Sample records for factor gdnf promotes

  1. A glial cell line-derived neurotrophic factor (GDNF):tetanus toxin fragment C protein conjugate improves delivery of GDNF to spinal cord motor neurons in mice.

    PubMed

    Larsen, Kristin E; Benn, Susanna C; Ay, Ilknur; Chian, Ru-Ju; Celia, Samuel A; Remington, Mary P; Bejarano, Michelle; Liu, Meiqin; Ross, Joshua; Carmillo, Paul; Sah, Dinah; Phillips, Kester A; Sulzer, David; Pepinsky, R Blake; Fishman, Paul S; Brown, Robert H; Francis, Jonathan W

    2006-11-20

    Glial cell line-derived neurotrophic factor (GDNF) has shown robust neuroprotective and neuroreparative activities in various animal models of Parkinson's Disease or amyotrophic lateral sclerosis (ALS). The successful use of GDNF as a therapeutic in humans, however, appears to have been hindered by its poor bioavailability to target neurons in the central nervous system (CNS). To improve delivery of exogenous GDNF protein to CNS motor neurons, we employed chemical conjugation techniques to link recombinant human GDNF to the neuronal binding fragment of tetanus toxin (tetanus toxin fragment C, or TTC). The predominant species present in the purified conjugate sample, GDNF:TTC, had a molecular weight of approximately 80 kDa as determined by non-reducing SDS-PAGE. Like GDNF, addition of GDNF:TTC to culture media of neuroblastoma cells expressing GFRalpha-1/c-RET produced a dose-dependent increase in cellular phospho-c-RET levels. Treatment of cultured midbrain dopaminergic neurons with either GDNF or the conjugate similarly promoted both DA neuron survival and neurite outgrowth. However, in contrast to mice treated with GDNF by intramuscular injection, mice receiving GDNF:TTC revealed intense GDNF immunostaining associated with spinal cord motor neurons in fixed tissue sections. That GDNF:TTC provided neuroprotection of axotomized motor neurons in neonatal rats further revealed that the conjugate retained its GDNF activity in vivo. These results indicate that TTC can serve as a non-viral vehicle to substantially improve the delivery of functionally active growth factors to motor neurons in the mammalian CNS.

  2. The GDNF System Is Altered in Diverticular Disease – Implications for Pathogenesis

    PubMed Central

    Böttner, Martina; Barrenschee, Martina; Hellwig, Ines; Harde, Jonas; Egberts, Jan-Hendrik; Becker, Thomas; Zorenkov, Dimitri; Schäfer, Karl-Herbert; Wedel, Thilo

    2013-01-01

    Background & Aims Absence of glial cell line-derived neurotrophic factor (GDNF) leads to intestinal aganglionosis. We recently demonstrated that patients with diverticular disease (DD) exhibit hypoganglionosis suggesting neurotrophic factor deprivation. Thus, we screened mRNA expression pattern of the GDNF system in DD and examined the effects of GDNF on cultured enteric neurons. Methods Colonic specimens obtained from patients with DD (n = 21) and controls (n = 20) were assessed for mRNA expression levels of the GDNF system (GDNF, GDNF receptors GFRα1 and RET). To identify the tissue source of GDNF and its receptors, laser-microdissected (LMD) samples of human myenteric ganglia and intestinal muscle layers were analyzed separately by qPCR. Furthermore, the effects of GDNF treatment on cultured enteric neurons (receptor expression, neuronal differentiation and plasticity) were monitored. Results mRNA expression of GDNF and its receptors was significantly down-regulated in the muscularis propria of patients with DD. LMD samples revealed high expression of GDNF in circular and longitudinal muscle layers, whereas GDNF receptors were also expressed in myenteric ganglia. GDNF treatment of cultured enteric neurons increased mRNA expression of its receptors and promoted neuronal differentiation and plasticity revealed by synaptophysin mRNA and protein expression. Conclusions Our results suggest that the GDNF system is compromised in DD. In vitro studies demonstrate that GDNF enhances expression of its receptors and promotes enteric neuronal differentiation and plasticity. Since patients with DD exhibit hypoganglionosis, we propose that the observed enteric neuronal loss in DD may be due to lacking neurotrophic support mediated by the GDNF system. PMID:23805210

  3. Melatonin promotes goat spermatogonia stem cells (SSCs) proliferation by stimulating glial cell line-derived neurotrophic factor (GDNF) production in Sertoli cells.

    PubMed

    Niu, Bowen; Li, Bo; Wu, Chongyang; Wu, Jiang; Yan, Yuan; Shang, Rui; Bai, Chunling; Li, Guangpeng; Hua, Jinlian

    2016-11-22

    Melatonin has been reported to be an important endogenous hormone for regulating neurogenesis, immunityand the biological clock. Recently, the effects of melatonin on neural stem cells (NSCs), mesenchymal stem cells(MSCs), and induced pluripotent stem cells(iPSCs) have been reported; however, the effects of melatonin on spermatogonia stem cells (SSCs) are not clear. Here, 1μM and 1nM melatonin was added to medium when goat SSCs were cultured in vitro, the results showed that melatonin could increase the formation and size of SSC colonies. Real-time quantitative PCR (QRT-PCR) and western blot analysis showed that the expression levels of SSC proliferation and self-renewal markers were up-regulated. Meanwhile, QRT-PCR results showed that melatonin inhibit the mRNA expression level of SSC differentiation markers. ELISA analysis showed an obvious increase in the concentration of GDNF (a niche factor secreted by Sertoli cells) in the medium when treated with melatonin. Meanwhile, the phosphorylation level of AKT, a downstream of GDNF-GFRa1-RET pathway was activated. In conclusion, melatonin promotes goat SSC proliferation by stimulating GDNF production in Sertoli cells.

  4. Neurturin and GDNF promote proliferation and survival of enteric neuron and glial progenitors in vitro.

    PubMed

    Heuckeroth, R O; Lampe, P A; Johnson, E M; Milbrandt, J

    1998-08-01

    Signaling through the c-Ret tyrosine kinase and the endothelin B receptor pathways is known to be critical for development of the enteric nervous system. To clarify the role of these receptors in enteric nervous system development, the effect of ligands for these receptors was examined on rat enteric neuron precursors in fully defined medium in primary culture. In this culture system, dividing Ret-positive cells differentiate, cluster into ganglia containing neurons and enteric glia, and create extensive networks reminiscent of the enteric plexus established in vivo. Glial cell-line-derived neurotrophic factor (GDNF) and neurturin both potently support survival and proliferation of enteric neuron precursors in this system. Addition of either neurturin or GDNF to these cultures increased the number of both neurons and enteric glia. Persephin, a third GDNF family member, shares many properties with neurturin and GDNF in the central nervous system and in kidney development. By contrast, persephin does not promote enteric neuron precursor proliferation or survival in these cultures. Endothelin-3 also does not increase the number of enteric neurons or glia in these cultures. Copyright 1998 Academic Press.

  5. Insect GDNF:TTC fusion protein improves delivery of GDNF to mouse CNS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jianhong; Chian, Ru-Ju; Ay, Ilknur

    2009-12-18

    With a view toward improving delivery of exogenous glial cell line-derived neurotrophic factor (GDNF) to CNS motor neurons in vivo, we evaluated the bioavailability and pharmacological activity of a recombinant GDNF:tetanus toxin C-fragment fusion protein in mouse CNS. Following intramuscular injection, GDNF:TTC but not recombinant GDNF (rGDNF) produced strong GDNF immunostaining within ventral horn cells of the spinal cord. Intrathecal infusion of GDNF:TTC resulted in tissue concentrations of GDNF in lumbar spinal cord that were at least 150-fold higher than those in mice treated with rGDNF. While levels of immunoreactive choline acetyltransferase and GFR{alpha}-1 in lumbar cord were not alteredmore » significantly by intrathecal infusion of rGNDF, GDNF:TTC, or TTC, only rGDNF and GDNF:TTC caused significant weight loss following intracerebroventricular infusion. These studies indicate that insect cell-derived GDNF:TTC retains its bi-functional activity in mammalian CNS in vivo and improves delivery of GDNF to spinal cord following intramuscular- or intrathecal administration.« less

  6. TGFβ induces GDNF responsiveness in neurons by recruitment of GFRα1 to the plasma membrane

    PubMed Central

    Peterziel, H.; Unsicker, K.; Krieglstein, K.

    2002-01-01

    We have previously shown that the neurotrophic effect of glial cell line–derived neurotrophic factor (GDNF) in vitro and in vivo requires the presence of transforming growth factor (TGF)β. Using primary neurons (chick E8 ciliary) we show that the combination of GDNF plus TGFβ promotes survival, whereas the single factors do not. This cooperative effect is inhibited by blocking the extracellular signal-regulated kinase (ERK)/MAPK pathway, but not by interfering with the PI3 kinase signaling cascade. Although there is no functional GDNF signaling in the absence of TGFβ, pretreatment with TGFβ confers GDNF responsiveness to the cells. This is not due to upregulation of GDNF receptors mRNA and protein, but to TGFβ-induced recruitment of the glycosyl-phosphatidylinositol-anchored GDNF receptor (GFR)α1 to the plasma membrane. This is supported by the fact that GDNF in the presence of a soluble GFRα1 can promote survival in the absence of TGFβ. Our data suggest that TGFβ is involved in GFRα1 membrane translocation, thereby permitting GDNF signaling and neurotrophic effects. PMID:12370242

  7. Glial Cell Line-Derived Neurotrophic Factor (GDNF) serum level in women with schizophrenia and depression, correlation with clinical and metabolic parameters.

    PubMed

    Skibinska, Maria; Kapelski, Pawel; Pawlak, Joanna; Rajewska-Rager, Aleksandra; Dmitrzak-Weglarz, Monika; Szczepankiewicz, Aleksandra; Czerski, Piotr; Twarowska-Hauser, Joanna

    2017-10-01

    Neurotrophic factors have been implicated in neuropsychiatric disorders, including schizophrenia and depression. Glial Cell Line-Derived Neurotrophic Factor (GDNF) promotes development, differentiation, and protection of dopaminergic, serotonergic, GABAergic and noradrenergic neurons as well as glial cells in different brain regions. This study examined serum levels of GDNF in schizophrenia and depression and its correlation with metabolic parameters during 8 weeks of treatment. Serum GDNF level, fasting serum glucose and lipid profile were measured at baseline and week 8 in 133 women: 55 with schizophrenia, 30 with a first episode depression and 48 healthy controls. The severity of the symptoms was evaluated using Positive and Negative Syndrome Scale (PANSS), 17-item Hamilton Depression Rating Scale (HDRS) and Beck Depression Inventory (BDI). There was statistically significant higher GDNF level in schizophrenia at baseline when compared with week 8. Correlations of GDNF with PANSS in schizophrenia and cholesterol level in depression have also been detected. To our knowledge, this is the first study which correlates GDNF levels with metabolic parameters. Our results show no differences in GDNF serum level between schizophrenia, a first depressive episode, and healthy controls. GDNF serum level did not correlate with metabolic parameters except for total cholesterol in depression. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Recombinant GDNF: Tetanus toxin fragment C fusion protein produced from insect cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jianhong; Chian, Ru-Ju; Ay, Ilknur

    2009-07-31

    Glial cell line-derived neurotrophic factor (GDNF) has potent survival-promoting effects on CNS motor neurons in experimental animals. Its therapeutic efficacy in humans, however, may have been limited by poor bioavailability to the brain and spinal cord. With a view toward improving delivery of GDNF to CNS motor neurons in vivo, we generated a recombinant fusion protein comprised of rat GDNF linked to the non-toxic, neuron-binding fragment of tetanus toxin. Recombinant GDNF:TTC produced from insect cells was a soluble homodimer like wild-type GDNF and was bi-functional with respect to GDNF and TTC activity. Like recombinant rat GDNF, the fusion protein increasedmore » levels of immunoreactive phosphoAkt in treated NB41A3-hGFR{alpha}-1 neuroblastoma cells. Like TTC, GDNF:TTC bound to immobilized ganglioside GT1b in vitro with high affinity and selectivity. These results support further testing of recombinant GDNF:TTC as a non-viral vector to improve delivery of GDNF to brain and spinal cord in vivo.« less

  9. Protection by GDNF and other trophic factors against the dopamine-depleting effects of neurotoxic doses of methamphetamine.

    PubMed

    Cass, Wayne A; Peters, Laura E; Harned, Michael E; Seroogy, Kim B

    2006-08-01

    Repeated methamphetamine (METH) administration to animals can result in long-lasting decreases in striatal dopamine (DA) content. It has previously been shown that glial cell line-derived neurotrophic factor (GDNF) can reduce the DA-depleting effects of neurotoxic doses of METH. However, there are several other trophic factors that are protective against dopaminergic toxins. Thus, the present experiments further investigated the protective effect of GDNF as well as the protective effects of several other trophic factors. Male Fischer-344 rats were given an intracerebral injection of trophic factor (2-10 microg) 1 day before METH (5 mg/kg, s.c., 4 injections at 2-h intervals). Seven days later DA levels in the striatum were measured using high-performance liquid chromatography (HPLC). Initial experiments indicated that only intrastriatal GDNF, and not intranigral GDNF, was protective. Thereafter, all other trophic factors were administered into the striatum. Members of the GDNF family (GDNF, neurturin, and artemin) all provided significant protection against the DA-depleting effects of METH, with GDNF providing the greatest protection. Brain-derived neurotrophic factor, neurotrophin-3, acidic fibroblast growth factor, basic fibroblast growth factor, ciliary neurotrophic factor, transforming growth factor-alpha (TGF-alpha), heregulin beta1 (HRG-beta1), and amphiregulin (AR) provided no significant protection at the doses examined. These results suggest that the GDNF family of trophic factors can provide significant protection against the DA-depleting effects of neurotoxic doses of METH.

  10. The GDNF Target Vsnl1 Marks the Ureteric Tip

    PubMed Central

    Ola, Roxana; Jakobson, Madis; Kvist, Jouni; Perälä, Nina; Kuure, Satu; Braunewell, Karl-Heinz; Bridgewater, Darren; Rosenblum, Norman D.; Chilov, Dmitri; Immonen, Tiina; Sainio, Kirsi

    2011-01-01

    Glial cell line-derived neurotrophic factor (GDNF) is indispensable for ureteric budding and branching. If applied exogenously, GDNF promotes ectopic ureteric buds from the Wolffian duct. Although several downstream effectors of GDNF are known, the identification of early response genes is incomplete. Here, microarray screening detected several GDNF-regulated genes in the Wolffian duct, including Visinin like 1 (Vsnl1), which encodes a neuronal calcium-sensor protein. We observed renal Vsnl1 expression exclusively in the ureteric epithelium, but not in Gdnf-null kidneys. In the tissue culture of Gdnf-deficient kidney primordium, exogenous GDNF and alternative bud inducers (FGF7 and follistatin) restored Vsnl1 expression. Hence, Vsnl1 characterizes the tip of the ureteric bud epithelium regardless of the inducer. In the tips, Vsnl1 showed a mosaic expression pattern that was mutually exclusive with β-catenin transcriptional activation. Vsnl1 was downregulated in both β-catenin-stabilized and β-catenin-deficient kidneys. Moreover, in a mouse collecting duct cell line, Vsnl1 compromised β-catenin stability, suggesting a counteracting relationship between Vsnl1 and β-catenin. In summary, Vsnl1 marks ureteric bud tips in embryonic kidneys, and its mosaic pattern demonstrates a heterogeneity of cell types that may be critical for normal ureteric branching. PMID:21289216

  11. No neuronal loss, but alterations of the GDNF system in asymptomatic diverticulosis.

    PubMed

    Barrenschee, Martina; Wedel, Thilo; Lange, Christina; Hohmeier, Ines; Cossais, François; Ebsen, Michael; Vogel, Ilka; Böttner, Martina

    2017-01-01

    Glial cell line-derived neurotrophic factor (GDNF) is a potent neurotrophic factor known to promote the survival and maintenance of neurons not only in the developing but also in the adult enteric nervous system. As diverticular disease (DD) is associated with reduced myenteric neurons, alterations of the GDNF system were studied in asymptomatic diverticulosis (diverticulosis) and DD. Morphometric analysis for quantifying myenteric ganglia and neurons were assessed in colonic full-thickness sections of patients with diverticulosis and controls. Samples of tunica muscularis (TM) and laser-microdissected myenteric ganglia from patients with diverticulosis, DD and controls were analyzed for mRNA expression levels of GDNF, GFRA1, and RET by RT-qPCR. Myenteric protein expression of both receptors was quantified by fluorescence-immunohistochemistry of patients with diverticulosis, DD, and controls. Although no myenteric morphometric alterations were found in patients with diverticulosis, GDNF, GFRA1 and RET mRNA expression was down-regulated in the TM of patients with diverticulosis as well as DD. Furthermore GFRA1 and RET myenteric plexus mRNA expression of patients with diverticulosis and DD was down-regulated, whereas GDNF remained unaltered. Myenteric immunoreactivity of the receptors GFRα1 and RET was decreased in both asymptomatic diverticulosis and DD patients. Our data provide evidence for an impaired GDNF system at gene and protein level not only in DD but also during early stages of diverticula formation. Thus, the results strengthen the idea of a disturbed GDNF-responsiveness as contributive factor for a primary enteric neuropathy involved in the pathogenesis and disturbed intestinal motility observed in DD.

