0.037; vs Control 156±45 p=0.001). EPC receptor activation was evaluated by quantifying phosphorylated AKT. ESA had significantly greater pAKT levels than SDF and control (1.64±0.24 vs 1.26±0.187, p=0.01; vs. 0.95±0.08, p<0.001). Angiogenic growth factor assays revealed a distinct increase in Angiopoietin-1 expression in the ESA and SDF treated hearts. Also, CD-1 mice (n=30) underwent LAD ligation and peri-infarct intramyocardial injection of ESA, SDF-1α, or saline. At 2 weeks, echocardiography demonstrated a significant gain in EF, CO, SV, and Fractional Area Change (FAC) in mice treated with ESA when compared to controls and significant improvement in FAC when compared to SDF treated

  6. High Stromal Carbonic Anhydrase IX Expression Is Associated With Decreased Survival in p16-Negative Head-and-Neck Tumors

    SciTech Connect

    Brockton, Nigel; Dort, Joseph; Lau, Harold; Hao, Desiree; Brar, Sony; Klimowicz, Alexander; Petrillo, Stephanie; Diaz, Roman; Doll, Corinne; Magliocco, Anthony

    2011-05-01

    Purpose: Head-and-neck squamous cell carcinoma (HNSCC) is the fifth most common malignancy worldwide. Alcohol use and tobacco use are the most established risk factors; however, human papilloma virus (HPV) infection is a major risk factor for a subset of HNSCCs. Although HPV-positive tumors typically present at a more advanced stage at diagnosis, they are associated with a better prognosis. Tumor hypoxia confers poor prognosis and treatment failure, but direct tumor oxygen measurement is challenging. Endogenous markers of hypoxia (EMHs) have been proposed but have not replicated the prognostic utility of direct oxygen measurement. The expression of endogenous markers of hypoxia may be influenced by oxygen-independent factors, such as the HPV status of the tumor. Methods and Materials: Consecutive cases of locally advanced HNSCC, treated with a uniform regimen of combined radiotherapy and chemotherapy, were identified. Tissue microarrays were assembled from triplicate 0.6-mm cores of archived tumor tissue. HPV status was inferred from semiquantitative p16 immunostaining and directly measured by use of HPV-specific chromogenic in situ hybridization and polymerase chain reaction. Automated quantitative fluorescent immunohistochemistry was conducted to measure epithelial and stromal expression of carbonic anhydrase IX (CAIX) and glucose transporter 1 (GLUT1). Results: High stromal CAIX expression was associated with significantly reduced overall survival (p = 0.03) in patients with p16-negative tumors. Conclusions: This is the first study to use quantitative immunohistochemistry to examine endogenous markers of hypoxia stratified by tumor p16/HPV status. Assessment of CAIX expression in p16-negative HNSCC could identify patients with the least favorable prognosis and inform therapeutic strategies.

  7. IFN type I and II induce BAFF secretion from human decidual stromal cells.

    PubMed

    Lundell, Anna-Carin; Nordström, Inger; Andersson, Kerstin; Lundqvist, Christina; Telemo, Esbjörn; Nava, Silvia; Kaipe, Helen; Rudin, Anna

    2017-01-06

    B cell activating factor (BAFF) is a critical cytokine for maturation of immature B cells. In murine lymph nodes, BAFF is mainly produced by podoplanin-expressing stromal cells. We have previously shown that circulating BAFF levels are maximal at birth, and that farmers' children exhibit higher BAFF levels in cord blood than non-farmers' children. Here, we sought to investigate whether maternal-derived decidual stromal cells from placenta secrete BAFF and examine what factors could stimulate this production. We found that podoplanin is expressed in decidua basalis and in the underlying villous tissue as well as on isolated maternal-derived decidual stromal cells. Decidual stromal cells produced BAFF when stimulated with IFN-γ and IFN-α, and NK cells and NK-T-like cells competent of IFN-γ production were isolated from the decidua. Finally, B cells at different maturational stages are present in decidua and all expressed BAFF-R, while stromal cells did not. These findings suggest that decidual stromal cells are a cellular source of BAFF for B cells present in decidua during pregnancy.

  8. IFN type I and II induce BAFF secretion from human decidual stromal cells

    PubMed Central

    Lundell, Anna-Carin; Nordström, Inger; Andersson, Kerstin; Lundqvist, Christina; Telemo, Esbjörn; Nava, Silvia; Kaipe, Helen; Rudin, Anna

    2017-01-01

    B cell activating factor (BAFF) is a critical cytokine for maturation of immature B cells. In murine lymph nodes, BAFF is mainly produced by podoplanin-expressing stromal cells. We have previously shown that circulating BAFF levels are maximal at birth, and that farmers’ children exhibit higher BAFF levels in cord blood than non-farmers’ children. Here, we sought to investigate whether maternal-derived decidual stromal cells from placenta secrete BAFF and examine what factors could stimulate this production. We found that podoplanin is expressed in decidua basalis and in the underlying villous tissue as well as on isolated maternal-derived decidual stromal cells. Decidual stromal cells produced BAFF when stimulated with IFN-γ and IFN-α, and NK cells and NK-T-like cells competent of IFN-γ production were isolated from the decidua. Finally, B cells at different maturational stages are present in decidua and all expressed BAFF-R, while stromal cells did not. These findings suggest that decidual stromal cells are a cellular source of BAFF for B cells present in decidua during pregnancy. PMID:28057926

  9. Stromal-epithelial paracrine interactions in the neoplastic rat and human prostate.

    PubMed

    Djakiew, D; Pflug, B; Onoda, M

    1993-01-01

    Homotypic paracrine interactions in the rat and human prostate have been investigated using prostatic stromal cells and neoplastic epithelial cells (PA-III, rat; TSU-pr1, human). Secretory proteins prepared from each cell type were used to determine the dose dependent regulation of growth (DNA synthesis) of the corresponding homotypic responder cell, as determined by 3H-thymidine incorporation. PA-III secretory protein stimulated rat stromal cell proliferation by 1.8-fold. This stimulatory activity of PA-III protein on stromal cell proliferation was partially reduced (approximately 35%) by treatment with nerve growth factor (NGF) antibody, whereas neither acidic fibroblast growth factor (aFGF) antibody nor basic fibroblast growth factor (bFGF) antibody immunoneutralized the stimulatory activity of PA-III cell protein. In the corresponding opposite interaction, rat stromal cell protein modulated PA-III growth in a biphasic manner. At lower concentrations of stromal cell protein (1.25 micrograms/ml) PA-III cell growth was stimulated by 1.6-fold, whereas at higher concentrations of protein (100 micrograms/ml) PA-III cell growth was inhibited to 60%. Treatment of the stromal cell protein (1.25 micrograms/ml and 100 micrograms/ml) with NGF antibody reduced PA-III cell relative growth to approximately 30% and 5%, respectively. bFGF antibody treatment of stromal cell protein at 1.25 micrograms/ml did not influence relative growth, whereas bFGF antibody treatment of 100 micrograms/ml stromal cell protein reduced relative growth by an additional 40%. Treatment of the stromal cell protein (1.25 micrograms/ml and 100 micrograms/ml) with aFGF antibodies reduced relative growth from that observed at these two protein concentrations by approximately 50% in both cases. Human epithelial TSU-pr1 protein stimulated human stromal cell proliferation approximately 1.7-fold. Treatment of TSU-pr1 protein with NGF antibody resulted in stimulation of human stromal cell proliferation (4

  10. CXC chemokine receptor 4 expression and stromal cell-derived factor-1α-induced chemotaxis in CD4+ T lymphocytes are regulated by interleukin-4 and interleukin-10

    PubMed Central

    Jinquan, T; Quan, S; Jacobi, H H; Madsen, H O; Glue, C; Skov, P S; Malling, H-J; Poulsen, L K

    2000-01-01

    We report that interleukin (IL)-4 and IL-10 can significantly up- or down-regulate CXC chemokine receptor 4 (CXCR4) expression on CD4+ T lymphocytes, respectively. Stromal cell-derived factor-1α (SDF-1α)-induced CD4+ T-lymphocyte chemotaxis was also correspondingly regulated by IL-4 and IL-10. IL-4 and IL-10 up- or down-regulated CXCR4 mRNA expression in CD4+ T lymphocytes, respectively, as detected by real-time quantitative reverse transcription–polymerase chain reaction (RT–PCR). Scatchard analysis revealed a type of CXCR4 with affinity (Kd ≈ 6·3 nm), and ≈ 70 000 SDF-1α-binding sites per cell, among freshly isolated CD4+ T lymphocytes, and two types of CXCR4 with different affinities (Kd1 ≈ 4·4 nm and Kd2 ≈ 14·6 nm), and a total of ≈ 130 000 SDF-1α-binding sites per cell, among IL-4-stimulated CD4+ T lymphocytes. The regulation of CXCR4 expression in CD4+ T lymphocytes by IL-4 and IL-10 could be blocked by a selective inhibitor of protein kinase (staurosporine) or by a selective inhibitor of cAMP- and cGMP-dependent protein kinase (H-8), indicating that these cytokines regulate CXCR4 on CD4+ T lymphocytes via both cAMP and cGMP signalling pathways. The fact that cyclosporin A or ionomycin were able to independently change the CXCR4 expression and block the effects of IL-4 and IL-10 on CXCR4 expression implied that the capacity of IL-4 and IL-10 to regulate CXCR4 on CD4+ T lymphocytes is not linked to calcium-mobilization stimulation. These results indicate that the effects of IL-4 and IL-10 on the CXCR4–SDF-1 receptor–ligand pair may be of particular importance in the cytokine/chemokine environment concerning the inflammatory processes and in the progression of human immunodeficiency virus (HIV) infection. PMID:10712670

  11. Stromal Cell Subsets Directing Neonatal Spleen Regeneration

    PubMed Central

    Tan, Jonathan K. H.; Watanabe, Takeshi

    2017-01-01

    Development of lymphoid tissue is determined by interactions between stromal lymphoid tissue organiser (LTo) and hematopoietic lymphoid tissue inducer (LTi) cells. A failure for LTo to receive appropriate activating signals during embryogenesis through lymphotoxin engagement leads to a complete cessation of lymph node (LN) and Peyer’s patch development, identifying LTo as a key stromal population for lymphoid tissue organogenesis. However, little is known about the equivalent stromal cells that induce spleen development. Here, by dissociating neonatal murine spleen stromal tissue for re-aggregation and transplant into adult mouse recipients, we have identified a MAdCAM-1+CD31+CD201+ spleen stromal organizer cell-type critical for new tissue formation. This finding provides an insight into the regulation of post-natal spleen tissue organogenesis, and could be exploited in the development of spleen regenerative therapies. PMID:28067323

  12. Stromal Modulators of TGF-β in Cancer

    PubMed Central

    Costanza, Brunella; Umelo, Ijeoma Adaku; Bellier, Justine; Castronovo, Vincent; Turtoi, Andrei

    2017-01-01

    Transforming growth factor-β (TGF-β) is an intriguing cytokine exhibiting dual activities in malignant disease. It is an important mediator of cancer invasion, metastasis and angiogenesis, on the one hand, while it exhibits anti-tumor functions on the other hand. Elucidating the precise role of TGF-β in malignant development and progression requires a better understanding of the molecular mechanisms involved in its tumor suppressor to tumor promoter switch. One important aspect of TGF-β function is its interaction with proteins within the tumor microenvironment. Several stromal proteins have the natural ability to interact and modulate TGF-β function. Understanding the complex interplay between the TGF-β signaling network and these stromal proteins may provide greater insight into the development of novel therapeutic strategies that target the TGF-β axis. The present review highlights our present understanding of how stroma modulates TGF-β activity in human cancers. PMID:28067804

  13. Stromal Modulators of TGF-β in Cancer.

    PubMed

    Costanza, Brunella; Umelo, Ijeoma Adaku; Bellier, Justine; Castronovo, Vincent; Turtoi, Andrei

    2017-01-06

    Transforming growth factor-β (TGF-β) is an intriguing cytokine exhibiting dual activities in malignant disease. It is an important mediator of cancer invasion, metastasis and angiogenesis, on the one hand, while it exhibits anti-tumor functions on the other hand. Elucidating the precise role of TGF-β in malignant development and progression requires a better understanding of the molecular mechanisms involved in its tumor suppressor to tumor promoter switch. One important aspect of TGF-β function is its interaction with proteins within the tumor microenvironment. Several stromal proteins have the natural ability to interact and modulate TGF-β function. Understanding the complex interplay between the TGF-β signaling network and these stromal proteins may provide greater insight into the development of novel therapeutic strategies that target the TGF-β axis. The present review highlights our present understanding of how stroma modulates TGF-β activity in human cancers.

  14. Paracrine effects of uterine leucocytes on gene expression of human uterine stromal fibroblasts.

    PubMed

    Germeyer, Ariane; Sharkey, Andrew Mark; Prasadajudio, Mirari; Sherwin, Robert; Moffett, Ashley; Bieback, Karen; Clausmeyer, Susanne; Masters, Leanne; Popovici, Roxana Maria; Hess, Alexandra Petra; Strowitzki, Thomas; von Wolff, Michael

    2009-01-01

    The endometrium contains a distinct population of immune cells that undergo cyclic changes during the menstrual cycle and implantation. The majority of these leucocytes are uterine NK (uNK) cells, however how these cells interact with uterine stromal fibroblasts remains unclear. We therefore investigated the paracrine effect of medium conditioned by uterine decidual leucocytes (which are enriched for uNK cells) on the gene expression profile of endometrial stromal fibroblasts in vitro using a cDNA microarray. Our results, verified by real-time PCR, ELISA and FACS analysis, reveal that soluble factors from uterine leucocytes substantially alter endometrial stromal fibroblast gene expression. The largest group of up-regulated genes found was chemokines and cytokines. These include IL-8, CCL8 and CXCL1, which have also been shown to be stimulated by contact of stromal fibroblasts with trophoblast, suggesting that uNK cells work synergistically to support trophoblast migration during implantation. The decidual leucocytes also up-regulated IL-15 and IL-15Ralpha in stromal fibroblasts which could produce a niche for uNK cells allowing proliferation within and recruitment into the uterus, as seen in bone marrow. Overall this study demonstrates, for the first time, the paracrine communication between uterine leucocytes and uterine stromal fibroblasts, and adds to the understanding of how the uterine immune system contributes to the changes seen within the cycling endometrium.

  15. Inflammatory stromal keratopathies: medical management of stromal keratomalacia, stromal abscesses, eosinophilic keratitis, and band keratopathy in the horse.

    PubMed

    Brooks, Dennis E

    2004-08-01

    This article discusses the diagnosis and medical treatment of stromal keratomalacia or "melting ulcers," stromal abscesses, eosinophilic keratitis (EK), and calcific band keratopathy. These are common and important inflammatory keratopathies of the equine corneal stroma. Keratomalacia and stromal abscesses are associated with infection, leukocytic invasion of the stroma, and loss of tissue and tear film proteinase homeostasis. Eosinophils infiltrate the stroma in response to unknown stimuli in EK. Calcium is deposited in the stroma and epithelium secondary to chronic equine recurrent uveitis in calcific band keratopathy. They are all associated with varying degrees of iridocyclitis.

  16. Giant gastrointestinal stromal tumor of the stomach.

    PubMed

    Ionescu, Sever; Barbu, Emil; Ionescu, Călin; Costache, Adrian; Bălăşoiu, Maria

    2015-01-01

    Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal malignancies of the digestive tract. Gastric localization is the most frequent. The aim of this study is to evaluate the importance of immunohistochemical factors (CD117, CD34, α-SMA, vimentin, p53, Ki67) in diagnostic and size tumor and mitotic activity as prognostic factors for these tumors. We present the case of a 66-year-old male patient with a giant gastric GIST. Like in the vast majority, the symptomatology in this patient has long been faint, despite the large tumor size, and when it became manifest, it was nonspecific. Imagery wise, the computer tomography (CT) scan was the most efficient, showing the origin of the tumor from the greater curvature of the stomach, its dimensions, as well as the relations with the other abdominal viscera. Surgery in this patient was en-bloc, according to the principles of GIST. The histological aspect is characterized by a proliferation of spindle cells positive for CD117 and CD34. Despite complete microscopic resection, the size of the tumor (25×20×27 cm) and the mitotic activity (21÷5 mm2) remains important relapse factor.

  17. Novel DREB A-5 subgroup transcription factors from desert moss (Syntrichia caninervis) confers multiple abiotic stress tolerance to yeast.

    PubMed

    Li, Haiyan; Zhang, Daoyuan; Li, Xiaoshuang; Guan, Kaiyun; Yang, Honglan

    2016-05-01

    Syntrichia caninervis Mitt. is a typical desiccation tolerant moss from a temperate desert which has been a good resource for stress tolerant gene isolation. Dehydration responsive element binding proteins (DREBs) was proven to play an important role in responding to abiotic stress, which has been identified in many plants, and were rarely reported in moss. In this study, we cloned ten DREB genes from S. caninervis, and investigated their abiotic stress response and stress tolerance. The results showed that ten ScDREB proteins belonged to the A-5 sub-group of the DREB sub-family. Six genes, ScDREB1, ScDREB2, ScDREB4, ScDREB6, ScDREB7, and ScDREB8 were involved in the ABA-dependent signal pathway and the desiccation, salt, and cold stress response. ScDREB3 also responded to desiccation, salt, and cold stresses, but was insensitive to ABA treatment. Another gene, ScDREB5, was involved in an ABA-independent cold stress-responsive signal pathway. Two genes, ScDREB9 and ScDREB10, responded slightly or had no response to neither stress factor or ABA treatment. We transformed four typical genes into yeast cells and the stress tolerance ability of transgenic yeast was evaluated. The results showed that ScDREB3 and ScDREB5 enhanced the yeast's cold and salt tolerance. ScDREB8 and ScDREB10 conferred the osmotic, salt, cold, and high temperature stresses tolerance, especially for osmotic and salt stresses. Our results indicated that A-5 sub-group DREB genes in S. caninervis played important roles in abiotic stresses response and enhanced stress tolerance to transgenic yeast. To our knowledge, this is the first report on DREB genes characterization from desiccation tolerant moss, and this study will not only provide insight into the molecular mechanisms of S. caninervis adaptation to environmental stresses, but also provides valuable gene candidates for plant molecular breeding.

  18. Immunohistochemical expression of epithelial and stromal immunomodulatory signalling molecules is a prognostic indicator in breast cancer

    PubMed Central

    2012-01-01

    Background The immune system has paradoxical roles during cancer development and the prognostic significance of immune modulating factors is controversial. The aim of this study was to determine the expression of cyclooxygenase 2 (COX-2), transforming growth factor-beta (TGF- beta), interleukin-10 (IL-10) and their prognostic significance in breast cancers. Ki67 was included as a measure of growth fraction of tumor cells. Methods On immunohistochemical stained slides from 38 breast cancer patients, we performed digital video analysis of tumor cell areas and adjacent tumor stromal areas from the primary tumors and their corresponding lymph node metastases. COX-2 was recorded as graded staining intensity. Results The expression of TGF-beta, IL-10 and Ki67 were recorded in tumor cell areas and adjacent tumor stromal areas. In both primary tumors and metastases, the expression of COX-2 was higher in the tumor stromal areas than in the tumor cell areas (both P < 0.001). High stromal staining intensity in the primary tumors was associated with a 3.9 (95% CI 1.1-14.2) times higher risk of death compared to the low staining group (P = 0.036). The expression of TGF-beta was highest in the tumor cell areas of both primary tumors and metastases (both P < 0.001). High stromal expression of TGF-beta was associated with increased mortality. For IL-10, the stromal expression was highest in the primary tumors (P < 0.001), whereas in the metastases the expression was highest in tumor cell areas (P < 0.001). High IL-10 expression in tumor- and stromal cell areas of primary tumors predicted mortality. Ki67 was higher expressed in tumor stromal areas of the metastases, and in tumor cell areas of the primary tumors (P < 0.001). Ki67 expression in tumor cell areas and stromal areas of the metastases was independently associated with breast cancer mortality. Conclusions Stromal expression of COX-2, TGF-beta and Ki67 may facilitate tumor progression in breast cancer. PMID:22353218

  19. Heterogeneity of multipotent mesenchymal stromal cells: from stromal cells to stem cells and vice versa.

    PubMed

    Dominici, Massimo; Paolucci, Paolo; Conte, Pierfranco; Horwitz, Edwin M

    2009-05-15

    Discovered more than 40 years ago, the biological features of multipotent mesenchymal stromal cells (MSC) were progressively compared first with hematopoietic stem cells (HSC) and, more recently, with embryonic stem cells (ESC). Although these comparisons have been crucial in helping to clarify their nature, there is now a robust amount of data indicating that MSC in vitro represent an independent and heterogeneous group of progenitors with distinct self-renewal properties and established differentiation potentials. However, research developments both in humans and animals have progressively revealed the limits that MSC may face in vivo. To recognize these issues and challenge MSC stemness may seem to be a step backward. Nevertheless, it might also represent the beginning of a phase in which the introduction of novel preclinical approaches could provide better characterization and standardization of the in vivo factors influencing cell engraftment and survival, allowing a more successful impact of mesenchymal progenitors in several clinical settings.

  20. [Reorganization of actin cytoskeleton in the initial stage of transendothelial migration of bone marrow multipotent mesenchymal stromal cells].

    PubMed

    Aleksandrova, S A; Pinaev, G P

    2014-01-01

    The analysis of actin cytoskeleton reorganization in rat bone marrow multipotent mesenchymal stromal cells after one hour adhesion to a monolayer of endothelial cell line EA.hy 926 allowed us to identify three types of cells interacting with the endothelial cells. Approximately half of multipotent mesenchymal stromal cells retained a rounded shape, most of them contained large round actin aggregates, had irregular borders and contacted with the surface of the endothelial cells by microvilli or protrusions similar to small lamellae. Almost all other cells were surrounded by narrow lamellae along the entire perimeter. In addition, a small amount.of elongated flattened cells that contacting with endothelial cells by means of focal contacts was observed. Microenvironmental factors such as proinflammatory cytokine tumor necrosis factor α or plasma proteins affected the ratio of stromal cell types, with different types of organization of the actin cytoskeleton in multipotent mesenchymal stromal cells population.

  1. Stromal influences on breast cancer cell growth.

    PubMed Central

    van Roozendaal, C. E.; van Ooijen, B.; Klijn, J. G.; Claassen, C.; Eggermont, A. M.; Henzen-Logmans, S. C.; Foekens, J. A.

    1992-01-01

    Paracrine influences from fibroblasts derived from different sources of breast tissue on epithelial breast cancer cell growth in vitro were investigated. Medium conditioned (CM) by fibroblasts derived from tumours, adjacent normal breast tissue, and normal breast tissue obtained from reduction mammoplasty or from skin tissue significantly stimulated the growth of the steroid-receptor positive cell lines MCF-7 and ZR 75.1. The proliferation index (PI) on MCF-7 cells with CM from fibroblasts derived from breast tumour tissue was significantly higher than that obtained with fibroblasts derived from adjacent normal breast tissue (2p less than 0.05, n = 8). The PI obtained with CM from normal fibroblast cultures from reduction mammoplasty tissue, like normal tissue adjacent to the tumour, fell in the lower range of values. Skin fibroblast, like tumour tissue derived fibroblast, CM caused a high range PI. MDA-MB-231 and Evsa-T, two steroid-receptor negative cell lines, showed only a minor growth stimulatory responses with some of the fibroblast CM's. Evsa-T was occasionally inhibited by CM's. In conclusion, stromal factors play a role in the growth regulation of human breast cancer cells. The effects on cancer cell growth are, however, varying depending on the source of the stroma and the characteristics of the epithelial tumour cells. PMID:1733444

  2. Targeted therapy of gastrointestinal stromal tumours

    PubMed Central

    Jakhetiya, Ashish; Garg, Pankaj Kumar; Prakash, Gaurav; Sharma, Jyoti; Pandey, Rambha; Pandey, Durgatosh

    2016-01-01

    Gastrointestinal stromal tumours (GISTs) are mesenchymal neoplasms originating in the gastrointestinal tract, usually in the stomach or the small intestine, and rarely elsewhere in the abdomen. The malignant potential of GISTs is variable ranging from small lesions with a benign behaviour to fatal sarcomas. The majority of the tumours stain positively for the CD-117 (KIT) and discovered on GIST-1 (DOG-1 or anoctamin 1) expression, and they are characterized by the presence of a driver kinase-activating mutation in either KIT or platelet-derived growth factor receptor α. Although surgery is the primary modality of treatment, almost half of the patients have disease recurrence following surgery, which highlights the need for an effective adjuvant therapy. Traditionally, GISTs are considered chemotherapy and radiotherapy resistant. With the advent of targeted therapy (tyrosine kinase inhibitors), there has been a paradigm shift in the management of GISTs in the last decade. We present a comprehensive review of targeted therapy in the management of GISTs. PMID:27231512

  3. Imatinib treatment for gastrointestinal stromal tumour (GIST).

    PubMed

    Lopes, Lisandro F; Bacchi, Carlos E

    2010-01-01

    Gastrointestinal stromal tumour (GIST) is the most common mesenchymal neoplasm of the gastrointestinal tract. GISTs are believed to originate from intersticial cells of Cajal (the pacemaker cells of the gastrointestinal tract) or related stem cells, and are characterized by KIT or platelet-derived growth factor receptor alpha (PDGFRA) activating mutations. The use of imatinib has revolutionized the management of GIST and altered its natural history, substantially improving survival time and delaying disease progression in many patients. The success of imatinib in controlling advanced GIST led to interest in the neoadjuvant and adjuvant use of the drug. The neoadjuvant (preoperative) use of imatinib is recommended to facilitate resection and avoid mutilating surgery by decreasing tumour size, and adjuvant therapy is indicated for patients at high risk of recurrence. The molecular characterization (genotyping) of GISTs has become an essential part of the routine management of the disease as KIT and PDGFRA mutation status predicts the likelihood of achieving response to imatinib. However, the vast majority of patients who initially responded to imatinib will develop tumour progression (secondary resistance). Secondary resistance is often related to secondary KIT or PDGFRA mutations that interfere with drug binding. Multiple novel tyrosine kinase inhibitors may be potentially useful for the treatment of imatinib-resistant GISTs as they interfere with KIT and PDGFRA receptors or with the downstream-signalling proteins.

  4. Imatinib treatment for gastrointestinal stromal tumour (GIST)

    PubMed Central

    Lopes, Lisandro F; Bacchi, Carlos E

    2010-01-01

    Abstract Gastrointestinal stromal tumour (GIST) is the most common mesenchymal neoplasm of the gastrointestinal tract. GISTs are believed to originate from intersticial cells of Cajal (the pacemaker cells of the gastrointestinal tract) or related stem cells, and are characterized by KIT or platelet-derived growth factor receptor alpha (PDGFRA) activating mutations. The use of imatinib has revolutionized the management of GIST and altered its natural history, substantially improving survival time and delaying disease progression in many patients. The success of imatinib in controlling advanced GIST led to interest in the neoadjuvant and adjuvant use of the drug. The neoadjuvant (preoperative) use of imatinib is recommended to facilitate resection and avoid mutilating surgery by decreasing tumour size, and adjuvant therapy is indicated for patients at high risk of recurrence. The molecular characterization (genotyping) of GISTs has become an essential part of the routine management of the disease as KIT and PDGFRA mutation status predicts the likelihood of achieving response to imatinib. However, the vast majority of patients who initially responded to imatinib will develop tumour progression (secondary resistance). Secondary resistance is often related to secondary KIT or PDGFRA mutations that interfere with drug binding. Multiple novel tyrosine kinase inhibitors may be potentially useful for the treatment of imatinib-resistant GISTs as they interfere with KIT and PDGFRA receptors or with the downstream-signalling proteins. PMID:19968734

  5. Expression of neuroendocrine factor VGF in lung cancer cells confers resistance to EGFR kinase inhibitors and triggers epithelial-to-mesenchymal transition.

    PubMed

    Wen, Hwang; Chiu, Yu-Fan; Kuo, Ming-Han; Lee, Kuan-Lin; Lee, An-Chun; Yu, Chia-Cherng; Chang, Junn-Liang; Huang, Wen-Chien; Hsiao, Shih-Hsin; Lin, Sey-En; Chou, Yu-Ting

    2017-04-05

    Mutations in EGFR drive tumor growth but render tumor cells sensitive to treatment with EGFR tyrosine kinase inhibitors (TKIs). Phenotypic alteration in epithelial-to-mesenchymal transition (EMT) has been linked to the TKI resistance in lung adenocarcinoma. However, the mechanism underlying this resistance remains unclear. Here we report that high expression of a neuroendocrine factor termed VGF induces the transcription factor TWIST1 to facilitate TKI resistance, EMT, and cancer dissemination in a subset of lung adenocarcinoma cells. VGF silencing resensitized EGFR-mutated lung adenocarcinoma cells to TKI. Conversely, overexpression of VGF in sensitive cells conferred resistance to TKIs and induced EMT, increasing migratory and invasive behaviors. Correlation analysis revealed a significant association of VGF expression with advanced tumor grade and poor survival in patients with lung adenocarcinoma. In a mouse xenograft model of lung adenocarcinoma, suppressing VGF expression was sufficient to attenuate tumor growth. Overall, our findings show how VGF can confer TKI resistance and trigger EMT, suggesting its potential utility as a biomarker and therapeutic target in lung adenocarcinoma.

  6. Gastrointestinal Stromal Tumours: An Update

    PubMed Central

    Somerhausen, Nicolas De Saint Aubain

    1998-01-01

    Purpose. To study the evolution of concepts concerning gastrointestinal stromal tumours (GISTs) over 30 years. Discussion. GISTs have been, for more than 30 years, the subject of considerable controversy regarding their line of differentiation as well as the prediction of their behaviour. Furthermore, once they spread within the peritoneal cavity, they are extremely hard to control. The recent findings of c-Kit mutations and the immunohistochemical detection of the product of this gene, KIT or CD117, in the mainly non-myogenic subset of this family of tumours, has led to a reappraisal of this group of lesions, which, with some exceptions, is now thought to be derived from the interstitial cells of Cajal, and this has facilitated a clearer definition of their pathological spectrum. In this article, we review chronologically the evolution of the concept of GIST with the gradual application of electron microscopy, immunohistochemistry, DNA ploidy analysis. We discuss the impact of these techniques on the pathological assessment and clinical management of GISTs. PMID:18521245

  7. Ghrelin and gastrointestinal stromal tumors

    PubMed Central

    Zhu, Chang-Zhen; Liu, Dong; Kang, Wei-Ming; Yu, Jian-Chun; Ma, Zhi-Qiang; Ye, Xin; Li, Kang

    2017-01-01

    Ghrelin, as a kind of multifunctional protein polypeptide, is mainly produced in the fundus of the stomach and can promote occurrence and development of many tumors, including gastrointestinal tumors, which has been proved by the relevant researches. Most gastrointestinal stromal tumors (GISTs, about 80%), as the most common mesenchymal tumor, also develop in the fundus. Scientific research has confirmed that ghrelin, its receptors and mRNA respectively can be found in GISTs, which demonstrated the existence of a ghrelin autocrine/paracrine loop in GIST tissues. However, no reports to date have specified the mechanism whether ghrelin can promote the occurrence and development of GISTs. Studies of pulmonary artery endothelial cells in a low-oxygen environment and cardiac muscle cells in an ischemic environment have shown that ghrelin can activate the phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin (PI3K/AKT/mTOR) signaling pathway. Moreover, some studies of GISTs have confirmed that activation of the PI3K/AKT/mTOR pathway can indeed promote the growth and progression of GISTs. Whether ghrelin is involved in the development or progression of GISTs through certain pathways remains unknown. Can we find a new target for the treatment of GISTs? This review explores and summaries the relationship among ghrelin, the PI3K/AKT/mTOR pathway and the development of GISTs. PMID:28348480

  8. Ghrelin and gastrointestinal stromal tumors.

    PubMed

    Zhu, Chang-Zhen; Liu, Dong; Kang, Wei-Ming; Yu, Jian-Chun; Ma, Zhi-Qiang; Ye, Xin; Li, Kang

    2017-03-14

    Ghrelin, as a kind of multifunctional protein polypeptide, is mainly produced in the fundus of the stomach and can promote occurrence and development of many tumors, including gastrointestinal tumors, which has been proved by the relevant researches. Most gastrointestinal stromal tumors (GISTs, about 80%), as the most common mesenchymal tumor, also develop in the fundus. Scientific research has confirmed that ghrelin, its receptors and mRNA respectively can be found in GISTs, which demonstrated the existence of a ghrelin autocrine/paracrine loop in GIST tissues. However, no reports to date have specified the mechanism whether ghrelin can promote the occurrence and development of GISTs. Studies of pulmonary artery endothelial cells in a low-oxygen environment and cardiac muscle cells in an ischemic environment have shown that ghrelin can activate the phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin (PI3K/AKT/mTOR) signaling pathway. Moreover, some studies of GISTs have confirmed that activation of the PI3K/AKT/mTOR pathway can indeed promote the growth and progression of GISTs. Whether ghrelin is involved in the development or progression of GISTs through certain pathways remains unknown. Can we find a new target for the treatment of GISTs? This review explores and summaries the relationship among ghrelin, the PI3K/AKT/mTOR pathway and the development of GISTs.

  9. Overexpression of the pepper transcription factor CaPF1 in transgenic Virginia pine (Pinus Virginiana Mill.) confers multiple stress tolerance and enhances organ growth.

    PubMed

    Tang, Wei; Charles, Thomas M; Newton, Ronald J

    2005-11-01

    Transcription factors play an important role in regulating gene expression in response to stress and pathogen tolerance. We describe here that overexpression of an ERF/AP2 pepper transcription factor (CaPF1) in transgenic Virginia pine (Pinus virginiana Mill.) confers tolerance to heavy metals Cadmium, Copper, and Zinc, to heat, and to pathogens Bacillus thuringiensis and Staphylococcus epidermidis, as by the survival rate of transgenic plants and the number of decreasing pathogen cells in transgenic tissues. Measurement of antioxidant enzymes ascorbate peroxidase (APOX), glutathione reductase (GR), and superoxide dismutase (SOD) activities demonstrated that the level of the enzyme activities was higher in transgenic Virginia pine plants overexpressing the CaPF1 gene, which may protect cells from the oxidative damage caused by stresses, compared to the controls. Constitutive overexpression of CaPF1 gene enhanced organ growth by increasing organ size and cell numbers in transgenic Virginia pine plants over those in control plants.

  10. Inhibition of tumor-stromal interaction through HGF/Met signaling by valproic acid

    SciTech Connect

    Matsumoto, Yohsuke; Motoki, Takahiro; Kubota, Satoshi; Takigawa, Masaharu; Tsubouchi, Hirohito; Gohda, Eiichi

    2008-02-01

    Hepatocyte growth factor (HGF), which is produced by surrounding stromal cells, including fibroblasts and endothelial cells, has been shown to be a significant factor responsible for cancer cell invasion mediated by tumor-stromal interactions. We found in this study that the anti-tumor agent valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, strongly inhibited tumor-stromal interaction. VPA inhibited HGF production in fibroblasts induced by epidermal growth factor (EGF), platelet-derived growth factor, basic fibroblast growth factor, phorbol 12-myristate 13-acetate (PMA) and prostaglandin E{sub 2} without any appreciable cytotoxic effect. Other HDAC inhibitors, including butyric acid and trichostatin A (TSA), showed similar inhibitory effects on HGF production stimulated by various inducers. Up-regulations of HGF gene expression induced by PMA and EGF were also suppressed by VPA and TSA. Furthermore, VPA significantly inhibited HGF-induced invasion of HepG2 hepatocellular carcinoma cells. VPA, however, did not affect the increases in phosphorylation of MAPK and Akt in HGF-treated HepG2 cells. These results demonstrated that VPA inhibited two critical processes of tumor-stromal interaction, induction of fibroblastic HGF production and HGF-induced invasion of HepG2 cells, and suggest that those activities serve for other anti-tumor mechanisms of VPA besides causing proliferation arrest, differentiation, and/or apoptosis of tumor cells.

  11. HB-EGF directs stromal cell polyploidy and decidualization via cyclin D3 during implantation.

    PubMed

    Tan, Yi; Li, Meiling; Cox, Sandra; Davis, Marilyn K; Tawfik, Ossama; Paria, Bibhash C; Das, Sanjoy K

    2004-01-01

    Stromal cell polyploidy is a unique phenomenon that occurs during uterine decidualization following embryo implantation, although the developmental mechanism still remains elusive. The general consensus is that the aberrant expression and altered functional activity of cell cycle regulatory molecules at two particular checkpoints G1 to S and G2 to M in the cell cycle play an important role in the development of cellular polyploidy. Despite the compelling evidence of intrinsic cell cycle alteration, it has been implicated that the development of cellular polyploidy may be controlled by specific actions of extracellular growth regulators. Here we show a novel role for heparin-binding EGF-like growth factor (HB-EGF) in the developmental process of stromal cell polyploidy in mice. HB-EGF, which is one of the earliest known molecular mediators of implantation in mice and humans, promotes stromal cell polyploidy via upregulation of cyclin D3. Adenoviral delivery of antisense cyclin D3 attenuates cyclin D3 expression and abrogates HB-EGF-induced stromal cell polyploidy in vitro and in vivo. Collectively, the results demonstrate that the regulation of stromal cell polyploidy and decidualization induced by HB-EGF depend on cyclin D3 induction.

  12. Expression of Pitx2 in stromal cells is required for normal hematopoiesis.

    PubMed

    Kieusseian, Aurélie; Chagraoui, Jalila; Kerdudo, Cécile; Mangeot, Philippe-Emmanuel; Gage, Philip J; Navarro, Nicole; Izac, Brigitte; Uzan, Georges; Forget, Bernard G; Dubart-Kupperschmitt, Anne

    2006-01-15

    Although the expression of Pitx2, a bicoid family homeodomain transcription factor, is highly regulated during hematopoiesis, its function during this process was not documented; we thus studied hematopoiesis in Pitx2-null mice. We found that Pitx2(-/-) embryos display hypoplastic livers with reduced numbers of hematopoietic cells, but these cells had normal hematopoietic potential, as evidenced by colony-forming assays, immature progenitor cell assays, and long-term repopulation assays. Because the microenvironment is also crucial to the development of normal hematopoiesis, we established Pitx2(-/-) and Pitx2(+/+) stromas from fetal liver and studied their hematopoietic supportive capacity. We showed that the frequency of cobblestone area-forming cells was 4-fold decreased when using Pitx2(-/-) stromal cells compared with Pitx2(+/+) stromal cells, whatever the Pitx2 genotype of hematopoietic cells tested in this assay. This defect was rescued by expression of Pitx2 into Pitx2(-/-) fetal liver stromal cells, demonstrating a major and direct role of Pitx2 in the hematopoietic supportive capacity of fetal liver stroma. Finally, we showed a reduced capacity of MS5 stromal cells expressing Pitx2 RNAi to support human hematopoiesis. Altogether these data showed that Pitx2 has major functions in the hematopoietic supportive capacity of fetal liver and adult bone marrow stromal cells.

  13. Expression of Pitx2 in stromal cells is required for normal hematopoiesis

    PubMed Central

    Kieusseian, Aurélie; Chagraoui, Jalila; Kerdudo, Cécile; Mangeot, Philippe-Emmanuel; Gage, Philip J.; Navarro, Nicole; Izac, Brigitte; Uzan, Georges; Forget, Bernard G.; Dubart-Kupperschmitt, Anne

    2006-01-01

    Although the expression of Pitx2, a bicoid family homeodomain transcription factor, is highly regulated during hematopoiesis, its function during this process was not documented; we thus studied hematopoiesis in Pitx2-null mice. We found that Pitx2–/– embryos display hypoplastic livers with reduced numbers of hematopoietic cells, but these cells had normal hematopoietic potential, as evidenced by colony-forming assays, immature progenitor cell assays, and long-term repopulation assays. Because the microenvironment is also crucial to the development of normal hematopoiesis, we established Pitx2–/– and Pitx2+/+ stromas from fetal liver and studied their hematopoietic supportive capacity. We showed that the frequency of cobblestone area-forming cells was 4-fold decreased when using Pitx2–/– stromal cells compared with Pitx2+/+ stromal cells, whatever the Pitx2 genotype of hematopoietic cells tested in this assay. This defect was rescued by expression of Pitx2 into Pitx2–/– fetal liver stromal cells, demonstrating a major and direct role of Pitx2 in the hematopoietic supportive capacity of fetal liver stroma. Finally, we showed a reduced capacity of MS5 stromal cells expressing Pitx2 RNAi to support human hematopoiesis. Altogether these data showed that Pitx2 has major functions in the hematopoietic supportive capacity of fetal liver and adult bone marrow stromal cells. PMID:16195330

  14. The stromal cell-derived factor-1alpha dependent migration of human cord blood CD34 haematopoietic stem and progenitor cells switches from protein kinase C (PKC)-alpha dependence to PKC-alpha independence upon prolonged culture in the presence of Flt3-ligand and interleukin-6.

    PubMed

    Kasenda, Benjamin; Kassmer, Susannah H; Niggemann, Bernd; Schiermeier, Sven; Hatzmann, Wolfgang; Zänker, Kurt S; Dittmar, Thomas

    2008-09-01

    Addition of the inflammatory cytokine interleukin (IL)-6 to the culture medium of human cord blood haematopoietic stem and progenitor cells (HSPCs) has been shown to lead to an altered stromal cell-derived factor-1alpha-dependent migratory phenotype. This study investigated whether this effect was attributed to a differential engagement of protein kinase C (PKC) isotypes. The migratory activity of both Flt3-ligand and Flt3-ligand/IL-6 cultured cord blood HSPCs was PKC-alpha dependent on day 1, but PKC-alpha independent after 5 d of cultivation. PKC-alpha expression was not down-regulated in cells cultured for 5 d indicating a switch of signalling molecules directing cell migration.

  15. Conference Resolution

    NASA Astrophysics Data System (ADS)

    2009-04-01

    Since the first IUPAP International Conference on Women in Physics (Paris, March 2002) and the Second Conference (Rio de Janeiro, May 2005), progress has continued in most countries and world regions to attract girls to physics and advance women into leadership roles, and many working groups have formed. The Third Conference (Seoul, October 2008), with 283 attendees from 57 countries, was dedicated to celebrating the physics achievements of women throughout the world, networking toward new international collaborations, building each participant's capacity for career success, and aiding the formation of active regional working groups to advance women in physics. Despite the progress, women remain a small minority of the physics community in most countries.

  16. Orthologs of the class A4 heat shock transcription factor HsfA4a confer cadmium tolerance in wheat and rice.

    PubMed

    Shim, Donghwan; Hwang, Jae-Ung; Lee, Joohyun; Lee, Sichul; Choi, Yunjung; An, Gynheung; Martinoia, Enrico; Lee, Youngsook

    2009-12-01

    Cadmium (Cd) is a widespread soil pollutant; thus, the underlying molecular controls of plant Cd tolerance are of substantial interest. A screen for wheat (Triticum aestivum) genes that confer Cd tolerance to a Cd hypersensitive yeast strain identified Heat shock transcription factor A4a (HsfA4a). Ta HsfA4a is most similar to the class A4 Hsfs from monocots. The most closely related rice (Oryza sativa) homolog, Os HsfA4a, conferred Cd tolerance in yeast, as did Ta HsfA4a, but the second most closely related rice homolog, Os HsfA4d, did not. Cd tolerance was enhanced in rice plants expressing Ta HsfA4a and decreased in rice plants with knocked-down expression of Os HsfA4a. An analysis of the functional domain using chimeric proteins constructed from Ta HsfA4a and Os HsfA4d revealed that the DNA binding domain (DBD) of HsfA4a is critical for Cd tolerance, and within the DBD, Ala-31 and Leu-42 are important for Cd tolerance. Moreover, Ta HsfA4a-mediated Cd resistance in yeast requires metallothionein (MT). In the roots of wheat and rice, Cd stress caused increases in HsfA4a expression, together the MT genes. Our findings thus suggest that HsfA4a of wheat and rice confers Cd tolerance by upregulating MT gene expression in planta.

  17. What Happens After Treatment for Gastrointestinal Stromal Tumor?

    MedlinePlus

    ... Tumor Is No Longer Working Gastrointestinal Stromal Tumor (GIST) After Treatment What Happens After Treatment for Gastrointestinal ... For some people with a gastrointestinal stromal tumor (GIST), treatment may remove or destroy the cancer. Completing ...

  18. Human-derived normal mesenchymal stem/stromal cells in anticancer therapies

    PubMed Central

    Zhang, Cheng; Yang, Shi-Jie; Wen, Qin; Zhong, Jiang F; Chen, Xue-Lian; Stucky, Andres; Press, Michael F; Zhang, Xi

    2017-01-01

    The tumor microenvironment (TME) not only plays a pivotal role during cancer progression and metastasis, but also has profound effects on therapeutic efficacy. Stromal cells of the TME are increasingly becoming a key consideration in the development of active anticancer therapeutics. However, dispute concerning the role of stromal cells to fight cancer continues because the use of mesenchymal stem/stromal cells (MSCs) as an anticancer agent is dependent on the specific MSCs subtype, in vitro or in vivo conditions, factors secreted by MSCs, types of cancer cell lines and interactions between MSCs, cancer cells and host immune cells. In this review, we mainly focus on the role of human-derived normal MSCs in anticancer therapies. We first discuss the use of different MSCs in the therapies for various cancers. We then focus on their anticancer mechanism and clinical application. PMID:28123601

  19. Low-frequency vibration treatment of bone marrow stromal cells induces bone repair in vivo

    PubMed Central

    He, Shengwei; Zhao, Wenzhi; Zhang, Lu; Mi, Lidong; Du, Guangyu; Sun, Chuanxiu; Sun, Xuegang

    2017-01-01

    Objective(s): To study the effect of low-frequency vibration on bone marrow stromal cell differentiation and potential bone repair in vivo. Materials and Methods: Forty New Zealand rabbits were randomly divided into five groups with eight rabbits in each group. For each group, bone defects were generated in the left humerus of four rabbits, and in the right humerus of the other four rabbits. To test differentiation, bones were isolated and demineralized, supplemented with bone marrow stromal cells, and implanted into humerus bone defects. Varying frequencies of vibration (0, 12.5, 25, 50, and 100 Hz) were applied to each group for 30 min each day for four weeks. When the bone defects integrated, they were then removed for histological examination. mRNA transcript levels of runt-related transcription factor 2, osteoprotegerin, receptor activator of nuclear factor κ-B ligan, and pre-collagen type 1 α were measured. Results: Humeri implanted with bone marrow stromal cells displayed elevated callus levels and wider, more prevalent, and denser trabeculae following treatment at 25 and 50 Hz. The mRNA levels of runt-related transcription factor 2, osteoprotegerin, receptor activator of nuclear factor κ-B ligand, and pre-collagen type 1 α were also markedly higher following 25 and 50 Hz treatment. Conclusion: Low frequency (25–50 Hz) vibration in vivo can promote bone marrow stromal cell differentiation and repair bone injury. PMID:28133520

  20. Interleukin-6 receptor in spindle-shaped stromal cells, a prognostic determinant of early breast cancer.

    PubMed

    Labovsky, Vivian; Martinez, Leandro Marcelo; Calcagno, María de Luján; Davies, Kevin Mauro; García-Rivello, Hernán; Wernicke, Alejandra; Feldman, Leonardo; Giorello, María Belén; Matas, Ayelén; Borzone, Francisco Raúl; Howard, Scott C; Chasseing, Norma Alejandra

    2016-10-01

    Spindle-shaped stromal cells, like carcinoma-associated fibroblasts and mesenchymal stem cells, influence tumor behavior and can serve as parameters in the clinical diagnosis, therapy, and prognosis of early breast cancer. Therefore, the aim of this study is to explore the clinicopathological significance of tumor necrosis factor-related apoptosis-induced ligand (TRAIL) receptors (Rs) 2 and 4 (TRAIL-R2 and R4), and interleukin-6 R (IL-6R) in spindle-shaped stromal cells, not associated with the vasculature, as prognostic determinants of early breast cancer patients. Receptors are able to trigger the migratory activity, among other functions, of these stromal cells. We conducted immunohistochemical analysis for the expression of these receptors in spindle-shaped stromal cells, not associated with the vasculature, of primary tumors from early invasive breast cancer patients, and analyzed their association with clinicopathological characteristics. Here, we demonstrate that the elevated levels of TRAIL-R2, TRAIL-R4, and IL-6R in these stromal cells were significantly associated with a higher risk of metastatic occurrence (p = 0.034, 0.026, and 0.006; respectively). Moreover, high expression of TRAIL-R4 was associated with shorter disease-free survival and metastasis-free survival (p = 0.013 and 0.019; respectively). Also, high expression of IL-6R was associated with shorter disease-free survival, metastasis-free survival, and overall survival (p = 0.003, 0.001, and 0.003; respectively). Multivariate analysis showed that IL-6R expression was an independent prognostic factor for disease-free survival and metastasis-free survival (p = 0.035). This study is the first to demonstrate that high levels of IL-6R expression in spindle-shaped stromal cells, not associated with the vasculature, could be used to identify early breast cancer patients with poor outcomes.

  1. Expression of vascular endothelial growth factor does not promote transformation but confers a growth advantage in vivo to Chinese hamster ovary cells.

