Sample records for factor elicits bone

  1. Subchondral pre-solidified chitosan/blood implants elicit reproducible early osteochondral wound-repair responses including neutrophil and stromal cell chemotaxis, bone resorption and repair, enhanced repair tissue integration and delayed matrix deposition

    PubMed Central

    2013-01-01

    Background In this study we evaluated a novel approach to guide the bone marrow-driven articular cartilage repair response in skeletally aged rabbits. We hypothesized that dispersed chitosan particles implanted close to the bone marrow degrade in situ in a molecular mass-dependent manner, and attract more stromal cells to the site in aged rabbits compared to the blood clot in untreated controls. Methods Three microdrill hole defects, 1.4 mm diameter and 2 mm deep, were created in both knee trochlea of 30 month-old New Zealand White rabbits. Each of 3 isotonic chitosan solutions (150, 40, 10 kDa, 80% degree of deaceylation, with fluorescent chitosan tracer) was mixed with autologous rabbit whole blood, clotted with Tissue Factor to form cylindrical implants, and press-fit in drill holes in the left knee while contralateral holes received Tissue Factor or no treatment. At day 1 or day 21 post-operative, defects were analyzed by micro-computed tomography, histomorphometry and stereology for bone and soft tissue repair. Results All 3 implants filled the top of defects at day 1 and were partly degraded in situ at 21 days post-operative. All implants attracted neutrophils, osteoclasts and abundant bone marrow-derived stromal cells, stimulated bone resorption followed by new woven bone repair (bone remodeling) and promoted repair tissue-bone integration. 150 kDa chitosan implant was less degraded, and elicited more apoptotic neutrophils and bone resorption than 10 kDa chitosan implant. Drilled controls elicited a poorly integrated fibrous or fibrocartilaginous tissue. Conclusions Pre-solidified implants elicit stromal cells and vigorous bone plate remodeling through a phase involving neutrophil chemotaxis. Pre-solidified chitosan implants are tunable by molecular mass, and could be beneficial for augmented marrow stimulation therapy if the recruited stromal cells can progress to bone and cartilage repair. PMID:23324433

  2. Bone cell communication factors and Semaphorins

    PubMed Central

    Negishi-Koga, Takako; Takayanagi, Hiroshi

    2012-01-01

    Bone tissue is continuously renewed throughout adult life by a process called 'remodeling', which involves a dynamic interplay among bone cells including osteoclasts, osteoblasts and osteocytes. For example, a tight coupling between bone resorption and formation is essential for the homeostasis of the skeletal system. Studies on the coupling mechanism in physiological and pathological settings have revealed that osteoclasts or osteoclastic bone resorption promote bone formation through the production of diverse coupling factors. The classical coupling factors are the molecules that promote bone formation after resorption, but there may be distinct mechanisms at work in various phases of bone remodeling. A recent study revealed that the Semaphorin 4D expressed by osteoclasts inhibits bone formation, which represents a mechanism by which coupling is dissociated. Furthermore, it has been demonstrated that osteoblastic expression of Semaphorin 3A exerts an osteoprotective effect by both suppressing bone resorption and increasing bone formation. Thus, recent advances have made it increasingly clear that bone remodeling is regulated by not only classical coupling factors, but also molecules that mediate cell–cell communication among bone cells. We propose that such factors be called bone cell communication factors, which control the delicate balance of the interaction of bone cells so as to maintain bone homeostasis. PMID:24171101

  3. Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells

    PubMed Central

    Florencio-Silva, Rinaldo; Sasso-Cerri, Estela; Simões, Manuel Jesus; Cerri, Paulo Sérgio

    2015-01-01

    Bone tissue is continuously remodeled through the concerted actions of bone cells, which include bone resorption by osteoclasts and bone formation by osteoblasts, whereas osteocytes act as mechanosensors and orchestrators of the bone remodeling process. This process is under the control of local (e.g., growth factors and cytokines) and systemic (e.g., calcitonin and estrogens) factors that all together contribute for bone homeostasis. An imbalance between bone resorption and formation can result in bone diseases including osteoporosis. Recently, it has been recognized that, during bone remodeling, there are an intricate communication among bone cells. For instance, the coupling from bone resorption to bone formation is achieved by interaction between osteoclasts and osteoblasts. Moreover, osteocytes produce factors that influence osteoblast and osteoclast activities, whereas osteocyte apoptosis is followed by osteoclastic bone resorption. The increasing knowledge about the structure and functions of bone cells contributed to a better understanding of bone biology. It has been suggested that there is a complex communication between bone cells and other organs, indicating the dynamic nature of bone tissue. In this review, we discuss the current data about the structure and functions of bone cells and the factors that influence bone remodeling. PMID:26247020

  4. Hyperelastic "bone": A highly versatile, growth factor-free, osteoregenerative, scalable, and surgically friendly biomaterial.

    PubMed

    Jakus, Adam E; Rutz, Alexandra L; Jordan, Sumanas W; Kannan, Abhishek; Mitchell, Sean M; Yun, Chawon; Koube, Katie D; Yoo, Sung C; Whiteley, Herbert E; Richter, Claus-Peter; Galiano, Robert D; Hsu, Wellington K; Stock, Stuart R; Hsu, Erin L; Shah, Ramille N

    2016-09-28

    Despite substantial attention given to the development of osteoregenerative biomaterials, severe deficiencies remain in current products. These limitations include an inability to adequately, rapidly, and reproducibly regenerate new bone; high costs and limited manufacturing capacity; and lack of surgical ease of handling. To address these shortcomings, we generated a new, synthetic osteoregenerative biomaterial, hyperelastic "bone" (HB). HB, which is composed of 90 weight % (wt %) hydroxyapatite and 10 wt % polycaprolactone or poly(lactic-co-glycolic acid), could be rapidly three-dimensionally (3D) printed (up to 275 cm(3)/hour) from room temperature extruded liquid inks. The resulting 3D-printed HB exhibited elastic mechanical properties (~32 to 67% strain to failure, ~4 to 11 MPa elastic modulus), was highly absorbent (50% material porosity), supported cell viability and proliferation, and induced osteogenic differentiation of bone marrow-derived human mesenchymal stem cells cultured in vitro over 4 weeks without any osteo-inducing factors in the medium. We evaluated HB in vivo in a mouse subcutaneous implant model for material biocompatibility (7 and 35 days), in a rat posterolateral spinal fusion model for new bone formation (8 weeks), and in a large, non-human primate calvarial defect case study (4 weeks). HB did not elicit a negative immune response, became vascularized, quickly integrated with surrounding tissues, and rapidly ossified and supported new bone growth without the need for added biological factors. Copyright © 2016, American Association for the Advancement of Science.

  5. Chitosan-glycerol phosphate/blood implants elicit hyaline cartilage repair integrated with porous subchondral bone in microdrilled rabbit defects.

    PubMed

    Hoemann, C D; Sun, J; McKee, M D; Chevrier, A; Rossomacha, E; Rivard, G-E; Hurtig, M; Buschmann, M D

    2007-01-01

    We have previously shown that microfractured ovine defects are repaired with more hyaline cartilage when the defect is treated with in situ-solidified implants of chitosan-glycerol phosphate (chitosan-GP) mixed with autologous whole blood. The objectives of this study were (1) to characterize chitosan-GP/blood clots in vitro, and (2) to develop a rabbit marrow stimulation model in order to determine the effects of the chitosan-GP/blood implant and of debridement on the formation of incipient cartilage repair tissue. Blood clots were characterized by histology and in vitro clot retraction tests. Bilateral 3.5 x 4 mm trochlear defects debrided into the calcified layer were pierced with four microdrill holes and filled with a chitosan-GP/blood implant or allowed to bleed freely as a control. At 1 day post-surgery, initial defects were characterized by histomorphometry (n=3). After 8 weeks of repair, osteochondral repair tissues between or through the drill holes were evaluated by histology, histomorphometry, collagen type II expression, and stereology (n=16). Chitosan-GP solutions structurally stabilized the blood clots by inhibiting clot retraction. Treatment of drilled defects with chitosan-GP/blood clots led to the formation of a more integrated and hyaline repair tissue above a more porous and vascularized subchondral bone plate compared to drilling alone. Correlation analysis of repair tissue between the drill holes revealed that the absence of calcified cartilage and the presence of a porous subchondral bone plate were predictors of greater repair tissue integration with subchondral bone (P<0.005), and of a higher total O'Driscoll score (P<0.005 and P<0.01, respectively). Chitosan-GP/blood implants applied in conjunction with drilling, compared to drilling alone, elicited a more hyaline and integrated repair tissue associated with a porous subchondral bone replete with blood vessels. Concomitant regeneration of a vascularized bone plate during cartilage repair

  6. Bone-Derived Growth Factors

    PubMed Central

    Capanna, R.; Campanacci, D.A.; De Biase, P.; Cuomo, P.; Lorenzoni, A.

    2010-01-01

    Bone regeneration is based on the synergy between osteconduction, osteoinduction and osteogenesis. In recent years, we have witnessed the birth and development of numerous osteoconductive substrates, created with the intention of replacing bone grafts, both autologous and homologous. Recently, attention has shifted to osteogenesis, in other words, to the study of mesenchymal cells and their differentiation into osteoblastic cell lines that can be cultured in vitro (as already seen with chondroblasts). Osteoinduction, too, has been shown to be equally important, ever since Urist’s 1967 study which drew attention to the demineralised bone matrix and its properties. The following twenty years led to the definition of bone morphogenetic protein (BMP) and finally to the marketing of the first ostegenic protein (OP-1) obtained by means of the gene recombination technique. The BMPs produced using this technique that, so far, have been shown to be most active are BMP-2 (Infuse) and BMP-7 (Osigraft). The BMPs are not the only molecules with osteoinductive capacity. Other molecules capable of influencing bone regeneration are: platelet-derived growth factors (PDGFs), the transforming growth factor-beta (TGF-β) family, insulin-like growth factor (IGF-I) and the acidic and basic fibroblast growth factors (FGFs). All these growth factors act in synergy with the BMPs, modulating their action and exerting an inductive and proliferative action on the cell lines responsible for regenerating the bone matrix. The literature has been literally invaded by studies, both experimental and preclinical, on these proteins (Termaat, 2005), and they have provided ample demonstration that the BMPs are effective in improving healing of fractures, pseudoarthrosis and spinal fusions. Important advantages of BMPs are the complete absence of risk of transmissible disease, given that they are produced using recombination technology; their purity, and thus absence of an immune response (although

  7. Cytokines and growth factors which regulate bone cell function

    NASA Astrophysics Data System (ADS)

    Seino, Yoshiki

    Everybody knows that growth factors are most important in making bone. Hormones enhance bone formation from a long distance. Growth factors promote bone formation as an autocrine or paracrine factor in nearby bone. BMP-2 through BMP-8 are in the TGF-β family. BMP makes bone by enchondral ossification. In bone, IGF-II is most abundant, second, TGF-β, and third IGF-I. TGF-β enhances bone formation mainly by intramembranous ossification in vivo. TGF-β affects both cell proliferation and differentiation, however, TGF-β mainly enhances bone formation by intramembranous ossification. Interestingly, TGF-β is increased by estrogen(E 2), androgen, vitamin D, TGF-β and FGF. IGF-I and IGF-II also enhance bone formation. At present it remains unclear why IGF-I is more active in bone formation than IGF-II, although IGF-II is more abundant in bone compared to IGF-I. However, if only type I receptor signal transduction promotes bone formation, the strong activity of IGF-I in bone formation is understandable. GH, PTH and E 2 promotes IGF-I production. Recent data suggest that hormones containing vitamin D or E 2 enhance bone formation through growth factors. Therefore, growth factors are the key to clarifying the mechanism of bone formation.

  8. Bone morphogenetic protein-4 strongly potentiates growth factor-induced proliferation of mammary epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montesano, Roberto; Sarkoezi, Rita; Schramek, Herbert

    2008-09-12

    Bone morphogenetic proteins (BMPs) are multifunctional cytokines that elicit pleiotropic effects on biological processes such as cell proliferation, cell differentiation and tissue morphogenesis. With respect to cell proliferation, BMPs can exert either mitogenic or anti-mitogenic activities, depending on the target cells and their context. Here, we report that in low-density cultures of immortalized mammary epithelial cells, BMP-4 did not stimulate cell proliferation by itself. However, when added in combination with suboptimal concentrations of fibroblast growth factor (FGF)-2, FGF-7, FGF-10, epidermal growth factor (EGF) or hepatocyte growth factor (HGF), BMP-4 potently enhanced growth factor-induced cell proliferation. These results reveal a hithertomore » unsuspected interplay between BMP-4 and growth factors in the regulation of mammary epithelial cell proliferation. We suggest that the ability of BMP-4 to potentiate the mitogenic activity of multiple growth factors may contribute to mammary gland ductal morphogenesis as well as to breast cancer progression.« less

  9. Genetic Factors in Determining Bone Mass

    PubMed Central

    Smith, David M.; Nance, Walter E.; Kang, Ke Won; Christian, Joe C.; Johnston, C. Conrad

    1973-01-01

    This investigation was undertaken to evaluate possible genetic determinants of bone mass with the premise that inheritance of bone mass could be of etiologic importance in osteoporosis. Bone mass and width measurements were made with the photon absorption technique on the right radius of 71 juvenile and 80 adult twin paris. The variance of intrapair differences of bone mass in monozygotic (MZ) juvenile twins was 0.0013 g2/cm2 compared to 0.0052 g2/cm2 in the dizygotic (DZ) twins. For the adult twins the variance of intrapair differences in bone mass was 0.0069 for MZ and 0.0137 for DZ twins. Similar results were obtained for bone width. The significantly larger variation in intrapair differences in DZ twins indicates that these traits have significant genetic determinants. These intrapair differences were found to increase with age, suggesting that genetic-environmental interaction also contributes to the observed variation in bone mass. These data provide evidence that bone mass does have significant genetic factors, which alone or in conjunction with environmental factors may predispose persons to the development of osteoporosis. PMID:4795916

  10. Oncostatin M promotes bone formation independently of resorption when signaling through leukemia inhibitory factor receptor in mice

    PubMed Central

    Walker, Emma C.; McGregor, Narelle E.; Poulton, Ingrid J.; Solano, Melissa; Pompolo, Sueli; Fernandes, Tania J.; Constable, Matthew J.; Nicholson, Geoff C.; Zhang, Jian-Guo; Nicola, Nicos A.; Gillespie, Matthew T.; Martin, T. John; Sims, Natalie A.

    2010-01-01

    Effective osteoporosis therapy requires agents that increase the amount and/or quality of bone. Any modification of osteoclast-mediated bone resorption by disease or drug treatment, however, elicits a parallel change in osteoblast-mediated bone formation because the processes are tightly coupled. Anabolic approaches now focus on uncoupling osteoblast action from osteoclast formation, for example, by inhibiting sclerostin, an inhibitor of bone formation that does not influence osteoclast differentiation. Here, we report that oncostatin M (OSM) is produced by osteoblasts and osteocytes in mouse bone and that it has distinct effects when acting through 2 different receptors, OSM receptor (OSMR) and leukemia inhibitory factor receptor (LIFR). Specifically, mouse OSM (mOSM) inhibited sclerostin production in a stromal cell line and in primary murine osteoblast cultures by acting through LIFR. In contrast, when acting through OSMR, mOSM stimulated RANKL production and osteoclast formation. A key role for OSMR in bone turnover was confirmed by the osteopetrotic phenotype of mice lacking OSMR. Furthermore, in contrast to the accepted model, in which mOSM acts only through OSMR, mOSM inhibited sclerostin expression in Osmr–/– osteoblasts and enhanced bone formation in vivo. These data reveal what we believe to be a novel pathway by which bone formation can be stimulated independently of bone resorption and provide new insights into OSMR and LIFR signaling that are relevant to other medical conditions, including cardiovascular and neurodegenerative diseases and cancer. PMID:20051625

  11. A Biodegradable and Proteolipid Bone Repair Composite,

    DTIC Science & Technology

    1983-11-10

    elicited by the proteolipid 24 exceeded that of the control sites. Hollinger suggested that the material estabished a unique chemical environment conducive...that the positive bone healing response engen - dered in experimental animals from the copolymer of PLA and PGA may be a con- sequence of several factors

  12. Leukemia inhibitory factor: a novel bone-active cytokine.

    PubMed

    Reid, L R; Lowe, C; Cornish, J; Skinner, S J; Hilton, D J; Willson, T A; Gearing, D P; Martin, T J

    1990-03-01

    A number of cytokines have been found to be potent regulators of bone resorption and to share the properties originally attributed to osteoclast-activating factor. One such activity, differentiation-inducing factor (DIF, D-factor) from mouse spleen cells, shares a number of biological and biochemical properties with the recently characterized and cloned leukemia inhibitory factor (LIF). We have assessed the effects of recombinant LIF on bone resorption and other parameters in neonatal mouse calvaria. Both recombinant murine and human (h) LIFs stimulated 45Ca release from prelabeled calvaria in a dose-dependent manner. The increase in bone resorption was associated with an increase in the number of osteoclasts per mm2 bone. The osteolytic effect of hLIF were blocked by 10(-7) M indomethacin. hLIF also stimulated incorporation of [3H] thymidine into calvaria, but the dose-response relationship was distinct from that for bone resorption, and this effect was not blocked by indomethacin. Similarly, hLIF increased [3H]phenylalanine incorporation into calvaria, and this was also not inhibited by indomethacin. It is concluded that LIF stimulates bone resorption by a mechanism involving prostaglandin production, but that a distinct mechanism is responsible for its stimulation of DNA and protein synthesis. The primary structure of LIF differs from that of other fully characterized, bone-active cytokines, and it, thus, represents a novel factor which may be involved in the normal regulation of bone cell function.

  13. Comparison of bone-conducted vibration for eliciting ocular vestibular-evoked myogenic potentials: forehead versus mastoid tapping.

    PubMed

    Tseng, Chia-Chen; Wang, Shou-Jen; Young, Yi-Ho

    2012-02-01

    This study compared bone-conducted vibration (BCV) stimuli at forehead (Fz) and mastoid sites for eliciting ocular vestibular-evoked myogenic potentials (oVEMPs). Prospective study. University hospital. Twenty healthy subjects underwent oVEMP testing via BCV stimuli at Fz and mastoid sites. Another 50 patients with unilateral Meniere's disease also underwent oVEMP testing. All healthy subjects showed clear oVEMPs via BCV stimulation regardless of the tapping sites. The right oVEMPs stimulated by tapping at the right mastoid had earlier nI and pI latencies and a larger nI-pI amplitude compared with those stimulated by tapping at the Fz and left mastoid. Similar trends were also observed in left oVEMPs. However, the asymmetry ratio did not differ significantly between the ipsilateral mastoid and Fz sites. Clinically, tapping at the Fz revealed absent oVEMPs in 28% of Meniere's ears, which decreased to 16% when tapping at the ipsilesional (hydropic) mastoid site, exhibiting a significant difference. Tapping at the ipsilateral mastoid site elicits earlier oVEMP latencies and larger oVEMP amplitudes when compared with tapping at the Fz site. Thus, tapping at the Fz site is suggested to screen for the otolithic function, whereas tapping at the ipsilesional mastoid site is suitable for evaluating residual otolithic function.

  14. Environmental Factors Impacting Bone-Relevant Chemokines

    PubMed Central

    Smith, Justin T.; Schneider, Andrew D.; Katchko, Karina M.; Yun, Chawon; Hsu, Erin L.

    2017-01-01

    Chemokines play an important role in normal bone physiology and the pathophysiology of many bone diseases. The recent increased focus on the individual roles of this class of proteins in the context of bone has shown that members of the two major chemokine subfamilies—CC and CXC—support or promote the formation of new bone and the remodeling of existing bone in response to a myriad of stimuli. These chemotactic molecules are crucial in orchestrating appropriate cellular homing, osteoblastogenesis, and osteoclastogenesis during normal bone repair. Bone healing is a complex cascade of carefully regulated processes, including inflammation, progenitor cell recruitment, differentiation, and remodeling. The extensive role of chemokines in these processes and the known links between environmental contaminants and chemokine expression/activity leaves ample opportunity for disruption of bone healing by environmental factors. However, despite increased clinical awareness, the potential impact of many of these environmental factors on bone-related chemokines is still ill defined. A great deal of focus has been placed on environmental exposure to various endocrine disruptors (bisphenol A, phthalate esters, etc.), volatile organic compounds, dioxins, and heavy metals, though mainly in other tissues. Awareness of the impact of other less well-studied bone toxicants, such as fluoride, mold and fungal toxins, asbestos, and chlorine, is also reviewed. In many cases, the literature on these toxins in osteogenic models is lacking. However, research focused on their effects in other tissues and cell lines provides clues for where future resources could be best utilized. This review aims to serve as a current and exhaustive resource detailing the known links between several classes of high-interest environmental pollutants and their interaction with the chemokines relevant to bone healing. PMID:28261155

  15. [Bone mineral density, biochemical bone turnover markers and factors associated with bone health in young Korean women].

    PubMed

    Park, Young Joo; Lee, Sook Ja; Shin, Nah Mee; Shin, Hyunjeong; Kim, Yoo Kyung; Cho, Yunjung; Jeon, Songi; Cho, Inhae

    2014-10-01

    This study was done to assess the bone mineral density (BMD), biochemical bone turnover markers (BTMs), and factors associated with bone health in young Korean women. Participants were 1,298 women, ages 18-29, recruited in Korea. Measurements were BMD by calcaneus quantitative ultrasound, BTMs for Calcium, Phosphorus, Osteocalcin, and C-telopeptide cross-links (CTX), body composition by physical measurements, nutrients by food frequency questionnaire and psychosocial factors associated with bone health by self-report. The mean BMD (Z-score) was -0.94. 8.7% women had lower BMD (Z-score≤-2) and 14.3% women had higher BMD (Z-score≥0) than women of same age. BTMs were not significantly different between high-BMD (Z-score≥0) and low-BMD (Z-score<0) women. However, Osteocalcin and CTX were higher in women preferring caffeine intake, sedentary lifestyle and alcoholic drinks. Body composition and Calcium intake were significantly higher in high-BMD. Low-BMD women reported significantly higher susceptibility and barriers to exercise in health beliefs, lower bone health self-efficacy and promoting behaviors. Results of this study indicate that bone health of young Korean women is not good. Development of diverse strategies to intervene in factors such as exercise, nutrients, self-efficacy, health beliefs and behaviors, shown to be important, are needed to improve bone health.

  16. Eliciting Cervical Vestibular-Evoked Myogenic Potentials by Bone-Conducted Vibration via Various Tapping Sites.

    PubMed

    Tseng, Chia-Chen; Young, Yi-Ho

    2016-01-01

    This study compared bone-conducted vibration (BCV) cervical vestibular-evoked myogenic potentials (cVEMPs) via tapping at various skull sites in healthy subjects and patients with vestibular migraine (VM) to optimize stimulation conditions. Twenty healthy subjects underwent a series of cVEMP tests by BCV tapping via a minishaker at the Fz (forehead), Cz (vertex), and inion (occiput) sites in a randomized order of tapping sites. Another 20 VM patients were also enrolled in this study for comparison. All 20 healthy subjects had clear BCV cVEMPs when tapping at the inion (100%) or Cz (100%), but not at the Fz (75%). Mean p13 and n23 latencies from the Cz tapping were significantly longer than those from the Fz tapping, but not longer than those from the inion tapping. Unlike healthy subjects, tapping at the Cz (95%) elicited a significantly higher response rate of present cVEMPs than tapping at the inion (78%) in 20 VM patients (40 ears), because seven of nine VM ears with absent cVEMPs by inion tapping turned out to be present cVEMPs by Cz tapping. While both inion and Cz tapping elicited 100% response rate of cVEMPs for healthy individuals, Cz tapping had a higher response rate of cVEMPs than inion tapping for the VM group. In cases of total loss of saccular function, cVEMPs could not be activated by either inion or Cz tapping. However, if residual saccular function remains, Cz tapping may activate saccular afferents more efficiently than inion tapping.

  17. Bed Rest and Immobilization: Risk Factors for Bone Loss

    MedlinePlus

    ... Loss Bed Rest and Immobilization: Risk Factors for Bone Loss Like muscle, bone is living tissue that ... bones adjust to the state of weightlessness. Maintaining Bone Health In general, healthy people who undergo prolonged ...

  18. Synergistic Effects of Vascular Endothelial Growth Factor on Bone Morphogenetic Proteins Induced Bone Formation In Vivo: Influencing Factors and Future Research Directions

    PubMed Central

    Li, Bo; Wang, Hai; Qiu, Guixing; Su, Xinlin

    2016-01-01

    Vascular endothelial growth factor (VEGF) and bone morphogenetic proteins (BMPs), as key mediators in angiogenesis and osteogenesis, are used in a combined delivery manner as a novel strategy in bone tissue engineering. VEGF has the potential to enhance BMPs induced bone formation. Both gene delivery and material-based delivery systems were incorporated in previous studies to investigate the synergistic effects of VEGF and BMPs. However, their results were controversial due to variation of methods incorporated in different studies. Factors influencing the synergistic effects of VEGF on BMPs induced bone formation were identified and analyzed in this review to reduce confusion on this issue. The potential mechanisms and directions of future studies were also proposed here. Further investigating mechanisms of the synergistic effects and optimizing these influencing factors will help to generate more effective bone regeneration. PMID:28070506

  19. Impact and risk factors of post-stroke bone fracture

    PubMed Central

    Huo, Kang; Hashim, Syed I; Yong, Kimberley L Y; Su, Hua; Qu, Qiu-Min

    2016-01-01

    Bone fracture occurs in stroke patients at different times during the recovery phase, prolonging recovery time and increasing medical costs. In this review, we discuss the potential risk factors for post-stroke bone fracture and preventive methods. Most post-stroke bone fractures occur in the lower extremities, indicating fragile bones are a risk factor. Motor changes, including posture, mobility, and balance post-stroke contribute to bone loss and thus increase risk of bone fracture. Bone mineral density is a useful indicator for bone resorption, useful to identify patients at risk of post-stroke bone fracture. Calcium supplementation was previously regarded as a useful treatment during physical rehabilitation. However, recent data suggests calcium supplementation has a negative impact on atherosclerotic conditions. Vitamin D intake may prevent osteoporosis and fractures in patients with stroke. Although drugs such as teriparatide show some benefits in preventing osteoporosis, additional clinical trials are needed to determine the most effective conditions for post-stroke applications. PMID:26929915

  20. LinkIT: a ludic elicitation game for eliciting risk perceptions.

    PubMed

    Cao, Yan; McGill, William L

    2013-06-01

    The mental models approach, a leading strategy to develop risk communications, involves a time- and labor-intensive interview process and a lengthy questionnaire to elicit group-level risk perceptions. We propose that a similarity ratings approach for structural knowledge elicitation can be adopted to assist the risk mental models approach. The LinkIT game, inspired by games with a purpose (GWAP) technology, is a ludic elicitation tool designed to elicit group understanding of the relations between risk factors in a more enjoyable and productive manner when compared to traditional approaches. That is, consistent with the idea of ludic elicitation, LinkIT was designed to make the elicitation process fun and enjoyable in the hopes of increasing participation and data quality in risk studies. Like the mental models approach, the group mental model obtained via the LinkIT game can hence be generated and represented in a form of influence diagrams. In order to examine the external validity of LinkIT, we conducted a study to compare its performance with respect to a more conventional questionnaire-driven approach. Data analysis results conclude that the two group mental models elicited from the two approaches are similar to an extent. Yet, LinkIT was more productive and enjoyable than the questionnaire. However, participants commented that the current game has some usability concerns. This presentation summarizes the design and evaluation of the LinkIT game and suggests areas for future work. © 2012 Society for Risk Analysis.

  1. Lactoferrin – A Novel Bone Growth Factor

    PubMed Central

    Naot, Dorit; Grey, Andrew; Reid, Ian R; Cornish, Jillian

    2005-01-01

    Lactoferrin is an iron-binding glycoprotein that belongs to the transferrin family. It is present in breast milk, in epithelial secretions, and in the secondary granules of neutrophils. In healthy subjects lactoferrin circulates at concentrations of 2–7 x 10−6 g/ml. Lactoferrin is a pleiotropic factor with potent antimicrobial and immunomodulatory activities. Recently, we have shown that lactoferrin can also promote bone growth. At physiological concentrations, lactoferrin potently stimulates the proliferation and differentiation of primary osteoblasts and also acts as a survival factor inhibiting apoptosis induced by serum withdrawal. Lactoferrin also affects osteoclast formation and, in murine bone marrow culture, lactoferrin potently inhibits osteoclastogenesis. In vivo, local injection of lactoferrin above the hemicalvaria of adult mice results in substantial increases in the dynamic histomorphometric indices of bone formation and bone area. The mitogenic effect of lactoferrin in osteoblast-like cells is mediated mainly through LRP1, a member of the family of low-density lipoprotein receptor-related proteins that are primarily known as endocytic receptors. Using confocal laser scanning microscopy, we demonstrated that fluorescently labeled lactoferrin is endocytosed and can be visualized in the cytoplasm of primary osteoblastic cells. Lactoferrin also induces activation of p42/44 MAPK signaling in primary osteoblasts, but the two pathways seem to operate independently as activation of MAPK signaling, but not endocytosis, is necessary for the mitogenic effect of lactoferrin. We conclude that lactoferrin may have a physiological role in bone growth and healing, and a potential therapeutic role as an anabolic factor in osteoporosis. PMID:16012127

  2. Spatial regulation of controlled bioactive factor delivery for bone tissue engineering

    PubMed Central

    Samorezov, Julia E.; Alsberg, Eben

    2015-01-01

    Limitations of current treatment options for critical size bone defects create a significant clinical need for tissue engineered bone strategies. This review describes how control over the spatiotemporal delivery of growth factors, nucleic acids, and drugs and small molecules may aid in recapitulating signals present in bone development and healing, regenerating interfaces of bone with other connective tissues, and enhancing vascularization of tissue engineered bone. State-of-the-art technologies used to create spatially controlled patterns of bioactive factors on the surfaces of materials, to build up 3D materials with patterns of signal presentation within their bulk, and to pattern bioactive factor delivery after scaffold fabrication are presented, highlighting their applications in bone tissue engineering. As these techniques improve in areas such as spatial resolution and speed of patterning, they will continue to grow in value as model systems for understanding cell responses to spatially regulated bioactive factor signal presentation in vitro, and as strategies to investigate the capacity of the defined spatial arrangement of these signals to drive bone regeneration in vivo. PMID:25445719

  3. Regulatory mechanism of food factors in bone metabolism and prevention of osteoporosis.

    PubMed

    Yamaguchi, Masayoshi

    2006-11-01

    Aging induces a decrease in bone mass, and osteoporosis with its accompanying decrease in bone mass is widely recognized as a major public health problem. Bone loss with increasing age may be due to decreased bone formation and increased bone resorption. Pharmacologic and nutritional factors may prevent bone loss with aging, although chemical compounds in food and plants which act on bone metabolism are poorly understood. We have found that isoflavones (including genistein and daidzein), which are contained in soybeans, have a stimulatory effect on osteoblastic bone formation and an inhibitory effect on osteoclastic bone resorption, thereby increasing bone mass. Menaquinone-7, an analogue of vitamin K(2) which is abundant in fermented soybeans, has been demonstrated to stimulate osteoblastic bone formation and to inhibit osteoclastic bone resorption. Of various carotenoids, beta-cryptoxanthin, which is abundant in Satsuma mandarin (Citrus unchiu MARC), has a stimulatory effect on osteoblastic bone formation and an inhibitory effect on osteoclastic bone resorption. The supplementation of these factors has a preventive effect on bone loss induced by ovariectomy in rats, which are an animal model of osteoporosis, and their intake has been shown to have a stimulatory effect on bone mass in humans. Factors with an anabolic effect on bone metabolism were found in extracts obtained from wasabi leafstalk (Wasabi japonica MATSUM), the marine alga Sargassum horneri, and bee pollen Cistus ladaniferus. Phytocomponent p-hydroxycinnamic acid was also found to have an anabolic effect on bone metabolism. Food chemical factors thus play a role in bone health and may be important in the prevention of bone loss with increasing age.

  4. Differential growth factor control of bone formation through osteoprogenitor differentiation.

    PubMed

    Chaudhary, L R; Hofmeister, A M; Hruska, K A

    2004-03-01

    The osteogenic factors bone morphogenetic protein (BMP-7), platelet-derived growth factor (PDGF)-BB, and fibroblast growth factor (FGF-2) regulate the recruitment of osteoprogenitor cells and their proliferation and differentiation into mature osteoblasts. However, their mechanisms of action on osteoprogenitor cell growth, differentiation, and bone mineralization remain unclear. Here, we tested the hypothesis that these osteogenic agents were capable of regulating osteoblast differentiation and bone formation in vitro. Normal human bone marrow stromal (HBMS) cells were treated with BMP-7 (40 ng ml(-1)), PDGF-BB (20 ng ml(-1)), FGF-2 (20 ng ml(-1)), or FGF-2 plus BMP-7 for 28 days in a serum-containing medium with 10 mM beta-glycerophosphate and 50 microg ml(-1) ascorbic acid. BMP-7 stimulated a morphological change to cuboidal-shaped cells, increased alkaline phosphatase (ALKP) activity, bone sialoprotein (BSP) gene expression, and alizarin red S positive nodule formation. Hydroxyapatite (HA) crystal deposition in the nodules was demonstrated by Fourier transform infrared (FTIR) spectroscopy only in BMP-7- and dexamethasone (DEX)-treated cells. DEX-treated cells appeared elongated and fibroblast-like compared to BMP-7-treated cells. FGF-2 did not stimulate ALKP, and cell morphology was dystrophic. PDGF-BB had little or no effect on ALKP activity and biomineralization. Alizarin Red S staining of cells and calcium assay indicated that BMP-7, DEX, and FGF-2 enhanced calcium mineral deposition, but FTIR spectroscopic analysis demonstrated no formation of HA similar to human bone in control, PDGF-BB-, and FGF-2-treated samples. Thus, FGF-2 stimulated amorphous octacalcium phosphate mineral deposition that failed to mature into HA. Interestingly, FGF-2 abrogated BMP-7-induced ALKP activity and HA formation. Results demonstrate that BMP-7 was competent as a sole factor in the differentiation of human bone marrow stromal cells to bone-forming osteoblasts confirmed by FTIR

  5. The roles of vascular endothelial growth factor in bone repair and regeneration

    PubMed Central

    Hu, Kai; Olsen, Bjorn R.

    2016-01-01

    Vascular endothelial growth factor-A (VEGF) is one of the most important growth factors for regulation of vascular development and angiogenesis. Since bone is a highly vascularized organ and angiogenesis plays an important role in osteogenesis, VEGF also influences skeletal development and postnatal bone repair. Compromised bone repair and regeneration in many patients can be attributed to impaired blood supply; thus, modulation of VEGF levels in bones represents a potential strategy for treating compromised bone repair and improving bone regeneration. This review (i) summarizes the roles of VEGF at different stages of bone repair, including the phases of inflammation, endochondral ossification, intramembranous ossification during callus formation and bone remodeling; (ii) discusses different mechanisms underlying the effects of VEGF on osteoblast function, including paracrine, autocrine and intracrine signaling during bone repair; (iii) summarizes the role of VEGF in the bone regenerative procedure, distraction osteogenesis; and (iv) reviews evidence for the effects of VEGF in the context of repair and regeneration techniques involving the use of scaffolds, skeletal stem cells and growth factors. PMID:27353702

  6. Prediction and Informative Risk Factor Selection of Bone Diseases.

    PubMed

    Li, Hui; Li, Xiaoyi; Ramanathan, Murali; Zhang, Aidong

    2015-01-01

    With the booming of healthcare industry and the overwhelming amount of electronic health records (EHRs) shared by healthcare institutions and practitioners, we take advantage of EHR data to develop an effective disease risk management model that not only models the progression of the disease, but also predicts the risk of the disease for early disease control or prevention. Existing models for answering these questions usually fall into two categories: the expert knowledge based model or the handcrafted feature set based model. To fully utilize the whole EHR data, we will build a framework to construct an integrated representation of features from all available risk factors in the EHR data and use these integrated features to effectively predict osteoporosis and bone fractures. We will also develop a framework for informative risk factor selection of bone diseases. A pair of models for two contrast cohorts (e.g., diseased patients versus non-diseased patients) will be established to discriminate their characteristics and find the most informative risk factors. Several empirical results on a real bone disease data set show that the proposed framework can successfully predict bone diseases and select informative risk factors that are beneficial and useful to guide clinical decisions.

  7. Demineralized bone matrix fibers formable as general and custom 3D printed mold-based implants for promoting bone regeneration.

    PubMed

    Rodriguez, Rudy U; Kemper, Nathan; Breathwaite, Erick; Dutta, Sucharita M; Hsu, Erin L; Hsu, Wellington K; Francis, Michael P

    2016-07-26

    Bone repair frequently requires time-consuming implant construction, particularly when using un-formed implants with poor handling properties. We therefore developed osteoinductive, micro-fibrous surface patterned demineralized bone matrix (DBM) fibers for engineering both defect-matched and general three-dimensional implants. Implant molds were filled with demineralized human cortical bone fibers there were compressed and lyophilized, forming mechanically strong shaped DBM scaffolds. Enzyme linked immunosorbent assays and mass spectrometry confirmed that DBM fibers contained abundant osteogenic growth factors (bone morphogenetic proteins, insulin-like growth factor-I) and extracellular matrix proteins. Mercury porosimetry and mechanical testing showed interconnected pores within the mechanically stable, custom DBM fiber scaffolds. Mesenchymal stem cells readily attached to the DBM and showed increasing metabolic activity over time. DBM fibers further increased alkaline phosphatase activity in C2C12 cells. In vivo, DBM implants elicited osteoinductive potential in a mouse muscle pouch, and also promoted spine fusion in a rat arthrodesis model. DBM fibers can be engineered into custom-shaped, osteoinductive and osteoconductive implants with potential for repairing osseous defects with precise fitment, potentially reducing operating time. By providing pre-formed and custom implants, this regenerative allograft may improve patient outcomes following surgical bone repair, while further advancing personalized orthopedic and craniomaxillofacial medicine using three-dimensional-printed tissue molds.

  8. The use of autologous blood-derived growth factors in bone regeneration

    PubMed Central

    Civinini, Roberto; Macera, Armando; Nistri, Lorenzo; Redl, Birgit; Innocenti, Massimo

    2011-01-01

    Platelet-rich plasma (PRP) is defined as a portion of the plasma fraction of autologous blood having platelet concentrations above baseline. When activated the platelets release growth factors that play an essential role in bone healing such as Platelet-derived Growth Factor, Transforming Growth Factor-β, Vascular Endothelial Growth Factor and others. Multiple basic science and in vivo animal studies agree that PRP has a role in the stimulation of the healing cascade in ligament, tendon, muscle cartilage and in bone regeneration in the last years PRP had a widespread diffusion in the treatment of soft tissue and bone healing. The purpose of this review is to describe the biological properties of platelets and its factors, the methods used for producing PRP, to provide a background on the underlying basic science and an overview of evidence based medicine on clinical application of PRP in bone healing. PMID:22461800

  9. A composite demineralized bone matrix--self assembling peptide scaffold for enhancing cell and growth factor activity in bone marrow.

    PubMed

    Hou, Tianyong; Li, Zhiqiang; Luo, Fei; Xie, Zhao; Wu, Xuehui; Xing, Junchao; Dong, Shiwu; Xu, Jianzhong

    2014-07-01

    The need for suitable bone grafts is high; however, there are limitations to all current graft sources, such as limited availability, the invasive harvest procedure, insufficient osteoinductive properties, poor biocompatibility, ethical problems, and degradation properties. The lack of osteoinductive properties is a common problem. As an allogenic bone graft, demineralized bone matrix (DBM) can overcome issues such as limited sources and comorbidities caused by invasive harvest; however, DBM is not sufficiently osteoinductive. Bone marrow has been known to magnify osteoinductive components for bone reconstruction because it contains osteogenic cells and factors. Mesenchymal stem cells (MSCs) derived from bone marrow are the gold standard for cell seeding in tissue-engineered biomaterials for bone repair, and these cells have demonstrated beneficial effects. However, the associated high cost and the complicated procedures limit the use of tissue-engineered bone constructs. To easily enrich more osteogenic cells and factors to DBM by selective cell retention technology, DBM is modified by a nanoscale self-assembling peptide (SAP) to form a composite DBM/SAP scaffold. By decreasing the pore size and increasing the charge interaction, DBM/SAP scaffolds possess a much higher enriching yield for osteogenic cells and factors compared with DBM alone scaffolds. At the same time, SAP can build a cellular microenvironment for cell adhesion, proliferation, and differentiation that promotes bone reconstruction. As a result, a suitable bone graft fabricated by DBM/SAP scaffolds and bone marrow represents a new strategy and product for bone transplantation in the clinic. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. The role of whole-body bone scanning and clinical factors in detecting bone metastases in patients with non-small cell lung cancer.

    PubMed

    Erturan, Serdar; Yaman, Mustafa; Aydin, Günay; Uzel, Isil; Müsellim, Benan; Kaynak, Kamil

    2005-02-01

    Correct detection of bone metastases in patients with non-small cell lung cancer (NSCLC) is crucial for prognosis and selection of an appropriate treatment regimen. The aim of this study was to investigate the role of whole-body bone scanning (WBBS) and clinical factors in detecting bone metastases in NSCLC. One hundred twenty-five patients with a diagnosis made between 1998 and 2002 were recruited (squamous cell carcinoma, 54.4%; adenocarcinoma, 32.8%; non-small cell carcinoma, 8.8%; large cell carcinoma, 4%). Clinical factors suggesting bone metastasis (skeletal pain, elevated alkaline phosphatase, hypercalcemia) were evaluated. WBBS was performed in all patients, and additional MRI was ordered in 10 patients because of discordance between clinical factors and WBBS findings. Bone metastases were detected in 53% (n = 21) of 39 clinical factor-positive patients, 5.8% (n = 5) of 86 clinical factor-negative patients, and 20.8% of total patients. The existence of bone-specific clinical factors as indicators of metastasis presented 53.8% positive predictive value (PPV), 94.2% negative predictive value (NPV), and 81.6% accuracy. However, the findings of WBBS showed 73.5% PPV, 97.8% NPV, and 91.2% accuracy. Adenocarcinoma was the most common cell type found in patients with bone metastasis (39%). The routine bone scanning prevented two futile thoracotomies (8%) in 25 patients with apparently operable lung cancer. In spite of the high NPV of the bone-specific clinical factors and the high value obtained in the false-positive findings in the bone scan, the present study indicates that in patients for whom surgical therapy is an option, preoperative staging using WBBS can be helpful to avoid misstaging due to asymptomatic bone metastases.

  11. Prebiotics and Bone.

    PubMed

    Whisner, Corrie M; Weaver, Connie M

    2017-01-01

    Recent advancements in food science have resulted in the extraction and synthesis of novel dietary fibers or prebiotics. Subsequently, great interest has emerged in developing strategies to improve metabolic conditions like osteoporosis by modulating the intestinal microbiome with fiber. Prebiotics have been shown to increase calcium absorption in the lower gut of both animals and humans as well as improve measures of bone mineral density and strength in rodent models. Fewer data are available in humans, but data from growing children and postmenopausal women suggest that prebiotics have both short- and long-term effects that beneficially affect bone turnover and mineral accretion in the skeleton. Currently, the exact mechanism by which these products elicit their effects on bone is poorly understood, but emerging data suggest that the gut microbiota may be involved in one or more direct and indirect pathways. The most well-accepted mechanism is through microbial fermentation of prebiotics which results in the production of short-chain fatty acids and a concomitant decrease in pH which increases the bioavailability of calcium in the colon. While other mechanisms may be eliciting a prebiotic effect on bone, the current data suggest that novel dietary fibers may be an affordable and effective method of maximizing mineral accretion in growing children and preventing bone loss in later years when osteoporosis is a greater risk. This chapter will discuss the dynamic role of prebiotics in bone health by discussing the current state of the art, addressing gaps in knowledge and their role in public health.

  12. Minimally invasive esthetic ridge preservation with growth-factor enhanced bone matrix.

    PubMed

    Nevins, Marc L; Said, Sherif

    2017-12-28

    Extraction socket preservation procedures are critical to successful esthetic implant therapy. Conventional surgical approaches are technique sensitive and often result in alteration of the soft tissue architecture, which then requires additional corrective surgical procedures. This case series report presents the ability of flapless surgical techniques combined with a growth factor-enhanced bone matrix to provide esthetic ridge preservation at the time of extraction for compromised sockets. When considering esthetic dental implant therapy, preservation, or further enhancement of the available tissue support at the time of tooth extraction may provide an improved esthetic outcome with reduced postoperative sequelae and decreased treatment duration. Advances in minimally invasive surgical techniques combined with recombinant growth factor technology offer an alternative for bone reconstruction while maintaining the gingival architecture for enhanced esthetic outcome. The combination of freeze-dried bone allograft (FDBA) and rhPDGF-BB (platelet-derived growth factor-BB) provides a growth-factor enhanced matrix to induce bone and soft tissue healing. The use of a growth-factor enhanced matrix is an option for minimally invasive ridge preservation procedures for sites with advanced bone loss. Further studies including randomized clinical trials are needed to better understand the extent and limits of these procedures. The use of minimally invasive techniques with growth factors for esthetic ridge preservation reduces patient morbidity associated with more invasive approaches and increases the predictability for enhanced patient outcomes. By reducing the need for autogenous bone grafts the use of this technology is favorable for patient acceptance and ease of treatment process for esthetic dental implant therapy. © 2017 Wiley Periodicals, Inc.

  13. Bone Factors Regulating the Osteotropism of Metastatic Breast Cancer

    DTIC Science & Technology

    1998-10-01

    growth factors and rapid angiogenesis occurs in the immediate vicinity of an active osteoclast. 4,5 Osteoblast-derived bone sialoprotein (BSP...Cells Antigenic Marker Cells Cultured Alone Cells Co-Cultured (2d) MCF-7 MC3T3 MCF-7 MC3T3 human cytokeratin-+ -1 bone sialoprotein (BSP...proteins. Osteonectin, osteopontin and bone sialoprotein have been studied in a series of human breast cancers. 3,15-3 0 Immunohistochemical evaluation

  14. Dietary factors during early life program bone formation in female rats

    USDA-ARS?s Scientific Manuscript database

    Nutritional status during intrauterine and early postnatal life impacts the risk of chronic diseases; however, evidence for an association between early life dietary factors and bone health in adults is limited. Soy protein isolate (SPI) may be one such dietary factor that promotes bone accretion du...

  15. Clinical factors affecting pathological fracture and healing of unicameral bone cysts

    PubMed Central

    2014-01-01

    Background Unicameral bone cyst (UBC) is the most common benign lytic bone lesion seen in children. The aim of this study is to investigate clinical factors affecting pathological fracture and healing of UBC. Methods We retrospectively reviewed 155 UBC patients who consulted Nagoya musculoskeletal oncology group hospitals in Japan. Sixty of the 155 patients had pathological fracture at presentation. Of 141 patients with follow-up periods exceeding 6 months, 77 were followed conservatively and 64 treated by surgery. Results The fracture risk was significantly higher in the humerus than other bones. In multivariate analysis, ballooning of bone, cyst in long bone, male sex, thin cortical thickness and multilocular cyst were significant adverse prognostic factors for pathological fractures at presentation. The healing rates were 30% and 83% with observation and surgery, respectively. Multivariate analysis revealed that fracture at presentation and history of biopsy were good prognostic factors for healing of UBC in patients under observation. Conclusion The present results suggest that mechanical disruption of UBC such as fracture and biopsy promotes healing, and thus watchful waiting is indicated in these patients, whereas patients with poor prognostic factors for fractures should be considered for surgery. PMID:24884661

  16. Clinical factors affecting pathological fracture and healing of unicameral bone cysts.

    PubMed

    Urakawa, Hiroshi; Tsukushi, Satoshi; Hosono, Kozo; Sugiura, Hideshi; Yamada, Kenji; Yamada, Yoshihisa; Kozawa, Eiji; Arai, Eisuke; Futamura, Naohisa; Ishiguro, Naoki; Nishida, Yoshihiro

    2014-05-17

    Unicameral bone cyst (UBC) is the most common benign lytic bone lesion seen in children. The aim of this study is to investigate clinical factors affecting pathological fracture and healing of UBC. We retrospectively reviewed 155 UBC patients who consulted Nagoya musculoskeletal oncology group hospitals in Japan. Sixty of the 155 patients had pathological fracture at presentation. Of 141 patients with follow-up periods exceeding 6 months, 77 were followed conservatively and 64 treated by surgery. The fracture risk was significantly higher in the humerus than other bones. In multivariate analysis, ballooning of bone, cyst in long bone, male sex, thin cortical thickness and multilocular cyst were significant adverse prognostic factors for pathological fractures at presentation. The healing rates were 30% and 83% with observation and surgery, respectively. Multivariate analysis revealed that fracture at presentation and history of biopsy were good prognostic factors for healing of UBC in patients under observation. The present results suggest that mechanical disruption of UBC such as fracture and biopsy promotes healing, and thus watchful waiting is indicated in these patients, whereas patients with poor prognostic factors for fractures should be considered for surgery.

  17. Soluble factor(s) from bone marrow cells can rescue lethally irradiated mice by protecting endogenous hematopoietic stem cells.

    PubMed

    Zhao, Yi; Zhan, Yuxia; Burke, Kathleen A; Anderson, W French

    2005-04-01

    Ionizing radiation-induced myeloablation can be rescued via bone marrow transplantation (BMT) or administration of cytokines if given within 2 hours after radiation exposure. There is no evidence for the existence of soluble factors that can rescue an animal after a lethal dose of radiation when administered several hours postradiation. We established a system that could test the possibility for the existence of soluble factors that could be used more than 2 hours postirradiation to rescue animals. Animals with an implanted TheraCyte immunoisolation device (TID) received lethal-dose radiation and then normal bone marrow Lin- cells were loaded into the device (thereby preventing direct interaction between donor and recipient cells). Animal survival was evaluated and stem cell activity was tested with secondary bone marrow transplantation and flow cytometry analysis. Donor cell gene expression of five antiapoptotic cytokines was examined. Bone marrow Lin- cells rescued lethally irradiated animals via soluble factor(s). Bone marrow cells from the rescued animals can rescue and repopulate secondary lethally irradiated animals. Within the first 6 hours post-lethal-dose radiation, there is no significant change of gene expression of the known radioprotective factors TPO, SCF, IL-3, Flt-3 ligand, and SDF-1. Hematopoietic stem cells can be protected in lethally irradiated animals by soluble factors produced by bone marrow Lin- cells.

  18. Impact of skeletal unloading on bone formation: Role of systemic and local factors

    NASA Astrophysics Data System (ADS)

    Bikle, Daniel D.; Halloran, Bernard P.; Morey-Holton, Emily

    We have developed a model of skeletal unloading using growing rats whose hindlimbs are unweighted by tail suspension. The bones in the hindlimbs undergo a transient cessation of bone growth; when reloaded bone formation is accelerated until bone mass is restored. These changes do not occur in the normally loaded bones of the forelimbs. Associated with the fall in bone formation is a fall in 1,25(OH) 2D 3 production and osteocalcin levels. In contrast, no changes in parathyroid hormone, calcium, or corticosterone levels are seen. To examine the role of locally produced growth factors, we have measured the mRNA and protein levels of insulin like growth factor-1 (IGF-1) in bone during tail suspension. Surprisingly, both the mRNA and protein levels of IGF-1 increase during tail suspension as bone formation is reduced. Furthermore, the bones in the hindlimbs of the suspended animals develop a resistance to the growth promoting effects of both growth hormone and IGF-1 when given parenterally. Thus, the cessation of bone growth with skeletal unloading is apparently associated with a resistance to rather than failure to produce local growth factors. The cause of this resistance remains under active investigation.

  19. Hepatocyte growth factor improves bone regeneration via the bone morphogenetic protein‑2‑mediated NF‑κB signaling pathway.

    PubMed

    Zhen, Ruixin; Yang, Jianing; Wang, Yu; Li, Yubo; Chen, Bin; Song, Youxin; Ma, Guiyun; Yang, Bo

    2018-04-01

    Bone regeneration is an important process associated with the treatment of osteonecrosis, which is caused by various factors. Hepatocyte growth factor (HGF) is an active biological factor that has multifunctional roles in cell biology, life sciences and clinical medicine. It has previously been suggested that bone morphogenetic protein (BMP)‑2 exerts beneficial roles in bone formation, repair and angiogenesis in the femoral head. The present study aimed to investigate the benefits and molecular mechanisms of HGF in bone regeneration. The viability of osteoblasts and osteoclasts were studied in vitro. In addition, the expression levels of tumor necrosis factor (TNF)‑α, monocyte chemotactic protein (MCP)‑1, interleukin (IL)‑1 and IL‑6 were detected in a mouse fracture model following treatment with HGF. The expression and activity of nuclear factor (NF)‑κB were also analyzed in osteocytes post‑treatment with HGF. Histological analysis was used to determine the therapeutic effects of HGF on mice with fractures. The migration and differentiation of osteoblasts and osteoclasts were investigated in HGF‑incubated cells. Furthermore, angiogenesis and BMP‑2 expression were analyzed in the mouse fracture model post‑treatment with HGF. The results indicated that HGF regulates the cell viability of osteoblasts and osteoclasts, and also balanced the ratio between osteoblasts and osteoclasts. In addition, HGF decreased the serum expression levels of TNF‑α, MCP‑1, IL‑1 and IL‑6 in experimental mice. The results of a mechanistic analysis demonstrated that HGF upregulated p65, IκB kinase‑β and IκBα expression in osteoblasts from experimental mice. In addition, the expression levels of vascular endothelial growth factor, BMP‑2 receptor, receptor activator of NF‑κB ligand and macrophage colony‑stimulating factor were upregulated by HGF, which may effectively promote blood vessel regeneration, and contribute to the formation and

  20. Bone mineral density before and after OLT: long-term follow-up and predictive factors.

    PubMed

    Guichelaar, Maureen M J; Kendall, Rebecca; Malinchoc, Michael; Hay, J Eileen

    2006-09-01

    Fracturing after liver transplantation (OLT) occurs due to the combination of preexisting low bone mineral density (BMD) and early posttransplant bone loss, the risk factors for which are poorly defined. The prevalence and predictive factors for hepatic osteopenia and osteoporosis, posttransplant bone loss, and subsequent bone gain were studied by the long-term posttransplant follow-up of 360 consecutive adult patients with end-stage primary biliary cirrhosis (PBC) and primary sclerosing cholangitis (PSC). Only 20% of patients with advanced PBC or PSC have normal bone mass. Risk factors for low spinal BMD are low body mass index, older age, postmenopausal status, muscle wasting, high alkaline phosphatase and low serum albumin. A high rate of spinal bone loss occurred in the first 4 posttransplant months (annual rate of 16%) especially in those with younger age, PSC, higher pretransplant bone density, no inflammatory bowel disease, shorter duration of liver disease, current smoking, and ongoing cholestasis at 4 months. Factors favoring spinal bone gain from 4 to 24 months after transplantation were lower baseline and/or 4-month bone density, premenopausal status, lower cumulative glucocorticoids, no ongoing cholestasis, and higher levels of vitamin D and parathyroid hormone. Bone mass therefore improves most in patients with lowest pretransplant BMD who undergo successful transplantation with normal hepatic function and improved gonadal and nutritional status. Patients transplanted most recently have improved bone mass before OLT, and although bone loss still occurs early after OLT, these patients also have a greater recovery in BMD over the years following OLT.

  1. Preclinical and clinical studies on the use of growth factors for bone repair: a systematic review.

    PubMed

    Fisher, Daniel Mark; Wong, James Min-Leong; Crowley, Conor; Khan, Wasim S

    2013-05-01

    Bone healing is a complex process. Whilst the majority of fractures heal with conventional treatment, open fractures, large bone defects and non unions still provide great challenges to Orthopaedic Surgeons. Whilst autologous bone graft is seen as the gold standard, the use of growth factors is a growing area of research to find an effective alternative with lower side effects such as donor site morbidity and the finite amount available. This systematic review aims to summarize the pre clinical in-vivo studies and examine the clinical studies on the use of growth factors in bone healing. Databases: PubMed, Medline, OVID, and Cochrane library. The following key words and search terms were used: Growth Factors, Bone Healing, Bone Morphogenic Protein, Transforming Growth Factor Beta, Insulin Like Growth Factor, Platelet Derived Growth Factor, Fracture. All articles were screened based on title with abstracts and full text articles reviewed as appropriate. Reference lists were reviewed from relevant articles to ensure comprehensive and systematic review. Three tables of studies were constructed focussing on Bone Morphogenic Proteins, Platelet Rich Plasma and Growth Factors and Tissue Engineering. Bone Morphogenic Proteins and Platelet Rich Plasma, which contains multiple growth factors, have been shown in preclinical and clinical trials to be an effective alternative to autologous bone graft. Bone Morphogenic Proteins have been shown to be effective in fracture non union, and in open tibial fractures. Platelet Rich Plasma has shown promise in preclinical trials and some small clinical trials, however numbers are limited. Bone Morphogenic Proteins have been shown to be superior to Platelet Rich Protein in one trial. Combining these growth factors with tissue engineering techniques is the focus of ongoing research, and through further clinical trials the most effective techniques for enhancing bone healing will be revealed.

  2. Strategies for Controlled Delivery of Growth Factors and Cells for Bone Regeneration

    PubMed Central

    Vo, Tiffany N.; Kasper, F. Kurtis; Mikos, Antonios G.

    2012-01-01

    The controlled delivery of growth factors and cells within biomaterial carriers can enhance and accelerate functional bone formation. The carrier system can be designed with preprogrammed release kinetics to deliver bioactive molecules in a localized, spatiotemporal manner most similar to the natural wound healing process. The carrier can also act as an extracellular matrix-mimicking substrate for promoting osteoprogenitor cellular infiltration and proliferation for integrative tissue repair. This review discusses the role of various regenerative factors involved in bone healing and their appropriate combinations with different delivery systems for augmenting bone regeneration. The general requirements of protein, cell and gene therapy are described, with elaboration on how the selection of materials, configurations and processing affects growth factor and cell delivery and regenerative efficacy in both in vitro and in vivo applications for bone tissue engineering. PMID:22342771

  3. Mechanical Factors and Bone Health: Effects of Weightlessness and Neurologic Injury

    PubMed Central

    Amin, Shreyasee

    2014-01-01

    Bone is a dynamic tissue with homeostasis governed by many factors. Among them, mechanical stimuli appear to be particularly critical for bone structure and strength. With removal of mechanical stimuli, a profound bone loss occurs, as best observed in the extreme examples following exposure to space flight or neurologic impairment. This review provides an overview of the changes in bone density and structure that occur during and after space flight as well as following neurologic injury from stroke and spinal cord injury. It also discusses the potential mechanisms through which mechanical stimuli are postulated to act on bone tissue. PMID:20425519

  4. Mesoporous bioactive glasses: structure characteristics, drug/growth factor delivery and bone regeneration application

    PubMed Central

    Wu, Chengtie; Chang, Jiang

    2012-01-01

    The impact of bone diseases and trauma in the whole world has increased significantly in the past decades. Bioactive glasses are regarded as an important bone regeneration material owing to their generally excellent osteoconductivity and osteostimulativity. A new class of bioactive glass, referred to as mesoporous bioglass (MBG), was developed 7 years ago, which possess a highly ordered mesoporous channel structure and a highly specific surface area. The study of MBG for drug/growth factor delivery and bone tissue engineering has grown significantly in the past several years. In this article, we review the recent advances of MBG materials, including the preparation of different forms of MBG, composition–structure relationship, efficient drug/growth factor delivery and bone tissue engineering application. By summarizing our recent research, the interaction of MBG scaffolds with bone-forming cells, the effect of drug/growth factor delivery on proliferation and differentiation of tissue cells and the in vivo osteogenesis of MBG scaffolds are highlighted. The advantages and limitations of MBG for drug delivery and bone tissue engineering have been compared with microsize bioactive glasses and nanosize bioactive glasses. The future perspective of MBG is discussed for bone regeneration application by combining drug delivery with bone tissue engineering and investigating the in vivo osteogenesis mechanism in large animal models. PMID:23741607

  5. ANTIBODY FORMATION BY TRANSPLANTED BONE MARROW, SPLEEN, LYMPH NODE AND THYMUS CELLS IN IRRADIATED RECIPIENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoner, R.D.; Bond, V.P.

    1963-01-14

    Immunological competence of immunized mouse bone marrow, spleen, lymph node, and thymus cells was demonstrated when specific recall tetanus antitoxin responses were elicited after transfer of these cells to isologous irradiated mice or rats. Lesser amounts of antibody were obtained as the genetic strain distance was increased between the relation of donor and host in the parental to F/sub 1/ and in the homologous combination within the same species. It was not possible in the heterologous situation to elicit significant amounts of antibody from rat bone marrow and other lymphoid cells following their transplantation into irradiated mice. Minimal but notmore » significant antibody responses were elicited from cells obtained from immunized rat spleen and thymus tissue. In a few experiments, it was possible to elicit antibody formation from a buffy coat suspension of circulating white cells following their transfer to irradiated recipients. Isologous nonimmunized bone marrow did not stimulate or hasten recovery of the ability to eiicit secondary antibody responses in previously immunized irradiated mice. The capacity to elicit primary antibody responses to tetanus toxoid was depressed in parental-bone-marrow-protected F/sub 1/ mice when these chimeras exhibited varying degrees of secondary disease. The depression of primary antibody responses in irradiated F/sub 1/ mice given parental bone marrow provides evidence for a donor mediated immunological depression of antibody synthesis by host-lymphoid tissues. (auth)« less

  6. Effects of different growth factors and carriers on bone regeneration: a systematic review.

    PubMed

    Khojasteh, Arash; Behnia, Hossein; Naghdi, Navid; Esmaeelinejad, Mohammad; Alikhassy, Zahra; Stevens, Mark

    2013-12-01

    The application and subsequent investigations in the use of varied osteogenic growth factors in bone regeneration procedures have grown dramatically over the past several years. Owing to this rapid gain in popularity and documentation, a review was undertaken to evaluate the in vivo effects of growth factors on bone regeneration. Using related key words, electronic databases (Medline, Embase, and Cochrane) were searched for articles published from 1999 to April 2010 to find growth factor application in bone regeneration in human or animal models. A total of 63 articles were matched with the inclusion criteria of this study. Bone morphogenetic protein 2 (BMP-2) was the most studied growth factor. Carriers for the delivery, experimental sites, and methods of evaluation were different, and therefore articles did not come to a general agreement. Within the limitations of this review, BMP-2 may be an appropriate growth factor for osteogenesis. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Novel Therapy for Bone Regeneration in Large Segmental Defects

    DTIC Science & Technology

    2017-12-01

    healing. Clin Orthop Relat Res. 1998;355(Suppl):S230–8. 37. Pape HC, Giannoudis PV. Fat embolism and IM nailing. Injury. 2006;37(Suppl 4):S1–2. 38. Wenda...mechanisms to elicit bone healing. 15. SUBJECT TERMS Bone healing, bone morphogenetic protein (BMP), thrombopoietin (TPO), therapy, fracture healing...thrombopoietin (TPO), therapy, fracture healing, bone regeneration, minipig, pig 3. OVERALL PROJECT SUMMARY: Project start date 30/09/2013 Project end

  8. Modeling Vascularized Bone Regeneration Within a Porous Biodegradable CaP Scaffold Loaded with Growth Factors

    PubMed Central

    Sun, X; Kang, Y; Bao, J; Zhang, Y; Yang, Y; Zhou, X

    2013-01-01

    Osteogenetic microenvironment is a complex constitution in which extracellular matrix (ECM) molecules, stem cells and growth factors each interact to direct the coordinate regulation of bone tissue development. Importantly, angiogenesis improvement and revascularization are critical for osteogenesis during bone tissue regeneration processes. In this study, we developed a three-dimensional (3D) multi-scale system model to study cell response to growth factors released from a 3D biodegradable porous calcium phosphate (CaP) scaffold. Our model reconstructed the 3D bone regeneration system and examined the effects of pore size and porosity on bone formation and angiogenesis. The results suggested that scaffold porosity played a more dominant role in affecting bone formation and angiogenesis compared with pore size, while the pore size could be controlled to tailor the growth factor release rate and release fraction. Furthermore, a combination of gradient VEGF with BMP2 and Wnt released from the multi-layer scaffold promoted angiogenesis and bone formation more readily than single growth factors. These results demonstrated that the developed model can be potentially applied to predict vascularized bone regeneration with specific scaffold and growth factors. PMID:23566802

  9. Subchondral bone in osteoarthritis: insight into risk factors and microstructural changes

    PubMed Central

    2013-01-01

    Osteoarthritis (OA) is a major cause of disability in the adult population. As a progressive degenerative joint disorder, OA is characterized by cartilage damage, changes in the subchondral bone, osteophyte formation, muscle weakness, and inflammation of the synovium tissue and tendon. Although OA has long been viewed as a primary disorder of articular cartilage, subchondral bone is attracting increasing attention. It is commonly reported to play a vital role in the pathogenesis of OA. Subchondral bone sclerosis, together with progressive cartilage degradation, is widely considered as a hallmark of OA. Despite the increase in bone volume fraction, subchondral bone is hypomineralized, due to abnormal bone remodeling. Some histopathological changes in the subchondral bone have also been detected, including microdamage, bone marrow edema-like lesions and bone cysts. This review summarizes basic features of the osteochondral junction, which comprises subchondral bone and articular cartilage. Importantly, we discuss risk factors influencing subchondral bone integrity. We also focus on the microarchitectural and histopathological changes of subchondral bone in OA, and provide an overview of their potential contribution to the progression of OA. A hypothetical model for the pathogenesis of OA is proposed. PMID:24321104

  10. Subchondral bone in osteoarthritis: insight into risk factors and microstructural changes.

    PubMed

    Li, Guangyi; Yin, Jimin; Gao, Junjie; Cheng, Tak S; Pavlos, Nathan J; Zhang, Changqing; Zheng, Ming H

    2013-01-01

    Osteoarthritis (OA) is a major cause of disability in the adult population. As a progressive degenerative joint disorder, OA is characterized by cartilage damage, changes in the subchondral bone, osteophyte formation, muscle weakness, and inflammation of the synovium tissue and tendon. Although OA has long been viewed as a primary disorder of articular cartilage, subchondral bone is attracting increasing attention. It is commonly reported to play a vital role in the pathogenesis of OA. Subchondral bone sclerosis, together with progressive cartilage degradation, is widely considered as a hallmark of OA. Despite the increase in bone volume fraction, subchondral bone is hypomineralized, due to abnormal bone remodeling. Some histopathological changes in the subchondral bone have also been detected, including microdamage, bone marrow edema-like lesions and bone cysts. This review summarizes basic features of the osteochondral junction, which comprises subchondral bone and articular cartilage. Importantly, we discuss risk factors influencing subchondral bone integrity. We also focus on the microarchitectural and histopathological changes of subchondral bone in OA, and provide an overview of their potential contribution to the progression of OA. A hypothetical model for the pathogenesis of OA is proposed.

  11. Adaptive growth factor delivery from a polyelectrolyte coating promotes synergistic bone tissue repair and reconstruction

    PubMed Central

    Shah, Nisarg J.; Hyder, Md. Nasim; Quadir, Mohiuddin A.; Dorval Courchesne, Noémie-Manuelle; Seeherman, Howard J.; Nevins, Myron; Spector, Myron; Hammond, Paula T.

    2014-01-01

    Traumatic wounds and congenital defects that require large-scale bone tissue repair have few successful clinical therapies, particularly for craniomaxillofacial defects. Although bioactive materials have demonstrated alternative approaches to tissue repair, an optimized materials system for reproducible, safe, and targeted repair remains elusive. We hypothesized that controlled, rapid bone formation in large, critical-size defects could be induced by simultaneously delivering multiple biological growth factors to the site of the wound. Here, we report an approach for bone repair using a polyelectrolye multilayer coating carrying as little as 200 ng of bone morphogenetic protein-2 and platelet-derived growth factor-BB that were eluted over readily adapted time scales to induce rapid bone repair. Based on electrostatic interactions between the polymer multilayers and growth factors alone, we sustained mitogenic and osteogenic signals with these growth factors in an easily tunable and controlled manner to direct endogenous cell function. To prove the role of this adaptive release system, we applied the polyelectrolyte coating on a well-studied biodegradable poly(lactic-co-glycolic acid) support membrane. The released growth factors directed cellular processes to induce bone repair in a critical-size rat calvaria model. The released growth factors promoted local bone formation that bridged a critical-size defect in the calvaria as early as 2 wk after implantation. Mature, mechanically competent bone regenerated the native calvaria form. Such an approach could be clinically useful and has significant benefits as a synthetic, off-the-shelf, cell-free option for bone tissue repair and restoration. PMID:25136093

  12. Estrogen prevents bone loss through transforming growth factor β signaling in T cells

    PubMed Central

    Gao, Yuhao; Qian, Wei-Ping; Dark, Kimberly; Toraldo, Gianluca; Lin, Angela S. P.; Guldberg, Robert E.; Flavell, Richard A.; Weitzmann, M. Neale; Pacifici, Roberto

    2004-01-01

    Estrogen (E) deficiency leads to an expansion of the pool of tumor necrosis factor (TNF)-producing T cells through an IFN-γ-dependent pathway that results in increased levels of the osteoclastogenic cytokine TNF in the bone marrow. Disregulated IFN-γ production is instrumental for the bone loss induced by ovariectomy (ovx), but the responsible mechanism is unknown. We now show that mice with T cell-specific blockade of type β transforming growth factor (TGFβ) signaling are completely insensitive to the bone-sparing effect of E. This phenotype results from a failure of E to repress IFN-γ production, which, in turn, leads to increased T cell activation and T cell TNF production. Furthermore, ovx blunts TGFβ levels in the bone marrow, and overexpression of TGFβ in vivo prevents ovx-induced bone loss. These findings demonstrate that E prevents bone loss through a TGFβ-dependent mechanism, and that TGFβ signaling in T cells preserves bone homeostasis by blunting T cell activation. Thus, stimulation of TGFβ production in the bone marrow is a critical “upstream” mechanism by which E prevents bone loss, and enhancement of TGFβ levels in vivo may constitute a previously undescribed therapeutic approach for preventing bone loss. PMID:15531637

  13. Carbon nanotubes functionalized with fibroblast growth factor accelerate proliferation of bone marrow-derived stromal cells and bone formation

    NASA Astrophysics Data System (ADS)

    Hirata, Eri; Ménard-Moyon, Cécilia; Venturelli, Enrica; Takita, Hiroko; Watari, Fumio; Bianco, Alberto; Yokoyama, Atsuro

    2013-11-01

    Multi-walled carbon nanotubes (MWCNTs) were functionalized with fibroblast growth factor (FGF) and the advantages of their use as scaffolds for bone augmentation were evaluated in vitro and in vivo. The activity of FGF was assessed by measuring the effect on the proliferation of rat bone marrow stromal cells (RBMSCs). The presence of FGF enhanced the proliferation of RBMSCs and the FGF covalently conjugated to the nanotubes (FGF-CNT) showed the same effect as FGF alone. In addition, FGF-CNT coated sponges were implanted between the parietal bone and the periosteum of rats and the formation of new bone was investigated. At day 14 after implantation, a larger amount of newly formed bone was clearly observed in most pores of FGF-CNT coated sponges. These findings indicated that MWCNTs accelerated new bone formation in response to FGF, as well as the integration of particles into new bone during its formation. Scaffolds coated with FGF-CNT could be considered as promising novel substituting materials for bone regeneration in future tissue engineering applications.

  14. Sex-specific factors for bone density in patients with schizophrenia.

    PubMed

    Lin, Chieh-Hsin; Lin, Chun-Yuan; Huang, Tiao-Lai; Wang, Hong-Song; Chang, Yue-Cune; Lane, Hsien-Yuan

    2015-03-01

    Patients with schizophrenia are susceptible to low bone mineral density (BMD). Many risk factors have been suggested. However, it remains uncertain whether the risk factors differ between men and women. In addition, the study of bone density in men is neglected more often than that in women. This study aims to examine specific risk factors of low BMD in different sexes. Men (n=80) and women (n=115) with schizophrenia, similar in demographic and clinical characteristics, were enrolled in three centers. Clinical and laboratory variables (including blood levels of prolactin, sex and thyroid hormones, cortisol, calcium, and alkaline phosphatase) were collected. BMD was measured using a dual-energy X-ray absorptiometer. Men had lower BMD than women. Predictors for BMD in men included hyperprolactinemia (B=-0.821, P=0.009), body weight (B=0.024, P=0.046), and Global Assessment of Functioning score (B=0.027, P=0.043); in women, BMD was associated with menopause (B=-1.070, P<0.001), body weight (B=0.027, P=0.003), and positive symptoms (B=0.094, P<0.001). In terms of the effect of psychotic symptoms, positive symptoms were related positively to BMD in women, but not in men. The findings suggest that sex-specific risk factors should be considered for an individualized intervention of bone loss in patients with schizophrenia. Physicians should pay particular attention to bone density in men with hyperprolactinemia and postmenopausal women. Further prospective studies in other populations are warranted to confirm these findings.

  15. Risk factors for decreased bone mineral density in inflammatory bowel disease: A cross-sectional study.

    PubMed

    Wada, Yasuyo; Hisamatsu, Tadakazu; Naganuma, Makoto; Matsuoka, Katsuyoshi; Okamoto, Susumu; Inoue, Nagamu; Yajima, Tomoharu; Kouyama, Keisuke; Iwao, Yasushi; Ogata, Haruhiko; Hibi, Toshifumi; Abe, Takayuki; Kanai, Takanori

    2015-12-01

    Although inflammatory bowel disease (IBD) patients are at risk for metabolic bone disease, studies analyzing this correlation have identified various risk factors, including disease phenotype, age, sex and steroid therapy. Furthermore, few studies have assessed risk factors for bone loss in Japanese IBD patients. This study analyzed risk factors for metabolic bone disease in Japanese IBD patients. This cross-sectional study assessed 388 patients with IBD aged 20-50 years, including 232 with ulcerative colitis (UC) and 156 with Crohn's disease (CD). Bone mineral density of the femoral neck, total femur and lumbar spine was quantified by dual-energy X-ray absorptiometry. The blood concentrations of bone metabolism markers were measured. History of smoking and bone fracture, and nutritional intake were assessed using questionnaires. Of the 388 patients with IBD, 78 (20.1%; UC, 17.2%; CD, 24.4%) had osteopenia and 17 (4.4%; UC, 3.4%; CD, 5.8%) had osteoporosis, as assessed by T-score. Bone mineral density of the lumbar vertebrae was lower in males than in females. Multivariate regression analysis showed that risk factors for bone loss in UC patients were male sex, low body mass index (BMI), high steroid dose and disease location. Risk factors for bone loss in CD patients were male sex and low BMI. Among Japanese patients with IBD, male sex and low BMI were associated with increased risk for metabolic bone disease. In addition, Steroid therapy shouldn't be indiscriminate in UC patients. These findings may help identify patients at particularly high risk of metabolic bone disease and may help implement appropriate therapies in a timely manner and improve long-term quality of life. Copyright © 2015 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  16. Effect of Irrigation Time of Antiseptic Solutions on Bone Cell Viability and Growth Factor Release.

    PubMed

    Sawada, Kosaku; Nakahara, Ken; Haga-Tsujimura, Maiko; Fujioka-Kobayashi, Masako; Iizuka, Tateyuki; Miron, Richard J

    2018-03-01

    Antiseptic solutions are commonly utilized to treat local infection in the oral and maxillofacial region. However, surrounding vital bone is also exposed to antiseptic agents during irrigation and may have a potential negative impact on bone survival. The aim of the present study was therefore to investigate the effect of rinsing time with various antiseptic solutions on bone cell viability, as well as their subsequent release of growth factors important for bone regeneration. The bone samples collected from porcine mandible were rinsed in the following commonly utilized antiseptic solutions; povidone-iodine (0.5%), chlorhexidine digluconate (CHX, 0.2%), hydrogen peroxide (1%), and sodium hypochlorite (0.25%) for 1, 5, 10, 20, 30, or 60 minutes and assessed for cell viability and release of growth factors including vascular endothelial growth factor, transforming growth factor beta 1, bone morphogenetic protein 2, receptor activator of nuclear factor kappa-B ligand, and interleukin-1 beta by enzyme-linked immunosorbent assay. It was found in all the tested groups that the long exposure of any of the tested antiseptic solutions drastically promoted higher cell death. Sodium hypochlorite demonstrated the significantly highest cell death and at all time points. Interestingly, bone cell viability was highest in the CHX group post short-term rinsing of 1, 5, or 10 minutes when compared with the other 4 tested groups. A similar trend was also observed in subsequent growth factor release. The present study demonstrated that of the 4 tested antiseptic solutions, short-term CHX rinsing (ideally within 1 minute) favored bone cell viability and growth factor release. Clinical protocols should be adapted accordingly.

  17. Insulin-like growth factor 1, glycation and bone fragility: implications for fracture resistance of bone.

    PubMed

    Sroga, Grażyna E; Wu, Ping-Cheng; Vashishth, Deepak

    2015-01-01

    Despite our extensive knowledge of insulin-like growth factor 1 (IGF1) action on the growing skeleton, its role in skeletal homeostasis during aging and age-related development of certain diseases is still unclear. Advanced glycation end products (AGEs) derived from glucose are implicated in osteoporosis and a number of diabetic complications. We hypothesized that because in humans and rodents IGF1 stimulates uptake of glucose (a glycation substrate) from the bloodstream in a dose-dependent manner, the decline of IGF1 could be associated with the accumulation of glycation products and the decreasing resistance of bone to fracture. To test the aforementioned hypotheses, we used human tibial posterior cortex bone samples to perform biochemical (measurement of IGF1, fluorescent AGEs and pentosidine (PEN) contents) and mechanical tests (crack initiation and propagation using compact tension specimens). Our results for the first time show a significant, age-independent association between the levels of IGF1 and AGEs. Furthermore, AGEs (fAGEs, PEN) predict propensity of bone to fracture (initiation and propagation) independently of age in human cortical bone. Based on these results we propose a model of IGF1-based regulation of bone fracture. Because IGF1 level increases postnatally up to the juvenile developmental phase and decreases thereafter with aging, we propose that IGF1 may play a protective role in young skeleton and its age-related decline leads to bone fragility and an increased fracture risk. Our results may also have important implications for current understanding of osteoporosis- and diabetes-related bone fragility as well as in the development of new diagnostic tools to screen for fragile bones.

  18. Insulin-Like Growth Factor 1, Glycation and Bone Fragility: Implications for Fracture Resistance of Bone

    PubMed Central

    Sroga, Grażyna E.; Wu, Ping-Cheng; Vashishth, Deepak

    2015-01-01

    Despite our extensive knowledge of insulin-like growth factor 1 (IGF1) action on the growing skeleton, its role in skeletal homeostasis during aging and age-related development of certain diseases is still unclear. Advanced glycation end products (AGEs) derived from glucose are implicated in osteoporosis and a number of diabetic complications. We hypothesized that because in humans and rodents IGF1 stimulates uptake of glucose (a glycation substrate) from the bloodstream in a dose-dependent manner, the decline of IGF1 could be associated with the accumulation of glycation products and the decreasing resistance of bone to fracture. To test the aforementioned hypotheses, we used human tibial posterior cortex bone samples to perform biochemical (measurement of IGF1, fluorescent AGEs and pentosidine (PEN) contents) and mechanical tests (crack initiation and propagation using compact tension specimens). Our results for the first time show a significant, age-independent association between the levels of IGF1 and AGEs. Furthermore, AGEs (fAGEs, PEN) predict propensity of bone to fracture (initiation and propagation) independently of age in human cortical bone. Based on these results we propose a model of IGF1-based regulation of bone fracture. Because IGF1 level increases postnatally up to the juvenile developmental phase and decreases thereafter with aging, we propose that IGF1 may play a protective role in young skeleton and its age-related decline leads to bone fragility and an increased fracture risk. Our results may also have important implications for current understanding of osteoporosis- and diabetes-related bone fragility as well as in the development of new diagnostic tools to screen for fragile bones. PMID:25629402

  19. [The role of Smads and related transcription factors in the signal transduction of bone morphogenetic protein inducing bone formation].

    PubMed

    Xu, Xiao-liang; Dai, Ke-rong; Tang, Ting-ting

    2003-09-01

    To clarify the mechanisms of the signal transduction of bone morphogenetic proteins (BMPs) inducing bone formation and to provide theoretical basis for basic and applying research of BMPs. We looked up the literature of the role of Smads and related transcription factors in the signal transduction of BMPs inducing bone formation. The signal transduction processes of BMPs included: 1. BMPs combined with type II and type I receptors; 2. the type I receptor phosphorylated Smads; and 3. Smads entered the cell nucleus, interacted with transcription factors and influenced the transcription of related proteins. Smads could be divided into receptor-regulated Smads (R-Smads: Smad1, Smad2, Smad3, Smad5, Smad8 and Smad9), common-mediator Smad (co-Smad: Smad4), and inhibitory Smads (I-Smads: Smad6 and Smad7). Smad1, Smad5, Smad8, and probable Smad9 were involved in the signal transduction of BMPs. Multiple kinases, such as focal adhesion kinase (FAK), Ras-extracellular signal-regulated kinase (ERK), phosphatidylinositol 3-kinase (PI3K), and Akt serine/threonine kinase were related to Smads signal transduction. Smad1 and Smad5 related with transcription factors included core binding factor A1 (CBFA1), smad-interacting protein 1 (SIP1), ornithine decarboxylase antizyme (OAZ), activating protein-1 (AP-1), xenopus ventralizing homeobox protein-2 (Xvent-2), sandostatin (Ski), antiproliferative proteins (Tob), and homeodomain-containing transcriptian factor-8 (Hoxc-8), et al. CBFA1 could interact with Smad1, Smad2, Smad3, and Smad5, so it was involved in TGF-beta and BMP-2 signal transduction, and played an important role in the bone formation. Cleidocranial dysplasia (CCD) was thought to be caused by heterozygous mutations in CBFA1. The CBFA1 knockout mice showed no osteogenesis and had maturational disturbance of chondrocytes. Smads and related transcription factors, especially Smad1, Smad5, Smad8 and CBFA1, play an important role in the signal transduction of BMPs inducing bone

  20. Concentration of adipogenic and proinflammatory cytokines in the bone marrow supernatant fluid of osteoporotic women.

    PubMed

    Pino, Ana María; Ríos, Susana; Astudillo, Pablo; Fernández, Mireya; Figueroa, Paula; Seitz, Germán; Rodríguez, J Pablo

    2010-03-01

    Osteoporosis is characterized by low bone mass, microarchitectural deterioration of bone tissue leading to increased bone fragility, and a resulting susceptibility to fractures. Distinctive environmental bone marrow conditions appear to support the development and maintenance of the unbalance between bone resorption and bone formation; these complex bone marrow circumstances would be reflected in the fluid surrounding bone marrow cells. The content of regulatory molecules in the extracellular fluid from the human bone marrow is practically unknown. Since the content of cytokines such as adiponectin, leptin, osteoprogeterin (OPG), soluble receptor activator of nuclear factor kappaB ligand (s-RANKL), tumor necrosis factor alpha, and interleukin 6 (IL-6) may elicit conditions promoting or sustaining osteoporosis, in this work we compared the concentrations of the above-mentioned cytokines and also the level of the soluble receptors for both IL-6 and leptin in the extracellular fluid from the bone marrow of nonosteoporotic and osteoporotic human donors. A supernatant fluid (bone marrow supernatant fluid [BMSF]) was obtained after spinning the aspirated bone marrow samples; donors were classified as nonosteoporotic or osteoporotic after dual-energy X-ray absorptiometry (DXA) measuring. Specific commercially available kits were used for all measurements. The cytokines' concentration in BMSF showed differently among nonosteoporotic and osteoporotic women; this last group was characterized by higher content of proinflammatory and adipogenic cytokines. Also, osteoporotic BMSF differentiated by decreased leptin bioavailability, suggesting that insufficient leptin action may distinguish the osteoporotic bone marrow. Copyright 2010 American Society for Bone and Mineral Research.

  1. The influence of environmental factors on bone tissue engineering.

    PubMed

    Szpalski, Caroline; Sagebin, Fabio; Barbaro, Marissa; Warren, Stephen M

    2013-05-01

    Bone repair and regeneration are dynamic processes that involve a complex interplay between the substrate, local and systemic cells, and the milieu. Although each constituent plays an integral role in faithfully recreating the skeleton, investigators have long focused their efforts on scaffold materials and design, cytokine and hormone administration, and cell-based therapies. Only recently have the intangible aspects of the milieu received their due attention. In this review, we highlight the important influence of environmental factors on bone tissue engineering. Copyright © 2012 Wiley Periodicals, Inc.

  2. Quantification of various growth factors in different demineralized bone matrix preparations.

    PubMed

    Wildemann, B; Kadow-Romacker, A; Haas, N P; Schmidmaier, G

    2007-05-01

    Besides autografts, allografts, and synthetic materials, demineralized bone matrix (DBM) is used for bone defect filling and treatment of non-unions. Different DBM formulations are introduced in clinic since years. However, little is known about the presents and quantities of growth factors in DBM. Aim of the present study was the quantification of eight growth factors important for bone healing in three different "off the shelf" DBM formulations, which are already in human use: DBX putty, Grafton DBM putty, and AlloMatrix putty. All three DBM formulations are produced from human donor tissue but they differ in the substitutes added. From each of the three products 10 different lots were analyzed. Protein was extracted from the samples with Guanidine HCL/EDTA method and human ELISA kits were used for growth factor quantification. Differences between the three different products were seen in total protein contend and the absolute growth factor values but also a large variability between the different lots was found. The order of the growth factors, however, is almost comparable between the materials. In the three investigated materials FGF basic and BMP-4 were not detectable in any analyzed sample. BMP-2 revealed the highest concentration extractable from the samples with approximately 3.6 microg/g tissue without a significant difference between the three DBM formulations. In DBX putty significantly more TGF-beta1 and FGFa were measurable compared to the two other DBMs. IGF-I revealed the significantly highest value in the AlloMatrix and PDGF in Grafton. No differences were accessed for VEGF. Due to the differences in the growth factor concentration between the individual samples, independently from the product formulation, further analyzes are required to optimize the clinical outcome of the used demineralized bone matrix. Copyright 2006 Wiley Periodicals, Inc.

  3. Transglutaminases factor XIII-A and TG2 regulate resorption, adipogenesis and plasma fibronectin homeostasis in bone and bone marrow

    PubMed Central

    Mousa, Aisha; Cui, Cui; Song, Aimei; Myneni, Vamsee D; Sun, Huifang; Li, Jin Jin; Murshed, Monzur; Melino, Gerry; Kaartinen, Mari T

    2017-01-01

    Appropriate bone mass is maintained by bone-forming osteoblast and bone-resorbing osteoclasts. Mesenchymal stem cell (MSC) lineage cells control osteoclastogenesis via expression of RANKL and OPG (receptor activator of nuclear factor κB ligand and osteoprotegerin), which promote and inhibit bone resorption, respectively. Protein crosslinking enzymes transglutaminase 2 (TG2) and Factor XIII-A (FXIII-A) have been linked to activity of myeloid and MSC lineage cells; however, in vivo evidence has been lacking to support their function. In this study, we show in mice that TG2 and FXIII-A control monocyte-macrophage cell differentiation into osteoclasts as well as RANKL production in MSCs and in adipocytes. Long bones of mice lacking TG2 and FXIII-A transglutaminases, show compromised biomechanical properties and trabecular bone loss in axial and appendicular skeleton. This was caused by increased osteoclastogenesis, a cellular phenotype that persists in vitro. The increased potential of TG2 and FXIII-A deficient monocytes to form osteoclasts was reversed by chemical inhibition of TG activity, which revealed the presence of TG1 in osteoclasts and assigned different roles for the TGs as regulators of osteoclastogenesis. TG2- and FXIII-A-deficient mice had normal osteoblast activity, but increased bone marrow adipogenesis, MSCs lacking TG2 and FXIII-A showed high adipogenic potential and significantly increased RANKL expression as well as upregulated TG1 expression. Chemical inhibition of TG activity in the null cells further increased adipogenic potential and RANKL production. Altered differentiation of TG2 and FXIII-A null MSCs was associated with plasma fibronectin (FN) assembly defect in cultures and FN retention in serum and marrow in vivo instead of assembly into bone. Our findings provide new functions for TG2, FXIII-A and TG1 in bone cells and identify them as novel regulators of bone mass, plasma FN homeostasis, RANKL production and myeloid and MSC cell

  4. Hybrid use of combined and sequential delivery of growth factors and ultrasound stimulation in porous multilayer composite scaffolds to promote both vascularization and bone formation in bone tissue engineering.

    PubMed

    Yan, Haoran; Liu, Xia; Zhu, Minghua; Luo, Guilin; Sun, Tao; Peng, Qiang; Zeng, Yi; Chen, Taijun; Wang, Yingying; Liu, Keliang; Feng, Bo; Weng, Jie; Wang, Jianxin

    2016-01-01

    In this study, a multilayer coating technology would be adopted to prepare a porous composite scaffold and the growth factor release and ultrasound techniques were introduced into bone tissue engineering to finally solve the problems of vascularization and bone formation in the scaffold whilst the designed multilayer composite with gradient degradation characteristics in the space was used to match the new bone growth process better. The results of animal experiments showed that the use of low intensity pulsed ultrasound (LIPUS) combined with growth factors demonstrated excellent capabilities and advantages in both vascularization and new bone formation in bone tissue engineering. The degradation of the used scaffold materials could match new bone formation very well. The results also showed that only RGD-promoted cell adhesion was insufficient to satisfy the needs of new bone formation while growth factors and LIPUS stimulation were the key factors in new bone formation. © 2015 Wiley Periodicals, Inc.

  5. Growth factors and cytokines in patients with long bone fractures and associated spinal cord injury.

    PubMed

    Khallaf, Fathy G; Kehinde, Elijah O; Mostafa, Ahmed

    2016-06-01

    The aim of the study was to test the effect of acute traumatic spinal cord injury of quadriplegia or paraplegia on bone healing in patients with associated long bone fractures and to investigate the molecular and cellular events of the underlying mechanism for a possible acceleration. Healing indicators of long bone fractures and growth factors, IGF-II, platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), Activin-A, and cytokine I-L-1, in the patients' blood were calculated and measured for 21 patients with spinal cord injuries and associated long bone fractures in prospective controlled study and compared to 20 patients with only spinal cord injuries, 30 patients with only long bone fractures, and 30 healthy volunteers. The study results showed that long bone fractures in patients with associated acute traumatic spinal cord injury of quadriplegia or paraplegia heal more expectedly, faster, and with exuberant florid union callus (P > 0.001) and show statistically significant higher levels of growth factors like PDGF, VEGF, Activin-A, and cytokine I-L-1, along the 3 weeks of follow-up (P > 0.005). I-IGF-II showed statistically significant subnormal level along the whole follow-up period in the same patients (P > 0.005). We concluded that long bone fractures in spinal cord injury patients heal more expectedly, faster, and with exuberant and florid callus formation; growth factors like IGF-II, PDGF, VEGF, Activin-A, and cytokine I-L-I have roles as mediators, in molecular events and as byproducts of the subtle mechanism of accelerated osteogenesis in these patients and may represent therapeutic potentials to serve as agents to enhance bone repair.