  12. Precursor N-cadherin mediates glial cell line-derived neurotrophic factor-promoted human malignant glioma

    PubMed Central

    Zhu, Shuang; Zhang, Baole; Qin, Yuxia; Yao, Ruiqin; Zhou, Hao; Gao, Dian Shuai

    2017-01-01

    As the most prevalent primary brain tumor, gliomas are highly metastatic, invasive and are characteristic of high levels of glial cell-line derived neurotrophic factor (GDNF). GDNF is an important factor for invasive glioma cell growth; however, the underlying mechanism involved is unclear. In this study, we affirm a significantly higher expression of the precursor of N-cadherin (proN-cadherin) in most gliomas compared with normal brain tissues. Our findings reveal that GDNF interacts with the extracellular domain of proN-cadherin, which suggests that proN-cadherin mediates GDNF-induced glioma cell migration and invasion. We hypothesize that proN-cadherin might cause homotypic adhesion loss within neighboring cells and at the same time promote heterotypic adhesion within the extracellular matrix (ECM) through a certain mechanism. This study also demonstrates that the interaction between GDNF and proN-cadherin activates specific intracellular signaling pathways; furthermore, GDNF promoted the secretion of matrix metalloproteinase-9 (MMP-9), which degrades the ECM via proN-cadherin. To reach the future goal of developing novel therapies of glioma, this study, reveals a unique mechanism of glioma cell migration and invasion. PMID:28212546

  13. Precursor N-cadherin mediates glial cell line-derived neurotrophic factor-promoted human malignant glioma.

    PubMed

    Xiong, Ye; Liu, Liyun; Zhu, Shuang; Zhang, Baole; Qin, Yuxia; Yao, Ruiqin; Zhou, Hao; Gao, Dian Shuai

    2017-04-11

    As the most prevalent primary brain tumor, gliomas are highly metastatic, invasive and are characteristic of high levels of glial cell-line derived neurotrophic factor (GDNF). GDNF is an important factor for invasive glioma cell growth; however, the underlying mechanism involved is unclear. In this study, we affirm a significantly higher expression of the precursor of N-cadherin (proN-cadherin) in most gliomas compared with normal brain tissues. Our findings reveal that GDNF interacts with the extracellular domain of proN-cadherin, which suggests that proN-cadherin mediates GDNF-induced glioma cell migration and invasion. We hypothesize that proN-cadherin might cause homotypic adhesion loss within neighboring cells and at the same time promote heterotypic adhesion within the extracellular matrix (ECM) through a certain mechanism. This study also demonstrates that the interaction between GDNF and proN-cadherin activates specific intracellular signaling pathways; furthermore, GDNF promoted the secretion of matrix metalloproteinase-9 (MMP-9), which degrades the ECM via proN-cadherin. To reach the future goal of developing novel therapies of glioma, this study, reveals a unique mechanism of glioma cell migration and invasion.

  14. Alterations in BDNF (brain derived neurotrophic factor) and GDNF (glial cell line-derived neurotrophic factor) serum levels in bipolar disorder: The role of lithium.

    PubMed

    Tunca, Zeliha; Ozerdem, Aysegul; Ceylan, Deniz; Yalçın, Yaprak; Can, Güneş; Resmi, Halil; Akan, Pınar; Ergör, Gül; Aydemir, Omer; Cengisiz, Cengiz; Kerim, Doyuran

    2014-09-01

    Brain-derived neurotrophic factor (BDNF) has been consistently reported to be decreased in mania or depression in bipolar disorders. Evidence suggests that Glial cell line-derived neurotrophic factor (GDNF) has a role in the pathogenesis of mood disorders. Whether GDNF and BDNF act in the same way across different episodes in bipolar disorders is unclear. BDNF and GDNF serum levels were measured simultaneously by enzyme-linked immunosorbent assay (ELISA) method in 96 patients diagnosed with bipolar disorder according to DSM-IV (37 euthymic, 33 manic, 26 depressed) in comparison to 61 healthy volunteers. SCID- I and SCID-non patient version were used for clinical evaluation of the patients and healthy volunteers respectively. Correlations between the two trophic factor levels, and medication dose, duration and serum levels of lithium or valproate were studied across different episodes of illness. Patients had significantly lower BDNF levels during mania and depression compared to euthymic patients and healthy controls. GDNF levels were not distinctive. However GDNF/BDNF ratio was higher in manic state compared to euthymia and healthy controls. Significant negative correlation was observed between BDNF and GDNF levels in euthymic patients. While BDNF levels correlated positively, GDNF levels correlated negatively with lithium levels. Regression analysis confirmed that lithium levels predicted only GDNF levels positively in mania, and negatively in euthymia. Small sample size in different episodes and drug-free patients was the limitation of thestudy. Current data suggests that lithium exerts its therapeutic action by an inverse effect on BDNF and GDNF levels, possibly by up-regulating BDNF and down-regulating GDNF to achieve euthymia. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Expression of Glial Cell Line-Derived Neurotrophic Factor (GDNF) and the GDNF Family Receptor Alpha Subunit 1 in the Paravaginal Ganglia of Nulliparous and Primiparous Rabbits.

    PubMed

    García-Villamar, Verónica; Hernández-Aragón, Laura G; Chávez-Ríos, Jesús R; Ortega, Arturo; Martínez-Gómez, Margarita; Castelán, Francisco

    2018-01-01

    To evaluate the expression of glial cell line-derived neurotrophic factor (GDNF) and its receptor, GDNF family receptor alpha subunit 1 (GFRα-1) in the pelvic (middle third) vagina and, particularly, in the paravaginal ganglia of nulliparous and primiparous rabbits. Chinchilla-breed female rabbits were used. Primiparas were killed on postpartum day 3 and nulliparas upon reaching a similar age. The vaginal tracts were processed for histological analyses or frozen for Western blot assays. We measured the ganglionic area, the Abercrombie-corrected number of paravaginal neurons, the cross-sectional area of the neuronal somata, and the number of satellite glial cells (SGCs) per neuron. The relative expression of both GDNF and GFRα-1 were assessed by Western blotting, and the immunostaining was semiquantitated. Unpaired two-tailed Student t -test or Wilcoxon test was used to identify statistically significant differences (P≤0.05) between the groups. Our findings demonstrated that the ganglionic area, neuronal soma size, Abercrombie-corrected number of neurons, and number of SGCs per neuron were similar in nulliparas and primiparas. The relative expression of both GDNF and GFRα-1 was similar. Immunostaining for both GDNF and GFRα-1 was observed in several vaginal layers, and no differences were detected regarding GDNF and GFRα-1 immunostaining between the 2 groups. In the paravaginal ganglia, the expression of GDNF was increased in neurons, while that of GFRα-1 was augmented in the SGCs of primiparous rabbits. The present findings suggest an ongoing regenerative process related to the recovery of neuronal soma size in the paravaginal ganglia, in which GDNF and GFRα-1 could be involved in cross-talk between neurons and SGCs.

  16. GDNF-based therapies, GDNF-producing interneurons, and trophic support of the dopaminergic nigrostriatal pathway. Implications for Parkinson’s disease

    PubMed Central

    d’Anglemont de Tassigny, Xavier; Pascual, Alberto; López-Barneo, José

    2015-01-01

    The glial cell line-derived neurotrophic factor (GDNF) is a well-established trophic agent for dopaminergic (DA) neurons in vitro and in vivo. GDNF is necessary for maintenance of neuronal morphological and neurochemical phenotype and protects DA neurons from toxic damage. Numerous studies on animal models of Parkinson’s disease (PD) have reported beneficial effects of GDNF on nigrostriatal DA neuron survival. However, translation of these observations to the clinical setting has been hampered so far by side effects associated with the chronic continuous intra-striatal infusion of recombinant GDNF. In addition, double blind and placebo-controlled clinical trials have not reported any clinically relevant effect of GDNF on PD patients. In the past few years, experiments with conditional Gdnf knockout mice have suggested that GDNF is necessary for maintenance of DA neurons in adulthood. In parallel, new methodologies for exogenous GDNF delivery have been developed. Recently, it has been shown that a small population of scattered, electrically interconnected, parvalbumin positive (PV+) GABAergic interneurons is responsible for most of the GDNF produced in the rodent striatum. In addition, cholinergic striatal interneurons appear to be also involved in the modulation of striatal GDNF. In this review, we summarize current knowledge on brain GDNF delivery, homeostasis, and its effects on nigrostriatal DA neurons. Special attention is paid to the therapeutic potential of endogenous GDNF stimulation in PD. PMID:25762899

  17. Intranasal Delivery of pGDNF Nanoparticles for Parkinson's Disease

    NASA Astrophysics Data System (ADS)

    Harmon, Brendan Trevor

    Parkinson's disease (PD) is a progressive neurodegenerative disorder that primarily affects the dopaminergic A9 nigrostriatal tract. For dopamine neurons specifically, glial cell-derived neurotrophic factor (GDNF) has been shown to promote their survival and proliferation both in culture and in vivo. GDNF has also proven to be neuroprotective and restorative in various animal models of PD and some human clinical trials. However, its delivery to the brain has required invasive surgical routes which are not clinically practical for many patients. The main objective of this project was to test intranasal delivery to the brain of a nanoparticle vector incorporating an expression plasmid for GDNF (pGDNF). The intranasal route circumvents the blood-brain barrier, allowing larger sized vectors into the central nervous system while avoiding peripheral distribution. This approach would provide a renewable source of GDNF within the target areas of the brain, the striatum and the substantia nigra (SN) without the need for surgical injections or frequent re-dosing. A PEGylated polylysine compacted plasmid nanoparticle vector (PEG-CK30), developed by Copernicus Therapeutics, Inc., has been shown to transfect neurons and glial cells in vivo while lacking the safety issues present with other vectors. The first goal of this work was to determine if these PEG-CK30 compacted plasmid nanoparticles can successfully transfect cells and express the reporter protein, enhanced green fluorescent protein (eGFP) in the rat brain after intranasal administration. Initial in vivo experiments utilized the expression plasmid pCG, expressing eGFP under the fast-acting cytomegalovirus (CMV) promoter. Intranasal administration of pCG nanoparticles resulted in evidence of transfection of brain cells, as shown both qualitatively, by GFP-immunohistochemistry, and quantitatively, by GFP-ELISA. Expression was detected throughout the rat brain two days post-administration. Following the proof

  18. Dampened Amphetamine-Stimulated Behavior and Altered Dopamine Transporter Function in the Absence of Brain GDNF.

    PubMed

    Kopra, Jaakko J; Panhelainen, Anne; Af Bjerkén, Sara; Porokuokka, Lauriina L; Varendi, Kärt; Olfat, Soophie; Montonen, Heidi; Piepponen, T Petteri; Saarma, Mart; Andressoo, Jaan-Olle

    2017-02-08

    Midbrain dopamine neuron dysfunction contributes to various psychiatric and neurological diseases, including drug addiction and Parkinson's disease. Because of its well established dopaminotrophic effects, the therapeutic potential of glial cell line-derived neurotrophic factor (GDNF) has been studied extensively in various disorders with disturbed dopamine homeostasis. However, the outcomes from preclinical and clinical studies vary, highlighting a need for a better understanding of the physiological role of GDNF on striatal dopaminergic function. Nevertheless, the current lack of appropriate animal models has limited this understanding. Therefore, we have generated novel mouse models to study conditional Gdnf deletion in the CNS during embryonic development and reduction of striatal GDNF levels in adult mice via AAV-Cre delivery. We found that both of these mice have reduced amphetamine-induced locomotor response and striatal dopamine efflux. Embryonic GDNF deletion in the CNS did not affect striatal dopamine levels or dopamine release, but dopamine reuptake was increased due to increased levels of both total and synaptic membrane-associated dopamine transporters. Collectively, these results suggest that endogenous GDNF plays an important role in regulating the function of dopamine transporters in the striatum. SIGNIFICANCE STATEMENT Delivery of ectopic glial cell line-derived neurotrophic factor (GDNF) promotes the function, plasticity, and survival of midbrain dopaminergic neurons, the dysfunction of which contributes to various neurological and psychiatric diseases. However, how the deletion or reduction of GDNF in the CNS affects the function of dopaminergic neurons has remained unknown. Using conditional Gdnf knock-out mice, we found that endogenous GDNF affects striatal dopamine homeostasis and regulates amphetamine-induced behaviors by regulating the level and function of dopamine transporters. These data regarding the physiological role of GDNF are

  19. [Participation of GDNF, LIMK1 signal pathways and heat shock proteins in processes of Drosophila learning and memory formation].

    PubMed

    Nikitina, E A; Medvedeva, A V; Dolgaia, Iu F; Korochkin, L I; Pavlova, G V; Savvateeva-Popova, E V

    2012-01-01

    Molecular mechanisms of the synapse and dendrite maintenance and their disturbance in psychiatric and neurodegenerative diseases (ND) are intensively studied in searching for target genes of therapeutic actions. It is suggested that glia, alongside with well-studied pre- and postsynaptic neurons, is the third, poorly studied partner in synaptic transmission (the tripartite synapse) that is involved in the positive feedback between the first two partners. This bidirectional coupling between presynaptic neurons and their postsynaptic targets involve neurotrophins (NTF), such as glial cell-derived neurotrophic factor (GDNF) that is produced LIM kinase 1 (LIMK1, the key enzyme of actin remodeling). The cytoplasmic domain of neuregulins interacts with LIMK1. Since neurons and axons that do not receive a sufficient NTF amount are at risk of degeneration and synapse elimination, GDNF seems to be the best studied factor of the ND therapy. The delivery of GDNF stem cells to the neurodegeneration locus is very efficient. There has been proposed a new approach based on use of Drosophila heat shock (hs) promoter. This promoter responds to the mammalian body temperature as to the shock factor resulting in the constant expression of the GDNF gene. The Drosophila models allow studying any given component of the bidirectional communication between pre- and postsynaptic neurons in development of the main diagnostic ND symptom, such as defective memory resulted from synaptic atrophy. In the present study we used the Drosophila stocks imitating different disturbances of the nervous system: Canton-S (wild type), GDNF (transgenic flies that carry human glial-cell-line derived nerve factor (GDNF) gene under hs promoter), l(1)ts403 with dusturbance of HSPs mRNA extranuclear transport, a defect of intracellular stress report, and agn(ts3) mutation in LIMK1 gene. We have revealed functional connections at the behavioral level (learning/memory) depending on the GDNF and LIMK1 brain

  20. The NOTCH Ligand JAG1 Regulates GDNF Expression in Sertoli Cells

    PubMed Central

    Garcia, Thomas X.; Parekh, Parag; Gandhi, Pooja; Sinha, Krishna

    2017-01-01

    In the seminiferous epithelium of the testis, Sertoli cells are key niche cells directing proliferation and differentiation of spermatogonial stem cells (SSCs) into spermatozoa. Sertoli cells produce glial cell line-derived neurotrophic factor (GDNF), which is essential for SSC self-renewal and progenitor expansion. While the role of GDNF in the testis stem cell niche is established, little is known about how this factor is regulated. Our previous studies on NOTCH activity in Sertoli cells demonstrated a role of this pathway in limiting stem/progenitor cell numbers, thus ultimately downregulating sperm cell output. In this study we demonstrate through a double-mutant mouse model that NOTCH signaling in Sertoli cells functions solely through the canonical pathway. Further, we demonstrate through Dual luciferase assay and chromatin immunoprecipitation quantitative polymerase chain reaction (ChIP-qPCR) analysis that the NOTCH targets HES1 and HEY1, which are transcriptional repressors, directly downregulate GDNF expression by binding to the Gdnf promoter, thus antagonizing the effects of FSH/cAMP. Finally, we demonstrate that testicular stem/progenitors cells are activating NOTCH signaling in Sertoli cells in vivo and in vitro through the NOTCH ligand JAG1 at their surface, indicating that these cells may ensure their own homeostasis through negative feedback regulation. PMID:28051360

  1. Regulation of GluR2 promoter activity by neurotrophic factors via a neuron-restrictive silencer element.

    PubMed

    Brené, S; Messer, C; Okado, H; Hartley, M; Heinemann, S F; Nestler, E J

    2000-05-01

    The AMPA glutamate receptor subunit GluR2, which plays a critical role in regulation of AMPA channel function, shows altered levels of expression in vivo after several chronic perturbations. To evaluate the possibility that transcriptional mechanisms are involved, we studied a 1254-nucleotide fragment of the 5'-promoter region of the mouse GluR2 gene in neural-derived cell lines. We focused on regulation of GluR2 promoter activity by two neurotrophic factors, which are known to be altered in vivo in some of the same systems that show GluR2 regulation. Glial-cell line derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) both induced GluR2 promoter activity. This was associated with increased expression of endogenous GluR2 immunoreactivity in the cells as measured by Western blotting. The effect of GDNF and BDNF appeared to be mediated via a NRSE (neuron-restrictive silencer element) present within the GluR2 promoter. The response to these neurotrophic factors was lost upon mutating or deleting this site, but not several other putative response elements present within the promoter. Moreover, overexpression of REST (restrictive element silencer transcription factor; also referred to as NRSF or neuron restrictive silencer factor), which is known to act on NRSEs in other genes to repress gene expression, blocked the ability of GDNF to induce GluR2 promoter activity. However, GDNF did not alter endogenous levels of REST in the cells. Together, these findings suggest that GluR2 expression can be regulated by neurotrophic factors via an apparently novel mechanism involving the NRSE present within the GluR2 gene promoter.

  2. Binding of GDNF and neurturin to human GDNF family receptor alpha 1 and 2. Influence of cRET and cooperative interactions.

    PubMed

    Cik, M; Masure, S; Lesage, A S; Van Der Linden, I; Van Gompel, P; Pangalos, M N; Gordon, R D; Leysen, J E

    2000-09-08

    The members of the glial cell line-derived neurotrophic factor (GDNF) family signal via binding to the glycosyl phosphatidylinositol-anchored membrane proteins, the GDNF family receptors alpha (GFRalpha), and activation of cRET. We performed a detailed analysis of the binding of GDNF and neurturin to their receptors and investigated the influence of cRET on the binding affinities. We show that the rate of dissociation of (125)I-GDNF from GFRalpha1 is increased in the presence of 50 nm GDNF, an effect that can be explained by the occurrence of negative cooperativity. Scatchard plots of the ligand concentration binding isotherms reveal a pronounced downward curvature at low (125)I-GDNF concentrations suggesting the presence of positive cooperativity. This effect is observed in the range of GDNF concentrations responsible for biological activity (1-20 pm) and may have an important role in cRET-independent signaling. A high affinity site with a K(D) of 11 pm for (125)I-GDNF is detected only when GFRalpha1 is co-expressed with cRET at a DNA ratio of 1:3. These results suggest an interaction of GFRalpha1 and cRET in the absence of GDNF and demonstrate that the high affinity binding can be measured only when cRET is present.

  3. GDNF-expressing macrophages mitigate loss of dopamine neurons and improve Parkinsonian symptoms in MitoPark mice.

    PubMed

    Chen, Cang; Li, Xiuhua; Ge, Guo; Liu, Jingwei; Biju, K C; Laing, Suzette D; Qian, Yusheng; Ballard, Cori; He, Zhixu; Masliah, Eliezer; Clark, Robert A; O'Connor, Jason C; Li, Senlin

    2018-04-03

    Glial cell line-derived neurotrophic factor (GDNF) is the most potent neuroprotective agent tested in cellular and animal models of Parkinson's disease (PD). However, CNS delivery of GDNF is restricted by the blood-brain barrier (BBB). Using total body irradiation as transplant preconditioning, we previously reported that hematopoietic stem cell (HSC) transplantation (HSCT)-based macrophage-mediated gene therapy could deliver GDNF to the brain to prevent degeneration of nigrostriatal dopamine (DA) neurons in an acute murine neurotoxicity model. Here, we validate this therapeutic approach in a chronic progressive PD model - the MitoPark mouse, with head shielding to avoid inducing neuroinflammation and compromising BBB integrity. Bone marrow HSCs were transduced ex vivo with a lentiviral vector expressing macrophage promoter-driven GDNF and transplanted into MitoPark mice exhibiting well developed PD-like impairments. Transgene-expressing macrophages infiltrated the midbrains of MitoPark mice, but not normal littermates, and delivered GDNF locally. Macrophage GDNF delivery markedly improved both motor and non-motor symptoms, and dramatically mitigated the loss of both DA neurons in the substantia nigra and tyrosine hydroxylase-positive axonal terminals in the striatum. Our data support further development of this HSCT-based macrophage-mediated GDNF delivery approach in order to address the unmet need for a disease-modifying therapy for PD.

