Ikeda, Miho; Ohme-Takagi, Masaru
2014-01-01
In contrast to somatic mammalian cells, which cannot alter their fate, plant cells can dedifferentiate to form totipotent callus cells and regenerate a whole plant, following treatment with specific phytohormones. However, the regulatory mechanisms and key factors that control differentiation-dedifferentiation and cell totipotency have not been completely clarified in plants. Recently, several plant transcription factors that regulate meristem formation and dedifferentiation have been identified and include members of the TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP), WUSCHEL (WUS), and WOUND INDUCED DEDIFFERENTIATION (WIND1) families. WUS and WIND positively control plant cell totipotency, while TCP negatively controls it. Interestingly, TCP is a transcriptional activator that acts as a negative regulator of shoot meristem formation, and WUS is a transcriptional repressor that positively maintains totipotency of the stem cells of the shoot meristem. We describe here the functions of TCP, WUS, and WIND transcription factors in the regulation of differentiation-dedifferentiation by positive and negative transcriptional regulators.
2011-01-01
A Bilayer Construct Controls Adipose-Derived Stem Cell Differentiation into Endothelial Cells and Pericytes Without Growth Factor Stimulation...Ph.D.3 This work describes the differentiation of adipose-derived mesenchymal stem cells (ASC) in a composite hy- drogel for use as a vascularized...tissue from a single population of ASC. This work underscores the importance of the extracellular matrix in controlling stem cell phenotype. It is our
Eguchi, Asuka; Lee, Garrett O.; Wan, Fang; Erwin, Graham S.; Ansari, Aseem Z.
2014-01-01
Transcription factors control the fate of a cell by regulating the expression of genes and regulatory networks. Recent successes in inducing pluripotency in terminally differentiated cells as well as directing differentiation with natural transcription factors has lent credence to the efforts that aim to direct cell fate with rationally designed transcription factors. Because DNA-binding factors are modular in design, they can be engineered to target specific genomic sequences and perform pre-programmed regulatory functions upon binding. Such precision-tailored factors can serve as molecular tools to reprogramme or differentiate cells in a targeted manner. Using different types of engineered DNA binders, both regulatory transcriptional controls of gene networks, as well as permanent alteration of genomic content, can be implemented to study cell fate decisions. In the present review, we describe the current state of the art in artificial transcription factor design and the exciting prospect of employing artificial DNA-binding factors to manipulate the transcriptional networks as well as epigenetic landscapes that govern cell fate. PMID:25145439
Lynch, Lydia; Michelet, Xavier; Zhang, Sai; Brennan, Patrick J; Moseman, Ashley; Lester, Chantel; Besra, Gurdyal; Vomhof-Dekrey, Emilie E; Tighe, Mike; Koay, Hui-Fern; Godfrey, Dale I; Leadbetter, Elizabeth A; Sant'Angelo, Derek B; von Andrian, Ulrich; Brenner, Michael B
2015-01-01
Invariant natural killer T cells (iNKT cells) are lipid-sensing innate T cells that are restricted by the antigen-presenting molecule CD1d and express the transcription factor PLZF. iNKT cells accumulate in adipose tissue, where they are anti-inflammatory, but the factors that contribute to their anti-inflammatory nature, as well as their targets in adipose tissue, are unknown. Here we found that iNKT cells in adipose tissue had a unique transcriptional program and produced interleukin 2 (IL-2) and IL-10. Unlike other iNKT cells, they lacked PLZF but expressed the transcription factor E4BP4, which controlled their IL-10 production. The adipose iNKT cells were a tissue-resident population that induced an anti-inflammatory phenotype in macrophages and, through the production of IL-2, controlled the number, proliferation and suppressor function of regulatory T cells (Treg cells) in adipose tissue. Thus, iNKT cells in adipose tissue are unique regulators of immunological homeostasis in this tissue.
Lynch, Lydia; Michelet, Xavier; Zhang, Sai; Brennan, Patrick J.; Moseman, Ashley; Lester, Chantel; Besra, Gurdyal; Vomhof-Dekrey, Emilie E.; Tighe, Mike; Koay, Hui-Fern; Godfrey, Dale I.; Leadbetter, Elizabeth A.; Sant’Angelo, Derek B.; von Andrian, Ulrich; Brenner, Michael B.
2015-01-01
iNKT cells are CD1d-restricted lipid-sensing innate T cells that express the transcription factor PLZF. iNKT cells accumulate in adipose tissue, where they are anti-inflammatory, but the factors that contribute to their anti-inflammatory nature, and their targets in adipose tissue are unknown. Here we report that adipose tissue iNKT cells have a unique transcriptional program and produce interleukin 2 (IL-2) and IL-10. Unlike other iNKT cells, they lack PLZF, but express the transcription factor E4BP4, which controls their IL-10 production. Adipose iNKT cells are a tissue resident population that induces an anti-inflammatory phenotype in macrophages and, through production of IL-2, controls the number, proliferation and suppressor function of adipose regulatory T (Treg) cells. Thus, adipose tissue iNKT cells are unique regulators of immune homeostasis in this tissue. PMID:25436972
Akbarinejad, Vahid; Tajik, Parviz; Movahedin, Mansoureh; Youssefi, Reza
2016-01-01
Background: Niche cells, regulating Spermatogonial Stem Cells (SSCs) fate are believed to have a reciprocal communication with SSCs. The present study was conducted to evaluate the effect of SSC elimination on the gene expression of Glial cell line-Derived Neurotrophic Factor (GDNF), Fibroblast Growth Factor 2 (FGF2) and Kit Ligand (KITLG), which are the main growth factors regulating SSCs development and secreted by niche cells, primarily Sertoli cells. Methods: Following isolation, bovine testicular cells were cultured for 12 days on extracellular matrix-coated plates. In the germ cell-removed group, the SSCs were removed from the in vitro culture using differential plating; however, in the control group, no intervention in the culture was performed. Colony formation of SSCs was evaluated using an inverted microscope. The gene expression of growth factors and spermatogonia markers were assessed using quantitative real time PCR. Results: SSCs colonies were developed in the control group but they were rarely observed in the germ cell-removed group; moreover, the expression of spermatogonia markers was detected in the control group while it was not observed in the germ cell-removed group, substantiating the success of SSCs removal. The expression of Gdnf and Fgf2 was greater in the germ cell-removed than control group (p<0.05), whereas the expression of Kitlg was lower in the germ cell-removed than control group (p< 0.05). Conclusion: In conclusion, the results revealed that niche cells respond to SSCs removal by upregulation of GDNF and FGF2, and downregulation of KITLG in order to stimulate self-renewal and arrest differentiation. PMID:27563426
Diversity in TAF proteomics: consequences for cellular differentiation and migration.
Kazantseva, Jekaterina; Palm, Kaia
2014-09-19
Development is a highly controlled process of cell proliferation and differentiation driven by mechanisms of dynamic gene regulation. Specific DNA binding factors for establishing cell- and tissue-specific transcriptional programs have been characterised in different cell and animal models. However, much less is known about the role of "core transcription machinery" during cell differentiation, given that general transcription factors and their spatiotemporally patterned activity govern different aspects of cell function. In this review, we focus on the role of TATA-box associated factor 4 (TAF4) and its functional isoforms generated by alternative splicing in controlling lineage-specific differentiation of normal mesenchymal stem cells and cancer stem cells. In the light of our recent findings, induction, control and maintenance of cell differentiation status implies diversification of the transcription initiation apparatus orchestrated by alternative splicing.
An increase in circulating B cell-activating factor in childhood-onset ocular myasthenia gravis.
Motobayashi, Mitsuo; Inaba, Yuji; Nishimura, Takafumi; Kobayashi, Norimoto; Nakazawa, Yozo; Koike, Kenichi
2015-04-01
Myasthenia gravis is a B cell-mediated autoimmune disorder. The pathophysiology of childhood-onset ocular myasthenia gravis remains unclear. We investigated serum B cell-activating factor levels and other immunological parameters in child patients with ocular myasthenia gravis. Blood samples were obtained from 9 children with ocular myasthenia gravis and 20 age-matched controls. We assayed serum concentrations of B cell-activating factor, anti-acetylcholine receptor antibody titers, 7 types of cytokines (interleukins-2, -4, -6, -10, and -17A; interferon-γ; tumor necrosis factor-α) as well as the percentages of peripheral blood CD4+, CD8+, and CD19+ cells. Serum B cell-activating factor levels were significantly higher before immunosuppressive therapy in patients with childhood-onset ocular myasthenia gravis than in controls and decreased after immunosuppressive therapy. A significant positive correlation was observed between serum B cell-activating factor levels and anti-acetylcholine receptor antibody titers in patients with myasthenia gravis. Serum B cell-activating factor concentrations did not correlate with the percentages of CD4+, CD8+, and CD19+ cells or the CD4+/CD8+ ratio. No significant differences were observed in the levels of the 7 different types of cytokines examined, including interleukin-17A, between preimmunosuppressive therapy myasthenia gravis patients and controls. Circulating B cell-activating factor may play a key role in the pathophysiology of childhood-onset ocular myasthenia gravis. Copyright © 2015 Elsevier Inc. All rights reserved.
Modular control of endothelial sheet migration
Vitorino, Philip; Meyer, Tobias
2008-01-01
Growth factor-induced migration of endothelial cell monolayers enables embryonic development, wound healing, and angiogenesis. Although collective migration is widespread and therapeutically relevant, the underlying mechanism by which cell monolayers respond to growth factor, sense directional signals, induce motility, and coordinate individual cell movements is only partially understood. Here we used RNAi to identify 100 regulatory proteins that enhance or suppress endothelial sheet migration into cell-free space. We measured multiple live-cell migration parameters for all siRNA perturbations and found that each targeted protein primarily regulates one of four functional outputs: cell motility, directed migration, cell–cell coordination, or cell density. We demonstrate that cell motility regulators drive random, growth factor-independent motility in the presence or absence of open space. In contrast, directed migration regulators selectively transduce growth factor signals to direct cells along the monolayer boundary toward open space. Lastly, we found that regulators of cell–cell coordination are growth factor-independent and reorient randomly migrating cells inside the sheet when boundary cells begin to migrate. Thus, cells transition from random to collective migration through a modular control system, whereby growth factor signals convert boundary cells into pioneers, while cells inside the monolayer reorient and follow pioneers through growth factor-independent migration and cell–cell coordination. PMID:19056882
Alonso-Martin, Sonia; Auradé, Frédéric; Mademtzoglou, Despoina; Rochat, Anne; Zammit, Peter S; Relaix, Frédéric
2018-06-08
Muscle satellite cells are the primary source of stem cells for postnatal skeletal muscle growth and regeneration. Understanding genetic control of satellite cell formation, maintenance, and acquisition of their stem cell properties is on-going, and we have identified SOXF (SOX7, SOX17, SOX18) transcriptional factors as being induced during satellite cell specification. We demonstrate that SOXF factors regulate satellite cell quiescence, self-renewal and differentiation. Moreover, ablation of Sox17 in the muscle lineage impairs postnatal muscle growth and regeneration. We further determine that activities of SOX7, SOX17 and SOX18 overlap during muscle regeneration, with SOXF transcriptional activity requisite. Finally, we show that SOXF factors also control satellite cell expansion and renewal by directly inhibiting the output of β-catenin activity, including inhibition of Ccnd1 and Axin2 . Together, our findings identify a key regulatory function of SoxF genes in muscle stem cells via direct transcriptional control and interaction with canonical Wnt/β-catenin signaling. © 2018, Alonso-Martin et al.
Xie, Ting
2013-01-01
In the Drosophila ovary, germline stem cells (GSCs) physically interact with their niche composed of terminal filament cells, cap cells, and possibly GSC-contacting escort cells (ECs). A GSC divides to generate a self-renewing stem cell that remains in the niche and a differentiating daughter that moves away from the niche. The GSC niche provides a bone morphogenetic protein (BMP) signal that maintains GSC self-renewal by preventing stem cell differentiation via repression of the differentiation-promoting gene bag of marbles (bam). In addition, it expresses E-cadherin, which mediates cell adhesion for anchoring GSCs in the niche, enabling continuous self-renewal. GSCs themselves also express different classes of intrinsic factors, including signal transducers, transcription factors, chromatin remodeling factors, translation regulators, and miRNAs, which control self-renewal by strengthening interactions with the niche and repressing various differentiation pathways. Differentiated GSC daughters, known as cystoblasts (CBs), also express distinct classes of intrinsic factors to inhibit self-renewal and promote germ cell differentiation. Surprisingly, GSC progeny are also dependent on their surrounding ECs for proper differentiation at least partly by preventing BMP from diffusing to the differentiated germ cell zone and by repressing ectopic BMP expression. Therefore, both GSC self-renewal and CB differentiation are controlled by collaborative actions of extrinsic signals and intrinsic factors. Copyright © 2012 Wiley Periodicals, Inc.
Transcription Factor Foxo1 Is a Negative Regulator of NK Cell Maturation and Function
Deng, Youcai; Kerdiles, Yann; Chu, Jianhong; Yuan, Shunzong; Wang, Youwei; Chen, Xilin; Mao, Hsiaoyin; Zhang, Lingling; Zhang, Jianying; Hughes, Tiffany; Deng, Yafei; Zhang, Qi; Wang, Fangjie; Zou, Xianghong; Liu, Chang-Gong; Freud, Aharon G.; Li, Xiaohui; Caligiuri, Michael A; Vivier, Eric; Yu, Jianhua
2015-01-01
SUMMARY Little is known about the role of negative regulators in controlling natural killer (NK) cell development and effector functions. Foxo1 is a multifunctional transcription factor of the forkhead family. Using a mouse model of conditional deletion in NK cells, we found that Foxo1 negatively controlled NK cell differentiation and function. Immature NK cells expressed abundant Foxo1 and little Tbx21 relative to mature NK cells, but these two transcription factors reversed their expression as NK cells proceeded through development. Foxo1 promoted NK cell homing to lymph nodes through upregulating CD62L expression, and impaired late-stage maturation and effector functions by repressing Tbx21 expression. Loss of Foxo1 rescued the defect in late-stage NK cell maturation in heterozygous Tbx21+/− mice. Collectively, our data reveal a regulatory pathway by which the negative regulator Foxo1 and the positive regulator Tbx21 play opposing roles in controlling NK cell development and effector functions. PMID:25769609
The large Maf factor Traffic Jam controls gonad morphogenesis in Drosophila.
Li, Michelle A; Alls, Jeffrey D; Avancini, Rita M; Koo, Karen; Godt, Dorothea
2003-11-01
Interactions between somatic and germline cells are critical for the normal development of egg and sperm. Here we show that the gene traffic jam (tj) produces a soma-specific factor that controls gonad morphogenesis and is required for female and male fertility. tj encodes the only large Maf factor in Drosophila melanogaster, an orthologue of the atypical basic Leu zipper transcription factors c-Maf and MafB/Kreisler in vertebrates. Expression of tj occurs in somatic gonadal cells that are in direct contact with germline cells throughout development. In tj mutant gonads, somatic cells fail to inter-mingle and properly envelop germline cells, causing an early block in germ cell differentiation. In addition, tj mutant somatic cells show an increase in the level of expression for several adhesion molecules. We propose that tj is a critical modulator of the adhesive properties of somatic cells, facilitating germline-soma interactions that are essential for germ cell differentiation.
Perdigoto, Carolina N; Bardot, Evan S; Valdes, Victor J; Santoriello, Francis J; Ezhkova, Elena
2014-12-01
Merkel cell-neurite complexes are located in touch-sensitive areas of the mammalian skin and are involved in recognition of the texture and shape of objects. Merkel cells are essential for these tactile discriminations, as they generate action potentials in response to touch stimuli and induce the firing of innervating afferent nerves. It has been shown that Merkel cells originate from epidermal stem cells, but the cellular and molecular mechanisms of their development are largely unknown. In this study, we analyzed Merkel cell differentiation during development and found that it is a temporally regulated maturation process characterized by a sequential activation of Merkel cell-specific genes. We uncovered key transcription factors controlling this process and showed that the transcription factor Atoh1 is required for initial Merkel cell specification. The subsequent maturation steps of Merkel cell differentiation are controlled by cooperative function of the transcription factors Sox2 and Isl1, which physically interact and work to sustain Atoh1 expression. These findings reveal the presence of a robust transcriptional network required to produce functional Merkel cells that are required for tactile discrimination. © 2014. Published by The Company of Biologists Ltd.
Chen, Xiaochuan; Rozance, Paul J; Hay, William W; Limesand, Sean W
2012-05-01
Placental insufficiency results in intrauterine growth restriction (IUGR), impaired fetal insulin secretion and less fetal pancreatic β-cell mass, partly due to lower β-cell proliferation rates. Insulin-like growth factors (IGFs) and fibroblast growth factors (FGFs) regulate fetal β-cell proliferation and pancreas development, along with transcription factors, such as pancreatic and duodenal homeobox 1 (PDX-1). We determined expression levels for these growth factors, their receptors and IGF binding proteins in ovine fetal pancreas and isolated islets. In the IUGR pancreas, relative mRNA expression levels of IGF-I, PDX-1, FGF7 and FGFR2IIIb were 64% (P < 0.01), 76% (P < 0.05), 76% (P < 0.05) and 52% (P < 0.01) lower, respectively, compared with control fetuses. Conversely, insulin-like growth factor binding protein 2 (IGFBP-2) mRNA and protein concentrations were 2.25- and 1.2-fold greater (P < 0.05) in the IUGR pancreas compared with controls. In isolated islets from IUGR fetuses, IGF-II and IGFBP-2 mRNA concentrations were 1.5- and 3.7-fold greater (P < 0.05), and insulin mRNA was 56% less (P < 0.05) than control islets. The growth factor expression profiles for IGF and FGF signaling pathways indicate that declines in β-cell mass are due to decreased growth factor signals for both pancreatic progenitor epithelial cell and mature β-cell replication.
Carpenter, Andrea C.; Grainger, John R.; Xiong, Yumei; Kanno, Yuka; Chu, H. Hamlet; Wang, Lie; Naik, Shruti; dos Santos, Liliane; Wei, Lai; Jenkins, Marc K.; O’Shea, John J.; Belkaid, Yasmine; Bosselut, Rémy
2014-01-01
Summary T helper (Th) cells are critical for defenses against infection and recognize peptides bound to Class II Major Histocompatibility Complex (MHC-II) molecules. Although transcription factors have been identified that direct helper cells into specific effector fates, whether a ‘master’ regulator controls the developmental program common to all Th cells remains unclear. Here we showed that the two transcription factors Thpok and LRF share this function. Although disruption of both factors did not prevent the generation of MHC II-specific T cells, these cells failed to express Th cell genes or undergo Th cell differentiation in vivo. In contrast, T cells lacking Thpok only displayed LRF-dependent functions and contributed to multiple effector responses, both in vitro and in vivo, with the notable exception of Th2 cell responses that control extra-cellular parasites. These findings identify the Thpok-LRF pair as a core node of Th cell differentiation and function. PMID:23041065
Targeting CTCF to Control Virus Gene Expression: A Common Theme amongst Diverse DNA Viruses.
Pentland, Ieisha; Parish, Joanna L
2015-07-06
All viruses target host cell factors for successful life cycle completion. Transcriptional control of DNA viruses by host cell factors is important in the temporal and spatial regulation of virus gene expression. Many of these factors are recruited to enhance virus gene expression and thereby increase virus production, but host cell factors can also restrict virus gene expression and productivity of infection. CCCTC binding factor (CTCF) is a host cell DNA binding protein important for the regulation of genomic chromatin boundaries, transcriptional control and enhancer element usage. CTCF also functions in RNA polymerase II regulation and in doing so can influence co-transcriptional splicing events. Several DNA viruses, including Kaposi's sarcoma-associated herpesvirus (KSHV), Epstein-Barr virus (EBV) and human papillomavirus (HPV) utilize CTCF to control virus gene expression and many studies have highlighted a role for CTCF in the persistence of these diverse oncogenic viruses. CTCF can both enhance and repress virus gene expression and in some cases CTCF increases the complexity of alternatively spliced transcripts. This review article will discuss the function of CTCF in the life cycle of DNA viruses in the context of known host cell CTCF functions.
Sasnoor, Lalita M; Kale, Vaijayanti P; Limaye, Lalita S
2003-10-01
Our previous studies had shown that a combination of the bio-antioxidant catalase and the membrane stabilizer trehalose in the conventional freezing mixture affords better cryoprotection to hematopoietic cells as judged by clonogenic assays. In the present investigation, we extended these studies using several parameters like responsiveness to growth factors, expression of growth factor receptors, adhesion assays, adhesion molecule expression, and long-term culture-forming ability. Cells were frozen with (test cells) or without additives (control cells) in the conventional medium containing 10% dimethylsulfoxide (DMSO). Experiments were done on mononuclear cells (MNC) from cord blood/fetal liver hematopoietic cells (CB/FL) and CD34(+) cells isolated from frozen MNC. Our results showed that the responsiveness of test cells to the two early-acting cytokines, viz. interleukin-3 (IL-3) and stem cell factor (SCF) in CFU assays was better than control cells as seen by higher colony formation at limiting concentrations of these cytokines. We, therefore, analyzed the expression of these two growth factor receptors by flow cytometry. We found that in cryopreserved test MNC, as well as CD34(+) cells isolated from them, the expression of both cytokine receptors was two- to three-fold higher than control MNC and CD34(+) cells isolated from them. Adhesion assays carried out with CB/FL-derived CD34(+) cells and KG1a cells showed significantly higher adherence of test cells to M210B4 than respective control cells. Cryopreserved test MNC as well as CD34(+) cells isolated from them showed increased expression of adhesion molecules like CD43, CD44, CD49d, and CD49e. On isolated CD34(+) cells and KG1a cells, there was a two- to three-fold increase in a double-positive population expressing CD34/L-selectin in test cells as compared to control cells. Long-term cultures (LTC) were set up with frozen MNC as well as with CD34(+) cells. Clonogenic cells from LTC were enumerated at the end of the fifth week. There was a significantly increased formation of CFU from test cells than from control cells, indicating better preservation of early progenitors in test cells. Our results suggest that use of a combination of catalase and trehalose as a supplement in the conventional freezing medium results in better protection of growth factor receptors, adhesion molecules, and functionality of hematopoietic cells, yielding a better graft quality.
B-cell subset alterations and correlated factors in HIV-1 infection.
Pensieroso, Simone; Galli, Laura; Nozza, Silvia; Ruffin, Nicolas; Castagna, Antonella; Tambussi, Giuseppe; Hejdeman, Bo; Misciagna, Donatella; Riva, Agostino; Malnati, Mauro; Chiodi, Francesca; Scarlatti, Gabriella
2013-05-15
During HIV-1 infection, the development, phenotype, and functionality of B cells are impaired. Transitional B cells and aberrant B-cell populations arise in blood, whereas a declined percentage of resting memory B cells is detected. Our study aimed at pinpointing the demographic, immunological, and viral factors driving these pathological findings, and the role of antiretroviral therapy in reverting these alterations. B-cell phenotype and correlating factors were evaluated. Variations in B-cell subsets were evaluated by flow cytometry in HIV-1-infected individuals naive to therapy, elite controllers, and patients treated with antiretroviral drugs (virological control or failure). Multivariable analysis was performed to identify variables independently associated with the B-cell alterations. Significant differences were observed among patients' groups in relation to all B-cell subsets. Resting memory B cells were preserved in patients naive to therapy and elite controllers, but reduced in treated patients. Individuals naive to therapy and experiencing multidrug failure, as well as elite controllers, had significantly higher levels of activated memory B cells compared to healthy controls. In the multivariate analysis, plasma viral load and nadir CD4 T cells independently correlated with major B-cell alterations. Coinfection with hepatitis C but not hepatitis B virus also showed an impact on specific B-cell subsets. Successful protracted antiretroviral treatment led to normalization of all B-cell subsets with exception of resting memory B cells. Our results indicate that viremia and nadir CD4 T cells are important prognostic markers of B-cell perturbations and provide evidence that resting memory B-cell depletion during chronic infection is not reverted upon successful antiretroviral therapy.
Transposon tagging of genes for cell-cell interactions in Myxococcus xanthus.
Kalos, M; Zissler, J
1990-01-01
The prokaryote Myxococcus xanthus is a model for cell interactions important in multicellular behavior. We used the transposon TnphoA to specifically identify genes for cell-surface factors involved in cell interactions. From a library of 10,700 insertions of TnphoA, we isolated 36 that produced alkaline phosphatase activity. Three TnphoA insertions tagged cell motility genes, called cgl, which control the adventurous movement of cells. The products of the tagged cgl genes could function in trans upon other cells and were localized primarily in the cell envelope and extracellular space, consistent with TnphoA tagging genes for extracellular factors controlling motility. Images PMID:2172982
Influence of smartphone Wi-Fi signals on adipose-derived stem cells.
Lee, Sang-Soon; Kim, Hyung-Rok; Kim, Min-Sook; Park, Sanghoon; Yoon, Eul-Sik; Park, Seung-Ha; Kim, Deok-Woo
2014-09-01
The use of smartphones is expanding rapidly around the world, thus raising the concern of possible harmful effects of radiofrequency generated by smartphones. We hypothesized that Wi-Fi signals from smartphones may have harmful influence on adipose-derived stem cells (ASCs). An in vitro study was performed to assess the influence of Wi-Fi signals from smartphones. The ASCs were incubated under a smartphone connected to a Wi-Fi network, which was uploading files at a speed of 4.8 Mbps for 10 hours a day, for a total of 5 days. We constructed 2 kinds of control cells, one grown in 37°C and the other grown in 39°C. After 5 days of Wi-Fi exposure from the smartphone, the cells underwent cell proliferation assay, apoptosis assay, and flow cytometry analysis. Three growth factors, vascular endothelial growth factor, hepatocyte growth factor, and transforming growth factor-β, were measured from ASC-conditioned media. Cell proliferation rate was higher in Wi-Fi-exposed cells and 39°C control cells compared with 37°C control cells. Apoptosis assay, flow cytometry analysis, and growth factor concentrations showed no remarkable differences among the 3 groups. We could not find any harmful effects of Wi-Fi electromagnetic signals from smartphones. The increased proliferation of ASCs under the smartphone, however, might be attributable to the thermal effect.
Kaur, Gurpreet; Costa, Mauro W; Nefzger, Christian M; Silva, Juan; Fierro-González, Juan Carlos; Polo, Jose M; Bell, Toby D M; Plachta, Nicolas
2013-01-01
Transcription factors use diffusion to search the DNA, yet the mechanisms controlling transcription factor diffusion during mammalian development remain poorly understood. Here we combine photoactivation and fluorescence correlation spectroscopy to study transcription factor diffusion in developing mouse embryos. We show that the pluripotency-associated transcription factor Oct4 displays both fast and Brownian and slower subdiffusive behaviours that are controlled by DNA interactions. Following cell lineage specification, the slower DNA-interacting diffusion fraction distinguishes pluripotent from extraembryonic cell nuclei. Similar to Oct4, Sox2 shows slower diffusion in pluripotent cells while Cdx2 displays opposite dynamics, suggesting that slow diffusion may represent a general feature of transcription factors in lineages where they are essential. Slow Oct4 subdiffusive behaviours are conserved in embryonic stem cells and induced pluripotent stem cells (iPS cells), and lost during differentiation. We also show that Oct4 diffusion depends on its interaction with ERG-associated protein with SET domain. Photoactivation and fluorescence correlation spectroscopy provides a new intravital approach to study transcription factor diffusion in complex in vivo systems.
Mitochondrial respiratory control is lost during growth factor deprivation.
Gottlieb, Eyal; Armour, Sean M; Thompson, Craig B
2002-10-01
The ability of cells to maintain a bioenergetically favorable ATP/ADP ratio confers a tight balance between cellular events that consume ATP and the rate of ATP production. However, after growth factor withdrawal, the cellular ATP/ADP ratio declines. To investigate these changes, mitochondria from growth factor-deprived cells isolated before the onset of apoptosis were characterized in vitro. Mitochondria from growth factor-deprived cells have lost their ability to undergo matrix condensation in response to ADP, which is accompanied by a failure to perform ADP-coupled respiration. At the time of analysis, mitochondria from growth factor-deprived cells were not depleted of cytochrome c and cytochrome c-dependent respiration was unaffected, demonstrating that the inhibition of the respiratory rate is not due to loss of cytochrome c. Agents that disrupt the mitochondrial outer membrane, such as digitonin, or maintain outer membrane exchange of adenine nucleotide, such as Bcl-x(L), restored ADP-dependent control of mitochondrial respiration. Together, these data suggest that the regulation of mitochondrial outer membrane permeability contributes to respiratory control.
The POU proteins Brn-2 and Oct-6 share important functions in Schwann cell development.
Jaegle, Martine; Ghazvini, Mehrnaz; Mandemakers, Wim; Piirsoo, Marko; Driegen, Siska; Levavasseur, Francoise; Raghoenath, Smiriti; Grosveld, Frank; Meijer, Dies
2003-06-01
The genetic hierarchy that controls myelination of peripheral nerves by Schwann cells includes the POU domain Oct-6/Scip/Tst-1and the zinc-finger Krox-20/Egr2 transcription factors. These pivotal transcription factors act to control the onset of myelination during development and tissue regeneration in adults following damage. In this report we demonstrate the involvement of a third transcription factor, the POU domain factor Brn-2. We show that Schwann cells express Brn-2 in a developmental profile similar to that of Oct-6 and that Brn-2 gene activation does not depend on Oct-6. Overexpression of Brn-2 in Oct-6-deficient Schwann cells, under control of the Oct-6 Schwann cell enhancer (SCE), results in partial rescue of the developmental delay phenotype, whereas compound disruption of both Brn-2 and Oct-6 results in a much more severe phenotype. Together these data strongly indicate that Brn-2 function largely overlaps with that of Oct-6 in driving the transition from promyelinating to myelinating Schwann cells.
Watch Out for the "Living Dead": Cell-Free Enzymes and Their Fate.
Baltar, Federico
2017-01-01
Microbes are the engines driving biogeochemical cycles. Microbial extracellular enzymatic activities (EEAs) are the "gatekeepers" of the carbon cycle. The total EEA is the sum of cell-bound (i.e., cell-attached), and dissolved (i.e., cell-free) enzyme activities. Cell-free enzymes make up a substantial proportion (up to 100%) of the total marine EEA. Although we are learning more about how microbial diversity and function (including total EEA) will be affected by environmental changes, little is known about what factors control the importance of the abundant cell-free enzymes. Since cell-attached EEAs are linked to the cell, their fate will likely be linked to the factors controlling the cell's fate. In contrast, cell-free enzymes belong to a kind of "living dead" realm because they are not attached to a living cell but still are able to perform their function away from the cell; and as such, the factors controlling their activity and fate might differ from those affecting cell-attached enzymes. This article aims to place cell-free EEA into the wider context of hydrolysis of organic matter, deal with recent studies assessing what controls the production, activity and lifetime of cell-free EEA, and what their fate might be in response to environmental stressors. This perspective article advocates the need to go "beyond the living things," studying the response of cells/organisms to different stressors, but also to study cell-free enzymes, in order to fully constrain the future and evolution of marine biogeochemical cycles.
Prasad, Maneeshi S.; Sauka-Spengler, Tatjana; LaBonne, Carole
2012-01-01
Neural crest cells are a population of multipotent stem cell-like progenitors that arise at the neural plate border in vertebrates, migrate extensively, and give rise to diverse derivatives such as melanocytes, craniofacial cartilage and bone, smooth muscle, peripheral and enteric neurons and glia. The neural crest gene regulatory network (NC-GRN) includes a number of key factors that are used reiteratively to control multiple steps in the development of neural crest cells, including the acquisition of stem cell attributes. It is therefore essential to understand the mechanisms that control the distinct functions of such reiteratively used factors in different cellular contexts. The context-dependent control of neural crest specification is achieved through combinatorial interaction with other factors, post-transcriptional and post-translational modifications, and the epigenetic status and chromatin state of target genes. Here we review the current understanding of the NC-GRN, including the role of the neural crest specifiers, their links to the control of “stemness,” and their dynamic context-dependent regulation during the formation of neural crest progenitors. PMID:22583479
Fork head controls the timing and tissue selectivity of steroid-induced developmental cell death
Cao, Chike; Liu, Yanling; Lehmann, Michael
2007-01-01
Cell death during Drosophila melanogaster metamorphosis is controlled by the steroid hormone 20-hydroxyecdysone (20E). Elements of the signaling pathway that triggers death are known, but it is not known why some tissues, and not others, die in response to a particular hormone pulse. We found that loss of the tissue-specific transcription factor Fork head (Fkh) is both required and sufficient to specify a death response to 20E in the larval salivary glands. Loss of fkh itself is a steroid-controlled event that is mediated by the 20E-induced BR-C gene, and that renders the key death regulators hid and reaper hormone responsive. These results implicate the D. melanogaster FOXA orthologue Fkh with a novel function as a competence factor for steroid-controlled cell death. They explain how a specific tissue is singled out for death, and why this tissue survives earlier hormone pulses. More generally, they suggest that cell identity factors like Fkh play a pivotal role in the normal control of developmental cell death. PMID:17339378
Molecular mechanisms of ulcer healing.
Tarnawski, A
2000-04-01
An ulcer in the gastrointestinal tract is a deep necrotic lesion penetrating the entire mucosal thickness and muscularis mucosae. Ulcer healing is an active process of filling the mucosal defect with proliferating and migrating epithelial and connective tissue cells. At the ulcer margin, epithelial cells proliferate and migrate onto the granulation tissue to cover (reepithelialize) the ulcer and also invade granulation tissue to reconstruct glandular structures within the ulcer scar. The reepithelialization and reconstruction of glandular structures is controlled by growth factors: trefoil peptides, EGF, HGF, bFGF and PDGF; and locally produced cytokines by regenerating cells in an orderly fashion and integrated manner to ensure the quality of mucosal restoration. These growth factors, most notably EGF, trigger cell proliferation via signal transduction pathways involving EGF-R, adapter proteins (Grb2, Shc and Sos), Ras, Raf1 and MAP (Erk1/Erk2) kinases, which, after translocation to nuclei, activate transcription factors and cell proliferation. Cell migration requires cytoskeletal rearrangements and is controlled by growth factors via Rho/Rac and signaling pathways involving PLC-gamma, PI-3 K and phosphorylation of focal adhesion proteins. Granulation tissue develops at the ulcer base. It consists of connective tissue cells: fibroblasts, macrophages and proliferating endothelial cells forming microvessels under the control of angiogenic growth factors: bFGF, VEGF and angiopoietins, which all promote angiogenesiscapillary vessel formation, essential for the restoration of microvascular network in the mucosa and thus crucial for oxygen and nutrient supply. The major mechanism of activation of angiogenic growth factors and their receptor expression appears to be hypoxia, which activates hypoxia-inducible factor, which binds to VEGF promoter.
African swine fever virus IAP-like protein induces the activation of nuclear factor kappa B.
Rodríguez, Clara I; Nogal, María L; Carrascosa, Angel L; Salas, María L; Fresno, Manuel; Revilla, Yolanda
2002-04-01
African swine fever virus (ASFV) encodes a homologue of the inhibitor of apoptosis (IAP) that promotes cell survival by controlling the activity of caspase-3. Here we show that ASFV IAP is also able to activate the transcription factor NF-kappaB. Thus, transient transfection of the viral IAP increases the activity of an NF-kappaB reporter gene in a dose-responsive manner in Jurkat cells. Similarly, stably transfected cells expressing ASFV IAP have elevated basal levels of c-rel, an NF-kappaB-dependent gene. NF-kappaB complexes in the nucleus were increased in A224L-expressing cells compared with control cells upon stimulation with phorbol myristate acetate (PMA) plus ionomycin. This resulted in greater NF-kappaB-dependent promoter activity in ASFV IAP-expressing than in control cells, both in basal conditions and after PMA plus ionophore stimulation. The elevated NF-kappaB activity seems to be the consequence of higher IkappaB kinase (IKK) basal activity in these cells. The NF-kappaB-inducing activity of ASFV IAP was abrogated by an IKK-2 dominant negative mutant and enhanced by expression of tumor necrosis factor receptor-associated factor 2.
African Swine Fever Virus IAP-Like Protein Induces the Activation of Nuclear Factor Kappa B
Rodríguez, Clara I.; Nogal, María L.; Carrascosa, Angel L.; Salas, María L.; Fresno, Manuel; Revilla, Yolanda
2002-01-01
African swine fever virus (ASFV) encodes a homologue of the inhibitor of apoptosis (IAP) that promotes cell survival by controlling the activity of caspase-3. Here we show that ASFV IAP is also able to activate the transcription factor NF-κB. Thus, transient transfection of the viral IAP increases the activity of an NF-κB reporter gene in a dose-responsive manner in Jurkat cells. Similarly, stably transfected cells expressing ASFV IAP have elevated basal levels of c-rel, an NF-κB-dependent gene. NF-κB complexes in the nucleus were increased in A224L-expressing cells compared with control cells upon stimulation with phorbol myristate acetate (PMA) plus ionomycin. This resulted in greater NF-κB-dependent promoter activity in ASFV IAP-expressing than in control cells, both in basal conditions and after PMA plus ionophore stimulation. The elevated NF-κB activity seems to be the consequence of higher IκB kinase (IKK) basal activity in these cells. The NF-κB-inducing activity of ASFV IAP was abrogated by an IKK-2 dominant negative mutant and enhanced by expression of tumor necrosis factor receptor-associated factor 2. PMID:11907233
Ma, Xing; Zhu, Xiujuan; Han, Yingying; Story, Benjamin; Do, Trieu; Song, Xiaoqing; Wang, Su; Zhang, Ying; Blanchette, Marco; Gogol, Madelaine; Hall, Kate; Peak, Allison; Anoja, Perera; Xie, Ting
2017-04-24
Piwi family protein Aubergine (Aub) maintains genome integrity in late germ cells of the Drosophila ovary through Piwi-associated RNA-mediated repression of transposon activities. Although it is highly expressed in germline stem cells (GSCs) and early progeny, it remains unclear whether it plays any roles in early GSC lineage development. Here we report that Aub promotes GSC self-renewal and GSC progeny differentiation. RNA-iCLIP results show that Aub binds the mRNAs encoding self-renewal and differentiation factors in cultured GSCs. Aub controls GSC self-renewal by preventing DNA-damage-induced Chk2 activation and by translationally controlling the expression of self-renewal factors. It promotes GSC progeny differentiation by translationally controlling the expression of differentiation factors, including Bam. Therefore, this study reveals a function of Aub in GSCs and their progeny, which promotes translation of self-renewal and differentiation factors by directly binding to its target mRNAs and interacting with translational initiation factors. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cleland, R.E.
Progress is reported on the following studies: effects of auxin and fusicoccin on membrane potential; effects of fusicoccin on ATPase fractions of the oat coleoptile; role of protons in auxin-induced growth of tissues; light-induced expansion of bean leaf cells; extension of cell walls of the alga Valonia ventricosa in response to acid; and control of the rate of cell enlargement by cellular factors other than wall-loosening factor. (HLW)
Natural Killer Cells Control Tumor Growth by Sensing a Growth Factor.
Barrow, Alexander D; Edeling, Melissa A; Trifonov, Vladimir; Luo, Jingqin; Goyal, Piyush; Bohl, Benjamin; Bando, Jennifer K; Kim, Albert H; Walker, John; Andahazy, Mary; Bugatti, Mattia; Melocchi, Laura; Vermi, William; Fremont, Daved H; Cox, Sarah; Cella, Marina; Schmedt, Christian; Colonna, Marco
2018-01-25
Many tumors produce platelet-derived growth factor (PDGF)-DD, which promotes cellular proliferation, epithelial-mesenchymal transition, stromal reaction, and angiogenesis through autocrine and paracrine PDGFRβ signaling. By screening a secretome library, we found that the human immunoreceptor NKp44, encoded by NCR2 and expressed on natural killer (NK) cells and innate lymphoid cells, recognizes PDGF-DD. PDGF-DD engagement of NKp44 triggered NK cell secretion of interferon gamma (IFN)-γ and tumor necrosis factor alpha (TNF-α) that induced tumor cell growth arrest. A distinctive transcriptional signature of PDGF-DD-induced cytokines and the downregulation of tumor cell-cycle genes correlated with NCR2 expression and greater survival in glioblastoma. NKp44 expression in mouse NK cells controlled the dissemination of tumors expressing PDGF-DD more effectively than control mice, an effect enhanced by blockade of the inhibitory receptor CD96 or CpG-oligonucleotide treatment. Thus, while cancer cell production of PDGF-DD supports tumor growth and stromal reaction, it concomitantly activates innate immune responses to tumor expansion. Copyright © 2017 Elsevier Inc. All rights reserved.
D'Antonio, Maurizio; Droggiti, Anna; Feltri, M Laura; Roes, Jürgen; Wrabetz, Lawrence; Mirsky, Rhona; Jessen, Kristján R
2006-08-16
During development, Schwann cell numbers are precisely adjusted to match the number of axons. It is essentially unknown which growth factors or receptors carry out this important control in vivo. Here, we tested whether the type II transforming growth factor (TGF) beta receptor has a role in this process. We generated a conditional knock-out mouse in which the type II TGFbeta receptor is specifically ablated only in Schwann cells. Inactivation of the receptor, evident at least from embryonic day 18, resulted in suppressed Schwann cell death in normally developing and injured nerves. Notably, the mutants also showed a strong reduction in Schwann cell proliferation. Consequently, Schwann cell numbers in wild-type and mutant nerves remained similar. Lack of TGFbeta signaling did not appear to affect other processes in which TGFbeta had been implicated previously, including myelination and response of adult nerves to injury. This is the first in vivo evidence for a growth factor receptor involved in promoting Schwann cell division during development and the first genetic evidence for a receptor that controls normal developmental Schwann cell death.
Nguyen, Thao; Mège, René Marc
2016-11-01
Cell migrations are diverse. They constitutemajor morphogenetic driving forces during embryogenesis, but they contribute also to the loss of tissue homeostasis and cancer growth. Capabilities of cells to migrate as single cells or as collectives are controlled by internal and external signalling, leading to the reorganisation of their cytoskeleton as well as by the rebalancing of cell-matrix and cell-cell adhesions. Among the genes altered in numerous cancers, cadherins and growth factor receptors are of particular interest for cell migration regulation. In particular, cadherins such as N-cadherin and a class of growth factor receptors, namely FGFRs cooperate to regulate embryonic and cancer cell behaviours. In this review, we discuss on reciprocal crosstalk between N-cadherin and FGFRs during cell migration. Finally, we aim at clarifying the synergy between N-cadherin and FGFR signalling that ensure cellular reorganization during cell movements, mainly during cancer cell migration and metastasis but also during developmental processes. Copyright © 2016 Elsevier GmbH. All rights reserved.
Receptor control in mesenchymal stem cell engineering
NASA Astrophysics Data System (ADS)
Dalby, Matthew J.; García, Andrés J.; Salmeron-Sanchez, Manuel
2018-03-01
Materials science offers a powerful tool to control mesenchymal stem cell (MSC) growth and differentiation into functional phenotypes. A complex interplay between the extracellular matrix and growth factors guides MSC phenotypes in vivo. In this Review, we discuss materials-based bioengineering approaches to direct MSC fate in vitro and in vivo, mimicking cell-matrix-growth factor crosstalk. We first scrutinize MSC-matrix interactions and how the properties of a material can be tailored to support MSC growth and differentiation in vitro, with an emphasis on MSC self-renewal mechanisms. We then highlight important growth factor signalling pathways and investigate various materials-based strategies for growth factor presentation and delivery. Integrin-growth factor crosstalk in the context of MSC engineering is introduced, and bioinspired material designs with the potential to control the MSC niche phenotype are considered. Finally, we summarize important milestones on the road to MSC engineering for regenerative medicine.
Chromatin reorganisation in Epstein-Barr virus-infected cells and its role in cancer development.
West, Michelle J
2017-10-01
The oncogenic Epstein-Barr virus (EBV) growth transforms B cells and drives lymphoma and carcinoma development. The virus encodes four key transcription factors (EBNA2, EBNA3A, EBNA3B and EBNA3C) that hijack host cell factors to bind gene control elements and reprogramme infected B cells. These viral factors predominantly target long-range enhancers to alter the expression of host cell genes that control B cell growth and survival and facilitate virus persistence. Enhancer and super-enhancer binding by these EBNAs results in large-scale reorganisation of three-dimensional enhancer-promoter architecture to drive the overexpression of oncogenes, the silencing of tumour suppressors and the modulation of transcription, cell-cycle progression, migration and adhesion. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.
Beauzamy, Léna; Caporali, Elisabetta; Koroney, Abdoul-Salam
2016-01-01
Although many transcription factors involved in cell wall morphogenesis have been identified and studied, it is still unknown how genetic and molecular regulation of cell wall biosynthesis is integrated into developmental programs. We demonstrate by molecular genetic studies that SEEDSTICK (STK), a transcription factor controlling ovule and seed integument identity, directly regulates PMEI6 and other genes involved in the biogenesis of the cellulose-pectin matrix of the cell wall. Based on atomic force microscopy, immunocytochemistry, and chemical analyses, we propose that structural modifications of the cell wall matrix in the stk mutant contribute to defects in mucilage release and seed germination under water-stress conditions. Our studies reveal a molecular network controlled by STK that regulates cell wall properties of the seed coat, demonstrating that developmental regulators controlling organ identity also coordinate specific aspects of cell wall characteristics. PMID:27624758
FOG-2, a Heart- and Brain-Enriched Cofactor for GATA Transcription Factors
Lu, Jian-rong; McKinsey, Timothy A.; Xu, Hongtao; Wang, Da-zhi; Richardson, James A.; Olson, Eric N.
1999-01-01
Members of the GATA family of zinc finger transcription factors have been shown to play important roles in the control of gene expression in a variety of cell types. GATA-1, -2, and -3 are expressed primarily in hematopoietic cell lineages and are required for proliferation and differentiation of multiple hematopoietic cell types, whereas GATA-4, -5, and -6 are expressed in the heart, where they activate cardiac muscle structural genes. Friend of GATA-1 (FOG) is a multitype zinc finger protein that interacts with GATA-1 and serves as a cofactor for GATA-1-mediated transcription. FOG is coexpressed with GATA-1 in developing erythroid and megakaryocyte cell lineages and cooperates with GATA-1 to control erythropoiesis. We describe a novel FOG-related factor, FOG-2, that is expressed predominantly in the developing and adult heart, brain, and testis. FOG-2 interacts with GATA factors, and interaction of GATA-4 and FOG-2 results in either synergistic activation or repression of GATA-dependent cardiac promoters, depending on the specific promoter and the cell type in which they are tested. The properties of FOG-2 suggest its involvement in the control of cardiac and neural gene expression by GATA transcription factors. PMID:10330188
Kondo, Yuya; Yokosawa, Masahiro; Kaneko, Shunta; Furuyama, Kotona; Segawa, Seiji; Tsuboi, Hiroto; Matsumoto, Isao; Sumida, Takayuki
2018-05-01
Rheumatoid arthritis (RA) is an autoimmune disorder characterized by chronic inflammation of the joint synovium and infiltration by activated inflammatory cells. CD4+ T cells form a large proportion of the inflammatory cells invading the synovial tissue, and are involved in the RA pathologic process. In general, CD4+ T cells differentiate into various T helper cell subsets and acquire the functional properties to respond to specific pathogens, and also mediate some autoimmune disorders such as RA. Because the differentiation of T helper cell subsets is determined by the expression of specific transcription factors in response to the cytokine environment, these transcription factors are considered to have a role in the pathology of RA. Treg cells control an excess of T cell-mediated immune response, and the transcription factor FoxP3 is critical for the differentiation and function of Treg cells. Treg cell dysfunction can result in the development of systemic autoimmunity. In this review, we summarize how the expression of transcription factors modulates T helper cell immune responses and the development of autoimmune diseases, especially in RA. Understanding the role of transcription factors in the pathogenesis of autoimmunity may lead to novel therapeutic strategies to control the differentiation and function of both T helper cells and Treg cells. © 2017 The Authors. Arthritis & Rheumatology published by Wiley Periodicals, Inc. on behalf of American College of Rheumatology.
Miller, Steven W.; Avidor-Reiss, Tomer; Polyanovsky, Andrey; Posakony, James W.
2009-01-01
We have investigated the expression and function of the Sox15 transcription factor during the development of the external mechanosensory organs of Drosophila. We find that Sox15 is expressed specifically in the socket cell, and have identified the transcriptional cis-regulatory module that controls this activity. We show that Suppressor of Hairless [Su(H)] and the POU-domain factor Ventral veins lacking (Vvl) bind conserved sites in this enhancer and provide critical regulatory input. In particular, we find that Vvl contributes to the activation of the enhancer following relief of Su(H)-mediated default repression by the Notch signaling event that specifies the socket cell fate. Loss of Sox15 gene activity was found to severely impair the electrophysiological function of mechanosensory organs, due to both cell-autonomous and cell-non-autonomous effects on the differentiation of post-mitotic cells in the bristle lineage. Lastly, we find that simultaneous loss of both Sox15 and the autoregulatory activity of Su(H) reveals an important role for these factors in inhibiting transcription of the Pax family gene shaven in the socket cell, which serves to prevent inappropriate expression of the shaft differentiation program. Our results indicate that the later phases of socket cell differentiation are controlled by multiple transcription factors in a collaborative, and not hierarchical, manner. PMID:19232522
USDA-ARS?s Scientific Manuscript database
Eukaryotic development and stem cell control depend on the integration of cell positional sensing with cell cycle control and cell wall positioning, yet few factors that directly link these events are known. The DEFECTIVE KERNEL1 (DEK1) gene encoding the unique plant calpain protein is fundamental f...
Watch Out for the “Living Dead”: Cell-Free Enzymes and Their Fate
Baltar, Federico
2018-01-01
Microbes are the engines driving biogeochemical cycles. Microbial extracellular enzymatic activities (EEAs) are the “gatekeepers” of the carbon cycle. The total EEA is the sum of cell-bound (i.e., cell-attached), and dissolved (i.e., cell-free) enzyme activities. Cell-free enzymes make up a substantial proportion (up to 100%) of the total marine EEA. Although we are learning more about how microbial diversity and function (including total EEA) will be affected by environmental changes, little is known about what factors control the importance of the abundant cell-free enzymes. Since cell-attached EEAs are linked to the cell, their fate will likely be linked to the factors controlling the cell’s fate. In contrast, cell-free enzymes belong to a kind of “living dead” realm because they are not attached to a living cell but still are able to perform their function away from the cell; and as such, the factors controlling their activity and fate might differ from those affecting cell-attached enzymes. This article aims to place cell-free EEA into the wider context of hydrolysis of organic matter, deal with recent studies assessing what controls the production, activity and lifetime of cell-free EEA, and what their fate might be in response to environmental stressors. This perspective article advocates the need to go “beyond the living things,” studying the response of cells/organisms to different stressors, but also to study cell-free enzymes, in order to fully constrain the future and evolution of marine biogeochemical cycles. PMID:29354095
Cellular Factors Targeting APCs to Modulate Adaptive T Cell Immunity
Do, Jeongsu; Min, Booki
2014-01-01
The fate of adaptive T cell immunity is determined by multiple cellular and molecular factors, among which the cytokine milieu plays the most important role in this process. Depending on the cytokines present during the initial T cell activation, T cells become effector cells that produce different effector molecules and execute adaptive immune functions. Studies thus far have primarily focused on defining how these factors control T cell differentiation by targeting T cells themselves. However, other non-T cells, particularly APCs, also express receptors for the factors and are capable of responding to them. In this review, we will discuss how APCs, by responding to those cytokines, influence T cell differentiation and adaptive immunity. PMID:25126585
Mitochondrial respiratory control is lost during growth factor deprivation
Gottlieb, Eyal; Armour, Sean M.; Thompson, Craig B.
2002-01-01
The ability of cells to maintain a bioenergetically favorable ATP/ADP ratio confers a tight balance between cellular events that consume ATP and the rate of ATP production. However, after growth factor withdrawal, the cellular ATP/ADP ratio declines. To investigate these changes, mitochondria from growth factor-deprived cells isolated before the onset of apoptosis were characterized in vitro. Mitochondria from growth factor-deprived cells have lost their ability to undergo matrix condensation in response to ADP, which is accompanied by a failure to perform ADP-coupled respiration. At the time of analysis, mitochondria from growth factor-deprived cells were not depleted of cytochrome c and cytochrome c-dependent respiration was unaffected, demonstrating that the inhibition of the respiratory rate is not due to loss of cytochrome c. Agents that disrupt the mitochondrial outer membrane, such as digitonin, or maintain outer membrane exchange of adenine nucleotide, such as Bcl-xL, restored ADP-dependent control of mitochondrial respiration. Together, these data suggest that the regulation of mitochondrial outer membrane permeability contributes to respiratory control. PMID:12228733
Fibroblast growth factor receptor signaling crosstalk in skeletogenesis.
Miraoui, Hichem; Marie, Pierre J
2010-11-02
Fibroblast growth factors (FGFs) play important roles in the control of embryonic and postnatal skeletal development by activating signaling through FGF receptors (FGFRs). Germline gain-of-function mutations in FGFR constitutively activate FGFR signaling, causing chondrocyte and osteoblast dysfunctions that result in skeletal dysplasias. Crosstalk between the FGFR pathway and other signaling cascades controls skeletal precursor cell differentiation. Genetic analyses revealed that the interplay of WNT and FGFR1 determines the fate and differentiation of mesenchymal stem cells during mouse craniofacial skeletogenesis. Additionally, interactions between FGFR signaling and other receptor tyrosine kinase networks, such as those mediated by the epidermal growth factor receptor and platelet-derived growth factor receptor α, were associated with excessive osteoblast differentiation and bone formation in the human skeletal dysplasia called craniosynostosis, which is a disorder of skull development. We review the roles of FGFR signaling and its crosstalk with other pathways in controlling skeletal cell fate and discuss how this crosstalk could be pharmacologically targeted to correct the abnormal cell phenotype in skeletal dysplasias caused by aberrant FGFR signaling.
Tian, Chenxi; Shi, Herong; Colledge, Clark; Stern, Michael; Waterston, Robert; Liu, Jun
2011-01-01
The proper development of multicellular organisms requires precise regulation and coordination of cell fate specification, cell proliferation and differentiation. Abnormal regulation and coordination of these processes could lead to disease, including cancer. We have examined the function of the sole C. elegans SoxC protein, SEM-2, in the M lineage, which produces the postembryonic mesoderm. We found that SEM-2/SoxC is both necessary and sufficient to promote a proliferating blast cell fate, the sex myoblast fate, over a differentiated striated bodywall muscle fate. A number of factors control the specific expression of sem-2 in the sex myoblast precursors and their descendants. This includes direct control of sem-2 expression by a Hox-PBC complex. The crucial nature of the HOX/PBC factors in directly enhancing expression of this proliferative factor in the C. elegans M lineage suggests a possible more general link between Hox-PBC factors and SoxC proteins in regulating cell proliferation. PMID:21307099
The BAFF receptor TACI controls IL-10 production by regulatory B cells and CLL B cells.
Saulep-Easton, D; Vincent, F B; Quah, P S; Wei, A; Ting, S B; Croce, C M; Tam, C; Mackay, F
2016-01-01
Interleukin (IL)-10-producing B cells (B10 cells) have emerged as important regulatory elements with immunosuppressive roles. Chronic lymphocytic leukemia (CLL) B cells also secrete IL-10 and share features of B10 cells, suggesting a possible contribution of CLL B cells to immunosuppression in CLL patients. Factors controlling the emergence of B10 cells are not known. B-cell-activating factor of the tumor necrosis factor (TNF) family (BAFF) is critical for B-cell maturation and survival, and is implicated in the development and progression of CLL. We sought to investigate the role of BAFF in the emergence of IL-10-producing regulatory B cells in healthy donors and CLL patients. Here, we report that BAFF signaling promotes IL-10 production by CLL B cells in a mouse model of CLL and in CLL patients. Moreover, BAFF-mediated IL-10 production by normal and CLL B cells is mediated via its receptor transmembrane activator and cyclophilin ligand interactor. Our work uncovered a major targetable pathway important for the generation of regulatory B cells that is detrimental to immunity in CLL.
USDA-ARS?s Scientific Manuscript database
The regeneration of the hematopoietic system in bone marrow after chemotherapy depends on a balance between the quiescence and proliferation of lineage-specific progenitor cells. Even though the vascular network in bone is damaged by cytoablation, the transcriptional control of quiescence in endothe...
Skeletal muscle satellite cells
NASA Technical Reports Server (NTRS)
Schultz, E.; McCormick, K. M.
1994-01-01
Evidence now suggests that satellite cells constitute a class of myogenic cells that differ distinctly from other embryonic myoblasts. Satellite cells arise from somites and first appear as a distinct myoblast type well before birth. Satellite cells from different muscles cannot be functionally distinguished from one another and are able to provide nuclei to all fibers without regard to phenotype. Thus, it is difficult to ascribe any significant function to establishing or stabilizing fiber type, even during regeneration. Within a muscle, satellite cells exhibit marked heterogeneity with respect to their proliferative behavior. The satellite cell population on a fiber can be partitioned into those that function as stem cells and those which are readily available for fusion. Recent studies have shown that the cells are not simply spindle shaped, but are very diverse in their morphology and have multiple branches emanating from the poles of the cells. This finding is consistent with other studies indicating that the cells have the capacity for extensive migration within, and perhaps between, muscles. Complexity of cell shape usually reflects increased cytoplasmic volume and organelles including a well developed Golgi, and is usually associated with growing postnatal muscle or muscles undergoing some form of induced adaptive change or repair. The appearance of activated satellite cells suggests some function of the cells in the adaptive process through elaboration and secretion of a product. Significant advances have been made in determining the potential secretion products that satellite cells make. The manner in which satellite cell proliferative and fusion behavior is controlled has also been studied. There seems to be little doubt that cellcell coupling is not how satellite cells and myofibers communicate. Rather satellite cell regulation is through a number of potential growth factors that arise from a number of sources. Critical to the understanding of this form of control is to determine which of the many growth factors that can alter satellite cell behavior in vitro are at work in vivo. Little work has been done to determine what controls are at work after a regeneration response has been initiated. It seems likely that, after injury, growth factors are liberated through proteolytic activity and initiate an activation process whereby cells enter into a proliferative phase. After myofibers are formed, it also seems likely that satellite cell behavior is regulated through diffusible factors arising from the fibers rather than continuous control by circulating factors.(ABSTRACT TRUNCATED AT 400 WORDS).
Bacillus subtilis sporulation: regulation of gene expression and control of morphogenesis.
Errington, J
1993-01-01
Bacillus subtilis sporulation is an adaptive response to nutritional stress and involves the differential development of two cells. In the last 10 years or so, virtually all of the regulatory genes controlling sporulation, and many genes directing the structural and morphological changes that accompany sporulation, have been cloned and characterized. This review describes our current knowledge of the program of gene expression during sporulation and summarizes what is known about the functions of the genes that determine the specialized biochemical and morphological properties of sporulating cells. Most steps in the genetic program are controlled by transcription factors that have been characterized in vitro. Two sporulation-specific sigma factors, sigma E and sigma F, appear to segregate at septation, effectively determining the differential development of the mother cell and prespore. Later, each sigma is replaced by a second cell-specific sigma factor, sigma K in the mother cell and sigma G in the prespore. The synthesis of each sigma factor is tightly regulated at both the transcriptional and posttranslational levels. Usually this regulation involves an intercellular interaction that coordinates the developmental programmes of the two cells. At least two other transcription factors fine tune the timing and levels of expression of genes in the sigma E and sigma K regulons. The controlled synthesis of the sigma factors and other transcription factors leads to a spatially and temporally ordered program of gene expression. The gene products made during each successive stage of sporulation help to bring about a sequence of gross morphological changes and biochemical adaptations. The formation of the asymmetric spore septum, engulfment of the prespore by the mother cell, and formation of the spore core, cortex, and coat are described. The importance of these structures in the development of the resistance, dormancy, and germination properties of the spore is assessed. Images PMID:8464402
Leaf shape: genetic controls and environmental factors.
Tsukaya, Hirokazu
2005-01-01
In recent years, many genes have been identified that are involved in the developmental processes of leaf morphogenesis. Here, I review the mechanisms of leaf shape control in a model plant, Arabidopsis thaliana, focusing on genes that fulfill special roles in leaf development. The lateral, two-dimensional expansion of leaf blades is highly dependent on the determination of the dorsoventrality of the primordia, a defining characteristic of leaves. Having a determinate fate is also a characteristic feature of leaves and is controlled by many factors. Lateral expansion is not only controlled by general regulators of cell cycling, but also by the multi-level regulation of meristematic activities, e.g., specific control of cell proliferation in the leaf-length direction, in leaf margins and in parenchymatous cells. In collaboration with the polarized control of leaf cell elongation, these redundant and specialized regulating systems for cell cycling in leaf lamina may realize the elegantly smooth, flat structure of leaves. The unified, flat shape of leaves is also dependent on the fine integration of cell proliferation and cell enlargement. Interestingly, while a decrease in the number of cells in leaf primordia can trigger a cell volume increase, an increase in the number of cells does not trigger a cell volume decrease. This phenomenon is termed compensation and suggests the existence of some systems for integration between cell cycling and cell enlargement in leaf primordia via cell-cell communication. The environmental adjustment of leaf expansion to light conditions and gravity is also summarized.
2018-01-01
Cells interact with and remodel their microenvironment, degrading large extracellular matrix (ECM) proteins (e.g., fibronectin, collagens) and secreting new ECM proteins and small soluble factors (e.g., growth factors, cytokines). Synthetic mimics of the ECM have been developed as controlled cell culture platforms for use in both fundamental and applied studies. However, how cells broadly remodel these initially well-defined matrices remains poorly understood and difficult to probe. In this work, we have established methods for widely examining both large and small proteins that are secreted by cells within synthetic matrices. Specifically, human mesenchymal stem cells (hMSCs), a model primary cell type, were cultured within well-defined poly(ethylene glycol) (PEG)-peptide hydrogels, and these cell-matrix constructs were decellularized and degraded for subsequent isolation and analysis of deposited proteins. Shotgun proteomics using liquid chromatography and mass spectrometry identified a variety of proteins, including the large ECM proteins fibronectin and collagen VI. Immunostaining and confocal imaging confirmed these results and provided visualization of protein organization within the synthetic matrices. Additionally, culture medium was collected from the encapsulated hMSCs, and a Luminex assay was performed to identify secreted soluble factors, including vascular endothelial growth factor (VEGF), endothelial growth factor (EGF), basic fibroblast growth factor (FGF-2), interleukin 8 (IL-8), and tumor necrosis factor alpha (TNF-α). Together, these methods provide a unique approach for studying dynamic reciprocity between cells and synthetic microenvironments and have the potential to provide new biological insights into cell responses during three-dimensional (3D) controlled cell culture. PMID:29552635
Sawicki, Lisa A; Choe, Leila H; Wiley, Katherine L; Lee, Kelvin H; Kloxin, April M
2018-03-12
Cells interact with and remodel their microenvironment, degrading large extracellular matrix (ECM) proteins (e.g., fibronectin, collagens) and secreting new ECM proteins and small soluble factors (e.g., growth factors, cytokines). Synthetic mimics of the ECM have been developed as controlled cell culture platforms for use in both fundamental and applied studies. However, how cells broadly remodel these initially well-defined matrices remains poorly understood and difficult to probe. In this work, we have established methods for widely examining both large and small proteins that are secreted by cells within synthetic matrices. Specifically, human mesenchymal stem cells (hMSCs), a model primary cell type, were cultured within well-defined poly(ethylene glycol) (PEG)-peptide hydrogels, and these cell-matrix constructs were decellularized and degraded for subsequent isolation and analysis of deposited proteins. Shotgun proteomics using liquid chromatography and mass spectrometry identified a variety of proteins, including the large ECM proteins fibronectin and collagen VI. Immunostaining and confocal imaging confirmed these results and provided visualization of protein organization within the synthetic matrices. Additionally, culture medium was collected from the encapsulated hMSCs, and a Luminex assay was performed to identify secreted soluble factors, including vascular endothelial growth factor (VEGF), endothelial growth factor (EGF), basic fibroblast growth factor (FGF-2), interleukin 8 (IL-8), and tumor necrosis factor alpha (TNF-α). Together, these methods provide a unique approach for studying dynamic reciprocity between cells and synthetic microenvironments and have the potential to provide new biological insights into cell responses during three-dimensional (3D) controlled cell culture.
Strategies for Controlled Delivery of Growth Factors and Cells for Bone Regeneration
Vo, Tiffany N.; Kasper, F. Kurtis; Mikos, Antonios G.
2012-01-01
The controlled delivery of growth factors and cells within biomaterial carriers can enhance and accelerate functional bone formation. The carrier system can be designed with preprogrammed release kinetics to deliver bioactive molecules in a localized, spatiotemporal manner most similar to the natural wound healing process. The carrier can also act as an extracellular matrix-mimicking substrate for promoting osteoprogenitor cellular infiltration and proliferation for integrative tissue repair. This review discusses the role of various regenerative factors involved in bone healing and their appropriate combinations with different delivery systems for augmenting bone regeneration. The general requirements of protein, cell and gene therapy are described, with elaboration on how the selection of materials, configurations and processing affects growth factor and cell delivery and regenerative efficacy in both in vitro and in vivo applications for bone tissue engineering. PMID:22342771
Barthes, Julien; Vrana, Nihal E; Özçelik, Hayriye; Gahoual, Rabah; François, Yannis N; Bacharouche, Jalal; Francius, Grégory; Hemmerlé, Joseph; Metz-Boutigue, Marie-Hélène; Schaaf, Pierre; Lavalle, Philippe
2015-09-01
Mammalian cell culture is the starting point in many research studies focusing on biomedical applications. However, researchers have little control over the standardized cell microenvironment parameters. Here a modular ECM-mimicking surface coating for cell culture environment is designed. This substrate is a new and versatile thin film obtained by spin-coating of concentrated gelatin crosslinked by transglutaminase. It can be modified with respect to the biochemical and biophysical needs of the final cell destination, i.e. it delivers loaded multi-growth factors and serum components and allows for cell culture in a serum-free culture medium. Also, a well-known cell behavior modulator, the substrate stiffness, is controlled exogenously by addition of nanoparticles. In addition to growth factors, antimicrobial agents such as natural peptides are added to the substrate for limiting the repeated addition of antimicrobial agents to the culture medium and to prevent the increase of resistant bacterial strains in the culture environment. Finally, this substrate contains simultaneously ECM components, growth factors, stiffening elements and antimicrobial agents. It provides a favorable microenvironment and sterile conditions. It is a free-of-maintenance system, as cells will grow without addition of serum or antimicrobial cocktails. This low cost and easy-to-use substrate could emerge as a new standard for cell culture.
Lineage-specific enhancers activate self-renewal genes in macrophages and embryonic stem cells
Soucie, Erinn L.; Weng, Ziming; Geirsdóttir, Laufey; Molawi, Kaaweh; Maurizio, Julien; Fenouil, Romain; Mossadegh-Keller, Noushine; Gimenez, Gregory; VanHille, Laurent; Beniazza, Meryam; Favret, Jeremy; Berruyer, Carole; Perrin, Pierre; Hacohen, Nir; Andrau, J.-C.; Ferrier, Pierre; Dubreuil, Patrice; Sidow, Arend; Sieweke, Michael H.
2016-01-01
Differentiated macrophages can self-renew in tissues and expand long-term in culture, but the gene regulatory mechanisms that accomplish self-renewal in the differentiated state have remained unknown. Here we show that in mice, the transcription factors MafB and c-Maf repress a macrophage-specific enhancer repertoire associated with a gene network controlling self-renewal. Single cell analysis revealed that, in vivo, proliferating resident macrophages can access this network by transient down-regulation of Maf transcription factors. The network also controls embryonic stem cell self-renewal but is associated with distinct embryonic stem cell-specific enhancers. This indicates that distinct lineage-specific enhancer platforms regulate a shared network of genes that control self-renewal potential in both stem and mature cells. PMID:26797145
Experiment K-6-23. Effect of spaceflight on levels and function of immune cells
NASA Technical Reports Server (NTRS)
Mandel, A. D.; Sonnenfeld, G.; Berry, W.; Taylor, G.; Wellhausen, S. R.; Konstantinova, I.; Lesnyak, A.; Fuchs, B.
1990-01-01
Two different immunology experiments were performed on samples received from rats flown on Cosmos 1887. In the first experiment, rat bone marrow cells were examined in Moscow for their response to colony stimulating factor-M. In the second experiment, rat spleen and bone marrow cells were stained in Moscow with a variety of antibodies directed against cell surface antigenic markers. These cells were preserved and shipped to the United States where they were subjected to analysis on a flow cytometer. The results of the studies indicate that bone marrow cells from flown rats showed a decreased response to colony stimulating factor than did bone marrow cells from control rats. There was a higher percentage of spleen cells from flown rats staining positively for pan-T-cell, suppressor-T-cell and innate interleukin-2 receptor antigens than from control animals. In addition, a higher percentage of cells that appeared to be part of the myelogenous population of bone marrow cells from flown rats stained positively for surface immunoglobulin than did equivalent cells from control rats.
Chromatin remodeling in stem cell maintenance in Arabidopsis thaliana.
Shen, Wen-Hui; Xu, Lin
2009-07-01
Pluripotent stem cells are able to both self-renew and generate undifferentiated cells for the formation of new tissues and organs. In higher plants, stem cells found in the shoot apical meristem (SAM) and the root apical meristem (RAM) are origins of organogenesis occurring post-embryonically. It is important to understand how the regulation of stem cell fate is coordinated to enable the meristem to constantly generate different types of lateral organs. Much knowledge has accumulated on specific transcription factors controlling SAM and RAM activity. Here, we review recent evidences for a role of chromatin remodeling in the maintenance of stable expression states of transcription factor genes and the control of stem cell activity in Arabidopsis.
Mei, Xing-Xing; Wang, Jian; Wu, Ji
2015-01-01
Spermatogonial stem cells (SSCs), the stem cells responsible for male fertility, are one of a small number of cells with the abilities of both self-renewal and generation of large numbers of haploid cells. Technology improvements, most importantly, transplantation assays and in vitro culture systems have greatly expanded our understanding of SSC self-renewal and differentiation. Many important molecules crucial for the balance between self-renewal and differentiation have been recently identified although the exact mechanism(s) remain largely undefined. In this review, we give a brief introduction to SSCs, and then focus on extrinsic and intrinsic factors controlling SSCs self-renewal and differentiation.
The cunning little vixen: Foxo and the cycle of life and death.
Hedrick, Stephen M
2009-10-01
A screen for increased longevity in Caenorhabditis elegans has identified a transcription factor that programs cells for resistance to oxidative stress, DNA repair and cell cycle control. The mammalian orthologs of this factor are referred to as 'Foxo' for 'Forkhead box', with the second 'o' in the name denoting a subfamily of four members related by sequence. This family of factors is regulated by growth factors, oxidative stress or nutrient deprivation. Thus, it might readily control the inflammatory conflagration associated with infection-driven lymphocyte proliferation. Surprisingly, the first insights into Foxo-mediated immune regulation have instead revealed direct control of highly specialized genes of the adaptive immune system.
Basic Aspects of Tumor Cell Fatty Acid-Regulated Signaling and Transcription Factors
Comba, Andrea; Lin, Yi-Hui; Eynard, Aldo Renato; Valentich, Mirta Ana; Fernandez-Zapico, Martin Ernesto; Pasqualini, Marìa Eugenia
2012-01-01
This article reviews the current knowledge and experimental research about the mechanisms by which fatty acids and their derivatives control specific gene expression involved during carcinogenesis. Changes in dietary fatty acids, specifically the polyunsaturated fatty acids (PUFAs) of the ω-3 and ω-6 families and some derived eicosanoids from lipoxygenases (LOXs), cyclooxygenases (COXs), and cytochrome P-450 (CYP-450), seem to control the activity of transcription factor families involved in cancer cell proliferation or cell death. Their regulation may be carried out either through direct binding to DNA as peroxisome proliferator–activated receptors (PPARs) or via modulation in an indirect manner of signaling pathway molecules (e.g., protein kinase C [PKC]) and other transcription factors (nuclear factor kappa B [NFκB] and sterol regulatory element binding protein [SREBP]). Knowledge of the mechanisms by which fatty acids control specific gene expression may identify important risk factors for cancer, and provide insight into the development of new therapeutic strategies for a better management of whole-body lipid metabolism. PMID:22048864
Basic aspects of tumor cell fatty acid-regulated signaling and transcription factors.
Comba, Andrea; Lin, Yi-Hui; Eynard, Aldo Renato; Valentich, Mirta Ana; Fernandez-Zapico, Martín Ernesto; Pasqualini, Marìa Eugenia
2011-12-01
This article reviews the current knowledge and experimental research about the mechanisms by which fatty acids and their derivatives control specific gene expression involved during carcinogenesis. Changes in dietary fatty acids, specifically the polyunsaturated fatty acids of the ω-3 and ω-6 families and some derived eicosanoids from lipoxygenases, cyclooxygenases, and cytochrome P-450, seem to control the activity of transcription factor families involved in cancer cell proliferation or cell death. Their regulation may be carried out either through direct binding to DNA as peroxisome proliferator-activated receptors or via modulation in an indirect manner of signaling pathway molecules (e.g., protein kinase C) and other transcription factors (nuclear factor kappa B and sterol regulatory element binding protein). Knowledge of the mechanisms by which fatty acids control specific gene expression may identify important risk factors for cancer and provide insight into the development of new therapeutic strategies for a better management of whole body lipid metabolism.
Merabet, Samir; Ebner, Andreas; Affolter, Markus
2005-08-01
The stereotyped outgrowth of tubular branches of the Drosophila tracheal system is orchestrated by the local and highly dynamic expression profile of branchless (bnl), which encodes a secreted fibroblast growth factor (FGF)-like molecule. Despite the importance of the spatial and temporal bnl regulation, little is known about the upstream mechanisms that establish its complex expression pattern. Here, we show that the Extradenticle and Homothorax selector proteins control bnl transcription in a single cell per segment, the mesodermal bridge-cell. In addition, we observed that a key determinant of bridge-cell specification, the transcription factor Hunchback, is also required for bnl expression. Therefore, we propose that one of the functions of the bridge-cell is to synthesize and secrete the chemoattractant Bnl. These findings provide a hitherto unknown and interesting link between combinatorial inputs of transcription factors, cell-specific ligand expression and organ morphogenesis.
Wicher, V; Wicher, K
1977-01-01
Production of mitogenic factor was examined in rabbits infected intratesticularly with T. pallidum and in control animals injected with saline or saline extract of normal rabbits' testes. Lymph nodes and spleen from animals killed 2, 6 and 12 weeks after injection were used as the source of lymphocytes, cultured in serum-free medium in the presence of Reiter antigen. The active supernatants of lymph node cells (LNAS) and spleen cells (SPAS) were examined for the presence of mitogenic factor using normal rabbit peripheral lymphocytes. The LNAS of control animals showed a mitogenic index (MI) between 4 and 6 and the infected animals less than 2. The SPAS of infected and control rabbits showed an MI of less than 2. The lower mitogenicity in LNAS of infected and that of SPAS of infected and control animals seems to be due to the presence of inhibitors of DNA synthesis. PMID:303968
Gobert, Vanessa; Augé, Benoit; Burlet-Schiltz, Odile; Haenlin, Marc
2017-01-01
A tight regulation of transcription factor activity is critical for proper development. For instance, modifications of RUNX transcription factors dosage are associated with several diseases, including hematopoietic malignancies. In Drosophila, Myeloid Leukemia Factor (MLF) has been shown to control blood cell development by stabilizing the RUNX transcription factor Lozenge (Lz). However, the mechanism of action of this conserved family of proteins involved in leukemia remains largely unknown. Here we further characterized MLF’s mode of action in Drosophila blood cells using proteomic, transcriptomic and genetic approaches. Our results show that MLF and the Hsp40 co-chaperone family member DnaJ-1 interact through conserved domains and we demonstrate that both proteins bind and stabilize Lz in cell culture, suggesting that MLF and DnaJ-1 form a chaperone complex that directly regulates Lz activity. Importantly, dnaj-1 loss causes an increase in Lz+ blood cell number and size similarly as in mlf mutant larvae. Moreover we find that dnaj-1 genetically interacts with mlf to control Lz level and Lz+ blood cell development in vivo. In addition, we show that mlf and dnaj-1 loss alters Lz+ cell differentiation and that the increase in Lz+ blood cell number and size observed in these mutants is caused by an overactivation of the Notch signaling pathway. Finally, using different conditions to manipulate Lz activity, we show that high levels of Lz are required to repress Notch transcription and signaling. All together, our data indicate that the MLF/DnaJ-1-dependent increase in Lz level allows the repression of Notch expression and signaling to prevent aberrant blood cell development. Thus our findings establish a functional link between MLF and the co-chaperone DnaJ-1 to control RUNX transcription factor activity and Notch signaling during blood cell development in vivo. PMID:28742844
Johard, Helena; Mahdessian, Diana; Fedr, Radek; Marks, Carolyn; Medalová, Jiřina; Souček, Karel; Lundberg, Emma; Linnarsson, Sten; Bryja, Vítězslav; Sekyrova, Petra; Altun, Mikael; Andäng, Michael
2017-01-01
The cell cycle coordinates core functions such as replication and cell division. However, cell-cycle-regulated transcription in the control of non-core functions, such as cell identity maintenance through specific transcription factors (TFs) and signalling pathways remains unclear. Here, we provide a resource consisting of mapped transcriptomes in unsynchronized HeLa and U2OS cancer cells sorted for cell cycle phase by Fucci reporter expression. We developed a novel algorithm for data analysis that enables efficient visualization and data comparisons and identified cell cycle synchronization of Notch signalling and TFs associated with development. Furthermore, the cell cycle synchronizes with the circadian clock, providing a possible link between developmental transcriptional networks and the cell cycle. In conclusion we find that cell cycle synchronized transcriptional patterns are temporally compartmentalized and more complex than previously anticipated, involving genes, which control cell identity and development. PMID:29228002
Induction of innate immunity in control of mucosal transmission of HIV.
Wang, Yufei; Lehner, Thomas
2011-09-01
To present evidence of the role of innate mucosal immunity and to harness this arm of immunity in protection against HIV infection. Dendritic cells, monocytes, natural killer (NK) cells and γδ T cells are critical in innate immunity, which is mediated by Toll-like receptor (TLR) and recently identified stress pathways. Complement factors, cytokines and chemokines have diverse functions usually affecting HIV infection indirectly. A novel group of innate intracellular HIV restriction factors has been identified - APOBEC3G, TRIM5α and tetherin - all of which are upregulated by type I interferons and some by vaccination and TLR agonists. Whereas innate immunity conventionally lacks memory, recent evidence suggests that some of the cells and intracellular factors may express immunological memory-like features. Innate mucosal immunity may provide early effective control of HIV transmission and replication. Some vaccines can enhance innate immune factors, such as APOBEC3G and control HIV during the eclipse period, allowing full weight of neutralizing and/or cytotoxic T cells to develop and prevent mucosal HIV infection. The next generation of vaccines should be designed to target both innate and adaptive immune memory responses.
Saxena, Pratik; Heng, Boon Chin; Bai, Peng; Folcher, Marc; Zulewski, Henryk; Fussenegger, Martin
2016-01-01
Synthetic biology has advanced the design of standardized transcription control devices that programme cellular behaviour. By coupling synthetic signalling cascade- and transcription factor-based gene switches with reverse and differential sensitivity to the licensed food additive vanillic acid, we designed a synthetic lineage-control network combining vanillic acid-triggered mutually exclusive expression switches for the transcription factors Ngn3 (neurogenin 3; OFF-ON-OFF) and Pdx1 (pancreatic and duodenal homeobox 1; ON-OFF-ON) with the concomitant induction of MafA (V-maf musculoaponeurotic fibrosarcoma oncogene homologue A; OFF-ON). This designer network consisting of different network topologies orchestrating the timely control of transgenic and genomic Ngn3, Pdx1 and MafA variants is able to programme human induced pluripotent stem cells (hIPSCs)-derived pancreatic progenitor cells into glucose-sensitive insulin-secreting beta-like cells, whose glucose-stimulated insulin-release dynamics are comparable to human pancreatic islets. Synthetic lineage-control networks may provide the missing link to genetically programme somatic cells into autologous cell phenotypes for regenerative medicine. PMID:27063289
Siegel, Andrea M; Heimall, Jennifer; Freeman, Alexandra F; Hsu, Amy P; Brittain, Erica; Brenchley, Jason M; Douek, Daniel C; Fahle, Gary H; Cohen, Jeffrey I; Holland, Steven M; Milner, Joshua D
2011-11-23
STAT3 transcription factor signaling in specific T helper cell differentiation has been well described, although the broader roles for STAT3 in lymphocyte memory are less clear. Patients with autosomal-dominant hyper-IgE syndrome (AD-HIES) carry dominant-negative STAT3 mutations and are susceptible to a variety of bacterial and fungal infections. We found that AD-HIES patients have a cell-intrinsic defect in the number of central memory CD4(+) and CD8(+) T cells compared to healthy controls. Naive T cells from AD-HIES patients had lower expression of memory-related transcription factors BCL6 and SOCS3, a primary proliferation defect, and they failed to acquire central memory-like surface phenotypes in vitro. AD-HIES patients showed a decreased ability to control varicella zoster virus (VZV) and Epstein-Barr virus (EBV) latency, and T cell memory to both of these viruses was compromised. These data point to a specific role for STAT3 in human central memory T cell formation and in control of certain chronic viruses. Copyright © 2011 Elsevier Inc. All rights reserved.
Ash, S A; Valchev, G I; Looney, M; Ni Mhathuna, A; Crowley, P D; Gallagher, H C; Buggy, D J
2014-07-01
While volatile agents have been implicated in metastasis-enhancing effects on cancer cells, the effects of xenon are unknown. We investigated xenon- and sevoflurane-mediated effects on migration and expression of angiogenesis biomarkers in human breast adenocarcinoma cells. MDA-MB-231 and MCF-7 cells were exposed to xenon 70% with O2 25%, CO2 5%; control gas containing O2 25%, CO2 5%, N2 70%; or sevoflurane 2.5 vol% administered in O2 60%, N2 37%, or control gas. Cell viability was determined by the MTT assay. Migration at 24 h was determined using the Oris™ Cell Migration Assay. Secretion of angiogenesis factors was measured using a membrane-based immunoassay array. Xenon reduced MDA-MB-231 migration to 59 (13%) after 1-h exposure (P=0.02), 64 (10%) after 3 h (P=0.01), and 71 (9%) after 5 h (P=0.04) compared with control gas, without affecting viability. Similarly, MCF-7 migration was significantly reduced at all timepoints [to 58 (12%) at 1 h, 65 (12%) at 3 h, and 65% (12%) at 5 h]. Sevoflurane did not affect migration when delivered in control gas. Glycine, an N-methyl-d-aspartate receptor co-agonist, antagonized the effects of xenon on migration. Expression of the pro-angiogenesis factor regulated on activation, normal T cell expressed and secreted (RANTES) was reduced in conditioned medium from xenon-exposed MDA-MB-231 cells compared with cells exposed to either control gas or sevoflurane [mean dot density 2.0 (0.2) compared with 3.0 (0.1) and 3.1 (0.3), respectively (P=0.02)]. Xenon, but not sevoflurane, inhibited migration in both oestrogen receptor positive and negative breast adenocarcinoma cells. Furthermore, xenon decreased release of the pro-angiogenic factor RANTES from MDA-MB-231 cells. © The Author [2014]. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Abnave, Prasad; Aboukhatwa, Ellen; Kosaka, Nobuyoshi; Thompson, James; Hill, Mark A.
2017-01-01
Migration of stem cells underpins the physiology of metazoan animals. For tissues to be maintained, stem cells and their progeny must migrate and differentiate in the correct positions. This need is even more acute after tissue damage by wounding or pathogenic infection. Inappropriate migration also underpins metastasis. Despite this, few mechanistic studies address stem cell migration during repair or homeostasis in adult tissues. Here, we present a shielded X-ray irradiation assay that allows us to follow stem cell migration in planarians. We demonstrate the use of this system to study the molecular control of stem cell migration and show that snail-1, snail-2 and zeb-1 EMT transcription factor homologs are necessary for cell migration to wound sites and for the establishment of migratory cell morphology. We also observed that stem cells undergo homeostatic migration to anterior regions that lack local stem cells, in the absence of injury, maintaining tissue homeostasis. This requires the polarity determinant notum. Our work establishes planarians as a suitable model for further in-depth study of the processes controlling stem cell migration in vivo. PMID:28893948
HIF Transcription Factors, Inflammation, and Immunity
Palazon, Asis; Goldrath, Ananda; Nizet, Victor
2015-01-01
The hypoxic response in cells and tissues is mediated by the family of hypoxia-inducible factor (HIF) transcription factors that play an integral role in the metabolic changes that drive cellular adaptation to low oxygen availability. HIF expression and stabilization in immune cells can be triggered by hypoxia, but also by other factors associated with pathological stress: e.g., inflammation, infectious microorganisms, and cancer. HIF induces a number of aspects of host immune function, from boosting phagocyte microbicidal capacity to driving T cell differentiation and cytotoxic activity. Cellular metabolism is emerging as a key regulator of immunity, and it constitutes another layer of fine-tuned immune control by HIF that can dictate myeloid cell and lymphocyte development, fate, and function. Here we discuss how oxygen sensing in the immune microenvironment shapes immunological response and examine how HIF and the hypoxia pathway control innate and adaptive immunity. PMID:25367569
HIF transcription factors, inflammation, and immunity.
Palazon, Asis; Goldrath, Ananda W; Nizet, Victor; Johnson, Randall S
2014-10-16
The hypoxic response in cells and tissues is mediated by the family of hypoxia-inducible factor (HIF) transcription factors; these play an integral role in the metabolic changes that drive cellular adaptation to low oxygen availability. HIF expression and stabilization in immune cells can be triggered by hypoxia, but also by other factors associated with pathological stress: e.g., inflammation, infectious microorganisms, and cancer. HIF induces a number of aspects of host immune function, from boosting phagocyte microbicidal capacity to driving T cell differentiation and cytotoxic activity. Cellular metabolism is emerging as a key regulator of immunity, and it constitutes another layer of fine-tuned immune control by HIF that can dictate myeloid cell and lymphocyte development, fate, and function. Here we discuss how oxygen sensing in the immune microenvironment shapes immunological response and examine how HIF and the hypoxia pathway control innate and adaptive immunity.