  6. Effect of trehalose coating on basic fibroblast growth factor release from tailor-made bone implants.

    PubMed

    Choi, Sungjin; Lee, Jongil; Igawa, Kazuyo; Suzuki, Shigeki; Mochizuki, Manabu; Nishimura, Ryohei; Chung, Ung-il; Sasaki, Nobuo

    2011-12-01

    Artificial bone implants are often incorporated with osteoinductive factors to facilitate early bone regeneration. Calcium phosphate, the main component in artificial bone implants, strongly binds these factors, and in a few cases, the incorporated proteins are not released from the implant under conditions of physiological pH, thereby leading to reduction in their osteoinductivity. In this study, we coated tailor-made bone implants with trehalose to facilitate the release of basic fibroblast growth factor (bFGF). In an in vitro study, mouse osteoblastic cells were separately cultured for 48 hr in a medium with a untreated implant (T-), trehalose-coated implant (T+), bFGF-incorporated implant (FT-), and bFGF-incorporated implant with trehalose coating (FT+). In the FT+ group, cell viability was significantly higher than that in the other groups (P<0.05). Scanning electron microscopy (SEM) and X-ray diffraction (XRD) revealed that trehalose effectively covered the surface of the artificial bone implant without affecting the crystallinity or the mechanical strength of the artificial bone implant. These results suggest that coating artificial bone implants with trehalose could limit the binding of bFGF to calcium phosphate.

  7. Active antitumor immunity elicited by vaccine based on recombinant form of epidermal growth factor receptor.

    PubMed

    Hu, Bing; Wei, Yuquan; Tian, Ling; Zhao, Xia; Lu, You; Wu, Yang; Yao, Bing; Liu, Jiyan; Niu, Ting; Wen, Yanjun; He, Qiuming; Su, Jingmei; Huang, Meijuan; Lou, Yanyan; Luo, Yan; Kan, Bing

    2005-01-01

    Active immunotherapy targeting epidermal growth factor receptor (EGFR) should be another attractive approach to the treatment of EGFR-positive tumors. To test this concept, the authors evaluated the potential immune responses and antitumor activities elicited by dendritic cells pulsed with recombinant ectodomain of mouse EGFR (DC-edMER). Spleen cells isolated from DC-edMER-vaccinated mice showed a high quantity of EGFR-specific antibody-producing cells. EGFR-reactive antibody in sera isolated from vaccinated mice was identified and shown to be effective against tumors in vitro and in vivo by adoptive transfer. DC-edMER vaccine also elicited cytotoxic T-lymphocyte responses that could mediate antitumor effects in vitro and adoptive transfer in vivo. In addition, EGFR-specific cytokines responses were elicited by DC-edMER vaccine. Immunization with DC-edMER resulted in tumor regression and prolonged survival in mice challenged with Lewis lung carcinomas and mammary cancer models. Depletion of CD4+ T lymphocytes could completely abrogate the antitumor activity and EGFR-specific antibody responses, whereas the depletion of CD8+ T lymphocytes showed partial abrogation of the antitumor activity but antibody was still detected. Furthermore, tumor-induced angiogenesis was suppressed in DC-edMER-vaccinated mice or mice treated with antibody adoptive transfer. Taken together, these findings suggest the antitumor immunity could be induced by DC-edMER, which may involve both humoral and cellular immunity, and may provide insight into the treatment of EGFR-positive tumors through the induction of active immunity against EGFR.

  8. Bone mineral density and correlation factor analysis in normal Taiwanese children.

    PubMed

    Shu, San-Ging

    2007-01-01

    Our aim was to establish reference data and linear regression equations for lumbar bone mineral density (BMD) in normal Taiwanese children. Several influencing factors of lumbar BMD were investigated. Two hundred fifty-seven healthy children were recruited from schools, 136 boys and 121 girls, aged 4-18 years were enrolled on a voluntary basis with written consent. Their height, weight, blood pressure, puberty stage, bone age and lumbar BMD (L2-4) by dual energy x-ray absorptiometry (DEXA) were measured. Data were analyzed using Pearson correlation and stepwise regression tests. All measurements increased with age. Prior to age 8, there was no gender difference. Parameters such as height, weight, and bone age (BA) in girls surpassed boys between ages 8-13 without statistical significance (p> or =0.05). This was reversed subsequently after age 14 in height (p<0.05). BMD difference had the same trend but was not statistically significant either. The influencing power of puberty stage and bone age over BMD was almost equal to or higher than that of height and weight. All the other factors correlated with BMD to variable powers. Multiple linear regression equations for boys and girls were formulated. BMD reference data is provided and can be used to monitor childhood pathological conditions. However, BMD in those with abnormal bone age or pubertal development could need modifications to ensure accuracy.

  9. Caregivers' psychosocial factors underlying sugar-sweetened beverage intake among non-Hispanic black preschoolers: an elicitation study.

    PubMed

    Tipton, Julia A

    2014-01-01

    The purpose of this study was to explore caregivers' beliefs and perceptions regarding serving sugar-sweetened beverages (SSBs) to non-Hispanic black preschoolers. The Theory of Planned Behavior (TpB) was used as the framework for conducting elicitation interviews among a sample of (n = 19) caregivers. Thematic coding of interview transcripts revealed that the decision to serve SSBs to preschoolers is driven by numerous individual, familial, cultural, and environmental factors. Salient factors associated with serving SSBs included convenience, cost, taste, potential health consequences, availability, and pressure from other parents. Population-specific interventions aimed at reducing SSB intake among non-Hispanic preschoolers are discussed. © 2013.

  10. Autologous Bone Marrow Concentrates and Concentrated Growth Factors Accelerate Bone Regeneration After Enucleation of Mandibular Pathologic Lesions.

    PubMed

    Talaat, Wael M; Ghoneim, Mohamed M; Salah, Omar; Adly, Osama A

    2018-02-23

    Stem cell therapy is a revolutionary new way to stimulate mesenchymal tissue regeneration. The platelets concentrate products started with platelet-rich plasma (PRP), followed by platelet-rich fibrin (PRF), whereas concentrated growth factors (CGF) are the latest generation of the platelets concentrate products which were found in 2011. The aim of the present study was to evaluate the potential of combining autologous bone marrow concentrates and CGF for treatment of bone defects resulting from enucleation of mandibular pathologic lesions. Twenty patients (13 males and 7 females) with mandibular benign unilateral lesions were included, and divided into 2 groups. Group I consisted of 10 patients who underwent enucleation of the lesions followed by grafting of the bony defects with autologous bone marrow concentrates and CGF. Group II consisted of 10 patients who underwent enucleation of the lesions without grafting (control). Radiographic examinations were done immediately postoperative, then at 1, 3, 6, and 12 months, to evaluate the reduction in size and changes in bone density at the bony defects. Results indicated a significant increase in bone density with respect to the baseline levels in both groups (P < 0.05). The increase in bone density was significantly higher in group I compared with group II at the 6- and 12-month follow-up examinations (P < 0.05). The percent of reduction in the defects' size was significantly higher in group I compared with group II after 12 months (P = 0.00001). In conclusion, the clinical application of autologous bone marrow concentrates with CGF is a cost effective and safe biotechnology, which accelerates bone regeneration and improves the density of regenerated bone.

  11. Low bone mass prevalence and osteoporosis risk factor assessment in African American Wisconsin women.

    PubMed

    Kidambi, Srividya; Partington, Susan; Binkley, Neil

    2005-11-01

    Post-menopausal osteoporosis is seen in all racial groups. With the increasing population and longevity of minority groups, osteoporosis is becoming an important health concern. Data regarding risk factors for, and prevalence of, low bone mass and awareness of osteoporosis risk in African American (AA) women are limited. This article evaluates the risk factors for, and prevalence of, low bone mass in a population of urban AA women in Wisconsin and assesses this group's perceived risk for osteoporosis. One hundred fifty consecutive community-dwelling AA women > or = 45 years old from Milwaukee, Wis were asked to complete a questionnaire based on currently accepted osteoporosis risk factors. Additionally, their perception of osteoporosis risk was assessed using a Likert scale. All subjects underwent quantitative calcaneal ultrasound. Subject mean age was 54 +/- 7 years. Mean T- and Z-scores were 0.5 and 0.4, respectively. Applying World Health Organization criteria, osteopenia (bone mineral density T-score <-1.0) was present in 23.3% and osteoporosis (bone mineral density <-2.5) in 9.3%. Multivariate analysis of risk factors showed that lifetime incidence of at least 1 fracture, multiparity (>2 children), postmenopausal state, and current smoking were associated with lower calcaneal bone mass. Higher education and presence of diabetes were associated with a higher bone mass. Only 25% of the women surveyed thought they were at moderate to high risk for osteoporosis. Low bone mass was present in 33% of these AA women despite their relative young age. Many AA women do not perceive osteoporosis as a health risk. It is necessary to develop strategies to educate AA women regarding osteoporosis risk.

  12. The Factors Affecting Bone Density in Cirrhosis

    PubMed Central

    Hajiabbasi, Asghar; Shafaghi, Afshin; Fayazi, Haniyeh Sadat; Shenavar Masooleh, Irandokht; Hedayati Emami, Mohammad Hassan; Ghavidel Parsa, Pooneh; Amir Maafi, Alireza

    2015-01-01

    Background: Bone loss is common in cirrhosis. However, the prevalence of osteopenia and osteoporosis has been heterogeneous in different reports. Reduction in bone formation with or without increase in bone resorption appears to be responsible for bone loss in these patients. Objectives: We aimed to investigate bone loss in patients with cirrhosis at different anatomical sites and key factors that might affect it. Patients and Methods: In this cross-sectional study, 97 patients with cirrhosis who were referred to Razi Hospital, Rasht, Iran, from 2008 to 2010, were studied. Cirrhosis was diagnosed using biopsy and/or clinical and paraclinical findings. Bone mineral densitometry was done in L2 through L4 lumbar spine (LS) and femoral neck (FN), using dual-energy X-ray absorptiometry (DEXA) (QDR 1000, Hologic DEXA Inc, Waltham, Massachusetts, the United States). Statistical analysis was performed using SPSS 18. A P value < 0.05 was considered statistically significant. Results: A total of 97 patients with cirrhosis (55.7% male) and the mean age of 51 ± 13 years and median body mass index (BMI) of 22.7 kg/m2 were recruited over a two-year period. Etiologies of cirrhosis were hepatitis C (40.2%), hepatitis B (26.8%), cryptogenic (21.6%), and other causes (11.4%). Child A, B, and C, were seen in 16.5%, 47.4%, and 36.1% of patients, respectively. The DEXA results were abnormal in 78.4% of our participants (osteopenia, 45.4%; osteoporosis, 33%). BMI and calculated glomerular filtration rate (GFRc) had moderate positive and Child score had moderate negative significant correlation with T score in both anatomical sites. There was no significant association between abnormal DEXA and the causes of cirrhosis. The univariate analysis showed that the risk of abnormal results in DEXA was significantly higher in those with low BMI, current smoking, higher Child score, and low GFRc; however, in multivariate analysis, the abnormal results were more frequent in those with lower

  13. Identifying sex-specific risk factors for low bone mineral density in adolescent runners.

    PubMed

    Tenforde, Adam Sebastian; Fredericson, Michael; Sayres, Lauren Carter; Cutti, Phil; Sainani, Kristin Lynn

    2015-06-01

    Adolescent runners may be at risk for low bone mineral density (BMD) associated with sports participation. Few prior investigations have evaluated bone health in young runners, particularly males. To characterize sex-specific risk factors for low BMD in adolescent runners. Cross-sectional study; Level of evidence, 3. Training characteristics, fracture history, eating behaviors and attitudes, and menstrual history were measured using online questionnaires. A food frequency questionnaire was used to identify dietary patterns and measure calcium intake. Runners (female: n = 94, male: n = 42) completed dual-energy x-ray absorptiometry (DXA) to measure lumbar spine (LS) and total body less head (TBLH) BMD and body composition values, including android-to-gynoid (A:G) fat mass ratio. The BMD was standardized to Z-scores using age, sex, and race/ethnicity reference values. Questionnaire values were combined with DXA values to determine risk factors associated with differences in BMD Z-scores in LS and TBLH and low bone mass (defined as BMD Z-score ≤-1). In multivariable analyses, risk factors for lower LS BMD Z-scores in girls included lower A:G ratio, being shorter, and the combination of (interaction between) current menstrual irregularity and a history of fracture (all P < .01). Later age of menarche, lower A:G ratio, lower lean mass, and drinking less milk were associated with lower TBLH BMD Z-scores (P < .01). In boys, lower body mass index (BMI) Z-scores and the belief that being thinner improves performance were associated with lower LS and TBLH BMD Z-scores (all P < .05); lower A:G ratio was additionally associated with lower TBLH Z-scores (P < .01). Thirteen girls (14%) and 9 boys (21%) had low bone mass. Girls with a BMI ≤17.5 kg/m(2) or both menstrual irregularity and a history of fracture were significantly more likely to have low bone mass. Boys with a BMI ≤17.5 kg/m(2) and belief that thinness improves performance were significantly more likely to have

  14. Connective tissue growth factor is expressed in bone marrow stromal cells and promotes interleukin-7-dependent B lymphopoiesis.

    PubMed

    Cheung, Laurence C; Strickland, Deborah H; Howlett, Meegan; Ford, Jette; Charles, Adrian K; Lyons, Karen M; Brigstock, David R; Goldschmeding, Roel; Cole, Catherine H; Alexander, Warren S; Kees, Ursula R

    2014-07-01

    Hematopoiesis occurs in a complex bone marrow microenvironment in which bone marrow stromal cells provide critical support to the process through direct cell contact and indirectly through the secretion of cytokines and growth factors. We report that connective tissue growth factor (Ctgf, also known as Ccn2) is highly expressed in murine bone marrow stromal cells. In contrast, connective tissue growth factor is barely detectable in unfractionated adult bone marrow cells. While connective tissue growth factor has been implicated in hematopoietic malignancies, and is known to play critical roles in skeletogenesis and regulation of bone marrow stromal cells, its role in hematopoiesis has not been described. Here we demonstrate that the absence of connective tissue growth factor in mice results in impaired hematopoiesis. Using a chimeric fetal liver transplantation model, we show that absence of connective tissue growth factor has an impact on B-cell development, in particular from pro-B to more mature stages, which is linked to a requirement for connective tissue growth factor in bone marrow stromal cells. Using in vitro culture systems, we demonstrate that connective tissue growth factor potentiates B-cell proliferation and promotes pro-B to pre-B differentiation in the presence of interleukin-7. This study provides a better understanding of the functions of connective tissue growth factor within the bone marrow, showing the dual regulatory role of the growth factor in skeletogenesis and in stage-specific B lymphopoiesis. Copyright© Ferrata Storti Foundation.

  15. Connective tissue growth factor is expressed in bone marrow stromal cells and promotes interleukin-7-dependent B lymphopoiesis

    PubMed Central

    Cheung, Laurence C.; Strickland, Deborah H.; Howlett, Meegan; Ford, Jette; Charles, Adrian K.; Lyons, Karen M.; Brigstock, David R.; Goldschmeding, Roel; Cole, Catherine H.; Alexander, Warren S.; Kees, Ursula R.

    2014-01-01

    Hematopoiesis occurs in a complex bone marrow microenvironment in which bone marrow stromal cells provide critical support to the process through direct cell contact and indirectly through the secretion of cytokines and growth factors. We report that connective tissue growth factor (Ctgf, also known as Ccn2) is highly expressed in murine bone marrow stromal cells. In contrast, connective tissue growth factor is barely detectable in unfractionated adult bone marrow cells. While connective tissue growth factor has been implicated in hematopoietic malignancies, and is known to play critical roles in skeletogenesis and regulation of bone marrow stromal cells, its role in hematopoiesis has not been described. Here we demonstrate that the absence of connective tissue growth factor in mice results in impaired hematopoiesis. Using a chimeric fetal liver transplantation model, we show that absence of connective tissue growth factor has an impact on B-cell development, in particular from pro-B to more mature stages, which is linked to a requirement for connective tissue growth factor in bone marrow stromal cells. Using in vitro culture systems, we demonstrate that connective tissue growth factor potentiates B-cell proliferation and promotes pro-B to pre-B differentiation in the presence of interleukin-7. This study provides a better understanding of the functions of connective tissue growth factor within the bone marrow, showing the dual regulatory role of the growth factor in skeletogenesis and in stage-specific B lymphopoiesis. PMID:24727816

  16. Effect of bone conduction transducer placement on distortion product otoacoustic emissions

    NASA Astrophysics Data System (ADS)

    Hazelbaker, Julie L.

    The purpose of this study was to develop a technique to determine the magnitude of bone conducted sound in the cochlea when stimuli are delivered from three different locations on the head. Distortion product otoacoustic emissions (DPOAE) at 1000 and 2000 Hz were used as tools to determine cochlear response to stimuli introduced via air conduction and bone conduction in three subjects. The bone conduction transducer was moved to three head locations (ipsilateral mastoid, contralateral mastoid and forehead). The intensity of the emissions elicited was compared. The differences in DPOAE magnitude created by varying the location of the bone conduction transducer were compared with behavioral threshold differences with the same transducers at the same locations. It was assumed that results of behavioral measures would provide a prediction of the relationship between air and bone conducted DPOAE. However, in the current study, this was not the case. Behavioral bone conduction threshold data did not predict differences in DPOAE at different bone conduction transducer locations. This was a somewhat surprising result and should be considered further in future studies examining the properties of DPOAE elicited by bone conduction. Additionally, a wide band noise masker was introduced to the non-test ear when bone conducted stimuli were introduced to make DPOAE and behavioral test conditions as similar as possible. No great suppression effects were noted across subjects for either frequency. This was likely due to the shape and intensity of the contralateral masked used.

  17. Clinical assessment of bone quality of human extraction sockets after conversion with growth factors.

    PubMed

    Ntounis, Athanasios; Geurs, Nico; Vassilopoulos, Philip; Reddy, Michael

    2015-01-01

    The study was conducted to evaluate the effect of mineralized freeze-dried bone allograft (FDBA), alone or in combination with growth factors in extraction sockets, on subjective assessment of bone quality during implant placement. Forty-one patients whose treatment plan involved extraction of anterior or premolar teeth were randomized into four groups: Group 1, collagen plug (control); Group 2, FDBA/β-tricalcium phosphate (β-TCP)/collagen plug; Group 3, FDBA/β-TCP/platelet-rich plasma (PRP)/collagen plug; Group 4, FDBA/β-TCP/recombinant human platelet-derived growth factor BB (rhPDGF-BB)/collagen plug. After 8 weeks of healing, implants were placed. The clinicians assessed bone quality according to the Misch classification. A benchtop calibration exercise test was conducted to evaluate agreement and accuracy of operators in recognizing different bone qualities. Differences were analyzed using one-way analysis of variance (ANOVA) or chi-square tests for continuous and categorical data. Pairwise comparisons were tested using least squares means (LS means). Spearman correlation coefficients were used to evaluate the relationship of bone growth with potential confounders. P < .05 was considered statistically significant. A simple (not weighted) kappa statistic was used to assess the agreement between raters. To assess accuracy in identifying bone quality, a chi-square test was used to compare the percent correct for each rater. The benchtop calibration exercise test demonstrated agreement among clinicians (0.75 and 0.92 between raters 1 and 2 and raters 1 and 3, respectively). Raters were more likely to identify the correct bone quality (P > .05). Inclusion of bone grafting is associated with a shift from D4 quality to D3 quality bone. Inclusion of PRP in bone grafting eliminates the incidence of D4 bone, establishing D3 and D2 quality bone as prevalent (56% vs. 42%, respectively). Inclusion of rhPDGF-BB and β-TCP in combination with the bone grafting has the

  18. Immobilization and Application of Electrospun Nanofiber Scaffold-based Growth Factor in Bone Tissue Engineering.

    PubMed

    Chen, Guobao; Lv, Yonggang

    2015-01-01

    Electrospun nanofibers have been extensively used in growth factor delivery and regenerative medicine due to many advantages including large surface area to volume ratio, high porosity, excellent loading capacity, ease of access and cost effectiveness. Their relatively large surface area is helpful for cell adhesion and growth factor loading, while storage and release of growth factor are essential to guide cellular behaviors and tissue formation and organization. In bone tissue engineering, growth factors are expected to transmit signals that stimulate cellular proliferation, migration, differentiation, metabolism, apoptosis and extracellular matrix (ECM) deposition. Bolus administration is not always an effective method for the delivery of growth factors because of their rapid diffusion from the target site and quick deactivation. Therefore, the integration of controlled release strategy within electrospun nanofibers can provide protection for growth factors against in vivo degradation, and can manipulate desired signal at an effective level with extended duration in local microenvironment to support tissue regeneration and repair which normally takes a much longer time. In this review, we provide an overview of growth factor delivery using biomimetic electrospun nanofiber scaffolds in bone tissue engineering. It begins with a brief introduction of different kinds of polymers that were used in electrospinning and their applications in bone tissue engineering. The review further focuses on the nanofiber-based growth factor delivery and summarizes the strategies of growth factors loading on the nanofiber scaffolds for bone tissue engineering applications. The perspectives on future challenges in this area are also pointed out.

  19. [The laboratory evaluation of pathogenic factors under retarded consolidation of fractures of bones of lower extremities].

    PubMed

    Stogov, V M; Kireeva, E A; Karasev, A G

    2014-12-01

    The study was carried out to comparatively analyze metabolic profile and content of growth factors in blood serum of patients with retarded consolidation of fractures of bones of lower extremities. The evaluation was applied to concentration of metabolites, growth factors and enzyme activity of blood serum in 13 patients with retarded consolidation of fractures of thigh and shank bones (main group). The comparative group included 14 patients with solid fractures of thigh and shank bones. The analysis established that as compared to patients with solid fractures of bones, in patients with retarded consolidation of fractures blood serum contained reliably higher concentration of triglycerides, products of glycolysis, epidermal growth factor and transforming growth factors TGF-α and TGF-β2. The content of vitamin E and insullin-like growth factor (IGF-1) was decreased The given markers can be labeled as potential markers of diagnostic and prognosis of development of retarded consolidation of fractures.

  20. The Loss of Activating Transcription Factor 4 (ATF4) Reduces Bone Toughness and Fracture Toughness

    PubMed Central

    Makowski, Alexander J.; Uppuganti, Sasidhar; Waader, Sandra A.; Whitehead, Jack M.; Rowland, Barbara J.; Granke, Mathilde; Mahadevan-Jansen, Anita; Yang, Xiangli; Nyman, Jeffry S.

    2014-01-01

    Even though age-related changes to bone tissue affecting fracture risk are well characterized, only a few matrix-related factors have been identified as important to maintaining fracture resistance. As a gene critical to osteoblast differentiation, activating transcription factor 4 (ATF4) is possibly one of the seimportant factors. To test the hypothesis that the loss of ATF4 affects the fracture resistance of bone beyond bone mass and structure, we harvested bones from Atf4+/+ and Atf4−/− littermates at 8 and 20 weeks of age (n≥9 per group) for bone assessment across several length scales. From whole bone mechanical tests in bending, femurs from Atf4−/− mice were found to be brittle with reduced toughness and fracture toughness compared to femurs from Atf4+/+ mice. However, there were no differences in material strength and in tissue hardness, as determined by nanoindentation, between the genotypes, irrespective age. Tissue mineral density of the cortex at the point of loading as determined by micro-computed tomography was also not significantly different. However, by analyzing local composition by Raman Spectroscopy (RS), bone tissue of Atf4−/− mice was found to have higher mineral to collagen ratio compared to wild-type tissue, primarily at 20 weeks of age. From RS analysis of intact femurs at 2 orthogonal orientations relative to the polarization axis of the laser, we also found that the organizational-sensitive peak ratio, ν1 Phosphate per Amide I, changed to a greater extent upon bone rotation for Atf4-deficient tissue, implying bone matrix organization may contribute to the brittleness phenotype. Target genes of ATF4 activity are not only important to osteoblast differentiation but also maintaining bone toughness and fracture toughness. PMID:24509412

  1. The loss of activating transcription factor 4 (ATF4) reduces bone toughness and fracture toughness.

    PubMed

    Makowski, Alexander J; Uppuganti, Sasidhar; Wadeer, Sandra A; Whitehead, Jack M; Rowland, Barbara J; Granke, Mathilde; Mahadevan-Jansen, Anita; Yang, Xiangli; Nyman, Jeffry S

    2014-05-01

    Even though age-related changes to bone tissue affecting fracture risk are well characterized, only a few matrix-related factors have been identified as important to maintaining fracture resistance. As a gene critical to osteoblast differentiation, activating transcription factor 4 (ATF4) is possibly one of these important factors. To test the hypothesis that the loss of ATF4 affects the fracture resistance of bone beyond bone mass and structure, we harvested bones from Atf4+/+ and Atf4-/- littermates at 8 and 20 weeks of age (n≥9 per group) for bone assessment across several length scales. From whole bone mechanical tests in bending, femurs from Atf4-/- mice were found to be brittle with reduced toughness and fracture toughness compared to femurs from Atf4+/+ mice. However, there were no differences in material strength and in tissue hardness, as determined by nanoindentation, between the genotypes, irrespective of age. Tissue mineral density of the cortex at the point of loading as determined by micro-computed tomography was also not significantly different. However, by analyzing local composition by Raman Spectroscopy (RS), bone tissue of Atf4-/- mice was found to have higher mineral to collagen ratio compared to wild-type tissue, primarily at 20 weeks of age. From RS analysis of intact femurs at 2 orthogonal orientations relative to the polarization axis of the laser, we also found that the organizational-sensitive peak ratio, ν1Phosphate per Amide I, changed to a greater extent upon bone rotation for Atf4-deficient tissue, implying bone matrix organization may contribute to the brittleness phenotype. Target genes of ATF4 activity are not only important to osteoblast differentiation but also in maintaining bone toughness and fracture toughness. Published by Elsevier Inc.

  2. The Nell-1 Growth Factor Stimulates Bone Formation by Purified Human Perivascular Cells

    PubMed Central

    Zhang, Xinli; Péault, Bruno; Chen, Weiwei; Li, Weiming; Corselli, Mirko; James, Aaron W.; Lee, Min; Siu, Ronald K.; Shen, Pang; Zheng, Zhong; Shen, Jia; Kwak, Jinny; Zara, Janette N.; Chen, Feng; Zhang, Hong; Yin, Zack; Wu, Ben; Ting, Kang

    2011-01-01

    The search for novel sources of stem cells other than bone marrow mesenchymal stem cells (MSCs) for bone regeneration and repair has been a critical endeavor. We previously established an effective protocol to homogeneously purify human pericytes from multiple fetal and adult tissues, including adipose, bone marrow, skeletal muscle, and pancreas, and identified pericytes as a primitive origin of human MSCs. In the present study, we further characterized the osteogenic potential of purified human pericytes combined with a novel osteoinductive growth factor, Nell-1. Purified pericytes grown on either standard culture ware or human cancellous bone chip (hCBC) scaffolds exhibited robust osteogenic differentiation in vitro. Using a nude mouse muscle pouch model, pericytes formed significant new bone in vivo as compared to scaffold alone (hCBC). Moreover, Nell-1 significantly increased pericyte osteogenic differentiation, both in vitro and in vivo. Interestingly, Nell-1 significantly induced pericyte proliferation and was observed to have pro-angiogenic effects, both in vitro and in vivo. These studies suggest that pericytes are a potential new cell source for future efforts in skeletal regenerative medicine, and that Nell-1 is a candidate growth factor able to induce pericyte osteogenic differentiation. PMID:21615216

  3. NF-kappaB and p53 are the dominant apoptosis-inducing transcription factors elicited by the HIV-1 envelope.

    PubMed

    Perfettini, Jean-Luc; Roumier, Thomas; Castedo, Maria; Larochette, Nathanael; Boya, Patricia; Raynal, Brigitte; Lazar, Vladimir; Ciccosanti, Fabiola; Nardacci, Roberta; Penninger, Josef; Piacentini, Mauro; Kroemer, Guido

    2004-03-01

    The coculture of cells expressing the HIV-1 envelope glycoprotein complex (Env) with cells expressing CD4 results into cell fusion, deregulated mitosis, and subsequent cell death. Here, we show that NF-kappaB, p53, and AP1 are activated in Env-elicited apoptosis. The nuclear factor kappaB (NF-kappaB) super repressor had an antimitotic and antiapoptotic effect and prevented the Env-elicited phosphorylation of p53 on serine 15 and 46, as well as the activation of AP1. Transfection with dominant-negative p53 abolished apoptosis and AP1 activation. Signs of NF-kappaB and p53 activation were also detected in lymph node biopsies from HIV-1-infected individuals. Microarrays revealed that most (85%) of the transcriptional effects of HIV-1 Env were blocked by the p53 inhibitor pifithrin-alpha. Macroarrays led to the identification of several Env-elicited, p53-dependent proapoptotic transcripts, in particular Puma, a proapoptotic "BH3-only" protein from the Bcl-2 family known to activate Bax/Bak. Down modulation of Puma by antisense oligonucleotides, as well as RNA interference of Bax and Bak, prevented Env-induced apoptosis. HIV-1-infected primary lymphoblasts up-regulated Puma in vitro. Moreover, circulating CD4+ lymphocytes from untreated, HIV-1-infected donors contained enhanced amounts of Puma protein, and these elevated Puma levels dropped upon antiretroviral therapy. Altogether, these data indicate that NF-kappaB and p53 cooperate as the dominant proapoptotic transcription factors participating in HIV-1 infection.

  4. Meningioma and bone hyperostosis: expression of bone stimulating factors and review of the literature.

    PubMed

    Di Cristofori, Andrea; Del Bene, Massimiliano; Locatelli, Marco; Boggio, Francesca; Ercoli, Giulia; Ferrero, Stefano; Del Gobbo, Alessandro

    2018-05-02

    Several hypothesis have been proposed in order to understand the mechanisms underlying the meningioma related hyperostosis. Objective of our study was to investigate the role of osteoprotegerin(OPG), insulin-like growth factor-1(IGF-1), endothelin-1(ET-1), Bone Morphogenetic Protein(BMP-2 and -4). A total of 149 patients (39 males and 110 females with a mean age of 62 years) that received surgery were included. Depending on the relationship with the bone, meningiomas were classified in hyperostotic, osteolytic, infiltrative and without relation with the bone. Expression of BMP-2,-4; OPG and IGF-1 was evaluated with tissue microarray analysis on the surgical sample. Our series included 132 cases of grade I meningioma, 14 cases of grade II and 3 cases of grade III (according WHO). Relying on pre-operative CT scan the cases were classified as follow: hyperostotic(n=11), osteolytic(n=11), infiltrative(n=15), without relation with the bone(n=108). Four cases were excluded from the statistical analysis. Using ROC curves analysis, we identified a 2% cut-off for IGF-1 mean value that discriminated between osteolytic and osteoblastic lesions: cases with IGF-1 mean expression less than 2% were classified as osteolytic(p=0.0046);while cases with OPG mean expression less than 10% were classified as osteolytic(p=0.048). No other significant relations were found. OPG and IGF-1 found to be associated with development of hyeprostosis. Preliminary findings suggest that hyperostosis can be caused by an overexpression of osteogenic molecules that influence the osteoblast/osteoclast activity. Based on our results, further studies on hyperostotic bony tissue in meningiomas are needed in order to better understand how meningiomas influence the bone overproduction. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Evaluation of factors related to bone disease in Polish children and adolescents with cystic fibrosis.

    PubMed

    Sands, Dorota; Mielus, Monika; Umławska, Wioleta; Lipowicz, Anna; Oralewska, Beata; Walkowiak, Jarosław

    2015-09-01

    The aim of the study was to evaluate factors related to bone formation and resorption in Polish children and adolescents with cystic fibrosis and to examine the effect of nutritional status, biochemical parameters and clinical status on bone mineral density. The study group consisted of 100 children and adolescents with cystic fibrosis with a mean age 13.4 years old. Anthropometric measurements, included body height, body mass and body mass index (BMI); bone mineral densitometry and biochemical testing were performed. Bone mineral density was measured using a dual-energy X-ray absorption densitometer. Biochemical tests included serum calcium, phosphorus, parathyroid hormone and vitamin D concentrations, as well as 24-h urine calcium and phosphorus excretion. Pulmonary function was evaluated using FEV1%, and clinical status was estimated using the Shwachman-Kulczycki score. Standardized body height, body mass and BMI were significantly lower than in the reference population. Mean serum vitamin D concentration was decreased. Pulmonary disease was generally mild, with a mean FEV1% of 81%. Multivariate linear regression revealed that the only factors that had a significant effect on bone marrow density were BMI and FEV1%. There were no significant correlations between bone mineral density and the results of any of the biochemical tests performed. Nutritional status and bone mineral density were significantly decreased in children and adolescents with cystic fibrosis. In spite of abnormalities in biochemical testing, the factors that were found to have the strongest effect on bone mineral density were standardized BMI and clinical status. Copyright © 2015. Published by Elsevier Urban & Partner Sp. z o.o.

  6. [Local injection of exogenous nerve growth factor improves early bone maturation of implants].

    PubMed

    Yao, Yang; Du, Yu; Gu, Xia; Guang, Meng-Kai; Huang, Bo; Gong, Ping

    2018-04-01

    To investigate the effects of nerve growth factor (NGF) in the osteogenic action of implants and the maturation and reconstruction changes in bone tissues in the early stage of osseointegration. The mouse implant model was established by placing titanium in the femoral head of the mouse and locally injecting NGF in the implant zone. On 1, 2 and 4 weeks after operation, stain samples were collected from animals using hematoxylin-eosin (HE) staining and Masson staining. The effect of NGF on the bone maturation was compared at different time points of early stage osseointegration. The results of HE and Masson staining indicated that the local injection of external NGF can up-regulate bone mass, amount of bone trabecula, and bone maturity in the mouse model. The mature bone rate in treatment group of 1 week and 4 weeks after operation were significantly higher than those in the control group (P<0.05). NGF can shorten the period of bone maturation.

  7. Bone involvement at diagnosis as a predictive factor in children with acute lymphoblastic leukemia.

    PubMed

    Tragiannidis, A; Vasileiou, E; Papageorgiou, M; Damianidou, L; Hatzipantelis, E; Gombakis, N; Giannopoulos, A

    2016-01-01

    Bone involvement represents a common symptom at diagnosis in children with acute lymphoblastic leukemia, and its prognostic value is not entirely clarified. The aim of this study was to evaluate bone involvement at diagnosis in children with acute lymphoblastic leukemia as a predictive factor and to correlate its presence with other demographic, clinical, and laboratory findings. We retrospectively reviewed the medical records of 97 children with acute lymphoblastic leukemia diagnosed from January 2005 to December 2014. The mean age of patients was 5.7 years, and 83 (85.6 %) of them were diagnosed with B-acute lymphoblastic leukemia. Among the 97 children, 46 (47.4 %) reported bone involvement at the time of diagnosis. Among children with B-acute lymphoblastic leukemia 43/83 (51.8 %) reported bone involvement, while among children with T-acute lymphoblastic leukemia only 3/14 (21.4 %) (p =0.04). Bone involvement was registered more frequently among males (30/59; 50.8 %) in comparison to females (16/38; 42.2 %) (p =0.414). The mean white blood cell count at diagnosis was lower among children with bone involvement (109,800/mm 3 vs. 184,700/mm 3 ) (p =0.092). The mean age of patients with bone involvement was four years, which differs significantly from those without bone involvement (p =0.029). Moreover, children with bone involvement at diagnosis were prednisone "good responders" (79.5 %) when compared with those without bone involvement (58.8 %) (p =0.046). Additionally, mean serum phosphate values were higher at diagnosis among children with bone involvement (5.3 mg/dl vs. 4.8 mg/dl, p =0.035). The presence of bone involvement at diagnosis is related with immunophenotype of B-acute lymphoblastic leukemia, lower mean age, lower mean white blood cell count and good prednisone response. According to presented data, we conclude that the presence of bone involvement at diagnosis represents a positive predictive factor for outcome/survival. Hippokratia 2016, 20(3): 227-230.

  8. Bone involvement at diagnosis as a predictive factor in children with acute lymphoblastic leukemia

    PubMed Central

    Tragiannidis, A; Vasileiou, E; Papageorgiou, M; Damianidou, L; Hatzipantelis, E; Gombakis, N; Giannopoulos, A

    2016-01-01

    Background: Bone involvement represents a common symptom at diagnosis in children with acute lymphoblastic leukemia, and its prognostic value is not entirely clarified. The aim of this study was to evaluate bone involvement at diagnosis in children with acute lymphoblastic leukemia as a predictive factor and to correlate its presence with other demographic, clinical, and laboratory findings. Methods: We retrospectively reviewed the medical records of 97 children with acute lymphoblastic leukemia diagnosed from January 2005 to December 2014. The mean age of patients was 5.7 years, and 83 (85.6 %) of them were diagnosed with B-acute lymphoblastic leukemia. Results: Among the 97 children, 46 (47.4 %) reported bone involvement at the time of diagnosis. Among children with B-acute lymphoblastic leukemia 43/83 (51.8 %) reported bone involvement, while among children with T-acute lymphoblastic leukemia only 3/14 (21.4 %) (p =0.04). Bone involvement was registered more frequently among males (30/59; 50.8 %) in comparison to females (16/38; 42.2 %) (p =0.414). The mean white blood cell count at diagnosis was lower among children with bone involvement (109,800/mm3 vs. 184,700/mm3) (p =0.092). The mean age of patients with bone involvement was four years, which differs significantly from those without bone involvement (p =0.029). Moreover, children with bone involvement at diagnosis were prednisone “good responders” (79.5 %) when compared with those without bone involvement (58.8 %) (p =0.046). Additionally, mean serum phosphate values were higher at diagnosis among children with bone involvement (5.3 mg/dl vs. 4.8 mg/dl, p =0.035). Conclusions: The presence of bone involvement at diagnosis is related with immunophenotype of B-acute lymphoblastic leukemia, lower mean age, lower mean white blood cell count and good prednisone response. According to presented data, we conclude that the presence of bone involvement at diagnosis represents a positive predictive factor for

  9. A prospective study of epidemiological risk factors for ingestion of fish bones in Singapore.

    PubMed

    Arulanandam, Shalini; Das De, Soumen; Kanagalingam, Jeevendra

    2015-06-01

    Ingestion of fish bones is a common clinical complaint among adult patients. The aim of this study was to evaluate the epidemiological and behavioural risk factors for fish bone ingestion. Between 2009 and 2010, a physician-administered questionnaire was administered to 112 consecutive patients who presented to the emergency department of an adult tertiary hospital with the complaint of fish bone ingestion. The wearing of dentures, the use of utensils to eat fish and the practice of deboning fish in one's mouth were found to be associated with an increased risk of fish bone ingestion. To prevent the occurrence of fish bone ingestion and its possible complications, at-risk populations should be advised on the precautions to take when eating boned fish.

  10. Association of obesity and systemic factors with bone marrow lesions at the knee: a systematic review.

    PubMed

    Lim, Yuan Z; Wang, Yuanyuan; Wluka, Anita E; Davies-Tuck, Miranda L; Hanna, Fahad; Urquhart, Donna M; Cicuttini, Flavia M

    2014-04-01

    The objective of this study was to systematically review the literature to determine whether obesity and systemic factors, including age, gender, heritability, dietary factors, smoking, serum and urine biomarkers of cartilage or bone metabolism, bone-related factors, and medication, are associated with knee bone marrow lesions (BMLs) identified on magnetic resonance imaging in asymptomatic pre-osteoarthritis and osteoarthritis populations. Electronic searches of MEDLINE and EMBASE were performed from January 1, 1996 to September 30, 2012 using the following keywords: bone marrow lesion(s), bone marrow (o)edema, osteoarthritis, and knee. Studies examining obesity and non-biomechanical factors in relation to the presence, incidence, or change in BMLs were included. Two independent reviewers extracted data and assessed methodological quality of selected studies. Due to the heterogeneity of the studies, we performed a best evidence synthesis. Among 30 studies, 17 were considered high quality. The study populations were heterogeneous in terms of symptoms and radiographic knee osteoarthritis. There was strong evidence for an association between serum lipids and BMLs and no association between age and BMLs. There was moderate evidence for a relationship between obesity and BMLs. There was limited evidence for gender, smoking, C-telopeptide of type I collagen, anti-bone-resorptive treatments, licofelone, and chondroitin sulfate. There was a paucity of evidence for heritability and conflicting evidence for dietary fatty acids. There is strong evidence for serum lipids and moderate evidence for obesity as risk factors for knee BMLs. Given the role of BMLs in the pathogenesis of knee osteoarthritis, identification of modifiable risk factors of BMLs and therapeutic interventions targeting BMLs has the potential to reduce the burden of knee osteoarthritis. © 2013 Published by Elsevier Inc.

  11. Surgical and Patient Factors Affecting Marginal Bone Levels Around Dental Implants: A Comprehensive Overview of Systematic Reviews.

    PubMed

    Ting, Miriam; Tenaglia, Matthew S; Jones, Gary H; Suzuki, Jon B

    2017-04-01

    The objective of this systematic review was to perform a comprehensive overview of systematic reviews and meta-analyses of surgical and patient factors affecting marginal bone loss around osseointegrated dental implants in humans. Electronic databases were searched for systematic reviews and meta-analyses published up to November 2015. Of the 41 articles selected, 11 evaluated implant factors, 10 evaluated patient factors, 19 evaluated surgical protocol-related factors, and one evaluated all three factors. The chosen studies were AMSTAR rated for quality. The following parameters have statistically significant effect on marginal bone loss: (1) marginal bone loss was significantly more in patients with periodontitis than in periodontally healthy patients; (2) significantly greater in generalized aggressive periodontitis patients compared with chronic periodontitis patients; (3) significantly less in alveolar socket preservation techniques; (4) significantly more in alveolar ridge augmentation sites; (5) significantly more in men than in women; (6) significantly more in smokers than in nonsmokers; and (7) smokers also have significantly more marginal bone loss in the maxilla than in the mandible. Knowledge of the surgical and patient factors that affect marginal bone loss can aid the clinician in making informed choices in selecting implant treatment options that will enhance the longevity and long-term success of their implant-supported cases.

  12. Norovirus P particle efficiently elicits innate, humoral and cellular immunity.

    PubMed

    Fang, Hao; Tan, Ming; Xia, Ming; Wang, Leyi; Jiang, Xi

    2013-01-01

    Norovirus (NoV) P domain complexes, the 24 mer P particles and the P dimers, induced effective humoral immunity, but their role in the cellular immune responses remained unclear. We reported here a study on cellular immune responses of the two P domain complexes in comparison with the virus-like particle (VLP) of a GII.4 NoV (VA387) in mice. The P domain complexes induced significant central memory CD4(+) T cell phenotypes (CD4(+) CD44(+) CD62L(+) CCR7(+)) and activated polyclonal CD4(+) T cells as shown by production of Interleukin (IL)-2, Interferon (IFN)-γ, and Tumor Necrosis Factor (TNF)-α. Most importantly, VA387-specific CD4(+) T cell epitope induced a production of IFN-γ, indicating an antigen-specific CD4(+) T cell response in P domain complex-immunized mice. Furthermore, P domain complexes efficiently induced bone marrow-derived dendritic cell (BMDC) maturation, evidenced by up-regulation of co-stimulatory and MHC class II molecules, as well as production of IL-12 and IL-1β. Finally, P domain complex-induced mature dendritic cells (DCs) elicited proliferation of specific CD4(+) T cells targeting VA387 P domain. Overall, we conclude that the NoV P domain complexes are efficiently presented by DCs to elicit not only humoral but also cellular immune responses against NoVs. Since the P particle is highly effective for both humoral and cellular immune responses and easily produced in Escherichia coli (E. coli), it is a good choice of vaccine against NoVs and a vaccine platform against other diseases.

  13. The effects of tumour necrosis factor-α on bone cells involved in periodontal alveolar bone loss; osteoclasts, osteoblasts and osteocytes.

    PubMed

    Algate, K; Haynes, D R; Bartold, P M; Crotti, T N; Cantley, M D

    2016-10-01

    Periodontitis is the most common bone loss pathology in adults and if left untreated is responsible for premature tooth loss. Cytokines, such as tumour necrosis factor-α (TNFα), involved in the chronic inflammatory response within the periodontal gingiva, significantly influence the normal bone remodelling processes. In this review, the effects of TNFα on bone metabolism in periodontitis are evaluated in relation to its direct and indirect actions on bone cells including osteoclasts, osteoblasts and osteocytes. Evidence published to date suggests a potent catabolic role for TNFα through the stimulation of osteoclastic bone resorption as well as the suppression of osteoblastic bone formation and osteocytic survival. However, the extent and timing of TNFα exposure in vitro and in vivo greatly influences its effect on skeletal cells, with contradictory anabolic activity observed with TNFα in a number of studies. None the less, it is evident that managing the chronic inflammatory response in addition to the deregulated bone metabolism is required to improve periodontal and inflammatory bone loss treatments‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Advancing osteochondral tissue engineering: bone morphogenetic protein, transforming growth factor, and fibroblast growth factor signaling drive ordered differentiation of periosteal cells resulting in stable cartilage and bone formation in vivo.

    PubMed

    Mendes, L F; Katagiri, H; Tam, W L; Chai, Y C; Geris, L; Roberts, S J; Luyten, F P

    2018-02-21

    Chondrogenic mesenchymal stem cells (MSCs) have not yet been used to address the clinical demands of large osteochondral joint surface defects. In this study, self-assembling tissue intermediates (TIs) derived from human periosteum-derived stem/progenitor cells (hPDCs) were generated and validated for stable cartilage formation in vivo using two different animal models. hPDCs were aggregated and cultured in the presence of a novel growth factor (GF) cocktail comprising of transforming growth factor (TGF)-β1, bone morphogenetic protein (BMP)2, growth differentiation factor (GDF)5, BMP6, and fibroblast growth factor (FGF)2. Quantitative polymerase chain reaction (PCR) and immunohistochemistry were used to study in vitro differentiation. Aggregates were then implanted ectopically in nude mice and orthotopically in critical-size osteochondral defects in nude rats and evaluated by microcomputed tomography (µCT) and immunohistochemistry. Gene expression analysis after 28 days of in vitro culture revealed the expression of early and late chondrogenic markers and a significant upregulation of NOGGIN as compared to human articular chondrocytes (hACs). Histological examination revealed a bilayered structure comprising of chondrocytes at different stages of maturity. Ectopically, TIs generated both bone and mineralized cartilage at 8 weeks after implantation. Osteochondral defects treated with TIs displayed glycosaminoglycan (GAG) production, type-II collagen, and lubricin expression. Immunostaining for human nuclei protein suggested that hPDCs contributed to both subchondral bone and articular cartilage repair. Our data indicate that in vitro derived osteochondral-like tissues can be generated from hPDCs, which are capable of producing bone and cartilage ectopically and behave orthotopically as osteochondral units.

  15. Controlled Dual Growth Factor Delivery From Microparticles Incorporated Within Human Bone Marrow-Derived Mesenchymal Stem Cell Aggregates for Enhanced Bone Tissue Engineering via Endochondral Ossification.

    PubMed

    Dang, Phuong N; Dwivedi, Neha; Phillips, Lauren M; Yu, Xiaohua; Herberg, Samuel; Bowerman, Caitlin; Solorio, Loran D; Murphy, William L; Alsberg, Eben

    2016-02-01

    Bone tissue engineering via endochondral ossification has been explored by chondrogenically priming cells using soluble mediators for at least 3 weeks to produce a hypertrophic cartilage template. Although recapitulation of endochondral ossification has been achieved, long-term in vitro culture is required for priming cells through repeated supplementation of inductive factors in the media. To address this challenge, a microparticle-based growth factor delivery system was engineered to drive endochondral ossification within human bone marrow-derived mesenchymal stem cell (hMSC) aggregates. Sequential exogenous presentation of soluble transforming growth factor-β1 (TGF-β1) and bone morphogenetic protein-2 (BMP-2) at various defined time courses resulted in varying degrees of chondrogenesis and osteogenesis as demonstrated by glycosaminoglycan and calcium content. The time course that best induced endochondral ossification was used to guide the development of the microparticle-based controlled delivery system for TGF-β1 and BMP-2. Gelatin microparticles capable of relatively rapid release of TGF-β1 and mineral-coated hydroxyapatite microparticles permitting more sustained release of BMP-2 were then incorporated within hMSC aggregates and cultured for 5 weeks following the predetermined time course for sequential presentation of bioactive signals. Compared with cell-only aggregates treated with exogenous growth factors, aggregates with incorporated TGF-β1- and BMP-2-loaded microparticles exhibited enhanced chondrogenesis and alkaline phosphatase activity at week 2 and a greater degree of mineralization by week 5. Staining for types I and II collagen, osteopontin, and osteocalcin revealed the presence of cartilage and bone. This microparticle-incorporated system has potential as a readily implantable therapy for healing bone defects without the need for long-term in vitro chondrogenic priming. Significance: This study demonstrates the regulation of chondrogenesis

  16. The effects of improved metabolic risk factors on bone turnover markers after 12 weeks of simvastatin treatment with or without exercise.

    PubMed

    Jiang, Jun; Boyle, Leryn J; Mikus, Catherine R; Oberlin, Douglas J; Fletcher, Justin A; Thyfault, John P; Hinton, Pamela S

    2014-11-01

    Emerging evidence supports an association between metabolic risk factors and bone turnover. Statins and exercise independently improve metabolic risk factors; however whether improvements in metabolic risk factor affects bone turnover is unknown. The purpose of the present study was to: 1) evaluate the relationship between metabolic risk factors and bone turnover; and 2) determine if improvements in metabolic risk factors after 12 weeks of statin treatment, exercise or the combination affect bone turnover. Fifty participants with ≥2 metabolic syndrome defining characteristics were randomly assigned to one of three groups: statin (STAT: simvastatin, 40 mg/day), exercise (EX: brisk walking and/or slow jogging, 45 minutes/day, 5 days/week), or the combination (STAT+EX). Body composition and whole body bone mineral density were measured with dual energy X-ray absorptiometry. Serum markers of bone formation (bone specific alkaline phosphatase, BAP; osteocalcin, OC), resorption (C-terminal peptide of type I collagen, CTX) and metabolic risk factors were determined. Two-factor (time, group) repeated-measures ANCOVA was used to examine changes of metabolic risk factors and bone turnover. General linear models were used to determine the effect of pre-treatment metabolic risk factors on post-treatment bone turnover marker outcomes. Participants with ≥4 metabolic syndrome defining characteristics had lower pre-treatment OC than those with 3 or fewer. OC was negatively correlated with glucose, and CTX was positively correlated with cholesterol. STAT or STAT+EX lowered total and LDL cholesterol. The OC to CTX ratio decreased in all groups with no other significant changes in bone turnover. Higher pre-treatment insulin or body fat predicted a greater CTX reduction and a greater BAP/CTX increase. Metabolic risk factors were negatively associated with bone turnover markers. Short-term statin treatment with or without exercise lowered cholesterol and all treatments had a small

  17. Factors associated with appendicular bone mass in older women. The Study of Osteoporotic Fractures Research Group.

    PubMed

    Bauer, D C; Browner, W S; Cauley, J A; Orwoll, E S; Scott, J C; Black, D M; Tao, J L; Cummings, S R

    1993-05-01

    To determine the factors associated with appendicular bone mass in older women. Cross-sectional analysis of baseline data collected for a multicenter, prospective study of osteoporotic fractures. Four clinical centers in Baltimore, Maryland; Minneapolis, Minnesota; Portland, Oregon; and the Monongahela valley, Pennsylvania. A total of 9704 ambulatory, nonblack women, ages 65 years or older, recruited from population-based listings. Demographic and historical information and anthropometric measurements were obtained from a baseline questionnaire, interview, and examination. Single-photon absorptiometry scans were obtained at three sites: the distal radius, midradius, and calcaneus. Multivariate associations with bone mass were first examined in a randomly selected half of the cohort (training group) and were then tested on the other half of the cohort (validation group). In order of decreasing strength of association, estrogen use, non-insulin-dependent diabetes, thiazide use, increased weight, greater muscle strength, later age at menopause, and greater height were independently associated with higher bone mass. Gastric surgery, age, history of maternal fracture, smoking, and caffeine intake were associated with lower bone mass (all P < 0.05). For example, we found that 2 or more years of estrogen use was associated with a 7.2% increase in distal radius bone mass, whereas gastrectomy was associated with an 8.2% decrease in bone mass. The associations between bone mass and dietary calcium intake and rheumatoid arthritis were inconsistent. Alcohol use, physical activity, use of calcium supplements, pregnancy, breast-feeding, parental nationality, and hair color were among the many variables not associated with bone mass. Multivariate models accounted for 20% to 35% of the total variance of bone mass. A large number of factors influence the bone mass of elderly women; however, age, weight, muscle strength, and estrogen use are the most important factors.

  18. Prefabricated bone flap: an experimental study comparing deep-frozen and lyophilized-demineralized allogenic bones and tissue expression of transforming growth factor β.

    PubMed

    Rodrigues, Leandro; dos Reis, Luciene Machado; Denadai, Rafael; Raposo-Amaral, Cassio Eduardo; Alonso, Nivaldo; Ferreira, Marcus Castro; Jorgetti, Vanda

    2013-11-01

    Extensive bone defects are still a challenge for reconstructive surgery. Allogenic bones can be an alternative with no donor area morbidity and unlimited amount of tissue. Better results can be achieved after allogenic bone preparation and adding a vascular supply, which can be done along with flap prefabrication. The purpose of this study was to evaluate demineralized/lyophilized and deep-frozen allogenic bones used for flap prefabrication and the tissue expression of transforming growth factor β (TGF-β) in these bone fragments. Fifty-six Wistar rat bone diaphyses were prepared and distributed in 4 groups: demineralized/lyophilized (experimental group 1 and control group 2) and deep freezing (experimental group 3 and control group 4). Two bone segments (one of each group) were implanted in rats to prefabricate flaps using superficial epigastric vessels (experimental groups) or only transferred as grafts (control groups). These fragments remained in their respective inguinal regions until the death that occurred at 2, 4, and 6 weeks after the operation. Semiquantitative histologic (tetracycline marking, cortical resorption, number of giant cells, and vascularization) and histomorphometrical quantitative (osteoid thickness, cortical thickness, and fibrosis thickness) analyses were performed. Transforming growth factor β immunohistochemistry staining was also performed. Group 1 fragments presented an osteoid matrix on their external surface in all periods. Cartilage formation and mineralization areas were also noticed. These findings were not observed in group 3 fragments. Group 1 had more mineralization and double tetracycline marks, which were almost not seen in group 3. Cortical resorption and the number of giant cells were greater in group 3 in all periods. Vascularization and fibrosis thickness were similar in both experimental groups. Group 1 had more intense TGF-β staining within 2 weeks of study. Nevertheless, from 4 weeks onward, group 3 presented

  19. Physical activity and dark skin tone: protective factors against low bone mass in Mexican men.

    PubMed

    Vivanco-Muñoz, Nalleli; Jo, Talavera; Gerardo, Huitron-Bravo; Juan, Tamayo; Clark, Patricia

    2012-01-01

    A cross-sectional study was conducted on 268 Mexican men between the ages of 13 and 80 yr to evaluate the association of clinical factors related with bone mass. Men from high schools, universities, and retirement homes were invited to participate. Body mass index (BMI) was measured, and bone mineral density (BMD) was assessed using dual-energy X-ray absorptiometry for L1-L4 and total hip. Factors related to bone mass were assessed by questionnaire and analyzed using a logistic regression model. Demographic factors (age, education, and occupation), clinical data (BMI, skin tone, previous fracture, history of osteoporosis [OP], and history of fractures), and lifestyle variables (diet, physical activity, sun exposure, and smoking) were evaluated. Physical activity (≥ 60 min/5 times a week) reduced the risk for low BMD for age, osteopenia, and OP at the spine and total hip (odds ratio [OR]: 0.276; 95% confidence interval [CI]: 0.099-0.769; p=0.014; and OR: 0.184; 95% CI: 0.04-0.849; p=0.03, respectively). Dark skin tone was a protective factor, decreasing the risk by up to 70%. In this population of healthy Mexican men (aged 13-80 yr), dark skin and physical activity were protective factors against low bone mass. Copyright © 2012 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  20. Loss of transcription factor early growth response gene 1 results in impaired endochondral bone repair

    PubMed Central

    Reumann, Marie K.; Strachna, Olga; Yagerman, Sarah; Torrecilla, Daniel; Kim, Jihye; Doty, Steven B.; Lukashova, Lyudmila; Boskey, Adele L.; Mayer-Kuckuk, Philipp

    2011-01-01

    Transcription factors that play a role in ossification during development are expected to participate in postnatal fracture repair since the endochondral bone formation that occurs in embryos is recapitulated during fracture repair. However, inherent differences exist between bone development and fracture repair, including a sudden disruption of tissue integrity followed by an inflammatory response. This raises the possibility that repair-specific transcription factors participate in bone healing. Here, we assessed the consequence of loss of early growth response gene 1 (EGR-1) on endochondral bone healing because this transcription factor has been shown to modulate repair in vascularized tissues. Model fractures were created in ribs of wild type (wt) and EGR-1−/− mice. Differences in tissue morphology and composition between these two animal groups were followed over 28 post fracture days (PFDs). In wt mice, bone healing occurred in healing phases characteristic of endochondral bone repair. A similar healing sequence was observed in EGR-1−/− mice but was impaired by alterations. A persistent accumulation of fibrin between the disconnected bones was observed on PFD7 and remained pronounced in the callus on PFD14. Additionally, the PFD14 callus was abnormally enlarged and showed increased deposition of mineralized tissue. Cartilage ossification in the callus was associated with hyper-vascularity and -proliferation. Moreover, cell deposits located in proximity to the callus within skeletal muscle were detected on PFD14. Despite these impairments, repair in EGR-1−/− callus advanced on PFD28, suggesting EGR-1 is not essential for healing. Together, this study provides genetic evidence that EGR-1 is a pleiotropic regulator of endochondral fracture repair. PMID:21726677

  1. Loss of transcription factor early growth response gene 1 results in impaired endochondral bone repair.

    PubMed

    Reumann, Marie K; Strachna, Olga; Yagerman, Sarah; Torrecilla, Daniel; Kim, Jihye; Doty, Stephen B; Lukashova, Lyudmila; Boskey, Adele L; Mayer-Kuckuk, Philipp

    2011-10-01

    Transcription factors that play a role in ossification during development are expected to participate in postnatal fracture repair since the endochondral bone formation that occurs in embryos is recapitulated during fracture repair. However, inherent differences exist between bone development and fracture repair, including a sudden disruption of tissue integrity followed by an inflammatory response. This raises the possibility that repair-specific transcription factors participate in bone healing. Here, we assessed the consequence of loss of early growth response gene 1 (EGR-1) on endochondral bone healing because this transcription factor has been shown to modulate repair in vascularized tissues. Model fractures were created in ribs of wild type (wt) and EGR-1(-/-) mice. Differences in tissue morphology and composition between these two animal groups were followed over 28 post fracture days (PFDs). In wt mice, bone healing occurred in healing phases characteristic of endochondral bone repair. A similar healing sequence was observed in EGR-1(-/-) mice but was impaired by alterations. A persistent accumulation of fibrin between the disconnected bones was observed on PFD7 and remained pronounced in the callus on PFD14. Additionally, the PFD14 callus was abnormally enlarged and showed increased deposition of mineralized tissue. Cartilage ossification in the callus was associated with hyper-vascularity and -proliferation. Moreover, cell deposits located in proximity to the callus within skeletal muscle were detected on PFD14. Despite these impairments, repair in EGR-1(-/-) callus advanced on PFD28, suggesting EGR-1 is not essential for healing. Together, this study provides genetic evidence that EGR-1 is a pleiotropic regulator of endochondral fracture repair. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Murine models of breast cancer bone metastasis

    PubMed Central

    Wright, Laura E; Ottewell, Penelope D; Rucci, Nadia; Peyruchaud, Olivier; Pagnotti, Gabriel M; Chiechi, Antonella; Buijs, Jeroen T; Sterling, Julie A

    2016-01-01

    Bone metastases cause significant morbidity and mortality in late-stage breast cancer patients and are currently considered incurable. Investigators rely on translational models to better understand the pathogenesis of skeletal complications of malignancy in order to identify therapeutic targets that may ultimately prevent and treat solid tumor metastasis to bone. Many experimental models of breast cancer bone metastases are in use today, each with its own caveats. In this methods review, we characterize the bone phenotype of commonly utilized human- and murine-derived breast cell lines that elicit osteoblastic and/or osteolytic destruction of bone in mice and report methods for optimizing tumor-take in murine models of bone metastasis. We then provide protocols for four of the most common xenograft and syngeneic inoculation routes for modeling breast cancer metastasis to the skeleton in mice, including the intra-cardiac, intra-arterial, orthotopic and intra-tibial methods of tumor cell injection. Recommendations for in vivo and ex vivo assessment of tumor progression and bone destruction are provided, followed by discussion of the strengths and limitations of the available tools and translational models that aid investigators in the study of breast cancer metastasis to bone. PMID:27867497

  3. Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: A review

    PubMed Central

    Bose, Susmita; Tarafder, Solaiman

    2012-01-01

    Calcium phosphates (CaPs) are the most widely used bone substitutes in bone tissue engineering due to their compositional similarities to bone mineral and excellent biocompatibility. In recent years, CaPs, especially hydroxyapatite and tricalcium phosphate, have attracted significant interest in simultaneous use as bone substitute and drug delivery vehicle, adding a new dimension to their application. CaPs are more biocompatible than many other ceramic and inorganic nanoparticles. Their biocompatibility and variable stoichiometry, thus surface charge density, functionality, and dissolution properties, make them suitable for both drug and growth factor delivery. CaP matrices and scaffolds have been reported to act as delivery vehicles for growth factors and drugs in bone tissue engineering. Local drug delivery in musculoskeletal disorder treatments can address some of the critical issues more effectively and efficiently than the systemic delivery. CaPs are used as coatings on metallic implants, CaP cements, and custom designed scaffolds to treat musculoskeletal disorders. This review highlights some of the current drug and growth factor delivery approaches and critical issues using CaP particles, coatings, cements, and scaffolds towards orthopedic and dental applications. PMID:22127225

  4. Bone matrix to growth factors: location, location, location

    PubMed Central

    Todorovic, Vesna

    2010-01-01

    The demonstration that fibrillin-1 mutations perturb transforming growth factor (TGF)–β bioavailability/signaling in Marfan syndrome (MFS) changed the view of the extracellular matrix as a passive structural support to a dynamic modulator of cell behavior. In this issue, Nistala et al. (2010. J. Cell Biol. doi: 10.1083/jcb.201003089) advance this concept by demonstrating how fibrillin-1 and -2 regulate TGF-β and bone morphogenetic protein (BMP) action during osteoblast maturation. PMID:20855500

  5. Transforming growth factor (TGF. beta. ) decreases the proliferation of human bone marrow fibroblasts by inhibiting the platelet-derived growth factor (PDGF) binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryckaert, M.C.; Tobelem, G.; Lindroth, M.

    1988-12-01

    Human bone marrow fibroblasts were cultivated and characterized by immunofluorescent staining and electron microscopy. Their interactions with PDGF and TGF{beta} were studied. While a positive intracellular antifibronectin staining was observed, the cultured cells were not labeled with specific antibodies toward factor VIII von Willebrand factor (F VIII/vWF), desmin, and macrophage antigen. The binding of pure human PDGF to the cultured bone marrow fibroblasts was investigated. Addition of an excess of unlabeled PDGF decreased the binding to 75 and 80%, which means that the nonspecific binding represented 20-25% of total binding, whereas epidermal growth factor (EGF) had no effect. Two classesmore » of sites were detected by Scatchard analysis. The stimulation of DNA synthesis of PDGF was quantified by ({sup 3}H)thymidine incorporation. The results suggested that PDGF and TGF{beta} could modulate the growth of bone marrow fibroblasts.« less

  6. Rapamycin and the transcription factor C/EBPbeta as a switch in osteoclast differentiation: implications for lytic bone diseases.

    PubMed

    Smink, Jeske J; Leutz, Achim

    2010-03-01

    Lytic bone diseases and in particular osteoporosis are common age-related diseases characterized by enhanced bone fragility due to loss of bone density. Increasingly, osteoporosis poses a major global health-care problem due to the growth of the elderly population. Recently, it was found that the gene regulatory transcription factor CCAAT/enhancer binding protein beta (C/EBPbeta) is involved in bone metabolism. C/EBPbeta occurs as different protein isoforms of variable amino terminal length, and regulation of the C/EBPbeta isoform ratio balance was found to represent an important factor in osteoclast differentiation and bone homeostasis. Interestingly, adjustment of the C/EBPbeta isoform ratio by the process of translational control is downstream of the mammalian target of rapamycin kinase (mTOR), a sensor of the nutritional status and a target of immunosuppressive and anticancer drugs. The findings imply that modulating the process of translational control of C/EBPbeta isoform expression could represent a novel therapeutic approach in osteolytic bone diseases, including cancer and infection-induced bone loss.

  7. Stimulation of Bone Formation in Cortical Bone of Mice Treated with a Receptor Activator of Nuclear Factor-κB Ligand (RANKL)-binding Peptide That Possesses Osteoclastogenesis Inhibitory Activity

    PubMed Central

    Furuya, Yuriko; Inagaki, Atsushi; Khan, Masud; Mori, Kaoru; Penninger, Josef M.; Nakamura, Midori; Udagawa, Nobuyuki; Aoki, Kazuhiro; Ohya, Keiichi; Uchida, Kohji; Yasuda, Hisataka

    2013-01-01

    To date, parathyroid hormone is the only clinically available bone anabolic drug. The major difficulty in the development of such drugs is the lack of clarification of the mechanisms regulating osteoblast differentiation and bone formation. Here, we report a peptide (W9) known to abrogate osteoclast differentiation in vivo via blocking receptor activator of nuclear factor-κB ligand (RANKL)-RANK signaling that we surprisingly found exhibits a bone anabolic effect in vivo. Subcutaneous administration of W9 three times/day for 5 days significantly augmented bone mineral density in mouse cortical bone. Histomorphometric analysis showed a decrease in osteoclastogenesis in the distal femoral metaphysis and a significant increase in bone formation in the femoral diaphysis. Our findings suggest that W9 exerts bone anabolic activity. To clarify the mechanisms involved in this activity, we investigated the effects of W9 on osteoblast differentiation/mineralization in MC3T3-E1 (E1) cells. W9 markedly increased alkaline phosphatase (a marker enzyme of osteoblasts) activity and mineralization as shown by alizarin red staining. Gene expression of several osteogenesis-related factors was increased in W9-treated E1 cells. Addition of W9 activated p38 MAPK and Smad1/5/8 in E1 cells, and W9 showed osteogenesis stimulatory activity synergistically with BMP-2 in vitro and ectopic bone formation. Knockdown of RANKL expression in E1 cells reduced the effect of W9. Furthermore, W9 showed a weak effect on RANKL-deficient osteoblasts in alkaline phosphatase assay. Taken together, our findings suggest that this peptide may be useful for the treatment of bone diseases, and W9 achieves its bone anabolic activity through RANKL on osteoblasts accompanied by production of several autocrine factors. PMID:23319583

  8. Factors associated with bone turnover and speed of sound in early and late-pubertal females.

    PubMed

    Klentrou, Panagiota; Ludwa, Izabella A; Falk, Bareket

    2011-10-01

    This cross-sectional study examines whether maturity, body composition, physical activity, dietary intake, and hormonal concentrations are related to markers of bone turnover and tibial speed of sound (tSOS) in premenarcheal (n = 20, 10.1 ± 1.1 years) and postmenarcheal girls (n = 28, aged 15.0 ± 1.4 years). Somatic maturity was evaluated using years from age of peak height velocity (aPHV). Daily dietary intake was assessed with a 24-h recall interview, and moderate to very vigorous physical activity (MVPA) was measured using accelerometry. Plasma levels of 25-OH vitamin D, serum levels of insulin-like growth-factor 1 (IGF-1) and leptin, and serum levels of bone turnover markers including osteocalcin (OC), bone-specific alkaline phosphatase (BAP) and cross-linked N-teleopeptide of type I collagen (NTX) were measured using ELISA. OC, BAP, and NTX were significantly higher while IGF-1 and tSOS were lower in the premenarcheal group. The premenarcheal girls were more active and had higher daily energy intake relative to their body mass but there were no group differences in body mass index percentile. Maturity predicted 40%-57% of the variance in bone turnover markers. Additionally, daily energy intake was a significant predictor of OC, especially in the postmenarcheal group. IGF-1 and MVPA were significant predictors of BAP in the group as a whole. However, examined separately, IGF-1 was a predictor of BAP in the premenarcheal group while MVPA was a predictor in the postmenarcheal group. Adiposity and leptin were both negative predictors of tSOS, with leptin being specifically predictive in the postmenarcheal group. In conclusion, while maturity was the strongest predictor of bone markers and tSOS, dietary intake, physical activity, body composition, and hormonal factors further contribute to the variance in bone turnover and bone SOS in young Caucasian females. Further, the predicting factors of bone turnover and tSOS were different within each maturity group.

  9. Epidemiologic Analyses of Risk Factors for Bone Loss and Recovery Related to Long-Duration Space Flight

    NASA Technical Reports Server (NTRS)

    Sibonga, Jean; Amin, Shreyasee

    2010-01-01

    AIM 1: To investigate the risk of microgravity exposure on long-term changes in bone health and fracture risk. compare data from crew members ("observed") with what would be "expected" from Rochester Bone Health Study. AIM 2: To provide a summary of current evidence available on potential risk factors for bone loss, recovery & fracture following long-duration space flight. integrative review of all data pre, in-, and post-flight across disciplines (cardiovascular, nutrition, muscle, etc.) and their relation to bone loss and recovery

  10. Insulin-like growth factor-II regulates bone sialoprotein gene transcription.

    PubMed

    Choe, Jin; Sasaki, Yoko; Zhou, Liming; Takai, Hideki; Nakayama, Yohei; Ogata, Yorimasa

    2016-09-01

    Insulin-like growth factor-I and -II (IGF-I and IGF-II) have been found in bone extracts of several different species, and IGF-II is the most abundant growth factor stored in bone. Bone sialoprotein (BSP) is a noncollagenous extracellular matrix glycoprotein associated with mineralized connective tissues. In this study, we have investigated the regulation of BSP transcription by IGF-II in rat osteoblast-like ROS17/2.8 cells. IGF-II (50 ng/ml) increased BSP mRNA and protein levels after 6-h stimulation, and enhanced luciferase activities of the constructs pLUC3 (-116 to +60), pLUC4 (-425 to +60), pLUC5 (-801 to +60) and pLUC6 (-938 to +60). Effects of IGF-II were inhibited by tyrosine kinase, extracellular signal-regulated kinase1/2 and phosphatidylinositol 3-kinase inhibitors, and abrogated by 2-bp mutations in cAMP response element (CRE), FGF2 response element (FRE) and homeodomain protein-binding site (HOX). The results of gel shift assays showed that nuclear proteins binding to CRE, FRE and HOX sites were increased by IGF-II (50 ng/ml) at 3 and 6 h. CREB1, phospho-CREB1, c-Fos and c-Jun antibodies disrupted the formation of the CRE-protein complexes. Dlx5 and Runx2 antibodies disrupted the FRE- and HOX-protein complex formations. These studies therefore demonstrated that IGF-II increased BSP transcription by targeting CRE, FRE and HOX elements in the proximal promoter of the rat BSP gene. Moreover, phospho-CREB1, c-Fos, c-Jun, Dlx5 and Runx2 transcription factors appear to be key regulators of IGF-II effects on BSP transcription.

  11. ELICIT: An alternative imprecise weight elicitation technique for use in multi-criteria decision analysis for healthcare.

    PubMed

    Diaby, Vakaramoko; Sanogo, Vassiki; Moussa, Kouame Richard

    2016-01-01

    In this paper, the readers are introduced to ELICIT, an imprecise weight elicitation technique for multicriteria decision analysis for healthcare. The application of ELICIT consists of two steps: the rank ordering of evaluation criteria based on decision-makers' (DMs) preferences using the principal component analysis; and the estimation of criteria weights and their descriptive statistics using the variable interdependent analysis and the Monte Carlo method. The application of ELICIT is illustrated with a hypothetical case study involving the elicitation of weights for five criteria used to select the best device for eye surgery. The criteria were ranked from 1-5, based on a strict preference relationship established by the DMs. For each criterion, the deterministic weight was estimated as well as the standard deviation and 95% credibility interval. ELICIT is appropriate in situations where only ordinal DMs' preferences are available to elicit decision criteria weights.

  12. Sinus grafting using recombinant human tissue factor, platelet-rich plasma gel, autologous bone, and anorganic bovine bone mineral xenograft: histologic analysis and case reports.

    PubMed

    Philippart, Pierre; Daubie, Valéry; Pochet, Roland

    2005-01-01

    The purpose of this study was to analyze healthy bone formation by means of histology and immunohistochemistry after grafting with a mixture of autologous ground calvarial bone, inorganic xenograft, platelet-rich plasma (PRP), and recombinant human tissue factor (rhTF). Maxillary sinus floor augmentation was performed on 3 patients by grafting with 5 to 10 mL of a paste consisting of autologous powder from calvarial bone (diameter < 1 mm), 50% v/v anorganic bovine bone mineral xenograft (PepGen P-15, a new tissue-engineered bone replacement graft material), PRP (1.8 x 10(6) platelets/mm3 plasma), and about 1 microg rhTF. Six and 10 months after grafting, bone cores were extracted for implant fixation and analyzed. Histology demonstrated a high degree of inorganic xenograft integration and natural bone regeneration. Both the xenograft and newly synthesized bone were colonized with osteocytes and surrounded by osteoblasts. Six-month-old bone cores demonstrated a ratio of synthesized bone to xenograft particles ratio of 0.5, whereas 10-month-old cores demonstrated a ratio of 2. A low degree of inflammation could also be observed using S100A8 immunohistochemistry. Autologous grafting in edentulous patients is a complex procedure; the successful substitution of synthetic analogs for ground bone is a major challenge. In this investigation, it was shown that inorganic xenograft in the harvested bone paste could be safe for patients and had high bone regeneration capacity over time. The sinus graft showed intense bone formation 6 months after grafting and a further increase in bone growth 10 months after grafting.

  13. Associated Factors of Bone Mineral Density and Osteoporosis in Elderly Males

    PubMed Central

    Heidari, Behzad; Muhammadi, Abdollah; Javadian, Yahya; Bijani, Ali; Hosseini, Reza; Babaei, Mansour

    2016-01-01

    Background Low bone mineral density and osteoporosis is prevalent in elderly subjects. This study aimed to determine the associated factors of bone mineral density and osteoporosis in elderly males. Methods All participants of the Amirkola health and ageing project cohort aged 60 years and older entered the study. Bone mineral density at femoral neck and lumbar spine was assessed by the dual energy X-ray absorptiometry (DXA) method. Osteoporosis was diagnosed by the international society for clinical densitometry criteria and the association of bone mineral density and osteoporosis with several clinical, demographic and biochemical parameters. Multiple logistic regression analysis was used to determine independent associations. Results A total of 553 patients were studied and 90 patients (16.2%) had osteoporosis at either femoral neck or lumbar spine. Diabetes, obesity, metabolic syndrome, overweight, and quadriceps muscle strength > 30 kg, metabolic syndrome, abdominal obesity and education level were associated with higher bone mineral density and lower prevalence of osteoporosis, whereas age, anemia, inhaled corticosteroids and fracture history were associated with lower bone mineral density and higher prevalence of osteoporosis (P = 0.001). After adjustment for all covariates, osteoporosis was negatively associated only with diabetes, obesity, overweight, and QMS > 30 kg and positively associated with anemia and fracture history. The association of osteoporosis with other parameters did not reach a statistical level. Conclusions The findings of the study indicate that in elderly males, diabetes, obesity and higher muscle strength was associated with lower prevalence of osteoporosis and anemia, and prior fracture with higher risk of osteoporosis. This issue needs further longitudinal studies. PMID:28835759

  14. Like Mother, Like Daughter? Dietary and Non-Dietary Bone Fracture Risk Factors in Mothers and Their Daughters

    PubMed Central

    SOBAS, Kamila; WADOLOWSKA, Lidia; SLOWINSKA, Malgorzata Anna; CZLAPKA-MATYASIK, Magdalena; WUENSTEL, Justyna; NIEDZWIEDZKA, Ewa

    2015-01-01

    Background: The aim of this study was to demonstrate similarities and differences between mothers and daughters regarding dietary and non-dietary risk factors for bone fractures and osteoporosis. Methods: The study was carried out in 2007–2010 on 712 mothers (29–59 years) and daughters (12–21 years) family pairs. In the sub-sample (170 family pairs) bone mineral density (BMD) was measured for the forearm by dual-energy x-ray absorptiometry (DXA). The consumption of dairy products was determined with a semi-quantitative food frequency questionnaire (ADOS-Ca) and calcium intake from the daily diet was calculated. Results: The presence of risk factors for bone fractures in mothers and daughters was significantly correlated. The Spearman rank coefficient for dietary factors of fracture risk was 0.87 (P<0.05) in whole sub-sample, 0.94 (P<0.05) in bottom tercile of BMD, 0.82 (P<0.05) in middle tercile of BMD, 0.54 (P>0.05) in upper tercile of BMD and for non-dietary factors of fracture risk was 0.83 (P<0.05) in whole sub-sample, 0.86 (P<0.05) in bottom tercile of BMD, 0.93 (P<0.05) in middle tercile of BMD, 0.65 (P<0.05) in upper tercile of BMD. Conclusions: Our results confirm the role of the family environment for bone health and document the stronger effect of negative factors of the family environment as compared to other positive factors on bone fracture risk. PMID:26576372

  15. ELICIT: An alternative imprecise weight elicitation technique for use in multi-criteria decision analysis for healthcare

    PubMed Central

    Diaby, Vakaramoko; Sanogo, Vassiki; Moussa, Kouame Richard

    2015-01-01

    Objective In this paper, the readers are introduced to ELICIT, an imprecise weight elicitation technique for multicriteria decision analysis for healthcare. Methods The application of ELICIT consists of two steps: the rank ordering of evaluation criteria based on decision-makers’ (DMs) preferences using the principal component analysis; and the estimation of criteria weights and their descriptive statistics using the variable interdependent analysis and the Monte Carlo method. The application of ELICIT is illustrated with a hypothetical case study involving the elicitation of weights for five criteria used to select the best device for eye surgery. Results The criteria were ranked from 1–5, based on a strict preference relationship established by the DMs. For each criterion, the deterministic weight was estimated as well as the standard deviation and 95% credibility interval. Conclusions ELICIT is appropriate in situations where only ordinal DMs’ preferences are available to elicit decision criteria weights. PMID:26361235

  16. Guided Bone Regeneration Using Collagen Scaffolds, Growth Factors, and Periodontal Ligament Stem Cells for Treatment of Peri-Implant Bone Defects In Vivo.

    PubMed

    Kämmerer, Peer W; Scholz, Malte; Baudisch, Maria; Liese, Jan; Wegner, Katharina; Frerich, Bernhard; Lang, Hermann

    2017-01-01

    The aim of the study was an evaluation of different approaches for guided bone regeneration (GBR) of peri-implant defects in an in vivo animal model. In minipigs ( n = 15), peri-implant defects around calcium phosphate- (CaP-; n = 46) coated implants were created and randomly filled with (1) blank, (2) collagen/hydroxylapatite/ β -tricalcium phosphate scaffold (CHT), (3) CHT + growth factor cocktail (GFC), (4) jellyfish collagen matrix, (5) jellyfish collagen matrix + GFC, (6) collagen powder, and (7) collagen powder + periodontal ligament stem cells (PDLSC). Additional collagen membranes were used for coverage of the defects. After 120 days of healing, bone growth was evaluated histologically (bone to implant contact (BIC;%)), vertical bone apposition (VBA; mm), and new bone height (NBH; %). In all groups, new bone formation was seen. Though, when compared to the blank group, no significant differences were detected for all parameters. BIC and NBH in the group with collagen matrix as well as the group with the collagen matrix + GFC were significantly less when compared to the collagen powder group (all: p < 0.003). GBR procedures, in combination with CaP-coated implants, will lead to an enhancement of peri-implant bone growth. There was no additional significant enhancement of osseous regeneration when using GFC or PDLSC.

  17. Investigating the Prevalence of Low Bone Mass in Children of Southern Iran and Its Associated Factors

    PubMed Central

    Saki, Forough; Ranjbar Omrani, Gholamhossein; Jeddi, Marjan; Bakhshaieshkaram, Marzie; Dabbaghmanesh, Mohammad Hossein

    2017-01-01

    Background Improving peak bone mass and bone strength in the first years of life and enhancing it during young adulthood could prevent osteoporosis and fractures in the last years of life. We evaluated the prevalence of low bone mass in the lumbar and femoral neck and its associated factors in southern Iranian children. Methods This is a cross-sectional study on healthy Iranian children aged 9 - 18 years old during 2011 - 2012. Dual energy X-ray absorptiometry (DEXA) was used for measuring bone mineral density (BMD). BMD Z-score ≤ -2 was considered as low. Anthropometric data, physical activity, sun exposure, puberty, and mineral biochemical parameters were assessed. Data were analyzed using SPSS v.15. Results 477 normal children, including 236 (49.5%) girls and 241 (50.5%) boys, aged 13.8 ± 2.7 years were enrolled. Prevalence of low bone mass (LBM) in the femoral and lumbar region was 10.7% and 18.7%, respectively. The prevalence of LBM in femur of girls is twice more than boys. Fat mass index, BMI Z-score, and physical activity were associated with lumbar low bone mass. BMI Z-score and physical activity were associated with femoral low bone mass. Conclusions High prevalence of low bone mineral density in children 9 to 18 years in south of the country is concerned and is needed to plan for prevention and treatment. BMI-Z score, fat mass index, and physical activity were the 3 most important preventive factors in developing low bone mass in children. PMID:29344033

  18. Predisposing factors and outcome of treatment of non-union of long-bone fractures in Ibadan, Nigeria.

    PubMed

    Ogunlade, S O; Omololu, A B; Alonge, T O; Diete, S T; Obawonyi, J E

    2011-03-01

    This study was done to find out factors that contribute to development of Non-union of long bone fractures in this environment and the outcome of operative intervention. This is a prospective hospital based study. All patients with Non-union of long bone fracture that presented in the hospital since January 1997 were recruited into the study. The data included causative factors, treatment given before presenting in the hospital, type of surgical procedure and result of treatment. The study was completed in December, 2005. 78 patients presented with 87 Non-union of long bones. A male, female ratio of 1.6:1 was encountered while 69.2 per cent of the patients were below the age 55years. Road Traffic Accident accounted for 68 fractures (78.2 per cent) while duration of injury before presentation varies from 6 months to 22 months. Atrophic non-union occurred in 60 cases (69.0 per cent) and hypertrophic non-union in 21 cases. Non-union of the femur occurred in 33 cases (37.9 per cent) humerus in 24 cases (27.6 per cent), tibia in 16 cases (18.4 per cent), radius and ulna in 14 cases (16.1 per cent). The initial treatments of the fresh fracture in the 78 patients with nonunion were by the traditional bonesetters in 51 patients (65.4 per cent) while the remaining fractures were treated by plaster of paris in hospital. Open reduction and internal fixation using plate and screws with bone grafting was the most common procedure for treating the non-union in most cases. Union was achieved in the entire patients following surgical intervention. Important factor that appears to contribute to non-union of long bone in this environment is soft tissue interposition between the fracture ends of the bone, which is found in all fractures with more than one diameter displacement. Another factor is interference with periosteal blood supply from disruption of soft tissue envelope as a result of high energy injuries which is also responsible for the displacements that were observed in

  19. [Bone morphogenetic proteins (BMP): clinical application for reconstruction of bone defects].

    PubMed

    Sierra-García, Gerardo Daniel; Castro-Ríos, Rocío; Gónzalez-Horta, Azucena; Lara-Arias, Jorge; Chávez-Montes, Abelardo

    2016-01-01

    Since the introduction of bone morphogenetic proteins, their use has become an invaluable ally for the treatment of bone defects. These proteins are potent growth factors, related to angiogenic and osteogenic activity. The osteoinductive capacity of recombinant bone morphogenetic protein (rhBMP) in the formation of bone and cartilage has been confirmed in in vitro studies and evaluated in clinical trials. To obtain a therapeutic effect, administration is systemic, by injection over the physiological dose. Among the disadvantages, ectopic bone formation or high morbidity in cases of spinal fusion is observed. In this review, the roles of bone morphogenetic proteins in bone repair and clinical applications are analyzed. These findings represent advances in the study of bone regeneration and application of growth factors for more predictable results.

  20. In vivo locomotor strain in the hindlimb bones of alligator mississippiensis and iguana iguana: implications for the evolution of limb bone safety factor and non-sprawling limb posture

    PubMed

    Blob; Biewener

    1999-05-01

    Limb postures of terrestrial tetrapods span a continuum from sprawling to fully upright; however, most experimental investigations of locomotor mechanics have focused on mammals and ground-dwelling birds that employ parasagittal limb kinematics, leaving much of the diversity of tetrapod locomotor mechanics unexplored. This study reports measurements of in vivo locomotor strain from the limb bones of lizard (Iguana iguana) and crocodilian (Alligator mississippiensis) species, animals from previously unsampled phylogenetic lineages with non-parasagittal limb posture and kinematics. Principal strain orientations and shear strain magnitudes indicate that the limb bones of these species experience considerable torsion during locomotion. This contrasts with patterns commonly observed in mammals, but matches predictions from kinematic observations of axial rotation in lizard and crocodilian limbs. Comparisons of locomotor load magnitudes with the mechanical properties of limb bones in Alligator and Iguana indicate that limb bone safety factors in bending for these species range from 5.5 to 10.8, as much as twice as high as safety factors previously calculated for mammals and birds. Limb bone safety factors in shear (3.9-5.4) for Alligator and Iguana are also moderately higher than safety factors to yield in bending for birds and mammals. Finally, correlations between limb posture and strain magnitudes in Alligator show that at some recording locations limb bone strains can increase during upright locomotion, in contrast to expectations based on size-correlated changes in posture among mammals that limb bone strains should decrease with the use of an upright posture. These data suggest that, in some lineages, strain magnitudes may not have been maintained at constant levels through the evolution of a non-sprawling posture unless the postural change was accompanied by a shift to parasagittal kinematics or by an evolutionary decrease in body size.

  1. Reproductive factors affecting the bone mineral density in postmenopausal women.

    PubMed

    Ozdemir, Ferda; Demirbag, Derya; Rodoplu, Meliha

    2005-03-01

    Osteoporosis has been defined as a metabolic bone disease characterized by a loss of bone mineral density (BMD) greater than 2.5 standard deviations below young adult peak bone mass or the presence of fracture. By considering that some factors related to female reproductive system might influence the ultimate risk of osteoporosis, we aimed to investigate if a relationship exists between the present BMD of postmenopausal women with their past and present reproductive characteristics. The present study focused on how BMD could be affected by the following factors in postmenopausal women, such as age at menarche, age at first pregnancy, the number of pregnancies and total breast-feeding time. We reviewed detailed demographic history of 303 postmenopausal women. According to the results of the present study, a negative correlation was found between the number of parities and BMD. The BMD values decreased as the number of pregnancies increased. When the BMD values for lumbar vertebrae 2 and Ward's triangle were investigated, it was observed that a significant difference exists between the women with no child birth and those with more than five parities. There was a significant relationship between age at first pregnancy and BMD values at the lumbar vertebrae 2 and Ward's triangle. Women who had five or more abortions were found to have significantly lower spine BMD values compared to women who had no abortions or women who had one or two abortions. These findings indicate that the increased risk of osteoporosis is associated with the increased number of pregnancies and abortions and higher age at first pregnancy.

  2. Heparin Microparticle Effects on Presentation and Bioactivity of Bone Morphogenetic Protein-2

    PubMed Central

    Hettiaratchi, Marian H.; Miller, Tobias; Temenoff, Johnna S.; Guldberg, Robert E.; McDevitt, Todd C.

    2014-01-01

    Biomaterials capable of providing localized and sustained presentation of bioactive proteins are critical for effective therapeutic growth factor delivery. However, current biomaterial delivery vehicles commonly suffer from limitations that can result in low retention of growth factors at the site of interest or adversely affect growth factor bioactivity. Heparin, a highly sulfated glycosaminoglycan, is an attractive growth factor delivery vehicle due to its ability to reversibly bind positively charged proteins, provide sustained delivery, and maintain protein bioactivity. This study describes the fabrication and characterization of heparin methacrylamide (HMAm) microparticles for recombinant growth factor delivery. HMAm microparticles were shown to efficiently bind several heparin-binding growth factors (e.g. bone morphogenetic protein-2 (BMP-2), vascular endothelial growth factor (VEGF), and basic fibroblast growth factor (FGF-2)), including a wide range of BMP-2 concentrations that exceeds the maximum binding capacity of other common growth factor delivery vehicles, such as gelatin. BMP-2 bioactivity was assessed on the basis of alkaline phosphatase (ALP) activity induced in skeletal myoblasts (C2C12). Microparticles loaded with BMP-2 stimulated comparable C2C12 ALP activity to soluble BMP-2 treatment, indicating that BMP-2-loaded microparticles retain bioactivity and potently elicit a functional cell response. In summary, our results suggest that heparin microparticles stably retain large amounts of bioactive BMP-2 for prolonged periods of time, and that presentation of BMP-2 via heparin microparticles can elicit cell responses comparable to soluble BMP-2 treatment. Consequently, heparin microparticles present an effective method of delivering and spatially retaining growth factors that could be used in a variety of systems to enable directed induction of cell fates and tissue regeneration. PMID:24881028

  3. [Analysis of risk factors for bone metastasis after radical resection of colorectal cancer within 5 years].