  4. Glial cell line-derived neurotrophic factor promotes the development of adrenergic neurons in mouse neural crest cultures

    PubMed Central

    Maxwell, Gerald D.; Reid, Kate; Elefanty, Andrew; Bartlett, Perry F.; Murphy, Mark

    1996-01-01

    Growth of mouse neural crest cultures in the presence of glial cell line-derived neurotrophic factor (GDNF) resulted in a dramatic dose-dependent increase in the number of tyrosine hydroxylase (TH)-positive cells that developed when 5% chicken embryo extract was present in the medium. In contrast, growth in the presence of bone morphogenetic protein (BMP)-2, BMP-4, BMP-6, transforming growth factor (TGF) β1, TGF-β2, and TGF-β3 elicited no increase in the number of TH-positive cells. The TH-positive cells that developed in the presence of GDNF had neuronal morphology and contained the middle and low molecular weight neurofilament proteins. Numerous TH-negative cells with the morphology of neurons also were observed in GDNF-treated cultures. Analysis revealed that the period from 6 to 12 days in vitro was the critical time for exposure to GDNF to generate the increase in TH-positive cell number. The growth factors neurotrophin-3 and fibroblast growth factor-2 elicited increases in the number of TH-positive cells similar to that seen in response to GDNF. In contrast, nerve growth factor was unable to substitute for GDNF. These findings extend the previously reported biological activities of GDNF by showing that it can act on mouse neural crest cultures to promote the development of neurons. PMID:8917581

  5. Augmentation of the Ascending Component of the Peristaltic Reflex and Substance P Release by Glial Cell Line-Derived Neurotrophic Factor (GDNF)

    PubMed Central

    Grider, JR; Heuckeroth, RO; Kuemmerle, JF; Murthy, KS

    2010-01-01

    Glial cell line derived neurotrophic factor (GDNF) is present in adult gut although its role in the mature enteric nervous system is not well defined. The aim of the present study was to examine the role of GDNF as neuromodulator of the ascending phase of the peristaltic reflex. Colonic segments were prepared as flat sheets and placed in compartmented chambers so as to separate the sensory and motor limbs of the reflex. Ascending contraction was measured in the orad compartment and mucosal stroking stimuli (2-8 strokes) were applied in the caudad compartment. GDNF and substance P release were measured and the effects of GDNF and GDNF antibody on contraction and release were determined. Mice with reduced levels of GDNF (Gdnf+/-) and wild type littermates were also examined. GDNF was released in a stimulus-dependent manner into the orad motor but not caudad sensory compartment. Addition of GDNF to the orad motor but not caudad sensory compartment augmented ascending contraction and substance P release. Conversely, addition of GDNF antibody to the orad motor but not caudad sensory compartment reduced ascending contraction and substance P release. Similarly, the ascending contraction and substance P release into the orad motor compartment was reduced in Gdnf+/- mice as compared to wild type littermates. The results suggest that endogenous GDNF is released during the ascending contraction component of the peristaltic reflex where it acts as a neuromodulator to augment substance P release from motor neurons thereby augmenting contraction of circular muscle orad to the site of stimulation. PMID:20331804

  6. Glial cell line-derived neurotrophic factor (GDNF) induces neuritogenesis in the cochlear spiral ganglion via neural cell adhesion molecule (NCAM)

    PubMed Central

    Euteneuer, Sara; Yang, Kuo H.; Chavez, Eduardo; Leichtle, Anke; Loers, Gabriele; Olshansky, Adel; Pak, Kwang; Schachner, Melitta; Ryan, Allen F.

    2013-01-01

    Glial cell line-derived neurotrophic factor (GDNF) increases survival and neurite extension of spiral ganglion neurons (SGNs), the primary neurons of the auditory system, via yet unknown signaling mechanisms. In other cell types, signaling is achieved by the GPI-linked GDNF family receptor α1 (GFRα1) via recruitment of transmembrane receptors: Ret (re-arranged during transformation) and/or NCAM (neural cell adhesion molecule). Here we show that GDNF enhances neuritogenesis in organotypic cultures of spiral ganglia from 5-day-old rats and mice. Addition of GFRα1-Fc increases this effect. GDNF/GFRα1-Fc stimulation activates intracellular PI3K/Akt and MEK/Erk signaling cascades as detected by Western blot analysis of cultures prepared from rats at postnatal days 5 (P5, before the onset of hearing) and 20 (P20, after the onset of hearing). Both cascades mediate GDNF stimulation of neuritogenesis, since application of the Akt inhibitor Wortmannin or the Erk inhibitor U0126 abolished GDNF/GFRα1-Fc stimulated neuritogenesis in P5 rats. Since cultures of P5 NCAM-deficient mice failed to respond by neuritogenesis to GDNF/GFRα1-Fc, we conclude that NCAM serves as a receptor for GDNF signaling responsible for neuritogenesis in early postnatal spiral ganglion. PMID:23262364

  7. The glial cell line-derived neurotrophic factor (GDNF) does not acutely change acetylcholine release in developing and adult neuromuscular junction.

    PubMed

    Garcia, Neus; Santafé, Manel M; Tomàs, Marta; Lanuza, Maria A; Besalduch, Nuria; Priego, Merche; Tomàs, Josep

    2010-08-16

    We use immunocytochemistry to show that the trophic molecule glial cell line-derived neurotrophic factor (GDNF) and its receptor GDNF family receptor alpha-1 (GFRalpha-1) are present in both neonatal (P6) and adult (P45) rodent neuromuscular junctions (NMJ) colocalized with several synaptic markers. However, incubation with exogenous GDNF (10-200ng/ml, 1-3h), does not affect spontaneous ACh release. Moreover, GDNF does not change the size of the evoked ACh release from the weak and the strong axonal inputs on dually innervated postnatal endplates nor in the most developed singly-innervated synapses at P6 and P45. Our findings indicate that GDNF (unlike neurotrophins) does not acutely modulate transmitter release during the developmental process of synapse elimination nor as the NMJ matures. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  8. IB4(+) nociceptors mediate persistent muscle pain induced by GDNF.

    PubMed

    Alvarez, Pedro; Chen, Xiaojie; Bogen, Oliver; Green, Paul G; Levine, Jon D

    2012-11-01

    Skeletal muscle is a well-known source of glial cell line-derived neurotrophic factor (GDNF), which can produce mechanical hyperalgesia. Since some neuromuscular diseases are associated with both increased release of GDNF and intense muscle pain, we explored the role of GDNF as an endogenous mediator in muscle pain. Intramuscularly injected GDNF induced a dose-dependent (0.1-10 ng/20 μl) persistent (up to 3 wk) mechanical hyperalgesia in the rat. Once hyperalgesia subsided, injection of prostaglandin E(2) at the site induced a prolonged mechanical hyperalgesia (>72 h) compared with naïve rats (<4 h; hyperalgesic priming). Selective neurotoxic destruction of IB4(+) nociceptors attenuated both GDNF hyperalgesia and hyperalgesic priming. Ergonomic muscular injury induced by eccentric exercise or mechanical vibration increased muscle GDNF levels at 24 h, a time point where rats also exhibited marked muscle hyperalgesia. Intrathecal antisense oligodeoxynucleotides to mRNA encoding GFRα1, the canonical binding receptor for GDNF, reversibly inhibited eccentric exercise- and mechanical vibration-induced muscle hyperalgesia. Finally, electrophysiological recordings from nociceptors innervating the gastrocnemius muscle in anesthetized rats, revealed significant increase in response to sustained mechanical stimulation after local GDNF injection. In conclusion, these data indicate that GDNF plays a role as an endogenous mediator in acute and induction of chronic muscle pain, an effect likely to be produced by GDNF action at GFRα1 receptors located in IB4(+) nociceptors.

  9. Infrequent detectable somatic mutations of the RET and glial cell line-derived neurotrophic factor (GDNF) genes in human pituitary adenomas.

    PubMed

    Yoshimoto, K; Tanaka, C; Moritani, M; Shimizu, E; Yamaoka, T; Yamada, S; Sano, T; Itakura, M

    1999-02-01

    RET is a receptor tyrosine kinase expressed in neuroendocrine cells and tumors. RET is activated by a ligand complex comprising glial cell line-derived neurotrophic factor (GDNF) and GDNF receptor-alpha (GDNFR-alpha). Activating mutations of the RET proto-oncogene were found in multiple endocrine neoplasia (MEN) 2 and in sporadic medullary thyroid carcinoma and pheochromocytoma of neuroendocrine origin. Mutations of the RET proto-oncogene and the glial cell line-derived neurotrophic factor (GDNF) gene were examined in human pituitary tumors. No mutations of the RET proto-oncogene including the cysteine-rich region or codon 768 and 918 in the tyrosine kinase domain were detected in 172 human pituitary adenomas either by polymerase chain reaction (PCR)-single strand conformation polymorphism (SSCP) or by PCR-restriction fragment length polymorphism (RFLP). Further, somatic mutations of the GDNF gene in 33 human pituitary adenomas were not detected by PCR-SSCP. One polymorphism of the GDNF gene at codon 145 of TGC or TGT was observed in a prolactinoma. The RET proto-oncogene message was detected in a normal human pituitary gland or 4 of 4 human pituitary adenomas with reverse transcription (RT)-PCR, and in rodent pituitary tumor cell lines with Western blotting. The expression of GDNF gene was detected in 1 of 4 human somatotroph adenomas, 1 of 2 corticotroph adenomas, and 2 of 6 rodent pituitary tumor cell lines with RT-PCR. Based on these, it is concluded that somatic mutations of the RET proto-oncogene or the GDNF gene do not appear to play a major role in the pituitary tumorigenesis in examined tumors.

  10. Overexpression of GDNF in the uninjured DRG exerts analgesic effects on neuropathic pain following segmental spinal nerve ligation in mice.

    PubMed

    Takasu, Kumiko; Sakai, Atsushi; Hanawa, Hideki; Shimada, Takashi; Suzuki, Hidenori

    2011-11-01

    Glial cell line-derived neurotrophic factor (GDNF), a survival-promoting factor for a subset of nociceptive small-diameter neurons, has been shown to exert analgesic effects on neuropathic pain. However, its detailed mechanisms of action are still unknown. In the present study, we investigated the site-specific analgesic effects of GDNF in the neuropathic pain state using lentiviral vector-mediated GDNF overexpression in mice with left fifth lumbar (L5) spinal nerve ligation (SNL) as a neuropathic pain model. A lentiviral vector expressing both GDNF and enhanced green fluorescent protein (EGFP) was constructed and injected into the left dorsal spinal cord, uninjured fourth lumbar (L4) dorsal root ganglion (DRG), injured L5 DRG, or plantar skin of mice. In SNL mice, injection of the GDNF-EGFP-expressing lentivirus into the dorsal spinal cord or uninjured L4 DRG partially but significantly reduced the mechanical allodynia in association with an increase in GDNF protein expression in each virus injection site, whereas injection into the injured L5 DRG or plantar skin had no effects. These results suggest that GDNF exerts its analgesic effects in the neuropathic pain state by acting on the central terminals of uninjured DRG neurons and/or on the spinal cells targeted by the uninjured DRG neurons. This article shows that GDNF exerts its analgesic effects on neuropathic pain by acting on the central terminals of uninjured DRG neurons and/or on the spinal cells targeted by these neurons. Therefore, research focusing on these GDNF-dependent neurons in the uninjured DRG would provide a new strategy for treating neuropathic pain. Copyright © 2011 American Pain Society. Published by Elsevier Inc. All rights reserved.

  11. Glial cell line-derived neurotrophic factor promotes barrier maturation and wound healing in intestinal epithelial cells in vitro.

    PubMed

    Meir, Michael; Flemming, Sven; Burkard, Natalie; Bergauer, Lisa; Metzger, Marco; Germer, Christoph-Thomas; Schlegel, Nicolas

    2015-10-15

    Recent data suggest that neurotrophic factors from the enteric nervous system are involved in intestinal epithelial barrier regulation. In this context the glial cell line-derived neurotrophic factor (GDNF) was shown to affect gut barrier properties in vivo directly or indirectly by largely undefined processes in a model of inflammatory bowel disease (IBD). We further investigated the potential role and mechanisms of GDNF in the regulation of intestinal barrier functions. Immunostaining of human gut specimen showed positive GDNF staining in enteric neuronal plexus and in enterocytes. In Western blots of the intestinal epithelial cell lines Caco2 and HT29B6, significant amounts of GDNF were detected, suggesting that enterocytes represent an additional source of GDNF. Application of recombinant GDNF on Caco2 and HT29B6 cells for 24 h resulted in significant epithelial barrier stabilization in monolayers with immature barrier functions. Wound-healing assays showed a significantly faster closure of the wounded areas after GDNF application. GDNF augmented cAMP levels and led to significant inactivation of p38 MAPK in immature cells. Activation of p38 MAPK signaling by SB-202190 mimicked GDNF-induced barrier maturation, whereas the p38 MAPK activator anisomycin blocked GDNF-induced effects. Increasing cAMP levels had adverse effects on barrier maturation, as revealed by permeability measurements. However, increased cAMP augmented the proliferation rate in Caco2 cells, and GDNF-induced proliferation of epithelial cells was abrogated by the PKA inhibitor H89. Our data show that enterocytes represent an additional source of GDNF synthesis. GDNF contributes to wound healing in a cAMP/PKA-dependent manner and promotes barrier maturation in immature enterocytes cells by inactivation of p38 MAPK signaling. Copyright © 2015 the American Physiological Society.

  12. Somatotropinomas, but not nonfunctioning pituitary adenomas, maintain a functional apoptotic RET/Pit1/ARF/p53 pathway that is blocked by excess GDNF.

    PubMed

    Diaz-Rodriguez, Esther; Garcia-Rendueles, Angela R; Ibáñez-Costa, Alejandro; Gutierrez-Pascual, Ester; Garcia-Lavandeira, Montserrat; Leal, Alfonso; Japon, Miguel A; Soto, Alfonso; Venegas, Eva; Tinahones, Francisco J; Garcia-Arnes, Juan A; Benito, Pedro; Angeles Galvez, Maria; Jimenez-Reina, Luis; Bernabeu, Ignacio; Dieguez, Carlos; Luque, Raul M; Castaño, Justo P; Alvarez, Clara V

    2014-11-01

    Acromegaly is caused by somatotroph cell adenomas (somatotropinomas [ACROs]), which secrete GH. Human and rodent somatotroph cells express the RET receptor. In rodents, when normal somatotrophs are deprived of the RET ligand, GDNF (Glial Cell Derived Neurotrophic Factor), RET is processed intracellularly to induce overexpression of Pit1 [Transcription factor (gene : POUF1) essential for transcription of Pituitary hormones GH, PRL and TSHb], which in turn leads to p19Arf/p53-dependent apoptosis. Our purpose was to ascertain whether human ACROs maintain the RET/Pit1/p14ARF/p53/apoptosis pathway, relative to nonfunctioning pituitary adenomas (NFPAs). Apoptosis in the absence and presence of GDNF was studied in primary cultures of 8 ACROs and 3 NFPAs. Parallel protein extracts were analyzed for expression of RET, Pit1, p19Arf, p53, and phospho-Akt. When GDNF deprived, ACRO cells, but not NFPAs, presented marked level of apoptosis that was prevented in the presence of GDNF. Apoptosis was accompanied by RET processing, Pit1 accumulation, and p14ARF and p53 induction. GDNF prevented all these effects via activation of phospho-AKT. Overexpression of human Pit1 (hPit1) directly induced p19Arf/p53 and apoptosis in a pituitary cell line. Using in silico studies, 2 CCAAT/enhancer binding protein alpha (cEBPα) consensus-binding sites were found to be 100% conserved in mouse, rat, and hPit1 promoters. Deletion of 1 cEBPα site prevented the RET-induced increase in hPit1 promoter expression. TaqMan qRT-PCR (real time RT-PCR) for RET, Pit1, Arf, TP53, GDNF, steroidogenic factor 1, and GH was performed in RNA from whole ACRO and NFPA tumors. ACRO but not NFPA adenomas express RET and Pit1. GDNF expression in the tumors was positively correlated with RET and negatively correlated with p53. In conclusion, ACROs maintain an active RET/Pit1/p14Arf/p53/apoptosis pathway that is inhibited by GDNF. Disruption of GDNF's survival function might constitute a new therapeutic route in

  13. The timing and location of GDNF expression determines enteric nervous system structure and function

    PubMed Central

    Wang, Hongtao; Hughes, Inna; Planer, William; Parsadanian, Alexander; Grider, John R.; Vohra, Bhupinder P.S.; Keller-Peck, Cynthia; Heuckeroth, Robert O.