    PubMed Central

    Ferrara, N; Winer, J; Burton, T; Rowland, A; Siegel, M; Phillips, H S; Terrell, T; Keller, G A; Levinson, A D

    1993-01-01

    Vascular endothelial growth factor (VEGF) is a mitogen with a specificity for endothelial cells in vitro and an angiogenic inducer in vivo. We tested the hypothesis that VEGF may confer on expressing cells a growth advantage in vivo. Dihydrofolatereductase--Chinese hamster ovary cells were transfected with expression vectors which direct the constitutive synthesis of VEGF. Neither the expression nor the exogenous administration of VEGF stimulated anchorage-dependent or anchorage-independent growth of Chinese hamster ovary cells in vitro. However, VEGF-expressing clones, unlike control cells, demonstrated an ability to proliferate in nude mice. Histologic examination revealed that the proliferative lesions were compact, well vascularized, and nonedematous. Ultrastructural analysis revealed that capillaries within the lesions were of the continuous type. These findings indicate that the expression of VEGF may confer on cells the ability to grow in vivo in the absence of transformation by purely paracrine mechanisms. Since VEGF is a widely distributed protein, this property may have relevance for a variety of physiological and pathological proliferative processes. Images PMID:8423215

  2. Pancreatic adenocarcinoma upregulated factor (PAUF) confers resistance to pancreatic cancer cells against oncolytic parvovirus H-1 infection through IFNA receptor-mediated signaling

    SciTech Connect

    Kaowinn, Sirichat; Cho, Il-Rae; Moon, Jeong; Jun, Seung Won; Kim, Chang Seok; Kang, Ho Young; Kim, Manbok; Koh, Sang Seok; Chung, Young-Hwa

    2015-04-03

    Pancreatic adenocarcinoma upregulated factor (PAUF), a novel oncogene, plays a crucial role in the development of pancreatic cancer, including its metastasis and proliferation. Therefore, PAUF-expressing pancreatic cancer cells could be important targets for oncolytic virus-mediated treatment. Panc-1 cells expressing PAUF (Panc-PAUF) showed relative resistance to parvovirus H-1 infection compared with Panc-1 cells expressing an empty vector (Panc-Vec). Of interest, expression of type I IFN-α receptor (IFNAR) was higher in Panc-PAUF cells than in Panc-Vec cells. Increased expression of IFNAR in turn increased the activation of Stat1 and Tyk2 in Panc-PAUF cells compared with that in Panc-Vec cells. Suppression of Tyk2 and Stat1, which are important downstream molecules for IFN-α signaling, sensitized pancreatic cancer cells to parvovirus H-1-mediated apoptosis. Further, constitutive suppression of PAUF sensitized Bxpc3 pancreatic cancer cells to parvovirus H-1 infection. Taken together, these results suggested that PAUF conferred resistance to pancreatic cancer cells against oncolytic parvovirus H-1 infection through IFNAR-mediated signaling. - Highlights: • PAUF confers resistance against oncolytic parvovirus H-1 infection. • PAUF enhances the expression of IFNAR in Panc-1 cells. • Increased activation of Tyk2 or Stat1 by PAUF provides resistance to parvovirus H-1-mediated apoptosis. • Constitutive inhibition of PAUF enhances parvovirus H-1-mediated oncolysis of Bxpc3 pancreatic cancer cells.

  3. The sunflower transcription factor HaHB11 confers tolerance to water deficit and salinity to transgenic Arabidopsis and alfalfa plants.

    PubMed

    Cabello, Julieta V; Giacomelli, Jorge I; Gómez, María C; Chan, Raquel L

    2016-11-22

    Homeodomain-leucine zipper (HD-Zip) transcription factors are unique to the plant kingdom; members of subfamily I are known to be involved in abiotic stress responses. HaHB11 belongs to this subfamily and it was previously shown that it is able to confer improved yield and tolerance to flooding via a quiescent strategy. Here we show that HaHB11 expression is induced by ABA, NaCl and water deficit in sunflower seedlings and leaves. Arabidopsis transgenic plants expressing HaHB11, controlled either by its own promoter or by the constitutive 35S CaMV, presented rolled leaves and longer roots than WT when grown under standard conditions. In addition, these plants showed wider stems and more vascular bundles. To deal with drought, HaHB11 transgenic plants closed their stomata faster and lost less water than controls, triggering an enhanced tolerance to such stress condition and also to salinity stress. Concomitantly, ABA-synthesis and sensing related genes were differentially regulated in HaHB11 transgenic plants. Either under long-term salinity stress or mild drought stress, HaHB11 transgenic plants did not exhibit yield penalties. Moreover, alfalfa transgenic plants were generated which also showed enhanced drought tolerance. Altogether, the results indicated that HaHB11 was able to confer drought and salinity tolerance via a complex mechanism which involves morphological, physiological and molecular changes.

  4. Hepatic immune regulation by stromal cells.

    PubMed

    Schildberg, Frank A; Sharpe, Arlene H; Turley, Shannon J

    2015-02-01

    A metabolic organ, the liver also has a central role in tolerance induction. Stromal cells lining the hepatic sinusoids, such as liver sinusoidal endothelial cells (LSECs) and hepatic stellate cells (HSCs), are the first liver cells to encounter gut-derived and systemic antigens, thereby shaping local and systemic tolerance. Recent studies have demonstrated that stromal cells can modulate immune responses by antigen-dependent and independent mechanisms. Stromal cells interfere with the function of other antigen-presenting cells (APCs) and induce non-responsive T cells as well as regulatory T cells and myeloid-derived suppressor cells (MDSCs). The immunosuppressive microenvironment thus created provides a means to protect the liver from tissue damage. Such tolerized surroundings, however, can be exploited by certain pathogens, promoting persistent liver infections.

  5. Stromal cell-derived CXCL12 and CCL8 cooperate to support increased development of regulatory dendritic cells following Leishmania infection.

    PubMed

    Nguyen Hoang, Anh Thu; Liu, Hao; Juaréz, Julius; Aziz, Naveed; Kaye, Paul M; Svensson, Mattias

    2010-08-15

    In the immune system, stromal cells provide specialized niches that control hematopoiesis by coordinating the production of chemokines, adhesion molecules, and growth factors. Stromal cells also have anti-inflammatory effects, including support for the differentiation of hematopoietic progenitors into dendritic cells (DCs) with immune regulatory properties. Together, these observations suggest that the alterations in hematopoiesis commonly seen in infectious disease models, such as experimental visceral leishmaniasis in mice, might result from altered stromal cell function. We report in this study that the stromal cell-derived chemokines CXCL12 and CCL8 cooperate to attract hematopoietic progenitors with the potential to differentiate into regulatory DCs. We also show that infection of murine bone marrow stromal cells by Leishmania donovani enhanced their capacity to support the development of regulatory DCs, as well as their capacity to produce CCL8. Likewise, in experimental visceral leishmaniasis, CCL8 production was induced in splenic stromal cells, leading to an enhanced capacity to attract hematopoietic progenitor cells. Thus, intracellular parasitism of stromal cells modifies their capacity to recruit and support hematopoietic progenitor differentiation into regulatory DCs, and aberrant expression of CCL8 by diseased stromal tissue may be involved in the switch from resolving to persistent infection.

  6. Bone marrow stromal cells from multiple myeloma patients uniquely induce bortezomib resistant NF-κB activity in myeloma cells

    PubMed Central

    2010-01-01

    Background Components of the microenvironment such as bone marrow stromal cells (BMSCs) are well known to support multiple myeloma (MM) disease progression and resistance to chemotherapy including the proteasome inhibitor bortezomib. However, functional distinctions between BMSCs in MM patients and those in disease-free marrow are not completely understood. We and other investigators have recently reported that NF-κB activity in primary MM cells is largely resistant to the proteasome inhibitor bortezomib, and that further enhancement of NF-κB by BMSCs is similarly resistant to bortezomib and may mediate resistance to this therapy. The mediating factor(s) of this bortezomib-resistant NF-κB activity is induced by BMSCs is not currently understood. Results Here we report that BMSCs specifically derived from MM patients are capable of further activating bortezomib-resistant NF-κB activity in MM cells. This induced activity is mediated by soluble proteinaceous factors secreted by MM BMSCs. Among the multiple factors evaluated, interleukin-8 was secreted by BMSCs from MM patients at significantly higher levels compared to those from non-MM sources, and we found that IL-8 contributes to BMSC-induced NF-κB activity. Conclusions BMSCs from MM patients uniquely enhance constitutive NF-κB activity in MM cells via a proteinaceous secreted factor in part in conjunction with IL-8. Since NF-κB is known to potentiate MM cell survival and confer resistance to drugs including bortezomib, further identification of the NF-κB activating factors produced specifically by MM-derived BMSCs may provide a novel biomarker and/or drug target for the treatment of this commonly fatal disease. PMID:20604947

  7. Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres.

    PubMed

    Nelson, Donald E; Repetti, Peter P; Adams, Tom R; Creelman, Robert A; Wu, Jingrui; Warner, David C; Anstrom, Don C; Bensen, Robert J; Castiglioni, Paolo P; Donnarummo, Meghan G; Hinchey, Brendan S; Kumimoto, Roderick W; Maszle, Don R; Canales, Roger D; Krolikowski, Katherine A; Dotson, Stanton B; Gutterson, Neal; Ratcliffe, Oliver J; Heard, Jacqueline E

    2007-10-16

    Commercially improved crop performance under drought conditions has been challenging because of the complexity of the trait and the multitude of factors that influence yield. Here we report the results of a functional genomics approach that identified a transcription factor from the nuclear factor Y (NF-Y) family, AtNF-YB1, which acts through a previously undescribed mechanism to confer improved performance in Arabidopsis under drought conditions. An orthologous maize transcription factor, ZmNF-YB2, is shown to have an equivalent activity. Under water-limited conditions, transgenic maize plants with increased ZmNF-YB2 expression show tolerance to drought based on the responses of a number of stress-related parameters, including chlorophyll content, stomatal conductance, leaf temperature, reduced wilting, and maintenance of photosynthesis. These stress adaptations contribute to a grain yield advantage to maize under water-limited environments. The application of this technology has the potential to significantly impact maize production systems that experience drought.

  8. The Alfin-like homeodomain finger protein AL5 suppresses multiple negative factors to confer abiotic stress tolerance in Arabidopsis.

    PubMed

    Wei, Wei; Zhang, Yu-Qin; Tao, Jian-Jun; Chen, Hao-Wei; Li, Qing-Tian; Zhang, Wan-Ke; Ma, Biao; Lin, Qing; Zhang, Jin-Song; Chen, Shou-Yi

    2015-03-01

    Plant homeodomain (PHD) finger proteins affect processes of growth and development by changing transcription and reading epigenetic histone modifications, but their functions in abiotic stress responses remain largely unclear. Here we characterized seven Arabidopsis thaliana Alfin1-like PHD finger proteins (ALs) in terms of the responses to abiotic stresses. ALs localized to the nucleus and repressed transcription. Except AL6, all the ALs bound to G-rich elements. Mutations of the amino acids at positions 34 and 35 in AL6 caused loss of ability to bind to G-rich elements. Expression of the AL genes responded differentially to osmotic stress, salt, cold and abscisic acid treatments. AL5-over-expressing plants showed higher tolerance to salt, drought and freezing stress than Col-0. Consistently, al5 mutants showed reduced stress tolerance. We used ChIP-Seq assays to identify eight direct targets of AL5, and found that AL5 binds to the promoter regions of these genes. Knockout mutants of five of these target genes exhibited varying tolerances to stresses. These results indicate that AL5 inhibits multiple signaling pathways to confer stress tolerance. Our study sheds light on mechanisms of AL5-mediated signaling in abiotic stress responses, and provides tools for improvement of stress tolerance in crop plants.

  9. Stromal-dependent tumor promotion by MIF family members

    PubMed Central

    Mitchell, Robert A.; Yaddanapudi, Kavitha

    2014-01-01

    Solid tumors are composed of a heterogeneous population of cells that interact with each other and with soluble and insoluble factors that, when combined, strongly influence the relative proliferation, differentiation, motility, matrix remodeling, metabolism and microvessel density of malignant lesions. One family of soluble factors that is becoming increasingly associated with pro-tumoral phenotypes within tumor microenvironments is that of the migration inhibitory factor family which includes its namesake, MIF, and its only known family member, D-dopachrome tautomerase (D-DT). This review seeks to highlight our current understanding of the relative contributions of a variety of immune and non-immune tumor stromal cell populations and, within those contexts, will summarize the literature associated with MIF and/or D-DT. PMID:25277536

  10. Origin of hemopoietic stromal progenitor cells in chimeras

    SciTech Connect

    Chertkov, J.L.; Drize, N.J.; Gurevitch, O.A.; Samoylova, R.S.

    1985-12-01

    Intravenously injected bone marrow cells do not participate in the regeneration of hemopoietic stromal progenitors in irradiated mice, nor in the curetted parts of the recipient's marrow. The hemopoietic stromal progenitors in allogeneic chimeras are of recipient origin. The adherent cell layer (ACL) of long-term cultures of allogeneic chimera bone marrow contains only recipient hemopoietic stromal progenitors. However, in ectopic hemopoietic foci produced by marrow implantation under the renal capsule and repopulated by the recipient hemopoietic cells after irradiation and reconstitution by syngeneic hemopoietic cells, the stromal progenitors were of implant donor origin, as were stromal progenitors of the ACL in long-term cultures of hemopoietic cells from ectopic foci. Our results confirm that the stromal and hemopoietic progenitors differ in origin and that hemopoietic stromal progenitors are not transplantable by the intravenous route in mice.

  11. Skull metastasis from rectal gastrointestinal stromal tumours.

    PubMed

    Gil-Arnaiz, Irene; Martínez-Trufero, Javier; Pazo-Cid, Roberto Antonio; Felipo, Francesc; Lecumberri, María José; Calderero, Verónica

    2009-09-01

    Gastrointestinal stromal tumours (GIST) are the most common mesenchymal neoplasm of the gastrointestinal tract. Rectum localisation is infrequent for these neoplasms, accounting for about 5% of all cases. Distant metastases of GIST are also rare. We present a patient with special features: the tumour is localised in rectum and it has an uncommon metastatic site, the skull, implying a complex differential diagnosis approach.

  12. Inhibition of Stromal PlGF Suppresses the Growth of Prostate Cancer Xenografts

    PubMed Central

    Zins, Karin; Thomas, Anita; Lucas, Trevor; Sioud, Mouldy; Aharinejad, Seyedhossein; Abraham, Dietmar

    2013-01-01

    The growth and vascularization of prostate cancer is dependent on interactions between cancer cells and supporting stromal cells. The primary stromal cell type found in prostate tumors is the carcinoma-associated fibroblast, which produces placental growth factor (PlGF). PlGF is a member of the vascular endothelial growth factor (VEGF) family of angiogenic molecules and PlGF mRNA levels increase after androgen deprivation therapy in prostate cancer. In this study, we show that PlGF has a direct dose-dependent proliferative effect on human PC-3 prostate cancer cells in vitro and fibroblast-derived PlGF increases PC-3 proliferation in co-culture. In xenograft tumor models, intratumoral administration of murine PlGF siRNA reduced stromal-derived PlGF expression, reduced tumor burden and decreased the number of Ki-67 positive proliferating cells associated with reduced vascular density. These data show that targeting stromal PlGF expression may represent a therapeutic target for the treatment of prostate cancer. PMID:24005860

  13. Senescent stromal-derived osteopontin promotes preneoplastic cell growth.

    PubMed

    Pazolli, Ermira; Luo, Xianmin; Brehm, Sarah; Carbery, Kelly; Chung, Jun-Jae; Prior, Julie L; Doherty, Jason; Demehri, Shadmehr; Salavaggione, Lorena; Piwnica-Worms, David; Stewart, Sheila A

    2009-02-01

    Alterations in the tissue microenvironment collaborate with cell autonomous genetic changes to contribute to neoplastic progression. The importance of the microenvironment in neoplastic progression is underscored by studies showing that fibroblasts isolated from a tumor stimulate the growth of preneoplastic and neoplastic cells in xenograft models. Similarly, senescent fibroblasts promote preneoplastic cell growth in vitro and in vivo. Because senescent cells accumulate with age, their presence is hypothesized to facilitate preneoplastic cell growth and tumor formation in older individuals. To identify senescent stromal factors directly responsible for stimulating preneoplastic cell growth, we carried out whole-genome transcriptional profiling and compared senescent fibroblasts with their younger counterparts. We identified osteopontin (OPN) as one of the most highly elevated transcripts in senescent fibroblasts. Importantly, reduction of OPN protein levels by RNA interference did not affect senescence induction in fibroblasts; however, it dramatically reduced the growth-promoting activities of senescent fibroblasts in vitro and in vivo, showing that OPN is necessary for paracrine stimulation of preneoplastic cell growth. In addition, we found that recombinant OPN was sufficient to stimulate preneoplastic cell growth. Finally, we show that OPN is expressed in senescent stroma within preneoplastic lesions that arise following 7,12-dimethylbenz(a)anthracene/12-O-tetradecanoylphorbol-13-acetate treatment of mice, suggesting that stromal-derived OPN-mediated signaling events affect neoplastic progression.

  14. Senescent Stromal-Derived Osteopontin Promotes Preneoplastic Cell Growth

    PubMed Central

    Pazolli, Ermira; Luo, Xianmin; Brehm, Sarah; Carbery, Kelly; Chung, Jun-Jae; Prior, Julie L.; Doherty, Jason; Demehri, Shadmehr; Salavaggione, Lorena; Piwnica-Worms, David; Stewart, Sheila A.

    2008-01-01

    Alterations in the tissue microenvironment collaborate with cell autonomous genetic changes to contribute to neoplastic progression. The importance of the microenvironment in neoplastic progression is underscored by studies demonstrating that fibroblasts isolated from a tumor stimulate the growth of preneoplastic and neoplastic cells in xenograft models. Similarly, senescent fibroblasts promote preneoplastic cell growth in vitro and in vivo. Because senescent cells accumulate with age, their presence is hypothesized to facilitate preneoplastic cell growth and tumor formation in older individuals. To identify senescent stromal factors directly responsible for stimulating preneoplastic cell growth, we carried out whole genome transcriptional profiling and compared senescent fibroblasts to their younger counterparts. We identified osteopontin (OPN) as one of the most highly elevated transcripts in senescent fibroblasts. Importantly, reduction of OPN protein levels by RNAi did not impact senescence induction in fibroblasts; however, it dramatically reduced the growth-promoting activities of senescent fibroblasts in vitro and in vivo, demonstrating that OPN is necessary for paracrine stimulation of preneoplastic cell growth. In addition, we found that recombinant OPN was sufficient to stimulate preneoplastic cell growth. Finally, we demonstrate that OPN is expressed in senescent stroma within preneoplastic lesions that arise following DMBA/TPA treatment of mice, suggesting that stromal-derived OPN-mediated signaling events impact neoplastic progression. PMID:19155301

  15. Conference Space

    ERIC Educational Resources Information Center

    Tillett, Wade

    2016-01-01

    The following is an exploration of the spatial configurations (and their implications) within a typical panel session at an academic conference. The presenter initially takes up different roles and hyperbolically describes some possible messages that the spatial arrangement sends. Eventually, the presenter engages the audience members in atypical…

  16. Paraneoplastic Hypoglycaemia: A Rare Manifestation of Pelvic Gastrointestinal Stromal Tumour

    PubMed Central

    Hadi, Rahat; Mehrotra, Kiranpreet; Rastogi, Shivani; Masood, Shakeel

    2017-01-01

    Non-Islet Cell Tumour Induced Hypoglycaemia (NICTH), presenting with recurrent fasting hypoglycaemia is a very rare paraneoplastic syndrome. It usually presents with large metastatic mesenchymal tumours. NICTH secondary to Gastrointestinal Stromal Tumour (GIST) is even rarer. Diagnosis of NICTH is based on the low serum insulin level, low serum concentrations of Insulin Like Growth Factor (IGF-I) and IGF binding protein- III (IGFBP-III) in combination with elevated concentrations of pro-IGF-II. Various Immunohistochemical (IHC) markers are integral to diagnosis of GIST namely 2-deoxyglucose-6-phosphate phosphatase -1(DOG-1), Cluster Differentiation 34 (CD 34), Cluster Differentiation 117 (CD117). The management requires prompt intravenous hydration and glucose infusions followed by surgical resection. We hereby, report a rare case of a 65-year-old female with intractable fasting hypoglycaemia due to overproduction of "big" insulin-like growth factor II diagnosed to have pelvic GIST and managed by Steroids and Imatinib.

  17. Manipulation of human early T lymphopoiesis by coculture on human bone marrow stromal cells: potential utility for adoptive immunotherapy.

    PubMed

    Liu, Bing; Ohishi, Kohshi; Orito, Yuki; Nakamori, Yoshiki; Nishikawa, Hiroyoshi; Ino, Kazuko; Suzuki, Kei; Matsumoto, Takeshi; Masuya, Masahiro; Hamada, Hirofumi; Mineno, Junichi; Ono, Ryoichi; Nosaka, Tetsuya; Shiku, Hiroshi; Katayama, Naoyuki

    2013-04-01

    T cell precursors are an attractive target for adoptive immunotherapy. We examined the regulation of human early T lymphopoiesis by human bone marrow stromal cells to explore in vitro manipulation of human T cell precursors in a human-only coculture system. The generation of CD7(+)CD56(-)cyCD3(-) proT cells from human hematopoietic progenitors on telomerized human bone marrow stromal cells was enhanced by stem cell factor, flt3 ligand, and thrombopoietin, but these stimulatory effects were suppressed by interleukin 3. Expression of Notch ligands Delta-1 and -4 on stromal cells additively promoted T cell differentiation into the CD7(+)cyCD3(+) pre-T cell stage, while cell growth was strongly inhibited. By combining these coculture systems, we found that initial coculture with telomerized stromal cells in the presence of stem cell factor, flt3 ligand, and thrombopoietin, followed by coculture on Delta-1- and -4-coexpressing stromal cells led to a higher percentage and number of pre-T cells. Adoptive immunotherapy using peripheral blood T cells transduced with a tumor antigen-specific T cell receptor (TCR) is a promising strategy but has several limitations, such as the risk of forming a chimeric TCR with the endogenous TCR. We demonstrated that incubation of TCR-transduced hematopoietic progenitors with the combination of coculture systems gave rise to CD7(+)TCR(+)CD3(+)CD1a(-) T cell precursors that rapidly proliferated and differentiated under the culture condition to induce mature T cell differentiation. These data show the regulatory mechanism of early T lymphopoiesis on human stromal cells and the potential utility of engineered human stromal cells to manipulate early T cell development for clinical application.

  18. Ectopic Overexpression of SsCBF1, a CRT/DRE-Binding Factor from the Nightshade Plant Solanum lycopersicoides, Confers Freezing and Salt Tolerance in Transgenic Arabidopsis

    PubMed Central

    Zhang, Lili; Li, Zhenjun; Li, Jingfu; Wang, Aoxue

    2013-01-01

    The C-repeat (CRT)/dehydration-responsive element (DRE) binding factor (CBF/DREB1) transcription factors play a key role in cold response. However, the detailed roles of many plant CBFs are far from fully understood. A CBF gene (SsCBF1) was isolated from the cold-hardy plant Solanum lycopersicoides. A subcellular localization study using GFP fusion protein indicated that SsCBF1 is localized in the nucleus. We delimited the SsCBF1 transcriptional activation domain to the C-terminal segment comprising amino acid residues 193–228 (SsCBF1193–228). The expression of SsCBF1 could be dramatically induced by cold, drought and high salinity. Transactivation assays in tobacco leaves revealed that SsCBF1 could specifically bind to the CRT cis-elements in vivo to activate the expression of downstream reporter genes. The ectopic overexpression of SsCBF1 conferred increased freezing and high-salinity tolerance and late flowering phenotype to transgenic Arabidopsis. RNA-sequencing data exhibited that a set of cold and salt stress responsive genes were up-regulated in transgenic Arabidopsis. Our results suggest that SsCBF1 behaves as a typical CBF to contribute to plant freezing tolerance. Increased resistance to high-salinity and late flowering phenotype derived from SsCBF1 OE lines lend more credence to the hypothesis that plant CBFs participate in diverse physiological and biochemical processes related to adverse conditions. PMID:23755095

  19. Overexpression of horsegram (Macrotyloma uniflorum Lam.Verdc.) NAC transcriptional factor (MuNAC4) in groundnut confers enhanced drought tolerance.

    PubMed

    Pandurangaiah, Merum; Lokanadha Rao, G; Sudhakarbabu, O; Nareshkumar, A; Kiranmai, K; Lokesh, U; Thapa, Ganesh; Sudhakar, Chinta

    2014-08-01

    The NAC family being the largest plant-specific transcription factors functions in diverse and vital physiological processes during development. NAC proteins are known to be crucial in imparting tolerance to plants against abiotic stresses, such as drought and salinity, but the functions of most of them are still elusive. In this study, we report for the first time expression of the MuNAC4, a member of NAC transcription factor from horsegram (Macrotyloma uniflorum) conferring drought tolerance. The groundnut (Arachis hypogaea) transgenics were generated using recombinant MuNAC4 binary vector transformation approach. Molecular analysis of these transgenic lines confirmed the stable gene integration and expression of the MuNAC4 gene. Twelve lines of T5 generation exhibited significantly enhanced tolerance to drought stress with proliferated lateral root growth as compared to wild types. Transgenics exposed to long-term desiccation stress assays showed increased lateral roots and greenish growth. The physiological parameters analysis also suggests that overexpression of MuNAC4 plays a significant role in improving the water stress tolerance of transgenic groundnut, reducing the damage to membrane structures and enhancing osmotic adjustment and antioxidative enzyme regulation under stress. This study validates MuNAC4 as an important candidate gene for future phytoengineering approaches for drought tolerance in crop plants.

  20. What Good Are Conferences, Anyway?

    ERIC Educational Resources Information Center

    Pietro, David C.

    1996-01-01

    According to Frederick Herzberg's studies of employee motivation, humans are driven by motivating factors that allow them to grow psychologically and hygiene factors that help them meet physical needs. Good education conferences can enhance both factors by helping principals refocus their energies, exchange ideas with trusted colleagues, and view…

  1. Region 4 of Rhizobium etli Primary Sigma Factor (SigA) Confers Transcriptional Laxity in Escherichia coli.

    PubMed

    Santillán, Orlando; Ramírez-Romero, Miguel A; Lozano, Luis; Checa, Alberto; Encarnación, Sergio M; Dávila, Guillermo

    2016-01-01

    Sigma factors are RNA polymerase subunits engaged in promoter recognition and DNA strand separation during transcription initiation in bacteria. Primary sigma factors are responsible for the expression of housekeeping genes and are essential for survival. RpoD, the primary sigma factor of Escherichia coli, a γ-proteobacteria, recognizes consensus promoter sequences highly similar to those of some α-proteobacteria species. Despite this resemblance, RpoD is unable to sustain transcription from most of the α-proteobacterial promoters tested so far. In contrast, we have found that SigA, the primary sigma factor of Rhizobium etli, an α-proteobacteria, is able to transcribe E. coli promoters, although it exhibits only 48% identity (98% coverage) to RpoD. We have called this the transcriptional laxity phenomenon. Here, we show that SigA partially complements the thermo-sensitive deficiency of RpoD285 from E. coli strain UQ285 and that the SigA region σ4 is responsible for this phenotype. Sixteen out of 74 residues (21.6%) within region σ4 are variable between RpoD and SigA. Mutating these residues significantly improves SigA ability to complement E. coli UQ285. Only six of these residues fall into positions already known to interact with promoter DNA and to comprise a helix-turn-helix motif. The remaining variable positions are located on previously unexplored sites inside region σ4, specifically into the first two α-helices of the region. Neither of the variable positions confined to these helices seem to interact directly with promoter sequence; instead, we adduce that these residues participate allosterically by contributing to correct region folding and/or positioning of the HTH motif. We propose that transcriptional laxity is a mechanism for ensuring transcription in spite of naturally occurring mutations from endogenous promoters and/or horizontally transferred DNA sequences, allowing survival and fast environmental adaptation of α-proteobacteria.

  2. Region 4 of Rhizobium etli Primary Sigma Factor (SigA) Confers Transcriptional Laxity in Escherichia coli

    PubMed Central

    Santillán, Orlando; Ramírez-Romero, Miguel A.; Lozano, Luis; Checa, Alberto; Encarnación, Sergio M.; Dávila, Guillermo

    2016-01-01

    Sigma factors are RNA polymerase subunits engaged in promoter recognition and DNA strand separation during transcription initiation in bacteria. Primary sigma factors are responsible for the expression of housekeeping genes and are essential for survival. RpoD, the primary sigma factor of Escherichia coli, a γ-proteobacteria, recognizes consensus promoter sequences highly similar to those of some α-proteobacteria species. Despite this resemblance, RpoD is unable to sustain transcription from most of the α-proteobacterial promoters tested so far. In contrast, we have found that SigA, the primary sigma factor of Rhizobium etli, an α-proteobacteria, is able to transcribe E. coli promoters, although it exhibits only 48% identity (98% coverage) to RpoD. We have called this the transcriptional laxity phenomenon. Here, we show that SigA partially complements the thermo-sensitive deficiency of RpoD285 from E. coli strain UQ285 and that the SigA region σ4 is responsible for this phenotype. Sixteen out of 74 residues (21.6%) within region σ4 are variable between RpoD and SigA. Mutating these residues significantly improves SigA ability to complement E. coli UQ285. Only six of these residues fall into positions already known to interact with promoter DNA and to comprise a helix-turn-helix motif. The remaining variable positions are located on previously unexplored sites inside region σ4, specifically into the first two α-helices of the region. Neither of the variable positions confined to these helices seem to interact directly with promoter sequence; instead, we adduce that these residues participate allosterically by contributing to correct region folding and/or positioning of the HTH motif. We propose that transcriptional laxity is a mechanism for ensuring transcription in spite of naturally occurring mutations from endogenous promoters and/or horizontally transferred DNA sequences, allowing survival and fast environmental adaptation of α-proteobacteria. PMID

  3. Workshop Conference on Growth Factors in the Nervous System Held in Kent, United Kingdom on 24-16 March 1986,

    DTIC Science & Technology

    1986-06-10

    cells function and maintenance. In addition to give rise to type Ii astrocytes 14 days the role these factors play in neuronal postnatal, but never to...type I. Another development and function they appear to astrocyte precursor cell develops into be crucial to nerve regeneration and type I. The...cell tumors. About 10 percent of differentiation is a new idea. At this malignant astrocytomas are poorly dif- time, the function of astrocytes is un

  4. A Wheat WRKY Transcription Factor TaWRKY10 Confers Tolerance to Multiple Abiotic Stresses in Transgenic Tobacco

    PubMed Central

    Chen, Liulin; Wang, Xiatian; Ma, Hui; Hu, Wei; Yao, Ningcong; Feng, Ying; Chai, Ruihong; Yang, Guangxiao; He, Guangyuan

    2013-01-01

    WRKY transcription factors are reported to be involved in defense regulation, stress response and plant growth and development. However, the precise role of WRKY transcription factors in abiotic stress tolerance is not completely understood, especially in crops. In this study, we identified and cloned 10 WRKY genes from genome of wheat (Triticum aestivum L.). TaWRKY10, a gene induced by multiple stresses, was selected for further investigation. TaWRKY10 was upregulated by treatment with polyethylene glycol, NaCl, cold and H2O2. Result of Southern blot indicates that the wheat genome contains three copies of TaWRKY10. The TaWRKY10 protein is localized in the nucleus and functions as a transcriptional activator. Overexpression of TaWRKY10 in tobacco (Nicotiana tabacum L.) resulted in enhanced drought and salt stress tolerance, mainly demonstrated by the transgenic plants exhibiting of increased germination rate, root length, survival rate, and relative water content under these stress conditions. Further investigation showed that transgenic plants also retained higher proline and soluble sugar contents, and lower reactive oxygen species and malonaldehyde contents. Moreover, overexpression of the TaWRKY10 regulated the expression of a series of stress related genes. Taken together, our results indicate that TaWRKY10 functions as a positive factor under drought and salt stresses by regulating the osmotic balance, ROS scavenging and transcription of stress related genes. PMID:23762295

  5. Identification of Meflin as a Potential Marker for Mesenchymal Stromal Cells

    PubMed Central

    Maeda, Keiko; Enomoto, Atsushi; Hara, Akitoshi; Asai, Naoya; Kobayashi, Takeshi; Horinouchi, Asuka; Maruyama, Shoichi; Ishikawa, Yuichi; Nishiyama, Takahiro; Kiyoi, Hitoshi; Kato, Takuya; Ando, Kenju; Weng, Liang; Mii, Shinji; Asai, Masato; Mizutani, Yasuyuki; Watanabe, Osamu; Hirooka, Yoshiki; Goto, Hidemi; Takahashi, Masahide

    2016-01-01

    Bone marrow-derived mesenchymal stromal cells (BM-MSCs) in culture are derived from BM stromal cells or skeletal stem cells. Whereas MSCs have been exploited in clinical medicine, the identification of MSC-specific markers has been limited. Here, we report that a cell surface and secreted protein, Meflin, is expressed in cultured MSCs, fibroblasts and pericytes, but not other types of cells including epithelial, endothelial and smooth muscle cells. In vivo, Meflin is expressed by immature osteoblasts and chondroblasts. In addition, Meflin is found on stromal cells distributed throughout the BM, and on pericytes and perivascular cells in multiple organs. Meflin maintains the undifferentiated state of cultured MSCs and is downregulated upon their differentiation, consistent with the observation that Meflin-deficient mice exhibit increased number of osteoblasts and accelerated bone development. In the bone and BM, Meflin is more highly expressed in primitive stromal cells that express platelet-derived growth factor receptor α and Sca-1 than the Sca-1-negative adipo-osteogenic progenitors, which create a niche for hematopoiesis. Those results are consistent with a decrease in the number of clonogenic colony-forming unit-fibroblasts within the BM of Meflin-deficient mice. These preliminary data suggest that Meflin is a potential marker for cultured MSCs and their source cells in vivo. PMID:26924503

  6. Analysis of stromal cells in osteofibrous dysplasia and adamantinoma of long bones.

    PubMed

    Taylor, Richard M; Kashima, Takeshi G; Ferguson, David J; Szuhai, Károly; Hogendoorn, Pancras C; Athanasou, Nicholas A

    2012-01-01

    Adamantinoma of long bones and osteofibrous dysplasia are rare, osteolytic primary bone tumours of uncertain origin containing areas of fibrous and fibro-osseous proliferation. We investigated the nature of the stromal cells in adamantinoma of long bones and osteofibrous dysplasia, and determined cellular and molecular mechanisms of osteolysis in these tumours. Cell culture, molecular (RT-PCR, western blot) and immunohistochemical studies on cases of adamantinoma of long bones and of osteofibrous dysplasia were undertaken to determine the expression of epithelial, osteoblast and osteoclast markers. Ultrastructural and immunophenotypic studies on cultured adamantinoma and osteofibrous dysplasia stromal cells showed that these cells were mainly fibroblast-like with few cells expressing epithelial markers. Osteofibrous dysplasia but not adamantinoma cells expressed alkaline phosphatase. Both osteofibrous dysplasia and adamantinoma cells expressed the ostoclastogenic factors M-CSF and RANKL. Adamantinoma and osteofibrous dysplasia cells also expressed messenger RNA for osteocalcin, osteonectin, osteopontin, osterix and collagen type 1. Adamantinoma and osteofibrous dysplasia cells cultured alone on dentine slices were not capable of lacunar resorption, but in co-cultures with monocytes induced formation of osteoclast-like cells was observered. Cultured osteofibrous dysplasia and adamantinoma stromal cells show similar ultrastructural and immunophenotypic characteristics, and differentially express osteoblast markers. Promotion of osteoclastogenesis by stromal cells may contribute to osteolysis in adamantinoma of long bones and osteofibrous dysplasia.

  7. Crosstalk between stromal cells and cancer cells in pancreatic cancer: New insights into stromal biology.

    PubMed

    Zhan, Han-Xiang; Zhou, Bin; Cheng, Yu-Gang; Xu, Jian-Wei; Wang, Lei; Zhang, Guang-Yong; Hu, San-Yuan

    2017-04-28

    Pancreatic cancer (PC) remains one of the most lethal malignancies worldwide. Increasing evidence has confirmed the pivotal role of stromal components in the regulation of carcinogenesis, invasion, metastasis, and therapeutic resistance in PC. Interaction between neoplastic cells and stromal cells builds a specific microenvironment, which further modulates the malignant properties of cancer cells. Instead of being a "passive bystander", stroma may play a role as a "partner in crime" in PC. However, the role of stromal components in PC is complex and requires further investigation. In this article, we review recent advances regarding the regulatory roles and mechanisms of stroma biology, especially the cellular components such as pancreatic stellate cells, macrophages, neutrophils, adipocytes, epithelial cells, pericytes, mast cells, and lymphocytes, in PC. Crosstalk between stromal cells and cancer cells is thoroughly investigated. We also review the prognostic value and molecular therapeutic targets of stroma in PC. This review may help us further understand the molecular mechanisms of stromal biology and its role in PC development and therapeutic resistance. Moreover, targeting stroma components may provide new therapeutic strategies for this stubborn disease.

  8. BRAF exon 15 mutations in pediatric renal stromal tumors: prevalence in metanephric stromal tumors.

    PubMed

    Marsden, Lily; Jennings, Lawrence J; Gadd, Samantha; Yu, Min; Perlman, Elizabeth J; Cajaiba, Mariana M

    2017-02-01

    Metanephric stromal tumors (MSTs) are rare renal stromal tumors that predominantly affect children. They belong to the metanephric family of tumors, along with metanephric adenofibroma and metanephric adenoma. The previous documentation of BRAF exon 15 mutations in 88% of metanephric adenomas and in isolated cases of metanephric adenofibroma prompted us to investigate the prevalence of these mutations in MSTs and in other pediatric renal stromal tumors. In this study, 17 MSTs, 22 congenital mesoblastic nephromas, and 6 ossifying renal tumors of infancy were selected for BRAF exon 15 testing. Tumor genomic DNA was extracted from formalin-fixed paraffin-embedded tissue, followed by polymerase chain reaction amplification and Sanger dideoxy sequencing with primers flanking the BRAF exon 15 gene. BRAF exon 15 mutations were found in 11 (65%) of the 17 cases of MST, all corresponding to a thymidine-to-adenine substitution at codon 600 (BRAF V600E). All other renal stromal tumors tested were negative for BRAF exon 15 mutations. In conclusion, BRAF V600E mutations are encountered in most MSTs, supporting a link with other metanephric tumors and suggesting a clonal event possibly affecting primordial renal cells. In addition, BRAF V600E mutations have been associated with oncogene-induced senescence in other benign tumors, providing clues to the pathogenesis of metanephric neoplasms in keeping with their overall benign behavior. Our results also suggest a potential diagnostic use for BRAF exon 15 mutations in differentiating MSTs from other pediatric renal stromal tumors, particularly in limited samples.

  9. Mesenchymal stromal cells for treatment of arthritis.

    PubMed

    Swart, J F; Wulffraat, N M

    2014-08-01

    Patients with refractory inflammatory arthritis can still respond favourable to autologous haematopoietic stem cell transplantation. However, this treatment has a high morbidity and even 5% mortality. Mesenchymal stromal cells (MSC), a subset of the non-haematopoietic stromal cells obtained from bone marrow, were found to have a strong immunosuppressive effect. MSC treatment is explored in many diseases like diabetes, SLE, MS and RA. This review covers all relevant literature regarding MSC treatment of inflammatory arthritis (RA and JIA). This review contains data of in vitro studies, animal studies and clinical studies. The following subjects will be discussed in detail: properties of MSC, presence of MSC in the joint, intra-articular versus intravenous route, autologous versus allogeneic, ideal source of MSC, distribution, transdifferentiation, engraftment, rejection, efficacy and toxicology. After reading this review the reader will be totally updated in this quickly evolving field of MSC therapy.

  10. Overexpression of the poplar NF-YB7 transcription factor confers drought tolerance and improves water-use efficiency in Arabidopsis.

    PubMed

    Han, Xiao; Tang, Sha; An, Yi; Zheng, Dong-Chao; Xia, Xin-Li; Yin, Wei-Lun

    2013-11-01

    Water deficit is a serious environmental factor limiting the growth and productivity of plants worldwide. Improvement of drought tolerance and efficient water use are significant strategies to overcome this dilemma. In this study, a drought-responsive transcription factor, nuclear factor Y subunit B 7 (PdNF-YB7), induced by osmotic stress (PEG6000) and abscisic acid, was isolated from fast-growing poplar clone NE-19 [Populus nigra × (Populus deltoides × Populus nigra)]. Ectopic overexpression of PdNF-YB7 (oxPdB7) in Arabidopsis enhanced drought tolerance and whole-plant and instantaneous leaf water-use efficiency (WUE, the ratio of biomass produced to water consumed). Overexpressing lines had an increase in germination rate and root length and decrease in water loss and displayed higher photosynthetic rate, instantaneous leaf WUE, and leaf water potential to exhibit enhanced drought tolerance under water scarcity. Additionally, overexpression of PdNF-YB7 in Arabidopsis improved whole-plant WUE by increasing carbon assimilation and reducing transpiration with water abundance. These drought-tolerant, higher WUE transgenic Arabidopsis had earlier seedling establishment and higher biomass than controls under normal and drought conditions. In contrast, Arabidopsis mutant nf-yb3 was more sensitive to drought stress with lower WUE. However, complementation analysis indicated that complementary lines (nf-yb3/PdB7) had almost the same drought response and WUE as wild-type Col-0. Taken together, these results suggest that PdNF-YB7 positively confers drought tolerance and improves WUE in Arabidopsis; thus it could potentially be used in breeding drought-tolerant plants with increased production even under water deficiency.

  11. The grapevine basic helix-loop-helix (bHLH) transcription factor positively modulates CBF-pathway and confers tolerance to cold-stress in Arabidopsis.

    PubMed

    Xu, Weirong; Zhang, Ningbo; Jiao, Yuntong; Li, Ruimin; Xiao, Dongming; Wang, Zhenping

    2014-08-01

    Basic helix-loop-helix (bHLH)-type transcription factors play diverse roles in plant physiological response and stress-adaptive regulation network. Here, we identified one grapevine bHLH transcription factor from a cold-tolerant accession 'Heilongjiang seedling' of Chinese wild Vitis amurensis (VabHLH1) as a transcriptional activator involved in cold stress. We also compared with its counterpart from a cold-sensitive Vitis vinifera cv. Cabernet Sauvignon (VvbHLH1). These two putative proteins are characterized by the presence of the identically conserved regions of 54 amino acid residues of bHLH signature domain, and shared 99.1% amino acid identity, whereas several stress-related cis-regulatory elements located in both promoter regions differed in types and positions. Expressions of two bHLHs in grapevine leaves were induced by cold stress, but evidently differ between two grapevine genotypes upon cold exposure. Two grapevine bHLH proteins were exclusively localized to the nucleus and exhibited strong transcriptional activation activities in yeast cells. Overexpression of either VabHLH1 or VvbHLH1 transcription factor did not affect the growth and development of transgenic Arabidopsis plants, but enhanced tolerance to cold stress. The improved tolerance in VabHLH1- or VvbHLH1-overexpressing Arabidopsis plants is associated with multiple physiological and biochemical changes that occurred during the time-course cold stress. These most common changes include the evaluated levels of proline, decreased amounts of malondialdehyde and reduced membrane injury as reflected by electrolyte leakage. VabHLH1 and VvbHLH1 displayed overlapping, but not identical, roles in activating the corresponding CBF cold signaling pathway, especially in regulating the expression of CBF3 and RD29A. Our findings demonstrated that two grapevine bHLHs act as positive regulators of the cold stress response, modulating the level of COR gene expression, which in turn confer tolerance to cold

  12. Therapeutic effect of photodynamic therapy combined with targeted delivery of silencing vascular endothelial growth factor (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hsu, Yih-Chih

    2016-03-01

    Photodynamic therapy is a novel therapeutic modality to treat cancer by using a photosensitizer which is activated by a light source to produce reactive oxygen species and mediates tumours oxygen-independent hypoxic conditions. Vascular endothelial growth factor (VEGF) is one of the primary factors that affect tumor angiogenesis. Another emerging treatment to cure cancer is the use of interference RNA to silence a specific mRNA sequence. Such treatment requires a delivery system such as liposomes. The nanoparticle size measured was about 30 nm. Cellular uptake study was performed to verify that the nanoparticles have a sigma receptor mediated pathway. Non-targeted LCP NPs did not show significant difference with or without haloperidol but has a lower intensity as than targeted LCP NPs. These results confirm that LCP NPs have a receptor mediated pathway. Cell viability was found to decrease at 25 nM of transfected VEGF siRNA. Combined therapy of PDT and VEGF siRNA showed significant response as compared with PDT and gene therapy alone. In vivo toxicity assay with mice treated with targeted LCP NPs containing control siRNA or VEGF siRNA and non-targeted LCP NPs containing VEGF siRNA did not show any significant difference with the PBS injected group which suggests that there is no toxicity with the dose. It suggests that PDT combined with targeted gene therapy has a potential mean to achieve better therapeutic outcome.

  13. A novel MYB transcription factor, GmMYBJ1, from soybean confers drought and cold tolerance in Arabidopsis thaliana.

    PubMed

    Su, Lian-Tai; Li, Jing-Wen; Liu, De-Quan; Zhai, Ying; Zhang, Hai-Jun; Li, Xiao-Wei; Zhang, Qing-Lin; Wang, Ying; Wang, Qing-Yu

    2014-03-15

    MYB transcription factors play important roles in the regulation of plant growth, developmental metabolism and stress responses. In this study, a new MYB transcription factor gene, GmMYBJ1, was isolated from soybean [Glycine max (L.)]. The GmMYBJ1 cDNA is 1296bp in length with an open reading frame (ORF) of 816 bp encoding for 271 amino acids. The amino acid sequence displays similarities to the typical R2R3 MYB proteins reported in other plants. Transient expression analysis using the GmMYBJ1-GFP fusion gene in onion epidermal cells revealed that the GmMYBJ1 protein is targeted to the nucleus. Quantitative RT-PCR analysis demonstrated that GmMYBJ1 expression was induced by abiotic stresses, such as drought, cold, salt and exogenous abscisic acid (ABA). Compared to wild-type (WT) plants, transgenic Arabidopsis overexpressing GmMYBJ1 exhibited an enhanced tolerance to drought and cold stresses. These results indicate that GmMYBJ1 has the potential to be utilized in transgenic breeding lines to improve abiotic stress tolerance.

  14. ZmNAC55, a maize stress-responsive NAC transcription factor, confers drought resistance in transgenic Arabidopsis.

    PubMed

    Mao, Hude; Yu, Lijuan; Han, Ran; Li, Zhanjie; Liu, Hui

    2016-08-01

    Abiotic stress has been shown to significantly limit the growth and productivity of crops. NAC transcription factors play essential roles in response to various abiotic stresses. However, only little information regarding stress-related NAC genes is available in maize. Here, we cloned a maize NAC transcription factor ZmNAC55 and identified its function in drought stress. Transient expression and transactivation assay demonstrated that ZmNAC55 was localized in the nucleus and had transactivation activity. Expression analysis of ZmNAC55 in maize showed that this gene was induced by drought, high salinity and cold stresses and by abscisic acid (ABA). Promoter analysis demonstrated that multiple stress-related cis-acting elements exist in promoter region of ZmNAC55. Overexpression of ZmNAC55 in Arabidopsis led to hypersensitivity to ABA at the germination stage, but enhanced drought resistence compared to wild-type seedlings. Transcriptome analysis identified a number of differentially expressed genes between 35S::ZmNAC55 transgenic and wild-type plants, and many of which are involved in stress response, including twelve qRT-PCR confirmed well-known drought-responsive genes. These results highlight the important role of ZmNAC55 in positive regulates of drought resistence, and may have potential applications in transgenic breeding of drought-tolerant crops.

  15. Microbicides 2006 conference

    PubMed Central

    Ramjee, Gita; Shattock, Robin; Delany, Sinead; McGowan, Ian; Morar, Neetha; Gottemoeller, Megan

    2006-01-01

    Current HIV/AIDS statistics show that women account for almost 60% of HIV infections in Sub-Saharan Africa. HIV prevention tools such as male and female condoms, abstinence and monogamy are not always feasible options for women due to various socio-economic and cultural factors. Microbicides are products designed to be inserted in the vagina or rectum prior to sex to prevent HIV acquisition. The biannual Microbicides conference took place in Cape Town, South Africa from 23–26 April 2006. The conference was held for the first time on the African continent, the region worst affected by the HIV/AIDS pandemic. The conference brought together a record number of 1,300 scientists, researchers, policy makers, healthcare workers, communities and advocates. The conference provided an opportunity for an update on microbicide research and development as well as discussions around key issues such as ethics, acceptability, access and community involvement. This report discusses the current status of microbicide research and development, encompassing basic and clinical science, social and behavioural science, and community mobilisation and advocacy activities. PMID:17038196

  16. Dual role for Hox genes and Hox co-factors in conferring leg motoneuron survival and identity in Drosophila.

    PubMed

    Baek, Myungin; Enriquez, Jonathan; Mann, Richard S

    2013-05-01

    Adult Drosophila walk using six multi-jointed legs, each controlled by ∼50 leg motoneurons (MNs). Although MNs have stereotyped morphologies, little is known about how they are specified. Here, we describe the function of Hox genes and homothorax (hth), which encodes a Hox co-factor, in Drosophila leg MN development. Removing either Hox or Hth function from a single neuroblast (NB) lineage results in MN apoptosis. A single Hox gene, Antennapedia (Antp), is primarily responsible for MN survival in all three thoracic segments. When cell death is blocked, partially penetrant axon branching errors are observed in Hox mutant MNs. When single MNs are mutant, errors in both dendritic and axon arborizations are observed. Our data also suggest that Antp levels in post-mitotic MNs are important for specifying their identities. Thus, in addition to being essential for survival, Hox and hth are required to specify accurate MN morphologies in a level-dependent manner.