    PubMed

    Li, Ang; Tan, Zhen; Fu, Chuangang; Wang, Hao; Yuan, Jie

    2017-01-25

    To investigate the risk factors of metachronous bone metastasis after radical resection of colorectal cancer within 5 years. Clinical data of 1 749 patients with colorectal cancer, of whom 50(2.8%) patients developed metastasis to bone after operation, in the Department of Colorectal Surgery, Changhai Hospital of The Second Military Medical University from January 2001 to December 2010 were analyzed retrospectively. Univariate and multivariate analysis were performed to find the risk factors of metachronous bone metastasis from colorectal cancer using Chi square test and Logistic regression, respectively. Of 50 colorectal cancer cases with bone metastasis, 29 were male and 21 were female. The age was ≥ 60 years old in 28 cases. Tumors of 36 cases were located in the rectum and of 14 cases located in the colon. Pathology examination showed 43 cases were adenocarcinomas, 7 cases were mucinous adenocarcinoma. Forty-two cases had T3-4 stage lesions, 30 cases had lymph node metastasis, 14 cases had pulmonary metastasis, and 5 cases had liver metastasis. Univariate Chi square test indicated that factors associated with the metachronous bone metastasis of colorectal cancer within 5 years were tumor site (χ 2 =4.932, P=0.026), preoperative carbohydrate antigen 199 (CA199) level (χ 2 =4.266, P=0.039), lymph node metastasis (χ 2 =13.054, P=0.000) and pulmonary metastasis(χ 2 =35.524, P=0.000). The incidence of bone metastasis in patients with rectal cancer (3.6%, 36/991) was higher compared to those with colon cancer (1.8%, 14/758). The incidence of bone metastasis in patients with higher(> 37 kU/L) preoperative serum CA199 level (4.9%, 12/245) was higher compared to those with lower serum CA199 level (2.5%, 38/1504). The incidence of bone metastasis in patients with lymph node metastasis(4.8%,30/627) and pulmonary metastasis (11.6%, 14/121) was significantly higher compared to those without lymph node metastasis (1.8%, 20/1122) and pulmonary metastasis(2.2%, 36

  4. Factors affecting the pullout strength of cancellous bone screws.

    PubMed

    Chapman, J R; Harrington, R M; Lee, K M; Anderson, P A; Tencer, A F; Kowalski, D

    1996-08-01

    Screws placed into cancellous bone in orthopedic surgical applications, such as fixation of fractures of the femoral neck or the lumbar spine, can be subjected to high loads. Screw pullout is a possibility, especially if low density osteoporotic bone is encountered. The overall goal of this study was to determine how screw thread geometry, tapping, and cannulation affect the holding power of screws in cancellous bone and determine whether current designs achieve maximum purchase strength. Twelve types of commercially available cannulated and noncannulated cancellous bone screws were tested for pullout strength in rigid unicellular polyurethane foams of apparent densities and shear strengths within the range reported for human cancellous bone. The experimentally derived pullout strength was compared to a predicted shear failure force of the internal threads formed in the polyurethane foam. Screws embedded in porous materials pullout by shearing the internal threads in the porous material. Experimental pullout force was highly correlated to the predicted shear failure force (slope = 1.05, R2 = 0.947) demonstrating that it is controlled by the major diameter of the screw, the length of engagement of the thread, the shear strength of the material into which the screw is embedded, and a thread shape factor (TSF) which accounts for screw thread depth and pitch. The average TSF for cannulated screws was 17 percent lower than that of noncannulated cancellous screws, and the pullout force was correspondingly less. Increasing the TSF, a result of decreasing thread pitch or increasing thread depth, increases screw purchase strength in porous materials. Tapping was found to reduce pullout force by an average of 8 percent compared with nontapped holes (p = 0.0001). Tapping in porous materials decreases screw pullout strength because the removal of material by the tap enlarges hole volume by an average of 27 percent, in effect decreasing the depth and shear area of the internal

  5. An analysis of factors affecting the mercury content in the human femoral bone.

    PubMed

    Zioła-Frankowska, A; Dąbrowski, M; Kubaszewski, Ł; Rogala, P; Kowalski, A; Frankowski, M

    2017-01-01

    The study was carried out to determine the content of mercury in bone tissue of the proximal femur (head and neck bone) of 95 patients undergoing total hip replacement due to osteoarthritis, using CF-AFS analytical technique. Furthermore, the investigations were aimed at assessing the impact of selected factors, such as age, gender, tobacco smoking, alcohol consumption, exposure to chemical substance at work, type of degenerative changes, clinical evaluation and radiological parameters, type of medications, on the concentration of mercury in the head and neck of the femur, resected in situ. Mercury was obtained in all samples of the head and neck of the femur (n = 190) in patients aged 25-91 years. The mean content of mercury for the whole group of patients was as follows: 37.1 ± 35.0 ng/g for the femoral neck and 24.2 ± 19.5 ng/g for the femoral head. The highest Hg contents were found in femoral neck samples, both in women and men, and they amounted to 169.6 and 176.5 ng/g, respectively. The research showed that the mercury content of bones can be associated with body mass index, differences in body anatomy, and gender. The uses of statistical analysis gave the possibility to define the influence of factors on mercury content in human femoral bones.

  6. Free bone graft reconstruction of irradiated facial tissue: Experimental effects of basic fibroblast growth factor stimulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eppley, B.L.; Connolly, D.T.; Winkelmann, T.

    1991-07-01

    A study was undertaken to evaluate the potential utility of basic fibroblast growth factor in the induction of angiogenesis and osseous healing in bone previously exposed to high doses of irradiation. Thirty New Zealand rabbits were evaluated by introducing basic fibroblast growth factor into irradiated mandibular resection sites either prior to or simultaneous with reconstruction by corticocancellous autografts harvested from the ilium. The fate of the free bone grafts was then evaluated at 90 days postoperatively by microangiographic, histologic, and fluorochrome bone-labeling techniques. Sequestration, necrosis, and failure to heal to recipient osseous margins was observed both clinically and histologically inmore » all nontreated irradiated graft sites as well as those receiving simultaneous angiogenic stimulation at the time of graft placement. No fluorescent activity was seen in these graft groups. In the recipient sites pretreated with basic fibroblast growth factor prior to placement of the graft, healing and reestablishment of mandibular contour occurred in nearly 50 percent of the animals. Active bone formation was evident at cortical margins adjacent to the recipient sites but was absent in the more central cancellous regions of the grafts.« less

  7. A Path Analysis to Identify the Psychosocial Factors Influencing Physical Activity and Bone Health in Middle-School Girls

    PubMed Central

    Sharma, Shreela V.; Hoelscher, Deanna M.; Kelder, Steven H.; Diamond, Pamela M.; Day, R. Sue; Hergenroeder, Albert C.

    2011-01-01

    Background The purpose of this study was to identify pathways used by psychosocial factors to influence physical activity and bone health in middle-school girls. Methods Baseline data from the Incorporating More Physical Activity and Calcium in Teens (IMPACT) study collected in 2001 to 2003 were used. IMPACT was a 1 1/2 years nutrition and physical activity intervention study designed to improve bone density in 717 middle-school girls in Texas. Structural Equations Modeling was used to examine the interrelationships and identify the direct and indirect pathways used by various psychosocial and environmental factors to influence physical activity and bone health. Results Results show that physical activity self-efficacy and social support (friend, family engagement, and encouragement in physical activity) had a significant direct and indirect influence on physical activity with participation in sports teams as the mediator. Participation in sports teams had a direct effect on both physical activity (β= 0.20, P < .05) and bone health and (β=0.13, P < .05). Conclusion The current study identified several direct and indirect pathways that psychosocial factors use to influence physical activity and bone health among adolescent girls. These findings are critical for the development of effective interventions for promoting bone health in this population. PMID:19953837

  8. A path analysis to identify the psychosocial factors influencing physical activity and bone health in middle-school girls.

    PubMed

    Sharma, Shreela V; Hoelscher, Deanna M; Kelder, Steven H; Diamond, Pamela M; Day, R Sue; Hergenroeder, Albert C

    2009-09-01

    The purpose of this study was to identify pathways used by psychosocial factors to influence physical activity and bone health in middle-school girls. Baseline data from the Incorporating More Physical Activity and Calcium in Teens (IMPACT) study collected in 2001 to 2003 were used. IMPACT was a 1 1/2 years nutrition and physical activity intervention study designed to improve bone density in 717 middle-school girls in Texas. Structural Equations Modeling was used to examine the interrelationships and identify the direct and indirect pathways used by various psychosocial and environmental factors to influence physical activity and bone health. Results show that physical activity self-efficacy and social support (friend, family engagement, and encouragement in physical activity) had a significant direct and indirect influence on physical activity with participation in sports teams as the mediator. Participation in sports teams had a direct effect on both physical activity (beta = 0.20, P < .05) and bone health and (beta = 0.13, P < .05). The current study identified several direct and indirect pathways that psychosocial factors use to influence physical activity and bone health among adolescent girls. These findings are critical for the development of effective interventions for promoting bone health in this population.

  9. Guided Bone Regeneration Using Collagen Scaffolds, Growth Factors, and Periodontal Ligament Stem Cells for Treatment of Peri-Implant Bone Defects In Vivo

    PubMed Central

    Scholz, Malte; Baudisch, Maria; Liese, Jan; Frerich, Bernhard; Lang, Hermann

    2017-01-01

    Introduction The aim of the study was an evaluation of different approaches for guided bone regeneration (GBR) of peri-implant defects in an in vivo animal model. Materials and Methods In minipigs (n = 15), peri-implant defects around calcium phosphate- (CaP-; n = 46) coated implants were created and randomly filled with (1) blank, (2) collagen/hydroxylapatite/β-tricalcium phosphate scaffold (CHT), (3) CHT + growth factor cocktail (GFC), (4) jellyfish collagen matrix, (5) jellyfish collagen matrix + GFC, (6) collagen powder, and (7) collagen powder + periodontal ligament stem cells (PDLSC). Additional collagen membranes were used for coverage of the defects. After 120 days of healing, bone growth was evaluated histologically (bone to implant contact (BIC;%)), vertical bone apposition (VBA; mm), and new bone height (NBH; %). Results In all groups, new bone formation was seen. Though, when compared to the blank group, no significant differences were detected for all parameters. BIC and NBH in the group with collagen matrix as well as the group with the collagen matrix + GFC were significantly less when compared to the collagen powder group (all: p < 0.003). Conclusion GBR procedures, in combination with CaP-coated implants, will lead to an enhancement of peri-implant bone growth. There was no additional significant enhancement of osseous regeneration when using GFC or PDLSC. PMID:28951742

  10. Prevalence and Risk Factors of Osteoporosis in Women Referring to the Bone Densitometry Academic Center in Urmia, Iran

    PubMed Central

    Naz, Marzieh Saei Ghare; Ozgoli, Giti; Aghdashi, Mir Amir; Salmani, Fatemeh

    2016-01-01

    Background: Osteoporosis is one of the fastest growing health problems around the world. Several factors can affect this silent disease. The current study aimed to determine the prevalence and risk factors of osteoporosis in women in Urmia, a city in northwestern Iran. Methods: This cross-sectional study was performed on 360 non-pregnant women over the age of 15 who referred for bone density testing to the Urmia Imam Khomeini Academic Hospital. Data were collected by questionnaire, and bone mineral density of the femoral neck and lumbar spines L1- L4 was evaluated by dual X-ray absorptiometry. Results: The total prevalence of osteoporosis in this study was 42.2%; prevalence of osteoporosis among women 45 years old or less was 14.3% and over the age of 45 years was 50.7%. The factors such as level of education, history of bone fracture, disease history (rheumatoid arthritis, diabetes, high blood pressure), gravidity and parity values, duration of lactation (p<0.001), nutrition dimension of lifestyle (p=0.03), and green tea consumption (p=002) showed a statistically significant association with the bone mineral density. According to the regression model, age (OR=1.081), history of bone fracture (OR=2.75), and gravidity (OR=1.14) were identified as significant risk factors for osteoporosis, while the body mass index (OR=0.94) was identified as a protector against osteoporosis. Conclusion: The prevalence of osteoporosis in this study was high, and findings showed that the advancement of age, lifestyle, and reproductive factors (especially gravidity and duration of lactation) were determining factors for osteoporosis. Appropriate educational programs and interventions could help to increase the women’s peak bone mass therefore reducing their risk of developing osteoporosis. PMID:26925890

  11. Vascularized bone transplant chimerism mediated by vascular endothelial growth factor.

    PubMed

    Willems, Wouter F; Larsen, Mikko; Friedrich, Patricia F; Bishop, Allen T

    2015-01-01

    Vascular endothelial growth factor (VEGF) induces angiogenesis and osteogenesis in bone allotransplants. We aim to determine whether bone remodeling in VEGF-treated bone allotransplants results from repopulation with circulation-derived autogenous cells or survival of allogenic transplant-derived cells. Vascularized femoral bone transplants were transplanted from female Dark Agouti rats (DA;RT1(a) ) to male Piebald Viral Glaxo (PVG;RT1(c) ). Arteriovenous bundle implantation and short-term immunosuppression were used to maintain cellular viability. VEGF was encapsulated in biodegradable microspheres and delivered intramedullary in the experimental group (n = 22). In the control group (n = 22), no VEGF was delivered. Rats were sacrificed at 4 or 18 weeks. Laser capture microdissection of bone remodeling areas was performed at the inner and outer cortex. Sex-mismatched genes were quantified with reverse transcription-polymerase chain reaction to determine the amount of male cells to total cells, defined as the relative expression ratio (rER). At 4 weeks, rER was significantly higher at the inner cortex in VEGF-treated transplants as compared to untreated transplants (0.622 ± 0.225 vs. 0.362 ± 0.081, P = 0.043). At 4 weeks, the outer cortex in the control group had a significantly higher rER (P = 0.038), whereas in the VEGF group, the inner cortex had a higher rER (P = 0.015). Over time, in the outer cortex the rER significantly increased to 0.634 ± 0.106 at 18 weeks in VEGF-treated rats (P = 0.049). At 18 weeks, the rER was >0.5 at all cortical areas in both groups. These in vivo findings suggest a chemotactic effect of intramedullary applied VEGF on recipient-derived bone and could imply that more rapid angiogenesis of vascularized allotransplants can be established with microencapsulated VEGF. © 2014 Wiley Periodicals, Inc.

  12. Risk factors for low bone mineral density in children and adolescents with inflammatory bowel disease.

    PubMed

    Lopes, Letícia Helena Caldas; Sdepanian, Vera Lucia; Szejnfeld, Vera Lúcia; de Morais, Mauro Batista; Fagundes-Neto, Ulysses

    2008-10-01

    To evaluate bone mineral density of the lumbar spine in children and adolescents with inflammatory bowel disease, and to identify the clinical risk factors associated with low bone mineral density. Bone mineral density of the lumbar spine was evaluated using dual-energy X-ray absorptiometry (DXA) in 40 patients with inflammatory bowel disease. Patients were 11.8 (SD = 4.1) years old and most of them were male (52.5%). Multiple linear regression analysis was performed to identify potential associations between bone mineral density Z-score and age, height-for-age Z-score, BMI Z-score, cumulative corticosteroid dose in milligrams and in milligrams per kilogram, disease duration, number of relapses, and calcium intake according to the dietary reference intake. Low bone mineral density (Z-score bellow -2) was observed in 25% of patients. Patients with Crohn's disease and ulcerative colitis had equivalent prevalence of low bone mineral density. Multiple linear regression models demonstrated that height-for-age Z-score, BMI Z-score, and cumulative corticosteroid dose in mg had independent effects on BMD, respectively, beta = 0.492 (P = 0.000), beta = 0.460 (P = 0.001), beta = - 0.014 (P = 0.000), and these effects remained significant after adjustments for disease duration, respectively, beta = 0.489 (P = 0.013), beta = 0.467 (P = 0.001), and beta = - 0.005 (P = 0.015). The model accounted for 54.6% of the variability of the BMD Z-score (adjusted R2 = 0.546). The prevalence of low bone mineral density in children and adolescents with inflammatory bowel disease is considerably high and independent risk factors associated with bone mineral density are corticosteroid cumulative dose in milligrams, height-for-age Z-score, and BMI Z-score.

  13. Osteoporosis: Peak Bone Mass in Women

    MedlinePlus

    ... Osteoporosis: Peak Bone Mass in Women Osteoporosis: Peak Bone Mass in Women Bones are the framework for ... that affect peak bone mass. Factors Affecting Peak Bone Mass A variety of genetic and environmental factors ...

  14. Effect of plasma-rich in platelet-derived growth factors on peri-implant bone healing: An experimental study in canines

    PubMed Central

    Birang, Reza; Torabi, Alireza; Shahabooei, Mohammad; Rismanchian, Mansour

    2012-01-01

    Background: Tissue engineering principles can be exploited to enhance alveolar and peri-implant bone reconstruction by applying such biological factors as platelet-derived growth factors. The objective of the present study is to investigate the effect of autologous plasma-rich in growth factors (on the healing of peri-implant bone in canine mandible). Materials and Methods: In this prospective experimental animal study, two healthy canines of the Iranian mix breed were selected. Three months after removing their premolar teeth on both sides of the mandible, 12 implants of the Osteo Implant Corporationsystem, 5 mm in diameter and 10 mm in length, were selected to be implanted. Plasma rich in growth factors (PRGF) were applied on six implants while the other six were used as plain implants without the plasma. The implants were installed in osteotomy sites on both sides of the mandible to be removed after 4 weeks with the surrounding bones using a trephine bur. Mesio-distal sections and implant blocks, 50 μ in diameter containing the peri-implant bone, were prepared By basic fuchin toluidine-bluefor histological and histomorphometric evaluation by optical microscope. The data were analyzed using Mann-Whitney Test (P<0.05). Results: The bone trabeculae and the type of bone generation in PRGF and control groups had no statistically significant differences (P=0.261, P=0.2) although the parameters showed higher measured values in the PRGF group. However, compared to the control, application of PRGF had significantly increased bone-to-implant contact (P=0.028) Conclusion: Based on the results, it may be concluded that application of PRGF on the surface of implant may enhance bone-to-implant contact. PMID:22363370

  15. Ricinus communis-based biopolymer and epidermal growth factor regulations on bone defect repair: A rat tibia model

    NASA Astrophysics Data System (ADS)

    Mendoza-Barrera, C.; Meléndez-Lira, M.; Altuzar, V.; Tomás, S. A.

    2003-01-01

    We report the effect of the addition of an epidermal growth factor to a Ricinus communis-based biopolymer in the healing of a rat tibia model. Bone repair and osteointegration after a period of three weeks were evaluated employing photoacoustic spectroscopy and x-ray diffraction. A parallel study was performed at 1, 2, 3, 4, 5, 6, 7, and 8 weeks with energy dispersive x-ray spectroscopy. We conclude that the use of an epidermal growth factor (group EGF) in vivo accelerates the process of bony repair in comparison with other groups, and that the employment of the Ricinus communis-based biopolymer as a bone substitute decreases bone production.

  16. Ludic Elicitation: Using Games for Knowledge Elicitation

    ERIC Educational Resources Information Center

    Cao, Yan

    2014-01-01

    Knowledge elicitation from human beings is important for many fields, such as decision support systems, risk communication, and customer preference studying. Traditional approaches include observations, questionnaires, structured and semi-structured interviews, and group discussions. Many publications have been studying different techniques for a…

  17. Psychosocial, environmental and behavioral factors associated with bone health in middle-school girls

    PubMed Central

    Sharma, Shreela V.; Hoelscher, Deanna M.; Kelder, Steven H.; Day, R. Sue; Hergenroeder, Albert

    2009-01-01

    The purpose of this study was to identify the psychosocial, environmental and behavioral factors associated with calcium intake, physical activity and bone health in a cohort of adolescent girls. Baseline data (N = 718 girls, mean age: 11.6 ±0.4 years) from the Incorporating More Physical Activity and Calcium in Teens (IMPACT) study conducted in Texas, 2001–03, were utilized for the analyses. Hierarchical linear regression was used to examine the associations of interest. Confounders adjusted for included ethnicity, menarchal status, body mass index and lactose intolerance. Several psychosocial and behavioral factors were significantly associated with bone quality. These included knowledge of calcium content of foods (β = 0.08, P = 0.016), self-efficacy toward consuming calcium-rich foods (β = 0.16, P = 0.047), physical activity self-efficacy (β = 0.20, P = 0.002), physical activity outcome expectations (β = 0.5, P = 0.004), family encouragement to do physical activity (β = 0.96, P = 0.027), friend engagement in physical activity (β = 1.3, P = 0.001) and participation in sports teams (β = 1.7, P < 0.001). Self-efficacy, social support and participation in sports teams appear to be strongly associated with bone health in adolescent girls. Future health education/health promotion programs need to address these factors for effective primary prevention of osteoporosis in this population. PMID:18359949

  18. Enhanced bone screw fixation with biodegradable bone cement in osteoporotic bone model.

    PubMed

    Juvonen, Tiina; Koistinen, Arto; Kröger, Heikki; Lappalainen, Reijo

    2012-09-27

    The purpose of this study was to study the potential of novel biodegradable PCL bone cement to improve bone screw fixation strength in osteoporotic bone. The biomechanical properties of bone cement (ε-polycaprolactone, PCL) and fixation strength were studied using biomechanical tests and bone screws fixed in an osteoporotic bone model. Removal torques and pullout strengths were assessed for cortical, self-tapping, and cancellous screws inserted in the osteoporotic bone model (polyurethane foam blocks with polycarbonate plate) with and without PCL bone cement. Open cell and cellular rigid foam blocks with a density of 0.12 g/cm3 were used in this model. Removal torques were significantly (more than six-fold) improved with bone cement for cancellous screws. Furthermore, the bone cement improved pullout strengths three to 12 times over depending on the screw and model material. Biodegradable bone cement turned out to be a very potential material to stabilize screw fixation in osteoporotic bone. The results warrant further research before safe clinical use, especially to clarify clinically relevant factors using real osteoporotic bone under human body conditions and dynamic fatigue testing for long-term performance.

  19. Are biomechanical factors, meniscal pathology, and physical activity risk factors for bone marrow lesions at the knee? A systematic review.

    PubMed

    Lim, Yuan Z; Wang, Yuanyuan; Wluka, Anita E; Davies-Tuck, Miranda L; Teichtahl, Andrew; Urquhart, Donna M; Cicuttini, Flavia M

    2013-10-01

    To systematically review the literature to determine whether biomechanical factors, meniscal pathology, and physical activity are risk factors for bone marrow lesions (BMLs) at the knee identified from magnetic resonance imaging in pre-osteoarthritis and osteoarthritis populations. Electronic searches of MEDLINE and EMBASE were performed from January 1, 1996 to October 31, 2012 using the keywords of bone marrow lesion(s), bone marrow (o)edema, osteoarthritis, and knee. Studies examining biomechanical factors, meniscal pathology, or physical activity in relation to the presence, incidence, or change in BMLs at the knee were included. Two independent reviewers extracted the data and assessed the methodological quality of selected studies. Due to the heterogeneity of the studies, we performed a best evidence synthesis. Fifteen studies were included in this review, of which 9 were considered high quality. The study populations were heterogeneous in terms of the symptoms and radiographic knee osteoarthritis. There was strong evidence for relationships of mechanical knee alignment and meniscal pathology with BMLs in osteoarthritis populations. There was a paucity of evidence for a relationship between physical activity and BMLs. Despite the heterogeneity of included studies, these data suggest that mechanical knee alignment and meniscal pathology are risk factors for BMLs in knee osteoarthritis. It suggests that BMLs in individuals with osteoarthritis are more susceptible to mechanical knee alignment. Given the role of BMLs in the pathogenesis of knee osteoarthritis, identifying strategies to modify these risk factors will be important in slowing the progression and reducing the burden of knee osteoarthritis. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Anabolic Vitamin D Analogs as Countermeasures to Bone Loss

    NASA Technical Reports Server (NTRS)

    Li, Wei; Duncan, Randall L.; Karin, Norman J.; Farach-Carson, Mary C.

    1997-01-01

    We demonstrated for the first time that vitamin D3 influences the effect of PTH on bone cell calcium ion levels. This is a rapid effect, taking place within seconds/minutes. This may prove to be a critical contribution to our understanding of bone physiology in that these two hormones are among the most potent regulators of bone calcium content and of systemic calcium homeostasis. Together with the data gathered from the study of astronauts exposed to microgravity for extended periods, these observations suggest the interaction of vitamin D3 and PTH as a possible therapeutic target in the treatment of bone loss disorders such as osteoporosis and disuse atrophy. Chronic exposure of cultured osteoblasts to vitamin D, altered the number of voltage-sensitive Ca(+2) channels expressed. Estrogen treatment yielded a similar result, suggesting that there is overlap in the mechanism by which these hormones elicit long-term effects on bone cell calcium homeostasis.

  1. Subchondral chitosan/blood implant-guided bone plate resorption and woven bone repair is coupled to hyaline cartilage regeneration from microdrill holes in aged rabbit knees.

    PubMed

    Guzmán-Morales, J; Lafantaisie-Favreau, C-H; Chen, G; Hoemann, C D

    2014-02-01

    Little is known of how to routinely elicit hyaline cartilage repair tissue in middle-aged patients. We tested the hypothesis that in skeletally aged rabbit knees, microdrill holes can be stimulated to remodel the bone plate and induce a more integrated, voluminous and hyaline cartilage repair tissue when treated by subchondral chitosan/blood implants. New Zealand White rabbits (13 or 32 months old, N = 7) received two 1.5 mm diameter, 2 mm depth drill holes in each knee, either left to bleed as surgical controls or press-fit with a 10 kDa (distal hole: 10K) or 40 kDa (proximal hole: 40K) chitosan/blood implant with fluorescent chitosan tracer. Post-operative knee effusion was documented. Repair tissues at day 0 (N = 1) and day 70 post-surgery (N = 6) were analyzed by micro-computed tomography, and by histological scoring and histomorphometry (SafO, Col-2, and Col-1) at day 70. All chitosan implants were completely cleared after 70 days, without increasing transient post-operative knee effusion compared to controls. Proximal control holes had worse osteochondral repair than distal holes. Both implant formulations induced bone remodeling and improved lateral integration of the bone plate at the hole edge. The 40K implant inhibited further bone repair inside 50% of the proximal holes, while the 10K implant specifically induced a "wound bloom" reaction, characterized by decreased bone plate density in a limited zone beyond the initial hole edge, and increased woven bone (WB) plate repair inside the initial hole (P = 0.016), which was accompanied by a more voluminous and hyaline cartilage repair (P < 0.05 vs control defects). In a challenging aged rabbit model, bone marrow-derived hyaline cartilage repair can be promoted by treating acute drill holes with a biodegradable subchondral implant that elicits bone plate resorption followed by anabolic WB repair within a 70-day repair period. Copyright © 2013 Osteoarthritis Research Society International. Published by

  2. Sequential growth factor application in bone marrow stromal cell ligament engineering.

    PubMed

    Moreau, Jodie E; Chen, Jingsong; Horan, Rebecca L; Kaplan, David L; Altman, Gregory H

    2005-01-01

    In vitro bone marrow stromal cell (BMSC) growth may be enhanced through culture medium supplementation, mimicking the biochemical environment in which cells optimally proliferate and differentiate. We hypothesize that the sequential administration of growth factors to first proliferate and then differentiate BMSCs cultured on silk fiber matrices will support the enhanced development of ligament tissue in vitro. Confluent second passage (P2) BMSCs obtained from purified bone marrow aspirates were seeded on RGD-modified silk matrices. Seeded matrices were divided into three groups for 5 days of static culture, with medium supplement of basic fibroblast growth factor (B) (1 ng/mL), epidermal growth factor (E; 1 ng/mL), or growth factor-free control (C). After day 5, medium supplementation was changed to transforming growth factor-beta1 (T; 5 ng/mL) or C for an additional 9 days of culture. Real-time RT-PCR, SEM, MTT, histology, and ELISA for collagen type I of all sample groups were performed. Results indicated that BT supported the greatest cell ingrowth after 14 days of culture in addition to the greatest cumulative collagen type I expression measured by ELISA. Sequential growth factor application promoted significant increases in collagen type I transcript expression from day 5 of culture to day 14, for five of six groups tested. All T-supplemented samples surpassed their respective control samples in both cell ingrowth and collagen deposition. All samples supported spindle-shaped, fibroblast cell morphology, aligning with the direction of silk fibers. These findings indicate significant in vitro ligament development after only 14 days of culture when using a sequential growth factor approach.

  3. Factors affecting bone mineral density in postmenopausal women.

    PubMed

    Heidari, Behzad; Hosseini, Reza; Javadian, Yahya; Bijani, Ali; Sateri, Mohammad Hassan; Nouroddini, Haj Ghorban

    2015-01-01

    This study aimed to determine the relationship between bone mineral density (BMD) and demographic, biochemical, and clinical features according to BMD measurement sites. The results indicated that BMD correlates negatively with menopause duration, parity, and history of fractures but positively correlates with obesity, physical activity, education, and serum ferritin. Osteoporosis (OP) is an important cause of morbidity and mortality in the elderly people. The impacts of various factors on bone mineral density (BMD) differ across diverse population. We hypothesized that the influences of factors which affect BMD vary according to BMD measurement sites. The aim of this study was to determine the relationship between BMD in the femoral neck (FN) and lumbar spine (LS) with some common clinical, demographic, and biochemical parameters in postmenopausal women. In this cross-sectional case-control study, all postmenopausal women of the Amirkola Health and Ageing Project (AHAP) who performed bone densitometry were included. BMD at FN and LS was measured by DXA method. Data regarding clinical, demographic, and biochemical characteristics were provided. OP was diagnosed by the International Society for Clinical Densitometry criteria. Pearson correlation and multivariate regression analyses with simultaneous adjustment were performed to determine relationship. Five hundred thirty-seven women with mean age of 67.9 ± 6.7 years and mean menopause duration (MD) of 15.8 ± 5.1 years were studied. MD correlated negatively with FN-BMD and LS-BMD g/cm(2) (r = -0.405, p = 0.001 and r = -0.217, p = 0.001). Body mass index (BMI) correlated positively with FN and LS-BMD g/cm(2) (r = 0.397, p = 0.001 and r = 0.311, p = 0.001). The association of MD with risk of FN-OP was stronger than LS-OP. Obesity and metabolic syndrome (MS) and higher serum ferritin reduced the risk of OP at both LS and FN similarly, whereas the impacts of parity, prior fracture, high level of education, and physical

  4. The use of bone marrow stromal cells (bone marrow-derived multipotent mesenchymal stromal cells) for alveolar bone tissue engineering: basic science to clinical translation.

    PubMed

    Kagami, Hideaki; Agata, Hideki; Inoue, Minoru; Asahina, Izumi; Tojo, Arinobu; Yamashita, Naohide; Imai, Kohzoh

    2014-06-01

    Bone tissue engineering is a promising field of regenerative medicine in which cultured cells, scaffolds, and osteogenic inductive signals are used to regenerate bone. Human bone marrow stromal cells (BMSCs) are the most commonly used cell source for bone tissue engineering. Although it is known that cell culture and induction protocols significantly affect the in vivo bone forming ability of BMSCs, the responsible factors of clinical outcome are poorly understood. The results from recent studies using human BMSCs have shown that factors such as passage number and length of osteogenic induction significantly affect ectopic bone formation, although such differences hardly affected the alkaline phosphatase activity or gene expression of osteogenic markers. Application of basic fibroblast growth factor helped to maintain the in vivo osteogenic ability of BMSCs. Importantly, responsiveness of those factors should be tested under clinical circumstances to improve the bone tissue engineering further. In this review, clinical application of bone tissue engineering was reviewed with putative underlying mechanisms.

  5. Experimental variation of the level and the ratio of angiogenic and osteogenic signaling affects the spatiotemporal expression of bone-specific markers and organization of bone formation in ectopic sites.

    PubMed

    Moser, Norman; Goldstein, Jan; Kauffmann, Phillip; Epple, Matthias; Schliephake, Henning

    2018-04-01

    The aim of the present study was to test the hypothesis that the ratio of angiogenic and osteogenic signaling affects ectopic bone formation when delivered in different amounts. Porous composite PDLLA/CaCO 3 scaffolds were loaded with rhBMP2 and rhVEGF in different dosage combinations and implanted into the gluteal muscles of 120 adult male Wistar rats. Bone formation and expression of alkaline phosphatase and Runx2 were quantified by histomorphometry. Spatial distribution across the scaffolds was assessed by using a grid that discriminated between the periphery and center of the scaffolds. The evaluation showed that the combined delivery of bone morphogenetic protein BMP2 and VEGF in different dosage combinations did not enhance the overall quantity of ectopic bone formation compared to the delivery of BMP2 alone. The addition of VEGF generally upregulated Runx2 after 4 weeks, which may have retarded terminal osteogenic differentiation. However, slow combined delivery of 1.5-2.0 μg BMP2 combined with 50 ng VEGF165 over a period of 5 weeks supported a more even distribution of bone formation across the implanted scaffolds whereas higher amounts of VEGF did not elicit this effect. The findings suggest that structural organization rather than the quantity of ectopic bone formation is affected by the dosage and the ratio of BMP2 and VEGF levels at the observed intervals. The development of carriers for dual growth factor delivery has to take into account the necessity to carefully balance the ratio of growth release.

  6. Disorders of Bone Remodeling

    PubMed Central

    Feng, Xu; McDonald, Jay M.

    2013-01-01

    The skeleton provides mechanical support for stature and locomotion, protects vital organs, and controls mineral homeostasis. A healthy skeleton must be maintained by constant bone modeling to carry out these crucial functions throughout life. Bone remodeling involves the removal of old or damaged bone by osteoclasts (bone resorption) and the subsequent replacement of new bone formed by osteoblasts (bone formation). Normal bone remodeling requires a tight coupling of bone resorption to bone formation to guarantee no alteration in bone mass or quality after each remodeling cycle. However, this important physiological process can be derailed by a variety of factors, including menopause-associated hormonal changes, age-related factors, changes in physical activity, drugs, and secondary diseases, which lead to the development of various bone disorders in both women and men. We review the major diseases of bone remodeling, emphasizing our current understanding of the underlying pathophysiological mechanisms. PMID:20936937

  7. Influence of Environmental Factors and Relationships between Vanadium, Chromium, and Calcium in Human Bone.

    PubMed

    Lanocha-Arendarczyk, Natalia; Kosik-Bogacka, Danuta I; Kalisinska, Elzbieta; Sokolowski, Sebastian; Kolodziej, Lukasz; Budis, Halina; Safranow, Krzysztof; Kot, Karolina; Ciosek, Zaneta; Tomska, Natalia; Galant, Katarzyna

    2016-01-01

    The aim of this study was to investigate the impact of environmental factors on the concentrations of vanadium (V), chromium (Cr), and calcium (Ca) and to examine the synergistic or antagonistic relationships between these metals, in cartilage (C), cortical bone (CB), and spongy bone (SB) samples obtained following hip joint surgery on patients with osteoarthritis in NW Poland. We found significantly higher concentrations of V and Cr in spongy bone in patients who consumed game meat and also those with prosthetic implants. Chromium levels were significantly lower in patients with kidney diseases. The greatest positive correlations were found between spongy bone V and (i) the amount of consumed beer and (ii) seafood diet. Correlation analysis also showed a significant correlation between Cr levels and seafood diet. To a certain extent these results indicate that the concentrations of V, Cr, and Ca in the human hip joint tissues are connected with occupational exposure, kidney diseases, diet containing game meat, sea food, beer, and the presence of implants. Furthermore, we noted new types of interactions in specific parts of the femoral head. Vanadium may contribute to the lower bone Ca levels, especially in the external parts (cartilage and cortical bone).

  8. Bone morphogenic protein: an elixir for bone grafting--a review.

    PubMed

    Shah, Prasun; Keppler, Louis; Rutkowski, James

    2012-12-01

    Bone morphogenetic proteins (BMPs) are multifunctional growth factors that belong to the transforming growth factor beta superfamily. This literature review focuses on the molecular biology of BMPs, their mechanism of action, and subsequent applications. It also discusses uses of BMPs in the fields of dentistry and orthopedics, research on methods of delivering BMPs, and their role in tissue regeneration. BMP has positive effects on bone grafts, and their calculated and timely use with other growth factors can provide extraordinary results in fractured or nonhealing bones. Use of BMP introduces new applications in the field of implantology and bone grafting. This review touches on a few unknown facts about BMP and this ever-changing field of research to improve human life.

  9. Nutritional factors affecting poultry bone health.

    PubMed

    Fleming, Robert H

    2008-05-01

    Outlined are two main current research concerns relating to skeletal disorders in poultry: (a) osteoporosis in egg-laying hens; (b) leg problems caused by rapid bone growth in broiler chickens. Surveys indicate that 30% of caged laying hens suffer at least one lifetime fracture (a severe welfare issue). Modern hybrids produce one egg per d for 50 weeks. For this period 'normal' bone turnover ceases; only medullary bone (MB) is formed, a woven bone type of limited structural value. MB is resorbed for eggshell formation alongside structural bone, leading to increased fracture risk. Avian osteoporosis is reduced by activity and genetic selection but nutrition is also important. Fluoride and vitamin K are beneficial but the timing of nutritional intervention is important. Ca, inorganic P and vitamin D must be adequate and the form of Ca is critical. Limestone fed as particulates benefits skeletal and eggshell quality. In hens fed particulate limestone compared with flour-fed hens the tibiotarsus breaking strength and radiographic density are increased at 56 weeks of age (P<0.01 and P<0.001 respectively) and the number of tartrate-resistant acid phosphatase-positive stained active osteoclasts (mean number per microscopic field) is decreased (P<0.001). In broiler (meat) chickens selection for rapid growth from approximately 50 g to 3 kg in 42 d has inadvertently produced skeletal disorders such as tibial dyschondroplasia, rickets and associated valgus-varus deformities leading to lameness. The beneficial skeletal effects during growth of increased dietary n-3 PUFA:n-6 PUFA (utilising salmon oil) have been demonstrated. Experiments simulating daylight UVB levels have produced beneficial skeletal effects in Ca- and vitamin D-deficient chicks.

  10. Healing of donor site in bone-tendon-bone ACL reconstruction accelerated with plasma rich in growth factors: a randomized clinical trial.

    PubMed

    Seijas, Roberto; Rius, Marta; Ares, Oscar; García-Balletbó, Montserrat; Serra, Iván; Cugat, Ramón

    2015-04-01

    To determine whether the use of plasma rich in growth factors accelerates healing of the donor site in bone-tendon-bone anterior cruciate ligament (ACL) reconstruction (patellar graft). The use of the patellar graft presents post-operative problems such as anterior knee pain, which limits its use and leads to preference being taken for alternative grafts. A double-blind, randomized, clinical trial was performed comparing two groups of patients who underwent ACL reconstruction using patellar tendon graft and comparing the use of plasma rich in growth factors at the donor site after graft harvest in terms of local regeneration by ultrasound assessment. The plasma rich in growth factors group shows earlier donor site regeneration in comparison with the control group (2 months earlier), with significant differences in the first 4 months of the follow-up. The application of plasma rich in growth factors shows accelerated tissue regeneration processes with respect to the control group. This fact, together with the previously published with similar conclusions, can create a knowledge basis in order to set out new recovery guidelines following ACL reconstruction. Therapeutic study, Level I.

  11. Role of hepatocyte growth factor in the development of dendritic cells from CD34+ bone marrow cells.

    PubMed

    Ovali, E; Ratip, S; Kibaroglu, A; Tekelioglu, Y; Cetiner, M; Karti, S; Aydin, F; Bayik, M; Akoglu, T

    2000-05-01

    Hepatocyte growth factor (HGF) is known to augment the effects of stem cell factor, interleukin-3, granulocyte-macrophage colony-stimulating factor (GM-CSF), erythropoetin, and granulocyte colony-stimulating factor, all of which are involved in hematopoiesis. HGF is also known to have a role in immune responses. The aim of this study was to investigate whether HGF is involved in the development of dendritic cells (DC) from CD34+ bone marrow cells. CD34+ cells obtained from three healthy donors were incubated in various combinations of HGF, GM-CSF, and tumor necrosis factor (TNF) for 12 days. Developing cell populations were analyzed for surface markers, morphology and functional capacities by flow cytometry, light microscopy and mixed lymphocyte reaction, respectively. Incubation with HGF alone generated greater number of dendritic cells from CD34+ bone marrow cells than incubation with GM-CSF, or a combination of GM-CSF with TNF. HGF was also found to potentiate the effect of GM-CSF on DC and monocyte development. The effects of HGF were inhibited by the concurrent use of TNF. HGF appears to be a significant factor in the development of dendritic cells from CD34+ bone marrow cells.

  12. Bone mineral density in children with acute leukemia and its associated factors in Iran: a case-control study.

    PubMed

    Bordbar, Mohammad Reza; Haghpanah, Sezaneh; Dabbaghmanesh, Mohammad Hossein; Omrani, Gholamhossein Ranjbar; Saki, Forough

    2016-12-01

    Acute leukemia is the most common malignancy in children. We showed that low bone mass is prevalent among children with leukemia, especially in femur. Serum calcium, exercise, chemotherapy protocol, and radiotherapy are the main contributing factors. We suggest that early diagnosis and treatment of this problem could improve bone health in them. Acute leukemia is the most common malignancy in children and has been reported to be associated with low bone mass. Due to lack of sufficient data about the bone mineral density of children with leukemia in the Middle East, and inconsistencies between possible associated factors contributing to decreasing bone density in these children, we aimed to conduct a case-control study in Iran. This case-control study was conducted on 60 children with acute leukemia and 60 age- and sex-matched healthy controls. Anthropometric data, sun exposure, puberty, physical activity, and mineral biochemical parameters were assessed. Bone mineral density (BMD) was measured by dual-energy X-ray absorptiometry (DEXA). Data analysis was done by SPSS software v. 21. Serum calcium was higher in the control group (P = 0.012) while serum phosphorous, alkaline phosphatase, and serum 25(OH)D 3 were higher in children with leukemia with P values of 0.04, 0.002, and 0.036, respectively. Sun exposure and physical activity were more in healthy controls (P values <0.001 and 0.003, respectively). Prevalence of vitamin D deficiency in case and control groups was 57.8 and 79.4 %, respectively. This prevalence was higher in healthy controls (P value = 0.007). Both lumbar and femoral neck bone mineral apparent density (BMAD) were higher in the control group (P value <0.001). Serum calcium, physical activity, and radiotherapy were the most relevant factors associated with lumbar BMAD. Femoral neck BMAD was associated with chemotherapy protocol. Low bone mass for chronological age is prevalent among children with leukemia, especially in the femoral neck. Serum

  13. Sharp mandibular bone irregularities after lower third molar extraction: Incidence, clinical features and risk factors

    PubMed Central

    Alves-Pereira, Daniela; Valmaseda-Castellón, Eduard; Laskin, Daniel M.; Berini-Aytés, Leonardo; Gay-Escoda, Cosme

    2013-01-01

    Objectives: The purpose of this study was to determine the incidence and clinical symptoms associated with sharp mandibular bone irregularities (SMBI) after lower third molar extraction and to identify possible risk factors for this complication. Study Design: A mixed study design was used. A retrospective cohort study of 1432 lower third molar extractions was done to determine the incidence of SMBI and a retrospective case-control study was done to determine potential demographic and etiologic factors by comparing those patients with postoperative SMBI with controls. Results: Twelve SMBI were found (0.84%). Age was the most important risk factor for this complication. The operated side and the presence of an associated radiolucent image were also significantly related to the development of mandibular bone irregularities. The depth of impaction of the tooth might also be an important factor since erupted or nearly erupted third molars were more frequent in the SMBI group. Conclusions: SMBI are a rare postoperative complication after lower third molar removal. Older patients having left side lower third molars removed are more likely to develop this problem. The treatment should be the removal of the irregularity when the patient is symptomatic. Key words:Third molar, postoperative complication, bone irregularities, age. PMID:23524429

  14. Metabolic acidosis increases fibroblast growth factor 23 in neonatal mouse bone

    PubMed Central

    Culbertson, Christopher D.; Kyker-Snowman, Kelly; Bushinsky, David A.

    2012-01-01

    Fibroblast growth factor 23 (FGF23) significantly increases with declining renal function, leading to reduced renal tubular phosphate reabsorption, decreased 1,25-dihydroxyvitamin D, and increased left ventricular hypertrophy. Elevated FGF23 is associated with increased mortality. FGF23 is synthesized in osteoblasts and osteocytes; however, the mechanisms by which it is regulated are not clear. Patients with chronic kidney disease have decreased renal acid excretion leading to metabolic acidosis, which has a direct effect on bone cell activity. We hypothesized that metabolic acidosis would directly increase bone cell FGF23 production. Using cultured neonatal mouse calvariae, we found that metabolic acidosis increased medium FGF23 protein levels as well as FGF23 RNA expression at 24 h and 48 h compared with incubation in neutral pH medium. To exclude that the increased FGF23 was secondary to metabolic acidosis-induced release of bone mineral phosphate, we cultured primary calvarial osteoblasts. In these cells, metabolic acidosis increased FGF23 RNA expression at 6 h compared with incubation in neutral pH medium. Thus metabolic acidosis directly increases FGF23 mRNA and protein in mouse bone. If these results are confirmed in humans with chronic kidney disease, therapeutic interventions to mitigate acidosis, such as bicarbonate administration, may also lower levels of FGF23, decrease left ventricular hypertrophy, and perhaps even decrease mortality. PMID:22647635

  15. Factors affecting bone mineral density in multiple sclerosis patients

    PubMed Central

    Ayatollahi, Azin; Mohajeri-Tehrani, Mohammad Reza

    2013-01-01

    Background Multiple sclerosis (MS) is a demyelinating disease which can cause many disabilities for the patient. Recent data suggests that MS patients have higher risk for osteoporosis. This study was performed to investigate if the osteoporosis prevalence is higher in MS patients and to determine the possible factors affecting bone mineral density (BMD). Methods 51 definite relapsing-remitting MS patients according to McDonald's criteria (45 females, 6 males aged between 20 and 50 years) participated in this study. The control group included 407 females aged from 20 to 49 years; they were healthy and had no history of the diseases affecting bone metabolism. Femoral and lumbar BMD were measured by Dual Energy X-ray Absorptiometry (DXA). The disability of MS patients was evaluated by Expanded Disability Status Scale (EDSS). The patient's quality of life was evaluated by the validated Persian version of multiple sclerosis impact scale (MSIS-29). Results Patients’ mean age was 36 ± 3.3 years and their mean disease duration was 8.7 ± 1.7 years. The mean EDSS score and the mean body mass index (BMI) of the patients were 3 ± 0.9 and 23.5 ± 2.3 kg/m2, respectively. 29% of the patients had never been treated by ß-interferon and 6% of them had not received glucocorticoids (GCs) pulses since their MS had been diagnosed. 26% of the patients had a history of fracture.18% of our patients were osteoporotic and 43% of them were osteopenic. Femoral BMD was significantly lower among MS patients than age matched controls (P < 0.001), but lumbar BMD showed no difference. There was no correlation between administration of GCs pulses, interferon and BMD; however, we found a significant correlation between EDSS score, quality of life (QoL), disease duration and BMD of both site. Conclusion As a result of this study, bone loss inevitably occurs in MS patients. The major factor of BMD loss is immobility. Osteoporosis should be managed as part of MS patients’ treatment protocols

  16. Effect of space flight factors on osteogenetic processes in the bone skeleton

    NASA Astrophysics Data System (ADS)

    Rodionova, Natalia Vasilievna; Oganov, Victor Sumbatovich

    The space flight factors (space radiation, magnetic fields etc.) affect considerably the state of bone tissue, leading to the development of osteoporosis and osteopenia in the bone skeleton. Many aspects of reactions of bone tissue cells still remain unclear until now. With the use of electron microscopy we studied the samples gathered from the femoral bone epiphyses and metaphyses of rats flown on board the space laboratory (Spacelab - 2) during 2 weeks. It was established, that under microgravity conditions there occur remodelling processes in a spongy bone related with a deficit of support load. In this work the main attention is focused on studying the ultrastructure of osteogenetic cells and osteoclasts. The degree of differentiation and functional state are evaluated according to the degree of development of organelles for specific biosynthesis: rough endoplasmic reticulum (RER), Golgy complex (GC), as well as the state of mitochondria and cell nucleus. As compared with a synchronous control, the population of osteogenetic cells from zones of bone reconstruction shows a decrease in the number of functionally active forms. We can judge of this from the reduction of a specific volume of RER, GC, mitochondria in osteoblasts. RER loses architectonics typical for osteoblasts and, as against the control, is represented by short narrow canaliculi distributed throughout the cytoplasm; some canals disintegrate. GC is slightly pronounced, mitochondria become smaller in size and acquire an optically dark matrix. These phenomena are supposed to be associated with the desorganization of microtubules and microfilaments in the cells under microgravity conditions. The population of osteogenetic cells shows a decrease in the number of differentiating osteoblasts and an increase in the number of little-differentiated stromal cells. In the population of osteoblasts, degrading and apoptotic cells are sometimes encountered. Such zones show a numerical increase of monocytic cells

  17. Fibroblast growth factor-21 restores insulin sensitivity but induces aberrant bone microstructure in obese insulin-resistant rats.

    PubMed

    Charoenphandhu, Narattaphol; Suntornsaratoon, Panan; Krishnamra, Nateetip; Sa-Nguanmoo, Piangkwan; Tanajak, Pongpun; Wang, Xiaojie; Liang, Guang; Li, Xiaokun; Jiang, Chao; Chattipakorn, Nipon; Chattipakorn, Siriporn

    2017-03-01

    Fibroblast growth factor (FGF)-21 is a potent endocrine factor that improves insulin resistance and obesity-associated metabolic disorders. However, concomitant activation of peroxisome proliferator-activated receptor-γ by FGF-21 makes bone susceptible to osteopenia and fragility fracture. Since an increase in body weight often induced adaptive change in bone by making it resistant to fracture, it was unclear whether FGF-21 would still induce bone defects in overweight rats. Therefore, the present study aimed to investigate bone microstructure and its mechanical properties in high fat diet (HF)-fed rats treated with 0.1 mg/kg/day FGF-21. Eighteen male rats were divided into two groups to receive either a normal diet or HF for 12 weeks. HF rats were then divided into two subgroups to receive either vehicle or FGF-21 for 4 weeks. The results showed that HF led to obesity, dyslipidemia and insulin resistance, as indicated by hyperinsulinemia with euglycemia. In HF rats, there was an increase in tibial yield displacement (an indicator of ability to be deformed without losing toughness, as determined by 3-point bending) without changes in tibial trabecular volumetric bone mineral density (vBMD) or cortical bone parameters, e.g., cortical thickness and bone area. FGF-21 treatment strongly improved the metabolic parameters and increased insulin sensitivity in HF rats. However, FGF-21-treated HF rats showed lower yield displacement, trabecular vBMD, trabecular bone volume, trabecular thickness, and osteoblast surface compared with vehicle-treated HF rats. These findings suggest that, despite being a potent antagonist of insulin resistance and visceral fat accumulation, FGF-21 is associated with bone defects in HF rats.

  18. Risk factors for osteoporosis and bone status in postmenopausal women with psoriasis treated with UVB therapy.

    PubMed

    Osmancevic, Amra; Landin-Wilhelmsen, Kerstin; Larkö, Olle; Mellström, Dan; Wennberg, Ann-Marie; Hulthén, Lena; Krogstad, Anne-Lene

    2008-01-01

    The aims of this study were to examine whether postmenopausal women with psoriasis who were exposed to regular ultraviolet light B (UVB) therapy had greater bone mineral density than women of similar age from the same region, and to estimate the influence of risk factors on bone status. A total of 35 randomly selected women, age (mean +/- SD) 69.3 +/- 6.29 years (age range 60-82 years), with active psoriasis, mean onset at 37.0 years (+/- 23.5 SD) were studied. The patients had been previously exposed to broadband or narrowband UVB. Age-matched, women (n = 2448) from Göteborg, examined at the Geriatric out-patient clinic during the years 2001 and 2002, were used as controls. Bone mineral density was examined by Dual-Energy X-ray Absorptiometry (Hologic Delphi A) at the hip and the lumbar spine. Medical history and lifestyle factors were assessed with a questionnaire. Postmenopausal women with psoriasis were found to have higher bone mineral density than age-matched controls. Higher body weight, physical activity and UVB exposure could explain this finding.

  19. [Bone Cell Biology Assessed by Microscopic Approach. Assessment of bone quality using Raman and infrared spectroscopy].

    PubMed

    Suda, Hiromi Kimura

    2015-10-01

    Bone quality, which was defined as "the sum total of characteristics of the bone that influence the bone's resistance to fracture" at the National Institute of Health (NIH) conference in 2001, contributes to bone strength in combination with bone mass. Bone mass is often measured as bone mineral density (BMD) and, consequently, can be quantified easily. On the other hand, bone quality is composed of several factors such as bone structure, bone matrix, calcification degree, microdamage, and bone turnover, and it is not easy to obtain data for the various factors. Therefore, it is difficult to quantify bone quality. We are eager to develop new measurement methods for bone quality that make it possible to determine several factors associated with bone quality at the same time. Analytic methods based on Raman and FTIR spectroscopy have attracted a good deal of attention as they can provide a good deal of chemical information about hydroxyapatite and collagen, which are the main components of bone. A lot of studies on bone quality using Raman and FTIR imaging have been reported following the development of the two imaging systems. Thus, both Raman and FTIR imaging appear to be promising new bone morphometric techniques.

  20. Factors Associated with Bone Health in Malaysian Middle-Aged and Elderly Women Assessed via Quantitative Ultrasound.

    PubMed

    Chin, Kok-Yong; Low, Nie Yen; Dewiputri, Wan Ilma; Ima-Nirwanaa, Soelaiman

    2017-07-06

    Risk factors for osteoporosis may vary according to different populations. We aimed to investigate the relationship between risk factors of osteoporosis and bone health indices determined via calcaneal quantitative ultrasound (QUS) in a group of Malaysian women aged 50 years or above. A cross-sectional study was performed on 344 Malaysian women recruited from a tertiary medical centre in Kuala Lumpur, Malaysia. They answered a self-administered questionnaire on their social-demographic details, medical history, lifestyle, and physical activity status. Their height was measured using a stadiometer, and their body composition estimated using a bioelectrical impedance device. Their bone health status was determined using a water-based calcaneal QUS device that generated three indices, namely speed of sound (SOS), broadband ultrasound attenuation (BUA), and stiffness index (SI). A T-score was computed from SI values using a reference database from a mainland Chinese population. Women with three or more lifetime pregnancies, who were underweight and not drinking coffee had a significantly lower BUA. Stepwise multiple linear regression showed that SOS was predicted by age alone, BUA and SI by years since menopause, body mass index (BMI), and number of lifetime pregnancies, and T-score by years since menopause and percentage of body fat. As a conclusion, suboptimal bone health in middle-aged and elderly Malaysian women as indicated by QUS is associated with old age, being underweight, having a high body fat percentage, and a high number of lifetime pregnancies. Women having several risk factors should be monitored more closely to protect their bones against accelerated bone loss.

  1. Influence of Environmental Factors and Relationships between Vanadium, Chromium, and Calcium in Human Bone

    PubMed Central

    Lanocha-Arendarczyk, Natalia; Kosik-Bogacka, Danuta I.; Kalisinska, Elzbieta; Sokolowski, Sebastian; Kolodziej, Lukasz; Budis, Halina; Safranow, Krzysztof; Kot, Karolina; Ciosek, Zaneta; Tomska, Natalia; Galant, Katarzyna

    2016-01-01

    The aim of this study was to investigate the impact of environmental factors on the concentrations of vanadium (V), chromium (Cr), and calcium (Ca) and to examine the synergistic or antagonistic relationships between these metals, in cartilage (C), cortical bone (CB), and spongy bone (SB) samples obtained following hip joint surgery on patients with osteoarthritis in NW Poland. We found significantly higher concentrations of V and Cr in spongy bone in patients who consumed game meat and also those with prosthetic implants. Chromium levels were significantly lower in patients with kidney diseases. The greatest positive correlations were found between spongy bone V and (i) the amount of consumed beer and (ii) seafood diet. Correlation analysis also showed a significant correlation between Cr levels and seafood diet. To a certain extent these results indicate that the concentrations of V, Cr, and Ca in the human hip joint tissues are connected with occupational exposure, kidney diseases, diet containing game meat, sea food, beer, and the presence of implants. Furthermore, we noted new types of interactions in specific parts of the femoral head. Vanadium may contribute to the lower bone Ca levels, especially in the external parts (cartilage and cortical bone). PMID:27294138

  2. Genetic factors influencing bone mineral content in a black South African population.

    PubMed

    May, Andrew; Pettifor, John M; Norris, Shane A; Ramsay, Michèle; Lombard, Zané

    2013-11-01

    Bone mass differs according to ethnic classification, with individuals of African ancestry attaining the highest measurements across numerous skeletal sites. Elevated bone mass is even maintained in those individuals exposed to adverse environmental factors, suggesting a prominent genetic effect that may have clinical or therapeutic value. Using a candidate gene approach, we investigated associations of six candidate genes (ESR1, TNFRSF11A, TNFRSF11B, TNFSF11, SOST and SPP1) with bone mass at the hip and lumbar spine amongst pre-pubertal black South African children (mean age 10.6 years) who formed part of the longitudinal Birth to Twenty cohort. 151 black children were genotyped at 366 polymorphic loci, including 112 previously associated and 254 tagging single nucleotide polymorphisms (SNPs). Linear regression was used to highlight significant associations whilst adjusting for height, weight, sex and bone area. Twenty-seven markers (8 previously associated and 19 tag SNPs; P < 0.05) were found to be associated with either femoral neck (18) or lumbar spine (9) bone mineral content. These signals were derived from three genes, namely ESR1 (17), TNFRSF11B (9) and SPP1 (1). One marker (rs2485209) maintained its association with the femoral neck after correction for multiple testing (P = 0.038). When compared to results amongst Caucasian adults, we detected differences with respect to associated skeletal sites. Allele frequencies and linkage disequilibrium patterns were also significantly different between populations. Hence, our results support the existence of a strong genetic effect acting at the femoral neck in black South African children, whilst simultaneously highlighting possible causes that account for inter-ethnic bone mass diversity.

  3. Elicitation of Unstated Needs

    DTIC Science & Technology

    2014-09-17

    what you can about requirements for a next generation laptop for the Home User that • attracts new customers • leverages existing customer loyalty ...Training © 2014 Carnegie Mellon University Traditional Requirements Elicitation Approaches Interviews of customers /users to elicit problems and usage...needs Inventory of problem reporting systems harboring customer complaints Solicitation of specification from customers /users to build a system

  4. Whole bone mechanics and bone quality.

    PubMed

    Cole, Jacqueline H; van der Meulen, Marjolein C H

    2011-08-01

    The skeleton plays a critical structural role in bearing functional loads, and failure to do so results in fracture. As we evaluate new therapeutics and consider treatments to prevent skeletal fractures, understanding the basic mechanics underlying whole bone testing and the key principles and characteristics contributing to the structural strength of a bone is critical. We therefore asked: (1) How are whole bone mechanical tests performed and what are the key outcomes measured? (2) How do the intrinsic characteristics of bone tissue contribute to the mechanical properties of a whole bone? (3) What are the effects of extrinsic characteristics on whole bone mechanical behavior? (4) Do environmental factors affect whole bone mechanical properties? We conducted a PubMed search using specific search terms and limiting our included articles to those related to in vitro testing of whole bones. Basic solid mechanics concepts are summarized in the context of whole bone testing and the determinants of whole bone behavior. Whole bone mechanical tests measure structural stiffness and strength from load-deformation data. Whole bone stiffness and strength are a function of total bone mass and the tissue geometric distribution and material properties. Age, sex, genetics, diet, and activity contribute to bone structural performance and affect the incidence of skeletal fractures. Understanding and preventing skeletal fractures is clinically important. Laboratory tests of whole bone strength are currently the only measures for in vivo fracture prediction. In the future, combined imaging and engineering models may be able to predict whole bone strength noninvasively.

  5. Application of a novel bone osteotomy plate leads to reduction in heat-induced bone tissue necrosis in sheep.

    PubMed

    Bekić, Marijo; Davila, Slavko; Hrskanović, Mato; Bekić, Marijana; Seiwerth, Sven; Erdeljić, Viktorija; Capak, Darko; Butković, Vladimir

    2008-12-01

    Previous studies have shown substantial effect thermal damage can have on new bone formation following osteotomy. In this study we evaluated the extent of thermal damage which occurs in four different methods of osteotomy and the effects it can have on bone healing. We further wanted to test whether a special osteotomy plate we constructed can lead to diminished heat generation during osteotomy and enhanced bone healing. The four methods evaluated included osteotomy performed by chisel, a newly constructed osteotomy plate, Gigly and oscillating saw. Twelve adult sheep underwent osteotomy performed on both tibiae. Bone fragments were stabilized using a fixation plate. Callus size was assessed using standard radiographs. Densitometry and histological evaluation were performed at 8 weeks following osteotomy. Temperature measurements were performed both in vivo during the operation, and ex vivo on explanted tibiae. The defects healed without complications and showed typical course of secondary fracture healing with callus ingrowth into the osteotomy gap. Radiographic examination of bone healing showed a tendency towards more callus formation in bones osteotomized using Gigly and oscillating saw, but this difference lacked significance. Use of Gigly and oscillating saw elicited much higher temperatures at the bone cortex surface, which subsequently lead to slightly impaired bone healing according to histological analysis. BMD was equal among all bones. In conclusion, the time required for complete healing of the defect differed depended greatly on the instruments used. The newly constructed osteotomy plate showed best results based on histological findings of capillary and osteoblast density.

  6. Bone marrow vascular endothelial growth factor level per platelet count might be a significant predictor for the treatment outcomes of patients with diffuse large B-cell lymphomas.

    PubMed

    Kim, Jung Sun; Gang, Ga Won; Lee, Se Ryun; Sung, Hwa Jung; Park, Young; Kim, Dae Sik; Choi, Chul Won; Kim, Byung Soo

    2015-10-01

    Developing a parameter to predict bone marrow invasion by non-Hodgkin's lymphoma is an important unmet medical need for treatment decisions. This study aimed to confirm the validity of the hypothesis that bone marrow plasma vascular endothelial growth factor level might be correlated with the risk of bone marrow involvement and the prognosis of patients with diffuse large B-cell non-Hodgkin's lymphoma. Forty-nine diffuse large B-cell lymphoma patients treated with rituximab, cyclophosphamide, daunorubicin, vincristine and prednisolone regimen were enrolled. Vascular endothelial growth factor level was measured with enzyme-linked immunosorbent assay. The validity of bone marrow plasma vascular endothelial growth factor level and bone marrow vascular endothelial growth factor level per platelet count for predicting treatment response and survival after initial rituximab, cyclophosphamide, daunorubicin, vincristine and prednisolone combined chemotherapy was assessed. Bone marrow plasma vascular endothelial growth factor level per platelet count was significantly associated with old age (≥ 65 years), poor performance score (≥ 2), high International prognosis index (≥ 3) and bone marrow invasion. The patients with high bone marrow plasma vascular endothelial growth factor level per platelet count (≥ 3.01) showed a significantly lower complete response rate than the others. On Kaplan-Meier survival curves, the patients with high bone marrow plasma vascular endothelial growth factor levels (≥ 655 pg/ml) or high bone marrow plasma vascular endothelial growth factor level per platelet count (≥ 3.01) demonstrated a significantly shorter overall survival and progression-free survival than the others. In the patients without bone marrow involvement, bone marrow plasma vascular endothelial growth factor level per platelet count had a significant relationship with overall survival and progression-free survival. Multivariate analysis revealed that the patients without

  7. Angiogenesis after sintered bone implantation in rat parietal bone.

    PubMed

    Ohtsubo, S; Matsuda, M; Takekawa, M

    2003-01-01

    We studied the effect of bone substitutes on revascularization and the restart of blood supply after sintered bone implantation in comparison with synthetic hydroxyapatite implantation and fresh autogenous bone transplantation (control) in rat parietal bones. Methods for the study included the microvascular corrosion cast method and immunohistochemical techniques were also used. The revascularization of the control group was the same as that for usual wound healing in the observations of the microvascular corrosion casts. The sintered bone implantation group was quite similar to that of the control group. In the synthetic hydroxyapatite group, immature newly-formed blood vessels existed even on the 21st day after implantation and the physiological process of angiogenesis was interrupted. Immunohistochemically, vascular endothelial growth factor (VEGF), which activates angiogenesis, appeared at the early stages of both the control group and the sintered bone implantation group. VEGF reduced parallel with the appearance of the transforming growth factor factor-beta-1 (TGF-beta-1), which obstructs angiogenesis, and the angiogenesis passed gradually into the mature stage. In the hydroxyapatite implantation group, TGF-beta-1 appeared at the early stage of the implants. The appearance of VEGF lagged and it existed around the pores of hydroxyapatite even on the 21st day of the implantation. Proliferation and wandering of endothelial cells continued without any maturing of the vessels. These findings suggest that the structure and the components of the implant material affect angiogenesis after implantation as well as new bone formation.

  8. Effects of epidermal growth factor on bone formation and resorption in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marie, P.J.; Hott, M.; Perheentupa, J.

    1990-02-01

    The effects of mouse epidermal growth factor (EGF) on bone formation and resorption were examined in male mice. EGF administration (2-200 ng.g-1.day-1 ip for 7 days) induced a dose-dependent rise in plasma EGF levels that remained within physiological range. Histomorphometric analysis of caudal vertebrae showed that EGF (20 and 200 ng.g-1.day-1) reduced the endosteal matrix and mineral appositional rates after 5 days of treatment as measured by double (3H)proline labeling and double tetracycline labeling, respectively. This effect was transitory and was not observed after 7 days of EGF administration. EGF administered for 7 days induced a dose-dependent increase in themore » periosteal osteoblastic and tetracycline double-labeled surfaces. At high dosage (200 ng.g-1.day-1) EGF administration increased the osteoclastic surface and the number of acid phosphatase-stained osteoclasts, although plasma calcium remained normal. The results show that EGF administration at physiological doses induces distinct effects on endosteal and periosteal bone formation and that the effects are dependent on EGF dosage and duration of treatment. This study indicates that EGF at physiological dosage stimulates periosteal bone formation and increases endosteal bone resorption in the growing mouse.« less

  9. Insulin- like Growth Factor-Binding Protein Action in Bone Tissue: A Key Role for Pregnancy- Associated Plasma Protein-A.

    PubMed

    Beattie, James; Al-Khafaji, Hasanain; Noer, Pernille R; Alkharobi, Hanaa Esa; Alhodhodi, Aishah; Meade, Josephine; El-Gendy, Reem; Oxvig, Claus

    2018-01-01

    The insulin-like growth factor (IGF) axis is required for the differentiation, development, and maintenance of bone tissue. Accordingly, dysregulation of this axis is associated with various skeletal pathologies including growth abnormalities and compromised bone structure. It is becoming increasingly apparent that the action of the IGF axis must be viewed holistically taking into account not just the actions of the growth factors and receptors, but also the influence of soluble high affinity IGF binding proteins (IGFBPs).There is a recognition that IGFBPs exert IGF-dependent and IGF-independent effects in bone and other tissues and that an understanding of the mechanisms of action of IGFBPs and their regulation in the pericellular environment impact critically on tissue physiology. In this respect, a group of IGFBP proteinases (which may be considered as ancillary members of the IGF axis) play a crucial role in regulating IGFBP function. In this model, cleavage of IGFBPs by specific proteinases into fragments with lower affinity for growth factor(s) regulates the partition of IGFs between IGFBPs and cell surface IGF receptors. In this review, we examine the importance of IGFBP function in bone tissue with special emphasis on the role of pregnancy associated plasma protein-A (PAPP-A). We examine the function of PAPP-A primarily as an IGFBP-4 proteinase and present evidence that PAPP-A induced cleavage of IGFBP-4 is potentially a key regulatory step in bone metabolism. We also highlight some recent findings with regard to IGFBP-2 and IGFBP-5 (also PAPP-A substrates) function in bone tissue and briefly discuss the actions of the other three IGFBPs (-1, -3, and -6) in this tissue. Although our main focus will be in bone we will allude to IGFBP activity in other cells and tissues where appropriate.

  10. The G-factor as a tool to learn more about bone structure and function.

    PubMed

    Zerath, E

    1999-07-01

    In normal life on earth, the locomotor system is exposed to two types of stimulation: gravity (passive stimulation) and motion (active stimulation). Both permanently combine, and the interactions between locomotion and gravity induce an overall recruitment which is repeated daily and maintains the bone tissue structure within the range of constraints to which it is adapted. This range is one of the basic hypotheses underlying the mechanical concepts of bone structure control, and it has been considered as logical to assume that weightlessness of spaceflight should produce bone loss since astronauts are outside of the terrestrial gravitational field of forces, no longer relying on muscular work to change positions or move. But, thirty years after the first changes in phospho-calcium metabolism were observed in astronauts after spaceflight, current knowledge does not provide a full understanding of this pathogeny, and prove the G-factor is now considered as an essential component of the experimental tools available to study bone physiology. The study of the physiology of bone tissue usually consists in the investigation of its two fundamental roles, i.e. reservoir of inorganic elements (calcium, phosphorus, magnesium) and mechanical support for soft tissues. Together with the combined action of muscles, tendons, and ligaments, this support permits motion and locomotion. These two functions rely on a sophisticated bone tissue architecture, and on the adaptability of this structure, with modeling and remodeling processes, themselves associated with the coupled activity of specialized bone cell populations.

  11. Protective effect of salidroside against bone loss via hypoxia-inducible factor-1α pathway-induced angiogenesis

    PubMed Central

    Li, Ling; Qu, Ye; Jin, Xin; Guo, Xiao Qin; Wang, Yue; Qi, Lin; Yang, Jing; Zhang, Peng; Li, Ling Zhi

    2016-01-01

    Hypoxia-inducible factor (HIF)-1α plays a critical role in coupling angiogenesis with osteogenesis during bone development and regeneration. Salidroside (SAL) has shown anti-hypoxic effects in vitro and in vivo. However, the possible roles of SAL in the prevention of hypoxia-induced osteoporosis have remained unknown. Two osteoblast cell lines, MG-63 and ROB, were employed to evaluate the effects of SAL on cell viability, apoptosis, differentiation and mineralization in vitro. Rats subjected to ovariectomy-induced bone loss were treated with SAL in vivo. Our results showed that pre-treatment with SAL markedly attenuated the hypoxia-induced reductions in cell viability, apoptosis, differentiation and mineralization. SAL down-regulated HIF-1α expression and inhibited its translocation; however, SAL increased its transcriptional activity and, consequently, up-regulated vascular endothelial growth factor (VEGF). In vivo studies further demonstrated that SAL caused decreases in the mineral, alkaline phosphatase (ALP), and BGP concentrations in the blood of ovariectomized (OVX) rats. Moreover, SAL improved the trabecular bone microarchitecture and increased bone mineral density in the distal femur. Additionally, SAL administration partially ameliorated this hypoxia via the HIF-1α-VEGF signalling pathway. Our results indicate that SAL prevents bone loss by enhancing angiogenesis and osteogenesis and that these effects are associated with the activation of HIF-1α signalling. PMID:27558909

  12. In vitro effects of 0 to 120 Grays of irradiation on bone viability and release of growth factors.

    PubMed

    Sawada, Kosaku; Fujioka-Kobayashi, Masako; Kobayashi, Eizaburo; Brömme, Jens O; Schaller, Benoit; Miron, Richard J

    2016-07-04

    High dose radiation therapy is commonly used in maxillofacial surgeries to treat a number of head and neck tumors. Despite its widespread use, little information is available regarding the effects of irradiation on bone cell viability and release of growth factors following dose-dependent irradiation. Bone samples were collected from porcine mandibular cortical bone and irradiated at doses of 0, 7.5, 15, 30, 60 and 120 Grays. Thereafter, cell viability was quantified, and the release of growth factors including TGFβ1, BMP2, VEGF, IL1β and RANKL were investigated over time. It was observed that at only 7.5Gy of irradiation, over 85 % of cells were non-vital and by 60 Gy, all cells underwent apoptosis. Furthermore, over a 7-fold decrease in VEGF and a 2-fold decrease in TGFβ1 were observed following irradiation at all tested doses. Little change was observed for BMP2 and IL1β whereas RANKL was significantly increased for all irradiated samples. These results demonstrate the pronounced effects of irradiation on bone-cell vitality and subsequent release of growth factors. Interestingly, the largest observed change in gene expression was the 7-fold decrease in VEGF protein following irradiation. Future research aimed at improving our understanding of bone following irradiation is necessary to further improve future clinical treatments.

  13. Prospective assessment of bone turnover and clinical bone diseases after allogeneic hematopoietic stem-cell transplantation.

    PubMed

    Petropoulou, Anna D; Porcher, Raphael; Herr, Andrée-Laure; Devergie, Agnès; Brentano, Thomas Funck; Ribaud, Patricia; Pinto, Fernando O; Rocha, Vanderson; Peffault de Latour, Régis; Orcel, Philippe; Socié, Gérard; Robin, Marie

    2010-06-15

    Bone complications after hematopoietic stem-cell transplantation (HSCT) are relatively frequent. Evaluation of biomarkers of bone turnover and dual energy x-ray absorptiometry (DEXA) are not known in this context. We prospectively evaluated bone mineral density, biomarkers of bone turnover, and the cumulative incidence of bone complications after allogeneic HSCT. One hundred forty-six patients were included. Bone mineral density was measured by DEXA 2-month and 1-year post-HSCT. The markers of bone turnover were serum C-telopeptide (C-TP), 5 tartrate-resistant acid phosphatase (bone resorption), and osteocalcin (bone formation) determined pre-HSCT and 2 months and 1 year thereafter. Potential association between osteoporosis at 2 months, osteoporotic fracture or avascular necrosis and, individual patient's characteristics and biologic markers were tested. C-TP was high before and 2 months after transplant. At 2 months, DEXA detected osteoporosis in more than half the patients tested. Male sex, median age less than or equal to 15 years, and abnormal C-TP before HSCT were risk factors significantly associated with osteoporosis. Three-year cumulative incidences of fractures and avascular necrosis were 8% and 11%, respectively. Children were at higher risk of fracture, whereas corticosteroid treatment duration was a significant risk factor for developing a clinical bone complication post-HSCT. Bone complications and osteoporosis are frequent after HSCT. Bone biologic markers and DEXA showed that subclinical bone abnormalities appeared early post-HSCT. The risk factors, age, gender, and C-TP easily available at the time of transplantation were identified. Biphosphonates should probably be given to patients with those risk factors.

  14. Collagen implants equipped with 'fish scale'-like nanoreservoirs of growth factors for bone regeneration.

    PubMed

    Eap, Sandy; Ferrand, Alice; Schiavi, Jessica; Keller, Laetitia; Kokten, Tunay; Fioretti, Florence; Mainard, Didier; Ladam, Guy; Benkirane-Jessel, Nadia

    2014-01-01

    Implants triggering rapid, robust and durable tissue regeneration are needed to shorten recovery times and decrease risks of postoperative complications for patients. Here, we describe active living collagen implants with highly promising bone regenerative properties. Bioactivity of the implants is obtained through the protective and stabilizing layer-by-layer immobilization of a protein growth factor in association with a polysaccharide (chitosan), within the form of nanocontainers decorating the collagen nanofibers. All components of the implants are US FDA approved. From both in vitro and in vivo evaluations, the sophisticated strategy described here should enhance, at a reduced cost, the safety and efficacy of the therapeutic implants in terms of large bone defects repair compared with current simplistic approaches based on the soaking of the implants with protein growth factor.

  15. Is cortical bone hip? What determines cortical bone properties?

    PubMed

    Epstein, Sol

    2007-07-01

    Increased bone turnover may produce a disturbance in bone structure which may result in fracture. In cortical bone, both reduction in turnover and increase in hip bone mineral density (BMD) may be necessary to decrease hip fracture risk and may require relatively greater proportionate changes than for trabecular bone. It should also be noted that increased porosity produces disproportionate reduction in bone strength, and studies have shown that increased cortical porosity and decreased cortical thickness are associated with hip fracture. Continued studies for determining the causes of bone strength and deterioration show distinct promise. Osteocyte viability has been observed to be an indicator of bone strength, with viability as the result of maintaining physiological levels of loading and osteocyte apoptosis as the result of a decrease in loading. Osteocyte apoptosis and decrease are major factors in the bone loss and fracture associated with aging. Both the osteocyte and periosteal cell layer are assuming greater importance in the process of maintaining skeletal integrity as our knowledge of these cells expand, as well being a target for pharmacological agents to reduce fracture especially in cortical bone. The bisphosphonate alendronate has been seen to have a positive effect on cortical bone by allowing customary periosteal growth, while reducing the rate of endocortical bone remodeling and slowing bone loss from the endocortical surface. Risedronate treatment effects were attributed to decrease in bone resorption and thus a decrease in fracture risk. Ibandronate has been seen to increase BMD as the spine and femur as well as a reduced incidence of new vertebral fractures and non vertebral on subset post hoc analysis. And treatment with the anabolic agent PTH(1-34) documented modeling and remodelling of quiescent and active bone surfaces. Receptor activator of nuclear factor kappa B ligand (RANKL) plays a key role in bone destruction, and the human monoclonal

  16. Elastin-like-polypeptide based fusion proteins for osteogenic factor delivery in bone healing.

    PubMed

    McCarthy, Bryce; Yuan, Yuan; Koria, Piyush

    2016-07-08

    Modern treatments of bone injuries and diseases are becoming increasingly dependent on the usage of growth factors to stimulate bone growth. Bone morphogenetic protein-2 (BMP-2), a potent osteogenic inductive protein, exhibits promising results in treatment models, but recently has had its practical efficacy questioned due to the lack of local retention, ectopic bone formation, and potentially lethal inflammation. Where a new delivery technique of the BMP-2 is necessary, here we demonstrate the viability of an elastin-like peptide (ELP) fusion protein containing BMP-2 for delivery of the BMP-2. This fusion protein retains the performance characteristics of both the BMP-2 and ELP. The fusion protein was found to induce osteogenic differentiation of mesenchymal stem cells as evidenced by the production of alkaline phosphatase and extracellular calcium deposits in response to treatment by the fusion protein. Retention of the ELPs inverse phase transition property has allowed for expression of the fusion protein within a bacterial host (such as Escherichia coli) and easy and rapid purification using inverse transition cycling. The fusion protein formed self-aggregating nanoparticles at human-body temperature. The data collected suggests the viability of these fusion protein nanoparticles as a dosage-efficient and location-precise noncytotoxic delivery vehicle for BMP-2 in bone treatment. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1029-1037, 2016. © 2016 American Institute of Chemical Engineers.

  17. Transcription Factor Erg Variants and Functional Diversification of Chondrocytes during Limb Long Bone Development

    PubMed Central

    Iwamoto, Masahiro; Higuchi, Yoshinobu; Koyama, Eiki; Enomoto-Iwamoto, Motomi; Kurisu, Kojiro; Yeh, Helena; Abrams, William R.; Rosenbloom, Joel; Pacifici, Maurizio

    2000-01-01

    During limb development, chondrocytes located at the epiphyseal tip of long bone models give rise to articular tissue, whereas the more numerous chondrocytes in the shaft undergo maturation, hypertrophy, and mineralization and are replaced by bone cells. It is not understood how chondrocytes follow these alternative pathways to distinct fates and functions. In this study we describe the cloning of C-1-1, a novel variant of the ets transcription factor ch-ERG. C-1-1 lacks a short 27–amino acid segment located ∼80 amino acids upstream of the ets DNA binding domain. We found that in chick embryo long bone anlagen, C-1-1 expression characterizes developing articular chondrocytes, whereas ch-ERG expression is particularly prominent in prehypertrophic chondrocytes in the growth plate. To analyze the function of C-1-1 and ch-ERG, viral vectors were used to constitutively express each factor in developing chick leg buds and cultured chondrocytes. We found that virally driven expression of C-1-1 maintained chondrocytes in a stable and immature phenotype, blocked their maturation into hypertrophic cells, and prevented the replacement of cartilage with bone. It also induced synthesis of tenascin-C, an extracellular matrix protein that is a unique product of developing articular chondrocytes. In contrast, virally driven expression of ch-ERG significantly stimulated chondrocyte maturation in culture, as indicated by increases in alkaline phosphatase activity and deposition of a mineralized matrix; however, it had modest effects in vivo. The data show that C-1-1 and ch-ERG have diverse biological properties and distinct expression patterns during skeletogenesis, and are part of molecular mechanisms by which limb chondrocytes follow alternative developmental pathways. C-1-1 is the first transcription factor identified to date that appears to be instrumental in the genesis and function of epiphyseal articular chondrocytes. PMID:10893254

  18. Buckling and bone modeling as factors in the development of idiopathic scoliosis.

    PubMed

    Goto, Manabu; Kawakami, Noriaki; Azegami, Hideyuki; Matsuyama, Yukihiro; Takeuchi, Kenzen; Sasaoka, Ryu

    2003-02-15

    resulting from bone formation corrected the original curve, and the thoracic cage distorted. On the other hand, incremental deformation resulting from bone resorption worsened the original curve, and the thoracic cage distorted in a manner similar to that described by the clinical data. This computational investigation suggests that scoliotic changes in the spinal column triggered by the buckling phenomenon are counteracted by bone formation, but worsened by bone resorption. The authors hypothesized that scoliosis progressed with resorption of loaded bone. However, it is unclear whether this hypothesis applies to a living body in practice because of the effects from additional factors.

  19. Investigation of Peri-Implant Bone Healing Using Autologous Plasma Rich in Growth Factors in the Canine Mandible After 12 Weeks: A Pilot Study

    PubMed Central

    Birang, Reza; Tavakoli, Mohammad; Shahabouei, Mohammad; Torabi, Alireza; Dargahi, Ali; Soolari, Ahmad

    2011-01-01

    Introduction: Faster reconstruction of patients’ masticatory systems is the aim of modern dentistry. A number of studies have indicated that application of growth factors to the surface of a dental implant leads to accelerated and enhanced osseointegration. The objective of the present study was to investigate the effect of plasma rich in growth factors on peri-implant bone healing. Materials and Methods: For the purpose of this study, two healthy, mixed-breed canines were selected, and the premolars were extracted from both sides of the mandible. Three months after premolar removal, 12 implants, each 5 mm in diameter and 10 mm in length, were placed in osteotomy sites on both sides of the mandible. Prior to placement, plasma rich in growth factors was applied to the surfaces of six implants, while the other six were used without plasma rich in growth factors. The implants were removed after 12 weeks along with the bone surrounding the sites using a trephine bur. One mesiodistal section containing the surrounding bone from each implant block, 50 µm in diameter, was prepared for histologic and histomorphometric investigation with an optical microscope. Results: The sites with implants treated with plasma rich in growth factors showed more bone-to-implant contact compared to control sites. Also, higher values for bone trabecular thickness and bone maturity were recorded for the PRGF-treated sites than for the control sites. Conclusion: Application of plasma rich in growth factors to the surface of an implant may enhance the bone healing process as well as bone-to-implant contact, thereby helping to achieve faster osseointegration. PMID:22145011

  20. Muscle-Bone Interactions in Pediatric Bone Diseases.

    PubMed

    Veilleux, Louis-Nicolas; Rauch, Frank

    2017-10-01

    Here, we review the skeletal effects of pediatric muscle disorders as well as muscle impairment in pediatric bone disorders. When starting in utero, muscle disorders can lead to congenital multiple contractures. Pediatric-onset muscle weakness such as cerebral palsy, Duchenne muscular dystrophy, spinal muscular atrophy, or spina bifida typically are associated with small diameter of long-bone shafts, low density of metaphyseal bone, and increased fracture incidence in the lower extremities, in particular, the distal femur. Primary bone diseases can affect muscles through generic mechanisms, such as decreased physical activity or in disease-specific ways. For example, the collagen defect underlying the bone fragility of osteogenesis imperfecta may also affect muscle force generation or transmission. Transforming growth factor beta released from bone in Camurati Engelman disease may decrease muscle function. Considering muscle-bone interactions does not only contribute to the understanding of musculoskeletal disorders but also can identify new targets for therapeutic interventions.

  1. Relationship of Fibroblast Growth Factor 23 (FGF-23) Serum Levels With Low Bone Mass in Postmenopausal Women.

    PubMed

    Shen, Jun; Fu, Shiping; Song, Yuan

    2017-12-01

    The aim of this study was to determine the relationship between serum fibroblast growth factor-23 (FGF-23) level and bone mass in postmenopausal women. A total of 60 premenopausal, 60 early postmenopausal, and 60 late postmenopausal women were investigated by the measurement of bone mineral densities (BMDs) at lumbar spine and proximal femur by DXA, together with serum concentrations of Ca, P, 25 (OH) D 3 , OC, iPTH, CTX-I, PINP, and FGF-23. The levels of FGF-23 and PINP in early postmenopausal group were significantly higher than that in the premenopausal or the late postmenopausal groups, their changing patterns were different form 25(OH)D 3, iPTH, IGF, CTX-I, and OC. According to the AUCs in the ROC analysis, we found that serum FGF-23 level was associated with the highest validity as compared to the other bone metabolism factors. Further study indicated the significant negative relationships between serum FGF-23 level and lumbar spine/proximal femur BMDs in postmenopausal women. After detection of the sensitivity and specificity of serum FGF- 23 for the low bone mass at different T-score (SD) lumbar spine/proximal femur BMDs, we found that serum FGF-23 level may be a reliable marker for low bone mass in postmenopausal women. The performance of FGF-23 in the differential diagnosis low bone mass from healthy participants indicated that FGF-23 has the capacity to differentiate the women with low bone mass from the normal ones. Our study indicated that serum FGF-23 level could be served as the utility in the early detection of women with low bone mass. J. Cell. Biochem. 118: 4454-4459, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. Orthopedic surgery and bone fracture pain are both significantly attenuated by sustained blockade of nerve growth factor

    PubMed Central

    Majuta, Lisa A.; Longo, Geraldine; Fealk, Michelle N.; McCaffrey, Gwen; Mantyh, Patrick W.

    2015-01-01

    The number of patients suffering from postoperative pain due to orthopedic surgery and bone fracture is projected to dramatically increase because the human life span, weight, and involvement in high-activity sports continue to rise worldwide. Joint replacement or bone fracture frequently results in skeletal pain that needs to be adequately controlled for the patient to fully participate in needed physical rehabilitation. Currently, the 2 major therapies used to control skeletal pain are nonsteroidal anti-inflammatory drugs and opiates, both of which have significant unwanted side effects. To assess the efficacy of novel therapies, mouse models of orthopedic and fracture pain were developed and evaluated here. These models, orthopedic surgery pain and bone fracture pain, resulted in skeletal pain–related behaviors that lasted 3 weeks and 8 to 10 weeks, respectively. These skeletal pain behaviors included spontaneous and palpation-induced nocifensive behaviors, dynamic weight bearing, limb use, and voluntary mechanical loading of the injured hind limb. Administration of anti–nerve growth factor before orthopedic surgery or after bone fracture attenuated skeletal pain behaviors by 40% to 70% depending on the end point being assessed. These data suggest that nerve growth factor is involved in driving pain due to orthopedic surgery or bone fracture. These animal models may be useful in developing an understanding of the mechanisms that drive postoperative orthopedic and bone fracture pain and the development of novel therapies to treat these skeletal pains. PMID:25599311

  3. Hydrogel Delivery of Mesenchymal Stem Cell–Expressing Bone Morphogenetic Protein-2 Enhances Bone Defect Repair

    PubMed Central

    Hsiao, Hui-Yi; Yang, Shu-Rui; Brey, Eric M.; Chu, I-Ming

    2016-01-01

    Background: The application of bone tissue engineering for repairing bone defects has gradually shown some satisfactory progress. One of the concerns raising scientific attention is the poor supply of growth factors. A number of growth factor delivery approaches have been developed for promoting bone formation. However, there is no systematic comparison of those approaches on efficiency of neobone formation. In this study, the approaches using periosteum, direct supply of growth factors, or gene transfection of growth factors were evaluated to determine the osteogenic capacity on the repair of bone defect. Methods: In total, 42 male 21-week-old Sprague-Dawley rats weighing 250 to 400 g were used as the bone defect model to evaluate the bone repair efficiency. Various tissue engineered constructs of poly(ethylene glycol)-poly(l-lactic acid) (PEG-PLLA) copolymer hydrogel with periosteum, with external supply of bone morphogenetic protein-2 (BMP2), or with BMP2-transfected bone marrow–derived mesenchymal stem cells (BMMSCs) were filled in a 7-mm bone defect region. Animals were euthanized at 3 months, and the hydrogel constructs were harvested. The evaluation with histological staining and radiography analysis were performed for the volume of new bone formation. Results: The PEG-PLLA scaffold with BMMSCs promotes bone regeneration with the addition of periosteum. The group with BMP2-transfected BMMSCs demonstrated the largest volume of new bone among all the testing groups. Conclusions: Altogether, the results of this study provide the evidence that the combination of PEG-PLLA hydrogels with BMMSCs and sustained delivery of BMP2 resulted in the maximal bone regeneration. PMID:27622106

  4. Comparison of elicitation methods for moral and affective beliefs in the theory of planned behaviour.

    PubMed

    Dean, M; Arvola, A; Vassallo, M; Lähteenmäki, L; Raats, M M; Saba, A; Shepherd, R

    2006-09-01

    Although the theory of planned behaviour (TPB) has been applied successfully in the area of food choice, it has been criticized for its pure utilitarian approach to the factors determining behaviour. Despite the increase in predictive power of the model with added components such as affective attitude and moral and ethical concerns, in most studies the elicitation process still only addresses people's utilitarian beliefs about the behaviour with little attention paid to other aspects. This study compares the traditional method of elicitation of advantages and disadvantages with two other methods (word association and open-ended) in the elicitations of beliefs, attitudes and moral concerns in relation to the consumption of organic foods. Results show the traditional method to be best for eliciting cognitive beliefs, open-ended emotion task for eliciting emotional beliefs and open-ended beliefs task best for moral concerns. The advantages and disadvantages of each method are discussed.

  5. Spatial distribution of osteoblast-specific transcription factor Cbfa1 and bone formation in atherosclerotic arteries.

    PubMed

    Bobryshev, Yuri V; Killingsworth, Murray C; Lord, Reginald S A

    2008-08-01

    The mechanisms of ectopic bone formation in arteries are poorly understood. Osteoblasts might originate either from stem cells that penetrate atherosclerotic plaques from the blood stream or from pluripotent mesenchymal cells that have remained in the arterial wall from embryonic stages of the development. We have examined the frequency of the expression and spatial distribution of osteoblast-specific factor-2/core binding factor-1 (Osf2/Cbfa1) in carotid and coronary arteries. Cbfa1-expressing cells were rarely observed but were found in all tissue specimens in the deep portions of atherosclerotic plaques under the necrotic cores. The deep portions of atherosclerotic plaques under the necrotic cores were characterized by the lack of capillaries of neovascularization. In contrast, plaque shoulders, which were enriched by plexuses of neovascularization, lacked Cbfa1-expressing cells. No bone formation was found in any of the 21 carotid plaques examined and ectopic bone was observed in only two of 12 coronary plaques. We speculate that the sparse invasion of sprouts of neovascularization into areas underlying the necrotic cores, where Cbfa1-expressing cells reside, might explain the rarity of events of ectopic bone formation in the arterial wall. This study has also revealed that Cbfa1-expressing cells contain alpha-smooth muscle actin and myofilaments, indicating their relationship with arterial smooth muscle cells.