    2010-01-01

    Ret signaling is critical for formation of the enteric nervous system (ENS) because Ret activation promotes ENS precursor survival, proliferation, and migration and provides trophic support for mature enteric neurons. While these roles are well established, we now provide evidence that increasing levels of the Ret ligand GDNF in mice causes alterations in ENS structure and function that are critically dependent on the time and location of increased GDNF availability. This is demonstrated using two different strains of transgenic mice and by injecting newborn mice with GDNF. Furthermore, because different subclasses of ENS precursors withdraw from the cell cycle at different times during development, increases in GDNF at specific times alter the ratio of neuronal subclasses in the mature ENS. In addition, we confirm that esophageal neurons are GDNF responsive and demonstrate that the location of GDNF production influences neuronal process projection for NADPH diaphorase expressing, but not acetylcholinesterase, choline acetyltransferase, or tryptophan hydroxylase expressing small bowel myenteric neurons. We further demonstrate that changes in GDNF availability influence intestinal function in vitro and in vivo. Thus, changes in GDNF expression can create a wide variety of alterations in ENS structure and function and may in part contribute to human motility disorders. PMID:20107080

  14. Non-viral gene therapy for GDNF production in RCS rat: the crucial role of the plasmid dose.

    PubMed

    Touchard, E; Heiduschka, P; Berdugo, M; Kowalczuk, L; Bigey, P; Chahory, S; Gandolphe, C; Jeanny, J-C; Behar-Cohen, F

    2012-09-01

    Glial cell line-derived neurotrophic factor (GDNF) is one of the candidate molecules among neurotrophic factors proposed for a potential treatment of retinitis pigmentosa (RP). It must be administered repeatedly or through sustained releasing systems to exert prolonged neuroprotective effects. In the dystrophic Royal College of Surgeon's (RCS) rat model of RP, we found that endogenous GDNF levels dropped during retinal degeneration time course, opening a therapeutic window for GDNF supplementation. We showed that after a single electrotransfer of 30 μg of GDNF-encoding plasmid in the rat ciliary muscle, GDNF was produced for at least 7 months. Morphometric, electroretinographic and optokinetic analyses highlighted that this continuous release of GDNF delayed photoreceptors (PRs) as well as retinal functions loss until at least 70 days of age in RCS rats. Unexpectedly, increasing the GDNF secretion level accelerated PR degeneration and the loss of electrophysiological responses. This is the first report: (i) demonstrating the efficacy of GDNF delivery through non-viral gene therapy in RP; (ii) establishing the efficacy of intravitreal administration of GDNF in RP associated with a mutation in the retinal pigment epithelium; and (iii) warning against potential toxic effects of GDNF within the eye/retina.

  15. Targeting the Gdnf Gene in peritubular myoid cells disrupts undifferentiated spermatogonial cell development

    PubMed Central

    Chen, Liang-Yu; Willis, William D.; Eddy, Edward M.

    2016-01-01

    Spermatogonial stem cells (SSCs) are a subpopulation of undifferentiated spermatogonia located in a niche at the base of the seminiferous epithelium delimited by Sertoli cells and peritubular myoid (PM) cells. SSCs self-renew or differentiate into spermatogonia that proliferate to give rise to spermatocytes and maintain spermatogenesis. Glial cell line-derived neurotrophic factor (GDNF) is essential for this process. Sertoli cells produce GDNF and other growth factors and are commonly thought to be responsible for regulating SSC development, but limited attention has been paid to the role of PM cells in this process. A conditional knockout (cKO) of the androgen receptor gene in PM cells resulted in male infertility. We found that testosterone (T) induces GDNF expression in mouse PM cells in vitro and neonatal spermatogonia (including SSCs) co-cultured with T-treated PM cells were able to colonize testes of germ cell-depleted mice after transplantation. This strongly suggested that T-regulated production of GDNF by PM cells is required for spermatogonial development, but PM cells might produce other factors in vitro that are responsible. In this study, we tested the hypothesis that production of GDNF by PM cells is essential for spermatogonial development by generating mice with a cKO of the Gdnf gene in PM cells. The cKO males sired up to two litters but became infertile due to collapse of spermatogenesis and loss of undifferentiated spermatogonia. These studies show for the first time, to our knowledge, that the production of GDNF by PM cells is essential for undifferentiated spermatogonial cell development in vivo. PMID:26831079

  16. Glial cell line-derived neurotrophic factor and endothelial cells promote self-renewal of rabbit germ cells with spermatogonial stem cell properties.

    PubMed

    Kubota, Hiroshi; Wu, Xin; Goodyear, Shaun M; Avarbock, Mary R; Brinster, Ralph L

    2011-08-01

    Previous studies suggest that exogenous factors crucial for spermatogonial stem cell (SSC) self-renewal are conserved among several mammalian species. Since glial cell line-derived neurotrophic factor (GDNF) and fibroblast growth factor 2 (FGF2) are critical for rodent SSC self-renewal, we hypothesized that they might promote self-renewal of nonrodent SSCs. Therefore, we cultured testicular germ cells from prepubertal rabbits in the presence of GDNF and FGF2 and found they proliferated indefinitely as cellular clumps that displayed characteristics previously identified for rodent SSCs. The rabbit germ cells could not be maintained on mouse embryonic fibroblast (STO) feeders that support rodent SSC self-renewal in vitro but were rather supported on mouse yolk sac-derived endothelial cell (C166) feeder layers. Proliferation of rabbit germ cells was dependent on GDNF. Of critical importance was that clump-forming rabbit germ cells colonized seminiferous tubules of immunodeficient mice, proliferated for at least 6 mo, while retaining an SSC phenotype in the testes of recipient mice, indicating that they were rabbit SSCs. This study demonstrates that GDNF is a mitogenic factor promoting self-renewal that is conserved between rodent and rabbit SSCs; with an evolutionary separation of ∼ 60 million years. These findings provide a foundation to study the mechanisms governing SSC self-renewal in nonrodent species.

  17. The gene coding for glial cell line derived neurotrophic factor (GDNF) maps to chromosome 5p12-p13.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schindelhauer, D.; Schuffenhauer, S.; Meitinger, T.

    1995-08-10

    The gene coding for glial cell line derived neurotrophic factor (GDNF) has biological properties that may have potential as a treatment for Parkinson`s and motoneuron diseases. Using the NIGMS Mapping Panel 2, we have localized the GDNF gene to human chromosome 5p12-p13.1. Large NruI and NotI fragments on chromosome 5 will facilitate the construction of a long-range map of the region. 26 refs., 1 fig., 1 tab.

  18. Role of trophic factors GDNF, IGF-1 and VEGF in major depressive disorder: A comprehensive review of human studies

    PubMed Central

    Sharma, Ajaykumar N.; da Costa e Silva, Bruno Fernando Borges; Soares, Jair C.; Carvalho, André F.; Quevedo, Joao

    2016-01-01

    Rationale The neurotrophin hypothesis of major depressive disorder (MDD) postulates that this illness results from aberrant neurogenesis in brain regions that regulates emotion and memory. Notwithstanding this theory has primarily implicated BDNF in the neurobiology of MDD. Recent evidence suggests that other trophic factors namely GDNF, VEGF and IGF-1 may also be involved. Purpose The present review aimed to critically summarize evidence regarding changes in GDNF, IGF-1 and VEGF in individuals with MDD compared to healthy controls. In addition, we also evaluated the role of these mediators as potential treatment response biomarkers for MDD. Methods A comprehensive review of original studies studies measuring peripheral, central or mRNA levels of GDNF, IGF-1 or VEGF in patients with MDD was conducted. The PubMed/MEDLINE database was searched for peer-reviewed studies published in English through June 2nd, 2015. Results Most studies reported a reduction in peripheral GDNF and its mRNA levels in MDD patients versus controls. In contrast, IGF-1 levels in MDD patients compared to controls were discrepant across studies. Finally, most studies reported high peripheral VEGF levels and mRNA expression in MDD patients compared to healthy controls. Conclusions GDNF, IGF-1 and VEGF levels and their mRNA expression appear to be differentially altered in MDD patients compared to healthy individuals, indicating that these molecules might play an important role in the pathophysiology of depression and antidepressant action of therapeutic interventions. PMID:26956384

  19. Synergistic Effects of GDNF and VEGF on Lifespan and Disease Progression in a Familial ALS Rat Model

    PubMed Central

    Krakora, Dan; Mulcrone, Patrick; Meyer, Michael; Lewis, Christina; Bernau, Ksenija; Gowing, Genevieve; Zimprich, Chad; Aebischer, Patrick; Svendsen, Clive N; Suzuki, Masatoshi

    2013-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive loss of motor neurons in the brain and spinal cord. We have recently shown that human mesenchymal stem cells (hMSCs) modified to release glial cell line-derived neurotrophic factor (GDNF) decrease disease progression in a rat model of ALS when delivered to skeletal muscle. In the current study, we determined whether or not this effect could be enhanced by delivering GDNF in concert with other trophic factors. hMSC engineered to secrete GDNF (hMSC-GDNF), vascular endothelial growth factor (hMSC-VEGF), insulin-like growth factor-I (hMSC-IGF-I), or brain-derived neurotrophic factor (hMSC-BDNF), were prepared and transplanted bilaterally into three muscle groups. hMSC-GDNF and hMSC-VEGF prolonged survival and slowed the loss of motor function, but hMSC-IGF-I and hMSC-BDNF did not have any effect. We then tested the efficacy of a combined ex vivo delivery of GDNF and VEGF in extending survival and protecting neuromuscular junctions (NMJs) and motor neurons. Interestingly, the combined delivery of these neurotrophic factors showed a strong synergistic effect. These studies further support ex vivo gene therapy approaches for ALS that target skeletal muscle. PMID:23712039

  20. Biology of GDNF and its receptors - Relevance for disorders of the central nervous system.

    PubMed

    Ibáñez, Carlos F; Andressoo, Jaan-Olle

    2017-01-01

    A targeted effort to identify novel neurotrophic factors for midbrain dopaminergic neurons resulted in the isolation of GDNF (glial cell line-derived neurotrophic factor) from the supernatant of a rat glial cell line in 1993. Over two decades and 1200 papers later, the GDNF ligand family and their different receptor systems are now recognized as one of the major neurotrophic networks in the nervous system, important for the development, maintenance and function of a variety of neurons and glial cells. The many ways in which the four members of the GDNF ligand family can signal and function allow these factors to take part in the control of multiple types of processes, from neuronal survival to axon guidance and synapse formation in the developing nervous system, to synaptic function and regenerative responses in the adult. In this review, we will briefly summarize basic aspects of GDNF signaling mechanisms and receptor systems and then review our current knowledge of the physiology of GDNF activities in the central nervous system, with an eye to its relevance for neurodegenerative and neuropsychiatric diseases. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. GDNF-RET signaling in ER-positive breast cancers is a key determinant of response and resistance to aromatase inhibitors

    PubMed Central

    Morandi, Andrea; Martin, Lesley-Ann; Gao, Qiong; Pancholi, Sunil; Mackay, Alan; Robertson, David; Zvelebil, Marketa; Dowsett, Mitch; Plaza-Menacho, Ivan; Isacke, Clare M.

    2013-01-01

    Most breast cancers at diagnosis are estrogen receptor (ER)-positive and depend on estrogen for growth and survival. Blocking estrogen biosynthesis by aromatase inhibitors (AI) has therefore become a first-line endocrine therapy for post-menopausal women with ER-positive breast cancers. Despite providing substantial improvements in patient outcome, AI resistance remains a major clinical challenge. The receptor tyrosine kinase RET and its co-receptor GFRα1 are upregulated in a subset of ER-positive breast cancers, and the RET ligand, glial-derived neurotrophic factor (GDNF) is upregulated by inflammatory cytokines. Here we report the findings of a multidisciplinary strategy to address the impact of GDNF-RET signaling in the response to AI treatment. In breast cancer cells in 2D and 3D culture, GDNF-mediated RET signaling is enhanced in a model of AI resistance. Further, GDNF-RET signaling promoted the survival of AI-resistant cells and elicited resistance in AI-sensitive cells. Both these effects were selectively reverted by the RET kinase inhibitor NVP-BBT594. Gene expression profiling in ER-positive cancers defined a proliferation-independent GDNF-response signature that prognosed poor patient outcome and, more importantly, predicted poor response to AI treatment with the development of resistance. We validated these findings by demonstrating increased RET protein expression levels in an independent cohort of AI-resistant patient specimens. Together, our results establish GDNF-RET signaling as a rational therapeutic target to combat or delay the onset of AI resistance in breast cancer. PMID:23650283

  2. Expression of GDNF and GFR alpha 1 in mouse taste bud cells.

    PubMed

    Takeda, Masako; Suzuki, Yuko; Obara, Nobuko; Uchida, Nobuhiko; Kawakoshi, Kentaro

    2004-11-01

    GDNF (glial cell line-derived neurotrophic factor) affects the survival and maintenance of central and peripheral neurons. Using an immunocytochemical method, we examined whether the taste bud cells in the circumvallate papillae of normal mice expressed GDNF and its GFR alpha 1 receptor. Using double immunostaining for either of them and NCAM, PGP 9.5, or alpha-gustducin, we additionally sought to determine what type of taste bud cells expressed GDNF or GFR alpha 1, because NCAM is reported to be expressed in type-III cells, PGP 9.5, in type-III and some type-II cells, and alpha-gustducin, in some type-II cells. Normal taste bud cells expressed both GDNF and GFR alpha 1. The percentage of GDNF-immunoreactive cells among all taste bud cells was 31.63%, and that of GFR alpha 1-immunoreactive cells, 83.21%. Confocal laser scanning microscopic observations after double immunostaining showed that almost none of the GDNF-immunoreactive cells in the taste buds were reactive with anti-NCAM or anti-PGP 9.5 antibody, but could be stained with anti-alpha-gustducin antibody. On the other hand, almost all anti-PGP 9.5- or anti-alpha-gustducin-immunoreactive cells were positive for GFR alpha 1. Thus, GDNF-immunoreactive cells did not include type-III cells, but type-II cells, which are alpha-gustducin-immunoreactive; on the other hand, GFR alpha 1-immunoreactive cells included type-II and -III cells, and perhaps type-I cells. We conclude that GDNF in the type-II cells may exert trophic actions on type-I, -II, and -III taste bud cells by binding to their GFR alpha 1 receptors.

  3. Intermittent convection-enhanced delivery of GDNF into rhesus monkey putamen: absence of local or cerebellar toxicity.

    PubMed

    Luz, Matthias; Allen, Philip C; Bringas, John; Boiko, Chris; Stockinger, Diane E; Nikula, Kristen J; Lewis, Owen; Woolley, Max; Fibiger, H Christian; Bankiewicz, Krystof; Mohr, Erich

    2018-05-22

    Glial cell line-derived neurotrophic factor (GDNF) has demonstrated neurorestorative and neuroprotective effects in rodent and nonhuman primate models of Parkinson's disease. However, continuous intraputamenal infusion of GDNF (100 µg/day) resulted in multifocal cerebellar Purkinje cell loss in a 6-month toxicity study in rhesus monkeys. It was hypothesized that continuous leakage of GDNF into the cerebrospinal fluid compartment during the infusions led to down-regulation of GDNF receptors on Purkinje cells, and that subsequent acute withdrawal of GDNF then mediated the observed cerebellar lesions. Here we present the results of a 9-month toxicity study in which rhesus monkeys received intermittent intraputamenal infusions via convection-enhanced delivery. Animals were treated with GDNF (87.1 µg; N = 14) or vehicle (N = 6) once every 4 weeks for a total of 40 weeks (11 treatments). Four of the GDNF-treated animals were utilized in a satellite study assessing the impact of concomitant catheter repositioning prior to treatment. In the main study, eight animals (5 GDNF, 3 control) were euthanized at the end of the treatment period, along with the four satellite study animals, while the remaining eight animals (5 GDNF, 3 control) were euthanized at the end of a 12-week recovery period. There were no GDNF-related adverse effects and in particular, no GDNF-related microscopic findings in the brain, spinal cord, dorsal root ganglia, or trigeminal ganglia. Therefore, 87.1 µg/4 weeks is considered the no observed adverse effect level for GDNF in rhesus monkeys receiving intermittent, convection-enhanced delivery of GDNF for 9 months.

  4. Combining glial cell line-derived neurotrophic factor gene delivery (AdGDNF) with L-arginine decreases contusion size but not behavioral deficits after traumatic brain injury.

    PubMed

    Degeorge, M L; Marlowe, D; Werner, E; Soderstrom, K E; Stock, M; Mueller, A; Bohn, M C; Kozlowski, D A

    2011-07-27

    Our laboratory has previously demonstrated that viral administration of glial cell line-derived neurotrophic factor (AdGDNF), one week prior to a controlled cortical impact (CCI) over the forelimb sensorimotor cortex of the rat (FL-SMC) is neuroprotective, but does not significantly enhance recovery of sensorimotor function. One possible explanation for this discrepancy is that although protected, neurons may not have been functional due to enduring metabolic deficiencies. Additionally, metabolic events following TBI may interfere with expression of therapeutic proteins administered to the injured brain via gene therapy. The current study focused on enhancing the metabolic function of the brain by increasing cerebral blood flow (CBF) with l-arginine in conjunction with administration of AdGDNF immediately following CCI. An adenoviral vector harboring human GDNF was injected unilaterally into FL-SMC of the rat immediately following a unilateral CCI over the FL-SMC. Within 30min of the CCI and AdGDNF injections, some animals were injected with l-arginine (i.v.). Tests of forelimb function and asymmetry were administered for 4weeks post-injury. Animals were sacrificed and contusion size and GDNF protein expression measured. This study demonstrated that rats treated with AdGDNF and l-arginine post-CCI had a significantly smaller contusion than injured rats who did not receive any treatment, or injured rats treated with either AdGDNF or l-arginine alone. Nevertheless, no amelioration of behavioral deficits was seen. These findings suggest that AdGDNF alone following a CCI was not therapeutic and although combining it with l-arginine decreased contusion size, it did not enhance behavioral recovery. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Post-treatment effects of local GDNF administration to the inner ears of deafened guinea pigs.

    PubMed

    Fransson, Anette; Maruyama, Jun; Miller, Josef M; Ulfendahl, Mats

    2010-09-01

    For patients with profound hearing loss, a cochlear implant is the only treatment available today. The function of a cochlear implant depends in part on the function and survival of spiral ganglion neurons. Following deafferentation, glial cell-derived neurotrophic factor (GDNF) is known to affect spiral ganglion neuron survival. The purpose of this study was to assess delayed GDNF treatment after deafening, the effects of cessation of GDNF treatment, and the effects of subsequent antioxidants on responsiveness and survival of the spiral ganglion neurons. Three-week deafened (by local neomycin administration) guinea pigs were implanted in the scala tympani with a combined cochlear implant electrode and cannula. GDNF (1 μg/mL) or artificial perilymph was then delivered for 4 weeks, following which the animals received systemic ascorbic acid  +  Trolox or saline for an additional 4 weeks. Thresholds for electrically-evoked auditory brain stem responses (eABRs) were significantly elevated at 3 weeks with deafness, stabilized with GDNF, and showed no change with GDNF cessation and treatment with antioxidants or saline. The populations of spiral ganglion neurons were reduced with deafness (by 40% at 3 weeks and 70% at 11 weeks), and rescued from cell death by GDNF with no further reduction at 8 weeks following 4 weeks of cessation of GDNF treatment equally in both the antioxidant- and saline-treated groups. Local growth factor treatment of the deaf ear may prevent deterioration in electrical responsiveness and rescue auditory nerve cells from death; these effects outlast the period of treatment, and may enhance the benefits of cochlear implant therapy for the deaf.