2006-06-01
factors. T47DY cells were cotransfected with a PR construct, a PRE- luciferase plasmid and a renilla plasmid, for transfection control. The cells...PR-B or S294A PR-B, PRE-luciferase reporter constructs and a Renilla control plasmid. Cells were treated for 24hrs with or without R5020 (10nM...plasmid and a plasmid constitutively expressing renilla luciferase for transfection control. Cell were starved for one day and treated with or without
Lineage-specific enhancers activate self-renewal genes in macrophages and embryonic stem cells.
Soucie, Erinn L; Weng, Ziming; Geirsdóttir, Laufey; Molawi, Kaaweh; Maurizio, Julien; Fenouil, Romain; Mossadegh-Keller, Noushine; Gimenez, Gregory; VanHille, Laurent; Beniazza, Meryam; Favret, Jeremy; Berruyer, Carole; Perrin, Pierre; Hacohen, Nir; Andrau, J-C; Ferrier, Pierre; Dubreuil, Patrice; Sidow, Arend; Sieweke, Michael H
2016-02-12
Differentiated macrophages can self-renew in tissues and expand long term in culture, but the gene regulatory mechanisms that accomplish self-renewal in the differentiated state have remained unknown. Here we show that in mice, the transcription factors MafB and c-Maf repress a macrophage-specific enhancer repertoire associated with a gene network that controls self-renewal. Single-cell analysis revealed that, in vivo, proliferating resident macrophages can access this network by transient down-regulation of Maf transcription factors. The network also controls embryonic stem cell self-renewal but is associated with distinct embryonic stem cell-specific enhancers. This indicates that distinct lineage-specific enhancer platforms regulate a shared network of genes that control self-renewal potential in both stem and mature cells. Copyright © 2016, American Association for the Advancement of Science.
Chalvet, Fabienne; Netter, Sophie; Dos Santos, Nicolas; Poisot, Emilie; Paces-Fessy, Mélanie; Cumenal, Delphine; Peronnet, Frédérique; Pret, Anne-Marie; Théodore, Laurent
2012-01-01
The potential to produce new cells during adult life depends on the number of stem cell niches and the capacity of stem cells to divide, and is therefore under the control of programs ensuring developmental homeostasis. However, it remains generally unknown how the number of stem cell niches is controlled. In the insect ovary, each germline stem cell (GSC) niche is embedded in a functional unit called an ovariole. The number of ovarioles, and thus the number of GSC niches, varies widely among species. In Drosophila, morphogenesis of ovarioles starts in larvae with the formation of terminal filaments (TFs), each made of 8–10 cells that pile up and sort in stacks. TFs constitute organizers of individual germline stem cell niches during larval and early pupal development. In the Drosophila melanogaster subgroup, the number of ovarioles varies interspecifically from 8 to 20. Here we show that pipsqueak, Trithorax-like, batman and the bric-à-brac (bab) locus, all encoding nuclear BTB/POZ factors of the Tramtrack Group, are involved in limiting the number of ovarioles in D. melanogaster. At least two different processes are differentially perturbed by reducing the function of these genes. We found that when the bab dose is reduced, sorting of TF cells into TFs was affected such that each TF contains fewer cells and more TFs are formed. In contrast, psq mutants exhibited a greater number of TF cells per ovary, with a normal number of cells per TF, thereby leading to formation of more TFs per ovary than in the wild type. Our results indicate that two parallel genetic pathways under the control of a network of nuclear BTB factors are combined in order to negatively control the number of germline stem cell niches. PMID:23185495
Pluripotency factors in embryonic stem cells regulate differentiation into germ layers.
Thomson, Matt; Liu, Siyuan John; Zou, Ling-Nan; Smith, Zack; Meissner, Alexander; Ramanathan, Sharad
2011-06-10
Cell fate decisions are fundamental for development, but we do not know how transcriptional networks reorganize during the transition from a pluripotent to a differentiated cell state. Here, we asked how mouse embryonic stem cells (ESCs) leave the pluripotent state and choose between germ layer fates. By analyzing the dynamics of the transcriptional circuit that maintains pluripotency, we found that Oct4 and Sox2, proteins that maintain ESC identity, also orchestrate germ layer fate selection. Oct4 suppresses neural ectodermal differentiation and promotes mesendodermal differentiation; Sox2 inhibits mesendodermal differentiation and promotes neural ectodermal differentiation. Differentiation signals continuously and asymmetrically modulate Oct4 and Sox2 protein levels, altering their binding pattern in the genome, and leading to cell fate choice. The same factors that maintain pluripotency thus also integrate external signals and control lineage selection. Our study provides a framework for understanding how complex transcription factor networks control cell fate decisions in progenitor cells. Copyright © 2011 Elsevier Inc. All rights reserved.
Eltaher, Hoda M; Yang, Jing; Shakesheff, Kevin M; Dixon, James E
2016-09-01
Fundamental behaviour such as cell fate, growth and death are mediated through the control of key genetic transcriptional regulators. These regulators are activated or repressed by the integration of multiple signalling molecules in spatio-temporal gradients. Engineering these gradients is complex but considered key in controlling tissue formation in regenerative medicine approaches. Direct programming of cells using exogenously delivered transcription factors can by-pass growth factor complexity but there is still a requirement to deliver such activity spatio-temporally. We previously developed a technology termed GAG-binding enhanced transduction (GET) to efficiently deliver a variety of cargoes intracellularly using GAG-binding domains to promote cell targeting, and cell penetrating peptides (CPPs) to allow cell entry. Herein we demonstrate that GET can be used in a three dimensional (3D) hydrogel matrix to produce gradients of intracellular transduction of mammalian cells. Using a compartmentalised diffusion model with a source-gel-sink (So-G-Si) assembly, we created gradients of reporter proteins (mRFP1-tagged) and a transcription factor (TF, myogenic master regulator MyoD) and showed that GET can be used to deliver molecules into cells spatio-temporally by monitoring intracellular transduction and gene expression programming as a function of location and time. The ability to spatio-temporally control the intracellular delivery of functional proteins will allow the establishment of gradients of cell programming in hydrogels and approaches to direct cellular behaviour for many regenerative medicine applications. Regenerative medicine aims to reform functional biological tissues by controlling cell behaviour. Growth factors (GFs) are soluble cues presented to cells in spatio-temporal gradients and play important roles programming cell fate and gene expression. The efficient transduction of cells by GET (Glycosaminoglycan-enhanced transducing)-tagged transcription factors (TFs) can be used to by-pass GF-stimulation and directly program cells. For the first time we demonstrate diffusion of GET proteins generate stable protein transduction gradients. We demonstrated the feasibility of creating spatio-temporal gradients of GET-MyoD and show differential programing of myogenic differentiation. We believe that GET could provide a powerful tool to program cell behaviour using gradients of recombinant proteins that allow tissue generation directly by programming gene expression with TFs. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Cattenoz, Pierre B.; Popkova, Anna; Southall, Tony D.; Aiello, Giuseppe; Brand, Andrea H.; Giangrande, Angela
2016-01-01
High-throughput screens allow us to understand how transcription factors trigger developmental processes, including cell specification. A major challenge is identification of their binding sites because feedback loops and homeostatic interactions may mask the direct impact of those factors in transcriptome analyses. Moreover, this approach dissects the downstream signaling cascades and facilitates identification of conserved transcriptional programs. Here we show the results and the validation of a DNA adenine methyltransferase identification (DamID) genome-wide screen that identifies the direct targets of Glide/Gcm, a potent transcription factor that controls glia, hemocyte, and tendon cell differentiation in Drosophila. The screen identifies many genes that had not been previously associated with Glide/Gcm and highlights three major signaling pathways interacting with Glide/Gcm: Notch, Hedgehog, and JAK/STAT, which all involve feedback loops. Furthermore, the screen identifies effector molecules that are necessary for cell-cell interactions during late developmental processes and/or in ontogeny. Typically, immunoglobulin (Ig) domain–containing proteins control cell adhesion and axonal navigation. This shows that early and transiently expressed fate determinants not only control other transcription factors that, in turn, implement a specific developmental program but also directly affect late developmental events and cell function. Finally, while the mammalian genome contains two orthologous Gcm genes, their function has been demonstrated in vertebrate-specific tissues, placenta, and parathyroid glands, begging questions on the evolutionary conservation of the Gcm cascade in higher organisms. Here we provide the first evidence for the conservation of Gcm direct targets in humans. In sum, this work uncovers novel aspects of cell specification and sets the basis for further understanding of the role of conserved Gcm gene regulatory cascades. PMID:26567182
NASA Technical Reports Server (NTRS)
Parker, Kevin Kit; Brock, Amy Lepre; Brangwynne, Cliff; Mannix, Robert J.; Wang, Ning; Ostuni, Emanuele; Geisse, Nicholas A.; Adams, Josephine C.; Whitesides, George M.; Ingber, Donald E.
2002-01-01
Directed cell migration is critical for tissue morphogenesis and wound healing, but the mechanism of directional control is poorly understood. Here we show that the direction in which cells extend their leading edge can be controlled by constraining cell shape using micrometer-sized extracellular matrix (ECM) islands. When cultured on square ECM islands in the presence of motility factors, cells preferentially extended lamellipodia, filopodia, and microspikes from their corners. Square cells reoriented their stress fibers and focal adhesions so that tractional forces were concentrated in these corner regions. When cell tension was dissipated, lamellipodia extension ceased. Mechanical interactions between cells and ECM that modulate cytoskeletal tension may therefore play a key role in the control of directional cell motility.
Edvardsen, Kine; Hellesen, Alexander; Husebye, Eystein S; Bratland, Eirik
2016-03-09
Autoimmune Addison's disease (AAD) is caused by multiple genetic and environmental factors. Variants of genes encoding immunologically important proteins such as the HLA molecules are strongly associated with AAD, but any environmental risk factors have yet to be defined. We hypothesized that primary or reactivating infections with cytomegalovirus (CMV) could represent an environmental risk factor in AAD, and that CMV specific CD8(+) T cell responses may be dysregulated, possibly leading to a suboptimal control of CMV. In particular, the objective was to assess the HLA-B8 restricted CD8(+) T cell response to CMV since this HLA class I variant is a genetic risk factor for AAD. To examine the CD8(+) T cell response in detail, we analyzed the HLA-A2 and HLA-B8 restricted responses in AAD patients and healthy controls seropositive for CMV antibodies using HLA multimer technology, IFN-γ ELISpot and a CD107a based degranulation assay. No differences between patients and controls were found in functions or frequencies of CMV-specific T cells, regardless if the analyses were performed ex vivo or after in vitro stimulation and expansion. However, individual patients showed signs of reactivating CMV infection correlating with poor CD8(+) T cell responses to the virus, and a concomitant upregulation of interferon regulated genes in peripheral blood cells. Several recently diagnosed AAD patients also showed serological signs of ongoing primary CMV infection. CMV infection does not appear to be a major environmental risk factor in AAD, but may represent a precipitating factor in individual patients.
Audette, Dylan S.; Anand, Deepti; So, Tammy; Rubenstein, Troy B.; Lachke, Salil A.; Lovicu, Frank J.; Duncan, Melinda K.
2016-01-01
Lens epithelial cells differentiate into lens fibers (LFs) in response to a fibroblast growth factor (FGF) gradient. This cell fate decision requires the transcription factor Prox1, which has been hypothesized to promote cell cycle exit in differentiating LF cells. However, we find that conditional deletion of Prox1 from mouse lenses results in a failure in LF differentiation despite maintenance of normal cell cycle exit. Instead, RNA-seq demonstrated that Prox1 functions as a global regulator of LF cell gene expression. Intriguingly, Prox1 also controls the expression of fibroblast growth factor receptors (FGFRs) and can bind to their promoters, correlating with decreased downstream signaling through MAPK and AKT in Prox1 mutant lenses. Further, culturing rat lens explants in FGF increased their expression of Prox1, and this was attenuated by the addition of inhibitors of MAPK. Together, these results describe a novel feedback loop required for lens differentiation and morphogenesis, whereby Prox1 and FGFR signaling interact to mediate LF differentiation in response to FGF. PMID:26657765
Audette, Dylan S; Anand, Deepti; So, Tammy; Rubenstein, Troy B; Lachke, Salil A; Lovicu, Frank J; Duncan, Melinda K
2016-01-15
Lens epithelial cells differentiate into lens fibers (LFs) in response to a fibroblast growth factor (FGF) gradient. This cell fate decision requires the transcription factor Prox1, which has been hypothesized to promote cell cycle exit in differentiating LF cells. However, we find that conditional deletion of Prox1 from mouse lenses results in a failure in LF differentiation despite maintenance of normal cell cycle exit. Instead, RNA-seq demonstrated that Prox1 functions as a global regulator of LF cell gene expression. Intriguingly, Prox1 also controls the expression of fibroblast growth factor receptors (FGFRs) and can bind to their promoters, correlating with decreased downstream signaling through MAPK and AKT in Prox1 mutant lenses. Further, culturing rat lens explants in FGF increased their expression of Prox1, and this was attenuated by the addition of inhibitors of MAPK. Together, these results describe a novel feedback loop required for lens differentiation and morphogenesis, whereby Prox1 and FGFR signaling interact to mediate LF differentiation in response to FGF. © 2016. Published by The Company of Biologists Ltd.
Verzi, Michael P.; Shin, Hyunjin; San Roman, Adrianna K.
2013-01-01
Tissue-specific gene expression requires modulation of nucleosomes, allowing transcription factors to occupy cis elements that are accessible only in selected tissues. Master transcription factors control cell-specific genes and define cellular identities, but it is unclear if they possess special abilities to regulate cell-specific chromatin and if such abilities might underlie lineage determination and maintenance. One prevailing view is that several transcription factors enable chromatin access in combination. The homeodomain protein CDX2 specifies the embryonic intestinal epithelium, through unknown mechanisms, and partners with transcription factors such as HNF4A in the adult intestine. We examined enhancer chromatin and gene expression following Cdx2 or Hnf4a excision in mouse intestines. HNF4A loss did not affect CDX2 binding or chromatin, whereas CDX2 depletion modified chromatin significantly at CDX2-bound enhancers, disrupted HNF4A occupancy, and abrogated expression of neighboring genes. Thus, CDX2 maintains transcription-permissive chromatin, illustrating a powerful and dominant effect on enhancer configuration in an adult tissue. Similar, hierarchical control of cell-specific chromatin states is probably a general property of master transcription factors. PMID:23129810
Sharma, Madhav D.; Huang, Lei; Choi, Jeong-Hyeon; Lee, Eun-Joon; Wilson, James M.; Lemos, Henrique; Pan, Fan; Blazar, Bruce R.; Pardoll, Drew M.; Mellor, Andrew L; Shi, Huidong; Munn, David H.
2013-01-01
SUMMARY At sites of inflammation, certain regulatory T cells (Treg cells) can undergo rapid reprogramming into helper-like cells, without loss of the transcription factor Foxp3. We show that reprogramming is controlled by down-regulation of the transcription factor Eos (Ikzf4), an obligate co-repressor for Foxp3. Reprogramming was restricted to a specific subset of “Eoslabile” Treg cells which were present in the thymus and identifiable by characteristic surface markers and DNA methylation. Mice made deficient in this subset became impaired in their ability to provide help for presentation of new antigens to naive T cells. Down-regulation of Eos required the pro-inflammatory cytokine IL-6, and mice lacking IL-6 had impaired development and function of the Eos-labile subset. Conversely, the immunoregulatory enzyme IDO blocked loss of Eos, and prevented the Eos-labile Treg cells from reprogramming. Thus, the Foxp3+ lineage contains a committed subset of Treg cells capable of rapid conversion into biologically important helper cells. PMID:23684987
Regulation of cell wall biosynthesis.
Zhong, Ruiqin; Ye, Zheng-Hua
2007-12-01
Plant cell walls differ in their amount and composition among various cell types and even in different microdomains of the wall of a given cell. Plants must have evolved regulatory mechanisms controlling biosynthesis, targeted secretion, and assembly of wall components to achieve the heterogeneity in cell walls. A number of factors, including hormones, the cytoskeleton, glycosylphosphatidylinositol-anchored proteins, phosphoinositides, and sugar nucleotide supply, have been implicated in the regulation of cell wall biosynthesis or deposition. In the past two years, there have been important discoveries in transcriptional regulation of secondary wall biosynthesis. Several transcription factors in the NAC and MYB families have been shown to be the key switches for activation of secondary wall biosynthesis. These studies suggest a transcriptional network comprised of a hierarchy of transcription factors is involved in regulating secondary wall biosynthesis. Further investigation and integration of the regulatory players participating in the making of cell walls will certainly lead to our understanding of how wall amounts and composition are controlled in a given cell type. This may eventually allow custom design of plant cell walls on the basis of our needs.
Neurotrophins, growth-factor-regulated genes and the control of energy balance.
Salton, Stephen R J
2003-03-01
Neurotrophic growth factors are proteins that control neuronal differentiation and survival, and consequently play important roles in the developing and adult stages of the nervous system. Study of the genes that are regulated by these growth factors has provided insight into the proteins that are critical to the maturation of the nervous system, suggesting that select neurotrophins may play a role in the control of body homeostasis by the brain and peripheral nervous system. Our understanding of the mechanisms of action of neurotrophic growth factors has increased through experimental manipulation of cultured neurons and neuronal cell lines. In particular, the PC12 pheochromocytoma cell line, which displays many properties of adrenal chromaffin cells and undergoes differentiation into sympathetic neuron-like cells when treated with nerve growth factor, has been extensively investigated to identify components of neurotrophin signaling pathways as well as the genes that they regulate. VGF was one of the first neurotrophin-regulated clones identified in NGF-treated PC12 cells. Subsequent studies indicate that the vgf gene is regulated in vivo in the nervous system by neurotrophins, by electrical activity, in response to injury or seizure, and by feeding and the circadian clock. The vgf gene encodes a polypeptide rich in paired basic amino acids; this polypeptide is differentially processed in neuronal and neuroendocrine cells and is released via the regulated secretory pathway. Generation and analysis of knockout mice that fail to synthesize VGF indicate that this protein plays a critical, non-redundant role in the regulation of energy homeostasis, providing a possible link between neurotrophin function in the nervous system and the peripheral control of feeding and metabolic activity. Future experiments should clarify the sites and mechanisms of action of this neurotrophin-regulated neuronal and neuroendocrine protein.
Jabłoński, Marcin; Mazur, Jolanta Kucharska; Tarnowski, Maciej; Dołęgowska, Barbara; Pędziwiatr, Daniel; Kubiś, Ewa; Budkowska, Marta; Sałata, Daria; Wysiecka, Justyna Pełka; Kazimierczak, Arkadiusz; Reginia, Artur; Ratajczak, Mariusz Z; Samochowiec, Jerzy
2017-04-01
In this paper we examined whether stem cells and factors responsible for their movement may serve as new biological markers of anxiety disorders. The study was carried out on a group of 30 patients diagnosed with panic disorder (examined before and after treatment), compared to 30 healthy individuals forming the control group. We examined the number of circulating HSCs (hematopoetic stem cells) (Lin-/CD45 +/CD34 +) and HSCs (Lin-/CD45 +/AC133 +), the number of circulating VSELs (very small embryonic-like stem cells) (Lin-/CD45-/CD34 +) and VSELs (Lin-/CD45-/AC133 +), as well as the concentration of complement components: C3a, C5a and C5b-9, SDF-1 (stromal derived factor) and S1P (sphingosine-1-phosphate). Significantly lower levels of HSCs (Lin-/CD45 +/AC133 +) have been demonstrated in the patient group compared to the control group both before and after treatment. The level of VSELs (Lin-/CD45-/CD133 +) was significantly lower in the patient group before treatment as compared to the patient group after treatment.The levels of factors responsible for stem cell movement were significantly lower in the patient group compared to the control group before and after treatment. It was concluded that the study of stem cells and factors associated with their movement can be useful in the diagnostics of panic disorder, as well as differentiating between psychotic and anxiety disorders.
Mendoza, Rhone A.; Enriquez, Marlene I; Mejia, Sylvia M; Moody, Emily E; Thordarson, Gudmundur
2011-01-01
Understanding of the interactions between estradiol (E2) and insulin-like growth factor-I (IGF-I) is still incomplete. Cell lines derived from the MCF-7 breast cancer cells were generated with suppressed expression of the IGF-I receptor (IGF-IR), termed IGF-IR.low cells, by stable transfection using small interfering RNA (siRNA) expression vector. Vector for control cells carried sequence generating non-interfering RNA. Concomitant with reduction in the IGF-IR levels, the IGF-IR.low cells also showed a reduction in estrogen receptor α (ERα) and progesterone receptor expressions and an elevation in the expression of ERβ. The number of the IGF-IR.low cells was reduced in response to IGF-I and human growth hormone plus epidermal growth factor, but E2 did not cause increase in the number of the IGF-IR.low cells compared to controls. Proliferation rate of IGF-IR.low cells was only reduced in response to E2 compared to controls, whereas their basal and hormone stimulated apoptosis rate was increased. Phosphorylation of p38 mitogen activated protein kinase (p38 MAPK) was increased in the IGF-IR.low cells after treatment with E2, without affecting control cells. Further, phosphorylation of the tumor suppressor protein p53 was elevated in the IGF-IR.low cells compared to the controls. Summary, suppressing the IGF-IR expression decreased the level of ERα but increased the level of ERβ. Overall growth rate of the IGF-IR.low cells was reduced mostly through an increase in apoptosis without affecting proliferation substantially. We hypothesize that a decreased ERα:ERβ ratio triggered a rapid phosphorylation of p38 MAPK which in turn phosphorylated the p53 tumor suppressor and accelerated apoptosis rate. PMID:20974640
Feng, Lijuan; Shi, Zhen; Chen, Xin
2017-01-01
Stem cells reside in a particular microenvironment known as a niche. The interaction between extrinsic cues originating from the niche and intrinsic factors in stem cells determines their identity and activity. Maintenance of stem cell identity and stem cell self-renewal are known to be controlled by chromatin factors. Herein, we use the Drosophila adult testis which has two adult stem cell lineages, the germline stem cell (GSC) lineage and the cyst stem cell (CySC) lineage, to study how chromatin factors regulate stem cell differentiation. We find that the chromatin factor Enhancer of Polycomb [E(Pc)] acts in the CySC lineage to negatively control transcription of genes associated with multiple signaling pathways, including JAK-STAT and EGF, to promote cellular differentiation in the CySC lineage. E(Pc) also has a non-cell-autonomous role in regulating GSC lineage differentiation. When E(Pc) is specifically inactivated in the CySC lineage, defects occur in both germ cell differentiation and maintenance of germline identity. Furthermore, compromising Tip60 histone acetyltransferase activity in the CySC lineage recapitulates loss-of-function phenotypes of E(Pc), suggesting that Tip60 and E(Pc) act together, consistent with published biochemical data. In summary, our results demonstrate that E(Pc) plays a central role in coordinating differentiation between the two adult stem cell lineages in Drosophila testes. PMID:28196077
Langdon, Jacqueline M.; Schroeder, John T.; Vonakis, Becky M.; Bieneman, Anja P.; Chichester, Kristin; MacDonald, Susan M.
2008-01-01
Previously, we demonstrated a negative correlation between histamine release to histamine-releasing factor/translationally controlled tumor protein (HRF/TCTP) and protein levels of SHIP-1 in human basophils. The present study was conducted to investigate whether suppressing SHIP-1 using small interfering (si)RNA technology would alter the releasability of culture-derived mast cells and basophils, as determined by HRF/TCTP histamine release. Frozen CD34+ cells were obtained from the Fred Hutchinson Cancer Research Center (Seattle, WA, USA). Cells were grown in StemPro-34 medium containing cytokines: mast cells with IL-6 and stem cell factor (100 ng/ml each) for 6–8 weeks and basophils with IL-3 (6.7 ng/ml) for 2–3 weeks. siRNA transfections were performed during Week 6 for mast cells and Week 2 for basophils with siRNA for SHIP-1 or a negative control siRNA. Changes in SHIP-1 expression were determined by Western blot. The functional knockdown was measured by HRF/TCTP-induced histamine release. siRNA knockdown of SHIP-1 in mast cells ranged from 31% to 82%, mean 65 ± 12%, compared with control (n=4). Histamine release to HRF/TCTP was increased only slightly in two experiments. SHIP-1 knockdown in basophils ranged from 34% to 69%, mean 51.8 ± 7% (n=4). Histamine release to HRF/TCTP in these basophils was dependent on the amount of SHIP knockdown. Mast cells and basophils derived from CD34+ precursor cells represent suitable models for transfection studies. Reducing SHIP-1 protein in cultured mast cells and in cultured basophils increases releasability of the cells. PMID:18625911
Laouar, Yasmina; Sutterwala, Fayyaz S; Gorelik, Leonid; Flavell, Richard A
2005-06-01
Interferon-gamma and interleukin 12 produced by the innate arm of the immune system are important regulators of T helper type 1 (T(H)1) cell development, but signals that negatively regulate their expression remain controversial. Here we show that transforming growth factor-beta (TGF-beta) controlled T(H)1 differentiation through the regulation of interferon-gamma produced by natural killer (NK) cells. Blockade of TGF-beta signaling in NK cells caused the accumulation of a large pool of NK cells secreting copious interferon-gamma, responsible for T(H)1 differentiation and protection from leishmania infection. In contrast, blockade of TGF-beta signaling in dendritic cells did not affect dendritic cell homeostasis or interleukin 12 production, thus indicating a previously undescribed demarcation of the function of TGF-beta in NK cells versus dendritic cells.
Li, Wei; Guo, Yangyang; Fan, Jing; Ma, Chaolin; Ma, Xuan; Chen, Xi; He, Jiping
2017-05-01
Adaptive flexibility is of significance for the smooth and efficient movements in goal attainment. However, the underlying work mechanism of the cerebral cortex in adaptive motor control still remains unclear. How does the cerebral cortex organize and coordinate the activity of a large population of cells in the implementation of various motor strategies? To explore this issue, single-unit activities from the M1 region and kinematic data were recorded simultaneously in monkeys performing 3D reach-to-grasp tasks with different perturbations. Varying motor control strategies were employed and achieved in different perturbed tasks, via the dynamic allocation of cells to modulate specific movement parameters. An economic principle was proposed for the first time to describe a basic rule for cell allocation in the primary motor cortex. This principle, defined as the Dynamic Economic Cell Allocation Mechanism (DECAM), guarantees benefit maximization in cell allocation under limited neuronal resources, and avoids committing resources to uneconomic investments for unreliable factors with no or little revenue. That is to say, the cells recruited are always preferentially allocated to those factors with reliable return; otherwise, the cells are dispatched to respond to other factors about task. The findings of this study might partially reveal the working mechanisms underlying the role of the cerebral cortex in adaptive motor control, wherein is also of significance for the design of future intelligent brain-machine interfaces and rehabilitation device.
Schuster, Christoph; Gaillochet, Christophe; Medzihradszky, Anna; Busch, Wolfgang; Daum, Gabor; Krebs, Melanie; Kehle, Andreas; Lohmann, Jan U
2014-02-24
Plants continuously maintain pluripotent stem cells embedded in specialized tissues called meristems, which drive long-term growth and organogenesis. Stem cell fate in the shoot apical meristem (SAM) is controlled by the homeodomain transcription factor WUSCHEL (WUS) expressed in the niche adjacent to the stem cells. Here, we demonstrate that the bHLH transcription factor HECATE1 (HEC1) is a target of WUS and that it contributes to SAM function by promoting stem cell proliferation, while antagonizing niche cell activity. HEC1 represses the stem cell regulators WUS and CLAVATA3 (CLV3) and, like WUS, controls genes with functions in metabolism and hormone signaling. Among the targets shared by HEC1 and WUS are phytohormone response regulators, which we show to act as mobile signals in a universal feedback system. Thus, our work sheds light on the mechanisms guiding meristem function and suggests that the underlying regulatory system is far more complex than previously anticipated. Copyright © 2014 Elsevier Inc. All rights reserved.
Stam, Floor J.; Hendricks, Timothy J.; Zhang, Jingming; Geiman, Eric J.; Francius, Cedric; Labosky, Patricia A.; Clotman, Frederic; Goulding, Martyn
2012-01-01
The spinal cord contains a diverse array of physiologically distinct interneuron cell types that subserve specialized roles in somatosensory perception and motor control. The mechanisms that generate these specialized interneuronal cell types from multipotential spinal progenitors are not known. In this study, we describe a temporally regulated transcriptional program that controls the differentiation of Renshaw cells (RCs), an anatomically and functionally discrete spinal interneuron subtype. We show that the selective activation of the Onecut transcription factors Oc1 and Oc2 during the first wave of V1 interneuron neurogenesis is a key step in the RC differentiation program. The development of RCs is additionally dependent on the forkhead transcription factor Foxd3, which is more broadly expressed in postmitotic V1 interneurons. Our demonstration that RCs are born, and activate Oc1 and Oc2 expression, in a narrow temporal window leads us to posit that neuronal diversity in the developing spinal cord is established by the composite actions of early spatial and temporal determinants. PMID:22115757
Tomescu, Costin; Liu, Qin; Ross, Brian N; Yin, Xiangfan; Lynn, Kenneth; Mounzer, Karam C; Kostman, Jay R; Montaner, Luis J
2014-01-01
HIV-1 infected viremic controllers maintain durable viral suppression below 2000 copies viral RNA/ml without anti-retroviral therapy (ART), and the immunological factor(s) associated with host control in presence of low but detectable viral replication are of considerable interest. Here, we utilized a multivariable analysis to identify which innate and adaptive immune parameters best correlated with viral control utilizing a cohort of viremic controllers (median 704 viral RNA/ml) and non-controllers (median 21,932 viral RNA/ml) that were matched for similar CD4+ T cell counts in the absence of ART. We observed that HIV-1 Gag-specific CD8+ T cell responses were preferentially targeted over Pol-specific responses in viremic controllers (p = 0.0137), while Pol-specific responses were positively associated with viral load (rho = 0.7753, p = 0.0001, n = 23). Viremic controllers exhibited significantly higher NK and plasmacytoid dendritic cells (pDC) frequency as well as retained expression of the NK CD16 receptor and strong target cell-induced NK cell IFN-gamma production compared to non-controllers (p<0.05). Despite differences in innate and adaptive immune function however, both viremic controllers (p<0.05) and non-controller subjects (p<0.001) exhibited significantly increased CD8+ T cell activation and spontaneous NK cell degranulation compared to uninfected donors. Overall, we identified that a combination of innate (pDC frequency) and adaptive (Pol-specific CD8+ T cell responses) immune parameters best predicted viral load (R2 = 0.5864, p = 0.0021, n = 17) by a multivariable analysis. Together, this data indicates that preferential Gag-specific over Pol-specific CD8+ T cell responses along with a retention of functional innate subsets best predict host control over viral replication in HIV-1 infected viremic controllers compared to chronically-infected non-controllers.
Girgis, Erian H; Mahoney, John P; Khalil, Rafaat H; Soliman, Magdi R
2010-07-01
Studies conducted in our lab have indicated that thalidomide cytotoxicity in the KG-1a human acute myelogenous leukemia (AML) cell line was enhanced by combining it with arsenic trioxide. The current investigation was conducted in order to evaluate the effect of thalidomide either alone or in combination with arsenic trioxide on the release of tumor necrosis factor-α (TNF-α) and vascular endothelial growth factor (VEGF) from this cell line in an attempt to clarify its possible cytotoxic mechanism(s). Human AML cell line KG-1a was used in this study. The cells were cultured for 48 h in the presence or absence of thalidomide (5 mg/l), and or arsenic trioxide (4 μM). The levels of TNF-α and VEGF in the supernatant were determined by ELISA. Results obtained indicate that the levels of TNF-α in the supernatant of KG-1a cell cultures incubated with thalidomide, arsenic trioxide, or combination were statistically lower than those observed in the supernatant of control cells (2.89, 5.07, 4.15 and 16.88 pg/ml, respectively). However, the levels of VEGF in the supernatant of thalidomide-treated cells were statistically higher than those in the supernatant of control cells (69.61 vs. 11.48 pg/l). Arsenic trioxide, whether alone or in combination with thalidomide, did not produce any statistically significant difference in the levels of VEGF as compared to the control or thalidomide-treated cell supernatant. These findings indicate that thalidomide and the arsenic trioxide inhibition of TNF-α production by KG-1a cells may play an important role in their cytotoxic effect.
Inhibition of Embryonic Genes to Control Colorectal Cancer Metastasis
2014-09-01
14. ABSTRACT Embryonic core transcription factors (TFs), primarily the retrogene NanogP8, are the master regulators of cancer stem cells (CSC) in...core transcription factors (TFs), primarily the retrogene NanogP8, are the master regulators of cancer stem cells (CSC) in human colorectal carcinoma...maintaining the stemness of colorectal carcinoma (CRC) as well as the identification of two different pathways by which NANOG and NANOGP8 control pluripotency
Elevated endothelial progenitor cells during painful sickle cell crisis.
van Beem, Rachel T; Nur, Erfan; Zwaginga, Jaap Jan; Landburg, Precious P; van Beers, Eduard J; Duits, Ashley J; Brandjes, Dees P; Lommerse, Ingrid; de Boer, Hetty C; van der Schoot, C Ellen; Schnog, John-John B; Biemond, Bart J
2009-09-01
Circulating endothelial progenitor cells (EPCs) counts were determined in patients with sickle cell disease (SCD) to elucidate their role in SCD-related ischemia-induced angiogenesis and reendothelialization. Circulating EPC counts (KDR(+)/CD34(+)/Cd45(dim) cells) and their relation to serum levels of EPC mobilizing growth factors erythropoietin, vascular endothelial growth factor, and interleukin-8 were investigated in SCD patients during asymptomatic state (n=66) and painful crisis (n=36) and compared to healthy controls (n=13). EPC counts were comparable between controls (0; range, 0-1.1 cells/mL) and patients (0; range, 0-0 cells/mL) in asymptomatic state, but were significantly higher during painful crisis (41.7; range, 0-186 cells/mL; p<0.05). Also in a paired analysis of 12 patients who were included both during asymptomatic state and painful crisis, EPC counts increased significantly during painful crisis (from 0 [range, 0-0] to 26 [range, 0-149 cell/mL; p<0.05). EPC counts were not related to any of the measured growth factors. The higher EPC counts during painful crisis might indicate a role for EPC mobilization in reendothelialization. As a relationship of EPCs with the established mobilizing growth factors, measured in this study was not observed, the mechanism of EPC mobilization in SCD remains to be elucidated.
Juthier, Francis; Vincentelli, André; Gaudric, Julien; Corseaux, Delphine; Fouquet, Olivier; Calet, Christine; Le Tourneau, Thierry; Soenen, Valérie; Zawadzki, Christophe; Fabre, Olivier; Susen, Sophie; Prat, Alain; Jude, Brigitte
2006-04-01
Autologous recellularization of decellularized heart valve scaffolds is a promising challenge in the field of tissue-engineered heart valves and could be boosted by bone marrow progenitor cell mobilization. The aim of this study was to examine the spontaneous in vivo recolonization potential of xenogeneic decellularized heart valves in a lamb model and the effects of granulocyte colony-stimulating factor mobilization of bone marrow cells on this process. Decellularized porcine aortic valves were implanted in 12 lambs. Six lambs received granulocyte colony-stimulating factor (10 microg x kg(-1) x d(-1) for 7 days, granulocyte colony-stimulating factor group), and 6 received no granulocyte colony-stimulating factor (control group). Additionally, nondecellularized porcine valves were implanted in 5 lambs (xenograft group). Angiographic and histologic evaluation was performed at 3, 6, 8, and 16 weeks. Few macroscopic modifications of leaflets and the aortic wall were observed in the control group, whereas progressive shrinkage and thickening of the leaflets appeared in the granulocyte colony-stimulating factor and xenograft groups. In the 3 groups progressive ovine cell infiltration (fluorescence in situ hybridization) was observed in the leaflets and in the adventitia and the intima of the aortic wall but not in the media. Neointimal proliferation of alpha-actin-positive cells, inflammatory infiltration, adventitial neovascularization, and calcifications were more important in the xenograft and the granulocyte colony-stimulating factor groups than in the control group. Continuous re-endothelialization appeared only in the control group. Decellularized xenogeneic heart valve scaffolds allowed partial autologous recellularization. Granulocyte colony-stimulating factor led to accelerated heart valve deterioration similar to that observed in nondecellularized xenogeneic cardiac bioprostheses.
Morgan, S J; Storts, R W; Stromberg, P C; Sowa, B A; Lay, J C
1989-01-01
Factors involved in the proliferation of equine vascular smooth muscle cells were studied in vitro. The most prominent proliferative responses in cultured vascular smooth muscle cells were induced by Strongylus vulgaris larval antigen extract (LAE) and platelet-derived factors. Less significant proliferative responses were obtained with conditioned media from S. vulgaris LAE stimulated and from unstimulated equine mononuclear leukocytes. Additionally, vascular smooth muscle cells exposed to S. vulgaris LAE developed numerous perinuclear vacuoles and were more spindle-shaped than control or smooth muscle cells exposed to other factors. Equine mononuclear leukocytes exposed to LAE developed prominent morphological changes, including enlargement, clumping and increased numbers of mitotic figures.
Endocrinological control of growth.
Sizonenko, P C
1978-01-01
Many endocrinological factors control cellular growth of different tissues (cell multiplication and cell volume) and skeletal growth. The role of neuro-transmitters and of hypothalamic releasing and inhibiting factors of growth hormone secretion will be reviewed. The importance of the somatomedins on cartilage growth will be stressed. Thyroid hormones, androgens, and oestrogens have important stimulating actions on skeletal growth and maturation. Conversely, glucocorticoids have an important inhibitory effect on growth. The precise roles of these hormone factors in the regulation of growth hormone secretion, somatomedin production and tissue growth, particularly the cartilage, remain to be completely elucidated.
The grape berry-specific basic helix-loop-helix transcription factor VvCEB1 affects cell size.
Nicolas, Philippe; Lecourieux, David; Gomès, Eric; Delrot, Serge; Lecourieux, Fatma
2013-02-01
The development of fleshy fruits involves complex physiological and biochemical changes. After fertilization, fruit growth usually begins with cell division, continues with both cell division and expansion, allowing fruit set to occur, and ends with cell expansion only. In spite of the economical importance of grapevine, the molecular mechanisms controlling berry growth are not fully understood. The present work identified and characterized Vitis vinifera cell elongation bHLH protein (VvCEB1), a basic helix-loop-helix (bHLH) transcription factor controlling cell expansion in grape. VvCEB1 was expressed specifically in berry-expanding tissues with a maximum around veraison. The study of VvCEB1 promoter activity in tomato confirmed its specific fruit expression during the expansion phase. Overexpression of VvCEB1 in grape embryos showed that this protein stimulates cell expansion and affects the expression of genes involved in cell expansion, including genes of auxin metabolism and signalling. Taken together, these data show that VvCEB1 is a fruit-specific bHLH transcription factor involved in grape berry development.
The grape berry-specific basic helix–loop–helix transcription factor VvCEB1 affects cell size
Lecourieux, Fatma
2013-01-01
The development of fleshy fruits involves complex physiological and biochemical changes. After fertilization, fruit growth usually begins with cell division, continues with both cell division and expansion, allowing fruit set to occur, and ends with cell expansion only. In spite of the economical importance of grapevine, the molecular mechanisms controlling berry growth are not fully understood. The present work identified and characterized Vitis vinifera cell elongation bHLH protein (VvCEB1), a basic helix–loop–helix (bHLH) transcription factor controlling cell expansion in grape. VvCEB1 was expressed specifically in berry-expanding tissues with a maximum around veraison. The study of VvCEB1 promoter activity in tomato confirmed its specific fruit expression during the expansion phase. Overexpression of VvCEB1 in grape embryos showed that this protein stimulates cell expansion and affects the expression of genes involved in cell expansion, including genes of auxin metabolism and signalling. Taken together, these data show that VvCEB1 is a fruit-specific bHLH transcription factor involved in grape berry development. PMID:23314819
Growth regulation in tip-growing cells that develop on the epidermis.
Honkanen, Suvi; Dolan, Liam
2016-12-01
Plants develop tip-growing extensions-root hairs and rhizoids-that initiate as swellings on the outer surface of individual epidermal cells. A conserved genetic mechanism controls the earliest stages in the initiation of these swellings. The same mechanism controls the formation of multicellular structures that develop from swellings on epidermal cells in early diverging land plants. Details of the molecular events that regulate the positioning of the swellings involve sterols and phosphatidylinositol phosphates. The final length of root hairs is determined by the intensity of a pulse of transcription factor synthesis. Genes encoding similar transcription factors control root hair development in cereals and are potential targets for crop improvement. Copyright © 2016. Published by Elsevier Ltd.
Daughter-Specific Transcription Factors Regulate Cell Size Control in Budding Yeast
Di Talia, Stefano; Wang, Hongyin; Skotheim, Jan M.; Rosebrock, Adam P.; Futcher, Bruce; Cross, Frederick R.
2009-01-01
In budding yeast, asymmetric cell division yields a larger mother and a smaller daughter cell, which transcribe different genes due to the daughter-specific transcription factors Ace2 and Ash1. Cell size control at the Start checkpoint has long been considered to be a main regulator of the length of the G1 phase of the cell cycle, resulting in longer G1 in the smaller daughter cells. Our recent data confirmed this concept using quantitative time-lapse microscopy. However, it has been proposed that daughter-specific, Ace2-dependent repression of expression of the G1 cyclin CLN3 had a dominant role in delaying daughters in G1. We wanted to reconcile these two divergent perspectives on the origin of long daughter G1 times. We quantified size control using single-cell time-lapse imaging of fluorescently labeled budding yeast, in the presence or absence of the daughter-specific transcriptional regulators Ace2 and Ash1. Ace2 and Ash1 are not required for efficient size control, but they shift the domain of efficient size control to larger cell size, thus increasing cell size requirement for Start in daughters. Microarray and chromatin immunoprecipitation experiments show that Ace2 and Ash1 are direct transcriptional regulators of the G1 cyclin gene CLN3. Quantification of cell size control in cells expressing titrated levels of Cln3 from ectopic promoters, and from cells with mutated Ace2 and Ash1 sites in the CLN3 promoter, showed that regulation of CLN3 expression by Ace2 and Ash1 can account for the differential regulation of Start in response to cell size in mothers and daughters. We show how daughter-specific transcriptional programs can interact with intrinsic cell size control to differentially regulate Start in mother and daughter cells. This work demonstrates mechanistically how asymmetric localization of cell fate determinants results in cell-type-specific regulation of the cell cycle. PMID:19841732
Anti-Angiogenic Action of Neutral Endopeptidase
2005-11-30
side of hydrophobic amino acids and inactivates a variety of physiologically active peptides, including atrial natriuretic factor, substance P ...follows. 15. SUBJECT TERMS Angiogenesis, Cell surface peptidase , Neutral endopeptidase, Basic fibroblast growth factor, Prostate cancer Proteolysis 16...patients with prostate cancer. Cell-surface peptidases are the guardians of the cell against small stimulatory peptides, functioning to control growth
NASA Astrophysics Data System (ADS)
Lubis, H. P.; Aldiansyah, D.; Siregar, H. S.; Rivany, R.; Hariadi, T. S.
2018-03-01
Some factors have an important role in endometriosis pathogenesis; there is an immune cell that plays an important role in endometrial cells that have reflux. Woman with endometriosis experienced the cellular immune disorder. It is suspected that decrease of NK cell in the peritoneal fluid caused by its qualitative defect with CD107a expression as the best marker. The aim of this study was to compare expression of NK Cell activity with CD107a between awoman with endometriosis and non-endometriosis. A case-control study from March until July 2015 in Haji Adam Malik General Hospital. The case group was ectopic endometrial tissue block paraffin and control group was normal endometrial tissue block paraffin. This study included 23 patients in endometriosis group and control group respectively. A majority proportion of CD107a expression in endometriosis group was +1 (16 patients (69.6%)), while the control group was +3 (9 patients (39.1%)). Expression of NK cell activity with CD107a in patients with endometriosis was lower than the control group (p<0.05). It suggested that cellular immune factors may play a role in the pathogenesis of endometriosis.
STATs: An Old Story, Yet Mesmerizing.
Abroun, Saeid; Saki, Najmaldin; Ahmadvand, Mohammad; Asghari, Farahnaz; Salari, Fatemeh; Rahim, Fakher
2015-01-01
Signal transducers and activators of transcription (STATs) are cytoplasmic transcription factors that have a key role in cell fate. STATs, a protein family comprised of seven members, are proteins which are latent cytoplasmic transcription factors that convey signals from the cell surface to the nucleus through activation by cytokines and growth factors. The signaling pathways have diverse biological functions that include roles in cell differentiation, proliferation, development, apoptosis, and inflammation which place them at the center of a very active area of research. In this review we explain Janus kinase (JAK)/STAT signaling and focus on STAT3, which is transient from cytoplasm to nucleus after phosphorylation. This procedure controls fundamental biological processes by regulating nuclear genes controlling cell proliferation, survival, and development. In some hematopoietic disorders and cancers, overexpression and activation of STAT3 result in high proliferation, suppression of cell differentiation and inhibition of cell maturation. This article focuses on STAT3 and its role in malignancy, in addition to the role of microRNAs (miRNAs) on STAT3 activation in certain cancers.
Ahmad, Shaad M.; Tansey, Terese R.; Busser, Brian W.; Nolte, Michael T.; Jeffries, Neal; Gisselbrecht, Stephen S.; Rusan, Nasser M.; Michelson, Alan M.
2012-01-01
SUMMARY The development of a complex organ requires the specification of appropriate numbers of each of its constituent cell types, as well as their proper differentiation and correct positioning relative to each other. During Drosophila cardiogenesis, all three of these processes are controlled by jumeau (jumu) and Checkpoint suppressor homologue (CHES-1-like), two genes encoding forkhead transcription factors that we discovered utilizing an integrated genetic, genomic and computational strategy for identifying genes expressed in the developing Drosophila heart. Both jumu and CHES-1-like are required during asymmetric cell division for the derivation of two distinct cardiac cell types from their mutual precursor, and in symmetric cell divisions that produce yet a third type of heart cell. jumu and CHES-1-like control the division of cardiac progenitors by regulating the activity of Polo, a kinase involved in multiple steps of mitosis. This pathway demonstrates how transcription factors integrate diverse developmental processes during organogenesis. PMID:22814603
Genetic and epigenetic instability of stem cells.
Rajamani, Karthyayani; Li, Yuan-Sheng; Hsieh, Dean-Kuo; Lin, Shinn-Zong; Harn, Horng-Jyh; Chiou, Tzyy-Wen
2014-01-01
Recently, research on stem cells has been receiving an increasing amount of attention, both for its advantages and disadvantages. Genetic and epigenetic instabilities among stem cells have been a recurring obstacle to progress in regenerative medicine using stem cells. Various reports have stated that these instabilities can transform stem cells when transferred in vivo and thus have the potential to develop tumors. Previous research has shown that various extrinsic and intrinsic factors can contribute to the stability of stem cells. The extrinsic factors include growth supplements, growth factors, oxygen tension, passage technique, and cryopreservation. Controlling these factors based on previous reports may assist researchers in developing strategies for the production and clinical application of "safe" stem cells. On the other hand, the intrinsic factors can be unpredictable and uncontrollable; therefore, to ensure the successful use of stem cells in regenerative medicine, it is imperative to develop and implement appropriate strategies and technique for culturing stem cells and to confirm the genetic and epigenetic safety of these stem cells before employing them in clinical trials.
The effect of serum from women with preeclampsia on JAR (trophoblast-like) cell line.
Mahameed, Safa; Goldman, Shlomit; Gabarin, Diane; Weiss, Amir; Shalev, Eliezer
2005-09-01
Pathologic placentation has been implicated in the pathogenesis of preeclamsia. We sought to assess the effect serum obtained from women with preeclampsia would have on JAR human choriocarcinoma cells regarding growth, invasiveness, and matrix metalloproteinase (MMP) secretion as compared to normotensive pregnant woman. Blood was collected from 11 healthy pregnant women and from10 patients with preeclampsia at 28-33 weeks of gestation. The JAR human choriocarcinoma cell line was cultured in the presence of 10% serum obtained from each group. Cell proliferation, invasiveness, and MMP secretion was measured using a cell proliferation kit, the Matrigel (BD Biosciences, Beit-Ha'Emek, Israel) invasion assay, and gel zymography, respectively. Cell growth increased by 6% when exposed to serum from patients with preeclampsia compared to 30% from controls (P <.01). Trophoblast invasion was significantly (P <.01) reduced in the preeclampsia group (21 +/- 1.9%) compared to controls (27 +/- 2.5%). Valid MMP-2 secretion was reduced by 51% in the preeclampsia group compared to controls (P <.05). Serum obtained from women with preeclampsia contains a factor or factors that exhibit an inhibitory effect on JAR trophoblast cell proliferation, invasiveness, and MMP-2 secretion. These factors may be involved in the pathologic placentation associated with the pathogenesis of preeclampsia.
Induction of muscle stem cell quiescence by the secreted niche factor Oncostatin M.
Sampath, Srinath C; Sampath, Srihari C; Ho, Andrew T V; Corbel, Stéphane Y; Millstone, Joshua D; Lamb, John; Walker, John; Kinzel, Bernd; Schmedt, Christian; Blau, Helen M
2018-04-18
The balance between stem cell quiescence and proliferation in skeletal muscle is tightly controlled, but perturbed in a variety of disease states. Despite progress in identifying activators of stem cell proliferation, the niche factor(s) responsible for quiescence induction remain unclear. Here we report an in vivo imaging-based screen which identifies Oncostatin M (OSM), a member of the interleukin-6 family of cytokines, as a potent inducer of muscle stem cell (MuSC, satellite cell) quiescence. OSM is produced by muscle fibers, induces reversible MuSC cell cycle exit, and maintains stem cell regenerative capacity as judged by serial transplantation. Conditional OSM receptor deletion in satellite cells leads to stem cell depletion and impaired regeneration following injury. These results identify Oncostatin M as a secreted niche factor responsible for quiescence induction, and for the first time establish a direct connection between induction of quiescence, stemness, and transplantation potential in solid organ stem cells.
Zhou, Jie; Wang, Shan; Qi, Qi; Yang, Xiaoyue; Zhu, Endong; Yuan, Hairui; Li, Xuemei; Liu, Ying; Li, Xiaoxia; Wang, Baoli
2017-05-01
Nuclear factor I-C (NFIC) has recently been identified as an important player in osteogenesis and bone homeostasis in vivo However, the molecular mechanisms involved have yet to be defined. In the current study, Nfic expression was altered in primary marrow stromal cells and established progenitor lines after adipogenic and osteogenic treatment. Overexpression of Nfic in stromal cells ST2, mesenchymal cells C3H10T1/2, and primary marrow stromal cells inhibited adipogenic differentiation, whereas it promoted osteogenic differentiation. Conversely, silencing of endogenous Nfic in the cell lines enhanced adipogenic differentiation, whereas it blocked osteogenic differentiation. Mechanism investigations revealed that Nfic overexpression promoted nuclear translocation of β-catenin and increased nuclear protein levels of β-catenin and transcription factor 7-like 2 (TCF7L2). Promoter studies and the chromatin immunoprecipitation (ChIP) assay revealed that NFIC directly binds to the promoter of low-density lipoprotein receptor-related protein 5 (Lrp5) and thereafter transactivates the promoter. Finally, inactivation of canonical Wnt signaling in ST2 attenuated the inhibition of adipogenic differentiation and stimulation of osteogenic differentiation by NFIC. Our study suggests that NFIC balances adipogenic and osteogenic differentiation from progenitor cells through controlling canonical Wnt signaling and highlights the potential of NFIC as a target for new therapies to control metabolic disorders like osteoporosis and obesity.-Zhou, J., Wang, S., Qi, Q., Yang, X., Zhu, E., Yuan, H., Li, X., Liu, Y., Li, X., Wang, B. Nuclear factor I-C reciprocally regulates adipocyte and osteoblast differentiation via control of canonical Wnt signaling. © FASEB.
Berthoumieux, Sara; de Jong, Hidde; Baptist, Guillaume; Pinel, Corinne; Ranquet, Caroline; Ropers, Delphine; Geiselmann, Johannes
2013-01-01
Gene expression is controlled by the joint effect of (i) the global physiological state of the cell, in particular the activity of the gene expression machinery, and (ii) DNA-binding transcription factors and other specific regulators. We present a model-based approach to distinguish between these two effects using time-resolved measurements of promoter activities. We demonstrate the strength of the approach by analyzing a circuit involved in the regulation of carbon metabolism in E. coli. Our results show that the transcriptional response of the network is controlled by the physiological state of the cell and the signaling metabolite cyclic AMP (cAMP). The absence of a strong regulatory effect of transcription factors suggests that they are not the main coordinators of gene expression changes during growth transitions, but rather that they complement the effect of global physiological control mechanisms. This change of perspective has important consequences for the interpretation of transcriptome data and the design of biological networks in biotechnology and synthetic biology. PMID:23340840
Brohm, Thomas; Bottcher, Friedhelm
2000-01-01
A multi-cell storage battery, in particular to a lithium storage battery, which contains a temperature control device and in which groups of one or more individual cells arranged alongside one another are separated from one another by a thermally insulating solid layer whose coefficient of thermal conductivity lies between 0.01 and 0.2 W/(m*K), the thermal resistance of the solid layer being greater by at least a factor .lambda. than the thermal resistance of the individual cell. The individual cell is connected, at least in a region free of insulating material, to a heat exchanger, the thermal resistance of the heat exchanger in the direction toward the neighboring cell being selected to be greater by at least a factor .lambda. than the thermal resistance of the individual cell and, in addition, the thermal resistance of the heat exchanger toward the temperature control medium being selected to be smaller by at least a factor of about 10 than the thermal resistance of the individual cell, and .lambda. being the ratio of the energy content of the individual cell to the amount of energy that is needed to trigger a thermally induced cell failure at a defined upper operating temperature limit.
Gu, Ai-Di; Zhang, Song; Wang, Yunqi; Xiong, Hui; Curtis, Thomas A.; Wan, Yisong Y.
2014-01-01
Summary Transforming growth factor-beta (TGF-β) suppresses T cell function to maintain self-tolerance and to promote tumor immune evasion. Yet how Smad4, a transcription factor component of TGF-β signaling, regulates T cell function remains unclear. Here we have demonstrated an essential role for Smad4 in promoting T cell function during autoimmunity and anti-tumor immunity. Smad4 deletion rescued the lethal autoimmunity resulting from transforming growth factor-beta receptor (TGF-βR) deletion and compromised T-cell-mediated tumor rejection. While Smad4 was dispensable for T cell generation, homeostasis and effector function, it was essential for T cell proliferation following activation in vitro and in vivo. The transcription factor Myc was identified to mediate Smad4-controlled T cell proliferation. This study thus reveals a requirement of Smad4 for T-cell-mediated autoimmunity and tumor rejection, which is beyond the current paradigm. It highlights a TGF-βR-independent role for Smad4 in promoting T cell function, autoimmunity and anti-tumor immunity. PMID:25577439
Gu, Ai-Di; Zhang, Song; Wang, Yunqi; Xiong, Hui; Curtis, Thomas A; Wan, Yisong Y
2015-01-20
Transforming growth factor-beta (TGF-β) suppresses T cell function to maintain self-tolerance and to promote tumor immune evasion. Yet how Smad4, a transcription factor component of TGF-β signaling, regulates T cell function remains unclear. Here we have demonstrated an essential role for Smad4 in promoting T cell function during autoimmunity and anti-tumor immunity. Smad4 deletion rescued the lethal autoimmunity resulting from transforming growth factor-beta receptor (TGF-βR) deletion and compromised T-cell-mediated tumor rejection. Although Smad4 was dispensable for T cell generation, homeostasis, and effector function, it was essential for T cell proliferation after activation in vitro and in vivo. The transcription factor Myc was identified to mediate Smad4-controlled T cell proliferation. This study thus reveals a requirement of Smad4 for T-cell-mediated autoimmunity and tumor rejection, which is beyond the current paradigm. It highlights a TGF-βR-independent role for Smad4 in promoting T cell function, autoimmunity, and anti-tumor immunity. Copyright © 2015 Elsevier Inc. All rights reserved.
Abnave, Prasad; Aboukhatwa, Ellen; Kosaka, Nobuyoshi; Thompson, James; Hill, Mark A; Aboobaker, A Aziz
2017-10-01
Migration of stem cells underpins the physiology of metazoan animals. For tissues to be maintained, stem cells and their progeny must migrate and differentiate in the correct positions. This need is even more acute after tissue damage by wounding or pathogenic infection. Inappropriate migration also underpins metastasis. Despite this, few mechanistic studies address stem cell migration during repair or homeostasis in adult tissues. Here, we present a shielded X-ray irradiation assay that allows us to follow stem cell migration in planarians. We demonstrate the use of this system to study the molecular control of stem cell migration and show that snail-1 , snail-2 and zeb-1 EMT transcription factor homologs are necessary for cell migration to wound sites and for the establishment of migratory cell morphology. We also observed that stem cells undergo homeostatic migration to anterior regions that lack local stem cells, in the absence of injury, maintaining tissue homeostasis. This requires the polarity determinant notum Our work establishes planarians as a suitable model for further in-depth study of the processes controlling stem cell migration in vivo . © 2017. Published by The Company of Biologists Ltd.
Jäger, R; List, B; Knabbe, C; Souttou, B; Raulais, D; Zeiler, T; Wellstein, A; Aigner, A; Neubauer, A; Zugmaier, G
2002-01-01
Pleiotrophin is a heparin-binding growth factor involved in the differentiation and proliferation of neuronal tissue during embryogenesis, and also secreted by melanoma and breast carcinoma cells. Pleiotrophin exhibits mitogenic and angiogenic properties and has been shown to influence the vascular supply, expansion and metastasis of tumour cells. Our aim was to study the serum and plasma concentrations of pleiotrophin and the classical angiogenic growth factor vascular endothelial growth factor. Using a specific ELISA-test we studied patients with small cell lung cancer (n=63), and patients with non-small cell lung cancer (n=22) in comparison to healthy control subjects (n=41). In most of the lung cancer patients (81%), we found serum levels of pleiotrophin above those of control subjects (P<0.001). Of the 63 small cell lung cancer patients in the study pleiotrophin serum levels were elevated in 55 cases (87%) and in 14 cases (63%) of the 22 non-small cell lung cancer patients. Pleiotrophin mean serum concentrations were 10.8-fold higher in the tumour patient group as compared to the control group (P<0.001). Furthermore, pleiotrophin serum levels correlated positively with the stage of disease and inversely with the response to therapy. Plasma vascular endothelial growth factor concentrations were elevated in only in 28.6% of small cell lung cancer and 45.5% of non-small cell lung cancer patients by an average of 2.3-fold. Quite strikingly, there was no apparent correlation between the plasma vascular endothelial growth factor concentration and the stage of disease. Our study suggests that pleiotrophin may be an early indicator of lung cancer and might be of use in monitoring the efficacy of therapy, which needs to be confirmed by larger studies. British Journal of Cancer (2002) 86, 858–863. DOI: 10.1038/sj/bjc/6600202 www.bjcancer.com © 2002 Cancer Research UK PMID:11953815
Production of Zebrafish Offspring from Cultured Female Germline Stem Cells
Wong, Ten-Tsao; Tesfamichael, Abraham; Collodi, Paul
2013-01-01
Zebrafish female germline stem cell (FGSC) cultures were generated from a transgenic line of fish that expresses Neo and DsRed under the control of the germ cell specific promoter, ziwi [Tg(ziwi:neo);Tg(ziwi:DsRed)]. Homogeneous FGSC cultures were established by G418 selection and continued to express ziwi for more than 6 weeks along with the germ cell markers nanos3, dnd, dazl and vasa. A key component of the cell culture system was the use of a feeder cell line that was initiated from ovaries of a transgenic line of fish [Tg(gsdf:neo)] that expresses Neo controlled by the zebrafish gonadal soma derived factor (gsdf) promoter. The feeder cell line was selected in G418 and engineered to express zebrafish leukemia inhibitory factor (Lif), basic fibroblast growth factor (Fgf2) and glial-cell-line derived neurotrophic factor (Gdnf). These factors were shown to significantly enhance FGSC growth, survival and germline competency in culture. Results from cell transplantation experiments revealed that the cultured FGSCs were able to successfully colonize the gonad of sterile recipient fish and generate functional gametes. Up to 20% of surviving recipient fish that were injected with the cultured FGSCs were fertile and generated multiple batches of normal offspring for at least 6 months. The FGSC cultures will provide an in vitro system for studies of zebrafish germ cell growth and differentiation and their high frequency of germline transmission following transplantation could form the basis of a stem cell-mediated strategy for gene transfer and manipulation of the zebrafish genome. PMID:23671620
SivaRaman, L; Subramanian, S; Thimmappaya, B
1986-01-01
Utilizing the gel electrophoresis/DNA binding assay, a factor specific for the upstream transcriptional control sequence of the EIA-inducible adenovirus EIIA-early promoter has been detected in HeLa cell nuclear extract. Analysis of linker-scanning mutants of the promoter by DNA binding assays and methylation-interference experiments show that the factor binds to the 17-nucleotide sequence 5' TGGAGATGACGTAGTTT 3' located between positions -66 and -82 upstream from the cap site. This sequence has been shown to be essential for transcription of this promoter. The EIIA-early-promoter specific factor was found to be present at comparable levels in uninfected HeLa cells and in cells infected with either wild-type adenovirus or the EIA-deletion mutant dl312 under conditions in which the EIA proteins are induced to high levels [7 or 20 hr after infection in the presence of arabinonucleoside (cytosine arabinoside)]. Based on the quantitation in DNA binding assays, it appears that the mechanism of EIA-activated transcription of the EIIA-early promoter does not involve a net change in the amounts of this factor. Images PMID:2942943
On the Evolution of the Cardiac Pacemaker
Burkhard, Silja; van Eif, Vincent; Garric, Laurence; Christoffels, Vincent M.; Bakkers, Jeroen
2017-01-01
The rhythmic contraction of the heart is initiated and controlled by an intrinsic pacemaker system. Cardiac contractions commence at very early embryonic stages and coordination remains crucial for survival. The underlying molecular mechanisms of pacemaker cell development and function are still not fully understood. Heart form and function show high evolutionary conservation. Even in simple contractile cardiac tubes in primitive invertebrates, cardiac function is controlled by intrinsic, autonomous pacemaker cells. Understanding the evolutionary origin and development of cardiac pacemaker cells will help us outline the important pathways and factors involved. Key patterning factors, such as the homeodomain transcription factors Nkx2.5 and Shox2, and the LIM-homeodomain transcription factor Islet-1, components of the T-box (Tbx), and bone morphogenic protein (Bmp) families are well conserved. Here we compare the dominant pacemaking systems in various organisms with respect to the underlying molecular regulation. Comparative analysis of the pathways involved in patterning the pacemaker domain in an evolutionary context might help us outline a common fundamental pacemaker cell gene programme. Special focus is given to pacemaker development in zebrafish, an extensively used model for vertebrate development. Finally, we conclude with a summary of highly conserved key factors in pacemaker cell development and function. PMID:29367536
Control of plant stem cell function by conserved interacting transcriptional regulators
Zhou, Yun; Liu, Xing; Engstrom, Eric M.; Nimchuk, Zachary L.; Pruneda-Paz, Jose L.; Tarr, Paul T.; Yan, An; Kay, Steve A.; Meyerowitz, Elliot M.
2014-01-01
SUMMARY Plant stem cells in the shoot apical meristem (SAM) and root apical meristem (RAM) provide for postembryonic development of above-ground tissues and roots, respectively, while secondary vascular stem cells sustain vascular development1–4. WUSCHEL (WUS), a homeodomain transcription factor expressed in the rib meristem of the SAM, is a key regulatory factor controlling stem cell populations in the Arabidopsis SAM5–6 and is thought to establish the shoot stem cell niche via a feedback circuit with the CLAVATA3 (CLV3) peptide signaling pathway7. WUSCHEL-RELATED HOMEOBOX5 (WOX5), specifically expressed in root quiescent center (QC), defines QC identity and functions interchangeably with WUS in control of shoot and root stem cell niches8. WOX4, expressed in Arabidopsis procambial cells, defines the vascular stem cell niche9–11. WUS/WOX family proteins are evolutionarily and functionally conserved throughout the plant kingdom12 and emerge as key actors in the specification and maintenance of stem cells within all meristems13. However, the nature of the genetic regime in stem cell niches that centers on WOX gene function has been elusive, and molecular links underlying conserved WUS/WOX function in stem cell niches remain unknown. Here we demonstrate that the Arabidopsis HAIRY MERISTEM (HAM)family transcription regulators act as conserved interacting co-factors with WUS/WOX proteins. HAM and WUS share common targets in vivo and their physical interaction is important in driving downstream transcriptional programs and in promoting shoot stem cell proliferation. Differences in the overlapping expression patterns of WOX and HAM family members underlie the formation of diverse stem cell niche locations, and the HAM family is essential for all of these stem cell niches. These findings establish a new framework for the control of stem cell production during plant development. PMID:25363783
Zhong, Jingyang; Kim, Hyoung-Tai; Lyu, Jungmook; Yoshikawa, Kazuaki; Nakafuku, Masato; Lu, Wange
2011-01-01
GABAergic neurons and oligodendrocytes originate from progenitors within the ventral telencephalon. However, the molecular mechanisms that control neuron-glial cell-fate segregation, especially how extrinsic factors regulate cell-fate changes, are poorly understood. We have discovered that the Wnt receptor Ryk promotes GABAergic neuron production while repressing oligodendrocyte formation in the ventral telencephalon. We demonstrate that Ryk controls the cell-fate switch by negatively regulating expression of the intrinsic oligodendrogenic factor Olig2 while inducing expression of the interneuron fate determinant Dlx2. In addition, we demonstrate that Ryk is required for GABAergic neuron induction and oligodendrogenesis inhibition caused by Wnt3a stimulation. Furthermore, we showed that the cleaved intracellular domain of Ryk is sufficient to regulate the cell-fate switch by regulating the expression of intrinsic cell-fate determinants. These results identify Ryk as a multi-functional receptor that is able to transduce extrinsic cues into progenitor cells, promote GABAergic neuron formation, and inhibit oligodendrogenesis during ventral embryonic brain development. PMID:21205786
Mesenchymal stem cell mechanobiology and emerging experimental platforms
MacQueen, Luke; Sun, Yu; Simmons, Craig A.
2013-01-01
Experimental control over progenitor cell lineage specification can be achieved by modulating properties of the cell's microenvironment. These include physical properties of the cell adhesion substrate, such as rigidity, topography and deformation owing to dynamic mechanical forces. Multipotent mesenchymal stem cells (MSCs) generate contractile forces to sense and remodel their extracellular microenvironments and thereby obtain information that directs broad aspects of MSC function, including lineage specification. Various physical factors are important regulators of MSC function, but improved understanding of MSC mechanobiology requires novel experimental platforms. Engineers are bridging this gap by developing tools to control mechanical factors with improved precision and throughput, thereby enabling biological investigation of mechanics-driven MSC function. In this review, we introduce MSC mechanobiology and review emerging cell culture platforms that enable new insights into mechanobiological control of MSCs. Our main goals are to provide engineers and microtechnology developers with an up-to-date description of MSC mechanobiology that is relevant to the design of experimental platforms and to introduce biologists to these emerging platforms. PMID:23635493
Chung, T; Huang, J S; Mukherjee, J J; Crilly, K S; Kiss, Z
2000-05-01
In mammalian cells, growth factors, oncogenes, and carcinogens stimulate phosphocholine (PCho) synthesis by choline kinase (CK), suggesting that PCho may regulate cell growth. To validate the role of PCho in mitogenesis, we determined the effects of insulin, insulin-like growth factor I (IGF-I), and other growth factors on DNA synthesis in NIH 3T3 fibroblast sublines highly expressing human choline kinase (CK) without increasing phosphatidylcholine synthesis. In serum-starved CK expressor cells, insulin and IGF-I stimulated DNA synthesis, p70 S6 kinase (p70 S6K) activity, phosphatidylinositol 3-kinase (PI3K) activity, and activating phosphorylation of p42/p44 mitogen-activated protein kinases (MAPK) to greater extents than in the corresponding vector control cells. Furthermore, the CK inhibitor hemicholinium-3 (HC-3) inhibited insulin- and IGF-I-induced DNA synthesis in the CK overexpressors, but not in the vector control cells. The results indicate that high cellular levels of PCho potentiate insulin- and IGF-I-induced DNA synthesis by MAPK- and p70 S6K-regulated mechanisms.
APE/Ref-1 makes fine-tuning of CD40-induced B cell proliferation.
Merluzzi, Sonia; Gri, Giorgia; Gattei, Valter; Pagano, Michele; Pucillo, Carlo
2008-08-01
Apurinic/apyrimidinic endonuclease-1/Redox factor-1, a multifunctional DNA base excision repair and redox regulation enzyme, plays an important role in oxidative signalling, transcription factor regulation, and cell cycle control. Recently, we have demonstrated that following the triggering of CD40 on B cells, APE/Ref-1 translocates from the cytoplasm to the nucleus and regulates the activity of B cell-specific transcription factors. In the present paper we investigate whether APE/Ref-1 plays a role in controlling CD40-mediated B cell proliferation too. We demonstrate a concurrent increase in proliferation and decrease in apoptosis of primary mouse B cells activated by CD40 cross-linking and transfected with functional APE/Ref-1 antisense oligonucleotide. Moreover, we provide evidence that a redox-mediated signalling mechanism is involved in this process and we propose that APE/Ref-1, controlling the intracellular redox state, may also affect the cell cycle by inducing nucleus-cytoplasm redistribution of p21. Together, these findings suggest that APE/Ref-1 could act as a negative regulator in an adaptive response to elevated ROS levels following CD40 cross-linking. Considering the important role of ROS and APE/Ref-1 in CD40-mediated B cell proliferation, our data will contribute to understand the mechanisms of tumor escape and suggest APE/Ref-1 as a novel target for tumor therapeutic approaches.
APE/Ref-1 makes fine-tuning of CD40-induced B cell proliferation
Merluzzi, Sonia; Gri, Giorgia; Gattei, Valter; Pagano, Michele; Pucillo, Carlo
2009-01-01
Apurinic/apyrimidinic endonuclease-1/Redox factor-1, a multifunctional DNA base excision repair and redox regulation enzyme, plays an important role in oxidative signalling, transcription factor regulation, and cell cycle control. Recently, we have demonstrated that following the triggering of CD40 on B cells, APE/Ref-1 translocates from the cytoplasm to the nucleus and regulates the activity of B cell-specific transcription factors. In the present paper we investigate whether APE/Ref-1 plays a role in controlling CD40-mediated B cell proliferation too. We demonstrate a concurrent increase in proliferation and decrease in apoptosis of primary mouse B cells activated by CD40 cross-linking and transfected with functional APE/Ref-1 antisense oligonucleotide. Moreover, we provide evidence that a redox-mediated signalling mechanism is involved in this process and we propose that APE/Ref-1, controlling the intracellular redox state, may also affect the cell cycle by inducing nucleus-cytoplasm redistribution of p21. Together, these findings suggest that APE/Ref-1 could act as a negative regulator in an adaptive response to elevated ROS levels following CD40 cross-linking. Considering the important role of ROS and APE/Ref-1 in CD40-mediated B cell proliferation, our data will contribute to understand the mechanisms of tumor escape and suggest APE/Ref-1 as a novel target for tumor therapeutic approaches. PMID:18617267
Wong, Mei Mei; Chen, Yikuan; Margariti, Andriani; Winkler, Bernhard; Campagnolo, Paola; Potter, Claire; Hu, Yanhua; Xu, Qingbo
2014-03-01
Vascular lineage differentiation of stem/progenitor cells can contribute to both tissue repair and exacerbation of vascular diseases such as in vein grafts. The role of macrophages in controlling vascular progenitor differentiation is largely unknown and may play an important role in graft development. This study aims to identify the role of macrophages in vascular stem/progenitor cell differentiation and thereafter elucidate the mechanisms that are involved in the macrophage- mediated process. We provide in vitro evidence that macrophages can induce endothelial cell (EC) differentiation of the stem/progenitor cells while simultaneously inhibiting their smooth muscle cell differentiation. Mechanistically, both effects were mediated by macrophage-derived tumor necrosis factor-α (TNF-α) via TNF-α receptor 1 and canonical nuclear factor-κB activation. Although the overexpression of p65 enhanced EC (or attenuated smooth muscle cell) differentiation, p65 or TNF-α receptor 1 knockdown using lentiviral short hairpin RNA inhibited EC (or rescued smooth muscle cell) differentiation in response to TNF-α. Furthermore, TNF-α-mediated EC differentiation was driven by direct binding of nuclear factor-κB (p65) to specific VE-cadherin promoter sequences. Subsequent experiments using an ex vivo decellularized vessel scaffold confirmed an increase in the number of ECs and reduction in smooth muscle cell marker expression in the presence of TNF-α. The lack of TNF-α in a knockout mouse model of vein graft decreased endothelialization and significantly increased thrombosis formation. Our study highlights the role of macrophages in directing vascular stem/progenitor cell lineage commitment through TNF-α-mediated TNF-α receptor 1 and nuclear factor-κB activation that is likely required for endothelial repair in vascular diseases such as vein graft.
T regulatory cells participate in the control of germinal centre reactions
Alexander, Carla-Maria; Tygrett, Lorraine T; Boyden, Alexander W; Wolniak, Kristy L; Legge, Kevin L; Waldschmidt, Thomas J
2011-01-01
Germinal centre (GC) reactions are central features of T-cell-driven B-cell responses, and the site where antibody-producing cells and memory B cells are generated. Within GCs, a range of complex cellular and molecular events occur which are critical for the generation of high affinity antibodies. These processes require exquisite regulation not only to ensure the production of desired antibodies, but to minimize unwanted autoreactive or low affinity antibodies. To assess whether T regulatory (Treg) cells participate in the control of GC responses, immunized mice were treated with an anti-glucocorticoid-induced tumour necrosis factor receptor-related protein (GITR) monoclonal antibody (mAb) to disrupt Treg-cell activity. In anti-GITR-treated mice, the GC B-cell pool was significantly larger compared with control-treated animals, with switched GC B cells composing an abnormally high proportion of the response. Dysregulated GCs were also observed regardless of strain, T helper type 1 or 2 polarizing antigens, and were also seen after anti-CD25 mAb treatment. Within the spleens of immunized mice, CXCR5+ and CCR7− Treg cells were documented by flow cytometry and Foxp3+ cells were found within GCs using immunohistology. Final studies demonstrated administration of either anti-transforming growth factor-β or anti-interleukin-10 receptor blocking mAb to likewise result in dysregulated GCs, suggesting that generation of inducible Treg cells is important in controlling the GC response. Taken together, these findings indicate that Treg cells contribute to the overall size and quality of the humoral response by controlling homeostasis within GCs. PMID:21635248
Li, Qiankun; Chen, Yan; Ma, Kui; Zhao, Along; Zhang, Cuiping; Fu, Xiaobing
2016-01-01
ABSTRACT Epidermal cells are an important regenerative source for skin wound healing. Aged epidermal cells have a low ability to renew themselves and repair skin injury. Ultraviolet (UV) radiation, particularly UVB, can cause photo-aging of the skin by suppressing the viability of human epidermal cells. A chorion-derived stem cell conditioned medium (CDSC-CNM) is thought to have regenerative properties. This study aimed to determine the regenerative effects of CDSC-CNM on UVB-induced photo-aged epidermal cells. Epidermal cells were passaged four times and irradiated with quantitative UVB, and non-irradiated cells served as a control group. Cells were then treated with different concentrations of CDSC-CNM. Compared to the non-irradiated group, the proliferation rates and migration rates of UVB-induced photo-aged epidermal cells significantly decreased (p < 0.05) with increasing intracellular radical oxygen species (ROS) generation and DNA damage. After treatment with CDSC-CNM, photo-aged epidermal cells significantly improved their viability, and their ROS generation and DNA damage decreased. The secretory factors in CDSC-CNM, including epidermal growth factor (EGF), transforming growth factor-β (TGF-β), interleukin (IL)-6, and IL-8 and the related signaling pathway protein levels, increased compared to the control medium (CM). The potential regenerative and reparative effects of CDSC-CNM indicate that it may be a candidate material for the treatment of prematurely aged skin. The functions of the secretory factors and the mechanisms of CDSC-CNM therapy deserve further attention. PMID:27097375
Ankers, John M; Awais, Raheela; Jones, Nicholas A; Boyd, James; Ryan, Sheila; Adamson, Antony D; Harper, Claire V; Bridge, Lloyd; Spiller, David G; Jackson, Dean A; Paszek, Pawel; Sée, Violaine; White, Michael RH
2016-01-01
Dynamic cellular systems reprogram gene expression to ensure appropriate cellular fate responses to specific extracellular cues. Here we demonstrate that the dynamics of Nuclear Factor kappa B (NF-κB) signalling and the cell cycle are prioritised differently depending on the timing of an inflammatory signal. Using iterative experimental and computational analyses, we show physical and functional interactions between NF-κB and the E2 Factor 1 (E2F-1) and E2 Factor 4 (E2F-4) cell cycle regulators. These interactions modulate the NF-κB response. In S-phase, the NF-κB response was delayed or repressed, while cell cycle progression was unimpeded. By contrast, activation of NF-κB at the G1/S boundary resulted in a longer cell cycle and more synchronous initial NF-κB responses between cells. These data identify new mechanisms by which the cellular response to stress is differentially controlled at different stages of the cell cycle. DOI: http://dx.doi.org/10.7554/eLife.10473.001 PMID:27185527
Environmental risk factors for oesophageal cancer in Malawi: A case-control study.
Mlombe, Y B; Rosenberg, N E; Wolf, L L; Dzamalala, C P; Chalulu, K; Chisi, J; Shaheen, N J; Hosseinipour, M C; Shores, C G
2015-09-01
There is a high burden of oesophageal cancer in Malawi with dismal outcomes. It is not known whether environmental factors are associated with oesophageal cancer. Without knowing this critical information, prevention interventions are not possible. The purpose of this analysis was to explore environmental factors associated with oesophageal cancer in the Malawian context. A hospital-based case-control study of the association between environmental risk factors and oesophageal cancer was conducted at Kamuzu Central Hospital in Lilongwe, Malawi and Queen Elizabeth Central Hospital in Blantyre, Malawi. Ninety-six persons with squamous cell carcinoma and 180 controls were enrolled and analyzed. These two groups were compared for a range of environmental risk factors, using logistic regression models. Unadjusted and adjusted odds ratios and 95% confidence intervals (CI) were calculated. Firewood cooking, cigarette smoking, and use of white maize flour all had strong associations with squamous cell carcinoma of the oesophagus, with adjusted odds ratios of 12.6 (95% CI: 4.2-37.7), 5.4 (95% CI: 2.0-15.2) and 6.6 (95% CI: 2.3-19.3), respectively. Several modifiable risk factors were found to be strongly associated with squamous cell carcinoma. Research is needed to confirm these associations and then determine how to intervene on these modifiable risk factors in the Malawian context.
Karmazyn-Campelli, Céline; Rhayat, Lamya; Carballido-López, Rut; Duperrier, Sandra; Frandsen, Niels; Stragier, Patrick
2008-03-01
Sporulation in Bacillus subtilis is a primitive differentiation process involving two cell types, the forespore and the mother cell. Each cell implements two successive transcription programmes controlled by specific sigma factors. We report that activity of sigma(G), the late forespore sigma factor, is kept in check by Gin, the product of csfB, a gene controlled by sigma(F), the early forespore sigma factor. Gin abolishes sigma(G) transcriptional activity when sigma(G) is artificially synthesized during growth, but has no effect on sigma(F). Gin interacts strongly with sigma(G) but not with sigma(F) in a yeast two-hybrid experiment. The absence of Gin allows sigma(G) to be active during sporulation independently of the mother-cell development to which it is normally coupled. Premature sigma(G) activity leads to the formation of slow-germinating spores, and complete deregulation of sigma(G) synthesis is lethal when combined with gin inactivation. Gin allows sigma(F) to delay the switch to the late forespore transcription programme by preventing sigma(G) to take over before the cell has reached a critical stage of development. A similar strategy, following a completely unrelated route, is used by the mother cell.
The Global Regulatory Architecture of Transcription during the Caulobacter Cell Cycle
Zhou, Bo; Schrader, Jared M.; Kalogeraki, Virginia S.; Abeliuk, Eduardo; Dinh, Cong B.; Pham, James Q.; Cui, Zhongying Z.; Dill, David L.; McAdams, Harley H.; Shapiro, Lucy
2015-01-01
Each Caulobacter cell cycle involves differentiation and an asymmetric cell division driven by a cyclical regulatory circuit comprised of four transcription factors (TFs) and a DNA methyltransferase. Using a modified global 5′ RACE protocol, we globally mapped transcription start sites (TSSs) at base-pair resolution, measured their transcription levels at multiple times in the cell cycle, and identified their transcription factor binding sites. Out of 2726 TSSs, 586 were shown to be cell cycle-regulated and we identified 529 binding sites for the cell cycle master regulators. Twenty-three percent of the cell cycle-regulated promoters were found to be under the combinatorial control of two or more of the global regulators. Previously unknown features of the core cell cycle circuit were identified, including 107 antisense TSSs which exhibit cell cycle-control, and 241 genes with multiple TSSs whose transcription levels often exhibited different cell cycle timing. Cumulatively, this study uncovered novel new layers of transcriptional regulation mediating the bacterial cell cycle. PMID:25569173
The global regulatory architecture of transcription during the Caulobacter cell cycle.
Zhou, Bo; Schrader, Jared M; Kalogeraki, Virginia S; Abeliuk, Eduardo; Dinh, Cong B; Pham, James Q; Cui, Zhongying Z; Dill, David L; McAdams, Harley H; Shapiro, Lucy
2015-01-01
Each Caulobacter cell cycle involves differentiation and an asymmetric cell division driven by a cyclical regulatory circuit comprised of four transcription factors (TFs) and a DNA methyltransferase. Using a modified global 5' RACE protocol, we globally mapped transcription start sites (TSSs) at base-pair resolution, measured their transcription levels at multiple times in the cell cycle, and identified their transcription factor binding sites. Out of 2726 TSSs, 586 were shown to be cell cycle-regulated and we identified 529 binding sites for the cell cycle master regulators. Twenty-three percent of the cell cycle-regulated promoters were found to be under the combinatorial control of two or more of the global regulators. Previously unknown features of the core cell cycle circuit were identified, including 107 antisense TSSs which exhibit cell cycle-control, and 241 genes with multiple TSSs whose transcription levels often exhibited different cell cycle timing. Cumulatively, this study uncovered novel new layers of transcriptional regulation mediating the bacterial cell cycle.
The effect of retinal pigment epithelial cell patch size on growth factor expression
Vargis, Elizabeth A.; Peterson, Cristen B.; Morrell-Falvey, Jennifer L.; ...
2014-01-30
The spatial organization of retinal pigment epithelial (RPE) cells grown in culture was controlled using micropatterning techniques in order to examine the effect of patch size on cell health and differentiation. Understanding this effect is a critical step in the development of multiplexed high throughput fluidic assays and provides a model for replicating disease states associated with the deterioration of retinal tissue during age-related macular degeneration (AMD). Microcontact printing of fibronectin on polystyrene and glass substrates was used to promote cell attachment, forming RPE patches of controlled size and shape. These colonies mimic the effect of atrophy and loss-of-function thatmore » occurs in the retina during degenerative diseases such as AMD. After 72 hours of cell growth, levels of vascular endothelial growth factor (VEGF), an important biomarker of AMD, were measured. Cells were counted and morphological indicators of cell viability and tight junction formation were assessed via fluorescence microscopy. As a result, up to a twofold increase of VEGF expression per cell was measured as colony size decreased, suggesting that the local microenvironment of, and connections between, RPE cells influences growth factor expression leading to the initiation and progression of diseases such as AMD.« less
Design of a Single-Cell Positioning Controller Using Electroosmotic Flow and Image Processing
Ay, Chyung; Young, Chao-Wang; Chen, Jhong-Yin
2013-01-01
The objective of the current research was not only to provide a fast and automatic positioning platform for single cells, but also improved biomolecular manipulation techniques. In this study, an automatic platform for cell positioning using electroosmotic flow and image processing technology was designed. The platform was developed using a PCI image acquisition interface card for capturing images from a microscope and then transferring them to a computer using human-machine interface software. This software was designed by the Laboratory Virtual Instrument Engineering Workbench, a graphical language for finding cell positions and viewing the driving trace, and the fuzzy logic method for controlling the voltage or time of an electric field. After experiments on real human leukemic cells (U-937), the success of the cell positioning rate achieved by controlling the voltage factor reaches 100% within 5 s. A greater precision is obtained when controlling the time factor, whereby the success rate reaches 100% within 28 s. Advantages in both high speed and high precision are attained if these two voltage and time control methods are combined. The control speed with the combined method is about 5.18 times greater than that achieved by the time method, and the control precision with the combined method is more than five times greater than that achieved by the voltage method. PMID:23698272
Harthan, Laura B; McFarland, Douglas C; Velleman, Sandra G
2014-01-01
Posthatch satellite cell mitotic activity is a critical component of muscle development and growth. Satellite cells are myogenic stem cells that can be induced by nutrition to follow other cellular developmental pathways, and whose mitotic activity declines with age. The objective of the current study was to determine the effect of restricting protein synthesis on the proliferation and differentiation, expression of myogenic transcriptional regulatory factors myogenic determination factor 1, myogenin, and myogenic regulatory factor 4, and expression of the heparan sulfate proteoglycans syndecan-4 and glypican-1 in satellite cells isolated from 1-d-, 7-wk-, and 16-wk-old turkey pectoralis major muscle (1 d, 7 wk, and 16 wk cells, respectively) by using variable concentrations of Met and Cys. Four Met concentrations-30 (control), 7.5, 3, or 0 mg/L with 3.2 mg/L of Cys per 1 mg/L of Met-were used for culture of satellite cells to determine the effect of nutrition and age on satellite cell behavior during proliferation and differentiation. Proliferation was reduced by lower Met and Cys concentrations in all ages at 96 h of proliferation. Differentiation was increased in the 1 d Met-restricted cells, whereas the 7 wk cells treated with 3 mg/L of Met had decreased differentiation. Reduced Met and Cys levels from the control did not significantly affect the 16 wk cells at 72 h of differentiation. However, medium with no Met or Cys suppressed differentiation at all ages. The expression of myogenic determination factor 1, myogenin, myogenic regulatory factor 4, syndecan-4, and glypican-1 was differentially affected by age and Met or Cys treatment. These data demonstrate the age-specific manner in which turkey pectoralis major muscle satellite cells respond to nutritional availability and the importance of defining optimal nutrition to maximize satellite cell proliferation and differentiation for subsequent muscle mass accretion.