  6. Loss of the hematopoietic stem cell factor GATA2 in the osteogenic lineage impairs trabecularization and mechanical strength of bone.

    PubMed

    Tolkachov, Alexander; Fischer, Cornelius; Ambrosi, Thomas H; Bothe, Melissa; Han, Chung-Ting; Muenzner, Matthias; Mathia, Susanne; Salminen, Marjo; Seifert, Georg; Thiele, Mario; Duda, Georg N; Meijsing, Sebastiaan H; Sauer, Sascha; Schulz, Tim J; Schupp, Michael

    2018-03-26

    The transcription factor GATA2 is required for expansion and differentiation of hematopoietic stem cells (HSCs). In mesenchymal stem cells (MSCs) GATA2 blocks adipogenesis, but its biological relevance and underlying genomic events are unknown. We report a dual function of GATA2 in bone homeostasis. GATA2 in MSCs binds near genes involved in skeletal system development and co-localizes with motifs for FOX and HOX transcription factors, known regulators of skeletal development. Ectopic GATA2 blocks osteoblastogenesis by interfering with SMAD1/5/8 activation. MSC-specific deletion of GATA2 in mice increases numbers and differentiation capacity of bone-derived precursors, resulting in elevated bone formation. Surprisingly, MSC-specific GATA2 deficiency impairs trabecularization and mechanical strength of bone, involving reduced MSC expression of the osteoclast inhibitor osteoprotegerin and increased osteoclast numbers. Thus, GATA2 affects bone turnover via MSC-autonomous and indirect effects. By regulating bone trabecularization, GATA2 expression in the osteogenic lineage may contribute to the anatomical and cellular microenvironment of the HSC niche required for hematopoiesis. Copyright © 2018 American Society for Microbiology.

  7. Reconstructed bone chip detachment is a risk factor for sinusitis after transsphenoidal surgery.

    PubMed

    Hsu, Yao-Wen; Ho, Ching-Yin; Yen, Yu-Shu

    2014-01-01

    Sphenoid sinusitis is a complication associated with endoscopic transsphenoidal pituitary surgery. Studies that address the relationship between methods of sellar defect reconstruction and postoperative sinusitis are rare. The purpose of this study was to investigate the incidence, the possible risk factors, and the causative pathogens of sphenoid sinusitis after endoscopic transsphenoidal pituitary surgery. Prospective cohort study. We performed a prospective analysis of 182 patients with benign pituitary tumor who underwent endoscopic transsphenoidal pituitary surgery and sellar defect reconstruction with bone chip, from July 2008 through July 2011. All patients were followed up with nasal endoscopy for at least 6 weeks. Fifty-seven (31.3%) patients developed postoperative sphenoid sinusitis. Comparing the sinusitis and nonsinusitis groups, we found that bone chip detachment was a significant risk factor for postoperative sinusitis, with a relative risk of 2.86 (64.1% vs. 22.4%). The most common pathogens present in cases of postoperative sinusitis were methicillin-sensitive Staphylococcus aureus, Pseudomonas aeruginosa, and methicillin-resistant Staphylococcus aureus. Regular follow-up with nasal endoscopy can prevent delayed diagnosis of postoperative sphenoid sinusitis. Culture-directed antibiotics with aggressive endoscopic debridement are an effective treatment for these patients. An optimal reconstruction strategy should be further developed to reduce bone chip detachment and secondary sinusitis. © 2013 The American Laryngological, Rhinological and Otological Society, Inc.

  8. Factors associated with menstrual irregularities and decreased bone mineral density in female athletes.

    PubMed

    Fruth, S J; Worrell, T W

    1995-07-01

    Menstrual irregularities occur in some female athletes. The most extreme form of menstrual irregularity is amenorrhea, which has been linked to significant decreases in vertebral bone density and increases in injury prevalence. Many authors have sought to determine the causal factors of athletic amenorrhea, some of which include hormonal status, training and physical parameters, nutritional balance, and psychological stress. The purpose of this paper was to compare studies that have examined the relationship of these variables to menstrual irregularities and bone density. Controversy exists regarding the relative contribution of these variables. The etiology is likely multifactorial and should be evaluated as such. Clinicians treating female athletes must be knowledgeable about the negative consequences associated with menstrual irregularities. Furthermore, it is critical that clinicians provide thorough patient education in order to prevent injuries and the long-term loss of bone density. Appropriate medical and/or psychological referral of the athlete with menstrual irregularities may be necessary.

  9. Bone resorption analysis of platelet-derived growth factor type BB application on collagen for bone grafts secured by titanium mesh over a pig jaw defect model

    PubMed Central

    Herford, Alan Scott; Cicciù, Marco

    2012-01-01

    Purpose: The aim of this investigation was to evaluate whether the addition of the platelet derived growth factor type BB (PDGF-BB) to a collagen matrix applied on a titanium mesh would favor healing and resorption onto the grafted bone. A histologic and radiographic study of two different groups (test and control) was performed. Designs: A surgical procedure was performed on 8 pigs to obtain 16 bilateral mandibular alveolar defects. All the defects were then reconstructed with a mixture of autogenous bovine bone using titanium mesh positioning. Two groups, with a total of 16 defects were created: The first to study collagen sponge and PDGF-BB and the second to control collagen only. The collagen matrix was positioned directly over the mesh and soft tissue was closed without tensions onto both groups without attempting to obtain primary closure. Possible exposure of the titanium mesh as well as the height and volume of the new bone was recorded. Results: New bone formation averaged about 6.68 mm in the test group studied; the control group had less regenerated bone at 4.62 mm. Conclusion: PDGF-BB addition to the collagen matrix induced a strong increase in hard and soft tissue healing and favored bone formation, reducing bone resorption even if the mesh was exposed. PMID:23833493

  10. A living thick nanofibrous implant bifunctionalized with active growth factor and stem cells for bone regeneration.

    PubMed

    Eap, Sandy; Keller, Laetitia; Schiavi, Jessica; Huck, Olivier; Jacomine, Leandro; Fioretti, Florence; Gauthier, Christian; Sebastian, Victor; Schwinté, Pascale; Benkirane-Jessel, Nadia

    2015-01-01

    New-generation implants focus on robust, durable, and rapid tissue regeneration to shorten recovery times and decrease risks of postoperative complications for patients. Herein, we describe a new-generation thick nanofibrous implant functionalized with active containers of growth factors and stem cells for regenerative nanomedicine. A thick electrospun poly(ε-caprolactone) nanofibrous implant (from 700 μm to 1 cm thick) was functionalized with chitosan and bone morphogenetic protein BMP-7 as growth factor using layer-by-layer technology, producing fish scale-like chitosan/BMP-7 nanoreservoirs. This extracellular matrix-mimicking scaffold enabled in vitro colonization and bone regeneration by human primary osteoblasts, as shown by expression of osteocalcin, osteopontin, and bone sialoprotein (BSPII), 21 days after seeding. In vivo implantation in mouse calvaria defects showed significantly more newly mineralized extracellular matrix in the functionalized implant compared to a bare scaffold after 30 days' implantation, as shown by histological scanning electron microscopy/energy dispersive X-ray microscopy study and calcein injection. We have as well bifunctionalized our BMP-7 therapeutic implant by adding human mesenchymal stem cells (hMSCs). The activity of this BMP-7-functionalized implant was again further enhanced by the addition of hMSCs to the implant (living materials), in vivo, as demonstrated by the analysis of new bone formation and calcification after 30 days' implantation in mice with calvaria defects. Therefore, implants functionalized with BMP-7 nanocontainers associated with hMSCs can act as an accelerator of in vivo bone mineralization and regeneration.

  11. Clinical features and prognostic factors in patients with bone metastases from hepatocellular carcinoma receiving external beam radiotherapy.

    PubMed

    He, Jian; Zeng, Zhao-Chong; Tang, Zhao-You; Fan, Jia; Zhou, Jian; Zeng, Meng-Su; Wang, Jian-Hua; Sun, Jing; Chen, Bing; Yang, Ping; Pan, Bai-Sheng

    2009-06-15

    The current study was performed to identify clinical features and independent predictors of survival in patients with bone metastases from hepatocellular carcinoma (HCC). Patients (n = 205) with bone metastases from HCC received external beam radiotherapy (EBRT) between 1997 and 2007. Demographic variables, laboratory values, tumor characteristics, and treatment modalities were determined before EBRT. The total radiation dose ranged from 32 to 66 grays (Gy) (median, 50 Gy) and was focused on the involved bone. In 80 of 205 (39.0%) patients with bone metastasis from HCC, tumors were characterized by osteolytic, expansile soft-tissue masses. Overall pain relief from EBRT occurred in 204 patients (99.5%). No consistent dose-response relation was found for palliation of bone metastases with doses between 32 and 66 Gy (P = .068), but the retreatment rate was higher in patients with expansile soft tissue. On univariate analysis, shorter survival was associated with poorer Karnofsky performance status (KPS), higher gamma-glutamyltransferase and alpha-fetoprotein levels, tumor size >5 cm, uncontrolled intrahepatic tumors, multifocal bone lesions, involvement of spinal vertebrae, extraosseous metastases, and a shorter disease-free interval after an initial diagnosis of HCC. On multivariate analysis, pretreatment-unfavorable predictors were associated with lower KPS, higher tumor markers, and uncontrolled intrahepatic tumor when KPS was considered. The median survival was 7.4 months. The results of the current study provide detailed information regarding clinical features, survival outcomes, and prognostic factors for HCC with bone metastases in a relatively large cohort of patients treated with EBRT. These prognostic factors will help in determining which dose and fraction are appropriate. (c) 2009 American Cancer Society.

  12. A nanoparticulate injectable hydrogel as a tissue engineering scaffold for multiple growth factor delivery for bone regeneration.

    PubMed

    Dyondi, Deepti; Webster, Thomas J; Banerjee, Rinti

    2013-01-01

    Gellan xanthan gels have been shown to be excellent carriers for growth factors and as matrices for several tissue engineering applications. Gellan xanthan gels along with chitosan nanoparticles of 297 ± 61 nm diameter, basic fibroblast growth factor (bFGF), and bone morphogenetic protein 7 (BMP7) were employed in a dual growth factor delivery system to promote the differentiation of human fetal osteoblasts. An injectable system with ionic and temperature gelation was optimized and characterized. The nanoparticle loaded gels showed significantly improved cell proliferation and differentiation due to the sustained release of growth factors. A differentiation marker study was conducted, analyzed, and compared to understand the effect of single vs dual growth factors and free vs encapsulated growth factors. Dual growth factor loaded gels showed a higher alkaline phosphatase and calcium deposition compared to single growth factor loaded gels. The results suggest that encapsulation and stabilization of growth factors within nanoparticles and gels are promising for bone regeneration. Gellan xanthan gels also showed antibacterial effects against Pseudomonas aeruginosa, Staphylococcus aureus, and Staphylococcus epidermidis, the common pathogens in implant failure.

  13. Infection-derived lipids elicit a novel immune deficiency circuitry in arthropods

    USDA-ARS?s Scientific Manuscript database

    The insect Immune Deficiency (IMD) pathway resembles the tumor necrosis factor receptor network in mammals and senses diaminopimelic-type peptidoglycans present in Gram-negative bacteria. Whether unidentified chemical moieties elicit the IMD signaling cascade remains unknown. Here, we disclose thoug...

  14. Risk factors for long-bone fractures in children up to 5 years of age: a nested case-control study.

    PubMed

    Baker, Ruth; Orton, Elizabeth; Tata, Laila J; Kendrick, Denise

    2015-05-01

    To investigate risk factors for first long-bone fractures in children up to 5 years old in order to provide evidence about which families could benefit from injury prevention interventions. Population-based matched nested case-control study using The Health Improvement Network, a UK primary care research database, 1988-2004. Maternal, household and child risk factors for injury were assessed among 2456 children with long-bone fractures (cases). 23,661 controls were matched to cases on general practice. Adjusted ORs and 95% CIs were estimated using conditional logistic regression. Fractures of long-bones were independently associated with younger maternal age and higher birth order, with children who were the fourth-born in the family, or later, having a threefold greater odds of fracture compared to first-born children (adjusted OR 3.12, 95% CI 2.08 to 4.68). Children over the age of 1 year had a fourfold (13-24 months, adjusted OR 4.09 95% CI 3.51 to 4.76) to fivefold (37+ months, adjusted OR 4.88 95% CI 4.21 to 5.66) increase in the odds of a long-bone fracture compared to children aged 0-12 months. Children in families with a history of maternal alcohol misuse had a raised odds of long-bone fracture (adjusted OR 2.33, 95% CI 1.13 to 4.82) compared to those with no documented history. Risk factors for long-bone fractures in children less than 5 years old included age above 1 year, increasing birth order, younger maternal age and maternal alcohol misuse. These risk factors should be used to prioritise families and communities for injury prevention interventions. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  15. Frequency of and risk factors for symptomatic bone fractures in patients with systemic lupus erythematosus.

    PubMed

    Ekblom-Kullberg, S; Kautiainen, H; Alha, P; Leirisalo-Repo, M; Julkunen, H

    2013-01-01

    To study risk factors for symptomatic bone fractures in patients with systemic lupus erythematosus (SLE) and to compare the frequency of fractures between SLE patients and population controls. The study included 222 SLE patients [mean age 47.0 years, disease duration 13.1 years, 204 (92%) women] and 720 population controls living in the metropolitan area of Helsinki. The history of symptomatic bone fractures in SLE patients and controls was recorded by interview, and demographic and clinical data of SLE patients were obtained by interview, clinical examination, and chart review. A history of at least one symptomatic bone fracture was recorded in 93 (42%) of all 222 patients with SLE. The risk of any fracture in 204 women with SLE compared to controls was 1.8 [95% confidence interval (CI) 1.3-2.4] and fractures in the ankle, hip, and vertebral column were more common than in female controls, with odds ratios (ORs) of 2.0 (95% CI 1.1-3.7), 5.1 (95% CI 1.2-21.5), and 4.0 (95% CI 1.8-8.6), respectively. In 18 men with SLE, compared to male controls, no difference in the frequency of fractures was observed (OR 0.7, 95% CI 0.3-2.0). Risk factors for bone fractures in women with SLE were age (p = 0.008), comorbidity (p = 0.050), and the duration of corticosteroid use (p = 0.025). Symptomatic bone fractures, especially in the ankle, hip, and vertebral column, are common in women with SLE. Special attention should be paid to preventing fractures in elderly female patients with comorbidities and a long duration of corticosteroid use.

  16. Prevalence and risk factors for nonvertebral bone fractures in kidney transplant recipients - a single-center retrospective analysis.

    PubMed

    Jerman, Alexander; Lindič, Jelka; Škoberne, Andrej; Borštnar, Špela; Martinuč Bergoč, Maja; Godnov, Uroš; Kovač, Damjan

    Complex and longstanding bone disease superimposed by harmful influences of immunosuppression is the reason for increased risk of bone fracture in kidney transplant recipients. The aim of our study was to analyze the incidence and prevalence of nonvertebral bone fractures and early (in the first post-transplant year) clinical and laboratory risk factors for suffering bone fracture in the long-term post-transplant period. Clinical and laboratory data as well as bone mineral density (BMD) measurements of 507 first kidney transplant recipients who were transplanted in the period from 1976 to 2011 were analyzed. The mean age of included patients was 54.3 ± 12.0 years, there were 45% females, and mean time on renal replacement treatment prior to transplantation was 63.4 ± 43.6 months. The average observation time post-transplant was 9.7 years (1.4 - 36.3 years). Post-transplant, 64 (12.6%) patients suffered 89 nonvertebral fractures (44 patients suffered 1 fracture, 15 patients 2 fractures, and 5 patients 3 fractures). Patients with fractures had significantly lower late BMD of femoral neck in the period of 1 - 10 years post-transplant, had osteopenia and osteoporosis more frequently in the same time period, and higher serum alkaline phosphatase in the first year post-transplant. 13 patients (13/64, 20.3%) had major fractures. Patients with major fractures were significantly older than patients with no major fractures and had lower serum albumin. Frequency of treatment with bisphosphonate, calcium, or phosphate did not differ between the groups. Vitamin D supplement (active form in 98% of cases) was prescribed more frequently in the group without fractures, but this was not statistically significant. Fracture rate in our transplant patient population was comparable to that reported in the literature. Except for a higher level of serum total alkaline phosphatase in the fracture group, we found no other early laboratory risk factors for bone fractures. BMD at

  17. Bone tissue engineering using silica-based mesoporous nanobiomaterials:Recent progress.

    PubMed

    Shadjou, Nasrin; Hasanzadeh, Mohammad

    2015-10-01

    Bone disorders are of significant concern due to increase in the median age of our population. It is in this context that tissue engineering has been emerging as a valid approach to the current therapies for bone regeneration/substitution. Tissue-engineered bone constructs have the potential to alleviate the demand arising from the shortage of suitable autograft and allograft materials for augmenting bone healing. Silica based mesostructured nanomaterials possessing pore sizes in the range 2-50 nm and surface reactive functionalities have elicited immense interest due to their exciting prospects in bone tissue engineering. In this review we describe application of silica-based mesoporous nanomaterials for bone tissue engineering. We summarize the preparation methods, the effect of mesopore templates and composition on the mesopore-structure characteristics, and different forms of these materials, including particles, fibers, spheres, scaffolds and composites. Also, the effect of structural and textural properties of mesoporous materials on development of new biomaterials for production of bone implants and bone cements was discussed. Also, application of different mesoporous materials on construction of manufacture 3-dimensional scaffolds for bone tissue engineering was discussed. It begins by giving the reader a brief background on tissue engineering, followed by a comprehensive description of all the relevant components of silica-based mesoporous biomaterials on bone tissue engineering, going from materials to scaffolds and from cells to tissue engineering strategies that will lead to "engineered" bone. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Heating or freezing bone. Effects on angiogenesis induction and growth potential in mice.

    PubMed

    Leunig, M; Yuan, F; Berk, D A; Gerweck, L E; Jain, R K

    1996-08-01

    We have characterized the effect of bone graft treatment by heating or freezing (with or without dimethyl sulfoxide (DMSO)). Tissue culture and dorsal skin-fold chambers in mice were used as sites to quantify the effect on angiogenesis, growth and calcification of neonatal femora. Fresh femora increased in both length and cartilage diameter (calcification in vivo only), but cryopreservation or heating abolished the increase in femoral dimensions. In vivo, femora of all experimental groups elicited an angiogenic response from the host tissue, which was most pronounced for fresh femora, weaker for DMSO-preserved frozen bone and poor for unprotected frozen bone and boiled femora. Freezing in the presence of a cryopreservative (DMSO) was found to preserve the angiogenic potential of frozen bone, whereas unprotected heating or freezing significantly impaired angiogenesis induction and growth potential.

  19. Role of Vascular Endothelial Growth Factor and Transforming Growth Factor-β2 in Rat Bone Tissue after Bone Fracture and Placement of Titanium Implants with Bioactive Bioresorbable Coatings.

    PubMed

    Kalinichenko, S G; Matveeva, N Yu; Kostiv, R E; Puz', A V

    2017-03-01

    The study established enhanced expression of vascular endothelial growth factor (VEGF) in the subpopulation of osteoblasts located in the regeneration region of femoral bone fracture near the titanium implants with bioactive calcium phosphate and hydroxyapatite coatings and suppressed activity of transforming growth factor-β2 (TGF-β2) in chondroblasts during the two weeks after surgery. In the delayed posttraumatic period, the distribution of TGF-β2 inversely related to its maximal activity. The data revealed the up-regulating effect of bioresorbable coatings on expression of VEGF and TGF-β2 and their implication in the control over various stages of reparative osteogenesis.

  20. Connective tissue growth factor and bone morphogenetic protein 2 are induced following myocardial ischemia in mice and humans.

    PubMed

    Rutkovskiy, Arkady; Sagave, Julia; Czibik, Gabor; Baysa, Anton; Zihlavnikova Enayati, Katarina; Hillestad, Vigdis; Dahl, Christen Peder; Fiane, Arnt; Gullestad, Lars; Gravning, Jørgen; Ahmed, Shakil; Attramadal, Håvard; Valen, Guro; Vaage, Jarle

    2017-09-01

    We aimed to study the cardiac expression of bone morphogenetic protein 2, its receptor 1 b, and connective tissue growth factor, factors implicated in cardiac embryogenesis, following ischemia/hypoxia, heart failure, and in remodeling hearts from humans and mice. Biopsies from the left ventricle of patients with end-stage heart failure due to dilated cardiomyopathy or coronary artery disease were compared with donor hearts and biopsies from patients with normal heart function undergoing coronary artery bypass grafting. Mouse model of post-infarction remodeling was made by permanent ligation of the left coronary artery. Hearts were analyzed by real-time polymerase chain reaction and Western blotting after 24 hours and after 2 and 4 weeks. Patients with dilated cardiomyopathy and mice post-infarction had increased cardiac expression of connective tissue growth factor. Bone morphogenetic protein 2 was increased in human hearts failing due to coronary artery disease and in mice post-infarction. Gene expression of bone morphogenetic protein receptor 1 beta was reduced in hearts of patients with failure, but increased two weeks following permanent ligation of the left coronary artery in mice. In conclusion, connective tissue growth factor is upregulated in hearts of humans with dilated cardiomyopathy, bone morphogenetic protein 2 is upregulated in remodeling due to myocardial infarction while its receptor 1 b in human failing hearts is downregulated. A potential explanation might be an attempt to engage regenerative processes, which should be addressed by further, mechanistic studies.

  1. Risk factors and impact on bone mineral density in postmenopausal Mexican mestizo women.

    PubMed

    Rojano-Mejía, David; Aguilar-Madrid, Guadalupe; López-Medina, Guillermo; Cortes-Espinosa, Leticia; Hernández-Chiu, Maria C; Canto-Cetina, Thelma; Vergara-López, Alma; Coral-Vázquez, Ramon M; Canto, Patricia

    2011-03-01

    Considering that the Mexican mestizo population seems to be the result of a genetic admixture, we proposed that further research is needed to evaluate the role of ethnicity in conjunction with health-related factors to better understand ethnic differences in bone mineral density (BMD). The aim of this study was to analyze several risk factors related to the development of osteoporosis in postmenopausal Mexican mestizo women. We included 567 postmenopausal Mexican mestizo women. A structured questionnaire for risk factors was applied and BMD was measured in total hip and lumbar spine by dual-energy x-ray absorptiometry. Nonconditional logistic regression was used to estimate crude and adjusted odds ratio. Using World Health Organization criteria, 28.7% of postmenopausal women had osteoporosis, 46.4% had osteopenia, and 24.9% had normal BMD. Each clinical risk factor had a different significance for osteopenia/osteoporosis; however, duration of total breast-feeding, body mass index, and number of years since menopause remained significantly associated with osteopenia/osteoporosis after bone density was added to the nonconditional model. Interestingly, extended periods of accumulated breast-feeding for 24 and 36 months were, in both cases, significantly associated with osteopenia/osteoporosis. Our results confirm the importance of considering the duration of breast-feeding as an important risk factor for osteopenia/osteoporosis. In addition, we find that body mass index is positively associated with BMD. Because of the heterogeneity of the Mexican mestizo population, the risk factor for osteoporosis may not be the same in different ethnic groups.

  2. Low bone mineral density in Greek patients with inflammatory bowel disease: prevalence and risk factors.

    PubMed

    Koutroubakis, Ioannis E; Zavos, Christos; Damilakis, John; Papadakis, Georgios Z; Neratzoulakis, John; Karkavitsas, Nikolaos; Kouroumalis, Elias A

    2011-01-01

    A high prevalence of osteopenia and osteoporosis is observed in patients with inflammatory bowel disease (IBD). Various risk factors of bone loss have been suggested in IBD. The aim of the present study was to investigate the prevalence of low bone mineral density (BMD) and to identify related risk factors in Greek patients with IBD. One hundred and eighteen consecutive IBD patients were included. All patients underwent bone densitometry by dual energy X-ray absorptiometry at the femoral neck and lumbar spine levels. Serum levels of 25 hydroxyvitamin D (25 OH D), 1.25 dihydroxyvitamin D (1.25 OH 2D), osteocalcin, calcitonin and homocysteine were measured in all participants. Forty (33.9%) patients were normal, 55 (46.6%) were osteopenic, and 23 (19.5%) were osteoporotic. No significant differences between IBD patients with osteopenia or osteoporosis and those with normal BMD concerning the use of steroids and the examined biochemical markers were found. Statistically significant differences among the three groups were found for body mass index (BMI), age and disease duration (P=0.002, P<0.0001 and P=0.03 respectively). Multivariate analysis revealed that the most significant factors associated with BMD were age and BMI (P<0.0001). A weak but statistically significant correlation was also found for disease duration (P=0.04). There is a high prevalence of osteopenia and osteoporosis in Greek patients with IBD. Low BMI, age and disease duration are the most important independent risk factors for osteoporosis in Greek IBD patients.

  3. Role of RANKL in bone diseases.

    PubMed

    Anandarajah, Allen P

    2009-03-01

    Bone remodeling is a tightly regulated process of osteoclast-mediated bone resorption, balanced by osteoblast-mediated bone formation. Disruption of this balance can lead to increased bone turnover, resulting in excessive bone loss or extra bone formation and consequent skeletal disease. The receptor activator of nuclear factor kappaB ligand (RANKL) (along with its receptor), the receptor activator of nuclear factor kappaB and its natural decoy receptor, osteoprotegerin, are the final effector proteins of osteoclastic bone resorption. Here, I provide an overview of recent studies that highlight the key role of RANKL in the pathophysiology of several bone diseases and discuss the novel therapeutic approaches afforded by the modulation of RANKL.

  4. Vascular endothelial growth factor/bone morphogenetic protein-2 bone marrow combined modification of the mesenchymal stem cells to repair the avascular necrosis of the femoral head

    PubMed Central

    Ma, Xiao-Wei; Cui, Da-Ping; Zhao, De-Wei

    2015-01-01

    Vascular endothelial cell growth factor (VEGF) combined with bone morphogenetic protein (BMP) was used to repair avascular necrosis of the femoral head, which can maintain the osteogenic phenotype of seed cells, and effectively secrete VEGF and BMP-2, and effectively promote blood vessel regeneration and contribute to formation and revascularization of tissue engineered bone tissues. To observe the therapeutic effect on the treatment of avascular necrosis of the femoral head by using bone marrow mesenchymal stem cells (BMSCs) modified by VEGF-165 and BMP-2 in vitro. The models were avascular necrosis of femoral head of rabbits on right leg. There groups were single core decompression group, core decompression + BMSCs group, core decompression + VEGF-165/BMP-2 transfect BMSCs group. Necrotic bone was cleared out under arthroscope. Arthroscopic observation demonstrated that necrotic bone was cleared out in each group, and fresh blood flowed out. Histomorphology determination showed that blood vessel number and new bone area in the repair region were significantly greater at various time points following transplantation in the core decompression + VEGF-165/BMP-2 transfect BMSCs group compared with single core decompression group and core decompression + BMSCs group (P < 0.05). These suggested that VEGF-165/BMP-2 gene transfection strengthened osteogenic effects of BMSCs, elevated number and quality of new bones and accelerated the repair of osteonecrosis of the femoral head. PMID:26629044

  5. [The risk factor for low bone mineral density in patients with inflammatory bowel disease].

    PubMed

    Liu, Jian-bin; Gao, Xiang; Zhang, Fang-bin; Yang, Li; Xiao, Ying-lian; Zhang, Rui-dong; Li, Zi-ping; Hu, Pin-jin; Chen, Min-hu

    2009-10-01

    To evaluate the prevalence of low bone mineral density in patients with inflammatory bowel disease (IBD)and to identify its risk factors. A cross-sectional survey was carried out in IBD patients. Anthropometric measures, biochemical markers of nutrition and bone mineral density measurement were completed for these patients as well as healthy control subjects. Seventy-seven Crohn's disease (CD) and 43 ulcerative colitis (UC) patients were enrolled, and 37 healthy volunteers were recruited as healthy controls (HC). The T value of CD patients, UC patients and HC was -1.72 +/- 1.20, -1.26 +/- 1.12 and -0.62 +/- 0.87 respectively and the T value of CD patients was significantly lower than that of HC (P = 0.000). The prevalence of osteoporosis in CD, UC and HC was 23.3%, 14.0% and 0 respectively. The prevalence of osteoporosis in CD was higher than that in HC (P = 0.003). Logistic regression analysis indicated that low BMI (BMI < or = 18.4 kg/m(2)) was an independent risk factor for osteoporosis both in CD (OR = 11.25, 95%CI 3.198 - 39.580, P = 0.000) and in UC (OR = 14.50, 95%CI 1.058 - 88.200, P = 0.045) patients. Age, disease duration, clinical activity active index (CDAI), oral steroid therapy, immunosuppressant treatment and serum vitamin D concentration were not found to be correlated with osteoporosis in IBD patients. Low bone mineral density is common in both CD and UC patients and low BMI is an independent risk factor for osteoporosis in IBD patients.

  6. Evaluation of the Effect of Plasma Rich in Growth Factors (PRGF) on Bone Regeneration.

    PubMed

    Paknejad, M; Shayesteh, Y Soleymani; Yaghobee, S; Shariat, S; Dehghan, M; Motahari, P

    2012-01-01

    Reconstruction methods are an essential prerequisite for functional rehabilitation of the stomatognathic system. Plasma rich in growth factors (PRGF) offers a new and potentially useful adjunct to bone substitute materials in bone reconstructive surgery. This study was carried out to investigate the influence of PRGF and fibrin membrane on regeneration of bony defects with and without deproteinized bovine bone mineral (DBBM) on rabbit calvaria. Twelve New Zealand white rabbits were included in this randomized, blinded, prospective study. Four equal 3.3×6.6 mm cranial bone defects were created and immediately grafted with DBBM, PRGF+DBBM, PRGF+fibrin membrane and no treatment as control. The defects were evaluated with histologic and histomorphometric analysis performed 4 and 8 weeks later. Adding PRGF to DBBM led to increased bone formation as compared with the control group in 4- and 8-week intervals. In DBBM and PRGF+fibrin membrane samples, no significant increase was seen compared to the control group. There was also a significant increase in the rate of biodegradation of DBBM particles with the addition of PRGF in the 8-week interval. Neither noticeable foreign body reaction nor any severe inflammation was seen in each of the specimens evaluated. Under the limitation of this study, adding PRGF to DBBM enhanced osteogenesis in rabbit calvarias. Applying autologous fibrin membrane in the defects was not helpful.

  7. Insulin-like growth factor I has independent effects on bone matrix formation and cell replication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hock, J.M.; Centrella, M.; Canalis, E.

    1988-01-01

    The effects of insulin-like growth factor-I (IGF-I) and insulin on bone matrix synthesis and bone cell replication were studied in cultured 21-day-old fetal rat calvariae. Histomorphometry techniques were developed to measure the incorporation of (2,3-/sup 3/H)proline and (methyl-/sup 3/H)thymidine into bone matrix and bone cell nuclei, respectively, using autoradiographs of sagittal sections of calvariae cultured with IGF-I, insulin, or vehicle for up to 96 h. To confirm an effect on bone formation, IGF-I was also studied for its effects on (/sup 3/H)proline incorporation into collagenase-digestible protein (CDP) and noncollagen protein and on (/sup 3/H)thymidine incorporation into acid-precipitable material (DNA). IGF-Imore » at 10(-9)-10(-7) M significantly increased the rate of bone matrix apposition and CDP after 24 h by 45-50% and increased cell labeling by 8-fold in the osteoprogenitor cell zone, by 4-fold in the osteoblast cell zone, and by 2-fold in the periosteal fibroblast zone. Insulin at 10(-9)-10(-6) M also increased matrix apposition rate and CDP by 40-50%, but increased cell labeling by 2-fold only at a concentration of 10(-7) M or higher and then only in the osteoprogenitor cell zone. When hydroxyurea was added to IGF-I-treated bones, the effects of IGF-I on DNA synthesis were abolished, but the increase in bone matrix apposition induced by IGF-I was only partly diminished. In conclusion, IGF-I stimulates matrix synthesis in calvariae, an effect that is partly, although not completely, dependent on its stimulatory effect on DNA synthesis.« less

  8. A living thick nanofibrous implant bifunctionalized with active growth factor and stem cells for bone regeneration

    PubMed Central

    Eap, Sandy; Keller, Laetitia; Schiavi, Jessica; Huck, Olivier; Jacomine, Leandro; Fioretti, Florence; Gauthier, Christian; Sebastian, Victor; Schwinté, Pascale; Benkirane-Jessel, Nadia

    2015-01-01

    New-generation implants focus on robust, durable, and rapid tissue regeneration to shorten recovery times and decrease risks of postoperative complications for patients. Herein, we describe a new-generation thick nanofibrous implant functionalized with active containers of growth factors and stem cells for regenerative nanomedicine. A thick electrospun poly(ε-caprolactone) nanofibrous implant (from 700 μm to 1 cm thick) was functionalized with chitosan and bone morphogenetic protein BMP-7 as growth factor using layer-by-layer technology, producing fish scale-like chitosan/BMP-7 nanoreservoirs. This extracellular matrix-mimicking scaffold enabled in vitro colonization and bone regeneration by human primary osteoblasts, as shown by expression of osteocalcin, osteopontin, and bone sialoprotein (BSPII), 21 days after seeding. In vivo implantation in mouse calvaria defects showed significantly more newly mineralized extracellular matrix in the functionalized implant compared to a bare scaffold after 30 days’ implantation, as shown by histological scanning electron microscopy/energy dispersive X-ray microscopy study and calcein injection. We have as well bifunctionalized our BMP-7 therapeutic implant by adding human mesenchymal stem cells (hMSCs). The activity of this BMP-7-functionalized implant was again further enhanced by the addition of hMSCs to the implant (living materials), in vivo, as demonstrated by the analysis of new bone formation and calcification after 30 days’ implantation in mice with calvaria defects. Therefore, implants functionalized with BMP-7 nanocontainers associated with hMSCs can act as an accelerator of in vivo bone mineralization and regeneration. PMID:25709432

  9. Bone mineralization in childhood and adolescence.

    PubMed

    Bachrach, L K

    1993-08-01

    Prevention of osteoporosis depends on establishing adequate peak bone mass in the first two decades of life. Achievement of this goal requires an understanding of factors that promote skeletal health. Genetic factors are important determinants of adult bone mass, but nonheritable variables, including body mass, calcium nutriture, sex steroids, and activity can strongly influence whether maximal bone mineral is achieved. Acquisition of bone mineral continues throughout childhood and adolescence, reaching a lifetime maximum in early adulthood. Adolescence is a particularly critical time for bone mineral accretion as more than half of the bone calcium is normally laid down during the teen years. Chronic illness, malnutrition, or endocrine deficiencies at this age may result in profound deficits in bone mass, which may not be fully reversible. These risk factors contribute to the osteopenia associated with anorexia nervosa, exercise-induced amenorrhea, delayed puberty, Turner's syndrome, and growth hormone deficiency.

  10. Platelet-rich plasma, plasma rich in growth factors and simvastatin in the regeneration and repair of alveolar bone.

    PubMed

    Rivera, César; Monsalve, Francisco; Salas, Juan; Morán, Andrea; Suazo, Iván

    2013-12-01

    Platelet preparations promote bone regeneration by inducing cell migration, proliferation and differentiation in the area of the injury, which are essential processes for regeneration. In addition, several studies have indicated that simvastatin (SIMV), widely used for the treatment of hypercholesterolemia, stimulates osteogenesis. The objective of this study was to evaluate the effects of treatment with either platelet-rich plasma (PRP) or plasma rich in growth factors (PRGF) in combination with SIMV in the regeneration and repair of alveolar bone. The jaws of Sprague Dawley rats (n=18) were subjected to rotary instrument-induced bone damage (BD). Animals were divided into six groups: BD/H 2 O (n=3), distilled water without the drug and alveolar bone damage; BD/H 2 O/PRP (n=3), BD and PRP; BD/H 2 O/PRGF (n=3), BD and PRGF; BD/SIMV (n=3), BD and water with SIMV; BD/SIMV/PRP (n=3), BD, PRP and SIMV; and BD/SIMV/PRGF (n=3), BD, PRGF and SIMV. Conventional histological analysis (hematoxylin and eosin staining) revealed that the BD/SIMV group showed indicators for mature bone tissue, while the BD/SIMV/PRP and BD/SIMV/PRGF groups showed the coexistence of indicators for mature and immature bone tissue, with no statistical differences between the platelet preparations. Simvastatin did not improve the effect of platelet-rich plasma and plasma rich in growth factors. It was not possible to determine which platelet preparation produced superior effects.

  11. Platelet-rich plasma, plasma rich in growth factors and simvastatin in the regeneration and repair of alveolar bone

    PubMed Central

    RIVERA, CÉSAR; MONSALVE, FRANCISCO; SALAS, JUAN; MORÁN, ANDREA; SUAZO, IVÁN

    2013-01-01

    Platelet preparations promote bone regeneration by inducing cell migration, proliferation and differentiation in the area of the injury, which are essential processes for regeneration. In addition, several studies have indicated that simvastatin (SIMV), widely used for the treatment of hypercholesterolemia, stimulates osteogenesis. The objective of this study was to evaluate the effects of treatment with either platelet-rich plasma (PRP) or plasma rich in growth factors (PRGF) in combination with SIMV in the regeneration and repair of alveolar bone. The jaws of Sprague Dawley rats (n=18) were subjected to rotary instrument-induced bone damage (BD). Animals were divided into six groups: BD/H2O (n=3), distilled water without the drug and alveolar bone damage; BD/H2O/PRP (n=3), BD and PRP; BD/H2O/PRGF (n=3), BD and PRGF; BD/SIMV (n=3), BD and water with SIMV; BD/SIMV/PRP (n=3), BD, PRP and SIMV; and BD/SIMV/PRGF (n=3), BD, PRGF and SIMV. Conventional histological analysis (hematoxylin and eosin staining) revealed that the BD/SIMV group showed indicators for mature bone tissue, while the BD/SIMV/PRP and BD/SIMV/PRGF groups showed the coexistence of indicators for mature and immature bone tissue, with no statistical differences between the platelet preparations. Simvastatin did not improve the effect of platelet-rich plasma and plasma rich in growth factors. It was not possible to determine which platelet preparation produced superior effects. PMID:24250728

  12. Effects of spaceflight and Insulin-like Growth Factor-1 on rat bone properties

    NASA Astrophysics Data System (ADS)

    Bateman, Ted A.; Ayers, Reed A.; Spetzler, Michael L.; Simske, Steven J.; Zimmerman, Robert J.

    1997-01-01

    Spaceflight induces bone degradation which is analogous to an accelerated onset of osteoporosis in humans (Tilton et al., 1980). In rats, decreased bone formation is indicative of reduced osteoblast activity (Morey and Baylink, 1978). Chiron Corporation (Emeryville, CA) is interested in using the microgravity environment of low-Earth-orbit to test its therapeutic drug, Insulin-like Growth Factor-1 (IGF-1). This pharmaceutic is known to promote osteoblast activity (Schmid et al., 1984) and therefore may encourage bone growth in rats. Chiron sponsored the Immune.3 payload on STS-73 (May 19-29, 1996) through its Center for Space Commercialization (CSC) partner BioServe Space Technologies (University of Colorado and Kansas State University) to investigate the effects of IGF-1 on mitigating the skeletal degradation that affects rats and humans during spaceflight. Twelve rats were flown for 10 days using two Animal Enclosure Modules (AEMs) provided by NASA Ames Research Center. Of the twelve, six received 1.4 mg/day of IGF-1; the other six saline. Sixteen vivarium ground controls received the same treatment on a one day delay. Rat femora and tibiae were examined for bone mineral density via DXA scan. Femora and humeri were measured for physical and compositional properties, as well as mechanically tested in three point flexure. Quantitative histomorphometric examination of tibiae, humeri, fibulae, ribs and cranial bone; and microhardness testing on tibiae and humeri are currently in progress. Flight humeri and vivarium femora were significantly larger than their counterparts; however, significant differences in mechanical properties and mineral density were not concurrent to these mass changes.

  13. Bone nutrients for vegetarians.

    PubMed

    Mangels, Ann Reed

    2014-07-01

    The process of bone mineralization and resorption is complex and is affected by numerous factors, including dietary constituents. Although some dietary factors involved in bone health, such as calcium and vitamin D, are typically associated with dairy products, plant-based sources of these nutrients also supply other key nutrients involved in bone maintenance. Some research suggests that vegetarian diets, especially vegan diets, are associated with lower bone mineral density (BMD), but this does not appear to be clinically significant. Vegan diets are not associated with an increased fracture risk if calcium intake is adequate. Dietary factors in plant-based diets that support the development and maintenance of bone mass include calcium, vitamin D, protein, potassium, and soy isoflavones. Other factors present in plant-based diets such as oxalic acid and phytic acid can potentially interfere with absorption and retention of calcium and thereby have a negative effect on BMD. Impaired vitamin B-12 status also negatively affects BMD. The role of protein in calcium balance is multifaceted. Overall, calcium and protein intakes in accord with Dietary Reference Intakes are recommended for vegetarians, including vegans. Fortified foods are often helpful in meeting recommendations for calcium and vitamin D. Plant-based diets can provide adequate amounts of key nutrients for bone health. © 2014 American Society for Nutrition.

  14. Risk Factors for Low Bone Mineral Density in Individuals Residing in a Facility for the People with Intellectual Disability

    ERIC Educational Resources Information Center

    Jaffe, J. S.; Timell, A. M.; Elolia, R.; Thatcher, S. S.

    2005-01-01

    Background: Individuals with intellectual disability (ID) are known to have a high prevalence of both low bone mineral density (BMD) and fractures with significant attendant morbidity. Effective strategies aimed at reducing fractures will be facilitated by the identification of predisposing risk factors. Methods: Bone mineral density was measured…

  15. Major depressive disorder is a risk factor for low bone mass, central obesity, and other medical conditions

    PubMed Central

    Cizza, Giovanni

    2011-01-01

    Major depressive disorder (MDD) is one of the most common psychiatric illnesses in the adult population. It is often associated with an increased risk of cardiovascular disease. Osteoporosis is also a major public health threat. Multiple studies have reported an association between depression and low bone mineral density, but a causal link between these two conditions is disputed. Here the most important findings of the POWER (Premenopausal, Osteoporosis Women, Alendronate, Depression) Study, a large prospective study of bone turnover in premenopausal women with major depression, are summarized. The endocrine and immune alterations secondary to depression that might affect bone mass, and the possible role of poor lifestyle in the etiology of osteoporosis in subjects with depression, are also reviewed, as is the potential effect of antidepressants on bone loss. It is proposed that depression induces bone loss and osteoporotic fractures, primarily via specific immune and endocrine mechanisms, with poor lifestyle habits as potential contributory factors. PMID:21485748

  16. Risk Factors for Low Bone Mineral Density in Institutionalized Individuals with Developmental Disabilities

    PubMed Central

    Vice, Michael A.; Nahar, Vinayak K.; Ford, M. Allison; Bass, Martha A.; Johnson, Andrea K.; Davis, Ashton B.; Biviji-Sharma, Rizwana

    2015-01-01

    Background: Persons with intellectual/developmental disabilities (IDD) are exposed to several factors, which have been determined as risks for osteoporosis. Many of these individuals are non-ambulatory, resulting in lack of weight bearing activity, which is well established as a major contributor to bone loss. The purpose of this study was to investigate risk factors for low bone mineral density (BMD) in persons with IDD residing in residential facilities. Methods: This cross-sectional study was conducted at an Intermediate Care Facility for individuals with Intellectual and Developmental Disabilities (ICF/IDD). Medical records data were used from 69 individuals, including heal scan T-scores, nutritional, pharmacologic and other risk factors. Chi-Square analysis was used to determine relationships between the variables. Results: BMD measures were not significantly associated with age, gender, height, weight, or BMI for this population (P > 0.05). The association between BMD diagnoses and DSM-IV classification of mental retardation approached significance (P = 0.063). A significant association was found with anti-seizure medication (P = 0.009). Conclusion: Follow-up studies should focus on how supplementation and medication changes may or may not alter BMD. Persons with IDD are experiencing longer life expectancies, and therefore, studies ascertaining information on diseases associated with this aging population are warranted. PMID:26290830

  17. Risk Factors for Low Bone Mineral Density in Institutionalized Individuals with Developmental Disabilities.

    PubMed

    Vice, Michael A; Nahar, Vinayak K; Ford, M Allison; Bass, Martha A; Johnson, Andrea K; Davis, Ashton B; Biviji-Sharma, Rizwana

    2015-01-01

    Persons with intellectual/developmental disabilities (IDD) are exposed to several factors, which have been determined as risks for osteoporosis. Many of these individuals are non-ambulatory, resulting in lack of weight bearing activity, which is well established as a major contributor to bone loss. The purpose of this study was to investigate risk factors for low bone mineral density (BMD) in persons with IDD residing in residential facilities. This cross-sectional study was conducted at an Intermediate Care Facility for individuals with Intellectual and Developmental Disabilities (ICF/IDD). Medical records data were used from 69 individuals, including heal scan T-scores, nutritional, pharmacologic and other risk factors. Chi-Square analysis was used to determine relationships between the variables. BMD measures were not significantly associated with age, gender, height, weight, or BMI for this population (P > 0.05). The association between BMD diagnoses and DSM-IV classification of mental retardation approached significance (P = 0.063). A significant association was found with anti-seizure medication (P = 0.009). Follow-up studies should focus on how supplementation and medication changes may or may not alter BMD. Persons with IDD are experiencing longer life expectancies, and therefore, studies ascertaining information on diseases associated with this aging population are warranted.

  18. Combined treatment with a transforming growth factor beta inhibitor (1D11) and bortezomib improves bone architecture in a mouse model of myeloma-induced bone disease

    PubMed Central

    Nyman, Jeffry S.; Merkel, Alyssa R.; Uppuganti, Sasidhar; Nayak, Bijaya; Rowland, Barbara; Makowski, Alexander J.; Oyajobi, Babatunde O.; Sterling, Julie A.

    2016-01-01

    Multiplemyeloma (MM) patients frequently develop tumor-induced bone destruction, yet no therapy completely eliminates the tumor or fully reverses bone loss. Transforming growth factor-β (TGF-β) activity often contributes to tumor-induced bone disease, and pre-clinical studies have indicated that TGF-β inhibition improves bone volume and reduces tumor growth in bone metastatic breast cancer. We hypothesized that inhibition of TGF-β signaling also reduces tumor growth, increases bone volume, and improves vertebral body strength in MM-bearing mice. We treated myeloma tumor-bearing (immunocompetent KaLwRij and immunocompromised Rag2 −/−) mice with a TGF-β inhibitory (1D11) or control (13C4) antibody, with or without the anti-myeloma drug bortezomib, for 4 weeks after inoculation of murine 5TGM1 MM cells. TGF-β inhibition increased trabecular bone volume, improved trabecular architecture, increased tissue mineral density of the trabeculae as assessed by ex vivo micro-computed tomography, and was associated with significantly greater vertebral body strength in biomechanical compression tests. Serum monoclonal paraprotein titers and spleen weights showed that 1D11 monotherapy did not reduce overall MM tumor burden. Combination therapy with 1D11 and bortezomib increased vertebral body strength, reduced tumor burden, and reduced cortical lesions in the femoral metaphysis, although it did not significantly improve cortical bone strength in three-point bending tests of the mid-shaft femur. Overall, our data provides rationale for evaluating inhibition of TGF-β signaling in combination with existing anti-myeloma agents as a potential therapeutic strategy to improve outcomes in patients with myeloma bone disease. PMID:27423464

  19. Combined treatment with a transforming growth factor beta inhibitor (1D11) and bortezomib improves bone architecture in a mouse model of myeloma-induced bone disease.

    PubMed

    Nyman, Jeffry S; Merkel, Alyssa R; Uppuganti, Sasidhar; Nayak, Bijaya; Rowland, Barbara; Makowski, Alexander J; Oyajobi, Babatunde O; Sterling, Julie A

    2016-10-01

    Multiple myeloma (MM) patients frequently develop tumor-induced bone destruction, yet no therapy completely eliminates the tumor or fully reverses bone loss. Transforming growth factor-β (TGF-β) activity often contributes to tumor-induced bone disease, and pre-clinical studies have indicated that TGF-β inhibition improves bone volume and reduces tumor growth in bone metastatic breast cancer. We hypothesized that inhibition of TGF-β signaling also reduces tumor growth, increases bone volume, and improves vertebral body strength in MM-bearing mice. We treated myeloma tumor-bearing (immunocompetent KaLwRij and immunocompromised Rag2-/-) mice with a TGF-β inhibitory (1D11) or control (13C4) antibody, with or without the anti-myeloma drug bortezomib, for 4weeks after inoculation of murine 5TGM1 MM cells. TGF-β inhibition increased trabecular bone volume, improved trabecular architecture, increased tissue mineral density of the trabeculae as assessed by ex vivo micro-computed tomography, and was associated with significantly greater vertebral body strength in biomechanical compression tests. Serum monoclonal paraprotein titers and spleen weights showed that 1D11 monotherapy did not reduce overall MM tumor burden. Combination therapy with 1D11 and bortezomib increased vertebral body strength, reduced tumor burden, and reduced cortical lesions in the femoral metaphysis, although it did not significantly improve cortical bone strength in three-point bending tests of the mid-shaft femur. Overall, our data provides rationale for evaluating inhibition of TGF-β signaling in combination with existing anti-myeloma agents as a potential therapeutic strategy to improve outcomes in patients with myeloma bone disease. Published by Elsevier Inc.

  20. Erythropoietin induces bone marrow and plasma fibroblast growth factor 23 during acute kidney injury.

    PubMed

    Toro, Luis; Barrientos, Víctor; León, Pablo; Rojas, Macarena; Gonzalez, Magdalena; González-Ibáñez, Alvaro; Illanes, Sebastián; Sugikawa, Keigo; Abarzúa, Néstor; Bascuñán, César; Arcos, Katherine; Fuentealba, Carlos; Tong, Ana María; Elorza, Alvaro A; Pinto, María Eugenia; Alzamora, Rodrigo; Romero, Carlos; Michea, Luis

    2018-05-01

    It is accepted that osteoblasts/osteocytes are the major source for circulating fibroblast growth factor 23 (FGF23). However, erythropoietic cells of bone marrow also express FGF23. The modulation of FGF23 expression in bone marrow and potential contribution to circulating FGF23 has not been well studied. Moreover, recent studies show that plasma FGF23 may increase early during acute kidney injury (AKI). Erythropoietin, a kidney-derived hormone that targets erythropoietic cells, increases in AKI. Here we tested whether an acute increase of plasma erythropoietin induces FGF23 expression in erythropoietic cells of bone marrow thereby contributing to the increase of circulating FGF23 in AKI. We found that erythroid progenitor cells of bone marrow express FGF23. Erythropoietin increased FGF23 expression in vivo and in bone marrow cell cultures via the homodimeric erythropoietin receptor. In experimental AKI secondary to hemorrhagic shock or sepsis in rodents, there was a rapid increase of plasma erythropoietin, and an induction of bone marrow FGF23 expression together with a rapid increase of circulating FGF23. Blockade of the erythropoietin receptor fully prevented the induction of bone marrow FGF23 and partially suppressed the increase of circulating FGF23. Finally, there was an early increase of both circulating FGF23 and erythropoietin in a cohort of patients with severe sepsis who developed AKI within 48 hours of admission. Thus, increases in plasma erythropoietin and erythropoietin receptor activation are mechanisms implicated in the increase of plasma FGF23 in AKI. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  1. Bone and bone turnover.

    PubMed

    Crofton, Patricia M

    2009-01-01

    Children with cancer are exposed to multiple influences that may adversely affect bone health. Some treatments have direct deleterious effects on bone whilst others may have indirect effects mediated through various endocrine abnormalities. Most clinical outcome studies have concentrated on survivors of acute lymphoblastic leukaemia (ALL). There is now good evidence that earlier treatment protocols that included cranial irradiation with doses of 24 Gy or greater may result in growth hormone deficiency and low bone mineral density (BMD) in the lumbar spine and femoral neck. Under current protocols, BMD decreases during intensive chemotherapy and fracture risk increases. Although total body BMD may eventually return to normal after completion of chemotherapy, lumbar spine trabecular BMD may remain low for many years. The implications for long-term fracture risk are unknown. Risk factors for low BMD include high dose methotrexate, higher cumulative doses of glucocorticoids, male gender and low physical activity. BMD outcome in non-ALL childhood cancers has been less well studied but there is evidence that survivors of childhood brain or bone tumours, and survivors of bone marrow transplants for childhood malignancy, all have a high risk of long-term osteopenia. Long-term follow-up is required, with appropriate treatment of any endocrine abnormalities identified. Copyright (c) 2009 S. Karger AG, Basel.

  2. Overexpression of Insulin-Like Growth Factor 1 Enhanced the Osteogenic Capability of Aging Bone Marrow Mesenchymal Stem Cells.

    PubMed

    Chen, Ching-Yun; Tseng, Kuo-Yun; Lai, Yen-Liang; Chen, Yo-Shen; Lin, Feng-Huei; Lin, Shankung

    2017-01-01

    Many studies have indicated that loss of the osteoblastogenic potential in bone marrow mesenchymal stem cells (bmMSCs) is the major component in the etiology of the aging-related bone deficit. But how the bmMSCs lose osteogenic capability in aging is unclear. Using 2-dimentional cultures, we examined the dose response of human bmMSCs, isolated from adult and aged donors, to exogenous insulin-like growth factor 1 (IGF-1), a growth factor regulating bone formation. The data showed that the mitogenic activity and the osteoblastogenic potential of bmMSCs in response to IGF-1 were impaired with aging, whereas higher doses of IGF-1 increased the proliferation rate and osteogenic potential of aging bmMSCs. Subsequently, we seeded IGF-1-overexpressing aging bmMSCs into calcium-alginate scaffolds and incubated in a bioreactor with constant perfusion for varying time periods to examine the effect of IGF-1 overexpression to the bone-forming capability of aging bmMSCs. We found that IGF-1 overexpression in aging bmMSCs facilitated the formation of cell clusters in scaffolds, increased the cell survival inside the cell clusters, induced the expression of osteoblast markers, and enhanced the biomineralization of cell clusters. These results indicated that IGF-1 overexpression enhanced cells' osteogenic capability. Thus, our data suggest that the aging-related loss of osteogenic potential in bmMSCs can be attributed in part to the impairment in bmMSCs' IGF-1 signaling, and support possible application of IGF-1-overexpressing autologous bmMSCs in repairing bone defect of the elderly and in producing bone graft materials for repairing large scale bone injury in the elderly.

  3. Triazolopyrimidine (trapidil), a platelet-derived growth factor antagonist, inhibits parathyroid bone disease in an animal model for chronic hyperparathyroidism

    NASA Technical Reports Server (NTRS)

    Lotinun, Sutada; Sibonga, Jean D.; Turner, Russell T.

    2003-01-01

    Parathyroid bone disease in humans is caused by chronic hyperparathyroidism (HPT). Continuous infusion of PTH into rats results in histological changes similar to parathyroid bone disease, including increased bone formation, focal bone resorption, and severe peritrabecular fibrosis, whereas pulsatile PTH increases bone formation without skeletal abnormalities. Using a cDNA microarray with over 5000 genes, we identified an association between increased platelet-derived growth factor-A (PDGF-A) signaling and PTH-induced bone disease in rats. Verification of PDGF-A overexpression was accomplished with a ribonuclease protection assay. Using immunohistochemistry, PDGF-A peptide was localized to mast cells in PTH-treated rats. We also report a novel strategy for prevention of parathyroid bone disease using triazolopyrimidine (trapidil). Trapidil, an inhibitor of PDGF signaling, did not have any effect on indexes of bone turnover in normal rats. However, dramatic reductions in marrow fibrosis and bone resorption, but not bone formation, were observed in PTH-treated rats given trapidil. Also, trapidil antagonized the PTH-induced increases in mRNA levels for PDGF-A. These results suggest that PDGF signaling is important for the detrimental skeletal effects of HPT, and drugs that target the cytokine or its receptor might be useful in reducing or preventing parathyroid bone disease.

  4. Bone morphogenetic protein (BMP)1-3 enhances bone repair.

    PubMed

    Grgurevic, Lovorka; Macek, Boris; Mercep, Mladen; Jelic, Mislav; Smoljanovic, Tomislav; Erjavec, Igor; Dumic-Cule, Ivo; Prgomet, Stefan; Durdevic, Dragan; Vnuk, Drazen; Lipar, Marija; Stejskal, Marko; Kufner, Vera; Brkljacic, Jelena; Maticic, Drazen; Vukicevic, Slobodan

    2011-04-29

    Members of the astacin family of metalloproteinases such as human bone morphogenetic protein 1 (BMP-1) regulate morphogenesis by processing precursors to mature functional extracellular matrix (ECM) proteins and several growth factors including TGFβ, BMP2, BMP4 and GFD8. We have recently discovered that BMP1-3 isoform of the Bmp-1 gene circulates in the human plasma and is significantly increased in patients with acute bone fracture. We hypothesized that circulating BMP1-3 might have an important role in bone repair and serve as a novel bone biomarker. When administered systemically to rats with a long bone fracture and locally to rabbits with a critical size defect of the ulna, recombinant human BMP1-3 enhanced bone healing. In contrast, neutralization of the endogenous BMP1-3 by a specific polyclonal antibody delayed the bone union. Invitro BMP1-3 increased the expression of collagen type I and osteocalcin in MC3T3-E(1) osteoblast like cells, and enhanced the formation of mineralized bone nodules from bone marrow mesenchymal stem cells. We suggest that BMP1-3 is a novel systemic regulator of bone repair. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Psychosocial, Environmental and Behavioral Factors Associated with Bone Health in Middle-School Girls

    ERIC Educational Resources Information Center

    Sharma, Shreela V.; Hoelscher, Deanna M.; Kelder, Steven H.; Day, R. Sue; Hergenroeder, Albert

    2009-01-01

    The purpose of this study was to identify the psychosocial, environmental and behavioral factors associated with calcium intake, physical activity and bone health in a cohort of adolescent girls. Baseline data (N = 718 girls, mean age: 11.6 plus or minus 0.4 years) from the Incorporating More Physical Activity and Calcium in Teens (IMPACT) study…

  6. Factors that affect postnatal bone growth retardation in the twitcher murine model of Krabbe disease.

    PubMed

    Contreras, Miguel Agustin; Ries, William Louis; Shanmugarajan, Srinivasan; Arboleda, Gonzalo; Singh, Inderjit; Singh, Avtar Kaur

    2010-01-01

    Krabbe disease is an inherited lysosomal disorder in which galactosylsphingosine (psychosine) accumulates mainly in the central nervous system. To gain insight into the possible mechanism(s) that may be participating in the inhibition of the postnatal somatic growth described in the animal model of this disease (twitcher mouse, twi), we studied their femora. This study reports that twi femora are smaller than of those of wild type (wt), and present with abnormality of marrow cellularity, bone deposition (osteoblastic function), and osteoclastic activity. Furthermore, lipidomic analysis indicates altered sphingolipid homeostasis, but without significant changes in the levels of sphingolipid-derived intermediates of cell death (ceramide) or the levels of the osteoclast-osteoblast coupling factor (sphingosine-1-phosphate). However, there was significant accumulation of psychosine in the femora of adult twi animals as compared to wt, without induction of tumor necrosis factor-alpha or interleukin-6. Analysis of insulin-like growth factor-1 (IGF-1) plasma levels, a liver secreted hormone known to play a role in bone growth, indicated a drastic reduction in twi animals when compared to wt. To identify the cause of the decrease, we examined the IGF-1 mRNA expression and protein levels in the liver. The results indicated a significant reduction of IGF-1 mRNA as well as protein levels in the liver from twi as compared to wt littermates. Our data suggest that a combination of endogenous (psychosine) and endocrine (IGF-1) factors play a role in the inhibition of postnatal bone growth in twi mice; and further suggest that derangements of liver function may be contributing, at least in part, to this alteration. Copyright 2010 Elsevier B.V. All rights reserved.

  7. Heel bone strength is related to lifestyle factors in Okinawan men with type 2 diabetes mellitus.

    PubMed

    Gushiken, Michiko; Komiya, Ichiro; Ueda, Shinichiro; Kobayashi, Jun

    2015-03-01

    Although male diabetic patients have an increased risk of fracture, there is little information about this in the literature. The association between heel bone stiffness and the lifestyle of male patients with diabetes was evaluated. The study included 108 participants with type 2 diabetes mellitus patients and 168 age-adjusted, healthy male volunteers. None of the participants had a history of osteoporosis or other severe diseases. Heel bone stiffness was examined by quantitative ultrasound, and each participant completed a health interview survey questionnaire. Bone stiffness was taken as an indicator of bone strength. Stepwise regression analysis was used to investigate associations between bone stiffness and lifestyle-related factors, such as sunlight exposure, intake of milk or small fish, regular exercise, cigarette smoking, consumption of alcohol, and number of remaining teeth. Bone stiffness showed a significant negative association with cigarette smoking [standardized coefficient (SC) = -0.297, F-value (F) = 10.059] and age (SC = -0.207, F = 7.565) in diabetic patients. Bone stiffness showed a significant negative association with age (SC = -0.371, F = 12.076) and height (SC = -0.193, F = 7.898), as well as a significant positive association with sunlight exposure (SC = 0.182, F = 9.589) and intake of small fish (SC = 0.170, F = 7.393) in controls. These findings suggest that cigarette smoking and age are negatively associated with bone stiffness in Okinawan male patients with type 2 diabetes mellitus.

  8. [Obesity and bone metabolism].

    PubMed

    Holecki, Michał; Zahorska-Markiewicz, Barbara; Wiecek, Andrzej; Nieszporek, Teresa; Zak-Gołab, Agnieszka

    2008-01-01

    Both bone and adipose tissue change their size, shape and distribution during the whole human being's life. Many factors, including genetic factors, hormones and activity of nervous system are responsible for these changes. It is generally accepted that obesity has a protective effect on bone tissue. On the other hand some authors present an opposite results--the lack of beneficial effect of obesity on development of osteoporosis fractures. The aim of this article was to present and discuss the relations between adipose tissue and bone metabolism.

  9. Effect of antitumour necrosis factor-alpha therapy on bone turnover in patients with active Crohn's disease: a prospective study.

    PubMed

    Ryan, B M; Russel, M G V M; Schurgers, L; Wichers, M; Sijbrandij, J; Stockbrugger, R W; Schoon, E

    2004-10-15

    Patients with Crohn's disease are at increased risk of osteoporosis. Disease activity and circulating proinflammatory cytokines are thought to play a role in this process. Infliximab, a chimaeric antitumour necrosis factor-alpha antibody is effective in the treatment of Crohn's disease. The aim of this study was to investigate the impact of treatment with infliximab on bone turnover in Crohn's disease patients. This was a prospective trial. Twenty-four patients with active Crohn's disease were treated with infliximab (5 mg/kg). Bone markers were assayed pre- and post-treatment. Bone formation was measured using serum bone-specific alkaline phosphatase and total osteocalcin and bone resorption using serum N-telopeptide cross-linked type 1 collagen. Infliximab therapy caused a significant increase in both markers of bone formation in patients with active Crohn's disease. No significant change in the bone resorption marker serum N-telopeptide cross-linked type 1 was found. Infliximab therapy had a significant beneficial effect on bone metabolism in patients with active Crohn's disease. These findings further support the theory that active ongoing inflammation and high levels of circulating cytokines play a pivotal role in the pathogenesis of bone loss in patients with Crohn's disease.

  10. Ubiquitous overexpression of Hey1 transcription factor leads to osteopenia and chondrocyte hypertrophy in bone.

    PubMed

    Salie, Rishard; Kneissel, Michaela; Vukevic, Mirko; Zamurovic, Natasa; Kramer, Ina; Evans, Glenda; Gerwin, Nicole; Mueller, Matthias; Kinzel, Bernd; Susa, Mira

    2010-03-01

    The transcription factor Hey1, a known Notch target gene of the HES family, has recently been described as a target gene of bone morphogenetic protein-2 (BMP-2) during osteoblastic differentiation in vitro. As the role of Hey1 in skeletal physiology is unknown, we analyzed bones of mice ubiquitously lacking or overexpressing Hey1. This strategy enabled us to evaluate whether Hey1 modulation in the whole organism could serve as a drug or antibody target for therapy of diseases associated with bone loss. Hey1 deficiency resulted in modest osteopenia in vivo and increased number and activity of osteoclasts generated ex vivo. Hey1 overexpression resulted in distinct progressive osteopenia and inhibition of osteoblasts ex vivo, an effect apparently dominant to a mild inhibition of osteoclasts. In both Hey1 deficient and overexpressing mice, males were less affected than females and skeleton was not affected during development. Bone histomorphometry did not reveal major changes in animals at 20 weeks, suggesting that modulation had occurred before. Adult Hey1 transgenics also displayed increased type X collagen expression and an enlarged hypertrophic zone in the growth plate. Taken together, our data suggest that ubiquitous in vivo Hey1 regulation affects osteoblasts, osteoclasts and chondrocytes. Due to the complex role of Hey1 in bone, inhibition of Hey1 does not appear to be a straightforward therapeutic strategy to increase the bone mass.

  11. Bone Disease after Kidney Transplantation

    PubMed Central

    Bouquegneau, Antoine; Salam, Syrazah; Delanaye, Pierre; Eastell, Richard

    2016-01-01

    Bone and mineral disorders occur frequently in kidney transplant recipients and are associated with a high risk of fracture, morbidity, and mortality. There is a broad spectrum of often overlapping bone diseases seen after transplantation, including osteoporosis as well as persisting high– or low–turnover bone disease. The pathophysiology underlying bone disorders after transplantation results from a complex interplay of factors, including preexisting renal osteodystrophy and bone loss related to a variety of causes, such as immunosuppression and alterations in the parathyroid hormone-vitamin D-fibroblast growth factor 23 axis as well as changes in mineral metabolism. Management is complex, because noninvasive tools, such as imaging and bone biomarkers, do not have sufficient sensitivity and specificity to detect these abnormalities in bone structure and function, whereas bone biopsy is not a widely available diagnostic tool. In this review, we focus on recent data that highlight improvements in our understanding of the prevalence, pathophysiology, and diagnostic and therapeutic strategies of mineral and bone disorders in kidney transplant recipients. PMID:26912549

  12. Genetic and environmental variances of bone microarchitecture and bone remodeling markers: a twin study.

    PubMed

    Bjørnerem, Åshild; Bui, Minh; Wang, Xiaofang; Ghasem-Zadeh, Ali; Hopper, John L; Zebaze, Roger; Seeman, Ego

    2015-03-01

    All genetic and environmental factors contributing to differences in bone structure between individuals mediate their effects through the final common cellular pathway of bone modeling and remodeling. We hypothesized that genetic factors account for most of the population variance of cortical and trabecular microstructure, in particular intracortical porosity and medullary size - void volumes (porosity), which establish the internal bone surface areas or interfaces upon which modeling and remodeling deposit or remove bone to configure bone microarchitecture. Microarchitecture of the distal tibia and distal radius and remodeling markers were measured for 95 monozygotic (MZ) and 66 dizygotic (DZ) white female twin pairs aged 40 to 61 years. Images obtained using high-resolution peripheral quantitative computed tomography were analyzed using StrAx1.0, a nonthreshold-based software that quantifies cortical matrix and porosity. Genetic and environmental components of variance were estimated under the assumptions of the classic twin model. The data were consistent with the proportion of variance accounted for by genetic factors being: 72% to 81% (standard errors ∼18%) for the distal tibial total, cortical, and medullary cross-sectional area (CSA); 67% and 61% for total cortical porosity, before and after adjusting for total CSA, respectively; 51% for trabecular volumetric bone mineral density (vBMD; all p < 0.001). For the corresponding distal radius traits, genetic factors accounted for 47% to 68% of the variance (all p ≤ 0.001). Cross-twin cross-trait correlations between tibial cortical porosity and medullary CSA were higher for MZ (rMZ  = 0.49) than DZ (rDZ  = 0.27) pairs before (p = 0.024), but not after (p = 0.258), adjusting for total CSA. For the remodeling markers, the data were consistent with genetic factors accounting for 55% to 62% of the variance. We infer that middle-aged women differ in their bone microarchitecture and remodeling

  13. Zanthoxylum piperitum reversed alveolar bone loss of periodontitis via regulation of bone remodeling-related factors.

    PubMed

    Kim, Mi Hye; Lee, Hye Ji; Park, Jung-Chul; Hong, Jongki; Yang, Woong Mo

    2017-01-04

    Zanthoxylum piperitum (ZP) has been used to prevent toothache in East Asia. In this study, we investigated the effects of ZP on periodontitis along with alveolar bone loss. Twenty-eight male Sprague-Dawley rats were assigned into 4 groups; non-ligated (NOR), ligated and treated vehicle (CTR), ligated and treated 1mg/mL ZP (ZP1), and ligated and treated 100mg/mL ZP (ZP100). Sterilized 3-0 nylon ligature was placed into the subgingival sulcus around the both sides of mandibular first molar. After topical application of 1 and 100mg/mL ZP for 2 weeks, mandibles was removed for histology. In addition, SaOS-2 osteoblast cells were treated 1, 10 and 100μg/mL ZP for 24h to analyze the expressions of alveolar bone-related markers. Several alveolar bone resorption pits, which indicate cementum demineralization were decreased by ZP treatment. Topical ZP treatment inhibited periodontitis-induced alveolar bone loss. In addition, there were significant reduction of osteoclastic activities following topical ZP treatment in periodontium. The expression of RANKL was decreased in SaOS-2 osteoblast cells by treating ZP, while that of OPG was increased. ZP treatment increased the expressions of Runx2 and Osterix in SaOS-2 cells. In summary, ZP treatment inhibited alveolar bone loss as well as maintained the integrity of periodontal structures via regulation of bone remodeling. ZP may be a therapeutic target for treating periodontitis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Evaluation of the Effect of Plasma Rich in Growth Factors (PRGF) on Bone Regeneration

    PubMed Central

    Paknejad, M.; Shayesteh, Y. Soleymani; Yaghobee, S.; Shariat, S.; Dehghan, M.; Motahari, P.

    2012-01-01

    Objective: Reconstruction methods are an essential prerequisite for functional rehabilitation of the stomatognathic system. Plasma rich in growth factors (PRGF) offers a new and potentially useful adjunct to bone substitute materials in bone reconstructive surgery. This study was carried out to investigate the influence of PRGF and fibrin membrane on regeneration of bony defects with and without deproteinized bovine bone mineral (DBBM) on rabbit calvaria. Materials and Methods: Twelve New Zealand white rabbits were included in this randomized, blinded, prospective study. Four equal 3.3×6.6 mm cranial bone defects were created and immediately grafted with DBBM, PRGF+DBBM, PRGF+fibrin membrane and no treatment as control. The defects were evaluated with histologic and histomorphometric analysis performed 4 and 8 weeks later. Results: Adding PRGF to DBBM led to increased bone formation as compared with the control group in 4- and 8-week intervals. In DBBM and PRGF+fibrin membrane samples, no significant increase was seen compared to the control group. There was also a significant increase in the rate of biodegradation of DBBM particles with the addition of PRGF in the 8-week interval. Neither noticeable foreign body reaction nor any severe inflammation was seen in each of the specimens evaluated. Conclusion: Under the limitation of this study, adding PRGF to DBBM enhanced osteogenesis in rabbit calvarias. Applying autologous fibrin membrane in the defects was not helpful. PMID:22924103

  15. Freeze or flee? Negative stimuli elicit selective responding.

    PubMed

    Estes, Zachary; Verges, Michelle

    2008-08-01

    Humans preferentially attend to negative stimuli. A consequence of this automatic vigilance for negative valence is that negative words elicit slower responses than neutral or positive words on a host of cognitive tasks. Some researchers have speculated that negative stimuli elicit a general suppression of motor activity, akin to the freezing response exhibited by animals under threat. Alternatively, we suggest that negative stimuli only elicit slowed responding on tasks for which stimulus valence is irrelevant for responding. To discriminate between these motor suppression and response-relevance hypotheses, we elicited both lexical decisions and valence judgments of negative words and positive words. Relative to positive words (e.g., kitten), negative words (e.g., spider) elicited slower lexical decisions but faster valence judgments. Results therefore indicate that negative stimuli do not cause a generalized motor suppression. Rather, negative stimuli elicit selective responding, with faster responses on tasks for which stimulus valence is response-relevant.

  16. Inhibitory effect of auranofin (I) and chloroquine (II) on bone degradation induced by the interleukin 1-like (IL-1-like) factor released from rheumatoid synovial tissue (RAST) in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodges, Y.; Maser, M.R.; Britton, M.C.

    1986-03-01

    RAST, maintained in organ culture, releases two distinct types of bone resorptive factors and one co-resorptive factor. The first is prostaglandin E/sub 2/ (PGE/sub 2/), while the second is a protein with properties of IL-1. The co-resorptive factor collagenase, cannot induce bone resorption by itself, but augments the bone resorptive activity initiated by either PGE/sub 2/ or the IL-l-like factor. Bone resorptive activity was assessed by measuring the release of /sup 45/Ca from prelabelled rat fetal bones. We investigated the effects of five non-steroidal anti-inflammatory drugs (NSAIDs) and two disease-modifying anti-rheumatic drugs (DMARDs), (I) and (II), on bone degradation mediatedmore » by the IL-l-like factor. None of the NSAIDs tested inhibited bone degradation at 5 x 10/sup -5/ M. On the other hand, both (I) and (II) inhibited bone degradation 60 to 100% at 1 x 10/sup -6/ M and 8 x 10/sup -6/ M respectively. They can inhibit the action of IL-l-like factor on bone at therapeutically attainable concentrations. Additionally, both (I) and (II) block the release of collagenase from the organ culture of RAST with IC/sub 50/s of 5 x 10/sup -6/ M. This unique ability to inhibit collagenase release may contribute to their effectiveness is preventing bone loss in this test model.« less

  17. Effects of spaceflight and Insulin-like Growth Factor-1 on rat bone properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bateman, T.A.; Ayers, R.A.; Spetzler, M.L.

    Spaceflight induces bone degradation which is analogous to an accelerated onset of osteoporosis in humans (Tilton {ital et al.}, 1980). In rats, decreased bone formation is indicative of reduced osteoblast activity (Morey and Baylink, 1978). Chiron Corporation (Emeryville, CA) is interested in using the microgravity environment of low-Earth-orbit to test its therapeutic drug, Insulin-like Growth Factor-1 (IGF-1). This pharmaceutic is known to promote osteoblast activity (Schmid {ital et al.}, 1984) and therefore may encourage bone growth in rats. Chiron sponsored the Immune.3 payload on STS-73 (May 19{endash}29, 1996) through its Center for Space Commercialization (CSC) partner BioServe Space Technologies (Universitymore » of Colorado and Kansas State University) to investigate the effects of IGF-1 on mitigating the skeletal degradation that affects rats and humans during spaceflight. Twelve rats were flown for 10 days using two Animal Enclosure Modules (AEMs) provided by NASA Ames Research Center. Of the twelve, six received 1.4 mg/day of IGF-1; the other six saline. Sixteen vivarium ground controls received the same treatment on a one day delay. Rat femora and tibiae were examined for bone mineral density via DXA scan. Femora and humeri were measured for physical and compositional properties, as well as mechanically tested in three point flexure. Quantitative histomorphometric examination of tibiae, humeri, fibulae, ribs and cranial bone; and microhardness testing on tibiae and humeri are currently in progress. Flight humeri and vivarium femora were significantly larger than their counterparts; however, significant differences in mechanical properties and mineral density were not concurrent to these mass changes. {copyright} {ital 1997 American Institute of Physics.}« less

  18. A pathway to bone: signaling molecules and transcription factors involved in chondrocyte development and maturation

    PubMed Central

    Kozhemyakina, Elena; Lassar, Andrew B.; Zelzer, Elazar

    2015-01-01

    Decades of work have identified the signaling pathways that regulate the differentiation of chondrocytes during bone formation, from their initial induction from mesenchymal progenitor cells to their terminal maturation into hypertrophic chondrocytes. Here, we review how multiple signaling molecules, mechanical signals and morphological cell features are integrated to activate a set of key transcription factors that determine and regulate the genetic program that induces chondrogenesis and chondrocyte differentiation. Moreover, we describe recent findings regarding the roles of several signaling pathways in modulating the proliferation and maturation of chondrocytes in the growth plate, which is the ‘engine’ of bone elongation. PMID:25715393

  19. Novel (188)Re multi-functional bone-seeking compounds: Synthesis, biological and radiotoxic effects in metastatic breast cancer cells.

    PubMed

    Fernandes, Célia; Monteiro, Sofia; Belchior, Ana; Marques, Fernanda; Gano, Lurdes; Correia, João D G; Santos, Isabel

    2016-02-01

    Radiolabeled bisphosphonates (BPs) have been used for bone imaging and delivery of β(-) emitting radionuclides for bone pain palliation. As a β(-) emitter, (188)Re has been considered particularly promising for bone metastases therapy. Aimed at finding innovative bone-seeking agents for systemic radiotherapy of bone metastases, we describe herein novel organometallic compounds of the type fac-[(188)Re(CO)3(k(3)-L)], (L=BP-containing chelator), their in vitro and in vivo stability, and their cellular damage in MDAMB231 cells, a metastatic breast cancer cell line. After synthesis and characterization of the novel organometallic compounds of the type fac-[(188)Re(CO)3(k(3)-L)] their radiochemical purity and in vitro stability was assessed by HPLC. In vivo stability and pharmacokinetic profile were evaluated in mice and the radiocytotoxic activity and DNA damage were assessed by MTT assay and by the cytokinesis-block micronucleus (CBMN) assay, respectively. Among all complexes, (188)Re3 was obtained with high radiochemical purity (>95%) and high specific activity and presented high in vitro and in vivo stability. Biodistribution studies of (188)Re3 in Balb/c mice showed fast blood clearance, high bone uptake (16.1 ± 3.3% IA/g organ, 1h p.i.) and high bone-to-blood and bone-to-muscle radioactivity ratios, indicating that it is able to deliver radiation to bone in a very selective way. The radiocytotoxic effect elicited by (188)Re3 in the MDAMB231 cells was dependent on its concentration, and was higher than that induced by identical concentrations of [(188)ReO4](-). Additionally, (188)Re3 elicited morphological changes in the cells and induced DNA damage by the increased number of MN observed. Altogether, our results demonstrate that (188)Re3 could be considered an attractive candidate for further preclinical evaluation for systemic radionuclide therapy of bone metastases considering its ability to deliver radiation to bone in a very selective way and to induce

  20. Unicameral bone cyst of the patella in a young dog.

    PubMed

    Petazzoni, M; Briotti, F; Beale, B

    2015-01-01

    This report describes a case of a solitary unicameral patellar bone cyst in a young dog. A five-month-old, male Dobermann Pinscher dog was referred for a 10-day left hindlimb lameness. A mild swelling of the peripatellar soft tissues of the left patella was detected upon physical examination. Signs of pain were elicited upon direct palpation of the patella. Radiographic examination revealed an oval radiolucency within the medullary cavity at the base of the left patella. Radiographic examination, arthroscopy, and histopathology findings supported the diagnosis of a benign patellar bone cyst. The condition was treated by surgical curettage and autogenous bone graft harvested from the ipsilateral proximal tibia. Clinical signs, including lameness and signs of pain upon deep palpation, disappeared three weeks after surgery. Follow-up re-evaluation five years after surgery revealed no recurrence of the cyst and the patient was asymptomatic.

  1. Asporin and transforming growth factor-beta gene expression in osteoblasts from subchondral bone and osteophytes in osteoarthritis.

    PubMed

    Sakao, Kei; Takahashi, Kenji A; Arai, Yuji; Saito, Masazumi; Honjyo, Kuniaki; Hiraoka, Nobuyuki; Kishida, Tsunao; Mazda, Osam; Imanishi, Jiro; Kubo, Toshikazu

    2009-11-01

    To clarify the significance of subchondral bone and osteophytes in the pathology of osteoarthritis (OA), we investigated the expression of asporin (ASPN), transforming growth factor-beta1 (TGF-beta1), TGF-beta2, TGF-beta3, and runt-related transcription factor-2 (Runx2) genes involved in bone metabolism. Osteoblasts were isolated from 19 patients diagnosed with knee OA and from 4 patients diagnosed with femoral neck fracture. Osteoblast expression of mRNA encoding ASPN, TGF-beta1, TGF-beta2, TGF-beta3, and Runx2 was analyzed using real-time RT-PCR. Expression of ASPN, TGF-beta1, and TGF-beta3 mRNA in the subchondral bone and osteophytes of OA patients increased compared with that of non-OA patients. The ratio of ASPN to TGF-beta1 mRNA in patients with severe cartilage damage was higher than that in patients with mild cartilage damage. The increased ratio of ASPN mRNA to TGF-beta1 mRNA in patients with severe relative to mild cartilage damage indicates that increased ASPN mRNA expression was significantly associated with the severity of cartilage degeneration. This finding suggests that ASPN may regulate TGF-beta1-mediated factors in the development of OA, which may provide clues as to the underlying pathology of OA.

  2. Aging and Bone

    PubMed Central

    Boskey, A.L.; Coleman, R.

    2010-01-01

    Bones provide mechanical and protective function, while also serving as housing for marrow and a site for regulation of calcium ion homeostasis. The properties of bones do not remain constant with age; rather, they change throughout life, in some cases improving in function, but in others, function deteriorates. Here we review the modifications in the mechanical function and shape of bones, the bone cells, the matrix they produce, and the mineral that is deposited on this matrix, while presenting recent theories about the factors leading to these changes. PMID:20924069

  3. CCN3 Protein Participates in Bone Regeneration as an Inhibitory Factor*

    PubMed Central

    Matsushita, Yuki; Sakamoto, Kei; Tamamura, Yoshihiro; Shibata, Yasuaki; Minamizato, Tokutaro; Kihara, Tasuku; Ito, Masako; Katsube, Ken-ichi; Hiraoka, Shuichi; Koseki, Haruhiko; Harada, Kiyoshi; Yamaguchi, Akira

    2013-01-01

    CCN3, a member of the CCN protein family, inhibits osteoblast differentiation in vitro. However, the role of CCN3 in bone regeneration has not been well elucidated. In this study, we investigated the role of CCN3 in bone regeneration. We identified the Ccn3 gene by microarray analysis as a highly expressed gene at the early phase of bone regeneration in a mouse bone regeneration model. We confirmed the up-regulation of Ccn3 at the early phase of bone regeneration by RT-PCR, Western blot, and immunofluorescence analyses. Ccn3 transgenic mice, in which Ccn3 expression was driven by 2.3-kb Col1a1 promoter, showed osteopenia compared with wild-type mice, but Ccn3 knock-out mice showed no skeletal changes compared with wild-type mice. We analyzed the bone regeneration process in Ccn3 transgenic mice and Ccn3 knock-out mice by microcomputed tomography and histological analyses. Bone regeneration in Ccn3 knock-out mice was accelerated compared with that in wild-type mice. The mRNA expression levels of osteoblast-related genes (Runx2, Sp7, Col1a1, Alpl, and Bglap) in Ccn3 knock-out mice were up-regulated earlier than those in wild-type mice, as demonstrated by RT-PCR. Bone regeneration in Ccn3 transgenic mice showed no significant changes compared with that in wild-type mice. Phosphorylation of Smad1/5 was highly up-regulated at bone regeneration sites in Ccn3 KO mice compared with wild-type mice. These results indicate that CCN3 is up-regulated in the early phase of bone regeneration and acts as a negative regulator for bone regeneration. This study may contribute to the development of new strategies for bone regeneration therapy. PMID:23653360

  4. Bone regeneration with active angiogenesis by basic fibroblast growth factor gene transfected mesenchymal stem cells seeded on porous beta-TCP ceramic scaffolds.

    PubMed

    Guo, Xiaodong; Zheng, Qixin; Kulbatski, Iris; Yuan, Quan; Yang, Shuhua; Shao, Zengwu; Wang, Hong; Xiao, Baojun; Pan, Zhengqi; Tang, Shuo

    2006-09-01

    Large segmental bone defect repair remains a clinical and scientific challenge with increasing interest focused on combining gene transfer with tissue engineering techniques. Basic fibroblast growth factor (bFGF) is one of the most prominent osteogenic growth factors that has the potential to accelerate bone healing by promoting the proliferation and differentiation of mesenchymal stem cells (MSCs) and the regeneration of capillary vasculature. However, the short biological half-lives of growth factors may impose severe restraints on their clinical usefulness. Gene-based delivery systems provide a better way of achieving a sustained high concentration of growth factors locally in the defect and delivering a more biologically active product than that achieved by exogenous application of recombinant proteins. The objective of this experimental study was to investigate whether the bFGF gene modified MSCs could enhance the repair of large segmental bone defects. The pcDNA3-bFGF gene transfected MSCs were seeded on biodegradable porous beta tricalcium phosphate (beta-TCP) ceramics and allografted into the 15 mm critical-sized segmental bone defects in the radius of 18 New Zealand White rabbits. The pcDNA3 vector gene transfected MSCs were taken as the control. The follow-up times were 2, 4, 6, 8, 10 and 12 weeks. Scanning electron microscopic, roentgenographic, histologic and immunohistological studies were used to assess angiogenesis and bone regeneration. In vitro, the proliferation and differentiation of bFGF gene transfected MSCs were more active than that of the control groups. In vivo, significantly more new bone formation accompanied by abundant active capillary regeneration was observed in pores of the ceramics loaded with bFGF gene transfected MSCs, compared with control groups. Transfer of gene encoding bFGF to MSCs increases their osteogenic properties by enhancing capillary regeneration, thus providing a rich blood supply for new bone formation. This new b

  5. Incidence of bacterial contamination and predisposing factors during bone and tendon allograft procurement.

    PubMed

    Terzaghi, Clara; Longo, Alessia; Legnani, Claudio; Bernasconi, Davide Paolo; Faré, Maristella

    2015-03-01

    The aim of this study was to analyze factors contributing to bacteriological contamination of bone and tendon allograft. Between 2008 and 2011, 2,778 bone and tendon allografts obtained from 196 organ and tissue donors or tissue donors only were retrospectively analysed. Several variables were taken into account: donor type (organ and tissue donors vs. tissue donor), cause of death, time interval between death and tissue procurement, duration of the procurement procedure, type of allografts, number of team members, number of trainees members, associated surgical procedures, positivity to haemoculture, type of procurement. The overall incidence of graft contamination was 23 %. The cause of death, the procurement time, the duration of procurement, the associated surgical procedures were not associated with increased risk of contamination. Significant effect on contamination incidence was observed for the number of staff members performing the procurement. In addition, our study substantiated significantly higher contamination rate among bone allografts than from tendon grafts. According to these observations, in order to minimize the contamination rate of procured musculoskeletal allografts, we recommend appropriate donor selection, use of standard sterile techniques, immediate packaging of each allograft to reduce graft exposure. Allograft procurement should be performed by a small surgical team.

  6. Effects of simulated weightlessness on bone mineral metabolism

    NASA Technical Reports Server (NTRS)

    Globus, R. K.; Bikle, D. D.; Morey-Holton, E.

    1984-01-01

    It is pointed out that prolonged space flight, bedrest, and immobilization are three factors which can produce a negative calcium balance, osteopenia, and an inhibition of bone formation. It is not known whether the effects of gravity on bone mineral metabolism are mediated by systemic endocrine factors which affect all bones simultaneously, or by local factors which affect each bone individually. The present investigation has the objective to test the relative importance of local vs. systemic factors in regulating the bone mineral response to conditions simulating weightlessness. Experiments were conducted with male Sprague-Dawley rats. The test conditions made it possible to compare the data from weighted and unweighted bones in the same animal. The obtained findings indicate that a decrease in bone mass relative to control value occurs rapidly under conditions which simulate certain aspects of weightlessness. However, this decrease reaches a plateau after 10 days.

  7. Transforming growth factor-{beta} inhibits CCAAT/enhancer-binding protein expression and PPAR{gamma} activity in unloaded bone marrow stromal cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahdjoudj, S.; Kaabeche, K.; Holy, X.

    2005-02-01

    The molecular mechanisms regulating the adipogenic differentiation of bone marrow stromal cells in vivo remain largely unknown. In this study, we investigated the regulatory effects of transforming growth factor beta-2 (TGF-{beta}2) on transcription factors involved in adipogenic differentiation induced by hind limb suspension in rat bone marrow stromal cells in vivo. Time course real-time quantitative reverse-transcription polymerase chain reaction (RT-PCR) analysis of gene expression showed that skeletal unloading progressively increases the expression of CCAAT/enhancer-binding protein (C/EBP){alpha} and C/EBP{beta} {alpha} at 5 days in bone marrow stromal cells resulting in increased peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}2) transcripts at 7 days. TGF-{beta}2more » administration in unloaded rats corrected the rise in C/EBP{alpha} and C/EBP{beta} transcripts induced by unloading in bone marrow stromal cells. This resulted in inhibition of PPAR{gamma}2 expression that was associated with increased Runx2 expression. Additionally, the inhibition of C/EBP{alpha} and C/EBP{beta} expression by TGF-{beta}2 was associated with increased PPAR{gamma} serine phosphorylation in bone marrow stromal cells, a mechanism that inhibits PPAR{gamma} transactivating activity. The sequential inhibitory effect of TGF-{beta}2 on C/EBP{alpha}, C/EBP{beta}, and PPAR{gamma}2 resulted in reduced LPL expression and abolition of bone marrow stromal cell adipogenic differentiation, which contributed to prevent bone loss induced by skeletal unloading. We conclude that TGF-{beta}2 inhibits the excessive adipogenic differentiation of bone marrow stromal cells induced by skeletal unloading by inhibiting C/EBP{alpha}, C/EBP{beta}, and PPAR{gamma} expression and activity, which provides a sequential mechanism by which TGF-{beta}2 regulates adipogenic differentiation of bone marrow stromal cells in vivo.« less

  8. In vivo demonstration of cell types in bone that harbor epidermal growth factor receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martineau-Doize, B.; Lai, W.H.; Warshawsky, H.