  6. Neurotrophic Factors NGF, GDNF and NTN Selectively Modulate HSV1 and HSV2 Lytic Infection and Reactivation in Primary Adult Sensory and Autonomic Neurons

    PubMed Central

    Yanez, Andy A.; Harrell, Telvin; Sriranganathan, Heather J.; Ives, Angela M.; Bertke, Andrea S.

    2017-01-01

    Herpes simplex viruses (HSV1 and HSV2) establish latency in peripheral ganglia after ocular or genital infection, and can reactivate to produce different patterns and frequencies of recurrent disease. Previous studies showed that nerve growth factor (NGF) maintains HSV1 latency in embryonic sympathetic and sensory neurons. However, adult sensory neurons are no longer dependent on NGF for survival, some populations cease expression of NGF receptors postnatally, and the viruses preferentially establish latency in different populations of sensory neurons responsive to other neurotrophic factors (NTFs). Thus, NGF may not maintain latency in adult sensory neurons. To identify NTFs important for maintaining HSV1 and HSV2 latency in adult neurons, we investigated acute and latently-infected primary adult sensory trigeminal (TG) and sympathetic superior cervical ganglia (SCG) after NTF removal. NGF and glial cell line-derived neurotrophic factor (GDNF) deprivation induced HSV1 reactivation in adult sympathetic neurons. In adult sensory neurons, however, neurturin (NTN) and GDNF deprivation induced HSV1 and HSV2 reactivation, respectively, while NGF deprivation had no effects. Furthermore, HSV1 and HSV2 preferentially reactivated from neurons expressing GFRα2 and GFRα1, the high affinity receptors for NTN and GDNF, respectively. Thus, NTN and GDNF play a critical role in selective maintenance of HSV1 and HSV2 latency in primary adult sensory neurons. PMID:28178213

  7. Neurotrophic Factors NGF, GDNF and NTN Selectively Modulate HSV1 and HSV2 Lytic Infection and Reactivation in Primary Adult Sensory and Autonomic Neurons.

    PubMed

    Yanez, Andy A; Harrell, Telvin; Sriranganathan, Heather J; Ives, Angela M; Bertke, Andrea S

    2017-02-07

    Herpes simplex viruses (HSV1 and HSV2) establish latency in peripheral ganglia after ocular or genital infection, and can reactivate to produce different patterns and frequencies of recurrent disease. Previous studies showed that nerve growth factor (NGF) maintains HSV1 latency in embryonic sympathetic and sensory neurons. However, adult sensory neurons are no longer dependent on NGF for survival, some populations cease expression of NGF receptors postnatally, and the viruses preferentially establish latency in different populations of sensory neurons responsive to other neurotrophic factors (NTFs). Thus, NGF may not maintain latency in adult sensory neurons. To identify NTFs important for maintaining HSV1 and HSV2 latency in adult neurons, we investigated acute and latently-infected primary adult sensory trigeminal (TG) and sympathetic superior cervical ganglia (SCG) after NTF removal. NGF and glial cell line-derived neurotrophic factor (GDNF) deprivation induced HSV1 reactivation in adult sympathetic neurons. In adult sensory neurons, however, neurturin (NTN) and GDNF deprivation induced HSV1 and HSV2 reactivation, respectively, while NGF deprivation had no effects. Furthermore, HSV1 and HSV2 preferentially reactivated from neurons expressing GFRα2 and GFRα1, the high affinity receptors for NTN and GDNF, respectively. Thus, NTN and GDNF play a critical role in selective maintenance of HSV1 and HSV2 latency in primary adult sensory neurons.

  8. GDNF facilitates differentiation of the adult dentate gyrus-derived neural precursor cells into astrocytes via STAT3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boku, Shuken, E-mail: shuboku@med.hokudai.ac.jp; Nakagawa, Shin; Takamura, Naoki

    2013-05-17

    Highlights: •GDNF has no effect on ADP proliferation and apoptosis. •GDNF increases ADP differentiation into astrocyte. •A specific inhibitor of STAT3 decreases the astrogliogenic effect of GDNF. •STAT3 knockdown by lentiviral shRNA vector also decreases the astrogliogenic effect of GDNF. •GDNF increases the phosphorylation of STAT3. -- Abstract: While the pro-neurogenic actions of antidepressants in the adult hippocampal dentate gyrus (DG) are thought to be one of the mechanisms through which antidepressants exert their therapeutic actions, antidepressants do not increase proliferation of neural precursor cells derived from the adult DG. Because previous studies showed that antidepressants increase the expression andmore » secretion of glial cell line-derived neurotrophic factor (GDNF) in C6 glioma cells derived from rat astrocytes and GDNF increases neurogenesis in adult DG in vivo, we investigated the effects of GDNF on the proliferation, differentiation and apoptosis of cultured neural precursor cells derived from the adult DG. Data showed that GDNF facilitated the differentiation of neural precursor cells into astrocytes but had no effect on their proliferation or apoptosis. Moreover, GDNF increased the phosphorylation of STAT3, and both a specific inhibitor of STAT3 and lentiviral shRNA for STAT3 decreased their differentiation into astrocytes. Taken together, our findings suggest that GDNF facilitates astrogliogenesis from neural precursor cells in adult DG through activating STAT3 and that this action might indirectly affect neurogenesis.« less

  9. In vivo dynamics of GFRα1-positive spermatogonia stimulated by GDNF signals using a bead transplantation assay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uchida, Aya; Kishi, Kasane; Aiyama, Yoshimi

    In mouse testes, spermatogonial stem cells (SSCs), a subpopulation of GFRα1 (GDNF family receptor-α1)-positive spermatogonia, are widely distributed along the convoluted seminiferous tubules. The proliferation and differentiation of the SSCs are regulated in part by local expression of GDNF (glial cell-derived neurotorphic factor), one of major niche factors for SSCs. However, the in vivo dynamics of the GDNF-stimulated GFRα1-positive spermatogonia remains unclear. Here, we developed a simple method for transplanting DiI-labeled and GDNF-soaked beads into the mouse testicular interstitium. By using this method, we examined the dynamics of GFRα1-positive spermatogonia in the tubular walls close to the transplanted GDNF-soaked beads. Themore » bead-derived GDNF signals were able to induce the stratified aggregate formation of GFRα1-positive undifferentiated spermatogonia by day 3 post-transplantation. Each aggregate consisted of tightly compacted A{sub single} and marginal A{sub paired}–A{sub aligned} GFRα1-positive spermatogonia and was surrounded by A{sub aligned} GFRα1-negative spermatogonia at more advanced stages. These data not only provide in vivo evidence for the inductive roles of GDNF in forming a rapid aggregation of GFRα1-positive spermatogonia but also indicate the usefulness of this in vivo assay system of various growth factors for the stem/progenitor spermatogonia in mammalian spermatogenesis. - Highlights: • A novel bead transplantation assay was developed to examine the in vivo effects of growth factors on spermatogonia. • A rapid aggregation of GFRα1-positive spermatogonia was induced by the transplanted GDNF-soaked beads. • Tightly-compacted A{sub single} and marginal A{sub paired}–A{sub aligned} spermatogonia were formed in each GFRα1-positive aggregate.« less

  10. Functional regeneration of the transected recurrent laryngeal nerve using a collagen scaffold loaded with laminin and laminin-binding BDNF and GDNF

    PubMed Central

    Wang, Baoxin; Yuan, Junjie; Chen, Xinwei; Xu, Jiafeng; Li, Yu; Dong, Pin

    2016-01-01

    Recurrent laryngeal nerve (RLN) injury remains a challenge due to the lack of effective treatments. In this study, we established a new drug delivery system consisting of a tube of Heal-All Oral Cavity Repair Membrane loaded with laminin and neurotrophic factors and tested its ability to promote functional recovery following RLN injury. We created recombinant fusion proteins consisting of brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) fused to laminin-binding domains (LBDs) in order to prevent neurotrophin diffusion. LBD-BDNF, LBD-GDNF, and laminin were injected into a collagen tube that was fitted to the ends of the transected RLN in rats. Functional recovery was assessed 4, 8, and 12 weeks after injury. Although vocal fold movement was not restored until 12 weeks after injury, animals treated with the collagen tube loaded with laminin, LBD-BDNF and LBD-GDNF showed improved recovery in vocalisation, arytenoid cartilage angles, compound muscle action potentials and regenerated fibre area compared to animals treated by autologous nerve grafting (p < 0.05). These results demonstrate the drug delivery system induced nerve regeneration following RLN transection that was superior to that induced by autologus nerve grafting. It may have potential applications in nerve regeneration of RLN transection injury. PMID:27558932

  11. GDNF is a novel ethanol-responsive gene in the VTA: Implications for the development and persistence of excessive drinking

    PubMed Central

    Ahmadiantehrani, Somayeh; Barak, Segev; Ron, Dorit

    2012-01-01

    Glial cell line-derived neurotrophic factor (GDNF) is a potent inhibitor of ethanol consumption and relapse (Carnicella et al., 2008; Carnicella and Ron, 2009; Carnicella et al., 2009c; Barak et al., 2011a), and GDNF heterozygous knockout mice display increased reward sensitivity to ethanol, and consume more ethanol after a period of abstinence, than their wild-type littermates (Carnicella et al., 2009b). Here, we tested whether ethanol alters GDNF expression in the ventral tegmental area (VTA; GDNF’s site of action) and/or the nucleus accumbens (NAc; the main source of GDNF), and if so, determine the role of the endogenous growth factor in the regulation of ethanol consumption. Systemic administration of ethanol increased GDNF expression and protein levels in the VTA, but not the NAc. Additionally, GDNF levels were elevated after an ethanol-drinking session in rats that consumed ethanol in the intermittent-access two-bottle choice procedure for 1 week, but not 7 weeks. Deprivation following 7 weeks of excessive ethanol intake reduced GDNF levels, while a short ethanol binge drinking period following deprivation upregulated GDNF expression. Importantly, knockdown of GDNF within the VTA using adenovirus expressing short hairpin RNA facilitated the escalation of ethanol drinking by ethanol-naïve rats, but not by rats with a history of excessive ethanol consumption. These results suggest that during initial ethanol-drinking experiences, GDNF in the VTA is increased and protects against the development of excessive ethanol intake. However, the growth factor’s protective response to ethanol breaks down after protracted excessive ethanol intake and withdrawal, resulting in persistent, excessive ethanol consumption. PMID:23298382

  12. Fibrin matrices with affinity-based delivery systems and neurotrophic factors promote functional nerve regeneration.

    PubMed

    Wood, Matthew D; MacEwan, Matthew R; French, Alexander R; Moore, Amy M; Hunter, Daniel A; Mackinnon, Susan E; Moran, Daniel W; Borschel, Gregory H; Sakiyama-Elbert, Shelly E

    2010-08-15

    Glial-derived neurotrophic factor (GDNF) and nerve growth factor (NGF) have both been shown to enhance peripheral nerve regeneration following injury and target different neuronal populations. The delivery of either growth factor at the site of injury may, therefore, result in quantitative differences in motor nerve regeneration and functional recovery. In this study we evaluated the effect of affinity-based delivery of GDNF or NGF from fibrin-filled nerve guidance conduits (NGCs) on motor nerve regeneration and functional recovery in a 13 mm rat sciatic nerve defect. Seven experimental groups were evaluated consisting of GDNF or NGF and the affinity-based delivery system (DS) within NGCs, control groups excluding the DS and/or growth factor, and nerve isografts. Groups with growth factor in the conduit demonstrated equivalent or superior performance in behavioral tests and relative muscle mass measurements compared to isografts at 12 weeks. Additionally, groups with GDNF demonstrated greater specific twitch and tetanic force production in extensor digitorum longus (EDL) muscle than the isograft control, while groups with NGF produced demonstrated similar force production compared to the isograft control. Assessment of motor axon regeneration by retrograde labeling further revealed that the number of ventral horn neurons regenerating across NGCs containing GDNF and NGF DS was similar to the isograft group and these counts were greater than the groups without growth factor. Overall, the GDNF DS group demonstrated superior functional recovery and equivalent motor nerve regeneration compared to the isograft control, suggesting it has potential as a treatment for motor nerve injury.

  13. Age and lesion-induced increases of GDNF transgene expression in brain following intracerebral injections of DNA nanoparticles.

    PubMed

    Yurek, D M; Hasselrot, U; Cass, W A; Sesenoglu-Laird, O; Padegimas, L; Cooper, M J

    2015-01-22

    In previous studies that used compacted DNA nanoparticles (DNP) to transfect cells in the brain, we observed higher transgene expression in the denervated striatum when compared to transgene expression in the intact striatum. We also observed that long-term transgene expression occurred in astrocytes as well as neurons. Based on these findings, we hypothesized that the higher transgene expression observed in the denervated striatum may be a function of increased gliosis. Several aging studies have also reported an increase of gliosis as a function of normal aging. In this study we used DNPs that encoded for human glial cell line-derived neurotrophic factor (hGDNF) and either a non-specific human polyubiquitin C (UbC) or an astrocyte-specific human glial fibrillary acidic protein (GFAP) promoter. The DNPs were injected intracerebrally into the denervated or intact striatum of young, middle-aged or aged rats, and glial cell line-derived neurotrophic factor (GDNF) transgene expression was subsequently quantified in brain tissue samples. The results of our studies confirmed our earlier finding that transgene expression was higher in the denervated striatum when compared to intact striatum for DNPs incorporating either promoter. In addition, we observed significantly higher transgene expression in the denervated striatum of old rats when compared to young rats following injections of both types of DNPs. Stereological analysis of GFAP+ cells in the striatum confirmed an increase of GFAP+ cells in the denervated striatum when compared to the intact striatum and also an age-related increase; importantly, increases in GFAP+ cells closely matched the increases in GDNF transgene levels. Thus neurodegeneration and aging may lay a foundation that is actually beneficial for this particular type of gene therapy while other gene therapy techniques that target neurons are actually targeting cells that are decreasing as the disease progresses. Copyright © 2014 IBRO. Published by

  14. Ex vivo delivery of GDNF maintains motor function and prevents neuronal loss in a transgenic mouse model of Huntington's disease.

    PubMed

    Ebert, Allison D; Barber, Amelia E; Heins, Brittany M; Svendsen, Clive N

    2010-07-01

    Huntington's disease (HD) is an autosomal dominant disorder caused by expansion of polyglutamine repeats in the huntingtin gene leading to loss of striatal and cortical neurons followed by deficits in cognition and choreic movements. Growth factor delivery to the brain has shown promise in various models of neurodegenerative diseases, including HD, by reducing neuronal death and thus limiting motor impairment. Here we used mouse neural progenitor cells (mNPCs) as growth factor delivery vehicles in the N171-82Q transgenic mouse model of HD. mNPCs derived from the developing mouse striatum were isolated and infected with lentivirus expressing either glial cell line-derived neurotrophic factor (GDNF) or green fluorescent protein (GFP). Next, mNPCs(GDNF) or mNPCs(GFP) were transplanted bilaterally into the striatum of pre-symptomatic N171-82Q mice. We found that mNPCs(GDNF), but not mNPCs(GFP), maintained rotarod function and increased striatal neuron survival out to 3months post-transplantation. Importantly, histological analysis showed GDNF expression through the duration of the experiment. Our data show that mNPCs(GDNF) can survive transplantation, secrete GDNF for several weeks and are able to maintain motor function in this model of HD. Copyright 2010 Elsevier Inc. All rights reserved.

  15. Functional Neuroprotection and Efficient Regulation of GDNF Using Destabilizing Domains in a Rodent Model of Parkinson's Disease

    PubMed Central

    Quintino, Luis; Manfré, Giuseppe; Wettergren, Erika Elgstrand; Namislo, Angrit; Isaksson, Christina; Lundberg, Cecilia

    2013-01-01

    Glial cell line–derived neurotrophic factor (GDNF) has great potential to treat Parkinson's disease (PD). However, constitutive expression of GDNF can over time lead to side effects. Therefore, it would be useful to regulate GDNF expression. Recently, a new gene inducible system using destabilizing domains (DD) from E. coli dihydrofolate reductase (DHFR) has been developed and characterized. The advantage of this novel DD is that it is regulated by trimethoprim (TMP), a well-characterized drug that crosses the blood–brain barrier and can therefore be used to regulate gene expression in the brain. We have adapted this system to regulate expression of GDNF. A C-terminal fusion of GDNF and a DD with an additional furin cleavage site was able to be efficiently regulated in vitro, properly processed and was able to bind to canonical GDNF receptors, inducing a signaling cascade response in target cells. In vivo characterization of the protein showed that it could be efficiently induced by TMP and it was only functional when gene expression was turned on. Further characterization in a rodent model of PD showed that the regulated GDNF protected neurons, improved motor behavior of animals and was efficiently regulated in a pathological setting. PMID:23881415

  16. History of Glial Cell Line-Derived Neurotrophic Factor (GDNF) and Its Use for Spinal Cord Injury Repair.

    PubMed

    Walker, Melissa J; Xu, Xiao-Ming

    2018-06-13

    Following an initial mechanical insult, traumatic spinal cord injury (SCI) induces a secondary wave of injury, resulting in a toxic lesion environment inhibitory to axonal regeneration. This review focuses on the glial cell line-derived neurotrophic factor (GDNF) and its application, in combination with other factors and cell transplantations, for repairing the injured spinal cord. As studies of recent decades strongly suggest that combinational treatment approaches hold the greatest therapeutic potential for the central nervous system (CNS) trauma, future directions of combinational therapies will also be discussed.

  17. GDNF-secreting mesenchymal stem cells provide localized neuroprotection in an inflammation-driven rat model of Parkinson's disease.

    PubMed

    Hoban, D B; Howard, L; Dowd, E

    2015-09-10

    Constraints involving the delivery method of glial cell line-derived neurotrophic factor (GDNF) have hampered its efficacy as a neuroprotectant in Parkinson's disease. Ex vivo gene therapy, in which suitable cells, such as bone marrow-derived mesenchymal stem cells (MSCs), are genetically engineered to overexpress GDNF (GDNF-MSCs) prior to transplantation may be more beneficial than direct brain infusion of the neurotrophin. Previously, GDNF-MSCs have been assessed in the commonly employed 6-hydroxydopamine neurotoxic model of Parkinson's disease. In this study however, we used an emerging inflammatory model of Parkinson's disease (the lipopolysaccharide (LPS) model) to assess the ability of transplanted GDNF-MSCs to protect against LPS-induced neuroinflammation, neurodegeneration and behavioral impairment. Thirty male Sprague-Dawley rats were used in this experiment. Rats were performance matched based on baseline motor function tests into three groups (LPS lesion only, LPS lesion+GFP-MSCs, LPS lesion+GDNF-MSCs; n=10/group). Both cell groups received a unilateral intra-striatal transplant of either 200,000 GDNF-MSCs or 200,000 GFP-MSCs (as a control). One day post-transplantation, all rats received a unilateral intra-nigral infusion of LPS (10 μg in 2 μl sterile saline). Rats were sacrificed by transcardial perfusion-fixation and their brains were used for post mortem quantitative immunohistochemistry. Injection of LPS into the substantia nigra induced a pronounced local inflammatory response which resulted in 20% loss of nigrostriatal dopaminergic neurons and impaired contralateral motor function. Following transplantation of GDNF-MSCs to the striatum, dense areas of TH-positive staining directly proximal to the transplant site were observed. Most importantly, this effect was observed only in the GDNF-MSC transplanted group and not the GFP-MSC transplanted group demonstrating protection and/or sprouting of the dopaminergic terminals induced by the secreted GDNF

  18. Naringin protects the nigrostriatal dopaminergic projection through induction of GDNF in a neurotoxin model of Parkinson's disease.