Cell-based delivery of glucagon-like peptide-1 using encapsulated mesenchymal stem cells.
Wallrapp, Christine; Thoenes, Eric; Thürmer, Frank; Jork, Anette; Kassem, Moustapha; Geigle, Peter
2013-01-01
Glucagon-like peptide-1 (GLP-1) CellBeads are cell-based implants for the sustained local delivery of bioactive factors. They consist of GLP-1 secreting mesenchymal stem cells encapsulated in a spherically shaped immuno-isolating alginate matrix. A highly standardized and reproducible encapsulation method is described for the manufacturing of homogeneous CellBeads. Viability and sustained secretion was shown for the recombinant GLP-1 and the cell endogenous bioactive factors like vascular endothelial growth factor, neurotrophin 3 (NT-3) and glial cell line-derived neurotrophic factor. Manufacturing and quality control is performed in compliance with good manufacturing practice and fulfils all regulatory requirements for human clinical use. GLP-1 CellBeads combine the neuro- and cardioprotective properties of both GLP-1 and mesenchymal stem cells. First promising results were obtained from preclinical studies and an ongoing safety trial in humans but further studies have to prove the overall potential of CellBead technology in cell-based regenerative medicine.
Parakati, Rajini; DiMario, Joseph X
2013-05-10
FGFR1 gene expression regulates myoblast proliferation and differentiation, and its expression is controlled by Krüppel-like transcription factors. KLF10 interacts with the FGFR1 promoter, repressing its activity and cell proliferation. KLF10 represses FGFR1 promoter activity and thereby myoblast proliferation. A model of transcriptional control of chicken FGFR1 gene regulation during myogenesis is presented. Skeletal muscle development is controlled by regulation of myoblast proliferation and differentiation into muscle fibers. Growth factors such as fibroblast growth factors (FGFs) and their receptors (FGFRs) regulate cell proliferation and differentiation in numerous tissues, including skeletal muscle. Transcriptional regulation of FGFR1 gene expression is developmentally regulated by the Sp1 transcription factor, a member of the Krüppel-like factor (KLF) family of transcriptional regulators. Here, we show that another KLF transcription factor, KLF10, also regulates myoblast proliferation and FGFR1 promoter activity. Expression of KLF10 reduced myoblast proliferation by 86%. KLF10 expression also significantly reduced FGFR1 promoter activity in myoblasts and Sp1-mediated FGFR1 promoter activity in Drosophila SL2 cells. Southwestern blot, electromobility shift, and chromatin immunoprecipitation assays demonstrated that KLF10 bound to the proximal Sp factor binding site of the FGFR1 promoter and reduced Sp1 complex formation with the FGFR1 promoter at that site. These results indicate that KLF10 is an effective repressor of myoblast proliferation and represses FGFR1 promoter activity in these cells via an Sp1 binding site.
PHD-2 Suppression in Mesenchymal Stromal Cells Enhances Wound Healing.
Ko, Sae Hee; Nauta, Allison C; Morrison, Shane D; Hu, Michael S; Zimmermann, Andrew S; Chung, Michael T; Glotzbach, Jason P; Wong, Victor W; Walmsley, Graham G; Peter Lorenz, H; Chan, Denise A; Gurtner, Geoffrey C; Giaccia, Amato J; Longaker, Michael T
2018-01-01
Cell therapy with mesenchymal stromal cells is a promising strategy for tissue repair. Restoration of blood flow to ischemic tissues is a key step in wound repair, and mesenchymal stromal cells have been shown to be proangiogenic. Angiogenesis is critically regulated by the hypoxia-inducible factor (HIF) superfamily, consisting of transcription factors targeted for degradation by prolyl hydroxylase domain (PHD)-2. The aim of this study was to enhance the proangiogenic capability of mesenchymal stromal cells and to use these modified cells to promote wound healing. Mesenchymal stromal cells harvested from mouse bone marrow were transduced with short hairpin RNA (shRNA) against PHD-2; control cells were transduced with scrambled shRNA (shScramble) construct. Gene expression quantification, human umbilical vein endothelial cell tube formation assays, and wound healing assays were used to assess the effect of PHD knockdown mesenchymal stromal cells on wound healing dynamics. PHD-2 knockdown mesenchymal stromal cells overexpressed HIF-1α and multiple angiogenic factors compared to control (p < 0.05). Human umbilical vein endothelial cells treated with conditioned medium from PHD-2 knockdown mesenchymal stromal cells exhibited increased formation of capillary-like structures and enhanced migration compared with human umbilical vein endothelial cells treated with conditioned medium from shScramble-transduced mesenchymal stromal cells (p < 0.05). Wounds treated with PHD-2 knockdown mesenchymal stromal cells healed at a significantly accelerated rate compared with wounds treated with shScramble mesenchymal stromal cells (p < 0.05). Histologic studies revealed increased blood vessel density and increased cellularity in the wounds treated with PHD-2 knockdown mesenchymal stromal cells (p < 0.05). Silencing PHD-2 in mesenchymal stromal cells augments their proangiogenic potential in wound healing therapy. This effect appears to be mediated by overexpression of HIF family transcription factors and up-regulation of multiple downstream angiogenic factors.
Bai, Yu-chun; Kang, Quan; Luo, Qing; Wu, Dao-qi; Ye, Wei-xia; Lin, Xue-mei; Zhao, Yong
2011-10-01
To explore the expression of connective tissue growth factor (CTGF) in pancreatic cancer and its influence on the proliferation and migration of cancer cells. The expression of CTGF in pancreatic cell line PANC-1 cells was analyzed by real-time PCR and in pancreatic carcinoma (50 cases) tissues by immunohistochemistry. The ability of proliferation and migration in vitro of PANC-1 cells was tested by MTT assay, scratch test and Boyden chamber test after the CTGF gene was overexpressed by Ad5-CTGF or silenced with Ad5-siCTGF transfection. CTGF was overexpressed in both pancreatic cancer cells and tissues. Overxpression of CTGF leads to increased proliferation and migration of PANC-1 cells. The CTGF-transfected PANC-1 cells showed apparent stronger proliferation ability and scratch-repair ability than that of empty vector controls. The results of Boyden chamber test showed that there were 34 cells/field (200× magnificantion) of the CTGF-transfected overexpressing cells, much more than the 11 cells/field of the empty vector control cells; and 6 cells/microscopic field of the Ad5-siCTGF-transfected silenced cells, much less than the 15 cells/field of the control cells. CTGF is overexpressed in both pancreatic cancer cells in vitro and in vivo, indicating that it may play an important role in the cell proliferation and migration in pancreatic cancer.
USDA-ARS?s Scientific Manuscript database
Type I interferons (IFN) are key mediators of the innate antiviral response in mammalian cells. Elongation initiation factor 4E binding proteins (4E-BPs) are translational controllers of interferon regulatory factor 7 (IRF7), the master regulator of IFN transcription. The role of 4EBPs in the negat...
Expression of CDK6 in Oral Squamous Cell Carcinomas
Andisheh-Tadbir, Azadeh; Ashraf, Mohammad Javad; Jeiroodi, Naghmeh
2018-04-25
Background: CDK6 is the key factor in regulation of the cell cycle and essential for passage into the G1 phase. It also plays an important role in the development of various tumors. In this cross-sectional study expression of the CDK6 protein in oral squamous cell carcinoma (OSCC) and healthy oral mucosa of controls was assessed to determine relations with malignant transformation and clinicopathologic factors. Method: A total of 60 samples, 45 from OSCCs and 15 from healthy tissue, underwent immunohistochemistry for CDK6. Nuclear and cytoplasmic staining of keratinocytes was considered as positive and the percentages of positive cells were calculated. Results: Expression of CDK6 was detected in 55.6% of OSCC samples (25 cases) and 13.3% of controls (2 cases), the difference being significant. Mean percentage of CDK6 stained cells was 24.2±29.3 in the OSCC cases and 4.33±2.1 in the control group, again statistically significant. No relationship was detected between CDK6 expression and clinicopathologic factors. Conclusion: Overexpression of CDK6 observed in OSCC points to a role for this protein in oral carcinogenesis. Creative Commons Attribution License
Temperature and UV light affect the activity of marine cell-free enzymes
NASA Astrophysics Data System (ADS)
Thomson, Blair; Hepburn, Christopher David; Lamare, Miles; Baltar, Federico
2017-09-01
Microbial extracellular enzymatic activity (EEA) is the rate-limiting step in the degradation of organic matter in the oceans. These extracellular enzymes exist in two forms: cell-bound, which are attached to the microbial cell wall, and cell-free, which are completely free of the cell. Contrary to previous understanding, cell-free extracellular enzymes make up a substantial proportion of the total marine EEA. Little is known about these abundant cell-free enzymes, including what factors control their activity once they are away from their sites (cells). Experiments were run to assess how cell-free enzymes (excluding microbes) respond to ultraviolet radiation (UVR) and temperature manipulations, previously suggested as potential control factors for these enzymes. The experiments were done with New Zealand coastal waters and the enzymes studied were alkaline phosphatase (APase), β-glucosidase, (BGase), and leucine aminopeptidase (LAPase). Environmentally relevant UVR (i.e. in situ UVR levels measured at our site) reduced cell-free enzyme activities by up to 87 % when compared to controls, likely a consequence of photodegradation. This effect of UVR on cell-free enzymes differed depending on the UVR fraction. Ambient levels of UV radiation were shown to reduce the activity of cell-free enzymes for the first time. Elevated temperatures (15 °C) increased the activity of cell-free enzymes by up to 53 % when compared to controls (10 °C), likely by enhancing the catalytic activity of the enzymes. Our results suggest the importance of both UVR and temperature as control mechanisms for cell-free enzymes. Given the projected warming ocean environment and the variable UVR light regime, it is possible that there could be major changes in the cell-free EEA and in the enzymes contribution to organic matter remineralization in the future.
Sequential growth factor application in bone marrow stromal cell ligament engineering.
Moreau, Jodie E; Chen, Jingsong; Horan, Rebecca L; Kaplan, David L; Altman, Gregory H
2005-01-01
In vitro bone marrow stromal cell (BMSC) growth may be enhanced through culture medium supplementation, mimicking the biochemical environment in which cells optimally proliferate and differentiate. We hypothesize that the sequential administration of growth factors to first proliferate and then differentiate BMSCs cultured on silk fiber matrices will support the enhanced development of ligament tissue in vitro. Confluent second passage (P2) BMSCs obtained from purified bone marrow aspirates were seeded on RGD-modified silk matrices. Seeded matrices were divided into three groups for 5 days of static culture, with medium supplement of basic fibroblast growth factor (B) (1 ng/mL), epidermal growth factor (E; 1 ng/mL), or growth factor-free control (C). After day 5, medium supplementation was changed to transforming growth factor-beta1 (T; 5 ng/mL) or C for an additional 9 days of culture. Real-time RT-PCR, SEM, MTT, histology, and ELISA for collagen type I of all sample groups were performed. Results indicated that BT supported the greatest cell ingrowth after 14 days of culture in addition to the greatest cumulative collagen type I expression measured by ELISA. Sequential growth factor application promoted significant increases in collagen type I transcript expression from day 5 of culture to day 14, for five of six groups tested. All T-supplemented samples surpassed their respective control samples in both cell ingrowth and collagen deposition. All samples supported spindle-shaped, fibroblast cell morphology, aligning with the direction of silk fibers. These findings indicate significant in vitro ligament development after only 14 days of culture when using a sequential growth factor approach.
Progranulin and its biological effects in cancer.
Arechavaleta-Velasco, Fabian; Perez-Juarez, Carlos Eduardo; Gerton, George L; Diaz-Cueto, Laura
2017-11-07
Cancer cells have defects in regulatory mechanisms that usually control cell proliferation and homeostasis. Different cancer cells share crucial alterations in cell physiology, which lead to malignant growth. Tumorigenesis or tumor growth requires a series of events that include constant cell proliferation, promotion of metastasis and invasion, stimulation of angiogenesis, evasion of tumor suppressor factors, and avoidance of cell death pathways. All these events in tumor progression may be regulated by growth factors produced by normal or malignant cells. The growth factor progranulin has significant biological effects in different types of cancer. This protein is a regulator of tumorigenesis because it stimulates cell proliferation, migration, invasion, angiogenesis, malignant transformation, resistance to anticancer drugs, and immune evasion. This review focuses on the biological effects of progranulin in several cancer models and provides evidence that this growth factor should be considered as a potential biomarker and target in cancer treatment.
Pettazzoni, Piergiorgio; Ciamporcero, Eric; Medana, Claudio; Pizzimenti, Stefania; Dal Bello, Federica; Minero, Valerio Giacomo; Toaldo, Cristina; Minelli, Rosalba; Uchida, Koji; Dianzani, Mario Umberto; Pili, Roberto; Barrera, Giuseppina
2011-10-15
4-Hydroxynonenal (HNE) is an end product of lipoperoxidation with antiproliferative and proapoptotic properties in various tumors. Here we report a greater sensitivity to HNE in PC3 and LNCaP cells compared to DU145 cells. In contrast to PC3 and LNCaP cells, HNE-treated DU145 cells showed a smaller reduction in growth and did not undergo apoptosis. In DU145 cells, HNE did not induce ROS production and DNA damage and generated a lower amount of HNE-protein adducts. DU145 cells had a greater GSH and GST A4 content and GSH/GST-mediated HNE detoxification. Nuclear factor erythroid 2-related factor-2 (Nrf2) is a regulator of the antioxidant response. Nrf2 protein content and nuclear accumulation were higher in DU145 cells compared to PC3 and LNCaP cells, whereas the expression of KEAP1, the main negative regulator of Nrf2 activity, was lower. Inhibition of Nrf2 expression with specific siRNA resulted in a reduction in GST A4 expression and GS-HNE formation, indicating that Nrf2 controls HNE metabolism. In addition, Nrf2 knockdown sensitized DU145 cells to HNE-mediated antiproliferative and proapoptotic activity. In conclusion, we demonstrated that increased Nrf2 activity resulted in a reduction in HNE sensitivity in prostate cancer cells, suggesting a potential mechanism of resistance to pro-oxidant therapy. Copyright © 2011 Elsevier Inc. All rights reserved.
Regulation of floral stem cell termination in Arabidopsis
Sun, Bo; Ito, Toshiro
2015-01-01
In Arabidopsis, floral stem cells are maintained only at the initial stages of flower development, and they are terminated at a specific time to ensure proper development of the reproductive organs. Floral stem cell termination is a dynamic and multi-step process involving many transcription factors, chromatin remodeling factors and signaling pathways. In this review, we discuss the mechanisms involved in floral stem cell maintenance and termination, highlighting the interplay between transcriptional regulation and epigenetic machinery in the control of specific floral developmental genes. In addition, we discuss additional factors involved in floral stem cell regulation, with the goal of untangling the complexity of the floral stem cell regulatory network. PMID:25699061
Nosrat, Irina V; Margolskee, Robert F; Nosrat, Christopher A
2012-05-11
Brain-derived neurotrophic factor (BDNF) is the most potent neurotrophic factor in the peripheral taste system during embryonic development. It is also expressed in adult taste buds. There is a lack of understanding of the role of BDNF in the adult taste system. To address this, we generated novel transgenic mice in which transgene expression was driven by an α-gustducin promoter coupling BDNF expression to the postnatal expression of gustducin in taste cells. Immunohistochemistry revealed significantly stronger BDNF labeling in taste cells of high BDNF-expressing mouse lines compared with controls. We show that taste buds in these mice are significantly larger and have a larger number of taste cells compared with controls. To examine whether innervation was affected in Gust-BDNF mice, we used antibodies to neural cell adhesion molecule (NCAM) and ATP receptor P2X3. The total density of general innervation and specifically the gustatory innervation was markedly increased in high BDNF-expressing mice compared with controls. TrkB and NCAM gene expression in laser capture microdissected taste epithelia were significantly up-regulated in these mice. Up-regulation of TrkB transcripts in taste buds and elevated taste cell-specific TrkB phosphorylation in response to increased BDNF levels indicate that BDNF controls the expression and activation of its high affinity receptor in taste cells. This demonstrates a direct taste cell function for BDNF. BDNF also orchestrates and maintains taste bud innervation. We propose that the Gust-BDNF transgenic mouse models can be employed to further dissect the specific roles of BDNF in the adult taste system.
Nosrat, Irina V.; Margolskee, Robert F.; Nosrat, Christopher A.
2012-01-01
Brain-derived neurotrophic factor (BDNF) is the most potent neurotrophic factor in the peripheral taste system during embryonic development. It is also expressed in adult taste buds. There is a lack of understanding of the role of BDNF in the adult taste system. To address this, we generated novel transgenic mice in which transgene expression was driven by an α-gustducin promoter coupling BDNF expression to the postnatal expression of gustducin in taste cells. Immunohistochemistry revealed significantly stronger BDNF labeling in taste cells of high BDNF-expressing mouse lines compared with controls. We show that taste buds in these mice are significantly larger and have a larger number of taste cells compared with controls. To examine whether innervation was affected in Gust-BDNF mice, we used antibodies to neural cell adhesion molecule (NCAM) and ATP receptor P2X3. The total density of general innervation and specifically the gustatory innervation was markedly increased in high BDNF-expressing mice compared with controls. TrkB and NCAM gene expression in laser capture microdissected taste epithelia were significantly up-regulated in these mice. Up-regulation of TrkB transcripts in taste buds and elevated taste cell-specific TrkB phosphorylation in response to increased BDNF levels indicate that BDNF controls the expression and activation of its high affinity receptor in taste cells. This demonstrates a direct taste cell function for BDNF. BDNF also orchestrates and maintains taste bud innervation. We propose that the Gust-BDNF transgenic mouse models can be employed to further dissect the specific roles of BDNF in the adult taste system. PMID:22442142
Plasticity of the Muscle Stem Cell Microenvironment.
Dinulovic, Ivana; Furrer, Regula; Handschin, Christoph
2017-01-01
Satellite cells (SCs) are adult muscle stem cells capable of repairing damaged and creating new muscle tissue throughout life. Their functionality is tightly controlled by a microenvironment composed of a wide variety of factors, such as numerous secreted molecules and different cell types, including blood vessels, oxygen, hormones, motor neurons, immune cells, cytokines, fibroblasts, growth factors, myofibers, myofiber metabolism, the extracellular matrix and tissue stiffness. This complex niche controls SC biology-quiescence, activation, proliferation, differentiation or renewal and return to quiescence. In this review, we attempt to give a brief overview of the most important players in the niche and their mutual interaction with SCs. We address the importance of the niche to SC behavior under physiological and pathological conditions, and finally survey the significance of an artificial niche both for basic and translational research purposes.
New factors controlling the balance between osteoblastogenesis and adipogenesis.
Abdallah, Basem M; Kassem, Moustapha
2012-02-01
The majority of conditions associated with bone loss, including aging, are accompanied by increased marrow adiposity possibly due to shifting of the balance between osteoblast and adipocyte differentiation in bone marrow stromal (skeletal) stem cells (MSC). In order to study the relationship between osteoblastogenesis and adipogenesis in bone marrow, we have characterized cellular models of multipotent MSC as well as pre-osteoblastic and pre-adipocytic cell populations. Using these models, we identified two secreted factors in the bone marrow microenviroment: secreted frizzled-related protein 1 (sFRP-1) and delta-like1 (preadipocyte factor 1) (Dlk1/Pref-1). Both exert regulatory effects on osteoblastogenesis and adipogenesis. Our studies suggest a model for lineage fate determination of MSC that is regulated through secreted factors in the bone marrow microenvironment that mediate a cross-talk between lineage committed cell populations in addition to controlling differentiation choices of multipotent MSC. Copyright © 2011 Elsevier Inc. All rights reserved.
Nomura, T; Honmou, O; Harada, K; Houkin, K; Hamada, H; Kocsis, J D
2005-01-01
I.V. delivery of mesenchymal stem cells prepared from adult bone marrow reduces infarction size and ameliorates functional deficits in rat cerebral ischemia models. Administration of the brain-derived neurotrophic factor to the infarction site has also been demonstrated to be neuroprotective. To test the hypothesis that brain-derived neurotrophic factor contributes to the therapeutic benefits of mesenchymal stem cell delivery, we compared the efficacy of systemic delivery of human mesenchymal stem cells and human mesenchymal stem cells transfected with a fiber-mutant F/RGD adenovirus vector with a brain-derived neurotrophic factor gene (brain-derived neurotrophic factor-human mesenchymal stem cells). A permanent middle cerebral artery occlusion was induced by intraluminal vascular occlusion with a microfilament. Human mesenchymal stem cells and brain-derived neurotrophic factor-human mesenchymal stem cells were i.v. injected into the rats 6 h after middle cerebral artery occlusion. Lesion size was assessed at 6 h, 1, 3 and 7 days using MR imaging, and histological methods. Functional outcome was assessed using the treadmill stress test. Both human mesenchymal stem cells and brain-derived neurotrophic factor-human mesenchymal stem cells reduced lesion volume and elicited functional improvement compared with the control sham group, but the effect was greater in the brain-derived neurotrophic factor-human mesenchymal stem cell group. ELISA analysis of the infarcted hemisphere revealed an increase in brain-derived neurotrophic factor in the human mesenchymal stem cell groups, but a greater increase in the brain-derived neurotrophic factor-human mesenchymal stem cell group. These data support the hypothesis that brain-derived neurotrophic factor contributes to neuroprotection in cerebral ischemia and cellular delivery of brain-derived neurotrophic factor can be achieved by i.v. delivery of human mesenchymal stem cells.
Kim, Sook Kyoung; Lee, Jaeyeon; Song, Myeongjin; Kim, Mirim; Hwang, Soon Jung; Jang, Hwanseok; Park, Yongdoo
2016-11-01
Combinations of angiogenic growth factors have been shown to have synergistic effects on angiogenesis and natural wound healing in various animal models. Each growth factor has unique roles during angiogenesis; vascular endothelial growth factor (VEGF) plays a key role during the initial step of angiogenesis, whereas PDGF functions in the maturation of blood vessels. We used a combination of three angiogenic growth factors to increase angiogenesis in vitro and in vivo. We chose VEGF as a basic factor and added platelet-derived growth factor (PDGF) and fibroblast growth factor (FGF) to induce angiogenesis in three in vitro and in vivo models: 3D angiogenesis assay, 3D co-culture, and matrigel plug implantation assay. Cell proliferation was significantly higher in co-cultured cells treated with PDGF + VEGF + FGF than in the control, single, or dual combination groups. mRNA expression of α-smooth muscle actin (α-SMA), von Willebrand factor (vWF), and CD105 was higher in the triple group (PDGF + VEGF + FGF) than in control, single, or dual combination groups. In the PDGF + VEGF + FGF group, the length and number of branches of spheroids was also significantly higher than in the control, single, or dual combination groups. Furthermore, in a nude mouse model, α-SMA expression was significantly higher in the PDGF + VEGF + FGF group than in other groups. In conclusion, the addition of PDGF and FGF to VEGF showed synergistic effects on angiogenesis in vitro and in vivo. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1535-1543, 2016. © 2015 Wiley Periodicals, Inc.
A HaemAtlas: characterizing gene expression in differentiated human blood cells.
Watkins, Nicholas A; Gusnanto, Arief; de Bono, Bernard; De, Subhajyoti; Miranda-Saavedra, Diego; Hardie, Debbie L; Angenent, Will G J; Attwood, Antony P; Ellis, Peter D; Erber, Wendy; Foad, Nicola S; Garner, Stephen F; Isacke, Clare M; Jolley, Jennifer; Koch, Kerstin; Macaulay, Iain C; Morley, Sarah L; Rendon, Augusto; Rice, Kate M; Taylor, Niall; Thijssen-Timmer, Daphne C; Tijssen, Marloes R; van der Schoot, C Ellen; Wernisch, Lorenz; Winzer, Thilo; Dudbridge, Frank; Buckley, Christopher D; Langford, Cordelia F; Teichmann, Sarah; Göttgens, Berthold; Ouwehand, Willem H
2009-05-07
Hematopoiesis is a carefully controlled process that is regulated by complex networks of transcription factors that are, in part, controlled by signals resulting from ligand binding to cell-surface receptors. To further understand hematopoiesis, we have compared gene expression profiles of human erythroblasts, megakaryocytes, B cells, cytotoxic and helper T cells, natural killer cells, granulocytes, and monocytes using whole genome microarrays. A bioinformatics analysis of these data was performed focusing on transcription factors, immunoglobulin superfamily members, and lineage-specific transcripts. We observed that the numbers of lineage-specific genes varies by 2 orders of magnitude, ranging from 5 for cytotoxic T cells to 878 for granulocytes. In addition, we have identified novel coexpression patterns for key transcription factors involved in hematopoiesis (eg, GATA3-GFI1 and GATA2-KLF1). This study represents the most comprehensive analysis of gene expression in hematopoietic cells to date and has identified genes that play key roles in lineage commitment and cell function. The data, which are freely accessible, will be invaluable for future studies on hematopoiesis and the role of specific genes and will also aid the understanding of the recent genome-wide association studies.
A HaemAtlas: characterizing gene expression in differentiated human blood cells
Gusnanto, Arief; de Bono, Bernard; De, Subhajyoti; Miranda-Saavedra, Diego; Hardie, Debbie L.; Angenent, Will G. J.; Attwood, Antony P.; Ellis, Peter D.; Erber, Wendy; Foad, Nicola S.; Garner, Stephen F.; Isacke, Clare M.; Jolley, Jennifer; Koch, Kerstin; Macaulay, Iain C.; Morley, Sarah L.; Rendon, Augusto; Rice, Kate M.; Taylor, Niall; Thijssen-Timmer, Daphne C.; Tijssen, Marloes R.; van der Schoot, C. Ellen; Wernisch, Lorenz; Winzer, Thilo; Dudbridge, Frank; Buckley, Christopher D.; Langford, Cordelia F.; Teichmann, Sarah; Göttgens, Berthold; Ouwehand, Willem H.
2009-01-01
Hematopoiesis is a carefully controlled process that is regulated by complex networks of transcription factors that are, in part, controlled by signals resulting from ligand binding to cell-surface receptors. To further understand hematopoiesis, we have compared gene expression profiles of human erythroblasts, megakaryocytes, B cells, cytotoxic and helper T cells, natural killer cells, granulocytes, and monocytes using whole genome microarrays. A bioinformatics analysis of these data was performed focusing on transcription factors, immunoglobulin superfamily members, and lineage-specific transcripts. We observed that the numbers of lineage-specific genes varies by 2 orders of magnitude, ranging from 5 for cytotoxic T cells to 878 for granulocytes. In addition, we have identified novel coexpression patterns for key transcription factors involved in hematopoiesis (eg, GATA3-GFI1 and GATA2-KLF1). This study represents the most comprehensive analysis of gene expression in hematopoietic cells to date and has identified genes that play key roles in lineage commitment and cell function. The data, which are freely accessible, will be invaluable for future studies on hematopoiesis and the role of specific genes and will also aid the understanding of the recent genome-wide association studies. PMID:19228925
Nuclear organization mediates cancer-compromised genetic and epigenetic control.
Zaidi, Sayyed K; Fritz, Andrew; Tracy, Kirsten; Gordon, Jonathan; Tye, Coralee; Boyd, Joseph; Van Wijnen, Andre; Nickerson, Jeffrey; Imbalzano, Anthony; Lian, Jane; Stein, Janet; Stein, Gary
2018-05-09
Nuclear organization is functionally linked to genetic and epigenetic regulation of gene expression for biological control and is modified in cancer. Nuclear organization supports cell growth and phenotypic properties of normal and cancer cells by facilitating physiologically responsive interactions of chromosomes, genes and regulatory complexes at dynamic three-dimensional microenvironments. We will review nuclear structure/function relationships that include: 1. Epigenetic bookmarking of genes by phenotypic transcription factors to control fidelity and plasticity of gene expression as cells enter and exit mitosis; 2. Contributions of chromatin remodeling to breast cancer nuclear morphology, metabolism and effectiveness of chemotherapy; 3. Relationships between fidelity of nuclear organization and metastasis of breast cancer to bone; 4. Dynamic modifications of higher-order inter- and intra-chromosomal interactions in breast cancer cells; 5. Coordinate control of cell growth and phenotype by tissue-specific transcription factors; 6. Oncofetal epigenetic control by bivalent histone modifications that are functionally related to sustaining the stem cell phenotype; and 7. Noncoding RNA-mediated regulation in the onset and progression of breast cancer. The discovery of components to nuclear organization that are functionally related to cancer and compromise gene expression have the potential for translation to innovative cancer diagnosis and targeted therapy. Copyright © 2018 Elsevier Ltd. All rights reserved.
Aonuma, Tatsuya; Takehara, Naofumi; Maruyama, Keisuke; Kabara, Maki; Matsuki, Motoki; Yamauchi, Atsushi; Kawabe, Jun-Ichi; Hasebe, Naoyuki
2016-08-01
: Overcoming the insufficient survival of cell grafts is an essential objective in cell-based therapy. Apurinic/apyrimidinic endonuclease/redox factor 1 (APE1) promotes cell survival and may enhance the therapeutic effect of engrafted cells. The aim of this study is to determine whether APE1 overexpression in cardiac progenitor cells (CPCs) could ameliorate the efficiency of cell-based therapy. CPCs isolated from 8- to 10-week-old C57BL/6 mouse hearts were infected with retrovirus harboring APE1-DsRed (APE1-CPC) or a DsRed control (control-CPC). Oxidative stress-induced apoptosis was then assessed in APE1-CPCs, control-CPCs, and neonatal rat ventricular myocytes (NRVMs) cocultured with these CPCs. This analysis revealed that APE1 overexpression inhibited CPC apoptosis with activation of transforming growth factor β-activated kinase 1 (TAK1) and nuclear factor (NF)-κB. In the coculture model, NRVM apoptosis was inhibited to a greater extent in the presence of APE1-CPCs compared with control-CPCs. Moreover, the number of surviving DsRed-positive CPC grafts was significantly higher 7 days after the transplant of APE1-CPCs into a mouse myocardial infarction model, and the left ventricular ejection fraction showed greater improvement with attenuation of fibrosis 28 days after the transplant of APE1-CPCs compared with control-CPCs. Additionally, fewer inflammatory macrophages and a higher percentage of cardiac α-sarcomeric actinin-positive CPC-grafts were observed in mice injected with APE1-CPCs compared with control-CPCs after 7 days. In conclusion, antiapoptotic APE1-CPC graft, which increased TAK1-NF-κB pathway activation, survived effectively in the ischemic heart, restored cardiac function, and reduced cardiac inflammation and fibrosis. APE1 overexpression in CPCs may serve as a novel strategy to improve cardiac cell therapy. Improving the survival of cell grafts is essential to maximize the efficacy of cell therapy. The authors investigated the role of APE1 in CPCs under ischemic conditions and evaluated the therapeutic efficacy of transplanted APE1-overexpressing CPCs in a mouse model of myocardial infarction. APE1 hindered apoptosis in CPC grafts subjected to oxidative stress caused in part by increased TAK1-NF-κB pathway activation. Furthermore, APE1-CPC grafts that effectively survived in the ischemic heart restored cardiac function and attenuated fibrosis through pleiotropic mechanisms that remain to be characterized. These findings suggest that APE1 overexpression in CPCs may be a novel strategy to reinforce cardiac cell therapy. ©AlphaMed Press.
Kinetics and clonality of immunological memory in humans.
Beverley, Peter C L
2004-10-01
T-cell immunological memory consists largely of clones of proliferating lymphocytes maintained by antigenic stimulation and the survival and proliferative effects of cytokines. The duration of survival of memory clones in humans is determine by the Hayflick limit on the number of cell divisions, the rate of cycling of memory cells and factors that control erosion of telomeres, including mechanisms that control telomerase.
Kim, Minjoo; Kim, Minkyung; Han, Ji Yun; Lee, Sang-Hyun; Jee, Sun Ha; Lee, Jong Ho
2017-03-01
To determine differences between peripheral blood mononuclear cells and the plasma metabolites in patients with impaired fasting glucose or type 2 diabetes and healthy controls. In all, 65 nononobese patients (aged 30-70 years) with impaired fasting glucose or type 2 diabetes and 65 nonobese sex-matched healthy controls were included, and fasting peripheral blood mononuclear cell and plasma metabolomes were profiled. The diabetic or impaired fasting glucose patients showed higher circulating and peripheral blood mononuclear cell lipoprotein phospholipase A 2 activities, high-sensitivity C-reactive protein and tumour necrosis factor-α than controls. Compared with controls, impaired fasting glucose or diabetic subjects showed increases in 11 peripheral blood mononuclear cell metabolites: six amino acids (valine, leucine, methionine, phenylalanine, tyrosine and tryptophan), l-pyroglutamic acid, two fatty acid amides containing palmitic amide and oleamide and two lysophosphatidylcholines. In impaired fasting glucose or diabetic patients, peripheral blood mononuclear cell lipoprotein phospholipase A 2 positively associated with peripheral blood mononuclear cell lysophosphatidylcholines and circulating inflammatory markers, including tumour necrosis factor-α, high-sensitivity C-reactive protein and lipoprotein phospholipase A 2 activities. In plasma metabolites between patients and healthy controls, we observed significant increases in only three amino acids (proline, valine and leucine) and decreases in only five lysophosphatidylcholines. This study demonstrates significant differences in the peripheral blood mononuclear cell metabolome in patients with impaired fasting glucose or diabetes compared with healthy controls. These differences were greater than those observed in the plasma metabolome. These data suggest peripheral blood mononuclear cells as a useful tool to better understand the inflammatory pathophysiology of diabetes.
Activin- and Nodal-related factors control antero-posterior patterning of the zebrafish embryo.
Thisse, B; Wright, C V; Thisse, C
2000-01-27
Definition of cell fates along the dorso-ventral axis depends on an antagonistic relationship between ventralizing transforming growth factor-beta superfamily members, the bone morphogenetic proteins and factors secreted from the dorsal organizer, such as Noggin and Chordin. The extracellular binding of the last group to the bone morphogenetic proteins prevents them from activating their receptors, and the relative ventralizer:antagonist ratio is thought to specify different dorso-ventral cell fates. Here, by taking advantage of a non-genetic interference method using a specific competitive inhibitor, the Lefty-related gene product Antivin, we provide evidence that cell fate along the antero-posterior axis of the zebrafish embryo is controlled by the morphogenetic activity of another transforming growth factor-beta superfamily subgroup--the Activin and Nodal-related factors. Increasing antivin doses progressively deleted posterior fates within the ectoderm, eventually resulting in the removal of all fates except forebrain and eyes. In contrast, overexpression of activin or nodal-related factors converted ectoderm that was fated to be forebrain into more posterior ectodermal or mesendodermal fates. We propose that modulation of intercellular signalling by Antivin/Activin and Nodal-related factors provides a mechanism for the graded establishment of cell fates along the antero-posterior axis of the zebrafish embryo.
Neural Stem Cell Differentiation Using Microfluidic Device-Generated Growth Factor Gradient.
Kim, Ji Hyeon; Sim, Jiyeon; Kim, Hyun-Jung
2018-04-11
Neural stem cells (NSCs) have the ability to self-renew and differentiate into multiple nervous system cell types. During embryonic development, the concentrations of soluble biological molecules have a critical role in controlling cell proliferation, migration, differentiation and apoptosis. In an effort to find optimal culture conditions for the generation of desired cell types in vitro , we used a microfluidic chip-generated growth factor gradient system. In the current study, NSCs in the microfluidic device remained healthy during the entire period of cell culture, and proliferated and differentiated in response to the concentration gradient of growth factors (epithermal growth factor and basic fibroblast growth factor). We also showed that overexpression of ASCL1 in NSCs increased neuronal differentiation depending on the concentration gradient of growth factors generated in the microfluidic gradient chip. The microfluidic system allowed us to study concentration-dependent effects of growth factors within a single device, while a traditional system requires multiple independent cultures using fixed growth factor concentrations. Our study suggests that the microfluidic gradient-generating chip is a powerful tool for determining the optimal culture conditions.
Gordin, Maya; Tesio, Melania; Cohen, Sivan; Gore, Yael; Lantner, Frida; Leng, Lin; Bucala, Richard; Shachar, Idit
2010-08-15
The signals regulating the survival of mature splenic B cells have become a major focus in recent studies of B cell immunology. Durable B cell persistence in the periphery is dependent on survival signals that are transduced by cell surface receptors. In this study, we describe a novel biological mechanism involved in mature B cell homeostasis, the hepatocyte growth factor/scatter factor (HGF)/c-Met pathway. We demonstrate that c-Met activation by HGF leads to a survival cascade, whereas its blockade results in induction of mature B cell death. Our results emphasize a unique and critical function for c-Met signaling in the previously described macrophage migration inhibitory factor/CD74-induced survival pathway. Macrophage migration inhibitory factor recruits c-Met to the CD74/CD44 complex and thereby enables the induction of a signaling cascade within the cell. This signal results in HGF secretion, which stimulates the survival of the mature B cell population in an autocrine manner. Thus, the CD74-HGF/c-Met axis defines a novel physiologic survival pathway in mature B cells, resulting in the control of the humoral immune response.
Cigarette Smoke Induces Stem Cell Features of Pancreatic Cancer Cells via PAF1.
Nimmakayala, Rama Krishna; Seshacharyulu, Parthasarathy; Lakshmanan, Imayavaramban; Rachagani, Satyanarayana; Chugh, Seema; Karmakar, Saswati; Rauth, Sanchita; Vengoji, Raghupathy; Atri, Pranita; Talmon, Geoffrey A; Lele, Subodh M; Smith, Lynette M; Thapa, Ishwor; Bastola, Dhundy; Ouellette, Michel M; Batra, Surinder K; Ponnusamy, Moorthy P
2018-06-01
Cigarette smoking is a major risk factor for pancreatic cancer. Aggressive pancreatic tumors contain cancer cells with stem cell features. We investigated whether cigarette smoke induces stem cell features in pancreatic cancer cells. Kras G12D ; Pdx1-Cre (KC) mice were exposed to cigarette smoke or clean air (controls) for up to 20 weeks; pancreata were collected and analyzed by histology, quantitative reverse transcription PCR, and confocal immunofluorescence microscopy. HPNE and Capan1 cells were exposed to cigarette smoke extract (CSE), nicotine and nicotine-derived carcinogens (NNN or NNK), or clean air (controls) for 80 days and evaluated for stem cell markers and features using flow cytometry-based autofluorescence, sphere formation, and immunoblot assays. Proteins were knocked down in cells with small interfering RNAs. We performed RNA sequencing analyses of CSE-exposed cells. We used chromatin immunoprecipitation assays to confirm the binding of FOS like 1, AP-1 transcription factor subunit (FOSL1) to RNA polymerase II-associated factor (PAF1) promoter. We obtained pancreatic ductal adenocarcinoma (PDAC) and matched non-tumor tissues (n=15) and performed immunohistochemical analyses. Chronic exposure of HPNE and Capan1 cells to CSE caused them to increase markers of stem cells, including autofluorescence and sphere formation, compared to control cells. These cells increased expression of ABCG2, SOX9 and PAF1, via cholinergic receptor nicotinic alpha 7 subunit (CHRNA7) signaling to mitogen-activated protein kinase 1 and FOSL1. Pancreatic cell lines with knockdown of PAF1 did not develop features of stem cells upon exposure to CSE. Exposure of cells to NNN and NNK led to increased expression of CHRNA7, FOSL1, and PAF1 along with stem cell features. Pancreata from KC mice exposed to cigarette smoke had increased levels of PAF1 mRNA and protein, compared with control mice, as well as increased expression of SOX9. Levels of PAF1 and FOSL1 were increased in PDAC tissues, especially those from smokers, compared with non-tumor pancreatic tissue. CSE exposure increased expression of PHD finger protein 5A, a pluripotent transcription factor and its interaction with PAF1. Exposure to cigarette smoke activates stem cell features of pancreatic cells, via CHRNA7 signaling and FOSL1 activation of PAF1 expression. Levels of PAF1 are increased in pancreatic tumors of humans and mice with chronic cigarette smoke exposure. Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.
Bras, Stéphanie; Martin-Lannerée, Séverine; Gobert, Vanessa; Augé, Benoît; Breig, Osman; Sanial, Matthieu; Yamaguchi, Masamitsu; Haenlin, Marc; Plessis, Anne; Waltzer, Lucas
2012-03-27
Defining the function of the genes that, like RUNX1, are deregulated in blood cell malignancies represents an important challenge. Myeloid leukemia factors (MLFs) constitute a poorly characterized family of conserved proteins whose founding member, MLF1, has been associated with acute myeloid leukemia in humans. To gain insight into the functions of this family, we investigated the role of the Drosophila MLF homolog during blood cell development. Here we report that mlf controls the homeostasis of the Drosophila hematopoietic system. Notably, mlf participates in a positive feedback loop to fine tune the activity of the RUNX transcription factor Lozenge (LZ) during development of the crystal cells, one of the two main blood cell lineages in Drosophila. At the molecular level, our data in cell cultures and in vivo strongly suggest that MLF controls the number of crystal cells by protecting LZ from degradation. Remarkably, it appears that the human MLF1 protein can substitute for MLF in the crystal cell lineage. In addition, MLF stabilizes the human oncogenic fusion protein RUNX1-ETO and is required for RUNX1-ETO-induced blood cell disorders in a Drosophila model of leukemia. Finally, using the human leukemic blood cell line Kasumi-1, we show that MLF1 depletion impairs RUNX1-ETO accumulation and reduces RUNX1-ETO-dependent proliferation. Thus, we propose that the regulation of RUNX protein levels is a conserved feature of MLF family members that could be critical for normal and pathological blood cell development.
Circuit Design Features of a Stable Two-Cell System.
Zhou, Xu; Franklin, Ruth A; Adler, Miri; Jacox, Jeremy B; Bailis, Will; Shyer, Justin A; Flavell, Richard A; Mayo, Avi; Alon, Uri; Medzhitov, Ruslan
2018-02-08
Cell communication within tissues is mediated by multiple paracrine signals including growth factors, which control cell survival and proliferation. Cells and the growth factors they produce and receive constitute a circuit with specific properties that ensure homeostasis. Here, we used computational and experimental approaches to characterize the features of cell circuits based on growth factor exchange between macrophages and fibroblasts, two cell types found in most mammalian tissues. We found that the macrophage-fibroblast cell circuit is stable and robust to perturbations. Analytical screening of all possible two-cell circuit topologies revealed the circuit features sufficient for stability, including environmental constraint and negative-feedback regulation. Moreover, we found that cell-cell contact is essential for the stability of the macrophage-fibroblast circuit. These findings illustrate principles of cell circuit design and provide a quantitative perspective on cell interactions. Copyright © 2018 Elsevier Inc. All rights reserved.
Transcriptional regulation of germinal center B and plasma cell fates by dynamical control of IRF4
Ochiai, Kyoko; Maienschein-Cline, Mark; Simonetti, Giorgia; Chen, Jianjun; Rosenthal, Rebecca; Brink, Robert; Chong, Anita S.; Klein, Ulf; Dinner, Aaron R.; Singh, Harinder; Sciammas, Roger
2013-01-01
Summary The transcription factor IRF4 regulates immunoglobulin class switch recombination and plasma cell differentiation. Its differing concentrations appear to regulate mutually antagonistic programs of B and plasma cell gene expression. We show IRF4 to be also required for generation of germinal center (GC) B cells. Its transient expression in vivo induced the expression of key GC genes including Bcl6 and Aicda. In contrast, sustained and higher concentrations of IRF4 promoted the generation of plasma cells while antagonizing the GC fate. IRF4 co-bound with the transcription factors PU.1 or BATF to Ets or AP-1 composite motifs, associated with genes involved in B cell activation and the GC response. At higher concentrations IRF4 binding shifted to interferon sequence response motifs; these enriched for genes involved in plasma cell differentiation. Our results support a model of “kinetic control” in which signaling induced dynamics of IRF4 in activated B cells control their cell fate outcomes. PMID:23684984
Thackray, Larissa B.; Duan, Erning; Lazear, Helen M.; Kambal, Amal; Schreiber, Robert D.; Diamond, Michael S.
2012-01-01
Human noroviruses (HuNoV) are the major cause of epidemic, nonbacterial gastroenteritis in the world. The short course of HuNoV-induced symptoms has implicated innate immunity in control of norovirus (NoV) infection. Studies using murine norovirus (MNV) confirm the importance of innate immune responses during NoV infection. Type I alpha and beta interferons (IFN-α/β) limit HuNoV replicon function, restrict MNV replication in cultured cells, and control MNV replication in vivo. Therefore, the cell types and transcription factors involved in antiviral immune responses and IFN-α/β-mediated control of NoV infection are important to define. We used mice with floxed alleles of the IFNAR1 chain of the IFN-α/β receptor to identify cells expressing lysozyme M or CD11c as cells that respond to IFN-α/β to restrict MNV replication in vivo. Furthermore, we show that the transcription factors IRF-3 and IRF-7 work in concert to initiate unique and overlapping antiviral responses to restrict MNV replication in vivo. IRF-3 and IRF-7 restrict MNV replication in both cultured macrophages and dendritic cells, are required for induction of IFN-α/β in macrophages but not dendritic cells, and are dispensable for the antiviral effects of IFN-α/β that block MNV replication. These studies suggest that expression of the IFN-α/β receptor on macrophages/neutrophils and dendritic cells, as well as of IRF-3 and IRF-7, is critical for innate immune responses to NoV infection. PMID:23035219
Rogers, M B
1996-01-01
The effect of retinoids on malignant cells and embryos indicates that retinoids influence the expression of growth factors or alter the response of cells to growth factors. The bone morphogenetic proteins, Bmp-2 and Bmp-4, are candidates for such growth factors because retinoic acid (RA) treatment of F9 embryonal carcinoma cells induced Bmp-2 mRNA, while simultaneously repressing Bmp-4 levels. Also, recombinant Bmp-2 affected the growth and differentiation of these cells. Regulation of each gene was concentration dependent and required continuous RA treatment. The short half-lives of the Bmp-2 (75 +/- 11 min) and Bmp-4 (70 +/- 4 min) mRNAs suggest that their abundance is primarily controlled at the transcriptional level. To determine which RA receptor (RAR) controls bmp-2 and bmp-4 expression, F9 cells were exposed to various receptor-selective retinoids. RAR alpha- and gamma-selective retinoids induced Bmp-2 and repressed Bmp-4 equally as well as all-trans RA. In contrast, a RAR beta-selective retinoid had little effect on Bmp-2 induction but repressed Bmp-4. A RAR alpha-selective antagonist inhibited all-trans RA stimulation of Bmp-2, although not as dramatically as a RAR beta gamma-selective antagonist. No differences were observed between Bmp levels in all-trans RA and 9-cis RA-treated cells, indicating that the RXRs play little part in controlling these genes. The results are consistent with RAR alpha and gamma-controlled Bmp-2 and Bmp-4 regulation.
Fip1 regulates mRNA alternative polyadenylation to promote stem cell self-renewal
Lackford, Brad; Yao, Chengguo; Charles, Georgette M; Weng, Lingjie; Zheng, Xiaofeng; Choi, Eun-A; Xie, Xiaohui; Wan, Ji; Xing, Yi; Freudenberg, Johannes M; Yang, Pengyi; Jothi, Raja; Hu, Guang; Shi, Yongsheng
2014-01-01
mRNA alternative polyadenylation (APA) plays a critical role in post-transcriptional gene control and is highly regulated during development and disease. However, the regulatory mechanisms and functional consequences of APA remain poorly understood. Here, we show that an mRNA 3′ processing factor, Fip1, is essential for embryonic stem cell (ESC) self-renewal and somatic cell reprogramming. Fip1 promotes stem cell maintenance, in part, by activating the ESC-specific APA profiles to ensure the optimal expression of a specific set of genes, including critical self-renewal factors. Fip1 expression and the Fip1-dependent APA program change during ESC differentiation and are restored to an ESC-like state during somatic reprogramming. Mechanistically, we provide evidence that the specificity of Fip1-mediated APA regulation depends on multiple factors, including Fip1-RNA interactions and the distance between APA sites. Together, our data highlight the role for post-transcriptional control in stem cell self-renewal, provide mechanistic insight on APA regulation in development, and establish an important function for APA in cell fate specification. PMID:24596251
STATs: An Old Story, Yet Mesmerizing
Abroun, Saeid; Saki, Najmaldin; Ahmadvand, Mohammad; Asghari, Farahnaz; Salari, Fatemeh; Rahim, Fakher
2015-01-01
Signal transducers and activators of transcription (STATs) are cytoplasmic transcription factors that have a key role in cell fate. STATs, a protein family comprised of seven members, are proteins which are latent cytoplasmic transcription factors that convey signals from the cell surface to the nucleus through activation by cytokines and growth factors. The signaling pathways have diverse biological functions that include roles in cell differentiation, proliferation, development, apoptosis, and inflammation which place them at the center of a very active area of research. In this review we explain Janus kinase (JAK)/STAT signaling and focus on STAT3, which is transient from cytoplasm to nucleus after phosphorylation. This procedure controls fundamental biological processes by regulating nuclear genes controlling cell proliferation, survival, and development. In some hematopoietic disorders and cancers, overexpression and activation of STAT3 result in high proliferation, suppression of cell differentiation and inhibition of cell maturation. This article focuses on STAT3 and its role in malignancy, in addition to the role of microRNAs (miRNAs) on STAT3 activation in certain cancers. PMID:26464811
Farmer, John T; Weigent, Douglas A
2007-01-01
In the present study, we report the upregulation of functional IGF-2Rs in cells overexpressing growth hormone (GH). EL4 lymphoma cells stably transfected with an rGH cDNA overexpression vector (GHo) exhibited an increase in the binding of (125)I-IGF-2 with no change in the binding affinity compared to vector alone controls. An increase in the expression of the insulin-like growth factor-2 receptor (IGF-2R) in cells overexpressing GH was confirmed by Western blot analysis and IGF-2R promoter luciferase assays. EL4 cells produce insulin-like growth factor-2 (IGF-2) as detected by the reverse transcription-polymerase chain reaction (RT-PCR); however, no IGF-2 protein was detected by Western analysis. The increase in the expression of the IGF-2R resulted in greater levels of IGF-2 uptake in GHo cells compared to vector alone controls. The data suggest that one of the consequences of the overexpression of GH is an increase in the expression of the IGF-2R.
Minireview: Thioredoxin-interacting protein: regulation and function in the pancreatic β-cell.
Shalev, Anath
2014-08-01
Pancreatic β-cells are responsible for insulin production, and loss of functional β-cell mass is now recognized as a critical step in the pathogenesis of both type 1 and type 2 diabetes. However, the factors controlling the life and death of the pancreatic β-cell have only started to be elucidated. Discovered as the top glucose-induced gene in a human islet microarray study 12 years ago, thioredoxin-interacting protein (TXNIP) has now emerged as such a key player in pancreatic β-cell biology. Since then, β-cell expression of TXNIP has been found to be tightly regulated by multiple factors and to be dramatically increased in diabetic islets. Elevated TXNIP levels induce β-cell apoptosis, whereas TXNIP deficiency protects against type 1 and type 2 diabetes by promoting β-cell survival. TXNIP interacts with and inhibits thioredoxin and thereby controls the cellular redox state, but it also belongs to the α-arrestin family of proteins and regulates a variety of metabolic processes. Most recently, TXNIP has been discovered to control β-cell microRNA expression, β-cell function, and insulin production. In this review, the current state of knowledge regarding regulation and function of TXNIP in the pancreatic β-cell and the implications for drug development are discussed.
Pseudotemporal Ordering of Single Cells Reveals Metabolic Control of Postnatal β Cell Proliferation.
Zeng, Chun; Mulas, Francesca; Sui, Yinghui; Guan, Tiffany; Miller, Nathanael; Tan, Yuliang; Liu, Fenfen; Jin, Wen; Carrano, Andrea C; Huising, Mark O; Shirihai, Orian S; Yeo, Gene W; Sander, Maike
2017-05-02
Pancreatic β cell mass for appropriate blood glucose control is established during early postnatal life. β cell proliferative capacity declines postnatally, but the extrinsic cues and intracellular signals that cause this decline remain unknown. To obtain a high-resolution map of β cell transcriptome dynamics after birth, we generated single-cell RNA-seq data of β cells from multiple postnatal time points and ordered cells based on transcriptional similarity using a new analytical tool. This analysis captured signatures of immature, proliferative β cells and established high expression of amino acid metabolic, mitochondrial, and Srf/Jun/Fos transcription factor genes as their hallmark feature. Experimental validation revealed high metabolic activity in immature β cells and a role for reactive oxygen species and Srf/Jun/Fos transcription factors in driving postnatal β cell proliferation and mass expansion. Our work provides the first high-resolution molecular characterization of state changes in postnatal β cells and paves the way for the identification of novel therapeutic targets to stimulate β cell regeneration. Copyright © 2017 Elsevier Inc. All rights reserved.
Becic, Tina; Kero, Darko; Vukojevic, Katarina; Mardesic, Snjezana; Saraga-Babic, Mirna
2018-04-01
The expression pattern of fibroblast growth factors FGF8 and FGF2 and their receptor FGFR1, transcription factors MSX-1 and MSX-2, as well as cell proliferation (Ki-67) and cell death associated caspase-3, p19 and RIP5 factors were analyzed in histological sections of eight 4th-9th-weeks developing human limbs by immunohistochemistry and semi-thin sectioning. Increasing expression of all analyzed factors (except FGF8) characterized both the multilayered human apical ectodermal ridge (AER), sub-ridge mesenchyme (progress zone) and chondrocytes in developing human limbs. While cytoplasmic co-expression of MSX-1 and MSX-2 was observed in both limb epithelium and mesenchyme, p19 displayed strong cytoplasmic expression in non-proliferating cells. Nuclear expression of Ki-67 proliferating cells, and partly of MSX-1 and MSX-2 was detected in the whole limb primordium. Strong expression of factors p19 and RIP5, both in the AER and mesenchyme of human developing limbs indicates their possible involvement in control of cell senescence and cell death. In contrast to animal studies, expression of FGFR1 in the surface ectoderm and p19 in the whole limb primordium might reflect interspecies differences in limb morphology. Expression of FGF2 and downstream RIP5 gene, and transcription factors Msx-1 and MSX-2 did not show human-specific changes in expression pattern. Based on their spatio-temporal expression during human limb development, our study indicates role of FGFs and Msx genes in stimulation of cell proliferation, limb outgrowth, digit elongation and separation, and additionally MSX-2 in control of vasculogenesis. The cascade of orchestrated gene expressions, including the analyzed developmental factors, jointly contribute to the complex human limb development. Copyright © 2018 Elsevier GmbH. All rights reserved.
Castiello, Luciano; Sabatino, Marianna; Zhao, Yingdong; Tumaini, Barbara; Ren, Jiaqiang; Ping, Jin; Wang, Ena; Wood, Lauren V; Marincola, Francesco M; Puri, Raj K; Stroncek, David F
2013-02-01
Cell-based immunotherapies are among the most promising approaches for developing effective and targeted immune response. However, their clinical usefulness and the evaluation of their efficacy rely heavily on complex quality control assessment. Therefore, rapid systematic methods are urgently needed for the in-depth characterization of relevant factors affecting newly developed cell product consistency and the identification of reliable markers for quality control. Using dendritic cells (DCs) as a model, we present a strategy to comprehensively characterize manufactured cellular products in order to define factors affecting their variability, quality and function. After generating clinical grade human monocyte-derived mature DCs (mDCs), we tested by gene expression profiling the degrees of product consistency related to the manufacturing process and variability due to intra- and interdonor factors, and how each factor affects single gene variation. Then, by calculating for each gene an index of variation we selected candidate markers for identity testing, and defined a set of genes that may be useful comparability and potency markers. Subsequently, we confirmed the observed gene index of variation in a larger clinical data set. In conclusion, using high-throughput technology we developed a method for the characterization of cellular therapies and the discovery of novel candidate quality assurance markers.
Assessment of stem cell differentiation based on genome-wide expression profiles.
Godoy, Patricio; Schmidt-Heck, Wolfgang; Hellwig, Birte; Nell, Patrick; Feuerborn, David; Rahnenführer, Jörg; Kattler, Kathrin; Walter, Jörn; Blüthgen, Nils; Hengstler, Jan G
2018-07-05
In recent years, protocols have been established to differentiate stem and precursor cells into more mature cell types. However, progress in this field has been hampered by difficulties to assess the differentiation status of stem cell-derived cells in an unbiased manner. Here, we present an analysis pipeline based on published data and methods to quantify the degree of differentiation and to identify transcriptional control factors explaining differences from the intended target cells or tissues. The pipeline requires RNA-Seq or gene array data of the stem cell starting population, derived 'mature' cells and primary target cells or tissue. It consists of a principal component analysis to represent global expression changes and to identify possible problems of the dataset that require special attention, such as: batch effects; clustering techniques to identify gene groups with similar features; over-representation analysis to characterize biological motifs and transcriptional control factors of the identified gene clusters; and metagenes as well as gene regulatory networks for quantitative cell-type assessment and identification of influential transcription factors. Possibilities and limitations of the analysis pipeline are illustrated using the example of human embryonic stem cell and human induced pluripotent cells to generate 'hepatocyte-like cells'. The pipeline quantifies the degree of incomplete differentiation as well as remaining stemness and identifies unwanted features, such as colon- and fibroblast-associated gene clusters that are absent in real hepatocytes but typically induced by currently available differentiation protocols. Finally, transcription factors responsible for incomplete and unwanted differentiation are identified. The proposed method is widely applicable and allows an unbiased and quantitative assessment of stem cell-derived cells.This article is part of the theme issue 'Designer human tissue: coming to a lab near you'. © 2018 The Author(s).
Control of DNA replication: a new facet of Hox proteins?
Miotto, Benoit; Graba, Yacine
2010-09-01
Hox proteins are well-known as developmental transcription factors controlling cell and tissue identity, but recent findings suggest that they are also part of the cell replication machinery. Hox-mediated control of transcription and replication may ensure coordinated control of cell growth and differentiation, two processes that need to be tightly and precisely coordinated to allow proper organ formation and patterning. In this review we summarize the available data linking Hox proteins to the replication machinery and discuss the developmental and pathological implications of this new facet of Hox protein function.
Wu, Yong; Chen, Ping; Huang, Hui-Fang; Huang, Mei-Juan; Chen, Yuan-Zhong
2012-01-01
The expression of transforming growth factor-β1 (TGF-β1) in leukemic cells and sera from patients with leukemia and its possible role in leukemia development were studied. TGF-β1 levels in culture supernatants from leukemic cells were significantly lower than those from normal bone marrow mononuclear cells. Serum TGF-β1 levels in leukemic patients were significantly lower compared with healthy controls, but returned to normal in patients achieving complete remission, and decreased when patients relapsed. TGF-β1 mRNA expression levels were significantly higher in normal bone marrow mononuclear cells but lower in leukemic cells compared with normal CD34 + cells. After transfection of the TGF-β1 gene to HL-60 cells, cell apoptosis was detected. Moreover, by flow cytometry analysis, cells arrested in G1 phase were 62% for TGF-β1 transfected cells and 44% for controls. Transfection of exogenous TGF-β1 gene inhibited HL60 cells xenograft growth in nude mice, and prolonged survival of tumor-bearing mice compared with the controls. Decreased endogenous TGF-β1 expression in leukemia cells may be involved in leukemia development, Transfection of exogenous TGF-B1 gene to HL60 can inhibit the proliferation of the cells and induce cell apoptosis by down regulating bcl-2, hTERT (human telomerase reverse transcriptase) and c-myc expression.
Transcription factors in pancreatic development. Animal models.
Martin, Merce; Hauer, Viviane; Messmer, Mélanie; Orvain, Christophe; Gradwohl, Gérard
2007-01-01
Through the analysis of genetically modified mice a hierarchy of transcription factors regulating pancreas specification, endocrine destiny as well as endocrine subtype specification and differentiation has been established. In addition to conventional approaches such as transgenic technologies and gene targeting, recombinase fate mapping in mice has been key in establishing the lineage relationship between progenitor cells and their progeny in understanding pancreas formation. Moreover, the design of specific mouse models to conditionally express transcription factors in different populations of progenitor cells has revealed to what extent transcription factors required for islet cell development are also sufficient to induce endocrine differentiation and the importance of the competence of progenitor cells to respond to the genetic program implemented by these factors. Taking advantage of this basic science knowledge acquired in rodents, immature insulin-producing cells have recently been differentiated in vitro from human embryonic stem cells. Taken together these major advances emphasize the need to gain further in-depth knowledge of the molecular and cellular mechanisms controlling beta-cell differentiation in mice to generate functional beta-cells in the future that could be used for cell therapy in diabetes.
Stanton, Brynne C; Giles, Steven S; Staudt, Mark W; Kruzel, Emilia K; Hull, Christina M
2010-02-26
Cell type specification is a fundamental process that all cells must carry out to ensure appropriate behaviors in response to environmental stimuli. In fungi, cell identity is critical for defining "sexes" known as mating types and is controlled by components of mating type (MAT) loci. MAT-encoded genes function to define sexes via two distinct paradigms: 1) by controlling transcription of components common to both sexes, or 2) by expressing specially encoded factors (pheromones and their receptors) that differ between mating types. The human fungal pathogen Cryptococcus neoformans has two mating types (a and alpha) that are specified by an extremely unusual MAT locus. The complex architecture of this locus makes it impossible to predict which paradigm governs mating type. To identify the mechanism by which the C. neoformans sexes are determined, we created strains in which the pheromone and pheromone receptor from one mating type (a) replaced the pheromone and pheromone receptor of the other (alpha). We discovered that these "alpha(a)" cells effectively adopt a new mating type (that of a cells); they sense and respond to alpha factor, they elicit a mating response from alpha cells, and they fuse with alpha cells. In addition, alpha(a) cells lose the alpha cell type-specific response to pheromone and do not form germ tubes, instead remaining spherical like a cells. Finally, we discovered that exogenous expression of the diploid/dikaryon-specific transcription factor Sxi2a could then promote complete sexual development in crosses between alpha and alpha(a) strains. These data reveal that cell identity in C. neoformans is controlled fully by three kinds of MAT-encoded proteins: pheromones, pheromone receptors, and homeodomain proteins. Our findings establish the mechanisms for maintenance of distinct cell types and subsequent developmental behaviors in this unusual human fungal pathogen.
Garcia-Arencibia, Moises; Molina-Holgado, Eduardo; Molina-Holgado, Francisco
2018-05-24
Cell fate events are regulated by different endogenous developmental factors such as the cell micro-environment, external or remote signals and epigenetic factors. Among the many regulatory factors, endocannabinoid-associated signalling pathways are known to conduct several of these events in the developing nervous system and in the adult brain. Interestingly, endocannabinoids exert modulatory actions in both physiological and pathological conditions. Endocannabinoid signalling can promote cell survival by acting on non-transformed brain cells (neurons, astrocytes or oligodendrocytes) and can have either a protumoural or antitumoural effect on transformed cells. Moreover, endocannabinoids are able to attenuate the detrimental effects on neurogenesis and neuroinflammation associated with ageing. Thus, the endocannabinoid system emerges as an important regulator of cell fate, controlling cell survival/cell death decisions depending on the cell type and its environment. © 2018 The British Pharmacological Society.
Wang, Haibo; Han, Xiaokun; Wittchen, Erika S; Hartnett, M Elizabeth
2016-01-01
Inflammation, oxidative stress, and angiogenesis have been proposed to interact in age-related macular degeneration. It has been postulated that external stimuli that cause oxidative stress can increase production of vascular endothelial growth factor (VEGF) in retinal pigment epithelial (RPE) cells. In this study, we tested the hypothesis that the inflammatory cytokine, tumor necrosis factor alpha (TNF-α), contributed to choroidal neovascularization (CNV) by upregulating VEGF in RPE through intracellular reactive oxygen species (ROS)-dependent signaling and sought to understand the mechanisms involved. In a murine laser-induced CNV model, 7 days after laser treatment and intravitreal neutralizing mouse TNF-α antibody or isotype immunoglobulin G (IgG) control, the following measurements were made: 1) TNF-α protein and VEGF protein in RPE/choroids with western blot, 2) CNV volume in RPE/choroidal flatmounts, and 3) semiquantification of oxidized phospholipids stained with E06 antibody within CNV with immunohistochemistry (IHC). In cultured human RPE cells treated with TNF-α or PBS control, 1) ROS generation was measured using the 2',7'-dichlorodihydrofluorescein diacetate (DCFDA) fluorescence assay, and 2) NOX4 protein and VEGF protein or mRNA were measured with western blot or quantitative real-time PCR in cells pretreated with apocynin or nicotinamide adenine dinucleotide phosphate-oxidase (NADPH) inhibitor, VAS 2870, or transfected with p22phox siRNA, and each was compared to its appropriate control. Western blots of phosphorylated p65 (p-p65), total p65 and β-actin, and quantitative real-time PCR of VEGF mRNA were measured in human RPE cells treated with TNF-α and pretreatment with the nuclear factor kappa B inhibitor, Bay 11-7082 or control. Western blots of β-catenin, VEGF, and p22phox and coimmunoprecipitation of β-catenin and T-cell transcriptional factor were performed in human RPE cells treated with TNF-α following pretreatment with β-catenin transcriptional inhibitors, XAV939 or JW67, or transfection with p22phox siRNA and compared to appropriate controls. Compared to the non-lasered control, TNF-α and VEGF protein were increased in the RPE/choroids in a murine laser-induced CNV model (p<0.05). An intravitreal neutralizing antibody to mouse TNF-α reduced CNV volume, and VEGF protein in the RPE/choroids (p<0.01) and oxidized phospholipids within CNV compared to IgG control (p<0.05). In cultured RPE cells and compared to controls, TNF-α induced ROS generation and increased activation of NOX4, an isoform of NADPH oxidase; both were prevented by pretreatment with the apocynin or VAS2870 or knockdown of p22phox, a subunit of NADPH oxidase. TNF-α treatment increased VEGF expression (p<0.001) and the formation of a transcriptional complex of β-catenin and T-cell transcriptional factor; both were prevented by pretreatment with apocynin or knockdown of p22phox. Inhibition of β-catenin by XAV939, but not the nuclear factor kappa B inhibitor, Bay 11-7082, prevented TNF-α-induced VEGF upregulation. Our results support the thinking that TNF-α contributes to CNV by upregulating VEGF production in RPE cells through ROS-dependent activation of β-catenin signaling. These results provide mechanisms of crosstalk between inflammatory mediator, TNF-α, and ROS in RPE cells.
Chang, Zhi-Gang; Wei, Jun-Min; Qin, Chang-Fu; Hao, Kun; Tian, Xiao-Dong; Xie, Kun; Xie, Xue-Hai; Yang, Yin-Mo
2012-05-01
Aberrant expression of epidermal growth factor receptor (EGFR) has been detected in pancreatic cancer; however, the mechanisms of EGFR in inducing pancreatic cancer development have not been adequately elucidated. The objective of this study was to determine the role of EGFR in mediating epithelial-mesenchymal transition (EMT) in pancreatic cancer cells. Pancreatic cancer cell line PANC-1 was transfected with small interfering RNA of EGFR by use of a lentiviral expression vector to establish an EGFR-knockdown cell line (si-PANC-1). PANC-1 cells transfected with lentiviral vector expressing negative control sequence were used as negative control (NC-PANC-1). Scratch assay and transwell study were used to analyze cell migration and invasion. Real-time PCR and Western blotting were used to detect the expression of EMT markers E-cadherin, N-cadherin, vimentin, and fibronectin and transcription factors snail, slug, twist1, and sip1 in PANC-1, NC-PANC-1, and si-PANC-1 cells. Immunofluorescent staining with these antibodies and confocal microscopy were used to observe their cellular location and morphologic changes. After RNA interference of EGFR, the migration and invasion ability of si-PANC-1 cells decreased significantly. The expression of epithelial phenotype marker E-cadherin increased and the expression of mesenchymal phenotype markers N-cadherin, vimentin, and fibronectin decreased, indicating reversion of EMT. We also observed intracellular translocation of E-cadherin. Expression of transcription factors snail and slug in si-PANC-1 cells decreased significantly. Suppression of EGFR expression can significantly inhibit EMT of pancreatic cancer PANC-1 cells. The mechanism may be related with the down-regulation of the expression of transcription factors snail and slug.
Internal and ancestral controls of cell-generation times
NASA Technical Reports Server (NTRS)
Kubitschek, H. E.
1969-01-01
Lateral and longitudinal correlations between related cells reveal associations between the generation times of cells for an intermediate period /three generations in bacteral cultures/. Generation times of progeny are influenced by nongenetic factors transmitted from their ancestors.
Taylor, Nicky J; Hills, Paul N; van Staden, Johannes
2007-12-01
Endogenous embryo factors, which act mainly in the radicle, prevent germination in Tagetes minuta at high temperatures. These factors act to prevent cell elongation, which is critical for radicle protrusion under optimal conditions. Once the radicle has emerged both cell elongation and cell division are required for post-germination growth. Germination can be induced at high temperatures by fusicoccin, which rapidly stimulates cell elongation. In addition, priming seeds at 25 degrees C on polyethylene glycol (PEG) 6000 and mannitol could also induce germination on water at 36 degrees C, indicating that priming prevents radicle protrusion at a point subsequent to the point of control in thermoinhibited achenes. Flow cytometry studies revealed that DNA synthesis occurs during thermoinhibition and the inhibition of DNA synthesis during this process inhibits subsequent germination on water under optimal conditions, suggesting a protective role for DNA synthesis in thermoinhibited achenes of T. minuta.
Microbiota promotes systemic T-cell survival through suppression of an apoptotic factor
Petersen, Charisse; Novis, Camille L.; Kubinak, Jason L.; Bell, Rickesha; Stephens, W. Zac; Lane, Thomas E.; Fujinami, Robert S.; Bosque, Alberto; O’Connell, Ryan M.; Round, June L.
2017-01-01
Symbiotic microbes impact the severity of a variety of diseases through regulation of T-cell development. However, little is known regarding the molecular mechanisms by which this is accomplished. Here we report that a secreted factor, Erdr1, is regulated by the microbiota to control T-cell apoptosis. Erdr1 expression was identified by transcriptome analysis to be elevated in splenic T cells from germfree and antibiotic-treated mice. Suppression of Erdr1 depends on detection of circulating microbial products by Toll-like receptors on T cells, and this regulation is conserved in human T cells. Erdr1 was found to function as an autocrine factor to induce apoptosis through caspase 3. Consistent with elevated levels of Erdr1, germfree mice have increased splenic T-cell apoptosis. RNA sequencing of Erdr1-overexpressing cells identified the up-regulation of genes involved in Fas-mediated cell death, and Erdr1 fails to induce apoptosis in Fas-deficient cells. Importantly, forced changes in Erdr1 expression levels dictate the survival of auto-reactive T cells and the clinical outcome of neuro-inflammatory autoimmune disease. Cellular survival is a fundamental feature regulating appropriate immune responses. We have identified a mechanism whereby the host integrates signals from the microbiota to control T-cell apoptosis, making regulation of Erdr1 a potential therapeutic target for autoimmune disease. PMID:28487480
The importance of detailed epigenomic profiling of different cell types within organs.
Stueve, Theresa Ryan; Marconett, Crystal N; Zhou, Beiyun; Borok, Zea; Laird-Offringa, Ite A
2016-06-01
The human body consists of hundreds of kinds of cells specified from a single genome overlaid with cell type-specific epigenetic information. Comprehensively profiling the body's distinct epigenetic landscapes will allow researchers to verify cell types used in regenerative medicine and to determine the epigenetic effects of disease, environmental exposures and genetic variation. Key marks/factors that should be investigated include regions of nucleosome-free DNA accessible to regulatory factors, histone marks defining active enhancers and promoters, DNA methylation levels, regulatory RNAs, and factors controlling the three-dimensional conformation of the genome. Here we use the lung to illustrate the importance of investigating an organ's purified cell epigenomes, and outline the challenges and promise of realizing a comprehensive catalog of primary cell epigenomes.
Sarcoidosis Th17 Cells are ESAT-6 Antigen Specific but Demonstrate Reduced IFN-γ Expression
Richmond, Bradley W.; Ploetze, Kristen; Isom, Joan; Chambers-Harris, Isfahan; Braun, Nicole A.; Taylor, Thyneice; Abraham, Susamma; Mageto, Yolanda; Culver, Dan A.; Oswald-Richter, Kyra A.; Drake, Wonder P.
2013-01-01
Rationale Sarcoidosis is a granulomatous disease of unknown etiology. Many patients with sarcoidosis demonstrate antigen-specific immunity to mycobacterial virulence factors. Th-17 cells are crucial to the immune response in granulomatous inflammation, and have recently been shown to be present in greater numbers in the peripheral blood and bronchoalveolar lavage (BAL) fluid (BALF) of sarcoidosis patients than healthy controls. It is unclear whether Th-17 cells in sarcoidosis are specific for mycobacterial antigens, or whether they have similar functionality to control Th-17 cells. Methods Flow cytometry was used to determine the numbers of Th-17 cells present in the peripheral blood and BALF of patients with sarcoidosis, the percentage of Th-17 cells that were specific to the mycobacterial virulence factor ESAT-6, and as well as to assess IFN-γ expression in Th-17 cells following polyclonal stimulation. Results Patients with sarcoidosis had greater numbers of Th-17 cells in the peripheral blood and BALF than controls and produced significantly more extracellular IL-17A (p=0.03 and p=0.02, respectively). ESAT-6 specific Th-17 cells were present in both peripheral blood and BALF of sarcoidosis patients (p<0.001 and p=0.03, respectively). After polyclonal stimulation, Th-17 cells from sarcoidosis patients produced less IFN-γ than healthy controls. Conclusions Patients with sarcoidosis have mycobacterial antigen-specific Th-17 cells peripherally and in sites of active sarcoidosis involvement. Despite the Th1 immunophenotype of sarcoidosis immunology, the Th-17 cells have reduced IFN-γ expression, compared to healthy controls. This reduction in immunity may contribute to sarcoidosis pathogenesis. PMID:23073617
Sparse PCA corrects for cell type heterogeneity in epigenome-wide association studies.
Rahmani, Elior; Zaitlen, Noah; Baran, Yael; Eng, Celeste; Hu, Donglei; Galanter, Joshua; Oh, Sam; Burchard, Esteban G; Eskin, Eleazar; Zou, James; Halperin, Eran
2016-05-01
In epigenome-wide association studies (EWAS), different methylation profiles of distinct cell types may lead to false discoveries. We introduce ReFACTor, a method based on principal component analysis (PCA) and designed for the correction of cell type heterogeneity in EWAS. ReFACTor does not require knowledge of cell counts, and it provides improved estimates of cell type composition, resulting in improved power and control for false positives in EWAS. Corresponding software is available at http://www.cs.tau.ac.il/~heran/cozygene/software/refactor.html.
Jacobs, Evan S.; Abdel-Mohsen, Mohamed; Gibb, Stuart L.; Heitman, John W.; Inglis, Heather C.; Martin, Jeffrey N.; Zhang, Jinbing; Kaidarova, Zhanna; Deng, Xutao; Wu, Shiquan; Anastos, Kathryn; Crystal, Howard; Villacres, Maria C.; Young, Mary; Greenblatt, Ruth M.; Landay, Alan L.; Gange, Stephen J.; Deeks, Steven G.; Golub, Elizabeth T.; Pillai, Satish K.
2017-01-01
ABSTRACT A subset of HIV-infected individuals termed elite controllers (ECs) maintain CD4+ T cell counts and control viral replication in the absence of antiretroviral therapy (ART). Systemic cytokine responses may differentiate ECs from subjects with uncontrolled viral replication or from those who require ART to suppress viral replication. We measured 87 cytokines in four groups of women: 73 ECs, 42 with pharmacologically suppressed viremia (ART), 42 with uncontrolled viral replication (noncontrollers [NCs]), and 48 HIV-uninfected (NEG) subjects. Four cytokines were elevated in ECs but not NCs or ART subjects: CCL14, CCL21, CCL27, and XCL1. In addition, median stromal cell-derived factor-1 (SDF-1) levels were 43% higher in ECs than in NCs. The combination of the five cytokines suppressed R5 and X4 virus replication in resting CD4+ T cells, and individually SDF-1β, CCL14, and CCL27 suppressed R5 virus replication, while SDF-1β, CCL21, and CCL14 suppressed X4 virus replication. Functional studies revealed that the combination of the five cytokines upregulated CD69 and CCR5 and downregulated CXCR4 and CCR7 on CD4+ T cells. The CD69 and CXCR4 effects were driven by SDF-1, while CCL21 downregulated CCR7. The combination of the EC-associated cytokines induced expression of the anti-HIV host restriction factors IFITM1 and IFITM2 and suppressed expression of RNase L and SAMHD1. These results identify a set of cytokines that are elevated in ECs and define their effects on cellular activation, HIV coreceptor expression, and innate restriction factor expression. This cytokine pattern may be a signature characteristic of HIV-1 elite control, potentially important for HIV therapeutic and curative strategies. IMPORTANCE Approximately 1% of people infected with HIV control virus replication without taking antiviral medications. These subjects, termed elite controllers (ECs), are known to have stronger immune responses targeting HIV than the typical HIV-infected subject, but the exact mechanisms of how their immune responses control infection are not known. In this study, we identified five soluble immune signaling molecules (cytokines) in the blood that were higher in ECs than in subjects with typical chronic HIV infection. We demonstrated that these cytokines can activate CD4+ T cells, the target cells for HIV infection. Furthermore, these five EC-associated cytokines could change expression levels of intrinsic resistance factors, or molecules inside the target cell that fight HIV infection. This study is significant in that it identified cytokines elevated in subjects with a good immune response against HIV and defined potential mechanisms as to how these cytokines could induce resistance to the virus in target cells. PMID:28053103
Jacobs, Evan S; Keating, Sheila M; Abdel-Mohsen, Mohamed; Gibb, Stuart L; Heitman, John W; Inglis, Heather C; Martin, Jeffrey N; Zhang, Jinbing; Kaidarova, Zhanna; Deng, Xutao; Wu, Shiquan; Anastos, Kathryn; Crystal, Howard; Villacres, Maria C; Young, Mary; Greenblatt, Ruth M; Landay, Alan L; Gange, Stephen J; Deeks, Steven G; Golub, Elizabeth T; Pillai, Satish K; Norris, Philip J
2017-03-15
A subset of HIV-infected individuals termed elite controllers (ECs) maintain CD4 + T cell counts and control viral replication in the absence of antiretroviral therapy (ART). Systemic cytokine responses may differentiate ECs from subjects with uncontrolled viral replication or from those who require ART to suppress viral replication. We measured 87 cytokines in four groups of women: 73 ECs, 42 with pharmacologically suppressed viremia (ART), 42 with uncontrolled viral replication (noncontrollers [NCs]), and 48 HIV-uninfected (NEG) subjects. Four cytokines were elevated in ECs but not NCs or ART subjects: CCL14, CCL21, CCL27, and XCL1. In addition, median stromal cell-derived factor-1 (SDF-1) levels were 43% higher in ECs than in NCs. The combination of the five cytokines suppressed R5 and X4 virus replication in resting CD4 + T cells, and individually SDF-1β, CCL14, and CCL27 suppressed R5 virus replication, while SDF-1β, CCL21, and CCL14 suppressed X4 virus replication. Functional studies revealed that the combination of the five cytokines upregulated CD69 and CCR5 and downregulated CXCR4 and CCR7 on CD4 + T cells. The CD69 and CXCR4 effects were driven by SDF-1, while CCL21 downregulated CCR7. The combination of the EC-associated cytokines induced expression of the anti-HIV host restriction factors IFITM1 and IFITM2 and suppressed expression of RNase L and SAMHD1. These results identify a set of cytokines that are elevated in ECs and define their effects on cellular activation, HIV coreceptor expression, and innate restriction factor expression. This cytokine pattern may be a signature characteristic of HIV-1 elite control, potentially important for HIV therapeutic and curative strategies. IMPORTANCE Approximately 1% of people infected with HIV control virus replication without taking antiviral medications. These subjects, termed elite controllers (ECs), are known to have stronger immune responses targeting HIV than the typical HIV-infected subject, but the exact mechanisms of how their immune responses control infection are not known. In this study, we identified five soluble immune signaling molecules (cytokines) in the blood that were higher in ECs than in subjects with typical chronic HIV infection. We demonstrated that these cytokines can activate CD4 + T cells, the target cells for HIV infection. Furthermore, these five EC-associated cytokines could change expression levels of intrinsic resistance factors, or molecules inside the target cell that fight HIV infection. This study is significant in that it identified cytokines elevated in subjects with a good immune response against HIV and defined potential mechanisms as to how these cytokines could induce resistance to the virus in target cells. Copyright © 2017 American Society for Microbiology.
Maruyama, Takashi; Li, Jun; Vaque, Jose P.; Konkel, Joanne E.; Wang, Weifeng; Zhang, Baojun; Zhang, Pin; Zamarron, Brian; Yu, Dongyang; Wu, Yuntao; Zhuang, Yuan; Gutkind, J. Silvio; Chen, WanJun
2010-01-01
The molecular mechanisms directing Foxp3 gene transcription in CD4+ T cells remain ill defined. We show that deletion of the inhibitory helix-loop-helix (HLH) protein Id3 results in defective Foxp3+ Treg cell generation. We identified two transforming grothw factor-β1 (TGF-β1)-dependent mechanisms that are vital for activation of Foxp3 gene transcription, and are defective in Id3−/− CD4+ T cells. Enhanced binding of the HLH protein E2A to the Foxp3 promoter promoted Foxp3 gene transcription. Id3 was required to relieve inhibition by GATA-3 at the Foxp3 promoter. Further, Id3−/− T cells increased differentiation of Th17 cells in vitro and in a mouse asthma model. A network of factors therefore act in a TGF-β-dependent manner to control Foxp3 expression and inhibit Th17 cell development. PMID:21131965
Regulation of Schwann Cell Differentiation and Proliferation by the Pax-3 Transcription Factor
Moate, Roy M.; Jessen, Kristjan R.; Mirsky, Rhona; Parkinson, David B.
2017-01-01
Pax-3 is a paired domain transcription factor that plays many roles during vertebrate development. In the Schwann cell lineage, Pax-3 is expressed at an early stage in Schwann cells precursors of the embryonic nerve, is maintained in the nonmyelinating cells of the adult nerve, and is upregulated in Schwann cells after peripheral nerve injury. Consistent with this expression pattern, Pax-3 has previously been shown to play a role in repressing the expression of the myelin basic protein gene in Schwann cells. We have studied the role of Pax-3 in Schwann cells and have found that it controls not only the regulation of cell differentiation but also the survival and proliferation of Schwann cells. Pax-3 expression blocks both the induction of Oct-6 and Krox-20 (K20) by cyclic AMP and completely inhibits the ability of K20, the physiological regulator of myelination in the peripheral nervous system, to induce myelin gene expression in Schwann cells. In contrast to other inhibitors of myelination, we find that Pax-3 represses myelin gene expression in a c-Jun-independent manner. In addition to this, we find that Pax-3 expression alone is sufficient to inhibit the induction of apoptosis by TGFβ1 in Schwann cells. Expression of Pax-3 is also sufficient to induce the proliferation of Schwann cells in the absence of added growth factors and to reverse K20-induced exit from the cell cycle. These findings indicate new roles for the Pax-3 transcription factor in controlling the differentiation and proliferation of Schwann cells during development and after peripheral nerve injury. PMID:22532290
The AP-1 transcription factor Fra1 inhibits follicular B cell differentiation into plasma cells
Grötsch, Bettina; Brachs, Sebastian; Lang, Christiane; Luther, Julia; Derer, Anja; Schlötzer-Schrehardt, Ursula; Bozec, Aline; Fillatreau, Simon; Berberich, Ingolf; Hobeika, Elias; Reth, Michael; Wagner, Erwin F.; Schett, Georg
2014-01-01
The cornerstone of humoral immunity is the differentiation of B cells into antibody-secreting plasma cells. This process is tightly controlled by a regulatory gene network centered on the transcriptional repressor B lymphocyte–induced maturation protein 1 (Blimp1). Proliferation of activated B cells is required to foster Blimp1 expression but needs to be terminated to avoid overshooting immune reactions. Activator protein 1 (AP-1) transcription factors become quickly up-regulated upon B cell activation. We demonstrate that Fra1, a Fos member of AP-1, enhances activation-induced cell death upon induction in activated B cells. Moreover, mice with B cell–specific deletion of Fra1 show enhanced plasma cell differentiation and exacerbated antibody responses. In contrast, transgenic overexpression of Fra1 blocks plasma cell differentiation and immunoglobulin production, which cannot be rescued by Bcl2. On the molecular level, Fra1 represses Blimp1 expression and interferes with binding of the activating AP-1 member c-Fos to the Blimp1 promoter. Conversely, overexpression of c-Fos in Fra1 transgenic B cells releases Blimp1 repression. As Fra1 lacks transcriptional transactivation domains, we propose that Fra1 inhibits Blimp1 expression and negatively controls plasma cell differentiation through binding to the Blimp1 promoter. In summary, we demonstrate that Fra1 negatively controls plasma cell differentiation by repressing Blimp1 expression. PMID:25288397
Methods and Measurements in Real-Time Air Traffic Control System Simulation
1983-04-01
Percent of Variance Consumed by Factors 28 7 Correlations Between ABM II Factor Scores and SE14 1 30 Sector-Density Cell -Based Facter Scores 8 SEX I Cell ...runs for each of 31 subjects under each of 6 sector geometry-traffic density combinations ( cells ). Initial analyses, involving correlations between the...two runs in each cell , indicated very low correlations between the replicates. It was decided that before going further it would be best to conduct a
Plasticity of the Muscle Stem Cell Microenvironment
Dinulovic, Ivana; Furrer, Regula; Handschin, Christoph
2018-01-01
Satellite cells (SCs) are adult muscle stem cells capable of repairing damaged and creating new muscle tissue throughout life. Their functionality is tightly controlled by a microenvironment composed of a wide variety of factors, such as numerous secreted molecules and different cell types, including blood vessels, oxygen, hormones, motor neurons, immune cells, cytokines, fibroblasts, growth factors, myofibers, myofiber metabolism, the extracellular matrix and tissue stiffness. This complex niche controls SC biology – quiescence, activation, proliferation, differentiation or renewal and return to quiescence. In this review, we attempt to give a brief overview of the most important players in the niche and their mutual interaction with SCs. We address the importance of the niche to SC behavior under physiological and pathological conditions, and finally survey the significance of an artificial niche both for basic and translational research purposes. PMID:29204832
Zhao, Jian; Yuan, Xuejun; Frödin, Morten; Grummt, Ingrid
2003-02-01
Phosphorylation of transcription factors by mitogen-activated protein kinase (MAPK) cascades links cell signaling with the control of gene expression. Here we show that growth factors induce rRNA synthesis by activating MAPK-dependent signaling cascades that target the RNA polymerase I-specific transcription initiation factor TIF-IA. Activation of TIF-IA and ribosomal gene transcription is sensitive to PD98059, indicating that TIF-IA is targeted by MAPK in vivo. Phosphopeptide mapping and mutational analysis reveals two serine residues (S633 and S649) that are phosphorylated by ERK and RSK kinases. Replacement of S649 by alanine inactivates TIF-IA, inhibits pre-rRNA synthesis, and retards cell growth. The results provide a link between growth factor signaling, ribosome production, and cell growth, and may have a major impact on the mechanism of cell transformation.