  17. A Virulence Factor Encoded by a Polydnavirus Confers Tolerance to Transgenic Tobacco Plants against Lepidopteran Larvae, by Impairing Nutrient Absorption

    PubMed Central

    Coppola, Mariangela; Buonanno, Martina; Di Prisco, Gennaro; Varricchio, Paola; Franzetti, Eleonora; Corrado, Giandomenico; Monti, Simona M.; Rao, Rosa; Casartelli, Morena; Pennacchio, Francesco

    2014-01-01

    The biological control of insect pests is based on the use of natural enemies. However, the growing information on the molecular mechanisms underpinning the interactions between insects and their natural antagonists can be exploited to develop “bio-inspired” pest control strategies, mimicking suppression mechanisms shaped by long co-evolutionary processes. Here we focus on a virulence factor encoded by the polydnavirus associated with the braconid wasp Toxoneuron nigriceps (TnBV), an endophagous parasitoid of noctuid moth larvae. This virulence factor (TnBVANK1) is a member of the viral ankyrin (ANK) protein family, and appears to be involved both in immunosuppression and endocrine alterations of the host. Transgenic tobacco plants expressing TnBVANK1 showed insecticide activity and caused developmental delay in Spodoptera littoralis larvae feeding on them. This effect was more evident in a transgenic line showing a higher number of transcripts of the viral gene. However, this effect was not associated with evidence of translocation into the haemocoel of the entire protein, where the receptors of TnBVANK1 are putatively located. Indeed, immunolocalization experiments evidenced the accumulation of this viral protein in the midgut, where it formed a thick layer coating the brush border of epithelial cells. In vitro transport experiments demonstrated that the presence of recombinant TnBVANK1 exerted a dose-dependent negative impact on amino acid transport. These results open new perspectives for insect control and stimulate additional research efforts to pursue the development of novel bioinsecticides, encoded by parasitoid-derived genes. However, future work will have to carefully evaluate any effect that these molecules may have on beneficial insects and on non-target organisms. PMID:25438149

  18. A wheat salinity-induced WRKY transcription factor TaWRKY93 confers multiple abiotic stress tolerance in Arabidopsis thaliana.

    PubMed

    Qin, Yuxiang; Tian, Yanchen; Liu, Xiuzhi

    2015-08-21

    Wheat is an important crop in the world. But most of the cultivars are salt sensitive, and often adversely affected by salt stress. WRKY transcription factors play a major role in plant responses to salt stress, but the effective salinity regulatory WRKYs identified in bread wheat are limited and the mechanism of salt stress tolerance is also not well explored. Here, we identified a salt (NaCl) induced class II WRKY transcription factor TaWRKY93. Its transcript level was strongly induced by salt (NaCl) and exogenous abscisic acid (ABA). Over-expression of TaWRKY93 in Arabidopsis thaliana enhanced salt (NaCl), drought, low temperature and osmotic (mannitol) stress tolerance, mainly demonstrated by transgenic plants forming longer primary roots or more lateral roots on MS plates supplemented with NaCl and mannitol individually, higher survival rate under drought and low temperature stress. Further, transgenic plants maintained a more proline content, higher relative water content and less electrolyte leakage than the wild type plants. The transcript abundance of a series of abiotic stress-related genes was up-regulated in the TaWRKY93 transgenic plants. In summary, TaWRKY93 is a new positive regulator of abiotic stress, it may increase salinity, drought and low temperature stress tolerance through enhancing osmotic adjustment, maintaining membrane stability and increasing transcription of stress related genes, and contribute to the superior agricultural traits of SR3 through promoting root development. It can be used as a candidate gene for wheat transgenic engineering breeding against abiotic stress.

  19. Inhibition of Transforming Growth Factor-{beta} Signaling in Normal Lung Epithelial Cells Confers Resistance to Ionizing Radiation

    SciTech Connect

    Reeves, Anna; Zagurovskaya, Marianna; Gupta, Seema; Shareef, Mohammed M.; Mohiuddin, Mohammed; Ahmed, Mansoor M. . E-mail: mmahmed@geisinger.edu

    2007-05-01

    Purpose: To address the functional role of radiation-induced transforming growth factor-{beta} (TGF-{beta}) signaling in a normal epithelial background, we selected a spontaneously immortalized lung epithelial cell line derived from the normal lung tissue of a dominant-negative mutant of the TGF-{beta} RII ({delta}RII) transgenic mouse that conditionally expressed {delta}RII under the control of the metallothionein promoter (MT-1), and assessed this cell line's response to radiation. Methods and Materials: A spontaneously immortalized lung epithelial cell culture (SILECC) was established and all analyses were performed within 50 passages. Colony-forming and terminal transferase dUPT nick end labeling (TUNEL) assays were used to assess clonogenic inhibition and apoptosis, respectively. Western-blot analysis was performed to assess the kinetics of p21, bax, and RII proteins. Transforming growth factor-{beta}-responsive promoter activity was measured using dual-luciferase reporter assay. Results: Exposure to ZnSO{sub 4} inhibited TGF-{beta} signaling induced either by recombinant TGF-{beta}1 or ionizing radiation. The SILECC, treated with either ZnSO{sub 4} or neutralizing antibody against TGF-{beta}, showed a significant increase in radio-resistance compared to untreated cells. Furthermore, the expression of {delta}RII inhibited the radiation-induced up-regulation of the TGF-{beta} effector gene p21{sup waf1/cip1}. Conclusions: Our findings imply that inhibition of radiation-induced TGF-{beta} signaling via abrogation of the RII function enhances the radio-resistance of normal lung epithelial cells, and this can be directly attributed to the loss of TGF-{beta} signaling function.

  20. Zfp423 promotes adipogenic differentiation of bovine stromal vascular cells.

    PubMed

    Huang, Yan; Das, Arun Kr; Yang, Qi-Yuan; Zhu, Mei-Jun; Du, Min

    2012-01-01

    Intramuscular fat or marbling is critical for the palatability of beef. In mice, very recent studies show that adipocytes and fibroblasts share a common pool of progenitor cells, with Zinc finger protein 423 (Zfp423) as a key initiator of adipogenic differentiation. To evaluate the role of Zfp423 in intramuscular adipogenesis and marbling in beef cattle, we sampled beef muscle for separation of stromal vascular cells. These cells were immortalized with pCI neo-hEST2 and individual clones were selected by G418. A total of 288 clones (3×96 well plates) were isolated and induced to adipogenesis. The presence of adipocytes was assessed by Oil-Red-O staining. Three clones with high and low adipogenic potential respectively were selected for further analyses. In addition, fibro/adipogenic progenitor cells were selected using a surface marker, platelet derived growth factor receptor (PDGFR) α. The expression of Zfp423 was much higher (307.4±61.9%, P<0.05) in high adipogenic cells, while transforming growth factor (TGF)-β was higher (156.1±48.7%, P<0.05) in low adipogenic cells. Following adipogenic differentiation, the expression of peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer binding protein α (C/EBPα) were much higher (239.4±84.1% and 310.7±138.4%, respectively, P<0.05) in high adipogenic cells. Over-expression of Zfp423 in stromal vascular cells and cloned low adipogenic cells dramatically increased their adipogenic differentiation, accompanied with the inhibition of TGF-β expression. Zfp423 knockdown by shRNA in high adipogenic cells largely prevented their adipogenic differentiation. The differential regulation of Zfp423 and TGF-β between low and high adipogenic cells is associated with the DNA methylation in their promoters. In conclusion, data show that Zfp423 is a critical regulator of adipogenesis in stromal vascular cells of bovine muscle, and Zfp423 may provide a molecular target for enhancing intramuscular adipogenesis

  1. Down-regulation of Dicer1 promotes cellular senescence and decreases the differentiation and stem cell-supporting capacities of mesenchymal stromal cells in patients with myelodysplastic syndrome.

    PubMed

    Zhao, Youshan; Wu, Dong; Fei, Chengming; Guo, Juan; Gu, Shuncheng; Zhu, Yang; Xu, Feng; Zhang, Zheng; Wu, Lingyun; Li, Xiao; Chang, Chunkang

    2015-02-01

    Although it has been reported that mesenchymal stromal cells are unable to provide sufficient hematopoietic support in myelodysplastic syndrome, the underlying mechanisms remain elusive. In this study, we found that mesenchymal stromal cells from patients with myelodysplastic syndrome displayed a significant increase in senescence, as evidenced by their decreased proliferative capacity, flattened morphology and increased expression of SA-β-gal and p21. Senescent mesenchymal stromal cells from patients had decreased differentiation potential and decreased stem cell support capacity. Gene knockdown of Dicer1, which was down-regulated in mesenchymal stromal cells from patients, induced senescence. The differentiation and stem cell-supporting capacities were significantly inhibited by Dicer1 knockdown. Overexpression of Dicer1 in mesenchymal stromal cells from patients reversed cellular senescence and enhanced stem cell properties. Furthermore, we identified reduced expression in the microRNA-17 family (miR-17-5p, miR-20a/b, miR-106a/b and miR-93) as a potential factor responsible for increased p21 expression, a key senescence mediator, in Dicer1 knockdown cells. Moreover, we found that miR-93 and miR-20a expression levels were significantly reduced in mesenchymal stromal cells from patients and miR-93/miR-20a gain of function resulted in a decrease of cellular senescence. Collectively, the results of our study show that mesenchymal stromal cells from patients with myelodysplastic syndrome are prone to senescence and that Dicer1 down-regulation promotes cellular senescence and decreases the differentiation and stem cell-supporting capacities of mesenchymal stromal cells. Dicer1 down-regulation seems to contribute to the insufficient hematopoietic support capacities of mesenchymal stromal cells from patients with myelodysplastic syndrome.

  2. Sclerosing stromal tumor of the ovary in a premenarchal female.

    PubMed

    Fefferman, Nancy R; Pinkney, Lynne P; Rivera, Rafael; Popiolek, Dorota; Hummel-Levine, Pascale; Cosme, Jaqueline

    2003-01-01

    Sclerosing stromal tumor (SST) is a rare benign ovarian neoplasm of stromal origin with less than 100 cases reported in the literature. Unlike the other stromal tumors, thecomas and fibromas, which tend to occur in the fifth and sixth decades, sclerosing stromal tumors predominantly affect females in the second and third decades. Computed tomography (CT), magnetic resonance imaging (MRI), and ultrasound findings have been described, but have not been reported previously in the pediatric literature. We present a case of SST of the ovary in a 10-year-old premenarchal female, the youngest patient to our knowledge reported in the literature, and describe the ultrasound and CT findings with pathologic correlation.

  3. Overexpression of a bHLH1 Transcription Factor of Pyrus ussuriensis Confers Enhanced Cold Tolerance and Increases Expression of Stress-Responsive Genes

    PubMed Central

    Jin, Cong; Huang, Xiao-San; Li, Kong-Qing; Yin, Hao; Li, Lei-Ting; Yao, Zheng-Hong; Zhang, Shao-Ling

    2016-01-01

    The basic helix-loop-helix (bHLH) transcription factors are involved in arrays of physiological and biochemical processes. However, knowledge concerning the functions of bHLHs in cold tolerance remains poorly understood. In this study, a PubHLH1 gene isolated from Pyrus ussuriensis was characterized for its function in cold tolerance. PubHLH1 was upregulated by cold, salt, and dehydration, with the greatest induction under cold conditions. PubHLH1 had the transactivational activity and localized in the nucleus. Ectopic expression of PubHLH1 in transgenic tobacco conferred enhanced tolerance to cold stress. The transgenic lines had higher survival rates, higher chlorophyll, higher proline contents, lower electrolyte leakages and MDA when compared with wild type (WT). In addition, transcript levels of eight genes associated with ROS scavenging, regulation, and stress defense were higher in the transgenic plants relative to the WT under the chilling stress. Taken together, these results demonstrated that PubHLH1 played a key role in cold tolerance and, at least in part, contributed to activation of stress-responsive genes. PMID:27092159

  4. The heat shock factor A4A confers salt tolerance and is regulated by oxidative stress and the mitogen-activated protein kinases MPK3 and MPK6.

    PubMed

    Pérez-Salamó, Imma; Papdi, Csaba; Rigó, Gábor; Zsigmond, Laura; Vilela, Belmiro; Lumbreras, Victoria; Nagy, István; Horváth, Balázs; Domoki, Mónika; Darula, Zsuzsa; Medzihradszky, Katalin; Bögre, László; Koncz, Csaba; Szabados, László

    2014-05-01

    Heat shock factors (HSFs) are principal regulators of plant responses to several abiotic stresses. Here, we show that estradiol-dependent induction of HSFA4A confers enhanced tolerance to salt and oxidative agents, whereas inactivation of HSFA4A results in hypersensitivity to salt stress in Arabidopsis (Arabidopsis thaliana). Estradiol induction of HSFA4A in transgenic plants decreases, while the knockout hsfa4a mutation elevates hydrogen peroxide accumulation and lipid peroxidation. Overexpression of HSFA4A alters the transcription of a large set of genes regulated by oxidative stress. In yeast (Saccharomyces cerevisiae) two-hybrid and bimolecular fluorescence complementation assays, HSFA4A shows homomeric interaction, which is reduced by alanine replacement of three conserved cysteine residues. HSFA4A interacts with mitogen-activated protein kinases MPK3 and MPK6 in yeast and plant cells. MPK3 and MPK6 phosphorylate HSFA4A in vitro on three distinct sites, serine-309 being the major phosphorylation site. Activation of the MPK3 and MPK6 mitogen-activated protein kinase pathway led to the transcriptional activation of the HEAT SHOCK PROTEIN17.6A gene. In agreement that mutation of serine-309 to alanine strongly diminished phosphorylation of HSFA4A, it also strongly reduced the transcriptional activation of HEAT SHOCK PROTEIN17.6A. These data suggest that HSFA4A is a substrate of the MPK3/MPK6 signaling and that it regulates stress responses in Arabidopsis.

  5. GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.)

    PubMed Central

    Liang, Chengzhen; Meng, Zhaohong; Meng, Zhigang; Malik, Waqas; Yan, Rong; Lwin, Khin Myat; Lin, Fazhuang; Wang, Yuan; Sun, Guoqing; Zhou, Tao; Zhu, Tao; Li, Jianying; Jin, Shuangxia; Guo, Sandui; Zhang, Rui

    2016-01-01

    The bZIP transcription factor (TF) act as an important regulator for the abscisic acid (ABA) mediated abiotic stresses signaling pathways in plants. Here, we reported the cloning and characterization of GhABF2, encoding for typical cotton bZIP TF. Overexpression of GhABF2 significantly improved drought and salt stress tolerance both in Arabidopsis and cotton. However, silencing of GhABF2 made transgenic cotton sensitive to PEG osmotic and salt stress. Expression of GhABF2 was induced by drought and ABA treatments but repressed by high salinity. Transcriptome analysis indicated that GhABF2 increases drought and salt tolerance by regulating genes related to ABA, drought and salt response. The proline contents, activity of superoxide dismutase (SOD) and catalase (CAT) were also significantly increased in GhABF2-overexpression cottons in comparison to wild type after drought and salt treatment. Further, an increase in fiber yield under drought and saline-alkali wetland exhibited the important role of GhABF2 in enhancing the drought and salt tolerance in transgenic lines. In conclusion, manipulation of GhABF2 by biotechnological tools could be a sustainable strategy to deploy drought and salt tolerance in cotton. PMID:27713524

  6. StWRKY8 transcription factor regulates benzylisoquinoline alkaloid pathway in potato conferring resistance to late blight.

    PubMed

    Yogendra, Kalenahalli N; Dhokane, Dhananjay; Kushalappa, Ajjamada C; Sarmiento, Felipe; Rodriguez, Ernesto; Mosquera, Teresa

    2017-03-01

    The resistance to late blight is either qualitative or quantitative in nature. Quantitative resistance is durable, but challenging due to polygenic inheritance. In the present study, the diploid potato genotypes resistant and susceptible to late blight, were profiled for metabolites. Tissue specific metabolite analysis of benzylisoquinoline alkaloids (BIAs) in response to pathogen infection revealed increased accumulation of morphinone, codeine-6-glucuronide and morphine-3-glucuronides. These BIAs are antimicrobial compounds and possibly involved in cell wall reinforcement, especially through cross-linking cell wall pectins. Quantitative reverse transcription-PCR studies revealed higher expressions of TyDC, NCS, COR-2 and StWRKY8 transcription factor genes, in resistant genotypes than in susceptible genotype, following pathogen inoculation. A luciferase transient expression assay confirmed the binding of the StWRKY8 TF to promoters of downstream genes, elucidating a direct regulatory role on BIAs biosynthetic genes. Sequence analysis of StWRKY8 in potato genotypes revealed polymorphism in the WRKY DNA binding domain in the susceptible genotype, which is important for the regulatory function of this gene. A complementation assay of StWRKY8 in Arabidopsis wrky33 mutant background was associated with decreased fungal biomass. In conclusion, StWRKY8 regulates the biosynthesis of BIAs that are both antimicrobial and reinforce cell walls to contain the pathogen to initial infection.

  7. A novel wheat bZIP transcription factor, TabZIP60, confers multiple abiotic stress tolerances in transgenic Arabidopsis.

    PubMed

    Zhang, Lina; Zhang, Lichao; Xia, Chuan; Zhao, Guangyao; Liu, Ji; Jia, Jizeng; Kong, Xiuying

    2015-04-01

    The basic region/leucine zipper (bZIP) transcription factors (TFs) play vital roles in the response to abiotic stress. However, little is known about the function of bZIP genes in wheat abiotic stress. In this study, we report the isolation and functional characterization of the TabZIP60 gene. Three homologous genome sequences of TabZIP60 were isolated from hexaploid wheat and mapped to the wheat homoeologous group 6. A subcellular localization analysis indicated that TabZIP60 is a nuclear-localized protein that activates transcription. Furthermore, TabZIP60 gene transcripts were strongly induced by polyethylene glycol, salt, cold and exogenous abscisic acid (ABA) treatments. Further analysis showed that the overexpression of TabZIP60 in Arabidopsis resulted in significantly improved tolerances to drought, salt, freezing stresses and increased plant sensitivity to ABA in seedling growth. Meanwhile, the TabZIP60 was capable of binding ABA-responsive cis-elements that are present in promoters of many known ABA-responsive genes. A subsequent analysis showed that the overexpression of TabZIP60 led to enhanced expression levels of some stress-responsive genes and changes in several physiological parameters. Taken together, these results suggest that TabZIP60 enhances multiple abiotic stresses through the ABA signaling pathway and that modifications of its expression may improve multiple stress tolerances in crop plants.

  8. Induction of a stable sigma factor SigR by translation-inhibiting antibiotics confers resistance to antibiotics

    PubMed Central

    Yoo, Ji-Sun; Oh, Gyeong-Seok; Ryoo, Sungweon; Roe, Jung-Hye

    2016-01-01

    Antibiotic-producing streptomycetes are rich sources of resistance mechanisms against endogenous and exogenous antibiotics. An ECF sigma factor σR (SigR) is known to govern the thiol-oxidative stress response in Streptomyces coelicolor. Amplification of this response is achieved by producing an unstable isoform of σR called σR′. In this work, we present evidence that antibiotics induce the SigR regulon via a redox-independent pathway, leading to antibiotic resistance. The translation-inhibiting antibiotics enhanced the synthesis of stable σR, eliciting a prolonged response. WblC/WhiB7, a WhiB-like DNA-binding protein, is responsible for inducing sigRp1 transcripts encoding the stable σR. The amount of WblC protein and its binding to the sigRp1 promoter in vivo increased upon antibiotic treatment. A similar phenomenon appears to exist in Mycobacterium tuberculosis as well. These findings reveal a novel antibiotic-induced resistance mechanism conserved among actinomycetes, and also give an explicit example of overlap in cellular damage and defense mechanisms between thiol-oxidative and anti- translational stresses. PMID:27346454

  9. Influence of Ionizing Radiation on Stromal-Epithelial Intercellular Communication in Esophageal Carcinogenesis

    NASA Technical Reports Server (NTRS)

    Patel, Zarana S.; Kalabis, Jiri; Rustgi, Anil K.; Cucinotta, Francis A.; Huff, Janice L.

    2010-01-01

    Esophageal cancer is the 6th leading cause of cancer death worldwide. Its development is associated with a variety of risk factors including tobacco use, heavy alcohol consumption, human papilloma virus infection, and certain dietary factors such as trace mineral and vitamin deficiencies. An association with ionizing radiation exposure is revealed by the high excess relative risk for squamous cell carcinoma of the esophagus observed in the survivors of the atomic bomb detonations in Japan. It is also seen as a secondary malignancy in patients who received radiotherapy for breast and thoracic cancers; additionally, patients with head/neck and oral squamous cell cancers are at increased risk for metachronous esophageal squamous cell cancers. This malignancy is rapidly fatal, mainly because it remains asymptomatic until late, advanced stages when the disease is rarely curable. The stromal microenvironment plays an essential role in the maintenance and modulation of normal epithelial cell growth and differentiation and cross talk between the epithelial and stromal compartments can influence many aspects of malignant progression, including tumor cell proliferation, migration, invasion and recruitment of new blood vessels. To test the hypothesis that radiation exposure plays a role in esophageal carcinogenesis via non-targeted mechanisms involving stromal-epithelial cell communication, we are studying radiation effects on hTERT-immortalized human esophageal epithelial cells and genetic variants grown in co-culture with human esophageal stromal fibroblasts (Okawa et al., Genes & Dev. 2007. 21: 2788-2803). We examined how radiation treatment of stromal fibroblasts affected epithelial migration and invasion, behaviors associated with cancer promotion and progression. Chemotactic and haptotactic migration of epithelial cells stimulated by conditioned media from irradiated fibroblasts was measured using assays conducted in Transwell cell culture chambers. Our results using

  10. Assessment of the stromal contribution to Sonic Hedgehog-dependent pancreatic adenocarcinoma.

    PubMed

    Damhofer, Helene; Medema, Jan Paul; Veenstra, Veronique L; Badea, Liviu; Popescu, Irinel; Roelink, Henk; Bijlsma, Maarten F

    2013-12-01

    Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal malignancies. It is typically detected at an advanced stage, at which the therapeutic options are very limited. One remarkable feature of PDAC that contributes to its resilience to treatment is the extreme stromal activation seen in these tumors. Often, the vast majority of tumor bulk consists of non-tumor cells that together provide a tumor-promoting environment. One of the signals that maintains and activates the stroma is the developmental protein Sonic Hedgehog (SHH). As the disease progresses, tumor cells produce increasing amounts of SHH, which activates the surrounding stroma to aid in tumor progression. To better understand this response and identify targets for inhibition, we aimed to elucidate the proteins that mediate the SHH-driven stromal response in PDAC. For this a novel mixed-species coculture model was set up in which the cancer cells are human, and the stroma is modeled by mouse fibroblasts. In conjunction with next-generation sequencing we were able to use the sequence difference between these species to genetically distinguish between the epithelial and stromal responses to SHH. The stromal SHH-dependent genes from this analysis were validated and their relevance for human disease was subsequently determined in two independent patient cohorts. In non-microdissected tissue from PDAC patients, in which a large amount of stroma is present, the targets were confirmed to associate with tumor stroma versus normal pancreatic tissue. Patient survival analysis and immunohistochemistry identified CDA, EDIL3, ITGB4, PLAUR and SPOCK1 as SHH-dependent stromal factors that are associated with poor prognosis in PDAC patients. Summarizing, the presented data provide insight into the role of the activated stroma in PDAC, and how SHH acts to mediate this response. In addition, the study has yielded several candidates that are interesting therapeutic targets for a disease for which treatment

  11. Aminobisphosphonates prevent the inhibitory effects exerted by lymph node stromal cells on anti-tumor Vδ 2 T lymphocytes in non-Hodgkin lymphomas.

    PubMed

    Musso, Alessandra; Catellani, Silvia; Canevali, Paolo; Tavella, Sara; Venè, Roberta; Boero, Silvia; Pierri, Ivana; Gobbi, Marco; Kunkl, Annalisa; Ravetti, Jean-Louis; Zocchi, Maria Raffaella; Poggi, Alessandro

    2014-01-01

    In this study, we analyzed the influence of mesenchymal stromal cells derived from lymph nodes of non-Hodgkin's lymphomas, on effector functions and differentiation of Vdelta (δ)2 T lymphocytes. We show that: i) lymph-node mesenchymal stromal cells of non-Hodgkin's lymphoma inhibit NKG2D-mediated lymphoid cell killing, but not rituximab-induced antibody-dependent cell-mediated cytotoxicity, exerted by Vδ2 T lymphocytes; ii) pre-treatment of mesenchymal stromal cells with the aminobisphosphonates pamidronate or zoledronate can rescue lymphoma cell killing via NKG2D; iii) this is due to inhibition of transforming growth factor-β and increase in interleukin-15 production by mesenchymal stromal cells; iv) aminobisphosphonate-treated mesenchymal stromal cells drive Vδ2 T-lymphocyte differentiation into effector memory T cells, expressing the Thelper1 cytokines tumor necrosis factor-α and interferon-γ. In non-Hodgkin's lymphoma lymph nodes, Vδ2 T cells were mostly naïve; upon co-culture with autologous lymph-node mesenchymal stromal cells exposed to zoledronate, the percentage of terminal differentiated effector memory Vδ2 T lymphocytes increased. In all non-Hodgkin's lymphomas, low or undetectable transcription of Thelper1 cytokines was found. In diffused large B-cell lymphomas and in a group of follicular lymphoma, transcription of transforming growth factor β and interleukin-10 was enhanced compared to non-neoplastic lymph nodes. Thus, in non-Hodgkin lymphomas mesenchymal stromal cells interfere with Vδ2 T-lymphocyte cytolytic function and differentiation to Thelper1 and/or effector memory cells, depending on the prominent in situ cytokine milieu. Aminobisphosphonates, acting on lymph-node mesenchymal stromal cells, can push the balance towards Thelper1/effector memory and rescue the recognition and killing of lymphoma cells through NKG2D, sparing rituximab-induced antibody-dependent cell-mediated cytotoxicity.

  12. The orphan nuclear receptor Nur77 regulates decidual prolactin expression in human endometrial stromal cells

    SciTech Connect

    Jiang, Yue; Hu, Yali; Zhao, Jing; Zhen, Xin; Yan, Guijun; Sun, Haixiang

    2011-01-14

    Research highlights: {yields} Decidually produced PRL plays a key role during pregnancy. {yields} Overexpression of Nur77 increased PRL mRNA expression and enhanced decidual PRL promoter activity. {yields} Knockdown of Nur77 decreased decidual PRL secretion induced by 8-Br-cAMP and MPA. {yields} Nur77 is a novel transcription factor that plays an active role in decidual prolactin expression. -- Abstract: Prolactin (PRL) is synthesized and released by several extrapituitary tissues, including decidualized stromal cells. Despite the important role of decidual PRL during pregnancy, little is understood about the factors involved in the proper regulation of decidual PRL expression. Here we present evidence that the transcription factor Nur77 plays an active role in decidual prolactin expression in human endometrial stromal cells (hESCs). Nur77 mRNA expression in hESCs was significantly increased after decidualization stimulated by 8-Br-cAMP and medroxyprogesterone acetate (MPA). Adenovirus-mediated overexpression of Nur77 in hESCs markedly increased PRL mRNA expression and enhanced decidual PRL promoter (dPRL/-332Luc) activity in a concentration-dependent manner. Furthermore, knockdown of Nur77 in hESCs significantly decreased decidual PRL promoter activation and substantially attenuated PRL mRNA expression and PRL secretion (P < 0.01) induced by 8-Br-cAMP and MPA. These results demonstrate that Nur77 is a novel transcription factor that contributes significantly to the regulation of prolactin gene expression in human endometrial stromal cells.

  13. Induction of cancer chemopreventive enzymes by coffee is mediated by transcription factor Nrf2. Evidence that the coffee-specific diterpenes cafestol and kahweol confer protection against acrolein

    SciTech Connect

    Higgins, Larry G. Cavin, Christophe; Itoh, Ken; Yamamoto, Masayuki; Hayes, John D.

    2008-02-01

    Mice fed diets containing 3% or 6% coffee for 5 days had increased levels of mRNA for NAD(P)H:quinone oxidoreductase 1 (NQO1) and glutathione S-transferase class Alpha 1 (GSTA1) of between 4- and 20-fold in the liver and small intestine. Mice fed 6% coffee also had increased amounts of mRNA for UDP-glucuronosyl transferase 1A6 (UGT1A6) and the glutamate cysteine ligase catalytic (GCLC) subunit of between 3- and 10-fold in the small intestine. Up-regulation of these mRNAs was significantly greater in mice possessing Nrf2 (NF-E2 p45 subunit-related factor 2) than those lacking the transcription factor. Basal levels of mRNAs for NQO1, GSTA1, UGT1A6 and GCLC were lower in tissues from nrf2{sup -/-} mice than from nrf2{sup +/+} mice, but modest induction occurred in the mutant animals. Treatment of mouse embryonic fibroblasts (MEFs) from nrf2{sup +/+} mice with either coffee or the coffee-specific diterpenes cafestol and kahweol (C + K) increased NQO1 mRNA up to 9-fold. MEFs from nrf2{sup -/-} mice expressed less NQO1 mRNA than did wild-type MEFs, but NQO1 was induced modestly by coffee or C + K in the mutant fibroblasts. Transfection of MEFs with nqo1-luciferase reporter constructs showed that induction by C + K was mediated primarily by Nrf2 and required the presence of an antioxidant response element in the 5'-upstream region of the gene. Luciferase reporter activity did not increase following treatment of MEFs with 100 {mu}mol/l furan, suggesting that this ring structure within C + K is insufficient for gene induction. Priming of nrf2{sup +/+} MEFs, but not nrf2{sup -/-} MEFs, with C + K conferred 2-fold resistance towards acrolein.

  14. Stromal-Initiated Changes in the Bone Promote Metastatic Niche Development.

    PubMed

    Luo, Xianmin; Fu, Yujie; Loza, Andrew J; Murali, Bhavna; Leahy, Kathleen M; Ruhland, Megan K; Gang, Margery; Su, Xinming; Zamani, Ali; Shi, Yu; Lavine, Kory J; Ornitz, David M; Weilbaecher, Katherine N; Long, Fanxin; Novack, Deborah V; Faccio, Roberta; Longmore, Gregory D; Stewart, Sheila A

    2016-01-05

    More than 85% of advanced breast cancer patients suffer from metastatic bone lesions, yet the mechanisms that facilitate these metastases remain poorly understood. Recent studies suggest that tumor-derived factors initiate changes within the tumor microenvironment to facilitate metastasis. However, whether stromal-initiated changes are sufficient to drive increased metastasis in the bone remains an open question. Thus, we developed a model to induce reactive senescent osteoblasts and found that they increased breast cancer colonization of the bone. Analysis of senescent osteoblasts revealed that they failed to mineralize bone matrix and increased local osteoclastogenesis, the latter process being driven by the senescence-associated secretory phenotype factor, IL-6. Neutralization of IL-6 was sufficient to limit senescence-induced osteoclastogenesis and tumor cell localization to bone, thereby reducing tumor burden. Together, these data suggest that a reactive stromal compartment can condition the niche, in the absence of tumor-derived signals, to facilitate metastatic tumor growth in the bone.

  15. Conferences revisited

    NASA Astrophysics Data System (ADS)

    Radcliffe, Jonathan

    2008-08-01

    Way back in the mid-1990s, as a young PhD student, I wrote a Lateral Thoughts article about my first experience of an academic conference (Physics World 1994 October p80). It was a peach of a trip - most of the lab decamped to Grenoble for a week of great weather, beautiful scenery and, of course, the physics. A whole new community was there for me to see in action, and the internationality of it all helped us to forget about England's non-appearance in the 1994 World Cup finals.

  16. Heparin induces dimerization and confers proliferative activity onto the hepatocyte growth factor antagonists NK1 and NK2

    PubMed Central

    1996-01-01

    Hepatocyte growth factor (HGF) is a potent epithelial mitogen whose actions are mediated through its receptor, the proto-oncogene c-Met. Two truncated variants of HGF known as NK1 and NK2 have been reported to be competitive inhibitors of HGF binding to c-Met, and to function as HGF antagonists (Lokker, N.A., and P.J. Godowski. 1993. J. Biol. Chem. 268: 17145-17150; Chan, A.M., J.S. Rubin, D.P. Bottaro, D.W. Hirschfield, M. Chedid, and S.A. Aaronson. 1991. Science (Wash. DC). 254:1382-1387). We show here, however, that NK1 acts as a partial agonist in mink lung cells. Interestingly, NK1, which is an HGF antagonist in hepatocytes in normal conditions, was converted to a partial agonist by adding heparin to the culture medium. The interaction of NK1 and heparin was further studied in BaF3 cells, which express little or no cell surface heparan sulfate proteoglycans. In BaF3 cells transfected with a plasmid encoding human c-Met, heparin and NK1 synergized to stimulate DNA synthesis and cell proliferation. There was no effect of heparin on the IL-3 sensitivity of BaF3-hMet cells, and no effect of NK1 plus heparin in control BaF3 cells, indicating that the response was specific and mediated through c-Met. The naturally occurring HGF splice variant NK2 also stimulated DNA synthesis in mink lung cells and exerted a heparin-dependent effect on BaF3-hMet cells, but not on BaF3-neo cells. The activating effect of heparin was mimicked by a variety of sulfated glycosaminoglycans. Mechanistic studies revealed that heparin increased the binding of NK1 to BaF3-hMet cells, stabilized NK1, and induced dimerization of NK1. Based on these studies, we propose that the normal agonist activity of NK1 and NK2 in mink lung cells is due to an activating interaction with an endogenous glycosaminoglycan. Consistent with that model, a large portion of the NK1 binding to mink lung cells could be blocked by heparin. Moreover, a preparation of glycosaminoglycans from the surface of mink lung

  17. Silencing of the host factor eIF(iso)4E gene confers plum pox virus resistance in plum.

    PubMed

    Wang, Xinhua; Kohalmi, Susanne E; Svircev, Antonet; Wang, Aiming; Sanfaçon, Hélène; Tian, Lining

    2013-01-01

    Plum pox virus (PPV) causes the most economically-devastating viral disease in Prunus species. Unfortunately, few natural resistance genes are available for the control of PPV. Recessive resistance to some potyviruses is associated with mutations of eukaryotic translation initiation factor 4E (eIF4E) or its isoform eIF(iso)4E. In this study, we used an RNA silencing approach to manipulate the expression of eIF4E and eIF(iso)4E towards the development of PPV resistance in Prunus species. The eIF4E and eIF(iso)4E genes were cloned from plum (Prunus domestica L.). The sequence identity between plum eIF4E and eIF(iso)4E coding sequences is 60.4% at the nucleotide level and 52.1% at the amino acid level. Quantitative real-time RT-PCR analysis showed that these two genes have a similar expression pattern in different tissues. Transgenes allowing the production of hairpin RNAs of plum eIF4E or eIF(iso)4E were introduced into plum via Agrobacterium-mediated transformation. Gene expression analysis confirmed specific reduced expression of eIF4E or eIF(iso)4E in the transgenic lines and this was associated with the accumulation of siRNAs. Transgenic plants were challenged with PPV-D strain and resistance was evaluated by measuring the concentration of viral RNA. Eighty-two percent of the eIF(iso)4E silenced transgenic plants were resistant to PPV, while eIF4E silenced transgenic plants did not show PPV resistance. Physical interaction between PPV-VPg and plum eIF(iso)4E was confirmed. In contrast, no PPV-VPg/eIF4E interaction was observed. These results indicate that eIF(iso)4E is involved in PPV infection in plum, and that silencing of eIF(iso)4E expression can lead to PPV resistance in Prunus species.

  18. Change detection in a time series of polarimetric SAR data by an omnibus test statistic and its factorization (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Nielsen, Allan A.; Conradsen, Knut; Skriver, Henning

    2016-10-01

    Test statistics for comparison of real (as opposed to complex) variance-covariance matrices exist in the statistics literature [1]. In earlier publications we have described a test statistic for the equality of two variance-covariance matrices following the complex Wishart distribution with an associated p-value [2]. We showed their application to bitemporal change detection and to edge detection [3] in multilook, polarimetric synthetic aperture radar (SAR) data in the covariance matrix representation [4]. The test statistic and the associated p-value is described in [5] also. In [6] we focussed on the block-diagonal case, we elaborated on some computer implementation issues, and we gave examples on the application to change detection in both full and dual polarization bitemporal, bifrequency, multilook SAR data. In [7] we described an omnibus test statistic Q for the equality of k variance-covariance matrices following the complex Wishart distribution. We also described a factorization of Q = R2 R3 … Rk where Q and Rj determine if and when a difference occurs. Additionally, we gave p-values for Q and Rj. Finally, we demonstrated the use of Q and Rj and the p-values to change detection in truly multitemporal, full polarization SAR data. Here we illustrate the methods by means of airborne L-band SAR data (EMISAR) [8,9]. The methods may be applied to other polarimetric SAR data also such as data from Sentinel-1, COSMO-SkyMed, TerraSAR-X, ALOS, and RadarSat-2 and also to single-pol data. The account given here closely follows that given our recent IEEE TGRS paper [7]. Selected References [1] Anderson, T. W., An Introduction to Multivariate Statistical Analysis, John Wiley, New York, third ed. (2003). [2] Conradsen, K., Nielsen, A. A., Schou, J., and Skriver, H., "A test statistic in the complex Wishart distribution and its application to change detection in polarimetric SAR data," IEEE Transactions on Geoscience and Remote Sensing 41(1): 4-19, 2003. [3] Schou, J

  19. The Role of ADAM9 in Tumor-Stromal Interactions in Breast Cancer

    DTIC Science & Technology

    2010-04-01

    ADAM family members in cancer. ADAM12 is expressed in carcinoma and promotes breast cancer progression by inducing the apoptosis of surrounding...stromal cells (13). Consequently, ADAM12 protein levels correlate with advanced breast cancer (14, 15). In contrast, the disintegrin domain of ADAM15...subgroup of ADAMs that also contains ADAM12 and ADAM15 (18). The ADAM9 metalloprotease activity cleaves heparin-binding epidermal growth factor (HB

  20. FGF7 supports hematopoietic stem and progenitor cells and niche-dependent myeloblastoma cells via autocrine action on bone marrow stromal cells in vitro

    SciTech Connect

    Ishino, Ruri; Minami, Kaori; Tanaka, Satowa; Nagai, Mami; Matsui, Keiji; Hasegawa, Natsumi; Roeder, Robert G.; Asano, Shigetaka; Ito, Mitsuhiro

    2013-10-11

    Highlights: •FGF7 is downregulated in MED1-deficient mesenchymal cells. •FGF7 produced by mesenchymal stromal cells is a novel hematopoietic niche molecule. •FGF7 supports hematopoietic progenitor cells and niche-dependent leukemia cells. •FGF7 activates FGFR2IIIb of bone marrow stromal cells in an autocrine manner. •FGF7 indirectly acts on hematopoietic cells lacking FGFR2IIIb via stromal cells. -- Abstract: FGF1 and FGF2 support hematopoietic stem and progenitor cells (HSPCs) under stress conditions. In this study, we show that fibroblast growth factor (FGF7) may be a novel niche factor for HSPC support and leukemic growth. FGF7 expression was attenuated in mouse embryonic fibroblasts (MEFs) deficient for the MED1 subunit of the Mediator transcriptional coregulator complex. When normal mouse bone marrow (BM) cells were cocultured with Med1{sup +/+} MEFs or BM stromal cells in the presence of anti-FGF7 antibody, the growth of BM cells and the number of long-time culture-initiating cells (LTC-ICs) decreased significantly. Anti-FGF7 antibody also attenuated the proliferation and cobblestone formation of MB1 stromal cell-dependent myeloblastoma cells. The addition of recombinant FGF7 to the coculture of BM cells and Med1{sup −/−} MEFs increased BM cells and LTC-ICs. FGF7 and its cognate receptor, FGFR2IIIb, were undetectable in BM cells, but MEFs and BM stromal cells expressed both. FGF7 activated downstream targets of FGFR2IIIb in Med1{sup +/+} and Med1{sup −/−} MEFs and BM stromal cells. Taken together, we propose that FGF7 supports HSPCs and leukemia-initiating cells indirectly via FGFR2IIIb expressed on stromal cells.

  1. Endometrial stromal progesterone receptor-A/progesterone receptor-B ratio: no difference between women with and without endometriosis.

    PubMed

    Gentilini, Davide; Vigano, Paola; Vignali, Michele; Busacca, Mauro; Panina-Bordignon, Paola; Caporizzo, Elvira; Di Blasio, Anna Maria

    2010-09-01

    The aim of the present study was to investigate whether alterations of the P receptor-A/P receptor-B ratio could be considered an etiopathogenetic factor for endometriosis. We failed to observe statistically significant differences in both P receptor-A/P receptor-B messenger RNA and protein ratio between endometrial stromal cells derived from women with and without endometriosis.

  2. Epithelial and Stromal Spectral Imaging for Rapid Surgical Margin Analysis

    DTIC Science & Technology

    2012-03-01

    for key diagnostic classes. The optical system samples mesoscopic tissue volumes; therefore, microscopic segmentation of glandular , stromal and...heterogeneous, but imaging-pathology correlates revealed that this variation had a spatial pattern that reflected the organization of glandular structures...characterized by marked expansion of glandular units by neo-plastic cells, compressing (but not invading) the surrounding stromal environment

  3. Estrogen mediated epithelial proliferation in the uterus is directed by stromal Fgf10 and Bmp8a.

    PubMed

    Chung, Daesuk; Gao, Fei; Jegga, Anil G; Das, Sanjoy K

    2015-01-15

    To define endometrial stromal-derived paracrine mediators that participate in estradiol-17β (E2)-induced epithelial proliferation, microarray analysis of gene expression was carried out in mouse uterine epithelial-stromal co-culture systems under the condition of E2 or vehicle (control). Our results demonstrated gene alteration by E2: in epithelial cells, we found up-regulation of 119 genes and down-regulation of 28 genes, while in stroma cells we found up-regulation of 144 genes and down-regulation of 184 genes. A functional enrichment analysis of the upregulated epithelial genes implicated them for proliferation, while upregulated stromal genes were associated with extracellular functions. Quantitative RT-PCR and in situ hybridization results confirmed differential gene expression in both cell cultures and ovariectomized uteri after the above treatments. Based on our identification of stromal secretory factors, we found evidence that suppression by siRNA specifically for Bmp8a and/or Fgf10 in the stromal layer caused significant inhibition of proliferation by E2 in the co-culture system, suggesting Bmp8a and Fgf10 act as paracrine mediators during E2-dependent control of uterine proliferation. The localization of receptors and receptor activation signaling in epithelial cells in both the co-culture system and uteri was consistent with their involvement in ligand-receptor signaling. Interestingly, loss of Bmp8a or Fgf10 also caused abrogation of E2-regulated epithelial receptor signaling in co-culture systems, suggesting that stroma-derived Fgf10 and Bmp8a are responsible for epithelial communication. Overall, stromal Fgf10 and Bmp8a serve as potential paracrine factors for E2-dependent regulation of epithelial proliferation in the uterus.

  4. Mutations in the Polybasic Juxtamembrane Sequence of Both Plasma Membrane- and Endoplasmic Reticulum-localized Epidermal Growth Factor Receptors Confer Ligand-independent Cell Transformation*

    PubMed Central

    Bryant, Kirsten L.; Antonyak, Marc A.; Cerione, Richard A.; Baird, Barbara; Holowka, David

    2013-01-01

    Deregulation of ErbB receptor-tyrosine kinases is a hallmark of many human cancers. Conserved in the ErbB family is a cluster of basic amino acid residues in the cytoplasmic juxtamembrane region. We found that charge-silencing mutagenesis within this juxtamembrane region of the epidermal growth factor receptor (EGFR) results in the generation of a mutant receptor (EGFR Mut R1-6) that spontaneously transforms NIH 3T3 cells in a ligand-independent manner. A similar mutant with one additional basic residue, EGFR Mut R1-5, fails to exhibit ligand-independent transformation. The capacity of EGFR Mut R1-6 to mediate this transformation is maintained when this mutant is retained in the endoplasmic reticulum via a single point mutation, L393H, which we describe. We show that EGFR Mut R1-6 with or without L393H exhibits enhanced basal tyrosine phosphorylation when ectopically expressed, and the ligand-independent transforming activity of EGFR Mut R1-6 is sensitive to inhibition of EGFR kinase activity and is particularly dependent on PI3K and mTOR activity. Similar to EGFR Mut R1-6/L393H in NIH 3T3 cells, EGFR variant type III, a highly oncogenic mutant form of EGFR linked to human brain cancers, confers transforming activity while it is wholly endoplasmic reticulum-retained in U87 cells. Our findings highlight the importance of the polybasic juxtamembrane sequence in regulating the oncogenic potential of EGFR signaling. PMID:24142702

  5. Ectopic Overexpression of SlHsfA3, a Heat Stress Transcription Factor from Tomato, Confers Increased Thermotolerance and Salt Hypersensitivity in Germination in Transgenic Arabidopsis

    PubMed Central

    Li, Zhenjun; Zhang, Lili; Wang, Aoxue; Xu, Xiangyang; Li, Jingfu

    2013-01-01

    Plant heat stress transcription factors (Hsfs) are the critical components involved in mediating responses to various environmental stressors. However, the detailed roles of many plant Hsfs are far from fully understood. In this study, an Hsf (SlHsfA3) was isolated from the cultivated tomato (Solanum lycopersicum, Sl) and functionally characterized at the genetic and developmental levels. The nucleus-localized SlHsfA3 was basally and ubiquitously expressed in different plant organs. The expression of SlHsfA3 was induced dramatically by heat stress, moderately by high salinity, and slightly by drought, but was not induced by abscisic acid (ABA). The ectopic overexpression of SlHsfA3 conferred increased thermotolerance and late flowering phenotype to transgenic Arabidopsis plants. Moreover, SlHsfA3 played a negative role in controlling seed germination under salt stress. RNA-sequencing data demonstrated that a number of heat shock proteins (Hsps) and stress-associated genes were induced in Arabidopsis plants overexpressing SlHsfA3. A gel shift experiment and transient expression assays in Nicotiana benthamiana leaves demonstrated that SlHsfA3 directly activates the expression of SlHsp26.1-P and SlHsp21.5-ER. Taken together, our results suggest that SlHsfA3 behaves as a typical Hsf to contribute to plant thermotolerance. The late flowering and seed germination phenotypes and the RNA-seq data derived from SlHsfA3 overexpression lines lend more credence to the hypothesis that plant Hsfs participate in diverse physiological and biochemical processes related to adverse conditions. PMID:23349984

  6. Stromal cells can contribute oncogenic signals

    NASA Technical Reports Server (NTRS)

    Tlsty, T. D.

    2001-01-01

    The majority of studies of neoplastic transformation have focused attention on events that occur within transformed cells. These cell autonomous events result in the disruption of molecular pathways that regulate basic activities of the cells such as proliferation, death, movement and genomic integrity. Other studies have addressed the microenvironment of tumor cells and documented its importance in supporting tumor progression. Recent work has begun to expand on these initial studies of tumor microenvironment and now provide novel insights into the possible initiation and progression of malignant cells. This review will address the transforming effect of stromal cells on epithelial components. Copyright 2001 Academic Press.

  7. Stromal networking: cellular connections in the germinal centre.

    PubMed

    Denton, Alice E; Linterman, Michelle A

    2017-03-17

    Secondary lymphoid organs are organized into distinct zones, governed by different types of mesenchymal stromal cells. These stromal cell subsets are critical for the generation of protective humoral immunity because they direct the migration of, and interaction between, multiple immune cell types to form the germinal centre. The germinal centre response generates long-lived antibody-secreting plasma cells and memory B cells which can provide long-term protection against re-infection. Stromal cell subsets mediate this response through control of immune cell trafficking, activation, localization and antigen access within the secondary lymphoid organ. Further, distinct populations of stromal cells underpin the delicate spatial organization of immune cells within the germinal centre. Because of this, the interactions between immune cells and stromal cells in secondary lymphoid organs are fundamental to the germinal centre response. Herein we review how this unique relationship leads to effective germinal centre responses.

  8. The Interaction Between Human Papillomaviruses and the Stromal Microenvironment.

    PubMed

    Woodby, B; Scott, M; Bodily, J

    2016-01-01

    Human papillomaviruses (HPVs) are small, double-stranded DNA viruses that replicate in stratified squamous epithelia and cause a variety of malignancies. Current efforts in HPV biology are focused on understanding the virus-host interactions that enable HPV to persist for years or decades in the tissue. The importance of interactions between tumor cells and the stromal microenvironment has become increasingly apparent in recent years, but how stromal interactions impact the normal, benign life cycle of HPVs, or progression of lesions to cancer is less understood. Furthermore, how productively replicating HPV impacts cells in the stromal environment is also unclear. Here we bring together some of the relevant literature on keratinocyte-stromal interactions and their impacts on HPV biology, focusing on stromal fibroblasts, immune cells, and endothelial cells. We discuss how HPV oncogenes in infected cells manipulate other cells in their environment, and, conversely, how neighboring cells may impact the efficiency or course of HPV infection.

  9. Giant fibroepithelial stromal polyp of the vulva: largest case reported

    PubMed Central

    2013-01-01

    Background Fibroepithelial stromal polyps are site-specific mesenchymal lesions that are commonly found in the vulvovaginal region in premenopausal females. These polyps usually are less than 5 cm in diameter and are most commonly identified during routine gynecological examination. Although the stromal polyp is benign, its differential diagnosis includes some malignant vulva lesions making it critical to ensure that an accurate pathologic diagnosis is made. Case We present a case of a 21 year old female with a giant fibroepithelial stromal polyp of the vulva. Upon review of the literature this is the largest reported fibroepithelial stromal polyp to date. Conclusion Fibroepithelial stromal polyps can grow as large as 390 grams and can be 18.5-cm in diameter. Microscopic evaluation of the polyp is critical in the exclusion of malignancy with this diagnosis. PMID:23842282

  10. Amphiregulin triggered epidermal growth factor receptor activation confers in vivo crizotinib-resistance of EML4-ALK lung cancer and circumvention by epidermal growth factor receptor inhibitors.