    1988-08-01

    The binding and internalization of (/sup 125/I)iodoepidermal growth factor (EGF) by bone cells of the rat was demonstrated in situ by quantitative radioautography. Specific binding sites were observed on a cell profile enriched in endocytic components, including lysosome-like structures, a rough endoplasmic reticulum-rich cell profile, and a cell profile that histologically resembles an undifferentiated precursor cell. By the criteria of gel filtration and precipitability by trichloroacetic acid, most of the bound (/sup 125/I)iodo-EGF was considered intact. By morphological criteria none of the cell profiles that bound (/sup 125/I)iodo-EGF corresponded to fully formed osteoclasts or osteoblasts. The endocytic cell was foundmore » in the epiphyseal plate between the invading capillary and the transverse and longitudinal cartilage septa as well as near osteoclasts in the zone of mixed spicules. The rough endoplasmic reticulum-rich cell was present in vacated chondrocyte lacunae of the epiphyseal plate close to the metaphysis, and the poorly differentiated cell was observed between the mixed spicules of the metaphysis. Similar cell types were also found in the alveolar bone surrounding the incisors. These cells may be the origin of established bone cell lines that harbor high concentrations of EGF receptors and may also be responsible for the humoral hypercalcemia in response to the reported actions of injected EGF or transforming growth factor-alpha as well as that of malignancy.« less

  9. Exploring Proficiency-Based vs. Performance-Based Items with Elicited Imitation Assessment

    ERIC Educational Resources Information Center

    Cox, Troy L.; Bown, Jennifer; Burdis, Jacob

    2015-01-01

    This study investigates the effect of proficiency- vs. performance-based elicited imitation (EI) assessment. EI requires test-takers to repeat sentences in the target language. The accuracy at which test-takers are able to repeat sentences highly correlates with test-takers' language proficiency. However, in EI, the factors that render an item…

  10. Stable isotope discrimination factors and between-tissue isotope comparisons for bone and skin from captive and wild green sea turtles (Chelonia mydas).

    PubMed

    Turner Tomaszewicz, Calandra N; Seminoff, Jeffrey A; Price, Mike; Kurle, Carolyn M

    2017-11-30

    The ecological application of stable isotope analysis (SIA) relies on taxa- and tissue-specific stable carbon (Δ 13 C) and nitrogen (Δ 15 N) isotope discrimination factors, determined with captive animals reared on known diets for sufficient time to reflect dietary isotope ratios. However, captive studies often prohibit lethal sampling, are difficult with endangered species, and reflect conditions not experienced in the wild. We overcame these constraints and determined the Δ 13 C and Δ 15 N values for skin and cortical bone from green sea turtles (Chelonia mydas) that died in captivity and evaluated the utility of a mathematical approach to predict discrimination factors. Using stable carbon (δ 13 C values) and nitrogen (δ 15 N values) isotope ratios from captive and wild turtles, we established relationships between bone stable isotope (SI) ratios and those from skin, a non-lethally sampled tissue, to facilitate comparisons of SI ratios among studies using multiple tissues. The mean (±SD) Δ 13 C and Δ 15 N values (‰) between skin and bone from captive turtles and their diet (non-lipid-extracted) were 2.3 ± 0.3 and 4.1 ± 0.4 and 2.1 ± 0.6 and 5.1 ± 1.1, respectively. The mathematically predicted Δ 13 C and Δ 15 N values were similar (to within 1‰) to the experimentally derived values. The mean δ 15 N values from bone were higher than those from skin for captive (+1.0 ± 0.9‰) and wild (+0.8 ± 1.0‰) turtles; the mean δ 13 C values from bone were lower than those from skin for wild turtles (-0.6 ± 0.9‰), but the same as for captive turtles. We used linear regression equations to describe bone vs skin relationships and create bone-to-skin isotope conversion equations. For sea turtles, we provide the first (a) bone-diet SI discrimination factors, (b) comparison of SI ratios from individual-specific bone and skin, and (c) evaluation of the application of a mathematical approach to predict stable isotope discrimination factors. Our approach

  11. Osteoblast-specific transcription factor Osterix (Osx) is an upstream regulator of Satb2 during bone formation.

    PubMed

    Tang, Wanjin; Li, Yang; Osimiri, Lindsey; Zhang, Chi

    2011-09-23

    Osterix (Osx) is an osteoblast-specific transcription factor essential for osteoblast differentiation and bone formation. Osx knock-out mice lack bone completely. Satb2 is critical for osteoblast differentiation as a special AT-rich binding transcription factor. It is not known how Satb2 is transcriptionally regulated during bone formation. In this study, quantitative real-time RT-PCR results demonstrated that Satb2 was down-regulated in Osx-null calvaria. In stable C2C12 mesenchymal cells using the tetracycline (Tet)-Off system, overexpression of Osx stimulated Satb2 expression. Moreover, inhibition of Osx by siRNA led to repression of Satb2 expression in osteoblasts. These results suggest that Osx controls Satb2 expression. Transient transfection assay showed that Osx activated 1kb Satb2 promoter reporter activity in a dose-dependent manner. To define the region of Satb2 promoter responsive to Osx activation, a series of deletion mutants of Satb2 constructs were made, and the minimal region was narrowed down to the proximal 130 bp of the Satb2 promoter. Further point mutation studies found that two GC-rich region mutations disrupted the Satb2 130bp promoter activation by Osx, suggesting that these GC-rich binding sites were responsible for Satb2 activation by Osx. Gel shift assay showed that Osx bound to the Satb2 promoter sequence directly. ChIP assays indicated that endogenous Osx associated with the native Satb2 promoter in osteoblasts. Importantly, Satb2 siRNA significantly inhibited Osx-induced osteoblast marker gene expressions. Taken together, our findings indicate that Osx is an upstream regulator of Satb2 during bone formation. This reveals a new additional link of the transcriptional regulation mechanism that Osx controls bone formation.

  12. Predicting Bone Mechanical Properties of Cancellous Bone from DXA, MRI, and Fractal Dimensional Measurements

    NASA Technical Reports Server (NTRS)

    Harrigan, Timothy P.; Ambrose, Catherine G.; Hogan, Harry A.; Shackleford, Linda; Webster, Laurie; LeBlanc, Adrian; Lin, Chen; Evans, Harlan

    1997-01-01

    This project was aimed at making predictions of bone mechanical properties from non-invasive DXA and MRI measurements. Given the bone mechanical properties, stress calculations can be made to compare normal bone stresses to the stresses developed in exercise countermeasures against bone loss during space flight. These calculations in turn will be used to assess whether mechanical factors can explain bone loss in space. In this study we assessed the use of T2(sup *) MRI imaging, DXA, and fractal dimensional analysis to predict strength and stiffness in cancellous bone.

  13. Can physical activity improve peak bone mass?

    PubMed

    Specker, Bonny; Minett, Maggie

    2013-09-01

    The pediatric origin of osteoporosis has led many investigators to focus on determining factors that influence bone gain during growth and methods for optimizing this gain. Bone responds to bone loading activities by increasing mass or size. Overall, pediatric studies have found a positive effect of bone loading on bone size and accrual, but the types of loads necessary for a bone response have only recently been investigated in human studies. Findings indicate that responses vary by sex, maturational status, and are site-specific. Estrogen status, body composition, and nutritional status also may influence the bone response to loading. Despite the complex interrelationships among these various factors, it is prudent to conclude that increased physical activity throughout life is likely to optimize bone health.

  14. Bone augmentation using a highly porous PLGA/β-TCP scaffold containing fibroblast growth factor-2.

    PubMed

    Yoshida, T; Miyaji, H; Otani, K; Inoue, K; Nakane, K; Nishimura, H; Ibara, A; Shimada, A; Ogawa, K; Nishida, E; Sugaya, T; Sun, L; Fugetsu, B; Kawanami, M

    2015-04-01

    Beta-tricalcium phosphate (β-TCP), a bio-absorbable ceramic, facilitates bone conductivity. We constructed a highly porous three-dimensional scaffold, using β-TCP, for bone tissue engineering and coated it with co-poly lactic acid/glycolic acid (PLGA) to improve the mechanical strength and biological performance. The aim of this study was to examine the effect of implantation of the PLGA/β-TCP scaffold loaded with fibroblast growth factor-2 (FGF-2) on bone augmentation. The β-TCP scaffold was fabricated by the replica method using polyurethane foam, then coated with PLGA. The PLGA/β-TCP scaffold was characterized by scanning electron miscroscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction, compressive testing, cell culture and a subcutaneous implant test. Subsequently, a bone-forming test was performed using 52 rats. The β-TCP scaffold, PLGA-coated scaffold, and β-TCP and PLGA-coated scaffolds loaded with FGF-2, were implanted into rat cranial bone. Histological observations were made at 10 and 35 d postsurgery. SEM and TEM observations showed a thin PLGA layer on the β-TCP particles after coating. High porosity (> 90%) of the scaffold was exhibited after PLGA coating, and the compressive strength of the PLGA/β-TCP scaffold was six-fold greater than that of the noncoated scaffold. Good biocompatibility of the PLGA/β-TCP scaffold was found in the culture and implant tests. Histological samples obtained following implantation of PLGA/β-TCP scaffold loaded with FGF-2 showed significant bone augmentation. The PLGA coating improved the mechanical strength of β-TCP scaffolds while maintaining high porosity and tissue compatibility. PLGA/β-TCP scaffolds, in combination with FGF-2, are bioeffective for bone augmentation. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Expert elicitation of population-level effects of disturbance

    USGS Publications Warehouse

    Fleishman, Erica; Burgman, Mark; Runge, Michael C.; Schick, Robert S; Krauss, Scott; Popper, Arthur N.; Hawkins, Anthony

    2016-01-01

    Expert elicitation is a rigorous method for synthesizing expert knowledge to inform decision making and is reliable and practical when field data are limited. We evaluated the feasibility of applying expert elicitation to estimate population-level effects of disturbance on marine mammals. Diverse experts estimated parameters related to mortality and sublethal injury of North Atlantic right whales (Eubalaena glacialis). We are now eliciting expert knowledge on the movement of right whales among geographic regions to parameterize a spatial model of health. Expert elicitation complements methods such as simulation models or extrapolations from other species, sometimes with greater accuracy and less uncertainty.

  16. Mutual cancellation between tones presented by air conduction, by bone conduction and by non-osseous (soft tissue) bone conduction.

    PubMed

    Chordekar, Shai; Kriksunov, Leonid; Kishon-Rabin, Liat; Adelman, Cahtia; Sohmer, Haim

    2012-01-01

    Auditory sensation can be elicited not only by air conducted (AC) sound or bone conducted (BC) sound, but also by stimulation of soft tissue (STC) sites on the head and neck relatively distant from deeply underlying bone. Tone stimulation by paired combinations of AC with BC (mastoid) and/or with soft tissue conduction produce the same pitch sensation, mutual masking and beats. The present study was designed to determine whether they can also cancel each other. The study was conducted on ten normal hearing subjects. Tones at 2 kHz were presented in paired combinations by AC (insert earphone), by BC (bone vibrator) at the mastoid, and by the same bone vibrator to several STC sites; e.g. the neck, the sterno-cleido-mastoid muscle, the eye, and under the chin, shifting the phases between the pairs. Subjects reported changes in loudness and cancellation. The phase for cancellation differed across subjects. Neck muscle manipulations (changes in head position) led to alterations in the phase at which cancellation was reported. Cancellation was also achieved between pairs of tones to two STC sites. The differing phases for cancellation across subjects and the change in phase accompanying different head positions may be due to the different acoustic impedances of the several tissues in the head and neck. A major component of auditory stimulation by STC may not induce actual skull bone vibrations and may not involve bulk fluid volume displacements. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. S219. RISK FACTORS FOR LOW BONE MINERAL DENSITY IN PATIENTS TAKING ANTIPSYCHOTICS

    PubMed Central

    Jhon, Min; Hong, Ji-Eun; Park, Cheol; Lee, Ju-Yeon; Jo, Anna; Kim, Jae-Min; Shin, Il-Seon; Williams, Lana; Berk, Michael; Yoon, Jin-Sang; Kim, Sung-Wan

    2018-01-01

    Abstract Background The aim of this study is to explore potentially modifiable risk factors for low bone mineral density (BMD) in adults with psychotic disorders. Furthermore, we sought to identify gender-specific risk factors. Methods The study included 285 community-dwelling patients with psychotic disorders. Dual-energy x-ray absorptiometry was used to measure BMD. Laboratory examinations included vitamin D and prolactin levels. Low BMD was defined as<1 standard deviation below the mean for young adults. Clinical characteristics associated with low BMD were identified with logistic regression analysis in total population and each gender. Results Fifty-eight (20.4%) subjects had low BMD. Low BMD was more common in men and in patients with low body mass indices (BMIs), as well as in those with shorter treatment durations, those on Medicaid, and patients using serotonergic antidepressants. Logistic regression analysis revealed that low BMD was negatively associated with BMI and treatment duration and positively with gender (male) and serotonergic antidepressants use in the overall population. In men, low BMD was associated with treatment duration and BMI; in women, low BMD was associated with BMI, prolactin level, vitamin D, and serotonergic antidepressant use. Discussion Low BMI was risk factor for reduced BMD in both genders. Shorter treatment duration was associated with low BMD in men, whereas higher prolactin levels, lower vitamin D, and the use of serotonergic antidepressants were associated with low BMD in women. Psychotropic agents should be prescribed mindful of their effects on bone, as use of these medications is a modifiable risk factor for osteoporosis in women with psychotic disorders.

  18. The Central Nervous System (CNS)-independent Anti-bone-resorptive Activity of Muscle Contraction and the Underlying Molecular and Cellular Signatures*

    PubMed Central

    Qin, Weiping; Sun, Li; Cao, Jay; Peng, Yuanzhen; Collier, Lauren; Wu, Yong; Creasey, Graham; Li, Jianhua; Qin, Yiwen; Jarvis, Jonathan; Bauman, William A.; Zaidi, Mone; Cardozo, Christopher

    2013-01-01

    Muscle and bone work as a functional unit. Cellular and molecular mechanisms underlying effects of muscle activity on bone mass are largely unknown. Spinal cord injury (SCI) causes muscle paralysis and extensive sublesional bone loss and disrupts neural connections between the central nervous system (CNS) and bone. Muscle contraction elicited by electrical stimulation (ES) of nerves partially protects against SCI-related bone loss. Thus, application of ES after SCI provides an opportunity to study the effects of muscle activity on bone and roles of the CNS in this interaction, as well as the underlying mechanisms. Using a rat model of SCI, the effects on bone of ES-induced muscle contraction were characterized. The SCI-mediated increase in serum C-terminal telopeptide of type I collagen (CTX) was completely reversed by ES. In ex vivo bone marrow cell cultures, SCI increased the number of osteoclasts and their expression of mRNA for several osteoclast differentiation markers, whereas ES significantly reduced these changes; SCI decreased osteoblast numbers, but increased expression in these cells of receptor activator of NF-κB ligand (RANKL) mRNA, whereas ES increased expression of osteoprotegerin (OPG) and the OPG/RANKL ratio. A microarray analysis revealed that ES partially reversed SCI-induced alterations in expression of genes involved in signaling through Wnt, FSH, parathyroid hormone (PTH), oxytocin, and calcineurin/nuclear factor of activated T-cells (NFAT) pathways. ES mitigated SCI-mediated increases in mRNA levels for the Wnt inhibitors DKK1, sFRP2, and sclerostin in ex vivo cultured osteoblasts. Our results demonstrate an anti-bone-resorptive activity of muscle contraction by ES that develops rapidly and is independent of the CNS. The pathways involved, particularly Wnt signaling, suggest future strategies to minimize bone loss after immobilization. PMID:23530032

  19. Insulin-like growth factor-1 receptor in mature osteoblasts is required for periosteal bone formation induced by reloading

    NASA Astrophysics Data System (ADS)

    Kubota, Takuo; Elalieh, Hashem Z.; Saless, Neema; Fong, Chak; Wang, Yongmei; Babey, Muriel; Cheng, Zhiqiang; Bikle, Daniel D.

    2013-11-01

    Skeletal loading and unloading has a pronounced impact on bone remodeling, a process also regulated by insulin-like growth factor-1 (IGF-1) signaling. Skeletal unloading leads to resistance to the anabolic effect of IGF-1, while reloading after unloading restores responsiveness to IGF-1. However, a direct study of the importance of IGF-1 signaling in the skeletal response to mechanical loading remains to be tested. In this study, we assessed the skeletal response of osteoblast-specific Igf-1 receptor deficient (Igf-1r-/-) mice to unloading and reloading. The mice were hindlimb unloaded for 14 days and then reloaded for 16 days. Igf-1r-/- mice displayed smaller cortical bone and diminished periosteal and endosteal bone formation at baseline. Periosteal and endosteal bone formation decreased with unloading in Igf-1r+/+ mice. However, the recovery of periosteal bone formation with reloading was completely inhibited in Igf-1r-/- mice, although reloading-induced endosteal bone formation was not hampered. These changes in bone formation resulted in the abolishment of the expected increase in total cross-sectional area with reloading in Igf-1r-/- mice compared to the control mice. These results suggest that the Igf-1r in mature osteoblasts has a critical role in periosteal bone formation in the skeletal response to mechanical loading.

  20. The Predominant CD4+ Th1 Cytokine Elicited to Chlamydia trachomatis Infection in Women Is Tumor Necrosis Factor Alpha and Not Interferon Gamma

    PubMed Central

    Gupta, Kanupriya; Ogendi, Brian M. O.; Bakshi, Rakesh K.; Kapil, Richa; Press, Christen G.; Sabbaj, Steffanie; Lee, Jeannette Y.

    2017-01-01

    ABSTRACT Chlamydia trachomatis infection is the most prevalent bacterial sexually transmitted infection and can cause significant reproductive morbidity in women. There is insufficient knowledge of C. trachomatis-specific immune responses in humans, which could be important in guiding vaccine development efforts. In contrast, murine models have clearly demonstrated the essential role of T helper type 1 (Th1) cells, especially interferon gamma (IFN-γ)-producing CD4+ T cells, in protective immunity to chlamydia. To determine the frequency and magnitude of Th1 cytokine responses elicited to C. trachomatis infection in humans, we stimulated peripheral blood mononuclear cells from 90 chlamydia-infected women with C. trachomatis elementary bodies, Pgp3, and major outer membrane protein and measured IFN-γ-, tumor necrosis factor alpha (TNF-α)-, and interleukin-2 (IL-2)-producing CD4+ and CD8+ T-cell responses using intracellular cytokine staining. The majority of chlamydia-infected women elicited CD4+ TNF-α responses, with frequency and magnitude varying significantly depending on the C. trachomatis antigen used. CD4+ IFN-γ and IL-2 responses occurred infrequently, as did production of any of the three cytokines by CD8+ T cells. About one-third of TNF-α-producing CD4+ T cells coproduced IFN-γ or IL-2. In summary, the predominant Th1 cytokine response elicited to C. trachomatis infection in women was a CD4+ TNF-α response, not CD4+ IFN-γ, and a subset of the CD4+ TNF-α-positive cells produced a second Th1 cytokine. PMID:28100498

  1. Bone morphogenetic protein and bone metastasis, implication and therapeutic potential.

    PubMed

    Ye, Lin; Mason, Malcolm D; Jiang, Wen G

    2011-01-01

    Bone metastasis is one of the most common and severe complications in advanced malignancies, particularly in the three leading cancers; breast cancer, prostate cancer and lung cancer. It is currently incurable and causes severe morbidities, including bone pain, hypercalcemia, pathological fracture, spinal cord compression and consequent paralysis. However, the mechanisms underlying the development of bone metastasis remain largely unknown. Bone morphogenetic proteins (BMPs) belong to the TGF-beta superfamily and are pluripotent factors involved in the regulation of embryonic development and postnatal homeostasis of various organs and tissues, by controlling cellular differentiation, proliferation and apoptosis. Since they are potent regulators for bone formation, there is an increasing interest to investigate BMPs and their roles in bone metastasis. BMPs have been implicated in various neoplasms, at both primary and secondary tumors, particularly skeletal metastasis. Recently studies have also suggested that BMP signaling and their antagonists play pivotal roles in bone metastasis. In this review, we discuss the current knowledge of aberrations of BMPs which have been indicated in tumor progression, and particularly in the development of bone metastasis.

  2. Targeting Transforming Growth Factor Beta to Enhance the Fracture Resistance of Bone

    DTIC Science & Technology

    2013-01-01

    Transforming Growth Factor Beta to Enhance the Fracture Resistance of Bone is to determine whether the suppression of TGF-β activity improves the fracture...effect primarily occurred in the old rats. Effect of TGF-β suppression on fracture resistance in female mice Since the suppression of TGF-β activity by...treated mice. This suggests that 1D11 treatment depleted the osteoprogenitor pool to some extent as inhibition of TGF-β activity in vivo may favor

  3. Bone grafts utilized in dentistry: an analysis of patients' preferences.

    PubMed

    Fernández, Ramón Fuentes; Bucchi, Cristina; Navarro, Pablo; Beltrán, Víctor; Borie, Eduardo

    2015-10-20

    Many procedures currently require the use of bone grafts to replace or recover bone volume that has been resorbed. However, the patient's opinion and preferences must be taken into account before implementing any treatment. Researchers have focused primarily on assessing the effectiveness of bone grafts rather than on patients' perceptions. Thus, the aim of this study was to explore patients' opinions regarding the different types of bone grafts used in dental treatments. One hundred patients were randomly chosen participated in the study. A standardized survey of 10 questions was used to investigate their opinions regarding the different types of bone grafts used in dental treatments. Descriptive statistics were calculated for the different variables, and absolute frequencies and percentages were used as summary measures. A value of p <0.05 was selected as the threshold for statistical significance. The highest rate of refusal was observed for allografts and xenografts. The grafts with the lowest rates of refusal were autologous grafts (3 %) and alloplastics (2 %). No significant differences were found between the various types of bone grafts in the sociodemographic variables or the refusal/acceptance variable. Similarly, no significant relations were observed between a specific religious affiliation and the acceptance/refusal rates of the various types of graft. Allografts and xenografts elicited the highest refusal rates among the surveyed patients, and autologous bone and alloplastics were the most accepted bone grafts. Moreover, no differences were found in the sociodemographic variables or religious affiliations in terms of the acceptance/refusal rates of the different bone grafts.

  4. Strategies for delivering bone morphogenetic protein for bone healing.

    PubMed

    Begam, Howa; Nandi, Samit Kumar; Kundu, Biswanath; Chanda, Abhijit

    2017-01-01

    Bone morphogenetic proteins (BMPs) are the most significant growth factors that belong to the Transforming Growth Factor Beta (TGF-β) super-family. Though more than twenty members of this family have been identified so far in humans, Food and Drug Administration (FDA) approved two growth factors: BMP-2 and BMP-7 for treatments of spinal fusion and long-bone fractures with collagen carriers. Currently BMPs are clinically used in spinal fusion, oral and maxillofacial surgery and also in the repair of long bone defects. The efficiency of BMPs depends a lot on the selection of suitable carriers. At present, different types of carrier materials are used: natural and synthetic polymers, calcium phosphate and ceramic-polymer composite materials. Number of research articles has been published on the minute intricacies of the loading process and release kinetics of BMPs. Despite the significant evidence of its potential for bone healing demonstrated in animal models, future clinical investigations are needed to define dose, scaffold and route of administration. The efficacy and application of BMPs in various levels with a proper carrier and dose is yet to be established. The present article collates various aspects of success and limitation and identifies the prospects and challenges associated with the use of BMPs in orthopaedic surgery. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. The protective effect of platelet released growth factors and bone augmentation (Bio-Oss®) on ethanol impaired osteoblasts.

    PubMed

    Sönmez, Tolga Taha; Bayer, Andreas; Cremer, Tillman; Hock, Jennifer Vanessa Phi; Lethaus, Bernd; Kweider, Nisreen; Wruck, Christoph Jan; Drescher, Wolf; Jahr, Holger; Lippross, Sebastian; Pufe, Thomas; Tohidnezhad, Mersedeh

    2017-11-01

    Chronic alcohol consumption is a known limiting factor for bone healing. One promising strategy to improve bone augmentation techniques with Bio-Oss ® in oral and maxillofacial surgery might be the supportive application of platelet-concentrated biomaterials as platelet-released growth factor (PRGF). To address this matter, we performed an in vitro study investigating the protective effects of PRGF and Bio-Oss ® in ethanol (EtOH) treated osteoblasts. The SAOS-2 osteosarcoma cell line, with and without EtOH pretreatment was used. The cell viability, proliferation and alkali phosphatase activity (ALP) after application of 0%, 5% and 10% PRGF and Bio-Oss ® were assessed. The application of PRGF and Bio-Oss ® in EtOH impaired osteoblasts showed a significant beneficial influence increasing the viability of the osteoblasts in cell culture. The synergistic effect of Bio-Oss ® and 5% PRGF on the proliferation of osteoblasts was also demonstrated. Bio-Oss ® only in combination with PRGF increases the alkaline phosphatase (ALP) activity in EtOH pretreated cells. These results indicate that the simultaneous application of PRGF and Bio-Oss ® inhibits EtOH induced bone healing impairment. Furthermore, in the cells, PRGF induced a protective mechanism which might promote bone regeneration. Copyright © 2017 Elsevier GmbH. All rights reserved.

  6. Insulin-like growth factor I is required for the anabolic actions of parathyroid hormone on mouse bone

    NASA Technical Reports Server (NTRS)

    Bikle, Daniel D.; Sakata, Takeshi; Leary, Colin; Elalieh, Hashem; Ginzinger, David; Rosen, Clifford J.; Beamer, Wesley; Majumdar, Sharmila; Halloran, Bernard P.

    2002-01-01

    Parathyroid hormone (PTH) is a potent anabolic agent for bone, but the mechanism(s) by which it works remains imperfectly understood. Previous studies have indicated that PTH stimulates insulin-like growth factor (IGF) I production, but it remains uncertain whether IGF-I mediates some or all of the skeletal actions of PTH. To address this question, we examined the skeletal response to PTH in IGF-I-deficient (knockout [k/o]) mice. These mice and their normal littermates (NLMs) were given daily injections of PTH (80 microg/kg) or vehicle for 2 weeks after which their tibias were examined for fat-free weight (FFW), bone mineral content, bone structure, and bone formation rate (BFR), and their femurs were assessed for mRNA levels of osteoblast differentiation markers. In wild-type mice, PTH increased FFW, periosteal BFR, and cortical thickness (C.Th) of the proximal tibia while reducing trabecular bone volume (BV); these responses were not seen in the k/o mice. The k/o mice had normal mRNA levels of the PTH receptor and increased mRNA levels of the IGF-I receptor but markedly reduced basal mRNA levels of the osteoblast markers. Surprisingly, these mRNAs in the k/o bones increased several-fold more in response to PTH than the mRNAs in the bones from their wild-type littermates. These results indicate that IGF-I is required for the anabolic actions of PTH on bone formation, but the defect lies distal to the initial response of the osteoblast to PTH.

  7. Arctigenin suppresses receptor activator of nuclear factor κB ligand (RANKL)-mediated osteoclast differentiation in bone marrow-derived macrophages.

    PubMed

    Kim, A-Ram; Kim, Hyuk Soon; Lee, Jeong Min; Choi, Jung Ho; Kim, Se Na; Kim, Do Kyun; Kim, Ji Hyung; Mun, Se Hwan; Kim, Jie Wan; Jeon, Hyun Soo; Kim, Young Mi; Choi, Wahn Soo

    2012-05-05

    Osteoclasts, multinucleated bone-resorbing cells, are closely associated with bone diseases such as rheumatoid arthritis and osteoporosis. Osteoclasts are derived from hematopoietic precursor cells, and their differentiation is mediated by two cytokines, including macrophage colony stimulating factor and receptor activator of nuclear factor κB ligand (RANKL). Previous studies have shown that arctigenin exhibits an anti-inflammatory effect. However, the effect of arctigenin on osteoclast differentiation is yet to be elucidated. In this study, we found that arctigenin inhibited RANKL-mediated osteoclast differentiation in bone marrow macrophages in a dose-dependent manner and suppressed RANKL-mediated bone resorption. Additionally, the expression of typical marker proteins, such as NFATc1, c-Fos, TRAF6, c-Src, and cathepsin K, were significantly inhibited. Arctigenin inhibited the phosphorylation of Erk1/2, but not p38 and JNK, in a dose-dependent manner. Arctigenin also dramatically suppressed immunoreceptor tyrosine-based activation motif-mediated costimulatory signaling molecules, including Syk and PLCγ2, and Gab2. Notably, arctigenin inhibited the activation of Syk through RANKL stimulation. Furthermore, arctigenin prevented osteoclast differentiation in the calvarial bone of mice following stimulation with lipopolysaccharide. Our results show that arctigenin inhibits osteoclast differentiation in vitro and in vivo. Therefore, arctigenin may be useful for treating rheumatoid arthritis and osteoporosis. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Denosumab for bone diseases: translating bone biology into targeted therapy.

    PubMed

    Tsourdi, Elena; Rachner, Tilman D; Rauner, Martina; Hamann, Christine; Hofbauer, Lorenz C

    2011-12-01

    Signalling of receptor activator of nuclear factor-κB (RANK) ligand (RANKL) through RANK is a critical pathway to regulate the differentiation and activity of osteoclasts and, hence, a master regulator of bone resorption. Increased RANKL activity has been demonstrated in diseases characterised by excessive bone loss such as osteoporosis, rheumatoid arthritis and osteolytic bone metastases. The development and approval of denosumab, a fully MAB against RANKL, has heralded a new era in the treatment of bone diseases by providing a potent, targeted and reversible inhibitor of bone resorption. This article summarises the molecular and cellular biology of the RANKL/RANK system and critically reviews preclinical and clinical studies that have established denosumab as a promising novel therapy for metabolic and malignant bone diseases. We will discuss the potential indications for denosumab along with a critical review of safety and analyse its potential within the concert of established therapies.

  9. Dual growth factor-immobilized asymmetrically porous membrane for bone-to-tendon interface regeneration on rat patellar tendon avulsion model.

    PubMed

    Kim, Joong-Hyun; Oh, Se Heang; Min, Hyun Ki; Lee, Jin Ho

    2018-01-01

    Insufficient repair of the bone-to-tendon interface (BTI) with structural/compositional gradients has been a significant challenge in orthopedics. In this study, dual growth factor (platelet-derived growth factor-BB [PDGF-BB] and bone morphogenetic protein-2 [BMP-2])-immobilized polycaprolactone (PCL)/Pluronic F127 asymmetrically porous membrane was fabricated to estimate its feasibility as a potential strategy for effective regeneration of BTI injury. The growth factors immobilized (via heparin-intermediated interactions) on the membrane were continuously released for up to ∼80% of the initial loading amount after 5 weeks without a significant initial burst. From the in vivo animal study using a rat patellar tendon avulsion model, it was observed that the PDGF-BB/BMP-2-immobilized membrane accelerates the regeneration of the BTI injury, probably because of the continuous release of both growth factors (biological stimuli) and their complementary effect to create a multiphasic structure (bone, fibrocartilage, and tendon) like a native structure, as well as the role of the asymmetrically porous membrane as a physical barrier (nanopore side; prevention of fibrous tissue invasion into the defect site) and scaffold (micropore side; guidance for tissue regeneration). © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 115-125, 2018. © 2017 Wiley Periodicals, Inc.

  10. Prevalence of low bone health using quantitative ultrasound in Indian women aged 41-60 years: Its association with nutrition and other related risk factors.

    PubMed

    Shenoy, Shweta; Chawla, Jasmine Kaur; Gupta, Swati; Sandhu, Jaspal Singh

    2017-01-01

    The purpose of this study was to find the prevalence of low bone health conditions and assess associated nutritional and other risk factors in Indian women aged 41-60 years. A total of 1,911 women participated in this cross-sectional study. Bone health was assessed using an Omnisense multisite quantitative ultrasound bone densitometer on two sites (radius and tibia). Crude prevalence of osteopenia and osteoporosis was found to be 30.09% and 19.89%, respectively. The Indian women were deficient in a majority of nutrients. Postmenopause, hysterectomy, hyperthyroid, hypothyroid, hypertension, low physical activity, low sun exposure, high stress levels, and low calcium levels were found to be independent risk factors of low bone health.

  11. [Correlation analysis of bone marrow edema degree and serum inflammatory factors change with knee joint pain symptoms in patients with bone contusion around the knee joint].

    PubMed

    Li, Songiun; An, Rongze; Wang, Zhaojie; Kuang, Lipeng; Tan, Weiyuan; Fang, Cunxun

    2014-05-01

    To explore the correlation between the degree of bone marrow edema (BME) and the content change of tumor necrosis factor alpha (TNF-alpha) and matrix metalloproteinase 3 (MMP-3) and the knee pain symptoms in patients with bone contusion around the knee joint. Thirty patients (30 knees) of bone contusion around the knee joint were chosen as the trial group between October 2009 and April 2012. According to visual analogue scale (VAS), 30 patients were divided into mild group (10 cases), moderate group (10 cases), and severe group (10 cases); according to MRI morphological changes, the patients were divided into type I group (12 cases), type II group (11 cases), and type III group (7 cases). Ten patients (10 knees) with soft tissue injury of the knee were chosen as control group. No significant difference was found (P > 0.05) in gender, age, causes, side, and admission time after injury between 2 groups. The serum contents of MMP-3 and TNF-alpha were detected and statistically analysed between different degrees of pain groups and between different degrees of BME groups. Correlation was analysed between BME and inflammatory factor changes and VAS score. The MMP-3 and TNF-alpha contents in trial group [(29.580 +/- 6.870) (microg/L and (23.750 +/- 7.096) ng/L] were significantly higher than those in control group [(8.219 +/- 1.355) microg/L and (6.485 +/- 1.168) ng/L] (t = 9.686, P = 0.000; t = 7.596, P =0.000). The MMP-3 and TNF-alpha contents in patients with different degrees of pain and BME were significantly higher than those in patients of control group (P < 0.05), and significant difference was found between patients with different degrees of pain (P < 0.05), but no significant difference between patients with different degrees of BME (P > 0.05). Multiple linear regression analysis showed that TNF-alpha content was significantly correlated with VAS score (P = 0.000). Knee pain symptoms are not related to the degree of BME in patients with bone contusion around the

  12. Effect of transforming growth factor beta (TGF-β) receptor I kinase inhibitor on prostate cancer bone growth.

    PubMed

    Wan, Xinhai; Li, Zhi-Gang; Yingling, Jonathan M; Yang, Jun; Starbuck, Michael W; Ravoori, Murali K; Kundra, Vikas; Vazquez, Elba; Navone, Nora M

    2012-03-01

    Transforming growth factor beta 1 (TGF-β1) has been implicated in the pathogenesis of prostate cancer (PCa) bone metastasis. In this study, we tested the antitumor efficacy of a selective TGF-β receptor I kinase inhibitor, LY2109761, in preclinical models. The effect of LY2109761 on the growth of MDA PCa 2b and PC-3 human PCa cells and primary mouse osteoblasts (PMOs) was assessed in vitro by measuring radiolabeled thymidine incorporation into DNA. In vivo, the right femurs of male SCID mice were injected with PCa cells. We monitored the tumor burden in control- and LY2109761-treated mice with MRI analysis and the PCa-induced bone response with X-ray and micro-CT analyses. Histologic changes in bone were studied by performing bone histomorphometric evaluations. PCa cells and PMOs expressed TGF-β receptor I. TGF-β1 induced pathway activation (as assessed by induced expression of p-Smad2) and inhibited cell growth in PC-3 cells and PMOs but not in MDA PCa 2b cells. LY2109761 had no effect on PCa cells but induced PMO proliferation in vitro. As expected, LY2109761 reversed the TGF-β1-induced pathway activation and growth inhibition in PC-3 cells and PMOs. In vivo, LY2109761 treatment for 6weeks resulted in increased volume in normal bone and increased osteoblast and osteoclast parameters. In addition, LY2109761 treatment significantly inhibited the growth of MDA PCa 2b and PC-3 in the bone of SCID mice (p<0.05); moreover, it resulted in significantly less bone loss and change in osteoclast-associated parameters in the PC-3 tumor-bearing bones than in the untreated mice. In summary, we report for the first time that targeting TGF-β receptors with LY2109761 can control PCa bone growth while increasing the mass of normal bone. This increased bone mass in nontumorous bone may be a desirable side effect of LY2109761 treatment for men with osteopenia or osteoporosis secondary to androgen-ablation therapy, reinforcing the benefit of effectively controlling PCa growth

  13. Effect of transforming growth factor beta (TGF-β) receptor I kinase inhibitor on prostate cancer bone growth

    PubMed Central

    Wan, Xinhai; Li, Zhi-Gang; Yingling, Jonathan M.; Yang, Jun; Starbuck, Michael W.; Ravoori, Murali K.; Kundra, Vikas; Vazquez, Elba; Navone, Nora M.

    2012-01-01

    Transforming growth factor beta 1 (TGF-β1) has been implicated in the pathogenesis of prostate cancer (PCa) bone metastasis. In this study, we tested the antitumor efficacy of a selective TGF-β receptor I kinase inhibitor, LY2109761, in preclinical models. The effect of LY2109761 on the growth of MDA PCa 2b and PC-3 human PCa cells and primary mouse osteoblasts (PMOs) was assessed in vitro by measuring radiolabeled thymidine incorporation into DNA. In vivo, the right femurs of male SCID mice were injected with PCa cells. We monitored the tumor burden in control- and LY2109761-treated mice with MRI analysis and the PCa-induced bone response with x-ray and micro-CT analyses. Histologic changes in bone were studied by performing bone histomorphometric evaluations. PCa cells and PMOs expressed TGF-β receptor I. TGF-β1 induced pathway activation (as assessed by induced expression of p-Smad2) and inhibited cell growth in PC-3 cells and PMOs but not in MDA PCa 2b cells. LY2109761 had no effect on PCa cells but induced PMO proliferation in vitro. As expected, LY2109761 reversed the TGF-β1–induced pathway activation and growth inhibition in PC-3 cells and PMOs. In vivo, LY2109761 treatment for 6 weeks resulted in increased volume in normal bone and increased osteoblast and osteoclast parameters. In addition, LY2109761 treatment significantly inhibited the growth of MDA PCa 2b and PC-3 in the bone of SCID mice (p < 0.05); moreover, it resulted in significantly less bone loss and change in osteoclast-associated parameters in the PC-3 tumor–bearing bones than in the untreated mice. In summary, we report for the first time that targeting TGF-β receptors with LY2109761 can control PCa bone growth while increasing the mass of normal bone. This increased bone mass in nontumorous bone may be a desirable side effect of LY2109761 treatment for men with osteopenia or osteoporosis secondary to androgen-ablation therapy, reinforcing the benefit of effectively controlling PCa

  14. Bone metabolism and adipokines: are there perspectives for bone diseases drug discovery?

    PubMed

    Scotece, Morena; Conde, Javier; Abella, Vanessa; López, Verónica; Pino, Jesús; Lago, Francisca; Gómez-Reino, Juan J; Gualillo, Oreste

    2014-08-01

    Over the past 20 years, the idea that white adipose tissue (WAT) is simply an energy depot organ has been radically changed. Indeed, present understanding suggests WAT to be an endocrine organ capable of producing and secreting a wide variety of proteins termed adipokines. These adipokines appear to be relevant factors involved in a number of different functions, including metabolism, immune response, inflammation and bone metabolism. In this review, the authors focus on the effects of several adipose tissue-derived factors in bone pathophysiology. They also consider how the modification of the adipokine network could potentially lead to promising treatment options for bone diseases. There are currently substantial developments being made in the understanding of the interplay between bone metabolism and the metabolic system. These insights could potentially lead to the development of new treatment strategies and interventions with the aim of successful outcomes in many people affected by bone disorders. Specifically, future research should look into the intimate mechanisms regulating peripheral and central activity of adipokines as it has potential for novel drug discovery.

  15. [Low bone mineral density in juvenile idiopathic arthritis: Prevalence and related factors].

    PubMed

    Galindo Zavala, Rocío; Núñez Cuadros, Esmeralda; Martín Pedraz, Laura; Díaz-Cordovés Rego, Gisela; Sierra Salinas, Carlos; Urda Cardona, Antonio

    2017-10-01

    Height adjustment is currently recommended for Z-score bone mineral density (BMD) assessed by dual energy X-ray absorptiometry. At present there are no studies that evaluate the prevalence of low BMD in paediatric patients with Juvenile Idiopathic Arthritis (JIA) in Spain following current recommendations. To evaluate low BMD in JIA in paediatric patients with JIA in Spain following the latest recommendations, as well as to assess associated factors. Observational cross-sectional study of Spanish JIA patients from 5 to 16 years-old, followed-up in a Paediatric Rheumatology Unit between July 2014 and July 2015. Anthropometric, clinical and treatment data were recorded. Dual energy X-ray absorptiometry, and bone metabolism parameters were collected, and a completed diet and exercise questionnaire was obtained. A total of 92 children participated. The population prevalence estimation of low BMD was less than 5% (95% CI). A significant positive correlation was found in the multiple linear regression analysis between the body mass index percentile (B: 0.021; P<.001) and lean mass index (B: 0.0002; P=.012), and BMD Z-score adjusted for height (Z-SAH). A significant negative correlation was found between fat mass index (B: -0.0001; P=.018) and serum type I collagen N-propeptide (B: -0,0006; P=.036) and Z-SAH. Low BMD prevalence in JIA patients in our population is low. An adequate nutritional status and the prevalence of lean over fat mass seem to promote the acquisition of bone mass. Those JIA patients with lower BMD could be subjected to an increase of bone turnover. Copyright © 2016 Asociación Española de Pediatría. Publicado por Elsevier España, S.L.U. All rights reserved.

  16. Bone scintiscanning updated.

    PubMed

    Lentle, B C; Russell, A S; Percy, J S; Scott, J R; Jackson, F I

    1976-03-01

    Use of modern materials and methods has given bone scintiscanning a larger role in clinical medicine, The safety and ready availability of newer agents have led to its greater use in investigating both benign and malignant disease of bone and joint. Present evidence suggests that abnormal accumulation of 99mTc-polyphosphate and its analogues results from ionic deposition at crystal surfaces in immature bone, this process being facilitated by an increase in bone vascularity. There is, also, a component of matrix localization. These factors are in keeping with the concept that abnormal scintiscan sites represent areas of increased osteoblastic activity, although this may be an oversimplification. Increasing evidence shows that the bone scintiscan is more sensitive than conventional radiography in detecting focal disease of bone, and its ability to reflect the immediate status of bone further complements radiographic findings. The main limitation of this method relates to nonspecificity of the results obtained.

  17. Discrete emotions predict changes in cognition, judgment, experience, behavior, and physiology: a meta-analysis of experimental emotion elicitations.

    PubMed

    Lench, Heather C; Flores, Sarah A; Bench, Shane W

    2011-09-01

    Our purpose in the present meta-analysis was to examine the extent to which discrete emotions elicit changes in cognition, judgment, experience, behavior, and physiology; whether these changes are correlated as would be expected if emotions organize responses across these systems; and which factors moderate the magnitude of these effects. Studies (687; 4,946 effects, 49,473 participants) were included that elicited the discrete emotions of happiness, sadness, anger, and anxiety as independent variables with adults. Consistent with discrete emotion theory, there were (a) moderate differences among discrete emotions; (b) differences among discrete negative emotions; and (c) correlated changes in behavior, experience, and physiology (cognition and judgment were mostly not correlated with other changes). Valence, valence-arousal, and approach-avoidance models of emotion were not as clearly supported. There was evidence that these factors are likely important components of emotion but that they could not fully account for the pattern of results. Most emotion elicitations were effective, although the efficacy varied with the emotions being compared. Picture presentations were overall the most effective elicitor of discrete emotions. Stronger effects of emotion elicitations were associated with happiness versus negative emotions, self-reported experience, a greater proportion of women (for elicitations of happiness and sadness), omission of a cover story, and participants alone versus in groups. Conclusions are limited by the inclusion of only some discrete emotions, exclusion of studies that did not elicit discrete emotions, few available effect sizes for some contrasts and moderators, and the methodological rigor of included studies. (PsycINFO Database Record (c) 2011 APA, all rights reserved).

  18. DYSAPOPTOSIS OF OSTEOBLASTS AND OSTEOCYTES INCREASES CANCELLOUS BONE FORMATION BUT EXAGGERATES BONE POROSITY WITH AGE

    PubMed Central

    Jilka, Robert L.; O’Brien, Charles A.; Roberson, Paula K.; Bonewald, Lynda F.; Weinstein, Robert S.; Manolagas, Stavros C.

    2013-01-01

    Skeletal aging is accompanied by decreased cancellous bone mass and increased formation of pores within cortical bone. The latter accounts for a large portion of the increase in non-vertebral fractures after age 65 in humans. We selectively deleted Bak and Bax, two genes essential for apoptosis, in two types of terminally differentiated bone cells: the short-lived osteoblasts that elaborate the bone matrix, and the long-lived osteocytes that are immured within the mineralized matrix and choreograph the regeneration of bone. Attenuation of apoptosis in osteoblasts increased their working lifespan and thereby cancellous bone mass in the femur. In long-lived osteocytes, however, it caused dysfunction with advancing age and greatly magnified intracortical femoral porosity associated with increased production of receptor activator of nuclear factor-κB ligand and vascular endothelial growth factor. Increasing bone mass by artificial prolongation of the inherent lifespan of short-lived osteoblasts, while exaggerating the adverse effects of aging on long-lived osteocytes, highlights the seminal role of cell age in bone homeostasis. In addition, our findings suggest that distress signals produced by old and/or dysfunctional osteocytes are the culprits of the increased intracortical porosity in old age. PMID:23761243

  19. Bone health and risk factors of cardiovascular disease--a cross-sectional study in healthy young adults.

    PubMed

    Pirilä, Satu; Taskinen, Mervi; Turanlahti, Maila; Kajosaari, Merja; Mäkitie, Outi; Saarinen-Pihkala, Ulla M; Viljakainen, Heli

    2014-01-01

    Both osteoporosis and cardiovascular disease (CVD) are diseases that comprise a growing medical and economic burden in ageing populations. They share many risk factors, including ageing, low physical activity, and possibly overweight. We aimed to study associations between individual risk factors for CVD and bone mineral density (BMD) and turnover markers (BTMs) in apparently healthy cohort. A cross-sectional assessment of 155 healthy 32-year-old adults (74 males) was performed for skeletal status, CVD risk factors and lifestyle factors. We analysed serum osteocalcin, procollagen I aminoterminal propeptide (P1NP), collagen I carboxy-terminal telopeptide (ICTP) and urine collagen I aminoterminal telopeptide (U-NTX), as well as serum insulin, plasma glucose, triglyceride and HDL-cholesterol levels. BMD, fat and lean mass were assessed using DXA scanning. Associations were tested with partial correlations in crude and adjusted models. Bone status was compared between men with or without metabolic syndrome (defined according to the NCEP-ATPIII criteria) with multivariate analysis. Osteocalcin and P1NP correlated inversely with insulin (R = -0.243, P = 0.003 and R = -0.187, P = 0.021) and glucose (R = -0.213, P = 0.009 and R = -0.190, P = 0.019), but after controlling for fat mass and lifestyle factors, the associations attenuated with insulin (R = -0.162, P = 0.053 and R = -0.093, P = 0.266) and with glucose (R = -0.099, P = 0.240 and R = -0.133, P = 0.110), respectively. Whole body BMD associated inversely only with triglycerides in fully adjusted model. In men with metabolic syndrome, whole body BMD, osteocalcin and P1NP were lower compared to healthy men, but these findings disappeared in fully adjusted model. In young adults, inverse associations between BTM/BMD and risk factors of CVD appeared in crude models, but after adjusting for fat mass, no association continued to be present. In addition to fat

  20. Impact of obesity on bone metabolism.

    PubMed

    López-Gómez, Juan J; Pérez Castrillón, José L; de Luis Román, Daniel A

    2016-12-01

    High weight is a protective factor against osteoporosis and risk of fracture. In obesity, however, where overweight is associated to excess fat, this relationship does not appear to be so clear, excess weight has sometimes been associated to decreased bone mass. Obesity interferes with bone metabolism through mechanical, hormonal, and inflammatory factors. These factors are closely related to weight, body composition, and dietary patterns of these patients. The net beneficial or harmful effect on bone mass or risk of fracture of the different components of this condition is not well known. We need to recognize patients at a greater risk of bone disease related to obesity to start an adequate intervention. Copyright © 2016. Publicado por Elsevier España, S.L.U.

  1. Bone morphogenetic protein-mediated interaction of periosteum and diaphysis. Citric acid and other factors influencing the generation of parosteal bone.

    PubMed

    Kübler, N; Urist, M R

    1990-09-01

    In rabbits, after long-bone growth is complete and the cambium layer regresses, mesenchymal-type cells with embryonic potential (competence) for bone development persist in the adventitial layer of periosteum. These cells are not determined osteoprogenitor cells (stem cells) because bone tissue differentiation does not occur when adult periosteum is transplanted into a heterotopic site. In this respect, adventitial cells differ from bone marrow stroma cells. In a parosteal orthotopic site in the space between the adult periosteum and diaphysis, implants of bone morphogenetic protein (BMP) and associated noncollagenous proteins (BMP/NCP) induce adventitia and adjacent muscle connective-tissue-derived cells to switch from a fibrogenetic to a chondroosteoprogenetic pattern of bone development. The quantity of induced bone is proportional to the dose of BMP/NCP in the range from 10 to 50 mg; immature rabbits produced larger deposits than mature rabbits in response to BMP/NCP. Preoperative local intramuscular injections of citric, edetic, or hyaluronic acids in specified concentrations markedly enhanced subperiosteal BMP/NCP-induced bone formation. The quantity of bovine or human BMP/NCP-induced bone formation in rabbits is also increased by very low-dose immunosuppression but not by bone mineral, tricalcium phosphate ceramic, inorganic calcium salts, or various space-occupying, unspecific chemical irritants. Although composities of BMP/NCP and allogeneic rabbit tendon collagen increased the quantity of bone in a parosteal site, in a heterotopic site the composite failed to induce bone formation. In a parosteal site, the conditions permitting BMP/NCP-induced bone formation develop, and the end product of the morphogenetic response is a duplicate diaphysis. How BMP reactivates the morphogenetic process in postfetal mesenchymal-type adventitial cells persisting in adult periosteum (including adjacent muscle attachments) is not known.

  2. Low Bone Mineral Density Risk Factors and Testing Patterns in Institutionalized Adults with Intellectual and Developmental Disabilities

    ERIC Educational Resources Information Center

    Hess, Mailee; Campagna, Elizabeth J.; Jensen, Kristin M.

    2018-01-01

    Background: Adults with intellectual or developmental disability (ID/DD) have multiple risks for low bone mineral density (BMD) without formal guidelines to guide testing. We sought to identify risk factors and patterns of BMD testing among institutionalized adults with ID/DD. Methods: We evaluated risk factors for low BMD (Z-/T-score < -1) and…

  3. Virulence Factor Genes in Staphylococcus aureus Isolated From Diabetic Foot Soft Tissue and Bone Infections.

    PubMed

    Víquez-Molina, Gerardo; Aragón-Sánchez, Javier; Pérez-Corrales, Cristian; Murillo-Vargas, Christian; López-Valverde, María Eugenia; Lipsky, Benjamin A

    2018-03-01

    The aim of this study is to describe the presence of genes encoding for 4 virulence factors (pvl, eta, etb, and tsst), as well as the mecA gene conferring resistance to beta-lactam antibiotics, in patients with diabetes and a staphylococcal foot infection. We have also analyzed whether isolates of Staphylococcus aureus from bone infections have a different profile for these genes compared with those from exclusively soft tissue infections. In this cross-sectional study of a prospectively recruited series of patients admitted to the Diabetic Foot Unit, San Juan de Dios Hospital, San José, Costa Rica with a moderate or severe diabetic foot infection (DFI), we collected samples from infected soft tissue and from bone during debridement. During the study period (June 1, 2014 to May 31, 2016), we treated 379 patients for a DFI. S aureus was isolated from 101 wound samples, of which 43 were polymicrobial infections; we only included the 58 infections that were monomicrobial S aureus for this study. Infections were exclusively soft tissue in 17 patients (29.3%) while 41 (70.7%) had bone involvement (osteomyelitis). The mecA gene was detected in 35 cases (60.3%), pvl gene in 4 cases (6.9%), and tsst gene in 3 (5.2%). We did not detect etA and etB in any of the cases. There were no differences in the profile of S aureus genes encoding for virulence factors (pvl, etA, etB, and tsst) recovered from DFIs between those with just soft tissue compared to those with osteomyelitis. However, we found a significantly higher prevalence of pvl+ strains of S aureus associated with soft tissue compared with bone infections. Furthermore, we observed a significantly longer time to healing among patients infected with mecA+ (methicillin-resistant) S aureus (MRSA).

  4. Correlates of bone quality in older persons

    PubMed Central

    Lauretani, F.; Bandinelli, S.; Russo, C.R.; Maggio, M.; Di Iorio, A.; Cherubini, A.; Maggio, D.; Ceda, G.P.; Valenti, G.; Guralnik, J.M.; Ferrucci, L.

    2009-01-01

    Purpose of the study In a population-based sample of older persons, we studied the relationship between tibial bone density and geometry and factors potentially affecting osteoporosis. Methods Of the 1260 participants aged 65 years or older eligible for the InCHIANTI study, 1155 received an interview and 915 (79.2%) had complete data on tibial QCTscans and other variables used in the analysis presented here. The final study population included 807 persons (372 men and 435 women, age range 65–96 years) after exclusion of participants affected by bone diseases or treated with drugs that interfere with bone metabolism. Results In both sexes, calf cross-sectional muscle area (CSMA) was significantly and independently associated with total bone cross-sectional area (tCSA) and cortical bone cross-sectional area (cCSA) but not with trabecular or cortical volumetric bone mineral density (vBMD). Bioavailable testosterone (Bio-T) was independently associated with both trabecular and cortical vBMD in both sexes. In women, independently of confounders, 25(OH)-vitamin D was positively associated with tCSA and cortical vBMD, while PTH was negatively associated with cortical vBMD. IL-1 beta was negatively correlated with cortical vBMD in women, while TNF-alpha was associated with enhanced bone geometrical adaptation in men. Conclusions Physiological parameters that are generically considered risk factors for osteoporosis were associated with specific bone parameters assessed by tibial QCT. Factors known to be associated with increased bone reabsorption, such as 25(OH)-vitamin D, PTH and Bio-T, affected mainly volumetric BMD, while factors associated with bone mechanical stimulation, such as CSMA, affected primarily bone geometry. Our results also suggested that pro-inflammatory cytokines might be considered as markers of bone resorption. PMID:16709469

  5. A novel three-dimensional bone chip organ culture.

    PubMed

    Kuttenberger, Johannes; Polska, Elzbieta; Schaefer, Birgit M

    2013-07-01

    The objective of this study was to develop a 3D bone chip organ culture model. We aimed to collect in vitro evidence of the ability of vital bone chips to promote new bone formation. We developed a 3D in vitro hypoxic bone chip organ culture model. Histology of the bone chips was performed before and after culture and immunohistochemistry after 3-week culture. The 3D culture supernatants were tested for the presence of pro-angiogenic growth factors, TGFβ1, GADPH, bone alkaline phosphatase, osteocalcin, osteonectin, osteopontin, bone sialoprotein and collagen type I. Histology after culture revealed bone chips in a matrix of fibrin remnants and a fibrous-appearing matter. Collagen type I- and IV-positive structures were also identified. Cells could be seen on the surface of the bone chips, with spindle-shaped cells bridging the bone chip particles. Pro-angiogenic growth factors and TGFβ1were detected in the 3D cell culture supernatants. The transcripts for osteocalcin, bone sialoprotein and collagen type I were revealed only via PCR. Our results indicate that bone chips in our 3D organ culture remain vital and may stimulate the growth of a bone-forming matrix. The use of autogenous bone chips for oral and maxillofacial bone augmentation procedures is widespread in clinical practice. The rationale for this is that if bone chips remain vital in vivo, they could provide an environment promoting new bone formation through growth factors and cells. This 3D culture method is an essential tool for investigating the behaviour of bone chips.

  6. Central Depletion of Brain-Derived Neurotrophic Factor in Mice Results in High Bone Mass and Metabolic Phenotype

    PubMed Central

    Zayzafoon, M.; Rymaszewski, M.; Heiny, J.; Rios, M.; Hauschka, P. V.

    2012-01-01

    Brain-derived neurotrophic factor (BDNF) plays important roles in neuronal differentiation/survival, the regulation of food intake, and the pathobiology of obesity and type 2 diabetes mellitus. BDNF and its receptor are expressed in osteoblasts and chondrocyte. BDNF in vitro has a positive effect on bone; whether central BDNF affects bone mass in vivo is not known. We therefore examined bone mass and energy use in brain-targeted BDNF conditional knockout mice (Bdnf2lox/2lox/93). The deletion of BDNF in the brain led to a metabolic phenotype characterized by hyperphagia, obesity, and increased abdominal white adipose tissue. Central BDNF deletion produces a marked skeletal phenotype characterized by increased femur length, elevated whole bone mineral density, and bone mineral content. The skeletal changes are developmentally regulated and appear concurrently with the metabolic phenotype, suggesting that the metabolic and skeletal actions of BDNF are linked. The increased bone development is evident in both the cortical and trabecular regions. Compared with control, Bdnf2lox/2lox/93 mice show greater trabecular bone volume (+50% for distal femur, P < 0.001; +35% for vertebral body, P < 0.001) and midfemoral cortical thickness (+11 to 17%, P < 0.05), measured at 3 and 6 months of age. The skeletal and metabolic phenotypes were gender dependent, with female being more affected than male mice. However, uncoupling protein-1 expression in brown fat, a marker of sympathetic tone, was not different between genotypes. We show that deletion of central BDNF expression in mice results in increased bone mass and white adipose tissue, with no significant changes in sympathetic signaling or peripheral serotonin, associated with hyperphagia, obesity, and leptin resistance. PMID:23011922

  7. Osteoimmunology: Influence of the Immune System on Bone Regeneration and Consumption.

    PubMed

    Limmer, Andreas; Wirtz, Dieter C

    2017-06-01

    Background Stimulating bone regeneration is a central aim in orthopaedic and trauma surgery. Although the replacement of bone with artificial materials like cement or apatite helps to keep up bone stability, new bone often cannot be regenerated. Increasing research efforts have led to the clinical application of growth factors stimulating bone growth (e.g. bone morphogenic protein, BMP) and inhibitors preventing bone consumption (e.g. RANKL blocking antibodies). These factors mostly concentrate on stimulating osteoblast or preventing osteoclast activity. Current Situation It is widely accepted that osteoblasts and osteoclasts are central players in bone regeneration. This concept assumes that osteoblasts are responsible for bone growth while osteoclasts cause bone consumption by secreting matrix-degrading enzymes such as cathepsin K and matrix metalloproteinases (MMP). However, according to new research results, bone growth or consumption are not regulated by single cell types. It is rather the interaction of various cell types that regulates bone metabolism. While factors secreted by osteoblasts are essential for osteoclast differentiation and activation, factors secreted by activated osteoclasts are essential for osteoblast activity. In addition, recent research results imply that the influence of the immune system on bone metabolism has long been neglected. Factors secreted by macrophages or T cells strongly influence bone growth or degradation, depending on the bone microenvironment. Infections, sterile inflammation or tumour metastases not only affect bone cells directly, but also influence immune cells such as T cells indirectly. Furthermore, immune cells and bone are mechanistically regulated by similar factors such as cytokines, chemokines and transcription factors, suggesting that the definition of bone and immune cells has to be thought over. Outlook Bone and the immune system are regulated by similar mechanisms. These newly identified similarities

  8. Strategies to engineer tendon/ligament-to-bone interface: Biomaterials, cells and growth factors.

    PubMed

    Font Tellado, Sonia; Balmayor, Elizabeth R; Van Griensven, Martijn

    2015-11-01

    Integration between tendon/ligament and bone occurs through a specialized tissue interface called enthesis. The complex and heterogeneous structure of the enthesis is essential to ensure smooth mechanical stress transfer between bone and soft tissues. Following injury, the interface is not regenerated, resulting in high rupture recurrence rates. Tissue engineering is a promising strategy for the regeneration of a functional enthesis. However, the complex structural and cellular composition of the native interface makes enthesis tissue engineering particularly challenging. Thus, it is likely that a combination of biomaterials and cells stimulated with appropriate biochemical and mechanical cues will be needed. The objective of this review is to describe the current state-of-the-art, challenges and future directions in the field of enthesis tissue engineering focusing on four key parameters: (1) scaffold and biomaterials, (2) cells, (3) growth factors and (4) mechanical stimuli. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. A bone-resorption surface-targeting nanoparticle to deliver anti-miR214 for osteoporosis therapy

    PubMed Central

    Zhang, Shufan; Liu, Jiafan; Sun, Yao; Wang, Xiaogang

    2017-01-01

    With increasing fracture risks due to fragility, osteoporosis is a global health problem threatening postmenopausal women. In these patients, osteoclasts play leading roles in bone loss and fracture. How to inhibit osteoclast activity is the key issue for osteoporosis treatment. In recent years, miRNA-based gene therapy through gene regulation has been considered a potential therapeutic method. However, in light of the side effects, the use of therapeutic miRNAs in osteoporosis treatment is still limited by the lack of tissue/cell-specific delivery systems. Here, we developed polyurethane (PU) nanomicelles modified by the acidic peptide Asp8. Our data showed that without overt toxicity or eliciting an immune response, this delivery system encapsulated and selectively deliver miRNAs to OSCAR+ osteoclasts at bone-resorption surface in vivo. With the Asp8-PU delivery system, anti-miR214 was delivered to osteoclasts, and bone microarchitecture and bone mass were improved in ovariectomized osteoporosis mice. Therefore, Asp8-PU could be a useful bone-resorption surface-targeting delivery system for treatment of osteoclast-induced bone diseases and aging-related osteoporosis. PMID:29075114

  10. The role of pleiotrophin in bone repair.

    PubMed

    Lamprou, Margarita; Kaspiris, Angelos; Panagiotopoulos, Elias; Giannoudis, Peter V; Papadimitriou, Evangelia

    2014-12-01

    Bone has an enormous capacity for growth, regeneration, and remodelling, largely due to induction of osteoblasts that are recruited to the site of bone formation. Although the pathways involved have not been fully elucidated, it is well accepted that the immediate environment of the cells is likely to play a role via cell–matrix interactions, mediated by several growth factors. Formation of new blood vessels is also significant and interdependent to bone formation, suggesting that enhancement of angiogenesis could be beneficial during the process of bone repair. Pleiotrophin (PTN), also called osteoblast-specific factor 1, is a heparin-binding angiogenic growth factor, with a well-defined and significant role in both physiological and pathological angiogenesis. In this review we summarise the existing evidence on the role of PTN in bone repair.

  11. Effects of vitamin D binding protein-macrophage activating factor (DBP-MAF) infusion on bone resorption in two osteopetrotic mutations.

    PubMed

    Schneider, G B; Benis, K A; Flay, N W; Ireland, R A; Popoff, S N

    1995-06-01

    Osteopetrosis is a heterogeneous group of bone diseases characterized by an excess accumulation of bone and a variety of immune defects. Osteopetrosis (op) and incisors absent (ia) are two nonallelic mutations in the rat which demonstrated these skeletal defects as a result of reduced bone resorption. Osteopetrotic (op) rats have severe sclerosis as a result of reduced numbers of osteoclasts which are structurally abnormal. The sclerosis in ia rats is not as severe as in op mutants; they have elevated numbers of osteoclasts, but they are also morphologically abnormal, lacking a ruffled border. Both of these mutations have defects in the inflammation-primed activation of macrophages. They demonstrate independent defects in the cascade involved in the conversion of vitamin D binding protein (DBP) to a potent macrophage activating factor (DBP-MAF). Because this factor may also play a role in the pathogenesis of osteoclastic dysfunction, the effects of ex vivo-generated DBP-MAF were evaluated on the skeletal system of these two mutations. Newborn ia and op rats and normal littermate controls were injected with DBP-MAF or vehicle once every 4 days from birth until 2 weeks of age, at which time bone samples were collected to evaluate a number of skeletal parameters. DBP-MAF treated op rats had an increased number of osteoclasts and the majority of them exhibited normal structure. There was also reduced bone volume in the treated op animals and an associated increased cellularity of the marrow spaces. The skeletal sclerosis was also corrected in the ia rats; the bone marrow cavity size was significantly enlarged and the majority of the osteoclasts appeared normal with extensive ruffled borders.

  12. Serum levels, and bone marrow immunohistochemical expression of, vascular endothelial growth factor in patients with chronic myeloproliferative diseases.

    PubMed

    Panteli, Katerina; Bai, Maria; Hatzimichael, Eleftheria; Zagorianakou, Nektaria; Agnantis, Niki John; Bourantas, Konstantinos

    2007-12-01

    Current data suggest that angiogenesis plays a significant role in the pathogenesis and progression of chronic myeloproliferative diseases (cMPDs). In the present study, we evaluated serum levels of vascular endothelial growth factor (VEGF) in 83 patients with cMPDs [myelofibrosis with myeloid metaplasia (MMM, n = 25), essential thrombocythaemia (ET, n = 40), polycythaemia vera (PV, n = 8) and chronic myeloid leukemia (CML, n = 10)] and in 27 healthy individuals. Serum VEGF levels were significantly increased in patients with cMPDs compared to healthy individuals (all p values were < or = 0.05) and were significantly correlated with bone marrow microvessel density (MVD) (p = 0.0013). In addition, the immunohistochemical expression of VEGF protein in bone marrow biopsy specimens were analyzed in 61 patients with cMPDs, (ET, n = 36 and MMM, n = 25) and in 27 healthy individuals. The cellular distribution of VEGF expression was similar in bone marrow specimens of patients and healthy individuals. VEGF protein was detected mainly in erythroid cells, whereas myeloid cells and megakaryocytes exhibited a variable expression of the protein. The percentage of bone marrow VEGF positive cells was positively correlated with serum levels of VEGF (p = 0.001). The results of the present study suggest that, VEGF is a major angiogenetic factor in patients with cMPDs and contributes to the pathogenesis of these diseases.

  13. Elicited soybean (Glycine max) extract effect on improving levels of Ter-119+Cd59+ in a mouse model fed a high fat-fructose diet

    NASA Astrophysics Data System (ADS)

    Safitri, Yunita Diyah; Widyarti, Sri; Rifa'i, Muhaimin

    2017-05-01

    People who have unbalanced lifestyles and habits such as consuming high fat and sugar foods, as well as the lack of physical activity, have an increased risk of obesity and related metabolic diseases. The condition of obesity occurs due to an excess of nutrients which leads to low-grade inflammation. Inflammation induced by obesity causes unstable bone marrow homeostasis which is associated with proliferation and differentiation of Hematopoietic Stem Cells (HSCs). This study aimed to observe the erythroid progenitor (TER-119) and complement regulator (CD59) on bone marrow cells in mouse models fed a high fat-fructose diet (HFFD). This research was conducted by modeling obese mice using high fat and fructose food for 20 weeks, and then treating them with elicited soybean extract (ESE) for four weeks with several doses: low dose (78 mg/kgBB), moderate dose (104 mg/kgBB) and high dose (130 mg/kgBB). Cell TER119+CD59+ expression decreased in the HFFD group compared to the normal group. In the low, moderate and high dose group, TER119+CD59+ expression significantly increased compared to the HFFD group. These results demonstrate that soybean elicited extract can improve the hematopoietic system by increasing TER119+CD59+ expression in a high fat and fructose diet mouse model.

  14. Influence of pregnancy on bone density: a risk factor for osteoporosis? Measurements of the calcaneus by ultrasonometry.

    PubMed

    Kraemer, Bernhard; Schneider, Silke; Rothmund, Ralf; Fehm, Tanja; Wallwiener, Diethelm; Solomayer, Erich-Franz

    2012-04-01

    There are conflicting opinions in the literature about whether pregnancy influences maternal bone density or osteoporosis development. The study aim was to investigate whether there is a significant alteration in maternal bone density during normal pregnancy. Bone mass of 200 pregnant women aged 22-42 years was measured twice with quantitative ultrasonometry (QUS) of the heel (Os calcaneum). The first measurement was performed between the 10th and 22nd week of pregnancy, follow-up of 149 women took place 0-9 days postpartum. A questionnaire focusing on data affecting bone metabolism and bone turnover was handed out at the first visit. Median reduction in speed of sound (SOS) was 11 m/s at follow-up indicating a decline of the stiffness during pregnancy. No significant correlation was found between lactation period and the obtained values for stiffness, SOS, T score and Z score. For broadband ultrasonographic attenuation, there was a statistically significant difference (p < 0.05) between women who had and had not breastfed. Parameters from patients with a family history of osteoporosis (n = 30) compared to patients without did not reveal statistical significance during pregnancy. Glucocorticoid therapy, nicotine consumption, physical exercise and nutrition was not statistically significant (p > 0.05). SOS value of women with a twin pregnancy was different over the study period (p < 0.05). A reduction in bone mass is possible during pregnancy. Routine evaluation of the bone density in all pregnant women does not seem to be justified; however, it is reasonable in women who present with risk factors. These women could be screened with QUS.

  15. Localized bone regeneration around dental implants using recombinant bone morphogenetic protein-2 and platelet-derived growth factor-BB in the canine.

    PubMed

    Thoma, Daniel S; Cha, Jae-Kook; Sapata, Vitor M; Jung, Ronald E; Hüsler, Juerg; Jung, Ui-Won

    2017-11-01

    To test whether or not one of two biological mediators (recombinant human bone morphogenetic protein-2 (rhBMP-2) and recombinant human platelet-derived growth factor (rhPDGF-BB)) is superior to the other and compared with control groups for bone regeneration around implants based on histomorphometrical outcome measures. Box-type defects (10 × 5 × 5 mm) were prepared on the buccal sides of the left and right edentulous ridge in ten mongrel dogs. Implants were placed at each site, the defects either received (i) bovine-derived particulated bone mineral (DBBM) mixed with rhBMP-2 and a collagen membrane (CM) (DBBM/BMP-2), (ii) DBBM mixed with rhPDGF-BB and CM (DBBM/PDGF), (iii) DBBM and CM (DBBM) and (iv) empty control (control). Animals were euthanized post-surgery at 8 weeks and 16 weeks. Histomorphometrical analyses were performed. The mean percentages of regenerated area within total defect area amounted to 56.95% for DBBM/BMP-2, 48.86% for DBBM/PDFG, 33.44% for DBBM and 1.59% for control at 8 weeks, and 26.79% for DBBM/BMP-2, 23.78% for DBBM/PDFG, 30.21% for DBBM and 5.07% for control at 16 weeks with no statistically significant differences between the groups (P > 0.05). The mean amount of regenerated bone was 26.97% for DBBM/BMP-2, 22.02% for DBBM/PDFG, 5.03% for DBBM and 1.25% for control at 8 weeks, and at 16 weeks, these values were lower in the two groups with biological mediators (DBBM/BMP-2 = 13.35%; DBBM/PDGF = 6.96%) and only slightly increased in group DBBM (10.68%) and the control group (4.95%) compared with 8 weeks. The first bone-to-implant contact values on the buccal side were minimal for DBBM/BMP-2 (0.57 mm) and maximal for control (3.72 mm) at 8 weeks. The use of biological mediators (rhBMP-2 and rhPDGF-BB) can increase the amount of bone regeneration at dehiscence-type defects compared with controls at 8 weeks, but not at 16 weeks due to enhanced hard tissue remodeling processes. © 2016 John Wiley & Sons A/S. Published by John

  16. Sanguiin H-6, a constituent of Rubus parvifolius L., inhibits receptor activator of nuclear factor-κB ligand-induced osteoclastogenesis and bone resorption in vitro and prevents tumor necrosis factor-α-induced osteoclast formation in vivo.

    PubMed

    Sakai, Eiko; Aoki, Yuri; Yoshimatsu, Masako; Nishishita, Kazuhisa; Iwatake, Mayumi; Fukuma, Yutaka; Okamoto, Kuniaki; Tanaka, Takashi; Tsukuba, Takayuki

    2016-07-15

    Osteoclasts are multinucleated bone-resorbing cells that differentiate in response to receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL). Enhanced osteoclastogenesis contributes to bone diseases, such as osteoporosis and rheumatoid arthritis. Rubus parvifolius L. is traditionally used as an herbal medicine for rheumatism; however, its detailed chemical composition and the molecular mechanisms responsible for its biological action have not been elucidated. To investigate the mechanisms by which R. parvifolius L. extract and its major constituent sanguiin H-6, inhibit osteoclastogenesis and bone resorption. Cell proliferation, cell differentiation, and bone resorption were detected in vitro. Inhibition of signaling pathways, marker protein expression, and protein nuclear translocation were evaluated by western blot analysis. Tumor necrosis factor-α (TNF-α)-mediated osteoclastogenesis was examined in vivo. R. parvifolius L. extract inhibited the bone-resorption activity of osteoclasts. In addition, sanguiin H-6 markedly inhibited RANKL-induced osteoclast differentiation and bone resorption, reduced reactive oxygen species production, and inhibited the phosphorylation of inhibitor of NF-κB alpha (IκBα) and p38 mitogen-activated protein kinase. Sanguiin H-6 also decreased the protein levels of nuclear factor of activated T cells cytoplasmic-1 (NFATc1), cathepsin K, and c-Src. Moreover, sanguiin H-6 inhibited the nuclear translocation of NFATc1, c-Fos, and NF-κB in vitro, as well as TNF-α-mediated osteoclastogenesis in vivo. Our data revealed that R. parvifolius L. has anti-bone resorption activity and suggest that its constituent, sanguiin H-6, can potentially be used for the prevention and treatment of bone diseases associated with excessive osteoclast formation and subsequent bone destruction. Copyright © 2016 Elsevier GmbH. All rights reserved.

  17. Bone disease in thyrotoxicosis

    PubMed Central

    Reddy, P. Amaresh; Harinarayan, C. V.; Sachan, Alok; Suresh, V.; Rajagopal, G.

    2012-01-01

    Thyrotoxicosis, a clinical syndrome characterized by manifestations of excess thyroid hormone, is one of the commonly-recognised conditions of the thyroid gland. Thyrotoxicosis causes acceleration of bone remodelling and though it is one of the known risk factors for osteoporosis, the metabolic effects of thyroxine on bone are not well discussed. Studies show that thyroid hormones have effects on bone, both in vitro and in vivo. Treatment of thyrotoxicosis leads to reversal of bone loss and metabolic alterations, and decreases the fracture risk. There are limited studies in India as to whether these changes are fully reversible. In this review we discuss about the effects of thyrotoxicosis (endogenous and exogenous) on bone and mineral metabolism, effects of subclinical thyrotoxicosis on bone and mineral metabolism and effects of various forms of treatment in improving the bone mineral density in thyrotoxicosis. PMID:22561612

  18. Bone disease in thyrotoxicosis.

    PubMed

    Reddy, P Amaresh; Harinarayan, C V; Sachan, Alok; Suresh, V; Rajagopal, G

    2012-03-01

    Thyrotoxicosis, a clinical syndrome characterized by manifestations of excess thyroid hormone, is one of the commonly-recognised conditions of the thyroid gland. Thyrotoxicosis causes acceleration of bone remodelling and though it is one of the known risk factors for osteoporosis, the metabolic effects of thyroxine on bone are not well discussed. Studies show that thyroid hormones have effects on bone, both in vitro and in vivo. Treatment of thyrotoxicosis leads to reversal of bone loss and metabolic alterations, and decreases the fracture risk. There are limited studies in India as to whether these changes are fully reversible. In this review we discuss about the effects of thyrotoxicosis (endogenous and exogenous) on bone and mineral metabolism, effects of subclinical thyrotoxicosis on bone and mineral metabolism and effects of various forms of treatment in improving the bone mineral density in thyrotoxicosis.

  19. [Development, physiology, and cell activity of bone].

    PubMed

    de Baat, P; Heijboer, M P; de Baat, C

    2005-07-01

    Bones are of crucial importance for the human body, providing skeletal support, serving as a home for the formation of haematopoietic cells, and reservoiring calcium and phosphate. Long bones develop by endochondral ossification. Flat bones develop by intramembranous ossification. Bone tissue contains hydroxyapatite and various extracellular proteins, producing bone matrix. Two biological mechanisms, determining the strength of bone, are modelling and remodelling. Modelling can change bone shape and size through bone formation by osteoblasts at some sites and through bone destruction by osteoclasts at other sites. Remodelling is bone turnover, also performed by osteoclasts and osteoblasts. The processes of modelling and remodelling are induced by mechanical loads, predominantly muscle loads. Osteoblasts develop from mesenchymal stem cells. Many stimulating factors are known to activate the differentiation. Mature osteoblasts synthesize bone matrix and may further differentiate into osteocytes. Osteocytes maintain structural bone integrity and allow bone to adapt to any mechanical and chemical stimulus. Osteoclasts derive from haematopoietic stem cells. A number of transcription and growth factors have been identified essential for osteoclast differentiation and function. Finally, there is a complex interaction between osteoblasts and osteoclasts. Bone destruction starts by attachment of osteoclasts to the bone surface. Following this, osteoclasts undergo specific morphological changes. The process of bone destruction starts by acid dissolution of hydroxyapatite. After that osteoclasts start to destruct the organic matrix.

  20. Gender-specific risk factors for low bone mineral density in patients taking antipsychotics for psychosis.

    PubMed

    Jhon, Min; Yoo, Taeyoung; Lee, Ju-Yeon; Kim, Seon-Young; Kim, Jae-Min; Shin, Il-Seon; Williams, Lana; Berk, Michael; Yoon, Jin-Sang; Kim, Sung-Wan

    2018-01-01

    This study examined clinical and gender-specific risk factors for low bone mineral density (BMD) in adult patients with psychotic disorders. The study included 285 community-dwelling patients with psychotic disorders. Dual-energy X-ray absorptiometry was used to measure BMD. Clinical characteristics associated with low BMD were identified with logistic regression analysis in total population and each gender. Fifty-eight (20.4%) subjects had low BMD. Low BMD was more common in men and in patients with low body mass indices (BMIs), as well as in those with shorter treatment durations, those on Medicaid, and patients using serotonergic antidepressants. Logistic regression analysis revealed that low BMD was negatively associated with BMI and treatment duration and positively with gender (male) and serotonergic antidepressants use in the overall population. In men, low BMD was associated with treatment duration and BMI; in women, low BMD was associated with BMI, prolactin level, vitamin D, and serotonergic antidepressant use. Managing the risk factors associated with low BMD among patients with psychotic disorder should be done gender-specifically. Psychotropic agents should be prescribed mindful of their effects on bone, as use of these medications is a modifiable risk factor for osteoporosis in women with psychotic disorders. Copyright © 2018 John Wiley & Sons, Ltd.

  1. [Histocompatibility of nano-hydroxyapatite/poly-co-glycolic acid tissue engineering bone modified by mesenchymal stem cells with vascular endothelial frowth factor].

    PubMed

    Zhang, Minglei; Wang, Dapeng; Yin, Ruofeng

    2015-10-06

    To explorec Histocompatibility of nano-hydroxyapatite/poly-co-glycolic acid tissue engineering bone modified by mesenchymal stem cells with vascular endothelial frowth factor transinfected. Rat bone marrow mesenchymal stem cells (BMSCs) was separated, using BMSCs as target cells, and then vascular endothelial growth factor (VEGF) gene was transfected. Composite bone marrow mesenchymal stem cells and cells transfected with nano-hydroxyapatite (HA)/polylactic-co-glycolic acid (PLGA). The composition of cell and scaffold was observed. The blank plasmid transfection was 39.1%, 40.1% in VEGF group. The cell adhesion and growth was found on the scaffold pore wall after 5 days, and the number of adherent cells in the nano-HA/PLGA composite scaffold material basically had no significant difference in both. Although the nano-HA/PLGA scaffold material is still not fully meet the requirements of the matrix material for bone tissue engineering, but good biocompatibility, structure is its rich microporous satisfaction in material mechanics, toughening, enhanced obviously. Composition scaffold with BMSCs transfected by VEGF plasmid, the ability of angiogenesis is promoted.

  2. Reflecting on the use of photo elicitation with children.

    PubMed

    Whiting, Lisa S

    2015-01-01

    To reflect on the use of photo elicitation as a data collection method when conducting research with primary school age children (nine to 11 years). There is recognition that children feel an affinity with the visual medium; as a result, visual methods can be useful when conducting research with children. Photo elicitation is one such method, but there has been little discussion of its use with primary school children within a health context. This paper considers the main issues that researchers should consider. This paper draws on a research study conducted by the author that used an ethnographic approach and photo elicitation to identify the assets underpinning children's wellbeing. A reflective discussion is used to highlight issues relating to the use of photo elicitation to collect data from primary school children. Photo elicitation is not without its challenges: it creates additional ethical considerations, and can be more time-consuming and expensive. However, children value the opportunity to be involved in research and have their opinions sought, and photo elicitation provides a method of collecting data that is appropriate for children's developmental and cognitive maturational stages. Photo elicitation can be a positive experience for children, and one that is not only fun and engaging, but that is also empowering and valuing of their contributions. Research that uses photo elicitation needs to be carefully planned to ensure that the study is supported appropriately. The visual process can offer a unique insight into children's lives that allows health professionals to deepen their understanding of children's experiences.

  3. The Digital Astronaut Project Bone Remodeling Model

    NASA Technical Reports Server (NTRS)

    Pennline, J. A.; Mulugeta, L.; Lewandowski, B. E.; Thompson, W. K.; Sibonga, J. D.

    2013-01-01

    One of the main objectives is to provide a tool to help HHC address Bone Gap Osteo 4: We don't know the contribution of each risk factor on bone loss and recovery of bone strength and which factors are the best targets for countermeasure application; and Osteo7: We need to identify options for mitigation of early onset osteoporosis before, during, and after spaceflight.

  4. How tough is bone? Application of elastic-plastic fracture mechanics to bone.

    PubMed

    Yan, Jiahau; Mecholsky, John J; Clifton, Kari B

    2007-02-01

    Bone, with a hierarchical structure that spans from the nano-scale to the macro-scale and a composite design composed of nano-sized mineral crystals embedded in an organic matrix, has been shown to have several toughening mechanisms that increases its toughness. These mechanisms can stop, slow, or deflect crack propagation and cause bone to have a moderate amount of apparent plastic deformation before fracture. In addition, bone contains a high volumetric percentage of organics and water that makes it behave nonlinearly before fracture. Many researchers used strength or critical stress intensity factor (fracture toughness) to characterize the mechanical property of bone. However, these parameters do not account for the energy spent in plastic deformation before bone fracture. To accurately describe the mechanical characteristics of bone, we applied elastic-plastic fracture mechanics to study bone's fracture toughness. The J integral, a parameter that estimates both the energies consumed in the elastic and plastic deformations, was used to quantify the total energy spent before bone fracture. Twenty cortical bone specimens were cut from the mid-diaphysis of bovine femurs. Ten of them were prepared to undergo transverse fracture and the other 10 were prepared to undergo longitudinal fracture. The specimens were prepared following the apparatus suggested in ASTM E1820 and tested in distilled water at 37 degrees C. The average J integral of the transverse-fractured specimens was found to be 6.6 kPa m, which is 187% greater than that of longitudinal-fractured specimens (2.3 kPa m). The energy spent in the plastic deformation of the longitudinal-fractured and transverse-fractured bovine specimens was found to be 3.6-4.1 times the energy spent in the elastic deformation. This study shows that the toughness of bone estimated using the J integral is much greater than the toughness measured using the critical stress intensity factor. We suggest that the J integral method is

  5. Clinical Features and Risk Factors of Skeletal-Related Events in Genitourinary Cancer Patients with Bone Metastasis: A Retrospective Analysis of Prostate Cancer, Renal Cell Carcinoma, and Urothelial Carcinoma.

    PubMed

    Owari, Takuya; Miyake, Makito; Nakai, Yasushi; Morizawa, Yosuke; Itami, Yoshitaka; Hori, Shunta; Anai, Satoshi; Tanaka, Nobumichi; Fujimoto, Kiyohide

    2018-06-06

    The objective of the present study was to report the incidence of skeletal-related events (SREs) and identify risk factors for SREs in patients with genitourinary cancer with newly diagnosed bone metastasis. This retrospective study included 180 patients with bone metastasis from prostate cancer (PCa; n = 111), renal cell carcinoma (RCC; n = 43), and urothelial carcinoma (UC; n = 26). Clinical factors at the time of diagnosis of bone metastasis were evaluated with Cox proportional hazards regression analysis to identify independent risk factors for SREs. During follow-up, 29 (26%) patients with PCa, 30 (70%) with RCC, and 15 (58%) with UC developed SREs. Treatment with bone-modifying agents (BMAs) before the development of SREs and within 6 months from the diagnosis of bone metastasis significantly delayed the time to first SRE as compared to nonuse of BMAs. Multivariate analysis identified type of primary cancer (PCa vs. RCC, PCa vs. UC), performance status, and bone pain as significant independent predictive risk factors for SREs. Treatment with BMAs significantly delayed the development of first SREs. The identified predictors of SREs might be useful to select patients who would benefit most from early treatment with BMAs. © 2018 S. Karger AG, Basel.

  6. Cannabis cue-elicited craving and the reward neurocircuitry.

    PubMed

    Filbey, Francesca M; DeWitt, Samuel J

    2012-07-02

    Cue-elicited craving or the intense desire to consume a substance following exposure to a conditioned drug cue is one of the primary behavioral symptoms of substance use disorders (SUDs). While the concept of cue-elicited craving is well characterized in alcohol and other substances of abuse, only recently has it been described in cannabis. A review of the extant literature has established that cue-elicited craving is a powerful reinforcer that contributes to drug-seeking for cannabis. Further, emergent research has begun to identify the neurobiological systems and neural mechanisms associated with this behavior. What research shows is that while theories of THC's effects on the dopaminergic-reward system remain divergent, cannabis cues elicit neural activation in the brain's reward network. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. The osteo-inductive activity of bone-marrow-derived mononuclear cells resides within the CD14+ population and is independent of the CD34+ population.

    PubMed

    Henrich, D; Seebach, C; Verboket, R; Schaible, A; Marzi, I; Bonig, H

    2018-03-06

    Bone marrow mononuclear cells (BMC) seeded on a scaffold of β-tricalcium phosphate (β-TCP) promote bone healing in a critical-size femur defect model. Being BMC a mixed population of predominantly mature haematopoietic cells, which cell type(s) is(are) instrumental for healing remains elusive. Although clinical therapies using BMC are often dubbed as stem cell therapies, whether stem cells are relevant for the therapeutic effects is unclear and, at least in the context of bone repair, seems dubious. Instead, in light of the critical contribution of monocytes and macrophages to tissue development, homeostasis and injury repair, in the current study it was hypothesised that BMC-mediated bone healing derived from the stem cell population. To test this hypothesis, bone remodelling studies were performed in an established athymic rats critical-size femoral defect model, with β-TCP scaffolds augmented with complete BMC or BMC immunomagnetically depleted of stem cells (CD34+) or monocytes/macrophages (CD14+). Bone healing was assessed 8 weeks after transplantation. Compared to BMC-augmented controls, when CD14- BMC, but not CD34- BMC were transplanted into the bone defect, femora possessed dramatically decreased biomechanical stability and new bone formation was markedly reduced, as measured by histology. The degree of vascularisation did not differ between the two groups. It was concluded that the monocyte fraction within the BMC provided critical osteo-inductive cues during fracture healing. Which factors were responsible at the molecular levels remained elusive. However, this study marked a significant progress towards elucidating the mechanisms by which BMC elicit their therapeutic effects, at least in bone regeneration.

  8. Assessing Measurement Invariance for Spanish Sentence Repetition and Morphology Elicitation Tasks.

    PubMed

    Kapantzoglou, Maria; Thompson, Marilyn S; Gray, Shelley; Restrepo, M Adelaida

    2016-04-01

    The purpose of this study was to evaluate evidence supporting the construct validity of two grammatical tasks (sentence repetition, morphology elicitation) included in the Spanish Screener for Language Impairment in Children (Restrepo, Gorin, & Gray, 2013). We evaluated if the tasks measured the targeted grammatical skills in the same way across predominantly Spanish-speaking children with typical language development and those with primary language impairment. A multiple-group, confirmatory factor analytic approach was applied to examine factorial invariance in a sample of 307 predominantly Spanish-speaking children (177 with typical language development; 130 with primary language impairment). The 2 newly developed grammatical tasks were modeled as measures in a unidimensional confirmatory factor analytic model along with 3 well-established grammatical measures from the Clinical Evaluation of Language Fundamentals-Fourth Edition, Spanish (Wiig, Semel, & Secord, 2006). Results suggest that both new tasks measured the construct of grammatical skills for both language-ability groups in an equivalent manner. There was no evidence of bias related to children's language status for the Spanish Screener for Language Impairment in Children Sentence Repetition or Morphology Elicitation tasks. Results provide support for the validity of the new tasks as measures of grammatical skills.

  9. Nanocomposites for bone tissue regeneration.

    PubMed

    Sahoo, Nanda Gopal; Pan, Yong Zheng; Li, Lin; He, Chao Bin

    2013-04-01

    Natural bone tissue possesses a nanocomposite structure that provides appropriate physical and biological properties. For bone tissue regeneration, it is crucial for the biomaterial to mimic living bone tissue. Since no single type of material is able to mimic the composition, structure and properties of native bone, nanocomposites are the best choice for bone tissue regeneration as they can provide the appropriate matrix environment, integrate desirable biological properties, and provide controlled, sequential delivery of multiple growth factors for the different stages of bone tissue regeneration. This article reviews the composition, structure and properties of advanced nanocomposites for bone tissue regeneration. It covers aspects of interest such as the biomimetic synthesis of bone-like nanocomposites, guided bone regeneration from inert biomaterials and bioactive nanocomposites, and nanocomposite scaffolds for bone tissue regeneration. The design, fabrication, and in vitro and in vivo characterization of such nanocomposites are reviewed.

  10. Associations of insulin-like growth factor-I and insulin-like growth factor binding protein-3 with bone quality in the general adult population.

    PubMed

    Böker, J; Völzke, H; Nauck, M; Hannemann, A; Friedrich, N

    2018-03-01

    Growth hormone (GH) and its main mediator, insulin-like growth factor-I (IGF-I), play a significant role in bone metabolism. The relations between IGF-I and bone mineral density (BMD) or osteoporosis have been assessed in previous studies but whether the associations are sex-specific remains uncertain. Moreover, only a few studies examined bone quality assessed by quantitative ultrasound (QUS). We aimed to investigate these associations in the general population of north-east Germany. Data from 1759 men and 1784 women who participated in the baseline examination of the Study of Health in Pomerania (SHIP)-Trend were used. IGF-I and IGF-binding protein-3 (IGFBP-3) concentrations were measured on the IDS-iSYS multidiscipline automated analyser (Immunodiagnostic Systems Limited). QUS measurements were performed at the heel (Achilles InSight, GE Healthcare). Sex-specific linear and multinomial logistic regression models adjusted for potential confounders were calculated. Linear regression analyses revealed significant positive associations between IGF-I and IGF-I/IGFBP-3 ratio, a marker for free IGF-I, with all QUS parameters in men. Among women, we found an inverse association between IGF-I and the QUS-based fracture risk but no association with any other QUS parameter. There was no association between IGFBP-3 and the QUS-based fracture risk. Our data suggest an important role of IGF-I on bone quality in men. The observed association of IGF-I with the QUS-based stiffness index and QUS-based fracture risk in this study might animate clinicians to refer patients with low IGF-I levels, particularly men, to a further evaluation of risk factors for osteoporosis and a detailed examination of the skeletal system. © 2018 John Wiley & Sons Ltd.