Engineering cells with intracellular agent–loaded microparticles to control cell phenotype
Ankrum, James A; Miranda, Oscar R; Ng, Kelvin S; Sarkar, Debanjan; Xu, Chenjie; Karp, Jeffrey M
2014-01-01
Cell therapies enable unprecedented treatment options to replace tissues, destroy tumors and facilitate regeneration. The greatest challenge facing cell therapy is the inability to control the fate and function of cells after transplantation. We have developed an approach to control cell phenotype in vitro and after transplantation by engineering cells with intracellular depots that continuously release phenotype-altering agents for days to weeks. The platform enables control of cells’ secretome, viability, proliferation and differentiation, and the platform can be used to deliver drugs or other factors (e.g., dexamethasone, rhodamine and iron oxide) to the cell’s microenvironment. The preparation, efficient internalization and intracellular stabilization of ~1-μm drug-loaded microparticles are critical for establishing sustained control of cell phenotype. Herein we provide a protocol to generate and characterize micrometer-sized agent-doped poly(lactic-co-glycolic) acid (PLGA) particles by using a single-emulsion evaporation technique (7 h), to uniformly engineer cultured cells (15 h), to confirm particle internalization and to troubleshoot commonly experienced obstacles. PMID:24407352
Bahm, Isabel; Barriga, Elias H; Frolov, Antonina; Theveneau, Eric; Frankel, Paul; Mayor, Roberto
2017-07-01
A fundamental property of neural crest (NC) migration is contact inhibition of locomotion (CIL), a process by which cells change their direction of migration upon cell contact. CIL has been proven to be essential for NC migration in amphibians and zebrafish by controlling cell polarity in a cell contact-dependent manner. Cell contact during CIL requires the participation of the cell adhesion molecule N-cadherin, which starts to be expressed by NC cells as a consequence of the switch between E- and N-cadherins during epithelial-to-mesenchymal transition (EMT). However, the mechanism that controls the upregulation of N-cadherin remains unknown. Here, we show that platelet-derived growth factor receptor alpha (PDGFRα) and its ligand platelet-derived growth factor A (PDGF-A) are co-expressed in migrating cranial NC. Inhibition of PDGF-A/PDGFRα blocks NC migration by inhibiting N-cadherin and, consequently, impairing CIL. Moreover, we identify phosphatidylinositol-3-kinase (PI3K)/AKT as a downstream effector of the PDGFRα cellular response during CIL. Our results lead us to propose PDGF-A/PDGFRα signalling as a tissue-autonomous regulator of CIL by controlling N-cadherin upregulation during EMT. Finally, we show that once NC cells have undergone EMT, the same PDGF-A/PDGFRα works as an NC chemoattractant, guiding their directional migration. © 2017. Published by The Company of Biologists Ltd.
Goto, Masaki; Naito, Masahito; Saruwatari, Koichi; Hisakane, Kakeru; Kojima, Motohiro; Fujii, Satoshi; Kuwata, Takeshi; Ochiai, Atsushi; Nomura, Shogo; Aokage, Keiju; Hishida, Tomoyuki; Yoshida, Junji; Yokoi, Kohei; Tsuboi, Masahiro; Ishii, Genichiro
2017-02-01
Induction therapy induces degenerative changes of various degrees in both cancerous and non-cancerous cells of non-small cell lung cancer (NSCLC). The effect of induction therapy on histological characteristics, in particular the ratio of residual cancer cells to non-cancerous components, is unknown. Seventy-four NSCLC patients treated with induction therapy followed by surgery were enrolled. Residual cancer cells were identified using anti-pan-cytokeratin antibody (AE1/AE3). We analyzed and quantified the following three factors via digital image analysis; (1) the tumor area containing cancer cells and non-cancerous components (TA), (2) the total area of AE1/AE3 positive cancer cells (TACC), (3) the percentage of TACC to TA (%TACC). These factors were also analyzed in a matched control group (surgery alone, n = 80). The median TACC of the induction therapy group was significantly lower than that of the control group (p < 0.01). In addition, the median %TACC of the induction therapy group (5.9 %) was significantly lower than that of the control group (58.6 %) (p < 0.01). TACC had a strong positive correlation with TA in the control group (r = 0.93), but not in the induction therapy group. Conversely, TACC had a strong positive correlation with %TACC in the induction therapy group (r = 0.95), but not in the control group. Unlike the control group, the smaller the total area of residual cancer cells, the higher residual tumor contained non-cancerous components in the induction group, which may be the characteristic histological feature of NSCLC after induction therapy.
Santana, Vinicius Canato; Almeida, Rafael Ribeiro; Ribeiro, Susan Pereira; Ferreira, Luís Carlos de Souza; Kalil, Jorge; Rosa, Daniela Santoro; Cunha-Neto, Edecio
2015-01-01
T-cell based vaccines against human immunodeficiency virus (HIV) generate specific responses that may limit both transmission and disease progression by controlling viral load. Broad, polyfunctional, and cytotoxic CD4+T-cell responses have been associated with control of simian immunodeficiency virus/HIV-1 replication, supporting the inclusion of CD4+ T-cell epitopes in vaccine formulations. Plasmid-encoded granulocyte-macrophage colony-stimulating factor (pGM-CSF) co-administration has been shown to induce potent CD4+ T-cell responses and to promote accelerated priming and increased migration of antigen-specific CD4+ T-cells. However, no study has shown whether co-immunisation with pGM-CSF enhances the number of vaccine-induced polyfunctional CD4+ T-cells. Our group has previously developed a DNA vaccine encoding conserved, multiple human leukocyte antigen (HLA)-DR binding HIV-1 subtype B peptides, which elicited broad, polyfunctional and long-lived CD4+ T-cell responses. Here, we show that pGM-CSF co-immunisation improved both magnitude and quality of vaccine-induced T-cell responses, particularly by increasing proliferating CD4+ T-cells that produce simultaneously interferon-γ, tumour necrosis factor-α and interleukin-2. Thus, we believe that the use of pGM-CSF may be helpful for vaccine strategies focused on the activation of anti-HIV CD4+ T-cell immunity. PMID:26602876
Gruber, H E; Hoelscher, G L; Bethea, S; Hanley, E N
2012-11-01
The relationship between disc cells, nerves and pain production in the intervertebral disc is poorly understood. Neurotrophins, signaling molecules involved in the survival, differentiation and migration of neurons, and neurite outgrowth, are expressed in non-neuronal tissues including the disc. We hypothesized that three-dimensional exposure of human disc cells to the proinflammatory cytokine IL-1ß in vitro would elevate neurotrophin gene expression levels and production of nerve growth factor (NGF). Cells isolated from Thompson grade III and IV discs were cultured for 14 days under control conditions or with addition of 10(2) pM IL-1ß; mRNA was isolated and conditioned media assayed for NGF content. IL-1ß exposure in three-dimensional culture significantly increased expression of neurotrophin 3, brain-derived neurotrophic factor, and neuropilin 2 compared to controls. IL-1ß-exposed cells showed significantly increased NGF production compared to controls. Findings support our hypothesis, expand previous data concerning expression of neurotrophins, and provide the first documented expression of neurotrophin 3 and neuropilin 2. Our results have direct translational relevance, because they address the primary clinical issue of low back pain and open the possibility of novel analgesic therapies using specific small-molecular antagonists to neurotrophins.
NASA Astrophysics Data System (ADS)
Manzano, Ana I.; Herranz, Raúl; van Loon, Jack J. W. A.; Medina, F. Javier
2012-12-01
Seeds of Arabidopsis thaliana were exposed to hypergravity environments (2 g and 6 g) and germinated during centrifugation. Seedlings grew for 2 and 4 days before fixation. In all cases, comparisons were performed against an internal (subjected to rotational vibrations and other factors of the machine) and an external control at 1 g. On seedlings grown in hypergravity the total length and the root length were measured. The cortical root meristematic cells were analyzed to investigate the alterations in cell proliferation, which were quantified by counting the number of cells per millimeter in the specific cell files, and cell growth, which were appraised through the rate of ribosome biogenesis, assessed by morphological and morphometrical parameters of the nucleolus. The expression of cyclin B1, a key regulator of entry in mitosis, was assessed by the use of a CYCB1:GUS genetic construction. The results showed significant differences in some of these parameters when comparing the 1 g internal rotational control with the 1 g external control, indicating that the machine by itself was a source of alterations. When the effect of hypergravity was isolated from other environmental factors, by comparing the experimental conditions with the rotational control, cell proliferation appeared depleted, cell growth was increased and there was an enhanced expression of cyclin B1. The functional meaning of these effects is that cell proliferation and cell growth, which are strictly associated functions under normal 1 g ground conditions, are uncoupled under hypergravity. This uncoupling was also described by us in previous experiments as an effect of microgravity, but in an opposite way. Furthermore, root meristems appear thicker in hypergravity-treated than in control samples, which can be related to changes in the cell wall induced by altered gravity.
Zhang, Haihua; Nan, Weixiao; Wang, Shiyong; Si, Huazhe; Li, Guangyu
2018-07-01
Growth of hairs depends on the regular development of hair follicles which are hypothesized to be regulated by fibroblast growth factor 10 (FGF10) and secreted frizzled-relate protein-1 (sFRP1). In the current study, the effect of FGF10 or sFRP1 on hair follicle cells was assessed and the possible mechanism mediating the interaction between FGF10 and sFRP1 in hair follicle cells was explored. Out root sheath (ORS) and dermal papilla (DP) cells were isolated from mink skin tissues and subjected to administrations of FGF10 (50 ng/ml) or sFRP1 (10 ng/ml). Then proliferation, cell cycle distribution, and migration potentials of both cell types were detected. Moreover, the nuclear translocation of β-catenin was determined. The results showed that the administration of FGF10 increased cell proliferation and migration potential in both cell types, which was associated with the up-regulated nuclear level of β-catenin. To the contrary, the administration of sFRP1 decreased cell proliferation and migration potentials while induced the G1 cell cycle arrest in both cell types by inhibiting nuclear translocation of β-catenin. Compared with the sole administrations, the co-treatment of FGF10 and sFRP1 had a medium effect on cell proliferation, cell cycle distribution, cell migration, and nuclear β-catenin level, representing an antagonistic interaction between the two factors, which was exerted by competitively regulating β-catenin pathway. Conclusively, the cycle of hair follicles was promoted by FGF10 while blocked by sFRP1 and the interplay between the two factors controlled the development of hair follicles by competitively regulating β-catenin signaling. Copyright © 2018. Published by Elsevier Masson SAS.
Epigenetic control of skull morphogenesis by histone deacetylase 8
Haberland, Michael; Mokalled, Mayssa H.; Montgomery, Rusty L.; Olson, Eric N.
2009-01-01
Histone deacetylases (Hdacs) are transcriptional repressors with crucial roles in mammalian development. Here we provide evidence that Hdac8 specifically controls patterning of the skull by repressing a subset of transcription factors in cranial neural crest cells. Global deletion of Hdac8 in mice leads to perinatal lethality due to skull instability, and this is phenocopied by conditional deletion of Hdac8 in cranial neural crest cells. Hdac8 specifically represses the aberrant expression of homeobox transcription factors such as Otx2 and Lhx1. These findings reveal how the identity and patterning of vertebrate-specific portions of the skull are epigenetically controlled by a histone deacetylase. PMID:19605684
Panchal, Trupti; Chen, Xi; Poon, James; Kouptsova, Jane
2017-01-01
Germline stem cells in the Drosophila ovary are maintained by a somatic niche. The niche is structurally and functionally complex and contains four cell types, the escort, cap, and terminal filament cells and the newly identified transition cell. We find that the large Maf transcription factor Traffic jam (Tj) is essential for determining niche cell fates and architecture, enabling each niche in the ovary to support a normal complement of 2–3 germline stem cells. In particular, we focused on the question of how cap cells form. Cap cells express Tj and are considered the key component of a mature germline stem cell niche. We conclude that Tj controls the specification of cap cells, as the complete loss of Tj function caused the development of additional terminal filament cells at the expense of cap cells, and terminal filament cells developed cap cell characteristics when induced to express Tj. Further, we propose that Tj controls the morphogenetic behavior of cap cells as they adopted the shape and spatial organization of terminal filament cells but otherwise appeared to retain their fate when Tj expression was only partially reduced. Our data indicate that Tj contributes to the establishment of germline stem cells by promoting the cap cell fate, and controls the stem cell-carrying capacity of the niche by regulating niche architecture. Analysis of the interactions between Tj and the Notch (N) pathway indicates that Tj and N have distinct functions in the cap cell specification program. We propose that formation of cap cells depends on the combined activities of Tj and the N pathway, with Tj promoting the cap cell fate by blocking the terminal filament cell fate, and N supporting cap cells by preventing the escort cell fate and/or controlling the number of cap cell precursors. PMID:28542174
Mouse glucocorticoid-induced tumor necrosis factor receptor ligand is costimulatory for T cells
Tone, Masahide; Tone, Yukiko; Adams, Elizabeth; Yates, Stephen F.; Frewin, Mark R.; Cobbold, Stephen P.; Waldmann, Herman
2003-01-01
Recently, agonist antibodies to glucocorticoid-induced tumor necrosis factor receptor (GITR) (tumor necrosis factor receptor superfamily 18) have been shown to neutralize the suppressive activity of CD4+CD25+ regulatory T cells. It was anticipated that this would be the role of the physiological ligand. We have identified and expressed the gene for mouse GITR ligand and have confirmed that its interaction with GITR reverses suppression by CD4+CD25+ T cells. It also, however, provides a costimulatory signal for the antigen-driven proliferation of naïve T cells and polarized T helper 1 and T helper 2 clones. RT-PCR and mAb staining revealed mouse GITR ligand expression in dendritic cells, macrophages, and B cells. Expression was controlled by the transcription factor NF-1 and potentially by alternative splicing of mRNA destabilization sequences. PMID:14608036
Molecular mechanisms of induced pluripotency.
Kulcenty, Katarzyna; Wróblewska, Joanna; Mazurek, Sylwia; Liszewska, Ewa; Jaworski, Jacek
2015-01-01
Growing knowledge concerning transcriptional control of cellular pluripotency has led to the discovery that the fate of differentiated cells can be reversed, which has resulted in the generation, by means of genetic manipulation, of induced pluripotent stem cells. Overexpression of just four pluripotency-related transcription factors, namely Oct3/4, Sox2, Klf4, and c-Myc (Yamanaka factors, OKSM), in fibroblasts appears sufficient to produce this new cell type. Currently, we know that these factors induce several changes in genetic program of differentiated cells that can be divided in two general phases: the initial one is stochastic, and the subsequent one is highly hierarchical and organised. This review briefly discusses the molecular events leading to induction of pluripotency in response to forced presence of OKSM factors in somatic cells. We also discuss other reprogramming strategies used thus far as well as the advantages and disadvantages of laboratory approaches towards pluripotency induction in different cell types.
Effects of umbilical cord blood stem cells on healing factors for diabetic foot injuries.
Çil, N; Oğuz, E O; Mete, E; Çetinkaya, A; Mete, G A
2017-01-01
The use of stem or progenitor cells from bone marrow, or peripheral or umbilical cord blood is becoming more common for treatment of diabetic foot problems. These cells promote neovascularization by angiogenic factors and they promote epithelium formation by stimulating cell replication and migration under certain pathological conditions. We investigated the role of CD34 + stem cells from human umbilical cord blood in wound healing using a rat model. Rats were randomly divided into a control group and two groups with diabetes induced by a single dose of 55 mg/kg intraperitoneal streptozocin. Scarred areas 5 mm in diameter were created on the feet of all rats. The diabetic rats constituted the diabetes control group and a diabetes + stem cell group with local injection into the wound site of 0.5 × 106 CD34 + stem cells from human umbilical cord blood. The newly formed skin in the foot wounds following CD34 + stem cell treatment showed significantly improvement by immunohistochemistry and TUNEL staining, and were closer to the wound healing of the control group than the untreated diabetic animals. The increase in FGF expression that accompanied the local injection of CD34 + stem cells indicates that FGF stimulation helped prevent apoptosis. Our findings suggest a promising new treatment approach to diabetic wound healing.
Nicolas, Pierre; Repoila, Francis; Bardowski, Jacek; Aymerich, Stéphane
2017-01-01
In eukaryotes, RNA species originating from pervasive transcription are regulators of various cellular processes, from the expression of individual genes to the control of cellular development and oncogenesis. In prokaryotes, the function of pervasive transcription and its output on cell physiology is still unknown. Most bacteria possess termination factor Rho, which represses pervasive, mostly antisense, transcription. Here, we investigate the biological significance of Rho-controlled transcription in the Gram-positive model bacterium Bacillus subtilis. Rho inactivation strongly affected gene expression in B. subtilis, as assessed by transcriptome and proteome analysis of a rho–null mutant during exponential growth in rich medium. Subsequent physiological analyses demonstrated that a considerable part of Rho-controlled transcription is connected to balanced regulation of three mutually exclusive differentiation programs: cell motility, biofilm formation, and sporulation. In the absence of Rho, several up-regulated sense and antisense transcripts affect key structural and regulatory elements of these differentiation programs, thereby suppressing motility and biofilm formation and stimulating sporulation. We dissected how Rho is involved in the activity of the cell fate decision-making network, centered on the master regulator Spo0A. We also revealed a novel regulatory mechanism of Spo0A activation through Rho-dependent intragenic transcription termination of the protein kinase kinB gene. Altogether, our findings indicate that distinct Rho-controlled transcripts are functional and constitute a previously unknown built-in module for the control of cell differentiation in B. subtilis. In a broader context, our results highlight the recruitment of the termination factor Rho, for which the conserved biological role is probably to repress pervasive transcription, in highly integrated, bacterium-specific, regulatory networks. PMID:28723971
Kinet, Maxime J; Malin, Jennifer A; Abraham, Mary C; Blum, Elyse S; Silverman, Melanie R; Lu, Yun; Shaham, Shai
2016-03-08
Apoptosis is a prominent metazoan cell death form. Yet, mutations in apoptosis regulators cause only minor defects in vertebrate development, suggesting that another developmental cell death mechanism exists. While some non-apoptotic programs have been molecularly characterized, none appear to control developmental cell culling. Linker-cell-type death (LCD) is a morphologically conserved non-apoptotic cell death process operating in Caenorhabditis elegans and vertebrate development, and is therefore a compelling candidate process complementing apoptosis. However, the details of LCD execution are not known. Here we delineate a molecular-genetic pathway governing LCD in C. elegans. Redundant activities of antagonistic Wnt signals, a temporal control pathway, and mitogen-activated protein kinase kinase signaling control heat shock factor 1 (HSF-1), a conserved stress-activated transcription factor. Rather than protecting cells, HSF-1 promotes their demise by activating components of the ubiquitin proteasome system, including the E2 ligase LET-70/UBE2D2 functioning with E3 components CUL-3, RBX-1, BTBD-2, and SIAH-1. Our studies uncover design similarities between LCD and developmental apoptosis, and provide testable predictions for analyzing LCD in vertebrates.
Rozance, Paul J; Anderson, Miranda; Martinez, Marina; Fahy, Anna; Macko, Antoni R; Kailey, Jenai; Seedorf, Gregory J; Abman, Steven H; Hay, William W; Limesand, Sean W
2015-02-01
Hepatocyte growth factor (HGF) and vascular endothelial growth factor A (VEGFA) are paracrine hormones that mediate communication between pancreatic islet endothelial cells (ECs) and β-cells. Our objective was to determine the impact of intrauterine growth restriction (IUGR) on pancreatic vascularity and paracrine signaling between the EC and β-cell. Vessel density was less in IUGR pancreata than in controls. HGF concentrations were also lower in islet EC-conditioned media (ECCM) from IUGR, and islets incubated with control islet ECCM responded by increasing insulin content, which was absent with IUGR ECCM. The effect of ECCM on islet insulin content was blocked with an inhibitory anti-HGF antibody. The HGF receptor was not different between control and IUGR islets, but VEGFA was lower and the high-affinity VEGF receptor was higher in IUGR islets and ECs, respectively. These findings show that paracrine actions from ECs increase islet insulin content, and in IUGR ECs, secretion of HGF was diminished. Given the potential feed-forward regulation of β-cell VEGFA and islet EC HGF, these two growth factors are highly integrated in normal pancreatic islet development, and this regulation is decreased in IUGR fetuses, resulting in lower pancreatic islet insulin concentrations and insulin secretion. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.
Zhan, Ming; Riordon, Daniel R.; Yan, Bin; Tarasova, Yelena S.; Bruweleit, Sarah; Tarasov, Kirill V.; Li, Ronald A.; Wersto, Robert P.; Boheler, Kenneth R.
2012-01-01
Embryonic stem cells (ESCs) are pluripotent and have unlimited self-renewal capacity. Although pluripotency and differentiation have been examined extensively, the mechanisms responsible for self-renewal are poorly understood and are believed to involve an unusual cell cycle, epigenetic regulators and pluripotency-promoting transcription factors. Here we show that B-MYB, a cell cycle regulated phosphoprotein and transcription factor critical to the formation of inner cell mass, is central to the transcriptional and co-regulatory networks that sustain normal cell cycle progression and self-renewal properties of ESCs. Phenotypically, B-MYB is robustly expressed in ESCs and induced pluripotent stem cells (iPSCs), and it is present predominantly in a hypo-phosphorylated state. Knockdown of B-MYB results in functional cell cycle abnormalities that involve S, G2 and M phases, and reduced expression of critical cell cycle regulators like ccnb1 and plk1. By conducting gene expression profiling on control and B-MYB deficient cells, ChIP-chip experiments, and integrative computational analyses, we unraveled a highly complex B-MYB-mediated transcriptional network that guides ESC self-renewal. The network encompasses critical regulators of all cell cycle phases and epigenetic regulators, pluripotency transcription factors, and differentiation determinants. B-MYB along with E2F1 and c-MYC preferentially co-regulate cell cycle target genes. B-MYB also co-targets genes regulated by OCT4, SOX2 and NANOG that are significantly associated with stem cell differentiation, embryonic development, and epigenetic control. Moreover, loss of B-MYB leads to a breakdown of the transcriptional hierarchy present in ESCs. These results coupled with functional studies demonstrate that B-MYB not only controls and accelerates cell cycle progression in ESCs it contributes to fate decisions and maintenance of pluripotent stem cell identity. PMID:22936984
Zhan, Ming; Riordon, Daniel R; Yan, Bin; Tarasova, Yelena S; Bruweleit, Sarah; Tarasov, Kirill V; Li, Ronald A; Wersto, Robert P; Boheler, Kenneth R
2012-01-01
Embryonic stem cells (ESCs) are pluripotent and have unlimited self-renewal capacity. Although pluripotency and differentiation have been examined extensively, the mechanisms responsible for self-renewal are poorly understood and are believed to involve an unusual cell cycle, epigenetic regulators and pluripotency-promoting transcription factors. Here we show that B-MYB, a cell cycle regulated phosphoprotein and transcription factor critical to the formation of inner cell mass, is central to the transcriptional and co-regulatory networks that sustain normal cell cycle progression and self-renewal properties of ESCs. Phenotypically, B-MYB is robustly expressed in ESCs and induced pluripotent stem cells (iPSCs), and it is present predominantly in a hypo-phosphorylated state. Knockdown of B-MYB results in functional cell cycle abnormalities that involve S, G2 and M phases, and reduced expression of critical cell cycle regulators like ccnb1 and plk1. By conducting gene expression profiling on control and B-MYB deficient cells, ChIP-chip experiments, and integrative computational analyses, we unraveled a highly complex B-MYB-mediated transcriptional network that guides ESC self-renewal. The network encompasses critical regulators of all cell cycle phases and epigenetic regulators, pluripotency transcription factors, and differentiation determinants. B-MYB along with E2F1 and c-MYC preferentially co-regulate cell cycle target genes. B-MYB also co-targets genes regulated by OCT4, SOX2 and NANOG that are significantly associated with stem cell differentiation, embryonic development, and epigenetic control. Moreover, loss of B-MYB leads to a breakdown of the transcriptional hierarchy present in ESCs. These results coupled with functional studies demonstrate that B-MYB not only controls and accelerates cell cycle progression in ESCs it contributes to fate decisions and maintenance of pluripotent stem cell identity.
Specifying pancreatic endocrine cell fates.
Collombat, Patrick; Hecksher-Sørensen, Jacob; Serup, Palle; Mansouri, Ahmed
2006-07-01
Cell replacement therapy could represent an attractive alternative to insulin injections for the treatment of diabetes. However, this approach requires a thorough understanding of the molecular switches controlling the specification of the different pancreatic cell-types in vivo. These are derived from an apparently identical pool of cells originating from the early gut endoderm, which are successively specified towards the pancreatic, endocrine, and hormone-expressing cell lineages. Numerous studies have outlined the crucial roles exerted by transcription factors in promoting the cell destiny, defining the cell identity and maintaining a particular cell fate. This review focuses on the mechanisms regulating the morphogenesis of the pancreas with particular emphasis on recent findings concerning the transcription factor hierarchy orchestrating endocrine cell fate allocation.
Control of regulatory T cell lineage commitment and maintenance.
Josefowicz, Steven Z; Rudensky, Alexander
2009-05-01
Foxp3-expressing regulatory T (Treg) cells suppress pathology mediated by immune responses against self and foreign antigens and commensal microorganisms. Sustained expression of the transcription factor Foxp3, a key distinguishing feature of Treg cells, is required for their differentiation and suppressor function. In addition, Foxp3 expression prevents deviation of Treg cells into effector T cell lineages and confers dependence of Treg cell survival and expansion on growth factors, foremost interleukin-2, provided by activated effector T cells. In this review we discuss Treg cell differentiation and maintenance with a particular emphasis on molecular regulation of Foxp3 expression, arguably a key to mechanistic understanding of biology of regulatory T cells.
Plett, P Artur; Abonour, Rafat; Frankovitz, Stacy M; Orschell, Christie M
2004-08-01
Migration, proliferation, and differentiation of bone marrow (BM) hematopoietic stem cells (HSC) are important factors in maintaining hematopoietic homeostasis. Homeostatic control of erythrocytes and lymphocytes is perturbed in humans exposed to microgravity (micro-g), resulting in space flight-induced anemia and immunosuppression. We sought to determine whether any of these anomalies can be explained by micro-g-induced changes in migration, proliferation, and differentiation of human BM CD34+ cells, and whether such changes can begin to explain any of the shifts in hematopoietic homeostasis observed in astronauts. BM CD34+ cells were cultured in modeled micro-g (mmicro-g) using NASA's rotating wall vessels (RWV), or in control cultures at earth gravity for 2 to 18 days. Cells were harvested at different times and CD34+ cells assessed for migration potential, cell-cycle kinetics and regulatory proteins, and maturation status. Culture of BM CD34+ cells in RWV for 2 to 3 days resulted in a significant reduction of stromal cell-derived factor 1 (SDF-1alpha)-directed migration, which correlated with decreased expression of F-actin. Modeled micro-g induced alterations in cell-cycle kinetics that were characterized by prolonged S phase and reduced cyclin A expression. Differentiation of primitive CD34+ cells cultured for 14 to 18 days in RWV favored myeloid cell development at the expense of erythroid development, which was significantly reduced compared to controls. These results illustrate that mmicro-g significantly inhibits the migration potential, cell-cycle progression, and differentiation patterns of primitive BM CD34+ cells, which may contribute to some of the hematologic abnormalities observed in humans during space flight.
Bras, Stéphanie; Martin-Lannerée, Séverine; Gobert, Vanessa; Augé, Benoît; Breig, Osman; Sanial, Matthieu; Yamaguchi, Masamitsu; Haenlin, Marc; Plessis, Anne; Waltzer, Lucas
2012-01-01
Defining the function of the genes that, like RUNX1, are deregulated in blood cell malignancies represents an important challenge. Myeloid leukemia factors (MLFs) constitute a poorly characterized family of conserved proteins whose founding member, MLF1, has been associated with acute myeloid leukemia in humans. To gain insight into the functions of this family, we investigated the role of the Drosophila MLF homolog during blood cell development. Here we report that mlf controls the homeostasis of the Drosophila hematopoietic system. Notably, mlf participates in a positive feedback loop to fine tune the activity of the RUNX transcription factor Lozenge (LZ) during development of the crystal cells, one of the two main blood cell lineages in Drosophila. At the molecular level, our data in cell cultures and in vivo strongly suggest that MLF controls the number of crystal cells by protecting LZ from degradation. Remarkably, it appears that the human MLF1 protein can substitute for MLF in the crystal cell lineage. In addition, MLF stabilizes the human oncogenic fusion protein RUNX1-ETO and is required for RUNX1-ETO–induced blood cell disorders in a Drosophila model of leukemia. Finally, using the human leukemic blood cell line Kasumi-1, we show that MLF1 depletion impairs RUNX1-ETO accumulation and reduces RUNX1-ETO–dependent proliferation. Thus, we propose that the regulation of RUNX protein levels is a conserved feature of MLF family members that could be critical for normal and pathological blood cell development. PMID:22411814
Knothe Tate, Melissa L.; Chang, Hana; Moore, Shannon R.; Knothe, Ulf R.
2011-01-01
Purpose Pluripotent cells residing in the periosteum, a bi-layered membrane enveloping all bones, exhibit a remarkable regenerative capacity to fill in critical sized defects of the ovine femur within two weeks of treatment. Harnessing the regenerative power of the periosteum appears to be limited only by the amount of healthy periosteum available. Here we use a substitute periosteum, a delivery device cum implant, to test the hypothesis that directional delivery of endogenous periosteal factors enhances bone defect healing. Methods Newly adapted surgical protocols were used to create critical sized, middiaphyseal femur defects in four groups of five skeletally mature Swiss alpine sheep. Each group was treated using a periosteum substitute for the controlled addition of periosteal factors including the presence of collagen in the periosteum (Group 1), periosteum derived cells (Group 2), and autogenic periosteal strips (Group 3). Control group animals were treated with an isotropic elastomer membrane alone. We hypothesized that periosteal substitute membranes incorporating the most periosteal factors would show superior defect infilling compared to substitute membranes integrating fewer factors (i.e. Group 3>Group 2>Group 1>Control). Results Based on micro-computed tomography data, bone defects enveloped by substitute periosteum enabling directional delivery of periosteal factors exhibit superior bony bridging compared to those sheathed with isotropic membrane controls (Group 3>Group 2>Group 1, Control). Quantitative histological analysis shows significantly increased de novo tissue generation with delivery of periosteal factors, compared to the substitute periosteum containing a collagen membrane alone (Group 1) as well as compared to the isotropic control membrane. Greatest tissue generation and maximal defect bridging was observed when autologous periosteal transplant strips were included in the periosteum substitute. Conclusion Periosteum-derived cells as well as other factors intrinsic to periosteum play a key role for infilling of critical sized defects. PMID:22174873
Snail1 transcription factor controls telomere transcription and integrity
Mazzolini, Rocco; Gonzàlez, Núria; Garcia-Garijo, Andrea; Millanes-Romero, Alba; Peiró, Sandra; Smith, Susan
2018-01-01
Abstract Besides controlling epithelial-to-mesenchymal transition (EMT) and cell invasion, the Snail1 transcriptional factor also provides cells with cancer stem cell features. Since telomere maintenance is essential for stemness, we have examined the control of telomere integrity by Snail1. Fluorescence in situ hybridization (FISH) analysis indicates that Snail1-depleted mouse mesenchymal stem cells (MSC) have both a dramatic increase of telomere alterations and shorter telomeres. Remarkably, Snail1-deficient MSC present higher levels of both telomerase activity and the long non-coding RNA called telomeric repeat-containing RNA (TERRA), an RNA that controls telomere integrity. Accordingly, Snail1 expression downregulates expression of the telomerase gene (TERT) as well as of TERRA 2q, 11q and 18q. TERRA and TERT are transiently downregulated during TGFβ-induced EMT in NMuMG cells, correlating with Snail1 expression. Global transcriptome analysis indicates that ectopic expression of TERRA affects the transcription of some genes induced during EMT, such as fibronectin, whereas that of TERT does not modify those genes. We propose that Snail1 repression of TERRA is required not only for telomere maintenance but also for the expression of a subset of mesenchymal genes. PMID:29059385
Simonetti, Giorgia; Carette, Amanda; Silva, Kathryn; Wang, Haowei; De Silva, Nilushi S.; Heise, Nicole; Siebel, Christian W.; Shlomchik, Mark J.
2013-01-01
The transcription factor interferon regulatory factor-4 (IRF4) is expressed in B cells at most developmental stages. In antigen-activated B cells, IRF4 controls germinal center formation, class-switch recombination, and the generation of plasma cells. Here we describe a novel function for IRF4 in the homeostasis of mature B cells. Inducible deletion of irf4 specifically in B cells in vivo led to the aberrant accumulation of irf4-deleted follicular B cells in the marginal zone (MZ) area. IRF4-deficient B cells showed elevated protein expression and activation of NOTCH2, a transmembrane receptor and transcriptional regulator known to be required for MZ B cell development. Administration of a NOTCH2-inhibitory antibody abolished nuclear translocation of NOTCH2 in B cells within 12 h and caused a rapid and progressive disintegration of the MZ that was virtually complete 48 h after injection. The disappearance of the MZ was accompanied by a transient increase of MZ-like B cells in the blood rather than increased B cell apoptosis, demonstrating that continued NOTCH2 activation is critical for the retention of B cells in the MZ. Our results suggest that IRF4 controls the positioning of mature B cells in the lymphoid microenvironments by regulating NOTCH2 expression. These findings may have implications for the understanding of B cell malignancies with dysregulated IRF4 and NOTCH2 activity. PMID:24323359
Solana, Jordi; Irimia, Manuel; Ayoub, Salah; Orejuela, Marta Rodriguez; Zywitza, Vera; Jens, Marvin; Tapial, Javier; Ray, Debashish; Morris, Quaid; Hughes, Timothy R; Blencowe, Benjamin J; Rajewsky, Nikolaus
2016-01-01
In contrast to transcriptional regulation, the function of alternative splicing (AS) in stem cells is poorly understood. In mammals, MBNL proteins negatively regulate an exon program specific of embryonic stem cells; however, little is known about the in vivo significance of this regulation. We studied AS in a powerful in vivo model for stem cell biology, the planarian Schmidtea mediterranea. We discover a conserved AS program comprising hundreds of alternative exons, microexons and introns that is differentially regulated in planarian stem cells, and comprehensively identify its regulators. We show that functional antagonism between CELF and MBNL factors directly controls stem cell-specific AS in planarians, placing the origin of this regulatory mechanism at the base of Bilaterians. Knockdown of CELF or MBNL factors lead to abnormal regenerative capacities by affecting self-renewal and differentiation sets of genes, respectively. These results highlight the importance of AS interactions in stem cell regulation across metazoans. DOI: http://dx.doi.org/10.7554/eLife.16797.001 PMID:27502555
Gabryšová, Leona; Alvarez-Martinez, Marisol; Luisier, Raphaëlle; Cox, Luke S; Sodenkamp, Jan; Hosking, Caroline; Pérez-Mazliah, Damián; Whicher, Charlotte; Kannan, Yashaswini; Potempa, Krzysztof; Wu, Xuemei; Bhaw, Leena; Wende, Hagen; Sieweke, Michael H; Elgar, Greg; Wilson, Mark; Briscoe, James; Metzis, Vicki; Langhorne, Jean; Luscombe, Nicholas M; O'Garra, Anne
2018-05-01
The transcription factor c-Maf induces the anti-inflammatory cytokine IL-10 in CD4 + T cells in vitro. However, the global effects of c-Maf on diverse immune responses in vivo are unknown. Here we found that c-Maf regulated IL-10 production in CD4 + T cells in disease models involving the T H 1 subset of helper T cells (malaria), T H 2 cells (allergy) and T H 17 cells (autoimmunity) in vivo. Although mice with c-Maf deficiency targeted to T cells showed greater pathology in T H 1 and T H 2 responses, T H 17 cell-mediated pathology was reduced in this context, with an accompanying decrease in T H 17 cells and increase in Foxp3 + regulatory T cells. Bivariate genomic footprinting elucidated the c-Maf transcription-factor network, including enhanced activity of NFAT; this led to the identification and validation of c-Maf as a negative regulator of IL-2. The decreased expression of the gene encoding the transcription factor RORγt (Rorc) that resulted from c-Maf deficiency was dependent on IL-2, which explained the in vivo observations. Thus, c-Maf is a positive and negative regulator of the expression of cytokine-encoding genes, with context-specific effects that allow each immune response to occur in a controlled yet effective manner.
Choi, Hak-Jong; Geng, Yanbiao; Cho, Hoonsik; Li, Sha; Giri, Pramod Kumar; Felio, Kyrie
2011-01-01
E26 Transformation specific (Ets) family transcription factors control the expression of a large number of genes regulating hematopoietic cell development and function. Two such transcription factors, Ets-1 and myeloid Elf-1–like factor (MEF), have been shown to play critical roles in both natural killer (NK)– and NKT-cell development, but not in the development of conventional T cells. In this study, we address the role of E74-like factor 1 (Elf-1), another Ets family transcription factor that is closely related to MEF but divergent from Ets-1, in NK- and NKT-cell development using Elf-1–deficient (Elf-1−/−) mice. Whereas the proportion of NK cells in Elf-1−/− mice was normal, the proportion of NKT cells was significantly reduced in the thymus and periphery of Elf-1−/− mice compared with wild-type (WT) mice. Although Ets-1–deficient mice lack NKT cells altogether, Elf-1−/− mice exhibited only a partial block in NKT-cell development caused by a cell-intrinsic defect in the selection, survival, and maturation of NKT cells. In addition, residual NKT cells found in Elf-1−/− mice produced less cytokine upon antigen stimulation compared with WT NKT cells. Our data demonstrate that Elf-1 plays an important and nonredundant role in the development and function of NKT cells, but is not involved in NK-cell development. PMID:21148815
Role of asymmetric cell division in lifespan control in Saccharomyces cerevisiae
Higuchi-Sanabria, Ryo; Pernice, Wolfgang M A; Vevea, Jason D; Alessi Wolken, Dana M; Boldogh, Istvan R; Pon, Liza A
2014-01-01
Aging determinants are asymmetrically distributed during cell division in S. cerevisiae, which leads to production of an immaculate, age-free daughter cell. During this process, damaged components are sequestered and retained in the mother cell, and higher functioning organelles and rejuvenating factors are transported to and/or enriched in the bud. Here, we will describe the key quality control mechanisms in budding yeast that contribute to asymmetric cell division of aging determinants including mitochondria, endoplasmic reticulum (ER), vacuoles, extrachromosomal rDNA circles (ERCs), and protein aggregates. PMID:25263578
Stem cell secretome-rich nanoclay hydrogel: a dual action therapy for cardiovascular regeneration
NASA Astrophysics Data System (ADS)
Waters, Renae; Pacelli, Settimio; Maloney, Ryan; Medhi, Indrani; Ahmed, Rafeeq P. H.; Paul, Arghya
2016-03-01
A nanocomposite hydrogel with photocrosslinkable micro-porous networks and a nanoclay component was successfully prepared to control the release of growth factor-rich stem cell secretome. The proven pro-angiogenic and cardioprotective potential of this new bioactive system provides a valuable therapeutic platform for cardiac tissue repair and regeneration.A nanocomposite hydrogel with photocrosslinkable micro-porous networks and a nanoclay component was successfully prepared to control the release of growth factor-rich stem cell secretome. The proven pro-angiogenic and cardioprotective potential of this new bioactive system provides a valuable therapeutic platform for cardiac tissue repair and regeneration. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07806g
Key factors limiting the open circuit voltage of n(+)pp(+) indium phosphide solar cells
NASA Technical Reports Server (NTRS)
Goradia, Chandra; Thesling, William; Weinberg, Irving
1991-01-01
Solar cells made from gallium arsenide (GaAs), with a room temperature bandgap of E(sub g) = 1.43 eV have exhibited the best measured open circuit voltage (V sub OC) of 1.05 V at 1 AMO, 25 C. The material InP is in many ways similar to GaAs. A simple calculation comparing InP to GaAs then shows that solar cells made from InP, with E(sub g) = 1.35 at 300 K, should exhibit the best measured (V sub OC) of approximately 950 mV at 1 AMO, 300 K. However, to date, the best measured V(sub OC) for InP solar cells made by any fabrication method is 899 mV at AM1.5, 25 C which would translate to 912 mV at 1 AMO, 25 C. The V(sub OC) of an n(+)pp(+) InP solar cell is governed by several factors. Of these, some factors, such as the thickness and doping of the emitter and base regions, are easily controlled and can be adjusted to desired values dictated by a good performance optimizing model. Such factors were not considered. There are other factors which also govern V(sub OC), and their values are not so easily controlled. The primary ones among these are (1) the indirect or Hall-Shockley-Read lifetimes in the various regions of the cell, (2) the low-doping intrinsic carrier concentration n(sub i) of the InP material, (3) the heavy doping factors in the emitter and BSF regions, and (4) the front surface recombination velocity S(sub F). The influence of these latter factors on the V(sub OC) of the n(+)pp(+) InP solar cell and the results were used to produce a near-optimum design of the n(+)pp(+) InP solar cell.
Neurotrophin regulation of sodium and calcium channels in human neuroblastoma cells.
Urbano, F J; Buño, W
2000-01-01
Neurotrophins, acting through tyrosine kinase family genes, are essential for neuronal differentiation. The expression of tyrosine kinase family genes is prognostic in neuroblastoma, and neurotrophins reduce proliferation and induce differentiation, indicating that neuroblastomas are regulated by neurotrophins. We tested the effects of nerve growth factor and brain-derived neurotrophic factor on Na(+) and Ca(2+) currents, using the whole-cell patch-clamp technique, in human neuroblastoma NB69 cells. Control cells exhibited a slow tetrodotoxin-resistant (IC(50)=98 nM) Na(+) current and a high-voltage-activated Ca(2+) current. Exposure to nerve growth factor (50 ng/ml) and/or brain-derived neurotrophic factor (5 ng/ml) produced the expression of a fast tetrodotoxin-sensitive (IC(50)=10 nM) Na(+) current after day 3, and suppressed the slow tetrodotoxin-resistant variety. The same type of high-voltage-activated Ca(2+) current was expressed in control and treated cells. The treatment increased the surface density of both Na(+) and Ca(2+) currents with time after plating, from 17 pA/pF at days 3-5 and 1-5 to 34 and 30 pA/pF after days 6-10, respectively. Therefore, both nerve growth factor and brain-derived neurotrophic factor, acting through different receptors of the tyrosine kinase family and also possibly the tumor necrosis factor receptor-II, were able to regulate differentiation and the expression of Na(+) and Ca(2+) channels, partially reproducing the modifications induced by diffusible astroglial factors. We show that neurotrophins induced differentiation to a neuronal phenotype and modified the expression of Na(+) and Ca(2+) currents, partially reproducing the effects of diffusible astroglial factors.
Ghule, Prachi N; Seward, David J; Fritz, Andrew J; Boyd, Joseph R; van Wijnen, Andre J; Lian, Jane B; Stein, Janet L; Stein, Gary S
2018-05-10
Fidelity of histone gene regulation, and ultimately of histone protein biosynthesis, is obligatory for packaging of newly replicated DNA into chromatin. Control of histone gene expression within the 3-dimensional context of nuclear organization is reflected by two well documented observations. DNA replication-dependent histone mRNAs are synthesized at specialized subnuclear domains designated histone locus bodies (HLBs), in response to activation of the growth factor dependent Cyclin E/CDK2/HINFP/NPAT pathway at the G1/S transition in mammalian cells. Complete loss of the histone gene regulatory factors HINFP or NPAT disrupts HLB integrity that is necessary for coordinate control of DNA replication and histone gene transcription. Here we review the molecular histone-related requirements for G1/S-phase progression during the cell cycle. Recently developed experimental strategies, now enable us to explore mechanisms involved in dynamic control of histone gene expression in the context of the temporal (cell cycle) and spatial (HLBs) remodeling of the histone gene loci. © 2018 Wiley Periodicals, Inc.
Development of T follicular helper cells and their role in disease and immune system.
Eivazi, Sadegh; Bagheri, Salman; Hashemzadeh, Mohammad Sadegh; Ghalavand, Majdedin; Qamsari, Elmira Safaie; Dorostkar, Ruhollah; Yasemi, Maryam
2016-12-01
The T follicular helper cells (TFH) are a subset of CD4+ T cells specialized to regulate antibody responses. The production of these cells is associated with the dendritic cells (DCs) and B cells. TFH cells help B cells form germinal centers (GC) differentiate into memory and plasma cells (antibody-secreting cells) as humoral responses. In addition, there is strong evidence that TFH cells play a pivotal role in the development of long-lived humoral immunity. Molecular factors such as transcription factors, surface receptors, cytokine and micro RNAs are involved in the formation of TFH cells. Such TFH cells are diagnosed by transcription factor (BCL-6), surface marker expression (including CXCR5, PD-1, ICOS and CD40L) and a unique cytokine production pattern (such as IL-21 and IL-6). Memory TFH cells, accompanied by memory B cells, are known to be formed during antibody responses. It is now clear that the precise control of TFH cells is critically important for both inducing the optimal affinity maturation of antibody responses and preventing self-reactivity. Exclusive controls of TFH cell function and production are essential for human health. However, it is important to note that excessive activities may lead to autoimmune diseases, while reduced activity often results in immunodeficiency. It has also been shown that TFH cells are associated with cancers such as angioimmunoblastic T-cell lymphoma (AITL), follicular T-cell lymphoma (FTCL) and nonspecific Peripheral T-cell lymphomas (PTCLs). The biology of TFH cells, including their differentiation and transcriptional regulation will be described in the present review. Some of The developments of these cells in immunodeficiency diseases, autoimmunity and cancer will also be taken into account. Copyright © 2016. Published by Elsevier Masson SAS.
Geer, David J.; Swartz, Daniel D.; Andreadis, Stelios T.
2005-01-01
Exogenous keratinocyte growth factor (KGF) significantly enhances wound healing, but its use is hampered by a short biological half-life and lack of tissue selectivity. We used a biomimetic approach to achieve cell-controlled delivery of KGF by covalently attaching a fluorescent matrix-binding peptide that contained two domains: one recognized by factor XIII and the other by plasmin. Modified KGF was incorporated into the fibrin matrix at high concentration in a factor XIII-dependent manner. Cell-mediated activation of plasminogen to plasmin degraded the fibrin matrix and cleaved the peptides, releasing active KGF to the local microenvironment and enhancing epithelial cell proliferation and migration. To demonstrate in vivo effectiveness, we used a hybrid model of wound healing that involved transplanting human bioengineered skin onto athymic mice. At 6 weeks after grafting, the transplanted tissues underwent full thickness wounding and treatment with fibrin gels containing bound KGF. In contrast to topical KGF, fibrin-bound KGF persisted in the wounds for several days and was released gradually, resulting in significantly enhanced wound closure. A fibrinolytic inhibitor prevented this healing, indicating the requirement for cell-mediated fibrin degradation to release KGF. In conclusion, this biomimetic approach of localized, cell-controlled delivery of growth factors may accelerate healing of large full-thickness wounds and chronic wounds that are notoriously difficult to heal. PMID:16314471
Wang, Limin; Detamore, Michael S
2009-01-01
Temporomandibular joint (TMJ) condylar cartilage is a distinct cartilage that has both fibrocartilaginous and hyaline-like character, with a thin proliferative zone that separates the fibrocartilaginous fibrous zone at the surface from the hyaline-like mature and hypertrophic zones below. In this study, we compared the effects of insulin-like growth factor-I (IGF-I), basic fibroblast growth factor (bFGF), transforming growth factor beta1 (TGF-beta1), and glucosamine sulphate on porcine TMJ condylar cartilage and ankle cartilage cells in monolayer culture. In general, TMJ condylar cartilage cells proliferated faster than ankle cartilage cells, while ankle cells produced significantly greater amounts of glycosaminoglycans (GAGs) and collagen than TMJ condylar cartilage cells. IGF-I and bFGF were potent stimulators of TMJ cell proliferation, while no signals statistically outperformed controls for ankle cell proliferation. IGF-I was the most effective signal for GAG production with ankle cells, and the most potent upregulator of collagen synthesis for both cell types. Glucosamine sulphate promoted cell proliferation and biosynthesis at specific concentrations and outperformed growth factors in certain instances. In conclusion, hyaline cartilage cells had lower cell numbers and superior biosynthesis compared to TMJ condylar cartilage cells, and we have found IGF-I at 100 ng/mL and glucosamine sulphate at 100 microg/mL to be the most effective signals for these cells under the prescribed conditions.
Reduced growth factor requirement of keloid-derived fibroblasts may account for tumor growth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, S.B.; Trupin, K.M.; Rodriguez-Eaton, S.
Keloids are benign dermal tumors that form during an abnormal wound-healing process is genetically susceptible individuals. Although growth of normal and keloid cells did not differ in medium containing 10% (vol/vol) fetal bovine serum, keloid culture grew to significantly higher densities than normal cells in medium containing 5% (vol/vol) fetal bovine serum, keloid cultures grew to significantly higher densities than normal cells in medium containing 5% (vol/vol) plasma or 1% fetal bovine serum. Conditioned medium from keloid cultures did not stimulate growth of normal cells in plasma nor did it contain detectable platelet-derived growth factor or epidermal growth factor. Keloidmore » fibroblasts responded differently than normal adult fibroblasts to transforming growth factor ..beta... Whereas transforming growth factor ..beta.. reduced growth stimulation by epidermal growth factor in cells from normal adult skin or scars, it enhanced the activity of epidermal growth factor in cells from normal adult skin or scars, it enhanced the activity of epidermal growth factor in cells from keloids. Normal and keloid fibroblasts also responded differently to hydrocortisone: growth was stimulated in normal adult cells and unaffected or inhibited in keloid cells. Fetal fibroblasts resembled keloid cells in their ability to grow in plasma and in their response to hydrocortisone. The ability of keloid fibroblasts to grow to higher cell densities in low-serum medium than cells from normal adult skin or from normal early or mature scars suggests that a reduced dependence on serum growth factors may account for their prolonged growth in vivo. Similarities between keloid and fetal cells suggest that keloids may result from the untimely expression of growth-control mechanism that is developmentally regulated.« less
Transcriptional control of stem cell fate by E2Fs and pocket proteins
Julian, Lisa M.; Blais, Alexandre
2015-01-01
E2F transcription factors and their regulatory partners, the pocket proteins (PPs), have emerged as essential regulators of stem cell fate control in a number of lineages. In mammals, this role extends from both pluripotent stem cells to those encompassing all embryonic germ layers, as well as extra-embryonic lineages. E2F/PP-mediated regulation of stem cell decisions is highly evolutionarily conserved, and is likely a pivotal biological mechanism underlying stem cell homeostasis. This has immense implications for organismal development, tissue maintenance, and regeneration. In this article, we discuss the roles of E2F factors and PPs in stem cell populations, focusing on mammalian systems. We discuss emerging findings that position the E2F and PP families as widespread and dynamic epigenetic regulators of cell fate decisions. Additionally, we focus on the ever expanding landscape of E2F/PP target genes, and explore the possibility that E2Fs are not simply regulators of general ‘multi-purpose’ cell fate genes but can execute tissue- and cell type-specific gene regulatory programs. PMID:25972892
Pan, Yan; Gao, Song; Hua, Yong-Qiang; Liu, Lu-Ming
2015-01-01
To establish a pancreatic cancer stem cell model using human pancreatic cancer cells in nude mice to provide a platform for pancreatic cancer stem cell research. To establish pancreatic cancer xenografts using human pancreatic cancer cell line SW1990, nude mice were randomly divided into control and gemcitabine groups. When the tumor grew to a volume of 125 mm3, they treated with gemcitabine at a dose of 50 mg/kg by intraperitoneal injection of 0.2 ml in the gemcitabine group, while the mice in control group were treated with the same volume of normal saline. Gemcitabine was given 2 times a week for 3 times. When the model was established, the proliferation of pancreatic cancer stem cells was observed by clone formation assay, and the protein and/or mRNA expression of pancreatic stem cell surface markers including CD24, CD44, CD133, ALDH, transcription factors containing Oct-4, Sox-2, Nanog and Gli, the key nuclear transcription factor in Sonic Hedgehog signaling pathway was detected by Western blot and/or RT-PCR to verify the reliability of this model. This model is feasible and safe. During the establishment, no mice died and the weight of nude mice maintained above 16.5 g. The clone forming ability in gemcitabine group was stronger than that of the control group (p<0.01). In gemcitabine group, the protein expression of pancreatic cancer stem cell surface markers including CD44, and ALDH was up-regulated, the protein and mRNA expression of nuclear transcription factor including Oct-4, Sox-2 and Nanog was also significantly increased (P<0.01). In addition, the protein expression of key nuclear transcription factor in Sonic Hedgehog signaling pathway, Gli-1, was significantly enhanced (p<0.01). The pancreatic cancer stem cell model was successfully established using human pancreatic cancer cell line SW1990 in nude mice. Gemcitabine could enrich pancreatic cancer stem cells, simultaneously accompanied by the activation of Sonic Hedgehog signaling pathway.
Li, Fuxin; Cao, Jisen; Zhao, Zhicheng; Li, Chuan; Qi, Feng; Liu, Tong
2017-04-01
Mesenchymal stem cells are easy to obtain and expand, with characteristics of low immunogenicity and strong tissue repair capacity. In this study, our aim was to investigate the role of mesenchymal stem cells in chronic immune rejection of heterotopic small intestine transplant in rats. After successfully constructing a rat chronic immune rejection model of heterotopic small intestine transplant, we infused mesenchymal stem cells into the animal recipients. We observed mesenchymal stem cell location in the recipients, recipient survival, pathology changes, and the expression of CD68, transforming growth factor β1, and platelet-derived growth factor C in the donor intestine. Mesenchymal stem cells inhibited the lymphocyte proliferation caused by concanavalin A in vitro. After stem cells were infused into recipients, they were mainly located in the donor intestine, as well as in the spleen and thymus. Recovery after transplant and pathology changes of the donor intestine in rats with stem cell infusion were better than in the control group; however, we observed no differences in survival time, accompanied by downregulated expression of CD68, transforming growth factor β1, and platelet-derived growth factor C. Mesenchymal stem cells, to a certain extent, could inhibit the process of chronic rejection. The mechanisms may include the inhibited function of these cells on lymphocyte proliferation, reduced infiltration of macrophages, and reduced expression of transforming growth factor β1 and platelet-derived growth factor C.
Yang, Chunfa; Ma, Ruishuang; Jiang, Tao; Cao, Muhua; Zhao, Liangliang; Bi, Yayan; Kou, Junjie; Shi, Jialan; Zou, Xiaoming
2016-06-01
Hypercoagulability in gastric cancer is a common complication and a major contributor to poor prognosis. This study aimed to determine procoagulant activity of blood cells and microparticles (MPs) in gastric cancer patients. Phosphatidylserine-positive blood cells and MPs, and their procoagulant properties in particular, were assessed in 48 gastric cancer patients and 35 healthy controls. Phosphatidylserine-positive platelets, leukocytes, and MPs in patients with tumor-node-metastasis stage III/IV gastric cancer were significantly higher than those in stage I/II patients or healthy controls. Moreover, procoagulant activity of platelets, leukocytes, and MPs in stage III/IV patients was significantly increased compared to the controls, as indicated by shorter clotting time, higher intrinsic and extrinsic factor tenase, and prothrombinase complex activity. Interestingly, lactadherin, which competes with factors V and VIII to bind phosphatidylserine, dramatically prolonged clotting time of the cells and MPs by inhibiting factor tenase and prothrombinase complex activity. Although anti-tissue factor antibody significantly attenuated extrinsic tenase complex activity of leukocytes and MPs, it only slightly prolonged clotting times. Meanwhile, treatment with radical resection reduced phosphatidylserine-positive platelets, leukocytes, and MPs, and prolonged the clotting times of the remaining cells and MPs. Our results suggest that phosphatidylserine-positive platelets, leukocytes, and MPs contribute to hypercoagulability and represent a potential therapeutic target to prevent coagulation in patients with stage III/IV gastric cancer.
Khani, Mohammad-Mehdi; Tafazzoli-Shadpour, Mohammad; Rostami, Mostafa; Peirovi, Habibollah; Janmaleki, Mohsen
2014-07-01
Human mesenchymal stem cells (hMSCs) are multipotent cells appropriate for a variety of tissue engineering and cell therapy applications. Mechanical properties of hMSCs during differentiation are associated with their particular metabolic activity and regulate cell function due to alternations in cytoskeleton and structural elements. The objective of this study is to evaluate elastic and viscoelastic properties of hMSCs during long term cultivation in control and transforming growth factor-β1 treatment groups using micropipette aspiration technique. The mean Young's modulus (E) of the control samples remained nearly unchanged during 6 days of cultivation, but that of the test samples showed an initial reduction compared to its relevant control sample after 2 days of treatment by biological growth factor, followed by a significant rise after 4 and 6 days. The viscoelastic creep tests showed that both instantaneous and equilibrium moduli significantly increased with the treatment time and reached to maximum values of 622.9 ± 114.2 and 144.3 ± 11.6 Pa at the sixth day, respectively, while increase in apparent viscosity was not statistically significant. Such change of mechanical properties of hMSCs during specific lineage commitment contributes to regenerative medicine as well as stem-cell-based therapy in which biophysical signals regulate stem cell fate.
Miyamoto, Tadashi; Furusawa, Chikara; Kaneko, Kunihiko
2015-01-01
Embryonic stem cells exhibit pluripotency: they can differentiate into all types of somatic cells. Pluripotent genes such as Oct4 and Nanog are activated in the pluripotent state, and their expression decreases during cell differentiation. Inversely, expression of differentiation genes such as Gata6 and Gata4 is promoted during differentiation. The gene regulatory network controlling the expression of these genes has been described, and slower-scale epigenetic modifications have been uncovered. Although the differentiation of pluripotent stem cells is normally irreversible, reprogramming of cells can be experimentally manipulated to regain pluripotency via overexpression of certain genes. Despite these experimental advances, the dynamics and mechanisms of differentiation and reprogramming are not yet fully understood. Based on recent experimental findings, we constructed a simple gene regulatory network including pluripotent and differentiation genes, and we demonstrated the existence of pluripotent and differentiated states from the resultant dynamical-systems model. Two differentiation mechanisms, interaction-induced switching from an expression oscillatory state and noise-assisted transition between bistable stationary states, were tested in the model. The former was found to be relevant to the differentiation process. We also introduced variables representing epigenetic modifications, which controlled the threshold for gene expression. By assuming positive feedback between expression levels and the epigenetic variables, we observed differentiation in expression dynamics. Additionally, with numerical reprogramming experiments for differentiated cells, we showed that pluripotency was recovered in cells by imposing overexpression of two pluripotent genes and external factors to control expression of differentiation genes. Interestingly, these factors were consistent with the four Yamanaka factors, Oct4, Sox2, Klf4, and Myc, which were necessary for the establishment of induced pluripotent stem cells. These results, based on a gene regulatory network and expression dynamics, contribute to our wider understanding of pluripotency, differentiation, and reprogramming of cells, and they provide a fresh viewpoint on robustness and control during development. PMID:26308610
Anti-apoptotic BCL-2 family proteins in acute neural injury
Anilkumar, Ujval; Prehn, Jochen H. M.
2014-01-01
Cells under stress activate cell survival and cell death signaling pathways. Cell death signaling frequently converges on mitochondria, a process that is controlled by the activities of pro- and anti-apoptotic B-cell lymphoma 2 (BCL-2) proteins. In this review, we summarize current knowledge on the control of neuronal survival, development and injury by anti-apoptotic BCL-2 family proteins. We discuss overlapping and differential effects of the individual family members BCL-2, BCL-extra long (BCL-XL), myeloid cell leukemia 1 (MCL-1), and BCL2-like 2 (BCL-W) in the control of survival during development and pathophysiological processes such as trophic factor withdrawal, ischemic injury, excitotoxicity, oxidative stress and energy stress. Finally we discuss recent evidence that several anti-apoptotic BCL-2 proteins influence mitochondrial bioenergetics and control neuronal Ca2+ homeostasis independent of their classical role in cell death signaling. PMID:25324720
Anti-apoptotic BCL-2 family proteins in acute neural injury.
Anilkumar, Ujval; Prehn, Jochen H M
2014-01-01
Cells under stress activate cell survival and cell death signaling pathways. Cell death signaling frequently converges on mitochondria, a process that is controlled by the activities of pro- and anti-apoptotic B-cell lymphoma 2 (BCL-2) proteins. In this review, we summarize current knowledge on the control of neuronal survival, development and injury by anti-apoptotic BCL-2 family proteins. We discuss overlapping and differential effects of the individual family members BCL-2, BCL-extra long (BCL-XL), myeloid cell leukemia 1 (MCL-1), and BCL2-like 2 (BCL-W) in the control of survival during development and pathophysiological processes such as trophic factor withdrawal, ischemic injury, excitotoxicity, oxidative stress and energy stress. Finally we discuss recent evidence that several anti-apoptotic BCL-2 proteins influence mitochondrial bioenergetics and control neuronal Ca(2+) homeostasis independent of their classical role in cell death signaling.
Bade, Geetanjali; Khan, Meraj Alam; Srivastava, Akhilesh Kumar; Khare, Parul; Solaiappan, Krishna Kumar; Guleria, Randeep; Palaniyar, Nades; Talwar, Anjana
2014-01-01
Chronic obstructive pulmonary disease (COPD) is a major global health problem. It results from chronic inflammation and causes irreversible airway damage. Levels of different serum cytokines could be surrogate biomarkers for inflammation and lung function in COPD. We aimed to determine the serum levels of different biomarkers in COPD patients, the association between cytokine levels and various prognostic parameters, and the key pathways/networks involved in stable COPD. In this study, serum levels of 48 cytokines were examined by multiplex assays in 30 subjects (control, n=9; COPD, n=21). Relationships between serum biomarkers and forced expiratory volume in 1 second, peak oxygen uptake, body mass index, dyspnea score, and smoking were assessed. Enrichment pathways and network analyses were implemented, using a list of cytokines showing differential expression between healthy controls and patients with COPD by Cytoscape and GeneGo Metacore™ software (Thomson-Reuters Corporation, New York, NY, USA). Concentrations of cutaneous T-cell attracting chemokine, eotaxin, hepatocyte growth factor, interleukin 6 (IL-6), IL-16, and stem cell factor are significantly higher in COPD patients compared with in control patients. Notably, this study identifies stem cell factor as a biomarker for COPD. Multiple regression analysis predicts that cutaneous T-cell-attracting chemokine, eotaxin, IL-6, and stem cell factor are inversely associated with forced expiratory volume in 1 second and peak oxygen uptake change, whereas smoking is related to eotaxin and hepatocyte growth factor changes. Enrichment pathways and network analyses reveal the potential involvement of specific inflammatory and immune process pathways in COPD. Identified network interaction and regulation of different cytokines would pave the way for deeper insight into mechanisms of the disease process.
Jensen, P; Ducray, A D; Widmer, H R; Meyer, M
2015-12-03
Trefoil factor 1 (TFF1) belongs to a family of secreted peptides that are mainly expressed in the gastrointestinal tract. Notably, TFF1 has been suggested to operate as a neuropeptide, however, its specific cellular expression, regulation and function remain largely unknown. We have previously shown that TFF1 is expressed in developing and adult rat ventral mesencephalic tyrosine hydroxylase-immunoreactive (TH-ir) dopaminergic neurons. Here, we investigated the expression of TFF1 in rat ventral mesencephalic dopaminergic neurons (embryonic day 14) grown in culture for 5, 7 or 10 days in the absence (controls) or presence of either glial cell line-derived neurotrophic factor (GDNF), Forskolin or the combination. No TFF1-ir cells were identified at day 5 and only a few at day 7, whereas TH was markedly expressed at both time points. At day 10, several TFF1-ir cells were detected, and their numbers were significantly increased after the addition of GDNF (2.2-fold) or Forskolin (4.1-fold) compared to controls. Furthermore, the combination of GDNF and Forskolin had an additive effect and increased the number of TFF1-ir cells by 5.6-fold compared to controls. TFF1 expression was restricted to neuronal cells, and the percentage of TH/TFF1 co-expressing cells was increased to the same extent in GDNF and Forskolin-treated cultures (4-fold) as compared to controls. Interestingly, the combination of GDNF and Forskolin resulted in a significantly increased co-expression (8-fold) of TH/TFF1, which could indicate that GDNF and Forskolin targeted different subpopulations of TH/TFF1 neurons. Short-term treatment with Forskolin resulted in an increased number of TFF1-ir cells, and this effect was significantly reduced by the MEK1 inhibitor PD98059 or the protein kinase A (PKA) inhibitor H89, suggesting that Forskolin induced TFF1 expression through diverse signaling pathways. In conclusion, distinct populations of cultured dopaminergic neurons express TFF1, and their numbers can be increased by factors known to influence survival and differentiation of dopaminergic cells. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Characterisation of the immune response to type I collagen in scleroderma
Warrington, Kenneth J; Nair, Usha; Carbone, Laura D; Kang, Andrew H; Postlethwaite, Arnold E
2006-01-01
This study was conducted to examine the frequency, phenotype, and functional profile of T lymphocytes that proliferate in response to type I collagen (CI) in patients with scleroderma (SSc). Peripheral blood mononuclear cells (PBMCs) from SSc patients, healthy controls, and rheumatoid arthritis disease controls were labeled with carboxy-fluorescein diacetate, succinimidyl ester (CFSE), cultured with or without antigen (bovine CI) for 14 days, and analysed by flow cytometry. Surface markers of proliferating cells were identified by multi-color flow cytometry. T-cell lines were derived after sorting for proliferating T cells (CFSElow). Cytokine expression in CI-responsive T cells was detected by intracellular staining/flow cytometry and by multiplex cytokine bead assay (Bio-Plex). A T-cell proliferative response to CI was detected in 8 of 25 (32%) SSc patients, but was infrequent in healthy or disease controls (3.6%; p = 0.009). The proliferating T cells expressed a CD4+, activated (CD25+), memory (CD45RO+) phenotype. Proliferation to CI did not correlate with disease duration or extent of skin involvement. T-cell lines were generated using in vitro CI stimulation to study the functional profile of these cells. Following activation of CI-reactive T cells, we detected intracellular interferon (IFN)-γ but not interleukin (IL)-4 by flow cytometry. Supernatants from the T-cell lines generated in vitro contained IL-2, IFN-γ, GM-CSF (granulocyte macrophage-colony-stimulating factor), and tumour necrosis factor-α, but little or no IL-4 and IL-10, suggesting that CI-responsive T cells express a predominantly Th1 cytokine pattern. In conclusion, circulating memory CD4 T cells that proliferate to CI are present in a subset of patients with SSc, but are infrequent in healthy or disease controls. PMID:16879746
Wise, Randi; Duhachek-Muggy, Sara; Qi, Yue; Zolkiewski, Michal; Zolkiewska, Anna
2016-06-01
Metastatic breast cancer cells are exposed to stress of detachment from the extracellular matrix (ECM). Cultured breast cancer cells that survive this stress and are capable of anchorage-independent proliferation form mammospheres. The purpose of this study was to explore a link between mammosphere growth, ECM gene expression, and the protein quality control system in the endoplasmic reticulum (ER). We compared the mRNA and protein levels of ER folding factors in SUM159PT and MCF10DCIS.com breast cancer cells grown as mammospheres versus adherent conditions. Publicly available gene expression data for mammospheres formed by primary breast cancer cells and for circulating tumor cells (CTCs) were analyzed to assess the status of ECM/ER folding factor genes in clinically relevant samples. Knock-down of selected protein disulfide isomerase (PDI) family members was performed to examine their roles in SUM159PT mammosphere growth. We found that cells grown as mammospheres had elevated expression of ECM genes and ER folding quality control genes. CTC gene expression data for an index patient indicated that upregulation of ECM and ER folding factor genes occurred at the time of acquired therapy resistance and disease progression. Knock-down of PDI, ERp44, or ERp57, three members of the PDI family with elevated protein levels in mammospheres, in SUM159PT cells partially inhibited the mammosphere growth. Thus, breast cancer cell survival and growth under detachment conditions require enhanced assistance of the ER protein folding machinery. Targeting ER folding factors, in particular members of the PDI family, may improve the therapeutic outcomes in metastatic breast cancer.
The hypoxia factor Hif-1α controls neural crest chemotaxis and epithelial to mesenchymal transition
Barriga, Elias H.; Maxwell, Patrick H.
2013-01-01
One of the most important mechanisms that promotes metastasis is the stabilization of Hif-1 (hypoxia-inducible transcription factor 1). We decided to test whether Hif-1α also was required for early embryonic development. We focused our attention on the development of the neural crest, a highly migratory embryonic cell population whose behavior has been likened to cancer metastasis. Inhibition of Hif-1α by antisense morpholinos in Xenopus laevis or zebrafish embryos led to complete inhibition of neural crest migration. We show that Hif-1α controls the expression of Twist, which in turn represses E-cadherin during epithelial to mesenchymal transition (EMT) of neural crest cells. Thus, Hif-1α allows cells to initiate migration by promoting the release of cell–cell adhesions. Additionally, Hif-1α controls chemotaxis toward the chemokine SDF-1 by regulating expression of its receptor Cxcr4. Our results point to Hif-1α as a novel and key regulator that integrates EMT and chemotaxis during migration of neural crest cells. PMID:23712262
Paschall, Amy V.; Zhang, Ruihua; Qi, Chen-Feng; Bardhan, Kankana; Peng, Liang; Lu, Geming; Yang, Jianjun; Merad, Miriam; McGaha, Tracy; Zhou, Gang; Mellor, Andrew; Abrams, Scott I.; Morse, Herbert C.; Ozato, Keiko; Xiong, Huabao; Liu, Kebin
2015-01-01
During hematopoiesis, hematopoietic stem cells constantly differentiate into granulocytes and macrophages via a distinct differentiation program that is tightly controlled by myeloid lineage-specific transcription factors. Mice with a null mutation of IFN Regulatory Factor 8 (IRF8) accumulate CD11b+Gr1+ myeloid cells that phenotypically and functionally resemble tumor-induced myeloid-derived suppressor cells (MDSCs), indicating an essential role of IRF8 in myeloid cell lineage differentiation. However, IRF8 is expressed in various types of immune cells and whether IRF8 functions intrinsically or extrinsically in regulation of myeloid cell lineage differentiation is not fully understood. Here we report an intriguing finding that although IRF8-deficient mice exhibit deregulated myeloid cell differentiation and resultant accumulation of CD11b+Gr1+ MDSCs, surprisingly, mice with IRF8 deficiency only in myeloid cells exhibit no abnormal myeloid cell lineage differentiation. Instead, mice with IRF8 deficiency only in T cells exhibited deregulated myeloid cell differentiation and MDSC accumulation. We further demonstrated that IRF8-deficient T cells exhibit elevated GM-CSF expression and secretion. Treatment of mice with GM-CSF increased MDSC accumulation, and adoptive transfer of IRF8-deficient T cells, but not GM-CSF-deficient T cells, increased MDSC accumulation in the recipient chimeric mice. Moreover, overexpression of IRF8 decreased GM-CSF expression in T cells. Our data determine that in addition to its intrinsic function as an apoptosis regulator in myeloid cells, IRF8 also acts extrinsically to represses GM-CSF expression in T cells to control myeloid cell lineage differentiation, revealing a novel mechanism that the adaptive immune component of the immune system regulates the innate immune cell myelopoiesis in vivo. PMID:25646302
Identification of Key Transcription Factors Associated with Lung Squamous Cell Carcinoma
Zhang, Feng; Chen, Xia; Wei, Ke; Liu, Daoming; Xu, Xiaodong; Zhang, Xing; Shi, Hong
2017-01-01
Background Lung squamous cell carcinoma (lung SCC) is a common type of lung cancer, but its mechanism of pathogenesis is unclear. The aim of this study was to identify key transcription factors in lung SCC and elucidate its mechanism. Material/Methods Six published microarray datasets of lung SCC were downloaded from Gene Expression Omnibus (GEO) for integrated bioinformatics analysis. Significance analysis of microarrays was used to identify differentially expressed genes (DEGs) between lung SCC and normal controls. The biological functions and signaling pathways of DEGs were mapped in the Gene Otology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database, respectively. A transcription factor gene regulatory network was used to obtain insights into the functions of DEGs. Results A total of 1,011 genes, including 539 upregulated genes and 462 downregulated genes, were filtered as DEGs between lung SCC and normal controls. DEGs were significantly enriched in cell cycle, DNA replication, p53 signaling pathway, pathways in cancer, adherens junction, and cell adhesion molecules signaling pathways. There were 57 transcription factors identified, which were used to construct a regulatory network. The network consisted of 736 interactions between 49 transcription factors and 486 DEGs. NFIC, BRCA1, and NFATC2 were the top 3 transcription factors that had the highest connectivity with DEGs and that regulated 83, 82, and 75 DEGs in the network, respectively. Conclusions NFIC, BRCA1, and NFATC2 might be the key transcription factors in the development of lung SCC by regulating the genes involved in cell cycle and DNA replication pathways. PMID:28081052
Chanakira, Alice; Westmark, Pamela R.; Ong, Irene M.; Sheehan, John P.
2017-01-01
Objective Enhanced tissue factor (TF) expression in epithelial ovarian cancer (EOC) is associated with aggressive disease. Our objective was to evaluate the role of the TF-factor VIIa-protease-activated receptor-2 (PAR-2) pathway in human EOC. Methods TCGA RNAseq data from EOC databases were analyzed for PAR expression. Cell and microparticle (MP) associated TF protein expression (Western blot) and MP-associated coagulant activity were determined in human EOC (SKOV-3, OVCAR-3 and CaOV-3) and control cell lines. PAR-1 and PAR-2 protein expression were similarly examined. The PAR dependence of VEGF-A release (ELISA) and chemotactic migration in response to FVIIa and cellular proliferation in response to thrombin was evaluated with small molecule antagonists. Results Relative mRNA expression consistently demonstrated PAR-2>PAR-1≫PAR-3/4 in multiple EOC datasets. Human EOC cell line lysates confirmed expression of TF, PAR-1 and PAR-2 proteins. MPs isolated from EOC cell lines demonstrated markedly enhanced (4–10 fold) TF coagulant activity relative to control cell lines. FVIIa induced a dose-dependent increase in VEGF-A release (2.5-3 fold) from EOC cell lines that was abrogated by the PAR-2 antagonist ENMD-1068. FVIIa treatment of CaOV-3 and OVCAR-3 cells resulted in increased chemotactic migration that was abolished by ENMD-1068. Thrombin induced dose-dependent EOC cell line proliferation was completely reversed by the PAR-1 antagonist vorapaxar. Small molecule antagonists had no effect on these phenotypes without protease present. Conclusions Enhanced activity of the TF-FVIIa-PAR-2 axis may contribute to the EOC progression via PAR-2 dependent signaling that supports an angiogenic and invasive phenotype and local thrombin generation supporting PAR-1 dependent proliferation. PMID:28148395
Nardilysin controls intestinal tumorigenesis through HDAC1/p53-dependent transcriptional regulation.
Kanda, Keitaro; Sakamoto, Jiro; Matsumoto, Yoshihide; Ikuta, Kozo; Goto, Norihiro; Morita, Yusuke; Ohno, Mikiko; Nishi, Kiyoto; Eto, Koji; Kimura, Yuto; Nakanishi, Yuki; Ikegami, Kanako; Yoshikawa, Takaaki; Fukuda, Akihisa; Kawada, Kenji; Sakai, Yoshiharu; Ito, Akihiro; Yoshida, Minoru; Kimura, Takeshi; Chiba, Tsutomu; Nishi, Eiichiro; Seno, Hiroshi
2018-04-19
Colon cancer is a complex disease affected by a combination of genetic and epigenetic factors. Here we demonstrate that nardilysin (N-arginine dibasic convertase; NRDC), a metalloendopeptidase of the M16 family, regulates intestinal tumorigenesis via its nuclear functions. NRDC is highly expressed in human colorectal cancers. Deletion of the Nrdc gene in ApcMin mice crucially suppressed intestinal tumor development. In ApcMin mice, epithelial cell-specific deletion of Nrdc recapitulated the tumor suppression observed in Nrdc-null mice. Moreover, epithelial cell-specific overexpression of Nrdc significantly enhanced tumor formation in ApcMin mice. Notably, epithelial NRDC controlled cell apoptosis in a gene dosage-dependent manner. In human colon cancer cells, nuclear NRDC directly associated with HDAC1, and controlled both acetylation and stabilization of p53, with alterations of p53 target apoptotic factors. These findings demonstrate that NRDC is critically involved in intestinal tumorigenesis through its epigenetic regulatory function, and targeting NRDC may lead to a novel prevention or therapeutic strategy against colon cancer.
Differential growth factor control of bone formation through osteoprogenitor differentiation.
Chaudhary, L R; Hofmeister, A M; Hruska, K A
2004-03-01
The osteogenic factors bone morphogenetic protein (BMP-7), platelet-derived growth factor (PDGF)-BB, and fibroblast growth factor (FGF-2) regulate the recruitment of osteoprogenitor cells and their proliferation and differentiation into mature osteoblasts. However, their mechanisms of action on osteoprogenitor cell growth, differentiation, and bone mineralization remain unclear. Here, we tested the hypothesis that these osteogenic agents were capable of regulating osteoblast differentiation and bone formation in vitro. Normal human bone marrow stromal (HBMS) cells were treated with BMP-7 (40 ng ml(-1)), PDGF-BB (20 ng ml(-1)), FGF-2 (20 ng ml(-1)), or FGF-2 plus BMP-7 for 28 days in a serum-containing medium with 10 mM beta-glycerophosphate and 50 microg ml(-1) ascorbic acid. BMP-7 stimulated a morphological change to cuboidal-shaped cells, increased alkaline phosphatase (ALKP) activity, bone sialoprotein (BSP) gene expression, and alizarin red S positive nodule formation. Hydroxyapatite (HA) crystal deposition in the nodules was demonstrated by Fourier transform infrared (FTIR) spectroscopy only in BMP-7- and dexamethasone (DEX)-treated cells. DEX-treated cells appeared elongated and fibroblast-like compared to BMP-7-treated cells. FGF-2 did not stimulate ALKP, and cell morphology was dystrophic. PDGF-BB had little or no effect on ALKP activity and biomineralization. Alizarin Red S staining of cells and calcium assay indicated that BMP-7, DEX, and FGF-2 enhanced calcium mineral deposition, but FTIR spectroscopic analysis demonstrated no formation of HA similar to human bone in control, PDGF-BB-, and FGF-2-treated samples. Thus, FGF-2 stimulated amorphous octacalcium phosphate mineral deposition that failed to mature into HA. Interestingly, FGF-2 abrogated BMP-7-induced ALKP activity and HA formation. Results demonstrate that BMP-7 was competent as a sole factor in the differentiation of human bone marrow stromal cells to bone-forming osteoblasts confirmed by FTIR examination of mineralized matrix. Other growth factors, PDGF, and FGF-2 were incompetent as sole factors, and FGF-2 inhibited BMP-7-stimulated osteoblast differentiation.
Sada, Aiko; Hasegawa, Kazuteru; Pin, Pui Han; Saga, Yumiko
2012-02-01
Stem cells are maintained by both stem cell-extrinsic niche signals and stem cell-intrinsic factors. During murine spermatogenesis, glial cell line-derived neurotrophic factor (GDNF) signal emanated from Sertoli cells and germ cell-intrinsic factor NANOS2 represent key regulators for the maintenance of spermatogonial stem cells. However, it remains unclear how these factors intersect in stem cells to control their cellular state. Here, we show that GDNF signaling is essential to maintain NANOS2 expression, and overexpression of Nanos2 can alleviate the stem cell loss phenotype caused by the depletion of Gfra1, a receptor for GDNF. By using an inducible Cre-loxP system, we show that NANOS2 expression is downregulated upon the conditional knockout (cKO) of Gfra1, while ectopic expression of Nanos2 in GFRA1-negative spermatogonia does not induce de novo GFRA1 expression. Furthermore, overexpression of Nanos2 in the Gfra1-cKO testes prevents precocious differentiation of the Gfra1-knockout stem cells and partially rescues the stem cell loss phenotypes of Gfra1-deficient mice, indicating that the stem cell differentiation can be suppressed by NANOS2 even in the absence of GDNF signaling. Taken together, we suggest that NANOS2 acts downstream of GDNF signaling to maintain undifferentiated state of spermatogonial stem cells. Copyright © 2011 AlphaMed Press.
Age-related changes in humoral and cell-mediated immunity in Down syndrome children living at home.
Lockitch, G; Singh, V K; Puterman, M L; Godolphin, W J; Sheps, S; Tingle, A J; Wong, F; Quigley, G
1987-11-01
Abnormalities of humoral and cell-mediated immunity have been described in Down syndrome but reported findings have been inconsistent. Confounding factors have included age, institutional versus home life, hepatitis B antigenemia, and zinc deficiency. To clarify this problem, we studied 64 children with Down syndrome (DS) compared with an age-matched control group. All children had always lived at home. All the DS children were negative for hepatitis B surface antigen. Serum zinc concentration in the DS group was on average 12 micrograms/dl lower than age-matched control children. They also had significantly lower levels of immunoglobulin M, total lymphocyte count, T and B lymphocytes, and T helper and suppressor cells. In vitro lymphocyte response to phytohemagglutinin and concanavalin A was significantly reduced at all ages in the DS group. Lymphocyte response to pokeweed mitogen increased with age in control children but decreased in the DS children. By 18 yr, the mean response for DS was 60000 cpm lower than controls. The DS group had significantly higher concentrations of immunoglobulins A and G than controls and the difference increased with age. Complement fractions C3 and C4 were also higher in the DS group at all ages. The number of HNK-1 positive cells was higher in the DS group than controls at all ages. When hepatitis and institutionalization are excluded as confounding factors, DS children still differ in both humoral and cell-mediated immunity from an age-matched control group.
Yang, Zhong-Fa; Zhang, Haojian; Ma, Leyuan; Peng, Cong; Chen, Yaoyu; Wang, Junling; Green, Michael R; Li, Shaoguang; Rosmarin, Alan G
2013-02-05
Hematopoietic stem cells (HSCs) are the source of all blood lineages, and HSCs must balance quiescence, self-renewal, and differentiation to meet lifelong needs for blood cell development. Transformation of HSCs by the breakpoint cluster region-ABL tyrosine kinase (BCR-ABL) oncogene causes chronic myelogenous leukemia (CML). The E-twenty six (ets) transcription factor GA binding protein (GABP) is a tetrameric transcription factor complex that contains GABPα and GABPβ proteins. Deletion in bone marrow of Gabpa, the gene that encodes the DNA-binding component, caused cell cycle arrest in HSCs and profound loss of hematopoietic progenitor cells. Loss of Gabpα prevented development of CML, although mice continued to generate BCR-ABL-expressing Gabpα-null cells for months that were serially transplantable and contributed to all lineages in secondary recipients. A bioinformatic screen identified the serine-threonine kinase protein kinase D2 (PRKD2) as a potential effector of GABP in HSCs. Prkd2 expression was markedly reduced in Gabpα-null HSCs and progenitor cells. Reduced expression of PRKD2 or pharmacologic inhibition decreased cell cycling, and PRKD2 rescued growth of Gabpα-null BCR-ABL-expressing cells. Thus, GABP is required for HSC cell cycle entry and CML development through its control of PRKD2. This offers a potential therapeutic target in leukemia.