    PubMed

    Taniguchi, Hirokazu; Takeuchi, Shinji; Fukuda, Koji; Nakagawa, Takayuki; Arai, Sachiko; Nanjo, Shigeki; Yamada, Tadaaki; Yamaguchi, Hiroyuki; Mukae, Hiroshi; Yano, Seiji

    2017-01-01

    Crizotinib, a first-generation anaplastic lymphoma kinase (ALK) tyrosine-kinase inhibitor, is known to be effective against echinoderm microtubule-associated protein-like 4 (EML4)-ALK-positive non-small cell lung cancers. Nonetheless, the tumors subsequently become resistant to crizotinib and recur in almost every case. The mechanism of the acquired resistance needs to be deciphered. In this study, we established crizotinib-resistant cells (A925LPE3-CR) via long-term administration of crizotinib to a mouse model of pleural carcinomatous effusions; this model involved implantation of the A925LPE3 cell line, which harbors the EML4-ALK gene rearrangement. The resistant cells did not have the secondary ALK mutations frequently occurring in crizotinib-resistant cells, and these cells were cross-resistant to alectinib and ceritinib as well. In cell clone #2, which is one of the clones of A925LPE3-CR, crizotinib sensitivity was restored via the inhibition of epidermal growth factor receptor (EGFR) by means of an EGFR tyrosine-kinase inhibitor (erlotinib) or an anti-EGFR antibody (cetuximab) in vitro and in the murine xenograft model. Cell clone #2 did not have an EGFR mutation, but the expression of amphiregulin (AREG), one of EGFR ligands, was significantly increased. A knockdown of AREG with small interfering RNAs restored the sensitivity to crizotinib. These data suggest that overexpression of EGFR ligands such as AREG can cause resistance to crizotinib, and that inhibition of EGFR signaling may be a promising strategy to overcome crizotinib resistance in EML4-ALK lung cancer.

  11. Bone morphogenetic protein 2 (bmp2) and krüppel-like factor 9 (klf9) cross-regulation in uterine stromal cells promotes timing of uterine endometrial receptivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our laboratory has identified a novel progesterone receptor (PGR) co-activator protein, designated Krüppel-like Factor 9 (KLF9), whose absence in mice is associated with subfertility with decreased number of implanting embryos due to altered patterns of proliferation, apoptosis and aberrant P-respon...

  12. Lichenoid drug eruption caused by imatinib mesylate in a Chinese patient with gastrointestinal stromal tumor.

    PubMed

    Luo, Jing-Ru; Xiang, Xiao-Jun; Xiong, Jian-Ping

    2016-09-01

    Imatinib mesylate, the first agent approved for the treatment of unresectable or metastatic gastrointestinal stromal tumor, is a tyrosine kinase inhibitor targeting (KIT) and the platelet-derived growth factor receptor-α and -β. However, imatinib administration can be accompanied by various adverse events. Here we report a case of Lichenoid drug eruption (LDE) that appeared 24 weeks after commencement of imatinib in a 73-year-old man with gastrointestinal stromal tumor (GIST). The skin lesions were distributed over his face, trunk and limbs, which improved only after discontinuation of imatinib therapy. To the best of our knowledge, this is the first report of imatinib-induced LDE in the Chinese population.

  13. [Gastrointestinal stromal tumors: report of a clinical case and review of the literature].

    PubMed

    Bronzino, P; Cassinelli, G; Arena, E; Rassu, P C; Partipilo, F; Rusca, I; Cuneo, A E; Casaccia, M

    2002-01-01

    In this case report, the Authors describe a case of stromal gastric tumour, in a male 65 years old, who presented gastrointestinal bleeding. Gastro-Intestinal Stromal Tumors (GISTs) are neoplasm with an incidence of 1-3 per cent of the digestive tract malignant neoplasms. The rarity of this disease, its visceral wall localization, the histopathological characteristics make the diagnosis difficult. Moreover there is no correlation between the behaviour of these neoplasms and the histologic features. Surgery represents the main treatment for GISTs based on complete resection, followed by a long-term follow-up. Chemotherapy and radiotherapy don't seem to play a crucial role in the treatment of these neoplasms. A new treatment with inhibitors of the tyrosinekinase is under discussion. Follow-up represents the only way to evaluate the effective behaviour of the disease, due to the lack of classic prognostic factors impact.

  14. Consequences of epithelial or stromal TGFβ1 depletion in the mammary gland.

    PubMed

    Nguyen, David H; Martinez-Ruiz, Haydeliz; Barcellos-Hoff, Mary Helen

    2011-06-01

    Transforming growth factor β1 (TGFβ) affects stroma and epithelial composition and interactions that mediate mammary development and determine the course of cancer. The reduction of TGFβ in Tgfβ1 heterozygote mice, which are healthy and long-lived, provides an important model to dissect the contribution of TGFβ in mammary gland biology and cancer. We used both intact mice and mammary chimeras in conjunction with Tgfβ1 genetic depletion and TGFβ neutralizing antibodies to evaluate how stromal or epithelial TGFβ depletion affect mammary development and response to physiological stimuli. Our studies of radiation carcinogenesis have revealed new aspects of TGFβ biology and suggest that the paradoxical TGFβ switch from tumor suppressor to tumor promoter can be resolved by assessing distinct stromal versus epithelial actions.

  15. Octacalcium phosphate ceramics combined with gingiva-derived stromal cells for engineered functional bone grafts.

    PubMed

    Zorin, Vadim L; Komlev, Vladimir S; Zorina, Alla I; Khromova, Natalia V; Solovieva, Elena V; Fedotov, Alexander Yu; Eremin, Ilya I; Kopnin, Pavel B

    2014-08-28

    Biocompatible ceramic fillers are capable of sustaining bone formation in the proper environment. The major drawback of these scaffolding materials is the absence of osteoinductivity. To overcome this limitation, bioengineered scaffolds combine osteoconductive components (biomaterials) with osteogenic features such as cells and growth factors. The bone marrow mesenchymal stromal cells (BMMSCs) and the β-tricalcium phosphate (β-TCP) are well-known and characterized in this regard. The present study was conducted to compare the properties of novel octacalcium phosphate ceramic (OCP) granules with β-TCP (Cerasorb(®)), gingiva-derived mesenchymal stromal cells (GMSCs) properties with the BMMSCs and osteogenic and angiogenic properties of a bioengineered composite based on OCP granules and the GMSCs. This study demonstrates that GMSCs and BMMSСs have a similar osteogenic capacity. The usage of OCP ceramic granules in combination with BMMSCs/GMSCs significantly affects the osteo- and angiogenesis in bone grafts of ectopic models.

  16. The Role of the Transcriptional Regulation of Stromal Cells in Chronic Inflammation

    PubMed Central

    Valin, Alvaro; Pablos, José L.

    2015-01-01

    Chronic inflammation is a common process connecting pathologies that vary in their etiology and pathogenesis such as cancer, autoimmune diseases, and infections. The response of the immune system to tissue damage involves a carefully choreographed series of cellular interactions between immune and non-immune cells. In recent years, it has become clear that stromal resident cells have an essential role perpetuating the inflammatory environment and dictating in many cases the outcome of inflammatory based pathologies. Signal transduction pathways remain the main focus of study to understand how stimuli contribute to perpetuating the inflammatory response, mainly due to their potential role as therapeutic targets. However, molecular events orchestrated in the nucleus by transcription factors add additional levels of complexity and may be equally important for understanding the phenotypic differences of activated stromal components during the chronic inflammatory process. In this review, we focus on the contribution of transcription factors to the selective regulation of inducible proinflammatory genes, with special attention given to the regulation of the stromal fibroblastic cell function and response. PMID:26501341

  17. On-demand dissolution of modular, synthetic extracellular matrix reveals local epithelial-stromal communication networks.

    PubMed

    Valdez, Jorge; Cook, Christi D; Ahrens, Caroline Chopko; Wang, Alex J; Brown, Alexander; Kumar, Manu; Stockdale, Linda; Rothenberg, Daniel; Renggli, Kasper; Gordon, Elizabeth; Lauffenburger, Douglas; White, Forest; Griffith, Linda

    2017-06-01

    Methods to parse paracrine epithelial-stromal communication networks are a vital need in drug development, as disruption of these networks underlies diseases ranging from cancer to endometriosis. Here, we describe a modular, synthetic, and dissolvable extracellular matrix (MSD-ECM) hydrogel that fosters functional 3D epithelial-stromal co-culture, and that can be dissolved on-demand to recover cells and paracrine signaling proteins intact for subsequent analysis. Specifically, synthetic polymer hydrogels, modified with cell-interacting adhesion motifs and crosslinked with peptides that include a substrate for cell-mediated proteolytic remodeling, can be rapidly dissolved by an engineered version of the microbial transpeptidase Sortase A (SrtA) if the crosslinking peptide includes a SrtA substrate motif and a soluble second substrate. SrtA-mediated dissolution affected only 1 of 31 cytokines and growth factors assayed, whereas standard protease degradation methods destroyed about half of these same molecules. Using co-encapsulated endometrial epithelial and stromal cells as one model system, we show that the dynamic cytokine and growth factor response of co-cultures to an inflammatory cue is richer and more nuanced when measured from SrtA-dissolved gel microenvironments than from the culture supernate. This system employs accessible, reproducible reagents and facile protocols; hence, has potential as a tool in identifying and validating therapeutic targets in complex diseases.

  18. Breast tumor and stromal cell responses to TGF-β and hypoxia in matrix deposition

    PubMed Central

    Curran, Colleen S.; Keely, Patricia J

    2012-01-01

    The components that comprise the extracellular matrix (ECM) are integral to normal tissue homeostasis as well as the development and progression of breast tumors. The secretion, construction, and remodeling of the ECM are each regulated by a complex interplay between tumor cells, fibroblasts and macrophages. Transforming growth factor-β (TGF-β) is an essential molecule in regulating the cellular production of ECM molecules and the adhesive interactions of cells with the ECM. Additionally, hypoxic cell signals, initiated by oxygen deprivation, additional metabolic factors or receptor activation, are associated with ECM formation and the progression of breast cancer. Both TGF-β and hypoxic cell signals are implicated in the functional and morphological changes of cancer-associated-fibroblasts and tumor-associated-macrophages. Moreover, the enhanced recruitment of tumor and stromal cells in response to hypoxia-induced chemokines leads to increased ECM deposition and remodeling, increased blood vessel formation, and enhanced tumor migration. Thus, elucidation of the collaborative networks between tumor and stromal cells in response to the combined signals of TGF-β and hypoxia may yield insight into treatment parameters that target both tumor and stromal cells. PMID:23262216

  19. Increased COX-2 expression in epithelial and stromal cells of high mammographic density tissues and in a xenograft model of mammographic density.

    PubMed

    Chew, G L; Huo, C W; Huang, D; Hill, P; Cawson, J; Frazer, H; Hopper, J L; Haviv, I; Henderson, M A; Britt, K; Thompson, E W

    2015-08-01

    Mammographic density (MD) adjusted for age and body mass index is one of the strongest known risk factors for breast cancer. Given the high attributable risk of MD for breast cancer, chemoprevention with a safe and available agent that reduces MD and breast cancer risk would be beneficial. Cox-2 has been implicated in MD-related breast cancer risk, and was increased in stromal cells in high MD tissues in one study. Our study assessed differential Cox-2 expression in epithelial and stromal cells in paired samples of high and low MD human breast tissue, and in a validated xenograft biochamber model of MD. We also examined the effects of endocrine treatment upon Cox-2 expression in high and low MD tissues in the MD xenograft model. Paired high and low MD human breast tissue samples were immunostained for Cox-2, then assessed for differential expression and staining intensity in epithelial and stromal cells. High and low MD human breast tissues were separately maintained in biochambers in mice treated with Tamoxifen, oestrogen or placebo implants, then assessed for percentage Cox-2 staining in epithelial and stromal cells. Percentage Cox-2 staining was greater for both epithelial (p = 0.01) and stromal cells (p < 0.0001) of high compared with low MD breast tissues. In high MD biochamber tissues, percentage Cox-2 staining was greater in stromal cells of oestrogen-treated versus placebo-treated tissues (p = 0.05).

  20. State of the Art in the Treatment of Gastrointestinal Stromal Tumors

    PubMed Central

    Garlipp, Benjamin; Bruns, Christiane J.

    2014-01-01

    Background Gastrointestinal stromal tumors (GISTs) are the most frequently diagnosed mesenchymal neoplasms of the gastrointestinal tract. Despite their biological and clinical heterogeneity, the majority of these tumors are positive for the receptor tyrosine kinase KIT and are driven by KIT- or platelet-derived growth factor receptor alpha (PDGFRA)-activating mutations. There are still uncertainties regarding their clinical and molecular characterization and the optimal treatment regimens, making it difficult to establish a universal treatment algorithm for these tumors. Summary From a clinical perspective, the main difference between GISTs and other gastrointestinal neoplasms is that the benign or malignant behavior of GISTs cannot be predicted from histopathology, but instead relies on empirically established scoring systems. Clinical data suggest that malignant potential may be an inherent quality of some GISTs rather than a feature acquired by the tumor during disease progression. Thus, some patients may require prolonged anti-tumor treatment even after complete surgical removal of the tumor. Key Message Although GISTs are the most frequently occurring mesenchymal neoplasms in the gastrointestinal tract, no universal treatment algorithms exist. This paper reviews the current evidence that guides the management of GISTs. Practical Implications The management of localized GISTs involves the use of surgical resection, with the inclusion of preoperative tyrosine kinase inhibitor treatment for locally advanced, primarily unresectable tumors and for resectable cases requiring extensive surgery. Imatinib is also indicated as adjuvant therapy after complete surgical removal of GISTs with a high estimated risk of recurrence unless specific mutations conferring imatinib resistance are present. The optimal duration of adjuvant treatment is still controversial. For patients with metastatic imatinib-sensitive GISTs, imatinib constitutes the first-line standard treatment

  1. Interactions between acute lymphoblastic leukemia and bone marrow stromal cells influence response to therapy.

    PubMed

    Tesfai, Yordanos; Ford, Jette; Carter, Kim W; Firth, Martin J; O'Leary, Rebecca A; Gottardo, Nicholas G; Cole, Catherine; Kees, Ursula R

    2012-03-01

    The cure rate for pediatric patients with B precursor acute lymphoblastic leukemia (pre-B ALL) is steadily improving, however relapses do occur despite initial response to therapy. To identify links between drug resistance and gene deregulation we used oligonucleotide microarray technology and determined in 184 pre-B ALL specimen genes differentially expressed compared to normal CD34(+) specimens. We identified 20 signature genes including CTGF, BMP-2, CXCR4 and IL7R, documented to regulate interactions in the bone marrow. We recorded remarkably similar levels of expression in three independent patient cohorts, and found distinct patterns in cytogenetically defined subgroups of pre-B ALL. The canonical pathways that were affected are involved in inter- and intra-cellular communication, regulating signaling within the microenvironment. We tested experimentally whether interaction with stromal cells conferred protection to four drugs used in current ALL therapy, and demonstrated that bone marrow stromal cells significantly influenced resistance to vincristine and cytosine arabinoside. Compounds designed to block the identified cellular interactions within the bone marrow microenvironment are expected to mobilise the leukemic cells and make them more accessible to contemporary antileukemic agents. The data provide novel insight into the pathobiology of ALL and indicate new therapeutic targets for patients with ALL.

  2. Decellularization of human stromal refractive lenticules for corneal tissue engineering

    PubMed Central

    Yam, Gary Hin-Fai; Yusoff, Nur Zahirah Binte M.; Goh, Tze-Wei; Setiawan, Melina; Lee, Xiao-Wen; Liu, Yu-Chi; Mehta, Jodhbir S.

    2016-01-01

    Small incision lenticule extraction (SMILE) becomes a procedure to correct myopia. The extracted lenticule can be used for other clinical scenarios. To prepare for allogeneic implantation, lenticule decellularization with preserved optical property, stromal architecture and chemistry would be necessary. We evaluated different methods to decellularize thin human corneal stromal lenticules created by femtosecond laser. Treatment with 0.1% sodium dodecylsulfate (SDS) followed by extensive washes was the most efficient protocol to remove cellular and nuclear materials. Empty cell space was found inside the stroma, which displayed aligned collagen fibril architecture similar to native stroma. The SDS-based method was superior to other treatments with hyperosmotic 1.5 M sodium chloride, 0.1% Triton X-100 and nucleases (from 2 to 10 U/ml DNase and RNase) in preserving extracellular matrix content (collagens, glycoproteins and glycosaminoglycans). The stromal transparency and light transmittance was indifferent to untreated lenticules. In vitro recellularization showed that the SDS-treated lenticules supported corneal stromal fibroblast growth. In vivo re-implantation into a rabbit stromal pocket further revealed the safety and biocompatibility of SDS-decellularized lenticules without short- and long-term rejection risk. Our results concluded that femtosecond laser-derived human stromal lenticules decellularized by 0.1% SDS could generate a transplantable bioscaffold with native-like stromal architecture and chemistry. PMID:27210519

  3. Influence of Ionizing Radiation on Stromal-Epithelial Communication in Esophageal Carcinogenesis

    NASA Astrophysics Data System (ADS)

    Huff, Janice; Patel, Zarana; Grugan, Katharine; Rustgi, Anil; Cucinotta, Francis A.

    Esophageal cancer is the 6th leading cause of cancer death worldwide and is associated with a variety of risk factors including tobacco use, heavy alcohol consumption, human papilloma virus infection, and certain dietary factors such as trace mineral and vitamin deficiencies. A connection with ionizing radiation exposure is revealed by the high excess relative risk for esophageal squamous cell carcinoma observed in the survivors of the atomic bomb detonations in Japan. Esophageal carcinomas are also seen as secondary malignancies in patients who received radiotherapy for breast and thoracic cancers; additionally, patients with head/neck and oral squamous cell cancers are at increased risk for metachronous esophageal squamous cell cancers. This malignancy is rapidly fatal, mainly because it remains asymptomatic until late, advanced stages when the disease is rarely responsive to treatment. In normal epithelium, the stromal microenvironment is essential for the maintenance and modulation of cell growth and differentiation. Cross talk between the epithelial and stromal compartments can influence many aspects of malignant progression, including tumor cell proliferation, migration, invasion and recruitment of new blood vessels. To test the hypothesis that radiation exposure plays a role in esophageal carcinogenesis via non-targeted mechanisms involving stromal-epithelial cell communication, we are studying radiation effects on hTERT-immortalized human esophageal epithelial cells and genetic variants grown in co-culture with human esophageal stromal fibrob-lasts (Okawa et al., Genes Dev. 2007. 21: 2788-2803). We examined how irradiation of stromal fibroblasts affected epithelial migration and invasion, behaviors associated with cancer promotion and progression. These assays were conducted in modified Boyden chambers using conditioned media from irradiated fibroblasts. Our results using low LET gamma radiation showed a dose-dependent increase in migration of epithelial

  4. Inter Association Child Care Conference. Conference Proceedings 1979.

    ERIC Educational Resources Information Center

    Austin, David, Ed.

    This publication of the proceedings of the Inter Association Child Care Conference includes a debate for and against professionalization in the field of child care. A section on meeting the treatment needs of children through educational preparation of child care practitioners discusses background factors, levels of education for practitioners,…

  5. Staphylococcus aureus Blepharitis Associated with Multiple Corneal Stromal Microabscess, Stromal Edema, and Uveitis.

    PubMed

    Boto-de-los-Bueis, Ana; del Hierro Zarzuelo, Almudena; García Perea, Adela; de Pablos, Manuela; Pastora, Natalia; Noval, Susana

    2015-04-01

    We report a case of an immunocompetent woman with atypical marginal keratitis. She presented with recurrent episodes of multiples microabscess distributed in a triangular pattern associated with stromal oedema and anterior chamber uveitis, affecting both eyes, but not simultaneously. The episodes responded to steroid drops, corneal inflammation was coincidental with a worsening of her blepharitis in the affected eye and S. aureus was isolated from the lids.

  6. Immunological hallmarks of stromal cells in the tumour microenvironment.

    PubMed

    Turley, Shannon J; Cremasco, Viviana; Astarita, Jillian L

    2015-11-01

    A dynamic and mutualistic interaction between tumour cells and the surrounding stroma promotes the initiation, progression, metastasis and chemoresistance of solid tumours. Far less understood is the relationship between the stroma and tumour-infiltrating leukocytes; however, emerging evidence suggests that the stromal compartment can shape antitumour immunity and responsiveness to immunotherapy. Thus, there is growing interest in elucidating the immunomodulatory roles of the stroma that evolve within the tumour microenvironment. In this Review, we discuss the evidence that stromal determinants interact with leukocytes and influence antitumour immunity, with emphasis on the immunological attributes of stromal cells that may foster their protumorigenic function.

  7. Sex cord-gonadal stromal tumor of the rete testis.

    PubMed

    Sajadi, Kamran P; Dalton, Rory R; Brown, James A

    2009-01-01

    A 34-year-old tetraplegic patient with suppurative epididymitis was found on follow-up examination and ultrasonography to have a testicular mass. The radical orchiectomy specimen contained an undifferentiated spindled sex cord-stromal tumor arising in the rete testis. Testicular sex cord-stromal tumors are far less common than germ cell neoplasms and are usually benign. The close relationship between sex cords and ductules of the rete testis during development provides the opportunity for these uncommon tumors to arise anatomically within the rete tesis. This undifferentiated sex cord-stromal tumor, occurring in a previously unreported location, is an example of an unusual lesion mimicking an intratesticular malignant neoplasm.

  8. Bilateral Sclerosing Stromal Ovarian Tumor in an Adolescent

    PubMed Central

    Naidu, Anjani; Chung, Betty; Simon, Mitchell; Marshall, Ian

    2015-01-01

    Sclerosing stromal tumor of the ovary is a rare, benign, sex cord stromal tumor occurring predominantly in younger women in the 2nd and 3rd decades of life. It typically presents unilaterally with only 2 previously reported cases of bilateral presentation. Common clinical presentations include pelvic or abdominal pain, a mass, or menstrual changes. Although occasionally presenting with hormonal manifestations, virilization as a result of androgen production by the tumor is rare. Here we present an extremely rare case of a sclerosing stromal ovarian tumor in a 14-year-old patient with bilateral presentation and with clinical and biochemical evidence of hyperandrogenemia. PMID:26064755

  9. Radiologic differences between bone marrow stromal and hematopoietic progenitor cell lines from Fanconi Anemia (Fancd2(-/-)) mice.

    PubMed

    Berhane, Hebist; Epperly, Michael W; Goff, Julie; Kalash, Ronny; Cao, Shaonan; Franicola, Darcy; Zhang, Xichen; Shields, Donna; Houghton, Frank; Wang, Hong; Wipf, Peter; Parmar, Kalindi; Greenberger, Joel S

    2014-01-01

    arrest. The absence of the mouse Fancd2 gene product confers radiosensitivity to bone marrow stromal but not hematopoietic progenitor cells.

  10. Molecular signature and in vivo behavior of bone marrow endosteal and subendosteal stromal cell populations and their relevance to hematopoiesis

    SciTech Connect

    Balduino, Alex; Mello-Coelho, Valeria; Wang, Zhou; Taichman, Russell S.; Krebsbach, Paul H.; Weeraratna, Ashani T.; Becker, Kevin G.; Mello, Wallace de; Taub, Dennis D.; Borojevic, Radovan

    2012-11-15

    In the bone marrow cavity, hematopoietic stem cells (HSC) have been shown to reside in the endosteal and subendosteal perivascular niches, which play specific roles on HSC maintenance. Although cells with long-term ability to reconstitute full hematopoietic system can be isolated from both niches, several data support a heterogenous distribution regarding the cycling behavior of HSC. Whether this distinct behavior depends upon the role played by the stromal populations which distinctly create these two niches is a question that remains open. In the present report, we used our previously described in vivo assay to demonstrate that endosteal and subendosteal stromal populations are very distinct regarding skeletal lineage differentiation potential. This was further supported by a microarray-based analysis, which also demonstrated that these two stromal populations play distinct, albeit complementary, roles in HSC niche. Both stromal populations were preferentially isolated from the trabecular region and behave distinctly in vitro, as previously reported. Even though these two niches are organized in a very close range, in vivo assays and molecular analyses allowed us to identify endosteal stroma (F-OST) cells as fully committed osteoblasts and subendosteal stroma (F-RET) cells as uncommitted mesenchymal cells mainly represented by perivascular reticular cells expressing high levels of chemokine ligand, CXCL12. Interestingly, a number of cytokines and growth factors including interleukin-6 (IL-6), IL-7, IL-15, Hepatocyte growth factor (HGF) and stem cell factor (SCF) matrix metalloproteases (MMPs) were also found to be differentially expressed by F-OST and F-RET cells. Further microarray analyses indicated important mechanisms used by the two stromal compartments in order to create and coordinate the 'quiescent' and 'proliferative' niches in which hematopoietic stem cells and progenitors reside.

  11. Targeting Stromal-Cancer Cell Crosstalk Networks in Ovarian Cancer Treatment

    PubMed Central

    Yeung, Tsz-Lun; Leung, Cecilia S.; Li, Fuhai; Wong, Stephen T. C.; Mok, Samuel C.

    2016-01-01

    Ovarian cancer is a histologically, clinically, and molecularly diverse disease with a five-year survival rate of less than 30%. It has been estimated that approximately 21,980 new cases of epithelial ovarian cancer will be diagnosed and 14,270 deaths will occur in the United States in 2015, making it the most lethal gynecologic malignancy. Ovarian tumor tissue is composed of cancer cells and a collection of different stromal cells. There is increasing evidence that demonstrates that stromal involvement is important in ovarian cancer pathogenesis. Therefore, stroma-specific signaling pathways, stroma-derived factors, and genetic changes in the tumor stroma present unique opportunities for improving the diagnosis and treatment of ovarian cancer. Cancer-associated fibroblasts (CAFs) are one of the major components of the tumor stroma that have demonstrated supportive roles in tumor progression. In this review, we highlight various types of signaling crosstalk between ovarian cancer cells and stromal cells, particularly with CAFs. In addition to evaluating the importance of signaling crosstalk in ovarian cancer progression, we discuss approaches that can be used to target tumor-promoting signaling crosstalk and how these approaches can be translated into potential ovarian cancer treatment. PMID:26751490

  12. RelB-Dependent Stromal Cells Promote T-Cell Leukemogenesis

    PubMed Central

    dos Santos, Nuno R.; Williame, Maryvonne; Gachet, Stéphanie; Cormier, Françoise; Janin, Anne; Weih, Debra; Weih, Falk; Ghysdael, Jacques

    2008-01-01

    Background The Rel/NF-κB transcription factors are often activated in solid or hematological malignancies. In most cases, NF-κB activation is found in malignant cells and results from activation of the canonical NF-κB pathway, leading to RelA and/or c-Rel activation. Recently, NF-κB activity in inflammatory cells infiltrating solid tumors has been shown to contribute to solid tumor initiation and progression. Noncanonical NF-κB activation, which leads to RelB activation, has also been reported in breast carcinoma, prostate cancer, and lymphoid leukemia. Methodology/Principal Findings Here we report a novel role for RelB in stromal cells that promote T-cell leukemogenesis. RelB deficiency delayed leukemia onset in the TEL-JAK2 transgenic mouse model of human T acute lymphoblastic leukemia. Bone marrow chimeric mouse experiments showed that RelB is not required in the hematopoietic compartment. In contrast, RelB plays a role in radio-resistant stromal cells to accelerate leukemia onset and increase disease severity. Conclusions/Significance The present results are the first to uncover a role for RelB in the crosstalk between non-hematopoietic stromal cells and leukemic cells. Thus, besides its previously reported role intrinsic to specific cancer cells, the noncanonical NF-κB pathway may also play a pro-oncogenic role in cancer microenvironmental cells. PMID:18596915

  13. Supernatant of Bone Marrow Mesenchymal Stromal Cells Induces Peripheral Blood Mononuclear Cells Possessing Mesenchymal Features

    PubMed Central

    Hu, Gang; Xu, Jun-jun; Deng, Zhi-hong; Feng, Jie; Jin, Yan

    2011-01-01

    Increasing evidence shows that some cells from peripheral blood fibroblast-like mononuclear cells have the capacity to differentiate into mesenchymal lineages. However, the insufficiency of these cells in the circulation challenges the cell isolation and subsequently limits the clinical application of these cells. In the present study, the peripheral blood mononuclear cells (pbMNCs) were isolated from wound animals and treated with the supernatant of bone marrow mesenchymal stromal cells (bmMSCs). Results showed these pbMNCs were fibroblast-like, had stromal morphology, were negative for CD34 and CD45, but positive for Vimentin and Collagen I, and had the multipotency to differentiate into adipocytes and osteoblasts. We named these induced peripheral blood-derived mesenchymal stromal cells (ipbMSCs). Skin grafts in combination with ipbMSCs and collagen I were applied for wound healing, and results revealed ipbMSC exhibited similar potency and effectiveness in the promotion of wound healing to the bmMSCs. Hereafter, we speculate that the mixture of growth factors and chemokines secreted by bmMSCs may play an important roles in the induction of the proliferation and mesenchymal differentiation of mononuclear cells. Our results are clinically relevant because it provide a new method for the acquisition of MSCs which can be used as a candidate for the wound repair. PMID:21494428

  14. Management of Fibrosis: The Mesenchymal Stromal Cells Breakthrough

    PubMed Central

    Usunier, Benoît; Benderitter, Marc; Tamarat, Radia; Chapel, Alain

    2014-01-01

    Fibrosis is the endpoint of many chronic inflammatory diseases and is defined by an abnormal accumulation of extracellular matrix components. Despite its slow progression, it leads to organ malfunction. Fibrosis can affect almost any tissue. Due to its high frequency, in particular in the heart, lungs, liver, and kidneys, many studies have been conducted to find satisfactory treatments. Despite these efforts, current fibrosis management therapies either are insufficiently effective or induce severe adverse effects. In the light of these facts, innovative experimental therapies are being investigated. Among these, cell therapy is regarded as one of the best candidates. In particular, mesenchymal stromal cells (MSCs) have great potential in the treatment of inflammatory diseases. The value of their immunomodulatory effects and their ability to act on profibrotic factors such as oxidative stress, hypoxia, and the transforming growth factor-β1 pathway has already been highlighted in preclinical and clinical studies. Furthermore, their propensity to act depending on the microenvironment surrounding them enhances their curative properties. In this paper, we review a large range of studies addressing the use of MSCs in the treatment of fibrotic diseases. The results reported here suggest that MSCs have antifibrotic potential for several organs. PMID:25132856

  15. Stromal heparan sulfate differentiates neuroblasts to suppress neuroblastoma growth.

    PubMed

    Knelson, Erik H; Gaviglio, Angela L; Nee, Jasmine C; Starr, Mark D; Nixon, Andrew B; Marcus, Stephen G; Blobe, Gerard C

    2014-07-01

    Neuroblastoma prognosis is dependent on both the differentiation state and stromal content of the tumor. Neuroblastoma tumor stroma is thought to suppress neuroblast growth via release of soluble differentiating factors. Here, we identified critical growth-limiting components of the differentiating stroma secretome and designed a potential therapeutic strategy based on their central mechanism of action. We demonstrated that expression of heparan sulfate proteoglycans (HSPGs), including TβRIII, GPC1, GPC3, SDC3, and SDC4, is low in neuroblasts and high in the Schwannian stroma. Evaluation of neuroblastoma patient microarray data revealed an association between TGFBR3, GPC1, and SDC3 expression and improved prognosis. Treatment of neuroblastoma cell lines with soluble HSPGs promoted neuroblast differentiation via FGFR1 and ERK phosphorylation, leading to upregulation of the transcription factor inhibitor of DNA binding 1 (ID1). HSPGs also enhanced FGF2-dependent differentiation, and the anticoagulant heparin had a similar effect, leading to decreased neuroblast proliferation. Dissection of individual sulfation sites identified 2-O, 3-O-desulfated heparin (ODSH) as a differentiating agent, and treatment of orthotopic xenograft models with ODSH suppressed tumor growth and metastasis without anticoagulation. These studies support heparan sulfate signaling intermediates as prognostic and therapeutic neuroblastoma biomarkers and demonstrate that tumor stroma biology can inform the design of targeted molecular therapeutics.

  16. The role of gender, psycho-social factors and anthropological-cultural dimensions on pain in neurorehabilitation. Evidence and recommendations from the Italian Consensus Conference on Pain in Neurorehabilitation.

    PubMed

    Aloisi, Anna M; Berlincioni, Vanna; Torta, Riccardo; Nappi, Rossella E; Tassorelli, Cristina; Barale, Francesco; Ieraci, Valentina; Giusti, Emanuele M; Pietrabissa, Giada; Tamburin, Stefano; Manzoni, Gian M; Castelnuovo, Gianluca

    2016-10-01

    Pain is frequent in patients undergoing neurorehabilitation, but there is a number of still unanswered questions on this topic. The Italian Consensus Conference on Pain in Neurorehabilitation (ICCPN) was constituted with the purpose to identify the best practices that can be used in this context. In this article we summarize the existing evidence and recommendations provided by the ICCPN about the role of gender, psycho-social factors and anthropological-cultural dimensions on pain in neurorehabilitation. Sex, gender, psycho-social variables, anthropological and cultural features may influence pain expression, and its pharmacological and non-pharmacological outcome, but the role of these factors has not been consistently explored in neurorehabilitation. There is a number of psychological factors that can be correlated with or represent a predictor for pain, or may influence the treatment and outcome of neurorehabilitation programs. All these factors should be considered when designing these programs, and future studies should incorporate them as potential covariates that may influence outcome.

  17. Gastrointestinal stromal tumors: the histology report.

    PubMed

    Dei Tos, Angelo P; Laurino, Licia; Bearzi, Italo; Messerini, Luca; Farinati, Fabio

    2011-03-01

    Gastrointestinal stromal tumors (GISTs) represent a mesenchymal neoplasm occurring primarily in the gastrointestinal tract, and showing differentiation toward the interstitial cell of Cajal. Its incidence is approximately 15 case/100,000/year. Stomach and small bowel are the most frequently affected anatomic sites. GIST represents a morphological, immunophenotypical and molecular distinct entity, the recognition of which has profound therapeutic implications. In fact, they have shown an exquisite sensitivity to treatment with the tyrosine kinase inhibitor imatinib. Diagnosis relies upon morphology along with immunodetection of KIT and/or DOG1. When dealing with KIT negative cases, molecular analysis of KIT/PDGFRA genes may help in confirming diagnosis. Molecular evaluation of both genes are in any case recommended as mutational status provides key predictive information. Pathologists also play a key role in providing an estimation of the risk of biological aggressiveness, which is currently based on anatomic location of the tumor, size, and mitotic activity.

  18. Pseudoangiomatous stromal hyperplasia causing massive breast enlargement.

    PubMed

    Bourke, Anita Geraldine; Tiang, Stephen; Harvey, Nathan; McClure, Robert

    2015-10-16

    Pseudoangiomatous stromal hyperplasia (PASH) of the breast is a benign mesenchymal proliferative process, initially described by Vuitch et al. We report an unusual case of a 46-year-old woman who presented with a 6-week history of bilateral massive, asymmetrical, painful enlargement of her breasts, without a history of trauma. On clinical examination, both breasts were markedly enlarged and oedematous, but there were no discrete palpable masses. Preoperative image-guided core biopsies and surgery showed PASH. PASH is increasingly recognised as an incidental finding on image-guided core biopsy performed for screen detected lesions. There are a few reported cases of PASH presenting as rapid breast enlargement. In our case, the patient presented with painful, asymmetrical, massive breast enlargement. Awareness needs to be raised of this entity as a differential diagnosis in massive, painful breast enlargement.

  19. Update on Gastrointestinal Stromal Tumors for Radiologists

    PubMed Central

    Baheti, Akshay D.; Tirumani, Harika; O'Neill, Ailbhe; Jagannathan, Jyothi P.

    2017-01-01

    The management of gastrointestinal stromal tumors (GISTs) has evolved significantly in the last two decades due to better understanding of their biologic behavior as well as development of molecular targeted therapies. GISTs with exon 11 mutation respond to imatinib whereas GISTs with exon 9 or succinate dehydrogenase subunit mutations do not. Risk stratification models have enabled stratifying GISTs according to risk of recurrence and choosing patients who may benefit from adjuvant therapy. Assessing response to targeted therapies in GIST using conventional response criteria has several potential pitfalls leading to search for alternate response criteria based on changes in tumor attenuation, volume, metabolic and functional parameters. Surveillance of patients with GIST in the adjuvant setting is important for timely detection of recurrences. PMID:28096720

  20. Laparoscopic resection of duodenal gastrointestinal stromal tumour

    PubMed Central

    Zioni, Tammy; Dizengof, Vitaliy; Kirshtein, Boris

    2017-01-01

    Only a few studies have revealed using laparoscopic technique with limited resection of gastrointestinal stromal tumour (GIST) of the duodenum. A 68-year-old man was admitted to the hospital due to upper gastrointestinal (GI) bleeding. Evaluation revealed an ulcerated, bleeding GI tumour in the second part of the duodenum. After control of bleeding during gastroduodenoscopy, he underwent a laparoscopic wedge resection of the area. During 1.5 years of follow-up, the patient is disease free, eats drinks well, and has regained weight. Surgical resection of duodenal GIST with free margins is the main treatment of this tumour. Various surgical treatment options have been reported. Laparoscopic resection of duodenal GIST is an advanced and challenging procedure requiring experience and good surgical technique. The laparoscopic limited resection of duodenal GIST is feasible and safe, reducing postoperative morbidity without compromising oncologic results. PMID:28281485

  1. Equine Metabolic Syndrome Affects Viability, Senescence, and Stress Factors of Equine Adipose-Derived Mesenchymal Stromal Stem Cells: New Insight into EqASCs Isolated from EMS Horses in the Context of Their Aging.

    PubMed

    Marycz, Krzysztof; Kornicka, Katarzyna; Basinska, Katarzyna; Czyrek, Aleksandra

    2016-01-01

    Currently, equine metabolic syndrome (EMS), an endocrine disease linked to insulin resistance, affects an increasing number of horses. However, little is known about the effect of EMS on mesenchymal stem cells that reside in adipose tissue (ASC). Thus it is crucial to evaluate the viability and growth kinetics of these cells, particularly in terms of their application in regenerative medicine. In this study, we investigated the proliferative capacity, morphological features, and accumulation of oxidative stress factors in mesenchymal stem cells isolated from healthy animals (ASCN) and horses suffering from EMS (ASCEMS). ASCEMS displayed senescent phenotype associated with β-galactosidase accumulation, enlarged cell bodies and nuclei, increased apoptosis, and reduced heterochromatin architecture. Moreover, we observed increased amounts of nitric oxide (NO) and reactive oxygen species (ROS) in these cells, accompanied by reduced superoxide dismutase (SOD) activity. We also found in ASCEMS an elevated number of impaired mitochondria, characterized by membrane raptures, disarrayed cristae, and vacuole formation. Our results suggest that the toxic compounds, accumulating in the mitochondria under oxidative stress, lead to alternations in their morphology and may be partially responsible for the senescent phenotype and decreased proliferation potential of ASCEMS.

  2. Equine Metabolic Syndrome Affects Viability, Senescence, and Stress Factors of Equine Adipose-Derived Mesenchymal Stromal Stem Cells: New Insight into EqASCs Isolated from EMS Horses in the Context of Their Aging

    PubMed Central

    Marycz, Krzysztof; Kornicka, Katarzyna; Basinska, Katarzyna; Czyrek, Aleksandra

    2016-01-01

    Currently, equine metabolic syndrome (EMS), an endocrine disease linked to insulin resistance, affects an increasing number of horses. However, little is known about the effect of EMS on mesenchymal stem cells that reside in adipose tissue (ASC). Thus it is crucial to evaluate the viability and growth kinetics of these cells, particularly in terms of their application in regenerative medicine. In this study, we investigated the proliferative capacity, morphological features, and accumulation of oxidative stress factors in mesenchymal stem cells isolated from healthy animals (ASCN) and horses suffering from EMS (ASCEMS). ASCEMS displayed senescent phenotype associated with β-galactosidase accumulation, enlarged cell bodies and nuclei, increased apoptosis, and reduced heterochromatin architecture. Moreover, we observed increased amounts of nitric oxide (NO) and reactive oxygen species (ROS) in these cells, accompanied by reduced superoxide dismutase (SOD) activity. We also found in ASCEMS an elevated number of impaired mitochondria, characterized by membrane raptures, disarrayed cristae, and vacuole formation. Our results suggest that the toxic compounds, accumulating in the mitochondria under oxidative stress, lead to alternations in their morphology and may be partially responsible for the senescent phenotype and decreased proliferation potential of ASCEMS. PMID:26682006

  3. Stromal cells positively and negatively modulate the growth of cancer cells: stimulation via the PGE2-TNFα-IL-6 pathway and inhibition via secreted GAPDH-E-cadherin interaction.

    PubMed

    Kawada, Manabu; Inoue, Hiroyuki; Ohba, Shun-ichi; Yoshida, Junjiro; Masuda, Tohru; Yamasaki, Manabu; Usami, Ihomi; Sakamoto, Shuichi; Abe, Hikaru; Watanabe, Takumi; Yamori, Takao; Shibasaki, Masakatsu; Nomoto, Akio

    2015-01-01

    Fibroblast-like stromal cells modulate cancer cells through secreted factors and adhesion, but those factors are not fully understood. Here, we have identified critical stromal factors that modulate cancer growth positively and negatively. Using a cell co-culture system, we found that gastric stromal cells secreted IL-6 as a growth and survival factor for gastric cancer cells. Moreover, gastric cancer cells secreted PGE2 and TNFα that stimulated IL-6 secretion by the stromal cells. Furthermore, we found that stromal cells secreted glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Extracellular GAPDH, or its N-terminal domain, inhibited gastric cancer cell growth, a finding confirmed in other cell systems. GAPDH bound to E-cadherin and downregulated the mTOR-p70S6 kinase pathway. These results demonstrate that stromal cells could regulate cancer cell growth through the balance of these secreted factors. We propose that negative regulation of cancer growth using GAPDH could be a new anti-cancer strategy.

  4. Stromal Cells Positively and Negatively Modulate the Growth of Cancer Cells: Stimulation via the PGE2-TNFα-IL-6 Pathway and Inhibition via Secreted GAPDH-E-Cadherin Interaction

    PubMed Central

    Kawada, Manabu; Inoue, Hiroyuki; Ohba, Shun-ichi; Yoshida, Junjiro; Masuda, Tohru; Yamasaki, Manabu; Usami, Ihomi; Sakamoto, Shuichi; Abe, Hikaru; Watanabe, Takumi; Yamori, Takao; Shibasaki, Masakatsu; Nomoto, Akio

    2015-01-01

    Fibroblast-like stromal cells modulate cancer cells through secreted factors and adhesion, but those factors are not fully understood. Here, we have identified critical stromal factors that modulate cancer growth positively and negatively. Using a cell co-culture system, we found that gastric stromal cells secreted IL-6 as a growth and survival factor for gastric cancer cells. Moreover, gastric cancer cells secreted PGE2 and TNFα that stimulated IL-6 secretion by the stromal cells. Furthermore, we found that stromal cells secreted glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Extracellular GAPDH, or its N-terminal domain, inhibited gastric cancer cell growth, a finding confirmed in other cell systems. GAPDH bound to E-cadherin and downregulated the mTOR-p70S6 kinase pathway. These results demonstrate that stromal cells could regulate cancer cell growth through the balance of these secreted factors. We propose that negative regulation of cancer growth using GAPDH could be a new anti-cancer strategy. PMID:25785838

  5. Regulatory Effects of Urokinase on Mesenchymal Stromal Cell Migration, Proliferation, and Matrix Metalloproteinase Secretion.

    PubMed

    Beloglazova, I B; Zubkova, E S; Tsokolaeva, Z I; Stafeev, Yu S; Dergilev, K V; Ratner, E I; Shestakova, M V; Sukhareva, O Yu; Parfenova, E V; Men'shikov, M Yu

    2016-10-01

    We studied the effect of urokinase, its recombinant forms, and domain fragments on migration and proliferation of adipose tissue mesenchymal stromal cells (MSCs) and MMP secretion by these cells. Urokinase, but not its recombinant forms, slightly induced directed migration of MSCs. Spontaneous migration of MSCs increased under the action of urokinase or its isolated kringle domain. Migration induced by platelet-derived growth factor was inhibited by proteolytically inactive form of urokinase, the kringle domain, and blocking antibody to urokinase receptor. Urokinase, its proteolytically inactive form, and kringle domain produced no effect on MSC proliferation. In contrast to platelet-derived growth factor, all urokinase forms induced secretion of MMP-9 by MSCs.

  6. Tissue Digestion for Stromal Cell and Leukocyte Isolation.

    PubMed

    Nayar, Saba; Campos, Joana; Steinthal, Nathalie; Barone, Francesca

    2017-01-01

    Tissue mechanical disruption is often not sufficient to disrupt cell-to-cell interactions; this is particularly relevant for stromal cells that are embedded within the extracellular matrix. For this reason, different enzyme combinations have been described to enable the isolation of single-cell populations, particularly stromal cells. This chapter aims to describe different methods used for enzymatic digestion of stromal cell and leukocyte populations from secondary and tertiary lymphoid organs. Collagenase D and P and collagenase D and dispase protocols provide a good yield of stromal cells, while a collagenase dispase-only protocol should be used if the main aim of the technique is to retrieve leukocyte populations. However, for isolation of both stroma and leukocyte populations the collagenase D and P protocol would provide the best results. Protocols for these techniques and illustrative results from flow cytometry analysis can be found in this chapter.

  7. Stromal infrastructure of the lymph node and coordination of immunity.

    PubMed

    Chang, Jonathan E; Turley, Shannon J

    2015-01-01

    The initiation of adaptive immune responses depends upon the careful maneuvering of lymphocytes and antigen into and within strategically placed lymph nodes (LNs). Non-hematopoietic stromal cells form the cellular infrastructure that directs this process. Once regarded as merely structural features of lymphoid tissues, these cells are now appreciated as essential regulators of immune cell trafficking, fluid flow, and LN homeostasis. Recent advances in the identification and in vivo targeting of specific stromal populations have resulted in striking new insights to the function of stromal cells and reveal a level of complexity previously unrealized. We discuss here recent discoveries that highlight the pivotal role that stromal cells play in orchestrating immune cell homeostasis and adaptive immunity.

  8. The use of bone marrow stromal cells (bone marrow-derived multipotent mesenchymal stromal cells) for alveolar bone tissue engineering: basic science to clinical translation.

    PubMed

    Kagami, Hideaki; Agata, Hideki; Inoue, Minoru; Asahina, Izumi; Tojo, Arinobu; Yamashita, Naohide; Imai, Kohzoh

    2014-06-01

    Bone tissue engineering is a promising field of regenerative medicine in which cultured cells, scaffolds, and osteogenic inductive signals are used to regenerate bone. Human bone marrow stromal cells (BMSCs) are the most commonly used cell source for bone tissue engineering. Although it is known that cell culture and induction protocols significantly affect the in vivo bone forming ability of BMSCs, the responsible factors of clinical outcome are poorly understood. The results from recent studies using human BMSCs have shown that factors such as passage number and length of osteogenic induction significantly affect ectopic bone formation, although such differences hardly affected the alkaline phosphatase activity or gene expression of osteogenic markers. Application of basic fibroblast growth factor helped to maintain the in vivo osteogenic ability of BMSCs. Importantly, responsiveness of those factors should be tested under clinical circumstances to improve the bone tissue engineering further. In this review, clinical application of bone tissue engineering was reviewed with putative underlying mechanisms.

  9. Know thy neighbor: stromal cells can contribute oncogenic signals

    NASA Technical Reports Server (NTRS)

    Tlsty, T. D.; Hein, P. W.

    2001-01-01

    Although the stroma within carcinogenic lesions is known to be supportive and responsive to tumors, new data increasingly show that the stroma also has a more active, oncogenic role in tumorigenesis. Stromal cells and their products can transform adjacent tissues in the absence of pre-existing tumor cells by inciting phenotypic and genomic changes in the epithelial cells. The oncogenic action of distinctive stromal components has been demonstrated through a variety of approaches, which provide clues about the cellular pathways involved.

  10. Stromal-Based Signatures for the Classification of Gastric Cancer.

    PubMed

    Uhlik, Mark T; Liu, Jiangang; Falcon, Beverly L; Iyer, Seema; Stewart, Julie; Celikkaya, Hilal; O'Mahony, Marguerita; Sevinsky, Christopher; Lowes, Christina; Douglass, Larry; Jeffries, Cynthia; Bodenmiller, Diane; Chintharlapalli, Sudhakar; Fischl, Anthony; Gerald, Damien; Xue, Qi; Lee, Jee-Yun; Santamaria-Pang, Alberto; Al-Kofahi, Yousef; Sui, Yunxia; Desai, Keyur; Doman, Thompson; Aggarwal, Amit; Carter, Julia H; Pytowski, Bronislaw; Jaminet, Shou-Ching; Ginty, Fiona; Nasir, Aejaz; Nagy, Janice A; Dvorak, Harold F; Benjamin, Laura E

    2016-05-01

    Treatment of metastatic gastric cancer typically involves chemotherapy and monoclonal antibodies targeting HER2 (ERBB2) and VEGFR2 (KDR). However, reliable methods to identify patients who would benefit most from a combination of treatment modalities targeting the tumor stroma, including new immunotherapy approaches, are still lacking. Therefore, we integrated a mouse model of stromal activation and gastric cancer genomic information to identify gene expression signatures that may inform treatment strategies. We generated a mouse model in which VEGF-A is expressed via adenovirus, enabling a stromal response marked by immune infiltration and angiogenesis at the injection site, and identified distinct stromal gene expression signatures. With these data, we designed multiplexed IHC assays that were applied to human primary gastric tumors and classified each tumor to a dominant stromal phenotype representative of the vascular and immune diversity found in gastric cancer. We also refined the stromal gene signatures and explored their relation to the dominant patient phenotypes identified by recent large-scale studies of gastric cancer genomics (The Cancer Genome Atlas and Asian Cancer Research Group), revealing four distinct stromal phenotypes. Collectively, these findings suggest that a genomics-based systems approach focused on the tumor stroma can be used to discover putative predictive biomarkers of treatment response, especially to antiangiogenesis agents and immunotherapy, thus offering an opportunity to improve patient stratification. Cancer Res; 76(9); 2573-86. ©2016 AACR.