  11. Hake fish bone as a calcium source for efficient bone mineralization.

    PubMed

    Flammini, Lisa; Martuzzi, Francesca; Vivo, Valentina; Ghirri, Alessia; Salomi, Enrico; Bignetti, Enrico; Barocelli, Elisabetta

    2016-01-01

    Calcium is recognized as an essential nutritional factor for bone health. An adequate intake is important to achieve or maintain optimal bone mass in particular during growth and old age. The aim of the present study was to evaluate the efficiency of hake fish bone (HBF) as a calcium source for bone mineralization: in vitro on osteosarcoma SaOS-2 cells, cultured in Ca-free osteogenic medium (OM) and in vivo on young growing rats fed a low-calcium diet. Lithotame (L), a Ca supplement derived from Lithothamnium calcareum, was used as control. In vitro experiments showed that HBF supplementation provided bone mineralization similar to standard OM, whereas L supplementation showed lower activity. In vivo low-Ca HBF-added and L-added diet similarly affected bone deposition. Physico-chemical parameters concerning bone mineralization, such as femur breaking force, tibia density and calcium/phosphorus mineral content, had beneficial effects from both Ca supplementations, in the absence of any evident adverse effect. We conclude HBF derived from by-product from the fish industry is a good calcium supplier with comparable efficacy to L.

  12. Psychosocial factors underlying the mother's decision to continue exclusive breastfeeding for 6 months: an elicitation study.

    PubMed

    Bai, Y K; Middlestadt, S E; Joanne Peng, C-Y; Fly, A D

    2009-04-01

    Despite numerous benefits of exclusive breastfeeding (EBF) for infants and mothers, a significant decrease in the EBF rate in the USA at six months compared to the rate at birth suggests that reasons for initiation and continuation of EBF may differ. The purpose of this qualitative study was to explore psychosocial factors underlying the continued EBF behaviour for six months, in order to identify salient belief structures according to the theory of planned behaviour. Participants were recruited from central Indiana in the USA. They were asked to respond to an open-ended questionnaire designed to elicit positive/negative consequences, approving/disapproving social referents, and easy/difficult circumstances in continuing EBF for six months. Responses were translated into behavioural, normative, and control beliefs of the theory. Findings suggest that respondents (1) value emotional and health benefits of continued EBF for six months; (2) feel the approval from family and friends but disapproval from the society; (3) view health professional's position as positive and negative. Breastfeeding educators can more likely improve the EBF duration by addressing these salient beliefs. Identified beliefs provide a basis for the development of a quantitative instrument to further study the EBF behaviour.

  13. Biomaterials and bone mechanotransduction

    NASA Technical Reports Server (NTRS)

    Sikavitsas, V. I.; Temenoff, J. S.; Mikos, A. G.; McIntire, L. V. (Principal Investigator)

    2001-01-01

    Bone is an extremely complex tissue that provides many essential functions in the body. Bone tissue engineering holds great promise in providing strategies that will result in complete regeneration of bone and restoration of its function. Currently, such strategies include the transplantation of highly porous scaffolds seeded with cells. Prior to transplantation the seeded cells are cultured in vitro in order for the cells to proliferate, differentiate and generate extracellular matrix. Factors that can affect cellular function include the cell-biomaterial interaction, as well as the biochemical and the mechanical environment. To optimize culture conditions, good understanding of these parameters is necessary. The new developments in bone biology, bone cell mechanotransduction, and cell-surface interactions are reviewed here to demonstrate that bone mechanotransduction is strongly influenced by the biomaterial properties.

  14. Nerve growth factor and associated nerve sprouting contribute to local mechanical hyperalgesia in a rat model of bone injury.

    PubMed

    Yasui, M; Shiraishi, Y; Ozaki, N; Hayashi, K; Hori, K; Ichiyanagi, M; Sugiura, Y

    2012-08-01

    To clarify the mechanism of tenderness after bone injury, we investigated changes in the withdrawal threshold to mechanical stimuli, nerve distribution and nerve growth factor (NGF)-expression in a rat model of bone injury without immobilization for bone injury healing. Rats were divided into three groups as follows: (1) rats incised in the skin and periosteum, followed by drilling a hole in the tibia [bone lesion group (BLG)]; (2) those incised in the skin and periosteum without bone drilling [periosteum lesion group (PLG)]; and (3) those incised in the skin [skin lesion group (SLG)]. Mechanical hyperalgesia continued for 28 days at a lesion in the BLG, 21 days in PLG and 5 days in SLG after treatments, respectively. Endochondral ossification was observed on days 5-28 in BLG and on days 5-21 in PLG. Nerve growth appeared in deep connective tissue (DCT) at day 28 in BLG. Nerve fibres increased in both cutaneous tissue and DCT at day 7 in PLG, but they were not found at day 28. Mechanical hyperalgesia accompanied with endochondral ossification and nerve fibres increasing at the lesion in both BLG and PLG. NGF was expressed in bone-regenerating cells during the bone injury healing. Anti-NGF and trk inhibitor K252a inhibited hyperalgesia in the different time course. This study shows that localized tenderness coincides with the bone healing and involves NGF expression and nerve sprouting after bone injury. The findings present underlying mechanisms and provide pathophysiological relevance of local tenderness to determination of bone fracture and its healing. © 2011 European Federation of International Association for the Study of Pain Chapters.

  15. Cue-elicited craving for food: a fresh approach to the study of binge eating.

    PubMed

    Sobik, Laura; Hutchison, Kent; Craighead, Linda

    2005-06-01

    Recent research has indicated that craving for food can be elicited by exposure to food cues, suggesting that exposure to food cues may represent a useful experimental paradigm to investigate mechanisms related to binge eating. The first objective of the present research was to replicate previous reports that exposure to food cues elicits craving for food. In addition, this investigation was designed to extend the extant literature by testing the effects of 'priming' portions of food, by examining the association between reactivity to food cues and indicators of binge eating, and to examine the role of a putative genetic factor previously found to be associated with cue-elicited craving for alcohol and tobacco. In Study 1, 48 individuals completed measures of craving and mood after exposure to control cues, after exposure to food cues, and after consuming each of three small portions of food. In Study 2, 31 individuals with subclinical symptoms of binge eating completed the same procedures. The results suggested that food cues reliably elicited craving, increased attention to the cues, and decreased positive affect in both samples, although reactivity was greater among the sample with greater eating pathology. Correlational analyses suggested that reactivity to food cues was correlated with binge eating and body mass index among women but not men. Results also suggest that the DRD4 VNTR polymorphism influences cue-elicited craving for food, although the influence of the DRD4 may depend on the population under study.

  16. Associations among endocrine, inflammatory, and bone markers, body composition and weight loss induced bone loss.

    PubMed

    Labouesse, Marie A; Gertz, Erik R; Piccolo, Brian D; Souza, Elaine C; Schuster, Gertrud U; Witbracht, Megan G; Woodhouse, Leslie R; Adams, Sean H; Keim, Nancy L; Van Loan, Marta D

    2014-07-01

    Weight loss reduces co-morbidities of obesity, but decreases bone mass. Our aims were to (1) determine if adequate dairy intake attenuates weight loss-induced bone loss; (2) evaluate the associations of endocrine, inflammatory and bone markers, anthropometric and other parameters to bone mineral density and content (BMD, BMC) pre- and post-weight loss; and (3) model the contribution of these variables to post weight-loss BMD and BMC. Overweight/obese women (BMI: 28-37 kg/m2) were enrolled in an energy reduced (-500 kcal/d; -2092 kJ/d) diet with adequate dairy (AD: 3-4 servings/d; n=25, 32.2±8.8 years) or low dairy (LD: ≤1 serving/d; n=26, 31.7±8.4 years). BMD, BMC and body composition were measured by DXA. Bone markers (CTX, PYD, BAP, OC), endocrine (PTH, vitamin D, leptin, adiponectin, ghrelin, amylin, insulin, GLP-1, PAI-1, HOMA) and inflammatory markers (CRP, IL1-β, IL-6, IL-8, TNF-α, cortisol) were measured in serum or plasma. PA was assessed by accelerometry. Following weight loss, AD intake resulted in significantly greater (p=0.004) lumbar spine BMD and serum osteocalcin (p=0.004) concentration compared to LD. Pre- and post-body fat was negatively associated with hip and lumbar spine BMC (r=-0.28, p=0.04 to -0.45, p=0.001). Of note were the significant negative associations among bone markers and IL-1β, TNFα and CRP ranging from r = -0.29 (p=0.04) to r = -0.34 (p=0.01); magnitude of associations did not change with weight loss. Adiponectin was negatively related to change in osteocalcin. Factor analysis resulted in 8 pre- and post-weight loss factors. Pre-weight loss factors accounted for 13.7% of the total variance in pre-weight loss hip BMD; post-weight loss factors explained 19.6% of the total variance in post-weight loss hip BMD. None of the factors contributed to the variance in lumbar spine BMD. AD during weight loss resulted in higher lumbar spine BMD and osteocalcin compared to LD. Significant negative associations were observed between bone

  17. Coating with a Modular Bone Morphogenetic Peptide Promotes Healing of a Bone-Implant Gap in an Ovine Model

    PubMed Central

    Lu, Yan; Lee, Jae Sung; Nemke, Brett; Graf, Ben K.; Royalty, Kevin; Illgen, Richard; Vanderby, Ray; Markel, Mark D.; Murphy, William L.

    2012-01-01

    Despite the potential for growth factor delivery strategies to promote orthopedic implant healing, there is a need for growth factor delivery methods that are controllable and amenable to clinical translation. We have developed a modular bone growth factor, herein termed “modular bone morphogenetic peptide (mBMP)”, which was designed to efficiently bind to the surface of orthopedic implants and also stimulate new bone formation. The purpose of this study was to coat a hydroxyapatite-titanium implant with mBMP and evaluate bone healing across a bone-implant gap in the sheep femoral condyle. The mBMP molecules efficiently bound to a hydroxyapatite-titanium implant and 64% of the initially bound mBMP molecules were released in a sustained manner over 28 days. The results demonstrated that the mBMP-coated implant group had significantly more mineralized bone filling in the implant-bone gap than the control group in C-arm computed tomography (DynaCT) scanning (25% more), histological (35% more) and microradiographic images (50% more). Push-out stiffness of the mBMP group was nearly 40% greater than that of control group whereas peak force did not show a significant difference. The results of this study demonstrated that mBMP coated on a hydroxyapatite-titanium implant stimulates new bone formation and may be useful to improve implant fixation in total joint arthroplasty applications. PMID:23185610

  18. Release of growth factors and the effect of age, sex, and severity of injury after long bone fracture. A preliminary report.

    PubMed

    Pountos, Ippokratis; Georgouli, Theodora; Henshaw, Karen; Bird, Howard; Giannoudis, Peter V

    2013-02-01

    The systemic response after fracture is regulated by a complex mechanism involving numerous growth factors. In this study, we analyzed the kinetics of key growth factors following lower-limb long bone fracture. Human serum was isolated from 15 patients suffering from lower-limb long bone fracture (tibia/femur) requiring surgical fixation. The levels of platelet-derived growth factor (PDGF-BB), vascular edothelial growth factor (VEGF), insulin growth factor-I (IGF-I), and transforming growth factor β1 (TGF-β1) were assayed by colorimetric ELISA at different time points during the first week after fracture. 10 healthy volunteers made up the control group of the study. Serum levels of the growth factors measured were compared to age, sex, and injury severity score. We found that there was a decline in the levels of PDGF-BB, IGF-I and TGF-β1 during the first 3 days after fracture. However, VEGF levels remained unchanged. The levels of all the growth factors studied then increased, with the highest concentrations noted at day 7 after surgery. No correlation was found between circulating levels of growth factors and age, injury severity score (ISS), blood loss, or fluid administration. There are systemic mitogenic and osteogenic signals after fracture. Important growth factors are released into the peripheral circulation, but early after surgery it appears that serum levels of key growth factors fall. By 7 days postoperatively, the levels had increased considerably. Our findings should be considered in cases where autologous serum is used for ex vivo expansion of mesenchymal stem cells. There should be further evaluation of the use of these molecules as biomarkers of bone union.

  19. Remodeling in bone without osteocytes: Billfish challenge bone structure–function paradigms

    PubMed Central

    Atkins, Ayelet; Dean, Mason N.; Habegger, Maria Laura; Motta, Phillip J.; Ofer, Lior; Repp, Felix; Shipov, Anna; Weiner, Steve; Currey, John D.; Shahar, Ron

    2014-01-01

    A remarkable property of tetrapod bone is its ability to detect and remodel areas where damage has accumulated through prolonged use. This process, believed vital to the long-term health of bone, is considered to be initiated and orchestrated by osteocytes, cells within the bone matrix. It is therefore surprising that most extant fishes (neoteleosts) lack osteocytes, suggesting their bones are not constantly repaired, although many species exhibit long lives and high activity levels, factors that should induce considerable fatigue damage with time. Here, we show evidence for active and intense remodeling occurring in the anosteocytic, elongated rostral bones of billfishes (e.g., swordfish, marlins). Despite lacking osteocytes, this tissue exhibits a striking resemblance to the mature bone of large mammals, bearing structural features (overlapping secondary osteons) indicating intensive tissue repair, particularly in areas where high loads are expected. Billfish osteons are an order of magnitude smaller in diameter than mammalian osteons, however, implying that the nature of damage in this bone may be different. Whereas billfish bone material is as stiff as mammalian bone (unlike the bone of other fishes), it is able to withstand much greater strains (relative deformations) before failing. Our data show that fish bone can exhibit far more complex structure and physiology than previously known, and is apparently capable of localized repair even without the osteocytes believed essential for this process. These findings challenge the unique and primary role of osteocytes in bone remodeling, a basic tenet of bone biology, raising the possibility of an alternative mechanism driving this process. PMID:25331870

  20. Application and Evaluation of an Expert Judgment Elicitation Procedure for Correlations.

    PubMed

    Zondervan-Zwijnenburg, Mariëlle; van de Schoot-Hubeek, Wenneke; Lek, Kimberley; Hoijtink, Herbert; van de Schoot, Rens

    2017-01-01

    The purpose of the current study was to apply and evaluate a procedure to elicit expert judgments about correlations, and to update this information with empirical data. The result is a face-to-face group elicitation procedure with as its central element a trial roulette question that elicits experts' judgments expressed as distributions. During the elicitation procedure, a concordance probability question was used to provide feedback to the experts on their judgments. We evaluated the elicitation procedure in terms of validity and reliability by means of an application with a small sample of experts. Validity means that the elicited distributions accurately represent the experts' judgments. Reliability concerns the consistency of the elicited judgments over time. Four behavioral scientists provided their judgments with respect to the correlation between cognitive potential and academic performance for two separate populations enrolled at a specific school in the Netherlands that provides special education to youth with severe behavioral problems: youth with autism spectrum disorder (ASD), and youth with diagnoses other than ASD. Measures of face-validity, feasibility, convergent validity, coherence, and intra-rater reliability showed promising results. Furthermore, the current study illustrates the use of the elicitation procedure and elicited distributions in a social science application. The elicited distributions were used as a prior for the correlation, and updated with data for both populations collected at the school of interest. The current study shows that the newly developed elicitation procedure combining the trial roulette method with the elicitation of correlations is a promising tool, and that the results of the procedure are useful as prior information in a Bayesian analysis.

  1. Bone Disease in Axial Spondyloarthritis.

    PubMed

    Van Mechelen, Margot; Gulino, Giulia Rossana; de Vlam, Kurt; Lories, Rik

    2018-05-01

    Axial spondyloarthritis is a chronic inflammatory skeletal disorder with an important burden of disease, affecting the spine and sacroiliac joints and typically presenting in young adults. Ankylosing spondylitis, diagnosed by the presence of structural changes to the skeleton, is the prototype of this disease group. Bone disease in axial spondyloarthritis is a complex phenomenon with the coexistence of bone loss and new bone formation, both contributing to the morbidity of the disease, in addition to pain caused by inflammation. The skeletal structural changes respectively lead to increased fracture risk and to permanent disability caused by ankylosis of the sacroiliac joints and the spine. The mechanism of this new bone formation leading to ankylosis is insufficiently known. The process appears to originate from entheses, specialized structures that provide a transition zone in which tendon and ligaments insert into the underlying bone. Growth factor signaling pathways such as bone morphogenetic proteins, Wnts, and Hedgehogs have been identified as molecular drivers of new bone formation, but the relationship between inflammation and activation of these pathways remains debated. Long-standing control of inflammation appears necessary to avoid ankylosis. Recent evidence and concepts suggest an important role for biomechanical factors in both the onset and progression of the disease. With regard to new bone formation, these processes can be understood as ectopic repair responses secondary to inflammation-induced bone loss and instability. In this review, we discuss the clinical implications of the skeletal changes as well as the underlying molecular mechanisms, the relation between inflammation and new bone formation, and the potential role of biomechanical stress.

  2. Bone's mechanostat: a 2003 update.

    PubMed

    Frost, Harold M

    2003-12-01

    The still-evolving mechanostat hypothesis for bones inserts tissue-level realities into the former knowledge gap between bone's organ-level and cell-level realities. It concerns load-bearing bones in postnatal free-living bony vertebrates, physiologic bone loading, and how bones adapt their strength to the mechanical loads on them. Voluntary mechanical usage determines most of the postnatal strength of healthy bones in ways that minimize nontraumatic fractures and create a bone-strength safety factor. The mechanostat hypothesis predicts 32 things that occur, including the gross anatomical bone abnormalities in osteogenesis imperfecta; it distinguishes postnatal situations from baseline conditions at birth; it distinguishes bones that carry typical voluntary loads from bones that have other chief functions; and it distinguishes traumatic from nontraumatic fractures. It provides functional definitions of mechanical bone competence, bone quality, osteopenias, and osteoporoses. It includes permissive hormonal and other effects on bones, a marrow mediator mechanism, some limitations of clinical densitometry, a cause of bone "mass" plateaus during treatment, an "adaptational lag" in some children, and some vibration effects on bones. The mechanostat hypothesis may have analogs in nonosseous skeletal organs as well. Copyright 2003 Wiley-Liss, Inc.

  3. Role of TGF-β in breast cancer bone metastases

    PubMed Central

    Chiechi, Antonella; Waning, David L.; Stayrook, Keith R.; Buijs, Jeroen T.; Guise, Theresa A.; Mohammad, Khalid S.

    2014-01-01

    Breast cancer is the most prevalent cancer among females worldwide leading to approximately 350,000 deaths each year. It has long been known that cancers preferentially metastasize to particular organs, and bone metastases occur in ~70% of patients with advanced breast cancer. Breast cancer bone metastases are predominantly osteolytic and accompanied by increased fracture risk, pain, nerve compression and hypercalcemia, causing severe morbidity. In the bone matrix, transforming growth factor-β (TGF-β) is one of the most abundant growth factors, which is released in active form upon tumor-induced osteoclastic bone resorption. TGF-β, in turn, stimulates bone metastatic tumor cells to secrete factors that further drive osteolytic bone destruction adjacent to the tumor. Thus, TGF-β is a crucial factor responsible for driving the feed-forward vicious cycle of cancer growth in bone. Moreover, TGF-β activates epithelial-to-mesenchymal transition, increases tumor cell invasiveness and angiogenesis and induces immunosuppression. Blocking the TGF-β signaling pathway to interrupt this vicious cycle between breast cancer and bone offers a promising target for therapeutic intervention to decrease skeletal metastasis. This review will describe the role of TGF-β in breast cancer and bone metastasis, and pre-clinical and clinical data will be evaluated for the potential use of TGF-β inhibitors in clinical practice to treat breast cancer bone metastases. PMID:24558636

  4. The central nervous system (CNS)-independent anti-bone-resorptive activity of muscle contraction and the underlying molecular and cellular signatures.

    PubMed

    Qin, Weiping; Sun, Li; Cao, Jay; Peng, Yuanzhen; Collier, Lauren; Wu, Yong; Creasey, Graham; Li, Jianhua; Qin, Yiwen; Jarvis, Jonathan; Bauman, William A; Zaidi, Mone; Cardozo, Christopher

    2013-05-10

    Mechanisms by which muscle regulates bone are poorly understood. Electrically stimulated muscle contraction reversed elevations in bone resorption and increased Wnt signaling in bone-derived cells after spinal cord transection. Muscle contraction reduced resorption of unloaded bone independently of the CNS, through mechanical effects and, potentially, nonmechanical signals (e.g. myokines). The study provides new insights regarding muscle-bone interactions. Muscle and bone work as a functional unit. Cellular and molecular mechanisms underlying effects of muscle activity on bone mass are largely unknown. Spinal cord injury (SCI) causes muscle paralysis and extensive sublesional bone loss and disrupts neural connections between the central nervous system (CNS) and bone. Muscle contraction elicited by electrical stimulation (ES) of nerves partially protects against SCI-related bone loss. Thus, application of ES after SCI provides an opportunity to study the effects of muscle activity on bone and roles of the CNS in this interaction, as well as the underlying mechanisms. Using a rat model of SCI, the effects on bone of ES-induced muscle contraction were characterized. The SCI-mediated increase in serum C-terminal telopeptide of type I collagen (CTX) was completely reversed by ES. In ex vivo bone marrow cell cultures, SCI increased the number of osteoclasts and their expression of mRNA for several osteoclast differentiation markers, whereas ES significantly reduced these changes; SCI decreased osteoblast numbers, but increased expression in these cells of receptor activator of NF-κB ligand (RANKL) mRNA, whereas ES increased expression of osteoprotegerin (OPG) and the OPG/RANKL ratio. A microarray analysis revealed that ES partially reversed SCI-induced alterations in expression of genes involved in signaling through Wnt, FSH, parathyroid hormone (PTH), oxytocin, and calcineurin/nuclear factor of activated T-cells (NFAT) pathways. ES mitigated SCI-mediated increases in m

  5. Concave Pit-Containing Scaffold Surfaces Improve Stem Cell-Derived Osteoblast Performance and Lead to Significant Bone Tissue Formation

    PubMed Central

    Cusella-De Angelis, Maria Gabriella; Laino, Gregorio; Piattelli, Adriano; Pacifici, Maurizio; De Rosa, Alfredo; Papaccio, Gianpaolo

    2007-01-01

    Background Scaffold surface features are thought to be important regulators of stem cell performance and endurance in tissue engineering applications, but details about these fundamental aspects of stem cell biology remain largely unclear. Methodology and Findings In the present study, smooth clinical-grade lactide-coglyolic acid 85:15 (PLGA) scaffolds were carved as membranes and treated with NMP (N-metil-pyrrolidone) to create controlled subtractive pits or microcavities. Scanning electron and confocal microscopy revealed that the NMP-treated membranes contained: (i) large microcavities of 80–120 µm in diameter and 40–100 µm in depth, which we termed primary; and (ii) smaller microcavities of 10–20 µm in diameter and 3–10 µm in depth located within the primary cavities, which we termed secondary. We asked whether a microcavity-rich scaffold had distinct bone-forming capabilities compared to a smooth one. To do so, mesenchymal stem cells derived from human dental pulp were seeded onto the two types of scaffold and monitored over time for cytoarchitectural characteristics, differentiation status and production of important factors, including bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF). We found that the microcavity-rich scaffold enhanced cell adhesion: the cells created intimate contact with secondary microcavities and were polarized. These cytological responses were not seen with the smooth-surface scaffold. Moreover, cells on the microcavity-rich scaffold released larger amounts of BMP-2 and VEGF into the culture medium and expressed higher alkaline phosphatase activity. When this type of scaffold was transplanted into rats, superior bone formation was elicited compared to cells seeded on the smooth scaffold. Conclusion In conclusion, surface microcavities appear to support a more vigorous osteogenic response of stem cells and should be used in the design of therapeutic substrates to improve bone repair and

  6. [Experimental study on the transforming growth factor β3 combined with dental pulp stem cells in early bone integration of implant].

    PubMed

    Guzalinuer, Ababaikeli; Muhetaer, Huojia; Wu, H; Paerhati, Abudureheman

    2018-04-09

    Objective: To establish the experimental model of rabbit mandibular anterior implant repair and evaluate the effects of transforming growth factor (TGF)-β3 and dental pulp stem cells (DPSC) in promoting the bone integration of implant. Methods: The New Zealand rabbits were randomly divided into experimental group, control group and blank group (6 rabbits for each group) . In the experimental group, the implant area was filled with the mixture of TGF-β3, DPSC and Bio-oss powder. In the control group, the implant area was filled with the mixture of DPSC and Bio-oss powder. In the blank group, the implant area was filled with the mixture of phosphate buffer solution and Bio-oss powder. Eighteen New Zealand rabbits were sacrificed in 2 weeks after procedure. The treated alveolar bone tissue was observed. The bone tissue around the implant were estimated by HE staining, immunocytochemical staining and real-time quantitative PCR. Results: The implants were no shedding nor loose. HE staining shows the blank group had a sparse trabecular bone and a small amount of blood vessel around the implant and no obvious new bone formation. The control group showed that the bone trabecula around the implant was sparse and slender, the osteoblasts were arranged linearly around the trabecular bone, a small amount of new bone formation was found around the implant. In the experimental group, there were more thick and dense trabecular bone around the implant, the surrounding osteoblasts were arranged in clusters. The osteoblasts were active and many new bone formed. Typical bone lacunae, bone cells and a large number of new blood vessels can be observed. Immunohistochemistry showed that the proportion of average positive area in the experimental group, control group, blank group were (24.6±5.3) %, (11.3±2.8) % and (7.6±3.8) % respectively. The expression of bone sialoprotein in experimental group were significantly higher than the other 2 groups( P= 0.000). Real-time quantitative

  7. [Bone structure in rheumatoid arthritis].

    PubMed

    Ono, Kumiko; Ohashi, Satoru; Tanaka, Sakae; Matsumoto, Takuya

    2013-07-01

    In rheumatoid arthritis (RA) , the osteoclast pathway is activated by abnormal immune conditions accompanied by chronic inflammation, resulting in periarticular osteoporosis and local bone destruction around joints. In addition, multiple factors, including reduced physical activity and pharmacotherapies such as steroids, lead to systemic osteoporosis. These conditions cause decreasing bone mineral density and deterioration of bone quality, and expose patients to increased risk of fracture. Understanding the bone structures of RA and evaluating fracture risk are central to the treatment of RA.

  8. CORRELATION OF MRI GRADING OF BONE STRESS INJURIES WITH CLINICAL RISK FACTORS AND RETURN TO PLAY: A 5-YEAR PROSPECTIVE STUDY IN COLLEGIATE TRACK AND FIELD ATHLETES

    PubMed Central

    Nattiv, Aurelia; Kennedy, Gannon; Barrack, Michelle T.; Abdelkerim, Ashraf; Goolsby, Marci A.; Arends, Julie C.; Seeger, Leanne L.

    2015-01-01

    Background Bone stress injuries are common in track and field athletes. Knowledge of risk factors and correlation of these to magnetic resonance imaging (MRI) grading could be helpful in determining recovery time. Purpose To examine the relationships between MRI grading of bone stress injury with clinical risk factors and time to return to sport in collegiate track and field athletes. Study Design Prospective cohort over 5 years. Methods Two hundred and eleven male and female collegiate track and field and cross-country athletes were followed prospectively through their competitive seasons. All athletes had a pre-participation history, physical exam, and anthropometric measurements obtained annually. An additional questionnaire was completed regarding nutritional behaviors, menstrual patterns and prior injuries, as well as a 3-day diet record. Dual energy X-ray absorptiometry was obtained at baseline and each year of participation in the study. Athletes with clinical evidence of bone stress injuries had plain radiographs. If radiographs were negative, MRI was obtained. Bone stress injuries were evaluated by two independent radiologists utilizing an MRI grading system. MRI grading and risk factors were evaluated to identify predictors of time to return to sport. Results Thirty-four (12 males, 22 females) of the 211 collegiate athletes sustained 61 bone stress injuries during the 5-year study period. The average prospective assessment for participants was 2.1 years. MRI grade and total body bone mineral density (BMD) emerged as significant and independent predictors of time to return to sport in the multiple regression model. Specifically, the higher the MRI grade, the longer the recovery time (p<0.002). Location of bone injury at predominantly trabecular sites of the femoral neck, pubic bone and sacrum (p<0.001), and lower total body BMD (p<0.029) independently predicted prolonged time to return to sport. Conclusions Higher MRI grade, lower BMD, and skeletal sites

  9. The Assessment of Bone Regulatory Pathways, Bone Turnover, and Bone Mineral Density in Vegetarian and Omnivorous Children

    PubMed Central

    Ambroszkiewicz, Jadwiga; Chełchowska, Magdalena; Szamotulska, Katarzyna; Rowicka, Grażyna; Klemarczyk, Witold; Strucińska, Małgorzata

    2018-01-01

    Vegetarian diets contain many beneficial properties as well as carry a risk of inadequate intakes of several nutrients important to bone health. The aim of the study was to evaluate serum levels of bone metabolism markers and to analyze the relationships between biochemical bone markers and anthropometric parameters in children on vegetarian and omnivorous diets. The study included 70 prepubertal children on a lacto-ovo-vegetarian diet and 60 omnivorous children. Body composition, bone mineral content (BMC), and bone mineral density (BMD) were assessed by dual-energy X-ray absorptiometry. Biochemical markers—bone alkaline phosphatase (BALP), C-terminal telopeptide of type I collagen (CTX-I), osteoprotegerin (OPG), nuclear factor κB ligand (RANKL), sclerostin, and Dickkopf-related protein 1 (Dkk-1)—were measured using immunoenzymatic assays. In vegetarians, we observed a significantly higher level of BALP (p = 0.002) and CTX-I (p = 0.027), and slightly lower spine BMC (p = 0.067) and BMD (p = 0.060) than in omnivores. Concentrations of OPG, RANKL, sclerostin, and Dkk-1 were comparable in both groups of children. We found that CTX-I was positively correlated with BMC, total BMD, and lumbar spine BMD in vegetarians, but not in omnivores. A well-planned vegetarian diet with proper dairy and egg intake does not lead to significantly lower bone mass; however, children following a lacto-ovo-vegetarian diet had a higher rate of bone turnover and subtle changes in bone regulatory markers. CTX-I might be an important marker for the protection of vegetarians from bone abnormalities. PMID:29414859

  10. The Assessment of Bone Regulatory Pathways, Bone Turnover, and Bone Mineral Density in Vegetarian and Omnivorous Children.

    PubMed

    Ambroszkiewicz, Jadwiga; Chełchowska, Magdalena; Szamotulska, Katarzyna; Rowicka, Grażyna; Klemarczyk, Witold; Strucińska, Małgorzata; Gajewska, Joanna

    2018-02-07

    Vegetarian diets contain many beneficial properties as well as carry a risk of inadequate intakes of several nutrients important to bone health. The aim of the study was to evaluate serum levels of bone metabolism markers and to analyze the relationships between biochemical bone markers and anthropometric parameters in children on vegetarian and omnivorous diets. The study included 70 prepubertal children on a lacto-ovo-vegetarian diet and 60 omnivorous children. Body composition, bone mineral content (BMC), and bone mineral density (BMD) were assessed by dual-energy X-ray absorptiometry. Biochemical markers-bone alkaline phosphatase (BALP), C-terminal telopeptide of type I collagen (CTX-I), osteoprotegerin (OPG), nuclear factor κB ligand (RANKL), sclerostin, and Dickkopf-related protein 1 (Dkk-1)-were measured using immunoenzymatic assays. In vegetarians, we observed a significantly higher level of BALP ( p = 0.002) and CTX-I ( p = 0.027), and slightly lower spine BMC ( p = 0.067) and BMD ( p = 0.060) than in omnivores. Concentrations of OPG, RANKL, sclerostin, and Dkk-1 were comparable in both groups of children. We found that CTX-I was positively correlated with BMC, total BMD, and lumbar spine BMD in vegetarians, but not in omnivores. A well-planned vegetarian diet with proper dairy and egg intake does not lead to significantly lower bone mass; however, children following a lacto-ovo-vegetarian diet had a higher rate of bone turnover and subtle changes in bone regulatory markers. CTX-I might be an important marker for the protection of vegetarians from bone abnormalities.

  11. Automated interviews on clinical case reports to elicit directed acyclic graphs.

    PubMed

    Luciani, Davide; Stefanini, Federico M

    2012-05-01

    Setting up clinical reports within hospital information systems makes it possible to record a variety of clinical presentations. Directed acyclic graphs (Dags) offer a useful way of representing causal relations in clinical problem domains and are at the core of many probabilistic models described in the medical literature, like Bayesian networks. However, medical practitioners are not usually trained to elicit Dag features. Part of the difficulty lies in the application of the concept of direct causality before selecting all the causal variables of interest for a specific patient. We designed an automated interview to tutor medical doctors in the development of Dags to represent their understanding of clinical reports. Medical notions were analyzed to find patterns in medical reasoning that can be followed by algorithms supporting the elicitation of causal Dags. Clinical relevance was defined to help formulate only relevant questions by driving an expert's attention towards variables causally related to nodes already inserted in the graph. Key procedural features of the proposed interview are described by four algorithms. The automated interview comprises questions on medical notions, phrased in medical terms. The first elicitation session produces questions concerning the patient's chief complaints and the outcomes related to diseases serving as diagnostic hypotheses, their observable manifestations and risk factors. The second session focuses on questions that refine the initial causal paths by considering syndromes, dysfunctions, pathogenic anomalies, biases and effect modifiers. A case study concerning a gastro-enterological problem and one dealing with an infected patient illustrate the output produced by the algorithms, depending on the answers provided by the doctor. The proposed elicitation framework is characterized by strong consistency with medical background and by a progressive introduction of relevant medical topics. Revision and testing of the

  12. EXPLICIT: a feasibility study of remote expert elicitation in health technology assessment.

    PubMed

    Grigore, Bogdan; Peters, Jaime; Hyde, Christopher; Stein, Ken

    2017-09-04

    Expert opinion is often sought to complement available information needed to inform model-based economic evaluations in health technology assessments. In this context, we define expert elicitation as the process of encoding expert opinion on a quantity of interest, together with associated uncertainty, as a probability distribution. When availability for face-to-face expert elicitation with a facilitator is limited, elicitation can be conducted remotely, overcoming challenges of finding an appropriate time to meet the expert and allowing access to experts situated too far away for practical face-to-face sessions. However, distance elicitation is associated with reduced response rates and limited assistance for the expert during the elicitation session. The aim of this study was to inform the development of a remote elicitation tool by exploring the influence of mode of elicitation on elicited beliefs. An Excel-based tool (EXPLICIT) was developed to assist the elicitation session, including the preparation of the expert and recording of their responses. General practitioners (GPs) were invited to provide expert opinion about population alcohol consumption behaviours. They were randomised to complete the elicitation by either a face-to-face meeting or email. EXPLICIT was used in the elicitation sessions for both arms. Fifteen GPs completed the elicitation session. Those conducted by email were longer than the face-to-face sessions (13 min 30 s vs 10 min 26 s, p = 0.1) and the email-elicited estimates contained less uncertainty. However, the resulting aggregated distributions were comparable. EXPLICIT was useful in both facilitating the elicitation task and in obtaining expert opinion from experts via email. The findings support the opinion that remote, self-administered elicitation is a viable approach within the constraints of HTA to inform policy making, although poor response rates may be observed and additional time for individual sessions may be required.

  13. Bone health in Down syndrome.

    PubMed

    García-Hoyos, Marta; Riancho, José Antonio; Valero, Carmen

    2017-07-21

    Patients with Down syndrome have a number of risk factors that theoretically could predispose them to osteoporosis, such as early aging, development disorders, reduced physical activity, limited sun exposure, frequent comorbidities and use of drug therapies which could affect bone metabolism. In addition, the bone mass of these people may be affected by their anthropometric and body composition peculiarities. In general terms, studies in adults with Down syndrome reported that these people have lower areal bone mineral density (g/cm 2 ) than the general population. However, most of them have not taken the smaller bone size of people with Down syndrome into account. In fact, when body mineral density is adjusted by bone size and we obtain volumetric body mineral density (g/cm 3 ), the difference between both populations disappears. On the other hand, although people with Down syndrome have risk factor of hypovitaminosis D, the results of studies regarding 25(OH)D in this population are not clear. Likewise, the studies about biochemical bone markers or the prevalence of fractures are not conclusive. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  14. Socket preservation using freeze-dried bone allograft with and without plasma rich in growth factors in dogs

    PubMed Central

    Samandari, Mohammad Hasan; Haghighat, Abbas; Torabinia, Nakisa; Taghian, Mehdi; Sadri, Leyli; Naemy, Vahid

    2016-01-01

    Background: Plasma rich in growth factors (PRGF) and freeze-dried bone allograft (FDBA) are shown to promote bone healing. This study was aimed to histologically and histomorphometrically investigate the effect of combined use of PRGF and FDBA on bone formation, and compare it to FDBA alone and control group. Materials and Methods: The distal roots of the lower premolars were extracted bilaterally in four female dogs. Sockets were randomly divided into FDBA + PRGF, FDBA, and control groups. Two dogs were sacrificed after 2 weeks and two dogs were sacrificed after 4 weeks. Sockets were assessed histologically and histomorphometrically. Data were analyzed by Kruskal–Wallis test followed by Mann–Whitney U-tests utilizing the SPSS software version 20. P < 0.05 was considered statistically significant. Results: While the difference in density of fibrous tissue in three groups was not statistically significant (P = 0.343), the bone density in grafted groups was significantly higher than the control group (P = 0.021). The least decrease in all socket dimensions was observed in the FDBA group. However, these differences were only significant in coronal portion at week 4. Regarding socket dimensions and bone density, the difference between FDBA and FDBA+PRGF groups was not significant in middle and apical portions. Conclusion: The superiority of PRGF+FDBA overFDBA in socket preservation cannot be concluded from this experiment. PMID:27857769

  15. Is Animal Age a Factor In the Response of Bone to Spaceflight?

    NASA Technical Reports Server (NTRS)

    Morey-Holton, E. R.; Garetto, L. P.; Doty, S. B.; Halloran, B. P.; Turner, R. T.; Dalton, Bonnie (Technical Monitor)

    2002-01-01

    The rodent bone response to spaceflight may be influenced by a multitude of actors including flight duration, strain, and housing. Review of bone formation rates during spaceflight suggests that age may also play a role in the response. Weanling rats show fewer bone changes than older rats. To determine if the long bones of weanling rats were insensitive to weight-bearing, a hindlimb unloading experiment was conducted simultaneously with a 9d shuttle flight in 34d old group-housed male rats. All animals were injected with bone markers 7d and 1d before flight and euthanized at landing, 24hr, and 72hr following recovery. If no differences in body weight, bone length, or bone formation at the tibiofibular junction were noted at the different time points, data were combined for each group. No significant differences in body weight were found at any time period among the groups. The humerus, tibia, and femur elongated significantly during the flight period with no difference in lengths between groups at the end of the flight period. The group-housed flight rats showed no change in cortical bone formation rate compared to preflight values, flight controls, or vivarium controls. However, the hindlimb unloading group showed a significant 30% decrease in bone formation rate compared to all other groups. Individually-housed 38d old animals flown for 14d showed approx. 10% suppression of cortical growth. We speculate that the mechanical threshold required for cross-sectional bone growth is reached in group-house weanling rats during spaceflight, perhaps, through physical interactions, and that the weanling animals are sensitive to loading. However, the threshold is not fully reached in either singly-housed flight or hindlimb unloaded weanling rats. Older singly-housed flight animals appear to show equal or greater bone changes compared to hindlimb unloaded rats. We conclude that age, flight duration, strain, and housing have important roles in rodent skeletal responses to

  16. Effect of Concentrated Growth Factor (CGF) on the Promotion of Osteogenesis in Bone Marrow Stromal Cells (BMSC) in vivo.

    PubMed

    Chen, Xia; Wang, Jian; Yu, Li; Zhou, Jia; Zheng, Danning; Zhang, Bo

    2018-04-12

    The therapeutic method traditionally used in bone defect reconstruction is autologous bone grafting. The most common problems affecting this type of repair approach are bone absorption and donor trauma. The approach taken in this study overcomes these problems. Bone marrow stromal cells (BMSCs) provided the crucial seed cells. Fibrin biological scaffolds were formed by combining the BMSCs with concentrated growth factor (CGF). BMSCs were isolated from Wistar rat femurs; CGF was prepared from rat heart blood. Five repair groups were created for comparative purposes: (A) CGF + BMSCs; (B) CGF; (C) collagen + BMSCs; (D) collagen; (E) blank. After three months, the rats were sacrificed, and histopathology and three-dimensional CT images produced. Bone regeneration was significantly higher in the (A) CGF + BMSC group; osteogenesis was lower in the (B) CGF and (C) collagen + BMSC groups, at very similar levels; the (D) collagen and (E) blank groups scored the lowest results. Our research suggests that combining CGF with BMSCs leads to the formation of fibrin scaffolds that have a powerful effect on osteogenesis as well as a subsidiary angiogenic effect. SEM images of the CGF scaffolds cultured with BMSCs confirmed good CGF biocompatibility. The superior osteoinductive activity of the CGF + BMSC combination makes it an excellent biomaterial for bone regeneration.

  17. Management of unicameral bone cyst by using freeze dried radiation sterilized bone allograft impregnate with autogenous bone marrow.

    PubMed

    Datta, N K; Das, K P; Alam, M S; Kaiser, M S

    2014-07-01

    Unicameral bone cyst is a common benign bone tumor and most frequent cause of the pathological fracture in children. We have started a prospective study for that treatment of unicameral bone cyst by using freeze dried radiation sterilized bone allograft impregnated with autogenous bone marrow in the department of Orthopaedics, Bangabandhu Sheikh Mujib Medical University (BSMMU) during May 1999 to April 2012. Aim of this study was to see Freeze dried radiation sterilized bone allograft impregnate with autogenous bone marrow a satisfactory graft material in the treatment of unicameral bone cyst as well as factors such as patients age, sex, cyst size and site of lesion influence on cyst healing. A total 35 patients of unicameral bone cyst were operated. In this study out of 35 patients, male were 22(62.86%) and female were 13(37.14). Male Female ratio 22:13(1.70:1) Age of the patients ranging from 2 years 6 month to 20 years, mean age 12.18 years more common 11 years to 20 years 29(82.86%) patients. Common bones sites involvements are proximal end of Humerus 20(57.14%), proximal end of Femur 7(20 %), proximal end of Tibia 3(8.57%), Calcanium 2(5.71%), proximal end of Ulna 1(2.86%), shaft of Radius 1(2.86%) and Phalanx 1(2.86%). Final clinical outcome of unicameral bone cyst treated by thorough curettage of cavity and tightly filled with freeze dried radiation sterilized bone allograft impregnate with autogenous bone marrow in which healed (success rate) 88.57% (31) and recurrence rate is 11.43% (4). P value is <0.001. Follow up period was 6 month to 11 years. From our study it was realized that freeze dried radiation sterilized bone allograft impregnated with autogenous bone marrow is useful graft material for healing of the lesional area as well as restoring structural integrity for the treatment of unicameral bone cyst.

  18. Glial cell line-derived neurotrophic factor promotes the development of adrenergic neurons in mouse neural crest cultures

    PubMed Central

    Maxwell, Gerald D.; Reid, Kate; Elefanty, Andrew; Bartlett, Perry F.; Murphy, Mark

    1996-01-01

    Growth of mouse neural crest cultures in the presence of glial cell line-derived neurotrophic factor (GDNF) resulted in a dramatic dose-dependent increase in the number of tyrosine hydroxylase (TH)-positive cells that developed when 5% chicken embryo extract was present in the medium. In contrast, growth in the presence of bone morphogenetic protein (BMP)-2, BMP-4, BMP-6, transforming growth factor (TGF) β1, TGF-β2, and TGF-β3 elicited no increase in the number of TH-positive cells. The TH-positive cells that developed in the presence of GDNF had neuronal morphology and contained the middle and low molecular weight neurofilament proteins. Numerous TH-negative cells with the morphology of neurons also were observed in GDNF-treated cultures. Analysis revealed that the period from 6 to 12 days in vitro was the critical time for exposure to GDNF to generate the increase in TH-positive cell number. The growth factors neurotrophin-3 and fibroblast growth factor-2 elicited increases in the number of TH-positive cells similar to that seen in response to GDNF. In contrast, nerve growth factor was unable to substitute for GDNF. These findings extend the previously reported biological activities of GDNF by showing that it can act on mouse neural crest cultures to promote the development of neurons. PMID:8917581

  19. Developing Socio-Cultural Scaffolding Model to Elicit Learners's Speech Production

    ERIC Educational Resources Information Center

    Englishtina, Inti

    2015-01-01

    This study is concerned with developing scaffolding model to elicit bilingual kindergarten children's English speech production. It is aimed at describing what the teachers need in eliciting their students' speech production; how a scaffolding model should be developed to elicit the children's speech production; and how effective is the…

  20. Epiphyseal abnormalities, trabecular bone loss and articular chondrocyte hypertrophy develop in the long bones of postnatal Ext1-deficient mice.

    PubMed

    Sgariglia, Federica; Candela, Maria Elena; Huegel, Julianne; Jacenko, Olena; Koyama, Eiki; Yamaguchi, Yu; Pacifici, Maurizio; Enomoto-Iwamoto, Motomi

    2013-11-01

    Long bones are integral components of the limb skeleton. Recent studies have indicated that embryonic long bone development is altered by mutations in Ext genes and consequent heparan sulfate (HS) deficiency, possibly due to changes in activity and distribution of HS-binding/growth plate-associated signaling proteins. Here we asked whether Ext function is continuously required after birth to sustain growth plate function and long bone growth and organization. Compound transgenic Ext1(f/f);Col2CreERT mice were injected with tamoxifen at postnatal day 5 (P5) to ablate Ext1 in cartilage and monitored over time. The Ext1-deficient mice exhibited growth retardation already by 2weeks post-injection, as did their long bones. Mutant growth plates displayed a severe disorganization of chondrocyte columnar organization, a shortened hypertrophic zone with low expression of collagen X and MMP-13, and reduced primary spongiosa accompanied, however, by increased numbers of TRAP-positive osteoclasts at the chondro-osseous border. The mutant epiphyses were abnormal as well. Formation of a secondary ossification center was significantly delayed but interestingly, hypertrophic-like chondrocytes emerged within articular cartilage, similar to those often seen in osteoarthritic joints. Indeed, the cells displayed a large size and round shape, expressed collagen X and MMP-13 and were surrounded by an abundant Perlecan-rich pericellular matrix not seen in control articular chondrocytes. In addition, ectopic cartilaginous outgrowths developed on the lateral side of mutant growth plates over time that resembled exostotic characteristic of children with Hereditary Multiple Exostoses, a syndrome caused by Ext mutations and HS deficiency. In sum, the data do show that Ext1 is continuously required for postnatal growth and organization of long bones as well as their adjacent joints. Ext1 deficiency elicits defects that can occur in human skeletal conditions including trabecular bone loss

  1. Comparison between autogenous iliac bone and freeze-dried bone allograft for repair of alveolar clefts in the presence of plasma rich in growth factors: A randomized clinical trial.

    PubMed

    Shirani, Gholamreza; Abbasi, Amir J; Mohebbi, Simin Z; Moharrami, Mohammad

    2017-10-01

    This study aimed to compare the effectiveness of alveolar cleft repair using iliac bone and freeze-dried bone allograft (FDBA) in the presence of plasma rich in growth factors (PRGF). Patients with unilateral alveolar cleft (n = 32) were randomly allocated to either the iliac plus PRGF group or the FDBA plus PRGF group. CBCT images were obtained before and 6 months after the surgery to assess the regenerated bone volume. Paired t-tests and two-way analysis of variance (ANOVA) were applied to analyze the data using SPSS 16.0 software. The patients' mean age was 15 ± 5.7 years (range = 8-27). In the iliac plus PRGF group, the mean volume of cleft before the surgery and the mean regenerated bone volume 6 months after were 1.67 ± 0.66 and 1.14 ± 0.47 cm 3 , respectively. The corresponding values were 1.5 ± 0.54 and 0.72 ± 0.23 cm 3 in the FDBA plus PRGF group. The remaining bone to cleft volume ratio was not associated with grafting time (secondary or tertiary) and the original cleft volume. Iliac bone reinforced with PRGF was more successful than FDBA plus PRGF in repairing alveolar cleft (p = 0.007). Due to the poor performance of the allograft, autografts should still be preferred in spite of possible donor site morbidity. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  2. Eliciting Spontaneous Speech in Bilingual Students: Methods & Techniques.

    ERIC Educational Resources Information Center

    Cornejo, Ricardo J.; And Others

    Intended to provide practical information pertaining to methods and techniques for speech elicitation and production, the monograph offers specific methods and techniques to elicit spontaneous speech in bilingual students. Chapter 1, "Traditional Methodologies for Language Production and Recording," presents an overview of studies using…

  3. [Analysis of risk factors for low bone mineral density in patients with inflammatory bowel disease].

    PubMed

    Park, Jae Jung; Jung, Sung Ae; Noh, Young Wook; Kang, Min Jung; Jung, Ji Min; Kim, Seong Eun; Jung, Hye Kyung; Shim, Ki Nam; Kim, Tae Hun; Yoo, Kwon; Moon, Il Hwan; Hong, Young Sun

    2010-04-01

    Several clinical risk factors for low bone mineral density (BMD) in the patients with inflammatory bowel disease (IBD) have been suggested. However, its prevalence and pathophysiology in Korean population have not been fully studied. The aim of this study was to investigate the prevalence and risk factors for low BMD in Korean IBD patient. BMD of the lumbar spine and femur was evaluated using dual-energy X-ray absorptiometry in 30 patients with IBD. Biochemical parameters of bone metabolism, such as serum calcium, phosphorus, osteocalcin, and deoxypyridinoline were measured. The associations between low BMD and clinical parameters such as disease duration, disease activity, drug history, body mass index (BMI), and others were evaluated retrospectively using medical records. Low BMD at the lumbar spine or femur was observed in 63.3% of the patients, and there was no significant difference between the patients with Crohns disease and ulcerative colitis. Clinical and biochemical parameters were irrelevant to BMD. In the patients without glucocorticoid treatment prior to BMD measurement, already 50.0% of patients had low BMD. Low BMD is a common feature in Korean IBD patients, even those who do not use glucocorticoid. The multiple factors may be involved in the pathogenesis of low BMD. Therefore, BMD should be examined in all IBD patients, irrespective of glucocorticoid treatment.

  4. Stromal derived factor-1 regulates bone morphogenetic protein 2-induced osteogenic differentiation of primary mesenchymal stem cells

    PubMed Central

    Hosogane, Naobumi; Huang, Zhiping; Rawlins, Bernard A.; Liu, Xia; Boachie-Adjei, Oheneba; Boskey, Adele L.; Zhu, Wei

    2010-01-01

    Stromal derived factor-1 (SDF-1) is a chemokine signaling molecule that binds to its transmembrane receptor CXC chemokine receptor-4 (CXCR4). While we previously detected that SDF-1 was co-required with bone morphogenetic protein 2 (BMP2) for differentiating mesenchymal C2C12 cells into osteoblastic cells, it is unknown whether SDF-1 is similarly involved in the osteogenic differentiation of mesenchymal stem cells (MSCs). Therefore, here we examined the role of SDF-1 signaling during BMP2-induced osteogenic differentiation of primary MSCs that were derived from human and mouse bone marrow. Our data showed that blocking of the SDF-1/CXCR4 signal axis or adding SDF-1 protein to MSCs significantly affected BMP2-induced alkaline phosphatase (ALP) activity and osteocalcin (OCN) synthesis, markers of preosteoblasts and mature osteoblasts, respectively. Moreover, disrupting the SDF-1 signaling impaired bone nodule mineralization during terminal differentiation of MSCs. Furthermore, we detected that blocking of the SDF-1 signaling inhibited the BMP2-induced early expression of Runt-related factor-2 (Runx2) and osterix (Osx), two “master” regulators of osteogenesis, and the SDF-1 effect was mediated via intracellular Smad and Erk activation. In conclusion, our results demonstrated a regulatory role of SDF-1 in BMP2-induced osteogenic differentiation of MSCs, as perturbing the SDF-1 signaling affected the differentiation of MSCs towards osteoblastic cells in response to BMP2 stimulation. These data provide novel insights into molecular mechanisms underlying MSC osteogenesis, and will contribute to the development of MSC therapies for enhancing bone formation and regeneration in broad orthopaedic situations. PMID:20362069

  5. [Progress of Masquelet technique to repair bone defect].

    PubMed

    Yin, Qudong; Sun, Zhenzhong; Gu, Sanjun

    2013-10-01

    To summarize the progress of Masquelet technique to repair bone defect. The recent literature concerning the application of Masquelet technique to repair bone defect was extensively reviewed and summarized. Masquelet technique involves a two-step procedure. First, bone cement is used to fill the bone defect after a thorough debridement, and an induced membrane structure surrounding the spacer formed; then the bone cement is removed after 6-8 weeks, and rich cancellous bone is implanted into the induced membrane. Massive cortical bone defect is repaired by new bone forming and consolidation. Experiments show that the induced membrane has vascular system and is also rich in vascular endothelial growth factor, transforming growth factor beta1, bone morphogenetic protein 2, and bone progenitor cells, so it has osteoinductive property; satisfactory results have been achieved in clinical application of almost all parts of defects, various types of bone defect and massive defect up to 25 cm long. Compared with other repair methods, Masquelet technique has the advantages of reliable effect, easy to operate, few complications, low requirements for recipient site, and wide application. Masquelet technique is an effective method to repair bone defect and is suitable for various types of bone defect, especially for bone defects caused by infection and tumor resection.

  6. Matrix Metalloproteinases in Bone Resorption, Remodeling, and Repair.

    PubMed

    Paiva, Katiucia B S; Granjeiro, José M

    2017-01-01

    Matrix metalloproteinases (MMPs) are the major protease family responsible for the cleavage of the matrisome (global composition of the extracellular matrix (ECM) proteome) and proteins unrelated to the ECM, generating bioactive molecules. These proteins drive ECM remodeling, in association with tissue-specific and cell-anchored inhibitors (TIMPs and RECK, respectively). In the bone, the ECM mediates cell adhesion, mechanotransduction, nucleation of mineralization, and the immobilization of growth factors to protect them from damage or degradation. Since the first description of an MMP in bone tissue, many other MMPs have been identified, as well as their inhibitors. Numerous functions have been assigned to these proteins, including osteoblast/osteocyte differentiation, bone formation, solubilization of the osteoid during bone resorption, osteoclast recruitment and migration, and as a coupling factor in bone remodeling under physiological conditions. In turn, a number of pathologies, associated with imbalanced bone remodeling, arise mainly from MMP overexpression and abnormalities of the ECM, leading to bone osteolysis or bone formation. In this review, we will discuss the functions of MMPs and their inhibitors in bone cells, during bone remodeling, pathological bone resorption (osteoporosis and bone metastasis), bone repair/regeneration, and emergent roles in bone bioengineering. © 2017 Elsevier Inc. All rights reserved.

  7. Alteration of mineral crystallinity and collagen cross-linking of bones in osteopetrotic toothless (tl/tl) rats and their improvement after treatment with colony stimulating factor-1

    NASA Technical Reports Server (NTRS)

    Wojtowicz, A.; Dziedzic-Goclawska, A.; Kaminski, A.; Stachowicz, W.; Wojtowicz, K.; Marks, S. C. Jr; Yamauchi, M.

    1997-01-01

    A common feature of various types of mammalian osteopetroses is a marked increase in bone mass accompanied by spontaneous bone fractures. The toothless (tl/tl) rat osteopetrotic mutation is characterized by drastically reduced bone resorption due to a profound deficiency of osteoclasts and their precursors. An altered bone morphology has also been observed. The mutants cannot be cured by bone marrow transplantation, but skeletal defects are greatly reduced after treatment with colony stimulating factor 1 (CSF-1). The objectives of this study were to characterize mineral and collagen matrices in cancellous and compact bone isolated from long bones of 6-week-old normal littermates, tl/tl osteopetrotic mutants and mutants (tl/tl) treated with CSF-1. There were no differences in bone mineral content, but a significant decrease in the crystallinity of mineral evaluated by the method based on electron paramagnetic resonance spectrometry was observed in all bones of tl/tl mutants as compared to that of controls. Within the collagen matrix, slight decreases in the labile cross-links, but significant increases in the content of the stable cross-links, pyridinoline, and deoxypyridinoline, were observed in both cancellous and compact bone of osteopetrotic mutants. In tl/tl mutants treated with human recombinant CSF-1, the normalization of the crystallinity of bone mineral as well as collagen cross-links was found. Our results indicate that remodeling of bone matrix in tl/tl mutants is highly suppressed, but that after treatment with CSF-1, this activity recovers significantly. Taken together, these data provide further support for the hypothesis that CSF-1 is an essential factor for normal osteoclast differentiation and bone remodelling.

  8. Connecting mechanics and bone cell activities in the bone remodeling process: an integrated finite element modeling.

    PubMed

    Hambli, Ridha

    2014-01-01

    Bone adaptation occurs as a response to external loadings and involves bone resorption by osteoclasts followed by the formation of new bone by osteoblasts. It is directly triggered by the transduction phase by osteocytes embedded within the bone matrix. The bone remodeling process is governed by the interactions between osteoblasts and osteoclasts through the expression of several autocrine and paracrine factors that control bone cell populations and their relative rate of differentiation and proliferation. A review of the literature shows that despite the progress in bone remodeling simulation using the finite element (FE) method, there is still a lack of predictive models that explicitly consider the interaction between osteoblasts and osteoclasts combined with the mechanical response of bone. The current study attempts to develop an FE model to describe the bone remodeling process, taking into consideration the activities of osteoclasts and osteoblasts. The mechanical behavior of bone is described by taking into account the bone material fatigue damage accumulation and mineralization. A coupled strain-damage stimulus function is proposed, which controls the level of autocrine and paracrine factors. The cellular behavior is based on Komarova et al.'s (2003) dynamic law, which describes the autocrine and paracrine interactions between osteoblasts and osteoclasts and computes cell population dynamics and changes in bone mass at a discrete site of bone remodeling. Therefore, when an external mechanical stress is applied, bone formation and resorption is governed by cells dynamic rather than adaptive elasticity approaches. The proposed FE model has been implemented in the FE code Abaqus (UMAT routine). An example of human proximal femur is investigated using the model developed. The model was able to predict final human proximal femur adaptation similar to the patterns observed in a human proximal femur. The results obtained reveal complex spatio-temporal bone

  9. Effect of water on nanomechanics of bone is different between tension and compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samuel, Jitin; Park, Jun-Sang; Almer, Jonathan

    Water, an important constituent in bone, resides in different compartments in bone matrix and may impose significant effects on its bulk mechanical properties. However, a clear understanding of the mechanistic role of water in toughening bone is yet to emerge. To address this issue, this study used a progressive loading protocol, coupled with measurements of in situ mineral and collagen fibril deformations using synchrotron X-ray diffraction techniques. Using this unique approach, the contribution of water to the ultrastructural behavior of bone was examined by testing bone specimens in different loading modes (tension and compression) and hydration states (wet and dehydrated).more » The results indicated that the effect of water on the mechanical behavior of mineral and collagen phases at the ultrastructural level was loading mode dependent and correlated with the bulk behavior of bone. Tensile loading elicited a transitional drop followed by an increase in load bearing by the mineral phase at the ultrastructural level, which was correlated with a strain hardening behavior of bone at the bulk level. Compression loading caused a continuous loss of load bearing by the mineral phase, which was reflected at the bulk level as a strain softening behavior. In addition, viscous strain relaxation and pre-strain reduction were observed in the mineral phase in the presence of water. Taken together, the results of this study suggest that water dictates the bulk behavior of bone by altering the interaction between mineral crystals and their surrounding matrix.« less

  10. Tissue Engineering Strategies for Promoting Vascularized Bone Regeneration

    PubMed Central

    Almubarak, Sarah; Nethercott, Hubert; Freeberg, Marie; Beaudon, Caroline; Jha, Amit; Jackson, Wesley; Marcucio, Ralph; Miclau, Theodore; Healy, Kevin; Bahney, Chelsea

    2016-01-01

    This review focuses on current tissue engineering strategies for promoting vascularized bone regeneration. We review the role of angiogenic growth factors in promoting vascularized bone regeneration and discuss the different therapeutic strategies for controlled/sustained growth factor delivery. Next, we address the therapeutic uses of stem cells in vascularized bone regeneration. Specifically, this review addresses the concept of co-culture using osteogenic and vasculogenic stem cells, and how adipose derived stem cells compare to bone marrow derived mesenchymal stem cells in the promotion of angiogenesis. We conclude this review with a discussion of a novel approach to bone regeneration through a cartilage intermediate, and discuss why it has the potential to be more effective than traditional bone grafting methods. PMID:26608518

  11. In vitro differentiation of embryonic stem cells into hepatocytes induced by fibroblast growth factors and bone morphological protein-4.

    PubMed

    Zhou, Qing-Jun; Huang, Yan-Dan; Xiang, Li-Xin; Shao, Jian-Zhong; Zhou, Guo-Shun; Yao, Hang; Dai, Li-Cheng; Lu, Yong-Liang

    2007-01-01

    The feasibility of transforming embryonic endoderm into different cell types is tightly controlled by mesodermal and septum transversumal signalings during early embryonic development. Here, an induction protocol tracing embryonic liver development was designed, in which, three growth factors, acid fibroblast growth factor, basic fibroblast growth factor and bone morphological protein-4 that secreted from pre-cardiac mesoderm and septum transversum mesenchyme, respectively, were employed to investigate their specific potency of modulating the mature hepatocyte proportion during the differentiation process. Results showed that hepatic differentiation took place spontaneously at a low level, however, supplements of the three growth factors gave rise to a significant up-regulation of mature hepatocytes. Bone morphological protein-4 highlighted the differentiation ratio to 40-55%, showing the most effective promotion, and also exhibited a synergistic effect with the other two fibroblast factors, whereas no similar phenomenon was observed between the other two factors, which was reported for the first time. Our study not only provides a high-performance system of embryonic stem cells differentiating into hepatocytes, which would supply a sufficient hepatic population for related studies, but also make it clear of the inductive effects of three important growth factors, which could support for further investigation on the mechanisms of mesodermal and septumal derived signalings that regulate hepatic differentiation.

  12. Engineering a humanized bone organ model in mice to study bone metastases.

    PubMed

    Martine, Laure C; Holzapfel, Boris M; McGovern, Jacqui A; Wagner, Ferdinand; Quent, Verena M; Hesami, Parisa; Wunner, Felix M; Vaquette, Cedryck; De-Juan-Pardo, Elena M; Brown, Toby D; Nowlan, Bianca; Wu, Dan Jing; Hutmacher, Cosmo Orlando; Moi, Davide; Oussenko, Tatiana; Piccinini, Elia; Zandstra, Peter W; Mazzieri, Roberta; Lévesque, Jean-Pierre; Dalton, Paul D; Taubenberger, Anna V; Hutmacher, Dietmar W

    2017-04-01

    Current in vivo models for investigating human primary bone tumors and cancer metastasis to the bone rely on the injection of human cancer cells into the mouse skeleton. This approach does not mimic species-specific mechanisms occurring in human diseases and may preclude successful clinical translation. We have developed a protocol to engineer humanized bone within immunodeficient hosts, which can be adapted to study the interactions between human cancer cells and a humanized bone microenvironment in vivo. A researcher trained in the principles of tissue engineering will be able to execute the protocol and yield study results within 4-6 months. Additive biomanufactured scaffolds seeded and cultured with human bone-forming cells are implanted ectopically in combination with osteogenic factors into mice to generate a physiological bone 'organ', which is partially humanized. The model comprises human bone cells and secreted extracellular matrix (ECM); however, other components of the engineered tissue, such as the vasculature, are of murine origin. The model can be further humanized through the engraftment of human hematopoietic stem cells (HSCs) that can lead to human hematopoiesis within the murine host. The humanized organ bone model has been well characterized and validated and allows dissection of some of the mechanisms of the bone metastatic processes in prostate and breast cancer.

  13. Anorexia Nervosa and Bone

    PubMed Central

    Misra, Madhusmita; Klibanski, Anne

    2014-01-01

    Anorexia nervosa (AN) is a condition of severe low weight that is associated with low bone mass, impaired bone structure and reduced bone strength, all of which contribute to increased fracture risk., Adolescents with AN have decreased rates of bone accrual compared with normal-weight controls, raising addition concerns of suboptimal peak bone mass and future bone health in this age group. Changes in lean mass and compartmental fat depots, hormonal alterations secondary to nutritional factors contribute to impaired bone metabolism in AN. The best strategy to improve bone density is to regain weight and menstrual function. Oral estrogen-progesterone combinations are not effective in increasing bone density in adults or adolescents with AN, and transdermal testosterone replacement is not effective in increasing bone density in adult women with AN. However, physiologic estrogen replacement as transdermal estradiol with cyclic progesterone does increase bone accrual rates in adolescents with AN to approximate that in normal-weight controls, leading to a maintenance of bone density Z-scores. A recent study has shown that risedronate increases bone density at the spine and hip in adult women with AN. However, bisphosphonates should be used with great caution in women of reproductive age given their long half-life and potential for teratogenicity, and should be considered only in patients with low bone density and clinically significant fractures when non-pharmacological therapies for weight gain are ineffective. Further studies are necessary to determine the best therapeutic strategies for low bone density in AN. PMID:24898127

  14. Method for protecting bone marrow against chemotherapeutic drugs and radiation therapy using transforming growth factor beta 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, J.R.; Ruscetti, F.W.; Wiltrout, R.

    1989-06-29

    Presented is a method for protecting hematopoietic stem cells from the myelotoxicity of chemotherapeutic drugs or radiation therapy, which comprises administering to a subject a therapeutically effective amount of transforming growth factor beta 1 for protecting bone marrow from the myelotoxicity of chemotherapeutic drugs or radiation therapy.

  15. Effects of bioactive factors of the pineal gland on thymus function and cell composition of the bone marrow and spleen in mice of different age.

    PubMed

    Labunets, I F; Butenko, G M; Khavinson, V Kh

    2004-05-01

    The effects of factors from the pineal gland on the titer of thymic serum factor in the supernatant of 3-h thymus stroma cultures, number of stromal precursor fibroblasts and CD4+ cells in the bone marrow, and CD8+ cells in the spleens of adult and old CBA mice were studied in vitro. Epithalamin, Epithalon, and melatonin appreciably increased the titer of thymic serum factor in the supernatant of thymus stroma cultures from mice of different age and increased the percentage of CD4+ cells in the bone marrow suspension from old animals in vitro. The percentage of CD8+ lymphocytes decreased after incubation of splenic cells from old mice with melatonin. The percentage of bone marrow fibroblast precursor cells from adult and old mice did not appreciably change after incubation with the preparations.

  16. PDGFBB promotes PDGFR{alpha}-positive cell migration into artificial bone in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshida, Shigeyuki; Center for Human Metabolomic Systems Biology, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582; Iwasaki, Ryotaro

    2012-05-18

    Highlights: Black-Right-Pointing-Pointer We examined effects of PDGFBB in PDGFR{alpha} positive cell migration in artificial bones. Black-Right-Pointing-Pointer PDGFBB was not expressed in osteoblastic cells but was expressed in peripheral blood cells. Black-Right-Pointing-Pointer PDGFBB promoted PDGFR{alpha} positive cell migration into artificial bones but not osteoblast proliferation. Black-Right-Pointing-Pointer PDGFBB did not inhibit osteoblastogenesis. -- Abstract: Bone defects caused by traumatic bone loss or tumor dissection are now treated with auto- or allo-bone graft, and also occasionally by artificial bone transplantation, particularly in the case of large bone defects. However, artificial bones often exhibit poor affinity to host bones followed by bony union failure.more » Thus therapies combining artificial bones with growth factors have been sought. Here we report that platelet derived growth factor bb (PDGFBB) promotes a significant increase in migration of PDGF receptor {alpha} (PDGFR{alpha})-positive mesenchymal stem cells/pre-osteoblastic cells into artificial bone in vivo. Growth factors such as transforming growth factor beta (TGF{beta}) and hepatocyte growth factor (HGF) reportedly inhibit osteoblast differentiation; however, PDGFBB did not exhibit such inhibitory effects and in fact stimulated osteoblast differentiation in vitro, suggesting that combining artificial bones with PDGFBB treatment could promote host cell migration into artificial bones without inhibiting osteoblastogenesis.« less

  17. [Serum sclerostin levels and metabolic bone diseases].

    PubMed

    Yamauchi, Mika; Sugimoto, Toshitsugu

    2013-06-01

    Serum sclerostin levels are being investigated in various metabolic bone diseases. Since serum sclerostin levels are decreased in primary hyperparathyroidism and elevated in hypoparathyroidism, parathyroid hormone (PTH) is thought to be a regulatory factor for sclerostin. Serum sclerostin levels exhibit a significant positive correlation with bone mineral density. On the other hand, a couple of studies on postmenopausal women have shown that high serum sclerostin levels are a risk factor for fracture. Although glucocorticoid induced osteoporosis and diabetes are both diseases that reduce bone formation, serum sclerostin levels have been reported to be decreased in the former and elevated in the latter, suggesting differences in the effects of sclerostin in the two diseases. Serum sclerostin levels are correlated with renal function, and increase with reduction in renal function. Serum sclerostin level may be a new index of bone assessment that differs from bone mineral density and bone metabolic markers.

  18. Concise review: Insights from normal bone remodeling and stem cell-based therapies for bone repair.

    PubMed

    Khosla, Sundeep; Westendorf, Jennifer J; Mödder, Ulrike I

    2010-12-01

    There is growing interest in the use of mesenchymal stem cells for bone repair. As a major reason for normal bone remodeling is the removal of fatigue microcracks, advances in our understanding of this process may inform approaches to enhance fracture healing. Increasing evidence now indicates that physiological bone remodeling occurs in close proximity to blood vessels and that these vessels carry perivascular stem cells that differentiate into osteoblasts. Similarly, fracture healing is critically dependent on the ingrowth of blood vessels not only for a nutrient supply but also for the influx of osteoblasts. A number of animal and human studies have now shown the potential benefit of bone marrow-derived mesenchymal stem cells in enhancing bone repair. However, as in other tissues, the question of whether these cells improve fracture healing directly by differentiating into osteoblasts or indirectly by secreting paracrine factors that recruit blood vessels and the accompanying perivascular stem cells remains a major unresolved issue. Moreover, CD34+ cells, which are enriched for endothelial/hematopoietic cells, have also shown efficacy in various bone repair models, at least in part due to the induction of angiogenesis and recruitment of host progenitor cells. Thus, mesenchymal and nonmesenchymal stem/progenitor cells are attractive options for bone repair. It is possible that they contribute directly to bone repair, but it is also likely that they express paracrine factors in the appropriate amounts and combinations that promote and sustain the healing process.

  19. Connective Tissue Growth Factor reporter mice label a subpopulation of mesenchymal progenitor cells that reside in the trabecular bone region.

    PubMed

    Wang, Wen; Strecker, Sara; Liu, Yaling; Wang, Liping; Assanah, Fayekah; Smith, Spenser; Maye, Peter

    2015-02-01

    Few gene markers selectively identify mesenchymal progenitor cells inside the bone marrow. We have investigated a cell population located in the mouse bone marrow labeled by Connective Tissue Growth Factor reporter expression (CTGF-EGFP). Bone marrow flushed from CTGF reporter mice yielded an EGFP+ stromal cell population. Interestingly, the percentage of stromal cells retaining CTGF reporter expression decreased with age in vivo and was half the frequency in females compared to males. In culture, CTGF reporter expression and endogenous CTGF expression marked the same cell types as those labeled using Twist2-Cre and Osterix-Cre fate mapping approaches, which previously had been shown to identify mesenchymal progenitors in vitro. Consistent with this past work, sorted CTGF+ cells displayed an ability to differentiate into osteoblasts, chondrocytes, and adipocytes in vitro and into osteoblast, adipocyte, and stromal cell lineages after transplantation into a parietal bone defect. In vivo examination of CTGF reporter expression in bone tissue sections revealed that it marked cells highly localized to the trabecular bone region and was not expressed in the perichondrium or periosteum. Mesenchymal cells retaining high CTGF reporter expression were adjacent to, but distinct from mature osteoblasts lining bone surfaces and endothelial cells forming the vascular sinuses. Comparison of CTGF and Osterix reporter expression in bone tissue sections indicated an inverse correlation between the strength of CTGF expression and osteoblast maturation. Down-regulation of CTGF reporter expression also occurred during in vitro osteogenic differentiation. Collectively, our studies indicate that CTGF reporter mice selectively identify a subpopulation of bone marrow mesenchymal progenitor cells that reside in the trabecular bone region. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Connective Tissue Growth Factor Reporter Mice Label a Subpopulation of Mesenchymal Progenitor Cells that Reside in the Trabecular Bone Region

    PubMed Central

    Wang, Wen; Strecker, Sara; Liu, Yaling; Wang, Liping; Assanah, Fayekah; Smith, Spenser; Maye, Peter

    2014-01-01

    Few gene markers selectively identify mesenchymal progenitor cells inside the bone marrow. We have investigated a cell population located in the mouse bone marrow labeled by Connective Tissue Growth Factor reporter expression (CTGF-EGFP). Bone marrow flushed from CTGF reporter mice yielded an EGFP+ stromal cell population. Interestingly, the percentage of stromal cells retaining CTGF reporter expression decreased with age in vivo and was half the frequency in females compared to males. In culture, CTGF reporter expression and endogenous CTGF expression marked the same cell types as those labeled using Twist2-Cre and Osterix-Cre fate mapping approaches, which previously has been shown to identify mesenchymal progenitors in vitro. Consistent with this past work, sorted CTGF+ cells displayed an ability to differentiate into osteoblasts, chondrocytes, and adipocytes in vitro and into osteoblast, adipocyte, and stromal cell lineages after transplantation into a parietal bone defect. In vivo examination of CTGF reporter expression in bone tissue sections revealed it marked cells highly localized to the trabecular bone region and was not expressed in the perichondrium or periosteum. Mesenchymal cells retaining high CTGF reporter expression were adjacent to, but distinct from mature osteoblasts lining bone surfaces and endothelial cells forming the vascular sinuses. Comparison of CTGF and Osterix reporter expression in bone tissue sections indicated an inverse correlation between the strength of CTGF expression and osteoblast maturation. Down-regulation of CTGF reporter expression also occurred during in vitro osteogenic differentiation. Collectively, our studies indicate that CTGF reporter mice selectively identify a subpopulation of bone marrow mesenchymal progenitor cells that reside in the trabecular bone region. PMID:25464947

  1. Drilling of bone: A comprehensive review

    PubMed Central

    Pandey, Rupesh Kumar; Panda, S.S.

    2013-01-01

    Background Bone fracture treatment usually involves restoring of the fractured parts to their initial position and immobilizing them until the healing takes place. Drilling of bone is common to produce hole for screw insertion to fix the fractured parts for immobilization. Orthopaedic drilling during surgical process causes increase in the bone temperature and forces which can cause osteonecrosis reducing the stability and strength of the fixation. Methods A comprehensive review of all the relevant investigations carried on bone drilling is conducted. The experimental method used, results obtained and the conclusions made by the various researchers are described and compared. Result Review suggests that the further improvement in the area of bone drilling is possible. The systematic review identified several consequential factors (drilling parameters and drill specifications) affecting bone drilling on which there no general agreement among investigators or are not adequately evaluated. These factors are highlighted and use of more advanced methods of drilling is accentuated. The use of more precise experimental set up which resembles the actual situation and the development of automated bone drilling system to minimize human error is addressed. Conclusion In this review, an attempt has been made to systematically organize the research investigations conducted on bone drilling. Methods of treatment of bone fracture, studies on the determination of the threshold for thermal osteonecrosis, studies on the parameters influencing bone drilling and methods of the temperature measurement used are reviewed and the future work for the further improvement of bone drilling process is highlighted. PMID:26403771

  2. Aviation Safety Risk Modeling: Lessons Learned From Multiple Knowledge Elicitation Sessions

    NASA Technical Reports Server (NTRS)

    Luxhoj, J. T.; Ancel, E.; Green, L. L.; Shih, A. T.; Jones, S. M.; Reveley, M. S.

    2014-01-01

    Aviation safety risk modeling has elements of both art and science. In a complex domain, such as the National Airspace System (NAS), it is essential that knowledge elicitation (KE) sessions with domain experts be performed to facilitate the making of plausible inferences about the possible impacts of future technologies and procedures. This study discusses lessons learned throughout the multiple KE sessions held with domain experts to construct probabilistic safety risk models for a Loss of Control Accident Framework (LOCAF), FLightdeck Automation Problems (FLAP), and Runway Incursion (RI) mishap scenarios. The intent of these safety risk models is to support a portfolio analysis of NASA's Aviation Safety Program (AvSP). These models use the flexible, probabilistic approach of Bayesian Belief Networks (BBNs) and influence diagrams to model the complex interactions of aviation system risk factors. Each KE session had a different set of experts with diverse expertise, such as pilot, air traffic controller, certification, and/or human factors knowledge that was elicited to construct a composite, systems-level risk model. There were numerous "lessons learned" from these KE sessions that deal with behavioral aggregation, conditional probability modeling, object-oriented construction, interpretation of the safety risk results, and model verification/validation that are presented in this paper.

  3. Dioxin-like compounds and bone quality in Cree women of Eastern James Bay (Canada): a cross-sectional study

    PubMed Central

    2013-01-01

    Background Aboriginal populations living in Canada’s northern regions are exposed to a number of persistent organic pollutants through their traditional diet which includes substantial amounts of predator fish species. Exposure to dioxin-like compounds (DLCs) can cause a variety of toxic effects including adverse effects on bone tissue. This descriptive cross-sectional study was conducted to investigate the relationship between plasma concentrations of DLCs and bone quality parameters in Cree women of Eastern James Bay (Canada). Methods Two hundred and forty-nine Cree women from seven communities in Eastern James Bay (Canada), aged 35 to 74 years old, participated in the study. In order to determine the total DLC concentration in plasma samples of participants, we measured the aryl hydrocarbon receptor-mediated transcriptional activity elicited by plasma sample extracts using a luciferase reporter gene assay. Plasma concentrations of mono-ortho-substituted dioxin-like polychlorinated biphenyls (DL-PCBs) 105, 118 and 156 were measured by gas chromatography–mass spectrometry. Bone quality parameters (speed of sound, m/s; broadband ultrasound attenuation, dB/MHz; stiffness index, %) were assessed by quantitative ultrasound at the right calcaneus with the Achilles InSight system. Several factors known to be associated with osteoporosis were documented by questionnaire. Multiple linear regression models were constructed for the three ultrasound parameters. Results DL-PCBs 105 and 118 concentrations, but not the global DLC concentration, were inversely associated with the stiffness index, even after adjusting for several confounding factors. The stiffness index (log) decreased by −0.22% (p=0.0414) and −0.04% (p=0.0483) with an increase of one μg/L in plasma concentrations of DL-PCB 105 and DL-PCB 118, respectively. Other factors, including age, height, smoking status, menopausal status and the percentage of omega-6 polyunsaturated fatty acids (PUFAs) in

  4. Differential response of bone and kidney to ACEI in db/db mice: A potential effect of captopril on accelerating bone loss.

    PubMed

    Zhang, Yan; Li, Xiao-Li; Sha, Nan-Nan; Shu, Bing; Zhao, Yong-Jian; Wang, Xin-Luan; Xiao, Hui-Hui; Shi, Qi; Wong, Man-Sau; Wang, Yong-Jun

    2017-04-01

    The components of renin-angiotensin system (RAS) are expressed in the kidney and bone. Kidney disease and bone injury are common complications associated with diabetes. This study aimed to investigate the effects of an angiotensin-converting enzyme inhibitor, captopril, on the kidney and bone of db/db mice. The db/db mice were orally administered by gavage with captopril for 8weeks with db/+ mice as the non-diabetic control. Serum and urine biochemistries were determined by standard colorimetric methods or ELISA. Histological measurements were performed on the kidney by periodic acid-schiff staining and on the tibial proximal metaphysis by safranin O and masson-trichrome staining. Trabecular bone mass and bone quality were analyzed by microcomputed tomography. Quantitative polymerase chain reaction and immunoblotting were applied for molecular analysis on mRNA and protein expression. Captopril significantly improved albuminuria and glomerulosclerosis in db/db mice, and these effects might be attributed to the down-regulation of angiotensin II expression and the expression of its down-stream profibrotic factors in the kidney, like connective tissue growth factor and vascular endothelial growth factor. Urinary excretion of calcium and phosphorus markedly increased in db/db mice in response to captopril. Treatment with captopril induced a decrease in bone mineral density and deterioration of trabecular bone at proximal metaphysis of tibia in db/db mice, as shown in the histological and reconstructed 3-dimensional images. Even though captopril effectively reversed the diabetes-induced changes in calcium-binding protein 28-k and vitamin D receptor expression in the kidney as well as the expression of RAS components and bradykinin receptor-2 in bone tissue, treatment with captopril increased the osteoclast-covered bone surface, reduced the osteoblast-covered bone surface, down-regulated the expression of type 1 collagen and transcription factor runt-related transcription

  5. Cortical bone viscoelasticity and fixation strength of press-fit femoral stems: an in-vitro model.

    PubMed

    Norman, T L; Ackerman, E S; Smith, T S; Gruen, T A; Yates, A J; Blaha, J D; Kish, V L

    2006-02-01

    Cementless total hip femoral components rely on press-fit for initial stability and bone healing and remodeling for secondary fixation. However, the determinants of satisfactory press-fit are not well understood. In previous studies, human cortical bone loaded circumferentially to simulate press-fit exhibited viscoelastic, or time dependent, behavior. The effect of bone viscoelastic behavior on the initial stability of press-fit stems is not known. Therefore, in the current study, push-out loads of cylindrical stems press-fit into reamed cadaver diaphyseal femoral specimens were measured immediately after assembly and 24 h with stem-bone diametral interference and stem surface treatment as independent variables. It was hypothesized that stem-bone interference would result in a viscoelastic response of bone that would decrease push-out load thereby impairing initial press-fit stability. Results showed that push-out load significantly decreased over a 24 h period due to bone viscoelasticity. It was also found that high and low push-out loads occurred at relatively small amounts of stem-bone interference, but a relationship between stem-bone interference and push-out load could not be determined due to variability among specimens. On the basis of this model, it was concluded that press-fit fixation can occur at relatively low levels of diametral interference and that stem-bone interference elicits viscoelastic response that reduces stem stability over time. From a clinical perspective, these results suggest that there could be large variations in initial press-fit fixation among patients.

  6. Bone healing in children.

    PubMed

    Lindaman, L M

    2001-01-01

    Just as pediatric fractures and bones are basically similar to adult fractures and bones, pediatric bone healing is basically similar to adult bone healing. They both go through the three same phases of inflammation, reparation, and remodeling. It is those differences between pediatric and adult bone, however, that affect the differences in the healing of pediatric bone. Because pediatric bone can fail in compression, less initial stability and less callus formation is required to achieve a clinically stable or healed fracture. The greater subperiosteal hematoma and the stronger periosteum all contribute to a more rapid formation of callous strong enough to render the fracture healed more rapidly than the adult. Genes and hormones that are necessary for the initial formation of the skeleton are the same as, or at least similar in most instances, to those necessary for the healing of fractures. This osteogenic environment of the pediatric bone means that these fracture healing processes are already ongoing in the child at the time of the fracture. In the adult, these factors must be reawakened, leading to the slower healing time in the adult. Once the fracture is healed, the still-growing pediatric bone can correct any "sins" of fracture alignment or angulation leaving the bone with no signs of having ever been broken. The final result is bone that is, in the child's words, "as good as new."

  7. Mobilization of bone marrow mesenchymal stem cells in vivo augments bone healing in a mouse model of segmental bone defect.

    PubMed

    Kumar, Sanjay; Ponnazhagan, Selvarangan

    2012-04-01

    Although the number of mesenchymal stem cells (MSC) in the bone marrow is sufficient to maintain skeletal homeostasis, in osteopenic pathology, aggravated osteoclast activity or insufficient osteoblast numbers ensue, affecting normal bone remodeling. Most of the currently available therapies are anti-resorptive with limited osteogenic potential. Since mobilization of stem/progenitors from the BM is a prerequisite for their participation in tissue repair, amplification of endogenous stem cells may provide an alternative approach in these conditions. The present study determined the potential of MSC mobilization in vivo, using combinations of different growth factors with the CXCR4 antagonist, AMD3100, in a mouse model of segmental bone defect. Results indicated that among several factors tested IGF1 had maximum proliferative ability of MSC in vitro. Results of the in vivo studies indicated that the combination of IGF1 and AMD3100 provided significant augmentation of bone growth as determined by DXA, micro-CT and histomorphometry in mice bearing segmental fractures. Further, characterization of MSC isolated from mice treated with IGF1 and AMD3100 indicated Akt/PI3K, MEK1/2-Erk1/2 and smad2/3 as key signaling pathways mediating this effect. These data indicate the potential of in vivo stem cell mobilization as a novel alternative for bone healing. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Molecular Abnormalities Underlying Bone Fragility in Chronic Kidney Disease

    PubMed Central

    Iwasaki, Yoshiko; Kazama, Junichiro James

    2017-01-01

    Prevention of bone fractures is one goal of therapy for patients with chronic kidney disease-mineral and bone disorder (CKD-MBD), as indicated by the Kidney Disease: Improving Global Outcomes guidelines. CKD patients, including those on hemodialysis, are at higher risk for fractures and fracture-related death compared to people with normal kidney function. However, few clinicians focus on this issue as it is very difficult to estimate bone fragility. Additionally, uremia-related bone fragility has a more complicated pathological process compared to osteoporosis. There are many uremia-associated factors that contribute to bone fragility, including severe secondary hyperparathyroidism, skeletal resistance to parathyroid hormone, and bone mineralization disorders. Uremia also aggravates bone volume loss, disarranges microarchitecture, and increases the deterioration of material properties of bone through abnormal bone cells or excess oxidative stress. In this review, we outline the prevalence of fractures, the interaction of CKD-MBD with osteoporosis in CKD patients, and discuss possible factors that exacerbate the mechanical properties of bone. PMID:28421193

  9. Bone loss and aggravated autoimmune arthritis in HLA-DRβ1-bearing humanized mice following oral challenge with Porphyromonas gingivalis.

    PubMed

    Sandal, Indra; Karydis, Anastasios; Luo, Jiwen; Prislovsky, Amanda; Whittington, Karen B; Rosloniec, Edward F; Dong, Chen; Novack, Deborah V; Mydel, Piotr; Zheng, Song Guo; Radic, Marko Z; Brand, David D

    2016-10-26

    The linkage between periodontal disease and rheumatoid arthritis is well established. Commonalities among the two are that both are chronic inflammatory diseases characterized by bone loss, an association with the shared epitope susceptibility allele, and anti-citrullinated protein antibodies. To explore immune mechanisms that may connect the two seemingly disparate disorders, we measured host immune responses including T-cell phenotype and anti-citrullinated protein antibody production in human leukocyte antigen (HLA)-DR1 humanized C57BL/6 mice following exposure to the Gram-negative anaerobic periodontal disease pathogen Porphyromonas gingivalis. We measured autoimmune arthritis disease expression in mice exposed to P. gingivalis, and also in arthritis-resistant mice by flow cytometry and multiplex cytokine-linked and enzyme-linked immunosorbent assays. We also measured femoral bone density by microcomputed tomography and systemic cytokine production. Exposure of the gingiva of DR1 mice to P. gingivalis results in a transient increase in the percentage of Th17 cells, both in peripheral blood and cervical lymph nodes, a burst of systemic cytokine activity, a loss in femoral bone density, and the generation of anti-citrullinated protein antibodies. Importantly, these antibodies are not produced in response to P. gingivalis treatment of wild-type C57BL/6 mice, and P. gingivalis exposure triggered expression of arthritis in arthritis-resistant mice. Exposure of gingival tissues to P. gingivalis has systemic effects that can result in disease pathology in tissues that are spatially removed from the initial site of infection, providing evidence for systemic effects of this periodontal pathogen. The elicitation of anti-citrullinated protein antibodies in an HLA-DR1-restricted fashion by mice exposed to P. gingivalis provides support for the role of the shared epitope in both periodontal disease and rheumatoid arthritis. The ability of P. gingivalis to induce disease

  10. Freeze or Flee? Negative Stimuli Elicit Selective Responding

    ERIC Educational Resources Information Center

    Estes, Zachary; Verges, Michelle

    2008-01-01

    Humans preferentially attend to negative stimuli. A consequence of this automatic vigilance for negative valence is that negative words elicit slower responses than neutral or positive words on a host of cognitive tasks. Some researchers have speculated that negative stimuli elicit a general suppression of motor activity, akin to the freezing…

  11. Bone regeneration in experimental animals using calcium phosphate cement combined with platelet growth factors and human growth hormone.

    PubMed

    Emilov-Velev, K; Clemente-de-Arriba, C; Alobera-García, M Á; Moreno-Sansalvador, E M; Campo-Loarte, J

    2015-01-01

    Many substances (growth factors and hormones) have osteoinduction properties and when added to some osteoconduction biomaterial they accelerate bone neoformation properties. The materials included 15 New Zealand rabbits, calcium phosphate cement (Calcibon(®)), human growth hormone (GH), and plasma rich in platelets (PRP). Each animal was operated on in both proximal tibias and a critical size bone defect of 6mm of diameter was made. The animals were separated into the following study groups: Control (regeneration only by Calcibon®), PRP (regeneration by Calcibon® and PRP), GH (regeneration by Calcibon® and GH). All the animals were sacrificed at 28 days. An evaluation was made of the appearance of the proximal extreme of rabbit tibiae in all the animals, and to check the filling of the critical size defect. A histological assessment was made of the tissue response, the presence of new bone formation, and the appearance of the biomaterial. Morphometry was performed using the MIP 45 image analyser. ANOVA statistical analysis was performed using the Statgraphics software application. The macroscopic appearance of the critical defect was better in the PRP and the GH group than in the control group. Histologically greater new bone formation was found in the PRP and GH groups. No statistically significant differences were detected in the morphometric study between bone formation observed in the PRP group and the control group. Significant differences in increased bone formation were found in the GH group (p=0.03) compared to the other two groups. GH facilitates bone regeneration in critical defects filled with calcium phosphate cement in the time period studied in New Zealand rabbits. Copyright © 2014 SECOT. Published by Elsevier Espana. All rights reserved.