Hu, Junping; Zhu, Qing; Li, Pin-Lan; Wang, Weili; Yi, Fan; Li, Ningjun
2015-01-01
Background Proteinuria-induced epithelial-mesenchymal transition (EMT) plays an important role in progressive renal tubulointerstitial fibrosis in chronic renal disease. Stem cell therapy has been used for different diseases. Stem cell conditioned culture media (SCM) exhibits similar beneficial effects as stem cell therapy. The present study tested the hypothesis that SCM inhibits albumin-induced EMT in cultured renal tubular cells. Methods Rat renal tubular cells were treated with/without albumin (20 μmg/ml) plus SCM or control cell media (CCM). EMT markers and inflammatory factors were measured by Western blot and fluorescent images. Results Albumin induced EMT as shown by significant decreases in levels of epithelial marker E-cadherin, increases in mesenchymal markers fibroblast-specific protein 1 and α-smooth muscle actin, and elevations in collagen I. SCM inhibited all these changes. Meanwhile, albumin induced NF-κB translocation from cytosol into nucleus and that SCM blocked the nuclear translocation of NF-κB. Albumin also increased the levels of pro-inflammatory factor monocyte chemoattractant protein-1 (MCP)-1 by nearly 30 fold compared with control. SCM almost abolished albumin-induced increase of MCP-1. Conclusion These results suggest that SCM attenuated albumin-induced EMT in renal tubular cells via inhibiting activation of inflammatory factors, which may serve as a new therapeutic approach for chronic kidney diseases. PMID:25832005
Dong, Li-Hua; Jiang, Yi-Yao; Liu, Yong-Jun; Cui, Shuang; Xia, Cheng-Cheng; Qu, Chao; Jiang, Xin; Qu, Ya-Qin; Chang, Peng-Yu; Liu, Feng
2015-01-01
Radiation-induced pulmonary fibrosis is a common disease and has a poor prognosis owing to the progressive breakdown of gas exchange regions in the lung. Recently, a novel strategy of administering mesenchymal stem cells for pulmonary fibrosis has achieved high therapeutic efficacy. In the present study, we attempted to use human adipose tissue-derived mesenchymal stem cells to prevent disease in Sprague-Dawley rats that received semi-thoracic irradiation (15 Gy). To investigate the specific roles of mesenchymal stem cells in ameliorating radiation-induced pulmonary fibrosis, we treated control groups of irradiated rats with human skin fibroblasts or phosphate-buffered saline. After mesenchymal stem cells were infused, host secretions of hepatocyte growth factor (HGF) and prostaglandin E2 (PGE2) were elevated compared with those of the controls. In contrast, tumour necrosis factor-alpha (TNF-α) and transforming growth factor-beta1 (TGF-β1) levels were decreased after infusion of mesenchymal stem cells. Consequently, the architecture of the irradiated lungs was preserved without marked activation of fibroblasts or collagen deposition within the injured sites. Moreover, mesenchymal stem cells were able to prevent the irradiated type II alveolar epithelial cells from undergoing epithelial-mesenchymal transition. Collectively, these data confirmed that mesenchymal stem cells have the potential to limit pulmonary fibrosis after exposure to ionising irradiation. PMID:25736907
microRNA-340 induces apoptosis by downregulation of BAG3 in ovarian cancer SKOV3 cells.
Qu, Fei; Wang, Xiufen
2017-08-01
Aberrant expression of miR-340 has been found in several kinds of cancers including ovarian cancer. Pro-apoptotic and anti-metastasis roles of miR-340 in ovarian cancer have also been reported; however, the underling molecular mechanisms by which miR-340 suppresses ovarian cancer are still unclear. This study focused on the role and molecular mechanism of miR-340 in ovarian cancer. Human ovarian carcinoma SKOV3 cells were used and transfected with miR-340 mimic, miR-340 inhibitor and their correspondingly negative controls (mimic control and inhibitor control). Thereafter, cell viability, apoptosis, and the expressions of apoptosis-associated factors and BAG3 were respectively assessed by MTT assay, flow cytometry, qRT-PCR and Western blotting. SKOV3 cells were then co-transfected with miR-340 inhibitor and BAG3 targeted siRNA, then cell viability, apoptosis and the expression of apoptosis-associated factors were retested. Besides, the expressions of main factors in PI3K/AKT pathway were detected. Overexpression of miR-340 suppressed BAG3 cells viability (P < 0.05), but improved apoptosis (P < 0.001). BAG3 was negatively regulated by miR-340 (P < 0.05 or P < 0.01). BAG3 silence significantly induced cell apoptosis (P < 0.001), and abolished miR-340 suppression-induced increase in cell viability (P < 0.001). Besides, BAG3 silence abolished miR-340 suppression-induced activation of PI3K and AKT. This study revealed the tumor suppressive role of miR-340 in SKOV3 cells by negative regulation of BAG3. PI3K/AKT pathway might be involved in the regulation of miR-340 and BAG3.
Control of stem cell fate and function by engineering physical microenvironments
Kshitiz; Park, Jinseok; Kim, Peter; Helen, Wilda; Engler, Adam J; Levchenko, Andre; Kim, Deok-Ho
2012-01-01
The phenotypic expression and function of stem cells are regulated by their integrated response to variable microenvironmental cues, including growth factors and cytokines, matrix-mediated signals, and cell-cell interactions. Recently, growing evidence suggests that matrix-mediated signals include mechanical stimuli such as strain, shear stress, substrate rigidity and topography, and these stimuli have a more profound impact on stem cell phenotypes than had previously been recognized, e.g. self-renewal and differentiation through the control of gene transcription and signaling pathways. Using a variety of cell culture models enabled by micro and nanoscale technologies, we are beginning to systematically and quantitatively investigate the integrated response of cells to combinations of relevant mechanobiological stimuli. This paper reviews recent advances in engineering physical stimuli for stem cell mechanobiology and discusses how micro- and nanoscale engineered platforms can be used to control stem cell niches environment and regulate stem cell fate and function. PMID:23077731
Gorin, Caroline; Rochefort, Gael Y.; Bascetin, Rumeyza; Ying, Hanru; Lesieur, Julie; Sadoine, Jérémy; Beckouche, Nathan; Berndt, Sarah; Novais, Anita; Lesage, Matthieu; Hosten, Benoit; Vercellino, Laetitia; Merlet, Pascal; Le-Denmat, Dominique; Marchiol, Carmen; Letourneur, Didier; Nicoletti, Antonino; Vital, Sibylle Opsahl; Poliard, Anne; Salmon, Benjamin; Germain, Stéphane
2016-01-01
Tissue engineering strategies based on implanting cellularized biomaterials are promising therapeutic approaches for the reconstruction of large tissue defects. A major hurdle for the reliable establishment of such therapeutic approaches is the lack of rapid blood perfusion of the tissue construct to provide oxygen and nutrients. Numerous sources of mesenchymal stem cells (MSCs) displaying angiogenic potential have been characterized in the past years, including the adult dental pulp. Establishment of efficient strategies for improving angiogenesis in tissue constructs is nevertheless still an important challenge. Hypoxia was proposed as a priming treatment owing to its capacity to enhance the angiogenic potential of stem cells through vascular endothelial growth factor (VEGF) release. The present study aimed to characterize additional key factors regulating the angiogenic capacity of such MSCs, namely, dental pulp stem cells derived from deciduous teeth (SHED). We identified fibroblast growth factor-2 (FGF-2) as a potent inducer of the release of VEGF and hepatocyte growth factor (HGF) by SHED. We found that FGF-2 limited hypoxia-induced downregulation of HGF release. Using three-dimensional culture models of angiogenesis, we demonstrated that VEGF and HGF were both responsible for the high angiogenic potential of SHED through direct targeting of endothelial cells. In addition, FGF-2 treatment increased the fraction of Stro-1+/CD146+ progenitor cells. We then applied in vitro FGF-2 priming to SHED before encapsulation in hydrogels and in vivo subcutaneous implantation. Our results showed that FGF-2 priming is more efficient than hypoxia at increasing SHED-induced vascularization compared with nonprimed controls. Altogether, these data demonstrate that FGF-2 priming enhances the angiogenic potential of SHED through the secretion of both HGF and VEGF. Significance The results from the present study show that fibroblast growth factor-2 (FGF-2) priming is more efficient than hypoxia at increasing dental pulp stem cells derived from deciduous teeth (SHED)-induced vascularization compared with nonprimed controls. Together, these data demonstrate that FGF-2 priming enhances the angiogenic potential of SHED through the secretion of both hepatocyte growth factor and vascular endothelial growth factor. PMID:26798059
Eukaryotic Initiation Factor 4H Is under Transcriptional Control of p65/NF-κB
Fiume, Giuseppe; Rossi, Annalisa; de Laurentiis, Annamaria; Falcone, Cristina; Pisano, Antonio; Vecchio, Eleonora; Pontoriero, Marilena; Scala, Iris; Scialdone, Annarita; Masci, Francesca Fasanella; Mimmi, Selena; Palmieri, Camillo; Scala, Giuseppe; Quinto, Ileana
2013-01-01
Protein synthesis is mainly regulated at the initiation step, allowing the fast, reversible and spatial control of gene expression. Initiation of protein synthesis requires at least 13 translation initiation factors to assemble the 80S ribosomal initiation complex. Loss of translation control may result in cell malignant transformation. Here, we asked whether translational initiation factors could be regulated by NF-κB transcription factor, a major regulator of genes involved in cell proliferation, survival, and inflammatory response. We show that the p65 subunit of NF-κB activates the transcription of eIF4H gene, which is the regulatory subunit of eIF4A, the most relevant RNA helicase in translation initiation. The p65-dependent transcriptional activation of eIF4H increased the eIF4H protein content augmenting the rate of global protein synthesis. In this context, our results provide novel insights into protein synthesis regulation in response to NF-κB activation signalling, suggesting a transcription-translation coupled mechanism of control. PMID:23776612
Inflammatory mediator mRNA expression by adenovirus E1A-transfected bronchial epithelial cells.
Higashimoto, Yuji; Elliott, W Mark; Behzad, Ali R; Sedgwick, Edward G; Takei, Tatsuo; Hogg, James C; Hayashi, Shizu
2002-07-15
Lung tissue from patients with emphysema and airway obstruction carries excess adenoviral E1A DNA that is expressed as protein in airway surface epithelium and is associated with an increased inflammatory response. To examine mechanisms by which latent adenoviral infection might amplify the inflammatory process, we transfected primary human bronchial epithelial (HBE) cells from three separate patients undergoing lung resection so that they stably expressed adenovirus E1A. Lipopolysaccharide stimulation of the E1A-transfected HBE cells increased intercellular adhesion molecule-1 and interleukin-8 mRNA and protein expression compared with control cells from the same patient. It also induced greater intercellular adhesion molecule-1 promoter activity and greater nuclear factor-kappa B binding activity of nuclear extracts in E1A transfectants than controls. E1A-positive transfectants constitutively expressed transforming growth factor-beta 1 mRNA and protein, whereas this expression was either very low or not detected in control cells. We conclude that adenoviral E1A transfection transforms primary HBE cells and upregulates their production of mediators that are clinically relevant to the pathogenesis of chronic obstructive pulmonary disease.
Akyuva, Yener; Kaplan, Necati; Yilmaz, Ibrahim; Ozbek, Hanefi; Sirin, Duygu Yasar; Karaaslan, Numan; Guler, Olcay; Ateş, Özkan
2018-04-09
The aim of this in vitro experimental study was to design a novel, polyvinyl alcohol(PVA)-basedpolymericscaffold that permits the controlled release of insulin-likegrowthfactor1(IGF-1)/bonemorphogenetic protein-2(BMP-2) following intervertebral disc administration. The drug delivery system was composed of two different solutions that formed a scaffold within seconds after coming into contact with each other. We performed swelling,pH,temperature tests and analysis of the controlled release of growth factors from this system.The release kinetics of the growth factors was determined through enzyme linked immunosorbent assay(ELISA). Cell proliferation and viability was monitored with microscopy and analyzed using an MTT assay and acridine orange/propidium iodide(AO/PI) staining. Chondroadherin(CHAD), hypoxiainduciblefactor-1alpha(HIF-1α),collagentypeII(COL2A1) gene expressions were determined with quantitative real-timepolymerasechainreaction(qRT-PCR) analysis to show the effects of IGF-1/BMP-2 administration on annulus fibrosus cell(AFC)/nucleus pulposus cell(NPC) cultures. The scaffold allowed for the controlled release of IGF-1 and BMP-2 in different time intervals. It was observed that as the application time increased, the number of cells and the degree of extracellular matrix development increased in AFC/NPC cultures. AO/PI staining and an MTT analysis showed that cells retained their specific morphology and continued to proliferate. It was observed that HIF-1α and CHAD expression increased in a time-dependent manner, and there wasn't any COL2A1 expression in the AFC/NPC cultures. The designed scaffold may be used as an alternative method for intervertebral disc administration of growth factors after further in vivo studies. We believe that such prototype scaffolds may be an innovative technology in targeted drug therapies after reconstructive neurosurgeries.
Yi, Woelsung; Gupta, Sanjay; Ricker, Edd; Manni, Michela; Jessberger, Rolf; Chinenov, Yurii; Molina, Henrik; Pernis, Alessandra B
2017-08-15
Post-transcriptional modifications can control protein abundance, but the extent to which these alterations contribute to the expression of T helper (T H ) lineage-defining factors is unknown. Tight regulation of Bcl6 expression, an essential transcription factor for T follicular helper (T FH ) cells, is critical as aberrant T FH cell expansion is associated with autoimmune diseases, such as systemic lupus erythematosus (SLE). Here we show that lack of the SLE risk variant Def6 results in deregulation of Bcl6 protein synthesis in T cells as a result of enhanced activation of the mTORC1-4E-BP-eIF4E axis, secondary to aberrant assembly of a raptor-p62-TRAF6 complex. Proteomic analysis reveals that this pathway selectively controls the abundance of a subset of proteins. Rapamycin or raptor deletion ameliorates the aberrant T FH cell expansion in mice lacking Def6. Thus deregulation of mTORC1-dependent pathways controlling protein synthesis can result in T-cell dysfunction, indicating a mechanism by which mTORC1 can promote autoimmunity.Excessive expansion of the T follicular helper (T FH ) cell pool is associated with autoimmune disease and Def6 has been identified as an SLE risk variant. Here the authors show that Def6 limits proliferation of T FH cells in mice via alteration of mTORC1 signaling and inhibition of Bcl6 expression.
Blom, B; Heemskerk, M H; Verschuren, M C; van Dongen, J J; Stegmann, A P; Bakker, A Q; Couwenberg, F; Res, P C; Spits, H
1999-01-01
Enforced expression of Id3, which has the capacity to inhibit many basic helix-loop-helix (bHLH) transcription factors, in human CD34(+) hematopoietic progenitor cells that have not undergone T cell receptor (TCR) gene rearrangements inhibits development of the transduced cells into TCRalpha beta and gamma delta cells in a fetal thymic organ culture (FTOC). Here we document that overexpression of Id3, in progenitors that have initiated TCR gene rearrangements (pre-T cells), inhibits development into TCRalpha beta but not into TCRgamma delta T cells. Furthermore, Id3 impedes expression of recombination activating genes and downregulates pre-Talpha mRNA. These observations suggest possible mechanisms by which Id3 overexpression can differentially affect development of pre-T cells into TCRalpha beta and gamma delta cells. We also observed that cell surface CD4(-)CD8(-)CD3(-) cells with rearranged TCR genes developed from Id3-transduced but not from control-transduced pre-T cells in an FTOC. These cells had properties of both natural killer (NK) and pre-T cells. These findings suggest that bHLH factors are required to control T cell development after the T/NK developmental checkpoint. PMID:10329625
Cosmos: 1989 immunology studies
NASA Technical Reports Server (NTRS)
Sonnenfeld, Gerald
1991-01-01
The effects of flight on Cosmos mission 2044 on leukocyte subset distribution and the sensitivity of bone marrow cells to colony stimulating factor-GM were determined. A parallel study with antiorthostatic suspension was also carried out. The study involved repetition and expansion of studies performed on Cosmos 1887. Spleen and bone marrow cells were obtained from flown, vivarium control, synchronous control, and suspended rats. The cells were stained with a series of monoclonal antibodies directed against rat leukocyte cell surface antigens. Control cells were stained with a monoclonal antibody directed against an irrelevant species or were unstained. Cells were then analyzed for fluorescence using a FACSCAN flow cytometer. Bone marrow cells were placed in culture with GM-CSF in McCoy's 5a medium and incubated for 5 days. Cultures were then evaluated for the number of colonies of 50 cells or greater.
Bulstrode, Harry; Johnstone, Ewan; Marques-Torrejon, Maria Angeles; Ferguson, Kirsty M; Bressan, Raul Bardini; Blin, Carla; Grant, Vivien; Gogolok, Sabine; Gangoso, Ester; Gagrica, Sladjana; Ender, Christine; Fotaki, Vassiliki; Sproul, Duncan; Bertone, Paul; Pollard, Steven M
2017-04-15
Glioblastoma multiforme (GBM) is an aggressive brain tumor driven by cells with hallmarks of neural stem (NS) cells. GBM stem cells frequently express high levels of the transcription factors FOXG1 and SOX2. Here we show that increased expression of these factors restricts astrocyte differentiation and can trigger dedifferentiation to a proliferative NS cell state. Transcriptional targets include cell cycle and epigenetic regulators (e.g., Foxo3 , Plk1 , Mycn , Dnmt1 , Dnmt3b , and Tet3 ). Foxo3 is a critical repressed downstream effector that is controlled via a conserved FOXG1/SOX2-bound cis -regulatory element. Foxo3 loss, combined with exposure to the DNA methylation inhibitor 5-azacytidine, enforces astrocyte dedifferentiation. DNA methylation profiling in differentiating astrocytes identifies changes at multiple polycomb targets, including the promoter of Foxo3 In patient-derived GBM stem cells, CRISPR/Cas9 deletion of FOXG1 does not impact proliferation in vitro; however, upon transplantation in vivo, FOXG1 -null cells display increased astrocyte differentiation and up-regulate FOXO3. In contrast, SOX2 ablation attenuates proliferation, and mutant cells cannot be expanded in vitro. Thus, FOXG1 and SOX2 operate in complementary but distinct roles to fuel unconstrained self-renewal in GBM stem cells via transcriptional control of core cell cycle and epigenetic regulators. © 2017 Bulstrode et al.; Published by Cold Spring Harbor Laboratory Press.
Production and action of cytokines in space
NASA Technical Reports Server (NTRS)
Chapes, Stephen K.; Morrison, Dennis R.; Guikema, James A.; Lewis, Marian L.; Spooner, Brian S.
1994-01-01
B6MP102 cells, a continuously cultured murine bone marrow macrophage cell line, were tested for secretion of tumor necrosis factor-alpha and Interleukin-1 during space flight. We found that B6MP102 cells secreted more tumor necrosis factor-alpha and interleukin-1 when stimulated in space with lipopolysaccharide than controls similarly stimulated on earth. This compared to increased secretion of interferon-beta and -gamma by lymphocytes that was measured on the same shuttle flights. Although space flight enhanced B6MP102 secretion of tumor necrosis factor-alpha, an experiment on a subsequent space flight (STS-50) found that cellular cytotoxicity, mediated by tumor necrosis factor-alpha, was inhibited.
1999-10-01
deregulated cell mors and may eventually regress through growth (18). The importance of APC and 0- cat - apoptosis (25). enin in the development of colorectal...progression. In support of this idea, Torre Amione et al. [74] demonstrated that, unlike parental tumor cells, fibrosarcoma cells transfected to express 10
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujimura, Hiroaki
Mating pheromones, a- and {alpha}-factors, arrest the division of cells of opposite mating types, {alpha} and a cells, respectively. The author has isolated a sterile mutant of Saccharomyces cerevisiae using EMS that is defective in division arrest in response to {alpha}-factor but not defective in morphological changes and agglutinin induction. The mutation was designated dac2 for division arrest control by mating pheromones. The dac2 mutation was closely linked to gal1 and was different from the previously identified cell type nonspecific sterile mutations (ste4, ste5, ste7, ste11, ste12, ste18, and dac1). Although dac2 cells had no phenotype in the absence ofmore » pheromones, they showed morphological alterations and divided continuously in the presence of pheromones. As a result, dac2 cells had a mating defect. The dac2 mutation could suppress the lethality caused by the disruption of the GPA1 gene. These results suggest that the DAC2 product may control the signal for G-protein-mediated cell-cycle arrest and indicate that the synchronization of haploid yeast cell cycles by mating pheromones is essential for cell fusion during conjugation.« less
Mast Cells Condition Dendritic Cells to Mediate Allograft Tolerance
de Vries, Victor C.; Pino-Lagos, Karina; Nowak, Elizabeth C.; Bennett, Kathy A.; Oliva, Carla; Noelle, Randolph J.
2013-01-01
SUMMARY Peripheral tolerance orchestrated by regulatory T cells, dendritic cells (DCs), and mast cells (MCs) has been studied in several models including skin allograft tolerance. We now define a role for MCs in controlling DC behavior (“conditioning”) to facilitate tolerance. Under tolerant conditions, we show that MCs mediated a marked increase in tumor necrosis factor (TNFα)-dependent accumulation of graft-derived DCs in the dLN compared to nontolerant conditions. This increase of DCs in the dLN is due to the local production of granulocyte macrophage colony-stimulating factor (GM-CSF) by MCs that induces a survival advantage of graft-derived DCs. DCs that migrated to the dLN from the tolerant allograft were tolerogenic; i.e., they dominantly suppress T cell responses and control regional immunity. This study underscores the importance of MCs in conditioning DCs to mediate peripheral tolerance and shows a functional impact of peripherally produced TNFα and GM-CSF on the migration and function of tolerogenic DCs. PMID:22035846
Welch, David; Hassan, Hala; Blilou, Ikram; Immink, Richard; Heidstra, Renze; Scheres, Ben
2007-01-01
In the Arabidopsis root, the SHORT-ROOT transcription factor moves outward to the ground tissue from its site of transcription in the stele and is required for the specification of the endodermis and the stem cell organizing quiescent center cells. In addition, SHORT-ROOT and the downstream transcription factor SCARECROW control an oriented cell division in ground tissue stem cell daughters. Here, we show that the JACKDAW and MAGPIE genes, which encode members of a plant-specific family of zinc finger proteins, act in a SHR-dependent feed-forward loop to regulate the range of action of SHORT-ROOT and SCARECROW. JACKDAW expression is initiated independent of SHORT-ROOT and regulates the SCARECROW expression domain outside the stele, while MAGPIE expression depends on SHORT-ROOT and SCARECROW. We provide evidence that JACKDAW and MAGPIE regulate tissue boundaries and asymmetric cell division and can control SHORT-ROOT and SCARECROW activity in a transcriptional and protein interaction network. PMID:17785527
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kasten-Pisula, Ulla; Saker, Jarob; Eicheler, Wolfgang
2011-07-15
Purpose: There is conflicting evidence for whether the expression of epidermal growth factor receptor in human tumors can be used as a marker of radioresponse. Therefore, this association was studied in a systematic manner using squamous cell carcinoma (SCC) cell lines grown as cell cultures and xenografts. Methods and Materials: The study was performed with 24 tumor cell lines of different tumor types, including 10 SCC lines, which were also investigated as xenografts on nude mice. Egfr gene dose and the length of CA-repeats in intron 1 were determined by polymerase chain reaction, protein expression in vitro by Western blotmore » and in vivo by enzyme-linked immunosorbent assay, and radiosensitivity in vitro by colony formation. Data were correlated with previously published tumor control dose 50% data after fractionated irradiation of xenografts of the 10 SCC. Results: EGFR protein expression varies considerably, with most tumor cell lines showing moderate and only few showing pronounced upregulation. EGFR upregulation could only be attributed to massive gene amplification in the latter. In the case of little or no amplification, in vitro EGFR expression correlated with both cellular and tumor radioresponse. In vivo EGFR expression did not show this correlation. Conclusions: Local tumor control after the fractionated irradiation of tumors with little or no gene amplification seems to be dependent on in vitro EGFR via its effect on cellular radiosensitivity.« less
Targeted σ factor turnover inserts negative control into a positive feedback loop
Donohue, Timothy J.
2009-01-01
Summary Since their classification as members of the σ70 super-family, Group IV alternative σ factors have been found to control gene expression in response to diverse environmental or stress signals. Activity of the Streptomyces coelicolor Group IV family member, σR (SigR), is increased by changes in the oxidation-reduction state of cytoplasmic disulphide bonds. Once released by its cognate anti-σ factor RsrA, σR activates expression of gene products that help cells reduce cytoplasmic disulphide bonds. In this issue of Molecular Microbiology, Kim and co-workers provide new insights into positive and negative control of σR activity. The authors show that a transcript derived from the inducible σR-dependent sigRrsrA p2 promoter operon encodes a σR protein of a higher molecular weight (termed σR′) than is found in uninduced cells. One major difference between σR′ and the smaller σR protein found in uninduced cells is the rapid proteolysis of σR′ by the ClpP1/P2 protease system. The genes for the ClpP1/ClpP2 protease subunits are themselves members of the σR regulon. The newly identified positive (σR′ synthesis) and negative control (selective σR′ turnover) aspects of this circuit are either found or predicted to exist in other related Group IV σ factor family members. PMID:19682265
Shan, Jixiu; Örd, Daima; Örd, Tõnis; Kilberg, Michael S.
2009-01-01
Protein limitation in vivo or amino acid deprivation of cells in culture causes a signal transduction cascade consisting of activation of the kinase GCN2 (general control nonderepressible 2), phosphorylation of eukaryotic initiation factor 2, and increased synthesis of activating transcription factor (ATF) 4 by a translational control mechanism. In a self-limiting transcriptional program, ATF4 transiently activates a wide range of downstream target genes involved in transport, cellular metabolism, and other cell functions. Simultaneous activation of other signal transduction pathways by amino acid deprivation led to the question of whether or not the increased abundance of ATF4 alone was sufficient to trigger the transcriptional control mechanisms. Using 293 cells that ectopically express ATF4 in a tetracycline-inducible manner showed that ATF4 target genes were activated in the absence of amino acid deprivation. Ectopic expression of ATF4 alone resulted in effective recruitment of the general transcription machinery, but some reduction in histone modification was observed. These data document that ATF4 alone is sufficient to trigger the amino acid-responsive transcriptional control program. However, the absolute amount of ectopic ATF4 required to achieve the same degree of transcriptional activation observed after amino acid limitation was greater, suggesting that other factors may serve to enhance ATF4 function. PMID:19509279
Xu, Daichao; Shan, Bing; Lee, Byung-Hoon; Zhu, Kezhou; Zhang, Tao; Sun, Huawang; Liu, Min; Shi, Linyu; Liang, Wei; Qian, Lihui; Xiao, Juan; Wang, Lili; Pan, Lifeng; Finley, Daniel; Yuan, Junying
2015-01-01
Regulation of ubiquitin-proteasome system (UPS), which controls the turnover of short-lived proteins in eukaryotic cells, is critical in maintaining cellular proteostasis. Here we show that USP14, a major deubiquitinating enzyme that regulates the UPS, is a substrate of Akt, a serine/threonine-specific protein kinase critical in mediating intracellular signaling transducer for growth factors. We report that Akt-mediated phosphorylation of USP14 at Ser432, which normally blocks its catalytic site in the inactive conformation, activates its deubiquitinating activity in vitro and in cells. We also demonstrate that phosphorylation of USP14 is critical for Akt to regulate proteasome activity and consequently global protein degradation. Since Akt can be activated by a wide range of growth factors and is under negative control by phosphoinosotide phosphatase PTEN, we suggest that regulation of UPS by Akt-mediated phosphorylation of USP14 may provide a common mechanism for growth factors to control global proteostasis and for promoting tumorigenesis in PTEN-negative cancer cells. DOI: http://dx.doi.org/10.7554/eLife.10510.001 PMID:26523394
Nuclear factor I-A represses expression of the cell adhesion molecule L1
2009-01-01
Background The neural cell adhesion molecule L1 plays a crucial role in development and plasticity of the nervous system. Neural cells thus require precise control of L1 expression. Results We identified a full binding site for nuclear factor I (NFI) transcription factors in the regulatory region of the mouse L1 gene. Electrophoretic mobility shift assay (EMSA) showed binding of nuclear factor I-A (NFI-A) to this site. Moreover, for a brain-specific isoform of NFI-A (NFI-A bs), we confirmed the interaction in vivo using chromatin immunoprecipitation (ChIP). Reporter gene assays showed that in neuroblastoma cells, overexpression of NFI-A bs repressed L1 expression threefold. Conclusion Our findings suggest that NFI-A, in particular its brain-specific isoform, represses L1 gene expression, and might act as a second silencer of L1 in addition to the neural restrictive silencer factor (NRSF). PMID:20003413
NASA Astrophysics Data System (ADS)
Sakata, Katsumi; Ohyanagi, Hajime; Sato, Shinji; Nobori, Hiroya; Hayashi, Akiko; Ishii, Hideshi; Daub, Carsten O.; Kawai, Jun; Suzuki, Harukazu; Saito, Toshiyuki
2015-02-01
We present a system-wide transcriptional network structure that controls cell types in the context of expression pattern transitions that correspond to cell type transitions. Co-expression based analyses uncovered a system-wide, ladder-like transcription factor cluster structure composed of nearly 1,600 transcription factors in a human transcriptional network. Computer simulations based on a transcriptional regulatory model deduced from the system-wide, ladder-like transcription factor cluster structure reproduced expression pattern transitions when human THP-1 myelomonocytic leukaemia cells cease proliferation and differentiate under phorbol myristate acetate stimulation. The behaviour of MYC, a reprogramming Yamanaka factor that was suggested to be essential for induced pluripotent stem cells during dedifferentiation, could be interpreted based on the transcriptional regulation predicted by the system-wide, ladder-like transcription factor cluster structure. This study introduces a novel system-wide structure to transcriptional networks that provides new insights into network topology.
The skeletal vascular system - Breathing life into bone tissue.
Stegen, Steve; Carmeliet, Geert
2017-08-26
During bone development, homeostasis and repair, a dense vascular system provides oxygen and nutrients to highly anabolic skeletal cells. Characteristic for the vascular system in bone is the serial organization of two capillary systems, each typified by specific morphological and physiological features. Especially the arterial capillaries mediate the growth of the bone vascular system, serve as a niche for skeletal and hematopoietic progenitors and couple angiogenesis to osteogenesis. Endothelial cells and osteoprogenitor cells interact not only physically, but also communicate to each other by secretion of growth factors. A vital angiogenic growth factor is vascular endothelial growth factor and its expression in skeletal cells is controlled by osteogenic transcription factors and hypoxia signaling, whereas the secretion of angiocrine factors by endothelial cells is regulated by Notch signaling, blood flow and possibly hypoxia. Bone loss and impaired fracture repair are often associated with reduced and disorganized blood vessel network and therapeutic targeting of the angiogenic response may contribute to enhanced bone regeneration. Copyright © 2017 Elsevier Inc. All rights reserved.
Chen, Yu-Chih; Ingram, Patrick; Yoon, Euisik
2016-01-01
Cancer-stromal interaction is a critical process in tumorigenesis. Conventional dish-based co-culture assays simply mix two cell types in the same dish; thus, they are deficient in controlling cell locations and precisely tracking single cell behavior from heterogeneous cell populations. Microfluidic technology can provide a good spatial temporal control of microenvironments, but the control has been typically realized by using external pumps, making long-term cultures cumbersome and bulky. In this work, we present a cell-cell interaction microfluidic platform that can accurately control co-culture microenvironment by using a novel electrolytic cell isolation scheme without using any valves or pneumatic pumps. The proposed microfluidic platform can also precisely control the number of interacting cells and pairing ratios to emulate cancer niches. More than 80% of the chambers captured the desired number of cells. The duration of cell isolation can be adjusted by electrolytic bubble generation and removal. We verified that electrolytic process has a negligible effect on cell viability and proliferation in our platform. To the best of our knowledge, this work is the first attempt to incorporate electrolytic bubble generation as a cell isolation method in microfluidics. For proof of feasibility, we performed cell-cell interaction assays between prostate cancer (PC3) cells and myoblast (C2C12) cells. The preliminary results demonstrated the potential of using electrolysis for micro-environmental control during cell culture. Also, the ratio controlled cell-cell interaction assays was successfully performed showing that the cell pairing ratios of PC3 to C2C12 affected the proliferation rate of myoblast cells due to increased secretion of growth factors from prostate cancer cells. PMID:25118341
Direct reprogramming and biomaterials for controlling cell fate.
Kim, Eunsol; Tae, Giyoong
2016-01-01
Direct reprogramming which changes the fate of matured cell is a very useful technique with a great interest recently. This approach can eliminate the drawbacks of direct usage of stem cells and allow the patient specific treatment in regenerative medicine. Overexpression of diverse factors such as general reprogramming factors or lineage specific transcription factors can change the fate of already differentiated cells. On the other hand, biomaterials can provide physical and topographical cues or biochemical cues on cells, which can dictate or significantly affect the differentiation of stem cells. The role of biomaterials on direct reprogramming has not been elucidated much, but will be potentially significant to improve the efficiency or specificity of direct reprogramming. In this review, the strategies for general direct reprogramming and biomaterials-guided stem cell differentiation are summarized with the addition of the up-to-date progress on biomaterials for direct reprogramming.
Characteristics of MIC-1 antlerogenic stem cells and their effect on hair growth in rabbits.
Cegielski, Marek; Izykowska, Ilona; Chmielewska, Magdalena; Dziewiszek, Wojciech; Bochnia, Marek; Calkosinski, Ireneusz; Dziegiel, Piotr
2013-01-01
We characterized growth factors produced by MIC-1 antlerogenic stem cells and attempted to apply those cells to stimulate hair growth in rabbits. We evaluated the gene and protein expression of growth factors by immunocytochemical and molecular biology techniques in MIC-1 cells. An animal model was used to assess the effects of xenogenous stem cells on hair growth. In the experimental group, rabbits were intradermally injected with MIC-1 stem cells, whereas the control group rabbits were given vehicle-only. After 1, 2 and 4 weeks, skin specimen were collected for histological and immunohistochemical tests. MIC-1 antlerogenic stem cells express growth factors, as confirmed at the mRNA and protein levels. Histological and immunohistochemical analysis demonstrated an increase in the number of hair follicles, as well as the amount of secondary hair in the follicles, without an immune response in animals injected intradermally with MIC-1 cells, compared to animals receiving vehicle-alone. MIC-1 cells accelerated hair growth in rabbits due to the activation of cells responsible for the regulation of the hair growth cycle through growth factors. Additionally, the xenogenous cell implant did not induce immune response.
Penile Anaerobic Dysbiosis as a Risk Factor for HIV Infection
Prodger, Jessica L.; Tobian, Aaron A. R.; Abraham, Alison G.; Kigozi, Godfrey; Aziz, Maliha; Nalugoda, Fred; Sariya, Sanjeev; Serwadda, David; Kaul, Rupert; Gray, Ronald H.; Price, Lance B.
2017-01-01
ABSTRACT Sexual transmission of HIV requires exposure to the virus and infection of activated mucosal immune cells, specifically CD4+ T cells or dendritic cells. The foreskin is a major site of viral entry in heterosexual transmission of HIV. Although the probability of acquiring HIV from a sexual encounter is low, the risk varies even after adjusting for known HIV risk factors. The genital microbiome may account for some of the variability in risk by interacting with the host immune system to trigger inflammatory responses that mediate the infection of mucosal immune cells. We conducted a case-control study of uncircumcised participants nested within a randomized-controlled trial of male circumcision in Rakai, Uganda. Using penile (coronal sulcus) swabs collected by study personnel at trial enrollment, we characterized the penile microbiome by sequencing and real-time PCR and cytokine levels by electrochemiluminescence assays. The absolute abundances of penile anaerobes at enrollment were associated with later risk of HIV seroconversion, with a 10-fold increase in Prevotella, Dialister, Finegoldia, and Peptoniphilus increasing the odds of HIV acquisition by 54 to 63%, after controlling for other known HIV risk factors. Increased abundances of anaerobic bacteria were also correlated with increased cytokines, including interleukin-8, which can trigger an inflammatory response that recruits susceptible immune cells, suggesting a mechanism underlying the increased risk. These same anaerobic genera can be shared between heterosexual partners and are associated with increased HIV acquisition in women, pointing to anaerobic dysbiosis in the genital microbiome and an accompanying inflammatory response as a novel, independent, and transmissible risk factor for HIV infection. PMID:28743816
Cell type-specific translational repression of Cyclin B during meiosis in males.
Baker, Catherine Craig; Gim, Byung Soo; Fuller, Margaret T
2015-10-01
The unique cell cycle dynamics of meiosis are controlled by layers of regulation imposed on core mitotic cell cycle machinery components by the program of germ cell development. Although the mechanisms that regulate Cdk1/Cyclin B activity in meiosis in oocytes have been well studied, little is known about the trans-acting factors responsible for developmental control of these factors in male gametogenesis. During meiotic prophase in Drosophila males, transcript for the core cell cycle protein Cyclin B1 (CycB) is expressed in spermatocytes, but the protein does not accumulate in spermatocytes until just before the meiotic divisions. Here, we show that two interacting proteins, Rbp4 and Fest, expressed at the onset of spermatocyte differentiation under control of the developmental program of male gametogenesis, function to direct cell type- and stage-specific repression of translation of the core G2/M cell cycle component cycB during the specialized cell cycle of male meiosis. Binding of Fest to Rbp4 requires a 31-amino acid region within Rbp4. Rbp4 and Fest are required for translational repression of cycB in immature spermatocytes, with Rbp4 binding sequences in a cell type-specific shortened form of the cycB 3' UTR. Finally, we show that Fest is required for proper execution of meiosis I. © 2015. Published by The Company of Biologists Ltd.
Barx2 is Expressed in Satellite Cells and is Required for Normal Muscle Growth and Regeneration
Meech, Robyn; Gonzalez, Katie N.; Barro, Marietta; Gromova, Anastasia; Zhuang, Lizhe; Hulin, Julie-Ann; Makarenkova, Helen P.
2015-01-01
Muscle growth and regeneration are regulated through a series of spatiotemporally dependent signaling and transcriptional cascades. Although the transcriptional program controlling myogenesis has been extensively investigated, the full repertoire of transcriptional regulators involved in this process is far from defined. Various homeodomain transcription factors have been shown to play important roles in both muscle development and muscle satellite cell-dependent repair. Here, we show that the homeodomain factor Barx2 is a new marker for embryonic and adult myoblasts and is required for normal postnatal muscle growth and repair. Barx2 is coexpressed with Pax7, which is the canonical marker of satellite cells, and is upregulated in satellite cells after muscle injury. Mice lacking the Barx2 gene show reduced postnatal muscle growth, muscle atrophy, and defective muscle repair. Moreover, loss of Barx2 delays the expression of genes that control proliferation and differentiation in regenerating muscle. Consistent with the in vivo observations, satellite cell-derived myoblasts cultured from Barx2−/− mice show decreased proliferation and ability to differentiate relative to those from wild-type or Barx2+/− mice. Barx2−/− myoblasts show reduced expression of the differentiation-associated factor myogenin as well as cell adhesion and matrix molecules. Finally, we find that mice lacking both Barx2 and dystrophin gene expression have severe early onset myopathy. Together, these data indicate that Barx2 is an important regulator of muscle growth and repair that acts via the control of satellite cell proliferation and differentiation. PMID:22076929
Okuwa, Takako; Katayama, Takahiro; Takano, Akinori; Yasukawa, Hiroo
2002-10-01
Genes for the cell-counting factors in Dictyostelium discoideum, countin and countin2, are considered to control the size of the multicellular structure of this organism. A novel gene, countin3, that is homologous to countin and countin2 genes (49 and 39% identity in amino acid sequence, respectively) was identified in the D. discoideum genome. The expression of countin3 was observed in the vegetatively growing cells, decreased in the aggregating stage, increased in the mid-developmental stage and decreased again in subsequent stages. This expression pattern is different from that of countin and countin2. The distinct expression kinetics of three genes suggests that they would have unique roles in size control of D. discoideum.
Zhao, Yang; Dong, Daoyin; Reece, E Albert; Wang, Ashley R; Yang, Peixin
2018-01-01
Maternal diabetes induces neural tube defects, and oxidative stress is a causal factor for maternal diabetes-induced neural tube defects. The redox gene nuclear factor erythroid 2-related factor 2 is the master regulator of the cellular antioxidant system. In this study, we aimed to determine whether maternal diabetes inhibits nuclear factor erythroid 2-related factor 2 expression and nuclear factor erythroid 2-related factor 2-controlled antioxidant genes through the redox-sensitive miR-27a. We used a well-established type 1 diabetic embryopathy mouse model induced by streptozotocin for our in vivo studies. Embryos at embryonic day 8.5 were harvested for analysis of nuclear factor erythroid 2-related factor 2, nuclear factor erythroid 2-related factor 2-controlled antioxidant genes, and miR-27a expression. To determine if mitigating oxidative stress inhibits the increase of miR-27a and the decrease of nuclear factor erythroid 2-related factor 2 expression, we induced diabetic embryopathy in superoxide dismutase 2 (mitochondrial-associated antioxidant gene)-overexpressing mice. This model exhibits reduced mitochondria reactive oxygen species even in the presence of hyperglycemia. To investigate the causal relationship between miR-27a and nuclear factor erythroid 2-related factor 2 in vitro, we examined C17.2 neural stem cells under normal and high-glucose conditions. We observed that the messenger RNA and protein levels of nuclear factor erythroid 2-related factor 2 were significantly decreased in embryos on embryonic day 8.5 from diabetic dams compared to those from nondiabetic dams. High-glucose also significantly decreased nuclear factor erythroid 2-related factor 2 expression in a dose- and time-dependent manner in cultured neural stem cells. Our data revealed that miR-27a was up-regulated in embryos on embryonic day 8.5 exposed to diabetes, and that high glucose increased miR-27a levels in a dose- and time-dependent manner in cultured neural stem cells. In addition, we found that a miR-27a inhibitor abrogated the inhibitory effect of high glucose on nuclear factor erythroid 2-related factor 2 expression, and a miR-27a mimic suppressed nuclear factor erythroid 2-related factor 2 expression in cultured neural stem cells. Furthermore, our data indicated that the nuclear factor erythroid 2-related factor 2-controlled antioxidant enzymes glutamate-cysteine ligase catalytic subunit, glutamate-cysteine ligase modifier subunit, and glutathione S-transferase A1 were down-regulated by maternal diabetes in embryos on embryonic day 8.5 and high glucose in cultured neural stem cells. Inhibiting miR-27a restored expression of glutamate-cysteine ligase catalytic subunit, glutamate-cysteine ligase modifier subunit, and glutathione S-transferase A1. Overexpressing superoxide dismutase 2 reversed the maternal diabetes-induced increase of miR-27a and suppression of nuclear factor erythroid 2-related factor 2 and nuclear factor erythroid 2-related factor 2-controlled antioxidant enzymes. Our study demonstrates that maternal diabetes-induced oxidative stress increases miR-27a, which, in turn, suppresses nuclear factor erythroid 2-related factor 2 and its responsive antioxidant enzymes, resulting in diabetic embryopathy. Copyright © 2017 Elsevier Inc. All rights reserved.
Jiménez-Navarro, Manuel F; González, Francisco Jesús; Caballero-Borrego, Juan; Marchal, Juan Antonio; Rodríguez-Losada, Noela; Carrillo, Esmeralda; García-Pinilla, José Manuel; Hernández-García, José M; Pérez-González, Rita; Ramírez, Gemma; Aránega, Antonia; de Teresa Galván, Eduardo
2011-12-01
Multivessel coronary disease is still a postinfarction prognostic marker despite new forms of reperfusion, such as primary angioplasty. The aim of this study was to determine the time sequence of various sets of endothelial progenitor cells and angiogenic cytokines (vascular endothelial growth factor, hepatocyte growth factor) according to the degree of extension of the postinfarction coronary disease. We studied the release kinetics in 32 patients admitted for a first myocardial infarction with ST elevation, grouped according to whether they had single or multivessel disease, and 26 controls. The patients had a higher number of endothelial progenitor cells and angiogenic cytokines than the controls at all 3 measurements (admission, day 3, and day 7) of the following subsets: CD34, CD34+CD133+, CD34+KDR+, and CD34+CD133+KDR+CD45+(weak); this latter was higher on day 7. The levels of these cell subsets were all higher in the patients with single-vessel disease and at all 3 measurements. The vascular endothelial growth factor levels were raised during the first week and the hepatocyte growth factor showed an early peak on admission for infarction. No significant differences were seen in the cytokines according to coronary disease extension. Although the release kinetics of different subsets of endothelial progenitor cells in patients with a first acute myocardial infarction with ST elevation was similar in those with single vessel disease to those with multivessel disease, the number of circulating endothelial progenitor cells was greater in the patients with single vessel disease. The vascular endothelial growth factor levels were raised during the first postinfarction week and the hepatocyte growth factor were higher on admission. Copyright © 2011 Sociedad Española de Cardiología. Published by Elsevier Espana. All rights reserved.
Zong, Shan; Deng, Shuyun; Chen, Kenian; Wu, Jia Qian
2014-11-11
Hematopoietic stem cells (HSCs) are used clinically for transplantation treatment to rebuild a patient's hematopoietic system in many diseases such as leukemia and lymphoma. Elucidating the mechanisms controlling HSCs self-renewal and differentiation is important for application of HSCs for research and clinical uses. However, it is not possible to obtain large quantity of HSCs due to their inability to proliferate in vitro. To overcome this hurdle, we used a mouse bone marrow derived cell line, the EML (Erythroid, Myeloid, and Lymphocytic) cell line, as a model system for this study. RNA-sequencing (RNA-Seq) has been increasingly used to replace microarray for gene expression studies. We report here a detailed method of using RNA-Seq technology to investigate the potential key factors in regulation of EML cell self-renewal and differentiation. The protocol provided in this paper is divided into three parts. The first part explains how to culture EML cells and separate Lin-CD34+ and Lin-CD34- cells. The second part of the protocol offers detailed procedures for total RNA preparation and the subsequent library construction for high-throughput sequencing. The last part describes the method for RNA-Seq data analysis and explains how to use the data to identify differentially expressed transcription factors between Lin-CD34+ and Lin-CD34- cells. The most significantly differentially expressed transcription factors were identified to be the potential key regulators controlling EML cell self-renewal and differentiation. In the discussion section of this paper, we highlight the key steps for successful performance of this experiment. In summary, this paper offers a method of using RNA-Seq technology to identify potential regulators of self-renewal and differentiation in EML cells. The key factors identified are subjected to downstream functional analysis in vitro and in vivo.
Chen, Kenian; Wu, Jia Qian
2014-01-01
Hematopoietic stem cells (HSCs) are used clinically for transplantation treatment to rebuild a patient's hematopoietic system in many diseases such as leukemia and lymphoma. Elucidating the mechanisms controlling HSCs self-renewal and differentiation is important for application of HSCs for research and clinical uses. However, it is not possible to obtain large quantity of HSCs due to their inability to proliferate in vitro. To overcome this hurdle, we used a mouse bone marrow derived cell line, the EML (Erythroid, Myeloid, and Lymphocytic) cell line, as a model system for this study. RNA-sequencing (RNA-Seq) has been increasingly used to replace microarray for gene expression studies. We report here a detailed method of using RNA-Seq technology to investigate the potential key factors in regulation of EML cell self-renewal and differentiation. The protocol provided in this paper is divided into three parts. The first part explains how to culture EML cells and separate Lin-CD34+ and Lin-CD34- cells. The second part of the protocol offers detailed procedures for total RNA preparation and the subsequent library construction for high-throughput sequencing. The last part describes the method for RNA-Seq data analysis and explains how to use the data to identify differentially expressed transcription factors between Lin-CD34+ and Lin-CD34- cells. The most significantly differentially expressed transcription factors were identified to be the potential key regulators controlling EML cell self-renewal and differentiation. In the discussion section of this paper, we highlight the key steps for successful performance of this experiment. In summary, this paper offers a method of using RNA-Seq technology to identify potential regulators of self-renewal and differentiation in EML cells. The key factors identified are subjected to downstream functional analysis in vitro and in vivo. PMID:25407807
The Boston Keratoprosthesis: Comparing Corneal Epithelial Cell Compatibility with Titanium and PMMA
Ament, Jared D.; Spurr-Michaud, Sandra J.; Dohlman, Claes H.; Gipson, Ilene K.
2014-01-01
Purpose To determine in vitro whether titanium is superior in corneal cell compatibility to standard polymethyl-methacrylate (PMMA) for the Boston Keratoprosthesis (KPro). Methods Human corneal-limbal epithelial (HCLE) cells were cultured 24, 48, 72, 96, 120, 144, or 168 hours in culture plates alone (controls) or with PMMA or titanium discs. Experiments were performed in triplicate and repeated (final n = 6). To determine if a soluble, toxic factor is emitted from materials, concurrent experiments at 48 and 144 hours were performed with discs placed in Transwell Supports, with HCLE cells plated beneath. As an additional test for soluble factors, cells were incubated 24 hours with disc-conditioned media, and number of viable cells per well was quantified at each timepoint by proliferation assay. To determine if delayed cell proliferation was attributable to cell death, HCLE cell death was measured under all conditions and quantified at each timepoint by cytotoxicity assay. The effects of material on HCLE cell proliferation over time was determined by repeated measures ANOVA. P < 0.05 was statistically significant. Results HCLE cell proliferation was greater in wells with titanium discs compared to PMMA. Differences between the test discs and control non-disc cocultures were statistically significant over time for both cell proliferation (P = 0.001) and death (P = 0.0025). No significant difference was found using Transwells (P = 0.9836) or disc-conditioned media (P = 0.36). Conclusion This in vitro HCLE cell model demonstrates significantly increased cell proliferation and decreased cell death with cell/titanium contact compared to cell/PMMA contact. Moreover, differences are unlikely attributable to a soluble factor. Prospective in vivo analysis of the two KPro biomaterials is indicated. PMID:19574903
Apicobasal polarity of brain endothelial cells
Worzfeld, Thomas
2015-01-01
Normal brain homeostasis depends on the integrity of the blood–brain barrier that controls the access of nutrients, humoral factors, and immune cells to the CNS. The blood–brain barrier is composed mainly of brain endothelial cells. Forming the interface between two compartments, they are highly polarized. Apical/luminal and basolateral/abluminal membranes differ in their lipid and (glyco-)protein composition, allowing brain endothelial cells to secrete or transport soluble factors in a polarized manner and to maintain blood flow. Here, we summarize the basic concepts of apicobasal cell polarity in brain endothelial cells. To address potential molecular mechanisms underlying apicobasal polarity in brain endothelial cells, we draw on investigations in epithelial cells and discuss how polarity may go awry in neurological diseases. PMID:26661193
Mooney, R A; Freund, G G; Way, B A; Bordwell, K L
1992-11-25
Tyrosine phosphorylation is a mechanism of signal transduction shared by many growth factor receptors and oncogene products. Phosphotyrosine phosphatases (PTPases) potentially modulate or counter-regulate these signaling pathways. To test this hypothesis, the transmembrane PTPase CD45 (leukocyte common antigen) was expressed in the murine cell line C127. Hormone-dependent autophosphorylation of the platelet-derived growth factor (PDGF) and insulin-like growth factor-1 (IGF-1) receptors was markedly reduced in cells expressing the transmembrane PTPase. Tyrosine phosphorylation of other PDGF-dependent phosphoproteins (160, 140, and 55 kDa) and IGF-1-dependent phosphoproteins (145 kDa) was similarly decreased. Interestingly, the pattern of growth factor-independent tyrosine phosphorylations was comparable in cells expressing the PTPase and control cells. This suggests a selectivity or accessibility of the PTPase limited to a subset of cellular phosphotyrosyl proteins. The maximum mitogenic response to PDGF and IGF-1 in cells expressing the PTPase was decreased by 67 and 71%, respectively. These results demonstrate that a transmembrane PTPase can both affect the tyrosine phosphorylation state of growth factor receptors and modulate proximal and distal cellular responses to the growth factors.
Hamey, Fiona K.; Errami, Youssef
2017-01-01
Differentiation of lineage-committed cells from multipotent progenitors requires the establishment of accessible chromatin at lineage-specific transcriptional enhancers and promoters, which is mediated by pioneer transcription factors that recruit activating chromatin remodeling complexes. Here we show that the Mbd3/nucleosome remodeling and deacetylation (NuRD) chromatin remodeling complex opposes this transcriptional pioneering during B cell programming of multipotent lymphoid progenitors by restricting chromatin accessibility at B cell enhancers and promoters. Mbd3/NuRD-deficient lymphoid progenitors therefore prematurely activate a B cell transcriptional program and are biased toward overproduction of pro–B cells at the expense of T cell progenitors. The striking reduction in early thymic T cell progenitors results in compensatory hyperproliferation of immature thymocytes and development of T cell lymphoma. Our results reveal that Mbd3/NuRD can regulate multilineage differentiation by constraining the activation of dormant lineage-specific enhancers and promoters. In this way, Mbd3/NuRD protects the multipotency of lymphoid progenitors, preventing B cell–programming transcription factors from prematurely enacting lineage commitment. Mbd3/NuRD therefore controls the fate of lymphoid progenitors, ensuring appropriate production of lineage-committed progeny and suppressing tumor formation. PMID:28899870
Honeybee product therapeutic as stem cells homing for ovary failure.
Safitri, Erma; Widiyatno, Thomas V; Prasetyo, R Heru
2016-11-01
Complexity of the method of isolation, cultivation in vitro and the expensive cost of transplantation process of stem cells, it would require an innovation to homing and differentiation of stem cells and increase folliculogenesis. The stem cells homing was achieved through the provision of food or beverages derived from natural materials like honeybee product. Through honeybee product, there will be homing of stem cells and accompany with the sources from the body itself will take place in regeneration of the ovary. Female rats model of degenerative ovary was obtained through food fasting but still have drinking water for 5 days. It caused malnutrition and damage of the ovarian tissue. The administration of 50% honeybee product (T1) was performed for 10 consecutive days, while the positive control group (T0+) was fasted and not given honeybee product and the negative control (T0-) not fasted and without honeybee product. Observations were taken for homing of stem cells, raised of folliculogenesis, differentiation of stem cells, and regeneration of the ovarian tissue using routine H&E staining. Homing of stem cells shown the vascular endothelial growth factor and granulocyte colony-stimulating factor expression; enhancement of folliculogenesis was indicated by an increase of follicle dee Graaf count; enhancement of differentiation of stem cells was indicated by growth differentiation factor-9 expression; and regeneration of ovarian tissue indicated by intact ovarian tissue with growing follicles. Honeybee product can be induced endogenous stem cells in regeneration of ovary failure due to malnutrition.
Sakurada, Shinsaku; Kato, Tetsuji; Mashiba, Kohichi; Mori, Shigeo
1996-01-01
To examine the role of vascular endothelial growth factor (VEGF) in the development of edema associated with Kaposi's sarcoma (KS) in acquired immunodeficiency syndrome (AIDS), we exploited animal model systems to detect the activity that induces vascular hyper‐permeability (VHP) using cultured AIDS‐KS spindle cells. Cultured AIDS‐KS spindle cells and conditioned medium (AIDS‐KS‐CM) that had been semi‐purified through a heparin affinity column were tested for the ability to induce VHP in animals. The AIDS‐KS spindle cells and AIDS‐KS‐CM induced VHP that was histamine‐independent. The VHP‐inducing activity was detected in the 0.5 M NaCl fraction from the heparin affinity column and was blocked by anti‐VEGF neutralizing antibody. In addition, the production of VEGF was demonstrated in fresh AIDS‐KS tissue as well as in cultured AIDS‐KS cells, while control cells were negative for VEGF production. From these observations, we concluded that AIDS‐KS cells produce a factor(s) that promotes VHP, and this factor could be VEGF. PMID:9045943
Long noncoding RNA PANDA and scaffold-attachment-factor SAFA control senescence entry and exit.
Puvvula, Pavan Kumar; Desetty, Rohini Devi; Pineau, Pascal; Marchio, Agnés; Moon, Anne; Dejean, Anne; Bischof, Oliver
2014-11-19
Cellular senescence is a stable cell cycle arrest that limits the proliferation of pre-cancerous cells. Here we demonstrate that scaffold-attachment-factor A (SAFA) and the long noncoding RNA PANDA differentially interact with polycomb repressive complexes (PRC1 and PRC2) and the transcription factor NF-YA to either promote or suppress senescence. In proliferating cells, SAFA and PANDA recruit PRC complexes to repress the transcription of senescence-promoting genes. Conversely, the loss of SAFA-PANDA-PRC interactions allows expression of the senescence programme. Accordingly, we find that depleting either SAFA or PANDA in proliferating cells induces senescence. However, in senescent cells where PANDA sequesters transcription factor NF-YA and limits the expression of NF-YA-E2F-coregulated proliferation-promoting genes, PANDA depletion leads to an exit from senescence. Together, our results demonstrate that PANDA confines cells to their existing proliferative state and that modulating its level of expression can cause entry or exit from senescence.
Snail1 transcription factor controls telomere transcription and integrity.
Mazzolini, Rocco; Gonzàlez, Núria; Garcia-Garijo, Andrea; Millanes-Romero, Alba; Peiró, Sandra; Smith, Susan; García de Herreros, Antonio; Canudas, Sílvia
2018-01-09
Besides controlling epithelial-to-mesenchymal transition (EMT) and cell invasion, the Snail1 transcriptional factor also provides cells with cancer stem cell features. Since telomere maintenance is essential for stemness, we have examined the control of telomere integrity by Snail1. Fluorescence in situ hybridization (FISH) analysis indicates that Snail1-depleted mouse mesenchymal stem cells (MSC) have both a dramatic increase of telomere alterations and shorter telomeres. Remarkably, Snail1-deficient MSC present higher levels of both telomerase activity and the long non-coding RNA called telomeric repeat-containing RNA (TERRA), an RNA that controls telomere integrity. Accordingly, Snail1 expression downregulates expression of the telomerase gene (TERT) as well as of TERRA 2q, 11q and 18q. TERRA and TERT are transiently downregulated during TGFβ-induced EMT in NMuMG cells, correlating with Snail1 expression. Global transcriptome analysis indicates that ectopic expression of TERRA affects the transcription of some genes induced during EMT, such as fibronectin, whereas that of TERT does not modify those genes. We propose that Snail1 repression of TERRA is required not only for telomere maintenance but also for the expression of a subset of mesenchymal genes. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Moyes, Kara White; Sip, Christopher G.; Obenza, Willimark; Yang, Emily; Horst, Cody; Welikson, Robert E.; Hauschka, Stephen D.; Folch, Albert
2013-01-01
An improved understanding of the factors that regulate the migration of human embryonic stem cell-derived cardiomyocytes (hESC-CMs) would provide new insights into human heart development and suggest novel strategies to improve their electromechanical integration after intracardiac transplantation. Since nothing has been reported as to the factors controlling hESC-CM migration, we hypothesized that hESC-CMs would migrate in response to the extracellular matrix and soluble signaling molecules previously implicated in heart morphogenesis. To test this, we screened candidate factors by transwell assay for effects on hESC-CM motility, followed by validation via live-cell imaging and/or gap-closure assays. Fibronectin (FN) elicited a haptotactic response from hESC-CMs, with cells seeded on a steep FN gradient showing nearly a fivefold greater migratory activity than cells on uniform FN. Studies with neutralizing antibodies indicated that adhesion and migration on FN are mediated by integrins α-5 and α-V. Next, we screened 10 soluble candidate factors by transwell assay and found that the noncanonical Wnt, Wnt5a, elicited an approximately twofold increase in migration over controls. This effect was confirmed using the gap-closure assay, in which Wnt5a-treated hESC-CMs showed approximately twofold greater closure than untreated cells. Studies with microfluidic-generated Wnt5a gradients showed that this factor was chemoattractive as well as chemokinetic, and Wnt5a-mediated responses were inhibited by the Frizzled-1/2 receptor antagonist, UM206. In summary, hESC-CMs show robust promigratory responses to FN and Wnt5a, findings that have implications on both cardiac development and cell-based therapies. PMID:23517131
Tong, Wilbur; Brown, Shelley E.; Krebsbach, Paul H.
2009-01-01
Human embryonic stem cells (hESCs) may offer an unlimited supply of cells that can be directed to differentiate into all cell types within the body and used in regenerative medicine for tissue and cell replacement therapies. Previous work has shown that exposing hESCs to exogenous factors such as dexamethasone, ascorbic acid and β-glycerophosphate can induce osteogenesis. The specific factors that induce osteogenic differentiation of hESCs have not been identified yet, however, it is possible that differentiated human bone marrow stromal cells (hMBSCs) may secrete factors within the local microenvironment that promote osteogenesis. Here we report that the lineage progression of hESCs to osteoblasts is achieved in the presence of soluble signaling factors derived from differentiated hBMSCs. For 28 days, hESCs were grown in a transwell co-culture system with hBMSCs that had been previously differentiated in growth medium containing defined osteogenic supplements for 7-24 days. As a control. hESCs were co-cultured with undifferentiated hBMSCs and alone. Von Kossa and Alizarin Red staining as well as immunohistochemistry confirmed that the hESCs co-cultured with differentiated hBMSCs formed mineralized bone nodules and secreted extracellular matrix protein osteocalcin (OCN). Quantitative Alizarin Red assays showed increased mineralization as compared to the control with undifferentiated hBMSCs. RT-PCR revealed the loss of pluripotent hESC markers with the concomitant gain of osteoblastic markers such as collagen type I, runx2, and osterix. We demonstrate that osteogenic growth factors derived from differentiated hBMSCs within the local microenvironment may help to promote hESC osteogenic differentiation. PMID:20671800
Battula, V. Lokesh; Chen, Ye; Cabreira, Maria da Graca; Ruvolo, Vivian; Wang, Zhiqiang; Ma, Wencai; Konoplev, Sergej; Shpall, Elizabeth; Lyons, Karen; Strunk, Dirk; Bueso-Ramos, Carlos; Davis, Richard Eric; Konopleva, Marina
2013-01-01
Mesenchymal stromal cells (MSCs) are a major component of the leukemia bone marrow (BM) microenvironment. Connective tissue growth factor (CTGF) is highly expressed in MSCs, but its role in the BM stroma is unknown. Therefore, we knocked down (KD) CTGF expression in human BM-derived MSCs by CTGF short hairpin RNA. CTGF KD MSCs exhibited fivefold lower proliferation compared with control MSCs and had markedly fewer S-phase cells. CTGF KD MSCs differentiated into adipocytes at a sixfold higher rate than controls in vitro and in vivo. To study the effect of CTGF on engraftment of leukemia cells into BM, an in vivo model of humanized extramedullary BM (EXM-BM) was developed in NOD/SCID/IL-2rgnull mice. Transplanted Nalm-6 or Molm-13 human leukemia cells engrafted at a threefold higher rate in adipocyte-rich CTGF KD MSC-derived EXM-BM than in control EXM-BM. Leptin was found to be highly expressed in CTGF KD EXM-BM and in BM samples of patients with acute myeloid and acute lymphoblastic leukemia, whereas it was not expressed in normal controls. Given the established role of the leptin receptor in leukemia cells, the data suggest an important role of CTGF in MSC differentiation into adipocytes and of leptin in homing and progression of leukemia. PMID:23741006
A Pdx-1-Regulated Soluble Factor Activates Rat and Human Islet Cell Proliferation
Hayes, Heather L.; Zhang, Lu; Becker, Thomas C.; Haldeman, Jonathan M.; Stephens, Samuel B.; Arlotto, Michelle; Moss, Larry G.; Newgard, Christopher B.
2016-01-01
The homeodomain transcription factor Pdx-1 has important roles in pancreas and islet development as well as in β-cell function and survival. We previously reported that Pdx-1 overexpression stimulates islet cell proliferation, but the mechanism remains unclear. Here, we demonstrate that overexpression of Pdx-1 triggers proliferation largely by a non-cell-autonomous mechanism mediated by soluble factors. Consistent with this idea, overexpression of Pdx-1 under the control of a β-cell-specific promoter (rat insulin promoter [RIP]) stimulates proliferation of both α and β cells, and overexpression of Pdx-1 in islets separated by a Transwell membrane from islets lacking Pdx-1 overexpression activates proliferation in the untreated islets. Microarray and gene ontology (GO) analysis identified inhibin beta-B (Inhbb), an activin subunit and member of the transforming growth factor β (TGF-β) superfamily, as a Pdx-1-responsive gene. Overexpression of Inhbb or addition of activin B stimulates rat islet cell and β-cell proliferation, and the activin receptors RIIA and RIIB are required for the full proliferative effects of Pdx-1 in rat islets. In human islets, Inhbb overexpression stimulates total islet cell proliferation and potentiates Pdx-1-stimulated proliferation of total islet cells and β cells. In sum, this study identifies a mechanism by which Pdx-1 induces a soluble factor that is sufficient to stimulate both rat and human islet cell proliferation. PMID:27620967
Tureckova, J; Wilson, E M; Cappalonga, J L; Rotwein, P
2001-10-19
The differentiation and maturation of skeletal muscle require interactions between signaling pathways activated by hormones and growth factors and an intrinsic regulatory network controlled by myogenic transcription factors. Insulin-like growth factors (IGFs) play key roles in muscle development in the embryo and in regeneration in the adult. To study mechanisms of IGF action in muscle, we developed a myogenic cell line that overexpresses IGF-binding protein-5. C2BP5 cells remain quiescent in low serum differentiation medium until the addition of IGF-I. Here we use this cell line to identify signaling pathways controlling IGF-mediated differentiation. Induction of myogenin by IGF-I and myotube formation were prevented by the phosphatidylinositol (PI) 3-kinase inhibitor, LY294002, even when included 2 days after growth factor addition, whereas expression of active PI 3-kinase could promote differentiation in the absence of IGF-I. Differentiation also was induced by myogenin but was blocked by LY294002. The differentiation-promoting effects of IGF-I were mimicked by a modified membrane-targeted inducible Akt-1 (iAkt), and iAkt was able to stimulate differentiation of C2 myoblasts and primary mouse myoblasts incubated with otherwise inhibitory concentrations of LY294002. These results show that an IGF-regulated PI 3-kinase-Akt pathway controls muscle differentiation by mechanisms acting both upstream and downstream of myogenin.
Zhuo, Minglei; Chen, Hanxiao; Zhang, Tianzhuo; Yang, Xue; Zhong, Jia; Wang, Yuyan; An, Tongtong; Wu, Meina; Wang, Ziping; Huang, Jing; Zhao, Jun
2018-05-04
The PD-L1 antibody atezolizumab has shown promising efficacy in patients with advanced non-small cell lung cancer. But the predictive marker of clinical benefit has not been identified. This study aimed to search for potential predictive factors in circulating blood of patients receiving atezolizumab. Ten patients diagnosed with advanced non-small cell lung cancer were enrolled in this open-label observing study. Circulating immune cells and plasma tumor markers were examined in peripheral blood from these patients before and after atezolizumab treatment respectively. Relation between changes in circulating factors and anti-tumor efficacy were analyzed. Blood routine test showed that atezolizumab therapy induced slightly elevation of white blood cells count generally. The lymphocyte ratio was increased slightly in disease controlled patients but decreased prominently in disease progressed patients in response to atezolizumab therapy. Flow cytometric analysis revealed changes in percentage of various immune cell types, including CD4+ T cell, CD8+ T cell, myeloid-derived suppressor cell, regulatory T cell and PD-1 expressing T cell after atezolizumab. Levels of plasma tumor marker CEA, CA125 and CA199 were also altered after anti-PD-L1 therapy. In comparison with baseline, the disease progressed patients showed sharp increase in tumor marker levels, while those disease controlled patients were seen with decreased regulatory T cell and myeloid-derived suppressor cell ratios. The circulating immune cell ratios and plasma tumor marker levels were related with clinical efficacy of atezolizumab therapy. These factors could be potential predictive marker for anti-PD-L1 therapy in advanced non-small cell lung cancer.
Dow, J M
2017-01-01
Cell-to-cell signals of the diffusible signal factor (DSF) family are cis-2-unsaturated fatty acids of differing chain length and branching pattern. DSF signalling has been described in diverse bacteria to include plant and human pathogens where it acts to regulate functions such as biofilm formation, antibiotic tolerance and the production of virulence factors. DSF family signals can also participate in interspecies signalling with other bacteria and interkingdom signalling such as with the yeast Candida albicans. Interference with DSF signalling may afford new opportunities for the control of bacterial disease. Such strategies will depend in part on detailed knowledge of the molecular mechanisms underlying the processes of signal synthesis, perception and turnover. Here, I review both recent progress in understanding DSF signalling at the molecular level and prospects for translating this knowledge into approaches for disease control. © 2016 The Society for Applied Microbiology.
Asthma: T-bet--a master controller?
Robinson, Douglas S; Lloyd, Clare M
2002-04-30
The transcription factors T-bet and GATA3 are important reciprocal determinants of Th1 and Th2 T helper cell differentiation. Recent evidence suggests that these factors may affect airway immunopathology in asthma.
Loss of Dlg-1 in the Mouse Lens Impairs Fibroblast Growth Factor Receptor Signaling
Lee, SungKyoung; Griep, Anne E.
2014-01-01
Coordination of cell proliferation, differentiation and survival is essential for normal development and maintenance of tissues in the adult organism. Growth factor receptor tyrosine kinase signaling pathways and planar cell polarity pathways are two regulators of many developmental processes. We have previously shown through analysis of mice conditionally null in the lens for the planar cell polarity gene (PCP), Dlg-1, that Dlg-1 is required for fiber differentiation. Herein, we asked if Dlg-1 is a regulator of the Fibroblast growth factor receptor (Fgfr) signaling pathway, which is known to be required for fiber cell differentiation. Western blot analysis of whole fiber cell extracts from control and Dlg-1 deficient lenses showed that levels of the Fgfr signaling intermediates pErk, pAkt, and pFrs2α, the Fgfr target, Erm, and the fiber cell specific protein, Mip26, were reduced in the Dlg-1 deficient fiber cells. The levels of Fgfr2 were decreased in Dlg-1 deficient lenses compared to controls. Conversely, levels of Fgfr1 in Dlg-1 deficient lenses were increased compared to controls. The changes in Fgfr levels were found to be specifically in the triton insoluble, cytoskeletal associated fraction of Dlg-1 deficient lenses. Immunofluorescent staining of lenses from E13.5 embryos showed that expression levels of pErk were reduced in the transition zone, a region of the lens that exhibits PCP, in the Dlg-1 deficient lenses as compared to controls. In control lenses, immunofluorescent staining for Fgfr2 was observed in the epithelium, transition zone and fibers. By E13.5, the intensity of staining for Fgfr2 was reduced in these regions of the Dlg-1 deficient lenses. Thus, loss of Dlg-1 in the lens impairs Fgfr signaling and leads to altered levels of Fgfrs, suggesting that Dlg-1 is a modulator of Fgfr signaling pathway at the level of the receptors and that Dlg-1 regulates fiber cell differentiation through its role in PCP. PMID:24824078
Bone cell communication factors and Semaphorins
Negishi-Koga, Takako; Takayanagi, Hiroshi
2012-01-01
Bone tissue is continuously renewed throughout adult life by a process called 'remodeling', which involves a dynamic interplay among bone cells including osteoclasts, osteoblasts and osteocytes. For example, a tight coupling between bone resorption and formation is essential for the homeostasis of the skeletal system. Studies on the coupling mechanism in physiological and pathological settings have revealed that osteoclasts or osteoclastic bone resorption promote bone formation through the production of diverse coupling factors. The classical coupling factors are the molecules that promote bone formation after resorption, but there may be distinct mechanisms at work in various phases of bone remodeling. A recent study revealed that the Semaphorin 4D expressed by osteoclasts inhibits bone formation, which represents a mechanism by which coupling is dissociated. Furthermore, it has been demonstrated that osteoblastic expression of Semaphorin 3A exerts an osteoprotective effect by both suppressing bone resorption and increasing bone formation. Thus, recent advances have made it increasingly clear that bone remodeling is regulated by not only classical coupling factors, but also molecules that mediate cell–cell communication among bone cells. We propose that such factors be called bone cell communication factors, which control the delicate balance of the interaction of bone cells so as to maintain bone homeostasis. PMID:24171101
Chen, Chung-Yi; Cheng, Kuo-Chen; Chang, Andy Y; Lin, Ying-Ting; Hseu, You-Cheng; Wang, Hui-Min
2012-01-01
In this work, one of Zingiber officinale components, 10-shogaol, was tested with 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging, metal chelating ability, and reducing power to show antioxidant activity. 10-Shogaol promoted human normal epidermal keratinocytes and dermal fibroblasts cell growths. 10-Shogaol enhanced growth factor production in transforming growth factor-β (TGF-β), platelet derived growth factor-αβ (PDGF-αβ) and vascular endothelial growth factors (VEGF) of both cells. In the in vitro wound healing assay for 12 or 24 h, with 10-shogaol, the fibroblasts and keratinocytes migrated more rapidly than the vehicle control group. Thus, this study substantiates the target compound, 10-shogaol, as an antioxidant for human skin cell growth and a migration enhancer with potential to be a novel wound repair agent. PMID:22408422
AGL61 interacts with AGL80 and is required for central cell development in Arabidopsis.
Steffen, Joshua G; Kang, Il-Ho; Portereiko, Michael F; Lloyd, Alan; Drews, Gary N
2008-09-01
The central cell of the female gametophyte plays a role in pollen tube guidance and in regulating the initiation of endosperm development. Following fertilization, the central cell gives rise to the seed's endosperm, which nourishes the developing embryo within the seed. The molecular mechanisms controlling specification and differentiation of the central cell are poorly understood. We identified AGL61 in a screen for transcription factor genes expressed in the female gametophyte. AGL61 encodes a Type I MADS domain protein, which likely functions as a transcription factor. Consistent with this, an AGL61-green fluorescent protein fusion protein is localized to the nucleus. In the context of the ovule and seed, AGL61 is expressed exclusively in the central cell and early endosperm. agl61 female gametophytes are affected in the central cell specifically. The morphological defects include an overall reduction in size of the central cell and a reduced or absent central cell vacuole. When fertilized with wild-type pollen, agl61 central cells fail to give rise to endosperm. In addition, synergid- and antipodal-expressed genes are ectopically expressed in agl61 central cells. The expression pattern and mutant phenotype of AGL61 are similar to those of AGL80, suggesting that AGL61 may function as a heterodimer with AGL80 within the central cell; consistent with this, AGL61 and AGL80 interact in yeast two-hybrid assays. Together, these data suggest that AGL61 functions as a transcription factor and controls the expression of downstream genes during central cell development.
Mattei, Fabrizio; Schiavoni, Giovanna; Sestili, Paola; Spadaro, Francesca; Fragale, Alessandra; Sistigu, Antonella; Lucarini, Valeria; Spada, Massimo; Sanchez, Massimo; Scala, Stefania; Battistini, Angela; Belardelli, Filippo; Gabriele, Lucia
2012-01-01
The transcription factor interferon regulatory factor-8 (IRF-8) is crucial for myeloid cell development and immune response and also acts as a tumor suppressor gene. Here, we analyzed the role of IRF-8 in the cross talk between melanoma cells and tumor-infiltrating leukocytes. B16-F10 melanoma cells transplanted into IRF-8-deficient (IRF-8-/-) mice grow more rapidly, leading to higher numbers of lung metastasis, with respect to control animals. These events correlated with reduced dendritic cell and T cell infiltration, accumulation of myeloid-derived suppressor cells and a chemokine/chemokine receptor expression profile within the tumor microenvironment supporting tumor growth, angiogenesis, and metastasis. Noticeably, primary tumors developing in IRF-8-/- mice displayed a clear-cut inhibition of IRF-8 expression in melanoma cells. Injection of the demethylating agent 5-aza-2′-deoxycytidine into melanoma-bearing IRF-8-/- animals induced intratumoral IRF-8 expression and resulted in the re-establishment of a chemokine/ chemokine receptor pattern favoring leukocyte infiltration and melanoma growth arrest. Importantly, intrinsic IRF-8 expression was progressively down-modulated during melanoma growth in mice and in human metastatic melanoma cells with respect to primary tumors. Lastly, IRF-8 expression in melanoma cells was directly modulated by soluble factors, among which interleukin-27 (IL-27), released by immune cells from tumor-bearing mice. Collectively, these results underscore a key role of IRF-8 in the cross talk between melanoma and immune cells, thus revealing its critical function within the tumor microenvironment in regulating melanoma progression and invasiveness. PMID:23308054
Leith, John T; Davis, Paul J; Mousa, Shaker A; Hercbergs, Aleck A
2017-02-16
We investigated radiosensitization in an untreated basal cell carcinoma (TE.354.T) cell line and post-pretreatment with tetraiodothyroacetic acid (tetrac) X 1 h at 37°C, 0.2 and 2.0 µM tetrac. Radioresistant TE.354.T cells were grown in modified medium containing fibroblast growth factor-2, stem cell factor-1 and a reduced calcium level. We also added reproductively inactivated (30 Gy) "feeder cells" to the medium. The in vitro doubling time was 34.1 h, and the colony forming efficiency was 5.09 percent. These results were therefore suitable for clonogenic radiation survival assessment. The 250 kVp X-ray survival curve of control TE.354.T cells showed linear-quadratic survival parameters of α X-ray = 0.201 Gy -1 and β X-ray = 0.125 Gy -2 . Tetrac concentrations of either 0.2 or 2.0 µM produced α X-ray and β X-ray parameters of 2.010 and 0.282 Gy -1 and 2.050 and 0.837 Gy -2 , respectively. The surviving fraction at 2 Gy (SF 2 ) for control cells was 0.581, while values for 0.2 and 2.0 µM tetrac were 0.281 and 0.024. The SF 2 data show that tetrac concentrations of 0.2 and 2.0 µM sensitize otherwise radioresistant TE.354.T cells by factors of 2.1 and 24.0, respectively. Thus, radioresistant basal cell carcinoma cells may be radiosensitized pharmacologically by exposure to tetrac.
Weigent, Douglas A; Arnold, Robyn E
2005-03-01
Almost all of the previous studies with growth hormone (GH) have been done with exogenously supplied GH and, therefore, involve actions of the hormone through its receptor. However, the actions of endogenous or lymphocyte GH are still unclear. In a previous study, we showed that overexpression of GH (GHo) in a lymphoid cell line resulted in protection of the cells to apoptosis mediated by nitric oxide (NO). In the present study, we show that the protection from apoptosis could be transferred to control cells with culture fluids obtained from GHo cells and blocked by antibodies to the insulin-like growth factor-1 (IGF-1) or antibodies to the IGF-1-receptor (IGF-1R). Northern and Western blot analysis detected significantly higher levels of IGF-1 in cells overexpressing GH. An increase in the expression of the IGF-1R in GHo cells was also detected by Western blot analysis, (125)I-IGF-1 binding and analysis of IGF-1R promoter luciferase constructs. Transfection of GHo cells with a dominant negative IGF-1R mutant construct blocked the generation of NO and activation of Akt seen in GHo cells compared to vector alone control EL4 cells. The results suggest that one of the consequences of the overexpression of GH, in cells lacking the GH receptor, is an increase in the expression of IGF-1 and the IGF-1R which mediate the protection of EL4 lymphoma cells from apoptosis.
Pintucci, Giuseppe; Yu, Pey-Jen; Saponara, Fiorella; Kadian-Dodov, Daniella L; Galloway, Aubrey C; Mignatti, Paolo
2005-08-15
Basic fibroblast growth factor (FGF-2) and platelet-derived growth factor (PDGF) are implicated in vascular remodeling secondary to injury. Both growth factors control vascular endothelial and smooth muscle cell proliferation, migration, and survival through overlapping intracellular signaling pathways. In vascular smooth muscle cells PDGF-BB induces FGF-2 expression. However, the effect of PDGF on the different forms of FGF-2 has not been elucidated. Here, we report that treatment of vascular aortic smooth muscle cells with PDGF-BB rapidly induces expression of 20.5 and 21 kDa, high molecular weight (HMW) FGF-2 that accumulates in the nucleus and nucleolus. Conversely, PDGF treatment has little or no effect on 18 kDa, low-molecular weight FGF-2 expression. PDGF-BB-induced upregulation of HMW FGF-2 expression is controlled by sustained activation of extracellular signal-regulated kinase (ERK)-1/2 and is abolished by actinomycin D. These data describe a novel interaction between PDGF-BB and FGF-2, and indicate that the nuclear forms of FGF-2 may mediate the effect of PDGF activity on vascular smooth muscle cells.
Roles of Pro-viral Host Factors in Mosquito-Borne Flavivirus Infections.
Campos, Rafael K; Garcia-Blanco, Mariano A; Bradrick, Shelton S
2017-07-09
Identification and analysis of viral host factors is a growing area of research which aims to understand the how viruses molecularly interface with the host cell. Investigations into flavivirus-host interactions has led to new discoveries in viral and cell biology, and will potentially bolster strategies to control the important diseases caused by these pathogens. Here, we address the current knowledge of prominent host factors required for the flavivirus life-cycle and mechanisms by which they promote infection.
Prevention of Breast Cell Transformation by Blockade of the AP-1 Transcription Factor
2000-10-01
Distribution Unlimited 13. ABSTRACT (Maximum 200 Words) In this study, we are investigating the role of AP- M in controlling breast cell growth and...serum and these growth factors depend on AP-1 to transduce proliferative signal. AP- M blockade induced by the expression of TAM67 inhibits breast...demonstrated that TAM67 inhibits basal AP-1 activity and AP- M activity stimulated by several different growth factors. We have also discovered that AP-1
Detry, C; Lamour, V; Castronovo, V; Bellahcène, A
2008-02-01
Bone sialoprotein (BSP) expression is detected in a variety of human osteotropic cancers. High expression of BSP in breast and prostate primary carcinomas is associated with progression and bone metastases development. In this study, we examined the transcriptional regulation of BSP gene expression in MDA-MB-231 and MCF-7 human breast cancer cells compared with Saos-2 human osteoblast-like cells. BSP human promoter deletion analyses delineated a -56/-84 region, which comprises a cAMP response element (CRE) that was sufficient for maximal promoter activity in breast cancer cell lines. We found that the basic fibroblast growth factor response element (FRE) also located in the proximal promoter was a crucial regulator of human BSP promoter activity in Saos-2 but not in breast cancer cells. Promoter activity experiments in combination with DNA mobility shift assays demonstrated that BSP promoter activity is under the control of the CRE element, through CREB-1, JunD and Fra-2 binding, in MDA-MB-231, MCF-7 and in Saos-2 cells. Forskolin, a protein kinase A pathway activator, failed to enhance BSP transcriptional activity suggesting that CRE site behaves as a constitutive rather than an inducible element in these cell lines. Over-expression of JunD and Fra-2 increased BSP promoter activity and upregulated endogenous BSP protein expression in MCF-7 and Saos-2 cells while siRNA-mediated inhibition of both factors expression significantly reduced BSP protein level in MDA-MB-231. Collectively, these data provide with new transcriptional mechanisms, implicating CREB and AP-1 factors, that control BSP gene expression in breast cancer cells.
Endocrine pancreatic development: impact of obesity and diet
O'Dowd, Jacqueline F.; Stocker, Claire J.
2013-01-01
During embryonic development, multipotent endodermal cells differentiate to form the pancreas. Islet cell clusters arising from the pancreatic bud form the acini tissue and exocrine ducts whilst pancreatic islets form around the edges of the clusters. The successive steps of islet differentiation are controlled by a complex network of transcription factors and signals that influence cell differentiation, growth and lineage. A Westernized lifestyle has led to an increased consumption of a high saturated fat diet, and an increase in maternal obesity. The developing fetus is highly sensitive to the intrauterine environment, therefore any alteration in maternal nutrition during gestation and lactation which affects the in-utero environment during the key developmental phases of the pancreas may change the factors controlling β-cell development and β-cell mass. Whilst the molecular mechanisms behind the adaptive programming of β-cells are still poorly understood it is established that changes arising from maternal obesity and/or over-nutrition may affect the ability to maintain fetal β-cell mass resulting in an increased risk of type 2 diabetes in adulthood. PMID:23882220
Novel anti-angiogenic effects of formononetin in human colon cancer cells and tumor xenograft.
Auyeung, Kathy Ka-Wai; Law, Pui-Ching; Ko, Joshua Ka-Shun
2012-12-01
Formononetin is a novel herbal isoflavonoid isolated from Astragalus membranaceus, a medicinal plant that possesses antitumorigenic properties. Our previous findings demonstrated that formononetin initiates growth-inhibitory and pro-apoptotic activities in human colon cancer cells. In the present study, we aimed to further examine the potential of formononetin in controlling angiogenesis and tumor cell invasiveness in human colon cancer cells and tumor xenografts. The results showed that formononetin downregulated the expression of the key pro-angiogenic factors, including vascular endothelial growth factor (VEGF) and matrix metalloproteinases. We also discovered that the invasiveness of metastatic colon cancer cells was alleviated following drug treatment. The potential anti-angiogenic effect of formononetin was examined in nude mouse xenografts. The tumor size and the number of proliferating cells were reduced in the tumor tissues obtained from the formononetin-treated group. The serum VEGF level was also reduced in the drug-treated animals when compared to the controls. These findings suggest that formononetin inhibits angiogenesis and tumor cell invasion, and thus support its use in the treatment of advanced and metastatic colon cancers.
Horie, Takashi; Yamazaki, Seiji; Hanada, Sayaka; Kobayashi, Shuzo; Tsukamoto, Tatsuo; Haruna, Tetsuya; Sakaguchi, Katsuhiko; Sakai, Ken; Obara, Hideaki; Morishita, Kiyofumi; Saigo, Kenichi; Shintani, Yoshiaki; Kubo, Kohmei; Hoshino, Junichi; Oda, Teiji; Kaneko, Eiji; Nishikido, Masaharu; Ioji, Tetsuya; Kaneda, Hideaki; Fukushima, Masanori
2018-06-07
The clinical usefulness of peripheral blood (PB) mononuclear cell (MNC) transplantation in patients with peripheral arterial disease (PAD), especially in those with mild-to-moderate severity, has not been fully clarified.Methods and Results:A randomized clinical trial was conducted to evaluate the efficacy and safety of granulocyte colony-stimulating factor (G-CSF)-mobilized PBMNC transplantation in patients with PAD (Fontaine stage II-IV and Rutherford category 1-5) caused by arteriosclerosis obliterans or Buerger's disease. The primary endpoint was progression-free survival (PFS). In total, 107 subjects were enrolled. At baseline, Fontaine stage was II/III in 82 patients and IV in 21, and 54 patients were on hemodialysis. A total of 50 patients had intramuscular transplantation of PBMNC combined with standard of care (SOC) (cell therapy group), and 53 received SOC only (control group). PFS tended to be improved in the cell therapy group than in the control group (P=0.07). PFS in Fontaine stage II/III subgroup was significantly better in the cell therapy group than in the control group. Cell therapy-related adverse events were transient and not serious. In this first randomized, large-scale clinical trial of G-CSF-mobilized PBMNC transplantation, the cell therapy was tolerated by a variety of PAD patients. The PBMNC therapy was significantly effective for inhibiting disease progression in mild-to-moderate PAD.
Estradiol targets T cell signaling pathways in human systemic lupus.
Walters, Emily; Rider, Virginia; Abdou, Nabih I; Greenwell, Cindy; Svojanovsky, Stan; Smith, Peter; Kimler, Bruce F
2009-12-01
The major risk factor for developing systemic lupus erythematosus (SLE) is being female. The present study utilized gene profiles of activated T cells from females with SLE and healthy controls to identify signaling pathways uniquely regulated by estradiol that could contribute to SLE pathogenesis. Selected downstream pathway genes (+/- estradiol) were measured by real time polymerase chain amplification. Estradiol uniquely upregulated six pathways in SLE T cells that control T cell function including interferon-alpha signaling. Measurement of interferon-alpha pathway target gene expression revealed significant differences (p= 0.043) in DRIP150 (+/- estradiol) in SLE T cell samples while IFIT1 expression was bimodal and correlated moderately (r= 0.55) with disease activity. The results indicate that estradiol alters signaling pathways in activated SLE T cells that control T cell function. Differential expression of transcriptional coactivators could influence estrogen-dependent gene regulation in T cell signaling and contribute to SLE onset and disease pathogenesis.