  11. Stromal p16 expression is significantly increased in endometrial carcinoma.

    PubMed

    Yoon, Gun; Koh, Chang Won; Yoon, Nara; Kim, Ji-Ye; Kim, Hyun-Soo

    2017-01-17

    p16 is a negative regulator of cell proliferation and is considered a tumor suppressor protein. Alterations in p16 protein expression are associated with tumor development and progression. However, the p16 expression status in the peritumoral stroma has not been investigated in the endometrium. Therefore, we evaluated stromal p16 expression in different types of endometrial lesions using immunohistochemistry. Differences in the p16 expression status according to the degree of malignancy and histological type were analyzed. This study included 62, 26, and 36 cases of benign, precancerous, and malignant endometrial lesions, respectively. Most benign lesions showed negative or weak expression, whereas precancerous lesions showed a variable degree of staining proportion and intensity. Atypical hyperplasia/endometrial intraepithelial neoplasia (AH/EIN) and serous endometrial intraepithelial carcinoma (SEIC) had significantly higher stromal p16 expression levels than benign lesions. Endometrioid carcinoma (EC), serous carcinoma (SC), and carcinosarcoma showed significantly elevated stromal p16 expression levels compared with benign and precancerous lesions. In addition, there were significant differences in stromal p16 expression between AH/EIN and SEIC and between EC and SC. In contrast, differences in stromal p16 expression among nonpathological endometrium, atrophic endometrium, endometrial polyp, and hyperplasia without atypia were not statistically significant. Our observations suggest that stromal p16 expression is involved in the development and progression of endometrial carcinoma, and raise the possibility that p16 overexpression in the peritumoral stroma is associated with aggressive oncogenic behavior of endometrial SC.

  12. The intestinal micro-environment imprints stromal cells to promote efficient Treg induction in gut-draining lymph nodes.

    PubMed

    Cording, S; Wahl, B; Kulkarni, D; Chopra, H; Pezoldt, J; Buettner, M; Dummer, A; Hadis, U; Heimesaat, M; Bereswill, S; Falk, C; Bode, U; Hamann, A; Fleissner, D; Huehn, J; Pabst, O

    2014-03-01

    De novo induction of Foxp3⁺ regulatory T cells (Tregs) is particularly efficient in gut-draining mesenteric and celiac lymph nodes (mLN and celLN). Here we used LN transplantations to dissect the contribution of stromal cells and environmental factors to the high Treg-inducing capacity of these LN. After transplantation into the popliteal fossa, mLN and celLN retained their high Treg-inducing capacity, whereas transplantation of skin-draining LN into the gut mesenteries did not enable efficient Treg induction. However, de novo Treg induction was abolished in the absence of dendritic cells (DC), indicating that this process depends on synergistic contributions of stromal and DC. Stromal cells themselves were influenced by environmental signals as mLN grafts taken from germ-free donors and celLN grafts taken from vitamin A-deficient donors did not show any superior Treg-inducing capacity. Collectively, our observations reveal a hitherto unrecognized role of LN stromal cells for the de novo induction of Foxp3⁺ Tregs.

  13. Hitting the right spot with mesenchymal stromal cells (MSCs)

    PubMed Central

    Tolar, Jakub; Le Blanc, Katarina; Keating, Armand; Blazar, Bruce R.

    2013-01-01

    Mesenchymal stromal cells or mesenchymal stem cells (MSCs) have captured considerable scientific and public interest because of their potential to limit physical and immune injury, to produce bioactive molecules and to regenerate tissues. MSCs are phenotypically heterogeneous, and distinct subpopulations within MSC cultures are presumed to contribute to tissue repair and the modulation of allogeneic immune responses. As the first example of efficacy, clinical trials for prevention and treatment of graft-versus-host disease (GVHD) after hematopoietic cell transplantation show that MSCs can effectively treat human disease. The view of the mechanisms whereby MSCs function as immunomodulatory and reparative cells has evolved simultaneously. Initially, donor MSC were thought to replace damaged cells in injured tissues of the recipient. More recently, however, it has become increasingly clear that even transient MSC engraftment may exert favorable effects through the secretion of cytokines and other paracrine factors, which engage and recruit recipient cells in productive tissue repair. Thus, an important reason to investigate MSCs in mechanistic preclinical models and in clinical trials with well defined end-points and controls is to better understand the therapeutic potential of these multifunctional cells. Here, we review the controversies and recent insights into MSC biology, the regulation of alloresponses by MSCs in preclinical models, as well as clinical experience with MSC infusions and the challenges of manufacturing a ready supply of highly defined transplantable MSCs. PMID:20597105

  14. Proapoptotic activity of bortezomib in gastrointestinal stromal tumor cells.

    PubMed

    Bauer, Sebastian; Parry, Joshua A; Mühlenberg, Thomas; Brown, Matthew F; Seneviratne, Danushka; Chatterjee, Payel; Chin, Anna; Rubin, Brian P; Kuan, Shih-Fan; Fletcher, Jonathan A; Duensing, Stefan; Duensing, Anette

    2010-01-01

    Gastrointestinal stromal tumors (GIST) are caused by activating mutations in the KIT or PDGFRA receptor tyrosine kinase genes. Although >85% of GIST patients treated with the small-molecule inhibitor imatinib mesylate (Gleevec) achieve disease stabilization, complete remissions are rare and a substantial proportion of patients develop resistance to imatinib over time. Upregulation of soluble, non-chromatin-bound histone H2AX has an important role in imatinib-induced apoptosis of GIST cells. Additionally, H2AX levels in untreated GIST are maintained at low levels by a pathway that involves KIT, phosphoinositide 3-kinase, and the ubiquitin-proteasome system. In this study, we asked whether bortezomib-mediated inhibition of the ubiquitin-proteasome machinery could lead to upregulation of histone H2AX and GIST cell death. We show that bortezomib rapidly triggers apoptosis in GIST cells through a combination of mechanisms involving H2AX upregulation and loss of KIT protein expression. Downregulation of KIT transcription was an underlying mechanism for bortezomib-mediated inhibition of KIT expression. In contrast, the nuclear factor-kappaB signaling pathway did not seem to play a major role in bortezomib-induced GIST cell death. Significantly, we found that bortezomib would induce apoptosis in two imatinib-resistant GIST cell lines as well as a short-term culture established from a primary imatinib-resistant GIST. Collectively, our results provide a rationale to test the efficacy of bortezomib in GIST patients with imatinib-sensitive or -resistant tumors.

  15. CONCISE REVIEW Micro RNA Expression in Multipotent Mesenchymal Stromal Cells

    PubMed Central

    Lakshmipathy, Uma; Hart, Ronald P.

    2009-01-01

    Multipotent mesenchymal stromal cells (MSC) isolated from various adult tissue sources have the capacity to self-renew and to differentiate into multiple lineages. Both of these processes are tightly regulated by genetic and epigenetic mechanisms. Emerging evidence indicates that the class of single-stranded non-coding RNAs known as “microRNAs” also plays a critical role in this process. First described in nematodes and plants, microRNAs have been shown to modulate major regulatory mechanisms in eukaryotic cells involved in a broad array of cellular functions. Studies with various types of embryonic as well as adult stem cells indicate an intricate network of microRNAs regulating key transcription factors and other genes which in turn determine cell fate. In addition, expression of unique microRNAs in specific cell types serves as a useful diagnostic marker to define a particular cell type. MicroRNAs are also found to be regulated by extracellular signaling pathways that are important for differentiation into specific tissues, suggesting that they play a role in specifying tissue identity. In this review we describe the importance of microRNAs in stem cells focusing on our current understanding of microRNAs in MSC and their derivatives. PMID:17991914

  16. Human mesenchymal stromal cells are mechanosensitive to vibration stimuli.

    PubMed

    Kim, I S; Song, Y M; Lee, B; Hwang, S J

    2012-12-01

    Low-magnitude high-frequency (LMHF) vibrations have the ability to stimulate bone formation and reduce bone loss. However, the anabolic mechanisms that are mediated by vibration in human bone cells at the cellular level remain unclear. We hypothesized that human mesenchymal stromal cells (hMSCs) display direct osteoblastic responses to LMHF vibration signals. Daily exposure to vibrations increased the proliferation of hMSCs, with the highest efficiency occurring at a peak acceleration of 0.3 g and vibrations at 30 to 40 Hz. Specifically, these conditions promoted osteoblast differentiation through an increase in alkaline phosphatase activity and in vitro matrix mineralization. The effect of vibration on the expression of osteogenesis-related factors differed depending on culture method. hMSCs that underwent vibration in a monolayer culture did not exhibit any changes in the expressions of these genes, while cells in three-dimensional culture showed increased expression of type I collagen, osteoprotegerin, or VEGF, and VEGF induction appeared in 2 different hMSC lines. These results are among the first to demonstrate a dose-response effect upon LMHF stimulation, thereby demonstrating that hMSCs are mechanosensitive to LMHF vibration signals such that they could facilitate the osteogenic process.

  17. Conference Abstracts: AEDS '82.

    ERIC Educational Resources Information Center

    Journal of Computers in Mathematics and Science Teaching, 1982

    1982-01-01

    Abstracts from nine selected papers presented at the 1982 Association for Educational Data Systems (AEDS) conference are provided. Copies of conference proceedings may be obtained for fifteen dollars from the Association. (MP)

  18. Invasion patterns in stage I endometrioid and mucinous ovarian carcinomas: a clinicopathologic analysis emphasizing favorable outcomes in carcinomas without destructive stromal invasion and the occasional malignant course of carcinomas with limited destructive stromal invasion.

    PubMed

    Chen, Shirley; Leitao, Mario M; Tornos, Carmen; Soslow, Robert A

    2005-07-01

    Stage I, low-grade endometrioid and mucinous ovarian carcinomas have an excellent prognosis. Published data have suggested that destructive stromal invasion, a relatively uncommon finding in these tumors, is a poor prognostic factor. We investigated this by studying all FIGO stage I, grades 1 and 2 (of 3) endometrioid and mucinous ovarian carcinomas that were surgically staged at the Memorial Sloan-Kettering Cancer Center from 1980 to 2000. We undertook a careful review of all available slides using current diagnostic criteria and correlated histopathologic indices with clinical outcome data. Cases studied included 13 endometrioid ovarian carcinomas (stage IA, eight; stage IC, five) and six intestinal mucinous ovarian carcinomas (stage IA, three; stage IC, three). All of the tumors contained areas of expansile invasion, greater than that acceptable for microinvasion, and were thus diagnosed as carcinomas instead of borderline tumors. Nevertheless, nearly all demonstrated borderline tumor (noninvasive) components. Six tumors contained at least one focus of destructive stromal invasion (two endometrioid and four mucinous ovarian carcinomas). Four additional cases showed a focus suspicious for but not diagnostic of destructive invasion ('indeterminate for destructive invasion') (two endometrioid and two mucinous ovarian carcinomas). Follow-up data were available for 17 patients. The median follow-up was 81 months (range, 9-161 months). In all, 14 patients were alive with no evidence of disease (expansile invasion alone, eight; destructive stromal invasion, four; and indeterminate for destructive invasion, two). Three patients died of their disease (destructive stromal invasion, two; and indeterminate for destructive invasion, one). The size, number, and nuclear grade of destructive stromal invasion foci did not appear to have an impact on survival in this relatively limited number of patients. Outcome data in patients with stage I, low-grade endometrioid and mucinous

  19. Distinctive Responsiveness to Stromal Signaling Accompanies Histologic Grade Programming of Cancer Cells

    PubMed Central

    Sayeed, Aejaz; Champion, Stacey; Goodson, William H.; Jeffrey, Stefanie S.; Xiao, Wenzhong; Mindrinos, Michael; Davis, Ronald W.; Dairkee, Shanaz H.

    2011-01-01

    Whether stromal components facilitate growth, invasion, and dissemination of cancer cells or suppress neoplastic lesions from further malignant progression is a continuing conundrum in tumor biology. Conceptualizing a dynamic picture of tumorigenesis is complicated by inter-individual heterogeneity. In the post genomic era, unraveling such complexity remains a challenge for the cancer biologist. Towards establishing a functional association between cellular crosstalk and differential cancer aggressiveness, we identified a signature of malignant breast epithelial response to stromal signaling. Proximity to fibroblasts resulted in gene transcript alterations of >2-fold for 107 probes, collectively designated as Fibroblast Triggered Gene Expression in Tumor (FTExT). The hazard ratio predicted by the FTExT classifier for distant relapse in patients with intermediate and high grade breast tumors was significant compared to routine clinical variables (dataset 1, n = 258, HR – 2.11, 95% CI 1.17–3.80, p-value 0.01; dataset 2, n = 171, HR - 3.07, 95% CI 1.21–7.83, p-value 0.01). Biofunctions represented by FTExT included inflammatory signaling, free radical scavenging, cell death, and cell proliferation. Unlike genes of the ‘proliferation cluster’, which are overexpressed in aggressive primary tumors, FTExT genes were uniquely repressed in such cases. As proof of concept for our correlative findings, which link stromal-epithelial crosstalk and tumor behavior, we show a distinctive differential in stromal impact on prognosis-defining functional endpoints of cell cycle progression, and resistance to therapy-induced growth arrest and apoptosis in low vs. high grade cancer cells. Our experimental data thus reveal aspects of ‘paracrine cooperativity’ that are exclusively contingent upon the histopathologically defined grade of interacting tumor epithelium, and demonstrate that epithelial responsiveness to the tumor microenvironment is a deterministic factor

  20. The General Conference Mennonites.

    ERIC Educational Resources Information Center

    Ediger, Marlow

    General Conference Mennonites and Old Order Amish are compared and contrasted in the areas of physical appearance, religious beliefs, formal education, methods of farming, and home settings. General Conference Mennonites and Amish differ in physical appearance and especially in dress. The General Conference Mennonite men and women dress the same…

  1. EDITORIAL: Conference program

    NASA Astrophysics Data System (ADS)

    2006-04-01

    Some of the papers and talks given at the conference have not been published in this volume of Journal of Physics: Conference Series. The attached PDF file lists the full conference program and indicates (with an asterisk) those papers or talks which are not present in this volume.

  2. Youth Conference Handbook.

    ERIC Educational Resources Information Center

    Brown, Brenda H.

    This handbook is designed to provide practical aid to those who have charge of the planning and organization of a youth conference, Defined as a conference to provide practical information as well as information about possible responsibilities, risks, and consequences of actions, related to the chosen conference topic. Suggestions are given for…

  3. Parent Conferences. Beginnings Workshop.

    ERIC Educational Resources Information Center

    Duffy, Roslyn; And Others

    1997-01-01

    Presents six workshop sessions on parent conferences: (1) "Parents' Perspectives on Conferencing" (R. Duffy); (2) "Three Way Conferences" (G. Zeller); (3) "Conferencing with Parents of Infants" (K. Albrecht); (4) "Conferencing with Parents of School-Agers" (L. G. Miller); (5) "Cross Cultural Conferences" (J. Gonzalez-Mena); and (6) "Working with…

  4. Clinicopathologic Features and Clinical Outcomes of Esophageal Gastrointestinal Stromal Tumor

    PubMed Central

    Feng, Fan; Tian, Yangzi; Liu, Zhen; Xu, Guanghui; Liu, Shushang; Guo, Man; Lian, Xiao; Fan, Daiming; Zhang, Hongwei

    2016-01-01

    Abstract Clinicopathologic features and clinical outcomes of gastrointestinal stromal tumors (GISTs) in esophagus are limited, because of the relatively rare incidence of esophageal GISTs. Therefore, the aim of the current study was to investigate the clinicopathologic features and clinical outcomes of esophageal GISTs, and to investigate the potential factors that may predict prognosis. Esophageal GIST cases were obtained from our center and from case reports and clinical studies extracted from MEDLINE. Clinicopathologic features and survivals were analyzed and compared with gastric GISTs from our center. The most common location was lower esophagus (86.84%), followed by middle and upper esophagus (11.40% and 1.76%). The majority of esophageal GISTs were classified as high-risk category (70.83%). Mitotic index was correlated with histologic type, mutational status, and tumor size. The 5-year disease-free survival and disease-specific survival were 65.1% and 65.9%, respectively. Tumor size, mitotic index, and National Institutes of Health risk classification were associated with prognosis of esophageal GISTs. Only tumor size, however, was the independent risk factor for the prognosis of esophageal GISTs. In comparison to gastric GISTs, the distribution of tumor size, histologic type, and National Institutes of Health risk classification were significantly different between esophageal GISTs and gastric GISTs. The disease-free survival and disease-specific survival of esophageal GISTs were significantly lower than that of gastric GISTs. The most common location for esophageal GISTs was lower esophagus, and most of the esophageal GISTs are high-risk category. Tumor size was the independent risk factor for the prognosis of esophageal GISTs. Esophageal GISTs differ significantly from gastric GISTs in respect to clinicopathologic features. The prognosis of esophageal GISTs was worse than that of gastric GISTs. PMID:26765432

  5. Immunohistological study of the endometrial stromal fibroblasts in the opossum, Monodelphis domestica: evidence for homology with eutherian stromal fibroblasts.

    PubMed

    Kin, Koryu; Maziarz, Jamie; Wagner, Günter P

    2014-05-01

    Molecular phylogenetic studies suggest that the hemochorial placentation and decidualization are ancestral traits of eutherian mammals. While the origin of the placental tissue is well understood, the origin of the decidual cells is unclear. Here we address the origin of decidual cells by examining the expression patterns of six transcription factors (TFs) as well as four structural proteins in the endometrium of a marsupial, Monodelphis domestica, and compared them with the patterns known from eutherian species. We found a mesenchymal cell population in the subepithelial compartment of the opossum endometrium. These cells express a set of TFs, such as homeobox A11 (HOXA11), CCAAT/enhancer-binding protein beta (CEBPB), and progesterone receptor (PGR), that are important for eutherian endometrial stromal cells. On the other hand, we did not find the expression of a decidual cell marker desmin (DES) or of TFs that are important for decidual cell differentiation, such as forkhead box O1 (FOXO1), in those cells. Based on these results, we propose that opossum has cells homologous to eutherian endometrial fibroblasts but no decidual cells. In addition, we describe cellular changes associated with the progression of pregnancy: nuclear localization of CEBPB in luminal epithelial cells as early as 8 days postcoitum, expansion of endometrial glands, nuclear localization of FOXO1 in glandular epithelial cells, and expression of smooth muscle actin in luminal epithelial cells. These data show that the luminal and glandular epithelium react to the presence of the preplacentation conceptus and suggest a limited form of pregnancy recognition.

  6. LAPAROSCOPIC RESECTION OF GASTROINTESTINAL STROMAL TUMORS (GIST)

    PubMed Central

    LOUREIRO, Marcelo de Paula; de ALMEIDA, Rômulo Augusto Andrade; CLAUS, Christiano Marlo Paggi; BONIN, Eduardo Aimoré; CURY-FILHO,, Antônio Moris; DIMBARRE, Daniellson; da COSTA, Marco Aurélio Raeder; VITAL, Marcílio Lisboa

    2016-01-01

    Background Gastrointestinal mesenchymal or stromal tumors (GIST) are lesions originated on digestive tract walls, which are treated by surgical resection. Several laparoscopic techniques, from gastrectomies to segmental resections, have been used successfully. Aim Describe a single center experience on laparoscopic GIST resection. Method Charts of 15 operated patients were retrospectively reviewed. Thirteen had gastric lesions, of which ten were sub epithelial, ranging from 2-8 cm; and three were pure exofitic growing lesions. The remaining two patients had small bowel lesions. Surgical laparoscopic treatment consisted of two distal gastrectomies, 11 wedge gastric resections and two segmental enterectomies. Mechanical suture was used in the majority of patients except on six, which underwent resection and closure using manual absorbable sutures. There were no conversions to open technique. Results Mean operative time was 1h 29 min±92 (40-420 min). Average lenght of hospital stay was three days (2-6 days). There were no leaks, postoperative bleeding or need for reintervention. Mean postoperative follow-up was 38±17 months (6-60 months). Three patients underwent adjuvant Imatinib treatment, one for recurrence five months postoperatively and two for tumors with moderate risk for recurrence . Conclusion Laparoscopic GIST resection, not only for small lesions but also for tumors above 5 cm, is safe and acceptable technique. PMID:27120729

  7. Mesenchymal stromal cells in myeloid malignancies

    PubMed Central

    Geyh, Stefanie; Germing, Ulrich; Haas, Rainer

    2016-01-01

    Myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) are clonal myeloid disorders characterized by hematopoietic insufficiency. As MDS and AML are considered to originate from genetic and molecular defects of hematopoietic stem and progenitor cells (HSPC), the main focus of research in this field has focused on the characterization of these cells. Recently, the contribution of BM microenvironment to the pathogenesis of myeloid malignancies, in particular MDS and AML has gained more interest. This is based on a better understanding of its physiological role in the regulation of hematopoiesis. Additionally, it was demonstrated as a ‘proof of principle’ that genetic disruption of cells of the mesenchymal or osteoblastic lineage can induce MDS, MPS or AML in mice. In this review, we summarize the current knowledge about the contribution of the BM microenvironment, in particular mesenchymal stromal cells (MSC) to the pathogenesis of AML and MDS. Furthermore, potential models integrating the BM microenvironment into the pathophysiology of these myeloid disorders are discussed. Finally, strategies to therapeutically exploit this knowledge and to interfere with the crosstalk between clonal hematopoietic cells and altered stem cell niches are introduced. PMID:28090484

  8. Gut Mesenchymal Stromal Cells in Immunity

    PubMed Central

    Messina, Valeria; Buccione, Carla; Marotta, Giulia; Ziccheddu, Giovanna; Signore, Michele; Mattia, Gianfranco; Puglisi, Rossella; Sacchetti, Benedetto; Biancone, Livia

    2017-01-01

    Mesenchymal stromal cells (MSCs), first found in bone marrow (BM), are the structural architects of all organs, participating in most biological functions. MSCs possess tissue-specific signatures that allow their discrimination according to their origin and location. Among their multiple functions, MSCs closely interact with immune cells, orchestrating their activity to maintain overall homeostasis. The phenotype of tissue MSCs residing in the bowel overlaps with myofibroblasts, lining the bottom walls of intestinal crypts (pericryptal) or interspersed within intestinal submucosa (intercryptal). In Crohn's disease, intestinal MSCs are tightly stacked in a chronic inflammatory milieu, which causes their enforced expression of Class II major histocompatibility complex (MHC). The absence of Class II MHC is a hallmark for immune-modulator and tolerogenic properties of normal MSCs and, vice versa, the expression of HLA-DR is peculiar to antigen presenting cells, that is, immune-activator cells. Interferon gamma (IFNγ) is responsible for induction of Class II MHC expression on intestinal MSCs. The reversal of myofibroblasts/MSCs from an immune-modulator to an activator phenotype in Crohn's disease results in the formation of a fibrotic tube subverting the intestinal structure. Epithelial metaplastic areas in this context can progress to dysplasia and cancer. PMID:28337224

  9. Intestinal gastrointestinal stromal tumor in a cat

    PubMed Central

    SUWA, Akihisa; SHIMODA, Tetsuya

    2017-01-01

    A 12-year-old, 3.6-kg, spayed female domestic shorthaired cat had a 2-month history of anorexia and weight loss. Abdominal ultrasonography and computed tomography revealed an exophytic mass originating from the jejunum with very poor central and poor peripheral contrast enhancement. On day 14, surgical resection of the jejunum and mass with 5-cm margins and an end-to-end anastomosis were performed. Histopathological examination revealed the mass was a transmural, invasive cancer showing exophytic growth and originating from the small intestinal muscle layer. Immunohistochemical analysis of tumor cells revealed diffuse positivity for KIT protein and negativity for desmin and S-100. The mass was diagnosed as a gastrointestinal stromal tumor (GIST). Ultrasonographic findings indicated the tumor probably metastasized to the liver and omentum, as seen in humans and dogs. The owner rejected further treatment at the last visit on day 192. To our knowledge, this is the first report of intestinal tumor and metastasis in feline GIST and its imaging features. PMID:28163271

  10. Epigenetic Classification of Human Mesenchymal Stromal Cells

    PubMed Central

    de Almeida, Danilo Candido; Ferreira, Marcelo R.P.; Franzen, Julia; Weidner, Carola I.; Frobel, Joana; Zenke, Martin; Costa, Ivan G.; Wagner, Wolfgang

    2016-01-01

    Summary Standardization of mesenchymal stromal cells (MSCs) is hampered by the lack of a precise definition for these cell preparations; for example, there are no molecular markers to discern MSCs and fibroblasts. In this study, we followed the hypothesis that specific DNA methylation (DNAm) patterns can assist classification of MSCs. We utilized 190 DNAm profiles to address the impact of tissue of origin, donor age, replicative senescence, and serum supplements on the epigenetic makeup. Based on this, we elaborated a simple epigenetic signature based on two CpG sites to classify MSCs and fibroblasts, referred to as the Epi-MSC-Score. Another two-CpG signature can distinguish between MSCs from bone marrow and adipose tissue, referred to as the Epi-Tissue-Score. These assays were validated by site-specific pyrosequencing analysis in 34 primary cell preparations. Furthermore, even individual subclones of MSCs were correctly classified by our epigenetic signatures. In summary, we propose an alternative concept to use DNAm patterns for molecular definition of cell preparations, and our epigenetic scores facilitate robust and cost-effective quality control of MSC cultures. PMID:26862701

  11. Insufficient stromal support in MDS results from molecular and functional deficits of mesenchymal stromal cells.

    PubMed

    Geyh, S; Oz, S; Cadeddu, R-P; Fröbel, J; Brückner, B; Kündgen, A; Fenk, R; Bruns, I; Zilkens, C; Hermsen, D; Gattermann, N; Kobbe, G; Germing, U; Lyko, F; Haas, R; Schroeder, T

    2013-09-01

    Ineffective hematopoiesis is a major characteristic of myelodysplastic syndromes (MDS) causing relevant morbidity and mortality. Mesenchymal stromal cells (MSC) have been shown to physiologically support hematopoiesis, but their contribution to the pathogenesis of MDS remains elusive. We show that MSC from patients across all MDS subtypes (n=106) exhibit significantly reduced growth and proliferative capacities accompanied by premature replicative senescence. Osteogenic differentiation was significantly reduced in MDS-derived MSC, indicated by cytochemical stainings and reduced expressions of Osterix and Osteocalcin. This was associated with specific methylation patterns that clearly separated MDS-MSC from healthy controls and showed a strong enrichment for biological processes associated with cellular phenotypes and transcriptional regulation. Furthermore, in MDS-MSC, we detected altered expression of key molecules involved in the interaction with hematopoietic stem and progenitor cells (HSPC), in particular Osteopontin, Jagged1, Kit-ligand and Angiopoietin as well as several chemokines. Functionally, this translated into a significantly diminished ability of MDS-derived MSC to support CD34+ HSPC in long-term culture-initiating cell assays associated with a reduced cell cycle activity. Taken together, our comprehensive analysis shows that MSC from all MDS subtypes are structurally, epigenetically and functionally altered, which leads to impaired stromal support and seems to contribute to deficient hematopoiesis in MDS.

  12. Stromal response to Hedgehog signaling restrains pancreatic cancer progression.

    PubMed

    Lee, John J; Perera, Rushika M; Wang, Huaijun; Wu, Dai-Chen; Liu, X Shawn; Han, Shiwei; Fitamant, Julien; Jones, Phillip D; Ghanta, Krishna S; Kawano, Sally; Nagle, Julia M; Deshpande, Vikram; Boucher, Yves; Kato, Tomoyo; Chen, James K; Willmann, Jürgen K; Bardeesy, Nabeel; Beachy, Philip A

    2014-07-29

    Pancreatic ductal adenocarcinoma (PDA) is the most lethal of common human malignancies, with no truly effective therapies for advanced disease. Preclinical studies have suggested a therapeutic benefit of targeting the Hedgehog (Hh) signaling pathway, which is activated throughout the course of PDA progression by expression of Hh ligands in the neoplastic epithelium and paracrine response in the stromal fibroblasts. Clinical trials to test this possibility, however, have yielded disappointing results. To further investigate the role of Hh signaling in the formation of PDA and its precursor lesion, pancreatic intraepithelial neoplasia (PanIN), we examined the effects of genetic or pharmacologic inhibition of Hh pathway activity in three distinct genetically engineered mouse models and found that Hh pathway inhibition accelerates rather than delays progression of oncogenic Kras-driven disease. Notably, pharmacologic inhibition of Hh pathway activity affected the balance between epithelial and stromal elements, suppressing stromal desmoplasia but also causing accelerated growth of the PanIN epithelium. In striking contrast, pathway activation using a small molecule agonist caused stromal hyperplasia and reduced epithelial proliferation. These results indicate that stromal response to Hh signaling is protective against PDA and that pharmacologic activation of pathway response can slow tumorigenesis. Our results provide evidence for a restraining role of stroma in PDA progression, suggesting an explanation for the failure of Hh inhibitors in clinical trials and pointing to the possibility of a novel type of therapeutic intervention.

  13. Different Procoagulant Activity of Therapeutic Mesenchymal Stromal Cells Derived from Bone Marrow and Placental Decidua.

    PubMed

    Moll, Guido; Ignatowicz, Lech; Catar, Rusan; Luecht, Christian; Sadeghi, Behnam; Hamad, Osama; Jungebluth, Philipp; Dragun, Duska; Schmidtchen, Artur; Ringdén, Olle

    2015-10-01

    While therapeutic mesenchymal stromal/stem cells (MSCs) have usually been obtained from bone marrow, perinatal tissues have emerged as promising new sources of cells for stromal cell therapy. In this study, we present a first safety follow-up on our clinical experience with placenta-derived decidual stromal cells (DSCs), used as supportive immunomodulatory and regenerative therapy for patients with severe complications after allogeneic hematopoietic stem cell transplantation (HSCT). We found that DSCs are smaller, almost half the volume of MSCs, which may favor microvascular passage. DSCs also show different hemocompatibility, with increased triggering of the clotting cascade after exposure to human blood and plasma in vitro. After infusion of DSCs in HSCT patients, we observed a weak activation of the fibrinolytic system, but the other blood activation markers remained stable, excluding major adverse events. Expression profiling identified differential levels of key factors implicated in regulation of hemostasis, such as a lack of prostacyclin synthase and increased tissue factor expression in DSCs, suggesting that these cells have intrinsic blood-activating properties. The stronger triggering of the clotting cascade by DSCs could be antagonized by optimizing the cell graft reconstitution before infusion, for example, by use of low-dose heparin anticoagulant in the cell infusion buffer. We conclude that DSCs are smaller and have stronger hemostatic properties than MSCs, thus triggering stronger activation of the clotting system, which can be antagonized by optimizing the cell graft preparation before infusion. Our results highlight the importance of hemocompatibility safety testing for every novel cell therapy product before clinical use, when applied using systemic delivery.

  14. Fetal liver hepatic progenitors are supportive stromal cells for hematopoietic stem cells.

    PubMed

    Chou, Song; Lodish, Harvey F

    2010-04-27

    Previously we showed that the ~2% of fetal liver cells reactive with an anti-CD3epsilon monoclonal antibody support ex vivo expansion of both fetal liver and bone marrow hematopoietic stem cells (HSCs); these cells express two proteins important for HSC ex vivo expansion, IGF2, and angiopoietin-like 3. Here we show that these cells do not express any CD3 protein and are not T cells; rather, we purified these HSC-supportive stromal cells based on the surface phenotype of SCF(+)DLK(+). Competitive repopulating experiments show that SCF(+)DLK(+) cells support the maintenance of HSCs in ex vivo culture. These are the principal fetal liver cells that express not only angiopoietin-like 3 and IGF2, but also SCF and thrombopoietin, two other growth factors important for HSC expansion. They are also the principal fetal liver cells that express CXCL12, a factor required for HSC homing, and also alpha-fetoprotein (AFP), indicating that they are fetal hepatic stem or progenitor cells. Immunocytochemistry shows that >93% of the SCF(+) cells express DLK and Angptl3, and a portion of SCF(+) cells also expresses CXCL12. Thus SCF(+)DLK(+) cells are a highly homogenous population that express a complete set of factors for HSC expansion and are likely the primary stromal cells that support HSC expansion in the fetal liver.

  15. Stromal Fibroblasts in Colorectal Liver Metastases Originate From Resident Fibroblasts and Generate an Inflammatory Microenvironment

    PubMed Central

    Mueller, Lars; Goumas, Freya A.; Affeldt, Marianne; Sandtner, Susanne; Gehling, Ursula M.; Brilloff, Silke; Walter, Jessica; Karnatz, Nadia; Lamszus, Katrin; Rogiers, Xavier; Broering, Dieter C.

    2007-01-01

    Cancer-associated stromal fibroblasts (CAFs) are the main cellular constituents of reactive stroma in primary and metastatic cancer. We analyzed phenotypical characteristics of CAFs from human colorectal liver metastases (CLMs) and their role in inflammation and cancer progression. CAFs displayed a vimentin+, α-smooth-muscle actin+, and Thy-1+ phenotype similar to resident portal-located liver fibroblasts (LFs). We demonstrated that CLMs are inflammatory sites showing stromal expression of interleukin-8 (IL-8), a chemokine related to invasion and angiogenesis. In vitro analyses revealed a striking induction of IL-8 expression in CAFs and LFs by tumor necrosis factor-α (TNF-α). The effect of TNF-α on CAFs is inhibited by the nuclear factor-κB inhibitor parthenolide. Conditioned medium of CAFs and LFs similarly stimulated the migration of DLD-1, Colo-678, HuH7 carcinoma cells, and human umbilical vein endothelial cells in vitro. Pretreatment of CAFs with TNF-α increased the chemotaxis of Colo-678 colon carcinoma cells by conditioned medium of CAFs; however, blockage of IL-8 activity showed no inhibitory effect. In conclusion, these data raise the possibility that the majority of CAFs in CLM originate from resident LFs. TNF-α-induced up-regulation of IL-8 via nuclear factor-κB in CAFs is an inflammatory pathway, potentially permissive for cancer invasion that may represent a novel therapeutic target. PMID:17916596

  16. TGF-beta1 release from biodegradable polymer microparticles: its effects on marrow stromal osteoblast function

    NASA Technical Reports Server (NTRS)

    Lu, L.; Yaszemski, M. J.; Mikos, A. G.; McIntire, L. V. (Principal Investigator)

    2001-01-01

    BACKGROUND: Controlled release of transforming growth factor-beta1 (TGF-beta1) to a bone defect may be beneficial for the induction of a bone regeneration cascade. The objectives of this work were to assess the feasibility of using biodegradable polymer microparticles as carriers for controlled TGF-beta1 delivery and the effects of released TGF-beta1 on the proliferation and differentiation of marrow stromal cells in vitro. METHODS: Recombinant human TGF-beta1 was incorporated into microparticles of blends of poly(DL-lactic-co-glycolic acid) (PLGA) and poly(ethylene glycol) (PEG). Fluorescein isothiocynate-labeled bovine serum albumin (FITC-BSA) was co-encapsulated as a porogen. The effects of PEG content (0, 1, or 5% by weight [wt%]) and buffer pH (3, 5, or 7.4) on the protein release kinetics and the degradation of PLGA were determined in vitro for as long as 28 days. Rat marrow stromal cells were seeded on a biodegradable poly(propylene fumarate) (PPF) substrate. The dose response and biological activity of released TGF-beta1 was determined after 3 days in culture. The effects of TGF-beta1 released from PLGA/PEG microparticles on marrow stromal cell proliferation and osteoblastic differentiation were assessed during a 21-day period. RESULTS: TGF-beta1 was encapsulated along with FITC-BSA into PLGA/PEG blend microparticles and released in a multiphasic fashion including an initial burst for as long as 28 days in vitro. Increasing the initial PEG content resulted in a decreased cumulative mass of released proteins. Aggregation of FITC-BSA occurred at lower buffer pH, which led to decreased release rates of both proteins. The degradation of PLGA was increased at higher PEG content and significantly accelerated at acidic pH conditions. Rat marrow stromal cells cultured on PPF substrates showed a dose response to TGF-beta1 released from the microparticles similar to that of added TGF-beta1, indicating that the activity of TGF-beta1 was retained during microparticle

  17. Comparison of the anti-tumor effects of denosumab and zoledronic acid on the neoplastic stromal cells of giant cell tumor of bone.

    PubMed

    Lau, Carol P Y; Huang, Lin; Wong, Kwok Chuen; Kumta, Shekhar Madhukar

    2013-01-01

    Denosumab and Zoledronic acid (ZOL) are two antiresorptive drugs currently in use for treating osteoporosis. They have different mechanisms of action but both have been shown to delay the onset of skeletal-related events in patients with giant cell tumor of bone (GCT). However, the anti-tumor mechanisms of denosumab on the neoplastic GCT stromal cells remain unknown. In this study, we focused on the direct effects of denosumab on the neoplastic GCT stromal cells and compared with ZOL. The microscopic view demonstrated a reduced cell growth in ZOL-treated but not in denosumab-treated GCT stromal cells. ZOL was found to exhibit a dose-dependent inhibition in cell growth in all GCT stromal cell lines tested and cause apoptosis in two out of three cell lines. In contrast, denosumab only exerted a minimal inhibitory effect in one cell line and did not induce any apoptosis. ZOL significantly inhibited the mRNA expression of receptor activator of nuclear factor kappa-B ligand (RANKL) and osteoprotegerin (OPG) in two GCT stromal cell lines whereas their protein levels remained unchanged. On the contrary, denosumab did not regulate RANKL and OPG expression at both mRNA and protein levels. Moreover, the protein expression of Macrophage Colony-Stimulating Factor (M-CSF), Alkaline Phosphatase (ALP), and Collagen α1 Type I were not regulated by denosumab and ZOL either. Our findings provide new insights in the anti-tumor effect of denosumab on GCT stromal cells and raise a concern that tumor recurrence may occur after the withdrawal of the drug.

  18. Gastrointestinal stromal tumors (GISTs) and second malignancies

    PubMed Central

    Rodriquenz, Maria Grazia; Rossi, Sabrina; Ricci, Riccardo; Martini, Maurizio; Larocca, Mario; Dipasquale, Angelo; Quirino, Michela; Schinzari, Giovanni; Basso, Michele; D’Argento, Ettore; Strippoli, Antonia; Barone, Carlo; Cassano, Alessandra

    2016-01-01

    Abstract Several evidences showed that patients with gastrointestinal stromal tumors (GISTs) develop additional malignancies. However, thorough incidence of second tumors remains uncertain as the possibility of a common molecular pathogenesis. A retrospective series of 128 patients with histologically proven GIST treated at our institution was evaluated. Molecular analysis of KIT and PDGFR-α genes was performed in all patients. Following the involvement of KRAS mutation in many tumors’ pathogenesis, analysis of KRAS was performed in patients with also second neoplasms. Forty-six out of 128 GIST patients (35.9%) had a second neoplasm. Most second tumors (52%) raised from gastrointestinal tract and 19.6% from genitourinary tract. Benign neoplasms were also included (21.7%). Molecular analysis was available for 29/46 patients with a second tumor: wild-type GISTs (n. 5), exon 11 (n. 16), exon 13 (n. 1), exon 9 (n. 1) KIT mutations, exon 14 PDGFR-α mutation (n. 2) and exon 18 PDGFR-α mutation (n. 4). KIT exon 11 mutations were more frequent between patients who developed a second tumor (P = 0.0003). Mutational analysis of KRAS showed a wild-type sequence in all cases. In metachronous cases, the median time interval between GIST and second tumor was 21.5 months. The high frequency of second tumors suggests that an unknown common molecular mechanism might play a role, but it is not likely that KRAS is involved in this common pathogenesis. The short interval between GIST diagnosis and the onset of second neoplasms asks for a careful follow-up, particularly in the first 3 years after diagnosis. PMID:27661019

  19. A stress-responsive NAC transcription factor SNAC3 confers heat and drought tolerance through modulation of reactive oxygen species in rice

    PubMed Central

    Fang, Yujie; Liao, Kaifeng; Du, Hao; Xu, Yan; Song, Huazhi; Li, Xianghua; Xiong, Lizhong

    2015-01-01

    Adverse environmental conditions such as high temperature and drought stress greatly limit the growth and production of crops worldwide. Several NAC (NAM, ATAF1/2, and CUC2) proteins have been documented as important regulators in stress responses, but the molecular mechanisms are largely unknown. Here, a stress-responsive NAC gene, SNAC3 (ONAC003, LOC_Os01g09550), conferring drought and heat tolerance in rice is reported. SNAC3 was ubiquitously expressed and its transcript level was induced by drought, high temperature, salinity stress, and abscisic acid (ABA) treatment. Overexpression (OE) of SNAC3 in rice resulted in enhanced tolerance to high temperature, drought, and oxidative stress caused by methyl viologen (MV), whereas suppression of SNAC3 by RNAi resulted in increased sensitivity to these stresses. The SNAC3-OE transgenic plants exhibited significantly lower levels of H2O2, malondiadehyde (MDA), and relative electrolyte leakage than the wild-type control under heat stress conditions, implying that SNAC3 may confer stress tolerance by modulating reactive oxygen species (ROS) homeostasis. Quantitative PCR experiments showed that the expression of a large number of ROS-scavenging genes was dramatically increased in the SNAC3-OE plants, but significantly decreased in the SNAC3-RNAi transgenic plants. Five ROS-associated genes which were up-regulated in SNAC3-OE plants showed co-expression patterns with SNAC3, and three of the co-expressed ROS-associated enzyme genes were verified to be direct target genes of SNAC3. These results suggest that SNAC3 plays important roles in stress responses, and it is likely to be useful for engineering crops with improved tolerance to heat and drought stress. PMID:26261267

  20. 10 CFR 501.32 - Conferences (other than prepetition conferences).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Conferences (other than prepetition conferences). 501.32... SANCTIONS Written Comments, Public Hearings and Conferences During Administrative Proceedings § 501.32 Conferences (other than prepetition conferences). (a) At any time following commencement of a...

  1. 47 CFR 1.248 - Prehearing conferences; hearing conferences.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Prehearing conferences; hearing conferences. 1... Hearing Proceedings Prehearing Procedures § 1.248 Prehearing conferences; hearing conferences. (a) The... to appear at a specified time and place for a conference prior to a hearing, or to submit...

  2. Altered expression profile of micrornas in gastric stromal tumor.

    PubMed

    Xiao, Jun; Wang, Qi-xian; Zhu, You-qing

    2015-12-01

    MicroRNAs (miRNAs) play important roles in carcinogenesis, but the global miRNA expression profile in gastric stromal tumor tissues remains unclear. This study was to examine the miRNA expression profile in gastric stromal tumor tissues and explore the function of dysregulated miRNAs by performing gene ontology (GO) and pathway enrichment analysis. Total RNA was extracted and purified from 3 pairs of frozen gastric stromal tumor tissues and the adjacent non-tumor tissues by using mirVana™ miRNA isolation kit. The miRNA expression was analyzed with Affymetrix microarrays (version 4.0) containing 2578 human mature microRNA probes. The dysregulated microRNAs were validated by quantitative RT-PCR in 30 pairs of gastric stromal tumor tissues. The target gene of the dysregulated microRNAs was predicted by miRanda, TargetScan and PicTar. GO and pathway enrichment analysis was conducted to examine the potential function of miR-3178 and miR-193a-5p. The results showed that there were 12 differently expressed microRNAs in gastric stromal tumor tissues, among which 10 miRNAs were down-regulated, and 2 were up-regulated (P<0.05). The validation results by RT-PCR were in accordance with those by microRNA microarry. GO analysis found that the target genes of miR-3178 were involved in 5 GO terms and those of miR-193a-5p in 7 GO terms in level 2. Pathway enrichment analysis suggested that miR-3178 and miR-193a-5p were related to 57 and 122 signaling pathways, respectively. It was concluded that gastric stromal tumor displays a unique miRNA signature. This specific expression may become a new diagnostic and prognostic biomarker for gastric stromal tumor. miR-3178 and miR-193a-5p function as suppressive microRNAs, and they may also become diagnosis and treatment targets for gastric stromal tumor.

  3. Tumeur stromale rectale: à propos d'une observation

    PubMed Central

    Rejab, Haitham; Kridis, Wala Ben; Ben Ameur, Hazem; Feki, Jihene; Frikha, Mounir; Beyrouti, Mohamed Issam

    2014-01-01

    Les tumeurs stromales gastro-intestinales sont des tumeurs mésenchymateuses peu fréquentes. Elles sont localisées préférentiellement eu niveau de l'estomac. La localisation rectale reste rare. A un nouveau cas de tumeur stromale du rectum ainsi qu'une bref revue de la littérature, on se propose d’étudier les particularités cliniques, radiologiques et thérapeutiques de cette entité rare. PMID:25120863

  4. Stromal phosphate concentration is low during feedback limited photosynthesis

    SciTech Connect

    Sharkey, T.D.; Vanderveer, P.J. )

    1989-10-01

    It has been hypothesized that photosynthesis can be feedback limited when the phosphate concentration cannot be both low enough to allow starch and sucrose synthesis at the required rate and high enough for ATP synthesis at the required rate. We have measured the concentration of phosphate in the stroma and cytosol of leaves held under feedback conditions. We used nonaqueous fractionation techniques with freeze-clamped leaves of Phaseolus vulgaris plants grown on reduced phosphate nutrition. Feedback was induced by holding leaves in low O{sub 2} or high CO{sub 2} partial pressure. We found 7 millimolar phosphate in the stroma of leaves in normal oxygen but just 2.7 millimolar phosphate in leaves held in low oxygen. Because 1 to 2 millimolar phosphate in the stroma may be metabolically inactive, we estimate that in low oxygen, the metabolically active pool of phosphate is between negligible and 1.7 millimolar. We conclude that halfway between these extremes, 0.85 millimolar is a good estimate of the phosphate concentration in the stroma of feedback-limited leaves and that the true concentration could be even lower. The stromal phosphate concentration was also low when leaves were held in high CO{sub 2}, which also induces feedback-limited photosynthesis, indicating that the effect is related to feedback limitation, not to low oxygen per se. We conclude that the concentration of phosphate in the stroma is usually in excess and that it is sequestered to regulate photosynthesis, especially starch synthesis. The capacity for this regulation is limited by the coupling factor requirement for phosphate.

  5. Inhibiting stromal cell heparan sulfate synthesis improves stem cell mobilization and enables engraftment without cytotoxic conditioning

    PubMed Central

    Saez, Borja; Ferraro, Francesca; Yusuf, Rushdia Z.; Cook, Colleen M.; Yu, Vionnie W. C.; Pardo-Saganta, Ana; Sykes, Stephen M.; Palchaudhuri, Rahul; Schajnovitz, Amir; Lotinun, Sutada; Lymperi, Stefania; Mendez-Ferrer, Simon; del Toro, Raquel; Day, Robyn; Vasic, Radovan; Acharya, Sanket S.; Baron, Roland; Lin, Charles P.; Yamaguchi, Yu; Wagers, Amy J.

    2014-01-01

    The glycosyltransferase gene, Ext1, is essential for heparan sulfate production. Induced deletion of Ext1 selectively in Mx1-expressing bone marrow (BM) stromal cells, a known population of skeletal stem/progenitor cells, in adult mice resulted in marked changes in hematopoietic stem and progenitor cell (HSPC) localization. HSPC egressed from BM to spleen after Ext1 deletion. This was associated with altered signaling in the stromal cells and with reduced vascular cell adhesion molecule 1 production by them. Further, pharmacologic inhibition of heparan sulfate mobilized qualitatively more potent and quantitatively more HSPC from the BM than granulocyte colony-stimulating factor alone, including in a setting of granulocyte colony-stimulating factor resistance. The reduced presence of endogenous HSPC after Ext1 deletion was associated with engraftment of transfused HSPC without any toxic conditioning of the host. Therefore, inhibiting heparan sulfate production may provide a means for avoiding the toxicities of radiation or chemotherapy in HSPC transplantation for nonmalignant conditions. PMID:25202142

  6. Mechanical Stimulation Increases Knee Meniscus Gene RNA-level Expression in Adipose-derived Stromal Cells

    PubMed Central

    Meier, Elizabeth M.; Wu, Bin; Siddiqui, Aamir; Tepper, Donna G.; Longaker, Michael T.

    2016-01-01

    Background: Efforts have been made to engineer knee meniscus tissue for injury repair, yet most attempts have been unsuccessful. Creating a cell source that resembles the complex, heterogeneous phenotype of the meniscus cell remains difficult. Stem cell differentiation has been investigated, mainly using bone marrow mesenchymal cells and biochemical means for differentiation, resulting in no solution. Mechanical stimulation has been investigated to an extent with no conclusion. Here, we explore the potential for and effectiveness of mechanical stimulation to induce the meniscal phenotype in adipose-derived stromal cells. Methods: Human adipose-derived stromal cells were chosen for their fibrogenic nature and conduciveness for chondrogenesis. Biochemical and mechanical stimulation were investigated. Biochemical stimulation included fibrogenic and chondrogenic media. For mechanical stimulation, a custom-built device was used to apply constant, cyclical, uniaxial strain for up to 6 hours. Strain and frequency varied. Results: Under biochemical stimulation, both fibrogenic (collagen I, versican) and chondrogenic (collagen II, Sox9, aggrecan) genes were expressed by cells exposed to either fibrogenic or chondrogenic biochemical factors. Mechanical strain was found to preferentially promote fibrogenesis over chondrogenesis, confirming that tensile strain is an effective fibrogenic cue. Three hours at 10% strain and 1 Hz in chondrogenic media resulted in the highest expression of fibrochondrogenic genes. Although mechanical stimulation did not seem to affect protein level expression, biochemical means did affect protein level presence of collagen fibers. Conclusion: Mechanical stimulation can be a useful differentiation tool for mechanoresponsive cell types as long as biochemical factors are also integrated. PMID:27757329

  7. Epithelial-stromal interaction via Notch signaling is essential for the full maturation of gut-associated lymphoid tissues.