    PubMed

    Leem, Eunju; Nam, Jin Han; Jeon, Min-Tae; Shin, Won-Ho; Won, So-Yoon; Park, Sang-Joon; Choi, Myung-Sook; Jin, Byung Kwan; Jung, Un Ju; Kim, Sang Ryong

    2014-07-01

    This study investigated the effect of naringin, a major flavonoid in grapefruit and citrus fruits, on the degeneration of the nigrostriatal dopaminergic (DA) projection in a neurotoxin model of Parkinson's disease (PD) in vivo and the potential underlying mechanisms focusing on the induction of glia-derived neurotrophic factor (GDNF), well known as an important neurotrophic factor involved in the survival of adult DA neurons. 1-Methyl-4-phenylpyridinium (MPP(+)) was unilaterally injected into the medial forebrain bundle of rat brains for a neurotoxin model of PD in the presence or absence of naringin by daily intraperitoneal injection. To ascertain whether naringin-induced GDNF contributes to neuroprotection, we further investigated the effects of intranigral injection of neutralizing antibodies against GDNF in the MPP(+) rat model of PD. Our observations demonstrate that naringin could increase the level of GDNF in DA neurons, contributing to neuroprotection in the MPP(+) rat model of PD, with activation of mammalian target of rapamycin complex 1. Moreover, naringin could attenuate the level of tumor necrosis factor-α in microglia increased by MPP(+)-induced neurotoxicity in the substantia nigra. These results indicate that naringin could impart to DA neurons the important ability to produce GDNF as a therapeutic agent against PD with anti-inflammatory effects, suggesting that naringin is a beneficial natural product for the prevention of DA degeneration in the adult brain. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. BMP6 down-regulates GDNF expression through SMAD1/5 and ERK1/2 signaling pathways in human granulosa-lutein cells.

    PubMed

    Zhang, Xin-Yue; Chang, Hsun-Ming; Taylor, Elizabeth L; Leung, Peter C K; Liu, Rui-Zhi

    2018-05-09

    Bone morphogenetic protein 6 (BMP6) is a critical regulator of follicular development that is expressed in mammalian oocytes and granulosa cells. Glial cell line-derived neurotrophic factor (GDNF) is an intraovarian neurotrophic factor that plays an essential role in regulating mammalian oocyte maturation. The aim of this study was to investigate the effect of BMP6 on the regulation of GDNF expression and the potential underlying mechanisms. We used an established immortalized human granulosa cell line (SVOG cells) and primary human granulosa-lutein cells as in vitro cell models. Our results showed that BMP6 significantly down-regulated the expression of GDNF in both SVOG and primary human granulosa-lutein cells. Using dual inhibition approaches (kinase receptor inhibitor and small interfering RNA knockdown), our results showed that both ALK2 and ALK3 are involved in BMP6-induced down-regulation of GDNF. In addition, BMP6 induced the phosphorylation of SMAD1/5/8 and ERK1/2 but not AKT or p38. Among three downstream mediators, both SMAD1 and SMAD5 are involved in BMP6-induced down-regulation of GDNF. Moreover, concomitant knockdown of endogenous SMAD4 and inhibition of ERK1/2 activity completely reversed BMP6-induced down-regulation of GDNF, indicating that both SMAD and ERK1/2 signaling pathways are required for the regulatory effect of BMP6 on GDNF expression. Our findings suggest an additional role for an intrafollicular growth factor in regulating follicular function through their paracrine interactions in human granulosa cells.

  20. Lipopolysaccharide inhibits the self-renewal of spermatogonial stem cells in vitro via downregulation of GDNF expression in Sertoli cells.

    PubMed

    Zhang, Xiaoli; Shi, Kun; Li, Yi; Zhang, Haiyu; Hao, Jing

    2014-06-01

    Lipopolysaccharide (LPS) can reduce sperm count and sperm quality. The molecular mechanisms underlying this process are not fully understood. In this report, we investigated the effects of LPS-treated Sertoli cells on self-renewal and differentiation of spermatogoinial stem cells (SSCs). Sertoli cell cultures were established and incubated with LPS (10μg/ml) for 1, 2 or 3 days, respectively. The culture media were collected and used as conditioned media (CM) to culture SSCs. The expression of glial cell-derived neurotrophic factor (GDNF), stem cell factor (SCF) and bone morphogenetic protein 4 (BMP4) in Sertoli cells treated with LPS was analyzed by RT-PCR and Western blotting. The results showed that the expression of SSC differentiation markers, c-kit and Sohlh2, was increased, while the expression of SSC self-renewal markers, plzf, oct4, and PCNA, was repressed when cultured in CM from LPS-treated Sertoli cells. GDNF levels in Sertoli cells and CM reduced dramatically after LPS treatments, while SCF and BMP4 levels did not show any significant changes. Moreover, correlated with the GDNF levels in CM, GDNF target genes, Bcl6b and Etv5, were reduced markedly in SSCs. Our results suggest that LPS inhibits the expression of GDNF in Sertoli cells, and might prevent the SSC self-renewal via down-regulation of GDNF target genes. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Cross-link regulation of precursor N-cadherin and FGFR1 by GDNF increases U251MG cell viability.

    PubMed

    Tang, Chuan-Xi; Gu, Yan-Xia; Liu, Xin-Feng; Tong, Shu-Yan; Ayanlaja, Abiola A; Gao, Yue; Ji, Guang-Quan; Xiong, Ye; Huang, Lin-Yan; Gao, Dian-Shuai

    2018-07-01

    Glial cell line-derived neurotrophic factor (GDNF) is considered to be involved in the development of glioma. However, uncovering the underlying mechanism of the proliferation of glioma cells is a challenging work in progress. We have identified the binding of the precursor of N-cadherin (proN-cadherin) and GDNF on the cell membrane in previous studies. In the present study, we observed increased U251 Malignant glioma (U251MG) cell viability by exogenous GDNF (50 ng/ml). We also confirmed that the high expression of the proN-cadherin was stimulated by exogenous GDNF. Concurrently, we affirmed that lower expression of proN-cadherin correlated with reduced glioma cell viability. Additionally, we observed glioma cell U251MG viability as the phosphorylation level of FGFR1 at Y653 and Y654 was increased after exogenous GDNF treatment, which led to increased interaction between proN-cadherin and FGFR1 (pY653+Y654). Our experiments presented a new mechanism adopted by GDNF supporting glioma development and indicated a possible therapeutic potential via the inhibition of proN-cadherin/FGFR1 interaction.

  2. Pharmacokinetics and safety in rhesus monkeys of a monoclonal antibody-GDNF fusion protein for targeted blood-brain barrier delivery.

    PubMed

    Pardridge, William M; Boado, Ruben J

    2009-10-01

    Glial-derived neurotrophic factor (GDNF) is a potential therapy for stroke, Parkinson's disease, or drug addiction. However, GDNF does not cross the blood-brain barrier (BBB). GDNF is re-engineered as a fusion protein with a chimeric monoclonal antibody (MAb) to the human insulin receptor (HIR), which acts as a molecular Trojan horse to deliver the GDNF across the BBB. The pharmacokinetics (PK), toxicology, and safety pharmacology of the HIRMAb-GDNF fusion protein were investigated in Rhesus monkeys. The fusion protein was administered as an intravenous injection at doses up to 50 mg/kg over a 60 h period to 56 Rhesus monkeys. The plasma concentration of the HIRMAb-GDNF fusion protein was measured with a 2-site sandwich ELISA. No adverse events were observed in a 2-week terminal toxicology study, and no neuropathologic changes were observed. The PK analysis showed a linear relationship between plasma AUC and dose, a large systemic volume of distribution, as well as high clearance rates of 8-10 mL/kg/min. A no-observable-adverse-effect level is established in the Rhesus monkey for the acute administration of the HIRMAb-GDNF fusion protein. The fusion protein targeting the insulin receptor has a PK profile similar to a classical small molecule.

  3. Aminochrome decreases NGF, GDNF and induces neuroinflammation in organotypic midbrain slice cultures.

    PubMed

    de Araújo, Fillipe M; Ferreira, Rafael S; Souza, Cleide S; Dos Santos, Cleonice Creusa; Rodrigues, Tácio L R S; E Silva, Juliana Helena C; Gasparotto, Juciano; Gelain, Daniel Pens; El-Bachá, Ramon S; D Costa, Maria de Fátima; Fonseca, José Claudio M; Segura-Aguilar, Juan; Costa, Silvia L; Silva, Victor Diogenes A

    2018-05-01

    Recent evidence shows that aminochrome induces glial activation related to neuroinflammation. This dopamine derived molecule induces formation and stabilization of alpha-synuclein oligomers, mitochondria dysfunction, oxidative stress, dysfunction of proteasomal and lysosomal systems, endoplasmic reticulum stress and disruption of the microtubule network, but until now there has been no evidence of effects on production of cytokines and neurotrophic factors, that are mechanisms involved in neuronal loss in Parkinson's disease (PD). This study examines the potential role of aminochrome on the regulation of NGF, GDNF, TNF-α and IL-1β production and microglial activation in organotypic midbrain slice cultures from P8 - P9 Wistar rats. We demonstrated aminochrome (25 μM, for 24 h) induced reduction of GFAP expression, reduction of NGF and GDNF mRNA levels, morphological changes in Iba1 + cells, and increase of both TNF-α, IL-1β mRNA and protein levels. Moreover, aminochrome (25 μM, for 48 h) induced morphological changes in the edge of slices and reduction of TH expression. These results demonstrate neuroinflammation, as well as negative regulation of neurotrophic factors (GDNF and NGF), may be involved in aminochrome-induced neurodegeneration, and they contribute to a better understanding of PD pathogenesis. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Effects of delayed treatment with combined GDNF and continuous electrical stimulation on spiral ganglion cell survival in deafened guinea pigs.

    PubMed

    Scheper, Verena; Paasche, Gerrit; Miller, Josef M; Warnecke, Athanasia; Berkingali, Nurdanat; Lenarz, Thomas; Stöver, Timo

    2009-05-01

    Electrical stimulation (ES) of spiral ganglion cells (SGC) via a cochlear implant is the standard treatment for profound sensor neural hearing loss. However, loss of hair cells as the morphological correlate of sensor neural hearing loss leads to deafferentation and death of SGC. Although immediate treatment with ES or glial cell line-derived neurotrophic factor (GDNF) can prevent degeneration of SGC, only few studies address the effectiveness of delayed treatment. We hypothesize that both interventions have a synergistic effect and that even delayed treatment would protect SGC. Therefore, an electrode connected to a pump was implanted into the left cochlea of guinea pigs 3 weeks after deafening. The contralateral untreated cochleae served as deafened intraindividual controls. Four groups were set up. Control animals received intracochlear infusion of artificial perilymph (AP/-). The experimental groups consisted of animals treated with AP in addition to continuous ES (AP/ES) or treated with GDNF alone (GDNF/-) or GDNF combined with continuous ES (GDNF/ES). Acoustically and electrically evoked auditory brain stem responses were recorded. All animals were killed 48 days after deafening; their cochleae were histologically evaluated. Survival of SGC increased significantly in the GDNF/- and AP/ES group compared with the AP/- group. A highly significant increase in SGC density was observed in the GDNF/ES group compared with the control group. Additionally, animals in the GDNF/ES group showed reduced EABR thresholds. Thus, delayed treatment with GDNF and ES can protect SGC from degeneration and may improve the benefits of cochlear implants.

  5. Age-associated decrease in GDNF and its cognate receptor GFRα-1 protein expression in human skin.

    PubMed

    Adly, Mohamed A; Assaf, Hanan A; Hussein, Mahmoud Rezk Abdelwahed

    2016-06-01

    Glial cell line-derived neurotrophic factor (GDNF) and its cognate receptor (GFRα-1) are expressed in normal human skin. They are involved in murine hair follicle morphogenesis and cycling control. We hypothesize that 'GDNF and GFRα-1 protein expression in human skin undergoes age-associated alterations. To test our hypothesis, the expression of these proteins was examined in human skin specimens obtained from 30 healthy individuals representing three age groups: children (5-18 years), adults (19-60 years) and the elderly (61-81 years). Immunofluorescent and light microscopic immunohistologic analyses were performed using tyramide signal amplification and avidin-biotin complex staining methods respectively. GDNF mRNA expression was examined by RT-PCR analysis. GDNF mRNA and protein as well as GFRα-1 protein expressions were detected in normal human skin. We found significantly reduced epidermal expression of these proteins with ageing. In the epidermis, the expression was strong in the skin of children and declined gradually with ageing, being moderate in adults and weak in the elderly. In children and adults, the expression of both GDNF and GFRα-1 proteins was strongest in the stratum basale and decreased gradually towards the surface layers where it was completely absent in the stratum corneum. In the elderly, GDNF and GFRα-1 protein expression was confined to the stratum basale. In the dermis, both GDNF and GFRα-1 proteins had strong expressions in the fibroblasts, sweat glands, sebaceous glands, hair follicles and blood vessels regardless of the age. Thus there is a decrease in epidermal GDNF and GFRα-1 protein expression in normal human skin with ageing. Our findings suggest that the consequences of this is that GFRα-1-mediated signalling is altered during the ageing process. The clinical and therapeutic ramifications of these observations mandate further investigations. © 2016 The Authors. International Journal of Experimental Pathology © 2016

  6. AAV2-mediated gene transfer of GDNF to the striatum of MPTP monkeys enhances the survival and outgrowth of co-implanted fetal dopamine neurons

    PubMed Central

    Elsworth, JD; Redmond, DE; Leranth, C; Bjugstad, KB; Sladek, JR; Collier, TJ; Foti, SB; Samulski, RJ; Vives, KP; Roth, RH

    2009-01-01

    Neural transplantation offers the potential of treating Parkinson’s disease by grafting fetal dopamine neurons to depleted regions of the brain. However, clinical studies of neural grafting in Parkinson’s disease have produced only modest improvements. One of the main reasons for this is the low survival rate of transplanted neurons. The inadequate supply of critical neurotrophic factors in the adult brain is likely to be a major cause of early cell death and restricted outgrowth of fetal grafts placed into the mature striatum. Glial derived neurotrophic factor (GDNF) is a potent neurotrophic factor that is crucial to the survival, outgrowth and maintenance of dopamine neurons, and so is a candidate for protecting grafted fetal dopamine neurons in the adult brain. We found that implantation of adeno-associated virus type 2 encoding GDNF (AAV2-GDNF) in the normal monkey caudate nucleus induced over-expression of GDNF that persisted for at least 6 months after injection. In a 6-month within-animal controlled study, AAV2-GDNF enhanced the survival of fetal dopamine neurons by 4-fold, and increased the outgrowth of grafted fetal dopamine neurons by almost 3-fold in the caudate nucleus of MPTP-treated monkeys, compared with control grafts in the other caudate nucleus. Thus, the addition of GDNF gene therapy to neural transplantation may be a useful strategy to improve treatment for Parkinson’s disease. PMID:18346734

  7. Exercise enhanced functional recovery and expression of GDNF after photochemically induced cerebral infarction in the rat.

    PubMed

    Ohwatashi, Akihiko; Ikeda, Satoshi; Harada, Katsuhiro; Kamikawa, Yurie; Yoshida, Akira

    2013-01-01

    Exercise has been considered to affect the functional recovery from central nervous damage. Neurotrophic factors have various effects on brain damage. However, the effects of exercise for expression of GDNF on functional recovery with brain damage are not well known. We investigated the difference in functional recovery between non-exercise and beam-walking exercise groups, and the expression of GDNF in both groups after photochemical infarction. Adult male Wistar rats (N = 64) were used. Animals were divided into two groups: non-exercise (N = 35), and beam-walking exercise (N = 29). All rats underwent surgical photochemical infarction. The rats of the beam-walking group were trained every day to walk on a narrow beam after a one-day recovery period and those of the non-exercise group were left to follow a natural course. Animals were evaluated for hind limb function every day using a beam-walking task with an elevated narrow beam. The number of GDNF-like immunoreactive cells in the temporal cortex surrounding the lesion was counted 1, 3, 5, and 7 days after the infarction. Functional recovery of the beam-walking exercise group was significantly earlier than that of the non-exercise group. At 3 days after infarction, the number of GDNF-positive cells in the temporal cortex surrounding the infarction was significantly increased in the beam-walking exercise group compared with that in the non-exercise group. In the exercise group, motor function was remarkably recovered with the increased expression of GDNF-like immunoreactive cells. Our results suggested that a rehabilitative approach increased the expression of GDNF and facilitated functional recovery from cerebral infarction.

  8. Retinal ganglion cells survival in a glaucoma model by GDNF/Vit E PLGA microspheres prepared according to a novel microencapsulation procedure.