  12. Epiphyseal abnormalities, trabecular bone loss and articular chondrocyte hypertrophy develop in the long bones of postnatal Ext1-deficient mice1

    PubMed Central

    Sgariglia, Federica; Candela, Maria Elena; Huegel, Julianne; Jacenko, Olena; Koyama, Eiki; Yamaguchi, Yu; Pacifici, Maurizio; Enomoto-Iwamoto, Motomi

    2014-01-01

    Long bones are integral components of the limb skeleton. Recent studies have indicated that embryonic long bone development is altered by mutations in Ext genes and consequent heparan sulfate (HS) deficiency, possibly due to changes in activity and distribution of HS-binding/growth plate-associated signaling proteins. Here we asked whether Ext function is continuously required after birth to sustain growth plate function and long bone growth and organization. Compound transgenic Ext1f/f;Col2CreERT mice were injected with tamoxifen at postnatal day 5 (P5) to ablate Ext1 in cartilage and monitored over time. The Ext1-deficient mice exhibited growth retardation already by 2 weeks post-injection, as did their long bones. Mutant growth plates displayed a severe disorganization of chondrocyte columnar organization, a shortened hypertrophic zone with low expression of collagen X and MMP-13, and reduced primary spongiosa accompanied, however, by increased numbers of TRAP-positive osteoclasts at the chondro-osseous border. The mutant epiphyses were abnormal as well. Formation of a secondary ossification center was significantly delayed but interestingly, hypertrophic-like chondrocytes emerged within articular cartilage, similar to those often seen in osteoarthritic joints. Indeed, the cells displayed a large size and round shape, expressed collagen X and MMP-13 and were surrounded by an abundant Perlecan-rich pericellular matrix not seen in control articular chondrocytes. In addition, ectopic cartilaginous by EXT mutations and HS deficiency. In sum, the data do show that Ext1 is continuously required for postnatal growth and organization of long bones as well as their adjacent joints. Ext1 deficiency elicits defects that can occur in human skeletal conditions including trabecular bone loss, osteoarthritis and HME. PMID:23958822

  13. Transforming growth factor-β synthesized by stromal cells and cancer cells participates in bone resorption induced by oral squamous cell carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, Ryosuke; Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo; Kayamori, Kou

    Transforming growth factor beta (TGF-β) plays a significant role in the regulation of the tumor microenvironment. To explore the role of TGF-β in oral cancer-induced bone destruction, we investigated the immunohistochemical localization of TGF-β and phosphorylated Smad2 (p-Smad2) in 12 surgical specimens of oral squamous cell carcinoma (OSCC). These studies revealed TGF-β and p-Smad2 expression in cancer cells in all tested cases. Several fibroblasts located between cancer nests and resorbing bone expressed TGF-β in 10 out of 12 cases and p-Smad2 in 11 out of 12 cases. Some osteoclasts also exhibited p ∼ Smad2 expression. The OSCC cell line, HSC3, and themore » bone marrow-derived fibroblastic cell line, ST2, synthesized substantial levels of TGF-β. Culture media derived from HSC3 cells could stimulate Tgf-β1 mRNA expression in ST2 cells. Recombinant TGF-β1 could stimulate osteoclast formation induced by receptor activator of nuclear factor kappa-B ligand (RANKL) in RAW264 cells. TGF-β1 could upregulate the expression of p-Smad2 in RAW264 cells, and this action was suppressed by the addition of a neutralizing antibody against TGF-β or by SB431542. Transplantation of HSC3 cells onto the calvarial region of athymic mice caused bone destruction, associated with the expression of TGF-β and p-Smad2 in both cancer cells and stromal cells. The bone destruction was substantially inhibited by the administration of SB431542. The present study demonstrated that TGF-β synthesized by both cancer cells and stromal cells participates in the OSCC-induced bone destruction. - Highlights: • Cancer cell, fibroblastic cells, and osteoclasts at bone resorbing area by oral cancer exhibited TGF-β and p-Smad2. • TGF-β1 stimulated osteoclastogenesis induced by RAKL in RAW264 cell. • Xenograft model of oral cancer-induced bone resorption was substantially inhibited by SB431542. • TGF-β synthesized by both cancer cells and stromal cells participates in the OSCC

  14. Intraperitoneal injection of thalidomide attenuates bone cancer pain and decreases spinal tumor necrosis factor-α expression in a mouse model.

    PubMed

    Gu, Xiaoping; Zheng, Yaguo; Ren, Bingxu; Zhang, Rui; Mei, Fengmei; Zhang, Juan; Ma, Zhengliang

    2010-10-05

    Tumor necrosis factor α (TNF-α) may have a pivotal role in the genesis of mechanical allodynia and thermal hyperalgesia during inflammatory and neuropathic pain. Thalidomide has been shown to selectively inhibit TNF-α production. Previous studies have suggested that thalidomide exerts anti-nociceptive effects in various pain models, but its effects on bone cancer pain have not previously been studied. Therefore, in the present study, we investigated the effect of thalidomide on bone cancer-induced hyperalgesia and up-regulated expression of spinal TNF-α in a mouse model. Osteosarcoma NCTC 2472 cells were implanted into the intramedullary space of the right femurs of C3H/HeJ mice to induce ongoing bone cancer related pain behaviors. At day 5, 7, 10 and 14 after operation, the expression of TNF-α in the spinal cord was higher in tumor-bearing mice compared to the sham mice. Intraperitoneal injection of thalidomide (50 mg/kg), started at day 1 after surgery and once daily thereafter until day 7, attenuated bone cancer-evoked mechanical allodynia and thermal hyperalgesia as well as the up-regulation of TNF-α in the spinal cord. These results suggest that thalidomide can efficiently alleviate bone cancer pain and it may be a useful alternative or adjunct therapy for bone cancer pain. Our data also suggest a role of spinal TNF-α in the development of bone cancer pain.

  15. Prognostic Factors for Recovery After Anterior Debridement/Bone Grafting and Posterior Instrumentation for Lumbar Spinal Tuberculosis.

    PubMed

    Yao, Yuan; Zhang, Huiyu; Liu, Huan; Zhang, Zhengfeng; Tang, Yu; Zhou, Yue

    2017-08-01

    Anterior debridement/bone grafting/posterior instrumentation is a common selection for the treatment of lumbar spinal tuberculosis (LST). To date, no study has focused on the prognostic factors for recovery after this surgery. We included 144 patients who experienced anterior debridement/bone grafting/posterior instrumentation for LST. The recovery rate based on the Japanese Orthopedic Association (JOA) score was used to assess recovery. The Kaplan-Meier method and Cox regression analysis were used to identify the prognostic factors for recovery postoperatively. For the prognostic factors worth further consideration, the changes in JOA scores within the 24-month follow-up period were identified by repeated-measures analysis of variance. Paralysis/nonparalysis, duration of symptoms (≥3/<3 months), number of involved vertebrae (>2/≤2), and posterior open/percutaneous instrumentation were identified as prognostic factors for recovery postoperatively. The prognostic factor of open/percutaneous instrumentation was then further compared for potential clinical application. Patients in the percutaneous instrumentation group achieved higher JOA scores than those in the open instrumentation group in the early stages postoperatively (1-3 months), but this effect equalized at 6 months postoperatively. Patients in the open instrumentation group experienced longer operation time and less cost than those in the percutaneous instrumentation group. Nonparalysis, shorter symptom duration, fewer involved vertebrae, and posterior percutaneous instrumentation (compared with open instrumentation) are considered favorable prognostic factors. Patients in the percutaneous instrumentation group achieved higher JOA scores than those in the open instrumentation group in the early stages postoperatively (1-3 months), but no significant difference was observed in long-term JOA scores (6-24 months). Copyright © 2017. Published by Elsevier Inc.

  16. Bone microstructure in men assessed by HR-pQCT: Associations with risk factors and differences between men with normal, low, and osteoporosis-range areal BMD.

    PubMed

    Okazaki, Narihiro; Burghardt, Andrew J; Chiba, Ko; Schafer, Anne L; Majumdar, Sharmila

    2016-12-01

    The primary objective of this study was to analyze the relationships between bone microstructure and strength, and male osteoporosis risk factors including age, body mass index, serum 25-hydroxyvitamin D level, and testosterone level. A secondary objective was to compare microstructural and strength parameters between men with normal, low, and osteoporosis-range areal bone mineral density (aBMD). Seventy-eight healthy male volunteers (mean age 62.4 ± 7.8 years, range 50-84 years) were recruited. The participants underwent dual-energy X-ray absorptiometry (DXA) and high-resolution peripheral quantitative computed tomography (HR-pQCT) of the ultra-distal radius and tibia. From the HR-pQCT images, volumetric bone mineral density (BMD) and cortical and trabecular bone microstructure were evaluated, and bone strength and cortical load fraction (Ct.LF) were estimated using micro-finite element analysis (μFEA). Age was more strongly correlated with bone microstructure than other risk factors. Age had significant positive correlations with cortical porosity at both ultra-distal radius and tibia ( r  = 0.36, p  = 0.001, and r  = 0.47, p  < 0.001, respectively). At the tibia, age was negatively correlated with cortical BMD, whereas it was positively correlated with trabecular BMD. In μFEA, age was negatively correlated with Ct.LF, although not with bone strength. Compared with men with normal aBMD, men with low or osteoporosis-range aBMD had significantly poor trabecular bone microstructure and lower bone strength at the both sites, while there was no significant difference in cortical bone. Cortical bone microstructure was negatively affected by aging, and there was a suggestion that the influence of aging may be particularly important at the weight-bearing sites.

  17. Bone strength in pure bending: bearing of geometric and material properties.

    PubMed

    Winter, Werner

    2008-01-01

    Osteoporosis is characterized by decreasing of bone mass and bone strength with advanced age. For characterization of material properties of dense and cellular bone the volumetric bone mineral density (vBMD) is one of the most important contributing factors to bone strength. Often bending tests of whole bone are used to get information about the state of osteoporosis. In a first step, different types of cellular structures are considered to characterize vBMD and its influence to elastic and plastic material properties. Afterwards, the classical theory of plastic bending is used to describe the non-linear moment-curvature relation of a whole bone. For bending of whole bone with sandwich structure an effective second moment of area can be defined. The shape factor as a pure geometrical value is considered to define bone strength. This factor is discussed for a bone with circular cross section and different thickness of cortical bone. The deduced relations and the decrease of material properties are used to demonstrate the influence of osteoporosis to bone bending strength. It can be shown that the elastic and plastic material properties of bone are related to a relative bone mineral density. Starting from an elastic-plastic bone behavior with an constant yield stress the non-linear moment-curvature relation in bending is related to yielding of the fibres in the cross section. The ultimate moment is characterized by a shape factor depending on the geometry of the cross section and on the change of cortical thickness.

  18. Subcutaneous administration of insulin-like growth factor (IGF)-II/IGF binding protein-2 complex stimulates bone formation and prevents loss of bone mineral density in a rat model of disuse osteoporosis

    NASA Technical Reports Server (NTRS)

    Conover, Cheryl A.; Johnstone, Edward W.; Turner, Russell T.; Evans, Glenda L.; John Ballard, F. John; Doran, Patrick M.; Khosla, Sundeep

    2002-01-01

    Elevated serum levels of insulin-like growth factor binding protein-2 (IGFBP-2) and a precursor form of IGF-II are associated with marked increases in bone formation and skeletal mass in patients with hepatitis C-associated osteosclerosis. In vitro studies indicate that IGF-II in complex with IGFBP-2 has high affinity for bone matrix and is able to stimulate osteoblast proliferation. The purpose of this study was to determine the ability of the IGF-II/IGFBP-2 complex to increase bone mass in vivo. Osteopenia of the femur was induced by unilateral sciatic neurectomy in rats. At the time of surgery, 14-day osmotic minipumps containing vehicle or 2 microg IGF-II+9 microg IGFBP-2/100g body weight/day were implanted subcutaneously in the neck. Bone mineral density (BMD) measurements were taken the day of surgery and 14 days later using a PIXImus small animal densitometer. Neurectomy of the right hindlimb resulted in a 9% decrease in right femur BMD (P<0.05 vs. baseline). This loss in BMD was completely prevented by treatment with IGF-II/IGFBP-2. On the control limb, there was no loss of BMD over the 14 days and IGF-II/IGFBP-2 treatment resulted in a 9% increase in left femur BMD (P<0.05). Bone histomorphometry indicated increases in endocortical and cancellous bone formation rates and in trabecular thickness. These results demonstrate that short-term administration of the IGF-II/IGFBP-2 complex can prevent loss of BMD associated with disuse osteoporosis and stimulate bone formation in adult rats. Furthermore, they provide proof of concept for a novel anabolic approach to increasing bone mass in humans with osteoporosis.

  19. Relative binding and biochemical effects of heterodimeric and homodimeric isoforms of platelet-derived growth factor in osteoblast-enriched cultures from fetal rat bone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Centrella, M.; McCarthy, T.L.; Kusmik, W.F.

    1991-06-01

    Platelet-derived growth factor (PDGF) exists as a homodimer or a heterodimer comprising either PDGF-A or PDGF-B subunits, and each isoform occurs in various tissues, including bone. Although the stimulatory effects of PDGF-BB have been studied in cultures of bone cells and intact bone fragments, the influence of other isoforms that may arise locally or systematically in vivo, has not been reported. Therefore recombinant human PDGF-BB, PDGF-AB, and PDGF-AA were evaluated in osteoblast-enriched cultures from fetal rat bone. Within 24 hours these factors produced a graded response in bone cell DNA and protein synthesis, with half-maximal effects at approximately 0.6, 2.1,more » and 4.8 nM PDGF-BB, PDGF-AB, and PDGF-AA, respectively. Increases in collagen and noncollagen protein synthesis were abrogated when DNA synthesis was blocked with hydroxyurea. Furthermore, each factor reduced alkaline phosphatase activity, PDGF-BB being the most inhibitory. Binding studies with 125I-PDGF-BB or 125I-PDGF-AA and each unlabeled PDGF isoform produced discrete ligand binding and displacement patterns: 125I-PDGF-BB binding was preferentially displaced by PDGF-BB (Ki approximately 0.7 nM), less by PDGF-AB (Ki approximately 2.3 nM) and poorly by PDGF-AA. In contrast, 125I-PDGF-AA binding was measurably reduced by PDGF-AA (Ki approximately 4.0 nM), but was more effectively displaced by PDGF-BB or PDGF-AB (each with Ki approximately 0.7 nM). These studies indicate that each PDGF isoform produces biochemical effects proportional to binding site occupancy and suggest that receptors that favor PDGF-B subunit binding preferentially mediate these results in osteoblast-enriched bone cell cultures.« less

  20. BMP9 inhibits the bone metastasis of breast cancer cells by downregulating CCN2 (connective tissue growth factor, CTGF) expression.

    PubMed

    Ren, Wei; Sun, Xiaoxiao; Wang, Ke; Feng, Honglei; Liu, Yuehong; Fei, Chang; Wan, Shaoheng; Wang, Wei; Luo, Jinyong; Shi, Qiong; Tang, Min; Zuo, Guowei; Weng, Yaguang; He, Tongchuan; Zhang, Yan

    2014-03-01

    Bone morphogenetic proteins (BMPs), which belong to the transforming growth factor-β superfamily, regulate a wide range of cellular responses including cell proliferation, differentiation, adhesion, migration, and apoptosis. BMP9, the latest BMP to be discovered, is reportedly expressed in a variety of human carcinoma cell lines, but the role of BMP9 in breast cancer has not been fully clarified. In a previous study, BMP9 was found to inhibit the growth, migration, and invasiveness of MDA-MB-231 breast cancer cells. In the current study, the effect of BMP9 on the bone metastasis of breast cancer cells was investigated. After absent or low expression of BMP9 was detected in the MDA-MB-231 breast cancer cells and breast non-tumor adjacent tissues using Western blot and immunohistochemistry, In our previous study, BMP9 could inhibit the proliferation and invasiveness of breast cancer cells MDA-MB-231 in vitro and in vivo. This paper shows that BMP9 inhibit the bone metastasis of breast cancer cells by activating the BMP/Smad signaling pathway and downregulating connective tissue growth factor (CTGF); however, when CTGF expression was maintained, the inhibitory effect of BMP9 on the MDA-MB-231 cells was abolished. Together, these observations indicate that BMP9 is an important mediator of breast cancer bone metastasis and a potential therapeutic target for treating this deadly disease.

  1. Importance of dual delivery systems for bone tissue engineering.

    PubMed

    Farokhi, Mehdi; Mottaghitalab, Fatemeh; Shokrgozar, Mohammad Ali; Ou, Keng-Liang; Mao, Chuanbin; Hosseinkhani, Hossein

    2016-03-10

    Bone formation is a complex process that requires concerted function of multiple growth factors. For this, it is essential to design a delivery system with the ability to load multiple growth factors in order to mimic the natural microenvironment for bone tissue formation. However, the short half-lives of growth factors, their relatively large size, slow tissue penetration, and high toxicity suggest that conventional routes of administration are unlikely to be effective. Therefore, it seems that using multiple bioactive factors in different delivery systems can develop new strategies for improving bone tissue regeneration. Combination of these factors along with biomaterials that permit tunable release profiles would help to achieve truly spatiotemporal regulation during delivery. This review summarizes the various dual-control release systems that are used for bone tissue engineering. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. The skeletal vascular system - Breathing life into bone tissue.

    PubMed

    Stegen, Steve; Carmeliet, Geert

    2017-08-26

    During bone development, homeostasis and repair, a dense vascular system provides oxygen and nutrients to highly anabolic skeletal cells. Characteristic for the vascular system in bone is the serial organization of two capillary systems, each typified by specific morphological and physiological features. Especially the arterial capillaries mediate the growth of the bone vascular system, serve as a niche for skeletal and hematopoietic progenitors and couple angiogenesis to osteogenesis. Endothelial cells and osteoprogenitor cells interact not only physically, but also communicate to each other by secretion of growth factors. A vital angiogenic growth factor is vascular endothelial growth factor and its expression in skeletal cells is controlled by osteogenic transcription factors and hypoxia signaling, whereas the secretion of angiocrine factors by endothelial cells is regulated by Notch signaling, blood flow and possibly hypoxia. Bone loss and impaired fracture repair are often associated with reduced and disorganized blood vessel network and therapeutic targeting of the angiogenic response may contribute to enhanced bone regeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Uremic toxin and bone metabolism.

    PubMed

    Iwasaki, Yoshiko; Yamato, Hideyuki; Nii-Kono, Tomoko; Fujieda, Ayako; Uchida, Motoyuki; Hosokawa, Atsuko; Motojima, Masaru; Fukagawa, Masafumi

    2006-01-01

    Patients with end-stage renal disease (ESRD) develop various kinds of abnormalities in bone and mineral metabolism, widely known as renal osteodystrophy (ROD). Although the pathogenesis of ESRD may be similar in many patients, the response of the bone varies widely, ranging from high to low turnover. ROD is classified into several types, depending on the status of bone turnover, by histomorphometric analysis using bone biopsy samples [1,2]. In the mild type, bone metabolism is closest to that of persons with normal renal function. In osteitis fibrosa, bone turnover is abnormally activated. This is a condition of high-turnover bone. A portion of the calcified bone loses its lamellar structure and appears as woven bone. In the cortical bone also, bone resorption by osteoclasts is active, and a general picture of bone marrow tissue infiltration and the formation of cancellous bone can be observed. In osteomalacia, the bone surface is covered with uncalcified osteoid. This condition is induced by aluminum accumulation or vitamin D deficiency. The mixed type possesses characteristics of both osteitis fibrosa and osteomalacia. The bone turnover is so markedly accelerated that calcification of the osteoid cannot keep pace. In the adynamic bone type, bone resorption and bone formation are both lowered. While bone turnover is decreased, there is little osteoid. The existence of these various types probably accounts for the diversity in degree of renal impairment, serum parathyroid hormone (PTH) level, and serum vitamin D level in patients with ROD. However, all patients share a common factor, i.e., the presence of a uremic condition.

  4. Impact of clinical factors on the long-term functional and anatomic outcomes of osteo-odonto-keratoprosthesis and tibial bone keratoprosthesis.

    PubMed

    De La Paz, María Fideliz; De Toledo, Juan Álvarez; Charoenrook, Victor; Sel, Saadettin; Temprano, José; Barraquer, Rafael I; Michael, Ralph

    2011-05-01

    To report the long-term functional and anatomic outcomes of osteo-odonto-keratoprosthesis and tibial bone keratoprosthesis; to analyze the influence of clinical factors, such as surgical technique, primary diagnosis, age, and postoperative complications, on the final outcome. Retrospective cohort study. setting: Centro de Oftalmología Barraquer, between 1974 and 2005. Two hundred twenty-seven patients. intervention: Biological keratoprosthesis using osteo-odonto-keratoprosthesis or tibial bone keratoprosthesis. main outcome measures: Functional survival with success defined as best-corrected visual acuity ≥0.05; anatomic survival with success defined as retention of the keratoprosthesis lamina. Osteo-odonto-keratoprosthesis and tibial bone keratoprosthesis have comparable anatomic survival at 5 and 10 years of follow-up, but osteo-odonto-keratoprosthesis has a significantly better functional success than tibial bone keratoprosthesis at the same time periods. Among the primary diagnoses, Stevens-Johnson syndrome, chemical burn, and trachoma have generally good functional and anatomic outcomes and the least favorable prognosis is for ocular cicatricial pemphigoid. Younger patients fared better than those in older age groups. The most frequent complications were extrusion (28%), retinal detachment (16%), and uncontrolled glaucoma (11%). The glaucoma group had the best anatomic success but the worst functional results, only exceeded by the retinal detachment group in terms of functional outcome. Clinical factors, such as surgical technique, primary diagnosis, age, and postoperative complications, can affect the long-term anatomic and functional successes of biological keratoprosthesis. Knowledge about the impact of each of these factors on survival can help surgeons determine the best approach in every particular case. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Mechanical Vibration Mitigates the Decrease of Bone Quantity and Bone Quality of Leptin Receptor-Deficient Db/Db Mice by Promoting Bone Formation and Inhibiting Bone Resorption.

    PubMed

    Jing, Da; Luo, Erping; Cai, Jing; Tong, Shichao; Zhai, Mingming; Shen, Guanghao; Wang, Xin; Luo, Zhuojing

    2016-09-01

    Leptin, a major hormonal product of adipocytes, is involved in regulating appetite and energy metabolism. Substantial studies have revealed the anabolic actions of leptin on skeletons and bone cells both in vivo and in vitro. Growing evidence has substantiated that leptin receptor-deficient db/db mice exhibit decreased bone mass and impaired bone microstructure despite several conflicting results previously reported. We herein systematically investigated bone microarchitecture, mechanical strength, bone turnover and its potential molecular mechanisms in db/db mice. More importantly, we also explored an effective approach for increasing bone mass in leptin receptor-deficient animals in an easy and noninvasive manner. Our results show that deterioration of trabecular and cortical bone microarchitecture and decreases of skeletal mechanical strength-including maximum load, yield load, stiffness, energy, tissue-level modulus and hardness-in db/db mice were significantly ameliorated by 12-week, whole-body vibration (WBV) with 0.5 g, 45 Hz via micro-computed tomography (μCT), three-point bending, and nanoindentation examinations. Serum biochemical analysis shows that WBV significantly decreased serum tartrate-resistant acid phosphatase 5b (TRACP5b) and CTx-1 levels and also mitigated the reduction of serum osteocalcin (OCN) in db/db mice. Bone histomorphometric analysis confirmed that decreased bone formation-lower mineral apposition rate, bone formation rate, and osteoblast numbers in cancellous bone-in db/db mice were suppressed by WBV. Real-time PCR assays show that WBV mitigated the reductions of tibial alkaline phosphatase (ALP), OCN, Runt-related transcription factor 2 (RUNX2), type I collagen (COL1), BMP2, Wnt3a, Lrp6, and β-catenin mRNA expression, and prevented the increases of tibial sclerostin (SOST), RANK, RANKL, RANL/osteoprotegerin (OPG) gene levels in db/db mice. Our results show that WBV promoted bone quantity and quality in db/db mice with obvious

  6. Scaffold Design for Bone Regeneration

    PubMed Central

    Polo-Corrales, Liliana; Latorre-Esteves, Magda; Ramirez-Vick, Jaime E.

    2014-01-01

    The use of bone grafts is the standard to treat skeletal fractures, or to replace and regenerate lost bone, as demonstrated by the large number of bone graft procedures performed worldwide. The most common of these is the autograft, however, its use can lead to complications such as pain, infection, scarring, blood loss, and donor-site morbidity. The alternative is allografts, but they lack the osteoactive capacity of autografts and carry the risk of carrying infectious agents or immune rejection. Other approaches, such as the bone graft substitutes, have focused on improving the efficacy of bone grafts or other scaffolds by incorporating bone progenitor cells and growth factors to stimulate cells. An ideal bone graft or scaffold should be made of biomaterials that imitate the structure and properties of natural bone ECM, include osteoprogenitor cells and provide all the necessary environmental cues found in natural bone. However, creating living tissue constructs that are structurally, functionally and mechanically comparable to the natural bone has been a challenge so far. This focus of this review is on the evolution of these scaffolds as bone graft substitutes in the process of recreating the bone tissue microenvironment, including biochemical and biophysical cues. PMID:24730250

  7. Comparative Analysis of Cellular and Growth Factor Composition in Bone Marrow Aspirate Concentrate and Platelet-Rich Plasma.

    PubMed

    Sugaya, Hisashi; Yoshioka, Tomokazu; Kato, Toshiki; Taniguchi, Yu; Kumagai, Hiroshi; Hyodo, Kojiro; Ohneda, Osamu; Yamazaki, Masashi; Mishima, Hajime

    2018-01-01

    The purpose of this study was to quantify the stem cell and growth factor (GF) contents in the bone marrow aspirate concentrate (BMAC) and platelet-rich plasma (PRP) prepared from whole blood using a protocol established in our laboratory. We examined 10 patients with osteonecrosis of the femoral head who were treated by autologous BMAC transplantation at our hospital between January 2015 and June 2015. We quantified CD34+ and CD31-CD45-CD90+CD105+ cells in BMAC and PRP by flow cytometry. Additionally, we measured various GFs, that is, basic fibroblast growth factor (b-FGF), platelet-derived growth factor-BB (PDGF-BB), vascular endothelial growth factor (VEGF), transforming growth factor- β 1 (TGF- β 1), and bone morphogenetic protein-2 (BMP-2) in BMAC and PRP using enzyme-linked immunosorbent assays and statistical analyses. CD34+ and CD31-45-90+105+ cells accounted for approximately 1.9% and 0.03% of cells in BMAC and no cells in PRP. The concentration of b-FGF was higher in BMAC than in PRP ( P < 0.001), whereas no significant differences in the levels of PDGF-BB, VEGF, TGF- β 1, and BMP-2 were observed between the two types of sample. BMAC had an average of 1.9% CD34+ and 0.03% CD31-45-90+105+ cells and higher levels of b-FGF than those of PRP.

  8. A c-fms tyrosine kinase inhibitor, Ki20227, suppresses osteoclast differentiation and osteolytic bone destruction in a bone metastasis model.

    PubMed

    Ohno, Hiroaki; Kubo, Kazuo; Murooka, Hideko; Kobayashi, Yoshiko; Nishitoba, Tsuyoshi; Shibuya, Masabumi; Yoneda, Toshiyuki; Isoe, Toshiyuki

    2006-11-01

    In bone metastatic lesions, osteoclasts play a key role in the development of osteolysis. Previous studies have shown that macrophage colony-stimulating factor (M-CSF) is important for the differentiation of osteoclasts. In this study, we investigated whether an inhibitor of M-CSF receptor (c-Fms) suppresses osteoclast-dependent osteolysis in bone metastatic lesions. We developed small molecule inhibitors against ligand-dependent phosphorylation of c-Fms and examined the effects of these compounds on osteolytic bone destruction in a bone metastasis model. We discovered a novel quinoline-urea derivative, Ki20227 (N-{4-[(6,7-dimethoxy-4-quinolyl)oxy]-2-methoxyphenyl}-N'-[1-(1,3-thiazole-2-yl)ethyl]urea), which is a c-Fms tyrosine kinase inhibitor. The IC(50)s of Ki20227 to inhibit c-Fms, vascular endothelial growth factor receptor-2 (KDR), stem cell factor receptor (c-Kit), and platelet-derived growth factor receptor beta were found to be 2, 12, 451, and 217 nmol/L, respectively. Ki20227 did not inhibit other kinases tested, such as fms-like tyrosine kinase-3, epidermal growth factor receptor, or c-Src (c-src proto-oncogene product). Ki20227 was also found to inhibit the M-CSF-dependent growth of M-NFS-60 cells but not the M-CSF-independent growth of A375 human melanoma cells in vitro. Furthermore, in an osteoclast-like cell formation assay using mouse bone marrow cells, Ki20227 inhibited the development of tartrate-resistant acid phosphatase-positive osteoclast-like cells in a dose-dependent manner. In in vivo studies, oral administration of Ki20227 suppressed osteoclast-like cell accumulation and bone resorption induced by metastatic tumor cells in nude rats following intracardiac injection of A375 cells. Moreover, Ki20227 decreased the number of tartrate-resistant acid phosphatase-positive osteoclast-like cells on bone surfaces in ovariectomized (ovx) rats. These findings suggest that Ki20227 inhibits osteolytic bone destruction through the suppression of M

  9. Serum leptin, bone mineral density and the healing of long bone fractures in men with spinal cord injury.

    PubMed

    Wang, Lei; Liu, Linjuan; Pan, Zhanpeng; Zeng, Yanjun

    2015-11-16

    Previously reported fracture rates in patients with spinal cord injury range from 1% to 20%. However, the exact role of spinal cord injury in bone metabolism has not yet been clarified. In order to investigate the effects of serum leptin and bone mineral density on the healing of long bone fractures in men with spinal cord injury, 15 male SCI patients and 15 matched controls were involved in our study. The outcome indicated that at 4 and 8 weeks after bone fracture, callus production in patients with spinal cord injury was lower than that in controls. Besides, bone mineral density was significantly reduced at 2, 4 and 8 weeks. In addition, it was found that at each time point, patients with spinal cord injury had significantly higher serum leptin levels than controls and no association was found between serum leptin level and bone mineral density of lumbar vertebrae. Moreover, bone mineral density was positively correlated with bone formation in both of the groups. These findings suggest that in early phases i.e. week 4 and 8, fracture healing was impaired in patients with spinal cord injury and that various factors participated in the complicated healing process, such as hormonal and mechanical factors.

  10. [Magnesium disorder in metabolic bone diseases].

    PubMed

    Ishii, Akira; Imanishi, Yasuo

    2012-08-01

    Magnesium is abundantly distributed among the body. The half of the magnesium exists in the bone. In addition, magnesium is the second most abundant intracellular cation in vertebrates and essential for maintaining physiological function of the cells. Epidemiologic studies have demonstrated that magnesium deficiency is a risk factor for osteoporosis. The mechanism of bone fragility caused by magnesium deficiency has been intensely studied using animal models of magnesium deficiency. Magnesium deficiency causes decreased osteoblastic function and increased number of osteoclasts. Magnesium deficiency also accelerates mineralization in bone. These observations suggest that disturbed bone metabolic turnover and mineralization causes bone fragility.

  11. Eliciting expert opinion for economic models: an applied example.

    PubMed

    Leal, José; Wordsworth, Sarah; Legood, Rosa; Blair, Edward

    2007-01-01

    Expert opinion is considered as a legitimate source of information for decision-analytic modeling where required data are unavailable. Our objective was to develop a practical computer-based tool for eliciting expert opinion about the shape of the uncertainty distribution around individual model parameters. We first developed a prepilot survey with departmental colleagues to test a number of alternative approaches to eliciting opinions on the shape of the uncertainty distribution around individual parameters. This information was used to develop a survey instrument for an applied clinical example. This involved eliciting opinions from experts to inform a number of parameters involving Bernoulli processes in an economic model evaluating DNA testing for families with a genetic disease, hypertrophic cardiomyopathy. The experts were cardiologists, clinical geneticists, and laboratory scientists working with cardiomyopathy patient populations and DNA testing. Our initial prepilot work suggested that the more complex elicitation techniques advocated in the literature were difficult to use in practice. In contrast, our approach achieved a reasonable response rate (50%), provided logical answers, and was generally rated as easy to use by respondents. The computer software user interface permitted graphical feedback throughout the elicitation process. The distributions obtained were incorporated into the model, enabling the use of probabilistic sensitivity analysis. There is clearly a gap in the literature between theoretical elicitation techniques and tools that can be used in applied decision-analytic models. The results of this methodological study are potentially valuable for other decision analysts deriving expert opinion.

  12. Time course of brain activation elicited by basic emotions.

    PubMed

    Hot, Pascal; Sequeira, Henrique

    2013-11-13

    Whereas facial emotion recognition protocols have shown that each discrete emotion has a specific time course of brain activation, there is no electrophysiological evidence to support these findings for emotional induction by complex pictures. Our objective was to specify the differences between the time courses of brain activation elicited by feelings of happiness and, with unpleasant pictures, by feelings of disgust and sadness. We compared event-related potentials (ERPs) elicited by the watching of high-arousing pictures from the International Affective Picture System, selected to induce specific emotions. In addition to a classical arousal effect on late positive components, we found specific ERP patterns for each emotion in early temporal windows (<200 ms). Disgust was the first emotion to be associated with different brain processing after 140 ms, whereas happiness and sadness differed in ERPs elicited at the frontal and central sites after 160 ms. Our findings highlight the limits of the classical averaging of ERPs elicited by different emotions inside the same valence and suggest that each emotion could elicit a specific temporal pattern of brain activation, similar to those observed with emotional face recognition.

  13. Bringing new life to damaged bone: the importance of angiogenesis in bone repair and regeneration.

    PubMed

    Stegen, Steve; van Gastel, Nick; Carmeliet, Geert

    2015-01-01

    Bone has the unique capacity to heal without the formation of a fibrous scar, likely because several of the cellular and molecular processes governing bone healing recapitulate the events during skeletal development. A critical component in bone healing is the timely appearance of blood vessels in the fracture callus. Angiogenesis, the formation of new blood vessels from pre-existing ones, is stimulated after fracture by the local production of numerous angiogenic growth factors. The fracture vasculature not only supplies oxygen and nutrients, but also stem cells able to differentiate into osteoblasts and in a later phase also the ions necessary for mineralization. This review provides a concise report of the regulation of angiogenesis by bone cells, its importance during bone healing and its possible therapeutic applications in bone tissue engineering. This article is part of a Special Issue entitled "Stem Cells and Bone". Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Bone Density and Dental External Apical Root Resorption

    PubMed Central

    Iglesias-Linares, Alejandro; Morford, Lorri Ann

    2016-01-01

    When orthodontic patients desire shorter treatment times with aesthetic results and long-term stability, it is important for the orthodontist to understand the potential limitations and problems that may arise during standard and/or technology-assisted accelerated treatment. Bone density plays an important role in facilitating orthodontic tooth movement (OTM), such that reductions in bone density can significantly increase movement velocity. Lifestyle, genetic background, environmental factors and disease status all can influence a patients’ overall health and bone density. In some individuals, these factors may create specific conditions that influence systemic-wide bone metabolism. Both genetic variation and the onset of a bone-related disease can influence systemic bone density and local bone density, such as is observed in the mandible and maxilla. These types of localized density changes can affect the rate of OTM and may also influence the risk of unwanted outcomes, i.e., the occurrence of dental external apical root resorption (EARR). PMID:27766484

  15. Nanotechnology in bone tissue engineering.

    PubMed

    Walmsley, Graham G; McArdle, Adrian; Tevlin, Ruth; Momeni, Arash; Atashroo, David; Hu, Michael S; Feroze, Abdullah H; Wong, Victor W; Lorenz, Peter H; Longaker, Michael T; Wan, Derrick C

    2015-07-01

    Nanotechnology represents a major frontier with potential to significantly advance the field of bone tissue engineering. Current limitations in regenerative strategies include impaired cellular proliferation and differentiation, insufficient mechanical strength of scaffolds, and inadequate production of extrinsic factors necessary for efficient osteogenesis. Here we review several major areas of research in nanotechnology with potential implications in bone regeneration: 1) nanoparticle-based methods for delivery of bioactive molecules, growth factors, and genetic material, 2) nanoparticle-mediated cell labeling and targeting, and 3) nano-based scaffold construction and modification to enhance physicochemical interactions, biocompatibility, mechanical stability, and cellular attachment/survival. As these technologies continue to evolve, ultimate translation to the clinical environment may allow for improved therapeutic outcomes in patients with large bone deficits and osteodegenerative diseases. Traditionally, the reconstruction of bony defects has relied on the use of bone grafts. With advances in nanotechnology, there has been significant development of synthetic biomaterials. In this article, the authors provided a comprehensive review on current research in nanoparticle-based therapies for bone tissue engineering, which should be useful reading for clinicians as well as researchers in this field. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Regulation of human bone sialoprotein gene transcription by platelet-derived growth factor-BB.

    PubMed

    Mezawa, Masaru; Araki, Shouta; Takai, Hideki; Sasaki, Yoko; Wang, Shuang; Li, Xinyue; Kim, Dong-Soon; Nakayama, Youhei; Ogata, Yorimasa

    2009-04-15

    Platelet-derived growth factor (PDGF) is produced by mesenchymal cells and released by platelets following aggregation and is synthesized by osteoblasts. In bone, PDGF stimulates proliferation and differentiation of osteoblasts. PDGF also increases bone resorption, most likely by increasing the number of osteoclasts. Bone sialoprotein (BSP) is thought to function in the initial mineralization of bone, selectively expressed by differentiated osteoblast. To determine the molecular mechanisms PDGF regulation of human BSP gene transcription, we have analyzed the effects of PDGF-BB on osteoblast-like Saos2 and ROS17/2.8 cells. PDGF-BB (5 ng/ml) increased BSP mRNA and protein levels at 12 h in Saos2 cells, and induced BSP mRNA expression at 3 h, reached maximal at 12 h in ROS17/2.8 cells. Transient transfection analyses were performed using chimeric constructs of the human BSP gene promoter linked to a luciferase reporter gene. Treatment of Saos2 cells with PDGF-BB (5 ng/ml, 12 h) increased luciferase activities of all constructs between -184LUC to -2672LUC including the human BSP gene promoter. Effects of PDGF-BB abrogated in constructs included 2 bp mutations in the two cAMP response elements (CRE1 and CRE2), activator protein 1(3) (AP1(3)) and shear stress response element 1 (SSRE1). Luciferase activities induced by PDGF-BB were blocked by protein kinase A inhibitor H89 and tyrosine kinase inhibitor herbimycin A. Gel mobility shift analyses showed that PDGF-BB increased binding of CRE1, CRE2, AP1(3) and SSRE1 elements. CRE1- and CRE2-protein complexes were supershifted by CREB1 and phospho-CREB1 antibodies. Notably, AP1(3)-protein complexes were supershifted by c-Fos and JunD, and disrupted by CREB1, phospho-CREB1, c-Jun and Fra2 antibodies. These studies, therefore, demonstrate that PDGF-BB stimulates human BSP transcription by targeting the CRE1, CRE2, AP1(3) and SSRE1 elements in the human BSP gene promoter.

  17. Effects of Spaceflight on Bone: The Rat as an Animal Model for Human Bone Loss

    NASA Technical Reports Server (NTRS)

    Halloran, B.; Weider, T.; Morey-Holton, E.

    1999-01-01

    The loss of weight bearing during spaceflight results in osteopenia in humans. Decrements in bone mineral reach 3-10% after as little as 75-184 days in space. Loss of bone mineral during flight decreases bone strength and increases fracture risk. The mechanisms responsible for, and the factors contributing to, the changes in bone induced by spaceflight are poorly understood. The rat has been widely used as an animal model for human bone loss during spaceflight. Despite its potential usefulness, the results of bone studies performed in the rat in space have been inconsistent. In some flights bone formation is decreased and cancellous bone volume reduced, while in others no significant changes in bone occur. In June of 1996 Drs. T. Wronski, S. Miller and myself participated in a flight experiment (STS 78) to examine the effects of glucocorticoids on bone during weightlessness. Technically the 17 day flight experiment was flawless. The results, however, were surprising. Cancellous bone volume and osteoblast surface in the proximal tibial metaphysis were the same in flight and ground-based control rats. Normal levels of cancellous bone mass and bone formation were also detected in the lumbar vertebrae and femoral neck of flight rats. Furthermore, periosteal bone formation rate was found to be identical in flight and ground-based control rats. Spaceflight had little or no effect on bone metabolism! These results prompted us to carefully review the changes in bone observed in, and the flight conditions of previous spaceflight missions.

  18. BONE BANKS.

    PubMed

    de Alencar, Paulo Gilberto Cimbalista; Vieira, Inácio Facó Ventura

    2010-01-01

    Bone banks are necessary for providing biological material for a series of orthopedic procedures. The growing need for musculoskeletal tissues for transplantation has been due to the development of new surgical techniques, and this has led to a situation in which a variety of hospital services have been willing to have their own source of tissue for transplantation. To increase the safety of transplanted tissues, standards for bone bank operation have been imposed by the government, which has limited the number of authorized institutions. The good performance in a bone bank depends on strict control over all stages, including: formation of well-trained harvesting teams; donor selection; conducting various tests on the tissues obtained; and strict control over the processing techniques used. Combination of these factors enables greater scope of use and numbers of recipient patients, while the incidence of tissue contamination becomes statistically insignificant, and there is traceability between donors and recipients. This paper describes technical considerations relating to how a bone bank functions, the use of grafts and orthopedic applications, the ethical issues and the main obstacles encountered.

  19. Better Bones Buddies: An Osteoporosis Prevention Program

    ERIC Educational Resources Information Center

    Schrader, Susan L.; Blue, Rebecca; Horner, Arlene

    2005-01-01

    Although osteoporosis typically surfaces in later life, peak bone mass attained before age 20 is a key factor in its prevention. However, most American children's diets lack sufficient calcium during the critical growth periods of preadolescence and adolescence to achieve peak bone mass. "Better Bones (BB) Buddies" is an educational…

  20. Heterotopic bone formation around sintered porous-surfaced Ti-6Al-4V implants coated with native bone morphogenetic proteins.

    PubMed

    Simon, Ziv; Deporter, Douglas A; Pilliar, Robert M; Clokie, Cameron M

    2006-09-01

    Coating endosseous dental implants with growth factors such as bone morphogenetic proteins (BMPs) may be one way to accelerate and/or enhance the quality of osseointegration. The purpose of this study was to investigate in the murine muscle pouch model whether sintered porous-surfaced titanium alloy implants coated with BMPs would lead to heterotopic bone formation around and within the implant surface geometry. Porous-surfaced dental implants were coated with partially purified native human BMPs, with or without a carrier of Poloxamer 407 (BASF Corp., Parsippany, NJ), placed in gelatin capsules and implanted into the hindquarter muscles of mice. Mice were euthanized after 28 days. Sections of retrieved specimens were subsequently prepared for morphometric analysis of bone formation using backscatter electron microscopic images. Human BMPs, either with or without the carrier of Poloxamer 407, led to bone formation within and outside of the sintered porous implant surface. When the sintered implant surface region was subdivided into inner and outer halves, similar levels of bone ingrowth and contact were seen in the 2 halves. Evidence of bone formation to the depth of the solid implant core (i.e., the deepest level possible) also was seen. Sintered porous-surfaced dental implants can be used as substrate for partially purified BMPs in the murine muscle pouch model. With the addition of these osteoinductive factors, the porous implant surface supported bone formation within the surface porosity provided, in some instances, all the way to the solid implant core. The addition of growth factors to a sintered porous surface may be an efficient method for altering locally the healing sequence and quality of bone associated with osseointegration of bone-interfacing implants.

  1. Blockade of epidermal growth factor receptor signaling leads to inhibition of renal cell carcinoma growth in the bone of nude mice.

    PubMed

    Weber, Kristy L; Doucet, Michele; Price, Janet E; Baker, Cheryl; Kim, Sun Jin; Fidler, Isaiah J

    2003-06-01

    Renal cell carcinoma (RCC) frequently produces metastases to the musculoskeletal system that are a major source of morbidity in the form of pain, immobilization, fractures, neurological compromise, and a decreased ability to perform activities of daily living. Patients with metastatic RCC therefore have a dismal prognosis because there is no effective adjuvant treatment for this disease. Because the epidermal growth factor receptor (EGF-R) signaling cascade is important in the growth and metastasis of RCC, its blockade has been hypothesized to inhibit tumor growth and hence prevent resultant bone destruction. We determined whether blockade of EGF-R by the tyrosine kinase inhibitor PKI 166 inhibited the growth of RCC in bone. We use a novel cell line, RBM1-IT4, established from a human RCC bone metastasis. Protein and mRNA expression of the ligands and receptors was assessed by Western and Northern blots. The stimulation of RBM1-IT4 cells with epidermal growth factor or transforming growth factor alpha resulted in increased cellular proliferation and tyrosine kinase autophosphorylation. PKI 166 prevented these effects. First, RBM1-IT4 cells were implanted into the tibia of nude mice, where they established lytic, progressively growing lesions, after which the mice were treated with PKI 166 alone or in combination with paclitaxel (Taxol). Immunohistochemical analysis revealed that tumor cells and tumor-associated endothelial cells in control mice expressed activated EGF-R. Treatment of mice with PKI 166 alone or in combination with Taxol produced a significant decrease in the incidence and size of bone lesions as compared with the results in control or Taxol-treated mice (P < 0.001). Treatment with PKI 166 also decreased the expression of phosphorylated EGF-R by tumor cells and tumor-associated endothelial cells, and this was even more pronounced with PKI 166 plus Taxol treatment. The PKI 166 plus Taxol combination produced apoptosis of tumor cells and tumor

  2. An update on childhood bone health: mineral accrual, assessment and treatment.

    PubMed

    Sopher, Aviva B; Fennoy, Ilene; Oberfield, Sharon E

    2015-02-01

    To update the reader's knowledge about the factors that influence bone mineral accrual and to review the advances in the assessment of bone health and treatment of bone disorders. Maternal vitamin D status influences neonatal calcium levels, bone mineral density (BMD) and bone size. In turn, BMD z-score tends to track in childhood. These factors highlight the importance of bone health as early as fetal life. Dual-energy x-ray absorptiometry is the mainstay of clinical bone health assessment in this population because of the availability of appropriate reference data. Recently, more information has become available about the assessment and treatment of bone disease in chronically ill pediatric patients. Bone health must become a health focus starting prenatally in order to maximize peak bone mass and to prevent osteoporosis-related bone disease in adulthood. Vitamin D, calcium and weight-bearing activity are the factors of key importance throughout childhood in achieving optimal bone health as BMD z-score tracks through childhood and into adulthood. Recent updates of the International Society for Clinical Densitometry focus on the appropriate use of dual-energy x-ray absorptiometry in children of all ages, including children with chronic disease, and on the treatment of pediatric bone disease.

  3. Osteostatin-coated porous titanium can improve early bone regeneration of cortical bone defects in rats.

    PubMed

    van der Stok, Johan; Lozano, Daniel; Chai, Yoke Chin; Amin Yavari, Saber; Bastidas Coral, Angela P; Verhaar, Jan A N; Gómez-Barrena, Enrique; Schrooten, Jan; Jahr, Holger; Zadpoor, Amir A; Esbrit, Pedro; Weinans, Harrie

    2015-05-01

    A promising bone graft substitute is porous titanium. Porous titanium, produced by selective laser melting (SLM), can be made as a completely open porous and load-bearing scaffold that facilitates bone regeneration through osteoconduction. In this study, the bone regenerative capacity of porous titanium is improved with a coating of osteostatin, an osteoinductive peptide that consists of the 107-111 domain of the parathyroid hormone (PTH)-related protein (PTHrP), and the effects of this osteostatin coating on bone regeneration were evaluated in vitro and in vivo. SLM-produced porous titanium received an alkali-acid-heat treatment and was coated with osteostatin through soaking in a 100 nM solution for 24 h or left uncoated. Osteostatin-coated scaffolds contained ∼0.1 μg peptide/g titanium, and in vitro 81% was released within 24 h. Human periosteum-derived osteoprogenitor cells cultured on osteostatin-coated scaffolds did not induce significant changes in osteogenic (alkaline phosphatase [ALP], collagen type 1 [Col1], osteocalcin [OCN], runt-related transcription factor 2 [Runx2]), or angiogenic (vascular endothelial growth factor [VEGF]) gene expression; however, it resulted in an upregulation of osteoprotegerin (OPG) gene expression after 24 h and a lower receptor activator of nuclear factor kappa-B ligand (RankL):OPG mRNA ratio. In vivo, osteostatin-coated, porous titanium implants increased bone regeneration in critical-sized cortical bone defects (p=0.005). Bone regeneration proceeded until 12 weeks, and femurs grafted with osteostatin-coated implants and uncoated implants recovered, respectively, 66% and 53% of the original femur torque strength (97±31 and 77±53 N·mm, not significant). In conclusion, the osteostatin coating improved bone regeneration of porous titanium. This effect was initiated after a short burst release and might be related to the observed in vitro upregulation of OPG gene expression by osteostatin in osteoprogenitor

  4. Bone mass and lifestyle related factors: a comparative study between Japanese and Inner Mongolian young premenopausal women.

    PubMed

    Zhang, M; Shimmura, T; Bi, L F; Nagase, H; Nishino, H; Kajita, E; Eto, M; Wang, H B; Su, X L; Chang, H; Aratani, T; Kagamimori, S

    2004-07-01

    The purpose of this study was to evaluate the ethnic difference in bone mass between Japanese and Inner Mongolian young premenopausal women and to assess the contribution of lifestyle related and anthropometric factors to bone mass. We studied 33 Japanese and 44 Inner Mongolian healthy young women, aged 20-34 years, in urban area. Speed of sound (SOS), broadband ultrasound attenuation (BUA) and stiffness index (SI) were measured at the calcaneus using quantitative ultrasound (QUS) analysis. Age at menarche, regularity of menstruation and lifestyle related factors were estimated by a self-reported questionnaire. There were no differences between the two groups in age, height, weight, BMI, regularity of menstruation, frequency of meat intake, frequency of yellow-green vegetable intake and exercise habit. Japanese women had significantly lower age at menarche and higher proportion of milk consumption habit at junior high school, senior school and present. Before adjustment, Japanese women had significantly higher SOS and SI than Inner Mongolian women. However, after adjustment for age at menarche and milk consumption habit at junior high school, both of which were significantly different between groups, no group-differences remained in either SOS or SI. These results suggest that the differences in age at menarche and milk consumption habit at junior high school, which relate to hormonal and nutritional status during puberty, may account for the differences in bone mass between Japanese and Inner Mongolian young women.

  5. Prevalence of factors related to the bone mass formation of children from a cohort in Southern Brazil.

    PubMed

    Doumid Borges Pretto, Alessandra; Correa Kaufmann, Cristina; Ferreira Dutra, Gisele; Pinto Albernaz, Elaine

    2014-12-17

    The amount of bone mass acquired in the early stages of life is an important determinant of its peak and future risk of osteoporosis and fractures. To describe the prevalence of factors that contributes to the formation of bone mass in children of a Southern Brazil cohort. A retrospective cohort study with hospital screening of all births (2741) occurred from September/ 2002 to May/2003 and monitoring of a random sample of 30.0% of these (one, three and six months and eight years old). During the eight years old visit, a questionnaire containing questions related to food and physical activity was applied. Results e Discussion: Of the 616 children studied, 51.3% were male, 70.3% Caucasian, about half belonged to economic class C, 20.5% were overweight, 16.9% were obese and 71.2% were sedentary. As for food intake low consumption of fruits, vegetables, dairy products, meat, cereals and tubers was noticed. Vitamin D administration in the first six months of life was followed by 14.1% of premature, 16.1% of infants with low birth weight, 24.2% of weaned in the first month and only 16.4% at three months. The evaluated children have low nutrients consumption, including calcium, inappropriate vitamin D administration in the first semester of life, little regular physical activity and high prevalence of overweight and obesity are factors that can impair the formation of bone mass. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  6. Chitosan nanofiber scaffold improves bone healing via stimulating trabecular bone production due to upregulation of the Runx2/osteocalcin/alkaline phosphatase signaling pathway

    PubMed Central

    Ho, Ming-Hua; Yao, Chih-Jung; Liao, Mei-Hsiu; Lin, Pei-I; Liu, Shing-Hwa; Chen, Ruei-Ming

    2015-01-01

    Osteoblasts play critical roles in bone formation. Our previous study showed that chitosan nanofibers can stimulate osteoblast proliferation and maturation. This translational study used an animal model of bone defects to evaluate the effects of chitosan nanofiber scaffolds on bone healing and the possible mechanisms. In this study, we produced uniform chitosan nanofibers with fiber diameters of approximately 200 nm. A bone defect was surgically created in the proximal femurs of male C57LB/6 mice, and then the left femur was implanted with chitosan nanofiber scaffolds for 21 days and compared with the right femur, which served as a control. Histological analyses revealed that implantation of chitosan nanofiber scaffolds did not lead to hepatotoxicity or nephrotoxicity. Instead, imaging analyses by X-ray transmission and microcomputed tomography showed that implantation of chitosan nanofiber scaffolds improved bone healing compared with the control group. In parallel, microcomputed tomography and bone histomorphometric assays further demonstrated augmentation of the production of new trabecular bone in the chitosan nanofiber-treated group. Furthermore, implantation of chitosan nanofiber scaffolds led to a significant increase in the trabecular bone thickness but a reduction in the trabecular parameter factor. As to the mechanisms, analysis by confocal microscopy showed that implantation of chitosan nanofiber scaffolds increased levels of Runt-related transcription factor 2 (Runx2), a key transcription factor that regulates osteogenesis, in the bone defect sites. Successively, amounts of alkaline phosphatase and osteocalcin, two typical biomarkers that can simulate bone maturation, were augmented following implantation of chitosan nanofiber scaffolds. Taken together, this translational study showed a beneficial effect of chitosan nanofiber scaffolds on bone healing through stimulating trabecular bone production due to upregulation of Runx2-mediated alkaline

  7. Cold lesions on bone imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sy, W.M.; Westring, D.W.; Weinberger, G.

    1975-11-01

    Photon-deficient foci or cold lesions were demonstrated on /sup 99m/Tc- polyphosphate bone imaging in eight individuals with various malignancies and one in sickle cell crisis. The bone radiographs of five of these persons failed to show corresponding bony changes at the time of the imaging. Most of the cold lesions observed on bone imaging were located in the denser and tubular bones. A postulate has been advanced regarding the factors that might influence the different gamma-imaging manifestations of radiographically demonstrable lytic lesions. The cases presented herein further emphasize the importance of recognizing the existence of cold areas in the imagesmore » of bones and the need to place these in proper perspective when interpreting scans. (auth)« less

  8. Bone healing in 2016

    PubMed Central

    Buza, John A.; Einhorn, Thomas

    2016-01-01

    Summary Delayed fracture healing and nonunion occurs in up to 5–10% of all fractures, and can present a challenging clinical scenario for the treating physician. Methods for the enhancement of skeletal repair may benefit patients that are at risk of, or have experienced, delayed healing or nonunion. These methods can be categorized into either physical stimulation therapies or biological therapies. Physical stimulation therapies include electrical stimulation, low-intensity pulsed ultrasonography, or extracorporeal shock wave therapy. Biological therapies can be further classified into local or systemic therapy based on the method of delivery. Local methods include autologous bone marrow, autologous bone graft, fibroblast growth factor-2, platelet-rich plasma, platelet-derived growth factor, and bone morphogenetic proteins. Systemic therapies include parathyroid hormone and bisphosphonates. This article reviews the current applications and supporting evidence for the use of these therapies in the enhancement of fracture healing. PMID:27920804

  9. Intraperitoneal injection of thalidomide attenuates bone cancer pain and decreases spinal tumor necrosis factor-α expression in a mouse model

    PubMed Central

    2010-01-01

    Background Tumor necrosis factor α (TNF-α) may have a pivotal role in the genesis of mechanical allodynia and thermal hyperalgesia during inflammatory and neuropathic pain. Thalidomide has been shown to selectively inhibit TNF-α production. Previous studies have suggested that thalidomide exerts anti-nociceptive effects in various pain models, but its effects on bone cancer pain have not previously been studied. Therefore, in the present study, we investigated the effect of thalidomide on bone cancer-induced hyperalgesia and up-regulated expression of spinal TNF-α in a mouse model. Results Osteosarcoma NCTC 2472 cells were implanted into the intramedullary space of the right femurs of C3H/HeJ mice to induce ongoing bone cancer related pain behaviors. At day 5, 7, 10 and 14 after operation, the expression of TNF-α in the spinal cord was higher in tumor-bearing mice compared to the sham mice. Intraperitoneal injection of thalidomide (50 mg/kg), started at day 1 after surgery and once daily thereafter until day 7, attenuated bone cancer-evoked mechanical allodynia and thermal hyperalgesia as well as the up-regulation of TNF-α in the spinal cord. Conclusions These results suggest that thalidomide can efficiently alleviate bone cancer pain and it may be a useful alternative or adjunct therapy for bone cancer pain. Our data also suggest a role of spinal TNF-α in the development of bone cancer pain. PMID:20923560

  10. Management of bone disease in women after breast cancer.

    PubMed

    Milat, F; Vincent, A J

    2015-01-01

    Breast cancer and osteoporosis are common conditions affecting women, particularly following menopause. With increasing breast cancer incidence, effects of therapies and decreasing mortality, issues relating to the preservation of bone health with breast cancer therapy have become a priority. Contributing factors to bone loss and fractures in women with breast cancer include tumor effects, estrogen deprivation secondary to breast cancer therapies (chemotherapy, ovarian ablation or aromatase inhibitors), natural menopause and secondary causes of bone loss, typically from concurrently prescribed medications. Management of osteoporosis and other survivorship care is complex, and a multi-disciplinary approach is recommended with assessment of risk factors for bone loss, optimization of bone health through lifestyle approaches and pharmacological interventions based on evidence-based algorithms. This review examines the pathophysiology of bone loss and gives guidelines for the management of bone disease in women with breast cancer.

  11. Transplantation of Hepatocyte Growth Factor-Modified Dental Pulp Stem Cells Prevents Bone Loss in the Early Phase of Ovariectomy-Induced Osteoporosis.

    PubMed

    Kong, Fanxuan; Shi, Xuefeng; Xiao, Fengjun; Yang, Yuefeng; Zhang, Xiaoyan; Wang, Li-Sheng; Wu, Chu-Tse; Wang, Hua

    2018-02-01

    Investigations based on mesenchymal stem cells (MSCs) for osteoporosis have attracted attention recently. MSCs can be derived from various tissues, such as bone marrow, adipose, umbilical cord, placenta, and dental pulp. Among these, dental pulp-derived MSCs (DPSCs) and hepatocyte growth factor (HGF)-modified DPSCs (DPSCs-HGF) highly express osteogenic-related genes and have stronger osteogenic differentiation capacities. DPSCs have more benefits in treating osteoporosis. The purpose of this study was to investigate the roles of HGF gene-modified DPSCs in bone regeneration using a mouse model of ovariectomy (OVX)-induced bone loss. The HGF and luciferase genes were transferred into human DPSCs using recombinant adenovirus. These transduced cells were assayed for distribution or bone regeneration assay by transplantation into an OVX-induced osteoporosis model. By using bioluminogenic imaging, it was determined that some DPSCs could survive for >1 month in vivo. The DPSCs were mainly distributed to the lung in the early stage and to the liver in the late stage of OVX osteoporosis after administration, but they were scarcely distributed to the bone. The homing efficiency of DPSCs is higher when administrated in the early stage of a mouse OVX model. Micro-computed tomography indicated that DPSCs-Null or DPSCs-HGF transplantation significantly reduces OVX-induced bone loss in the trabecular bone of the distal femur metaphysis, and DPSCs-HGF show a stronger capacity to reduce bone loss. The data suggest that systemic infusion of DPSCs-HGF is a potential therapeutic approach for OVX-induced bone loss, which might be mediated by paracrine mechanisms.

  12. Influencing factors of functional result and bone union in tibiotalocalcaneal arthrodesis with intramedullary locking nail: a retrospective series of 30 cases.

    PubMed

    Gross, Jean-Baptiste; Belleville, Rémi; Nespola, Arnaud; Poircuitte, Jean-Manuel; Coudane, Henry; Mainard, Didier; Galois, Laurent

    2014-05-01

    Initially considered as an established salvage procedure for tibiotalocalcaneal arthrodesis (TTCA), intramedullary nailing indications have expanded as evidenced in recent literature. We have tried to identify factors influencing functional result and bone union. In a retrospective study, 30 patients were treated by a TTCA between January 2006 and November 2011. Indications, operative technique, bone fusion, X-rays and functional result [American Foot and Ankle Society (AOFAS) and short-form health survey (SF-36) scores] before and after surgery were registered and analyzed. Thirty cases of TTCA were included. The patient's average age was 52 (range 24-90). Union rate was 86% for the tibiotalar joint and 74% for the subtalar joint with an average follow-up of 25.4 months (8-67). The mean AOFAS' score significantly improved (from 37 to 59) as the SF-36' score. Global complication rate was about 56%. It has not been possible to identify factors significantly influencing bone fusion or functional results. All septic cases achieved fusion without any septic resurgence. Retrograde intramedullary nailing in TTCA is an effective technique, which allows good clinical results even in case of septic history of the patient. Fusion rate and functional results were not significantly influenced by any of the factors examined in this study.

  13. Hormonal and Local Regulation of Bone Formation.

    ERIC Educational Resources Information Center

    Canalis, Ernesto

    1985-01-01

    Reviews effects of hormones, systemic factors, and local regulators on bone formation. Identifies and explains the impact on bone growth of several hormones as well as the components of systemic and local systems. Concentrates on bone collagen and DNA synthesis. (Physicians may earn continuing education credit by completing an appended test). (ML)

  14. Relationship between plasma fibroblast growth factor-23 concentration and bone mineralization in children with renal failure on peritoneal dialysis.

    PubMed

    Wesseling-Perry, Katherine; Pereira, Renata C; Wang, Hejing; Elashoff, Robert M; Sahney, Shobha; Gales, Barbara; Jüppner, Harald; Salusky, Isidro B

    2009-02-01

    Fibroblast growth factor (FGF)-23 is produced in bone, and circulating levels are markedly elevated in patients with end-stage kidney disease, but the relationship between plasma levels of FGF-23 and bone histology in dialysis patients with secondary hyperparathyroidism is unknown. The aim of the study was to evaluate the correlation between plasma levels of FGF-23 and bone histology in pediatric patients with end-stage kidney disease who display biochemical evidence of secondary hyperparathyroidism. We performed a cross-sectional analysis of the relationship between plasma FGF-23 levels and bone histomorphometry. The study was conducted in a referral center. Participants consisted of forty-nine pediatric patients who were treated with maintenance peritoneal dialysis and who had serum PTH levels (1st generation Nichols assay) greater than 400 pg/ml. There were no interventions. Plasma FGF-23 levels and bone histomorphometry were measured. No correlation existed between values of PTH and FGF-23. Bone formation rates correlated with PTH (r = 0.44; P < 0.01), but not with FGF-23. Higher FGF-23 concentrations were associated with decreased osteoid thickness (r = -0.49; P < 0.01) and shorter osteoid maturation time (r = -0.48; P < 0.01). High levels of FGF-23 are associated with improved indices of skeletal mineralization in dialyzed pediatric patients with high turnover renal osteodystrophy. Together with other biomarkers, FGF-23 measurements may indicate skeletal mineralization status in this patient population.

  15. Concordance of occupational and environmental exposure information elicited from patients with Alzheimer's disease and surrogate respondents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chong, J.P.; Turpie, I.; Haines, T.

    Identification of risk factors for Alzheimer's disease through the use of well designed case-control studies has been described as a research priority. Increasing recognition of the neurotoxic potential of many industrial chemicals such as organic solvents raises the question of the occupational and environmental contribution to the etiology of this high-priority health problem. The intention of this study was to develop and evaluate a methodology that could be used in a large scale case-control study of the occupational and environmental risk factors for dementia or a population-based surveillance system for neurotoxic disorders. The specific objectives of this study were tomore » investigate: (1) the reliability of exposure-eliciting, interviewer-administered questionnaires given to patients with Alzheimer's disease (SDAT); (2) the reliability of exposure-eliciting interviewer-administered questionnaires given to the family of patients with SDAT and the agreement with the responses of the patient or surrogate respondents; (3) the reliability and agreement of responses of age- and sex-matched control patients and their families selected from geriatric care institutions and the community, with respect to the same exposure-eliciting and interviewer-administered questionnaire; and (4) the reliability of agent-based exposure ascertainment by a single, trained rater. The results of the study demonstrate that occupational and environmental histories from which exposure information can be derived is most reliably elicited from job descriptions of cases and control subjects rather than job titles alone or detailed probes for potential neurotoxic exposures. This will necessitate the use of standardized interviewer-administered instruments to derive this information in case-control studies of Alzheimer's disease or population-based surveillance systems for occupational and environmental neurotoxicity.« less

  16. Video Elicitation Interviews: A Qualitative Research Method for Investigating Physician-Patient Interactions

    PubMed Central

    Henry, Stephen G.; Fetters, Michael D.

    2012-01-01

    We describe the concept and method of video elicitation interviews and provide practical guidance for primary care researchers who want to use this qualitative method to investigate physician-patient interactions. During video elicitation interviews, researchers interview patients or physicians about a recent clinical interaction using a video recording of that interaction as an elicitation tool. Video elicitation is useful because it allows researchers to integrate data about the content of physician-patient interactions gained from video recordings with data about participants’ associated thoughts, beliefs, and emotions gained from elicitation interviews. This method also facilitates investigation of specific events or moments during interactions. Video elicitation interviews are logistically demanding and time consuming, and they should be reserved for research questions that cannot be fully addressed using either standard interviews or video recordings in isolation. As many components of primary care fall into this category, high-quality video elicitation interviews can be an important method for understanding and improving physician-patient interactions in primary care. PMID:22412003

  17. Video elicitation interviews: a qualitative research method for investigating physician-patient interactions.

    PubMed

    Henry, Stephen G; Fetters, Michael D

    2012-01-01

    We describe the concept and method of video elicitation interviews and provide practical guidance for primary care researchers who want to use this qualitative method to investigate physician-patient interactions. During video elicitation interviews, researchers interview patients or physicians about a recent clinical interaction using a video recording of that interaction as an elicitation tool. Video elicitation is useful because it allows researchers to integrate data about the content of physician-patient interactions gained from video recordings with data about participants' associated thoughts, beliefs, and emotions gained from elicitation interviews. This method also facilitates investigation of specific events or moments during interactions. Video elicitation interviews are logistically demanding and time consuming, and they should be reserved for research questions that cannot be fully addressed using either standard interviews or video recordings in isolation. As many components of primary care fall into this category, high-quality video elicitation interviews can be an important method for understanding and improving physician-patient interactions in primary care.

  18. Development of electrospun bone-mimetic matrices for bone regenerative applications

    NASA Astrophysics Data System (ADS)

    Phipps, Matthew Christopher

    Although bone has a dramatic capacity for regeneration, certain injuries and procedures present defects that are unable to heal properly, requiring surgical intervention to induce and support osteoregeneration. Our research group has hypothesized that the development of a biodegradable material that mimics the natural composition and architecture of bone extracellular matrix has the potential to provide therapeutic benefit to these patients. Utilizing a process known as electrospinning, our lab has developed a bone-mimetic matrix (BMM) consisting of composite nanofibers of the mechanically sta-ble polymer polycaprolactone (PCL), and the natural bone matrix molecules type-I colla-gen and hydroxyapatite nanocrystals (HA). We herein show that BMMs supported great-er adhesion, proliferation, and integrin activation of mesenchymal stem cells (MSCs), the multipotent bone-progenitor cells within bone marrow and the periosteum, in comparison to electrospun PCL alone. These cellular responses, which are essential early steps in the process of bone regeneration, highlight the benefits of presenting cells with natural bone molecules. Subsequently, evaluation of new bone formation in a rat cortical tibia defect showed that BMMs are highly osteoconductive. However, these studies also revealed the inability of endogenous cells to migrate within electrospun matrices due to the inherently small pore sizes. To address this limitation, which will negatively impact the rate of scaf-fold-to-bone turnover and inhibit vascularization, sacrificial fibers were added to the ma-trix. The removal of these fibers after fabrication resulted in BMMs with larger pores, leading to increased infiltration of MSCs and endogenous bone cells. Lastly, we evaluat-ed the potential of our matrices to stimulate the recruitment of MSCs, a vital step in bone healing, through the sustained delivery of platelet derived growth factor-BB (PDGF-BB). BMMs were found to adsorb and subsequently release greater

  19. Diet-induced obesity, gut microbiota and bone, including alveolar bone loss.

    PubMed

    Eaimworawuthikul, Sathima; Thiennimitr, Parameth; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2017-06-01

    Obesity is a major risk factor for several pathologies, including jaw bone resorption. The underlying mechanisms involved in pathological conditions resulting from obesity include chronic systemic inflammation and the development of insulin resistance. Although numerous studies have indicated the importance of the role of gut microbiota in the pathogenesis of inflammation and insulin resistance in obesity, only a few studies have established a relationship between obesity, gut microbiota and status of the jaw bone. This review aims to summarize current findings relating to these issues, focusing on the role of obesity and gut microbiota on jaw bone health, including possible mechanisms which can explain this link. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. SILICON AND BONE HEALTH

    PubMed Central

    JUGDAOHSINGH, R.

    2009-01-01

    Low bone mass (osteoporosis) is a silent epidemic of the 21st century, which presently in the UK results in over 200,000 fractures annually at a cost of over one billion pounds. Figures are set to increase worldwide. Understanding the factors which affect bone metabolism is thus of primary importance in order to establish preventative measures or treatments for this condition. Nutrition is an important determinant of bone health, but the effects of the individual nutrients and minerals, other than calcium, is little understood. Accumulating evidence over the last 30 years strongly suggest that dietary silicon is beneficial to bone and connective tissue health and we recently reported strong positive associations between dietary Si intake and bone mineral density in US and UK cohorts. The exact biological role(s) of silicon in bone health is still not clear, although a number of possible mechanisms have been suggested, including the synthesis of collagen and/or its stabilization, and matrix mineralization. This review gives an overview of this naturally occurring dietary element, its metabolism and the evidence of its potential role in bone health. PMID:17435952

  1. Epigenetics of bone diseases.

    PubMed

    Michou, Laetitia

    2017-12-12

    Histone deacetylation, DNA methylation, and micro-RNAs (miRNAs) are the three main epigenetic mechanisms that regulate gene expression. All the physiological processes involved in bone remodeling are tightly regulated by epigenetic factors. This review discusses the main epigenetic modifications seen in tumoral and non-tumoral bone diseases, with emphasis on miRNAs. The role for epigenetic modifications of gene expression in the most common bone diseases is illustrated by drawing on the latest publications in the field. In multifactorial bone diseases such as osteoporosis, many epigenetic biomarkers, either alone or in combination, have been associated with bone mineral density or suggested to predict osteoporotic fractures. In addition, treatments designed to modulate bone remodeling by selectively targeting the function of specific miRNAs are being evaluated. Advances in the understanding of epigenetic regulation shed new light on the pathophysiology of other non-tumoral bone diseases, including genetic conditions inherited on a Mendelian basis. Finally, in the area of primary and metastatic bone tumors, the last few years have witnessed considerable progress in elucidating the epigenetic regulation of oncogenesis and its local interactions with bone tissue. These new data may allow the development of epigenetic outcome predictors, which are in very high demand, and of innovative therapeutic agents acting via miRNA modulation. Copyright © 2017 Société française de rhumatologie. Published by Elsevier SAS. All rights reserved.

  2. HIV-1 infection and antiretroviral therapies: risk factors for osteoporosis and bone fracture.

    PubMed

    Ofotokun, Ighovwerha; Weitzmann, M Neale

    2010-12-01

    Patients with HIV-1 infection/AIDS are living longer due to the success of highly active antiretroviral therapy (HAART). However, serious metabolic complications including bone loss and fractures are becoming common. Understanding the root causes of bone loss and its potential implications for aging AIDS patients will be critical to the design of effective interventions to stem a tidal wave of fractures in a population chronically exposed to HAART. Paradoxically, bone loss may occur not only due to HIV/AIDS but also as a consequence of HAART. The cause and mechanisms driving these distinct forms of bone loss, however, are complex and controversial. This review examines our current understanding of the underlying causes of HIV-1 and HAART-associated bone loss, and recent findings pertaining to the relevance of the immuno-skeletal interface in this process. It is projected that by 2015 more than half of the HIV/AIDS population in the USA will be over the age of 50 and the synergy between HIV and/or HAART-related bone loss with age-associated bone loss could lead to a significant health threat. Aggressive antiresorptive therapy may be warranted in high-risk patients.

  3. Bone Tissue Engineering: Recent Advances and Challenges

    PubMed Central

    Amini, Ami R.; Laurencin, Cato T.; Nukavarapu, Syam P.

    2013-01-01

    The worldwide incidence of bone disorders and conditions has trended steeply upward and is expected to double by 2020, especially in populations where aging is coupled with increased obesity and poor physical activity. Engineered bone tissue has been viewed as a potential alternative to the conventional use of bone grafts, due to their limitless supply and no disease transmission. However, bone tissue engineering practices have not proceeded to clinical practice due to several limitations or challenges. Bone tissue engineering aims to induce new functional bone regeneration via the synergistic combination of biomaterials, cells, and factor therapy. In this review, we discuss the fundamentals of bone tissue engineering, highlighting the current state of this field. Further, we review the recent advances of biomaterial and cell-based research, as well as approaches used to enhance bone regeneration. Specifically, we discuss widely investigated biomaterial scaffolds, micro- and nano-structural properties of these scaffolds, and the incorporation of biomimetic properties and/or growth factors. In addition, we examine various cellular approaches, including the use of mesenchymal stem cells (MSCs), embryonic stem cells (ESCs), adult stem cells, induced pluripotent stem cells (iPSCs), and platelet-rich plasma (PRP), and their clinical application strengths and limitations. We conclude by overviewing the challenges that face the bone tissue engineering field, such as the lack of sufficient vascularization at the defect site, and the research aimed at functional bone tissue engineering. These challenges will drive future research in the field. PMID:23339648

  4. Probability Elicitation Under Severe Time Pressure: A Rank-Based Method.

    PubMed

    Jaspersen, Johannes G; Montibeller, Gilberto

    2015-07-01

    Probability elicitation protocols are used to assess and incorporate subjective probabilities in risk and decision analysis. While most of these protocols use methods that have focused on the precision of the elicited probabilities, the speed of the elicitation process has often been neglected. However, speed is also important, particularly when experts need to examine a large number of events on a recurrent basis. Furthermore, most existing elicitation methods are numerical in nature, but there are various reasons why an expert would refuse to give such precise ratio-scale estimates, even if highly numerate. This may occur, for instance, when there is lack of sufficient hard evidence, when assessing very uncertain events (such as emergent threats), or when dealing with politicized topics (such as terrorism or disease outbreaks). In this article, we adopt an ordinal ranking approach from multicriteria decision analysis to provide a fast and nonnumerical probability elicitation process. Probabilities are subsequently approximated from the ranking by an algorithm based on the principle of maximum entropy, a rule compatible with the ordinal information provided by the expert. The method can elicit probabilities for a wide range of different event types, including new ways of eliciting probabilities for stochastically independent events and low-probability events. We use a Monte Carlo simulation to test the accuracy of the approximated probabilities and try the method in practice, applying it to a real-world risk analysis recently conducted for DEFRA (the U.K. Department for the Environment, Farming and Rural Affairs): the prioritization of animal health threats. © 2015 Society for Risk Analysis.

  5. Prevalence of Low Bone Mineral Density and Associated Risk Factors in Korean Puerperal Women.

    PubMed

    Jang, Dong Gyu; Kwon, Ji Young; Choi, Sae Kyung; Ko, Hyun Sun; Shin, Jong Chul; Park, In Yang

    2016-11-01

    Although pregnancy is a medical condition that contributes to bone loss, little information is available regarding bone mineral density (BMD) in puerperal women. This cross sectional study aimed to evaluate the prevalence of low BMD in puerperal women and to identify associated risk factors. We surveyed all puerperal women who had BMD measurements taken 4-6 weeks after delivery in a tertiary university hospital, and did not have any bone loss-related comorbidities. Among the 1,561 Korean puerperal women, 566 (36.3%) had low BMD at the lumbar spine, total hip, femoral neck, and/or trochanter. Multivariate analysis revealed that underweight women had a significantly higher risk of low BMD compared with obese women at pre-pregnancy (adjusted odds ratio [aOR], 3.21; 95% confidence interval [CI], 1.83-5.63). Also, women with inadequate gestational weight gain (GWG) were 1.4 times more likely to have low BMD than women with excessive GWG (aOR, 1.42; 95% CI, 1.04-1.94). One-way ANOVA showed that BMDs at the lumbar spine and total hip were significantly different between the 4 BMI groups (both P < 0.001) and also between the 3 GWG groups (both P < 0.001). In conclusion, this study identifies a high prevalence of low BMD in puerperal women and thus suggests the need for further evaluation about the change of BMD in pregnancy and postpartum period.

  6. The effects of cortical bone thickness and trabecular bone strength on noninvasive measures of the implant primary stability using synthetic bone models.

    PubMed

    Hsu, Jui-Ting; Fuh, Lih-Jyh; Tu, Ming-Gene; Li, Yu-Fen; Chen, Kuan-Ting; Huang, Heng-Li

    2013-04-01

    This study investigated how the primary stability of a dental implant as measured by the insertion torque value (ITV), Periotest value (PTV), and implant stability quotient (ISQ) is affected by varying thicknesses of cortical bone and strengths of trabecular bone using synthetic bone models. Four synthetic cortical shells (with thicknesses of 0, 1, 2, and 3 mm) were attached to four cellular rigid polyurethane foams (with elastic moduli of 137, 47.5, 23, and 12.4 MPa) and one open-cell rigid polyurethane foam which mimic the osteoporotic bone (with an elastic modulus 6.5 MPa), to represent the jawbones with various cortical bone thicknesses and strengths of trabecular bone. A total of 60 bone specimens accompanied with implants was examined by a torque meter, Osstell resonance frequency analyzer, and Periotest electronic device. All data were statistically analyzed by two-way analysis of variance. In addition, second-order nonlinear regression was utilized to assess the correlations of the primary implant stability with the four cortex thicknesses and five strengths of trabecular bone. ITV, ISQ, and PTV differed significantly (p < .05) and were strongly correlated with the thickness of cortical bone (R(2) > 0.9) and the elastic modulus of trabecular bone (R(2) = 0.74-0.99). The initial stability at the time of implant placement is influenced by both the cortical bone thickness and the strength of trabecular bone; however, these factors are mostly nonlinearly correlated with ITV, PTV, and ISQ. Using ITV and PTV seems more suitable for identifying the primary implant stability in osteoporotic bone with a thin cortex. © 2011 Wiley Periodicals, Inc.

  7. Genistein supplementation increases bone turnover but does not prevent alcohol-induced bone loss in male mice.

    PubMed

    Yang, Carrie S; Mercer, Kelly E; Alund, Alexander W; Suva, Larry J; Badger, Thomas M; Ronis, Martin J J

    2014-10-01

    Chronic alcohol consumption results in bone loss through increased bone resorption and decreased bone formation. These effects can be reversed by estradiol (E2) supplementation. Soy diets are suggested to have protective effects on bone loss in men and women, as a result of the presence of soy protein-associated phytoestrogens such as genistein (GEN). In this study, male mice were pair-fed (PF), a control diet, an ethanol (EtOH) diet, or EtOH diet supplemented with 250 mg/kg of GEN for 8 weeks to test if GEN protects against bone loss associated with chronic drinking. Interestingly, alcohol consumption reduced cortical area and thickness and trabecular bone volume in both EtOH and EtOH/GEN groups when compared to the corresponding PF and PF/GEN controls, P < 0.05. However, in the trabecular bone compartment, we observed a significant increase in overall trabecular bone density in the PF/GEN group compared to the PF controls. Bone loss in the EtOH-treated mice was associated with the inhibition of osteoblastogenesis as indicated by decreased alkaline phosphatase staining in ex vivo bone marrow cultures, P < 0.05. GEN supplementation improved osteoblastogenesis in the EtOH/GEN cultures compared to the EtOH group, P < 0.05. Vertebral expression of bone-formation markers, osteocalcin, and runt-related transcription factor 2 (Runx2) was also significantly up-regulated in the PF/GEN and EtOH/GEN groups compared to the PF and EtOH-treated groups. GEN supplementation also increased the expression of receptor activator of nuclear factor κ-B ligand (RANKL) in the PF/GEN, an increase that persisted in the EtOH/GEN-treated animals (P < 0.05), and increased basal hydrogen peroxide production and RANKL mRNA expression in primary bone marrow cultures in vitro, P < 0.05. These findings suggest that GEN supplementation increases the overall bone remodeling and, in the context of chronic alcohol consumption, does not protect against the oxidative stress

  8. Use of routine histopathology and factor VIII-related antigen/von Willebrand factor immunohistochemistry to differentiate primary hemangiosarcoma of bone from telangiectatic osteosarcoma in 54 dogs.

    PubMed

    Giuffrida, M A; Bacon, N J; Kamstock, D A

    2017-12-01

    Hemangiosarcoma (HSA) of bone and telangiectatic osteosarcoma (tOSA) can appear similar histologically, but differ in histogenesis (malignant endothelial cells versus osteoblasts), and may warrant different treatments. Immunohistochemistry (IHC) for endothelial cell marker factor VIII-related antigen/von Willebrand factor (FVIII-RAg/vWF) is a well-documented ancillary test to confirm HSA diagnoses in soft tissues, but its use in osseous HSA is rarely described. Archived samples of 54 primary appendicular bone tumours previously diagnosed as HSA or tOSA were evaluated using combination routine histopathology (RHP) and IHC. Approximately 20% of tumours were reclassified on the basis of FVIII-RAg/vWF immunoreactivity, typically from an original diagnosis of tOSA to a reclassified diagnosis of HSA. No sample with tumour osteoid clearly identified on RHP was immunopositive for FVIII-RAg/vWF. RHP alone was specific but not sensitive for diagnosis of HSA, compared with combination RHP and IHC. Routine histopathological evaluation in combination with FVIII-RAg/vWF IHC can help differentiate canine primary appendicular HSA from tOSA. © 2016 John Wiley & Sons Ltd.

  9. Management of bone mineral density in HIV-infected patients.

    PubMed

    Negredo, Eugenia; Bonjoch, Anna; Clotet, Bonaventura

    2016-01-01

    Loss of bone mineral density is an emerging problem in persons living with HIV infection. Earlier and more rapid bone demineralization has been attributed not only to the high prevalence of traditional risk factors, but also to specific HIV-related factors. The aim of this guidance is to stimulate an appropriate management of osteoporosis in this population, to identify patients at risk and to better manage them. Appropriate screening of HIV-infected subjects to identify those at risk for bone fractures is described, as well as the recommended interventions. American and European recommendations in HIV-infected and non-infected populations were considered. As the etiology of bone loss is multifactorial, many factors have to be addressed. Overall, recommendations on traditional risk factors are the same for HIV-infected and non-HIV-infected subjects. However, we should consider some specific factors in the HIV-infected population, including an appropriate antiretroviral therapy in patients with low bone mineral density, and probably novel strategies that could provide an additional benefit, such as anti-inflammatory drugs, although data supporting this approach are scant. Some personal opinions are highlighted on the management of bone health in HIV-infected subjects, mainly on the use of FRAX(®) score and DXA scans. In addition, the need to implement new strategies to delay demineralization is remarked upon.

  10. Dendrobium moniliforme Exerts Inhibitory Effects on Both Receptor Activator of Nuclear Factor Kappa-B Ligand-Mediated Osteoclast Differentiation in Vitro and Lipopolysaccharide-Induced Bone Erosion in Vivo.

    PubMed

    Baek, Jong Min; Kim, Ju-Young; Ahn, Sung-Jun; Cheon, Yoon-Hee; Yang, Miyoung; Oh, Jaemin; Choi, Min Kyu

    2016-03-01

    Dendrobium moniliforme (DM) is a well-known plant-derived extract that is widely used in Oriental medicine. DM and its chemical constituents have been reported to have a variety of pharmacological effects, including anti-oxidative, anti-inflammatory, and anti-tumor activities; however, no reports discuss the beneficial effects of DM on bone diseases such as osteoporosis. Thus, we investigated the relationship between DM and osteoclasts, cells that function in bone resorption. We found that DM significantly reduced receptor activator of nuclear factor kappa-B ligand (RANKL)-induced tartrate-resistant acid phosphatase (TRAP)-positive osteoclast formation; DM directly induced the down-regulation of c-Fos and nuclear factor of activated T cells c1 (NFATc1) without affecting other RANKL-dependent transduction pathways. In the later stages of osteoclast maturation, DM negatively regulated the organization of filamentous actin (F-actin), resulting in impaired bone-resorbing activity by the mature osteoclasts. In addition, micro-computed tomography (μ-CT) analysis of the murine model revealed that DM had a beneficial effect on lipopolysaccharide (LPS)-mediated bone erosion. Histological analysis showed that DM attenuated the degradation of trabecular bone matrix and formation of TRAP-positive osteoclasts in bone tissues. These results suggest that DM is a potential candidate for the treatment of metabolic bone disorders such as osteoporosis.

  11. Angiopoietin-like protein 2 promotes chondrogenic differentiation during bone growth as a cartilage matrix factor.

    PubMed

    Tanoue, H; Morinaga, J; Yoshizawa, T; Yugami, M; Itoh, H; Nakamura, T; Uehara, Y; Masuda, T; Odagiri, H; Sugizaki, T; Kadomatsu, T; Miyata, K; Endo, M; Terada, K; Ochi, H; Takeda, S; Yamagata, K; Fukuda, T; Mizuta, H; Oike, Y

    2018-01-01

    Chondrocyte differentiation is crucial for long bone growth. Many cartilage extracellular matrix (ECM) proteins reportedly contribute to chondrocyte differentiation, indicating that mechanisms underlying chondrocyte differentiation are likely more complex than previously appreciated. Angiopoietin-like protein 2 (ANGPTL2) is a secreted factor normally abundantly produced in mesenchymal lineage cells such as adipocytes and fibroblasts, but its loss contributes to the pathogenesis of lifestyle- or aging-related diseases. However, the function of ANGPTL2 in chondrocytes, which are also differentiated from mesenchymal stem cells, remains unclear. Here, we investigate whether ANGPTL2 is expressed in or functions in chondrocytes. First, we evaluated Angptl2 expression during chondrocyte differentiation using chondrogenic ATDC5 cells and wild-type epiphyseal cartilage of newborn mice. We next assessed ANGPTL2 function in chondrogenic differentiation and associated signaling using Angptl2 knockdown ATDC5 cells and Angptl2 knockout mice. ANGPTL2 is expressed in chondrocytes, particularly those located in resting and proliferative zones, and accumulates in ECM surrounding chondrocytes. Interestingly, long bone growth was retarded in Angptl2 knockout mice from neonatal to adult stages via attenuation of chondrocyte differentiation. Both in vivo and in vitro experiments show that changes in ANGPTL2 expression can also alter p38 mitogen-activated protein kinase (MAPK) activity mediated by integrin α5β1. ANGPTL2 contributes to chondrocyte differentiation and subsequent endochondral ossification through α5β1 integrin and p38 MAPK signaling during bone growth. Our findings provide insight into molecular mechanisms governing communication between chondrocytes and surrounding ECM components in bone growth activities. Copyright © 2017. Published by Elsevier Ltd.

  12. Calcium hydroxide suppresses Porphyromonas endodontalis lipopolysaccharide-induced bone destruction.

    PubMed

    Guo, J; Yang, D; Okamura, H; Teramachi, J; Ochiai, K; Qiu, L; Haneji, T

    2014-05-01

    Porphyromonas endodontalis and its main virulence factor, lipopolysaccharide (LPS), are associated with the development of periapical diseases and alveolar bone loss. Calcium hydroxide is commonly used for endodontic therapy. However, the effects of calcium hydroxide on the virulence of P. endodontalis LPS and the mechanism of P. endodontalis LPS-induced bone destruction are not clear. Calcium hydroxide rescued the P. endodontalis LPS-suppressed viability of MC3T3-E1 cells and activity of nuclear factor-κB (NF-κB) in these cells, resulting in the reduced expression of interleukin-6 and tumor necrosis factor-α. In addition, calcium hydroxide inhibited P. endodontalis LPS-induced osteoclastogenesis by decreasing the activities of NF-κB, p38, and ERK1/2 and the expression of nuclear factor of activated T-cell cytoplasmic 1 in RAW264.7 cells. Calcium hydroxide also rescued the P. endodontalis LPS-induced osteoclastogenesis and bone destruction in mouse calvaria. Taken together, our present results indicate that calcium hydroxide suppressed bone destruction by attenuating the virulence of P. endodontalis LPS on bone cells.

  13. [Diet, nutrition and bone health].

    PubMed

    Miggiano, G A D; Gagliardi, L

    2005-01-01

    Nutrition is an important "modifiable" factor in the development and maintenance of bone mass and in the prevention of osteoporosis. The improvement of calcium intake in prepuberal age translates to gain in bone mass and, with genetic factor, to achievement of Peak Bone Mass (PBM), the higher level of bone mass reached at the completion of physiological growth. Individuals with higher PBM achieved in early adulthood will be at lower risk for developing osteoporosis later in life. Achieved the PBM, it is important maintain the bone mass gained and reduce the loss. This is possible adopting a correct behaviour eating associated to regular physical activity and correct life style. The diet is nutritionally balanced with caloric intake adequate to requirement of individual. This is moderate in protein (1 g/kg/die), normal in fat and the carbohydrates provide 55-60% of the caloric intake. A moderate intake of proteins is associated with normal calcium metabolism and presumably does'nt alter bone turnover. An adequate intake of alkali-rich foods may help promote a favorable effect of dietary protein on the skeleton. Lactose intolerance may determinate calcium malabsorption or may decrease calcium intake by elimination of milk and dairy products. Omega3 fatty acids may "down-regulate" pro-inflammatory cytokines and protect against bone loss by decreasing osteoclast activation and bone reabsorption. The diet is characterized by food containing high amount of calcium, potassium, magnesium and low amount of sodium. If it is impossible to reach the requirement with only diet, it is need the supplement of calcium and vitamin D. Other vitamins (Vit. A, C, E, K) and mineral (phosphorus, fluoride, iron, zinc, copper and boron) are required for normal bone metabolism, thus it is need adequate intake of these dietary components. It is advisable reduce ethanol, caffeine, fibers, phytic and ossalic acid intake. The efficacy of phytoestrogens is actually under investigation. Some

  14. Dietary Pseudopurpurin Improves Bone Geometry Architecture and Metabolism in Red-Bone Guishan Goats

    PubMed Central

    Han, TieSuo; Li, Peng; Wang, JianGuo; Liu, GuoWen; Wang, Zhe; Ge, ChangRong; Gao, ShiZheng

    2012-01-01

    Red-colored bones were found initially in some Guishan goats in the 1980s, and they were designated red-boned goats. However, it is not understood what causes the red color in the bone, or whether the red material changes the bone geometry, architecture, and metabolism of red-boned goats. Pseudopurpurin was identified in the red-colored material of the bone in red-boned goats by high-performance liquid chromatography–electrospray ionization–mass spetrometry and nuclear magnetic resonance analysis. Pseudopurpurin is one of the main constituents of Rubia cordifolia L, which is eaten by the goats. The assessment of the mechanical properties and micro-computed tomography showed that the red-boned goats displayed an increase in the trabecular volume fraction, trabecular thickness, and the number of trabeculae in the distal femur. The mean thickness, inner perimeter, outer perimeter, and area of the femoral diaphysis were also increased. In addition, the trabecular separation and structure model index of the distal femur were decreased, but the bone mineral density of the whole femur and the mechanical properties of the femoral diaphysis were enhanced in the red-boned goats. Meanwhile, expression of alkaline phosphatase and osteocalcin mRNA was higher, and the ratio of the receptor activator of the nuclear factor kappa B ligand to osteoprotegerin was markedly lower in the bone marrow of the red-boned goats compared with common goats. To confirm further the effect of pseudopurpurin on bone geometry, architecture, and metabolism, Wistar rats were fed diets to which pseudopurpurin was added for 5 months. Similar changes were observed in the femurs of the treated rats. The above results demonstrate that pseudopurpurin has a close affinity with the mineral salts of bone, and consequently a high level of mineral salts in the bone cause an improvement in bone strength and an enhancement in the structure and metabolic functions of the bone. PMID:22624037

  15. Controlled Release Strategies for Bone, Cartilage, and Osteochondral Engineering—Part II: Challenges on the Evolution from Single to Multiple Bioactive Factor Delivery

    PubMed Central

    Santo, Vítor E.; Mano, João F.; Reis, Rui L.