    PubMed

    Obata, Yuuki; Kimura, Shunsuke; Nakato, Gaku; Iizuka, Keito; Miyagawa, Yurika; Nakamura, Yutaka; Furusawa, Yukihiro; Sugiyama, Machiko; Suzuki, Keiichiro; Ebisawa, Masashi; Fujimura, Yumiko; Yoshida, Hisahiro; Iwanaga, Toshihiko; Hase, Koji; Ohno, Hiroshi

    2014-12-01

    Intrinsic Notch signaling in intestinal epithelial cells restricts secretory cell differentiation. In gut-associated lymphoid tissue (GALT), stromal cells located beneath the follicle-associated epithelium (FAE) abundantly express the Notch ligand delta-like 1 (Dll1). Here, we show that mice lacking Rbpj-a gene encoding a transcription factor implicated in Notch signaling-in intestinal epithelial cells have defective GALT maturation. This defect can be attributed to the expansion of goblet cells, which leads to the down-regulation of CCL20 in FAE. These data demonstrate that epithelial Notch signaling maintained by stromal cells contributes to the full maturation of GALT by restricting secretory cell differentiation in FAE.

  8. Molecular transitions from papillomavirus infection to cervical precancer and cancer: Role of stromal estrogen receptor signaling

    PubMed Central

    den Boon, Johan A.; Pyeon, Dohun; Wang, Sophia S.; Horswill, Mark; Schiffman, Mark; Sherman, Mark; Zuna, Rosemary E.; Wang, Zhishi; Hewitt, Stephen M.; Pearson, Rachel; Schott, Meghan; Chung, Lisa; He, Qiuling; Lambert, Paul; Walker, Joan; Newton, Michael A.; Wentzensen, Nicolas; Ahlquist, Paul

    2015-01-01

    To study the multistep process of cervical cancer development, we analyzed 128 frozen cervical samples spanning normalcy, increasingly severe cervical intraepithelial neoplasia (CIN1– CIN3), and cervical cancer (CxCa) from multiple perspectives, revealing a cascade of progressive changes. Compared with normal tissue, expression of many DNA replication/repair and cell proliferation genes was increased in CIN1/CIN2 lesions and further sustained in CIN3, consistent with high-risk human papillomavirus (HPV)-induced tumor suppressor inactivation. The CIN3-to-CxCa transition showed metabolic shifts, including decreased expression of mitochondrial electron transport complex components and ribosomal protein genes. Significantly, despite clinical, epidemiological, and animal model results linking estrogen and estrogen receptor alpha (ERα) to CxCa, ERα expression declined >15-fold from normalcy to cancer, showing the strongest inverse correlation of any gene with the increasing expression of p16, a marker for HPV-linked cancers. This drop in ERα in CIN and tumor cells was confirmed at the protein level. However, ERα expression in stromal cells continued throughout CxCa development. Our further studies localized stromal ERα to FSP1+, CD34+, SMA− precursor fibrocytes adjacent to normal and precancerous CIN epithelium, and FSP1−, CD34−, SMA+ activated fibroblasts in CxCas. Moreover, rank correlations with ERα mRNA identified IL-8, CXCL12, CXCL14, their receptors, and other angiogenesis and immune cell infiltration and inflammatory factors as candidates for ERα-induced stroma–tumor signaling pathways. The results indicate that estrogen signaling in cervical cancer has dramatic differences from ERα+ breast cancers, and imply that estrogen signaling increasingly proceeds indirectly through ERα in tumor-associated stromal fibroblasts. PMID:26056290

  9. Bone-like nodules formed by human bone marrow stromal cells: comparative study and characterization.

    PubMed

    Schecroun, N; Delloye, C h

    2003-03-01

    Autologous bone marrow stromal cells have been proposed as an adjuvant in the treatment of bone nonunion. This cell therapy would require the establishment of culture conditions that permit the rapid expansion of these cells ex vivo while retaining their potential for further differentiation. Our aim was to achieve a full differentiation process using human bone marrow aspirates. We first analyzed the effects of mineralization medium (with ascorbic acid and phosphate) and dexamethasone (dex) during the primary culture of human bone marrow stromal (HBMS) cells on the proliferation/differentiation behavior of first-passage cells. The most appropriate schedule was then selected to further characterize this differentiation model. We showed that primary culture of HBMS cells in proliferation medium (DMEM supplemented with 10% fetal calf serum), with a 48-h treatment by mineralization medium and dex resulted in a better osteoblastic differentiation of first-passage cells than primary culture carried out in mineralization medium with or without dex. We showed that culture of HBMS cells under these conditions (primary culture in proliferation medium, followed by subculture in mineralization medium) led to the formation of specifically mineralized bone-like nodules similar to the ones observed with rat bone marrow stromal cells. Our nodules exhibited three distinct cell types, reproducing in vitro a tissue-like structure. This treatment demonstrated an optimal proliferation and expression of osteoblastic markers such as alkaline phosphatase, osteocalcin, and type I collagen. The primary culture allowed the multiplication of the number of adherent progenitor cells at the initial time of plating by a mean factor of 44,000, which was found to be negatively correlated with age. Thus, this differentiation model could provide a new tool to elaborate an autologous cell therapy designed to enhance osteogenesis.

  10. Stromal uptake and transmission of acid is a pathway for venting cancer cell-generated acid

    PubMed Central

    Hulikova, Alzbeta; Black, Nicholas; Hsia, Lin-Ting; Wilding, Jennifer; Bodmer, Walter F.; Swietach, Pawel

    2016-01-01

    Proliferation and invasion of cancer cells require favorable pH, yet potentially toxic quantities of acid are produced metabolically. Membrane-bound transporters extrude acid from cancer cells, but little is known about the mechanisms that handle acid once it is released into the poorly perfused extracellular space. Here, we studied acid handling by myofibroblasts (colon cancer-derived Hs675.T, intestinal InMyoFib, embryonic colon-derived CCD-112-CoN), skin fibroblasts (NHDF-Ad), and colorectal cancer (CRC) cells (HCT116, HT29) grown in monoculture or coculture. Expression of the acid-loading transporter anion exchanger 2 (AE2) (SLC4A2 product) was detected in myofibroblasts and fibroblasts, but not in CRC cells. Compared with CRC cells, Hs675.T and InMyoFib myofibroblasts had very high capacity to absorb extracellular acid. Acid uptake into CCD-112-CoN and NHDF-Ad cells was slower and comparable to levels in CRC cells, but increased alongside SLC4A2 expression under stimulation with transforming growth factor β1 (TGFβ1), a cytokine involved in cancer–stroma interplay. Myofibroblasts and fibroblasts are connected by gap junctions formed by proteins such as connexin-43, which allows the absorbed acid load to be transmitted across the stromal syncytium. To match the stimulatory effect on acid uptake, cell-to-cell coupling in NHDF-Ad and CCD-112-CoN cells was strengthened with TGFβ1. In contrast, acid transmission was absent between CRC cells, even after treatment with TGFβ1. Thus, stromal cells have the necessary molecular apparatus for assembling an acid-venting route that can improve the flow of metabolic acid through tumors. Importantly, the activities of stromal AE2 and connexin-43 do not place an energetic burden on cancer cells, allowing resources to be diverted for other activities. PMID:27543333

  11. Ninth Conference on Space Simulation

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The papers presented in this conference provided an international dialogue and a meaningful exchange in the simulation of space environments as well as the evolution of these technological advances into other fields. The papers represent a significant contribution to the understanding of space simulation problems and the utilization of this knowledge. The topics of the papers include; spacecraft testing; facilities and test equipment; system and subsystem test; life sciences, medicine and space; physical environmental factors; chemical environmental factors; contamination; space physics; and thermal protection.

  12. 76 FR 64083 - Reliability Technical Conference; Notice of Technical Conference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-17

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Reliability Technical Conference; Notice of Technical Conference Take notice that the Federal Energy Regulatory Commission will hold a Technical Conference on Tuesday, November...

  13. TGF-β induction of FGF-2 expression in stromal cells requires integrated smad3 and MAPK pathways

    PubMed Central

    Strand, Douglas W; Liang, Yao-Yun; Yang, Feng; Barron, David A; Ressler, Steven J; Schauer, Isaiah G; Feng, Xin-Hua; Rowley, David R

    2014-01-01

    Transforming Growth Factor-β (TGF-β) regulates the reactive stroma microenvironment associated with most carcinomas and mediates expression of many stromal derived factors important for tumor progression, including FGF-2 and CTGF. TGF-β is over-expressed in most carcinomas, and FGF-2 action is important in tumor-induced angiogenesis. The signaling mechanisms of how TGF-β regulates FGF-2 expression in the reactive stroma microenvironment are not understood. Accordingly, we have assessed key signaling pathways that mediate TGF-β1-induced FGF-2 expression in prostate stromal fibroblasts and mouse embryo fibroblasts (MEFs) null for Smad2 and Smad3. TGF-β1 induced phosphorylation of Smad2, Smad3, p38 and ERK1/2 proteins in both control MEFs and prostate fibroblasts. Of these, Smad3, but not Smad2 was found to be required for TGF-β1 induction of FGF-2 expression in stromal cells. ChIP analysis revealed a Smad3/Smad4 complex was associated with the -1.9 to -2.3 kb upstream proximal promoter of the FGF-2 gene, further suggesting a Smad3-specific regulation. In addition, chemical inhibition of p38 or ERK1/2 MAPK activity also blocked TGF-β1-induced FGF-2 expression in a Smad3-independent manner. Conversely, inhibition of JNK signaling enhanced FGF-2 expression. Together, these data indicate that expression of FGF-2 in fibroblasts in the tumor stromal cell microenvironment is coordinately dependent on both intact Smad3 and MAP kinase signaling pathways. These pathways and key downstream mediators of TGF-β action in the tumor reactive stroma microenvironment, may evolve as putative targets for therapeutic intervention. PMID:25374926

  14. TGF-β induction of FGF-2 expression in stromal cells requires integrated smad3 and MAPK pathways.

    PubMed

    Strand, Douglas W; Liang, Yao-Yun; Yang, Feng; Barron, David A; Ressler, Steven J; Schauer, Isaiah G; Feng, Xin-Hua; Rowley, David R

    2014-01-01

    Transforming Growth Factor-β (TGF-β) regulates the reactive stroma microenvironment associated with most carcinomas and mediates expression of many stromal derived factors important for tumor progression, including FGF-2 and CTGF. TGF-β is over-expressed in most carcinomas, and FGF-2 action is important in tumor-induced angiogenesis. The signaling mechanisms of how TGF-β regulates FGF-2 expression in the reactive stroma microenvironment are not understood. Accordingly, we have assessed key signaling pathways that mediate TGF-β1-induced FGF-2 expression in prostate stromal fibroblasts and mouse embryo fibroblasts (MEFs) null for Smad2 and Smad3. TGF-β1 induced phosphorylation of Smad2, Smad3, p38 and ERK1/2 proteins in both control MEFs and prostate fibroblasts. Of these, Smad3, but not Smad2 was found to be required for TGF-β1 induction of FGF-2 expression in stromal cells. ChIP analysis revealed a Smad3/Smad4 complex was associated with the -1.9 to -2.3 kb upstream proximal promoter of the FGF-2 gene, further suggesting a Smad3-specific regulation. In addition, chemical inhibition of p38 or ERK1/2 MAPK activity also blocked TGF-β1-induced FGF-2 expression in a Smad3-independent manner. Conversely, inhibition of JNK signaling enhanced FGF-2 expression. Together, these data indicate that expression of FGF-2 in fibroblasts in the tumor stromal cell microenvironment is coordinately dependent on both intact Smad3 and MAP kinase signaling pathways. These pathways and key downstream mediators of TGF-β action in the tumor reactive stroma microenvironment, may evolve as putative targets for therapeutic intervention.

  15. Severe paraneoplastic hypoglycemia in a patient with a gastrointestinal stromal tumor with an exon 9 mutation: a case report

    PubMed Central

    Escobar, Guillermo A; Robinson, William A; Nydam, Trevor L; Heiple, Drew C; Weiss, Glen J; Buckley, Linda; Gonzalez, Rene; McCarter, Martin D

    2007-01-01

    Background Non-islet cell tumor induced hypoglycemia (NICTH) is a very rare phenomenon, but even more so in gastrointestinal stromal tumors. It tends to present in large or metastatic tumors, and can appear at any time in the progression of the disease. We present herein a case of NICTH in a GIST tumor and report an exon 9 mutation associated to it. Case presentation A thirty nine year-old man with a recurrent, metastatic gastrointestinal stromal tumor presented to the hospital with nausea, dizziness, loss of consciousness, and profound hypoglycemia (20 mg/dL). There was no evidence of factitious hypoglycemia. He was stabilized with a continuous glucose infusion and following selective vascular embolization, the patient underwent debulking of a multicentric 40 cm × 25 cm × 10 cm gastrointestinal stromal tumor. After resection, the patient became euglycemic and returned to his normal activities. Tumor analysis confirmed excessive production of insulin-like growth factor II m-RNA and the precursor protein, "big" insulin-like growth factor II. Mutational analysis also identified a rare, 6 bp tandem repeat insert (gcctat) at position 1530 in exon 9 of KIT. Conclusion Optimal management of gastrointestinal stromal tumor-induced hypoglycemia requires a multidisciplinary approach, and surgical debulking is the treatment of choice to obtain immediate symptom relief. Imatinib or combinations of glucocorticoids and growth hormone are alternative palliative strategies for symptomatic hypoglycemia. In addition, mutations in exon 9 of the tyrosine kinase receptor KIT occur in 11–20% of GIST and are often associated with poor patient outcomes. The association of this KIT mutation with non-islet cell tumor induced hypoglycemia has yet to be established. PMID:17229322

  16. The neurogenic basic helix-loop-helix transcription factor NeuroD6 enhances mitochondrial biogenesis and bioenergetics to confer tolerance of neuronal PC12-NeuroD6 cells to the mitochondrial stressor rotenone

    SciTech Connect

    Baxter, Kristin Kathleen; Uittenbogaard, Martine; Chiaramello, Anne

    2012-10-15

    The fundamental question of how and which neuronal specific transcription factors tailor mitochondrial biogenesis and bioenergetics to the need of developing neuronal cells has remained largely unexplored. In this study, we report that the neurogenic basic helix-loop-helix transcription factor NeuroD6 possesses mitochondrial biogenic properties by amplifying the mitochondrial DNA content and TFAM expression levels, a key regulator for mitochondrial biogenesis. NeuroD6-mediated increase in mitochondrial biogenesis in the neuronal progenitor-like PC12-NEUROD6 cells is concomitant with enhanced mitochondrial bioenergetic functions, including increased expression levels of specific subunits of respiratory complexes of the electron transport chain, elevated mitochondrial membrane potential and ATP levels produced by oxidative phosphorylation. Thus, NeuroD6 augments the bioenergetic capacity of PC12-NEUROD6 cells to generate an energetic reserve, which confers tolerance to the mitochondrial stressor, rotenone. We found that NeuroD6 induces an adaptive bioenergetic response throughout rotenone treatment involving maintenance of the mitochondrial membrane potential and ATP levels in conjunction with preservation of the actin network. In conclusion, our results support the concept that NeuroD6 plays an integrative role in regulating and coordinating the onset of neuronal differentiation with acquisition of adequate mitochondrial mass and energetic capacity to ensure energy demanding events, such as cytoskeletal remodeling, plasmalemmal expansion, and growth cone formation. -- Highlights: Black-Right-Pointing-Pointer NeuroD6 induces mitochondrial biogenesis in neuroprogenitor-like cells. Black-Right-Pointing-Pointer NeuroD6 augments the bioenergetic reserve of the neuronal PC12-NeuroD6 cells. Black-Right-Pointing-Pointer NeuroD6 increases the mitochondrial membrane potential and ATP levels. Black-Right-Pointing-Pointer NeuroD6 confers tolerance to rotenone via an adaptive

  17. Gastrointestinal stromal tumors, somatic mutations and candidate genetic risk variants.

    PubMed

    O'Brien, Katie M; Orlow, Irene; Antonescu, Cristina R; Ballman, Karla; McCall, Linda; DeMatteo, Ronald; Engel, Lawrence S

    2013-01-01

    Gastrointestinal stromal tumors (GISTs) are rare but treatable soft tissue sarcomas. Nearly all GISTs have somatic mutations in either the KIT or PDGFRA gene, but there are no known inherited genetic risk factors. We assessed the relationship between KIT/PDGFRA mutations and select deletions or single nucleotide polymorphisms (SNPs) in 279 participants from a clinical trial of adjuvant imatinib mesylate. Given previous evidence that certain susceptibility loci and carcinogens are associated with characteristic mutations, or "signatures" in other cancers, we hypothesized that the characteristic somatic mutations in the KIT and PDGFRA genes in GIST tumors may similarly be mutational signatures that are causally linked to specific mutagens or susceptibility loci. As previous epidemiologic studies suggest environmental risk factors such as dioxin and radiation exposure may be linked to sarcomas, we chose 208 variants in 39 candidate genes related to DNA repair and dioxin metabolism or response. We calculated adjusted odds ratios (ORs) and 95% confidence intervals (CIs) for the association between each variant and 7 categories of tumor mutation using logistic regression. We also evaluated gene-level effects using the sequence kernel association test (SKAT). Although none of the association p-values were statistically significant after adjustment for multiple comparisons, SNPs in CYP1B1 were strongly associated with KIT exon 11 codon 557-8 deletions (OR = 1.9, 95% CI: 1.3-2.9 for rs2855658 and OR = 1.8, 95% CI: 1.2-2.7 for rs1056836) and wild type GISTs (OR = 2.7, 95% CI: 1.5-4.8 for rs1800440 and OR = 0.5, 95% CI: 0.3-0.9 for rs1056836). CYP1B1 was also associated with these mutations categories in the SKAT analysis (p = 0.002 and p = 0.003, respectively). Other potential risk variants included GSTM1, RAD23B and ERCC2. This preliminary analysis of inherited genetic risk factors for GIST offers some clues about the disease's genetic origins and

  18. Gastrointestinal Stromal Tumors, Somatic Mutations and Candidate Genetic Risk Variants

    PubMed Central

    O'Brien, Katie M.; Orlow, Irene; Antonescu, Cristina R.; Ballman, Karla; McCall, Linda; DeMatteo, Ronald; Engel, Lawrence S.

    2013-01-01

    Gastrointestinal stromal tumors (GISTs) are rare but treatable soft tissue sarcomas. Nearly all GISTs have somatic mutations in either the KIT or PDGFRA gene, but there are no known inherited genetic risk factors. We assessed the relationship between KIT/PDGFRA mutations and select deletions or single nucleotide polymorphisms (SNPs) in 279 participants from a clinical trial of adjuvant imatinib mesylate. Given previous evidence that certain susceptibility loci and carcinogens are associated with characteristic mutations, or “signatures” in other cancers, we hypothesized that the characteristic somatic mutations in the KIT and PDGFRA genes in GIST tumors may similarly be mutational signatures that are causally linked to specific mutagens or susceptibility loci. As previous epidemiologic studies suggest environmental risk factors such as dioxin and radiation exposure may be linked to sarcomas, we chose 208 variants in 39 candidate genes related to DNA repair and dioxin metabolism or response. We calculated adjusted odds ratios (ORs) and 95% confidence intervals (CIs) for the association between each variant and 7 categories of tumor mutation using logistic regression. We also evaluated gene-level effects using the sequence kernel association test (SKAT). Although none of the association p-values were statistically significant after adjustment for multiple comparisons, SNPs in CYP1B1 were strongly associated with KIT exon 11 codon 557-8 deletions (OR = 1.9, 95% CI: 1.3-2.9 for rs2855658 and OR = 1.8, 95% CI: 1.2-2.7 for rs1056836) and wild type GISTs (OR = 2.7, 95% CI: 1.5-4.8 for rs1800440 and OR = 0.5, 95% CI: 0.3-0.9 for rs1056836). CYP1B1 was also associated with these mutations categories in the SKAT analysis (p = 0.002 and p = 0.003, respectively). Other potential risk variants included GSTM1, RAD23B and ERCC2. This preliminary analysis of inherited genetic risk factors for GIST offers some clues about the disease's genetic origins

  19. Stromal cues regulate the pancreatic cancer epigenome and metabolome

    PubMed Central

    Sherman, Mara H.; Yu, Ruth T.; Tseng, Tiffany W.; Sousa, Cristovao M.; Liu, Sihao; Truitt, Morgan L.; He, Nanhai; Ding, Ning; Liddle, Christopher; Atkins, Annette R.; Leblanc, Mathias; Collisson, Eric A.; Asara, John M.; Kimmelman, Alec C.; Downes, Michael; Evans, Ronald M.

    2017-01-01

    A fibroinflammatory stromal reaction cooperates with oncogenic signaling to influence pancreatic ductal adenocarcinoma (PDAC) initiation, progression, and therapeutic outcome, yet the mechanistic underpinning of this crosstalk remains poorly understood. Here we show that stromal cues elicit an adaptive response in the cancer cell including the rapid mobilization of a transcriptional network implicated in accelerated growth, along with anabolic changes of an altered metabolome. The close overlap of stroma-induced changes in vitro with those previously shown to be regulated by oncogenic Kras in vivo suggests that oncogenic Kras signaling—a hallmark and key driver of PDAC—is contingent on stromal inputs. Mechanistically, stroma-activated cancer cells show widespread increases in histone acetylation at transcriptionally enhanced genes, implicating the PDAC epigenome as a presumptive point of convergence between these pathways and a potential therapeutic target. Notably, inhibition of the bromodomain and extraterminal (BET) family of epigenetic readers, and of Bromodomain-containing protein 2 (BRD2) in particular, blocks stroma-inducible transcriptional regulation in vitro and tumor progression in vivo. Our work suggests the existence of a molecular “AND-gate” such that tumor activation is the consequence of mutant Kras and stromal cues, providing insight into the role of the tumor microenvironment in the origin and treatment of Ras-driven tumors. PMID:28096419

  20. The Learning Conference

    ERIC Educational Resources Information Center

    Ravn, Ib

    2007-01-01

    Purpose: The purpose of this paper is to call attention to the fact that conferences for professionals rely on massive one-way communication and hence produce little learning for delegates--and to introduce an alternative, the "learning conference", that involves delegates in fun and productive learning processes.…

  1. ASE Annual Conference 2010

    ERIC Educational Resources Information Center

    McCune, Roger

    2010-01-01

    In this article, the author describes the ASE Annual Conference 2010 which was held at Nottingham after a gap of 22 years. As always, the main conference was preceded by International Day, an important event for science educators from across the world. There were two strands to the programme: (1) "What works for me?"--sharing new ideas…

  2. Lyndon Johnson's Press Conferences.

    ERIC Educational Resources Information Center

    Cooper, Stephen

    Because President Lyndon Johnson understood well the publicity value of the American news media, he sought to exploit them. He saw reporters as "torch bearers" for his programs and policies and used the presidential press conference chiefly for promotional purposes. Although he met with reporters often, his press conferences were usually…

  3. From Conference to Journal

    ERIC Educational Resources Information Center

    McCartney, Robert; Tenenberg, Josh

    2008-01-01

    Revising and extending conference articles for journal publication benefits both authors and readers. The new articles are more complete, and benefit from peer review, feedback from conference presentation, and greater editorial consistency. For those articles that are appropriate, we encourage authors to do this, and present two examples of such…

  4. ICCK Conference Final Report

    SciTech Connect

    Green, William H.

    2013-05-28

    The 7th International Conference on Chemical Kinetics (ICCK) was held July 10-14, 2011, at Massachusetts Institute of Technology (MIT), in Cambridge, MA, hosted by Prof. William H. Green of MIT's Chemical Engineering department. This cross-disciplinary meeting highlighted the importance of fundamental understanding of elementary reactions to the full range of chemical investigations. The specific conference focus was on elementary-step kinetics in both the gas phase and in condensed phase. The meeting provided a unique opportunity to discuss how the same reactive species and reaction motifs manifest under very different reaction conditions (e.g. atmospheric, aqueous, combustion, plasma, in nonaqueous solvents, on surfaces.). The conference featured special sessions on new/improved experimental techniques, improved models and data analysis for interpreting complicated kinetics, computational kinetics (especially rate estimates for large kinetic models), and a panel discussion on how the community should document/archive kinetic data. In the past, this conference had been limited to homogeneous gas-phase and liquid-phase systems. This conference included studies of heterogeneous kinetics which provide rate constants for, or insight into, elementary reaction steps. This Grant from DOE BES covered about half of the subsidies we provided to students and postdocs who attended the conference, by charging them reduced-rate registration fees. The complete list of subsidies provided are listed in Table 1 below. This DOE funding was essential to making the conference affordable to graduate students, and indeed the attendance at this conference was higher than at previous conferences in this series. Donations made by companies provided additional subsidies, leveraging the DOE funding. The conference was very effective in educating graduate students and important in fostering scientific interactions, particularly between scientists studying gas phase and liquid phase kinetics

  5. Periostin expression in intra-tumoral stromal cells is prognostic and predictive for colorectal carcinoma via creating a cancer-supportive niche

    PubMed Central

    Tan, Xiaojie; Ding, Yibo; Luo, Yanxin; Cai, Hui; Liu, Yan; Gao, Xianhua; Liu, Qizhi; Yu, Yongwei; Du, Yan; Wang, Hao; Ma, Liye; Wang, Jianping; Chen, Kun; Ding, Yanqing; Fu, Chuangang; Cao, Guangwen

    2016-01-01

    Periostin (POSTN) expression in cancer cells and circulation has been related to poor prognosis of colorectal carcinoma (CRC). However, the role of POSTN expressed in intra-tumoral stroma on CRC progression remains largely unknown. This study enrolled 1098 CRC patients who received surgical treatment in Shanghai and Guangzhou, Mainland China. In Shanghai cohort, immunohistochemistry score of stromal POSTN expression increased consecutively from adjacent mucosa, primary CRC tissues, to metastatic CRC tissues (P < 0.001), while medium- and high-stromal POSTN expression, rather than epithelial POSTN expression, independently predicted unfavorable prognoses of CRC, adjusted for covariates including TNM stage and postoperative chemotherapy in multivariate Cox models. The results in Shanghai cohort were faithfully replicated in Guangzhou cohort. Stromal POSTN expression dose-dependently predicted an unfavorable prognosis of stage III CRC patients with postoperative chemotherapy in both cohorts. POSTN derived from colonic fibroblasts or recombinant POSTN significantly promoted proliferation, anchorage independent growth, invasion, and chemo-resistance of CRC cells; whereas these effects were counteracted via targeting to PI3K/Akt or Wnt/β-catenin signaling pathway. CRC cell RKO-derived factor(s) significantly induced POSTN production in colonic fibroblasts and autocrine POSTN promoted proliferation, migration, and anchorage independent growth of fibroblasts. Conclusively, stromal POSTN is prognostic and predictive for CRC via creating a niche to facilitate cancer progression. Targeting POSTN-induced signaling pathways may be therapeutic options for metastatic or chemoresistant CRC. PMID:26556874

  6. High Aldehyde Dehydrogenase Activity Identifies a Subset of Human Mesenchymal Stromal Cells with Vascular Regenerative Potential.

    PubMed

    Sherman, Stephen E; Kuljanin, Miljan; Cooper, Tyler T; Putman, David M; Lajoie, Gilles A; Hess, David A

    2017-03-15

    During culture expansion, multipotent mesenchymal stromal cells (MSCs) differentially express aldehyde dehydrogenase (ALDH), an intracellular detoxification enzyme that protects long-lived cells against oxidative stress. Thus, MSC selection based on ALDH-activity may be used to reduce heterogeneity and distinguish MSC subsets with improved regenerative potency. After expansion of human bone marrow-derived MSCs, cell progeny was purified based on low versus high ALDH-activity (ALDH(hi) ) by fluorescence-activated cell sorting, and each subset was compared for multipotent stromal and provascular regenerative functions. Both ALDH(l) ° and ALDH(hi) MSC subsets demonstrated similar expression of stromal cell (>95% CD73(+) , CD90(+) , CD105(+) ) and pericyte (>95% CD146(+) ) surface markers and showed multipotent differentiation into bone, cartilage, and adipose cells in vitro. Conditioned media (CDM) generated by ALDH(hi) MSCs demonstrated a potent proliferative and prosurvival effect on human microvascular endothelial cells (HMVECs) under serum-free conditions and augmented HMVEC tube-forming capacity in growth factor-reduced matrices. After subcutaneous transplantation within directed in vivo angiogenesis assay implants into immunodeficient mice, ALDH(hi) MSC or CDM produced by ALDH(hi) MSC significantly augmented murine vascular cell recruitment and perfused vessel infiltration compared with ALDH(l) ° MSC. Although both subsets demonstrated strikingly similar mRNA expression patterns, quantitative proteomic analyses performed on subset-specific CDM revealed the ALDH(hi) MSC subset uniquely secreted multiple proangiogenic cytokines (vascular endothelial growth factor beta, platelet derived growth factor alpha, and angiogenin) and actively produced multiple factors with chemoattractant (transforming growth factor-β, C-X-C motif chemokine ligand 1, 2, and 3 (GRO), C-C motif chemokine ligand 5 (RANTES), monocyte chemotactic protein 1 (MCP-1), interleukin [IL]-6, IL-8

  7. The ORD1 gene encodes a transcription factor involved in oxygen regulation and is identical to IXR1, a gene that confers cisplatin sensitivity to Saccharomyces cerevisiae.

    PubMed Central

    Lambert, J R; Bilanchone, V W; Cumsky, M G

    1994-01-01

    The yeast COX5a and COX5b genes encode isoforms of subunit Va of the mitochondrial inner membrane protein complex cytochrome c oxidase. These genes have been shown to be inversely regulated at the level of transcription by oxygen, which functions through the metabolic coeffector heme. In earlier studies we identified several regulatory elements that control transcriptional activation and aerobic repression of one of these genes, COX5b. Here, we report the isolation of trans-acting mutants that are defective in the aerobic repression of COX5b transcription. The mutants fall into two complementation groups. One group specifies ROX1, which encodes a product reported to be involved in transcriptional repression. The other group identified the gene we have designated ORD1. Mutations in ORD1 cause overexpression of COX5b aerobically but do not affect the expression of the hypoxic genes CYC7, HEM13, and ANB1. ORD1 mutations also do not affect the expression of the aerobic genes COX5a, CYC1, ROX1, ROX3, and TIF51A. The yeast genome contains a single ORD1 gene that resides on chromosome XI. Strains carrying chromosomal deletions of the ORD1 locus are viable and exhibit phenotypes similar to, but less severe than, that of the original mutant. The nucleotide sequence of ORD1 revealed that it is identical to IXR1, a yeast gene whose product contains two high mobility group boxes, binds to platinated DNA, and confers sensitivity to the antitumor drug cisplatin. Consistent with the latter observations, we found that the ORD1 product could bind to both the upstream region of COX5b and to DNA modified with cisplatin. Images PMID:8041793

  8. Genotypes Do Not Confer Risk For Delinquency ut Rather Alter Susceptibility to Positive and Negative Environmental Factors: Gene-Environment Interactions of BDNF Val66Met, 5-HTTLPR, and MAOA-uVNTR

    PubMed Central

    Comasco, Erika; Hodgins, Sheilagh; Oreland, Lars; Åslund, Cecilia

    2015-01-01

    Background: Previous evidence of gene-by-environment interactions associated with emotional and behavioral disorders is contradictory. Differences in findings may result from variation in valence and dose of the environmental factor, and/or failure to take account of gene-by-gene interactions. The present study investigated interactions between the brain-derived neurotrophic factor gene (BDNF Val66Met), the serotonin transporter gene-linked polymorphic region (5-HTTLPR), the monoamine oxidase A (MAOA-uVNTR) polymorphisms, family conflict, sexual abuse, the quality of the child-parent relationship, and teenage delinquency. Methods: In 2006, as part of the Survey of Adolescent Life in Västmanland, Sweden, 1 337 high-school students, aged 17–18 years, anonymously completed questionnaires and provided saliva samples for DNA analyses. Results: Teenage delinquency was associated with two-, three-, and four-way interactions of each of the genotypes and the three environmental factors. Significant four-way interactions were found for BDNF Val66Met × 5-HTTLPR×MAOA-uVNTR × family conflicts and for BDNF Val66Met × 5-HTTLPR×MAOA-uVNTR × sexual abuse. Further, the two genotype combinations that differed the most in expression levels (BDNF Val66Met Val, 5-HTTLPR LL, MAOA-uVNTR LL [girls] and L [boys] vs BDNF Val66Met Val/Met, 5-HTTLPR S/LS, MAOA-uVNTR S/SS/LS) in interaction with family conflict and sexual abuse were associated with the highest delinquency scores. The genetic variants previously shown to confer vulnerability for delinquency (BDNF Val66Met Val/Met × 5-HTTLPR S × MAOA-uVNTR S) were associated with the lowest delinquency scores in interaction with a positive child-parent relationship. Conclusions: Functional variants of the MAOA-uVNTR, 5-HTTLPR, and BDNF Val66Met, either alone or in interaction with each other, may be best conceptualized as modifying sensitivity to environmental factors that confer either risk or protection for teenage delinquency. PMID

  9. Stromal-epithelial dynamics in response to fractionated radiotherapy

    NASA Astrophysics Data System (ADS)

    Qayyum, Muqeem Abdul

    Radiotherapy is central to the management of a number of human cancers, either as an adjuvant or primary treatment modality. The principal objective in irradiating tumors is to permanently inhibit their proliferative ability. More than half of all malignancies are primarily treated with radiation, but the heterotypic nature of tumor cells greatly complicates their response to radiotherapy. The need for reliable parameters to predict tumor and normal tissue response to radiation is therefore a prime concern of clinical oncology. Post-operative radiotherapy has commonly been used for early stage breast cancer to treat residual disease. There is continued debate as to what might be the proper dose per fraction as well as the total dose of radiation that needs to be prescribed to prevent disease recurrence. Countries outside the US have adopted increased dose fractionation (i.e., hypofractionation) schemes for early stage breast cancer as a standard of practice; however there is a lack of confidence in these approaches in the United States. The tumor microenvironment plays a significant role in regulating the progression of carcinomas, although the mechanisms are not entirely clear. The primary objective of this work was to characterize, through mechanobiological and radiobiological modeling, a test bed for radiotherapy fractionation techniques assessment. Our goal is to understand how the tumor microenvironment responds to dose fractionation schemes for Breast Conserving Therapy (BCT). Although carcinomas are the major concern for oncology, in this project, the goal is to understand how the stromal microenvironment influences behavior of the cancer cell populations. By classifying 3-D cellular co-cultures as having a reactive or quiescent stroma using the mechanobiology profile (culture stiffness,cellular activation, differentiation, and proliferation) we aim to differentiate the effectiveness of various fractionation schemes. The benefits of understanding heterotypic

  10. Stromal cell-dependent growth of leukemic cells from murine erythroblastic leukemia.

    PubMed

    Itoh, K; Sasaki, R; Ono, K; Tezuka, H; Sakoda, H; Sawada, H; Hitomi, K; Nakane, H; Uchiyama, T; Uchino, H

    1988-08-01

    Transplantable erythroblastic leukemia was induced by 300-rad irradiation of C3H mice. Conditions for in vitro growth of the leukemic cells were studied. None of interleukin-3, granulocyte/macrophage colony-stimulating factor and erythropoietin could support the growth of the cells in vitro. In contrast, the leukemic cells grew into a stroma-dependent cell line, ELM-D, in close contact with the stromal cell layer of 900-rad-irradiated long-term bone marrow culture. A stroma-independent cell line, termed ELM-I-1, was further established from the non-adherent population in the co-culture of the leukemic cells, ELM-D, with stromal cells. Reverse transcriptase activity was not detectable in ELM-D or ELM-I-1 cells. Studies on binding and cross-linking of 125I-erythropoietin showed that ELM-I-1 cells had erythropoietin receptors, and two major radiolabeled protein products with molecular weights of 120 kDa and 140 kDa were detected on sodium dodecyl sulfate/polyacrylamide gel electrophoresis under reducing conditions.

  11. Pleiotrophin commits human bone marrow mesenchymal stromal cells towards hypertrophy during chondrogenesis.

    PubMed

    Bouderlique, Thibault; Henault, Emilie; Lebouvier, Angelique; Frescaline, Guilhem; Bierling, Phillipe; Rouard, Helene; Courty, José; Albanese, Patricia; Chevallier, Nathalie

    2014-01-01

    Pleiotrophin (PTN) is a growth factor present in the extracellular matrix of the growth plate during bone development and in the callus during bone healing. Bone healing is a complicated process that recapitulates endochondral bone development and involves many cell types. Among those cells, mesenchymal stromal cells (MSC) are able to differentiate toward chondrogenic and osteoblastic lineages. We aimed to determine PTN effects on differentiation properties of human bone marrow stromal cells (hBMSC) under chondrogenic induction using histological analysis and quantitative reverse transcription polymerase chain reaction. PTN dramatically potentiated chondrogenic differentiation as indicated by a strong increase of collagen 2 protein, and cartilage-related gene expression. Moreover, PTN increased transcription of hypertrophic chondrocyte markers such as MMP13, collagen 10 and alkaline phosphatase and enhanced calcification and the content of collagen 10 protein. These effects are dependent on PTN receptors signaling and PI3 K pathway activation. These data suggest a new role of PTN in bone regeneration as an inducer of hypertrophy during chondrogenic differentiation of hBMSC.

  12. Changes in adipose tissue stromal-vascular cells in primary culture due to porcine sera

    SciTech Connect

    Jewell, D.E.; Hausman, G.J.

    1986-03-01

    This study was conducted to determine the response of rat stromal-vascular cells to pig sea. Sera were collected from unselected contemporary (lean) and high backfat thickness selected (obese) pigs. Sera from obese pigs were collected either by exsanguination or cannulation. sera from lean pigs during the growing phase (45 kg) and the fattening phase (100-110 kg) were collected. Stromal-vascular cells derived rom rat inguinal tissue were cultured on either 25 cm/sup 2/ flasks, collagen-coated coverslips or petri dishes. Cell proliferation was measured by (/sup 3/H)-thymidine incorporation during the fourth day of culture. Coverslip cultures were used for histochemical analysis. Petri dish cultures were used for analysis of Sn-glycerol-3-phosphate dehydrogenase (GPDH) activity. All cells were plated for 24 hours in media containing 10 fetal bovine sera. Test media contained 2.5, 5.0, 10.0% sera. Sera from obese pigs increased GPDH activity and fat cell production when compared to the lean controls. The increased concentration of sera increased esterase activity and lipid as measured with oil red O. The sera from obese pigs collected at slaughter stimulated more fat cell production than obese sera collected by cannulation. These studies show there are adipogenic factors in obese pigs sera which promote fat cell development in primary cell culture.

  13. Stromal SLIT2 impacts on pancreatic cancer-associated neural remodeling

    PubMed Central

    Secq, V; Leca, J; Bressy, C; Guillaumond, F; Skrobuk, P; Nigri, J; Lac, S; Lavaut, M-N; Bui, T-t; Thakur, A K; Callizot, N; Steinschneider, R; Berthezene, P; Dusetti, N; Ouaissi, M; Moutardier, V; Calvo, E; Bousquet, C; Garcia, S; Bidaut, G; Vasseur, S; Iovanna, J L; Tomasini, R

    2015-01-01

    Pancreatic ductal adenocarcinoma (PDA) is a critical health issue in the field of cancer, with few therapeutic options. Evidence supports an implication of the intratumoral microenvironment (stroma) on PDA progression. However, its contribution to the role of neuroplastic changes within the pathophysiology and clinical course of PDA, through tumor recurrence and neuropathic pain, remains unknown, neglecting a putative, therapeutic window. Here, we report that the intratumoral microenvironment is a mediator of PDA-associated neural remodeling (PANR), and we highlight factors such as ‘SLIT2' (an axon guidance molecule), which is expressed by cancer-associated fibroblasts (CAFs), that impact on neuroplastic changes in human PDA. We showed that ‘CAF-secreted SLIT2' increases neurite outgrowth from dorsal root ganglia neurons as well as from Schwann cell migration/proliferation by modulating N-cadherin/β-catenin signaling. Importantly, SLIT2/ROBO signaling inhibition disrupts this stromal/neural connection. Finally, we revealed that SLIT2 expression and CAFs are correlated with neural remodeling within human and mouse PDA. All together, our data demonstrate the implication of CAFs, through the secretion of axon guidance molecule, in PANR. Furthermore, it provides rationale to investigate the disruption of the stromal/neural compartment connection with SLIT2/ROBO inhibitors for the treatment of pancreatic cancer recurrence and pain. PMID:25590802

  14. Molecular pathology of myelodysplastic syndromes: biology of medullary stromal and hematopoietic cells (review).

    PubMed

    Kitagawa, Masanobu; Kurata, Morito; Yamamoto, Kouhei; Abe, Shinya; Suzuki, Shiho; Umeda, Shigeaki

    2011-01-01

    Myelodysplastic syndromes (MDS) have been defined as a disease entity based on clinical features and morphological findings. Despite similarities in clinical manifestations, genetic abnormalities occurring in hematopoietic cells are heterogeneous among the syndromes. However, recent investigations have revealed that there are common biological events in the bone marrow of MDS cases. Most notably, excessive apoptosis of hematopoietic cells was observed to be induced by the bone marrow microenvironment. The apoptosis was mediated by paracrine as well as autocrine factors, suggesting that medullary stromal and hematopoietic cells play a role in the pathology of disease. Pro-inflammatory cytokines, such as TNFα, in the bone marrow microenvironment are predominantly paracrine mediators of apoptosis. Regarding autocrine stimulation mechanisms, it has recently been shown that the deregulation of ribosomal protein is capable of initiating a stress response in the hematopoietic cell through a p53-mediated signaling pathway. Thus, both the stromal cells of the bone marrow microenvironment and hematopoietic cells themselves possess a common and characteristic biology in this heterogeneous disease entity.

  15. Low stromal Foxp3+ regulatory T-cell density is associated with complete response to neoadjuvant chemoradiotherapy in rectal cancer

    PubMed Central

    McCoy, M J; Hemmings, C; Miller, T J; Austin, S J; Bulsara, M K; Zeps, N; Nowak, A K; Lake, R A; Platell, C F

    2015-01-01

    Background: Foxp3+ regulatory T cells (Tregs) play a vital role in preventing autoimmunity, but also suppress antitumour immune responses. Tumour infiltration by Tregs has strong prognostic significance in colorectal cancer, and accumulating evidence suggests that chemotherapy and radiotherapy efficacy has an immune-mediated component. Whether Tregs play an inhibitory role in chemoradiotherapy (CRT) response in rectal cancer remains unknown. Methods: Foxp3+, CD3+, CD4+, CD8+ and IL-17+ cell density in post-CRT surgical samples from 128 patients with rectal cancer was assessed by immunohistochemistry. The relationship between T-cell subset densities and clinical outcome (tumour regression and survival) was evaluated. Results: Stromal Foxp3+ cell density was strongly associated with tumour regression grade (P=0.0006). A low stromal Foxp3+ cell density was observed in 84% of patients who had a pathologic complete response (pCR) compared with 41% of patients who did not (OR: 7.56, P=0.0005; OR: 5.27, P=0.006 after adjustment for presurgery clinical factors). Low stromal Foxp3+ cell density was also associated with improved recurrence-free survival (HR: 0.46, P=0.03), although not independent of tumour regression grade. Conclusions: Regulatory T cells in the tumour microenvironment may inhibit response to neoadjuvant CRT and may represent a therapeutic target in rectal cancer. PMID:26645238

  16. Glucose Promotes a Pro-Oxidant and Pro-Inflammatory Stromal Microenvironment Which Favors Motile Properties in Breast Tumor Cells.

    PubMed

    Kallens, Violeta; Tobar, Nicolás; Molina, Jessica; Bidegain, Arantzazú; Smith, Patricio C; Porras, Omar; Martínez, Jorge

    2017-05-01

    Chronic inflammation and metabolic reprogramming have been proposed as hallmarks of cancer development. Currently, many of the functional clues between these two phenomena are studied under the integrative view of functional stroma-epithelia interaction. It has been proposed that stromal cells, due to their abundance and avidity for glucose, are able to modify the metabolic behavior of an entire solid tumor. In the present study, using a mammary stromal cell line derived from healthy tissue subjected to long-term culture in low (5 mM) or high (25 mM) glucose, we found that the hyperglycemic condition favors the establishment of a pro-inflammatory and pro-oxidant environment characterized by the induction of the COX-2/PGE2 axis. In this condition, epithelial migration was stimulated. Moreover, we also found that stromal-derived PGE2, acting as a stimulator of IL-1 epithelial expression was one of the factors that promote the acquisition of motile properties by epithelial cells and the maintenance of a COX-2/PGE2-dependent inflammatory condition. Overall, our work provides experimental evidence that glucose stimulates a tumor inflammatory environment that, as a result of a functional cross-talk between stroma and epithelia, may be responsible for tumor progression. J. Cell. Biochem. 118: 994-1002, 2017. © 2016 Wiley Periodicals, Inc.

  17. Extracellular Superoxide Dismutase Expression in Papillary Thyroid Cancer Mesenchymal Stem/Stromal Cells Modulates Cancer Cell Growth and Migration

    PubMed Central

    Parascandolo, Alessia; Rappa, Francesca; Cappello, Francesco; Kim, Jaehyup; Cantu, David A.; Chen, Herbert; Mazzoccoli, Gianluigi; Hematti, Peiman; Castellone, Maria Domenica; Salvatore, Marco; Laukkanen, Mikko O.

    2017-01-01

    Tumor stroma-secreted growth factors, cytokines, and reactive oxygen species (ROS) influence tumor development from early stages to the metastasis phase. Previous studies have demonstrated downregulation of ROS-producing extracellular superoxide dismutase (SOD3) in thyroid cancer cell lines although according to recent data, the expression of SOD3 at physiological levels stimulates normal and cancer cell proliferation. Therefore, to analyze the expression of SOD3 in tumor stroma, we characterized stromal cells from the thyroid. We report mutually exclusive desmoplasia and inflammation in papillary and follicular thyroid cancers and the presence of multipotent mesenchymal stem/stromal cells (MSCs) in non-carcinogenic thyroids and papillary thyroid cancer (PTC). The phenotypic and differentiation characteristics of Thyroid MSCs and PTC MSCs were comparable with bone marrow MSCs. A molecular level analysis showed increased FIBROBLAST ACTIVATING PROTEIN, COLLAGEN 1 TYPE A1, TENASCIN, and SOD3 expression in PTC MSCs compared to Thyroid MSCs, suggesting the presence of MSCs with a fibrotic fingerprint in papillary thyroid cancer tumors and the autocrine-paracrine conversion of SOD3 expression, which was enhanced by cancer cells. Stromal SOD3 had a stimulatory effect on cancer cell growth and an inhibitory effect on cancer cell migration, thus indicating that SOD3 might be a novel player in thyroid tumor stroma. PMID:28216675

  18. Amount of stroma is associated with mammographic density and stromal expression of oestrogen receptor in normal breast tissues.

    PubMed

    Gabrielson, Marike; Chiesa, Flaminia; Paulsson, Janna; Strell, Carina; Behmer, Catharina; Rönnow, Katarina; Czene, Kamila; Östman, Arne; Hall, Per

    2016-07-01

    Following female sex and age, mammographic density is considered one of the strongest risk factors for breast cancer. Despite the association between mammographic density and breast cancer risk, little is known about the underlying histology and biological basis of breast density. To better understand the mechanisms behind mammographic density we assessed morphology, proliferation and hormone receptor status in relation to mammographic density in breast tissues from healthy women. Tissues were obtained from 2012-2013 by ultrasound-guided core needle biopsy from 160 women as part of the Karma (Karolinska mammography project for risk prediction for breast cancer) project. Mammograms were collected through routine mammography screening and mammographic density was calculated using STRATUS. The histological composition, epithelial and stromal proliferation status and hormone receptor status were assessed through immunohistochemical staining. Higher mammographic density was significantly associated with a greater proportion of stromal and epithelial tissue and a lower proportion of adipose tissue. Epithelial expression levels of Ki-67, oestrogen receptor (ER) and progesterone receptor (PR) were not associated with mammographic density. Epithelial Ki-67 was associated with a greater proportion of epithelial tissue, and epithelial PR was associated with a greater proportion of stromal and a lower proportion of adipose tissue. Epithelial ER was not associated with any tissues. In contrast, expression of ER in the stroma was significantly associated with a greater proportion of stroma, and negatively associated with the amount of adipose tissue. High mammographic density is associated with higher amount of stroma and epithelium and less amount of fat, but is not associated with a change in epithelial proliferation or receptor status. Increased expressions of both epithelial PR and stromal ER are associated with a greater proportion of stroma, suggesting hormonal involvement

  19. Stromal fibroblasts support dendritic cells to maintain IL-23/Th17 responses after exposure to ionizing radiation

    PubMed Central

    Malecka, Anna; Wang, Qunwei; Shah, Sabaria; Sutavani, Ruhcha V.; Spendlove, Ian; Ramage, Judith M.; Greensmith, Julie; Franks, Hester A.; Gough, Michael J.; Saalbach, Anja; Patel, Poulam M.; Jackson, Andrew M.