    PubMed

    Checa-Casalengua, Patricia; Jiang, Caihui; Bravo-Osuna, Irene; Tucker, Budd A; Molina-Martínez, Irene T; Young, Michael J; Herrero-Vanrell, Rocío

    2011-11-30

    The present experimental work describes the use of a novel protein encapsulation method to achieve protection of the biological factor during the microencapsulation procedure. With this aim, the protein is included in poly(lactic-co-glycolic acid) (PLGA) microspheres without any preliminary manipulation, in contrast to the traditional S/O/W (solid-in-oil-in-water) method where the bioactive substance is first dissolved and then freeze-dried in the presence of lyoprotectors. Furthermore, the presented technique involves the use of an oily additive, vitamin E (Vit E), useful from a technological point of view, by promoting additional protein protection and also from a pharmacological point of view, because of its antioxidant and antiproliferative properties. Application of this microencapsulation technique has been performed for GDNF (glial cell line-derived neurotrophic factor) designed for the treatment of optic nerve degenerative diseases, such as glaucoma, the second leading cause of blindness in the western world. The protein was released in vitro in its bioactive form for more than three months, demonstrated by the survival of their potential target cells (photoreceptors and retinal ganglion cells (RGC)). Moreover, the intravitreal injection of GDNF/Vit E PLGA microspheres in an experimental animal model of glaucoma significantly increased RGC survival compared with GDNF, Vit E or blank microspheres (p<0.01). This effect was present for at least eleven weeks, which suggests that the formulation prepared may be clinically useful as a neuroprotective tool in the treatment of glaucomatous optic neuropathy. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Mutation and deletion analysis of GFRα-1, encoding the co-receptor for the GDNF/RET complex, in human brain tumours

    PubMed Central

    Gimm, O; Gössling, A; Marsh, D J; Dahia, P L M; Mulligan, L M; Deimling, A von; Eng, C

    1999-01-01

    Glial cell line-derived neurotrophic factor (GDNF) plays a key role in the control of vertebrate neuron survival and differentiation in both the central and peripheral nervous systems. GDNF preferentially binds to GFRα-1 which then interacts with the receptor tyrosine kinase RET. We investigated a panel of 36 independent cases of mainly advanced sporadic brain tumours for the presence of mutations in GDNF and GFRα-1. No mutations were found in the coding region of GDNF. We identified six previously described GFRα-1 polymorphisms, two of which lead to an amino acid change. In 15 of 36 brain tumours, all polymorphic variants appeared to be homozygous. Of these 15 tumours, one also had a rare, apparently homozygous, sequence variant at codon 361. Because of the rarity of the combination of homozygous sequence variants, analysis for hemizygous deletion was pursued in the 15 samples and loss of heterozygosity was found in 11 tumours. Our data suggest that intragenic point mutations of GDNF or GFRα-1 are not a common aetiologic event in brain tumours. However, either deletion of GFRα-1 and/or nearby genes may contribute to the pathogenesis of these tumours. © 1999 Cancer Research Campaign PMID:10408842

  10. Effect of GDNF on depressive-like behavior, spatial learning and key genes of the brain dopamine system in genetically predisposed to behavioral disorders mouse strains.

    PubMed

    Naumenko, Vladimir S; Kondaurova, Elena M; Bazovkina, Daria V; Tsybko, Anton S; Ilchibaeva, Tatyana V; Khotskin, Nikita V; Semenova, Alina A; Popova, Nina K

    2014-11-01

    The effect of glial cell line-derived neurotrophic factor (GDNF) on behavior and brain dopamine system in predisposed to depressive-like behavior ASC (Antidepressant Sensitive Cataleptics) mice in comparison with the parental "nondepressive" CBA mice was studied. In 7days after administration (800ng, i.c.v.) GDNF decreased escape latency time and the path traveled to reach hidden platform in Morris water maze in ASC mice. GDNF enhanced depressive-like behavioral traits in both "nondepressive" CBA and "depressive" ASC mice. In CBA mice, GDNF decreased functional response to agonists of D1 (chloro-APB hydrobromide) and D2 (sumanirole maleate) receptors in tail suspension test, reduced D2 receptor gene expression in the substantia nigra and increased monoamine oxydase A (MAO A) gene expression in the striatum. GDNF increased D1 and D2 receptor genes expression in the nucleus accumbens of ASC mice but failed to alter expression of catechol-O-methyltransferase, dopamine transporter, MAO B and tyrosine hydroxylase genes in both investigated mouse strains. Thus, GDNF produced long-term genotype-dependent effect on behavior and the brain dopamine system. GDNF pretreatment (1) reduced D1 and D2 receptors functional responses and D2 receptor gene expression in s. nigra of CBA mice; (2) increased D1 and D2 receptor genes expression in n. accumbens of ASC mice and (3) improved spatial learning in ASC mice. GDNF enhanced depressive-like behavior both in CBA and ASC mice. The data suggest that genetically defined variance in the cross-talk between GDNF and brain dopamine system contributes to the variability of GDNF-induced responses and might be responsible for controversial GDNF effects. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Escalating Methamphetamine Regimen Induces Compensatory Mechanisms, Mitochondrial Biogenesis, and GDNF Expression, in Substantia Nigra.

    PubMed

    Valian, Neda; Ahmadiani, Abolhassan; Dargahi, Leila

    2017-06-01

    Methamphetamine (MA) produces long-lasting deficits in dopaminergic neurons in the long-term use via several neurotoxic mechanisms. The effects of MA on mitochondrial biogenesis is less studied currently. So, we evaluated the effects of repeated escalating MA regimen on transcriptional factors involved in mitochondrial biogenesis and glial-derived neurotrophic factor (GDNF) expression in substantia nigra (SN) and striatum of rat. In male Wistar rats, increasing doses of MA (1-14 mg/kg) were administrated twice a day for 14 days. At the 1st, 14th, 28th, and 60th days after MA discontinuation, we measured the PGC1α, TFAM and NRF1 mRNA levels, indicator of mitochondrial biogenesis, and GDNF expression in SN and striatum. Furthermore, we evaluated the glial fibrillary acidic protein (GFAP) and Iba1 mRNA levels, and the levels of tyrosine hydroxylase (TH) and α-synuclein (α-syn) using immunohistochemistry and real-time polymerase chain reaction (PCR). We detected increments in PGC1α and TFAM mRNA levels in SN, but not striatum, and elevations in GDNF levels in SN immediately after MA discontinuation. We also observed increases in GFAP and Iba1 mRNA levels in SN on day 1 and increases in Iba1 mRNA on days 1 and 14 in striatum. Data analysis revealed that the number of TH + cells in the SN did not reduce in any time points, though TH mRNA levels was increased on day 1 after MA discontinuation in SN. These data show that repeated escalating MA induces several compensatory mechanisms, such as mitochondrial biogenesis and elevation in GDNF in SN. These mechanisms can reverse MA-induced neuroinflammation and prevent TH-immunoreactivity reduction in nigrostriatal pathway. J. Cell. Biochem. 118: 1369-1378, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. GDNF Gene Is Associated With Tourette Syndrome in a Family Study

    PubMed Central

    Huertas-Fernández, Ismael; Gómez-Garre, Pilar; Madruga-Garrido, Marcos; Bernal-Bernal, Inmaculada; Bonilla-Toribio, Marta; Martín-Rodríguez, Juan Francisco; Cáceres-Redondo, María Teresa; Vargas-González, Laura; Carrillo, Fátima; Pascual, Alberto; Tischfield, Jay A.; King, Robert A.; Heiman, Gary A.; Mir, Pablo

    2016-01-01

    Background Tourette syndrome is a disorder characterized by persistent motor and vocal tics, and frequently accompanied by the comorbidities attention deficit hyperactivity disorder and obsessive-compulsive disorder. Impaired synaptic neurotransmission has been implicated in its pathogenesis. Our aim was to investigate the association of 28 candidate genes, including genes related to synaptic neurotransmission and neurotrophic factors, with Tourette syndrome. Methods We genotyped 506 polymorphisms in a discovery cohort from the United States composed of 112 families and 47 unrelated singletons with Tourette syndrome (201 cases and 253 controls). Genes containing significant polymorphisms were imputed to fine-map the signal(s) to potential causal variants. Allelic analyses in Tourette syndrome cases were performed to check the role in attention deficit hyperactivity disorder and obsessive-compulsive disorder comorbidities. Target polymorphisms were further studied in a replication cohort from southern Spain composed of 37 families and three unrelated singletons (44 cases and 73 controls). Results The polymorphism rs3096140 in glial cell line–derived neurotrophic factor gene (GDNF) was significant in the discovery cohort after correction (P = 1.5 × 10−4). No linkage disequilibrium was found between rs3096140 and other functional variants in the gene. We selected rs3096140 as target polymorphism, and the association was confirmed in the replication cohort (P = 0.01). No association with any comorbidity was found. Conclusions As a conclusion, a common genetic variant in GDNF is associated with Tourette syndrome. A defect in the production of GDNF could compromise the survival of parvalbumin interneurons, thus altering the excitatory/inhibitory balance in the corticostriatal circuitry. Validation of this variant in other family cohorts is necessary. PMID:26096985

  13. GDNF gene is associated with tourette syndrome in a family study.

    PubMed

    Huertas-Fernández, Ismael; Gómez-Garre, Pilar; Madruga-Garrido, Marcos; Bernal-Bernal, Inmaculada; Bonilla-Toribio, Marta; Martín-Rodríguez, Juan Francisco; Cáceres-Redondo, María Teresa; Vargas-González, Laura; Carrillo, Fátima; Pascual, Alberto; Tischfield, Jay A; King, Robert A; Heiman, Gary A; Mir, Pablo

    2015-07-01

    Tourette syndrome is a disorder characterized by persistent motor and vocal tics, and frequently accompanied by the comorbidities attention deficit hyperactivity disorder and obsessive-compulsive disorder. Impaired synaptic neurotransmission has been implicated in its pathogenesis. Our aim was to investigate the association of 28 candidate genes, including genes related to synaptic neurotransmission and neurotrophic factors, with Tourette syndrome. We genotyped 506 polymorphisms in a discovery cohort from the United States composed of 112 families and 47 unrelated singletons with Tourette syndrome (201 cases and 253 controls). Genes containing significant polymorphisms were imputed to fine-map the signal(s) to potential causal variants. Allelic analyses in Tourette syndrome cases were performed to check the role in attention deficit hyperactivity disorder and obsessive-compulsive disorder comorbidities. Target polymorphisms were further studied in a replication cohort from southern Spain composed of 37 families and three unrelated singletons (44 cases and 73 controls). The polymorphism rs3096140 in glial cell line-derived neurotrophic factor gene (GDNF) was significant in the discovery cohort after correction (P = 1.5 × 10(-4) ). No linkage disequilibrium was found between rs3096140 and other functional variants in the gene. We selected rs3096140 as target polymorphism, and the association was confirmed in the replication cohort (P = 0.01). No association with any comorbidity was found. As a conclusion, a common genetic variant in GDNF is associated with Tourette syndrome. A defect in the production of GDNF could compromise the survival of parvalbumin interneurons, thus altering the excitatory/inhibitory balance in the corticostriatal circuitry. Validation of this variant in other family cohorts is necessary. © 2015 International Parkinson and Movement Disorder Society.

  14. The importance of neuronal growth factors in the ovary.

    PubMed

    Streiter, S; Fisch, B; Sabbah, B; Ao, A; Abir, R

    2016-01-01

    The neurotrophin family consists of nerve growth factor (NGF), neurotrophin 3 (NT3) and neurotrophin 4/5 (NT4/5), in addition to brain-derived neurotrophic factor (BDNF) and the neuronal growth factors, glial cell line-derived neurotrophic factor (GDNF) and vasointestinal peptide (VIP). Although there are a few literature reviews, mainly of animal studies, on the importance of neurotrophins in the ovary, we aimed to provide a complete review of neurotrophins as well as neuronal growth factors and their important roles in normal and pathological processes in the ovary. Follicular assembly is probably stimulated by complementary effects of NGF, NT4/5 and BDNF and their receptors. The neurotrophins, GDNF and VIP and their receptors have all been identified in preantral and antral follicles of mammalian species, including humans. Transgenic mice with mutations in the genes encoding for Ngf, Nt4/5 and Bdnf and their tropomyosin-related kinase β receptor showed a reduction in preantral follicles and an abnormal ovarian morphology, whereas NGF, NT3, GDNF and VIP increased the in vitro activation of primordial follicles in rats and goats. Additionally, NGF, NT3 and GDNF promoted follicular cell proliferation; NGF, BDNF and VIP were shown to be involved in ovulation; VIP inhibited follicular apoptosis; NT4/5, BDNF and GDNF promoted oocyte maturation and NGF, NT3 and VIP stimulated steroidogenesis. NGF may also exert a stimulatory effect in ovarian cancer and polycystic ovarian syndrome (PCOS). Low levels of NGF and BDNF in follicular fluid may be associated with diminished ovarian reserve and high levels with endometriosis. More knowledge of the roles of neuronal growth factors in the ovary has important implications for the development of new therapeutic drugs (such as anti-NGF agents) for ovarian cancer and PCOS as well as various infertility problems, warranting further research. © The Author 2015. Published by Oxford University Press on behalf of the European Society

  15. Direct muscle delivery of GDNF with human mesenchymal stem cells improves motor neuron survival and function in a rat model of familial ALS

    PubMed Central

    Suzuki, Masatoshi; McHugh, Jacalyn; Tork, Craig; Shelley, Brandon; Hayes, Antonio; Bellantuono, Ilaria; Aebischer, Patrick; Svendsen, Clive N.

    2008-01-01

    Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease in which there is a progressive loss of motor neurons and their connections to muscle leading to paralysis. To maintain muscle connections in a rat model of familial ALS, we performed intramuscular transplantation with human mesenchymal stem cells (hMSC) as “Trojan horses” to deliver growth factors to the terminals of motor neurons as well as the skeletal muscles. hMSC engineered to secrete glial cell line derived neurotrophic factor (hMSC-GDNF) were transplanted bilaterally into three muscle groups. The cells survived within the muscle, released GDNF, and significantly increased the number of neuromuscular connections and motor neuron cell bodies in the spinal cord at mid stages of the disease. Furthermore, intramuscular transplantation with hMSC-GDNF could ameliorate motor neuron loss within the spinal cord which connected to the limb muscles with transplants. While disease onset was similar in all animals, hMSC-GDNF significantly delayed disease progression, increasing overall lifespan by up to 28 days, which is one of the longest effects on survival noted for this rat model of familial ALS. This pre-clinical data provides a novel and practical approach towards ex vivo gene therapy for ALS. PMID:18797452

  16. Direct muscle delivery of GDNF with human mesenchymal stem cells improves motor neuron survival and function in a rat model of familial ALS.

    PubMed

    Suzuki, Masatoshi; McHugh, Jacalyn; Tork, Craig; Shelley, Brandon; Hayes, Antonio; Bellantuono, Ilaria; Aebischer, Patrick; Svendsen, Clive N

    2008-12-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease in which there is a progressive loss of motor neurons and their connections to muscle, leading to paralysis. In order to maintain muscle connections in a rat model of familial ALS (FALS), we performed intramuscular transplantation with human mesenchymal stem cells (hMSCs) used as "Trojan horses" to deliver growth factors to the terminals of motor neurons and to the skeletal muscles. hMSCs engineered to secrete glial cell line-derived neurotrophic factor (hMSC-GDNF) were transplanted bilaterally into three muscle groups. The cells survived within the muscle, released GDNF, and significantly increased the number of neuromuscular connections and motor neuron cell bodies in the spinal cord at mid-stages of the disease. Further, intramuscular transplantation with hMSC-GDNF was found to ameliorate motor neuron loss within the spinal cord where it connects with the limb muscles receiving transplants. While disease onset was similar in all the animals, hMSC-GDNF significantly delayed disease progression, increasing overall lifespan by up to 28 days, which is one of the largest effects on survival noted for this rat model of FALS. This preclinical data provides a novel and practical approach toward ex vivo gene therapy for ALS.

  17. Noribogaine, but not 18-MC, exhibits similar actions as ibogaine on GDNF expression and ethanol self-administration

    PubMed Central

    Carnicella, Sebastien; He, Dao-Yao; Yowell, Quinn V.; Glick, Stanley D.; Ron, Dorit

    2013-01-01

    Ibogaine is a naturally occurring alkaloid that has been reported to decrease various adverse phenotypes associated with exposure to drugs of abuse and alcohol in human and rodent models. Unfortunately, ibogaine cannot be used as a medication to treat addiction because of severe side effects. Previously, we reported that the desirable actions of ibogaine to reduce self-administration of, and relapse to, alcohol consumption are mediated via the upregulation of the expression of the glial cell line-derived neurotrophic factor (GDNF) in the midbrain ventral tegmental area (VTA), and the consequent activation of the GDNF pathway. The ibogaine metabolite, noribogaine, and a synthetic derivative of ibogaine, 18-Methoxycoronaridine (18-MC), possess a similar anti-addictive profile as ibogaine in rodent models, but without some of its adverse side effects. Here, we determined whether noribogaine and/or 18-MC, like ibogaine, increase GDNF expression, and whether their site of action to reduce alcohol consumption is the VTA. We used SH-SY5Y cells as a cell culture model and found that noribogaine, like ibogaine, but not 18-MC, induces a robust increase in GDNF mRNA levels. Next, we tested the effect of intra-VTA infusion of noribogaine and 18-MC on rat operant alcohol self-administration and found that noribogaine, but not 18-MC, in the VTA decreases responding for alcohol. Together, our results suggest that noribogaine and 18-MC have different mechanisms and sites of action. PMID:21040239

  18. Brain stem slice conditioned medium contains endogenous BDNF and GDNF that affect neural crest boundary cap cells in co-culture.

    PubMed

    Kaiser, Andreas; Kale, Ajay; Novozhilova, Ekaterina; Siratirakun, Piyaporn; Aquino, Jorge B; Thonabulsombat, Charoensri; Ernfors, Patrik; Olivius, Petri

    2014-05-30

    Conditioned medium (CM), made by collecting medium after a few days in cell culture and then re-using it to further stimulate other cells, is a known experimental concept since the 1950s. Our group has explored this technique to stimulate the performance of cells in culture in general, and to evaluate stem- and progenitor cell aptitude for auditory nerve repair enhancement in particular. As compared to other mediums, all primary endpoints in our published experimental settings have weighed in favor of conditioned culture medium, where we have shown that conditioned culture medium has a stimulatory effect on cell survival. In order to explore the reasons for this improved survival we set out to analyze the conditioned culture medium. We utilized ELISA kits to investigate whether brain stem (BS) slice CM contains any significant amounts of brain-derived neurotrophic factor (BDNF) and glial cell derived neurotrophic factor (GDNF). We further looked for a donor cell with progenitor characteristics that would be receptive to BDNF and GDNF. We chose the well-documented boundary cap (BC) progenitor cells to be tested in our in vitro co-culture setting together with cochlear nucleus (CN) of the BS. The results show that BS CM contains BDNF and GDNF and that survival of BC cells, as well as BC cell differentiation into neurons, were enhanced when BS CM were used. Altogether, we conclude that BC cells transplanted into a BDNF and GDNF rich environment could be suitable for treatment of a traumatized or degenerated auditory nerve. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Glial cell line-derived neurotrophic factor in combination with insulin-like growth factor 1 and basic fibroblast growth factor promote in vitro culture of goat spermatogonial stem cells.