    2013-01-01

    The development of controlled release systems for the regeneration of bone, cartilage, and osteochondral interface is one of the hot topics in the field of tissue engineering and regenerative medicine. However, the majority of the developed systems consider only the release of a single growth factor, which is a limiting step for the success of the therapy. More recent studies have been focused on the design and tailoring of appropriate combinations of bioactive factors to match the desired goals regarding tissue regeneration. In fact, considering the complexity of extracellular matrix and the diversity of growth factors and cytokines involved in each biological response, it is expected that an appropriate combination of bioactive factors could lead to more successful outcomes in tissue regeneration. In this review, the evolution on the development of dual and multiple bioactive factor release systems for bone, cartilage, and osteochondral interface is overviewed, specifically the relevance of parameters such as dosage and spatiotemporal distribution of bioactive factors. A comprehensive collection of studies focused on the delivery of bioactive factors is also presented while highlighting the increasing impact of platelet-rich plasma as an autologous source of multiple growth factors. PMID:23249320

  16. Modulation of Stromal Cell-Derived Factor-1/CXC Chemokine Receptor 4 Axis Enhances rhBMP-2-Induced Ectopic Bone Formation

    PubMed Central

    Wise, Joel K.; Sumner, Dale Rick

    2012-01-01

    Enhancement of in vivo mobilization and homing of endogenous mesenchymal stem cells (MSCs) to an injury site is an innovative strategy for improvement of bone tissue engineering and repair. The present study was designed to determine whether mobilization by AMD3100 and/or local homing by delivery of stromal cell-derived factor-1 (SDF-1) enhances recombinant human bone morphogenetic protein-2 (rhBMP-2) induced ectopic bone formation in an established rat model. Rats received an injection of either saline or AMD3100 treatment 1 h before harvesting of bone marrow for in vitro colony-forming unit-fibroblasts (CFU-F) culture or the in vivo subcutaneous implantation of absorbable collagen sponges (ACSs) loaded with saline, recombinant human bone morphogenetic protein-2 (rhBMP-2), SDF-1, or the combination of SDF-1 and rhBMP-2. AMD3100 treatment resulted in a significant decrease in CFU-F number, compared with saline, which confirmed that a single systemic AMD3100 treatment rapidly mobilized MSCs from the bone marrow. At 28 and 56 days, bone formation in the explanted ACS was assessed by microcomputed tomography (μCT) and histology. At 28 days, AMD3100 and/or SDF-1 had no statistically significant effect on bone volume (BV) or bone mineral content (BMC), but histology revealed more active bone formation with treatment of AMD3100, loading of SDF-1, or the combination of both AMD3100 and SDF-1, compared with saline-treated rhBMP-2 loaded ACS. At 56 days, the addition of AMD3100 treatment, loading of SDF-1, or the combination of both resulted in a statistically significant stimulatory effect on BV and BMC, compared with the saline-treated rhBMP-2 loaded ACS. Histology of the 56-day ACS were consistent with the μCT analysis, exhibiting more mature and mineralized bone formation with AMD3100 treatment, SDF-1 loading, or the combination of both, compared with the saline-treated rhBMP-2 loaded ACS. The present study is the first that provides evidence of the efficacy of AMD

  17. Limb bone morphology, bone strength, and cursoriality in lagomorphs

    PubMed Central

    Young, Jesse W; Danczak, Robert; Russo, Gabrielle A; Fellmann, Connie D

    2014-01-01

    The primary aim of this study is to broadly evaluate the relationship between cursoriality (i.e. anatomical and physiological specialization for running) and limb bone morphology in lagomorphs. Relative to most previous studies of cursoriality, our focus on a size-restricted, taxonomically narrow group of mammals permits us to evaluate the degree to which ‘cursorial specialization’ affects locomotor anatomy independently of broader allometric and phylogenetic trends that might obscure such a relationship. We collected linear morphometrics and μCT data on 737 limb bones covering three lagomorph species that differ in degree of cursoriality: pikas (Ochotona princeps, non-cursorial), jackrabbits (Lepus californicus, highly cursorial), and rabbits (Sylvilagus bachmani, level of cursoriality intermediate between pikas and jackrabbits). We evaluated two hypotheses: cursoriality should be associated with (i) lower limb joint mechanical advantage (i.e. high ‘displacement advantage’, permitting more cursorial species to cycle their limbs more quickly) and (ii) longer, more gracile limb bones, particularly at the distal segments (as a means of decreasing rotational inertia). As predicted, highly cursorial jackrabbits are typically marked by the lowest mechanical advantage and the longest distal segments, non-cursorial pikas display the highest mechanical advantage and the shortest distal segments, and rabbits generally display intermediate values for these variables. Variation in long bone robusticity followed a proximodistal gradient. Whereas proximal limb bone robusticity declined with cursoriality, distal limb bone robusticity generally remained constant across the three species. The association between long, structurally gracile limb bones and decreased maximal bending strength suggests that the more cursorial lagomorphs compromise proximal limb bone integrity to improve locomotor economy. In contrast, the integrity of distal limb bones is maintained with

  18. Recent advances in bone tissue engineering scaffolds

    PubMed Central

    Bose, Susmita; Roy, Mangal; Bandyopadhyay, Amit

    2012-01-01

    Bone disorders are of significant concern due to increase in the median age of our population. Traditionally, bone grafts have been used to restore damaged bone. Synthetic biomaterials are now being used as bone graft substitutes. These biomaterials were initially selected for structural restoration based on their biomechanical properties. Later scaffolds were engineered to be bioactive or bioresorbable to enhance tissue growth. Now scaffolds are designed to induce bone formation and vascularization. These scaffolds are often porous, biodegradable materials that harbor different growth factors, drugs, genes or stem cells. In this review, we highlight recent advances in bone scaffolds and discuss aspects that still need to be improved. PMID:22939815

  19. Genetic evidence that thyroid hormone is indispensable for prepubertal insulin-like growth factor-I expression and bone acquisition in mice.

    PubMed

    Xing, Weirong; Govoni, Kristen E; Donahue, Leah Rae; Kesavan, Chandrasekhar; Wergedal, Jon; Long, Carlin; Bassett, J H Duncan; Gogakos, Apostolos; Wojcicka, Anna; Williams, Graham R; Mohan, Subburaman

    2012-05-01

    Understanding how bone growth is regulated by hormonal and mechanical factors during early growth periods is important for optimizing the attainment of peak bone mass to prevent or postpone the occurrence of fragility fractures later in life. Using genetic mouse models that are deficient in thyroid hormone (TH) (Tshr(-/-) and Duox2(-/-)), growth hormone (GH) (Ghrhr(lit/lit)), or both (Tshr(-/-); Ghrhr(lit/lit)), we demonstrate that there is an important period prior to puberty when the effects of GH are surprisingly small and TH plays a critical role in the regulation of skeletal growth. Daily administration of T3/T4 during days 5 to 14, the time when serum levels of T3 increase rapidly in mice, rescued the skeletal deficit in TH-deficient mice but not in mice lacking both TH and GH. However, treatment of double-mutant mice with both GH and T3/T4 rescued the bone density deficit. Increased body fat in the TH-deficient as well as TH/GH double-mutant mice was rescued by T3/T4 treatment during days 5 to 14. In vitro studies in osteoblasts revealed that T3 in the presence of TH receptor (TR) α1 bound to a TH response element in intron 1 of the IGF-I gene to stimulate transcription. In vivo studies using TRα and TRβ knockout mice revealed evidence for differential regulation of insulin-like growth factor (IGF)-I expression by the two receptors. Furthermore, blockade of IGF-I action partially inhibited the biological effects of TH, thus suggesting that both IGF-I-dependent and IGF-I-independent mechanisms contribute to TH effects on prepubertal bone acquisition. Copyright © 2012 American Society for Bone and Mineral Research.

  20. Positive modulator of bone morphogenic protein-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zamora, Paul O.; Pena, Louis A.; Lin, Xinhua

    Compounds of the present invention of formula I and formula II are disclosed in the specification and wherein the compounds are modulators of Bone Morphogenic Protein activity. Compounds are synthetic peptides having a non-growth factor heparin binding region, a linker, and sequences that bind specifically to a receptor for Bone Morphogenic Protein. Uses of compounds of the present invention in the treatment of bone lesions, degenerative joint disease and to enhance bone formation are disclosed.

  1. Positive modulator of bone morphogenic protein-2

    DOEpatents

    Zamora, Paul O [Gaithersburg, MD; Pena, Louis A [Poquott, NY; Lin, Xinhua [Plainview, NY; Takahashi, Kazuyuki [Germantown, MD

    2009-01-27

    Compounds of the present invention of formula I and formula II are disclosed in the specification and wherein the compounds are modulators of Bone Morphogenic Protein activity. Compounds are synthetic peptides having a non-growth factor heparin binding region, a linker, and sequences that bind specifically to a receptor for Bone Morphogenic Protein. Uses of compounds of the present invention in the treatment of bone lesions, degenerative joint disease and to enhance bone formation are disclosed.

  2. Synthetic design of growth factor sequestering extracellular matrix mimetic hydrogel for promoting in vivo bone formation.

    PubMed

    Yan, Hong Ji; Casalini, Tommaso; Hulsart-Billström, Gry; Wang, Shujiang; Oommen, Oommen P; Salvalaglio, Matteo; Larsson, Sune; Hilborn, Jöns; Varghese, Oommen P

    2018-04-01

    Synthetic scaffolds that possess an intrinsic capability to protect and sequester sensitive growth factors is a primary requisite for developing successful tissue engineering strategies. Growth factors such as recombinant human bone morphogenetic protein-2 (rhBMP-2) is highly susceptible to premature degradation and to provide a meaningful clinical outcome require high doses that can cause serious side effects. We discovered a unique strategy to stabilize and sequester rhBMP-2 by enhancing its molecular interactions with hyaluronic acid (HA), an extracellular matrix (ECM) component. We found that by tuning the initial protonation state of carboxylic acid residues of HA in a covalently crosslinked hydrogel modulate BMP-2 release at physiological pH by minimizing the electrostatic repulsion and maximizing the Van der Waals interactions. At neutral pH, BMP-2 release is primarily governed by Fickian diffusion, whereas at acidic pH both diffusion and electrostatic interactions between HA and BMP-2 become important as confirmed by molecular dynamics simulations. Our results were also validated in an in vivo rat ectopic model with rhBMP-2 loaded hydrogels, which demonstrated superior bone formation with acidic hydrogel as compared to the neutral counterpart. We believe this study provides new insight on growth factor stabilization and highlights the therapeutic potential of engineered matrices for rhBMP-2 delivery and may help to curtail the adverse side effects associated with the high dose of the growth factor. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Normocalcemia is maintained in mice under conditions of calcium malabsorption by vitamin D–induced inhibition of bone mineralization

    PubMed Central

    Lieben, Liesbet; Masuyama, Ritsuko; Torrekens, Sophie; Van Looveren, Riet; Schrooten, Jan; Baatsen, Pieter; Lafage-Proust, Marie-Hélène; Dresselaers, Tom; Feng, Jian Q.; Bonewald, Lynda F.; Meyer, Mark B.; Pike, J. Wesley; Bouillon, Roger; Carmeliet, Geert

    2012-01-01

    Serum calcium levels are tightly controlled by an integrated hormone-controlled system that involves active vitamin D [1,25(OH)2D], which can elicit calcium mobilization from bone when intestinal calcium absorption is decreased. The skeletal adaptations, however, are still poorly characterized. To gain insight into these issues, we analyzed the consequences of specific vitamin D receptor (Vdr) inactivation in the intestine and in mature osteoblasts on calcium and bone homeostasis. We report here that decreased intestinal calcium absorption in intestine-specific Vdr knockout mice resulted in severely reduced skeletal calcium levels so as to ensure normal levels of calcium in the serum. Furthermore, increased 1,25(OH)2D levels not only stimulated bone turnover, leading to osteopenia, but also suppressed bone matrix mineralization. This resulted in extensive hyperosteoidosis, also surrounding the osteocytes, and hypomineralization of the entire bone cortex, which may have contributed to the increase in bone fractures. Mechanistically, osteoblastic VDR signaling suppressed calcium incorporation in bone by directly stimulating the transcription of genes encoding mineralization inhibitors. Ablation of skeletal Vdr signaling precluded this calcium transfer from bone to serum, leading to better preservation of bone mass and mineralization. These findings indicate that in mice, maintaining normocalcemia has priority over skeletal integrity, and that to minimize skeletal calcium storage, 1,25(OH)2D not only increases calcium release from bone, but also inhibits calcium incorporation in bone. PMID:22523068

  4. Bone marrow fat: linking adipocyte-induced inflammation with skeletal metastases

    PubMed Central

    Hardaway, Aimalie L.; Herroon, Mackenzie K.; Rajagurubandara, Erandi

    2014-01-01

    Adipocytes are important but underappreciated components of bone marrow microenvironment, and their numbers greatly increase with age, obesity, and associated metabolic pathologies. Age and obesity are also significant risk factors for development of metastatic prostate cancer. Adipocytes are metabolically active cells that secrete adipokines, growth factors, and inflammatory mediators; influence behavior and function of neighboring cells; and have a potential to disturb local milleu and dysregulate normal bone homeostasis. Increased marrow adiposity has been linked to bone marrow inflammation and osteoporosis of the bone, but its effects on growth and progression of prostate tumors that have metastasized to the skeleton are currently not known. This review focuses on fat-bone relationship in a context of normal bone homeostasis and metastatic tumor growth in bone. We discuss effects of marrow fat cells on bone metabolism, hematopoiesis, and inflammation. Special attention is given to CCL2- and COX-2-driven pathways and their potential as therapeutic targets for bone metastatic disease. PMID:24398857

  5. Evaluation of clinical and histopathologic prognostic factors for survival in canine osteosarcoma of the extracranial flat and irregular bones.

    PubMed

    Kruse, M A; Holmes, E S; Balko, J A; Fernandez, S; Brown, D C; Goldschmidt, M H

    2013-07-01

    Osteosarcoma is the most common bone tumor in dogs. However, current literature focuses primarily on appendicular osteosarcoma. This study examined the prognostic value of histological and clinical factors in flat and irregular bone osteosarcomas and hypothesized that clinical factors would have a significant association with survival time while histological factors would not. All osteosarcoma biopsy samples of the vertebra, rib, sternum, scapula, or pelvis were reviewed while survival information and clinical data were obtained from medical records, veterinarians, and owners. Forty-six dogs were included in the analysis of histopathological variables and 27 dogs with complete clinical data were included in the analysis of clinical variables. In the histopathologic cox regression model, there was no significant association between any histologic feature of osteosarcoma, including grade, and survival time. In the clinical cox regression model, there was a significant association between the location of the tumor and survival time as well as between the percent elevation of alkaline phosphatase (ALP) above normal and survival time. Controlling for ALP elevation, dogs with osteosarcoma located in the scapula had a significantly greater hazard for death (2.8) compared to dogs with tumors in other locations. Controlling for tumor location, every 100% increase in ALP from normal increased the hazard for death by 1.7. For canine osteosarcomas of the flat and irregular bones, histopathological features, including grade do not appear to be rigorous predictors of survival. Clinical variables such as increased ALP levels and tumor location in the scapula were associated with decreased survival times.

  6. Adaptation of bone to physiological stimuli.

    PubMed

    Judex, S; Gross, T S; Bray, R C; Zernicke, R F

    1997-05-01

    The ability of bone to alter its morphology in response to local physical stimuli is predicated upon the appropriate recruitment of bone cell populations. In turn, the ability to initiate cellular recruitment is influenced by numerous local and systemic factors. In this paper, we discuss data from three ongoing projects from our laboratory that examine how physiological processes influence adaptation and growth in the skeleton. In the first study, we recorded in vivo strains to quantify the locomotion-induced distribution of two parameters closely related to bone fluid flow strain rate and strain gradients. We found that the magnitude of these parameters (and thus the implied fluid flow) varies substantially within a given cross-section, and that while strain rate magnitude increases uniformly with elevated speed, strain gradients increase focally as gait speed is increased. Secondly, we examined the influence of vascular alterations on bone adaptation by assessing bone blood flow and bone mechanical properties in an in vivo model of trauma-induced joint laxity. A strong negative correlation (r2 = 0.8) was found between increased blood flow (76%) in the primary and secondary spongiosa and decreased stiffness (-34%) following 14 weeks of joint laxity. These data suggest that blood flow and/or vascular adaptation may interact closely with bone adaptation initiated by trauma. Thirdly, we examined the effect of a systemic influence upon skeletal health. After 4 weeks old rats were fed high fat-sucrose diets for 2 yr, their bone mechanical properties were significantly reduced. These changes were primarily due to interference with normal calcium absorption. In the aggregate, these studies emphasize the complexity of bone's normal physical environment, and also illustrate the potential interactions of local and systemic factors upon the process by which bone adapts to physical stimuli.

  7. Cellular Therapy to Obtain Rapid Endochondral Bone Formation

    DTIC Science & Technology

    2012-03-01

    biological information and involves the development of a novel biomaterial that can safely house the cells expressing the bone inductive factor to... produce the new bone at which time the material is then selectively eliminated. Ultimately this system has significant applicability. Often bone graft must...hypothesis will provide a safe and efficacious material for the production of bone leading to reliable fracture healing, circumventing the need for

  8. Artistic versus rhythmic gymnastics: effects on bone and muscle mass in young girls.

    PubMed

    Vicente-Rodriguez, G; Dorado, C; Ara, I; Perez-Gomez, J; Olmedillas, H; Delgado-Guerra, S; Calbet, J A L

    2007-05-01

    We compared 35 prepubertal girls, 9 artistic gymnasts and 13 rhythmic gymnasts with 13 nonphysically active controls to study the effect of gymnastics on bone and muscle mass. Lean mass, bone mineral content and areal density were measured by dual energy X-ray absorptiometry, and physical fitness was also assessed. The artistic gymnasts showed a delay in pubertal development compared to the other groups (p<0.05). The artistic gymnasts had a 16 and 17 % higher aerobic power and anaerobic capacity, while the rhythmic group had a 14 % higher anaerobic capacity than the controls, respectively (all p<0.05). The artistic gymnasts had higher lean mass (p<0.05) in the whole body and the extremities than both the rhythmic gymnasts and the controls. Body fat mass was 87.5 and 61.5 % higher in the controls than in the artistic and the rhythmic gymnasts (p<0.05). The upper extremity BMD was higher (p<0.05) in the artistic group compared to the other groups. Lean mass strongly correlated with bone mineral content (r=0.84, p<0.001), and multiple regression analysis showed that total lean mass explained 64 % of the variability in whole body bone mineral content, but only 20 % in whole body bone mineral density. Therefore, recreational artistic gymnastic participation is associated with delayed pubertal development, enhanced physical fitness, muscle mass, and bone density in prepubertal girls, eliciting a higher osteogenic stimulus than rhythmic gymnastic.

  9. Is fatty acid composition of human bone marrow significant to bone health?

    PubMed

    Pino, Ana María; Rodríguez, J Pablo

    2017-12-16

    The bone marrow adipose tissue (BMAT) is a conserved component of the marrow microenvironment, providing storage and release of energy and stabilizing the marrow extent. Also, it is recognized both the amount and quality of BMAT are relevant to preserve the functional relationships between BMAT, bone, and blood cell production. In this article we ponder the information supporting the tenet that the quality of BMAT is relevant to bone health. In the human adult the distribution of BMAT is heterogeneous over the entire skeleton, and both BMAT accumulation and bone loss come about with aging in healthy populations. But some pathological conditions which increase BMAT formation lead to bone impairment and fragility. Analysis in vivo of the relative content of saturated and unsaturated fatty acids (FA) in BMAT indicates site-related bone marrow fat composition and an association between increased unsaturation index (UI) and bone health. With aging some impairment ensues in the regulation of bone marrow cells and systemic signals leading to local chronic inflammation. Most of the bone loss diseases which evolve altered BMAT composition have as common factors aging and/or chronic inflammation. Both saturated and unsaturated FAs originate lipid species which are active mediators in the inflammation process. Increased free saturated FAs may lead to lipotoxicity of bone marrow cells. The pro-inflammatory, anti-inflammatory or resolving actions of compounds derived from long chain poly unsaturated FAs (PUFA) on bone cells is varied, and depending on the metabolism of the parent n:3 or n:6 PUFAs series. Taking together the evidence substantiate that marrow adipocyte function is fundamental for an efficient link between systemic and marrow fatty acids to accomplish specific energy or regulatory needs of skeletal and marrow cells. Further, they reveal marrow requirements of PUFAs. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. [Factors associated with osteopenia and osteoporosis in women undergoing bone mineral density test].

    PubMed

    Veiga Silva, Ana Carolina; da Rosa, Maria Inês; Fernandes, Bruna; Lumertz, Suéli; Diniz, Rafaela Maria; dos Reis Damiani, Maria Eduarda Fernandes

    2015-01-01

    The aim of this study was to determine the prevalence of osteopenia and osteoporosis in a female population, that had bone mineral density (BMD) measured by dual-energy X-ray absorptiometry (DXA) in a specialized clinic in the south of Brazil. We conducted a cross-sectional study including 1,871 women that performed scans between January and December 2012. We conducted a logistic regression analysis with all independent variables and outcomes (osteopenia, osteoporosis and fracture risk). According to DXA results, 36.5% of women had normal BMD, 49.8% were diagnosed with osteopenia and 13.7% with osteoporosis. Menopause and age over 50 years old were risk factors for osteopenia and osteoporosis while prior hysterectomy and BMI greater than 25 were protective factors. For the outcome of fracture at any site the risk factors were age over 50 years old, osteopenia and osteoporosis (OR = 2.09, 95% CI:1,28-3, 40) and (OR = 2.49, 95% CI:1,65-3, 74), respectively. Copyright © 2014 Elsevier Editora Ltda. All rights reserved.

  11. Combination of bone morphogenetic protein-2 plasmid DNA with chemokine CXCL12 creates an additive effect on bone formation onset and volume.

    PubMed

    Wegman, F; Poldervaart, M T; van der Helm, Y J; Oner, F C; Dhert, W J; Alblas, J

    2015-07-27

    Bone morphogenetic protein-2 (BMP-2) gene delivery has shown to induce bone formation in vivo in cell-based tissue engineering. In addition, the chemoattractant stromal cell-derived factor-1α (SDF-1α, also known as CXCL12) is known to recruit multipotent stromal cells towards its release site where it enhances vascularisation and possibly contributes to osteogenic differentiation. To investigate potential cooperative behaviour for bone formation, we investigated combined release of BMP-2 and SDF-1α on ectopic bone formation in mice. Multipotent stromal cell-seeded and cell-free constructs with BMP-2 plasmid DNA and /or SDF-1α loaded onto gelatin microparticles, were implanted subcutaneously in mice for a period of 6 weeks. Histological analysis and histomorphometry revealed that the onset of bone formation and the formed bone volume were both enhanced by the combination of BMP-2 and SDF-1α compared to controls in cell-seeded constructs. Samples without seeded multipotent stromal cells failed to induce any bone formation. We conclude that the addition of stromal cell-derived factor-1α to a cell-seeded alginate based bone morphogenetic protein-2 plasmid DNA construct has an additive effect on bone formation and can be considered a promising combination for bone regeneration.

  12. Proteinase-activated receptor (PAR)-2 activation impacts bone resorptive properties of human osteoarthritic subchondral bone osteoblasts.

    PubMed

    Amiable, Nathalie; Tat, Steeve Kwan; Lajeunesse, Daniel; Duval, Nicolas; Pelletier, Jean-Pierre; Martel-Pelletier, Johanne; Boileau, Christelle

    2009-06-01

    In osteoarthritis (OA), the subchondral bone undergoes a remodelling process involving several factors synthesized by osteoblasts. In this study, we investigated the expression, production, modulation, and role of PAR-2 in human OA subchondral bone osteoblasts. PAR-2 expression and production were determined by real-time PCR and flow cytometry, respectively. PAR-2 modulation was investigated in OA subchondral bone osteoblasts treated with IL-1 beta (100 pg/ml), TNF-alpha (5 ng/ml), TGF-beta1 (10 ng/ml), PGE(2) (500 nM), IL-6 (10 ng/ml) and IL-17 (10 ng/ml). Membranous RANKL protein was assessed by flow cytometry, and OPG, MMP-1, MMP-9, MMP-13, IL-6 and intracellular signalling pathways by specific ELISAs. Bone resorptive activity was measured by using a co-culture model of human PBMC and OA subchondral bone osteoblasts. PAR-2 expression and production (p<0.05) were markedly increased when human OA subchondral bone osteoblasts were compared to normal. On OA osteoblasts, PAR-2 production was significantly increased by IL-1 beta, TNF-alpha and PGE(2). Activation of PAR-2 with a specific agonist, SLIGKV-NH(2), induced a significant up-regulation of MMP-1, MMP-9, IL-6, and membranous RANKL, but had no effect on MMP-13 or OPG production. Interestingly, bone resorptive activity was also significantly enhanced following PAR-2 activation. The PAR-2 effect was mediated by activation of the MAP kinases Erk1/2 and JNK. This study is the first to demonstrate that PAR-2 activation plays a role in OA subchondral bone resorption via an up-regulation of major bone remodelling factors. These results shed new light on the potential of PAR-2 as a therapeutic target in OA.

  13. Sensitivity Analysis of the Bone Fracture Risk Model

    NASA Technical Reports Server (NTRS)

    Lewandowski, Beth; Myers, Jerry; Sibonga, Jean Diane

    2017-01-01

    Introduction: The probability of bone fracture during and after spaceflight is quantified to aid in mission planning, to determine required astronaut fitness standards and training requirements and to inform countermeasure research and design. Probability is quantified with a probabilistic modeling approach where distributions of model parameter values, instead of single deterministic values, capture the parameter variability within the astronaut population and fracture predictions are probability distributions with a mean value and an associated uncertainty. Because of this uncertainty, the model in its current state cannot discern an effect of countermeasures on fracture probability, for example between use and non-use of bisphosphonates or between spaceflight exercise performed with the Advanced Resistive Exercise Device (ARED) or on devices prior to installation of ARED on the International Space Station. This is thought to be due to the inability to measure key contributors to bone strength, for example, geometry and volumetric distributions of bone mass, with areal bone mineral density (BMD) measurement techniques. To further the applicability of model, we performed a parameter sensitivity study aimed at identifying those parameter uncertainties that most effect the model forecasts in order to determine what areas of the model needed enhancements for reducing uncertainty. Methods: The bone fracture risk model (BFxRM), originally published in (Nelson et al) is a probabilistic model that can assess the risk of astronaut bone fracture. This is accomplished by utilizing biomechanical models to assess the applied loads; utilizing models of spaceflight BMD loss in at-risk skeletal locations; quantifying bone strength through a relationship between areal BMD and bone failure load; and relating fracture risk index (FRI), the ratio of applied load to bone strength, to fracture probability. There are many factors associated with these calculations including

  14. Analysis of risk factors for central venous catheter-related complications: a prospective observational study in pediatric patients with bone sarcomas.

    PubMed

    Abate, Massimo Eraldo; Sánchez, Olga Escobosa; Boschi, Rita; Raspanti, Cinzia; Loro, Loretta; Affinito, Domenico; Cesari, Marilena; Paioli, Anna; Palmerini, Emanuela; Ferrari, Stefano

    2014-01-01

    The incidence of central venous catheter (CVC)-related complications reported in pediatric sarcoma patients is not established as reports in available literature are limited. The analysis of risk factors is part of the strategy to reduce the incidence of CVC complications. The objective of this study was to determine the incidence of CVC complications in children with bone sarcomas and if defined clinical variables represent a risk factor. During an 8-year period, 155 pediatric patients with bone sarcomas were prospectively followed up for CVC complications. Incidence and correlation with clinical features including gender, age, body mass index, histology, disease stage, and use of thromboprophylaxis with low-molecular-weight heparin were analyzed. Thirty-three CVC complications were recorded among 42 687 CVC-days (0.77 per 1000 CVC-days). No correlation between the specific clinical variables and the CVC complications was found. A high incidence of CVC-related sepsis secondary to gram-negative bacteria was observed. The analysis of CVC complications and their potential risk factors in this sizable and relatively homogeneous pediatric population with bone sarcomas has led to the implementation of a multimodal approach by doctors and nurses to reduce the incidence and morbidity of the CVC-related infections, particularly those related to gram-negative bacteria. As a result of this joint medical and nursing study, a multimodal approach that included equipping faucets with water filters, the reeducation of doctors and nurses, and the systematic review of CVC protocol was implemented.

  15. Bone Densitometry (Bone Density Scan)

    MedlinePlus

    ... News Physician Resources Professions Site Index A-Z Bone Densitometry (DEXA) Bone densitometry, also called dual-energy ... limitations of DEXA Bone Densitometry? What is a Bone Density Scan (DEXA)? Bone density scanning, also called ...

  16. Platelet-rich plasma for bone healing and regeneration.

    PubMed

    Oryan, Ahmad; Alidadi, Soodeh; Moshiri, Ali

    2016-01-01

    Successful healing of large bone defects (LBDs) is a complicated phenomenon because the body's natural ability often fails to effectively repair the LBDs. New modalities should be utilized to increase the quality and accelerate bone healing. Platelet concentrates in different forms can be considered an attractive option for such purpose. Platelets as a natural source of growth factors, cytokines, and other micro and macromolecules are hypothesized to improve bone healing. This review has covered important concepts regarding platelet-rich plasma (PRP) including mechanisms of action, preparation protocols and their differences, and factors affecting the PRP efficacy during bone healing. In addition, the most recent studies in different levels which evaluated the role of PRP on bone repair has been reviewed and discussed to clarify the controversies and conflicts, and to illustrate a future prospective and directions for orthopedic surgeons to overcome current limitations and difficulties. As the efficacy of PRP is dependent on various factors, the outcome of PRP therapy is variable and unpredictable in orthopedic patients. Therefore, it is still too soon to suggest PRP as the first line treatment option in complicated bone injuries such as LBDs and nonunions. However, combination of PRP with natural and synthetic biomaterials can enhance the effectiveness of PRP.

  17. * Central Growth Factor Loaded Depots in Bone Tissue Engineering Scaffolds for Enhanced Cell Attraction.

    PubMed

    Quade, Mandy; Knaack, Sven; Akkineni, Ashwini Rahul; Gabrielyan, Anastasia; Lode, Anja; Rösen-Wolff, Angela; Gelinsky, Michael

    2017-08-01

    Tissue engineering, the application of stem and progenitor cells in combination with an engineered extracellular matrix, is a promising strategy for bone regeneration. However, its success is limited by the lack of vascularization after implantation. The concept of in situ tissue engineering envisages the recruitment of cells necessary for tissue regeneration from the host environment foregoing ex vivo cell seeding of the scaffold. In this study, we developed a novel scaffold system for enhanced cell attraction, which is based on biomimetic mineralized collagen scaffolds equipped with a central biopolymer depot loaded with chemotactic agents. In humid milieu, as after implantation, the signaling factors are expected to slowly diffuse out of the central depot forming a gradient that stimulates directed cell migration toward the scaffold center. Heparin, hyaluronic acid, and alginate have been shown to be capable of depot formation. By using vascular endothelial growth factor (VEGF) as model factor, it was demonstrated that the release kinetics can be adjusted by varying the depot composition. While alginate and hyaluronic acid are able to reduce the initial burst and prolong the release of VEGF, the addition of heparin led to a much stronger retention that resulted in an almost linear release over 28 days. The biological activity of released VEGF was proven for all variants using an endothelial cell proliferation assay. Furthermore, migration experiments with endothelial cells revealed a relationship between the degree of VEGF retention and migration distance: cells invaded deepest in scaffolds containing a heparin-based depot indicating that the formation of a steep gradient is crucial for cell attraction. In conclusion, this novel in situ tissue engineering approach, specifically designed to recruit and accommodate endogenous cells upon implantation, appeared highly promising to stimulate cell invasion, which in turn would promote vascularization and finally new

  18. Extinction and renewal of cue-elicited reward-seeking.

    PubMed

    Bezzina, Louise; Lee, Jessica C; Lovibond, Peter F; Colagiuri, Ben

    2016-12-01

    Reward cues can contribute to overconsumption of food and drugs and can relapse. The failure of exposure therapies to reduce overconsumption and relapse is generally attributed to the context-specificity of extinction. However, no previous study has examined whether cue-elicited reward-seeking (as opposed to cue-reactivity) is sensitive to context renewal. We tested this possibility in 160 healthy volunteers using a Pavlovian-instrumental transfer (PIT) design involving voluntary responding for a high value natural reward (chocolate). One reward cue underwent Pavlovian extinction in the same (Group AAA) or different context (Group ABA) to all other phases. This cue was compared with a second non-extinguished reward cue and an unpaired control cue. There was a significant overall PIT effect with both reward cues eliciting reward-seeking on test relative to the unpaired cue. Pavlovian extinction substantially reduced this effect, with the extinguished reward cue eliciting less reward-seeking than the non-extinguished reward cue. Most interestingly, extinction of cue-elicited reward-seeking was sensitive to renewal, with extinction less effective for reducing PIT when conducted in a different context. These findings have important implications for extinction-based interventions for reducing maladaptive reward-seeking in practice. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Introducing Forum Theatre to Elicit and Advocate Children's Views

    ERIC Educational Resources Information Center

    Hammond, Nick

    2013-01-01

    Eliciting and advocating the voice of the child remains at the heart of international political agenda and also remains a central role for educational psychologists (EPs). Previous research indicates that EPs tend to use language-based methods for eliciting and advocating views of children. However, these approaches are often limited. Taking a…

  20. [Research advances of fluid bio-mechanics in bone].

    PubMed

    Chen, Zebin; Huo, Bo

    2017-04-01

    It has been found for more than one century that when experiencing mechanical loading, the structure of bone will adapt to the changing mechanical environment, which is called bone remodeling. Bone remodeling is charaterized as two processes of bone formation and bone resorption. A large number of studies have confirmed that the shear stress is resulted from interstitial fluid flow within bone cavities under mechanical loading and it is the key factor of stimulating the biological responses of bone cells. This review summarizes the major research progress during the past years, including the biological response of bone cells under fluid flow, the pressure within bone cavities, the theoretical modeling, numerical simulation and experiments about fluid flow within bone, and finally analyzes and predicts the possible tendency in this field in the future.

  1. Comparative limb bone loading in the humerus and femur of the tiger salamander: testing the 'mixed-chain' hypothesis for skeletal safety factors.

    PubMed

    Kawano, Sandy M; Economy, D Ross; Kennedy, Marian S; Dean, Delphine; Blob, Richard W

    2016-02-01

    Locomotion imposes some of the highest loads upon the skeleton, and diverse bone designs have evolved to withstand these demands. Excessive loads can fatally injure organisms; however, bones have a margin of extra protection, called a 'safety factor' (SF), to accommodate loads that are higher than normal. The extent to which SFs might vary amongst an animal's limb bones is unclear. If the limbs are likened to a chain composed of bones as 'links', then similar SFs might be expected for all limb bones because failure of the system would be determined by the weakest link, and extra protection in other links could waste energetic resources. However, Alexander proposed that a 'mixed-chain' of SFs might be found amongst bones if: (1) their energetic costs differ, (2) some elements face variable demands, or (3) SFs are generally high. To test whether such conditions contribute to diversity in limb bone SFs, we compared the biomechanical properties and locomotor loading of the humerus and femur in the tiger salamander (Ambystoma tigrinum). Despite high SFs in salamanders and similar sizes of the humerus and femur that would suggest similar energetic costs, the humerus had lower bone stresses, higher mechanical hardness and larger SFs. SFs were greatest in the anatomical regions where yield stresses were highest in the humerus and lowest in the femur. Such intraspecific variation between and within bones may relate to their different biomechanical functions, providing insight into the emergence of novel locomotor capabilities during the invasion of land by tetrapods. © 2016. Published by The Company of Biologists Ltd.

  2. Minocycline inhibits D-amphetamine-elicited action potential bursts in a central snail neuron.

    PubMed

    Chen, Y-H; Lin, P-L; Wong, R-W; Wu, Y-T; Hsu, H-Y; Tsai, M-C; Lin, M-J; Hsu, Y-C; Lin, C-H

    2012-10-25

    Minocycline is a second-generation tetracycline that has been reported to have powerful neuroprotective properties. In our previous studies, we found that d-amphetamine (AMPH) elicited action potential bursts in an identifiable RP4 neuron of the African snail, Achatina fulica Ferussac. This study sought to determine the effects of minocycline on the AMPH-elicited action potential pattern changes in the central snail neuron, using the two-electrode voltage clamping method. Extracellular application of AMPH at 300 μM elicited action potential bursts in the RP4 neuron. Minocycline dose-dependently (300-900 μM) inhibited the action potential bursts elicited by AMPH. The inhibitory effects of minocycline on AMPH-elicited action potential bursts were restored by forskolin (50 μM), an adenylate cyclase activator, and by dibutyryl cAMP (N(6),2'-O-Dibutyryladenosine 3',5'-cyclic monophosphate; 1mM), a membrane-permeable cAMP analog. Co-administration of forskolin (50 μM) plus tetraethylammonium chloride (TEA; 5mM) or co-administration of TEA (5mM) plus dibutyryl cAMP (1mM) also elicited action potential bursts, which were prevented and inhibited by minocycline. In addition, minocycline prevented and inhibited forskolin (100 μM)-elicited action potential bursts. Notably, TEA (50mM)-elicited action potential bursts in the RP4 neuron were not affected by minocycline. Minocycline did not affect steady-state outward currents of the RP4 neuron. However, minocycline did decrease the AMPH-elicited steady-state current changes. Similarly, minocycline decreased the effects of forskolin-elicited steady-state current changes. Pretreatment with H89 (N-[2-(p-Bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide dihydrochloride; 10 μM), a protein kinase A inhibitor, inhibited AMPH-elicited action potential bursts and decreased AMPH-elicited steady-state current changes. These results suggest that the cAMP-protein kinase A signaling pathway and the steady-state current are involved in

  3. Msx-1 is suppressed in bisphosphonate-exposed jaw bone analysis of bone turnover-related cell signalling after bisphosphonate treatment.

    PubMed

    Wehrhan, F; Hyckel, P; Amann, K; Ries, J; Stockmann, P; Schlegel, Ka; Neukam, Fw; Nkenke, E

    2011-05-01

    Bone-destructive disease treatments include bisphosphonates and antibodies against receptor activator for nuclear factor κB ligand (aRANKL). Osteonecrosis of the jaw (ONJ) is a side-effect. Aetiopathology models failed to explain their restriction to the jaw. The osteoproliferative transcription factor Msx-1 is expressed constitutively only in mature jaw bone. Msx-1 expression might be impaired in bisphosphonate-related ONJ. This study compared the expression of Msx-1, Bone Morphogenetic Protein (BMP)-2 and RANKL, in ONJ-affected and healthy jaw bone. An automated immunohistochemistry-based alkaline phosphatase-anti-alkaline phosphatase method was used on ONJ-affected and healthy jaw bone samples (n = 20 each): cell-number ratio (labelling index, Bonferroni adjustment). Real-time RT-PCR was performed to quantitatively compare Msx-1, BMP-2, RANKL and GAPDH mRNA levels. Labelling indices were significantly lower for Msx-1 (P < 0.03) and RANKL (P < 0.003) and significantly higher (P < 0.02) for BMP-2 in ONJ compared with healthy bone. Expression was sevenfold lower (P < 0.03) for Msx-1, 22-fold lower (P < 0.001) for RANKL and eightfold higher (P < 0.02) for BMP-2 in ONJ bone. Msx-1, RANKL suppression and BMP-2 induction were consistent with the bisphosphonate-associated osteopetrosis and impaired bone remodelling in BP- and aRANKL-induced ONJ. Msx-1 suppression suggested a possible explanation of the exclusivity of ONJ in jaw bone. Functional analyses of Msx-1- RANKL interaction during bone remodelling should be performed in the future. © 2011 John Wiley & Sons A/S.

  4. Diabetes mellitus related bone metabolism and periodontal disease

    PubMed Central

    Wu, Ying-Ying; Xiao, E; Graves, Dana T

    2015-01-01

    Diabetes mellitus and periodontal disease are chronic diseases affecting a large number of populations worldwide. Changed bone metabolism is one of the important long-term complications associated with diabetes mellitus. Alveolar bone loss is one of the main outcomes of periodontitis, and diabetes is among the primary risk factors for periodontal disease. In this review, we summarise the adverse effects of diabetes on the periodontium in periodontitis subjects, focusing on alveolar bone loss. Bone remodelling begins with osteoclasts resorbing bone, followed by new bone formation by osteoblasts in the resorption lacunae. Therefore, we discuss the potential mechanism of diabetes-enhanced bone loss in relation to osteoblasts and osteoclasts. PMID:25857702

  5. Associations among Endocrine, Inflammatory, and Bone Markers, Body Composition and Physical Activity to Weight Loss Induced Bone Loss

    PubMed Central

    Labouesse, Marie A.; Gertz, Erik R.; Piccolo, Brian D.; Souza, Elaine C.; Schuster, Gertrud U.; Witbracht, Megan G.; Woodhouse, Leslie R.; Adams, Sean H.; Keim, Nancy L.; Van Loan, Marta D.

    2015-01-01

    INTRODUCTION Weight loss reduces co-morbidities of obesity, but decreases bone mass. PURPOSE Our aims were to 1) determine if adequate dairy intake attenuates weight loss-induced bone loss; 2) evaluate the associations of endocrine, inflammatory and bone markers, anthropometric and other parameters to bone mineral density and content (BMD, BMC) pre- and post-weight loss; 3) model the contribution of these variables to post weight-loss BMD and BMC METHODS Overweight/obese women (BMI: 28–37 kg/m2) were enrolled in an energy reduced (−500 kcal/d; −2092 kJ/d) diet with adequate dairy (AD: 3–4 servings/d; n=25, 32.2 ± 8.8y) or low dairy (LD: ≤ 1 serving/d; n=26, 31.7 ± 8.4 y). BMD, BMC and body composition were measured by DXA. Bone markers (CTX, PYD, BAP, OC), endocrine (PTH, vitamin D, leptin, adiponectin, ghrelin, amylin, insulin, GLP-1, PAI-1, HOMA) and inflammatory markers (CRP, IL1-β, IL-6, IL-8, TNF-α, cortisol) were measured in serum or plasma. PA was assessed by accelerometry. RESULTS Following weight loss, AD intake resulted in significantly greater (p= 0.004) lumbar spine BMD and serum osteocalcin (p=0.004) concentration compared to LD. Pre- and post- body fat were negatively associated with hip and lumbar spine BMC (r= −0.28, p=0.04 to −0.45, p=0.001). Of note were the significant negative associations among bone markers and IL-1β, TNFα and CRP ranging from r = −0.29 (p=0.04) to r = −0.34 (p=0.01); magnitude of associations did not change with weight loss. Adiponectin was negatively related to change in osteocalcin. Factor analysis resulted in 8 pre- and post-weight loss Factors. Pre-weight loss Factors accounted for 13.7% of the total variance in pre-weight loss hip BMD; post-weight loss Factors explained 19.6% of the total variance in post-weight loss hip BMD. None of the Factors contributed to the variance in lumbar spine BMD. CONCLUSION AD during weight loss resulted in higher lumbar spine BMD and osteocalcin compared to LD

  6. Stem cell niches and other factors that influence the sensitivity of bone marrow to radiation-induced bone cancer and leukaemia in children and adults

    PubMed Central

    Richardson, Richard B

    2011-01-01

    Purpose: This paper reviews and reassesses the internationally accepted niches or ‘targets’ in bone marrow that are sensitive to the induction of leukaemia and primary bone cancer by radiation. Conclusions: The hypoxic conditions of the 10 μm thick endosteal/osteoblastic niche where preleukemic stem cells and hematopoietic stem cells (HSC) reside provides a radioprotective microenvironment that is 2-to 3-fold less radiosensitive than vascular niches. This supports partitioning the whole marrow target between the low haematological cancer risk of irradiating HSC in the endosteum and the vascular niches within central marrow. There is a greater risk of induced bone cancer when irradiating a 50 μm thick peripheral marrow adjacent to the remodelling/reforming portion of the trabecular bone surface, rather than marrow next to the quiescent bone surface. This choice of partitioned bone cancer target is substantiated by the greater radiosensitivity of: (i) Bone with high remodelling rates, (ii) the young, (iii) individuals with hypermetabolic benign diseases of bone, and (iv) the epidemiology of alpha-emitting exposures. Evidence is given to show that the absence of excess bone-cancer in atomic-bomb survivors may be partially related to the extremely low prevalence among Japanese of Paget's disease of bone. Radiation-induced fibrosis and the wound healing response may be implicated in not only radiogenic bone cancers but also leukaemia. A novel biological mechanism for adaptive response, and possibility of dynamic targets, is advocated whereby stem cells migrate from vascular niches to stress-mitigated, hypoxic niches. PMID:21204614

  7. Effects of honey supplementation combined with different jumping exercise intensities on bone mass, serum bone metabolism markers and gonadotropins in female rats

    PubMed Central

    2014-01-01

    Background The effects of high and low jumping exercise intensities combined with honey on bone and gonadotrophins were investigated in eighty four 9 week-old female rats. Methods The experimental groups were 20 or 80 jumps per day combined with or without honey supplementation (HJ20, HJ80, J20 and J80), honey supplementation (H), sedentary without supplementation control (C), and baseline control (C0) groups. Results Study results showed that HJ80 elicited greatest beneficial effects on tibial and femoral mass, serum total calcium and alkaline phosphatase concentrations. There were significantly (p < 0.05) lower levels of serum follicle stimulating hormone concentrations in H, J20, J80 compared to C, with exception of HJ20 and HJ80. Serum luteinizing hormone concentrations were significantly (p < 0.05) greater in HJ20, HJ80 and J20 compared to J80. Conclusions It appears that high intensity jumping exercise combined with honey supplementation resulted more discernable effects on bone. Meanwhile, honey may protect against the adverse effects induced by jumping exercise on gonadotropins in female rats. PMID:24708608

  8. The effect of carrier type on bone regeneration of demineralized bone matrix in vivo.

    PubMed

    Tavakol, Shima; Khoshzaban, Ahad; Azami, Mahmoud; Kashani, Iraj Ragerdi; Tavakol, Hani; Yazdanifar, Mahbube; Sorkhabadi, Seyed Mahdi Rezayat

    2013-11-01

    Demineralized bone matrix (DBM) is a bone substitute biomaterial used as an excellent grafting material. Some factors such as carrier type might affect the healing potential of this material. The background data discuss the present status of the field: Albumin as a main protein in blood and carboxymethyl cellulose (CMC) were applied frequently in the DBM gels. We investigated the bone-repairing properties of 2 DBMs with different carriers. Bone regeneration in 3 groups of rat calvaria treated with DBM from the Iranian Tissue Bank Research and Preparation Center, DBM from Hans Biomed Corporation, and an empty cavity was studied. Albumin and CMC as carriers were used. The results of bone regeneration in the samples after 1, 4, and 8 weeks of implantation were compared. The block of the histologic samples was stained with hematoxylin and eosin, and the percentage area of bone formation was calculated using the histomorphometry method. The results of in vivo tests showed a significantly stronger new regenerated bone occupation in the DBM with albumin carrier compared with the one with CMC 8 weeks after the implantation. The 2 types of DBM had a significant difference in bone regeneration. This difference is attributed to the type of carriers. Albumin could improve mineralization and bioactivity compared with CMC.

  9. Maxillary post-traumatic outcome correction literature review and our experience. Part I: maxillary bone non-unions-"poor bone positioning".

    PubMed

    D'Agostino, A; Toffanetti, G; Scala, R; Trevisiol, L; Ferrari, F

    2004-04-01

    Still today, there is no classification of non-unions in maxillofacial traumatology. There is a broad spectrum of definitions that simultaneously describe the pathological conditions and functional implications determined by the anatomical location of the fractures and the time factor. In this article the authors describe a literature review about bone non-union classification. Weber, in 1973, introduced the term "pseudo-arthrosis" to describe an altered process of bone healing characterised by the presence of fibrous tissue interposed between the fracture segments, that was lined with cartilaginous tissue and joined by a capsule; Spiessl, in 1988, used the term "non-union" to define any alteration of the bone healing process after a time period of more than 6 months from the initial traumatic event; Rosen, in 1990, proposed a new classification of the modes of altered bone healing in fractures, distinguishing 5 categories: delayed consolidation, non-union, non-union vascular, non union avascular, pseudoarthrosis. The authors also talk about "poor bone positioning". This factor describes the incorrect anatomical position of the bone fragments despite perfectly normal healing according to Gruss. In this article they also discuss about the treatment of non-unions and the treatment of occlusal alterations caused by poor post-traumatic bone positioning.

  10. Bone fracture healing in mechanobiological modeling: A review of principles and methods.

    PubMed

    Ghiasi, Mohammad S; Chen, Jason; Vaziri, Ashkan; Rodriguez, Edward K; Nazarian, Ara

    2017-06-01

    Bone fracture is a very common body injury. The healing process is physiologically complex, involving both biological and mechanical aspects. Following a fracture, cell migration, cell/tissue differentiation, tissue synthesis, and cytokine and growth factor release occur, regulated by the mechanical environment. Over the past decade, bone healing simulation and modeling has been employed to understand its details and mechanisms, to investigate specific clinical questions, and to design healing strategies. The goal of this effort is to review the history and the most recent work in bone healing simulations with an emphasis on both biological and mechanical properties. Therefore, we provide a brief review of the biology of bone fracture repair, followed by an outline of the key growth factors and mechanical factors influencing it. We then compare different methodologies of bone healing simulation, including conceptual modeling (qualitative modeling of bone healing to understand the general mechanisms), biological modeling (considering only the biological factors and processes), and mechanobiological modeling (considering both biological aspects and mechanical environment). Finally we evaluate different components and clinical applications of bone healing simulation such as mechanical stimuli, phases of bone healing, and angiogenesis.

  11. Clinical use of vestibular evoked myogenic potentials in the evaluation of patients with air-bone gaps.

    PubMed

    Zhou, Guangwei; Poe, Dennis; Gopen, Quinton

    2012-10-01

    To determine the value of vestibular evoked myogenic potential (VEMP) test in clinical evaluation of air-bone gaps. Retrospective case review. Tertiary referral center. A total of 120 patients underwent VEMP testing during clinical investigation of significant air-bone gaps in their audiograms. Otologic examination and surgeries, high-resolution computerized tomography (CT), air and bone audiometry, tympanometry, acoustic reflex, and VEMP test. Imaging studies demonstrating structural anomalies in the temporal bone. Audiologic outcomes of air-bone gaps and VEMP thresholds. Surgical findings confirming imaging results. Middle ear pathologies, such as otosclerosis and chronic otitis media, were identified in 50 patients, and all of them had absent VEMP responses elicited by air-conduction stimuli. Moreover, 13 of them had successful middle ear surgeries with closures of the air-bone gaps. Abnormally low VEMP thresholds were found in 71 of 73 ears with inner ear anomalies, such as semicircular canal dehiscence and enlarged vestibular aqueduct. Seven patients with superior semicircular canal dehiscence underwent plugging procedure via middle fossa approach, and VEMP thresholds became normalized after the surgery in 3 of them. VEMP test failed to provide accurate diagnosis in only 3 cases. Air-bone gaps may be a result of various otologic pathologies, and the VEMP test is useful during clinical evaluation, better than tympanometry and acoustic reflexes. To avoid unnecessary middle ear surgery for air-bone gaps with unknown or unsure cause, VEMP test should be used in the differential diagnosis before an expensive imaging study.

  12. Growth hormone and bone health.

    PubMed

    Bex, Marie; Bouillon, Roger

    2003-01-01

    Growth hormone (GH) and insulin-like growth factor-I have major effects on growth plate chondrocytes and all bone cells. Untreated childhood-onset GH deficiency (GHD) markedly impairs linear growth as well as three-dimensional bone size. Adult peak bone mass is therefore about 50% that of adults with normal height. This is mainly an effect on bone volume, whereas true bone mineral density (BMD; g/cm(3)) is virtually normal, as demonstrated in a large cohort of untreated Russian adults with childhood-onset GHD. The prevalence of fractures in these untreated childhood-onset GHD adults was, however, markedly and significantly increased in comparison with normal Russian adults. This clearly indicates that bone mass and bone size matter more than true bone density. Adequate treatment with GH can largely correct bone size and in several studies also bone mass, but it usually requires more than 5 years of continuous treatment. Adult-onset GHD decreases bone turnover and results in a mild deficit, generally between -0.5 and -1.0 z-score, in bone mineral content and BMD of the lumbar spine, radius and femoral neck. Cross-sectional surveys and the KIMS data suggest an increased incidence of fractures. GH replacement therapy increases bone turnover. The three controlled studies with follow-up periods of 18 and 24 months demonstrated a modest increase in BMD of the lumbar spine and femoral neck in male adults with adult-onset GHD, whereas no significant changes in BMD were observed in women. GHD, whether childhood- or adult-onset, impairs bone mass and strength. Appropriate substitution therapy can largely correct these deficiencies if given over a prolonged period. GH therapy for other bone disorders not associated with primary GHD needs further study but may well be beneficial because of its positive effects on the bone remodelling cycle. Copyright 2003 S. Karger AG, Basel

  13. Force-induced bone growth and adaptation: A system theoretical approach to understanding bone mechanotransduction

    NASA Astrophysics Data System (ADS)

    Maldonado, Solvey; Findeisen, Rolf

    2010-06-01

    The modeling, analysis, and design of treatment therapies for bone disorders based on the paradigm of force-induced bone growth and adaptation is a challenging task. Mathematical models provide, in comparison to clinical, medical and biological approaches an structured alternative framework to understand the concurrent effects of the multiple factors involved in bone remodeling. By now, there are few mathematical models describing the appearing complex interactions. However, the resulting models are complex and difficult to analyze, due to the strong nonlinearities appearing in the equations, the wide range of variability of the states, and the uncertainties in parameters. In this work, we focus on analyzing the effects of changes in model structure and parameters/inputs variations on the overall steady state behavior using systems theoretical methods. Based on an briefly reviewed existing model that describes force-induced bone adaptation, the main objective of this work is to analyze the stationary behavior and to identify plausible treatment targets for remodeling related bone disorders. Identifying plausible targets can help in the development of optimal treatments combining both physical activity and drug-medication. Such treatments help to improve/maintain/restore bone strength, which deteriorates under bone disorder conditions, such as estrogen deficiency.

  14. A paradigm shift for bone quality in dentistry: A literature review.

    PubMed

    Kuroshima, Shinichiro; Kaku, Masaru; Ishimoto, Takuya; Sasaki, Muneteru; Nakano, Takayoshi; Sawase, Takashi

    2017-10-01

    The aim of this study was to present the current concept of bone quality based on the proposal by the National Institutes of Health (NIH) and some of the cellular and molecular factors that affect bone quality. This is a literature review which focuses on collagen, biological apatite (BAp), and bone cells such as osteoblasts and osteocytes. In dentistry, the term "bone quality" has long been considered to be synonymous with bone mineral density (BMD) based on radiographic and sensible evaluations. In 2000, the NIH proposed the concept of bone quality as "the sum of all characteristics of bone that influence the bone's resistance to fracture," which is completely independent of BMD. The NIH defines bone quality as comprising bone architecture, bone turnover, bone mineralization, and micro-damage accumulation. Moreover, our investigations have demonstrated that BAp, collagen, and bone cells such as osteoblasts and osteocytes play essential roles in controlling the current concept of bone quality in bone around hip and dental implants. The current concept of bone quality is crucial for understanding bone mechanical functions. BAp, collagen and osteocytes are the main factors affecting bone quality. Moreover, mechanical loading dynamically adapts bone quality. Understanding the current concept of bone quality is required in dentistry. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  15. The Multifactorial role of Peripheral Nervous System in Bone Growth

    NASA Astrophysics Data System (ADS)

    Gkiatas, Ioannis; Papadopoulos, Dimitrios; Pakos, Emilios E.; Kostas-Agnantis, Ioannis; Gelalis, Ioannis; Vekris, Marios; Korompilias, Anastasios

    2017-09-01

    Bone alters its metabolic and anabolic activities in response to the variety of systemic and local factors such as hormones and growth factors. Classical observations describing abundance of the nerve fibers in bone also predict a paradigm that the nervous system influences bone metabolism and anabolism. Since 1916 several investigators tried to analyze the effect of peripheral nervous system in bone growth and most of them advocated for the positive effect of innervation in the bones of growing organisms. Moreover, neuronal tissue controls bone formation and remodeling. The purpose of this mini-review is to present the most recent data concerning the influence of innervation on bone growth, the current understanding of the skeletal innervation and their proposed physiological effects on bone metabolism as well as the implication of denervation in human skeletal biology in the developing organism since the peripheral neural trauma as well as peripheral neuropathies are common and they have impact on the growing skeleton.

  16. A Retrospective Tomographic and Histologic Analysis of Horizontal Bone Augmentation in Maxillary Atrophic Ridges Using Resorbable Membrane with Anorganic Bovine Bone-Derived Mineral and Plasma Rich in Growth Factors.

    PubMed

    Lorenzetti, Massimo; Vono, Maurizio; Lorenzetti, Virginia

    2018-02-16

    A total of six patients treated from 2010 to 2014, having a knife-edge ridge (Cawood-Howell Class IV resorbed ridges) and requiring an implant-prosthetic rehabilitation, were selected. Tomographic measurement of the edentulous ridges was performed before grafting and after implant placement. At 6 months postgraft, a total of 41 implants had been inserted, 17 in the posterior region, 12 in the central region, and 12 in the anterior region. No surgical or healing complications were recorded, and the prostheses were loaded 6 to 9 months after implant placement. The tomographic measurements demonstrated an increased area in all the sites where bone augmentation had been performed, corresponding to 11.1% in the anterior region, 94.7% in the central region, and 760.2% in the posterior region. Histology was performed in 2 patients, one at 1 year and the other at 5 years postgrafting, and demonstrated the presence of mature lamellar bone tissue and newly formed bone without morphologic signs of necrosis or inflammation and a reduction of 50% to 30% of the grafted material. Although this study included a small number of clinical cases, it demonstrated how management of the atrophic maxillary ridge, with the goal of implant placement, may be handled using a technique that requires a single anorganic bovine bone-derived mineral treatment combined with a plasma rich in growth factors and resorbable collagen membrane.

  17. Disuse exaggerates the detrimental effects of alcohol on cortical bone

    NASA Technical Reports Server (NTRS)

    Hefferan, Theresa E.; Kennedy, Angela M.; Evans, Glenda L.; Turner, Russell T.

    2003-01-01

    BACKGROUND: Alcohol abuse is associated with an increased risk for osteoporosis. However, comorbidity factors may play an important role in the pathogenesis of alcohol-related bone fractures. Suboptimal mechanical loading of the skeleton, an established risk factor for bone loss, may occur in some alcohol abusers due to reduced physical activity, muscle atrophy, or both. The effect of alcohol consumption and reduced physical activity on bone metabolism has not been well studied. The purpose of this study was to determine whether mechanical disuse alters bone metabolism in a rat model for chronic alcohol abuse. METHODS: Alcohol was administered in the diet (35% caloric intake) of 6-month-old male rats for 4 weeks. Rats were hindlimb-unloaded the final 2 weeks of the experiment to prevent dynamic weight bearing. Afterward, cortical bone histomorphometry was evaluated at the tibia-fibula synostosis. RESULTS: At the periosteal surface of the tibial diaphysis, alcohol and hindlimb unloading independently decreased the mineralizing perimeter, mineral apposition rate, and bone formation rate. In addition, alcohol, but not hindlimb unloading, increased endocortical bone resorption. The respective detrimental effects of alcohol and hindlimb unloading to inhibit bone formation were additive; there was no interaction between the two variables. CONCLUSIONS: Reduced weight bearing accentuates the detrimental effects of alcohol on cortical bone in adult male rats by further inhibiting bone formation. This finding suggests that reduced physical activity may be a comorbidity factor for osteoporosis in alcohol abusers.

  18. E-selectin ligand 1 regulates bone remodeling by limiting bioactive TGF-β in the bone microenvironment.

    PubMed

    Yang, Tao; Grafe, Ingo; Bae, Yangjin; Chen, Shan; Chen, Yuqing; Bertin, Terry K; Jiang, Ming-Ming; Ambrose, Catherine G; Lee, Brendan

    2013-04-30

    TGF-β is abundantly produced in the skeletal system and plays a crucial role in skeletal homeostasis. E-selectin ligand-1 (ESL-1), a Golgi apparatus-localized protein, acts as a negative regulator of TGF-β bioavailability by attenuating maturation of pro-TGF-β during cartilage homeostasis. However, whether regulation of intracellular TGF-β maturation by ESL-1 is also crucial during bone homeostasis has not been well defined. Here, we show that Esl-1(-/-) mice exhibit a severe osteopenia with elevated bone resorption and decreased bone mineralization. In primary culture, Esl-1(-/-) osteoclast progenitors show no difference in osteoclastogenesis. However, Esl-1(-/-) osteoblasts show delayed differentiation and mineralization and stimulate osteoclastogenesis more potently in the osteoblast-osteoclast coculture, suggesting that ESL-1 primarily acts in osteoblasts to regulate bone homeostasis. In addition, Esl-1(-/-) calvaria exhibit an elevated mature TGF-β/pro-TGF-β ratio, with increased expression of TGF-β downstream targets (plasminogen activator inhibitor-1, parathyroid hormone-related peptide, connective tissue growth factor, and matrix metallopeptidase 13, etc.) and a key regulator of osteoclastogenesis (receptor activator of nuclear factor κB ligand). Moreover, in vivo treatment with 1D11, a pan-TGF-β antibody, significantly improved the low bone mass of Esl-1(-/-) mice, suggesting that elevated TGF-β signaling is the major cause of osteopenia in Esl-1(-/-) mice. In summary, our study identifies ESL-1 as an important regulator of bone remodeling and demonstrates that the modulation of TGF-β maturation is pivotal in the maintenance of a homeostatic bone microenvironment and for proper osteoblast-osteoclast coupling.

  19. Challenges of Estimating Fracture Risk with DXA: Changing Concepts About Bone Strength and Bone Density.

    PubMed

    Licata, Angelo A

    2015-07-01

    Bone loss due to weightlessness is a significant concern for astronauts' mission safety and health upon return to Earth. This problem is monitored with bone densitometry (DXA), the clinical tool used to assess skeletal strength. DXA has served clinicians well in assessing fracture risk and has been particularly useful in diagnosing osteoporosis in the elderly postmenopausal population for which it was originally developed. Over the past 1-2 decades, however, paradoxical and contradictory findings have emerged when this technology was widely employed in caring for diverse populations unlike those for which it was developed. Although DXA was originally considered the surrogate marker for bone strength, it is now considered one part of a constellation of factors-described collectively as bone quality-that makes bone strong and resists fracturing, independent of bone density. These characteristics are beyond the capability of routine DXA to identify, and as a result, DXA can be a poor prognosticator of bone health in many clinical scenarios. New clinical tools are emerging to make measurement of bone strength more accurate. This article reviews the historical timeline of bone density measurement (dual X-ray absorptiometry), expands upon the clinical observations that modified the relationship of DXA and bone strength, discusses some of the new clinical tools to predict fracture risk, and highlights the challenges DXA poses in the assessment of fracture risk in astronauts.

  20. Effect of various factors on pull out strength of pedicle screw in normal and osteoporotic cancellous bone models.

    PubMed

    Varghese, Vicky; Saravana Kumar, Gurunathan; Krishnan, Venkatesh

    2017-02-01

    Pedicle screws are widely used for the treatment of spinal instability by spine fusion. Screw loosening is a major problem of spine fusion, contributing to delayed patient recovery. The present study aimed to understand the factor and interaction effects of density, insertion depth and insertion angle on pedicle screw pull out strength and insertion torque. A pull out study was carried out on rigid polyurethane foam blocks representing osteoporotic to normal bone densities according to the ASTM-1839 standard. It was found that density contributes most to pullout strength and insertion torque. The interaction effect is significant (p < 0.05) and contributes 8% to pull out strength. Axial pullout strength was 34% lower than angled pull out strength in the osteoporotic bone model. Insertion angle had no significant effect (p > 0.05) on insertion torque. Pullout strength and insertion torque had no significant correlation (p > 0.05) in the case of the extremely osteoporotic bone model. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  1. Research Dilemmas Associated with Photo Elicitation in Comparative Early Childhood Education Research

    ERIC Educational Resources Information Center

    Birkeland, Asta

    2013-01-01

    Photo elicitation has become an important method to produce data in qualitative research. There is quite an extensive literature indicating the benefits of photo elicitation in order to facilitate collaboration in meaning making between researcher and the interviewee. This article addresses dilemmas associated with using photo elicitation in a…

  2. Bone Growth, Mechanical Stimulus and IGF-1

    DTIC Science & Technology

    2006-10-01

    suffer a bone fracture by the time they reach skeletal maturity. While strenuous physical activity and occupational hazards are key factors in the...females with low bone density. Ultimately, this information could be of great benefit to enhance musculoskeletal development and decrease the risk ...pathogenesis of these fractures , several studies indicate that teenagers who sustain fractures also have decreased bone mass. Therefore, the use of low

  3. Enhanced osteoinductive capacity and decreased variability by enrichment of demineralized bone matrix with a bone protein extract.

    PubMed

    Ramis, Joana M; Calvo, Javier; Matas, Aina; Corbillo, Cristina; Gayà, Antoni; Monjo, Marta

    2018-06-28

    Osteoinductive capacity of demineralized bone matrix (DBM) is sometimes insufficient or shows high variability between different batches of DBM. Here, we tried to improve its osteoinductive activity by alkali-urea or trypsin treatment but this strategy was unsuccessful. Then, we tested the enrichment of DBM with a bone protein extract (BPE) containing osteogenic growth factors comparing two sources: cortical bone powder and DBM. The osteoinductive capacity (alkaline phosphatase activity) of the obtained BPEs was evaluated in vitro in C2C12 cells. Specific protein levels present in the different BPE was determined by enzyme-linked immunosorbent assay or by a multiplex assay. BPE from cortical bone powder showed a lack of osteoinductive effect, in agreement with the low content on osteoinductive factors. In contrast, BPE from DBM showed osteoinductive activity but also high variability among donors. Thus, we decided to enrich DBM with BPE obtained from a pool of DBM from different donors. Following this strategy, we achieved increased osteoinductive activity and lower variability among donors. In conclusion, the use of a BPE obtained from a pool of demineralized bone to enrich DBM could be used to increase its osteoinductive effect and normalize the differences between donors.

  4. The emerging role of bone marrow adipose tissue in bone health and dysfunction.

    PubMed

    Ambrosi, Thomas H; Schulz, Tim J

    2017-12-01

    Replacement of red hematopoietic bone marrow with yellow adipocyte-rich marrow is a conserved physiological process among mammals. The extent of this conversion is influenced by a wide array of pathological and non-pathological conditions. Of particular interest is the observation that some marrow adipocyte-inducing factors seem to oppose each other, for instance obesity and caloric restriction. Intriguingly, several important molecular characteristics of bone marrow adipose tissue (BMAT) are distinct from the classical depots of white and brown fat tissue. This depot of fat has recently emerged as an active part of the bone marrow niche that exerts paracrine and endocrine functions thereby controlling osteogenesis and hematopoiesis. While some functions of BMAT may be beneficial for metabolic adaptation and bone homeostasis, respectively, most findings assign bone fat a detrimental role during regenerative processes, such as hematopoiesis and osteogenesis. Thus, an improved understanding of the biological mechanisms leading to formation of BMAT, its molecular characteristics, and its physiological role in the bone marrow niche is warranted. Here we review the current understanding of BMAT biology and its potential implications for health and the development of pathological conditions.

  5. Cell-specific paracrine actions of IL-6 family cytokines from bone, marrow and muscle that control bone formation and resorption.

    PubMed

    Sims, Natalie A

    2016-10-01

    Bone renews itself and changes shape throughout life to account for the changing needs of the body; this requires co-ordinated activities of bone resorbing cells (osteoclasts), bone forming cells (osteoblasts) and bone's internal cellular network (osteocytes). This review focuses on paracrine signaling by the IL-6 family of cytokines between bone cells, bone marrow, and skeletal muscle in normal physiology and in pathological states where their levels may be locally or systemically elevated. These functions include the support of osteoclast formation by osteoblast lineage cells in response to interleukin 6 (IL-6), interleukin 11 (IL-11), oncostatin M (OSM) and cardiotrophin 1 (CT-1). In addition it will discuss how bone-resorbing osteoclasts promote osteoblast activity by secreting CT-1, which acts as a "coupling factor" on osteocytes, osteoblasts, and their precursors to promote bone formation. OSM, produced by osteoblast lineage cells and macrophages, stimulates bone formation via osteocytes. IL-6 family cytokines also mediate actions of other bone formation stimuli like parathyroid hormone (PTH) and mechanical loading. CT-1, OSM and LIF suppress marrow adipogenesis by shifting commitment of pluripotent precursors towards osteoblast differentiation. Ciliary neurotrophic factor (CNTF) is released as a myokine from skeletal muscle and suppresses osteoblast differentiation and bone formation on the periosteum (outer bone surface in apposition to muscle). Finally, IL-6 acts directly on marrow-derived osteoclasts to stimulate release of "osteotransmitters" that act through the cortical osteocyte network to stimulate bone formation on the periosteum. Each will be discussed as illustrations of how the extended family of IL-6 cytokines acts within the skeleton in physiology and may be altered in pathological conditions or by targeted therapies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Nell-1-Induced Bone Regeneration in Calvarial Defects

    PubMed Central

    Aghaloo, Tara; Cowan, Catherine M.; Chou, Yu-Fen; Zhang, Xinli; Lee, Haofu; Miao, Steve; Hong, Nichole; Kuroda, Shun’ichi; Wu, Benjamin; Ting, Kang; Soo, Chia

    2006-01-01

    Many craniofacial birth defects contain skeletal components requiring bone grafting. We previously identified the novel secreted osteogenic molecule NELL-1, first noted to be overexpressed during premature bone formation in calvarial sutures of craniosynostosis patients. Nell-1 overexpression significantly increases differentiation and mineralization selectively in osteoblasts, while newborn Nell-1 transgenic mice significantly increase premature bone formation in calvarial sutures. In the current study, cultured calvarial explants isolated from Nell-1 transgenic newborn mice (with mild sagittal synostosis) demonstrated continuous bone growth and overlapping sagittal sutures. Further investigation into gene expression cascades revealed that fibroblast growth factor-2 and transforming growth factor-β1 stimulated Nell-1 expression, whereas bone morphogenetic protein (BMP)-2 had no direct effect. Additionally, Nell-1-induced osteogenesis in MC3T3-E1 osteoblasts through reduction in the expression of early up-regulated osteogenic regulators (OSX and ALP) but induction of later markers (OPN and OCN). Grafting Nell-1 protein-coated PLGA scaffolds into rat calvarial defects revealed the osteogenic potential of Nell-1 to induce bone regeneration equivalent to BMP-2, whereas immunohistochemistry indicated that Nell-1 reduced osterix-producing cells and increased bone sialoprotein, osteocalcin, and BMP-7 expression. Insights into Nell-1-regulated osteogenesis coupled with its ability to stimulate bone regeneration revealed a potential therapeutic role and an alternative to the currently accepted techniques for bone regeneration. PMID:16936265

  7. A concise review of testosterone and bone health

    PubMed Central

    Mohamad, Nur-Vaizura; Soelaiman, Ima-Nirwana; Chin, Kok-Yong

    2016-01-01

    Osteoporosis is a condition causing significant morbidity and mortality in the elderly population worldwide. Age-related testosterone deficiency is the most important factor of bone loss in elderly men. Androgen can influence bone health by binding to androgen receptors directly or to estrogen receptors (ERs) indirectly via aromatization to estrogen. This review summarized the direct and indirect effects of androgens on bone derived from in vitro, in vivo, and human studies. Cellular studies showed that androgen stimulated the proliferation of preosteoblasts and differentiation of osteoblasts. The converted estrogen suppressed osteoclast formation and resorption activity by blocking the receptor activator of nuclear factor k-B ligand pathway. In animal studies, activation of androgen and ERα, but not ERβ, was shown to be important in acquisition and maintenance of bone mass. Human epidemiological studies demonstrated a significant relationship between estrogen and testosterone in bone mineral density and fracture risk, but the relative significance between the two remained debatable. Human experimental studies showed that estrogen was needed in suppressing bone resorption, but both androgen and estrogen were indispensable for bone formation. As a conclusion, maintaining optimal level of androgen is essential in preventing osteoporosis and its complications in elderly men. PMID:27703340

  8. Bone regenerative medicine: classic options, novel strategies, and future directions

    PubMed Central

    2014-01-01

    This review analyzes the literature of bone grafts and introduces tissue engineering as a strategy in this field of orthopedic surgery. We evaluated articles concerning bone grafts; analyzed characteristics, advantages, and limitations of the grafts; and provided explanations about bone-tissue engineering technologies. Many bone grafting materials are available to enhance bone healing and regeneration, from bone autografts to graft substitutes; they can be used alone or in combination. Autografts are the gold standard for this purpose, since they provide osteogenic cells, osteoinductive growth factors, and an osteoconductive scaffold, all essential for new bone growth. Autografts carry the limitations of morbidity at the harvesting site and limited availability. Allografts and xenografts carry the risk of disease transmission and rejection. Tissue engineering is a new and developing option that had been introduced to reduce limitations of bone grafts and improve the healing processes of the bone fractures and defects. The combined use of scaffolds, healing promoting factors, together with gene therapy, and, more recently, three-dimensional printing of tissue-engineered constructs may open new insights in the near future. PMID:24628910

  9. Magnetic targeting of mechanosensors in bone cells for tissue engineering applications.

    PubMed

    Hughes, Steven; Dobson, Jon; El Haj, Alicia J

    2007-01-01

    Mechanical signalling plays a pivotal role in maintaining bone cell function and remodelling of the skeleton. Our previous work has highlighted the potential role of mechano-induction in tissue engineering applications. In particular, we have highlighted the potential for using magnetic particle techniques for tissue engineering applications. Previous studies have shown that manipulation of integrin attached magnetic particles leads to changes in intracellular calcium signalling within osteoblasts. However, due to the phenomenon of particle internalisation, previous studies have typically focused on short-term stimulation experiments performed within 1-2 h of particle attachment. For tissue engineering applications, bone tissue growth occurs over a period of 3-5 weeks. To date, no study has investigated the cellular responses elicited from osteoblasts over time following stimulation with internalised magnetic particles. Here, we demonstrate the long-term biocompatibility of 4.5 microm RGD-coated particles with osteoblasts up to 21 days in culture, and detail a time course of responses elicited from osteoblasts following mechanical stimulation with integrin attached magnetic particles (<2h post attachment) and internalised particles (>48h post attachment). Mechanical manipulation of both integrin attached and internalised particles were found to induce intracellular calcium signalling. It is concluded that magnetic particles offer a tool for applying controlled mechanical forces to osteoblasts, and can be used to stimulate intracellular calcium signalling over prolonged periods of time. Magnetic particle technology presents a potentially valuable tool for tissue engineering which permits the delivery of highly localised mechano-inductive forces directly to cells.

  10. Dopamine D4 receptor polymorphism modulates cue-elicited heroin craving in Chinese.

    PubMed

    Shao, Chunhong; Li, Yifeng; Jiang, Kaida; Zhang, Dandan; Xu, Yifeng; Lin, Ling; Wang, Qiuying; Zhao, Min; Jin, Li

    2006-06-01

    Subjective craving, which contributes to the continuation of drug use in active abuser and the occurrence of relapse in detoxified abusers, is considered to be a central phenomenon in addiction. Dopamine pathway has been implicated in the mechanism underlying the cue-elicited craving for a variety of addictive substances. The objective of this study was to test the hypothesis that heroin addicts carrying D4 dopamine receptor gene (DRD4) variable number tandem repeat (VNTR) long type allele would have higher craving after exposure to a heroin-related cue. Craving was induced by a series of exposure to neutral and heroin-related cue and were assessed in a cohort of Chinese heroin abusers (n=420) recruited from the Voluntary Drug Dependence Treatment Center at Shanghai. Significantly stronger cue-elicited heroin craving was found in individuals carrying DRD4 VNTR long type allele than the non-carriers (F=31.040, p<0.001). As for baseline craving and mean change in craving responding to neutral stimuli, no significance was found (1.06+/-0.34 vs 1.07+/-0.36, F=0.067, p=0.797 and 0.42+/-0.34 vs 0.45+/-0.37, F=0.277, p=0.599, respectively). The results of our study suggest that DRD4 VNTR polymorphism contributes to cue-elicited craving in heroin dependence, indicating DRD4 VNTR represents one of potential genetic risk factors for cue-induced craving.

  11. Aging and the 4 kHz Air-bone Gap

    PubMed Central

    Nondahl, David M.; Tweed, Ted S.; Cruickshanks, Karen J.; Wiley, Terry L.; Dalton, Dayna S.

    2011-01-01

    Purpose To assess age- and gender-related patterns in the prevalence and 10-year incidence of 4 kHz air-bone gaps, and associated factors. Method Data were obtained as part of the longitudinal, population-based Epidemiology of Hearing Loss Study. An air-bone gap at 4 kHz was defined as an air-conduction threshold ≥15 dB higher than the bone-conduction threshold in the right ear. Results Among 3,553 participants aged 48 to 92 years at baseline (1993-1995), 3.4% had a 4 kHz air-bone gap in the right ear. The prevalence increased with age. Among the 120 participants with an air-bone gap, 60.0% did not have a flat tympanogram or an air-bone gap at .5 kHz. Ten years later we assessed 2093 participants who did not have a 4 kHz air-bone gap at baseline; 9.2% had developed a 4 kHz air-bone gap in the right ear. The incidence increased with age. Among the 192 participants who had developed an air-bone gap, 60.9% did not have a flat tympanogram or air-bone gaps at other frequencies. Conclusions These results suggest that a finding of a 4 kHz air-bone gap may reflect a combination of aging and other factors and not necessarily exclusively abnormal middle ear function. PMID:22232408

  12. The pathophysiological role of PEDF in bone diseases.

    PubMed

    Broadhead, M L; Akiyama, T; Choong, P F M; Dass, C R

    2010-04-01

    First discovered in 1991 as a factor secreted by retinal pigment epithelial cells, the potency of pigment epithelium derived factor (PEDF) as an anti-angiogenic has led to examination of its role in active bone growth, repair and remodelling. In the musculoskeletal system, PEDF expression occurs particularly at sites of active bone formation. Expression has been noted in osteoblasts and to a lesser degree osteoclasts, the major classes of bone cells. In fact, PEDF is capable of inducing differentiation of precursor cells into mature osteoblasts. Expression and localisation are closely linked with that of vascular endothelial growth factor (VEGF). Studies at the epiphyseal plate have revealed that PEDF expression plays a key role in endochondral ossification, and beyond this may account for the epiphyseal plate's innate ability to resist neoplastic cell invasion. Collagen-1, the major protein in bone, is avidly bound by PEDF, implicating an important role played by this protein on PEDF function, possibly through MMP-2 and -9 activity. Surprisingly, the role of PEDF has not been evaluated more widely in bone disorders, so the challenge ahead lies in a more diverse evaluation of PEDF in various osteologic pathologies including osteoarthritis and fracture healing.

  13. Thyroid Hormone-Induced Hypertrophy in Mesenchymal Stem Cell Chondrogenesis Is Mediated by Bone Morphogenetic Protein-4

    PubMed Central

    Karl, Alexandra; Olbrich, Norman; Pfeifer, Christian; Berner, Arne; Zellner, Johannes; Kujat, Richard; Angele, Peter; Nerlich, Michael

    2014-01-01

    Chondrogenic differentiating mesenchymal stem cells (MSCs) express markers of hypertrophic growth plate chondrocytes. As hypertrophic cartilage undergoes ossification, this is a concern for the application of MSCs in articular cartilage tissue engineering. To identify mechanisms that elicit this phenomenon, we used an in vitro hypertrophy model of chondrifying MSCs for differential gene expression analysis and functional experiments with the focus on bone morphogenetic protein (BMP) signaling. Hypertrophy was induced in chondrogenic MSC pellet cultures by transforming growth factor β (TGFβ) and dexamethasone withdrawal and addition of triiodothyronine. Differential gene expression analysis of BMPs and their receptors was performed. Based on these results, the in vitro hypertrophy model was used to investigate the effect of recombinant BMP4 and the BMP inhibitor Noggin. The enhancement of hypertrophy could be shown clearly by an increased cell size, alkaline phosphatase activity, and collagen type X deposition. Upon induction of hypertrophy, BMP4 and the BMP receptor 1B were upregulated. Addition of BMP4 further enhanced hypertrophy in the absence, but not in the presence of TGFβ and dexamethasone. Thyroid hormone induced hypertrophy by upregulation of BMP4 and this induced enhancement of hypertrophy could be blocked by the BMP antagonist Noggin. BMP signaling is an important modulator of the late differentiation stages in MSC chondrogenesis and the thyroid hormone induces this pathway. As cartilage tissue engineering constructs will be exposed to this factor in vivo, this study provides important insight into the biology of MSC-based cartilage. Furthermore, the possibility to engineer hypertrophic cartilage may be helpful for critical bone defect repair. PMID:23937304

  14. Fucoidan-induced osteogenic differentiation promotes angiogenesis by inducing vascular endothelial growth factor secretion and accelerates bone repair.

    PubMed

    Kim, Beom-Su; Yang, Sun-Sik; You, Hyung-Keun; Shin, Hong-In; Lee, Jun

    2018-03-01

    Osteogenesis and angiogenesis, including cell-cell communication between blood vessel cells and bone cells, are essential for bone repair. Fucoidan is a chemical compound that has a variety of biological activities. It stimulates osteoblast differentiation in human mesenchymal stem cells (MSCs), which in turn induces angiogenesis. However, the mechanism by which this communication between osteoblasts and endothelial cells is mediated remains unclear. Thus, the aim of this study was to clarify the relationship between fucoidan-induced osteoblastic differentiation in MSCs and angiogenesis in endothelial cells. First, the effect was confirmed of fucoidan on osteoblast differentiation in MSCs and obtained conditioned media from these cells (Fucoidan-MSC-CM). Next, the angiogenic activity of Fucoidan-MSC-CM was investigated and it was found that it stimulated angiogenesis, demonstrated by proliferation, tube formation, migration and sprout capillary formation in human umbilical vein endothelial cells. Messenger ribonucleic acid expression and protein secretion of vascular endothelial growth factor (VEGF) were dramatically increased during fucoidan-induced osteoblast differentiation and that its angiogenic activities were reduced by a VEGF/VEGF receptor-specific binding inhibitor. Furthermore, Fucoidan-MSC-CM increased the phosphorylation of mitogen-activated protein kinase and PI3K/AKT/eNOS signalling pathway, and that its angiogenic effects were markedly suppressed by SB203580 and AKT 1/2 inhibitor. Finally, an in vivo study was conducted and it was found that fucoidan accelerated new blood vessel formation and partially promoted bone formation in a rabbit model of a calvarial bone defect. This is the first study to investigate the angiogenic effect of fucoidan-induced osteoblastic differentiation through VEGF secretion, suggesting the therapeutic potential of fucoidan for enhancing bone repair. Copyright © 2017 John Wiley & Sons, Ltd.

  15. Bone density in limb-immobilized beagles: An animal model for bone loss in weightlessness

    NASA Technical Reports Server (NTRS)

    Wolinsky, Ira

    1987-01-01

    Prolonged weightlessness is man in space flight results in a slow progressive demineralization of bone accompanied by an increased calcium output in the urine resulting in negative calcium balances. This possibly irreversible bone loss may constitute a serious limiting factor to long duration manned space flight. In order to seek and test preventative measures an appropriate ground based animal model simulating weightlessness is necessary. Use of the mature Beagle in limb immobilization has been documented as an excellent model for orthopedic research since this animal most closely simulates the phenomenom of bone loss with regards to growth, remodeling, structure, chemistry and mineralization. The purpose of this project is to develop a research protocol for the study of bone loss in Beagles during and after cast immobilization of a hindleg; research will then be initiated.

  16. Aging mechanisms in bone

    PubMed Central

    Almeida, Maria

    2012-01-01

    Advancing age and loss of bone mass and strength are closely linked. Elevated osteoblast and osteocyte apoptosis and decreased osteoblast number characterize the age-related skeletal changes in humans and rodents. Similar to other tissues, oxidative stress increases in bone with age. This article reviews current knowledge on the effects of the aging process on bone and its cellular constituents, with particular emphasis on the role of reactive oxygen species (ROS). FoxOs, sirtuins and the p53/p66shc signaling cascade alter osteoblast number and bone formation via ROS-dependent and -independent mechanisms. Specifically, activation of the p53/p66shc signaling increases osteoblast/osteocyte apoptosis in the aged skeleton and decreases bone mass. FoxO activation in osteoblasts prevents oxidative stress to preserve skeletal homeostasis. However, while defending against stress FoxOs bind to β-catenin and attenuate Wnt/T-cell cell factor transcriptional activity and osteoblast generation. Thus, pathways that impact longevity and several diseases of ageing might also contribute to age-related osteoporosis. PMID:23705067

  17. Holographic nondestructive testing in bone growth disturbance studies

    NASA Astrophysics Data System (ADS)

    Silvennoinen, Raimo V. J.; Nygren, Kaarlo

    1993-09-01

    We used isolated radioulnar bones of subadult European moose collected in various environmental pollution areas of Finland. The bones were radiographed and outer dimensions measured. By using small caudo-cranial bending forces, the bones were tested by using HNDT. For bone mineral studies, samples were taken from the mandibles of the same animals. Results showed, that the bones obtained from the heavily polluted area showed biomechanical response comparable to the bones developed partially without mothers milk. Differences were also seen in morphometrical and radiological studies. The mineral contents studied did not differ significantly from randomly collected samples of the same age category. We therefore conclude that environmental factors may influence the bone matrix development.

  18. Mechanisms of diabetes mellitus-induced bone fragility.

    PubMed

    Napoli, Nicola; Chandran, Manju; Pierroz, Dominique D; Abrahamsen, Bo; Schwartz, Ann V; Ferrari, Serge L

    2017-04-01

    The risk of fragility fractures is increased in patients with either type 1 diabetes mellitus (T1DM) or type 2 diabetes mellitus (T2DM). Although BMD is decreased in T1DM, BMD in T2DM is often normal or even slightly elevated compared with an age-matched control population. However, in both T1DM and T2DM, bone turnover is decreased and the bone material properties and microstructure of bone are altered; the latter particularly so when microvascular complications are present. The pathophysiological mechanisms underlying bone fragility in diabetes mellitus are complex, and include hyperglycaemia, oxidative stress and the accumulation of advanced glycation endproducts that compromise collagen properties, increase marrow adiposity, release inflammatory factors and adipokines from visceral fat, and potentially alter the function of osteocytes. Additional factors including treatment-induced hypoglycaemia, certain antidiabetic medications with a direct effect on bone and mineral metabolism (such as thiazolidinediones), as well as an increased propensity for falls, all contribute to the increased fracture risk in patients with diabetes mellitus.

  19. Issues in Requirements Elicitation

    DTIC Science & Technology

    1992-09-01

    oriented domain analysis ( FODA ) continues that the re- quirements analyst uses the products of domain analysis when implementing a new system [Kang 90, p...Peterson, A. Spencer. Feature-Oriented Domain Analysis ( FODA ) Feasibility Study. Technical Report CMU/SEI-90-TR-21, ADA235785, Software Engineering...3.3 Problems of Volatility 12 4 Current Elicitation Techniques 15 4.1 Information Gathering 16 4.2 Requirements Expression and Analysis 19 4.3

  20. A new method for eliciting three speaking styles in the laboratory

    PubMed Central

    Harnsberger, James D.; Wright, Richard; Pisoni, David B.

    2009-01-01

    In this study, a method was developed to elicit three different speaking styles, reduced, citation, and hyperarticulated, using controlled sentence materials in a laboratory setting. In the first set of experiments, the reduced style was elicited by having twelve talkers read a sentence while carrying out a distractor task that involved recalling from short-term memory an individually-calibrated number of digits. The citation style corresponded to read speech in the laboratory. The hyperarticulated style was elicited by prompting talkers (twice) to reread the sentences more carefully. The results of perceptual tests with naïve listeners and an acoustic analysis showed that six of the twelve talkers produced a reduced style of speech for the test sentences in the distractor task relative to the same sentences in the citation style condition. In addition, all talkers consistently produced sentences in the citation and hyperarticulated styles. In the second set of experiments, the reduced style was elicited by increasing the number of digits in the distractor task by one (a heavier cognitive load). The procedures for eliciting citation and hyperarticulated sentences remained unchanged. Ten talkers were recorded in the second experiment. The results showed that six out of ten talkers differentiated all three styles as predicted (70% of all sentences recorded). In addition, all talkers consistently produced sentences in the citation and hyperarticulated styles. Overall, the results demonstrate that it is possible to elicit controlled sentence stimulus materials varying in speaking style in a laboratory setting, although the method requires further refinement to elicit these styles more consistently from individual participants. PMID:19562041