    2016-01-01

    Dendritic cell function is modulated by stromal cells, including fibroblasts. Although poorly understood, the signals delivered through this crosstalk substantially alter dendritic cell biology. This is well illustrated with release of TNF-α/IL-1β from activated dendritic cells, promoting PGE2 secretion from stromal fibroblasts. This instructs dendritic cells to up-regulate IL-23, a key Th17-polarizing cytokine. We previously showed that ionizing radiation inhibited IL-23 production by human dendritic cells in vitro. In the present study, we investigated the hypothesis that dendritic cell-fibroblast crosstalk overcomes the suppressive effect of ionizing radiation to support appropriately polarized Th17 responses. Radiation (1–6 Gy) markedly suppressed IL-23 secretion by activated dendritic cells (P < 0.0001) without adversely impacting their viability and consequently, inhibited the generation of Th17 responses. Cytokine suppression by ionizing radiation was selective, as there was no effect on IL-1β, -6, -10, and -27 or TNF-α and only a modest (11%) decrease in IL-12p70 secretion. Coculture with fibroblasts augmented IL-23 secretion by irradiated dendritic cells and increased Th17 responses. Importantly, in contrast to dendritic cells, irradiated fibroblasts maintained their capacity to respond to TNF-α/IL-1β and produce PGE2, thus providing the key intermediary signals for successful dendritic cell-fibroblasts crosstalk. In summary, stromal fibroblasts support Th17-polarizing cytokine production by dendritic cells that would otherwise be suppressed in an irradiated microenvironment. This has potential ramifications for understanding the immune response to local radiotherapy. These findings underscore the need to account for the impact of microenvironmental factors, including stromal cells, in understanding the control of immunity. PMID:27049023

  20. Pre-diagnostic obesity and physical inactivity are associated with shorter telomere length in prostate stromal cells

    PubMed Central

    Joshu, Corinne E; Peskoe, Sarah B; Heaphy, Christopher M; Kenfield, Stacey A; Van Blarigan, Erin L; Mucci, Lorelei A; Giovannucci, Edward L; Stampfer, Meir J; Yun, GhilSuk; Lee, Thomas K; Hicks, Jessica L; De Marzo, Angelo M; Meeker, Alan K; Platz, Elizabeth A

    2015-01-01

    Obesity and inactivity have been with associated advanced stage prostate cancer, and poor prostate cancer outcomes, though the underlying mechanism(s) is unknown. To determine if telomere shortening, which has been associated with lethal prostate cancer, may be a potential underlying mechanism, we prospectively evaluated the association between measures of adiposity, physical activity and telomere length in 596 participants in the Health Professionals Follow-up Study, who were surgically treated for prostate cancer. Using tissue microarrays, we measured telomere length in cancer and benign cells using a telomere-specific fluorescence in situ hybridization assay. Adiposity and activity were assessed via questionnaire within 2 years of diagnosis. Adjusting for age, pathologic stage and grade, the median and standard deviation of the per cell telomere signals were determined for each man for stromal cells and cancer cells by adiposity and activity categories. Overweight/obese men (54%) were similar to normal weight men on most factors, but had higher Gleason sum and lower activity levels. Overweight/obese men had 7.4% shorter telomeres in stromal cells than normal weight men (P=0.06). The least active men had shorter telomeres in stromal cells than more active men (P-trend=0.002). Men who were overweight/obese and the least active had the shortest telomeres in stromal cells (20.7% shorter; P=0.0005) compared to normal weight men who were the most active. Cancer cell telomere length and telomere length variability did not differ by measures of adiposity or activity. Telomere shortening in prostate cells may be one mechanism through which lifestyle influences prostate cancer risk and outcomes. PMID:25990087

  1. Osterix enhances proliferation and osteogenic potential of bone marrow stromal cells

    SciTech Connect

    Tu Qisheng; Valverde, Paloma . E-mail: paloma.valverde@tufts.edu; Chen, Jake

    2006-03-24

    Osterix (Osx) is a zinc-finger-containing transcription factor that is expressed in osteoblasts of all endochondral and membranous bones. In Osx null mice osteoblast differentiation is impaired and bone formation is absent. In this study, we hypothesized that overexpression of Osx in murine bone marrow stromal cells (BMSC) would be able to enhance their osteoblastic differentiation and mineralization in vitro. Retroviral transduction of Osx in BMSC cultured in non-differentiating medium did not affect expression of Runx2/Cbfa1, another key transcription factor of osteoblast differentiation, but induced an increase in the expression of other markers associated with the osteoblastic lineage including alkaline phosphatase, bone sialoprotein, osteocalcin, and osteopontin. Retroviral transduction of Osx in BMSC also increased their proliferation, alkaline phosphatase activity, and ability to form bone nodules. These events occurred without significant changes in the expression of {alpha}1(II) procollagen or lipoprotein lipase, which are markers of chondrogenic and adipogenic differentiation, respectively.

  2. Expression of brain natriuretic peptide by human bone marrow stromal cells.

    PubMed

    Song, S; Kamath, S; Mosquera, D; Zigova, T; Sanberg, P; Vesely, D L; Sanchez-Ramos, J

    2004-01-01

    Bone marrow stromal cells (BMSC) have been shown to generate neural cells under experimental conditions in vitro and following transplantation into animal models of stroke and traumatic CNS injury. Hastened recovery from the neurological deficit has not correlated with structural repair of the lesion in the stroke model. Secretory functions of BMSC, such as the elaboration of growth factors and cytokines, have been hypothesized to play a role in the enhanced recovery of neurological function. Using gene expression arrays, real time RT-PCR and radioimmunoassay, we have found that brain natriuretic peptide (BNP) is synthesized and released by BMSC at physiologically relevant levels in vitro. BNP, like its close homolog atrial natriuretic peptide (ANP), exerts powerful natriuretic, diuretic and vasodilatory effects. We speculate that transplanted BMSCs facilitate recovery from brain and spinal cord lesions by releasing BNP and other vasoactive factors that reduce edema, decrease intracranial pressure and improve cerebral perfusion.

  3. Recombinant human insulin-like growth factor I exerts a trophic action and confers glutamate sensitivity on glutamate-resistant cerebellar granule cells.

    PubMed Central

    Calissano, P; Ciotti, M T; Battistini, L; Zona, C; Angelini, A; Merlo, D; Mercanti, D

    1993-01-01

    Cerebellar granule cells grown in the presence of a serum complex differentiate but are resistant to the lethal action of excitatory amino acids. When these cells are grown also in the presence of insulin-like growth factor I (IGF-I) they become fully susceptible to the toxic, lethal action of glutamate. The glutamate-sensitizing action of IGF-I is dependent on concentration (half-maximal effect at 2-4 ng/ml) and time (half-maximal effect at 2-4 days in vitro) and is paralleled by the appearance of functionally active, glutamate-activated, Ca2+ channels and of voltage-gated Na+ and late K+ channels. IGF-I-induced glutamate sensitivity is rapidly reversible (t1/2 = 30-60 min) after removal of this somatomedin. The action of IGF-I is not mimicked by IGF-II, nerve growth factor, basic or acidic fibroblast growth factor, platelet-derived growth factor, or tumor necrosis factor alpha. We postulate that the constitutive phenotype of cerebellar granule cells is glutamate-resistant and becomes responsive to excitatory amino acids under the action of epigenetic cues among which IGF-I may be one of those operative in vivo. Images Fig. 1 PMID:8104340

  4. Psychological Considerations in the Assessment and Treatment of Pain in Neurorehabilitation and Psychological Factors Predictive of Therapeutic Response: Evidence and Recommendations from the Italian Consensus Conference on Pain in Neurorehabilitation

    PubMed Central

    Castelnuovo, Gianluca; Giusti, Emanuele M.; Manzoni, Gian Mauro; Saviola, Donatella; Gatti, Arianna; Gabrielli, Samantha; Lacerenza, Marco; Pietrabissa, Giada; Cattivelli, Roberto; Spatola, Chiara A. M.; Corti, Stefania; Novelli, Margherita; Villa, Valentina; Cottini, Andrea; Lai, Carlo; Pagnini, Francesco; Castelli, Lorys; Tavola, Mario; Torta, Riccardo; Arreghini, Marco; Zanini, Loredana; Brunani, Amelia; Capodaglio, Paolo; D'Aniello, Guido E.; Scarpina, Federica; Brioschi, Andrea; Priano, Lorenzo; Mauro, Alessandro; Riva, Giuseppe; Repetto, Claudia; Regalia, Camillo; Molinari, Enrico; Notaro, Paolo; Paolucci, Stefano; Sandrini, Giorgio; Simpson, Susan G.; Wiederhold, Brenda; Tamburin, Stefano

    2016-01-01

    Background: In order to provide effective care to patients suffering from chronic pain secondary to neurological diseases, health professionals must appraise the role of the psychosocial factors in the genesis and maintenance of this condition whilst considering how emotions and cognitions influence the course of treatment. Furthermore, it is important not only to recognize the psychological reactions to pain that are common to the various conditions, but also to evaluate how these syndromes differ with regards to the psychological factors that may be involved. As an extensive evaluation of these factors is still lacking, the Italian Consensus Conference on Pain in Neurorehabilitation (ICCPN) aimed to collate the evidence available across these topics. Objectives: To determine the psychological factors which are associated with or predictive of pain secondary to neurological conditions and to assess the influence of these aspects on the outcome of neurorehabilitation. Methods: Two reviews were performed. In the first, a PUBMED search of the studies assessing the association between psychological factors and pain or the predictive value of these aspects with respect to chronic pain was conducted. The included papers were then rated with regards to their methodological quality and recommendations were made accordingly. In the second study, the same methodology was used to collect the available evidence on the predictive role of psychological factors on the therapeutic response to pain treatments in the setting of neurorehabilitation. Results: The first literature search identified 1170 results and the final database included 189 articles. Factors such as depression, anxiety, pain catastrophizing, coping strategies, and cognitive functions were found to be associated with pain across the various conditions. However, there are differences between chronic musculoskeletal pain, migraine, neuropathy, and conditions associated with complex disability with regards to the

  5. Stromal matrix metalloproteinase-11 is involved in the mammary gland postnatal development.

    PubMed

    Tan, J; Buache, E; Alpy, F; Daguenet, E; Tomasetto, C-L; Ren, G-S; Rio, M-C

    2014-07-31

    MMP-11 is a bad prognosis paracrine factor in invasive breast cancers. However, its mammary physiological function remains largely unknown. In the present study we have investigated MMP-11 function during postnatal mammary gland development and function using MMP-11-deficient (MMP-11-/-) mice. Histological and immunohistochemical analyses as well as whole-mount mammary gland staining show alteration of the mammary gland in the absence of MMP-11, where ductal tree, alveolar structures and milk production are reduced. Moreover, a series of transplantation experiments allowed us to demonstrate that MMP-11 exerts an essential local paracrine function that favors mammary gland branching and epithelial cell outgrowth and invasion through adjacent connective tissues. Indeed, MMP-11-/- cleared fat pads are not permissive for wild-type epithelium development, whereas MMP-11-/- epithelium transplants grow normally when implanted in wild-type cleared fat pads. In addition, using primary mammary epithelial organoids, we show in vitro that this MMP-11 pro-branching effect is not direct, suggesting that MMP-11 acts via production/release of stroma-associated soluble factor(s). Finally, the lack of MMP-11 leads to decreased periductal collagen content, suggesting that MMP-11 has a role in collagen homeostasis. Thus, local stromal MMP-11 might also regulate mammary epithelial cell behavior mechanically by promoting extracellular matrix stiffness. Collectively, the present data indicate that MMP-11 is a paracrine factor involved during postnatal mammary gland morphogenesis, and support the concept that the stroma strongly impact epithelial cell behavior. Interestingly, stromal MMP-11 has previously been reported to favor malignant epithelial cell survival and promote cancer aggressiveness. Thus, MMP-11 has a paracrine function during mammary gland development that might be harnessed to promote tumor progression, exposing a new link between development and malignancy.

  6. 48 CFR 6101.11 - Conferences; conference memorandum [Rule 11].

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 7 2010-10-01 2010-10-01 false Conferences; conference memorandum . 6101.11 Section 6101.11 Federal Acquisition Regulations System CIVILIAN BOARD OF CONTRACT APPEALS, GENERAL SERVICES ADMINISTRATION CONTRACT DISPUTE CASES 6101.11 Conferences; conference...

  7. Proceedings of the international conference on cybernetics and societ

    SciTech Connect

    Not Available

    1985-01-01

    This book presents the papers given at a conference on artificial intelligence, expert systems and knowledge bases. Topics considered at the conference included automating expert system development, modeling expert systems, causal maps, data covariances, robot vision, image processing, multiprocessors, parallel processing, VLSI structures, man-machine systems, human factors engineering, cognitive decision analysis, natural language, computerized control systems, and cybernetics.

  8. Transplantation of a mammary stromal cell line into a mammary fat pad: development of the site-specific in vivo analysis system for mammary stromal cells.

    PubMed

    Nakatani, Hajime; Aoki, Naohito; Nadano, Daita; Matsuda, Tsukasa

    2011-01-01

    The interaction between mammary epithelial and stromal tissue is considered to be important in breast tissue development. In this study, we developed a transplantation procedure for the mammary stromal fibroblastic cell line (MSF) to examine its life in vivo. First we established MSF cells which stably expressed lacZ (lacZ/MSF) and had characteristics of mammary stromal cells. The lacZ/MSF cells were then transplanted into a cleared mammary fat pad of syngenic mice with and without mammary primary epithelial organoids. Whole mount X-gal and carmine staining of the transplants revealed that a number of undifferentiated lacZ/MSF cells survived around the mammary epithelial tissue when transplanted with organoids. These results indicate that transplantation of MSF cells into mammary fat pad was accomplished by co-transplantation with primary mammary organoids. Finally, we discuss the application of transplantation procedure for in vivo studies of the mammary stromal tissue development and stromal-epithelial interactions.

  9. Expression of Siglec-11 by human and chimpanzee ovarian stromal cells, with uniquely human ligands: implications for human ovarian physiology and pathology.

    PubMed

    Wang, Xiaoxia; Chow, Renee; Deng, Liwen; Anderson, Dan; Weidner, Noel; Godwin, Andrew K; Bewtra, Chanda; Zlotnik, Albert; Bui, Jack; Varki, Ajit; Varki, Nissi

    2011-08-01

    Siglecs (Sialic acid-binding Immunoglobulin Superfamily Lectins) are cell surface signaling receptors of the I-type lectin group that recognize sialic acid-bearing glycans. CD33-related-Siglecs are a subset with expression primarily in cells of hematopoietic origin and functional relevance to immune reactions. Earlier we reported a human-specific gene conversion event that markedly changed the coding region for the extracellular domain of Siglec-11, associated with human-specific expression in microglia (Hayakawa T, Angata T, Lewis AL, Mikkelsen TS, Varki NM, Varki A. 2005. A human-specific gene in microglia. Science. 309:1693). Analyzing human gene microarrays to define new patterns of expression, we observed high levels of SIGLEC11 transcript in the ovary and adrenal cortex. Thus, we examined human and chimpanzee tissues using a well-characterized anti-Siglec-11 mouse monoclonal antibody. Although adrenal expression was variable and confined to infiltrating macrophages in capillaries, ovarian expression of Siglec-11 in both humans and chimpanzees was on fibroblasts, the first example of Siglec expression on mesenchyme-derived stromal cells. Cytokines from such ovarian stromal fibroblasts play important roles in follicle development and ovulation. Stable transfection of SIGLEC11 into a primary human ovarian stromal fibroblast cell line altered the secretion of growth-regulated oncogene α, interleukin (IL)-10, IL-7, transforming growth factor β1 and tumor necrosis factor-α, cytokines involved in ovarian physiology. Probing for Siglec-11 ligands revealed distinct and strong mast cell expression in human ovaries, contrasting to diffuse stromal ligands in chimpanzee ovaries. Interestingly, there was a trend of increased Siglec-11 expression in post-menopausal ovaries compared with pre-menopausal ones. Siglec-11 expression was also found on human ovarian stromal tumors and in polycystic ovarian syndrome, a human-specific disease. These results indicate potential

  10. Expression of Siglec-11 by human and chimpanzee ovarian stromal cells, with uniquely human ligands: implications for human ovarian physiology and pathology

    PubMed Central

    Wang, Xiaoxia; Chow, Renee; Deng, Liwen; Anderson, Dan; Weidner, Noel; Godwin, Andrew K; Bewtra, Chanda; Zlotnik, Albert; Bui, Jack; Varki, Ajit; Varki, Nissi

    2011-01-01

    Siglecs (Sialic acid-binding Immunoglobulin Superfamily Lectins) are cell surface signaling receptors of the I-type lectin group that recognize sialic acid-bearing glycans. CD33-related-Siglecs are a subset with expression primarily in cells of hematopoietic origin and functional relevance to immune reactions. Earlier we reported a human-specific gene conversion event that markedly changed the coding region for the extracellular domain of Siglec-11, associated with human-specific expression in microglia (Hayakawa T, Angata T, Lewis AL, Mikkelsen TS, Varki NM, Varki A. 2005. A human-specific gene in microglia. Science. 309:1693). Analyzing human gene microarrays to define new patterns of expression, we observed high levels of SIGLEC11 transcript in the ovary and adrenal cortex. Thus, we examined human and chimpanzee tissues using a well-characterized anti-Siglec-11 mouse monoclonal antibody. Although adrenal expression was variable and confined to infiltrating macrophages in capillaries, ovarian expression of Siglec-11 in both humans and chimpanzees was on fibroblasts, the first example of Siglec expression on mesenchyme-derived stromal cells. Cytokines from such ovarian stromal fibroblasts play important roles in follicle development and ovulation. Stable transfection of SIGLEC11 into a primary human ovarian stromal fibroblast cell line altered the secretion of growth-regulated oncogene α, interleukin (IL)-10, IL-7, transforming growth factor β1 and tumor necrosis factor-α, cytokines involved in ovarian physiology. Probing for Siglec-11 ligands revealed distinct and strong mast cell expression in human ovaries, contrasting to diffuse stromal ligands in chimpanzee ovaries. Interestingly, there was a trend of increased Siglec-11 expression in post-menopausal ovaries compared with pre-menopausal ones. Siglec-11 expression was also found on human ovarian stromal tumors and in polycystic ovarian syndrome, a human-specific disease. These results indicate potential

  11. The NF-YA transcription factor OsNF-YA7 confers drought stress tolerance of rice in an abscisic acid independent manner.

    PubMed

    Lee, Dong-Keun; Kim, Hyung Il; Jang, Geupil; Chung, Pil Joong; Jeong, Jin Seo; Kim, Youn Shic; Bang, Seung Woon; Jung, Harin; Choi, Yang Do; Kim, Ju-Kon

    2015-12-01

    The mechanisms of plant response and adaptation to drought stress require the regulation of transcriptional networks via the induction of drought-responsive transcription factors. Nuclear Factor Y (NF-Y) transcription factors have aroused interest in roles of plant drought stress responses. However, the molecular mechanism of the NF-Y-induced drought tolerance is not well understood. Here, we functionally analyzed two rice NF-YA genes, OsNF-YA7 and OsNF-YA4. Expression of OsNF-YA7 was induced by drought stress and its overexpression in transgenic rice plants improved their drought tolerance. In contrast, OsNF-YA4 expression was not increased by drought stress and its overexpression in transgenic rice plants did not affect their sensitivity to drought stress. OsNF-YA4 expression was highly induced by the stress-related hormone abscisic acid (ABA), while OsNF-YA7 was not, indicating that OsNF-YA7 mediates drought tolerance in an ABA-independent manner. Analysis of the OsNF-YA7 promoter revealed three ABA-independent DRE/CTR elements and RNA-seq analysis identified 48 genes downstream of OsNFYA7 action putatively involved in the OsNF-YA7-mediated drought tolerance pathway. Taken together, our results suggest an important role for OsNF-YA7 in rice drought stress tolerance.

  12. Insider conference tips

    NASA Astrophysics Data System (ADS)

    Tennant, Jill

    2012-01-01

    Attending an educator conference and its associated exhibit hall can be a rewarding experience for your brain. But if you keep in mind these insider's tips, your feet, arms, stomach, and wallet will also thank you.

  13. Lunar & Planetary Science Conference.

    ERIC Educational Resources Information Center

    Warner, Jeffrey L.; And Others

    1982-01-01

    Summaries of different topics discussed at the Lunar and Planetary Science Conference are presented to provide updated information to nonplanetologists. Some topics include Venus, isotopes, chondrites, creation science, cosmic dust, cratering, moons and rings, igneous rocks, and lunar soil. (DC)

  14. Aircraft Engine Emissions. [conference

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A conference on a aircraft engine emissions was held to present the results of recent and current work. Such diverse areas as components, controls, energy efficient engine designs, and noise and pollution reduction are discussed.

  15. Tackling conference carbon footprints

    NASA Astrophysics Data System (ADS)

    Grozier, Jim

    2016-12-01

    In reply to Margaret Harris's Lateral Thoughts article "Putting my foot down", which discussed the challenges of attending a conference with a physical disability (October p76) and a subsequent letter by Anna Wood (November p18).

  16. DNA sequencing conference, 2

    SciTech Connect

    Cook-Deegan, R.M.; Venter, J.C.; Gilbert, W.; Mulligan, J.; Mansfield, B.K.

    1991-06-19

    This conference focused on DNA sequencing, genetic linkage mapping, physical mapping, informatics and bioethics. Several were used to study this sequencing and mapping. This article also discusses computer hardware and software aiding in the mapping of genes.

  17. Multiphoton processes: conference proceedings

    SciTech Connect

    Lambropoulos, P.; Smith, S.J.

    1984-01-01

    The chapters of this volume represent the invited papers delivered at the conference. They are arranged according to thermatic proximity beginning with atoms and continuing with molecules and surfaces. Section headings include multiphoton processes in atoms, field fluctuations and collisions in multiphoton process, and multiphoton processes in molecules and surfaces. Abstracts of individual items from the conference were prepared separately for the data base. (GHT)

  18. Molecular diagnostics in soft tissue sarcomas and gastrointestinal stromal tumors.

    PubMed

    Smith, Stephen M; Coleman, Joshua; Bridge, Julia A; Iwenofu, O Hans

    2015-04-01

    Soft tissue sarcomas are rare malignant heterogenous tumors of mesenchymal origin with over fifty subtypes. The use of hematoxylin and eosin stained sections (and immunohistochemistry) in the morphologic assessment of these tumors has been the bane of clinical diagnosis until recently. The last decade has witnessed considerable progress in the understanding and application of molecular techniques in refining the current understanding of soft tissue sarcomas and gastrointestinal stromal tumors beyond the limits of traditional approaches. Indeed, the identification of reciprocal chromosomal translocations and fusion genes in some subsets of sarcomas with potential implications in the pathogenesis, diagnosis and treatment has been revolutionary. The era of molecular targeted therapy presents a platform that continues to drive biomarker discovery and personalized medicine in soft tissue sarcomas and gastrointestinal stromal tumors. In this review, we highlight how the different molecular techniques have enhanced the diagnosis of these tumors with prognostic and therapeutic implications.

  19. Conference scene: DGVS spring conference 2009.

    PubMed

    Kolligs, Frank Thomas

    2009-10-01

    The 3rd annual DGVS Spring Conference of the German Society for Gastroenterology (Deutsche Gesellschaft für Verdauungs- und Stoffwechselkrankheiten) was held at the Seminaris Campus Hotel in Berlin, Germany, on 8-9 May, 2009. The conference was organized by Roland Schmid and Matthias Ebert from the Technical University of Munich, Germany. The central theme of the meeting was 'translational gastrointestinal oncology: towards personalized medicine and individualized therapy'. The conference covered talks on markers for diagnosis, screening and surveillance of colorectal cancer, targets for molecular therapy, response prediction in clinical oncology, development and integration of molecular imaging in gastrointestinal oncology and translational research in clinical trial design. Owing to the broad array of topics and limitations of space, this article will focus on biomarkers, response prediction and the integration of biomarkers into clinical trials. Presentations mentioned in this summary were given by Matthias Ebert (Technical University of Munich, Germany), Esmeralda Heiden (Epigenomics, Berlin, Germany), Frank Kolligs (University of Munich, Germany), Florian Lordick (University of Heidelberg, Germany), Hans Jorgen Nielsen (University of Copenhagen, Denmark), Anke Reinacher-Schick (University of Bochum, Germany), Christoph Röcken (University of Berlin, Germany), Wolff Schmiegel (University of Bochum, Germany) and Thomas Seufferlein (University of Halle, Germany).

  20. TIMP1 in conditioned media of human adipose stromal cells protects neurons against oxygen-glucose deprivation injury.

    PubMed

    Du, Shiwei; Mao, Gengsheng; Zhu, Timothy; Luan, Zuo; Du, Yansheng; Gu, Huiying

    2015-01-01

    Adipose stromal cells (ASC) can protect neurons when administered to brains due to secreted trophic factors. Our previous studies demonstrated that several neurotrophic factors such as brain-derived neurotropic factor (BDNF) and insulin like growth factor-1 (IGF-1) in ASC conditioned media (ASC-CM) can protect brains against hypoxic-ischemic (HI) injury in neonatal rats. In this study, we demonstrated that human ASC-CM potently blockeds caspase-3 mediated cortical neuronal apoptosis under in vitro oxygen-glucose deprivation (OGD). Interestingly, tissue inhibitor of metalloproteinase 1 (TIMP1), a non neurotrophic factor, played a significant role in the ASC-CM-induced neural protection against OGD. Thus, this study establishes the therapeutic potential of TIMP1 together with other neurotrophic factors in ASC-CM for treating cerebral HI disorders.

  1. Effect of Stromal Adipokines on Breast Cancer Development

    DTIC Science & Technology

    2009-09-01

    menopausal women. The degree of risk increases proportionally with an increase in adiposity. There is mounting evidence that stromal cells in the tumor...the risk of breast cancer in post- menopausal women. The degree of risk increases proportionally with an increase in adiposity. There is mounting...cells has not been resolved. It is apparent that concomitant changes at the organismic level (e.g. degree of adiposity and/or menopausal status) and

  2. Giant rectal gastrointestinal stromal tumours: a diagnostic and therapeutic challenge

    PubMed Central

    Alder, L.S.; Elver, G.; Foo, F.J.; Dobson, M.

    2013-01-01

    Gastrointestinal stromal tumour (GIST are the most common mesenchymal tumours; however, rectal GISTs account for <5%. In the pelvis they represent a diagnostic challenge with giant GISTs likely to be malignant. They may present with urological, gynaecological or rectal symptoms. Sphincter-preserving surgery can be aided by neoadjuvant therapy. We present an uncommon case of giant rectal GIST masquerading as acute urinary retention. PMID:24968434

  3. Atypical presentation of gastrointestinal stromal tumours-a case report.

    PubMed

    Raja, Kalpana; Dev, Bhawna; Santosham, Roy; Santhosh, Joseph

    2013-06-01

    Gastrointestinal stromal tumors (GISTs) are benign mesenchymal tumors of the gastrointestinal tract (GIT). Their clinical presentations are variable. We report a case of a 31-year-old man who presented with pain in the abdomen and vomiting. CT abdomen revealed a large exophytic mass in the epigastrium with enhancement pattern similar to hemangioma. No relationship of the mass could be made out with the adjacent structures on CT, histopathology proved it to be a GIST.

  4. Mitochondrial haplogroup D4 confers resistance and haplogroup B is a genetic risk factor for high-altitude pulmonary edema among Han Chinese.

    PubMed

    Luo, Y J; Gao, W X; Li, S Z; Huang, X W; Chen, Y; Liu, F Y; Huang, Q Y; Gao, Y Q

    2012-10-09

    High-altitude pulmonary edema (HAPE) is a life-threatening condition caused by acute exposure to high altitude. Accumulating evidence suggests that genetic factors play an important role in the etiology of HAPE. However, conclusions from association studies have been hindered by limited sample size due to the rareness of this disease. It is known that mitochondria are critical for hypoxic adaptation, and mitochondrial malfunction can be an important factor in HAPE development. Therefore, we tested the hypothesis that mitochondrial DNA haplotypes and polymorphisms affect HAPE susceptibility. We recruited 204 HAPE patients and 174 healthy controls in Tibet (3658 m above sea level), all Han Chinese, constituting the largest sample size of all HAPE vulnerability studies. Among mtDNA haplogroups, we found that haplogroup D4 is associated with resistance to HAPE, while haplogroup B is a genetic risk factor for this condition. Haplogroup D4 (tagged by 3010A) may enhance the stability of 16S rRNA, resulting in reduced oxidative stress and protection against HAPE. Within haplogroup B, subhaplogroup B4c (tagged by 15436A and 1119C) was associated with increased risk for HAPE, while subhaplogroup B4b may protect against HAPE. We indicate that there are differences in HAPE susceptibility among mtDNA haplogroups. We conclude that mitochondria are involved in adverse reactions to acute hypoxic exposure; our finding of differences in susceptibility as a function of mitochondrial DNA haplotype may shed light on the pathogenesis of other disorders associated with hypoxia, such as chronic obstructive pulmonary disease.

  5. The transcription factor SlAREB1 confers drought, salt stress tolerance and regulates biotic and abiotic stress-related genes in tomato.

    PubMed

    Orellana, Sandra; Yañez, Mónica; Espinoza, Analía; Verdugo, Isabel; González, Enrique; Ruiz-Lara, Simón; Casaretto, José A

    2010-12-01

    Members of the abscisic acid-responsive element binding protein (AREB)/abscisic acid-responsive element binding factor (ABF) subfamily of basic leucine zipper (bZIP) transcription factors have been implicated in abscisic acid (ABA) and abiotic stress responses in plants. Here we describe two members identified in cultivated tomato (Solanum lycopersicum), named SlAREB1 and SlAREB2. Expression of SlAREB1 and SlAREB2 is induced by drought and salinity in both leaves and root tissues, although that of SlAREB1 was more affected. In stress assays, SlAREB1-overexpressing transgenic tomato plants showed increased tolerance to salt and water stress compared to wild-type and SlAREB1-down-regulating transgenic plants, as assessed by physiological parameters such as relative water content (RWC), chlorophyll fluorescence and damage by lipoperoxidation. In order to identify SlAREB1 target genes responsible for the enhanced tolerance, microarray and cDNA-amplified fragment length polymorphism (AFLP) analyses were performed. Genes encoding oxidative stress-related proteins, lipid transfer proteins (LTPs), transcription regulators and late embryogenesis abundant proteins were found among the up-regulated genes in SlAREB1-overexpressing lines, especially in aerial tissue. Notably, several genes encoding defence proteins associated with responses to biotic stress (e.g. pathogenesis-related proteins, protease inhibitors, and catabolic enzymes) were also up-regulated by SlAREB1 overexpression, suggesting that this bZIP transcription factor is involved in ABA signals that participate in abiotic stress and possibly in response to pathogens.

  6. Treatment with bone marrow-derived stromal cells accelerates wound healing in diabetic rats.

    PubMed

    Kwon, David S; Gao, Xiaohua; Liu, Yong Bo; Dulchavsky, Deborah S; Danyluk, Andrew L; Bansal, Mona; Chopp, Michael; McIntosh, Kevin; Arbab, Ali S; Dulchavsky, Scott A; Gautam, Subhash C

    2008-06-01

    Bone marrow stem cells participate in tissue repair processes and may have a role in wound healing. Diabetes is characterised by delayed and poor wound healing. We investigated the potential of bone marrow-derived mesenchymal stromal cells (BMSCs) to promote healing of fascial wounds in diabetic rats. After manifestation of streptozotocin (STZ)-induced diabetic state for 5 weeks in male adult Sprague-Dawley rats, healing of fascial wounds was severely compromised. Compromised wound healing in diabetic rats was characterised by excessive polymorphonuclear cell infiltration, lack of granulation tissue formation, deficit of collagen and growth factor [transforming growth factor (TGF-beta), epidermal growth factor (EGF), vascular endothelial growth factor (VEGF), platelet-derived growth factor PDGF-BB and keratinocyte growth factor (KGF)] expression in the wound tissue and significant decrease in biomechanical strength of wounds. Treatment with BMSC systemically or locally at the wound site improved the wound-breaking strength (WBS) of fascial wounds. The improvement in WBS was associated with an immediate and significant increase in collagen levels (types I-V) in the wound bed. In addition, treatment with BMSCs increased the expression of growth factors critical to proper repair and regeneration of the damaged tissue moderately (TGF-beta, KGF) to markedly (EGF, VEGF, PDGF-BB). These data suggest that cell therapy with BMSCs has the potential to augment healing of the diabetic wounds.

  7. Therapeutic effect of mesenchymal multipotent stromal cells on memory in animals with Alzheimer-type neurodegeneration.

    PubMed

    Bobkova, N V; Poltavtseva, R A; Samokhin, A N; Sukhikh, G T

    2013-11-01

    Transplantation of human mesenchymal multipotent stromal cells improved spatial memory in bulbectomized mice with Alzheimer-type neurodegeneration. The positive effect was observed in 1 month after intracerebral transplantation and in 3 months after systemic injection of mesenchymal multipotent stromal cells. No cases of malignant transformation were noted. These findings indicate prospects of using mesenchymal multipotent stromal cells for the therapy of Alzheimer disease and the possibility of their systemic administration for attaining the therapeutic effect.

  8. Interstitial stromal progenitors during kidney development: here, there and everywhere.

    PubMed

    Fanni, Daniela; Gerosa, Clara; Vinci, Laura; Ambu, Rossano; Dessì, Angelica; Eyken, Peter Van; Fanos, Vassilios; Faa, Gavino

    2016-12-01

    In recent years, the renal interstitium has been identified as the site of multiple cell types, giving rise to multiple contiguous cellular networks with multiple fundamental structural and functional roles. Few studies have been carried out on the morphological and functional properties of the stromal/interstitial renal cells during the intrauterine life. This work was aimed at reviewing the peculiar features of renal interstitial stem/progenitor cells involved in kidney development. The origin of the renal interstitial progenitor cells remains unknown. During kidney development, besides the Six2 + cells of the cap mesenchyme, a self-renewing progenitor population, characterized by the expression of Foxd1, represents the first actor of the non-nephrogenic lineage. Foxd1 + interstitial progenitors originate the cortical and the renal medullary interstitial progenitors. Here, the most important stromal/interstitial compartments present in the developing human kidney will be analyzed: capsular stromal cells, cortical interstitial cells, medullary interstitial cells, the interstitium inside the renal stem cell niche, Hilar interstitial cells and Ureteric interstitial cells. Data reported here indicate that the different interstitial compartments of the developing kidney are formed by different cell types that characterize the different renal areas. Further studies are needed to better characterize the different pools of renal interstitial progenitors and their role in human nephrogenesis.

  9. Engineering epithelial-stromal interactions in vitro for toxicology assessment.

    PubMed

    Belair, David G; Abbott, Barbara D

    2017-03-08

    Crosstalk between epithelial and stromal cells drives the morphogenesis of ectodermal organs during development and promotes normal mature adult epithelial tissue homeostasis. Epithelial-stromal interactions (ESIs) have historically been examined using mammalian models and ex vivo tissue recombination. Although these approaches have elucidated signaling mechanisms underlying embryonic morphogenesis processes and adult mammalian epithelial tissue function, they are limited by the availability of tissue, low throughput, and human developmental or physiological relevance. In this review, we describe how bioengineered ESIs, using either human stem cells or co-cultures of human primary epithelial and stromal cells, have enabled the development of human in vitro epithelial tissue models that recapitulate the architecture, phenotype, and function of adult human epithelial tissues. We discuss how the strategies used to engineer mature epithelial tissue models in vitro could be extrapolated to instruct the design of organotypic culture models that can recapitulate the structure of embryonic ectodermal tissues and enable the in vitro assessment of events critical to organ/tissue morphogenesis. Given the importance of ESIs towards normal epithelial tissue development and function, such models present a unique opportunity for toxicological screening assays to incorporate ESIs to assess the impact of chemicals on mature and developing epidermal tissues.

  10. Stromal Targets for Fluorescent-Guided Oncologic Surgery

    PubMed Central

    Boonstra, Martin C.; Prakash, Jai; Van De Velde, Cornelis J. H.; Mesker, Wilma E.; Kuppen, Peter J. K.; Vahrmeijer, Alexander L.; Sier, Cornelis F. M.

    2015-01-01

    Pre-operative imaging techniques are essential for tumor detection and diagnosis, but offer limited help during surgery. Recently, the applicability of imaging during oncologic surgery has been recognized, using near-infrared fluorescent dyes conjugated to targeting antibodies, peptides, or other vehicles. Image-guided oncologic surgery (IGOS) assists the surgeFon to distinguish tumor from normal tissue during operation, and can aid in recognizing vital structures. IGOS relies on an optimized combination of a dedicated fluorescent camera system and specific probes for targeting. IGOS probes for clinical use are not widely available yet, but numerous pre-clinical studies have been published and clinical trials are being established or prepared. Most of the investigated probes are based on antibodies or peptides against proteins on the membranes of malignant cells, whereas others are directed against stromal cells. Targeting stroma cells for IGOS has several advantages. Besides the high stromal content in more aggressive tumor types, the stroma is often primarily located at the periphery/invasive front of the tumor, which makes stromal targets particularly suited for imaging purposes. Moreover, because stroma up-regulation is a physiological reaction, most proteins to be targeted on these cells are “universal” and not derived from a specific genetic variation, as is the case with many upregulated proteins on malignant cancer cells. PMID:26636036

  11. [Extragastrointestinal stromal tumor (EGIST)--a case review].

    PubMed

    Kolarík, J; Drápela, J

    2012-04-01

    Gastrointestinal stromal tumor (GIST) is the most common mesenchymal tumor of the gastrointestinal tract. Due to the presence of thyrosine kinase receptors within the tumor tissue, GIST is thought to originate from gastrointestinal pacemaker cells, the intersticial cells of Cajal. Tumors with the same morphological and imunohistochemical characteristics detected outside the gastrointestinal tract, are called extragastrointestinal stromal tumors (EGIST). Biological characteristics of these tumors is uncertain and the malignancy rates are difficult to predict. Surgical R0 resection in resecable tumors is the only option with the potential for complete cure. Nevertheless, the recurrence rates are high. Adjuvant biological treatment with imatinib, a thyrosine kinase inhibitor, reduces the risk of relapses. Imatinib administration is also the principal treatment method in metastatic GIST disorders. The article offers a short and complex overview of gastrointestinal stromal tumor (GIST) problematics and presents a case report of a patient suffering from EGIST of mesocolon transversum treated by R0 resection which was performed under multidisciplinary cooperation, with a specialist follow up.

  12. Extragastrointestinal Stromal Tumour of The Abdominal Wall - A Case Report

    PubMed Central

    Kumar, A. Sathish Selva; Padmini, R; Veena, G; Murugesan, N

    2013-01-01

    Stromal tumours occurring in areas other than the GastroIntestinal Tract (GIT) are known as Extra GastroIntestinal Stromal Tumours (EGISTs). They usually arise in the mesentery, omentum or retroperitoneum, while EGISTs which occur in the abdominal wall are very rare. Both gastrointestinal stromal tumours (GISTs) and EGISTs are histologically and immunophenotypically similar. We are reporting a case of EGIST, which occurred in the anterior abdominal wall in a twenty five-year-old female patient. The tumour was present in the right loin and imaging studies suggested that it was a desmoid tumour. It was surgically excised by doing an abdominal wall mesh repair. The histological examinations revealed a tumour with spindle cell morphology, with <2 mitoses per 50 High Power Field (HPF) and no necrosis, with tumour free margins. Immunohistochemistry was strongly positive for CD117 and Smooth Muscle Actin (SMA), while it was negative for β-catenin and S100. The patient is well post operatively and is on close follow up. EGISTs should be considered in the differential diagnosis of mesenchymal tumours which occur in the abdominal wall, inspite of their rarity, as the high risk patients may need Imatinib chemotherapy. PMID:24551695

  13. Characterization of bone marrow mesenchymal stromal cells in aplastic anaemia.

    PubMed

    Hamzic, Edita; Whiting, Karen; Gordon Smith, Edward; Pettengell, Ruth

    2015-06-01

    In aplastic anaemia (AA), haemopoietic activity is significantly reduced and generally attributed to failure of haemopoietic stem cells (HSC) within the bone marrow (BM). The regulation of haemopoiesis depends on the interaction between HSC and various cells of the BM microenvironment, including mesenchymal stromal cells (MSC). MSC involvement in the functional restriction of HSC in AA is largely unknown and therefore, the physical and functional properties of AA MSC were studied in vitro. MSC were characterized by their phenotype and ability to form adherent stromal layers. The functional properties of AA MSC were assessed through proliferative, clonogenic and cross-over culture assays. Results indicate that although AA MSC presented typical morphology and distinctive mesenchymal markers, stromal formation was reduced, with 50% of BM samples failing to produce adherent layers. Furthermore, their proliferative and clonogenic capacity was markedly decreased (P = 0·03 and P = 0·04 respectively) and the ability to sustain haemopoiesis was significantly reduced, as assessed by total cell proliferation (P = 0·032 and P = 0·019 at Week 5 and 6, respectively) and clonogenic potential of HSC (P = 0·02 at Week 6). It was concluded that the biological characteristics of AA MSC are different from those of control MSC and their in vitro haemopoiesis-supporting ability is significantly reduced.

  14. Targeted Proapoptotic Peptides Depleting Adipose Stromal Cells Inhibit Tumor Growth

    PubMed Central

    Daquinag, Alexes C; Tseng, Chieh; Zhang, Yan; Amaya-Manzanares, Felipe; Florez, Fernando; Dadbin, Ali; Zhang, Tao; Kolonin, Mikhail G

    2016-01-01

    Progression of many cancers is associated with tumor infiltration by mesenchymal stromal cells (MSC). Adipose stromal cells (ASC) are MSC that serve as adipocyte progenitors and endothelium-supporting cells in white adipose tissue (WAT). Clinical and animal model studies indicate that ASC mobilized from WAT are recruited by tumors. Direct evidence for ASC function in tumor microenvironment has been lacking due to unavailability of approaches to specifically inactivate these cells. Here, we investigate the effects of a proteolysis-resistant targeted hunter-killer peptide D-WAT composed of a cyclic domain CSWKYWFGEC homing to ASC and of a proapoptotic domain KLAKLAK2. Using mouse bone marrow transplantation models, we show that D-WAT treatment specifically depletes tumor stromal and perivascular cells without directly killing malignant cells or tumor-infiltrating leukocytes. In several mouse carcinoma models, targeted ASC cytoablation reduced tumor vascularity and cell proliferation resulting in hemorrhaging, necrosis, and suppressed tumor growth. We also validated a D-WAT derivative with a proapoptotic domain KFAKFAK2 that was found to have an improved cytoablative activity. Our results for the first time demonstrate that ASC, recruited as a component of tumor microenvironment, support cancer progression. We propose that drugs targeting ASC can be developed as a combination therapy complementing conventional cancer treatments. PMID:26316391

  15. Fourth technical contractors' conference on peat

    SciTech Connect

    Not Available

    1981-01-01

    This conference reported the status of the US Department of Energy Peat Program. The papers presented dealt with peat dewatering, international peat programs, environmental and socio-economic factors, peat gasification, peat harvesting, and the state peat surveys for 14 states. Separate abstracts were prepared for the individual papers. (CKK)

  16. Second technical contractors' conference on peat

    SciTech Connect

    Not Available

    1980-01-01

    This conference reported the status of the US Department of Energy Peat Program. The program includes peat resource surveys of eleven states, peat gasification process and equipment studies, dewatering studies, and environmental and socioeconomic factors in the development of peat technology. Separate abstracts were prepared for selected papers. (CKK)

  17. Influenza virus polymerase confers independence of the cellular cap-binding factor eIF4E for viral mRNA translation

    PubMed Central

    Yángüez, Emilio; Rodriguez, Paloma; Goodfellow, Ian; Nieto, Amelia

    2012-01-01

    The influenza virus mRNAs are structurally similar to cellular mRNAs nevertheless; the virus promotes selective translation of viral mRNAs despite the inhibition of host cell protein synthesis. The infection proceeds normally upon functional impairment of eIF4E cap-binding protein, but requires functional eIF4A helicase and eIF4G factor. Here, we have studied whether the presence of cis elements in viral mRNAs or the action of viral proteins are responsible for this eIF4E-independence. The eIF4E protein is required for viral mRNAs translation in vitro, indicating that cis-acting RNA sequences are not involved in this process. We also show that PB2 viral polymerase subunit interacts with the eIF4G protein. In addition, a chimeric mRNA containing viral UTRs sequences transcribed by the viral polymerase out of the infection is successfully translated independently of an impaired eIF4E factor. These data support that the viral polymerase is responsible for the eIF4E independence of influenza virus mRNAs translation. PMID:22112850

  18. AtTGA4, a bZIP transcription factor, confers drought resistance by enhancing nitrate transport and assimilation in Arabidopsis thaliana.

    PubMed

    Zhong, Li; Chen, Dandan; Min, Donghong; Li, Weiwei; Xu, Zhaoshi; Zhou, Yongbin; Li, Liancheng; Chen, Ming; Ma, Youzhi

    2015-02-13

    To cope with environmental stress caused by global climate change and excessive nitrogen application, it is important to improve water and nitrogen use efficiencies in crop plants. It has been reported that higher nitrogen uptake could alleviate the damaging impact of drought stress. However, there is scant evidence to explain how nitrogen uptake affects drought resistance. In this study we observed that bZIP transcription factor AtTGA4 (TGACG motif-binding factor 4) was induced by both drought and low nitrogen stresses, and that overexpression of AtTGA4 simultaneously improved drought resistance and reduced nitrogen starvation in Arabidopsis. Following drought stress there were higher nitrogen and proline contents in transgenic AtTGA4 plants than in wild type controls, and activity of the key enzyme nitrite reductase (NIR) involved in nitrate assimilation processes was also higher. Expressions of the high-affinity nitrate transporter genes NRT2.1 and NRT2.2 and nitrate reductase genes NIA1 and NIA2 in transgenic plants were all higher than in wild type indicating that higher levels of nitrate transport and assimilation activity contributed to enhanced drought resistance of AtTGA4 transgenic plants. Thus genetic transformation with AtTGA4 may provide a new approach to simultaneously improve crop tolerance to drought and low nitrogen stresses.

  19. Transcription factors, transcriptional coregulators, and epigenetic modulation in the control of pulmonary vascular cell phenotype: therapeutic implications for pulmonary hypertension (2015 Grover Conference series)

    PubMed Central

    Perros, Frédéric; Chelladurai, Prakash; Yuan, Jason; Stenmark, Kurt

    2016-01-01

    Abstract Pulmonary hypertension (PH) is a complex and multifactorial disease involving genetic, epigenetic, and environmental factors. Numerous stimuli and pathological conditions facilitate severe vascular remodeling in PH by activation of a complex cascade of signaling pathways involving vascular cell proliferation, differentiation, and inflammation. Multiple signaling cascades modulate the activity of certain sequence-specific DNA-binding transcription factors (TFs) and coregulators that are critical for the transcriptional regulation of gene expression that facilitates PH-associated vascular cell phenotypes, as demonstrated by several studies summarized in this review. Past studies have largely focused on the role of the genetic component in the development of PH, while the presence of epigenetic alterations such as microRNAs, DNA methylation, histone levels, and histone deacetylases in PH is now also receiving increasing attention. Epigenetic regulation of chromatin structure is also recognized to influence gene expression in development or disease states. Therefore, a complete understanding of the mechanisms involved in altered gene expression in diseased cells is vital for the design of novel therapeutic strategies. Recent technological advances in DNA sequencing will provide a comprehensive improvement in our understanding of mechanisms involved in the development of PH. This review summarizes current concepts in TF and epigenetic control of cell phenotype in pulmonary vascular disease and discusses the current issues and possibilities in employing potential epigenetic or TF-based therapies for achieving complete reversal of PH. PMID:28090287

  20. Transcription factors, transcriptional coregulators, and epigenetic modulation in the control of pulmonary vascular cell phenotype: therapeutic implications for pulmonary hypertension (2015 Grover Conference series).

    PubMed

    Pullamsetti, Soni S; Perros, Frédéric; Chelladurai, Prakash; Yuan, Jason; Stenmark, Kurt

    2016-12-01

    Pulmonary hypertension (PH) is a complex and multifactorial disease involving genetic, epigenetic, and environmental factors. Numerous stimuli and pathological conditions facilitate severe vascular remodeling in PH by activation of a complex cascade of signaling pathways involving vascular cell proliferation, differentiation, and inflammation. Multiple signaling cascades modulate the activity of certain sequence-specific DNA-binding transcription factors (TFs) and coregulators that are critical for the transcriptional regulation of gene expression that facilitates PH-associated vascular cell phenotypes, as demonstrated by several studies summarized in this review. Past studies have largely focused on the role of the genetic component in the development of PH, while the presence of epigenetic alterations such as microRNAs, DNA methylation, histone levels, and histone deacetylases in PH is now also receiving increasing attention. Epigenetic regulation of chromatin structure is also recognized to influence gene expression in development or disease states. Therefore, a complete understanding of the mechanisms involved in altered gene expression in diseased cells is vital for the design of novel therapeutic strategies. Recent technological advances in DNA sequencing will provide a comprehensive improvement in our understanding of mechanisms involved in the development of PH. This review summarizes current concepts in TF and epigenetic control of cell phenotype in pulmonary vascular disease and discusses the current issues and possibilities in employing potential epigenetic or TF-based therapies for achieving complete reversal of PH.

  1. Transcription factor cap n collar C regulates multiple cytochrome P450 genes conferring adaptation to potato plant allelochemicals and resistance to imidacloprid in Leptinotarsa decemlineata (Say).