Millonigg, Sophia; Eckmann, Christian R.
2014-01-01
To avoid organ dysfunction as a consequence of tissue diminution or tumorous growth, a tight balance between cell proliferation and differentiation is maintained in metazoans. However, cell-intrinsic gene expression mechanisms controlling adult tissue homeostasis remain poorly understood. By focusing on the adult Caenorhabditis elegans reproductive tissue, we show that translational activation of mRNAs is a fundamental mechanism to maintain tissue homeostasis. Our genetic experiments identified the Trf4/5-type cytoplasmic poly(A) polymerase (cytoPAP) GLD-4 and its enzymatic activator GLS-1 to perform a dual role in regulating the size of the proliferative zone. Consistent with a ubiquitous expression of GLD-4 cytoPAP in proliferative germ cells, its genetic activity is required to maintain a robust proliferative adult germ cell pool, presumably by regulating many mRNA targets encoding proliferation-promoting factors. Based on translational reporters and endogenous protein expression analyses, we found that gld-4 activity promotes GLP-1/Notch receptor expression, an essential factor of continued germ cell proliferation. RNA-protein interaction assays documented also a physical association of the GLD-4/GLS-1 cytoPAP complex with glp-1 mRNA, and ribosomal fractionation studies established that GLD-4 cytoPAP activity facilitates translational efficiency of glp-1 mRNA. Moreover, we found that in proliferative cells the differentiation-promoting factor, GLD-2 cytoPAP, is translationally repressed by the stem cell factor and PUF-type RNA-binding protein, FBF. This suggests that cytoPAP-mediated translational activation of proliferation-promoting factors, paired with PUF-mediated translational repression of differentiation factors, forms a translational control circuit that expands the proliferative germ cell pool. Our additional genetic experiments uncovered that the GLD-4/GLS-1 cytoPAP complex promotes also differentiation, forming a redundant translational circuit with GLD-2 cytoPAP and the translational repressor GLD-1 to restrict proliferation. Together with previous findings, our combined data reveals two interconnected translational activation/repression circuitries of broadly conserved RNA regulators that maintain the balance between adult germ cell proliferation and differentiation. PMID:25254367
Llauradó, Marta; Abal, Miguel; Castellví, Josep; Cabrera, Sílvia; Gil-Moreno, Antonio; Pérez-Benavente, Asumpció; Colás, Eva; Doll, Andreas; Dolcet, Xavier; Matias-Guiu, Xavier; Vazquez-Levin, Mónica; Reventós, Jaume; Ruiz, Anna
2012-04-01
Epithelial ovarian cancer is the most lethal gynecological malignancy and the fifth leading cause of cancer deaths in women in the Western world. ETS transcription factors are known to act as positive or negative regulators of the expression of genes that are involved in various biological processes, including those that control cellular proliferation, differentiation, apoptosis, tissue remodeling, angiogenesis and transformation. ETV5 belongs to the PEA3 subfamily. PEA3 subfamily members are able to activate the transcription of proteases, matrix metalloproteinases and tissue inhibitor of metalloproteases, which is central to both tumor invasion and angiogenesis. Here, we examined the role of the ETV5 transcription factor in epithelial ovarian cancer and we found ETV5 was upregulated in ovarian tumor samples compared to ovarian tissue controls. The in vitro inhibition of ETV5 decreased cell proliferation in serum-deprived conditions, induced EMT and cell migration and decreased cell adhesion to extracellular matrix components. ETV5 inhibition also decreased cell-cell adhesion and induced apoptosis in anchorage-independent conditions. Accordingly, upregulation of ETV5 induced the expression of cell adhesion molecules and enhanced cell survival in a spheroid model. Our findings suggest that the overexpression of ETV5 detected in ovarian cancer cells may contribute to ovarian tumor progression through the ability of ETV5 to enhance proliferation of ovarian cancer cells. In addition, upregulation of ETV5 would play a role in ovarian cancer cell dissemination and metastasis into the peritoneal cavity by protecting ovarian cancer cells from apoptosis and by increasing the adhesion of ovarian cancer cells to the peritoneal wall through the regulation of cell adhesion molecules. Copyright © 2011 UICC.
Roles of a solo LuxR in the biological control agent Lysobacter enzymogenes strain OH11.
Qian, Guoliang; Xu, Feifei; Venturi, Vittorio; Du, Liangcheng; Liu, Fengquan
2014-03-01
Lysobacter enzymogenes is a ubiquitous plant-associated and environmentally friendly bacterium emerging as a novel biological control agent of plant disease. This bacterium produces diverse antifungal factors, such as lytic enzymes and a secondary metabolite (heat-stable antifungal factor [HSAF]) having antifungal activity with a novel structure and mode of action. The regulatory mechanisms for biosynthesis of antifungal factors is largely unknown in L. enzymogenes. The solo LuxR proteins have been shown to be widespread, playing important roles in plant-associated bacteria. Here, we cloned and studied a solo LuxR protein, LesR, from L. enzymogenes strain OH11. Overexpression but not deletion of lesR significantly impaired HSAF biosynthesis levels and antimicrobial activities but did not show visible effect on production of major lytic enzymes. Overexpression of lesR also led to remarkably accelerated cell aggregation and induced production of a melanin-like pigment in L. enzymogenes; these two phenotypes are mediated by the diffusible factor cell-to-cell signaling system of L. enzymogenes. The C-terminus helix-turn-helix domain was shown to be critical for several lesR-controlled functions. Overall, our study provides the first example of the roles and mechanisms of a solo LuxR protein in a plant-associated L. enzymogenes.
Comparative analysis of cells and proteins of pumpkin plants for the control of fruit size.
Nakata, Yumiko; Taniguchi, Go; Takazaki, Shinya; Oda-Ueda, Naoko; Miyahara, Kohji; Ohshima, Yasumi
2012-09-01
Common pumpkin plants (Cucurbita maxima) produce fruits of 1-2 kg size on the average, while special varieties of the same species called Atlantic Giant are known to produce a huge fruit up to several hundred kilograms. As an approach to determine the factors controlling the fruit size in C. maxima, we cultivated both AG and control common plants, and found that both the cell number and cell sizes were increased in a large fruit while DNA content of the cell did not change significantly. We also compared protein patterns in the leaves, stems, ripe and young fruits by two-dimensional (2D) gel electrophoresis, and identified those differentially expressed between them with mass spectroscopy. Based on these results, we suggest that factors in photosynthesis such as ribulose-bisphosphate carboxylase, glycolysis pathway enzymes, heat-shock proteins and ATP synthase play positive or negative roles in the growth of a pumpkin fruit. These results provide a step toward the development of plant biotechnology to control fruit size in the future. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Quintana, R; Kopcow, L; Marconi, G; Sueldo, C; Speranza, G; Barañao, R I
2001-09-01
The aim of this study was to evaluate the concentration of vascular endothelial growth factor (VEGF) in follicular fluid and in granulosa cell cultures in relation to the degree of apoptosis in granulosa cells from patients with different types of ovarian response to controlled ovarian hyperstimulation. We studied 30 women who underwent controlled ovarian hyperstimulation and oocyte retrieval. Group A comprised patients with 1-4 follicles (n = 10), group B patients with 5-14 follicles (n = 10) and group C patients with >15 follicles (n = 10). Mean (+/-SD) VEGF concentrations in follicular fluid were 1232 +/- 209, 813 +/- 198 and 396 +/- 103 pg/ml for groups A, B and C respectively (P > 0.01). Concentrations of VEGF in granulosa cell supernatant were 684 +/- 316, 1101 +/- 295 and 1596 +/- 227 pg/ml respectively (P < 0.05). Percentages of apoptotic cells in granulosa cells culture was 55.02 +/- 7.5, 23.98 +/- 4.4 and 14.2 +/- 2.3% respectively (A versus B, P < 0.01, A versus C, P < 0.006, B versus C, NS). Our findings showed that in patients with decreased ovarian response to controlled ovarian hyperstimulation, follicular fluid VEGF concentration is elevated, the concentration from granulosa cells culture supernatant is decreased and the percentage of apoptotic granulosa cells is increased, while opposite findings occurred in patients with normal or hyper-responses.
Polak, Marta E; Ung, Chuin Ying; Masapust, Joanna; Freeman, Tom C; Ardern-Jones, Michael R
2017-04-06
Langerhans cells (LCs) are able to orchestrate adaptive immune responses in the skin by interpreting the microenvironmental context in which they encounter foreign substances, but the regulatory basis for this has not been established. Utilising systems immunology approaches combining in silico modelling of a reconstructed gene regulatory network (GRN) with in vitro validation of the predictions, we sought to determine the mechanisms of regulation of immune responses in human primary LCs. The key role of Interferon regulatory factors (IRFs) as controllers of the human Langerhans cell response to epidermal cytokines was revealed by whole transcriptome analysis. Applying Boolean logic we assembled a Petri net-based model of the IRF-GRN which provides molecular pathway predictions for the induction of different transcriptional programmes in LCs. In silico simulations performed after model parameterisation with transcription factor expression values predicted that human LC activation of antigen-specific CD8 T cells would be differentially regulated by epidermal cytokine induction of specific IRF-controlled pathways. This was confirmed by in vitro measurement of IFN-γ production by activated T cells. As a proof of concept, this approach shows that stochastic modelling of a specific immune networks renders transcriptome data valuable for the prediction of functional outcomes of immune responses.
TGF-β-induced IκB-ζ controls Foxp3 gene expression
DOE Office of Scientific and Technical Information (OSTI.GOV)
MaruYama, Takashi, E-mail: ta-maru@umin.ac.jp; School of Medicine, Gifu University, Gifu 501-1194
2015-08-21
Inhibitor of kappa B (IκB)-ζ, a member of the nuclear IκB family of proteins, is induced by the transforming growth factor (TGF)-β signaling pathway and plays a pivotal role in maintaining the balance of T helper (Th) cell subsets. IκB-ζ deficiency results in reduced percentages of Th17 cells and increased percentages of Th1 cells. In this study, the effects of IκB-ζ deficiency on T-cell subsets were examined further. The data showed that IκB-ζ-deficient T cells had a high capacity for generation of regulatory T cells (Tregs) when T cells were cultured under TGF-β stimulation in the presence of cytokine-neutralizing antibodies.more » Mechanistically, IκB-ζ itself negatively regulated activation of the Foxp3 promoter in a nuclear factor of kappaB-dependent manner. Thus, this study showed that IκB-ζ controlled Treg differentiation. - Highlights: • IκB-ζ-deficient T cells exhibited increased generation of Foxp3{sup +} Tregs. • IκB-ζ played a key role in Foxp3 gene expression. • Retroviral overexpression of IκB-ζ was achieved in T cells.« less
Edun, Babatunde; Shah, Ansal; Durkin, Martin; Whitmire, Melanie; Williams, Shanetta Patterson; Albrecht, Helmut; Al-Hasan, Majdi; Weissman, Sharon
2017-05-01
Few studies have examined risk factors for nontuberculous mycobacteria (NTM) bloodstream infections (BSI) involving indwelling vascular catheters (IDVC). Sickle cell anaemia (HbSS/SC) is known to affect several aspects of the immune system leading to relative immune deficiency. The purpose of this retrospective nested case-control study was to determine if HbSS/SC is a risk factor for NTM BSI among individuals with IDVCs. All NTM IDVC infections (cases) at two tertiary hospitals from 2008 to 2014 were reviewed. Cases were matched 2:1 with controls who had IDVC infections due to organisms other than NTM. Matching criteria included age within 10 years and IDVC infection within three months of index case. Logistic regression was used to identify risk factors for IDVC infection due to NTM. Nineteen NTM BSIs were identified. Three cases were excluded because they did not have IDVCs at the time their BSI was identified. Sixteen cases of NTM IDVC infection were matched to 32 controls with IDVC infections due to other organisms. The mean age of patients with IDVC infections was 48.5 years and 28 (58%) were male. Compared to the control group those with NTM BSI were more likely to have HbSS/SC 38% (6/16) versus 6% (2/32) (p = .006). IDVCs are a risk factor for NTM BSI. Sickle cell anaemia appears to be a risk factor for IDVC infections due to NTM. This study is limited by the small sample size. A larger study is needed to further investigate the association between HbSS/SC and NTM IDVC infections.
Conditions Determining Initiation of DNA Synthesis in 3T3 Cells*
Dulbecco, R.; Stoker, M. G. P.
1970-01-01
Experiments were designed to discriminate between inhibition of growth due to contacts or exhaustion of serum factors. The cell layer was wounded and the migrating cells were followed by time-lapse cinematography; DNA synthesis in the same cells was recognized by means of 3H-thymidine labeling and radioautography. In this way, the complete history of individual cells migrating to the wound could be described. The results show that topographical relationships between cells play an important role in controlling initiation of DNA synthesis. It is still unclear whether initiation is promoted by release from contacts or by the increased ability of the cells to utilize serum factors because of their changes in shapes and activities. PMID:5273897
Abu-Awwad, Hosam Al-Deen M; Thiagarajan, Lalitha; Dixon, James E
2017-07-15
Controlled release systems for therapeutic molecules are vital to allow the sustained local delivery of their activities which direct cell behaviour and enable novel regenerative strategies. Direct programming of cells using exogenously delivered transcription factors can by-pass growth factor signalling but there is still a requirement to deliver such activity spatio-temporally. We previously developed a technology termed GAG-binding enhanced transduction (GET) to efficiently deliver a variety of cargoes intracellularly, using GAG-binding domains which promote cell targeting, and cell penetrating peptides (CPPs) which allow cell entry. Herein we demonstrate that GET system can be used in controlled release systems to mediate sustained intracellular transduction over one week. We assessed the stability and activity of GET peptides in poly(dl-lactic acid-co-glycolic acid) (PLGA) microparticles (MPs) prepared using a S/O/W double emulsion method. Efficient encapsulation (∼65%) and tailored protein release profiles could be achieved, however intracellular transduction was significantly inhibited post-release. To retain GET peptide activity we optimized a strategy of co-encapsulation of l-Histidine, which may form a complex with the PLGA degradation products under acidic conditions. Simulations of the polymer microclimate showed that hydrolytic acidic PLGA degradation products directly inhibited GET peptide transduction activity, and use of l-Histidine significantly enhanced released protein delivery. The ability to control the intracellular transduction of functional proteins into cells will facilitate new localized delivery methods and allow approaches to direct cellular behaviour for many regenerative medicine applications. The goal for regenerative medicine is to restore functional biological tissue by controlling and augmenting cellular behaviour. Either Transcription (TFs) or growth factors (GFs) can be presented to cells in spatio-temporal gradients for programming cell fate and gene expression. Here, we have created a sustained and controlled release system for GET (Glycosaminoglycan-enhanced transducing)-tagged proteins using S/O/W PLGA microparticle fabrication. We demonstrated that PLGA and its acidic degradants inhibit GET-mediated transduction, which can be overcome by using pH-activated l-Histidine. l-Histidine inhibits the electrostatic interaction of GET/PLGA and allows enhanced intracellular transduction. GET could provide a powerful tool to program cell behaviour either in gradients or with sustained delivery. We believe that our controlled release systems will allow application of GET for tissue regeneration directly by TF cellular programming. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Choi, Yoon Seok; Jung, Min Kyung; Lee, Jeewon; Choi, Seong Jin; Choi, Sung Hoon; Lee, Hyun Woong; Lee, Jong-Joo; Kim, Hyung Joon; Ahn, Sang Hoon; Lee, Dong Hyeon; Kim, Won; Park, Su-Hyung; Huh, Jun R; Kim, Hyoung-Pyo; Park, Jun Yong; Shin, Eui-Cheol
2018-03-01
CD4 + CD25 + Foxp3 + T-regulatory (Treg) cells control immune responses and maintain immune homeostasis. However, under inflammatory conditions, Treg cells produce cytokines that promote inflammation. We investigated production of tumor necrosis factor (TNF) by Treg cells in patients with acute hepatitis A (AHA), and examined the characteristics of these cells and association with clinical factors. We analyzed blood samples collected from 63 patients with AHA at the time of hospitalization (and some at later time points) and 19 healthy donors in South Korea. Liver tissues were collected from patients with fulminant AHA during liver transplantation. Peripheral blood mononuclear cells were isolated from whole blood and lymphocytes were isolated from liver tissues and analyzed by flow cytometry. Cytokine production from Treg cells (CD4 + CD25 + Foxp3 + ) was measured by immunofluorescence levels following stimulation with anti-CD3 and anti-CD28. Epigenetic stability of Treg cells was determined based on DNA methylation patterns. Phenotypes of Treg cells were analyzed by flow cytometry and an RORγt inhibitor, ML-209, was used to inhibit TNF production. Treg cell suppression assay was performed by co-culture of Treg-depleted peripheral blood mononuclear cells s and isolated Treg cells. A higher proportion of CD4 + CD25 + Foxp3 + Treg cells from patients with AHA compared with controls produced TNF upon stimulation with anti-CD3 and anti-CD28 (11.2% vs 2.8%). DNA methylation analysis confirmed the identity of the Treg cells. TNF-producing Treg cells had features of T-helper 17 cells, including up-regulation of RORγt, which was required for TNF production. The Treg cells had reduced suppressive functions compared with Treg cells from controls. The frequency of TNF-producing Treg cells in AHA patients' blood correlated with their serum level of alanine aminotransferase. Treg cells from patients with AHA have altered functions compared with Treg cells from healthy individuals. Treg cells from patients with AHA produce higher levels of TNF, gain features of T-helper 17 cells, and have reduced suppressive activity. The presence of these cells is associated with severe liver injury in patients with AHA. Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.
Repression of cell proliferation by miR319-regulated TCP4.
Schommer, Carla; Debernardi, Juan M; Bresso, Edgardo G; Rodriguez, Ramiro E; Palatnik, Javier F
2014-10-01
Leaf development has been extensively studied on a genetic level. However, little is known about the interplay between the developmental regulators and the cell cycle machinery--a link that ultimately affects leaf form and size. miR319 is a conserved microRNA that regulates TCP transcription factors involved in multiple developmental pathways, including leaf development and senescence, organ curvature, and hormone biosynthesis and signaling. Here, we analyze the participation of TCP4 in the control of cell proliferation. A small increase in TCP4 activity has an immediate impact on leaf cell number, by significantly reducing cell proliferation. Plants with high TCP4 levels have a strong reduction in the expression of genes known to be active in G2-M phase of the cell cycle. Part of these effects is mediated by induction of miR396, which represses Growth-Regulating Factor (GRF) transcription factors. Detailed analysis revealed TCP4 to be a direct regulator of MIR396b. However, we found that TCP4 can control cell proliferation through additional pathways, and we identified a direct connection between TCP4 and ICK1/KRP1, a gene involved in the progression of the cell cycle. Our results show that TCP4 can activate different pathways that repress cell proliferation. © The Author 2014. Published by the Molecular Plant Shanghai Editorial Office in association with Oxford University Press on behalf of CSPB and IPPE, SIBS, CAS.
The Transcription Factor ZNF683/HOBIT Regulates Human NK-Cell Development
Post, Mirte; Cuapio, Angelica; Osl, Markus; Lehmann, Dorit; Resch, Ulrike; Davies, David M.; Bilban, Martin; Schlechta, Bernhard; Eppel, Wolfgang; Nathwani, Amit; Stoiber, Dagmar; Spanholtz, Jan; Casanova, Emilio; Hofer, Erhard
2017-01-01
We identified ZNF683/HOBIT as the most highly upregulated transcription factor gene during ex vivo differentiation of human CD34+ cord blood progenitor cells to CD56+ natural killer (NK) cells. ZNF683/HOBIT mRNA was preferentially expressed in NK cells compared to other human peripheral blood lymphocytes and monocytes. During ex vivo differentiation, ZNF683/HOBIT mRNA started to increase shortly after addition of IL-15 and further accumulated in parallel to the generation of CD56+ NK cells. shRNA-mediated knockdown of ZNF683/HOBIT resulted in a substantial reduction of CD56−CD14− NK-cell progenitors and the following generation of CD56+ NK cells was largely abrogated. The few CD56+ NK cells, which escaped the developmental inhibition in the ZNF683/HOBIT knockdown cultures, displayed normal levels of NKG2A and KIR receptors. Functional analyses of these cells showed no differences in degranulation capacity from control cultures. However, the proportion of IFN-γ-producing cells appeared to be increased upon ZNF683/HOBIT knockdown. These results indicate a key role of ZNF683/HOBIT for the differentiation of the human NK-cell lineage and further suggest a potential negative control on IFN-γ production in more mature human NK cells. PMID:28555134
The Transcription Factor ZNF683/HOBIT Regulates Human NK-Cell Development.
Post, Mirte; Cuapio, Angelica; Osl, Markus; Lehmann, Dorit; Resch, Ulrike; Davies, David M; Bilban, Martin; Schlechta, Bernhard; Eppel, Wolfgang; Nathwani, Amit; Stoiber, Dagmar; Spanholtz, Jan; Casanova, Emilio; Hofer, Erhard
2017-01-01
We identified ZNF683/HOBIT as the most highly upregulated transcription factor gene during ex vivo differentiation of human CD34 + cord blood progenitor cells to CD56 + natural killer (NK) cells. ZNF683/HOBIT mRNA was preferentially expressed in NK cells compared to other human peripheral blood lymphocytes and monocytes. During ex vivo differentiation, ZNF683/HOBIT mRNA started to increase shortly after addition of IL-15 and further accumulated in parallel to the generation of CD56 + NK cells. shRNA-mediated knockdown of ZNF683/HOBIT resulted in a substantial reduction of CD56 - CD14 - NK-cell progenitors and the following generation of CD56 + NK cells was largely abrogated. The few CD56 + NK cells, which escaped the developmental inhibition in the ZNF683/HOBIT knockdown cultures, displayed normal levels of NKG2A and KIR receptors. Functional analyses of these cells showed no differences in degranulation capacity from control cultures. However, the proportion of IFN-γ-producing cells appeared to be increased upon ZNF683/HOBIT knockdown. These results indicate a key role of ZNF683/HOBIT for the differentiation of the human NK-cell lineage and further suggest a potential negative control on IFN-γ production in more mature human NK cells.
De Rosa, Veronica; Galgani, Mario; Porcellini, Antonio; Colamatteo, Alessandra; Santopaolo, Marianna; Zuchegna, Candida; Romano, Antonella; De Simone, Salvatore; Procaccini, Claudio; La Rocca, Claudia; Carrieri, Pietro Biagio; Maniscalco, Giorgia Teresa; Salvetti, Marco; Buscarinu, Maria Chiara; Franzese, Adriana; Mozzillo, Enza; La Cava, Antonio; Matarese, Giuseppe
2016-01-01
Human regulatory T cells (Treg cells) that develop from conventional T cells (Tconv cells) following suboptimal stimulation via the T cell antigen receptor (TCR) (induced Treg cells (iTreg cells)) express the transcription factor Foxp3, are suppressive, and display an active proliferative and metabolic state. Here we found that the induction and suppressive function of iTreg cells tightly depended on glycolysis, which controlled Foxp3 splicing variants containing exon 2 (Foxp3-E2) through the glycolytic enzyme enolase-1. The Foxp3-E2–related suppressive activity of iTreg cells was altered in human autoimmune diseases, including multiple sclerosis and type 1 diabetes, and was associated with impaired glycolysis and signaling via interleukin 2. This link between glycolysis and Foxp3-E2 variants via enolase-1 shows a previously unknown mechanism for controlling the induction and function of Treg cells in health and in autoimmunity. PMID:26414764
2011-09-01
separating stem cell and non- stem cell populations of normal and breast cancer cells and identified EMT transcription factors most likely involved in... stem cell biology. Preliminary results directly demonstrate that transient induction of EMT increases the number of mammary epithelial stem cells...EMT and entrance into a stem - cell state. The outcome of these experiments holds important implications for the mechanisms controlling the formation of
Ripa, Rasmus Sejersten
2012-03-01
Cell based therapy for ischemic heart disease has the potential to reduce post infarct heart failure and chronic ischemia. Treatment with granulocyte-colony stimulating factor (G-CSF) mobilizes cells from the bone marrow to the peripheral blood. Some of these cells are putative stem or progenitor cells. G-CSF is injected subcutaneously. This therapy is intuitively attractive compared to other cell based techniques since repeated catheterizations and ex vivo cell purification and expansion are avoided. Previous preclinical and early clinical trials have indicated that treatment with G-CSF leads to improved myocardial perfusion and function in acute or chronic ischemic heart disease. The hypothesis of this thesis is that patient with ischemic heart disease will benefit from G-CSF therapy. We examined this hypothesis in two clinical trials with G-CSF treatment to patients with either acute myocardial infarction or severe chronic ischemic heart disease. In addition, we assed a number of factors that could potentially affect the effect of cell based therapy. Finally, we intended to develop a method for in vivo cell tracking in the heart. Our research showed that subcutaneous G-CSF along with gene therapy do not improve myocardial function in patients with chronic ischemia despite a large increase in circulation bone marrow-derived cells. Also, neither angina pectoris nor exercise capacity was improved compared to placebo treatment. We could not identify differences in angiogenic factors or bone marrow-derived cells in the blood that could explain the neutral effect of G-CSF. Next, we examined G-CSF as adjunctive therapy following ST segment elevation myocardial infarction. We did not find any effect of G-CSF neither on the primary endpoint--regional myocardial function--nor on left ventricular ejection fraction (secondary endpoint) compared to placebo treatment. In subsequent analyses, we found significant differences in the types of cells mobilized from the bone marrow by G-CSF. This could explain why intracoronary injections of unfractionated bone marrow-derived cells have more effect that mobilization with G-CSF. A number of other factors could explain the neutral effect of G-CSF in our trial compared to previous studies. These factors include timing of the treatment, G-CSF dose, and study population. It is however, remarkable that the changes in our G-CSF group are comparable to the results of previous non-blinded studies, whereas the major differences are in the control/placebo groups. We found that ejection fraction, wall motion, edema, perfusion, and infarct size all improve significantly in the first month following ST-segment myocardial infarction with standard guideline treatment (including acute mechanical revascularization), but without cell therapy. This is an important factor to take into account when assessing the results of non-controlled trials. Finally, we found that ex vivo labeling of cells with indium-111 for in vivo cell tracking after intramyocardial injection is problematic. In our hand, a significant amount of indium-111 remained in the myocardium despite cell death. It is difficult to determine viability of the cells after injection in human trials, and it is thus complicated to determine if the activity in the myocardium tracks viable cells. Cell based therapy is still in the explorative phase, but based on the intense research within this field it is our hope that the clinical relevance of the therapy can be determined in the foreseeable future. Ultimately, this will require large randomized, double-blind and placebo-controlled trials with "hard" clinical endpoints like mortality and morbidity.
Ji, Lanlan; Geng, Yan; Zhou, Wei; Zhang, Zhuoli
2016-02-01
Rheumatoid arthritis is characterized by type 17 helper T cell (Th17)/regulatory T cell (Treg) imbalance. The objective of this article is to study whether insufficient apoptosis contributes to the imbalance of Th17/Treg in rheumatoid arthritis. Twenty-one rheumatoid arthritis patients and eight healthy volunteers were involved in this study. The percentage of CD4(+) interleukin (IL)-17(+) T cells and CD4(+) transcription factor-forkhead box protein 3 (Foxp3)(+) T cells were measured by flow cytometry, and active caspase-3 labeling was used to detect early apoptosis. The number of T cell subtypes in peripheral blood between the two groups was compared, as well as the apoptotic ratio. Neither the number of Th17 nor Treg cells was significantly different between rheumatoid arthritis patients and healthy controls. However, the number of regulatory T cells positively correlated with erythrocyte sedimentation rate, Disease Activity Score of 28 joints and rheumatoid factor. For the apoptosis of T cell subtypes, the percentage of apoptotic Th17 cells was higher in peripheral blood of rheumatoid arthritis patients compared to controls. Furthermore, peripheral Th17 cells were more sensitive to apoptosis than Treg cells, but there was no difference between rheumatoid arthritis patients and controls. It seemed that there was no relationship between the number and apoptosis ratio of peripheral Th17/Treg cells. But the number of Treg cells positively correlated with disease activity. Furthermore, Th17 cells are more sensitive to apoptosis after freezing, especially in RA patients. This serendipitous finding may provide new areas for the further study of these two cell populations. © 2013 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.
Chen, Liming; Bao, Yifan; Piekos, Stephanie C; Zhu, Kexin; Zhang, Lirong; Zhong, Xiao-Bo
2018-07-01
Cytochrome P450 (P450) enzymes are responsible for metabolizing drugs. Expression of P450s can directly affect drug metabolism, resulting in various outcomes in therapeutic efficacy and adverse effects. Several nuclear receptors are transcription factors that can regulate expression of P450s at both basal and drug-induced levels. Some long noncoding RNAs (lncRNAs) near a transcription factor are found to participate in the regulatory functions of the transcription factors. The aim of this study is to determine whether there is a transcriptional regulatory network containing nuclear receptors and lncRNAs controlling both basal and drug-induced expression of P450s in HepaRG cells. Small interfering RNAs or small hairpin RNAs were applied to knock down four nuclear receptors [hepatocyte nuclear factor 1 α (HNF1 α ), hepatocyte nuclear factor 4 α (HNF4 α ), pregnane X receptor (PXR), and constitutive androstane receptor (CAR)] as well as two lncRNAs [HNF1 α antisense RNA 1 (HNF1 α -AS1) and HNF4 α antisense RNA 1 (HNF4 α -AS1)] in HepaRG cells with or without treatment of phenobarbital or rifampicin. Expression of eight P450 enzymes was examined in both basal and drug-induced levels. CAR and PXR mainly regulated expression of specific P450s. HNF1 α and HNF4 α affected expression of a wide range of P450s as well as other transcription factors. HNF1 α and HNF4 α controlled the expression of their neighborhood lncRNAs, HNF1 α -AS1 and HNF4 α -AS1, respectively. HNF1 α -AS1 and HNF4 α -AS1 was also involved in the regulation of P450s and transcription factors in diverse manners. Altogether, our study concludes that a transcription regulatory network containing the nuclear receptors and lncRNAs controls both basal and drug-induced expression of P450s in HepaRG cells. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.
Magnetic stem cell targeting to the inner ear
NASA Astrophysics Data System (ADS)
Le, T. N.; Straatman, L.; Yanai, A.; Rahmanian, R.; Garnis, C.; Häfeli, U. O.; Poblete, T.; Westerberg, B. D.; Gregory-Evans, K.
2017-12-01
Severe sensorineural deafness is often accompanied by a loss of auditory neurons in addition to injury of the cochlear epithelium and hair cell loss. Cochlear implant function however depends on a healthy complement of neurons and their preservation is vital in achieving optimal results. We have developed a technique to target mesenchymal stem cells (MSCs) to a deafened rat cochlea. We then assessed the neuroprotective effect of systematically delivered MSCs on the survival and function of spiral ganglion neurons (SGNs). MSCs were labeled with superparamagnetic nanoparticles, injected via the systemic circulation, and targeted using a magnetized cochlea implant and external magnet. Neurotrophic factor concentrations, survival of SGNs, and auditory function were assessed at 1 week and 4 weeks after treatments and compared against multiple control groups. Significant numbers of magnetically targeted MSCs (>30 MSCs/section) were present in the cochlea with accompanied elevation of brain-derived neurotrophic factor and glial cell-derived neurotrophic factor levels (p < 0.001). In addition we saw improved survival of SGNs (approximately 80% survival at 4 weeks). Hearing threshold levels in magnetically targeted rats were found to be significantly better than those of control rats (p < 0.05). These results indicate that magnetic targeting of MSCs to the cochlea can be accomplished with a magnetized cochlear permalloy implant and an external magnet. The targeted stem cells release neurotrophic factors which results in improved SGN survival and hearing recovery. Combining magnetic cell-based therapy and cochlear implantation may improve cochlear implant function in treating deafness.
de Souza, Alessandra A; Ionescu, Michael; Baccari, Clelia; da Silva, Aline M; Lindow, Steven E
2013-06-01
Eal is an EAL domain protein in Xylella fastidiosa homologous to one involved in resistance to tobramycin in Pseudomonas aeruginosa. EAL and HD-GYP domain proteins are implicated in the hydrolysis of the secondary messenger bis-(3'-5')-cyclic dimeric GMP (cyclic di-GMP). Cell density-dependent communication mediated by a Diffusible Signal Factor (DSF) also modulates cyclic di-GMP levels in X. fastidiosa, thereby controlling the expression of virulence genes and genes involved in insect transmission. The possible linkage of Eal to both extrinsic factors such as antibiotics and intrinsic factors such as quorum sensing, and whether both affect virulence, was thus addressed. Expression of eal was induced by subinhibitory concentrations of tobramycin, and an eal deletion mutant was more susceptible to this antibiotic than the wild-type strain and exhibited phenotypes similar to those of an rpfF deletion mutant blocked in DSF production, such as hypermotility, reduced biofilm formation, and hypervirulence to grape. Consistent with that, the rpfF mutant was more susceptible than the wild-type strain to tobramycin. Therefore, we propose that cell-cell communication and antibiotic stress can apparently lead to similar modulations of cyclic di-GMP in X. fastidiosa, resulting in similar phenotypes. However, the effect of cell density is dominant compared to that of antibiotic stress, since eal is suppressed by RpfF, which may prevent inappropriate behavioral changes in response to antibiotic stress when DSF accumulates.
Cornwell, J. A.; Hallett, R. M.; der Mauer, S. Auf; Motazedian, A.; Schroeder, T.; Draper, J. S.; Harvey, R. P.; Nordon, R. E.
2016-01-01
The molecular control of cell fate and behaviour is a central theme in biology. Inherent heterogeneity within cell populations requires that control of cell fate is studied at the single-cell level. Time-lapse imaging and single-cell tracking are powerful technologies for acquiring cell lifetime data, allowing quantification of how cell-intrinsic and extrinsic factors control single-cell fates over time. However, cell lifetime data contain complex features. Competing cell fates, censoring, and the possible inter-dependence of competing fates, currently present challenges to modelling cell lifetime data. Thus far such features are largely ignored, resulting in loss of data and introducing a source of bias. Here we show that competing risks and concordance statistics, previously applied to clinical data and the study of genetic influences on life events in twins, respectively, can be used to quantify intrinsic and extrinsic control of single-cell fates. Using these statistics we demonstrate that 1) breast cancer cell fate after chemotherapy is dependent on p53 genotype; 2) granulocyte macrophage progenitors and their differentiated progeny have concordant fates; and 3) cytokines promote self-renewal of cardiac mesenchymal stem cells by symmetric divisions. Therefore, competing risks and concordance statistics provide a robust and unbiased approach for evaluating hypotheses at the single-cell level. PMID:27250534
Danisman, Selahattin; van der Wal, Froukje; Dhondt, Stijn; Waites, Richard; de Folter, Stefan; Bimbo, Andrea; van Dijk, Aalt DJ; Muino, Jose M.; Cutri, Lucas; Dornelas, Marcelo C.; Angenent, Gerco C.; Immink, Richard G.H.
2012-01-01
TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR1 (TCP) transcription factors control developmental processes in plants. The 24 TCP transcription factors encoded in the Arabidopsis (Arabidopsis thaliana) genome are divided into two classes, class I and class II TCPs, which are proposed to act antagonistically. We performed a detailed phenotypic analysis of the class I tcp20 mutant, showing an increase in leaf pavement cell sizes in 10-d-old seedlings. Subsequently, a glucocorticoid receptor induction assay was performed, aiming to identify potential target genes of the TCP20 protein during leaf development. The LIPOXYGENASE2 (LOX2) and class I TCP9 genes were identified as TCP20 targets, and binding of TCP20 to their regulatory sequences could be confirmed by chromatin immunoprecipitation analyses. LOX2 encodes for a jasmonate biosynthesis gene, which is also targeted by class II TCP proteins that are under the control of the microRNA JAGGED AND WAVY (JAW), although in an antagonistic manner. Mutation of TCP9, the second identified TCP20 target, resulted in increased pavement cell sizes during early leaf developmental stages. Analysis of senescence in the single tcp9 and tcp20 mutants and the tcp9tcp20 double mutants showed an earlier onset of this process in comparison with wild-type control plants in the double mutant only. Both the cell size and senescence phenotypes are opposite to the known class II TCP mutant phenotype in JAW plants. Altogether, these results point to an antagonistic function of class I and class II TCP proteins in the control of leaf development via the jasmonate signaling pathway. PMID:22718775
Son, Yeo-Jin; Lee, Seung-Eun; Park, Yun-Gwi; Jeong, Sang-Gi; Shin, Min-Young; Kim, Eun-Young; Park, Se-Pill
2018-06-01
Somatic cell nuclear transfer (SCNT) is required for the generation of transgenic animals as disease models. During the in vitro development of SCNT embryos, the quality of matured oocytes is one of the major factors regulating the developmental potential of embryos. Time-lapse monitoring systems are new tools that assess the developmental capacity of embryos for use in embryo transfer. In this study, we investigated the effect of fibroblast growth factor 10 (FGF 10) on the developmental potential of SCNT embryos. After the in vitro maturation (IVM) of oocytes in IVM medium containing 10 ng/mL FGF 10 (10 F), the polar body extrusion rate was significantly higher than in the control. However, there was no difference in the percentage of fused embryos between the groups. The cleavage and blastocyst formation rates of embryos were significantly increased in the 10 F compared with the control. In addition, the total cell number was higher and the apoptotic index was lower in the 10 F than control at day 7. The messenger RNA (mRNA) expression of genes involved in apoptosis (baculoviral inhibitor of apoptosis repeat containing 5 [BIRC5] and caspase 3 [CASP3]) and development (octamer-binding transcription factor 4 [POU5F1] and sex determining region Y box 2 [SOX2]) increased after 10 F treatment. Furthermore, the kinetics of the first cleavage was faster and the percentage of embryos at cell block was significantly lower in the 10 F group than in the control. These results demonstrate that exposure of oocytes to FGF 10 during IVM promotes developmental competence.
Growing knowledge of the mTOR signaling network.
Huang, Kezhen; Fingar, Diane C
2014-12-01
The kinase mTOR (mechanistic target of rapamycin) integrates diverse environmental signals and translates these cues into appropriate cellular responses. mTOR forms the catalytic core of at least two functionally distinct signaling complexes, mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). mTORC1 promotes anabolic cellular metabolism in response to growth factors, nutrients, and energy and functions as a master controller of cell growth. While significantly less well understood than mTORC1, mTORC2 responds to growth factors and controls cell metabolism, cell survival, and the organization of the actin cytoskeleton. mTOR plays critical roles in cellular processes related to tumorigenesis, metabolism, immune function, and aging. Consequently, aberrant mTOR signaling contributes to myriad disease states, and physicians employ mTORC1 inhibitors (rapamycin and analogs) for several pathological conditions. The clinical utility of mTOR inhibition underscores the important role of mTOR in organismal physiology. Here we review our growing knowledge of cellular mTOR regulation by diverse upstream signals (e.g. growth factors; amino acids; energy) and how mTORC1 integrates these signals to effect appropriate downstream signaling, with a greater emphasis on mTORC1 over mTORC2. We highlight dynamic subcellular localization of mTORC1 and associated factors as an important mechanism for control of mTORC1 activity and function. We will cover major cellular functions controlled by mTORC1 broadly. While significant advances have been made in the last decade regarding the regulation and function of mTOR within complex cell signaling networks, many important findings remain to be discovered. Copyright © 2014 Elsevier Ltd. All rights reserved.
2011-01-01
Background The transcription factor Foxg1 is an important regulator of telencephalic cell cycles. Its inactivation causes premature lengthening of telencephalic progenitor cell cycles and increased neurogenic divisions, leading to severe hypoplasia of the telencephalon. These proliferation defects could be a secondary consequence of the loss of Foxg1 caused by the abnormal expression of several morphogens (Fibroblast growth factor 8, bone morphogenetic proteins) in the telencephalon of Foxg1 null mutants. Here we investigated whether Foxg1 has a cell autonomous role in the regulation of telencephalic progenitor proliferation. We analysed Foxg1+/+↔Foxg1-/- chimeras, in which mutant telencephalic cells have the potential to interact with, and to have any cell non-autonomous defects rescued by, normal wild-type cells. Results Our analysis showed that the Foxg1-/- cells are under-represented in the chimeric telencephalon and the proportion of them in S-phase is significantly smaller than that of their wild-type neighbours, indicating that their under-representation is caused by a cell autonomous reduction in their proliferation. We then analysed the expression of the cell-cycle regulator Pax6 and found that it is cell-autonomously downregulated in Foxg1-/- dorsal telencephalic cells. We went on to show that the introduction into Foxg1-/- embryos of a transgene designed to reverse Pax6 expression defects resulted in a partial rescue of the telencephalic progenitor proliferation defects. Conclusions We conclude that Foxg1 exerts control over telencephalic progenitor proliferation by cell autonomous mechanisms that include the regulation of Pax6, which itself is known to regulate proliferation cell autonomously in a regional manner. PMID:21418559
Sierra, Crystal S.; Haase, Steven B.
2016-01-01
The pathogenic yeast Cryptococcus neoformans causes fungal meningitis in immune-compromised patients. Cell proliferation in the budding yeast form is required for C. neoformans to infect human hosts, and virulence factors such as capsule formation and melanin production are affected by cell-cycle perturbation. Thus, understanding cell-cycle regulation is critical for a full understanding of virulence factors for disease. Our group and others have demonstrated that a large fraction of genes in Saccharomyces cerevisiae is expressed periodically during the cell cycle, and that proper regulation of this transcriptional program is important for proper cell division. Despite the evolutionary divergence of the two budding yeasts, we found that a similar percentage of all genes (~20%) is periodically expressed during the cell cycle in both yeasts. However, the temporal ordering of periodic expression has diverged for some orthologous cell-cycle genes, especially those related to bud emergence and bud growth. Genes regulating DNA replication and mitosis exhibited a conserved ordering in both yeasts, suggesting that essential cell-cycle processes are conserved in periodicity and in timing of expression (i.e. duplication before division). In S. cerevisiae cells, we have proposed that an interconnected network of periodic transcription factors (TFs) controls the bulk of the cell-cycle transcriptional program. We found that temporal ordering of orthologous network TFs was not always maintained; however, the TF network topology at cell-cycle commitment appears to be conserved in C. neoformans. During the C. neoformans cell cycle, DNA replication genes, mitosis genes, and 40 genes involved in virulence are periodically expressed. Future work toward understanding the gene regulatory network that controls cell-cycle genes is critical for developing novel antifungals to inhibit pathogen proliferation. PMID:27918582
Novel bio-synthetic hybrid materials and coculture systems for musculoskeletal tissue engineering
NASA Astrophysics Data System (ADS)
Lee, Hyeseung Janice
Tissue Engineering is a truly exciting field of this age, trying to regenerate and repair impaired tissues. Unlike the old artificial implants, tissue engineering aims at making a long-term functional biological replacement. One strategy for such tissue engineering requires the following three components: cells, scaffolds, and soluble factors. Cells are cultured in a three-dimensional (3D) scaffold with medium containing various soluble factors. Once a tissue is developed in vitro, then it is implanted in vivo. The overall goal of this thesis was to develop novel bio-synthetic hybrid scaffolds and coculture system for musculoskeletal tissue engineering. The most abundant cartilage extracellular matrix (ECM) components are collagen and glycosaminoglycan (GAG), which are the natural scaffold for chondrocytes. As two different peptides, collagen mimetic peptide (CMP) and hyaluronic acid binding peptide (HABPep) were previously shown to bind to collagen and hyaluronic acid (HA) of GAG, respectively, it was hypothesized that immobilizing CMP and HABP on 3D scaffold would results in an interaction between ECM components and synthetic scaffolds via peptide-ECM bindings. CMP or HABPep-conjugated photopolymerizable poly(ethylene oxide) diacrylate (PEODA) hydrogels were synthesized and shown to retain encapsulated collagen or HA, respectively. This result supported that conjugated CMP and HABPep can interact with collagen and HA, respectively, and can serve as biological linkers in 3D synthetic hydrogels. When chondrocytes or mesenchymal stem cells (MSCs) were seeded, cells in CMP-conjugated scaffolds produced significantly more amount of type II collagen and GAG, compared to those in control scaffolds. Moreover, MSCs cultured in CMP-conjugated scaffolds exhibited lower level of hypertrophic markers, cbfa-1 and type X collagen. These results demonstrated that enhanced interaction between collagen and scaffold via CMP improves chondrogenesis of chondrocytes and MSCs and further reduces hypertrophy of differentiating MSCs. On the other hand, although cells in HABPep-conjugated scaffolds produced less ECM components, they survived and proliferated significantly more than those in control, resulting in overall increase in ECM contents per scaffold. Once implanted in vivo, HABPep-conjugated constructs increased GAG and type II collagen contents further, compared to those of the control hydrogel. These results showed that enhanced interaction between HA and scaffold via HABPep improved the in vitro culture expansion of MSCs and further ECM production in vivo. Effects of cell-secreted bioactive factors via cell-cell communication on stem cell differentiation were also investigated in 3D bilayer system. First, when mesenchymal progenitor cells (MPCs) were cocultured with ES-derived cells (ESDC), morphogenetic factors secreted by ESDCs showed a potential to improve MPC chondrogenesis in both control and chondrogenic medium by increasing not only MPC's chondrogenic gene expression, but also ECM production. Moreover, the effect of ESDC cell-mediated chondrogenesis of MSC could not be mimicked by chondrogenic medium supplemented with TGF-beta1 and dexamethasone. Secondly, coculturing hepatic cells enhanced specific chondrogenic differentiation of ES cells in the 3D bilayer system. These studies demonstrated that cell-secreted soluble factors can be used to guide stem cell differentiation.
Regulatory states in the developmental control of gene expression.
Peter, Isabelle S
2017-09-01
A growing body of evidence shows that gene expression in multicellular organisms is controlled by the combinatorial function of multiple transcription factors. This indicates that not the individual transcription factors or signaling molecules, but the combination of expressed regulatory molecules, the regulatory state, should be viewed as the functional unit in gene regulation. Here, I discuss the concept of the regulatory state and its proposed role in the genome-wide control of gene expression. Recent analyses of regulatory gene expression in sea urchin embryos have been instrumental for solving the genomic control of cell fate specification in this system. Some of the approaches that were used to determine the expression of regulatory states during sea urchin embryogenesis are reviewed. Significant developmental changes in regulatory state expression leading to the distinct specification of cell fates are regulated by gene regulatory network circuits. How these regulatory state transitions are encoded in the genome is illuminated using the sea urchin endoderm-mesoderms cell fate decision circuit as an example. These observations highlight the importance of considering developmental gene regulation, and the function of individual transcription factors, in the context of regulatory states. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Medelnik, Jan-Philip; Roensch, Kathleen; Okawa, Satoshi; Del Sol, Antonio; Chara, Osvaldo; Mchedlishvili, Levan; Tanaka, Elly M
2018-06-05
In the developing nervous system, neural stem cells are polarized and maintain an apical domain facing a central lumen. The presence of apical membrane is thought to have a profound influence on maintaining the stem cell state. With the onset of neurogenesis, cells lose their polarization, and the concomitant loss of the apical domain coincides with a loss of the stem cell identity. Little is known about the molecular signals controlling apical membrane size. Here, we use two neuroepithelial cell systems, one derived from regenerating axolotl spinal cord and the other from human embryonic stem cells, to identify a molecular signaling pathway initiated by lysophosphatidic acid that controls apical membrane size and consequently controls and maintains epithelial organization and lumen size in neuroepithelial rosettes. This apical domain size increase occurs independently of effects on proliferation and involves a serum response factor-dependent transcriptional induction of junctional and apical membrane components. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Remotely controlled fusion of selected vesicles and living cells: a key issue review
NASA Astrophysics Data System (ADS)
Bahadori, Azra; Moreno-Pescador, Guillermo; Oddershede, Lene B.; Bendix, Poul M.
2018-03-01
Remote control over fusion of single cells and vesicles has a great potential in biological and chemical research allowing both transfer of genetic material between cells and transfer of molecular content between vesicles. Membrane fusion is a critical process in biology that facilitates molecular transport and mixing of cellular cytoplasms with potential formation of hybrid cells. Cells precisely regulate internal membrane fusions with the aid of specialized fusion complexes that physically provide the energy necessary for mediating fusion. Physical factors like membrane curvature, tension and temperature, affect biological membrane fusion by lowering the associated energy barrier. This has inspired the development of physical approaches to harness the fusion process at a single cell level by using remotely controlled electromagnetic fields to trigger membrane fusion. Here, we critically review various approaches, based on lasers or electric pulses, to control fusion between individual cells or between individual lipid vesicles and discuss their potential and limitations for present and future applications within biochemistry, biology and soft matter.
High-throughput microfluidics to control and measure signaling dynamics in single yeast cells
Hansen, Anders S.; Hao, Nan; O'Shea, Erin K.
2015-01-01
Microfluidics coupled to quantitative time-lapse fluorescence microscopy is transforming our ability to control, measure, and understand signaling dynamics in single living cells. Here we describe a pipeline that incorporates multiplexed microfluidic cell culture, automated programmable fluid handling for cell perturbation, quantitative time-lapse microscopy, and computational analysis of time-lapse movies. We illustrate how this setup can be used to control the nuclear localization of the budding yeast transcription factor Msn2. Using this protocol, we generate oscillations of Msn2 localization and measure the dynamic gene expression response of individual genes in single cells. The protocol allows a single researcher to perform up to 20 different experiments in a single day, whilst collecting data for thousands of single cells. Compared to other protocols, the present protocol is relatively easy to adopt and higher-throughput. The protocol can be widely used to control and monitor single-cell signaling dynamics in other signal transduction systems in microorganisms. PMID:26158443
Giakountis, Antonis; Moulos, Panagiotis; Zarkou, Vasiliki; Oikonomou, Christina; Harokopos, Vaggelis; Hatzigeorgiou, Artemis G; Reczko, Martin; Hatzis, Pantelis
2016-06-21
The canonical Wnt pathway plays a central role in stem cell maintenance, differentiation, and proliferation in the intestinal epithelium. Constitutive, aberrant activity of the TCF4/β-catenin transcriptional complex is the primary transforming factor in colorectal cancer. We identify a nuclear long non-coding RNA, termed WiNTRLINC1, as a direct target of TCF4/β-catenin in colorectal cancer cells. WiNTRLINC1 positively regulates the expression of its genomic neighbor ASCL2, a transcription factor that controls intestinal stem cell fate. WiNTRLINC1 interacts with TCF4/β-catenin to mediate the juxtaposition of its promoter with the regulatory regions of ASCL2. ASCL2, in turn, regulates WiNTRLINC1 transcriptionally, closing a feedforward regulatory loop that controls stem cell-related gene expression. This regulatory circuitry is highly amplified in colorectal cancer and correlates with increased metastatic potential and decreased patient survival. Our results uncover the interplay between non-coding RNA-mediated regulation and Wnt signaling and point to the diagnostic and therapeutic potential of WiNTRLINC1. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
Deng, Ang; Zhang, Hongqi; Hu, Minyu; Liu, Shaohua; Gao, Qile; Wang, Yuxiang; Guo, Chaofeng
2017-12-01
Indian hedgehog protein (Ihh) is evolutionarily conserved and serves important roles in controlling the differentiation of progenitor cells into osteoblasts. Ihh null mutant mice exhibit a failure of osteoblast development in endochondral bone. Although studies have demonstrated that Ihh signaling is a potent local factor that regulates osteoblast differentiation, the specific transcription factors that determine osteoblast differentiation remain unclear. Further studies are required to determine the precise mechanism through which Ihh regulates osteoblast differentiation. In the present study, Ihh was knocked down in osteoblast MC3T3‑E1 cells using short hairpin RNA, to investigate the function of Ihh in osteoblast proliferation and differentiation and to examine the potential mechanism through which Ihh induces osteoblast apoptosis and cell cycle arrest. It was observed that the knockdown of Ihh induced a marked inhibition of cell growth and increased the apoptosis rate compared with the negative control osteoblasts. Downregulation of Ihh resulted in a cell cycle arrest at the G1 to S phase boundary in osteoblasts. In addition, the knockdown of Ihh decreased the alkaline phosphatase activity and mineral deposition of osteoblasts. The inhibitory roles of Ihh downregulation in osteoblast growth and differentiation may be associated with the transforming growth factor‑β/mothers against decapentaplegic homolog and tumor necrosis factor receptor superfamily member 11B/tumor necrosis factor ligand superfamily member 11 signaling pathways. Manipulating either Ihh expression or its signaling components may be of benefit for the treatment of skeletal diseases.
In situ cell manipulation through enzymatic hydrogel photopatterning
NASA Astrophysics Data System (ADS)
Mosiewicz, Katarzyna A.; Kolb, Laura; van der Vlies, André J.; Martino, Mikaël M.; Lienemann, Philipp S.; Hubbell, Jeffrey A.; Ehrbar, Martin; Lutolf, Matthias P.
2013-11-01
The physicochemical properties of hydrogels can be manipulated in both space and time through the controlled application of a light beam. However, methods for hydrogel photopatterning either fail to maintain the bioactivity of fragile proteins and are thus limited to short peptides, or have been used in hydrogels that often do not support three-dimensional (3D) cell growth. Here, we show that the 3D invasion of primary human mesenchymal stem cells can be spatiotemporally controlled by micropatterning the hydrogel with desired extracellular matrix (ECM) proteins and growth factors. A peptide substrate of activated transglutaminase factor XIII (FXIIIa)—a key ECM crosslinking enzyme—is rendered photosensitive by masking its active site with a photolabile cage group. Covalent incorporation of the caged FXIIIa substrate into poly(ethylene glycol) hydrogels and subsequent laser-scanning lithography affords highly localized biomolecule tethering. This approach for the 3D manipulation of cells within gels should open up avenues for the study and manipulation of cell signalling.
Wong, Alicia Yoke Wei; Oikonomou, Vasilis; Paolicelli, Giuseppe; De Luca, Antonella; Pariano, Marilena; Fric, Jan; Tay, Hock Soon; Ricciardi-Castagnoli, Paola; Zelante, Teresa
2018-01-01
The Parkinson's disease-associated protein, Leucine-rich repeat kinase 2 (LRRK2), a known negative regulator of nuclear factor of activated T cells (NFAT), is expressed in myeloid cells such as macrophages and dendritic cells (DCs) and is involved in the host immune response against pathogens. Since, the Ca 2+ /NFAT/IL-2 axis has been previously found to regulate DC response to the fungus Aspergillus , we have investigated the role played by the kinase LRRK2 during fungal infection. Mechanistically, we found that in the early stages of the non-canonical autophagic response of DCs to the germinated spores of Aspergillus , LRRK2 undergoes progressive degradation and regulates NFAT translocation from the cytoplasm to the nucleus. Our results shed new light on the complexity of the Ca 2+ /NFAT/IL-2 pathway, where LRRK2 plays a role in controlling the immune response of DCs to Aspergillus .
Heo, Gyeong Mi; Kim, Mi Hee; Kim, Jin Hwan; Rho, Young Soo; Shin, Woon Geon
2016-07-25
In head and neck squamous cell carcinoma, second primary gastrointestinal tumors are not uncommon. However, it is unclear whether a screening endoscopy is needed for detecting gastrointestinal neoplasm in patients with head and neck cancer. Therefore, we analyzed the prevalence and independent risk factors for second primary gastrointestinal neoplasm in head and neck squamous cell carcinoma. A consecutive series of 328 patients with primary head and neck squamous cell carcinoma that underwent esophagogastroduodenoscopy or colonoscopy were included using our registry. An age- and sex-matched group of 328 control subjects was enrolled. We assessed risk factors of synchronous gastrointestinal cancer. The prevalence of esophageal cancer with head and neck squamous cell carcinoma was significantly higher than that of the control group (1.5% vs. 0.0%, p=0.011). An age of 54 years or more (OR, 1.033; 95% CI, 1.008-1.059; p=0.009) and male gender (OR, 4.974; 95% CI, 1.648-15.013; p=0.004) were risk factors for concomitant colorectal cancer or adenomas in the head and neck squamous cell carcinoma patients. Preoperative colonoscopy can be recommended for detecting synchronous second primary colorectal lesions in head and neck squamous cell carcinoma patients with male sex regardless of age, and esophagogastroduodenoscopy is necessary in all head and neck squamous cell carcinoma patients for detecting esophageal cancer.
Modulation of oncogenic transcription factors by bioactive natural products in breast cancer.
Hasanpourghadi, Mohadeseh; Pandurangan, Ashok Kumar; Mustafa, Mohd Rais
2018-02-01
Carcinogenesis, a multi-step phenomenon, characterized by alterations at genetic level and affecting the main intracellular pathways controlling cell growth and development. There are growing number of evidences linking oncogenes to the induction of malignancies, especially breast cancer. Modulations of oncogenes lead to gain-of-function signals in the cells and contribute to the tumorigenic phenotype. These signals yield a large number of proteins that cause cell growth and inhibit apoptosis. Transcription factors such as STAT, p53, NF-κB, c-JUN and FOXM1, are proteins that are conserved among species, accumulate in the nucleus, bind to DNA and regulate the specific genes targets. Oncogenic transcription factors resulting from the mutation or overexpression following aberrant gene expression relay the signals in the nucleus and disrupt the transcription pattern. Activation of oncogenic transcription factors is associated with control of cell cycle, apoptosis, migration and cell differentiation. Among different cancer types, breast cancer is one of top ten cancers worldwide. There are different subtypes of breast cancer cell-lines such as non-aggressive MCF-7 and aggressive and metastatic MDA-MB-231 cells, which are identified with distinct molecular profile and different levels of oncogenic transcription factor. For instance, MDA-MB-231 carries mutated and overexpressed p53 with its abnormal, uncontrolled downstream signalling pathway that account for resistance to several anticancer drugs compared to MCF-7 cells with wild-type p53. Appropriate enough, inhibition of oncogenic transcription factors has become a potential target in discovery and development of anti-tumour drugs against breast cancer. Plants produce diverse amount of organic metabolites. Universally, these metabolites with biological activities are known as "natural products". The chemical structure and function of natural products have been studied since 1850s. Investigating these properties leaded to recognition of their molecular effects as anticancer drugs. Numerous natural products extracted from plants, fruits, mushrooms and mycelia, show potential inhibitory effects against several oncogenic transcription factors in breast cancer. Natural compounds that target oncogenic transcription factors have increased the number of candidate therapeutic agents. This review summarizes the current findings of natural products in targeting specific oncogenic transcription factors in breast cancer. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tata, Uday; Rao, Smitha M. N.; Sharma, Akash; Pabba, Krishna; Pokhrel, Kushal; Adhikari, Bandita; Lin, Victor K.; Chiao, J.-C.
2012-09-01
Understanding the effects of different growth factors on cancer metastasis will enable researchers to develop effective post-surgery therapeutic strategies to stop the spread of cancer. Conventional Boyden chamber assays to evaluate cell motility in metastasis studies require high volumes of reagents and are impractical for high-throughput analysis. A microfluidic device was designed for arrayed assaying of prostate cancer cell migration towards different growth factors. The device was created with polydimethylsiloxane (PDMS) and featured two wells connected by 10 micro channels. One well was for cell seeding and the other well for specific growth factors. Each channel has a width of 20 μm, a length of 1 mm and a depth of 10 μm. The device was placed on a culture dish and primed with growth media. Lung-metastasized cells in suspension of RPMI 1640 media1 supplemented with 2% of fetal bovine serum (FBS) were seeded in the cell wells. Cell culture media with epidermal growth factor (EGF) of 25, 50, 75, 100 and 125 ng ml-1 concentrations were individually added in the respective growth factor wells. A 5-day time-lapsed study of cell migration towards the chemoattractant was performed. The average numbers of cells per device in the microchannels were obtained for each attractant condition. The results indicated migration of cells increased from 50 to 100 ng ml-1 of EGF and significantly decreased at 125 ng ml-1 of EGF, as compared to control.
Scandaglia, Marilyn; Benito, Eva; Morenilla-Palao, Cruz; Fiorenza, Anna; del Blanco, Beatriz; Coca, Yaiza; Herrera, Eloísa; Barco, Angel
2015-01-01
The stimulus-regulated transcription factor Serum Response Factor (SRF) plays an important role in diverse neurodevelopmental processes related to structural plasticity and motile functions, although its precise mechanism of action has not yet been established. To further define the role of SRF in neural development and distinguish between cell-autonomous and non cell-autonomous effects, we bidirectionally manipulated SRF activity through gene transduction assays that allow the visualization of individual neurons and their comparison with neighboring control cells. In vitro assays showed that SRF promotes survival and filopodia formation and is required for normal asymmetric neurite outgrowth, indicating that its activation favors dendrite enlargement versus branching. In turn, in vivo experiments demonstrated that SRF-dependent regulation of neuronal morphology has important consequences in the developing cortex and retina, affecting neuronal migration, dendritic and axonal arborization and cell positioning in these laminated tissues. Overall, our results show that the controlled and timely activation of SRF is essential for the coordinated growth of neuronal processes, suggesting that this event regulates the switch between neuronal growth and branching during developmental processes. PMID:26638868
Angyo, I A; Yakubu, A M
2001-01-01
The risk factors for transmission of Hepatitis B virus (HBV) as well as the relationship between HBs Antigeneamia and some socio-cultural factors including socio-economic status of the families of the children, tribe, religion, rural or urban domicile and the number of persons per bedroom, were studied among 507 children with sickle cell anaemia (SCA) and 501 controls at the Jos University Teaching Hospital (JUTH). Twenty-three percent (22.7%) of the children with SCA were HBsAg positive compared with 19.6% among the control group. None of the risk factors studied, including blood transfusion, parenteral injections, intravenous infusions, hospitalization, ulcers, traditional uvulectomy, surgery, contact with case of known hepatitis, mass immunizations, circumcision, ear piercing and traditional scarifications was significantly associated with HBV infection in both children with SCA and control group and also between children with SCA compared with controls. There was also no association between HBs Antigenaemia and the number of blood transfusions, intravenous infusion or hospitalization in both children with SCA and controls. Similarly, there was no association between the socio-cultural factors studied and HBs Antigenaemia. The result of this study suggests that HBV infection is common in children in this environment and other factors yet to, be identified may play a very important role in the transmission of HBV infection. The high prevalence of HBsAg obtained in both children with SCA and controls, and the lack of identifiable association between the risk factos studied and HBsAntigenaemia suggest that these children may have equally been exposed earlier in life.
Effect of platelet lysate on human cells involved in different phases of wound healing.
Barsotti, Maria Chiara; Chiara Barsotti, Maria; Losi, Paola; Briganti, Enrica; Sanguinetti, Elena; Magera, Angela; Al Kayal, Tamer; Feriani, Roberto; Di Stefano, Rossella; Soldani, Giorgio
2013-01-01
Platelets are rich in mediators able to positively affect cell activity in wound healing. Aim of this study was to characterize the effect of different concentrations of human pooled allogeneic platelet lysate on human cells involved in the different phases of wound healing (inflammatory phase, angiogenesis, extracellular matrix secretion and epithelialization). Platelet lysate effect was studied on endothelial cells, monocytes, fibroblasts and keratinocytes, in terms of viability and proliferation, migration, angiogenesis, tissue repair pathway activation (ERK1/2) and inflammatory response evaluation (NFκB). Results were compared both with basal medium and with a positive control containing serum and growth factors. Platelet lysate induced viability and proliferation at the highest concentrations tested (10% and 20% v/v). Whereas both platelet lysate concentrations increased cell migration, only 20% platelet lysate was able to significantly promote angiogenic activity (p<0.05 vs. control), comparably to the positive control. Both platelet lysate concentrations activated important inflammatory pathways such as ERK1/2 and NFκB with the same early kinetics, whereas the effect was different for later time-points. These data suggest the possibility of using allogeneic platelet lysate as both an alternative to growth factors commonly used for cell culture and as a tool for clinical regenerative application for wound healing.
Effect of Platelet Lysate on Human Cells Involved in Different Phases of Wound Healing
Briganti, Enrica; Sanguinetti, Elena; Magera, Angela; Al Kayal, Tamer; Feriani, Roberto; Di Stefano, Rossella; Soldani, Giorgio
2013-01-01
Background Platelets are rich in mediators able to positively affect cell activity in wound healing. Aim of this study was to characterize the effect of different concentrations of human pooled allogeneic platelet lysate on human cells involved in the different phases of wound healing (inflammatory phase, angiogenesis, extracellular matrix secretion and epithelialization). Methodology/Principal Findings Platelet lysate effect was studied on endothelial cells, monocytes, fibroblasts and keratinocytes, in terms of viability and proliferation, migration, angiogenesis, tissue repair pathway activation (ERK1/2) and inflammatory response evaluation (NFκB). Results were compared both with basal medium and with a positive control containing serum and growth factors. Platelet lysate induced viability and proliferation at the highest concentrations tested (10% and 20% v/v). Whereas both platelet lysate concentrations increased cell migration, only 20% platelet lysate was able to significantly promote angiogenic activity (p<0.05 vs. control), comparably to the positive control. Both platelet lysate concentrations activated important inflammatory pathways such as ERK1/2 and NFκB with the same early kinetics, whereas the effect was different for later time-points. Conclusion/Significance These data suggest the possibility of using allogeneic platelet lysate as both an alternative to growth factors commonly used for cell culture and as a tool for clinical regenerative application for wound healing. PMID:24386412
PPAR-γ in innate and adaptive lung immunity.
Nobs, Samuel Philip; Kopf, Manfred
2018-05-16
The transcription factor PPAR-γ (peroxisome proliferator-activated receptor-γ) is a key regulator of lung immunity exhibiting multiple cell type specific roles in controlling development and function of the lung immune system. It is strictly required for the generation of alveolar macrophages by controlling differentiation of fetal lung monocyte precursors. Furthermore, it plays an important role in lung allergic inflammation by licensing lung dendritic cell t helper 2 (Th2) priming capacity as well as acting as a master transcription factor for pathogenic Th2 cells. Due to this plethora of functions and its involvement in multiple pulmonary diseases including asthma and pulmonary alveolar proteinosis, understanding the role of PPAR-γ in lung immunity is an important subject of ongoing research. ©2018 Society for Leukocyte Biology.
FGFR and PTEN signaling interact during lens development to regulate cell survival
Chaffee, Blake R.; Hoang, Thanh V.; Leonard, Melissa R.; Bruney, Devin G.; Wagner, Brad D.; Dowd, Joseph Richard; Leone, Gustavo; Ostrowski, Michael C.; Robinson, Michael L.
2016-01-01
Lens epithelial cells express many receptor tyrosine kinases (RTKs) that stimulate PI3K-AKT and RAS-RAF-MEK-ERK intracellular signaling pathways. These pathways ultimately activate the phosphorylation of key cellular transcription factors and other proteins that control proliferation, survival, metabolism, and differentiation in virtually all cells. Among RTKs in the lens, only stimulation of fibroblast growth factor receptors (FGFRs) elicits a lens epithelial cell to fiber cell differentiation response in mammals. Moreover, although the lens expresses three different Fgfr genes, the isolated removal of Fgfr2 at the lens placode stage inhibits both lens cell survival and fiber cell differentiation. Phosphatase and tensin homolog (PTEN), commonly known as a tumor suppressor, inhibits ERK and AKT activation and initiates both apoptotic pathways, and cell cycle arrest. Here, we show that the combined deletion of Fgfr2 and Pten rescues the cell death phenotype associated with Fgfr2 loss alone. Additionally, Pten removal increased AKT and ERK activation, above the levels of controls, in the presence or absence of Fgfr2. However, isolated deletion of Pten failed to stimulate ectopic fiber cell differentiation, and the combined deletion of Pten and Fgfr2 failed to restore differentiation-specific Aquaporin0 and DnaseIIβ expression in the lens fiber cells. PMID:26764128
Seitz, Roswitha; Hackl, Simon; Seibuchner, Thomas; Tamm, Ernst R; Ohlmann, Andreas
2010-04-28
Norrin is a secreted protein that binds to frizzled 4 and controls development of capillaries in retina and inner ear. We provide evidence that Norrin has distinct neuroprotective properties that are independent from its effects on vascular development. The function of Norrin was investigated in a mouse model of excitotoxic retinal ganglion cell (RGC) damage after intravitreal injection of NMDA, and in cultured Müller glia or immortalized RGC-5 cells. Intravitreal injection of Norrin significantly increased the number of surviving RGC axons in the optic nerve and decreased apoptotic death of retinal neurons following NMDA-mediated damage. This effect could be blocked by adding dickkopf (DKK)-1, an inhibitor of the Wnt/beta-catenin signaling pathway. Treatment of eyes with combined Norrin/NMDA activated Wnt/beta-catenin signaling and increased the retinal expression of leukemia inhibitory factor and endothelin-2, as well as that of neurotrophic growth factors such as fibroblast growth factor-2, brain-derived neurotrophic factor, lens epithelium-derived growth factor, and ciliary neurotrophic factor. A similar activation of Wnt/beta-catenin signaling and an increased expression of neurotrophic factors was observed in cultured Müller cells after treatment with Norrin, effects that again could be blocked by adding DKK-1. In addition, conditioned cell culture medium of Norrin-treated Müller cells increased survival of differentiated RGC-5 cells. We conclude that Norrin has pronounced neuroprotective properties on retinal neurons with the distinct potential to decrease the damaging effects of NMDA-induced RGC loss. The effects of Norrin involve activation of Wnt/beta-catenin signaling and subsequent induction of neurotrophic growth factors in Müller cells.
Zhang, Rong; Zhang, Mian; Li, Cheng-hua; Wang, Peng-cheng; Chen, Fang; Wang, Qin-tao
2013-05-01
To evaluate the effects of basic fibroblast growth factor (FGF-2) and vascular endothelial growth factor (VEGF) on the proliferation, migration, and adhesion of human periodontal ligament stem cells (PDLSC) in vitro. Human PDLSC were cultured in vitro using tissue culture method.The cells were cultured and incubated with various concentrations of FGF-2 and VEGF [A:α-MEM with 2% fetal bovine serum (FBS) (control 1); B:A supplemented with 20 µg/L FGF-2; C:A supplemented with 10 µg/L VEGF; D:A supplemented with 20 µg/L FGF-2 and 10 µg/L VEGF; E:α-MEM with 10% FBS (control 2); F:E supplemented with 20 µg/L FGF-2; G:E supplemented with 10 µg/L VEGF; H:E supplemented with 20 µg/L FGF-2 and 10 µg/L VEGF]. Soluble tetrazolium salts assay was used to evaluate the proliferative capacity on the 1st, 3rd, 5th and 7th d. Then the groups were changed according to result of the proliferation assay (control:α-MEM with 2% FBS; FGF-2 group:control supplemented with 20 µg/L FGF-2; VEGF:control supplemented with 10 µg/L VEGF; Combination group:control supplemented with 20 µg/L FGF-2 and 10 µg/L VEGF). The cell cycle, migration and adhesion capacities were evaluated using flow cytometer, soluble tetrazolium salts assay, cell adhesion assay and scratch wound-healing motility assay. In 2% volume fraction serum containing medium, FGF-2 and VEGF did not stimulate the cell proliferation. However, in 10% serum condition, in groups treated with FGF-2 for 3,5 or 7 d, the A value was (1.22 ± 0.17, 2.15 ± 0.19, 2.72 ± 0.11) respectively, which were significantly higher than that in the control group (0.76 ± 0.16, 1.25 ± 0.06, 1.64 ± 0.09) (P < 0.01) while lower than that in the group treated with FGF-2 and VEGF in combination on the 5 th and 7 th d (2.46 ± 0.17, 3.18 ± 0.27) ( P < 0.05). The A value in the VEGF group on the 5 th and 7 th d is higher than the control group while lower than the FGF-2 group (1.66 ± 0.05, 2.13 ± 0.13) (P < 0.05). Flow cytometer showed that the proliferation index in VEGF group [(34.3 ± 2.0)% ] were significantly lower than those in FGF-2 [(46.8 ± 3.2)%] group and (FGF-2+ VEGF) group [(45.0 ± 4.0)%] but higher than in the control group [(14.5 ± 1.7)%] (P < 0.01). The cell migration assay indicated that the group stimulated with FGF-2 showed no migration promoted effect. Cell adhesion assay showed that the ratio of the adhesive cells number to the original cells number is greater in the FGF-2 group (79 ± 4) than in the VEGF group (62 ± 4) (P < 0.05). Light microscope identified a better cellular morphology on the adhesive surface in the group with FGF-2 than groups without FGF-2. Both FGF-2 and VEGF could simulate the proliferation of PDLSC in a dose dependent manner, and showed an synergistic effect. FGF-2 was more effective to promote the adhesive capacity of PDLSC compared with VEGF. VEGF could facilitate the migration of PDLSC to the wound side.
Shi, Rui; Wang, Jack P; Lin, Ying-Chung; Li, Quanzi; Sun, Ying-Hsuan; Chen, Hao; Sederoff, Ronald R; Chiang, Vincent L
2017-05-01
Co-expression networks based on transcriptomes of Populus trichocarpa major tissues and specific cell types suggest redundant control of cell wall component biosynthetic genes by transcription factors in wood formation. We analyzed the transcriptomes of five tissues (xylem, phloem, shoot, leaf, and root) and two wood forming cell types (fiber and vessel) of Populus trichocarpa to assemble gene co-expression subnetworks associated with wood formation. We identified 165 transcription factors (TFs) that showed xylem-, fiber-, and vessel-specific expression. Of these 165 TFs, 101 co-expressed (correlation coefficient, r > 0.7) with the 45 secondary cell wall cellulose, hemicellulose, and lignin biosynthetic genes. Each cell wall component gene co-expressed on average with 34 TFs, suggesting redundant control of the cell wall component gene expression. Co-expression analysis showed that the 101 TFs and the 45 cell wall component genes each has two distinct groups (groups 1 and 2), based on their co-expression patterns. The group 1 TFs (44 members) are predominantly xylem and fiber specific, and are all highly positively co-expressed with the group 1 cell wall component genes (30 members), suggesting their roles as major wood formation regulators. Group 1 TFs include a lateral organ boundary domain gene (LBD) that has the highest number of positively correlated cell wall component genes (36) and TFs (47). The group 2 TFs have 57 members, including 14 vessel-specific TFs, and are generally less correlated with the cell wall component genes. An exception is a vessel-specific basic helix-loop-helix (bHLH) gene that negatively correlates with 20 cell wall component genes, and may function as a key transcriptional suppressor. The co-expression networks revealed here suggest a well-structured transcriptional homeostasis for cell wall component biosynthesis during wood formation.
VIP modulates the pro-inflammatory maternal response, inducing tolerance to trophoblast cells
Fraccaroli, Laura; Alfieri, Julio; Larocca, Luciana; Calafat, Mario; Roca, Valeria; Lombardi, Eduardo; Ramhorst, Rosanna; Leirós, Claudia Pérez
2009-01-01
Background and purpose Successful embryo implantation is followed by a local pro-inflammatory and Th1 response, subsequently controlled by a Th2 response. Vasoactive intestinal peptide (VIP) has anti-inflammatory effects and promotes tolerogenic/Th2 responses while favouring embryonic development. We investigated the potential regulatory role of VIP on human trophoblast cells, maternal pro-inflammatory responses and trophoblast-maternal leukocyte interactions. Experimental approach We tested VIP effects directly on a trophoblast cell line (Swan 71 cells) and after co-culture with maternal peripheral blood mononuclear cells (PBMCs) as models of the feto-maternal dialogue. We also co-cultured maternal and paternal PBMCs to test effects of endogenous VIP on maternal alloresponses. Key results Swan 71 cells express VPAC1 receptors and VIP induced their proliferation and the expression of leukaemia inhibitor factor, a pro-implantatory marker. After interaction with trophoblast cells, VIP increased Foxp3, the proportion of CD4+CD25+Foxp3+ cells within maternal PBMCs and transforming growth factor β expression. Also, during the trophoblast-maternal PBMCs interaction, VIP reduced pro-inflammatory mediators [interleukin (IL)-6, monocyte chemoattractant protein 1, nitric oxide], while increasing IL-10. Trophoblast cells produced VIP which dose-dependently suppressed allomaternal responses, accompanied by reduced expression of the T cell transcription factor, T-bet. Conclusions and implications Vasoactive intestinal peptide induced pro-implantatory markers and trophoblast cell proliferation, while controlling the initial pro-inflammatory response, by increasing maternal regulatory T cells and anti-inflammatory cytokines. As an autocrine regulatory peptide VIP might contribute to fetal survival through two mechanisms; a direct trophic effect on trophoblast cells and an immunomodulatory effect that favours tolerance to fetal antigens. PMID:19133995
Cellular Strategies of Protein Quality Control
Chen, Bryan; Retzlaff, Marco; Roos, Thomas; Frydman, Judith
2011-01-01
Eukaryotic cells must contend with a continuous stream of misfolded proteins that compromise the cellular protein homeostasis balance and jeopardize cell viability. An elaborate network of molecular chaperones and protein degradation factors continually monitor and maintain the integrity of the proteome. Cellular protein quality control relies on three distinct yet interconnected strategies whereby misfolded proteins can either be refolded, degraded, or delivered to distinct quality control compartments that sequester potentially harmful misfolded species. Molecular chaperones play a critical role in determining the fate of misfolded proteins in the cell. Here, we discuss the spatial and temporal organization of cellular quality control strategies and their implications for human diseases linked to protein misfolding and aggregation. PMID:21746797
TROPHIC EFFECT OF LUTEINIZING HORMONE ON THE RAT LEYDIG CELL
Little is known about the factors controlling Leydig cell growth and differentiation. owever, unique correlations exist between specific testicular compartments and the testosterone-secreting capacity of the testes. elected experimental findings from three common laboratory anima...
Boeri, D; Almus, F E; Maiello, M; Cagliero, E; Rao, L V; Lorenzi, M
1989-02-01
Because diabetic vascular disease is accompanied by a state of hypercoagulability, manifested by increased thrombin activity and foci of intravascular coagulation, we investigated whether a specific procoagulant property of the endothelium--production and surface expression of tissue factor--is modified by elevated glucose concentrations. In unperturbed human vascular endothelial cells, tissue factor mRNA and expression of the functional protein were undetectable and were not induced by 10-12 days of exposure to 30 mM glucose. In thrombin-stimulated cultures, tissue-factor expression was related inversely to cellular density, with confluent cultures producing (per 10(5) cells) half the amount of tissue factor measured in sparse cultures. Cells exposed to high glucose and studied when cell number and thymidine incorporation were identical to control cells manifested increased tissue-factor mRNA level and functional protein production in response to thrombin (P = .002). This effect was not attributable to hypertonicity and was not observed after short exposure to high glucose. In contrast, the tissue-factor response to interleukin 1, a modulator of endothelial function in the context of host defense, was decreased in cells cultured in high glucose (P = .04). These findings indicate that exposure to high glucose can alter tissue-factor gene expression in perturbed vascular endothelium. The reciprocal effects of high glucose on the tissue-factor response to thrombin and interleukin 1 points to different pathways of tissue-factor stimulation by the two agents and suggests functional consequences pertinent to the increased thrombin activity and compromised host-defense mechanisms observed in diabetes.
Oxidant-Induced Cell Death and Nrf2-Dependent Antioxidative Response Are Controlled by Fra-1/AP-1
Vaz, Michelle; Machireddy, Narsa; Irving, Ashley; Potteti, Haranatha R.; Chevalier, Karinne; Kalvakolanu, Dhananjaya
2012-01-01
AP-1 (Jun/Fos) transcription factors play key roles in various biological processes, including cell death. Here we report a novel role for Fra-1 in oxidant-induced cell death controlled by modulating antioxidant gene expression. Fra-1-deficient (Fra-1Δ/Δ) mouse embryonic fibroblasts (MEFs) and primary lung fibroblasts (PLFs) were remarkably resistant to H2O2- and diquat-induced cell death, compared to their wild-type (Fra-1+/+) counterparts. Fra-1 deficiency ablated oxidant-induced mitochondrion-dependent apoptosis. Fra-1Δ/Δ cells had elevated basal levels of antioxidant enzymes and intracellular glutathione (GSH), which were further stimulated by oxidants. Loss of Fra-1 led to an increased half-life of transcription factor Nrf2 and increased recruitment of this protein to the promoters of antioxidant genes and increased their expression. Depletion of intracellular GSH or RNA interference (RNAi)-mediated knockdown of Nqo1, Hmox1, and Nrf2 restored oxidant-induced cell death in Fra-1Δ/Δ cells. Thus, Fra-1 appears to increase susceptibility to oxidants and promotes cell death by attenuating Nrf2-driven antioxidant responses. PMID:22393254
Development of novel microfluidic platforms for neural stem cell research
NASA Astrophysics Data System (ADS)
Chung, Bonggeun
This dissertation describes the development and characterization of novel microfluidic platforms to study proliferation, differentiation, migration, and apoptosis of neural stem cells (NSCs). NSCs hold tremendous promise for fundamental biological studies and cell-based therapies in human disorders. NSCs are defined as cells that can self-renew yet maintain the ability to generate the three principal cell types of the central nervous system such as neurons, astrocytes, and oligodendrocytes. NSCs therefore have therapeutic possibilities in multiple neurodevelopmental and neurodegenerative diseases. Despite their promise, cell-based therapies are limited by the inability to precisely control their behavior in culture. Compared to traditional culture tools, microfluidic platforms can provide much greater control over cell microenvironments and optimize proliferation and differentiation conditions of cells exposed to combinatorial mixtures of growth factors. Human NSCs were cultured for more than 1 week in the microfluidic device while constantly exposed to a continuous gradient of a growth factor mixture. NSCs proliferated and differentiated in a graded and proportional fashion that varied directly with growth factor concentration. In parallel to the study of growth and differentiation of NSCs, we are interested in proliferation and apoptosis of mouse NSCs exposed to morphogen gradients. Morphogen gradients are fundamental to animal brain development. Nonetheless, much controversy remains about the mechanisms by which morphogen gradients act on the developing brain. To overcome limitations of in-vitro models of gradients, we have developed a hybrid microfluidic platform that can mimic morphogen gradient profiles. Bone morphogenetic protein (BMP) activity in the developing cortex is graded and cortical NSC responses to BMPs are highly dependent on concentration and gradient slope of BMPs. To make novel microfluidic devices integrated with multiple functions, we have also developed a microfluidic multi-injector (MMI) that can generate temporal and spatial concentration gradients. MMI consists of fluidic channels and control channels with pneumatically actuated on-chip barrier valves. Repetitive actuations of on-chip valves control pulsatile release of solution that establishes microscopic chemical gradients. The development of novel gradient-generating microfluidic platforms will help in advancing our understanding of brain development and provide a versatile tool with basic and applied studies in stem cell biology.
Spire, an actin nucleation factor, regulates cell division during Drosophila heart development.
Xu, Peng; Johnson, Tamara L; Stoller-Conrad, Jessica R; Schulz, Robert A
2012-01-01
The Drosophila dorsal vessel is a beneficial model system for studying the regulation of early heart development. Spire (Spir), an actin-nucleation factor, regulates actin dynamics in many developmental processes, such as cell shape determination, intracellular transport, and locomotion. Through protein expression pattern analysis, we demonstrate that the absence of spir function affects cell division in Myocyte enhancer factor 2-, Tinman (Tin)-, Even-skipped- and Seven up (Svp)-positive heart cells. In addition, genetic interaction analysis shows that spir functionally interacts with Dorsocross, tin, and pannier to properly specify the cardiac fate. Furthermore, through visualization of double heterozygous embryos, we determines that spir cooperates with CycA for heart cell specification and division. Finally, when comparing the spir mutant phenotype with that of a CycA mutant, the results suggest that most Svp-positive progenitors in spir mutant embryos cannot undergo full cell division at cell cycle 15, and that Tin-positive progenitors are arrested at cell cycle 16 as double-nucleated cells. We conclude that Spir plays a crucial role in controlling dorsal vessel formation and has a function in cell division during heart tube morphogenesis.
Cytoplasmic removal, enucleation, and cell fusion of mouse oocytes.
Kyogoku, Hirohisa; Yoshida, Shuhei; Kitajima, Tomoya S
2018-01-01
Meiotic divisions in females occur in fully grown oocytes that have a large cytoplasmic volume. The intracellular processes that are needed to accomplish meiotic divisions, such as spindle formation, chromosome segregation, and polar body extrusion, are controlled by the concerted actions of nuclear and cytoplasmic factors, which exhibit dynamic quantitative and spatiotemporal changes during meiotic maturation. Thus, distinguishing between meiotic controls that are mediated by cytoplasmic factors and those mediated by nuclear factors helps in the understanding of the mechanisms underlying meiotic divisions. Here, we describe a method to artificially modify the number of nuclei and the volume of the cytoplasm of mouse oocytes through cytoplasmic removal, enucleation, and cell fusion. The oocytes generated by this method are viable and undergo reproducible meiotic divisions exhibiting the effects of altered amounts of cytoplasmic and nuclear factors, which can be analyzed by various assays, such as live imaging microscopy. © 2018 Elsevier Inc. All rights reserved.
Inflammation responses in patients with pulmonary tuberculosis in an intensive care unit
Liu, Qiu-Yue; Han, Fen; Pan, Li-Ping; Jia, Hong-Yan; Li, Qi; Zhang, Zong-De
2018-01-01
Pulmonary tuberculosis caused by Mycobacterium tuberculosis remains a global problem. Inflammatory responses are the primary characteristics of patients with pulmonary tuberculosis in intensive care units (ICU). The aim of the present study was to investigate the clinical importance of inflammatory cells and factors for patients with pulmonary tuberculosis in ICU. A total of 124 patients with pulmonary tuberculosis in ICU were recruited for the present study. The inflammatory responses in patients with pulmonary tuberculosis in ICU were examined by changes in inflammatory cells and factors in the serum. The results indicated that serum levels of lymphocytes, plasma cells, granulocytes and monocytes were increased in patients with pulmonary tuberculosis in ICU compared with healthy controls. The serum levels of inflammatory factors interleukin (IL)-1, IL-6, IL-10, IL-12, and IL-4 were upregulated in patients with pulmonary tuberculosis in ICU. Lower plasma concentrations of IL-2, IL-15 and interferon-γ were detected in patients with pulmonary tuberculosis compared with healthy controls. It was demonstrated that high mobility group box-1 protein expression levels were higher in the serum of patients with pulmonary tuberculosis compared with healthy controls. Notably, an imbalance of T-helper cell (Th)1/Th2 cytokines was observed in patients with pulmonary tuberculosis. Pulmonary tuberculosis caused by M. tuberculosis also upregulated expression of matrix metalloproteinase (MMP)-1 and MMP-9 in hPMCs. In conclusion, these outcomes demonstrated that inflammatory responses and inflammatory factors are associated with the progression of pulmonary tuberculosis, suggesting that inhibition of inflammatory responses and inflammatory factors may be beneficial for the treatment of patients with pulmonary tuberculosis in ICU. PMID:29456674
Layer-by-layer assembled cell instructive nanocoatings containing platelet lysate.