    PubMed

    Kalsi, Megha; Palli, Subba Reddy

    2017-04-01

    Colorado potato beetle (CPB), Leptinotarsa decemlineata is a notorious pest of potato. Co-evolution with Solanaceae plants containing high levels of toxins (glycoalkaloids) helped this insect to develop an efficient detoxification system and resist almost every chemical insecticide introduced for its control. Even though the cross-resistance between plant allelochemicals and insecticides is well acknowledged, the underlying molecular mechanisms are not understood. Here, we investigated the molecular mechanisms involved in detoxification of potato plant allelochemicals and imidacloprid resistance in the field-collected CPB. Our results showed that the imidacloprid-resistant beetles employ metabolic detoxification of both potato plant allelochemicals and imidacloprid by upregulation of common cytochrome P450 genes. RNAi aided knockdown identified four cytochromes P450 genes (CYP6BJ(a/b), CYP6BJ1v1, CYP9Z25, and CYP9Z29) that are required for defense against both natural and synthetic chemicals. These P450 genes are regulated by the xenobiotic transcription factors Cap n Collar C, CncC and muscle aponeurosis fibromatosis, Maf. Studies on the CYP9Z25 promoter using the luciferase reporter assay identified two binding sites (i.e. GCAGAAT and GTACTGA) for CncC and Maf. Overall, these data showed that CPB employs the metabolic resistance mediated through xenobiotic transcription factors CncC and Maf to regulate multiple P450 genes and detoxify both imidacloprid and potato plant allelochemicals.

  2. Overexpression of EcbHLH57 Transcription Factor from Eleusine coracana L. in Tobacco Confers Tolerance to Salt, Oxidative and Drought Stress

    PubMed Central

    Nataraja, Karaba N.; Udayakumar, M.

    2015-01-01

    Basic helix-loop-helix (bHLH) transcription factors constitute one of the largest families in plants and are known to be involved in various developmental processes and stress tolerance. We report the characterization of a stress responsive bHLH transcription factor from stress adapted species finger millet which is homologous to OsbHLH57 and designated as EcbHLH57. The full length sequence of EcbHLH57 consisted of 256 amino acids with a conserved bHLH domain followed by leucine repeats. In finger millet, EcbHLH57 transcripts were induced by ABA, NaCl, PEG, methyl viologen (MV) treatments and drought stress. Overexpression of EcbHLH57 in tobacco significantly increased the tolerance to salinity and drought stress with improved root growth. Transgenic plants showed higher photosynthetic rate and stomatal conductance under drought stress that resulted in higher biomass. Under long-term salinity stress, the transgenic plants accumulated higher seed weight/pod and pod number. The transgenic plants were also tolerant to oxidative stress and showed less accumulation of H202 and MDA levels. The overexpression of EcbHLH57 enhanced the expression of stress responsive genes such as LEA14, rd29A, rd29B, SOD, APX, ADH1, HSP70 and also PP2C and hence improved tolerance to diverse stresses. PMID:26366726

  3. Stromal and hematopoietic cells in secondary lymphoid organs: partners in immunity.

    PubMed

    Malhotra, Deepali; Fletcher, Anne L; Turley, Shannon J

    2013-01-01

    Secondary lymphoid organs (SLOs), including lymph nodes, Peyer's patches, and the spleen, have evolved to bring cells of the immune system together. In these collaborative environments, lymphocytes scan the surfaces of antigen-presenting cells for cognate antigens, while moving along stromal networks. The cell-cell interactions between stromal and hematopoietic cells in SLOs are therefore integral to the normal functioning of these tissues. Not only do stromal cells physically construct SLO architecture but they are essential for regulating hematopoietic populations within these domains. Stromal cells interact closely with lymphocytes and dendritic cells, providing scaffolds on which these cells migrate, and recruiting them into niches by secreting chemokines. Within lymph nodes, stromal cell-ensheathed conduit networks transport small antigens deep into the SLO parenchyma. More recently, stromal cells have been found to induce peripheral CD8(+) T-cell tolerance and control the extent to which newly activated T cells proliferate within lymph nodes. Thus, stromal-hematopoietic crosstalk has important consequences for regulating immune cell function within SLOs. In addition, stromal cell interactions with hematopoietic cells, other stroma, and the inflammatory milieu have profound effects on key stromal functions. Here, we examine ways in which these interactions within the lymph node environment influence the adaptive immune response.

  4. Stromal and hematopoietic cells in secondary lymphoid organs: partners in immunity

    PubMed Central

    Malhotra, Deepali; Fletcher, Anne L.; Turley, Shannon J.

    2012-01-01

    Summary Secondary lymphoid organs (SLOs), including lymph nodes, Peyer's patches, and the spleen, have evolved to bring cells of the immune system together. In these collaborative environments, lymphocytes scan the surfaces of antigen-presenting cells for cognate antigens, while moving along stromal networks. The cell-cell interactions between stromal and hematopoietic cells in SLOs are therefore integral to the normal functioning of these tissues. Not only do stromal cells physically construct SLO architecture, but they are essential for regulating hematopoietic populations within these domains. Stromal cells interact closely with lymphocytes and dendritic cells, providing scaffolds on which these cells migrate, and recruiting them into niches by secreting chemokines. Within lymph nodes, stromal cell-ensheathed conduit networks transport small antigens deep into the SLO parenchyma. More recently, stromal cells have been found to induce peripheral CD8+ T-cell tolerance and control the extent to which newly activated T cells proliferate within lymph nodes. Thus, stromal-hematopoietic crosstalk has important consequences for regulating immune cell function within SLOs. In addition, stromal cell interactions with hematopoietic cells, other stroma, and the inflammatory milieu have profound effects on key stromal functions. Here, we examine ways in which these interactions within the lymph node environment influence the adaptive immune response. PMID:23278748

  5. Regional differences in the expression of brain-derived neurotrophic factor (BDNF) pro-peptide, proBDNF and preproBDNF in the brain confer stress resilience.

    PubMed

    Yang, Bangkun; Yang, Chun; Ren, Qian; Zhang, Ji-Chun; Chen, Qian-Xue; Shirayama, Yukihiko; Hashimoto, Kenji

    2016-12-01

    Using learned helplessness (LH) model of depression, we measured protein expression of brain-derived neurotrophic factor (BDNF) pro-peptide, BDNF precursors (proBDNF and preproBDNF) in the brain regions of LH (susceptible) and non-LH rats (resilience). Expression of preproBDNF, proBDNF and BDNF pro-peptide in the medial prefrontal cortex of LH rats, but not non-LH rats, was significantly higher than control rats, although expression of these proteins in the nucleus accumbens of LH rats was significantly lower than control rats. This study suggests that regional differences in conversion of BDNF precursors into BDNF and BDNF pro-peptide by proteolytic cleavage may contribute to stress resilience.

  6. Legumain Regulates Differentiation Fate of Human Bone Marrow Stromal Cells and Is Altered in Postmenopausal Osteoporosis.

    PubMed

    Jafari, Abbas; Qanie, Diyako; Andersen, Thomas L; Zhang, Yuxi; Chen, Li; Postert, Benno; Parsons, Stuart; Ditzel, Nicholas; Khosla, Sundeep; Johansen, Harald Thidemann; Kjærsgaard-Andersen, Per; Delaisse, Jean-Marie; Abdallah, Basem M; Hesselson, Daniel; Solberg, Rigmor; Kassem, Moustapha

    2017-02-14

    Secreted factors are a key component of stem cell niche and their dysregulation compromises stem cell function. Legumain is a secreted cysteine protease involved in diverse biological processes. Here, we demonstrate that legumain regulates lineage commitment of human bone marrow stromal cells and that its expression level and cellular localization are altered in postmenopausal osteoporotic patients. As shown by genetic and pharmacological manipulation, legumain inhibited osteoblast (OB) differentiation and in vivo bone formation through degradation of the bone matrix protein fibronectin. In addition, genetic ablation or pharmacological inhibition of legumain activity led to precocious OB differentiation and increased vertebral mineralization in zebrafish. Finally, we show that localized increased expression of legumain in bone marrow adipocytes was inversely correlated with adjacent trabecular bone mass in a cohort of patients with postmenopausal osteoporosis. Our data suggest that altered proteolytic activity of legumain in the bone microenvironment contributes to decreased bone mass in postmenopausal osteoporosis.

  7. Characterization and angiogenic potential of human neonatal and infant thymus mesenchymal stromal cells.

    PubMed

    Wang, Shuyun; Mundada, Lakshmi; Johnson, Sean; Wong, Joshua; Witt, Russell; Ohye, Richard G; Si, Ming-Sing

    2015-04-01

    Resident mesenchymal stromal cells (MSCs) are involved in angiogenesis during thymus regeneration. We have previously shown that MSCs can be isolated from enzymatically digested human neonatal and infant thymus tissue that is normally discarded during pediatric cardiac surgical procedures. In this paper, we demonstrate that thymus MSCs can also be isolated by explant culture of discarded thymus tissue and that these cells share many of the characteristics of bone marrow MSCs. Human neonatal thymus MSCs are clonogenic, demonstrate exponential growth in nearly 30 population doublings, have a characteristic surface marker profile, and express pluripotency genes. Furthermore, thymus MSCs have potent proangiogenic behavior in vitro with sprout formation and angiogenic growth factor production. Thymus MSCs promote neoangiogenesis and cooperate with endothelial cells to form functional human blood vessels in vivo. These characteristics make thymus MSCs a potential candidate for use as an angiogenic cell therapeutic agent and for vascularizing engineered tissues in vitro.

  8. BAG3 promotes pancreatic ductal adenocarcinoma growth by activating stromal macrophages

    PubMed Central

    Rosati, Alessandra; Basile, Anna; D'Auria, Raffaella; d'Avenia, Morena; De Marco, Margot; Falco, Antonia; Festa, Michelina; Guerriero, Luana; Iorio, Vittoria; Parente, Roberto; Pascale, Maria; Marzullo, Liberato; Franco, Renato; Arra, Claudio; Barbieri, Antonio; Rea, Domenica; Menichini, Giulio; Hahne, Michael; Bijlsma, Maarten; Barcaroli, Daniela; Sala, Gianluca; di Mola, Fabio Francesco; di Sebastiano, Pierluigi; Todoric, Jelena; Antonucci, Laura; Corvest, Vincent; Jawhari, Anass; Firpo, Matthew A; Tuveson, David A; Capunzo, Mario; Karin, Michael; De Laurenzi, Vincenzo; Turco, Maria Caterina

    2015-01-01

    The incidence and death rate of pancreatic ductal adenocarcinoma (PDAC) have increased in recent years, therefore the identification of novel targets for treatment is extremely important. Interactions between cancer and stromal cells are critically involved in tumour formation and development of metastasis. Here we report that PDAC cells secrete BAG3, which binds and activates macrophages, inducing their activation and the secretion of PDAC supporting factors. We also identify IFITM-2 as a BAG3 receptor and show that it signals through PI3K and the p38 MAPK pathways. Finally, we show that the use of an anti-BAG3 antibody results in reduced tumour growth and prevents metastasis formation in three different mouse models. In conclusion, we identify a paracrine loop involved in PDAC growth and metastatic spreading, and show that an anti-BAG3 antibody has therapeutic potential. PMID:26522614

  9. Traumatic Ulcerative Granuloma with Stromal Eosinophila: A Case Report and Review of Pathogenesis

    PubMed Central

    Koshy, George; Kapoor, Shekhar

    2016-01-01

    Traumatic Ulcerative Granuloma with Stromal Eosinophilia (TUGSE) is an uncommon condition considered to be a, reactive benign lesion of the oral mucosa, usually affecting the tongue. Its aetiopathogenesis is still uncertain. However, trauma has been found to be a contributing factor in a majority of the cases. Clinically, it often presents as an isolated ulcer or an indurated submucosal mass. Microscopically, it is characterized by a diffuse polymorphic cell infiltrate composed predominantly of eosinophils, B and T lymphocytes, macrophages, and large atypical cells involving the superficial mucosa and extending deep into the submucosa causing degeneration of the underlying muscle. TUGSE is rare and may be easily mistaken for a cancer or microbial infection, but it is self-limiting and tends to resolve spontaneously. Thus, awareness of this entity is important to emphasize the correct diagnosis of indurated ulcerated lesions and deliver appropriate and effective treatment. The present case highlights the clinical aspects, aetiopathogenesis and histopathology of this uncommon lesion. PMID:27891480

  10. Clinical-grade production of human mesenchymal stromal cells: occurrence of aneuploidy without transformation.

    PubMed

    Tarte, Karin; Gaillard, Julien; Lataillade, Jean-Jacques; Fouillard, Loic; Becker, Martine; Mossafa, Hossein; Tchirkov, Andrei; Rouard, Hélène; Henry, Catherine; Splingard, Marie; Dulong, Joelle; Monnier, Delphine; Gourmelon, Patrick; Gorin, Norbert-Claude; Sensebé, Luc

    2010-02-25

    Clinical-grade human mesenchymal stromal cells (MSCs) have been expanded in vitro for tissue engineering or immunoregulatory purposes without standardized culture conditions or release criteria. Although human MSCs show poor susceptibility for oncogenic transformation, 2 recent studies described their capacity to accumulate chromosomal instability and to give rise to carcinoma in immunocompromised mice after long-term culture. We thus investigated the immunologic and genetic features of MSCs expanded with fetal calf serum and fibroblast growth factor or with platelet lysate in 4 cell-therapy facilities during 2 multicenter clinical trials. Cultured MSCs showed a moderate expression of human leukocyte antigen-DR without alteration of their low immunogenicity or their immunomodulatory capacity. Moreover, some transient and donor-dependent recurring aneuploidy was detected in vitro, independently of the culture process. However, MSCs with or without chromosomal alterations showed progressive growth arrest and entered senescence without evidence of transformation either in vitro or in vivo.

  11. Characterization and Angiogenic Potential of Human Neonatal and Infant Thymus Mesenchymal Stromal Cells

    PubMed Central

    Wang, Shuyun; Mundada, Lakshmi; Johnson, Sean; Wong, Joshua; Witt, Russell; Ohye, Richard G.

    2015-01-01

    Resident mesenchymal stromal cells (MSCs) are involved in angiogenesis during thymus regeneration. We have previously shown that MSCs can be isolated from enzymatically digested human neonatal and infant thymus tissue that is normally discarded during pediatric cardiac surgical procedures. In this paper, we demonstrate that thymus MSCs can also be isolated by explant culture of discarded thymus tissue and that these cells share many of the characteristics of bone marrow MSCs. Human neonatal thymus MSCs are clonogenic, demonstrate exponential growth in nearly 30 population doublings, have a characteristic surface marker profile, and express pluripotency genes. Furthermore, thymus MSCs have potent proangiogenic behavior in vitro with sprout formation and angiogenic growth factor production. Thymus MSCs promote neoangiogenesis and cooperate with endothelial cells to form functional human blood vessels in vivo. These characteristics make thymus MSCs a potential candidate for use as an angiogenic cell therapeutic agent and for vascularizing engineered tissues in vitro. PMID:25713463

  12. Mesenchymal Stem/Stromal Cells in Regenerative Medicine: Can Preconditioning Strategies Improve Therapeutic Efficacy?

    PubMed Central

    Schäfer, Richard; Spohn, Gabriele; Baer, Patrick C.

    2016-01-01

    Mesenchymal stem/stromal cells (MSCs) are becoming increasingly important for the development of cell therapeutics in regenerative medicine. Featuring immunomodulatory potential as well as secreting a variety of trophic factors, MSCs showed remarkable therapeutic effects in numerous preclinical disease models. However, sustainable translation of MSC therapies to the clinic is hampered by heterogeneity of MSCs and non-standardized in vitro culture technologies. Moreover, potent MSC therapeutics require MSCs with maximum regenerative capacity. There is growing evidence that in vitro preconditioning strategies of MSCs can optimize their therapeutic potential. In the following we will discuss achievements and challenges of the development of MSC therapies in regenerative medicine highlighting specific in vitro preconditioning strategies prior to cell transplantation to increase their therapeutic efficacy. PMID:27721701

  13. Ovarian stromal tumor with minor sex cord elements with coexistent endometrial carcinoma.

    PubMed

    Kumar, Sunesh; Mathur, Sandeep; Subbaiah, Murali; Singh, Lavleen

    2013-01-01

    Ovarian stromal tumor with minor sex cord elements is a rare tumor. It is composed of predominantly fibrothecomatous tumor with scattered minor sex cord elements in less than 10% of the tumor area. These tumors may be hormonally active and predispose to carcinoma endometrium. A case of ovarian fibroma-thecoma with minor sex cord elements in which coexistent endometrial carcinoma was also discovered is being reported. Though thecoma may be a predisposing factor for endometrial cancer, meticulous histopathological examination of the ovary may reveal additional sources of estrogen like granulosa cell aggregates as in our patient. Such patients would require long-term follow-up to detect any recurrence of granulosa cell tumor.

  14. Stress Inducible Expression of AtDREB1A Transcription Factor in Transgenic Peanut (Arachis hypogaea L.) Conferred Tolerance to Soil-Moisture Deficit Stress.

    PubMed

    Sarkar, Tanmoy; Thankappan, Radhakrishnan; Kumar, Abhay; Mishra, Gyan P; Dobaria, Jentilal R

    2016-01-01

    Peanut, an important oilseed crop, is gaining priority for the development of drought tolerant genotypes in recent times, since the area under drought is constantly on the rise. To achieve this, one of the important strategies is to genetically engineer the ruling peanut varieties using transcription factor regulating the expression of several downstream, abiotic-stress responsive gene(s). In this study, eight independent transgenic peanut (cv. GG20) lines were developed using AtDREB1A gene, encoding for a transcription factor, through Agrobacterium-mediated genetic transformation. The transgene insertion was confirmed in (T0) using PCR and Dot-blot analysis, while copy-number(s) was ascertained using Southern-blot analysis. The inheritance of AtDREB1A gene in individual transgenic plants (T1 and T2) was confirmed using PCR. In homozygous transgenic plants (T2), under soil-moisture deficit stress, elevated level of AtDREB1A transgene expression was observed by RT-PCR assay. The transgenic plants at 45-d or reproductive growth stage showed tolerance to severe soil-moisture deficit stress. Physio-biochemical parameters such as proline content, osmotic potential, relative water content, electrolytic leakage, and total-chlorophyll content were found positively correlated with growth-related traits without any morphological abnormality, when compared to wild-type. qPCR analysis revealed consistent increase in expression of AtDREB1A gene under progressive soil-moisture deficit stress in two homozygous transgenic plants. The transgene expression showed significant correlation with improved physio-biochemical traits. The improvement of drought-stress tolerance in combination with improved growth-related traits is very essential criterion for a premium peanut cultivar like GG20, so that marginal farmers of India can incur the economic benefits during seasonal drought and water scarcity.

  15. The Variant rs1867277 in FOXE1 Gene Confers Thyroid Cancer Susceptibility through the Recruitment of USF1/USF2 Transcription Factors

    PubMed Central

    Montero-Conde, Cristina; Inglada-Pérez, Lucía; Schiavi, Francesca; Leskelä, Susanna; Pita, Guillermo; Milne, Roger; Maravall, Javier; Ramos, Ignacio; Andía, Víctor; Rodríguez-Poyo, Paloma; Jara-Albarrán, Antonino; Meoro, Amparo; del Peso, Cristina; Arribas, Luis; Iglesias, Pedro; Caballero, Javier; Serrano, Joaquín; Picó, Antonio; Pomares, Francisco; Giménez, Gabriel; López-Mondéjar, Pedro; Castello, Roberto; Merante-Boschin, Isabella; Pelizzo, Maria-Rosa; Mauricio, Didac; Opocher, Giuseppe; Rodríguez-Antona, Cristina; González-Neira, Anna; Matías-Guiu, Xavier; Santisteban, Pilar; Robledo, Mercedes

    2009-01-01

    In order to identify genetic factors related to thyroid cancer susceptibility, we adopted a candidate gene approach. We studied tag- and putative functional SNPs in genes involved in thyroid cell differentiation and proliferation, and in genes found to be differentially expressed in thyroid carcinoma. A total of 768 SNPs in 97 genes were genotyped in a Spanish series of 615 cases and 525 controls, the former comprising the largest collection of patients with this pathology from a single population studied to date. SNPs in an LD block spanning the entire FOXE1 gene showed the strongest evidence of association with papillary thyroid carcinoma susceptibility. This association was validated in a second stage of the study that included an independent Italian series of 482 patients and 532 controls. The strongest association results were observed for rs1867277 (OR[per-allele] = 1.49; 95%CI = 1.30–1.70; P = 5.9×10−9). Functional assays of rs1867277 (NM_004473.3:c.−283G>A) within the FOXE1 5′ UTR suggested that this variant affects FOXE1 transcription. DNA-binding assays demonstrated that, exclusively, the sequence containing the A allele recruited the USF1/USF2 transcription factors, while both alleles formed a complex in which DREAM/CREB/αCREM participated. Transfection studies showed an allele-dependent transcriptional regulation of FOXE1. We propose a FOXE1 regulation model dependent on the rs1867277 genotype, indicating that this SNP is a causal variant in thyroid cancer susceptibility. Our results constitute the first functional explanation for an association identified by a GWAS and thereby elucidate a mechanism of thyroid cancer susceptibility. They also attest to the efficacy of candidate gene approaches in the GWAS era. PMID:19730683

  16. Stress Inducible Expression of AtDREB1A Transcription Factor in Transgenic Peanut (Arachis hypogaea L.) Conferred Tolerance to Soil-Moisture Deficit Stress

    PubMed Central

    Sarkar, Tanmoy; Thankappan, Radhakrishnan; Kumar, Abhay; Mishra, Gyan P.; Dobaria, Jentilal R.

    2016-01-01

    Peanut, an important oilseed crop, is gaining priority for the development of drought tolerant genotypes in recent times, since the area under drought is constantly on the rise. To achieve this, one of the important strategies is to genetically engineer the ruling peanut varieties using transcription factor regulating the expression of several downstream, abiotic-stress responsive gene(s). In this study, eight independent transgenic peanut (cv. GG20) lines were developed using AtDREB1A gene, encoding for a transcription factor, through Agrobacterium-mediated genetic transformation. The transgene insertion was confirmed in (T0) using PCR and Dot-blot analysis, while copy-number(s) was ascertained using Southern-blot analysis. The inheritance of AtDREB1A gene in individual transgenic plants (T1 and T2) was confirmed using PCR. In homozygous transgenic plants (T2), under soil-moisture deficit stress, elevated level of AtDREB1A transgene expression was observed by RT-PCR assay. The transgenic plants at 45-d or reproductive growth stage showed tolerance to severe soil-moisture deficit stress. Physio-biochemical parameters such as proline content, osmotic potential, relative water content, electrolytic leakage, and total-chlorophyll content were found positively correlated with growth-related traits without any morphological abnormality, when compared to wild-type. qPCR analysis revealed consistent increase in expression of AtDREB1A gene under progressive soil-moisture deficit stress in two homozygous transgenic plants. The transgene expression showed significant correlation with improved physio-biochemical traits. The improvement of drought-stress tolerance in combination with improved growth-related traits is very essential criterion for a premium peanut cultivar like GG20, so that marginal farmers of India can incur the economic benefits during seasonal drought and water scarcity. PMID:27446163

  17. Transcriptional activation of the herpes simplex virus type 1 UL38 promoter conferred by the cis-acting downstream activation sequence is mediated by a cellular transcription factor.

    PubMed

    Guzowski, J F; Singh, J; Wagner, E K

    1994-12-01

    The herpes simplex virus (HSV) type 1 strict late (gamma) UL38 promoter contains three cis-acting transcriptional elements: a TATA box, a specific initiator element, and the downstream activation sequence (DAS). DAS is located between positions +20 and +33 within the 5' untranslated leader region and strongly influences transcript levels during productive infection. In this communication, we further characterize DAS and investigate its mechanism of action. DAS function has a strict spacing requirement, and DAS contains an essential 6-bp core element. A similarly positioned element from the gamma gC gene (UL44) has partial DAS function within the UL38 promoter context, and the promoter controlling expression of the gamma US11 transcript contains an identically located element with functional and sequence similarity to UL38 DAS. These data suggest that downstream elements are a common feature of many HSV gamma promoters. Results with recombinant viruses containing modifications of the TATA box or initiator element of the UL38 promoter suggest that DAS functions to increase transcription initiation and not the efficiency of transcription elongation. In vitro transcription assays using uninfected HeLa nuclear extracts show that, as in productive infection with recombinant viruses, the deletion of DAS from the UL38 promoter dramatically decreases RNA expression. Finally, electrophoretic mobility shift assays and UV cross-linking experiments show that DAS DNA forms a specific, stable complex with a cellular protein (the DAS-binding factor) of approximately 35 kDa. These data strongly suggest that the interaction of cellular DAS-binding factor with DAS is required for efficient expression of UL38 and other HSV late genes.

  18. Nuclear Rocket Technology Conference

    NASA Technical Reports Server (NTRS)

    1966-01-01

    The Lewis Research Center has a strong interest in nuclear rocket propulsion and provides active support of the graphite reactor program in such nonnuclear areas as cryogenics, two-phase flow, propellant heating, fluid systems, heat transfer, nozzle cooling, nozzle design, pumps, turbines, and startup and control problems. A parallel effort has also been expended to evaluate the engineering feasibility of a nuclear rocket reactor using tungsten-matrix fuel elements and water as the moderator. Both of these efforts have resulted in significant contributions to nuclear rocket technology. Many successful static firings of nuclear rockets have been made with graphite-core reactors. Sufficient information has also been accumulated to permit a reasonable Judgment as to the feasibility of the tungsten water-moderated reactor concept. We therefore consider that this technoIogy conference on the nuclear rocket work that has been sponsored by the Lewis Research Center is timely. The conference has been prepared by NASA personnel, but the information presented includes substantial contributions from both NASA and AEC contractors. The conference excludes from consideration the many possible mission requirements for nuclear rockets. Also excluded is the direct comparison of nuclear rocket types with each other or with other modes of propulsion. The graphite reactor support work presented on the first day of the conference was partly inspired through a close cooperative effort between the Cleveland extension of the Space Nuclear Propulsion Office (headed by Robert W. Schroeder) and the Lewis Research Center. Much of this effort was supervised by Mr. John C. Sanders, chairman for the first day of the conference, and by Mr. Hugh M. Henneberry. The tungsten water-moderated reactor concept was initiated at Lewis by Mr. Frank E. Rom and his coworkers. The supervision of the recent engineering studies has been shared by Mr. Samuel J. Kaufman, chairman for the second day of the

  19. The Heat Shock Factor A4A Confers Salt Tolerance and Is Regulated by Oxidative Stress and the Mitogen-Activated Protein Kinases MPK3 and MPK61[C][W][OPEN

    PubMed Central

    Pérez-Salamó, Imma; Papdi, Csaba; Rigó, Gábor; Zsigmond, Laura; Vilela, Belmiro; Lumbreras, Victoria; Nagy, István; Horváth, Balázs; Domoki, Mónika; Darula, Zsuzsa; Medzihradszky, Katalin; Bögre, László; Koncz, Csaba; Szabados, László

    2014-01-01

    Heat shock factors (HSFs) are principal regulators of plant responses to several abiotic stresses. Here, we show that estradiol-dependent induction of HSFA4A confers enhanced tolerance to salt and oxidative agents, whereas inactivation of HSFA4A results in hypersensitivity to salt stress in Arabidopsis (Arabidopsis thaliana). Estradiol induction of HSFA4A in transgenic plants decreases, while the knockout hsfa4a mutation elevates hydrogen peroxide accumulation and lipid peroxidation. Overexpression of HSFA4A alters the transcription of a large set of genes regulated by oxidative stress. In yeast (Saccharomyces cerevisiae) two-hybrid and bimolecular fluorescence complementation assays, HSFA4A shows homomeric interaction, which is reduced by alanine replacement of three conserved cysteine residues. HSFA4A interacts with mitogen-activated protein kinases MPK3 and MPK6 in yeast and plant cells. MPK3 and MPK6 phosphorylate HSFA4A in vitro on three distinct sites, serine-309 being the major phosphorylation site. Activation of the MPK3 and MPK6 mitogen-activated protein kinase pathway led to the transcriptional activation of the HEAT SHOCK PROTEIN17.6A gene. In agreement that mutation of serine-309 to alanine strongly diminished phosphorylation of HSFA4A, it also strongly reduced the transcriptional activation of HEAT SHOCK PROTEIN17.6A. These data suggest that HSFA4A is a substrate of the MPK3/MPK6 signaling and that it regulates stress responses in Arabidopsis. PMID:24676858

  20. Increased infiltrated macrophages in benign prostatic hyperplasia (BPH): role of stromal androgen receptor in macrophage-induced prostate stromal cell proliferation.

    PubMed

    Wang, Xiaohai; Lin, Wen-Jye; Izumi, Kouji; Jiang, Qi; Lai, Kuo-Pao; Xu, Defeng; Fang, Lei-Ya; Lu, Tianjing; Li, Lei; Xia, Shujie; Chang, Chawnshang

    2012-05-25

    Infiltrated macrophages may play important roles in the development and progression of benign prostatic hyperplasia (BPH), but the underlying mechanisms remain largely unknown. We found increased macrophages infiltration in human and mouse BPH tissues. By establishing a co-culture transwell system, we found increased migration of macrophages and proliferation of prostate stromal cells during co-culture. Importantly, stromal androgen receptor (AR) could enhance the migration of macrophages and macrophage-mediated stromal cell proliferation. We identified CCL3 as an AR downstream player, and found CCL3 levels were notably increased in human and mouse BPH prostates. Ablation of prostate stromal AR in a mouse BPH model significantly reduced CCL3 expression levels in prostates. Consistently, targeting AR via an AR degradation enhancer, ASC-J9®, or neutralization of CCL3 with an antibody, resulted in suppression of macrophage migration and prostate stromal cell growth. Our study provides mechanistic insights on the regulation of prostate stromal cells by macrophages via stromal AR/CCL3 signaling pathways, which could potentially allow the development of therapeutic approaches for battling BPH with persistent inflammation.

  1. In vitro quantitation of lethal and physiologic effects of total body irradiation on stromal and hematopoietic stem cells in continuous bone marrow cultures from Rf mice

    SciTech Connect

    Greenberger, J.S.; Eckner, R.J.; Otten, J.A.; Tennant, R.W.

    1982-07-01

    The effects of in vivo total body irradiation (TBI) and interval from TBI to explant of marrow on: stromal cell proliferation in vitro; stromal cell support of hematopoiesis in continuous bone marrow culture; and generation of WEHI-3 growth factor (GF)-dependent lines of hematopoietic progenitor cells were evaluated. Explant of marrow at 2, 4, 5, or 6 months after single fraction TBI (300-800 rad) was associated with decreased longevity of hemopoiesis and a decrease in the proliferative capacity of fibroblastic adherent-stromal colony forming cells (CFUf) as measured by colony size at 14 days and number of colonies per 10/sup 6/ cells plated. In contrast, explant of marrow 8 to 24 months after TBI produced cultures with longevity that was indistinguishable from age-matched control cultures (19-24 weeks). Marrow from irradiated first and second generation recipients of serially transferred marrow demonstrated a similar 7-month in vivo recovery period; however, the plateau maximum duration of hemopoiesis did not return to control levels. Purified stromal cell cultures were prepared by corticosteroid-deprivation of explanted marrow for 28 days and were then engrafted in vitro with marrow from C57BL/6J or RfM/UN mice that had been irradiated 1 month previously. Hemopoiesis in these cultures was restored, and they produced GM-CFUc and granulocytes for 15-24 weeks. Thus, healthy stroma supported growth of recently irradiated hemopoietic cells in vitro. Indirect effects of x-irradiation on hemopoietic stem cells through damage and repair in the stromal cell compartment can be effectively studied with the present bone marrow culture system. (JMT)

  2. ADAMTS-1 metalloproteinase promotes tumor development through the induction of a stromal reaction in vivo.

    PubMed

    Rocks, Natacha; Paulissen, Geneviève; Quesada-Calvo, Florence; Munaut, Carine; Gonzalez, Maria-Luz Alvarez; Gueders, Maud; Hacha, Jonathan; Gilles, Christine; Foidart, Jean-Michel; Noel, Agnès; Cataldo, Didier D

    2008-11-15

    ADAMTS-1 (a disintegrin and metalloproteinase with thrombospondin motifs), the first described member of the ADAMTS family, is differentially expressed in various tumors. However, its exact role in tumor development and progression is still unclear. The aim of this study was to investigate the effects of ADAMTS-1 transfection in a bronchial epithelial tumor cell line (BZR) and its potential to modulate tumor development. ADAMTS-1 overexpression did not affect in vitro cell properties such as (a) proliferation in two-dimensional culture, (b) proliferation in three-dimensional culture, (c) anchorage-independent growth in soft agar, (d) cell migration and invasion in modified Boyden chamber assay, (e) angiogenesis in the aortic ring assay, and (f) cell apoptosis. In contrast, ADAMTS-1 stable transfection in BZR cells accelerated the in vivo tumor growth after s.c. injection into severe combined immunodeficient mice. It also promoted a stromal reaction characterized by myofibroblast infiltration and excessive matrix deposition. These features are, however, not observed in tumors derived from cells overexpressing a catalytically inactive mutant of ADAMTS-1. Conditioned media from ADAMTS-1-overexpressing cells display a potent chemotactic activity toward fibroblasts. ADAMTS-1 overexpression in tumors was associated with increased production of matrix metalloproteinase-13, fibronectin, transforming growth factor beta (TGF-beta), and interleukin-1beta (IL-1beta). Neutralizing antibodies against TGF-beta and IL-1beta blocked the chemotactic effect of medium conditioned by ADAMTS-1-expressing cells on fibroblasts, showing the contribution of these factors in ADAMTS-1-induced stromal reaction. In conclusion, we propose a new paradigm for catalytically active ADAMTS-1 contribution to tumor development, which consists of the recruitment of fibroblasts involved in tumor growth and tumor-associated stroma remodeling.

  3. The phytoestrogen genistein enhances osteogenesis and represses adipogenic differentiation of human primary bone marrow stromal cells.

    PubMed

    Heim, M; Frank, O; Kampmann, G; Sochocky, N; Pennimpede, T; Fuchs, P; Hunziker, W; Weber, P; Martin, I; Bendik, I

    2004-02-01

    In the present study, we investigated the role of the phytoestrogen genistein and 17beta-estradiol in human bone marrow stromal cells, undergoing induced osteogenic or adipogenic differentiation. Profiling of estrogen receptors (ERs)-alpha, -beta1, -beta2, -beta3, -beta4, -beta5, and aromatase mRNAs revealed lineage-dependent expression patterns. During osteogenic differentiation, the osteoblast-determining core binding factor-alpha1 showed a progressive increase, whereas the adipogenic regulator peroxisome proliferator-activated receptor gamma (PPARgamma) was sequentially decreased. This temporal regulation of lineage-determining marker genes was strongly enhanced by genistein during the early osteogenic phase. Moreover, genistein increased alkaline phosphatase mRNA levels and activity, the osteoprotegerin:receptor activator of nuclear factor-kappaB ligand gene expression ratio, and the expression of TGFbeta1. During adipogenic differentiation, down-regulation in the mRNA levels of PPARgamma and CCAAT/enhancer-binding protein-alpha at d 3 and decreased lipoprotein lipase and adipsin mRNA levels at d 21 were observed after genistein treatment. This led to a lower number of adipocytes and a reduction in the size of their lipid droplets. At d 3 of adipogenesis, TGFbeta1 was strongly up-regulated by genistein in an ER-dependent manner. Blocking the TGFbeta1 pathway abolished the effects of genistein on PPARgamma protein levels and led to a reduction in the proliferation rate of precursor cells. Overall, genistein enhanced the commitment and differentiation of bone marrow stromal cells to the osteoblast lineage but did not influence the late osteogenic maturation markers. Adipogenic differentiation and maturation, on the other hand, were reduced by genistein (and 17beta-estradiol) via an ER-dependent mechanism involving autocrine or paracrine TGFbeta1 signaling.

  4. The 1965 White House Conference on Health: inspiring the physician assistant movement.

    PubMed

    Hooker, Roderick S; Cawthon, Elisabeth A

    2015-10-01

    The 1965 White House Conference on Health brought together the best minds and the boldest ideas to deal with the nation's pressing health provider needs. The Community Health Clinics Act and the Duke University physician assistant (PA) program were among the many initiatives announced at this conference. The authors explore the conference proceedings, link them with other historical documents and events, and suggest that this conference was a contributing factor to the contemporary PA movement.

  5. Human tumor necrosis factor-alpha gene 3' untranslated region confers inducible toxin responsiveness to homologous promoter in monocytic THP-1 cells.

    PubMed

    Seiler-Tuyns, A; Dufour, N; Spertini, F

    1999-07-30

    To better define the role of 3' untranslated region (3'UTR) on transcriptional regulation of the human tumor necrosis factor (TNF)-alpha gene, monocytic human THP-1 cells were transfected with two TNF-alpha promoter constructs spanning base pairs -1897/-1 and -1214/-1, respectively, and linked to the rabbit beta-globin gene. Quantitative globin gene expression of chimerae was measured by reverse transcription-polymerase chain reaction. A construct linking the chicken beta-actin promoter and a deleted portion of the beta-globin gene was cotransfected and used as internal standard. Unexpectedly, when THP-1 cells were stimulated with lipopolysaccharide or toxic shock syndrome toxin-1, gene regulation was hardly detected. In contrast, endogenous TNF-alpha gene regulation measured by the same reverse transcription-polymerase chain reaction procedure was vigorous. Remarkably, ligation of 3'UTR to chimeric constructs led to a drastic drop in the basal level of chimeric gene expression, resulting in a 15- to 40-fold induction of the reporter gene. Consistently, when the TNF-alpha promoter was replaced by the cytomegalovirus early immediate promoter, gene expression was also uniformly reduced but was no longer up-regulated upon stimulation with lipopolysaccharide and toxic shock syndrome toxin-1. These data provide the first line of evidence that, in addition to its role in TNF-alpha transcript stability and translation, human TNF-alpha 3'UTR also participates in modulating gene expression at the transcriptional level.

  6. Human SPF45, a Splicing Factor, Has Limited Expression in Normal Tissues, Is Overexpressed in Many Tumors, and Can Confer a Multidrug-Resistant Phenotype to Cells

    PubMed Central

    Sampath, Janardhan; Long, Pandy R.; Shepard, Robert L.; Xia, Xiaoling; Devanarayan, Viswanath; Sandusky, George E.; Perry, William L.; Dantzig, Anne H.; Williamson, Mark; Rolfe, Mark; Moore, Robert E.

    2003-01-01

    Our effort to identify novel drug-resistant genes in cyclophosphamide-resistant EMT6 mouse mammary tumors led us to the identification of SPF45. Simultaneously, other groups identified SPF45 as a component of the spliceosome that is involved in alternative splicing. We isolated the human homologue and examined the normal human tissue expression, tumor expression, and the phenotype caused by overexpression of human SPF45. Our analyses revealed that SPF45 is expressed in many, but not all, normal tissues tested with predominant expression in normal ductal epithelial cells of the breast, liver, pancreas, and prostate. Our analyses using tissue microarrays and sausages of tumors indicated that SPF45 is highly expressed in numerous carcinomas including bladder, breast, colon, lung, ovarian, pancreatic, and prostate. Interestingly, this study revealed that overexpression of SPF45 in HeLa, a cervical carcinoma cell line, resulted in drug resistance to doxorubicin and vincristine, two chemotherapeutic drugs commonly used in cancer. To our knowledge, this is the first study showing tumor overexpression of an alternate splicing factor resulting in drug resistance. PMID:14578179

  7. Deoxycholic acid (DCA) confers an intestinal phenotype on esophageal squamous epithelium via induction of the stemness-associated reprogramming factors OCT4 and SOX2.

    PubMed

    Shen, Caifei; Zhang, Haoxiang; Wang, Pu; Feng, Ji; Li, Jingwen; Xu, Yin; Zhang, Anran; Shao, Shunzi; Yu, Xiaona; Yan, Wu; Xia, Yiju; Hu, Jiali; Fang, Dianchun

    2016-06-02

    Barrett's esophagus (BE) is essentially a metaplasia in which the normal stratified squamous epithelium is replaced by columnar epithelium. This study focuses on the involvement of OCT4 and SOX2, 2 key cell-reprogramming factors, in the deoxycholic acid (DCA)-induced expression of the intestinal hallmarks Cdx2 and MUC2 using both in vivo and in vitro models. Up-regulated expression of OCT4 and down-regulated expression of SOX2 were observed in BE compared with normal esophagus and esophagitis. Consistent with the data in vivo, DCA induced time-dependent expression of OCT4 at both the mRNA and protein levels and decreased nuclear expression of SOX2 in Het-1A cells. Down-regulation of OCT4 expression by siRNA abrogated DCA-induced expression of Cdx2 and MUC2, whereas siRNA against SOX2 significantly upregulated the expression of both Cdx2 and MUC2. Our data indicate that both OCT4 and SOX2 play important roles in the development of BE triggered by bile acid reflux.

  8. Basal and therapy-driven hypoxia-inducible factor-1α confers resistance to endocrine therapy in estrogen receptor-positive breast cancer.

    PubMed

    Jia, Xiaoqing; Hong, Qi; Lei, Li; Li, Daqiang; Li, Jianwei; Mo, Miao; Wang, Yujie; Shao, Zhimin; Shen, Zhenzhou; Cheng, Jingyi; Liu, Guangyu

    2015-04-20

    Resistance is an obstacle to endocrine therapy for breast cancer. We measured levels of hypoxia-inducible factor (HIF)-1α in 52 primary breast cancer patients before and after receiving neoadjuvant endocrine therapy with letrozole for at least 3 months. Pre-treatment levels of HIF-1α were associated with negative clinical outcome. Furthermore, levels of HIF-1α were increased in post-treatment residual tumors compared with those in pre-treatment biopsy samples. In animal studies, xenografts stably expressing HIF-1α were resistant to endocrine therapy with fulvestrant compared with the effects in control xenografts. Additionally, HIF-1α transcription was inhibited by zoledronic acid, a conventional drug for the treatment of postmenopausal osteoporosis, and was accompanied by a marked inhibition of the RAS/MAPK/ERK1/2 pathway. HIF-1α is a determinant of resistance to endocrine therapy and should be considered as a potential therapeutic target for overcoming endocrine resistance in estrogen receptor (ER)-positive breast cancer. In addition, zoledronic acid may overcome endocrine resistance in ER-positive human breast cancer by targeting HIF-1α transcription through inhibition of the RAS/MAPK/ERK1/2 pathway. Clinical studies on the administration of zoledronic acid as a second line treatment in patients who failed endocrine therapy should be considered to improve therapeutic outcomes in breast cancer patients.

  9. Costimulator B7-1 confers antigen-presenting-cell function to parenchymal tissue and in conjunction with tumor necrosis factor alpha leads to autoimmunity in transgenic mice.

    PubMed Central

    Guerder, S; Picarella, D E; Linsley, P S; Flavell, R A

    1994-01-01

    Tolerance to peripheral antigens is thought to result from the inability of parenchymal tissue to stimulate T cells--an inability that is believed to relate to the lack of expression of the costimulatory signal(s) required for T-cell activation. To test this model, we generated transgenic mice expressing costimulatory molecule B7-1 on the B cells of the pancreas. We find that islets from these transgenic mice are immunogenic for naive T cells in vitro and in vivo. Nonetheless, mice expressing the costimulator B7-1 specifically on beta cells do not develop diabetes, suggesting that expression of the B7-1 costimulator is not sufficient to abrogate the tolerance to peripheral antigens. We have reported that tumor necrosis factor alpha subunit (TNF-alpha) expressed by beta cells leads to a local inflammation but no islet destruction. Strikingly, however, the combination of a local inflammation due to the expression of the cytokine TNF-alpha and the expression of B7-1 results in tissue destruction and diabetes. Images PMID:7515187

  10. SHOT conference report 2016: serious hazards of transfusion - human factors continue to cause most transfusion-related incidents.

    PubMed

    Bolton-Maggs, P H B

    2016-12-01

    The Annual SHOT Report for incidents reported in 2015 was published on 7 July at the SHOT symposium. Once again, the majority of reports (77·7%) were associated with mistakes ('human factors'). Pressures and stress in the hospital environment contributed to several error reports. There were 26 deaths where transfusion played a part, one due to haemolysis from anti-Wr(a) (units issued electronically). The incidence of haemolysis due to this antibody has increased in recent years. Transfusion-associated circulatory overload is the most common contributor to death and major morbidity. Reports of delays to transfusion have increased, some caused by the failure of correct patient identification. There were seven ABO-incompatible red cell transfusions (one death) with an additional six to allogeneic stem cell transplant recipients. Near-miss reporting and analysis is useful and demonstrated nearly 300 instances of wrong blood in tube, which could have resulted in ABO-incompatible transfusion had the error not been detected. Errors with anti-D immunoglobulin continue, and preliminary data from the new survey of new anti-D found in pregnancy has shown that sensitisation occurs in some women even with apparently 'ideal' care. For the first time, the SHOT report now incorporates a chapter on donor events.

  11. Genome Wide Analysis of the Apple MYB Transcription Factor Family Allows the Identification of MdoMYB121 Gene Confering Abiotic Stress Tolerance in Plants

    PubMed Central

    Wang, Rong-Kai; Zhang, Rui-Fen; Hao, Yu-Jin

    2013-01-01

    The MYB proteins comprise one of the largest families of transcription factors (TFs) in plants. Although several MYB genes have been characterized to play roles in secondary metabolism, the MYB family has not yet been identified in apple. In this study, 229 apple MYB genes were identified through a genome-wide analysis and divided into 45 subgroups. A computational analysis was conducted using the apple genomic database to yield a complete overview of the MYB family, including the intron-exon organizations, the sequence features of the MYB DNA-binding domains, the carboxy-terminal motifs, and the chromosomal locations. Subsequently, the expression of 18 MYB genes, including 12 were chosen from stress-related subgroups, while another 6 ones from other subgroups, in response to various abiotic stresses was examined. It was found that several of these MYB genes, particularly MdoMYB121, were induced by multiple stresses. The MdoMYB121 was then further functionally characterized. Its predicted protein was found to be localized in the nucleus. A transgenic analysis indicated that the overexpression of the MdoMYB121 gene remarkably enhanced the tolerance to high salinity, drought, and cold stresses in transgenic tomato and apple plants. Our results indicate that the MYB genes are highly conserved in plant species and that MdoMYB121 can be used as a target gene in genetic engineering approaches to improve the tolerance of plants to multiple abiotic stresses. PMID:23950843

  12. A novel transcription factor-like gene SbSDR1 acts as a molecular switch and confers salt and osmotic endurance to transgenic tobacco

    PubMed Central

    Singh, Vijay Kumar; Mishra, Avinash; Haque, Intesaful; Jha, Bhavanath

    2016-01-01

    A salt- and drought-responsive novel gene SbSDR1 is predominantly localised to the nucleus, up-regulated under abiotic stresses and is involved in the regulation of metabolic processes. SbSDR1 showed DNA-binding activity to genomic DNA, microarray analysis revealed the upregulation of host stress-responsive genes and the results suggest that SbSDR1 acts as a transcription factor. Overexpression of SbSDR1 did not affect the growth and yield of transgenic plants in non-stress conditions. Moreover, the overexpression of SbSDR1 stimulates the growth of plants and enhances their physiological status by modulating the physiology and inhibiting the accumulation of reactive oxygen species under salt and osmotic stress. Transgenic plants that overexpressed SbSDR1 had a higher relative water content, membrane integrity and concentration of proline and total soluble sugars, whereas they showed less electrolyte leakage and lipid peroxidation than wild type plants under stress conditions. In field conditions, SbSDR1 plants recovered from stress-induced injuries and could complete their life cycle. This study suggests that SbSDR1 functions as a molecular switch and contributes to salt and osmotic tolerance at different growth stages. Overall, SbSDR1 is a potential candidate to be used for engineering salt and drought tolerance in crops without adverse effects on growth and yield. PMID:27550641

  13. A Theoretical Model for the Associative Nature of Conference Participation.

    PubMed

    Smiljanić, Jelena; Chatterjee, Arnab; Kauppinen, Tomi; Mitrović Dankulov, Marija

    2016-01-01

    Participation in conferences is an important part of every scientific career. Conferences provide an opportunity for a fast dissemination of latest results, discussion and exchange of ideas, and broadening of scientists' collaboration network. The decision to participate in a conference depends on several factors like the location, cost, popularity of keynote speakers, and the scientist's association with the community. Here we discuss and formulate the problem of discovering how a scientist's previous participation affects her/his future participations in the same conference series. We develop a stochastic model to examine scientists' participation patterns in conferences and compare our model with data from six conferences across various scientific fields and communities. Our model shows that the probability for a scientist to participate in a given conference series strongly depends on the balance between the number of participations and non-participations during his/her early connections with the community. An active participation in a conference series strengthens the scientist's association with that particular conference community and thus increases the probability of future participations.

  14. A Theoretical Model for the Associative Nature of Conference Participation

    PubMed Central

    Smiljanić, Jelena; Chatterjee, Arnab; Kauppinen, Tomi; Mitrović Dankulov, Marija

    2016-01-01

    Participation in conferences is an important part of every scientific career. Conferences provide an opportunity for a fast dissemination of latest results, discussion and exchange of ideas, and broadening of scientists’ collaboration network. The decision to participate in a conference depends on several factors like the location, cost, popularity of keynote speakers, and the scientist’s association with the community. Here we discuss and formulate the problem of discovering how a scientist’s previous participation affects her/his future participations in the same conference series. We develop a stochastic model to examine scientists’ participation patterns in conferences and compare our model with data from six conferences across various scientific fields and communities. Our model shows that the probability for a scientist to participate in a given conference series strongly depends on the balance between the number of participations and non-participations during his/her early connections with the community. An active participation in a conference series strengthens the scientist’s association with that particular conference community and thus increases the probability of future participations. PMID:26859404

  15. Heterology Expression of the Arabidopsis C-Repeat/Dehydration Response Element Binding Factor 1 Gene Confers Elevated Tolerance to Chilling and Oxidative Stresses in Transgenic Tomato1