Oliveira, Sara M; Santo, Vítor E; Gomes, Manuela E; Reis, Rui L; Mano, João F
2015-04-01
Great efforts have been made to introduce growth factors (GFs) onto 2D/3D constructs in order to control cell behavior. Platelet lysate (PL) presents itself as a cost-effective source of multiple GFs and other proteins. The instruction given by a construct-PL combination will depend on how its instructive cues are presented to the cells. The content, stability and conformation of the GFs affect their instruction. Strategies for a controlled incorporation of PL are needed. Herein, PL was incorporated into nanocoatings by layer-by-layer assembling with polysaccharides presenting different sulfation degrees (SD) and charges. Heparin and several marine polysaccharides were tested to evaluate their PL and GF incorporation capability. The consequent effects of those multilayers on human adipose derived stem cells (hASCs) were assessed in short-term cultures. Both nature of the polysaccharide and SD were important properties that influenced the adsorption of PL, vascular endothelial growth factor (VEGF), fibroblast growth factor b (FGFb) and platelet derived growth factor (PDGF). The sulfated polysaccharides-PL multilayers showed to be efficient in the promotion of morphological changes, serum-free adhesion and proliferation of high passage hASCs (P > 5). These biomimetic multilayers promise to be versatile platforms to fabricate instructive devices allowing a tunable incorporation of PL. Copyright © 2015 Elsevier Ltd. All rights reserved.
Fluid flow releases fibroblast growth factor-2 from human aortic smooth muscle cells
NASA Technical Reports Server (NTRS)
Rhoads, D. N.; Eskin, S. G.; McIntire, L. V.
2000-01-01
This study tested the hypothesis that fluid shear stress regulates the release of fibroblast growth factor (FGF)-2 from human aortic smooth muscle cells. FGF-2 is a potent mitogen that is involved in the response to vascular injury and is expressed in a wide variety of cell types. FGF-2 is found in the cytoplasm of cells and outside cells, where it associates with extracellular proteoglycans. To test the hypothesis that shear stress regulates FGF-2 release, cells were exposed to flow, and FGF-2 amounts were measured from the conditioned medium, pericellular fraction (extracted by heparin treatment), and cell lysate. Results from the present study show that after 15 minutes of shear stress at 25 dyne/cm(2) in a parallel-plate flow system, a small but significant fraction (17%) of the total FGF-2 was released from human aortic smooth muscle cells. FGF-2 levels in the circulating medium increased 10-fold over medium from static controls (P<0.01). A 50% increase in FGF-2 content versus control (P<0.01) was found in the pericellular fraction (extracted by heparin treatment). Furthermore, a significant decrease in FGF-2 was detected in the cell lysate, indicating that FGF-2 was released from inside the cell. Cell permeability studies with fluorescent dextran were performed to examine whether transient membrane disruption caused FGF-2 release. Flow cytometry detected a 50% increase in mean fluorescence of cells exposed to 25 dyne/cm(2) versus control cells. This indicates that the observed FGF-2 release from human aortic smooth muscle cells is likely due to transient membrane disruption on initiation of flow.
Madsen, Lene H; Tirichine, Leïla; Jurkiewicz, Anna; Sullivan, John T; Heckmann, Anne B; Bek, Anita S; Ronson, Clive W; James, Euan K; Stougaard, Jens
2010-04-12
Bacterial infection of interior tissues of legume root nodules is controlled at the epidermal cell layer and is closely coordinated with progressing organ development. Using spontaneous nodulating Lotus japonicus plant mutants to uncouple nodule organogenesis from infection, we have determined the role of 16 genes in these two developmental processes. We show that host-encoded mechanisms control three alternative entry processes operating in the epidermis, the root cortex and at the single cell level. Single cell infection did not involve the formation of trans-cellular infection threads and was independent of host Nod-factor receptors and bacterial Nod-factor signals. In contrast, Nod-factor perception was required for epidermal root hair infection threads, whereas primary signal transduction genes preceding the secondary Ca2+ oscillations have an indirect role. We provide support for the origin of rhizobial infection through direct intercellular epidermal invasion and subsequent evolution of crack entry and root hair invasions observed in most extant legumes.
Iso, Yoshitaka; Spees, Jeffrey L.; Serrano, Claudia; Bakondi, Benjamin; Pochampally, Radhika; Song, Yao-Hua; Sobel, Burton E.; Delafontaine, Patrick; Prockop, Darwin J.
2007-01-01
The aim of this study was to determine whether intravenously-administered multipotent stromal cells from human bone marrow (hMSCs) can improve cardiac function after myocardial infarction (MI) without long-term engraftment and therefore whether transitory paracrine effects or secreted factors are responsible for the benefit conferred. hMSCs were injected systemically into immunodeficient mice with acute MI. Cardiac function and fibrosis after MI in the hMSC-treated group was significantly improved compared with that in controls. However, despite the cardiac improvement, there was no evident hMSC engraftment in the heart 3 weeks after MI. Microarray assays and ELISAs demonstrated that multiple protective factors were expressed and secreted from the hMSCs in culture. Factors secreted by hMSCs prevented cell death of cultured cardiomyocytes and endothelial cells under conditions that mimicked tissue ischemia. The favorable effects of hMSCs appear to reflect the impact of secreted factors rather than engraftment, differentiation, or cell fusion. PMID:17257581
2010-01-01
stem - cell -based biomedical and therapeutic applications, including tissue engineering, requires an understanding of the cell-cell and cell-environment interactions. To this end, recent efforts have been focused on the manipulation of adult stem cell differentiation using inductive soluble factors, designing suitable mechanical environments, and applying noninvasive physical forces. Although each of these different approaches has been successfully applied to regulate stem cell differentiation, it would be of great interest and
Chien, Wenwen; O'Kelly, James; Lu, Daning; Leiter, Amanda; Sohn, Julia; Yin, Dong; Karlan, Beth; Vadgama, Jay; Lyons, Karen M; Koeffler, H Phillip
2011-06-01
Connective tissue growth factor (CTGF/CCN2) belongs to the CCN family of matricellular proteins, comprising Cyr61, CTGF, NovH and WISP1-3. The CCN proteins contain an N-terminal signal peptide followed by four conserved domains sharing sequence similarities with the insulin-like growth factor binding proteins, von Willebrand factor type C repeat, thrombospondin type 1 repeat, and a C-terminal growth factor cysteine knot domain. To investigate the role of CCN2 in breast cancer, we transfected MCF-7 cells with full-length CCN2, and with four mutant constructs in which one of the domains had been deleted. MCF-7 cells stably expressing full-length CCN2 demonstrated reduced cell proliferation, increased migration in Boyden chamber assays and promoted angiogenesis in chorioallantoic membrane assays compared to control cells. Deletion of the C-terminal cysteine knot domain, but not of any other domain-deleted mutants, abolished activities mediated by full-length CCN2. We have dissected the role of CCN2 in breast tumorigenesis on a structural basis.
HGF/scatter factor selectively promotes cell invasion by increasing integrin avidity.
Trusolino, L; Cavassa, S; Angelini, P; Andó, M; Bertotti, A; Comoglio, P M; Boccaccio, C
2000-08-01
Hepatocyte growth factor/scatter factor (HGF/SF) controls a genetic program known as 'invasive growth', which involves as critical steps cell adhesion, migration, and trespassing of basement membranes. We show here that in MDA-MB-231 carcinoma cells, these steps are elicited by HGF/SF but not by epidermal growth factor (EGF). Neither factor substantially alters the production or activity of extracellular matrix proteases. HGF/SF, but not EGF, selectively promotes cell adhesion on laminins 1 and 5, fibronectin, and vitronectin through a PI3-K-dependent mechanism. Increased adhesion is followed by enhanced invasiveness through isolated matrix proteins as well as through reconstituted basement membranes. Inhibition assays using function-blocking antibodies show that this phenomenon is mediated by multiple integrins including beta1, beta3, beta4, and beta5. HGF/SF triggers clustering of all these integrins at actin-rich adhesive sites and lamellipodia but does not quantitatively modify their membrane expression. These data suggest that HGF/SF promotes cell adhesion and invasiveness by increasing the avidity of integrins for their specific ligands.
Functionalized scaffolds to control dental pulp stem cell fate
Piva, Evandro; Silva, Adriana F.; Nör, Jacques E.
2014-01-01
Emerging understanding about interactions between stem cells, scaffolds and morphogenic factors has accelerated translational research in the field of dental pulp tissue engineering. Dental pulp stem cells constitute a sub-population of cells endowed with self-renewal and multipotency. Dental pulp stem cells seeded in biodegradable scaffolds and exposed to dentin-derived morphogenic signals give rise to a pulp-like tissue capable of generating new dentin. Notably, dentin-derived proteins are sufficient to induce dental pulp stem cell differentiation into odontoblasts. Ongoing work is focused on developing ways of mobilizing dentin-derived proteins and disinfecting the root canal of necrotic teeth without compromising the morphogenic potential of these signaling molecules. On the other hand, dentin by itself does not appear to be capable of inducing endothelial differentiation of dental pulp stem cells, despite the well known presence of angiogenic factors in dentin. This is particularly relevant in the context of dental pulp tissue engineering in full root canals, where access to blood supply is limited to the apical foramina. To address this challenge, scientists are looking at ways to use the scaffold as a controlled release device for angiogenic factors. The aim of this manuscript is to present and discuss current strategies to functionalize injectable scaffolds and customize them for dental pulp tissue engineering. The long-term goal of this work is to develop stem cell-based therapies that enable the engineering of functional dental pulps capable of generating new tubular dentin in humans. PMID:24698691
Regulation of endogenous human gene expression by ligand-inducible TALE transcription factors.
Mercer, Andrew C; Gaj, Thomas; Sirk, Shannon J; Lamb, Brian M; Barbas, Carlos F
2014-10-17
The construction of increasingly sophisticated synthetic biological circuits is dependent on the development of extensible tools capable of providing specific control of gene expression in eukaryotic cells. Here, we describe a new class of synthetic transcription factors that activate gene expression in response to extracellular chemical stimuli. These inducible activators consist of customizable transcription activator-like effector (TALE) proteins combined with steroid hormone receptor ligand-binding domains. We demonstrate that these ligand-responsive TALE transcription factors allow for tunable and conditional control of gene activation and can be used to regulate the expression of endogenous genes in human cells. Since TALEs can be designed to recognize any contiguous DNA sequence, the conditional gene regulatory system described herein will enable the design of advanced synthetic gene networks.
Ohnuki, Yoshitsugu; Kurosawa, Hiroshi
2013-05-01
Hanging drop (HD) cultures were carried out with a drop volume of either 20 or 30 μl. An incubation period of 3 days was determined to be appropriate for the formation of well-controlled embryoid bodies (EBs), and the initial cell number was identified as the most critical factor in the growth and neuronal cell differentiation of EBs. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Schliep, Martin; Ebert, Berit; Simon-Rosin, Ulrike; Zoeller, Daniela
2010-01-01
Gene expression levels of several transcription factors from Arabidopsis thaliana that were described previously to be involved in leaf development and trichome formation were analysed in trichome, basal and pavement cells of mature leaves. Single cell samples of these three cells types were collected by glass micro-capillaries. Real-time reverse transcription (RT)-PCR was used to analyse expression patterns of the following transcription factors: MYB23, MYB55, AtHB1, FILAMENTOUS FLOWER (FIL)/YABBY1 (YAB1), TRIPTYCHON (TRY) and CAPRICE (CPC). A difference in the expression patterns of TRY and CPC was revealed. Contrary to the CPC expression pattern, no transcripts of TRY could be detected in pavement cells. FIL/YAB1 was exclusively expressed in trichome cells. AtHB1 was highly expressed throughout all three cell types. MYB55 was higher expressed in basal cells than in trichome and pavement cells. MYB23 showed a pattern of low expression in pavement cells, medium in basal cells and high expression in trichomes. Expression patterns obtained by single cell sampling and real-time RT-PCR were compared to promoter GUS fusions of the selected transcription factors. Therefore, we regenerated two transgenic Arabidopsis lines that expressed the GUS reporter gene under control of the promoters of MYB55 and YAB1. In conclusion, despite their function in leaf morphogenesis, all six transcription factors were detected in mature leaves. Furthermore, single cell sampling and promoter GUS staining patterns demonstrated the predominant presence of MYB55 in basal cells as compared to pavement cells and trichomes. PMID:20101514
Schliep, Martin; Ebert, Berit; Simon-Rosin, Ulrike; Zoeller, Daniela; Fisahn, Joachim
2010-05-01
Gene expression levels of several transcription factors from Arabidopsis thaliana that were described previously to be involved in leaf development and trichome formation were analysed in trichome, basal and pavement cells of mature leaves. Single cell samples of these three cells types were collected by glass micro-capillaries. Real-time reverse transcription (RT)-PCR was used to analyse expression patterns of the following transcription factors: MYB23, MYB55, AtHB1, FILAMENTOUS FLOWER (FIL)/YABBY1 (YAB1), TRIPTYCHON (TRY) and CAPRICE (CPC). A difference in the expression patterns of TRY and CPC was revealed. Contrary to the CPC expression pattern, no transcripts of TRY could be detected in pavement cells. FIL/YAB1 was exclusively expressed in trichome cells. AtHB1 was highly expressed throughout all three cell types. MYB55 was higher expressed in basal cells than in trichome and pavement cells. MYB23 showed a pattern of low expression in pavement cells, medium in basal cells and high expression in trichomes. Expression patterns obtained by single cell sampling and real-time RT-PCR were compared to promoter GUS fusions of the selected transcription factors. Therefore, we regenerated two transgenic Arabidopsis lines that expressed the GUS reporter gene under control of the promoters of MYB55 and YAB1. In conclusion, despite their function in leaf morphogenesis, all six transcription factors were detected in mature leaves. Furthermore, single cell sampling and promoter GUS staining patterns demonstrated the predominant presence of MYB55 in basal cells as compared to pavement cells and trichomes.
Quantification of Hepatitis C Virus Cell-to-Cell Spread Using a Stochastic Modeling Approach
Martin, Danyelle N.; Perelson, Alan S.; Dahari, Harel
2015-01-01
ABSTRACT It has been proposed that viral cell-to-cell transmission plays a role in establishing and maintaining chronic infections. Thus, understanding the mechanisms and kinetics of cell-to-cell spread is fundamental to elucidating the dynamics of infection and may provide insight into factors that determine chronicity. Because hepatitis C virus (HCV) spreads from cell to cell and has a chronicity rate of up to 80% in exposed individuals, we examined the dynamics of HCV cell-to-cell spread in vitro and quantified the effect of inhibiting individual host factors. Using a multidisciplinary approach, we performed HCV spread assays and assessed the appropriateness of different stochastic models for describing HCV focus expansion. To evaluate the effect of blocking specific host cell factors on HCV cell-to-cell transmission, assays were performed in the presence of blocking antibodies and/or small-molecule inhibitors targeting different cellular HCV entry factors. In all experiments, HCV-positive cells were identified by immunohistochemical staining and the number of HCV-positive cells per focus was assessed to determine focus size. We found that HCV focus expansion can best be explained by mathematical models assuming focus size-dependent growth. Consistent with previous reports suggesting that some factors impact HCV cell-to-cell spread to different extents, modeling results estimate a hierarchy of efficacies for blocking HCV cell-to-cell spread when targeting different host factors (e.g., CLDN1 > NPC1L1 > TfR1). This approach can be adapted to describe focus expansion dynamics under a variety of experimental conditions as a means to quantify cell-to-cell transmission and assess the impact of cellular factors, viral factors, and antivirals. IMPORTANCE The ability of viruses to efficiently spread by direct cell-to-cell transmission is thought to play an important role in the establishment and maintenance of viral persistence. As such, elucidating the dynamics of cell-to-cell spread and quantifying the effect of blocking the factors involved has important implications for the design of potent antiviral strategies and controlling viral escape. Mathematical modeling has been widely used to understand HCV infection dynamics and treatment response; however, these models typically assume only cell-free virus infection mechanisms. Here, we used stochastic models describing focus expansion as a means to understand and quantify the dynamics of HCV cell-to-cell spread in vitro and determined the degree to which cell-to-cell spread is reduced when individual HCV entry factors are blocked. The results demonstrate the ability of this approach to recapitulate and quantify cell-to-cell transmission, as well as the impact of specific factors and potential antivirals. PMID:25833046
You, Hi-Jin; Namgoong, Sik; Han, Seung-Kyu; Jeong, Seong-Ho; Dhong, Eun-Sang; Kim, Woo-Kyung
2015-11-01
Our previous studies demonstrated that human bone marrow-derived mesenchymal stromal cells have great potential for wound healing. However, it is difficult to clinically utilize cultured stem cells. Recently, human umbilical cord blood-derived mesenchymal stromal cells (hUCB-MSCs) have been commercialized for cartilage repair as a first cell therapy product that uses allogeneic stem cells. Should hUCB-MSCs have a superior effect on wound healing as compared with fibroblasts, which are the main cell source in current cell therapy products for wound healing, they may possibly replace fibroblasts. The purpose of this in vitro study was to compare the wound-healing activity of hUCB-MSCs with that of fibroblasts. This study was particularly designed to compare the effect of hUCB-MSCs on diabetic wound healing with those of allogeneic and autologous fibroblasts. Healthy (n = 5) and diabetic (n = 5) fibroblasts were used as the representatives of allogeneic and autologous fibroblasts for diabetic patients in the control group. Human UCB-MSCs (n = 5) were used in the experimental group. Cell proliferation, collagen synthesis and growth factor (basic fibroblast growth factor, vascular endothelial growth factor and transforming growth factor-β) production were compared among the three cell groups. Human UCB-MSCs produced significantly higher amounts of vascular endothelial growth factor and basic fibroblast growth factor when compared with both fibroblast groups. Human UCB-MSCs were superior to diabetic fibroblasts but not to healthy fibroblasts in collagen synthesis. There were no significant differences in cell proliferation and transforming growth factor-β production. Human UCB-MSCs may have greater capacity for diabetic wound healing than allogeneic or autologous fibroblasts, especially in angiogenesis. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Weber, Kristy L; Doucet, Michele; Price, Janet E; Baker, Cheryl; Kim, Sun Jin; Fidler, Isaiah J
2003-06-01
Renal cell carcinoma (RCC) frequently produces metastases to the musculoskeletal system that are a major source of morbidity in the form of pain, immobilization, fractures, neurological compromise, and a decreased ability to perform activities of daily living. Patients with metastatic RCC therefore have a dismal prognosis because there is no effective adjuvant treatment for this disease. Because the epidermal growth factor receptor (EGF-R) signaling cascade is important in the growth and metastasis of RCC, its blockade has been hypothesized to inhibit tumor growth and hence prevent resultant bone destruction. We determined whether blockade of EGF-R by the tyrosine kinase inhibitor PKI 166 inhibited the growth of RCC in bone. We use a novel cell line, RBM1-IT4, established from a human RCC bone metastasis. Protein and mRNA expression of the ligands and receptors was assessed by Western and Northern blots. The stimulation of RBM1-IT4 cells with epidermal growth factor or transforming growth factor alpha resulted in increased cellular proliferation and tyrosine kinase autophosphorylation. PKI 166 prevented these effects. First, RBM1-IT4 cells were implanted into the tibia of nude mice, where they established lytic, progressively growing lesions, after which the mice were treated with PKI 166 alone or in combination with paclitaxel (Taxol). Immunohistochemical analysis revealed that tumor cells and tumor-associated endothelial cells in control mice expressed activated EGF-R. Treatment of mice with PKI 166 alone or in combination with Taxol produced a significant decrease in the incidence and size of bone lesions as compared with the results in control or Taxol-treated mice (P < 0.001). Treatment with PKI 166 also decreased the expression of phosphorylated EGF-R by tumor cells and tumor-associated endothelial cells, and this was even more pronounced with PKI 166 plus Taxol treatment. The PKI 166 plus Taxol combination produced apoptosis of tumor cells and tumor-associated endothelial cells. Tumor cell proliferation, shown by proliferating cell nuclear antigen positivity, was decreased in all treatment groups. In addition, the integrity of the bone was maintained in mice treated with PKI 166 or PKI 166 plus Taxol, whereas massive bone destruction was seen in control and Taxol-treated mice. These results suggest that blockade of EGF-R signaling inhibits growth of RCC in the bone by its effect on tumor cells and tumor-associated endothelial cells.
Ramírez-Zavala, Bernardo; Weyler, Michael; Gildor, Tsvia; Schmauch, Christian; Kornitzer, Daniel; Arkowitz, Robert; Morschhäuser, Joachim
2013-01-01
Depending on the environmental conditions, the pathogenic yeast Candida albicans can undergo different developmental programs, which are controlled by dedicated transcription factors and upstream signaling pathways. C. albicans strains that are homozygous at the mating type locus can switch from the normal yeast form (white) to an elongated cell type (opaque), which is the mating-competent form of this fungus. Both white and opaque cells use the Ste11-Hst7-Cek1/Cek2 MAP kinase signaling pathway to react to the presence of mating pheromone. However, while opaque cells employ the transcription factor Cph1 to induce the mating response, white cells recruit a different downstream transcription factor, Tec1, to promote the formation of a biofilm that facilitates mating of opaque cells in the population. The switch from the white to the opaque cell form is itself induced by environmental signals that result in the upregulation of the transcription factor Wor1, the master regulator of white-opaque switching. To get insight into the upstream signaling pathways controlling the switch, we expressed all C. albicans protein kinases from a tetracycline-inducible promoter in a switching-competent strain. Screening of this library of strains showed that a hyperactive form of Ste11 lacking its N-terminal domain (Ste11ΔN467) efficiently stimulated white cells to switch to the opaque phase, a behavior that did not occur in response to pheromone. Ste11ΔN467-induced switching specifically required the downstream MAP kinase Cek1 and its target transcription factor Cph1, but not Cek2 and Tec1, and forced expression of Cph1 also promoted white-opaque switching in a Wor1-dependent manner. Therefore, depending on the activation mechanism, components of the pheromone-responsive MAP kinase pathway can be reconnected to stimulate an alternative developmental program, switching of white cells to the mating-competent opaque phase. PMID:24130492
2013-01-01
Background The bottom-up (food resources) and top-down (grazing pressure) controls, with other environmental parameters (water temperature, pH) are the main factors regulating the abundance and structure of microbial communities in aquatic ecosystems. It is still not definitively decided which of the two control mechanisms is more important. The significance of bottom-up versus top-down controls may alter with lake productivity and season. In oligo- and/or mesotrophic environments, the bottom-up control is mostly important in regulating bacterial abundances, while in eutrophic systems, the top-down control may be more significant. Results The abundance of bacteria, heterotrophic (HNF) and autotrophic (ANF) nanoflagellates and ciliates, as well as bacterial production (BP) and metabolically active cells of bacteria (CTC, NuCC, EST) were studied in eutrophic lakes (Mazurian Lake District, Poland) during spring. The studied lakes were characterized by high nanoflagellate (mean 17.36 ± 8.57 × 103 cells ml-1) and ciliate abundances (mean 59.9 ± 22.4 ind. ml-1) that were higher in the euphotic zone than in the bottom waters, with relatively low bacterial densities (4.76 ± 2.08 × 106 cells ml-1) that were lower in the euphotic zone compared to the profundal zone. Oligotrichida (Rimostrombidium spp.), Prostomatida (Urotricha spp.) and Scuticociliatida (Histiobalantium bodamicum) dominated in the euphotic zone, whereas oligotrichs Tintinnidium sp. and prostomatids Urotricha spp. were most numerous in the bottom waters. Among the staining methods used to examine bacterial cellular metabolic activity, the lowest percentage of active cells was recorded with the CTC (1.5–15.4%) and EST (2.7–14.2%) assay in contrast to the NuCC (28.8–97.3%) method. Conclusions In the euphotic zone, the bottom-up factors (TP and DOC concentrations) played a more important role than top-down control (grazing by protists) in regulating bacterial numbers and activity. None of the single analyzed factors controlled bacterial abundance in the bottom waters. The results of this study suggest that both control mechanisms, bottom-up and top-down, simultaneously regulated bacterial community and their activity in the profundal zone of the studied lakes during spring. In both lake water layers, food availability (algae, nanoflagellates) was probably the major factor determining ciliate abundance and their composition. In the bottom waters, both groups of protists appeared to be also influenced by oxygen, temperature, and total phosphorus. PMID:23566491
Rfx6 Directs Islet Formation and Insulin Production in Mice and Humans
Smith, Stuart B.; Qu, Hui-Qi; Taleb, Nadine; Kishimoto, Nina; Scheel, David W.; Lu, Yang; Patch, Ann-Marie; Grabs, Rosemary; Wang, Juehu; Lynn, Francis C.; Miyatsuka, Takeshi; Mitchell, John; Seerke, Rina; Désir, Julie; Eijnden, Serge Vanden; Abramowicz, Marc; Kacet, Nadine; Weill, Jacques; Renard, Marie-Éve; Gentile, Mattia; Hansen, Inger; Dewar, Ken; Hattersley, Andrew T.; Wang, Rennian; Wilson, Maria E.; Johnson, Jeffrey D.; Polychronakos, Constantin; German, Michael S.
2009-01-01
Insulin from the β-cells of the pancreatic islets of Langerhans controls energy homeostasis in vertebrates, and its deficiency causes diabetes mellitus. During embryonic development, the transcription factor Neurogenin3 initiates the differentiation of the β-cells and other islet cell types from pancreatic endoderm, but the genetic program that subsequently completes this differentiation remains incompletely understood. Here we show that the transcription factor Rfx6 directs islet cell differentiation downstream of Neurogenin3. Mice lacking Rfx6 failed to generate any of the normal islet cell types except for pancreatic-polypeptide-producing cells. In human infants with a similar autosomal recessive syndrome of neonatal diabetes, genetic mapping and subsequent sequencing identified mutations in the human RFX6 gene. These studies demonstrate a unique position for Rfx6 in the hierarchy of factors that coordinate pancreatic islet development in both mice and humans. Rfx6 could prove useful in efforts to generate β-cells for patients with diabetes. PMID:20148032
Predictive factors for long-term engraftment of autologous blood stem cells.
Duggan, P R; Guo, D; Luider, J; Auer, I; Klassen, J; Chaudhry, A; Morris, D; Glück, S; Brown, C B; Russell, J A; Stewart, D A
2000-12-01
Data from 170 consecutive patients aged 19-66 years (median age 46 years) who underwent unmanipulated autologous blood stem cell transplant (ASCT) were analyzed to determine if total CD34+ cells/kg infused, CD34+ subsets (CD34+41+, CD34+90+, CD34+33-, CD34+38-, CD34+38-DR-), peripheral blood CD34+ cell (PBCD34+) count on first apheresis day, or various clinical factors were associated with low blood counts 6 months post ASCT. Thirty-four patients were excluded from analysis either because of death (n = 17) or re-induction chemotherapy prior to 6 months post ASCT (n = 13), or because of lack of follow-up data (n = 4). Of the remaining 136 patients, 46% had low WBC ( < 4 x 10(9)/l), 41% low platelets (<150 x 10(9)/l), and 34% low hemoglobin ( < 120 g/l) at a median of 6 months following ASCT. By Spearman's rank correlation, both the total CD34+ cell dose/kg and the PBCD34+ count correlated with 6 month blood counts better than any subset of CD34+ cells or any clinical factor. The PBCD34+ count was overall a stronger predictor of 6 month blood counts than was the total CD34+ cells/kg infused. Both factors retained their significance in multivariate analysis, controlling for clinical factors. In conclusion, subsets of CD34+ cells and clinical factors are inferior to the total CD34+ cell dose/kg and PBCD34+ count in predicting 6 month blood counts following ASCT.
The role of mast cells in cutaneous wound healing in streptozotocin-induced diabetic mice.
Nishikori, Yoriko; Shiota, Naotaka; Okunishi, Hideki
2014-11-01
Mast cells (MCs) reside in cutaneous tissue, and an increment of MCs is suggested to induce vascular regression in the process of wound healing. To clarify participation of MCs in diabetic cutaneous wound healing, we created an excisional wound on diabetic mice 4 weeks after streptozotocin injections and subsequently investigated the healing processes for 49 days, comparing them with control mice. The rate of wound closure was not markedly different between the diabetic and control mice. In the proliferative phase at days 7 and 14, neovascularization in the wound was weaker in diabetic mice than in control mice. In the remodeling phase at day 21 and afterward, rapid vascular regression occurred in control mice; however, neovascularization was still observed in diabetic mice where the number of vessels in granulation tissues was relatively higher than in control mice. In the remodeling phase of the control mice, MCs within the wound began to increase rapidly and resulted in considerable accumulation, whereas the increment of MCs was delayed in diabetic mice. In addition, the number of fibroblast growth factor (FGF)- or vascular endothelial growth factor (VEGF)-immunopositive hypertrophic fibroblast-like spindle cells and c-Kit-positive/VEGFR2-positive/FcεRIα-negative endothelial progenitor cells (EPCs) were higher in diabetic wounds. In conclusion, neovascularization in the proliferative phase and vascular regression in the remodeling phase were impaired in diabetic mice. The delayed increment of MCs and sustained angiogenic stimuli by fibroblast-like spindle cells and EPCs may inhibit vascular regression in the remodeling phase and impair the wound-healing process in diabetic mice.
Chen, C; Li, J; Micko, C J; Pierce, G F; Cunningham, M R; Lumsden, A B
1998-02-15
Vascular smooth muscle cell (SMC) proliferation is an integral component of intimal lesion formation. In this study we compared the mitogenic effects of basic fibroblast growth factor (bFGF) and heparin binding epidermal growth factor (HBEGF) and the cytotoxic effects of bFGF and HBEGF conjugated with plant cytotoxin saporin (SAP) on vascular cell cultures. Human vascular SMCs and endothelial cells were cultured and FGF receptor-1 (FGFR-1) and EGF receptor (EGFR) expression were detected by immunohistochemical staining. Cells were grown in 24-well plates. Variable amounts of testing drugs (bFGF, HBEGF, SAP, bFGF-SAP, or HBEGF-SAP) were added to quadruplicate wells after 24 h. Cells without drugs were used as control. The total number of cells was counted at 72 h using a hemocytometer. The cultured human vascular SMCs and endothelial cells expressed both FGFR-1 and EGFR with predominant perinuclear localization. bFGF and HBEGF demonstrated equally potent mitogenic effects on SMC proliferation. SAP alone showed a limited cytotoxic effect on both SMCs and endothelial cells. bFGF had a more potent effect on endothelial cell proliferation than HBEGF. bFGF-SAP was equally cytotoxic for both SMCs and endothelial cells, while HBEGF-SAP had a more selectively cytotoxic effect on SMCs than on endothelial cells. These data suggest that the mitogenic effects of bFGF and HBEGF and the cytotoxic effects of bFGF-SAP and HBEGF-SAP may both be mediated by their corresponding growth factor receptors. Because of its selective cytotoxic effect on SMCs, HBEGF-SAP may become a more attractive agent for controlling intimal lesion formation.
Rybalko, Viktoriya Y; Pham, Chantal B; Hsieh, Pei-Ling; Hammers, David W; Merscham-Banda, Melissa; Suggs, Laura J; Farrar, Roger P
2015-11-01
Therapeutic delivery of regeneration-promoting biological factors directly to the site of injury has demonstrated its efficacy in various injury models. Several reports describe improved tissue regeneration following local injection of tissue specific growth factors, cytokines and chemokines. Evidence exists that combined cytokine/growth factor treatment is superior for optimizing tissue repair by targeting different aspects of the regeneration response. The purpose of this study was to evaluate the therapeutic potential of the controlled delivery of stromal cell-derived factor-1alpha (SDF-1α) alone or in combination with insulin-like growth factor-I (SDF-1α/IGF-I) for the treatment of tourniquet-induced ischemia/reperfusion injury (TK-I/R) of skeletal muscle. We hypothesized that SDF-1α will promote sustained stem cell recruitment to the site of muscle injury, while IGF-I will induce progenitor cell differentiation to effectively restore muscle contractile function after TK-I/R injury while concurrently reducing apoptosis. Utilizing a novel poly-ethylene glycol PEGylated fibrin gel matrix (PEG-Fib), we incorporated SDF-1α alone (PEG-Fib/SDF-1α) or in combination with IGF-I (PEG-Fib/SDF-1α/IGF-I) for controlled release at the site of acute muscle injury. Despite enhanced cell recruitment and revascularization of the regenerating muscle after SDF-1α treatment, functional analysis showed no benefit from PEG-Fib/SDF-1α therapy, while dual delivery of PEG-Fib/SDF-1α/IGF-I resulted in IGF-I-mediated improvement of maximal force recovery and SDF-1α-driven in vivo neovasculogenesis. Histological data supported functional data, as well as highlighted the important differences in the regeneration process among treatment groups. This study provides evidence that while revascularization may be necessary for maximizing muscle force recovery, without modulation of other effects of inflammation it is insufficient.
Rybalko, Viktoriya Y.; Pham, Chantal B.; Hsieh, Pei-Ling; Hammers, David W.; Merscham-Banda, Melissa; Suggs, Laura J.; Farrar, Roger P.
2017-01-01
Therapeutic delivery of regeneration-promoting biological factors directly to the site of injury has demonstrated its efficacy in various injury models. Several reports describe improved tissue regeneration following local injection of tissue specific growth factors, cytokines and chemokines. Evidence exists that combined cytokine/growth factor treatment is superior for optimizing tissue repair by targeting different aspects of the regeneration response. The purpose of this study was to evaluate the therapeutic potential of the controlled delivery of stromal cell-derived factor-1alpha (SDF-1α) alone or in combination with insulin-like growth factor-I (SDF-1α/IGF-I) for the treatment of tourniquet-induced ischemia/reperfusion injury (TK-I/R) of skeletal muscle. We hypothesized that SDF-1α will promote sustained stem cell recruitment to the site of muscle injury, while IGF-I will induce progenitor cell differentiation to effectively restore muscle contractile function after TK-I/R injury while concurrently reducing apoptosis. Utilizing a novel poly-ethylene glycol PEGylated fibrin gel matrix (PEG-Fib), we incorporated SDF-1α alone (PEG-Fib/SDF-1α) or in combination with IGF-I (PEG-Fib/SDF-1α/IGF-I) for controlled release at the site of acute muscle injury. Despite enhanced cell recruitment and revascularization of the regenerating muscle after SDF-1α treatment, functional analysis showed no benefit from PEG-Fib/SDF-1α therapy, while dual delivery of PEG-Fib/SDF-1α/IGF-I resulted in IGF-I-mediated improvement of maximal force recovery and SDF-1α-driven in vivo neovasculogenesis. Histological data supported functional data, as well as highlighted the important differences in the regeneration process among treatment groups. This study provides evidence that while revascularization may be necessary for maximizing muscle force recovery, without modulation of other effects of inflammation it is insufficient. PMID:26247892
Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells
Florencio-Silva, Rinaldo; Sasso-Cerri, Estela; Simões, Manuel Jesus; Cerri, Paulo Sérgio
2015-01-01
Bone tissue is continuously remodeled through the concerted actions of bone cells, which include bone resorption by osteoclasts and bone formation by osteoblasts, whereas osteocytes act as mechanosensors and orchestrators of the bone remodeling process. This process is under the control of local (e.g., growth factors and cytokines) and systemic (e.g., calcitonin and estrogens) factors that all together contribute for bone homeostasis. An imbalance between bone resorption and formation can result in bone diseases including osteoporosis. Recently, it has been recognized that, during bone remodeling, there are an intricate communication among bone cells. For instance, the coupling from bone resorption to bone formation is achieved by interaction between osteoclasts and osteoblasts. Moreover, osteocytes produce factors that influence osteoblast and osteoclast activities, whereas osteocyte apoptosis is followed by osteoclastic bone resorption. The increasing knowledge about the structure and functions of bone cells contributed to a better understanding of bone biology. It has been suggested that there is a complex communication between bone cells and other organs, indicating the dynamic nature of bone tissue. In this review, we discuss the current data about the structure and functions of bone cells and the factors that influence bone remodeling. PMID:26247020
Modified model of VX2 tumor overexpressing vascular endothelial growth factor.
Pascale, Florentina; Ghegediban, Saida-Homayra; Bonneau, Michel; Bedouet, Laurent; Namur, Julien; Verret, Valentin; Schwartz-Cornil, Isabelle; Wassef, Michel; Laurent, Alexandre
2012-06-01
To determine whether upregulated expression of vascular endothelial growth factor (VEGF) in VX2 cells can increase vessel density (VD) and reduce tumor necrosis. The VX2 cell line was transfected with expression vectors containing cDNA for rabbit VEGF. Stable clones producing rabbit VEGF (VEGF-VX2) were selected. VEGF-VX2 cells (n = 5 rabbits) or nontransfected VX2 cells (controls; n = 5 rabbits) were implanted into leg muscle of 10 rabbits. The animals were sacrificed at day 21. Tumor volume, percentage of necrosis, VD, and VEGF concentration in tumor protein extract were quantified. Overexpression of VEGF by VX2 cells augmented tumor implantation efficiency 100% and favored cyst formation. The tumor volume was significantly larger for VEGF-VX2 transfected tumors versus controls (P = .0143). Overexpression of VEGF in VX2 cells significantly increased the VD of the tumors (P = .0138). The percentage of necrosis was reduced in VEGF-VX2 tumors versus controls (19.5% vs 38.5 %; P = .002). VEGF concentration in VEGF-VX2 tumors was significantly higher than in control tumors (P = .041) and was correlated with tumor volume (ρ = .883, P = .012). The overexpression of VEGF increased tumor growth and vascularization, favored cyst formation, and reduced tumor necrosis. This new phenotype of the VX2 tumor may offer some advantages over classic models of VX2 tumor for evaluating anticancer therapies. Copyright © 2012 SIR. Published by Elsevier Inc. All rights reserved.
Chen, Ru-Yi; Xu, Bin; Chen, Su-Feng; Chen, Si-Si; Zhang, Ting; Ren, Jun; Xu, Jian
2014-10-28
To investigate the effect of oridonin on nuclear transcription factors and to study the relationship between biological behavior and inflammatory factors in human pancreatic cancer (BxPC-3) cells. BxPC-3 cells were treated with various concentrations of oridonin, and viability curves were generated to test for inhibitory effects of the drug on cells. The expression of cytokines such as interleukin-1β (IL-1β), IL-6, or IL-33 was detected in BxPC-3 cell supernatants using an enzyme-linked immunosorbent assay (ELISA), and the protein expression of nuclear transcription factors including nuclear factor κB, activating protein-1, signal transducer and activator of transcription 3, bone morphogenetic protein 2, transforming growth factor β1 and sma and mad homologues in BxPC-3 cells was detected using Western blot. Carcinoma hallmark-related proteins such as survivin, vascular endothelial growth factor, and matrix metallopeptidase 2 were also detected using immunoblotting, and intra-nuclear IL-33 expression was detected using immunofluorescent staining. Treatment with oridonin reduced the viability of BxPC-3 cells in a dose dependent manner. The cells exhibited reduced growth following treatment with 8 μg/mL oridonin (13.05% ± 3.21%, P < 0.01), and the highest inhibitory ratio was 90.64% ± 0.70%, which was achieved with oridonin at a dose of 32 μg/mL. The IC50 value of oridonin in BxPC-3 cells was 19.32 μg/mL. ELISA analysis revealed that oridonin down-regulated the inflammatory factors IL-1β, IL-6, and IL-33 in a dose-dependent manner. IL-1β expression was significantly reduced in the 16 and 32 μg/mL treatment groups compared to the control group (12.97 ± 0.45 pg/mL, 11.17 ± 0.63 pg/mL vs 14.40 ± 0.38 pg/mL, P < 0.01). Similar trends were observed for IL-6 expression, which was significantly reduced in the 16 and 32 μg/mL treatment groups compared to the control group (4.05 ± 0.14 pg/mL vs 4.45 ± 0.43 pg/mL, P < 0.05; 3.95 ± 0.13 pg/mL vs 4.45 ± 0.43 pg/mL, P < 0.01). IL-33 expression was significantly reduced in the 8, 16, and 32 μg/mL treatment groups compared to the control group (911.05 ± 14.18 pg/mL vs 945.25 ± 12.09 pg/mL, P < 0.05; 802.70 ± 11.88 pg/mL, 768.54 ± 10.98 pg/mL vs 945.25 ± 12.09 pg/mL, P < 0.01). Western blot and immunofluorescent staining analyses suggested that oridonin changed the hallmarks and regulated the expression of various nuclear transcription factors. The results obtained suggest that oridonin alters the hallmarks of pancreatic cancer cells through the regulation of nuclear transcription factors.
PP2ARts1 is a master regulator of pathways that control cell size
Zapata, Jessica; Dephoure, Noah; MacDonough, Tracy; Yu, Yaxin; Parnell, Emily J.; Mooring, Meghan; Gygi, Steven P.; Stillman, David J.
2014-01-01
Cell size checkpoints ensure that passage through G1 and mitosis occurs only when sufficient growth has occurred. The mechanisms by which these checkpoints work are largely unknown. PP2A associated with the Rts1 regulatory subunit (PP2ARts1) is required for cell size control in budding yeast, but the relevant targets are unknown. In this paper, we used quantitative proteome-wide mass spectrometry to identify proteins controlled by PP2ARts1. This revealed that PP2ARts1 controls the two key checkpoint pathways thought to regulate the cell cycle in response to cell growth. To investigate the role of PP2ARts1 in these pathways, we focused on the Ace2 transcription factor, which is thought to delay cell cycle entry by repressing transcription of the G1 cyclin CLN3. Diverse experiments suggest that PP2ARts1 promotes cell cycle entry by inhibiting the repressor functions of Ace2. We hypothesize that control of Ace2 by PP2ARts1 plays a role in mechanisms that link G1 cyclin accumulation to cell growth. PMID:24493588
Bikbova, Guzel; Oshitari, Toshiyuki; Baba, Takayuki; Yamamoto, Shuichi
2015-01-01
To determine the effect of advanced glycation end-products (AGEs) on neurite regeneration, and also to determine the regenerative effects of different neurotrophic factors (NTFs) on rat retinal explants, the retinas of SD rats were cultured in three-dimensional collagen gels and incubated in 6 types of media: (1) serum-free control culture media; (2) 100 μg/mL AGEs-BSA media; (3) AGEs-BSA + 100 ng/mL neurotrophin-4 (NT-4) media; (4) AGEs-BSA + 100 ng/mL hepatocyte growth factor media; (5) AGEs-BSA + 100 ng/mL glial cell line-derived neurotrophic factor media; or (6) AGEs-BSA + 100 µM tauroursodeoxycholic acid media. After 7 days, the number of regenerating neurites was counted. The explants were immunostained for nuclear factor-κB (NF-κB) and specificity protein 1 (SP1). Statistical analyses were performed by one-way ANOVA. In retinas incubated with AGEs, the numbers of neurites were fewer than in control. All of the NTFs increased the number of neurites, and the increase was more significant in the NT-4 group. The number of NF-κB and SP1 immunopositive cells was higher in retinas exposed to AGEs than in control. All of the NTFs decreased the number of NF-κB immunopositive cells but did not significantly affect SP1 expression. These results demonstrate the potential of the NTFs as axoprotectants in AGEs exposed retinal neurons.
Bae, Jung Min; Choi, Kwang Hyun; Jung, Han Mi; Kim, Sook Young; Kim, Miri; Kim, Gyung Moon; Yu, Dong Soo; Lee, Young Bok
2017-03-01
Subsequent vitiligo after hematopoietic stem cell transplantation (HSCT) has been described sporadically in case series. To investigate the incidence and risk factors of subsequent vitiligo after HSCT. A nationwide, population-based cohort study was performed using the Korean National Health Insurance Claims Database from 2009 to 2013. All HSCT recipients who had undergone HSCT between 2010 and 2011 and not treatment for vitiligo in 2009 (to exclude preexisting active vitiligo) were included in the HSCT recipient group, and an age- and sex-matched control group without HSCT was also established. A total of 2747 HSCT recipients and 8241 controls were enrolled. Newly acquired vitiligo occurred in 1.06% of HSCT recipients between 2010 and 2013, and there was a significant increase (OR 3.130, 95% CI 1.859-5.271) in cases of vitiligo in HSCT recipients compared with controls (0.34%). Allogeneic HSCT (OR 5.593, 95% CI 1.628-19.213) and bone marrow-sourced stem cells (as compared with peripheral blood-sourced stem cells; OR 2.492, 95% CI 1.114-5.576) were independently associated with the development of vitiligo after HSCT. Medical record review was not available. Vitiligo developed at a significantly increased rate after HSCT compared with controls. Allogeneic HSCT and bone marrow-sourced stem cells were independent risk factors. Copyright © 2016 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kim, Paul Seung Soo; Becker, Aaron; Ou, Yan; Julius, Anak Agung; Kim, Min Jun
2015-03-01
Tetrahymena pyriformis is a single cell eukaryote that can be modified to respond to magnetic fields, a response called magnetotaxis. Naturally, this microorganism cannot respond to magnetic fields, but after modification using iron oxide nanoparticles, cells are magnetized and exhibit a constant magnetic dipole strength. In experiments, a rotating field is applied to cells using a two-dimensional approximate Helmholtz coil system. Using rotating magnetic fields, we characterize discrete cells' swarm swimming which is affected by several factors. The behavior of the cells under these fields is explained in detail. After the field is removed, relatively straight swimming is observed. We also generate increased heterogeneity within a population of cells to improve controllability of a swarm, which is explored in a cell model. By exploiting this straight swimming behavior, we propose a method to control discrete cells utilizing a single global magnetic input. Successful implementation of this swarm control method would enable teams of microrobots to perform a variety of in vitro microscale tasks impossible for single microrobots, such as pushing objects or simultaneous micromanipulation of discrete entities.
Illegitimate WNT signaling promotes proliferation of multiple myeloma cells
Derksen, Patrick W. B.; Tjin, Esther; Meijer, Helen P.; Klok, Melanie D.; Mac Gillavry, Harold D.; van Oers, Marinus H. J.; Lokhorst, Henk M.; Bloem, Andries C.; Clevers, Hans; Nusse, Roel; van der Neut, Ronald; Spaargaren, Marcel; Pals, Steven T.
2004-01-01
The unrestrained growth of tumor cells is generally attributed to mutations in essential growth control genes, but tumor cells are also influenced by signals from the environment. In multiple myeloma (MM), the factors and signals coming from the bone marrow microenvironment are possibly even essential for the growth of the tumor cells. As targets for intervention, these signals may be equally important as mutated oncogenes. Given their oncogenic potential, WNT signals form a class of paracrine growth factors that could act to influence MM cell growth. In this paper, we report that MM cells have hallmarks of active WNT signaling, whereas the cells have not undergone detectable mutations in WNT signaling genes such as adenomatous polyposis coli and β-catenin (CTNNB1). We show that the malignant MM plasma cells overexpress β-catenin, including its N-terminally unphosphorylated form, suggesting active β-catenin/T cell factor-mediated transcription. Further accumulation and nuclear localization of β-catenin, and/or increased cell proliferation, was achieved by stimulation of WNT signaling with either Wnt3a, LiCl, or the constitutively active S33Y mutant of β-catenin. In contrast, by blocking WNT signaling by dominant-negative T cell factor, we can interfere with the growth of MM cells. We therefore suggest that MM cells are dependent on an active WNT signal, which may have important implications for the management of this incurable form of cancer. PMID:15067127
Vranes, Miroslav; Wahl, Ramon; Pothiratana, Chetsada; Schuler, David; Vincon, Volker; Finkernagel, Florian; Flor-Parra, Ignacio; Kämper, Jörg
2010-01-01
In the phytopathogenic basidiomycete Ustilago maydis, sexual and pathogenic development are tightly connected and controlled by the heterodimeric bE/bW transcription factor complex encoded by the b-mating type locus. The formation of the active bE/bW heterodimer leads to the formation of filaments, induces a G2 cell cycle arrest, and triggers pathogenicity. Here, we identify a set of 345 bE/bW responsive genes which show altered expression during these developmental changes; several of these genes are associated with cell cycle coordination, morphogenesis and pathogenicity. 90% of the genes that show altered expression upon bE/bW-activation require the zinc finger transcription factor Rbf1, one of the few factors directly regulated by the bE/bW heterodimer. Rbf1 is a novel master regulator in a multilayered network of transcription factors that facilitates the complex regulatory traits of sexual and pathogenic development. PMID:20700446
Mouse A6-positive hepatic oval cells derived from embryonic stem cells.
Yin, Dong-zhi; Cai, Ji-ye; Zheng, Qi-chang; Chen, Zheng-wei; Zhao, Jing-xian; Yuan, You-neng
2014-02-01
Oval cells have a potential to differentiate into a variety of cell lineages including hepatocytes and biliary epithelia. Several models have been established to activate the oval cells by incorporating a variety of toxins and carcinogens, alone or combined with surgical treatment. Those models are obviously not suitable for the study on human hepatic oval cells. It is necessary to establish a new and efficient model to study the human hepatic oval cells. In this study, the hepatocyte growth factor (HGF) and epidermal growth factor (EGF) were used to induce differentiation of mouse embryonic stem (ES) cells into hepatic oval cells. We first confirmed that hepatic oval cells derived from ES cells, which are bipotential, do exist during the course of mouse ES cells' differentiation into hepatic parenchymal cells. RT-PCR and transmission electron microscopy were applied in this study. The ratio of Sca-1+/CD34+ cells sorted by FACS in the induction group was increased from day 4 and reached the maximum on the day 8, whereas that in the control group remained at a low level. The differentiation ratio of Sca-1+/CD34+ cells in the induction group was significantly higher than that in the control group. About 92.48% of the sorted Sca-1+/CD34+ cells on the day 8 were A6 positive. Highly purified A6+/Sca-1+/CD34+ hepatic oval cells derived from ES cells could be obtained by FACS. The differentiation ratio of hepatic oval cells in the induction group (up to 4.46%) was significantly higher than that in the control group. The number of hepatic oval cells could be increased significantly by HGF and EGF. The study also examined the ultrastructures of ES-derived hepatic oval cells' membrane surface by atomic force microscopy. The ES-derived hepatic oval cells cultured and sorted by our protocols may be available for the future clinical application.
Ji, Xiang-Jun; Chen, Sui-Hua; Zhu, Lin; Pan, Hao; Zhou, Yuan; Li, Wei; You, Wan-Chun; Gao, Chao-Chao; Zhu, Jian-Hong; Jiang, Kuan; Wang, Han-Dong
2013-07-01
NF-E2-related factor 2 (Nrf2) is a pivotal transcription factor of cellular responses to oxidative stress and recent evidence suggests that Nrf2 plays an important role in cancer pathobiology. However, the underlying mechanism has yet to be elucidated, particularly in glioma. In the present study, we investigated the role of Nrf2 in the clinical prognosis, cell proliferation and tumor growth of human glioblastoma multiforme (GBM). We detected overexpression of Nrf2 protein levels in GBM compared to normal brain tissues. Notably, higher protein levels of Nrf2 were significantly associated with poorer overall survival and 1-year survival for GBM patients. Furthermore, we constructed the plasmid Si-Nrf2 and transduced it into U251MG cells to downregulate the expression of Nrf2 and established stable Nrf2 knockdown cells. The downregulation of Nrf2 suppressed cell proliferation in vitro and tumor growth in mouse xenograft models. We performed immunohistochemistry staining to detect the protein levels of Nrf2, Ki-67, caspase-3 and CD31 in the xenograft tumors and found that the expression levels of Nrf2 and Ki-67 were much lower in the Si-Nrf2 group compared to the Si-control group. In addition, the number of caspase-3-positive cells was significantly increased in the Si-Nrf2 group. By analysis of microvessel density (MVD) assessed by CD31, the MVD value in the Si-Nrf2 group decreased significantly compared to the Si-control group. These findings indicate that the knockdown of Nrf2 may suppress tumor growth by inhibiting cell proliferation, increasing cell apoptosis and inhibiting angiogenesis. These results highlight the potential of Nrf2 as a candidate molecular target to control GBM cell proliferation and tumor growth.
Dominguez-Molina, Beatriz; Tarancon-Diez, Laura; Hua, Stephane; Abad-Molina, Cristina; Rodriguez-Gallego, Esther; Machmach, Kawthar; Vidal, Francesc; Tural, Cristina; Moreno, Santiago; Goñi, María José; Ramírez de Arellano, Elena; del Val, Margarita; Gonzalez-Escribano, María Francisca; Del Romero, Jorge; Rodriguez, Carmen; Capa, Laura; Viciana, Pompeyo; Alcamí, José; Yu, Xu G.; Walker, Bruce D.; Leal, Manuel; Lichterfeld, Mathias
2017-01-01
Abstract Background. Human immunodeficiency virus type 1 (HIV-1) controllers maintain HIV-1 viremia at low levels (normally <2000 HIV-RNA copies/mL) without antiretroviral treatment. However, some HIV-1 controllers have evidence of immunologic progression with marked CD4+ T-cell decline. We investigated host genetic factors associated with protection against CD4+ T-cell loss in HIV-1 controllers. Methods. We analyzed the association of interferon-lambda 4 (IFNL4)–related polymorphisms and human leukocyte antigen (HLA)-B haplotypes within long-term nonprogressor HIV-1 controllers (LTNP-Cs; defined by maintaining CD4+ T-cells counts >500 cells/mm3 for more than 7 years after HIV-1 diagnosis) vs non-LTNP-Cs who developed CD4+ T-cell counts <500 cells/mm3. Both a Spanish study cohort (n = 140) and an international validation cohort (n = 914) were examined. Additionally, in a subgroup of individuals, HIV-1–specific T-cell responses and soluble cytokines were analyzed. Results. HLA-B*57 was independently associated with the LTNP-C phenotype (odds ratio [OR], 3.056 [1.029–9.069]; P = .044 and OR, 1.924 [1.252–2.957]; P = .003) while IFNL4 genotypes represented independent factors for becoming non-LTNP-C (TT/TT, ss469415590; OR, 0.401 [0.171–0.942]; P = .036 or A/A, rs12980275; OR, 0.637 [0.434–0.934]; P = .021) in the Spanish and validation cohorts, respectively, after adjusting for sex, age at HIV-1 diagnosis, IFNL4-related polymorphisms, and different HLA-B haplotypes. LTNP-Cs showed lower plasma induced protein 10 (P = .019) and higher IFN-γ (P = .02) levels than the HIV-1 controllers with diminished CD4+ T-cell numbers. Moreover, LTNP-Cs exhibited higher quantities of interleukin (IL)2+CD57- and IFN-γ +CD57- HIV-1–specific CD8+ T cells (P = .002 and .041, respectively) than non-LTNP-Cs. Conclusions. We defined genetic markers able to segregate stable HIV-1 controllers from those who experience CD4+ T-cell decline. These findings allow for identification of HIV-1 controllers at risk for immunologic progression and provide avenues for personalized therapeutic interventions and precision medicine for optimizing clinical care of these individuals. PMID:27986689
Abecasis, Bernardo; Aguiar, Tiago; Arnault, Émilie; Costa, Rita; Gomes-Alves, Patricia; Aspegren, Anders; Serra, Margarida; Alves, Paula M
2017-03-20
Human induced pluripotent stem cells (hiPSC) are attractive tools for drug screening and disease modeling and promising candidates for cell therapy applications. However, to achieve the high numbers of cells required for these purposes, scalable and clinical-grade technologies must be established. In this study, we use environmentally controlled stirred-tank bioreactors operating in perfusion as a powerful tool for bioprocess intensification of hiPSC production. We demonstrate the importance of controlling the dissolved oxygen concentration at low levels (4%) and perfusion at 1.3day -1 dilution rate to improve hiPSC growth as aggregates in a xeno-free medium. This strategy allowed for increased cell specific growth rate, maximum volumetric concentrations (4.7×10 6 cell/mL) and expansion factors (approximately 19 in total cells), resulting in a 2.6-fold overall improvement in cell yields. Extensive cell characterization, including whole proteomic analysis, was performed to confirm that cells' pluripotent phenotype was maintained during culture. A scalable protocol for continuous expansion of hiPSC aggregates in bioreactors was implemented using mechanical dissociation for aggregate disruption and cell passaging. A total expansion factor of 1100 in viable cells was obtained in 11days of culture, while cells maintained their proliferation capacity, pluripotent phenotype and potential as well as genomic stability after 3 sequential passages in bioreactors. Copyright © 2017 Elsevier B.V. All rights reserved.
Puetzer, Jennifer; Williams, John; Gillies, Allison; Bernacki, Susan
2013-01-01
This study investigates the effects of cyclic hydrostatic pressure (CHP) on chondrogenic differentiation of human adipose-derived stem cells (hASCs) in three-dimensional (3-D) agarose constructs maintained in a complete growth medium without soluble chondrogenic inducing factors. hASCs were seeded in 2% agarose hydrogels and exposed to 7.5 MPa CHP for 4 h per day at a frequency of 1 Hz for up to 21 days. On days 0, 7, 14, and 21, the expression levels of collagen II, Sox9, aggrecan, and cartilage oligomeric matrix protein (COMP) were examined by real-time reverse transcriptase–polymerase chain reaction analysis. Gene expression analysis found collagen II mRNA expression in only the CHP-loaded construct at day 14 and at no other time during the study. CHP-loaded hASCs exhibited upregulated mRNA expression of Sox9, aggrecan, and COMP at day 7 relative to unloaded controls, suggesting that CHP initiated chondrogenic differentiation of hASCs in a manner similar to human bone marrow-derived mesenchymal stem cells (hMSC). By day 14, however, loaded hASC constructs exhibited significantly lower mRNA expression of the chondrogenic markers than unloaded controls. Additionally, by day 21, the samples exhibited little measurable mRNA expression at all, suggesting a decreased viability. Histological analysis validated the lack of mRNA expression at day 21 for both the loaded and unloaded control samples with a visible decrease in the cell number and change in morphology. A comparative study with hASCs and hMSCs further examined long-term cell viability in 3-D agarose constructs of both cell types. Decreased cell metabolic activity was observed throughout the 21-day experimental period in both the CHP-loaded and control constructs of both hMSCs and hASCs, suggesting a decrease in cell metabolic activity, alluding to a decrease in cell viability. This suggests that a 2% agarose hydrogel may not optimally support hASC or hMSC viability in a complete growth medium in the absence of soluble chondrogenic inducing factors over long culture durations. This is the first study to examine the ability of mechanical stimuli alone, in the absence of chondrogenic factors transforming growth factor beta (TGF-β)3, TGF-β1 and/or bone morphogenetic protein 6 (BMP6) to induce hASC chondrogenic differentiation. The findings of this study suggest that CHP initiates hASC chondrogenic differentiation, even in the absence of soluble chondrogenic inductive factors, confirming the importance of considering both mechanical stimuli and appropriate 3-D culture for cartilage tissue engineering using hASCs. PMID:22871265
Controlled release of drugs in electrosprayed nanoparticles for bone tissue engineering.
Jayaraman, Praveena; Gandhimathi, Chinnasamy; Venugopal, Jayarama Reddy; Becker, David Laurence; Ramakrishna, Seeram; Srinivasan, Dinesh Kumar
2015-11-01
Generating porous topographic substrates, by mimicking the native extracellular matrix (ECM) to promote the regeneration of damaged bone tissues, is a challenging process. Generally, scaffolds developed for bone tissue regeneration support bone cell growth and induce bone-forming cells by natural proteins and growth factors. Limitations are often associated with these approaches such as improper scaffold stability, and insufficient cell adhesion, proliferation, differentiation, and mineralization with less growth factor expression. Therefore, the use of engineered nanoparticles has been rapidly increasing in bone tissue engineering (BTE) applications. The electrospray technique is advantageous over other conventional methods as it generates nanomaterials of particle sizes in the micro/nanoscale range. The size and charge of the particles are controlled by regulating the polymer solution flow rate and electric voltage. The unique properties of nanoparticles such as large surface area-to-volume ratio, small size, and higher reactivity make them promising candidates in the field of biomedical engineering. These nanomaterials are extensively used as therapeutic agents and for drug delivery, mimicking ECM, and restoring and improving the functions of damaged organs. The controlled and sustained release of encapsulated drugs, proteins, vaccines, growth factors, cells, and nucleotides from nanoparticles has been well developed in nanomedicine. This review provides an insight into the preparation of nanoparticles by electrospraying technique and illustrates the use of nanoparticles in drug delivery for promoting bone tissue regeneration. Copyright © 2015 Elsevier B.V. All rights reserved.
Dang, Phuong N; Dwivedi, Neha; Phillips, Lauren M; Yu, Xiaohua; Herberg, Samuel; Bowerman, Caitlin; Solorio, Loran D; Murphy, William L; Alsberg, Eben
2016-02-01
Bone tissue engineering via endochondral ossification has been explored by chondrogenically priming cells using soluble mediators for at least 3 weeks to produce a hypertrophic cartilage template. Although recapitulation of endochondral ossification has been achieved, long-term in vitro culture is required for priming cells through repeated supplementation of inductive factors in the media. To address this challenge, a microparticle-based growth factor delivery system was engineered to drive endochondral ossification within human bone marrow-derived mesenchymal stem cell (hMSC) aggregates. Sequential exogenous presentation of soluble transforming growth factor-β1 (TGF-β1) and bone morphogenetic protein-2 (BMP-2) at various defined time courses resulted in varying degrees of chondrogenesis and osteogenesis as demonstrated by glycosaminoglycan and calcium content. The time course that best induced endochondral ossification was used to guide the development of the microparticle-based controlled delivery system for TGF-β1 and BMP-2. Gelatin microparticles capable of relatively rapid release of TGF-β1 and mineral-coated hydroxyapatite microparticles permitting more sustained release of BMP-2 were then incorporated within hMSC aggregates and cultured for 5 weeks following the predetermined time course for sequential presentation of bioactive signals. Compared with cell-only aggregates treated with exogenous growth factors, aggregates with incorporated TGF-β1- and BMP-2-loaded microparticles exhibited enhanced chondrogenesis and alkaline phosphatase activity at week 2 and a greater degree of mineralization by week 5. Staining for types I and II collagen, osteopontin, and osteocalcin revealed the presence of cartilage and bone. This microparticle-incorporated system has potential as a readily implantable therapy for healing bone defects without the need for long-term in vitro chondrogenic priming. Significance: This study demonstrates the regulation of chondrogenesis and osteogenesis with regard to endochondral bone formation in high-density stem cell systems through the controlled presentation of inductive factors from incorporated microparticles. This work lays the foundation for a rapidly implantable tissue engineering system that promotes bone repair via endochondral ossification, a pathway that can delay the need for a functional vascular network and has an intrinsic ability to promote angiogenesis. The modular nature of this system lends well to using different cell types and/or growth factors to induce endochondral bone formation, as well as the production of other tissue types. ©AlphaMed Press.
Barthes, Julien; Özçelik, Hayriye; Hindié, Mathilde; Ndreu-Halili, Albana; Hasan, Anwarul
2014-01-01
In tissue engineering and regenerative medicine, the conditions in the immediate vicinity of the cells have a direct effect on cells' behaviour and subsequently on clinical outcomes. Physical, chemical, and biological control of cell microenvironment are of crucial importance for the ability to direct and control cell behaviour in 3-dimensional tissue engineering scaffolds spatially and temporally. In this review, we will focus on the different aspects of cell microenvironment such as surface micro-, nanotopography, extracellular matrix composition and distribution, controlled release of soluble factors, and mechanical stress/strain conditions and how these aspects and their interactions can be used to achieve a higher degree of control over cellular activities. The effect of these parameters on the cellular behaviour within tissue engineering context is discussed and how these parameters are used to develop engineered tissues is elaborated. Also, recent techniques developed for the monitoring of the cell microenvironment in vitro and in vivo are reviewed, together with recent tissue engineering applications where the control of cell microenvironment has been exploited. Cell microenvironment engineering and monitoring are crucial parts of tissue engineering efforts and systems which utilize different components of the cell microenvironment simultaneously can provide more functional engineered tissues in the near future. PMID:25143954
Barthes, Julien; Özçelik, Hayriye; Hindié, Mathilde; Ndreu-Halili, Albana; Hasan, Anwarul; Vrana, Nihal Engin
2014-01-01
In tissue engineering and regenerative medicine, the conditions in the immediate vicinity of the cells have a direct effect on cells' behaviour and subsequently on clinical outcomes. Physical, chemical, and biological control of cell microenvironment are of crucial importance for the ability to direct and control cell behaviour in 3-dimensional tissue engineering scaffolds spatially and temporally. In this review, we will focus on the different aspects of cell microenvironment such as surface micro-, nanotopography, extracellular matrix composition and distribution, controlled release of soluble factors, and mechanical stress/strain conditions and how these aspects and their interactions can be used to achieve a higher degree of control over cellular activities. The effect of these parameters on the cellular behaviour within tissue engineering context is discussed and how these parameters are used to develop engineered tissues is elaborated. Also, recent techniques developed for the monitoring of the cell microenvironment in vitro and in vivo are reviewed, together with recent tissue engineering applications where the control of cell microenvironment has been exploited. Cell microenvironment engineering and monitoring are crucial parts of tissue engineering efforts and systems which utilize different components of the cell microenvironment simultaneously can provide more functional engineered tissues in the near future.
Oocyte-granulosa-theca cell interactions during preantral follicular development
Orisaka, Makoto; Tajima, Kimihisa; Tsang, Benjamin K; Kotsuji, Fumikazu
2009-01-01
The preantral-early antral follicle transition is the penultimate stage of follicular development in terms of gonadotropin dependence and follicle destiny (growth versus atresia). Follicular growth during this period is tightly regulated by oocyte-granulosa-theca cell interactions. Formation of the theca cell layer is a key event that occurs during this transitional stage. Granulosal factor(s) stimulates the recruitment of theca cells from cortical stromal cells, while oocyte-derived growth differentiation factor-9 (GDF-9) is involved in the differentiation of theca cells during this early stage of follicular development. The preantral to early antral transition is most susceptible to follicular atresia. GDF-9 promotes follicular survival and growth during transition from preantral stage to early antral stage by suppressing granulosa cell apoptosis and follicular atresia. GDF-9 also enhances preantral follicle growth by up-regulating theca cell androgen production. Thecal factor(s) promotes granulosa cell proliferation and suppress granulosa cell apoptosis. Understanding the intraovarian mechanisms in the regulation of follicular growth and atresia during this stage may be of clinical significance in the selection of the best quality germ cells for assisted reproduction. In addition, since certain ovarian dysfunctions, such as polycystic ovarian syndrome and gonadotropin poor-responsiveness, are consequences of dysregulated follicle growth at this transitional stage, understanding the molecular and cellular mechanisms in the control of follicular development during the preantral-early antral transition may provide important insight into the pathophysiology and rational treatment of these conditions. PMID:19589134
Chen, Yantian; Bloemen, Veerle; Impens, Saartje; Moesen, Maarten; Luyten, Frank P; Schrooten, Jan
2011-12-01
Cell seeding into scaffolds plays a crucial role in the development of efficient bone tissue engineering constructs. Hence, it becomes imperative to identify the key factors that quantitatively predict reproducible and efficient seeding protocols. In this study, the optimization of a cell seeding process was investigated using design of experiments (DOE) statistical methods. Five seeding factors (cell type, scaffold type, seeding volume, seeding density, and seeding time) were selected and investigated by means of two response parameters, critically related to the cell seeding process: cell seeding efficiency (CSE) and cell-specific viability (CSV). In addition, cell spatial distribution (CSD) was analyzed by Live/Dead staining assays. Analysis identified a number of statistically significant main factor effects and interactions. Among the five seeding factors, only seeding volume and seeding time significantly affected CSE and CSV. Also, cell and scaffold type were involved in the interactions with other seeding factors. Within the investigated ranges, optimal conditions in terms of CSV and CSD were obtained when seeding cells in a regular scaffold with an excess of medium. The results of this case study contribute to a better understanding and definition of optimal process parameters for cell seeding. A DOE strategy can identify and optimize critical process variables to reduce the variability and assists in determining which variables should be carefully controlled during good manufacturing practice production to enable a clinically relevant implant.
Yang, Guangdie; Yao, Yinan; Zhou, Jianya; Zhao, Qiong
2012-06-01
Epidermal growth factor receptor (EGFR) is one of the most promising targets for non-small cell lung cancer (NSCLC). Our study demonstrated the antitumor effects of icotinib hydrochloride, a highly selective epidermal growth factor receptor tyrosine kinase inhibitor (EGFR TKI), in two EGFR-mutated lung cancer cell lines compared to A549, a cell line without EGFR mutations. We incubated PC-9 and HCC827 human lung cancer cell lines both with (E746-A750) mutations with various concentrations of icotinib and gefitinib for 48 h. Cell proliferation and migration were determined using a real-time cell invasion and migration assay and cytotoxicity assay. Apoptosis was assessed by measuring Annexin V staining using flow cytometry. The antitumor effects of icotinib compared to gefitinib were similar and were most effective in reducing the proliferation of EGFR-mutated cells compared to non-mutated controls. Our results suggest the possibility of icotinib as a new therapeutic agent of EGFR-mutated cancer cells, which has the potential to be used in the first-line treatment of EGFR-mutated NSCLC.
Hong, Seung Chan; Lee, Gunhee; Ha, Kyungyeon; Yoon, Jungjin; Ahn, Namyoung; Cho, Woohyung; Park, Mincheol; Choi, Mansoo
2017-03-08
Herein, we developed a novel electrospray coating system for continuous fabrication of perovskite solar cells with high performance. Our system can systemically control the size of CH 3 NH 3 PbI 3 precursor droplets by modulating the applied electrical potential, shown to be a crucial factor for the formation of perovskite films. As a result, we have obtained pinhole-free and large grain-sized perovskite solar cells, yielding the best PCE of 13.27% with little photocurrent hysteresis. Furthermore, the average PCE through the continuous coating process was 11.56 ± 0.52%. Our system demonstrates not only the high reproducibility but also a new way to commercialize high-quality perovskite solar cells.
Demirci, F Y K; Manzi, S; Ramsey-Goldman, R; Minster, R L; Kenney, M; Shaw, P S; Dunlop-Thomas, C M; Kao, A H; Rhew, E; Bontempo, F; Kammerer, C; Kamboh, M I
2007-05-01
Interferon regulatory factor 5 (IRF5) belongs to a family of transcription factors that control the transactivation of type I interferon system-related genes, as well as the expression of several other genes involved in immune response, cell signalling, cell cycle control and apoptosis. Two recent studies reported a significant association between the IRF5/rs2004640 T allele and systemic lupus erythematosus (SLE). The purpose of this study was to determine whether the reported rs2004640 T allele association could be replicated in our independent SLE case-control sample. We genotyped DNA samples from 370 white SLE-affected female subjects and 462 white healthy female controls using the TaqMan Assay-on-Demand for rs2004640, and performed a case-control genetic association analysis. Frequency of the rs2004640 T allele was significantly higher in cases than in controls (56.5% vs. 50%; P= 0.008). The odds ratio for T allele carriers was 1.68 (95% CI: 1.20 - 2.34; P= 0.003). Our results in an independent case-control sample confirm the robust association of the IRF5/rs2004640 T allele with SLE risk, and further support the relevance of the type I interferon system in the pathogenesis of SLE and autoimmunity.
Liu, Feng; Posakony, James W.
2014-01-01
SUMMARY Positive autoregulation is an effective mechanism for the long-term maintenance of a transcription factor’s expression. This strategy is widely deployed in cell lineages, where the autoregulatory factor controls the activity of a battery of genes that constitute the differentiation program of a post-mitotic cell type. In Drosophila, the Notch pathway transcription factor Suppressor of Hairless activates its own expression specifically in the socket cell of external sensory organs, via an autoregulatory enhancer called the ASE. Here we show that the ASE is composed of several enhancer sub-modules, each of which can independently initiate weak Su(H) autoregulation. Cross-activation by these sub-modules is critical to ensuring that Su(H) rises above a threshold level necessary to activate a maintenance sub-module, which then sustains long-term Su(H) autoregulation. Our study reveals the use of interlinked positive feedback loops to control autoregulation dynamically, and provides mechanistic insight into initiation, establishment, and maintenance of the autoregulatory state. PMID:24735880
Nishank, Sudhansu Sekhar; Singh, Mendi Prema Shyam Sunder; Yadav, Rajiv
2013-11-01
It is known that patients with sickle cell disease (SCD) present activation of the blood coagulation and fibrinolytic systems, especially during vaso-occlusive crises and also during the steady state of the disease. We determined whether the presence of the factor prothrombin gene G20210A variant, factor V gene G1691A mutation (factor V Leiden), and methylenetetrahydrofolate reductase (MTHFR) C677T polymorphisms may be risk factors for vascular complications in individuals with SCD. The study involved 150 patients with sickle cell anemia and 150 healthy controls of Central India. Genotyping of three thrombophilic mutations was carried out by PCR-RFLP methods using MnlI, Hind III, and Hinf I, respectively, for factor V Leiden, prothrombin, and MTHFR mutations. Patients with SCD had significantly higher prevalence of mutant variants of MTHFR gene (28.0% heterozygotes and 14.6% homozygotes) and FVL gene (14.6% heterozygotes) as compared to normal/control individuals, but complete absence of mutant variants of prothrombin gene. The patients with SCD having mutant variants of MTHFR and FVL genes showed higher incidence of pain in chest, abdomen, and bone joints along with early age of onset of clinical manifestations as well as frequent dependence on blood transfusion than those patients with SCD having wild variants of these thrombotic genes. As compared to control subjects, SCD individuals having mutant variants of FVL and MTHFR genes had significant association with higher levels of prothrombin fragment (F1+2), D-dimer, thrombin-antithrombin (TAT), and lower level of protein C. MTHFR C677T and FVL G1691A polymorphisms may be risk factors for increased vascular complications in patient with SCD. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Wu, Jiang; Ye, Jingjing; Zhu, Jingjing; Xiao, Zecong; He, Chaochao; Shi, Hongxue; Wang, Yadong; Lin, Cai; Zhang, Hongyu; Zhao, Yingzheng; Fu, Xiaobing; Chen, Hong; Li, Xiaokun; Li, Lin; Zheng, Jie; Xiao, Jian
2016-06-13
Effective wound healing requires complicated, coordinated interactions and responses at protein, cellular, and tissue levels involving growth factor expression, cell proliferation, wound closure, granulation tissue formation, and vascularization. In this study, we develop a heparin-based coacervate consisting of poly(ethylene argininylaspartate digylceride) (PEAD) as a storage matrix, heparin as a bridge, and fibroblast growth factor-2 (FGF2) as a cargo (namely heparin-FGF2@PEAD) for wound healing. First, in vitro characterization demonstrates the loading efficiency and control release of FGF2 from the heparin-FGF2@PEAD coacervate. The following in vivo studies examine the wound healing efficiency of the heparin-FGF2@PEAD coacervate upon delivering FGF2 to full-thickness excisional skin wounds in vivo, in comparison with the other three control groups with saline, heparin@PEAD as vehicle, and free FGF2. Collective in vivo data show that controlled release of FGF2 to the wounds by the coacervate significantly accelerates the wound healing by promoting cell proliferation, stimulating the secretion of vascular endothelial growth factor (VEGF) for re-epithelization, collagen deposition, and granulation tissue formation, and enhancing the expression of platelet endothelial cell adhesion molecule (CD31) and alpha-smooth muscle actin (α-SMA) for blood vessel maturation. In parallel, no obvious wound healing effect is found for the control, vehicle, and free FGF2 groups, indicating the important role of the coavervate in the wound healing process. This work designs a suitable delivery system that can protect and release FGF2 in a sustained and controlled manner, which provides a promising therapeutic potential for topical treatment of wounds.
The TCP4 transcription factor of Arabidopsis blocks cell division in yeast at G1→S transition.
Aggarwal, Pooja; Padmanabhan, Bhavna; Bhat, Abhay; Sarvepalli, Kavitha; Sadhale, Parag P; Nath, Utpal
2011-07-01
The TCP transcription factors control important aspects of plant development. Members of class I TCP proteins promote cell cycle by regulating genes directly involved in cell proliferation. In contrast, members of class II TCP proteins repress cell division. While it has been postulated that class II proteins induce differentiation signal, their exact role on cell cycle has not been studied. Here, we report that TCP4, a class II TCP protein from Arabidopsis that repress cell proliferation in developing leaves, inhibits cell division by blocking G1→S transition in budding yeast. Cells expressing TCP4 protein with increased transcriptional activity fail to progress beyond G1 phase. By analyzing global transcriptional status of these cells, we show that expression of a number of cell cycle genes is altered. The possible mechanism of G1→S arrest is discussed. Copyright © 2011 Elsevier Inc. All rights reserved.
Regulation of cell arrangement using a novel composite micropattern.
Liu, Xiaoyi; Liu, Yaoping; Zhao, Feng; Hun, Tingting; Li, Shan; Wang, Yuguang; Sun, Weijie; Wang, Wei; Sun, Yan; Fan, Yubo
2017-11-01
Micropatterning technique has been used to control single cell geometry in many researches, however, this is no report that it is used to control multicelluar geometry, which not only control single cell geometry but also organize those cells by a certain pattern. In this work, a composite protein micropattern is developed to control both cell shape and cell location simultaneously. The composite micropattern consists of a central circle 15 μm in diameter for single-cell capture, surrounded by small, square arrays (3 μm × 3 μm) for cell spreading. This is surrounded by a border 2 μm wide for restricting cell edges. The composite pattern results in two-cell and three-cell capture efficiencies of 32.1% ± 1.94% and 24.2% ± 2.89%, respectively, representing an 8.52% and 9.58% increase, respectively, over rates of original patterns. Fluorescent imaging of cytoskeleton alignment demonstrates that actin is gradually aligned parallel to the direction of the entire pattern arrangement, rather than to that of a single pattern. This indicates that cell arrangement is also an important factor in determining cell physiology. This composite micropattern could be a potential method to precisely control multi-cells for cell junctions, cell interactions, cell signal transduction, and eventually for tissue rebuilding study. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 3093-3101, 2017. © 2017 Wiley Periodicals, Inc.
Mediator and Cohesin Connect Gene Expression and Chromatin Architecture
Kagey, Michael H.; Newman, Jamie J.; Bilodeau, Steve; Zhan, Ye; Orlando, David A.; van Berkum, Nynke L.; Ebmeier, Christopher C.; Goossens, Jesse; Rahl, Peter B.; Levine, Stuart S.; Taatjes, Dylan J.; Dekker, Job; Young, Richard A.
2010-01-01
Summary Transcription factors control cell specific gene expression programs through interactions with diverse coactivators and the transcription apparatus. Gene activation may involve DNA loop formation between enhancer-bound transcription factors and the transcription apparatus at the core promoter, but this process is not well understood. We report here that Mediator and Cohesin physically and functionally connect the enhancers and core promoters of active genes in embryonic stem cells. Mediator, a transcriptional coactivator, forms a complex with Cohesin, which can form rings that connect two DNA segments. The Cohesin loading factor Nipbl is associated with Mediator/Cohesin complexes, providing a means to load Cohesin at promoters. DNA looping is observed between the enhancers and promoters occupied by Mediator and Cohesin. Mediator and Cohesin occupy different promoters in different cells, thus generating cell-type specific DNA loops linked to the gene expression program of each cell. PMID:20720539
Cytotoxic effects of 2-methoxyestradiol in the hepatocellular carcinoma cell line HepG2.
El Naga, Reem N Abou; El-Demerdash, Ebtehal; Youssef, Samar S; Abdel-Naim, Ashraf B; El-Merzabani, Mahmoud
2009-01-01
The study was designed to examine the potential cytotoxicity of 2-methoxyestradiol (2ME2), a natural 17beta-estradiol metabolite, in hepatocellular carcinoma and the possible underlying mechanisms for this cytotoxicity. The cell line HepG2 was treated with different concentrations of 2ME2 for 48 and 72 h. Using the sulforhodamine B assay, HepG2 was sensitive to the cytotoxic effect of 2ME2. 2ME2 induced cell arrest at the G(2)/M phase and a significant high percentage of apoptotic cells compared to the control group. Also, 2ME2 induced a significant increase in caspase 9 enzymatic activity after 48 and 72 h of treatment compared with control values. The DNA laddering was observed only in cells treated for 72 h. Furthermore, 2ME2 induced a significant decrease in the expression levels of vascular endothelial growth factor (VEGF) gene compared to the control values. 2ME2 exerts cytotoxic activity in the HepG2 cell line by preferential cell blocking at the G(2)/M phase as well as induction of apoptosis as evidenced by increased caspase 9 enzymatic activity and observed DNA laddering in 2ME2-treated HepG2 cells. In addition, a reduction in hypervascularity is an important postulated mechanism as indicated by the significant reduction in the expression of VGEF, one of the most important angiogenic factors.
Kleppe, Lene; Edvardsen, Rolf Brudvik; Furmanek, Tomasz; Andersson, Eva; Juanchich, Amélie; Wargelius, Anna
2017-01-01
Atlantic salmon is a valuable commercial aquaculture species that would benefit economically and environmentally by controlling precocious puberty and preventing escapees from reproducing with wild populations. One solution to both these challenges is the production of sterile individuals by inhibiting the formation of germ cells, but achieving this requires more information on the specific factors that control germ cell formation. Here, we identified and characterized novel factors that are preferentially expressed in Atlantic salmon germ cells by screening for gonad-specific genes using available adult multi-tissue transcriptomes. We excluded genes with expression in tissues other than gonads based on quantity of reads, and then a subset of genes was selected for verification in a multi-tissue PCR screen. Four gonad-specific genes (bmp15l, figla, smc1bl, and larp6l) were chosen for further characterization, namely: germ cell specificity, investigated by comparing mRNA abundance in wild-type and germ cell-free gonads by quantitative real-time PCR, and cellular location, visualized by in situ hybridization. All four genes were expressed in both testis and ovary, and preferentially within the germ cells of both sexes. These genes may be essential players in salmon germ cell development, and could be important for future studies aiming to understand and control reproduction. Mol. Reprod. Dev. 84: 76-87, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Liu, Yuzhi; Li, Wenyu; Guo, Mengyao; Li, Chengye; Qiu, Changwei
2016-01-01
We herein examined the effects of different doses, forms, and compatibilities of selenium on a canine mammary gland tumor cell line, CTM1211, and explored the related mechanisms. Three selenium compounds, sodium selenite (SSE), methylseleninic acid (MSA), and methylselenocysteine (MSC), were selected for these experiments, and cyclophosphamide (CTX) served as a positive control. In the cell viability assay, the cell viability of each group at 48/72 h decreased significantly compared with the control group (p < 0.05), and the cell viability of the CTX + MSA group was lower than that of CTX and MSA groups (p < 0.05). Moreover, the inhibitory effect of selenium on cell proliferation was time-dependent but not concentration-dependent. In the cell apoptosis assay, the apoptosis values of each group increased significantly compared with the control group, and the apoptosis values of the CTX + MSA group increased the most significantly (p < 0.01). The protein and mRNA expression levels of vascular endothelial growth factor-alpha (VEGF-alpha), angiopoietin-2 (Ang-2), and hypoxia inducible factor-1 alpha (HIF-1 alpha) were downregulated in each group, while that of phosphatase and tensin homolog (PTEN) were upregulated (p < 0.05). In conclusion, these three selenium compounds, especially MSA, could significantly inhibit the viability and growth of the CTM1211 cell line, which is partly due to the induction of apoptosis and regulation of tumor angiogenesis.
Kulebyakin, Konstantin; Penkov, Dmitry; Blasi, Francesco; Akopyan, Zhanna; Tkachuk, Vsevolod
2016-12-02
Liver plays a key role in controlling body carbohydrate homeostasis by switching between accumulation and production of glucose and this way maintaining constant level of glucose in blood. Increased blood glucose level triggers release of insulin from pancreatic β-cells. Insulin represses hepatic glucose production and increases glucose accumulation. Insulin resistance is the main cause of type 2 diabetes and hyperglycemia. Currently thiazolidinediones (TZDs) targeting transcriptional factor PPARγ are used as insulin sensitizers for treating patients with type 2 diabetes. However, TZDs are reported to be associated with cardiovascular and liver problems and stimulate obesity. Thus, it is necessary to search new approaches to improve insulin sensitivity. A promising candidate is transcriptional factor Prep1, as it was shown earlier it could affect insulin sensitivity in variety of insulin-sensitive tissues. The aim of the present study was to evaluate a possible involvement of transcriptional factor Prep1 in control of hepatic glucose accumulation and production. We created mice with liver-specific Prep1 knockout and discovered that hepatocytes derived from these mice are much more sensitive to insulin, comparing to their WT littermates. Incubation of these cells with 100 nM insulin results in almost complete inhibition of gluconeogenesis, while in WT cells this repression is only partial. However, Prep1 doesn't affect gluconeogenesis in the absence of insulin. Also, we observed that nuclear content of gluconeogenic transcription factor FOXO1 was greatly reduced in Prep1 knockout hepatocytes. These findings suggest that Prep1 may control hepatic insulin sensitivity by targeting FOXO1 nuclear stability. Copyright © 2016 Elsevier Inc. All rights reserved.
Shi, Jian Xin; Malitsky, Sergey; De Oliveira, Sheron; Branigan, Caroline; Franke, Rochus B; Schreiber, Lukas; Aharoni, Asaph
2011-05-01
Floral organs display tremendous variation in their exterior that is essential for organogenesis and the interaction with the environment. This diversity in surface characteristics is largely dependent on the composition and structure of their coating cuticular layer. To date, mechanisms of flower organ initiation and identity have been studied extensively, while little is known regarding the regulation of flower organs surface formation, cuticle composition, and its developmental significance. Using a synthetic microRNA approach to simultaneously silence the three SHINE (SHN) clade members, we revealed that these transcription factors act redundantly to shape the surface and morphology of Arabidopsis flowers. It appears that SHNs regulate floral organs' epidermal cell elongation and decoration with nanoridges, particularly in petals. Reduced activity of SHN transcription factors results in floral organs' fusion and earlier abscission that is accompanied by a decrease in cutin load and modified cell wall properties. SHN transcription factors possess target genes within four cutin- and suberin-associated protein families including, CYP86A cytochrome P450s, fatty acyl-CoA reductases, GSDL-motif lipases, and BODYGUARD1-like proteins. The results suggest that alongside controlling cuticular lipids metabolism, SHNs act to modify the epidermis cell wall through altering pectin metabolism and structural proteins. We also provide evidence that surface formation in petals and other floral organs during their growth and elongation or in abscission and dehiscence through SHNs is partially mediated by gibberellin and the DELLA signaling cascade. This study therefore demonstrates the need for a defined composition and structure of the cuticle and cell wall in order to form the archetypal features of floral organs surfaces and control their cell-to-cell separation processes. Furthermore, it will promote future investigation into the relation between the regulation of organ surface patterning and the broader control of flower development and biological functions.
Risolino, Maurizio; Mandia, Nadia; Iavarone, Francescopaolo; Dardaei, Leila; Longobardi, Elena; Fernandez, Serena; Talotta, Francesco; Bianchi, Fabrizio; Pisati, Federica; Spaggiari, Lorenzo; Harter, Patrick N.; Mittelbronn, Michel; Schulte, Dorothea; Incoronato, Mariarosaria; Di Fiore, Pier Paolo; Blasi, Francesco; Verde, Pasquale
2014-01-01
Pre–B-cell leukemia homeobox (Pbx)-regulating protein-1 (Prep1) is a ubiquitous homeoprotein involved in early development, genomic stability, insulin sensitivity, and hematopoiesis. Previously we have shown that Prep1 is a haploinsufficient tumor suppressor that inhibits neoplastic transformation by competing with myeloid ecotropic integration site 1 for binding to the common heterodimeric partner Pbx1. Epithelial–mesenchymal transition (EMT) is controlled by complex networks of proinvasive transcription factors responsive to paracrine factors such as TGF-β. Here we show that, in addition to inhibiting primary tumor growth, PREP1 is a novel EMT inducer and prometastatic transcription factor. In human non-small cell lung cancer (NSCLC) cells, PREP1 overexpression is sufficient to trigger EMT, whereas PREP1 down-regulation inhibits the induction of EMT in response to TGF-β. PREP1 modulates the cellular sensitivity to TGF-β by inducing the small mothers against decapentaplegic homolog 3 (SMAD3) nuclear translocation through mechanisms dependent, at least in part, on PREP1-mediated transactivation of a regulatory element in the SMAD3 first intron. Along with the stabilization and accumulation of PBX1, PREP1 induces the expression of multiple activator protein 1 components including the proinvasive Fos-related antigen 1 (FRA-1) oncoprotein. Both FRA-1 and PBX1 are required for the mesenchymal changes triggered by PREP1 in lung tumor cells. Finally, we show that the PREP1-induced mesenchymal transformation correlates with significantly increased lung colonization by cells overexpressing PREP1. Accordingly, we have detected PREP1 accumulation in a large number of human brain metastases of various solid tumors, including NSCLC. These findings point to a novel role of the PREP1 homeoprotein in the control of the TGF-β pathway, EMT, and metastasis in NSCLC. PMID:25157139
Shi, Jian Xin; Malitsky, Sergey; De Oliveira, Sheron; Branigan, Caroline; Franke, Rochus B.; Schreiber, Lukas; Aharoni, Asaph
2011-01-01
Floral organs display tremendous variation in their exterior that is essential for organogenesis and the interaction with the environment. This diversity in surface characteristics is largely dependent on the composition and structure of their coating cuticular layer. To date, mechanisms of flower organ initiation and identity have been studied extensively, while little is known regarding the regulation of flower organs surface formation, cuticle composition, and its developmental significance. Using a synthetic microRNA approach to simultaneously silence the three SHINE (SHN) clade members, we revealed that these transcription factors act redundantly to shape the surface and morphology of Arabidopsis flowers. It appears that SHNs regulate floral organs' epidermal cell elongation and decoration with nanoridges, particularly in petals. Reduced activity of SHN transcription factors results in floral organs' fusion and earlier abscission that is accompanied by a decrease in cutin load and modified cell wall properties. SHN transcription factors possess target genes within four cutin- and suberin-associated protein families including, CYP86A cytochrome P450s, fatty acyl-CoA reductases, GSDL-motif lipases, and BODYGUARD1-like proteins. The results suggest that alongside controlling cuticular lipids metabolism, SHNs act to modify the epidermis cell wall through altering pectin metabolism and structural proteins. We also provide evidence that surface formation in petals and other floral organs during their growth and elongation or in abscission and dehiscence through SHNs is partially mediated by gibberellin and the DELLA signaling cascade. This study therefore demonstrates the need for a defined composition and structure of the cuticle and cell wall in order to form the archetypal features of floral organs surfaces and control their cell-to-cell separation processes. Furthermore, it will promote future investigation into the relation between the regulation of organ surface patterning and the broader control of flower development and biological functions. PMID:21637781
Class I TCP-DELLA interactions in inflorescence shoot apex determine plant height.
Davière, Jean-Michel; Wild, Michael; Regnault, Thomas; Baumberger, Nicolas; Eisler, Herfried; Genschik, Pascal; Achard, Patrick
2014-08-18
Regulation of plant height, one of the most important agronomic traits, is the focus of intensive research for improving crop performance. Stem elongation takes place as a result of repeated cell divisions and subsequent elongation of cells produced by apical and intercalary meristems. The gibberellin (GA) phytohormones have long been known to control stem and internodal elongation by stimulating the degradation of nuclear growth-repressing DELLA proteins; however, the mechanism allowing GA-responsive growth is only slowly emerging. Here, we show that DELLAs directly regulate the activity of the plant-specific class I TCP transcription factor family, key regulators of cell proliferation. Our results demonstrate that class I TCP factors directly bind the promoters of core cell-cycle genes in Arabidopsis inflorescence shoot apices while DELLAs block TCP function by binding to their DNA-recognition domain. GAs antagonize such repression by promoting DELLA destruction and therefore cause a concomitant accumulation of TCP factors on promoters of cell-cycle genes. Consistent with this model, the quadruple mutant tcp8 tcp14 tcp15 tcp22 exhibits severe dwarfism and reduced responsiveness to GA action. Altogether, we conclude that GA-regulated DELLA-TCP interactions in inflorescence shoot apex provide a novel mechanism to control plant height. Copyright © 2014 Elsevier Ltd. All rights reserved.
Chen, Bai Hui; Park, Joon Ha; Cho, Jeong Hwi; Kim, In Hye; Shin, Bich Na; Ahn, Ji Hyeon; Hwang, Seok Joon; Yan, Bing Chun; Tae, Hyun Jin; Lee, Jae Chul; Bae, Eun Joo; Lee, Yun Lyul; Kim, Jong Dai; Won, Moo-Ho; Kang, Il Jun
2015-01-01
Oenanthe javanica is an aquatic perennial herb that belongs to the Oenanthe genus in Apiaceae family, and it displays well-known medicinal properties such as protective effects against glutamate-induced neurotoxicity. However, few studies regarding effects of Oenanthe javanica on neurogenesis in the brain have been reported. In this study, we examined the effects of a normal diet and a diet containing ethanol extract of Oenanthe javanica on cell proliferation and neuroblast differentiation in the subgranular zone of the hippocampal dentate gyrus of adolescent rats using Ki-67 (an endogenous marker for cell proliferation) and doublecortin (a marker for neuroblast). Our results showed that Oenanthe javanica extract significantly increased the number of Ki-67-immunoreactive cells and doublecortin-immunoreactive neuroblasts in the subgranular zone of the dentate gyrus in the adolescent rats. In addition, the immunoreactivity of brain-derived neurotrophic factor was significantly increased in the dentate gyrus of the Oenanthe javanica extract-treated group compared with the control group. However, we did not find that vascular endothelial growth factor expression was increased in the Oenanthe javanica extract-treated group compared with the control group. These results indicate that Oenanthe javanica extract improves cell proliferation and neuroblast differentiation by increasing brain-derived neurotrophic factor immunoreactivity in the rat dentate gyrus. PMID:25883627
Dias, Sheila; D'Amico, Angela; Cretney, Erika; Liao, Yang; Tellier, Julie; Bruggeman, Christine; Almeida, Francisca F; Leahy, Jamie; Belz, Gabrielle T; Smyth, Gordon K; Shi, Wei; Nutt, Stephen L
2017-01-17
FoxP3-expressing regulatory T (Treg) cells are essential for maintaining immune homeostasis. Activated Treg cells undergo further differentiation into an effector state that highly expresses genes critical for Treg cell function, although how this process is coordinated on a transcriptional level is poorly understood. Here, we demonstrate that mice lacking the transcription factor Myb in Treg cells succumbed to a multi-organ inflammatory disease. Myb was specifically expressed in, and required for the differentiation of, thymus-derived effector Treg cells. The combination of transcriptome and genomic footprint analyses revealed that Myb directly regulated a large proportion of the gene expression specific to effector Treg cells, identifying Myb as a critical component of the gene regulatory network controlling effector Treg cell differentiation and function. Copyright © 2017 Elsevier Inc. All rights reserved.
Nuñez, Illyce; Rodriguez Pino, Marbelys; Wiley, David J; Das, Maitreyi E; Chen, Chuan; Goshima, Tetsuya; Kume, Kazunori; Hirata, Dai; Toda, Takashi; Verde, Fulvia
2016-07-30
RNA-binding proteins contribute to the formation of ribonucleoprotein (RNP) granules by phase transition, but regulatory mechanisms are not fully understood. Conserved fission yeast NDR (Nuclear Dbf2-Related) kinase Orb6 governs cell morphogenesis in part by spatially controlling Cdc42 GTPase. Here we describe a novel, independent function for Orb6 kinase in negatively regulating the recruitment of RNA-binding protein Sts5 into RNPs to promote polarized cell growth. We find that Orb6 kinase inhibits Sts5 recruitment into granules, its association with processing (P) bodies, and degradation of Sts5-bound mRNAs by promoting Sts5 interaction with 14-3-3 protein Rad24. Many Sts5-bound mRNAs encode essential factors for polarized cell growth, and Orb6 kinase spatially and temporally controls the extent of Sts5 granule formation. Disruption of this control system affects cell morphology and alters the pattern of polarized cell growth, revealing a role for Orb6 kinase in the spatial control of translational repression that enables normal cell morphogenesis.
The hormone prolactin (PRL) plays a critical role in normal breast development by stimulating the proliferation of mammary cells, the production of milk proteins, and the formation of new mammary blood vessels. Unfortunately, the same cell and vessel growth pathways controlled by PRL in normal cells also operate in breast cancer cells, and elevated plasma PRL is a risk factor
Epigenetic Regulation of Myeloid Cells
IVASHKIV, LIONEL B.; PARK, SUNG HO
2017-01-01
Epigenetic regulation in myeloid cells is crucial for cell differentiation and activation in response to developmental and environmental cues. Epigenetic control involves posttranslational modification of DNA or chromatin, and is also coupled to upstream signaling pathways and transcription factors. In this review, we summarize key epigenetic events and how dynamics in the epigenetic landscape of myeloid cells shape the development, immune activation, and innate immune memory. PMID:27337441
Li, Zhouyue; Song, Yanping; Chen, Xiao; Chen, Zhongshan; Ding, Qin
2015-11-01
Many clinical trials have demonstrated the effectiveness of subthreshold phototherapy with no visible damage in retinal vascular diseases, such as diabetic retinopathy. We aimed primarily to investigate the effect of subthreshold diode micropulse laser (SDM) treatment on mouse retinal pigmented epithelium (RPE) cells. The expression of angiogenesis-modulating cytokines in response to SDM was also explored. The least toxic laser dose was selected by measuring cell viability with MTT assay and 5 % duty cycle (DC) was chosen for use in further experiments. RPE cells were treated with laser-induced radiation ranging from 0 to 400 mW for 24 h. The apoptotic rate of RPE cells was assessed by flow cytometry. Expressions of vascular endothelial growth factor A (VEGF-A), transforming growth factor beta (TGF-β), basic fibroblast growth factor (bFGF), and pigment epithelium-derived factor (PEDF) were determined by Western Blotting and real-time PCR, respectively. After 24 h of laser irradiation, cell viability was reduced dose dependently and the effect was significant compared to the controls (P < 0.05). In addition, laser treatment with intensities of 100 and 200 mW with DC of 5 % produced no significant effect on cell viability and apoptosis as compared with the control group (P > 0.05). The protein and mRNA expressions of angiogenic stimulators (VEGF-A, TGF-β, and bFGF) were significantly down-regulated (P < 0.05), whereas those of the angiogenic inhibitor (PEDF) were up-regulated (P < 0.05). No significant difference was found between the cells treated with different intensities of laser radiation (P > 0.05). Our results showed that SDM treatment of the RPE cells suppressed the expression of choroid neovasculization-promoting cytokines and up-regulated the angiogenic inhibitor, PEDF without damaging the cells. Further investigation is needed to understand the mechanism and to optimize the use of SDM as a novel method of treatment for retinal vascular diseases.
The role of Myc-induced protein synthesis in cancer
Ruggero, Davide
2009-01-01
Deregulation in different steps of translational control is an emerging mechanism for cancer formation. One example of an oncogene with a direct role in control of translation is the Myc transcription factor. Myc directly increases protein synthesis rates by controlling the expression of multiple components of the protein synthetic machinery, including ribosomal proteins, initiation factors of translation, Pol III and rDNA. However, the contribution of Myc-dependent increases in protein synthesis towards the multi-step process leading to cancer has remained unknown. Recent evidence strongly suggests that Myc oncogenic signaling may monopolize the translational machinery to elicit cooperative effects on cell growth, cell cycle progression, and genome instability as a mechanism for cancer initiation. Moreover, new genetic tools to restore aberrant increases in protein synthesis control are now available, which should enable the dissection of important mechanisms in cancer that rely on the translational machinery. PMID:19934336
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salo, Tuula, E-mail: Tuula.salo@oulu.fi; Oulu University Central Hospital, Oulu; Institute of Dentistry, University of Helsinki, Helsinki
The research on oral cancer has focused mainly on the cancer cells, their genetic changes and consequent phenotypic modifications. However, it is increasingly clear that the tumor microenvironment (TME) has been shown to be in a dynamic state of inter-relations with the cancer cells. The TME contains a variety of components including the non-cancerous cells (i.e., immune cells, resident fibroblasts and angiogenic vascular cells) and the ECM milieu [including fibers (mainly collagen and fibronectin) and soluble factors (i.e., enzymes, growth factors, cytokines and chemokines)]. Thus, it is currently assumed that TME is considered a part of the cancerous tissue andmore » the functionality of its key components constitutes the setting on which the hallmarks of the cancer cells can evolve. Therefore, in terms of controlling a malignancy, one should control the growth, invasion and spread of the cancer cells through modifications in the TME components. This mini review focuses on the TME as a diagnostic approach and reports the recent insights into the role of different TME key components [such as carcinoma-associated fibroblasts (CAFs) and inflammation (CAI) cells, angiogenesis, stromal matrix molecules and proteases] in the molecular biology of oral carcinoma. Furthermore, the impact of TME components on clinical outcomes and the concomitant need for development of new therapeutic approaches will be discussed. - Highlights: • Tumor depth and budding, hypoxia and TME cells associate with worse prognosis. • Pro-tumoral CAFs and CAI cells aid proliferation, invasion and spread hypoxia. • Some ECM-bound factors exert pro-angiogenic or pro-tumor activities. • Tumor spread is greatly dependent on ECM proteolysis, mediated by TME cells. • Direct targeting of TME components for treatment is still experimental.« less
Concise Review: Epigenetic Regulation of Myogenesis in Health and Disease
Sincennes, Marie-Claude; Brun, Caroline E.
2016-01-01
Skeletal muscle regeneration is initiated by satellite cells, a population of adult stem cells that reside in the muscle tissue. The ability of satellite cells to self-renew and to differentiate into the muscle lineage is under transcriptional and epigenetic control. Satellite cells are characterized by an open and permissive chromatin state. The transcription factor Pax7 is necessary for satellite cell function. Pax7 is a nodal factor regulating the expression of genes associated with satellite cell growth and proliferation, while preventing differentiation. Pax7 recruits chromatin modifiers to DNA to induce expression of specific target genes involved in myogenic commitment following asymmetric division of muscle stem cells. Emerging evidence suggests that replacement of canonical histones with histone variants is an important regulatory mechanism controlling the ability of satellite cells and myoblasts to differentiate. Differentiation into the muscle lineage is associated with a global gene repression characterized by a decrease in histone acetylation with an increase in repressive histone marks. However, genes important for differentiation are upregulated by the specific action of histone acetyltransferases and other chromatin modifiers, in combination with several transcription factors, including MyoD and Mef2. Treatment with histone deacetylase (HDAC) inhibitors enhances muscle regeneration and is considered as a therapeutic approach in the treatment of muscular dystrophy. This review describes the recent findings on epigenetic regulation in satellite stem cells and committed myoblasts. The potential of epigenetic drugs, such as HDAC inhibitors, as well as their molecular mechanism of action in muscle cells, will be addressed. Significance This review summarizes recent findings concerning the epigenetic regulation of satellite cells in skeletal muscle. PMID:26798058
Spens, Erika; Häggström, Lena
2009-05-20
NS0 cells proliferate without external supply of growth factors in protein-free media. We hypothesize that the cells produce their own factors to support proliferation. Understanding the mechanisms behind this autocrine regulation of proliferation may open for the novel approaches to improve animal cell processes. The following proteins were identified in NS0 conditioned medium (CM): cyclophilin A, cyclophilin B (CypB), cystatin C, D-dopachrome tautomerase, IL-25, isopentenyl-diphosphate delta-isomerase, macrophage migration inhibitory factor (MIF), beta(2)-microglobulin, Niemann pick type C2, secretory leukocyte protease inhibitor, thioredoxin-1, TNF-alpha, tumour protein translationally controlled 1 and ubiquitin. Further, cDNA microarray analysis indicated that the genes for IL-11, TNF receptor 6, TGF-beta receptor 1 and the IFN-gamma receptor were transcribed. CypB, IFN-alpha/beta/gamma, IL-11, IL-25, MIF, TGF-beta and TNF-alpha as well as the known growth factors EGF, IGF-I/II, IL-6, leukaemia inhibitory factor and oncostatin M (OSM) were excluded as involved in autocrine regulation of NS0 cell proliferation. The receptors for TGF-beta, IGF and OSM are however present in NS0 cell membranes since TGF-beta(1) caused cell death, and IGF-I/II and OSM improved cell growth. Even though no ligand was found, the receptor subunit gp130, active in signal transduction of the IL-6 like proteins, was shown to be essential for NS0 cells as demonstrated by siRNA gene silencing.
Fleissner, Diana; Frede, Annika; Knott, Markus; Knuschke, Torben; Geffers, Robert; Hansen, Wiebke; Dobos, Gustav; Langhorst, Jost; Buer, Jan; Westendorf, Astrid M
2011-01-01
The intestinal immune system is constantly challenged by foreign antigens and commensal bacteria. Therefore, proper control of the intestinal microenvironment is required. One important arm of this regulatory network consists of regulatory T cells. In contrast to CD4+ Foxp3+ regulatory T cells, which have been well characterized, immunomodulatory CD8+ T cells that express Foxp3 are less well defined in terms of their generation and function. Failures of these regulatory mechanisms contribute to the development of inflammatory bowel disease. In this study we demonstrate that the frequency of CD8+ Foxp3+ T cells is reduced in the peripheral blood of patients with ulcerative colitis. As these cells might play a currently underestimated role in the maintenance of intestinal homeostasis, we have investigated human and murine CD8+ Foxp3+ T cells generated by stimulating naive CD8+ T cells in the presence of transforming growth factor-β and retinoic acid, mediators that are abundantly produced in the intestinal mucosa. These CD8+ Foxp3+ fully competent regulatory T cells show strong expression of regulatory molecules CD25, Gpr83 and CTLA-4 and exhibit cell–cell contact-dependent immunosuppressive activity in vitro. Our study illustrates a previously unappreciated critical role of CD8+ Foxp3+ T cells in controlling potentially dangerous T cells and in the maintenance of intestinal homeostasis. PMID:21711349
Role of Stat3 and ErbB2 in Breast Cancer
2012-10-01
also activated by receptor tyrosine kinases, such as the epidermal growth factor receptor (EGFR) or platelet -derived growth factor receptor (PDGFR...cells were grown to different densities, up to 5 days post-confluence, as indicated. Detergent cell lysates were probed for Stat3-ptyr705, active Rac...and lysates probed for total cav1, cadherin 11 or tubulin as a loading control. 15 C Figure 7: Cadherin 11 and Rac1 downregulation
Sharp, Christopher A; Roberts, Sally; Evans, Helena; Brown, Sharon J
2009-11-01
Intervertebral disc (IVD) cells within the annulus fibrosus (AF) and nucleus pulposus (NP) maintain distinct functional extracellular matrices and operate within a potentially noxious and stressful environment. How disc cells respond to stress and whether stress is responsible for triggering degeneration is unknown. Disc cell proliferation and cluster formation are most marked in degenerate IVDs, possibly indicating attempts at matrix repair. In other tissues, stress proteins increase rapidly after stress protecting cell function and, although implicated in degeneration of articular cartilage, have received little attention in degenerative IVD pathologies. We have compared the distribution of stress protein immunolocalization in pathological and control IVDs. Disc tissues were obtained at surgery from 43 patients with degenerative disc disease (DDD) and herniation, and 12 controls at postmortem. Tissues were immunostained with a polyclonal antibody for heat shock factor 1 (HSF-1) and monoclonal antibodies for the heat shock proteins, Hsp27 and Hsp72, using an indirect immunoperoxidase method. Positively stained cells were expressed as a percentage of the total. Cell cluster formation was also assessed. The proportion of cells in clusters was similar in the AF (both 2%) and NP (8 and 9%) of control and DDD samples, whereas in herniated tissues this was increased (AF 12%, NP 14%). Stress antigen staining tended to be more frequent in clustered rather than in single/doublet cells, and this was significant (P < 0.005) in both the AF and NP of herniated discs. Clustered cells, which are most common in herniated discs, may be mounting a protective response to abnormal environmental factors associated with disc degeneration. A better understanding of the stress response in IVD cells may allow its utilization in disc cell therapies.
de Souza, Alessandra A.; Ionescu, Michael; Baccari, Clelia; da Silva, Aline M.
2013-01-01
Eal is an EAL domain protein in Xylella fastidiosa homologous to one involved in resistance to tobramycin in Pseudomonas aeruginosa. EAL and HD-GYP domain proteins are implicated in the hydrolysis of the secondary messenger bis-(3′-5′)-cyclic dimeric GMP (cyclic di-GMP). Cell density-dependent communication mediated by a Diffusible Signal Factor (DSF) also modulates cyclic di-GMP levels in X. fastidiosa, thereby controlling the expression of virulence genes and genes involved in insect transmission. The possible linkage of Eal to both extrinsic factors such as antibiotics and intrinsic factors such as quorum sensing, and whether both affect virulence, was thus addressed. Expression of eal was induced by subinhibitory concentrations of tobramycin, and an eal deletion mutant was more susceptible to this antibiotic than the wild-type strain and exhibited phenotypes similar to those of an rpfF deletion mutant blocked in DSF production, such as hypermotility, reduced biofilm formation, and hypervirulence to grape. Consistent with that, the rpfF mutant was more susceptible than the wild-type strain to tobramycin. Therefore, we propose that cell-cell communication and antibiotic stress can apparently lead to similar modulations of cyclic di-GMP in X. fastidiosa, resulting in similar phenotypes. However, the effect of cell density is dominant compared to that of antibiotic stress, since eal is suppressed by RpfF, which may prevent inappropriate behavioral changes in response to antibiotic stress when DSF accumulates. PMID:23542613
Kim, Hong Kyu; Choi, Ji-Young; Park, Sang Min; Rho, Chang Rae; Cho, Kyong Jin; Jo, Sangmee Ahn
2017-09-01
Vatalanib is a small-molecule tyrosine kinase inhibitor. We investigated the effects of vatalanib on the proliferation and migration of cultured human pterygial fibroblasts (HPFs). Pterygium tissues were obtained after pterygium excision surgery and subjected to primary culture. HPFs were treated with vatalanib at various concentrations. Mitomycin C (MMC) was used as a positive control. Cell proliferation and migration assays were used to investigate the effects of vatalanib. Cell death was measured using flow cytometry analysis. Western blot analysis was performed to identify signaling molecules associated with the response to vatalanib. Vatalanib inhibited both proliferation and migration of HPFs in a dose-dependent manner. Cell proliferation was significantly suppressed by vatalanib (10 and 100 μM) and MMC (0.004% and 0.04%) treatments. Migration assays revealed significant HPF delay when treated with vatalanib (1, 10, and 100 μM) and MMC (0.004% and 0.04%) compared with that in a negative control. Cell death analysis showed that high concentrations of vatalanib (100 μM) and MMC (0.004% and 0.04%) decreased cell numbers. Western blot analysis of vatalanib-treated cells showed vascular endothelial growth factor and transforming growth factor-β significantly reduced, but there was no alteration in p53 protein levels in HPFs. These results indicate that vatalanib significantly suppressed the proliferation and migration of HPFs by decreasing vascular endothelial growth factor and transforming growth factor-β. Vatalanib showed less toxicity than that of MMC. Based on these results, vatalanib may potentially serve as a new adjuvant treatment after pterygium excision surgery.
Graziano, Adriana Carol Eleonora; Avola, Rosanna; Perciavalle, Vincenzo; Nicoletti, Ferdinando; Cicala, Gianluca; Coco, Marinella; Cardile, Venera
2018-03-26
The limited capacity of nervous system to promote a spontaneous regeneration and the high rate of neurodegenerative diseases appearance are keys factors that stimulate researches both for defining the molecular mechanisms of pathophysiology and for evaluating putative strategies to induce neural tissue regeneration. In this latter aspect, the application of stem cells seems to be a promising approach, even if the control of their differentiation and the maintaining of a safe state of proliferation should be troubled. Here, we focus on adipose tissue-derived stem cells and we seek out the recent advances on the promotion of their neural differentiation, performing a critical integration of the basic biology and physiology of adipose tissue-derived stem cells with the functional modifications that the biophysical, biomechanical and biochemical microenvironment induces to cell phenotype. The pre-clinical studies showed that the neural differentiation by cell stimulation with growth factors benefits from the integration with biomaterials and biophysical interaction like microgravity. All these elements have been reported as furnisher of microenvironments with desirable biological, physical and mechanical properties. A critical review of current knowledge is here proposed, underscoring that a real advance toward a stable, safe and controllable adipose stem cells clinical application will derive from a synergic multidisciplinary approach that involves material engineer, basic cell biology, cell and tissue physiology.
The role of STATs in transcriptional control and their impact on cellular function.
Bromberg, J; Darnell, J E
2000-05-15
The STAT proteins (Signal Transducers and Activators of Transcription), were identified in the last decade as transcription factors which were critical in mediating virtually all cytokine driven signaling. These proteins are latent in the cytoplasm and become activated through tyrosine phosphorylation which typically occurs through cytokine receptor associated kinases (JAKs) or growth factor receptor tyrosine kinases. Recently a number of non-receptor tyrosine kinases (for example src and abl) have been found to cause STAT phosphorylation. Phosphorylated STATs form homo- or hetero-dimers, enter the nucleus and working coordinately with other transcriptional co-activators or transcription factors lead to increased transcriptional initiation. In normal cells and in animals, ligand dependent activation of the STATs is a transient process, lasting for several minutes to several hours. In contrast, in many cancerous cell lines and tumors, where growth factor dysregulation is frequently at the heart of cellular transformation, the STAT proteins (in particular Stats 1, 3 and 5) are persistently tyrosine phosphorylated or activated. The importance of STAT activation to growth control in experiments using anti-sense molecules or dominant negative STAT protein encoding constructs performed in cell lines or studies in animals lacking specific STATs strongly indicate that STATs play an important role in controlling cell cycle progression and apoptosis. Stat1 plays an important role in growth arrest, in promoting apoptosis and is implicated as a tumor suppressor; while Stats 3 and 5 are involved in promoting cell cycle progression and cellular transformation and preventing apoptosis. Many questions remain including: (1) a better understanding of how the STAT proteins through association with other factors increase transcription initiation; (2) a more complete definition of the sets of genes which are activated by different STATs and (3) how these sets of activated genes differ as a function of cell type. Finally, in the context of many cancers, where STATs are frequently persistently activated, an understanding of the mechanisms leading to their constitutive activation and defining the potential importance of persistent STAT activation in human tumorigenesis remains. Oncogene (2000).
Ahmed, Ismael; Gugsa, Salem T; Lemma, Seblewengel; Demissie, Meaza
2013-09-22
In Ethiopia, there is a growing concern about the increasing rates of loss to follow-up (LTFU) in HIV programs among people waiting to start HIV treatment. Unlike other African countries, there is little information about the factors associated with LTFU among pre-antiretroviral treatment (pre-ART) patients in Ethiopia. We conducted a case-control study to investigate factors associated with pre-ART LTFU in Ethiopia. Charts of HIV patients newly enrolled in HIV care at Gondar University Hospital (GUH) between September 11, 2008 and May 8, 2011 were reviewed. Patients who were "loss to follow-up" during the pre-ART period were considered to be cases and patients who were "in care" during the pre-ART period were controls. Logistic regression analysis was used to explore factors associated with pre-ART LTFU. In multivariable analyses, the following factors were found to be independently associated with pre-ART LTFU: male gender [Adjusted Odds Ratio (AOR) = 2.00 (95% CI: 1.15, 3.46)], higher baseline CD4 cell count (251-300 cells/μl [AOR = 2.64 (95% CI: 1.05, 6.65)], 301-350 cells/μl [AOR = 5.21 (95% CI: 1.94, 13.99)], and >350 cells/μl [AOR = 12.10 (95% CI: 6.33, 23.12)] compared to CD4 cell count of ≤ 200 cells/μl) and less advanced disease stage (WHO stage I [AOR = 2.81 (95% CI: 1.15, 6.91)] compared to WHO stage IV). Married patients [AOR = 0.39 (95% CI: 0.19, 0.79)] had reduced odds of being LTFU. In addition, patients whose next visit date was not documented on their medical chart [AOR = 241.39 (95% CI: 119.90, 485.97)] were more likely to be LTFU. Our study identified various factors associated with pre-ART LTFU. The findings highlight the importance of giving considerable attention to pre-ART patients' care from the time that they learn of their positive HIV serostatus. The completeness of the medical records, the standard of record keeping and obstacles to retrieving charts also indicate a serious problem that needs due attention from clinicians and data personnel.
Implication of epigenetics in pancreas development and disease.
Quilichini, Evans; Haumaitre, Cécile
2015-12-01
Pancreas development is controlled by a complex interaction of signaling pathways and transcription factor networks that determine pancreatic specification and differentiation of exocrine and endocrine cells. Epigenetics adds a new layer of gene regulation. DNA methylation, histone modifications and non-coding RNAs recently appeared as important epigenetic factors regulating pancreas development. In this review, we report recent findings obtained by analyses in model organisms as well as genome-wide approaches that demonstrate the role of these epigenetic regulators in the control of exocrine and endocrine cell differentiation, identity, function, proliferation and regeneration. We also highlight how altered epigenetic processes contribute to pancreatic disorders: diabetes and pancreatic cancer. Uncovering these epigenetic events can help to better understand these diseases, provide novel therapeutical targets for their treatment, and improve cell-based therapies for diabetes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Muhamadi, Lubega; Tumwesigye, Nazarius Mbona; Kadobera, Daniel; Marrone, Gaetano; Wabwire-Mangen, Fred; Pariyo, George; Peterson, Stefan; Ekström, Anna Mia
2011-01-01
Although WHO recommends starting antiretroviral treatment at a CD4 count of 350 cells/[µ]L, many Ugandan districts still struggle with large proportions of clients initiating ART very late at CD4<50 cells/[µ]L. This study seeks to establish crucial risk factors for very late ART initiation in eastern Uganda. All adult HIV-infected clients on ART in Iganga who enrolled between 2005 and 2009 were eligible for this case-control study. Clients who started ART at CD4 cell count of <50 cells/[µ]L (very late initiators) were classified as cases and 50-200 cells/[µ]L (late initiators) as control subjects. A total of 152 cases and 202 controls were interviewed. Multivariate analyses were performed to calculate adjusted odds ratios and 95% confidence intervals. Reported health system-related factors associated with very late ART initiation were stock-outs of antiretroviral drugs stock-outs (affecting 70% of the cases and none of the controls), competition from traditional/spiritual healers (AOR 7.8, 95 CI% 3.7-16.4), and lack of pre-ARV care (AOR 4.6, 95% CI: 2.3-9.3). Men were 60% more likely and subsistence farmers six times more likely (AOR 6.3, 95% CI: 3.1-13.0) to initiate ART very late. Lack of family support tripled the risk of initiating ART very late (AOR 3.3, 95% CI: 1.6-6.6). Policy makers should prevent ARV stock-outs though effective ARV procurement and supply chain management. New HIV clients should seek pre-ARV care for routine monitoring and determination of ART eligibility. ART services should be more affordable, accessible and user-friendly to make them more attractive than traditional healers.
Elevated IL-8 levels during sickle cell crisis.
Duits, A J; Schnog, J B; Lard, L R; Saleh, A W; Rojer, R A
1998-11-01
The vaso-occlusive process (VOC) in sickle cell disease is of a complex nature. It involves intricate interactions between sickle red blood cells, endothelium and probably also leukocytes. As these interactions are regulated by cytokines, we analyzed the role of the potent neutrophil chemokine IL-8 by measuring serum levels in sickle cell patients during sickle cell crisis. These results were compared to nonsymptomatics and healthy controls. In patients having a vaso-occlusive crisis both HbSS and HbSC patients showed significantly enhanced serum IL-8 levels compared to healthy controls. Several of these patients showed extremely elevated serum IL-8 levels which were independent of the crisis inducing factor. Furthermore, a sickle cell patient with VOC as a complication of rhGM-CSF treatment similarly showed high IL-8 serum levels at crisis onset. Nonsymptomatic sickle cell patients serum IL-8 levels were comparable to healthy controls. These results implicate a role for IL-8 at or during (the initiation of) sickle cell crisis.
Division of labour between Myc and G1 cyclins in cell cycle commitment and pace control.
Dong, Peng; Maddali, Manoj V; Srimani, Jaydeep K; Thélot, François; Nevins, Joseph R; Mathey-Prevot, Bernard; You, Lingchong
2014-09-01
A body of evidence has shown that the control of E2F transcription factor activity is critical for determining cell cycle entry and cell proliferation. However, an understanding of the precise determinants of this control, including the role of other cell-cycle regulatory activities, has not been clearly defined. Here, recognizing that the contributions of individual regulatory components could be masked by heterogeneity in populations of cells, we model the potential roles of individual components together with the use of an integrated system to follow E2F dynamics at the single-cell level and in real time. These analyses reveal that crossing a threshold amplitude of E2F accumulation determines cell cycle commitment. Importantly, we find that Myc is critical in modulating the amplitude, whereas cyclin D/E activities have little effect on amplitude but do contribute to the modulation of duration of E2F activation, thereby affecting the pace of cell cycle progression.
2001-10-01
tu- vation of transcription and deregulated cell mors and may eventually regress through growth (18). The importance of APC and [- cat - apoptosis (25...receptors, fibrosarcoma cells transfected to express 10ng/ml TPRII [621, ALK-1 [63], and endoglin [64], and one of its TGF-131 in vitro are unable to
Zhang, Kai; Duan, Liting; Ong, Qunxiang; Lin, Ziliang; Varman, Pooja Mahendra; Sung, Kijung; Cui, Bianxiao
2014-01-01
It has been proposed that differential activation kinetics allows cells to use a common set of signaling pathways to specify distinct cellular outcomes. For example, nerve growth factor (NGF) and epidermal growth factor (EGF) induce different activation kinetics of the Raf/MEK/ERK signaling pathway and result in differentiation and proliferation, respectively. However, a direct and quantitative linkage between the temporal profile of Raf/MEK/ERK activation and the cellular outputs has not been established due to a lack of means to precisely perturb its signaling kinetics. Here, we construct a light-gated protein-protein interaction system to regulate the activation pattern of the Raf/MEK/ERK signaling pathway. Light-induced activation of the Raf/MEK/ERK cascade leads to significant neurite outgrowth in rat PC12 pheochromocytoma cell lines in the absence of growth factors. Compared with NGF stimulation, light stimulation induces longer but fewer neurites. Intermittent on/off illumination reveals that cells achieve maximum neurite outgrowth if the off-time duration per cycle is shorter than 45 min. Overall, light-mediated kinetic control enables precise dissection of the temporal dimension within the intracellular signal transduction network. PMID:24667437
Khedgikar, Vikram; Abbruzzese, Genevieve; Mathavan, Ketan; Szydlo, Hannah; Cousin, Helene; Alfandari, Dominique
2017-08-22
Adam13/33 is a cell surface metalloprotease critical for cranial neural crest (CNC) cell migration. It can cleave multiple substrates including itself, fibronectin, ephrinB, cadherin-11, pcdh8 and pcdh8l (this work). Cleavage of cadherin-11 produces an extracellular fragment that promotes CNC migration. In addition, the adam13 cytoplasmic domain is cleaved by gamma secretase, translocates into the nucleus and regulates multiple genes. Here, we show that adam13 interacts with the arid3a/dril1/Bright transcription factor. This interaction promotes a proteolytic cleavage of arid3a and its translocation to the nucleus where it regulates another transcription factor: tfap2α. Tfap2α in turn activates multiple genes including the protocadherin pcdh8l (PCNS). The proteolytic activity of adam13 is critical for the release of arid3a from the plasma membrane while the cytoplasmic domain appears critical for the cleavage of arid3a. In addition to this transcriptional control of pcdh8l, adam13 cleaves pcdh8l generating an extracellular fragment that also regulates cell migration.
Khedgikar, Vikram; Abbruzzese, Genevieve; Mathavan, Ketan; Szydlo, Hannah; Cousin, Helene
2017-01-01
Adam13/33 is a cell surface metalloprotease critical for cranial neural crest (CNC) cell migration. It can cleave multiple substrates including itself, fibronectin, ephrinB, cadherin-11, pcdh8 and pcdh8l (this work). Cleavage of cadherin-11 produces an extracellular fragment that promotes CNC migration. In addition, the adam13 cytoplasmic domain is cleaved by gamma secretase, translocates into the nucleus and regulates multiple genes. Here, we show that adam13 interacts with the arid3a/dril1/Bright transcription factor. This interaction promotes a proteolytic cleavage of arid3a and its translocation to the nucleus where it regulates another transcription factor: tfap2α. Tfap2α in turn activates multiple genes including the protocadherin pcdh8l (PCNS). The proteolytic activity of adam13 is critical for the release of arid3a from the plasma membrane while the cytoplasmic domain appears critical for the cleavage of arid3a. In addition to this transcriptional control of pcdh8l, adam13 cleaves pcdh8l generating an extracellular fragment that also regulates cell migration. PMID:28829038
Non-alcoholic beverages, unknown influence on cell proliferation - an in vitro study.
Nowacki, Maciej; Adamowicz, Jan; Olkowska, Joanna; Pietkun, Katarzyna; Kloskowski, Tomasz; Bajek, Anna; Drewa, Tomasz
2014-01-01
The aim of the presented study was to check differences between 'Diet' and 'non-Diet' soft drinks on cell proliferation. Coca Cola and Pepsi Cola of different origin and their dietetic versions were examined at concentrations of 2% and 4%. Fructose and glucose as well as medium alone (control) were examined. Cell number was higher in media supplemented with soft drinks, compared to control. Proliferation depended on the soft drink concentration and its origin, but not on sugar and calorific content. An unknown factor is responsible for the increase in proliferation.
Byrne, Scott N; Hammond, Kirsten J L; Chan, Carling Y-Y; Rogers, Linda J; Beaugie, Clare; Rana, Sabita; Marsh-Wakefield, Felix; Thurman, Joshua M; Halliday, Gary M
2015-04-01
Ultraviolet (UV) wavelengths in sunlight are the prime cause of skin cancer in humans with both the UVA and UVB wavebands making a contribution to photocarcinogenesis. UV has many different biological effects on the skin that contribute to carcinogenesis, including suppression of adaptive immunity, sunburn and altering the migration of mast cells into and away from irradiated skin. Many molecular mechanisms have been identified as contributing to skin responses to UV. Recently, using gene set enrichment analysis of microarray data, we identified the alternative complement pathway with a central role for factor B (fB) in UVA-induced immunosuppression. In the current study we used mice genetically deficient in fB (fB-/- mice) to study the functional role of the alternative complement pathway in skin responses to UV. We found that fB is required for not only UVA but also UVB-induced immunosuppression and solar-simulated UV induction of the oedemal component of sunburn. Factor B-/- mice had a larger number of resident skin mast cells than control mice, but unlike the controls did not respond to UV by increasing mast cell infiltration into the skin. This study provides evidence for a function role for fB in skin responses to UV radiation. Factor B regulates UVA and UVB induced immunosuppression, UV induced oedema and mast cell infiltration into the skin. The alternative complement pathway is therefore an important regulator of skin responses to UV.
Krizbai, I A; Bauer, H; Amberger, A; Hennig, B; Szabó, H; Fuchs, R; Bauer, H C
2000-09-01
The capacity of vascular endothelial cells to modulate their phenotype in response to changes in environmental conditions is one of the most important characteristics of this cell type. Since different growth factors may play an important signalling role in this adaptive process we have investigated the effect of endothelial cell growth factor (ECGF) on morphological, physiological and molecular characteristics of cerebral endothelial cells (CECs). CECs grown in the presence of ECGF and its cofactor heparin exhibit an epithelial-like morphology (type I CECs). Upon removal of growth factors, CECs develop an elongated spindle-like shape (type II CECs) which is accompanied by the reorganization of actin filaments and the induction of alpha-actin expression. Since one of the most important functions of CECs is the creation of a selective diffusion barrier between the blood and the central nervous system (CNS), we have studied the expression of junction-related proteins in both cell types. We have found that removal of growth factors from endothelial cultures leads to the downregulation of cadherin and occludin protein levels. The loss of junctional proteins was accompanied by a significant increase in the migratory activity and an altered protease activity profile of the cells. TGF-beta1 suppressed endothelial migration in all experiments. Our data provide evidence to suggest that particular endothelial functions are largely controlled by the presence of growth factors. The differences in adhesiveness and migration may play a role in important physiological and pathological processes of endothelial cells such as vasculogenesis or tumor progression.
Park, Hae-Ryung; Loch-Caruso, Rita
2014-11-15
Polybrominated diphenyl ethers (PBDEs) are widely used flame retardants, and BDE-47 is a prevalent PBDE congener detected in human tissues. Exposure to PBDEs has been linked to adverse pregnancy outcomes in humans. Although the underlying mechanisms of adverse birth outcomes are poorly understood, critical roles for oxidative stress and inflammation are implicated. The present study investigated antioxidant responses in a human extravillous trophoblast cell line, HTR-8/SVneo, and examined the role of nuclear factor E2-related factor 2 (Nrf2), an antioxidative transcription factor, in BDE-47-induced inflammatory responses in the cells. Treatment of HTR-8/SVneo cells with 5, 10, 15, and 20μM BDE-47 for 24h increased intracellular glutathione (GSH) levels compared to solvent control. Treatment of HTR-8/SVneo cells with 20μM BDE-47 for 24h induced the antioxidant response element (ARE) activity, indicating Nrf2 transactivation by BDE-47 treatment, and resulted in differential expression of redox-sensitive genes compared to solvent control. Pretreatment with tert-butyl hydroquinone (tBHQ) or sulforaphane, known Nrf2 inducers, reduced BDE-47-stimulated IL-6 release with increased ARE reporter activity, reduced nuclear factor kappa B (NF-κB) reporter activity, increased GSH production, and stimulated expression of antioxidant genes compared to non-Nrf2 inducer pretreated groups, suggesting that Nrf2 may play a protective role against BDE-47-mediated inflammatory responses in HTR-8/SVneo cells. These results suggest that Nrf2 activation significantly attenuated BDE-47-induced IL-6 release by augmentation of cellular antioxidative system via upregulation of Nrf2 signaling pathways, and that Nrf2 induction may be a potential therapeutic target to reduce adverse pregnancy outcomes associated with toxicant-induced oxidative stress and inflammation. Copyright © 2014 Elsevier Inc. All rights reserved.
Li, Ru; Li, Claire H; Nauth, Aaron; McKee, Michael D; Schemitsch, Emil H
2010-09-01
Vascular endothelial growth factor (VEGF) plays an important role in promoting angiogenesis and osteogenesis during fracture repair. Our previous studies have shown that cell-based VEGF gene therapy enhances bone healing of a rabbit tibia segmental bone defect in vivo. The aim of this project was to examine the effect of exogenous human VEGF on the endogenous rat VEGF messenger RNA (mRNA) expression in a cell-based gene transfer model. Rat fibroblasts and osteoblasts were harvested from the dermal tissue and periosteum, respectively, of Fisher 344 rats. The cells were then cultured and transfected with pcDNA-human VEGF using Superfect reagent (Qiagen). Four experimental groups were created: 1) fibroblast-VEGF; 2) osteoblast-VEGF; 3) nontransfected fibroblast controls; and 4) nontransfected osteoblast controls. The cultured cells were harvested at 1, 3, and 7 days after the gene transfection. The total mRNA was extracted (Trizol; Invitrogen); both human VEGF and rat VEGF mRNA were measured by reverse transcriptase-polymerase chain reaction and quantified by VisionWorksLS. The human VEGF165 mRNA was detected by reverse transcriptase-polymerase chain reaction from transfected fibroblasts and osteoblasts at 1, 3, and 7 days after gene transfection. The human VEGF165 levels peaked at Day 1 and then gradually reduced expression in both transfected fibroblasts and osteoblasts. Two endogenous rat VEGF isoforms were detected in this cell culture model: rat VEGF120 and rat VEGF164. We compared the rat VEGF120 and rat VEGF164 expression level of the fibroblasts or osteoblasts that were transfected with human VEGF165, with nontransfected control cells. Both the transfected fibroblasts and osteoblasts showed greater expression of rat VEGF164 than nontransfected controls at Day 1 (peak level) and Day 3, but not at Day 7. The expression of rat VEGF120 was lower in transfected fibroblasts, but higher in transfected osteoblasts, than the relevant control groups at any time point after transfection. In addition, human VEGF gene transfection increased osteoblast cell proliferation after 3 days. These in vitro results suggest that cell-based human VEGF gene therapy is not only effective at causing human VEGF expression, but also enhances endogenous rat VEGF mRNA expression in both fibroblasts and osteoblasts, particularly the rat VEGF164 isoform.
Cell cycle gene expression under clinorotation
NASA Astrophysics Data System (ADS)
Artemenko, Olga
2016-07-01
Cyclins and cyclin-dependent kinase (CDK) are main regulators of the cell cycle of eukaryotes. It's assumes a significant change of their level in cells under microgravity conditions and by other physical factors actions. The clinorotation use enables to determine the influence of gravity on simulated events in the cell during the cell cycle - exit from the state of quiet stage and promotion presynthetic phase (G1) and DNA synthesis phase (S) of the cell cycle. For the clinorotation effect study on cell proliferation activity is the necessary studies of molecular mechanisms of cell cycle regulation and development of plants under altered gravity condition. The activity of cyclin D, which is responsible for the events of the cell cycle in presynthetic phase can be controlled by the action of endogenous as well as exogenous factors, but clinorotation is one of the factors that influence on genes expression that regulate the cell cycle.These data can be used as a model for further research of cyclin - CDK complex for study of molecular mechanisms regulation of growth and proliferation. In this investigation we tried to summarize and analyze known literature and own data we obtained relatively the main regulators of the cell cycle in altered gravity condition.
An essential role for IL-2 receptor in regulatory T cell function
Levine, Andrew G; Fan, Xiying; Klein, Ulf; Zheng, Ye; Gasteiger, Georg; Feng, Yongqiang; Fontenot, Jason D.; Rudensky, Alexander Y.
2016-01-01
Regulatory T (Treg) cells, expressing abundant amounts of the IL-2 receptor (IL-2R), are reliant on IL-2 produced by activated T cells. This feature implied a key role for a simple network based on IL-2 consumption by Treg cells in their suppressor function. However, congenital deficiency in IL-2R results in reduced expression of the Treg cell lineage specification factor Foxp3, confounding experimental efforts to understand the role of IL-2R expression and signaling in Treg suppressor function. Using genetic gain and loss of function approaches, we demonstrate that IL-2 capture is dispensable for control of CD4+ T cells, but is important for limiting CD8+ T cell activation, and that IL-2R dependent STAT5 transcription factor activation plays an essential role in Treg cell suppressor function separable from T cell receptor signaling. PMID:27595233
Increasing RpoS expression causes cell death in Borrelia burgdorferi.
Chen, Linxu; Xu, Qilong; Tu, Jiagang; Ge, Yihe; Liu, Jun; Liang, Fang Ting
2013-01-01
RpoS, one of the two alternative σ factors in Borrelia burgdorferi, is tightly controlled by multiple regulators and, in turn, determines expression of many critical virulence factors. Here we show that increasing RpoS expression causes cell death. The immediate effect of increasing RpoS expression was to promote bacterial division and as a consequence result in a rapid increase in cell number before causing bacterial death. No DNA fragmentation or degradation was observed during this induced cell death. Cryo-electron microscopy showed induced cells first formed blebs, which were eventually released from dying cells. Apparently blebbing initiated cell disintegration leading to cell death. These findings led us to hypothesize that increasing RpoS expression triggers intracellular programs and/or pathways that cause spirochete death. The potential biological significance of induced cell death may help B. burgdorferi regulate its population to maintain its life cycle in nature.
The transcription factor Etv5 controls TH17 cell development and allergic airway inflammation
Pham, Duy; Sehra, Sarita; Sun, Xin; Kaplan, Mark H.
2014-01-01
Background The differentiation of TH17 cells, which promote pulmonary inflammation, requires the cooperation of a network of transcription factors. Objectives We sought to define the role of Etv5, an Ets-family transcription factor, in TH17 cell development and function. Methods TH17 development was examined in primary mouse T cells wherein Etv5 expression was altered by retroviral transduction, small interfering RNA targeting a specific gene, and mice with a conditional deletion of Etv5 in T cells. The direct function of Etv5 on the Il17 locus was tested with chromatin immunoprecipitation and reporter assays. The house dust mite–induced allergic inflammation model was used to test the requirement for Etv5-dependent TH17 functions in vivo. Results We identify Etv5 as a signal transducer and activator of transcription 3–induced positive regulator of TH17 development. Etv5 controls TH17 differentiation by directly promoting 0a and Il17f expression. Etv5 recruits histone-modifying enzymes to the Il17a–Il17f locus, resulting in increased active histone marks and decreased repressive histone marks. In a model of allergic airway inflammation, mice with Etv5-deficient T cells have reduced airway inflammation and IL-17A/F production in the lung and bronchoalveolar lavage fluid compared with wild-type mice, without changes in TH2 cytokine production. Conclusions These data define signal transducer and activator of transcription 3–dependent feed-forward control of TH17 cytokine production and a novel role for Etv5 in promoting T cell–dependent airway inflammation. PMID:24486067
Maternal retinoids control type 3 innate lymphoid cells and set the offspring immunity
NASA Astrophysics Data System (ADS)
van de Pavert, Serge A.; Ferreira, Manuela; Domingues, Rita G.; Ribeiro, Hélder; Molenaar, Rosalie; Moreira-Santos, Lara; Almeida, Francisca F.; Ibiza, Sales; Barbosa, Inês; Goverse, Gera; Labão-Almeida, Carlos; Godinho-Silva, Cristina; Konijn, Tanja; Schooneman, Dennis; O'Toole, Tom; Mizee, Mark R.; Habani, Yasmin; Haak, Esther; Santori, Fabio R.; Littman, Dan R.; Schulte-Merker, Stefan; Dzierzak, Elaine; Simas, J. Pedro; Mebius, Reina E.; Veiga-Fernandes, Henrique
2014-04-01
The impact of nutritional status during fetal life on the overall health of adults has been recognized; however, dietary effects on the developing immune system are largely unknown. Development of secondary lymphoid organs occurs during embryogenesis and is considered to be developmentally programmed. Secondary lymphoid organ formation depends on a subset of type 3 innate lymphoid cells (ILC3) named lymphoid tissue inducer (LTi) cells. Here we show that mouse fetal ILC3s are controlled by cell-autonomous retinoic acid (RA) signalling in utero, which pre-sets the immune fitness in adulthood. We found that embryonic lymphoid organs contain ILC progenitors that differentiate locally into mature LTi cells. Local LTi cell differentiation was controlled by maternal retinoid intake and fetal RA signalling acting in a haematopoietic cell-autonomous manner. RA controlled LTi cell maturation upstream of the transcription factor RORγt. Accordingly, enforced expression of Rorgt restored maturation of LTi cells with impaired RA signalling, whereas RA receptors directly regulated the Rorgt locus. Finally, we established that maternal levels of dietary retinoids control the size of secondary lymphoid organs and the efficiency of immune responses in the adult offspring. Our results reveal a molecular link between maternal nutrients and the formation of immune structures required for resistance to infection in the offspring.
Maternal retinoids control type 3 innate lymphoid cells and set the offspring immunity.
van de Pavert, Serge A; Ferreira, Manuela; Domingues, Rita G; Ribeiro, Hélder; Molenaar, Rosalie; Moreira-Santos, Lara; Almeida, Francisca F; Ibiza, Sales; Barbosa, Inês; Goverse, Gera; Labão-Almeida, Carlos; Godinho-Silva, Cristina; Konijn, Tanja; Schooneman, Dennis; O'Toole, Tom; Mizee, Mark R; Habani, Yasmin; Haak, Esther; Santori, Fabio R; Littman, Dan R; Schulte-Merker, Stefan; Dzierzak, Elaine; Simas, J Pedro; Mebius, Reina E; Veiga-Fernandes, Henrique
2014-04-03
The impact of nutritional status during fetal life on the overall health of adults has been recognized; however, dietary effects on the developing immune system are largely unknown. Development of secondary lymphoid organs occurs during embryogenesis and is considered to be developmentally programmed. Secondary lymphoid organ formation depends on a subset of type 3 innate lymphoid cells (ILC3) named lymphoid tissue inducer (LTi) cells. Here we show that mouse fetal ILC3s are controlled by cell-autonomous retinoic acid (RA) signalling in utero, which pre-sets the immune fitness in adulthood. We found that embryonic lymphoid organs contain ILC progenitors that differentiate locally into mature LTi cells. Local LTi cell differentiation was controlled by maternal retinoid intake and fetal RA signalling acting in a haematopoietic cell-autonomous manner. RA controlled LTi cell maturation upstream of the transcription factor RORγt. Accordingly, enforced expression of Rorgt restored maturation of LTi cells with impaired RA signalling, whereas RA receptors directly regulated the Rorgt locus. Finally, we established that maternal levels of dietary retinoids control the size of secondary lymphoid organs and the efficiency of immune responses in the adult offspring. Our results reveal a molecular link between maternal nutrients and the formation of immune structures required for resistance to infection in the offspring.
MCAT elements and the TEF-1 family of transcription factors in muscle development and disease.
Yoshida, Tadashi
2008-01-01
MCAT elements are located in the promoter-enhancer regions of cardiac, smooth, and skeletal muscle-specific genes including cardiac troponin T, beta-myosin heavy chain, smooth muscle alpha-actin, and skeletal alpha-actin, and play a key role in the regulation of these genes during muscle development and disease. The binding factors of MCAT elements are members of the transcriptional enhancer factor-1 (TEF-1) family. However, it has not been fully understood how these transcription factors confer cell-specific expression in muscle, because their expression patterns are relatively broad. Results of recent studies revealed multiple mechanisms whereby TEF-1 family members control MCAT element-dependent muscle-specific gene expression, including posttranslational modifications of TEF-1 family members, the presence of muscle-selective TEF-1 cofactors, and cell-selective control of TEF-1 accessibility to MCAT elements. In addition, of particular interest, recent studies regarding MCAT element-dependent transcription of the myocardin gene and the smooth muscle alpha-actin gene in muscle provide evidence for the transcriptional diversity among distinct cell types and subtypes. This article summarizes the role of MCAT elements and the TEF-1 family of transcription factors in muscle development and disease, and reviews recent progress in our understanding of the transcriptional regulatory mechanisms involved in MCAT element-dependent muscle-specific gene expression.
Bauer, Ashley J.; Martin, Kathleen A.
2017-01-01
Cardiovascular disease is a leading cause of death with increasing economic burden. The pathogenesis of cardiovascular diseases is complex, but can arise from genetic and/or environmental risk factors. This can lead to dysregulated gene expression in numerous cell types including cardiomyocytes, endothelial cells, vascular smooth muscle cells, and inflammatory cells. While initial studies addressed transcriptional control of gene expression, epigenetics has been increasingly appreciated to also play an important role in this process through alterations in chromatin structure and gene accessibility. Chromatin-modifying proteins including enzymes that modulate DNA methylation, histone methylation, and histone acetylation can influence gene expression in numerous ways. These chromatin modifiers and their marks can promote or prevent transcription factor recruitment to regulatory regions of genes through modifications to DNA, histones, or the transcription factors themselves. This review will focus on the emerging question of how epigenetic modifiers and transcription factors interact to coordinately regulate gene expression in cardiovascular disease. While most studies have addressed the roles of either epigenetic or transcriptional control, our understanding of the integration of these processes is only just beginning. Interrogating these interactions is challenging, and improved technical approaches will be needed to fully dissect the temporal and spatial relationships between transcription factors, chromatin modifiers, and gene expression in cardiovascular disease. We summarize the current state of the field and provide perspectives on limitations and future directions. Through studies of epigenetic and transcriptional interactions, we can advance our understanding of the basic mechanisms of cardiovascular disease pathogenesis to develop novel therapeutics. PMID:28428957
Risk factors for squamous cell carcinoma, a study by the National Dermatology Centre of Colombia.
Sánchez, G; Nova, J
2013-10-01
Nonmelanoma skin cancer is the most common malignancy in white individuals. The risk factors for squamous cell carcinoma, which belongs to the family of nonmelanoma skin cancers, have not been studied in Colombia. To determine the risk factors for squamous cell carcinoma in patients at a national referral center for skin diseases in Colombia. We conducted a case-control study that evaluated sociodemographic, epidemiological, and clinical factors among 332 individuals. Risk was calculated as odds ratio (ORs) using the multivariate conditional logistic regression analysis method. The following risk factors were identified: family history of skin cancer (OR, 6.55; 95% CI, 1.4-28.9), living in a rural area after the age of 30 years (OR, 3.13; 95% CI, 1.3-7.2), a lifetime working outdoors (OR, 2.98; 95% CI, 1.5-5.7), smoking more than 10 cigarettes a day (OR, 2.96; 95% CI, 1.3-6.5), actinic conjunctivitis (OR, 2.68; 95% CI, 1.2-5.9), poikiloderma of Civatte (OR, 3.29; 95% CI, 1.7-6.1), numerous facial actinic keratoses (OR, 9.23; 95% CI, 4.9-17.1), and numerous freckles (OR, 3.68; 95% CI, 1.3-10.1). We have documented clinical characteristics and personal history factors that should guide the physician in making decisions on the preventive and follow-up measures to be adopted for individuals at risk of squamous cell carcinoma. These findings may help guide policy for controlling the disease using local information. Copyright © 2012 Elsevier España, S.L. and AEDV. All rights reserved.
NASA Astrophysics Data System (ADS)
Abrahamse, Heidi
2014-02-01
Mesenchymal stem cells (MSCs) have the capacity to differentiate into a variety of cell types that could potentially be used in tissue engineering and regenerative medicine. Low intensity laser irradiation (LILI) has been shown to induce a significant increase in cell viability and proliferation. Growth factors such as retinoic acid (RA) and transforming growth factor β1 (TGF-β1) play important roles in the differentiation of cells. The aim of this study was to investigate whether LILI in combination with growth factors could induce the differentiation of adipose derived stem cells (ADSCs) cocultured with smooth muscle cells (SMCs). The study used primary and continuous ADSC cell lines and a SMC line (SKUT-1) as control. Cells were co-cultured directly at a ratio of 1:1 using established methods, with and without growth factors and then exposed to LILI at 5 J/cm2 using a 636 nm diode laser. The cellular morphology, viability and proliferation of the co-cultures were assessed over a period of one week. The study also monitored the expression of cell specific markers over the same period of time. Genetic expression of the markers for both adipose derived stem cells (β1 Integrin and Thymidine 1) and smooth muscle cells (Heavy Myosin Chain) was monitored using flow cytometry. Cell viability and proliferation increased significantly in the co-cultured groups that were exposed to laser alone, as well as in combination with growth factors. Furthermore, there was a significant decrease in the expression of stem cell markers in the ADSCs over time. The results indicate that LILI in combination with growth factors not only increases the viability and proliferation of co-cultured cells but also decreases the expression of ADSC stem cell markers. This could indicate the possible differentiation of ADSCs into SMCs.
Nicolas, Philippe; Lecourieux, David; Kappel, Christian; Cluzet, Stéphanie; Cramer, Grant; Delrot, Serge; Lecourieux, Fatma
2014-01-01
In grape (Vitis vinifera), abscisic acid (ABA) accumulates during fruit ripening and is thought to play a pivotal role in this process, but the molecular basis of this control is poorly understood. This work characterizes ABSCISIC ACID RESPONSE ELEMENT-BINDING FACTOR2 (VvABF2), a grape basic leucine zipper transcription factor belonging to a phylogenetic subgroup previously shown to be involved in ABA and abiotic stress signaling in other plant species. VvABF2 transcripts mainly accumulated in the berry, from the onset of ripening to the harvesting stage, and were up-regulated by ABA. Microarray analysis of transgenic grape cells overexpressing VvABF2 showed that this transcription factor up-regulates and/or modifies existing networks related to ABA responses. In addition, grape cells overexpressing VvABF2 exhibited enhanced responses to ABA treatment compared with control cells. Among the VvABF2-mediated responses highlighted in this study, the synthesis of phenolic compounds and cell wall softening were the most strongly affected. VvABF2 overexpression strongly increased the accumulation of stilbenes that play a role in plant defense and human health (resveratrol and piceid). In addition, the firmness of fruits from tomato (Solanum lycopersicum) plants overexpressing VvABF2 was strongly reduced. These data indicate that VvABF2 is an important transcriptional regulator of ABA-dependent grape berry ripening. PMID:24276949
Maiese, Kenneth
2015-01-01
Diabetes mellitus affects almost 350 million individuals throughout the globe resulting in significant morbidity and mortality. Of further concern is the growing population of individuals that remain undiagnosed but are susceptible to the detrimental outcomes of this disorder. Diabetes mellitus leads to multiple complications in the central and peripheral nervous systems that include cognitive impairment, retinal disease, neuropsychiatric disease, cerebral ischemia, and peripheral nerve degeneration. Although multiple strategies are being considered, novel targeting of trophic factors, Wnt signaling, Wnt1 inducible signaling pathway protein 1, and stem cell tissue regeneration are considered to be exciting prospects to overcome the cellular mechanisms that lead to neuronal injury in diabetes mellitus involving oxidative stress, apoptosis, and autophagy. Pathways that involve insulin-like growth factor-1, fibroblast growth factor, epidermal growth factor, and erythropoietin can govern glucose homeostasis and are intimately tied to Wnt signaling that involves Wnt1 and Wnt1 inducible signaling pathway protein 1 (CCN4) to foster control over stem cell proliferation, wound repair, cognitive decline, β-cell proliferation, vascular regeneration, and programmed cell death. Ultimately, cellular metabolism through Wnt signaling is driven by primary metabolic pathways of the mechanistic target of rapamycin and AMP activated protein kinase. These pathways offer precise biological control of cellular metabolism, but are exquisitely sensitive to the different components of Wnt signaling. As a result, unexpected clinical outcomes can ensue and therefore demand careful translation of the mechanisms that govern neural repair and regeneration in diabetes mellitus. PMID:26170801
Patin, Etienne; Hasan, Milena; Bergstedt, Jacob; Rouilly, Vincent; Libri, Valentina; Urrutia, Alejandra; Alanio, Cécile; Scepanovic, Petar; Hammer, Christian; Jönsson, Friederike; Beitz, Benoît; Quach, Hélène; Lim, Yoong Wearn; Hunkapiller, Julie; Zepeda, Magge; Green, Cherie; Piasecka, Barbara; Leloup, Claire; Rogge, Lars; Huetz, François; Peguillet, Isabelle; Lantz, Olivier; Fontes, Magnus; Di Santo, James P; Thomas, Stéphanie; Fellay, Jacques; Duffy, Darragh; Quintana-Murci, Lluís; Albert, Matthew L
2018-03-01
The quantification and characterization of circulating immune cells provide key indicators of human health and disease. To identify the relative effects of environmental and genetic factors on variation in the parameters of innate and adaptive immune cells in homeostatic conditions, we combined standardized flow cytometry of blood leukocytes and genome-wide DNA genotyping of 1,000 healthy, unrelated people of Western European ancestry. We found that smoking, together with age, sex and latent infection with cytomegalovirus, were the main non-genetic factors that affected variation in parameters of human immune cells. Genome-wide association studies of 166 immunophenotypes identified 15 loci that showed enrichment for disease-associated variants. Finally, we demonstrated that the parameters of innate cells were more strongly controlled by genetic variation than were those of adaptive cells, which were driven by mainly environmental exposure. Our data establish a resource that will generate new hypotheses in immunology and highlight the role of innate immunity in susceptibility to common autoimmune diseases.
Boo, Kyungjin; Bhin, Jinhyuk; Jeon, Yoon; Kim, Joomyung; Shin, Hi-Jai R; Park, Jong-Eun; Kim, Kyeongkyu; Kim, Chang Rok; Jang, Hyonchol; Kim, In-Hoo; Kim, V Narry; Hwang, Daehee; Lee, Ho; Baek, Sung Hee
2015-04-10
The actions of transcription factors, chromatin modifiers and noncoding RNAs are crucial for the programming of cell states. Although the importance of various epigenetic machineries for controlling pluripotency of embryonic stem (ES) cells has been previously studied, how chromatin modifiers cooperate with specific transcription factors still remains largely elusive. Here, we find that Pontin chromatin remodelling factor plays an essential role as a coactivator for Oct4 for maintenance of pluripotency in mouse ES cells. Genome-wide analyses reveal that Pontin and Oct4 share a substantial set of target genes involved in ES cell maintenance. Intriguingly, we find that the Oct4-dependent coactivator function of Pontin extends to the transcription of large intergenic noncoding RNAs (lincRNAs) and in particular linc1253, a lineage programme repressing lincRNA, is a Pontin-dependent Oct4 target lincRNA. Together, our findings demonstrate that the Oct4-Pontin module plays critical roles in the regulation of genes involved in ES cell fate determination.
Iron Reverses Impermeable Chelator Inhibition of DNA Synthesis in CCl39 Cells
NASA Astrophysics Data System (ADS)
Alcain, Francisco J.; Low, Hans; Crane, Frederick L.
1994-08-01
Treatment of Chinese hamster lung fibro-blasts (CCl 39 cells) with the impermeable iron(II) chelator bathophenanthroline disulfonate (BPS) inhibits DNA synthesis when cell growth is initiated with growth factors including epidermal growth factor plus insulin, thrombin, or ceruloplasmin, but not with 10% fetal calf serum. The BPS treatment inhibits transplasma membrane electron transport. The treatment leads to release of iron from the cells as determined by BPS iron(II) complex formation over 90 min. Growth factor stimulation of DNA synthesis and electron transport are restored by addition of di- or trivalent iron to the cells in the form of ferric ammonium citrate, ferrous ammonium sulfate, or diferric transferrin. The effect with BPS differs from the inhibition of growth by hydroxyurea, which acts on the ribonucleotide reductase, or diethylenetriaminepentaacetic acid, which is another impermeable chelating agent, in that these agents inhibit growth in 10% fetal calf serum. The BPS effect is consistent with removal of iron from a site on the cell surface that controls DNA synthesis.
The expression of BAFF in the muscles of patients with dermatomyositis.
Baek, Ahmi; Park, Hyung Jun; Na, Sang-Jun; Shim, Dong Suk; Moon, Joon-Shik; Yang, Young; Choi, Young-Chul
2012-08-15
A B-cell activating factor of the tumor necrosis factor (TNF) family (BAFF) plays a crucial role in B-cell survival and maturation. An elevated serum BAFF level has been linked to several autoimmune diseases such as Sjögren syndrome, systemic lupus erythematosus and rheumatoid arthritis. Dermatomyositis (DM), one of autoimmune inflammatory myopathies, is characterized by inflammatory cell infiltration (CD4(+) T cells and B cells) in skeletal muscle. Serum BAFF level was significantly high in DM, but the role of BAFF is not well understood. We investigated the role of BAFF in the immunopathogenesis of DM. To examine the transcriptional increase of BAFF gene expression, we performed RT-PCR analysis with skeletal muscle tissue that contained 4 controls and 9 patients with DM. Next, in order to detect BAFF expression and cellular localization in DM, we executed immunostaining in cryosection of biopsied muscle tissue with 4 controls and 8 patients and we adopted to double immunostaining to find which inflammatory cells expressed BAFF-receptor (BAFF-R). BAFF mRNA level was increased in DM patients compared with normal controls. BAFF expression was markedly increased at muscle fibers in the perifascicular area but not blood vessels. BAFF-R was expressed in inflammatory cells in skeletal muscle tissues of DM patients. We found that BAFF expression in muscle tissue may be associated with an increased number of CD4(+) T cells and CD19(+) B cells in DM. Our study results suggest that BAFF might play an important role in the pathogenesis of DM. Copyright © 2012 Elsevier B.V. All rights reserved.
Matrix metalloproteinases and epidermal wound repair.
Martins, Vera L; Caley, Matthew; O'Toole, Edel A
2013-02-01
Epidermal wound healing is a complex and highly coordinated process where several different cell types and molecules, such as growth factors and extracellular matrix (ECM) components, play an important role. Among the many proteins that are essential for the restoration of tissue integrity is the metalloproteinase (MMP) family. MMPs can act on ECM and non-ECM components affecting degradation and modulation of the ECM, growth-factor activation and cell-cell and cell-matrix signalling. MMPs are secreted by different cell types such as keratinocytes, fibroblasts and inflammatory cells at different stages and locations during wound healing, thereby regulating this process in a very coordinated and controlled way. In this article, we review the role of MMPs and their inhibitors (TIMPs), as well as the disintegrin and metalloproteinase with the thrombospondin motifs (ADAMs) family, in epithelial wound repair.
Cell Density Control of Staphylococcal Virulence Mediated by an Octapeptide Pheromone
NASA Astrophysics Data System (ADS)
Ji, Guangyong; Beavis, Ronald C.; Novick, Richard P.
1995-12-01
Some bacterial pathogens elaborate and secrete virulence factors in response to environmental signals, others in response to a specific host product, and still others in response to no discernible cue. In this study, we have demonstrated that the synthesis of Staphylococcus aureus virulence factors is controlled by a density-sensing system that utilizes an octapeptide produced by the organism itself. The octapeptide activates expression of the agr locus, a global regulator of the virulence response. This response involves the reciprocal regulation of genes encoding surface proteins and those encoding secreted virulence factors. As cells enter the postexponential phase, surface protein genes are repressed by agr and secretory protein genes are subsequently activated. The intracellular agr effector is a regulatory RNA, RNAIII, whose transcription is activated by an agr-encoded signal transduction system for which the octapeptide is the ligand.
Rac1/RhoA antagonism defines cell-to-cell heterogeneity during epidermal morphogenesis in nematodes
Ouellette, Marie-Hélène
2016-01-01
The antagonism between the GTPases Rac1 and RhoA controls cell-to-cell heterogeneity in isogenic populations of cells in vitro and epithelial morphogenesis in vivo. Its involvement in the regulation of cell-to-cell heterogeneity during epidermal morphogenesis has, however, never been addressed. We used a quantitative cell imaging approach to characterize epidermal morphogenesis at a single-cell level during early elongation of Caenorhabditis elegans embryos. This study reveals that a Rac1-like pathway, involving the Rac/Cdc42 guanine-exchange factor β-PIX/PIX-1 and effector PAK1/PAK-1, and a RhoA-like pathway, involving ROCK/LET-502, control the remodeling of apical junctions and the formation of basolateral protrusions in distinct subsets of hypodermal cells. In these contexts, protrusions adopt lamellipodia or an amoeboid morphology. We propose that lamella formation may reduce tension building at cell–cell junctions during morphogenesis. Cell-autonomous antagonism between these pathways enables cells to switch between Rac1- and RhoA-like morphogenetic programs. This study identifies the first case of cell-to-cell heterogeneity controlled by Rac1/RhoA antagonism during epidermal morphogenesis. PMID:27821782
Benoit, Bérengère; Bruno, Jérémie; Kayal, Fanny; Estienne, Monique; Debard, Cyrille; Ducroc, Robert; Plaisancié, Pascale
2015-08-01
High-fat diets induce intestinal barrier alterations and promote intestinal diseases. Little is known about the effects of long-chain fatty acids (LCFAs) on mucin 2 (MUC2) production by goblet cells, which are crucial for intestinal protection. We investigated the effects of LCFAs on the differentiation of colonic goblet cells, MUC2 expression, and colonic barrier function. Upon reaching confluence, human colonic mucus-secreting HT29-MTX cells were stimulated (21 d) with a saturated LCFA (palmitic or stearic acid), a monounsaturated LCFA (oleic acid), or a polyunsaturated LCFA (linoleic, γ-linolenic, α-linolenic, or eicosapentaenoic acid). In addition, rat pups underwent oral administration of oil (palm, rapeseed, or sunflower oil) or water (10 μL/g body weight, postnatal days 10-15). Subsequently, colon goblet cells were studied by Western blotting, reverse transcriptase-quantitative polymerase chain reaction, and immunohistochemistry and colonic transmucosal electrical resistance was measured by using Ussing chambers. In vitro, palmitic acid enhanced MUC2 production (140% of control) and hepatocyte nuclear factor 4α expression, whereas oleic, linoleic, γ-linolenic, α-linolenic, and eicosapentaenoic acids reduced MUC2 expression (at least -50% of control). All unsaturated LCFAs decreased the expression of human atonal homolog 1, a transcription factor controlling goblet cell differentiation (at least -31% vs. control). In vivo, rats fed palm oil had higher palmitic acid concentrations (3-fold) in their colonic contents and increased mucus granule surfaces in their goblet cells (>2-fold) than did all other groups. Palm oil also increased colonic transmucosal electrical resistance (245% of control), yet had no effect on occludin and zonula occludens-1 expression. In contrast, sunflower and rapeseed oils decreased goblet cell number when compared with control (at least -10%) and palm oil (at least -14%) groups. Palm oil in rat pups and palmitic acid in HT29-MTX cells increase the production of MUC2 and strengthen the intestinal barrier. In contrast, unsaturated LCFAs decrease MUC2 expression. These data should be taken into account in the context of preventive or therapeutic nutritional programs. © 2015 American Society for Nutrition.
Involvement of Retinoblastoma Protein and HBP1 in Histone H10 Gene Expression
Lemercier, Claudie; Duncliffe, Kym; Boibessot, Isabelle; Zhang, Hui; Verdel, André; Angelov, Dimitar; Khochbin, Saadi
2000-01-01
The histone H10-encoding gene is expressed in vertebrates in differentiating cells during the arrest of proliferation. In the H10 promoter, a specific regulatory element, which we named the H4 box, exhibits features which implicate a role in mediating H10 gene expression in response to both differentiation and cell cycle control signals. For instance, within the linker histone gene family, the H4 box is found only in the promoters of differentiation-associated subtypes, suggesting that it is specifically involved in differentiation-dependent expression of these genes. In addition, an element nearly identical to the H4 box is conserved in the promoters of histone H4-encoding genes and is known to be involved in their cell cycle-dependent expression. The transcription factors interacting with the H10 H4 box were therefore expected to link differentiation-dependent expression of H10 to the cell cycle control machinery. The aim of this work was to identify such transcription factors and to obtain information concerning the regulatory pathway involved. Interestingly, our cloning strategy led to the isolation of a retinoblastoma protein (RB) partner known as HBP1. HBP1, a high-mobility group box transcription factor, interacted specifically with the H10 H4 box and moreover was expressed in a differentiation-dependent manner. We also showed that the HBP1-encoding gene is able to produce different forms of HBP1. Finally, we demonstrated that both HBP1 and RB were involved in the activation of H10 gene expression. We therefore propose that HBP1 mediates a link between the cell cycle control machinery and cell differentiation signals. Through modulating the expression of specific chromatin-associated proteins such as histone H10, HBP1 plays a vital role in chromatin remodeling events during the arrest of cell proliferation in differentiating cells. PMID:10958660
Scotti, Leopoldina; Parborell, Fernanda; Irusta, Griselda; De Zuñiga, Ignacio; Bisioli, Claudio; Pettorossi, Hernan; Tesone, Marta; Abramovich, Dalhia
2014-08-01
Polycystic ovary syndrome (PCOS) is the most common endocrinological pathology among women of reproductive age, and is characterized by abnormalities in ovarian angiogenesis, among other features. Consistent with this association, follicular fluid (FF) concentration and ovarian expression of vascular endothelial growth factor (VEGF) are increased in PCOS patients. In this study, we examined the protein levels of platelet-derived growth factor (PDGF) BB and DD (PDGFBB and PDGFDD), angiopoietin 1 and 2 (ANGPT1 and ANGPT2), and their soluble receptor sTIE2 in FF from PCOS and control patients undergoing assisted reproductive techniques. We also analyzed the effect of FF from PCOS and control patients on tight and adherens junction protein expression in an endothelial cell line. PDGFBB and PDGFDD were significantly lower whereas ANGPT1 concentration was significantly higher in FF from PCOS patients than from control patients. No changes were found in the concentration of ANGPT2 or sTIE2. Expression of claudin-5 was significantly increased in endothelial cells incubated for 24 hr in the presence of FF from PCOS versus from control patients, while vascular-endothelial cadherin, β-catenin, and zonula occludens 1 expression were unchanged. The changes observed in the levels of PDGF isoforms and ANGPT1 may prevent VEGF-induced vascular permeability in the PCOS ovary by regulating endothelial-cell-junction protein levels. Restoring the levels of angiogenic factors may provide new insights into PCOS treatment and the prevention of ovarian hyperstimulation syndrome in affected women. © 2014 Wiley Periodicals, Inc.
Efficient generation of rat induced pluripotent stem cells using a non-viral inducible vector.
Merkl, Claudia; Saalfrank, Anja; Riesen, Nathalie; Kühn, Ralf; Pertek, Anna; Eser, Stefan; Hardt, Markus Sebastian; Kind, Alexander; Saur, Dieter; Wurst, Wolfgang; Iglesias, Antonio; Schnieke, Angelika
2013-01-01
Current methods of generating rat induced pluripotent stem cells are based on viral transduction of pluripotency inducing genes (Oct4, Sox2, c-myc and Klf4) into somatic cells. These activate endogenous pluripotency genes and reprogram the identity of the cell to an undifferentiated state. Epigenetic silencing of exogenous genes has to occur to allow normal iPS cell differentiation. To gain more control over the expression of exogenous reprogramming factors, we used a novel doxycycline-inducible plasmid vector encoding Oct4, Sox2, c-Myc and Klf4. To ensure efficient and controlled generation of iPS cells by plasmid transfection we equipped the reprogramming vector with a bacteriophage φC31 attB site and used a φC31 integrase expression vector to enhance vector integration. A series of doxycycline-independent rat iPS cell lines were established. These were characterized by immunocytochemical detection of Oct4, SSEA1 and SSEA4, alkaline phosphatase staining, methylation analysis of the endogenous Oct4 promoter and RT-PCR analysis of endogenous rat pluripotency genes. We also determined the number of vector integrations and the extent to which reprogramming factor gene expression was controlled. Protocols were developed to generate embryoid bodies and rat iPS cells demonstrated as pluripotent by generating derivatives of all three embryonic germ layers in vitro, and teratoma formation in vivo. All data suggest that our rat iPS cells, generated by plasmid based reprogramming, are similar to rat ES cells. Methods of DNA transfection, protein transduction and feeder-free monolayer culture of rat iPS cells were established to enable future applications.
Bansal, Rhea; Ford, Brian; Bhaskaran, Shree; Thum, Meenyau; Bansal, Amolak
2017-01-01
Vascular Endothelial Growth Factor and NK cells have an interrelated role in angiogenesis that is critical for placentation and success of in vitro fertilization. An attempt was made to assess a possible relationship between the two in this study. A case control study was performed comparing the serum levels of VEGF-A and its receptor VEGF-R1 with levels of NK cells, activated NK cells and NK cytotoxicity in 62 women with Repeated Implantation Failure (RIF). The healthy control group consisted of 72 women of similar age, without known issues in achieving pregnancy or evidence of autoimmunity. Levels of VEGF-A and VEGF-R1 were quantified by ELISA methods with standard curve interpolation. NK cell subsets were determined with flow cytometry using fluorescent-tagged anti-CD56, anti-CD16, anti-CD3 and anti-CD69. NK cytotoxicity was performed by incubating peripheral blood mononuclear cells and K562 cultured cells with propidium iodide, steroid, intralipid and intravenous immunoglobulin, using previously described methods. Statistical analysis involved Mann-Whitney-U and Spearman's rank correlation testing with p-values defined as <0.05. It was found that VEGF-A levels were significantly raised in women with RIF compared to healthy controls (362.9 vs . 171.6 pg/ml , p<0.0001), with no difference in VEGF-R1 levels between groups (1499 vs . 1202 pg/ml , p=0.4082). There was no correlation between VEGF-A or VEGF-R1 and the absolute levels of circulating NK cells, CD69 activated NK cells or NK cytotoxicity. The absence of correlation between VEGF-A or VEGF-R1 and NK cells suggests VEGF secretion and regulation is independent of NK cell activity in RIF.
Mitochondria control acute and chronic responses to hypoxia.
McElroy, G S; Chandel, N S
2017-07-15
There are numerous mechanisms by which mammals respond to hypoxia. These include acute changes in pulmonary arterial tone due to smooth muscle cell contraction, acute increases in respiration triggered by the carotid body chemosensory cells, and chronic changes such as induction of red blood cell proliferation and angiogenesis by hypoxia inducible factor targets erythropoietin and vascular endothelial growth factor, respectively. Mitochondria account for the majority of oxygen consumption in the cell and have recently been appreciated to serve as signaling organelles required for the initiation or propagation of numerous homeostatic mechanisms. Mitochondria can influence cell signaling by production of reactive oxygen species and metabolites. Here we review recent evidence that mitochondrial signals can imitate acute and chronic hypoxia responses. Copyright © 2017 Elsevier Inc. All rights reserved.
Mekbungwan, A; Yamauchi, K
2004-04-01
Histological intestinal villus alterations were studied in piglets fed raw (PM) or heated (HPM) pigeon pea seed meal. The trypsin inhibition rate was 99.15% in PM and 54.31% HPM. The PM and HPM were added into the basal diet (crude protein; 176.3 g/kg, gross energy; 4.15 kcal/g, control) at 20% and 40% levels, respectively. The diets were formulated in order to adjust protein to 180 g/kg and gross energy to about 4.20 kcal/g. The feed intake was not different among groups. The daily body weight gain and feed efficiency tended to decrease with the increasing PM level, and they decreased significantly in the 40% PM group compared with the control group (P < 0.05). However, HPM groups showed a growth performance similar to the control. The villus height, cell area and cell mitosis tended to decrease with the increasing PM level, and they decreased significantly in the 40% PM group compared with the control group (P < 0.05). In HPM group, these villus height, cell area and cell mitosis were significantly higher than those of the 40% PM group (P < 0.05), and did not show a significant difference compared with the control. Compared with the duodenal villus surface of the control group, the PM groups had a smooth surface due to flat cells and the HPM group showed a rough surface due to protuberated cells. The current histological alterations of intestinal villi demonstrate that the villi might be atrophied in the piglets fed raw PM due to anti-nutritional factors, resulting in the decreased growth performance, and that heating PM might abolish such a harmful effect of the anti-nutritional factors on the villus function, resulting in a similar growth performance to the control. Raw PM could be incorporated under a level of 40%, but heated PM increases the incorporation rate up to the 40% level.
Freidl, Raphaela; Fernández, Carmen
2014-01-01
Tissue-resident macrophages are heterogeneous with tissue-specific and niche-specific functions. Thus, simplified models of macrophage activation do not explain the extent of heterogeneity seen in vivo. We focus here on the respiratory tract and ask whether factors secreted by alveolar epithelial cells (AEC) can influence the functionality of resident pulmonary macrophages (PuM). We have previously reported that factors secreted by AEC increase control of intracellular growth of BCG in macrophages. In the current study, we also aimed to investigate possible mechanisms by which AEC-derived factors increase intracellular control of BCG in both primary murine interstitial macrophages, and bone marrow-derived macrophages and characterize further the effect of these factors on macrophage differentiation. We show that; a) in contrast to other macrophage types, IFN-γ did not increase intracellular growth control of Mycobacterium bovis, Bacillus Calmette-Guérin (BCG) by interstitial pulmonary macrophages although the same macrophages could be activated by factors secreted by AEC; b) the lack of response of pulmonary macrophages to IFN-γ was apparently regulated by suppressor of cytokine signaling (SOCS)1; c) AEC-derived factors did not induce pro-inflammatory pathways induced by IFN-γ e.g. expression of inducible nitric oxide synthase (iNOS), secretion of nitric oxide (NO), or IL-12, d) in contrast to IFN-γ, intracellular bacterial destruction induced by AEC-derived factors was not dependent on iNOS transcription and NO production. Collectively, our data show that PuM were restricted in inflammatory responses mediated by IFN-γ through SOCS1 and that factors secreted by AEC- enhanced the microbicidal capacities of macrophages by iNOS independent mechanisms. PMID:25089618