    PubMed

    Bahadorani, M; Hosseini, S M; Abedi, P; Abbasi, H; Nasr-Esfahani, M H

    2015-01-01

    Growth factors are increasingly considered as important regulators of spermatogonial stem cells (SSCs). This study investigated the effects of various growth factors (GDNF, IGF1, bFGF, EGF and GFRalpha-1) on purification and colonization of undifferentiated goat SSCs under in vitro and in vivo conditions. Irrespective of the culture condition used, the first signs of developing colonies were observed from day 4 of culture onwards. The number of colonies developed in GDNF + IGF1 + bFGF culture condition was significantly higher than the other groups (p < 0.05). In contrast, the size of colonies developed in GDNF + EGF + LIF culture condition was significantly higher than the other groups (p < 0.05). Immunocytochemical stationing for specific biomarkers of somatic cells (vimentin, alpha-inhibin and α-SMA) and spermatogonial cells (PLZF, THY 1, VASA, alpha-1 integrin, bet-1 integrin and DBA) revealed that both cell types existed in developing colonies, irrespective of the culture condition used. Even though, the relative abundance of VASA, FGFR3, OCT4, PLZF, BCL6B and THY1 transcription factors in GDNF + IGF1 + bFGF treatment group was significantly higher than the other groups (p < 0.05). Additionally, goat SSCs developed in the latter culture condition could colonize within the seminiferous tubules of the germ-cell depleted recipient mice following xenotransplantation. Obtained results demonstrated that combination of GDNF with IGF1 and bFGF promote in vitro culture of goat SSCs while precludes uncontrolled proliferation of somatic cells.

  20. Noribogaine, but not 18-MC, exhibits similar actions as ibogaine on GDNF expression and ethanol self-administration.

    PubMed

    Carnicella, Sebastien; He, Dao-Yao; Yowell, Quinn V; Glick, Stanley D; Ron, Dorit

    2010-10-01

    Ibogaine is a naturally occurring alkaloid that has been reported to decrease various adverse phenotypes associated with exposure to drugs of abuse and alcohol in human and rodent models. Unfortunately, ibogaine cannot be used as a medication to treat addiction because of severe side effects. Previously, we reported that the desirable actions of ibogaine to reduce self-administration of, and relapse to, alcohol consumption are mediated via the upregulation of the expression of the glial cell line-derived neurotrophic factor (GDNF) in the midbrain ventral tegmental area (VTA), and the consequent activation of the GDNF pathway. The ibogaine metabolite, noribogaine, and a synthetic derivative of ibogaine, 18-Methoxycoronaridine (18-MC), possess a similar anti-addictive profile as ibogaine in rodent models, but without some of its adverse side effects. Here, we determined whether noribogaine and/or 18-MC, like ibogaine, increase GDNF expression, and whether their site of action to reduce alcohol consumption is the VTA. We used SH-SY5Y cells as a cell culture model and found that noribogaine, like ibogaine, but not 18-MC, induces a robust increase in GDNF mRNA levels. Next, we tested the effect of intra-VTA infusion of noribogaine and 18-MC on rat operant alcohol self-administration and found that noribogaine, but not 18-MC, in the VTA decreases responding for alcohol. Together, our results suggest that noribogaine and 18-MC have different mechanisms and sites of action. © 2010 The Authors, Addiction Biology © 2010 Society for the Study of Addiction.

  1. The timing and location of glial cell line-derived neurotrophic factor expression determine enteric nervous system structure and function.

    PubMed

    Wang, Hongtao; Hughes, Inna; Planer, William; Parsadanian, Alexander; Grider, John R; Vohra, Bhupinder P S; Keller-Peck, Cynthia; Heuckeroth, Robert O

    2010-01-27

    Ret signaling is critical for formation of the enteric nervous system (ENS) because Ret activation promotes ENS precursor survival, proliferation, and migration and provides trophic support for mature enteric neurons. Although these roles are well established, we now provide evidence that increasing levels of the Ret ligand glial cell line-derived neurotrophic factor (GDNF) in mice causes alterations in ENS structure and function that are critically dependent on the time and location of increased GDNF availability. This is demonstrated using two different strains of transgenic mice and by injecting newborn mice with GDNF. Furthermore, because different subclasses of ENS precursors withdraw from the cell cycle at different times during development, increases in GDNF at specific times alter the ratio of neuronal subclasses in the mature ENS. In addition, we confirm that esophageal neurons are GDNF responsive and demonstrate that the location of GDNF production influences neuronal process projection for NADPH diaphorase-expressing, but not acetylcholinesterase-, choline acetyltransferase-, or tryptophan hydroxylase-expressing, small bowel myenteric neurons. We further demonstrate that changes in GDNF availability influence intestinal function in vitro and in vivo. Thus, changes in GDNF expression can create a wide variety of alterations in ENS structure and function and may in part contribute to human motility disorders.

  2. Visual detection of glial cell line-derived neurotrophic factor based on a molecular translator and isothermal strand-displacement polymerization reaction.

    PubMed

    Zhang, Li-Yong; Xing, Tao; Du, Li-Xin; Li, Qing-Min; Liu, Wei-Dong; Wang, Ji-Yue; Cai, Jing

    2015-01-01

    Glial cell line-derived neurotrophic factor (GDNF) is a small protein that potently promotes the survival of many types of neurons. Detection of GDNF is vital to monitoring the survival of sympathetic and sensory neurons. However, the specific method for GDNF detection is also un-discovered. The purpose of this study is to explore the method for protein detection of GDNF. A novel visual detection method based on a molecular translator and isothermal strand-displacement polymerization reaction (ISDPR) has been proposed for the detection of GDNF. In this study, a molecular translator was employed to convert the input protein to output deoxyribonucleic acid signal, which was further amplified by ISDPR. The product of ISDPR was detected by a lateral flow biosensor within 30 minutes. This novel visual detection method based on a molecular translator and ISDPR has very high sensitivity and selectivity, with a dynamic response ranging from 1 pg/mL to 10 ng/mL, and the detection limit was 1 pg/mL of GDNF. This novel visual detection method exhibits high sensitivity and selectivity, which is very simple and universal for GDNF detection to help disease therapy in clinical practice.

  3. Glial cell line-derived neurotrophic factor protects against high-fat diet-induced hepatic steatosis by suppressing hepatic PPAR-γ expression.

    PubMed

    Mwangi, Simon Musyoka; Peng, Sophia; Nezami, Behtash Ghazi; Thorn, Natalie; Farris, Alton B; Jain, Sanjay; Laroui, Hamed; Merlin, Didier; Anania, Frank; Srinivasan, Shanthi

    2016-01-15

    Glial cell line-derived neurotrophic factor (GDNF) protects against high-fat diet (HFD)-induced hepatic steatosis in mice, however, the mechanisms involved are not known. In this study we investigated the effects of GDNF overexpression and nanoparticle delivery of GDNF in mice on hepatic steatosis and fibrosis and the expression of genes involved in the regulation of hepatic lipid uptake and de novo lipogenesis. Transgenic overexpression of GDNF in liver and other metabolically active tissues was protective against HFD-induced hepatic steatosis. Mice overexpressing GDNF had significantly reduced P62/sequestosome 1 protein levels suggestive of accelerated autophagic clearance. They also had significantly reduced peroxisome proliferator-activated receptor-γ (PPAR-γ) and CD36 gene expression and protein levels, and lower expression of mRNA coding for enzymes involved in de novo lipogenesis. GDNF-loaded nanoparticles were protective against short-term HFD-induced hepatic steatosis and attenuated liver fibrosis in mice with long-standing HFD-induced hepatic steatosis. They also suppressed the liver expression of steatosis-associated genes. In vitro, GDNF suppressed triglyceride accumulation in Hep G2 cells through enhanced p38 mitogen-activated protein kinase-dependent signaling and inhibition of PPAR-γ gene promoter activity. These results show that GDNF acts directly in the liver to protect against HFD-induced cellular stress and that GDNF may have a role in the treatment of nonalcoholic fatty liver disease.

  4. Muscle-Derived GDNF: A Gene Therapeutic Approach for Preserving Motor Neuron Function in ALS

    DTIC Science & Technology

    2015-08-01

    using AAV at UW - Madison . Although we prepared our animal colony for diaphragm injections of AAV-GDNF, we decided to postpone the experiments based on...data obtained by Dr. Masatoshi Suzuki (University of Wisconsin- Madison ) with AAV2/6-GDNF. As methods used in the current study were identical to the...study animals (figure 4C), no overt relationship was observed. Figure 4- Motor neuron quantification in the lumbar spinal cord of animals treated

  5. Visual detection of glial cell line-derived neurotrophic factor based on a molecular translator and isothermal strand-displacement polymerization reaction

    PubMed Central

    Zhang, Li-Yong; Xing, Tao; Du, Li-Xin; Li, Qing-Min; Liu, Wei-Dong; Wang, Ji-Yue; Cai, Jing

    2015-01-01

    Background Glial cell line-derived neurotrophic factor (GDNF) is a small protein that potently promotes the survival of many types of neurons. Detection of GDNF is vital to monitoring the survival of sympathetic and sensory neurons. However, the specific method for GDNF detection is also un-discovered. The purpose of this study is to explore the method for protein detection of GDNF. Methods A novel visual detection method based on a molecular translator and isothermal strand-displacement polymerization reaction (ISDPR) has been proposed for the detection of GDNF. In this study, a molecular translator was employed to convert the input protein to output deoxyribonucleic acid signal, which was further amplified by ISDPR. The product of ISDPR was detected by a lateral flow biosensor within 30 minutes. Results This novel visual detection method based on a molecular translator and ISDPR has very high sensitivity and selectivity, with a dynamic response ranging from 1 pg/mL to 10 ng/mL, and the detection limit was 1 pg/mL of GDNF. Conclusion This novel visual detection method exhibits high sensitivity and selectivity, which is very simple and universal for GDNF detection to help disease therapy in clinical practice. PMID:25848224

  6. Cross-platform single cell analysis of kidney development shows stromal cells express Gdnf.

    PubMed

    Magella, Bliss; Adam, Mike; Potter, Andrew S; Venkatasubramanian, Meenakshi; Chetal, Kashish; Hay, Stuart B; Salomonis, Nathan; Potter, S Steven

    2018-02-01

    The developing kidney provides a useful model for study of the principles of organogenesis. In this report we use three independent platforms, Drop-Seq, Chromium 10x Genomics and Fluidigm C1, to carry out single cell RNA-Seq (scRNA-Seq) analysis of the E14.5 mouse kidney. Using the software AltAnalyze, in conjunction with the unsupervised approach ICGS, we were unable to identify and confirm the presence of 16 distinct cell populations during this stage of active nephrogenesis. Using a novel integrative supervised computational strategy, we were able to successfully harmonize and compare the cell profiles across all three technological platforms. Analysis of possible cross compartment receptor/ligand interactions identified the nephrogenic zone stroma as a source of GDNF. This was unexpected because the cap mesenchyme nephron progenitors had been thought to be the sole source of GDNF, which is a key driver of branching morphogenesis of the collecting duct system. The expression of Gdnf by stromal cells was validated in several ways, including Gdnf in situ hybridization combined with immunohistochemistry for SIX2, and marker of nephron progenitors, and MEIS1, a marker of stromal cells. Finally, the single cell gene expression profiles generated in this study confirmed and extended previous work showing the presence of multilineage priming during kidney development. Nephron progenitors showed stochastic expression of genes associated with multiple potential differentiation lineages. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Expression dynamics of self-renewal factors for spermatogonial stem cells in the mouse testis.

    PubMed

    Sakai, Mizuki; Masaki, Kaito; Aiba, Shota; Tone, Masaaki; Takashima, Seiji

    2018-04-16

    Glial cell line-derived neurotrophic factor (GDNF) and fibroblast growth factor 2 (FGF2) are bona fide self-renewal factors for spermatogonial stem cells (SSCs). Although GDNF is indispensable for the maintenance of SSCs, the role of FGF2 in the testis remains to be elucidated. To clarify this, the expression dynamics and regulatory mechanisms of Fgf2 and Gdnf in the mouse testes were analyzed. It is well known that Sertoli cells express Gdnf, and its receptor is expressed in a subset of undifferentiated spermatogonia, including SSCs. However, we found that Fgf2 was mainly expressed in the germ cells and its receptors were expressed not only in the cultured spermatogonial cell line, but also in testicular somatic cells. Aging, hypophysectomy, retinoic acid treatment, and testicular injury induced distinct Fgf2 and Gdnf expression dynamics, suggesting a difference in the expression mechanism of Fgf2 and Gdnf in the testis. Such differences might cause a dynamic fluctuation of Gdnf/Fgf2 ratio depending on the intrinsic/extrinsic cues. Considering that FGF2-cultured spermatogonia exhibit more differentiated phenotype than those cultured with GDNF, FGF2 might play a role distinct from that of GDNF in the testis, despite the fact that both factors are self-renewal factor for SSC in vitro.

  8. [Effects of the scalp acupuncture at baihui (DU20) through qubin (GB7) on the expressions of GDNF VEGF in the brain tissue of rats with acute intracerebral hemorrhage].

    PubMed

    Zhang, Guo-Wei; Zou, Wei; Liu, Fang

    2012-09-01

    To observe the effects of the scalp acupuncture at Baihui (DU20) through Qubin (GB7) on the expressions of glial cell line-derived neurotrophic factor (GDNF) and vascular endothelial growth factor (VEGF) in the brain tissue of rats with acute intracerebral hemorrhage (AICH). Totally 150 healthy male Wistar rats were used to prepare the intracerebral hemorrhage (ICH) model. They were randomly divided into the model group, the acupuncture group, and the Western medicine group, 50 in each group. Rats in each group were then randomly divided into five subgroups, i. e., 6 h, day 1, day 2, day 3, and day 7, 10 in each subgroup. Another 10 normal rats were recruited as the blank control group. Rats in the acupuncture group were acupunctured at Baihui (DU20) through Qubin (GB7) on the lesion side. Rats in the Western medicine group were administered with aniracetam diluent 1 mL by gastrogavage, 3 times daily. Rats in the model group were bound the same way as those in the acupuncture group 30 min daily, and then administered with normal saline 1 mL by gastrogavage, 3 times daily. The expressions of GDNF and VEGF in the brain tissue of the rats in each group were detected using in situ hybridization and immunohistochemical methods. Compared with the blank control group, the number of GDNF positive cells in the model group increased at 6 h-3 days, and the number of VEGF positive cells in the model group increased at each time point, showing statistical difference (P<0.01). The numbers of GDNF positive cells increased in the acupuncture group at each time point, showing statistical difference when compared with those of the model group and the Western medicine group (P<0.01). There was no statistical difference between the model group and the Western medicine group at each time point (P>0.05). Compared with the model group, the number of VEGF positive cells in the acupuncture group decreased at 6 h -3 days. The VEGF positive cells increased at day 7 and were higher than that

  9. Conserved and non-conserved characteristics of porcine glial cell line-derived neurotrophic factor expressed in the testis.

    PubMed

    Kakiuchi, Kazue; Taniguchi, Kazumi; Kubota, Hiroshi

    2018-05-16

    Glial cell line-derived neurotrophic factor (GDNF) is essential for the self-renewal and proliferation of spermatogonial stem cells (SSCs) in mice, rats, and rabbits. Although the key extrinsic factors essential for spermatogonial proliferation in other mammals have not been determined, GDNF is one of the potential candidates. In this study, we isolated porcine GDNF (pGDNF) cDNAs from neonatal testis and generated recombinant pGDNF to investigate its biological activity on gonocytes/undifferentiated spermatogonia, including SSCs. In porcine testis, long and short forms of GDNF transcripts, the counterparts of pre-(α)pro and pre-(β)pro GDNF identified in humans and rodents, were expressed. The two transcripts encode identical mature proteins. Recombinant pGDNF supported proliferation of murine SSCs in culture, and their stem cell activity was confirmed by a transplantation assay. Subsequently, porcine gonocytes/undifferentiated spermatogonia were cultured with pGDNF; however, pGDNF did not affect their proliferation. Furthermore, GDNF expression was localised to the vascular smooth muscle cells, and its cognate receptor GFRA1 expression was negligible during spermatogonial proliferation in the testes. These results indicate that although pGDNF retains structural similarity with those of other mammals and conserves the biological activity on the self-renewal of murine SSCs, porcine SSCs likely require extrinsic factors other than GDNF for their proliferation.

  10. The In Vitro Differentiation of GDNF Gene-Engineered Amniotic Fluid-Derived Stem Cells into Renal Tubular Epithelial-Like Cells.

    PubMed

    Lu, Ying; Wang, Zhuojun; Chen, Lu; Wang, Jia; Li, Shulin; Liu, Caixia; Sun, Dong

    2018-05-01

    Amniotic fluid is an alternative source of stem cells, and human amniotic fluid-derived stem cells (AFSCs) obtained from a small amount of amniotic fluid collected during the second trimester represent a novel source for use in regenerative medicine. These AFSCs are characterized by lower diversity, a higher proliferation rate, and a wider differentiation capability than adult mesenchymal stem cells. AFSCs are selected based on the cell surface marker c-kit receptor (CD117) using immunomagnetic sorting. Glial cell line-derived neurotrophic factor (GDNF) is expressed during early kidney development and regulates the proliferation and differentiation of stem cells in vitro. In this study, c-kit-sorted AFSCs were induced toward osteogenic or adipogenic differentiation. AFSCs engineered via the insertion of GDNF were cocultured with mouse renal tubular epithelial cells (mRTECs), which were preconditioned by hypoxia-reoxygenation in vitro. After coculture for 8 days, AFSCs differentiation into epithelial-like cells was evaluated by performing immunofluorescence, flow cytometry, and quantitative real-time polymerase chain reaction to identify cells expressing the renal epithelial markers, cytokeratin 18 (CK18), E-cadherin, aquaporin-1 (AQP1), and paired box 2 gene (Pax2). The GDNF gene enhanced AFSCs differentiation into RTECs. AFSCs possess self-renewal ability and multiple differentiation potential and thus represent a new source of stem cells.

  11. The Neuroprotective Effects of Flaxseed Oil Supplementation on Functional Motor Recovery in a Model of Ischemic Brain Stroke: Upregulation of BDNF and GDNF.

    PubMed

    Bagheri, Abolqasem; Talei, Sahand; Hassanzadeh, Negar; Mokhtari, Tahmineh; Akbari, Mohammad; Malek, Fatemeh; Jameie, Seyed Behnamedin; Sadeghi, Yousef; Hassanzadeh, Gholamreza

    2017-12-01

    Cerebral ischemic stroke is a common leading cause of disability. Flaxseed is a richest plant-based source of antioxidants. In this study, the effects of flaxseed oil (FSO) pretreatment on functional motor recovery and gene expression and protein content of neurotrophic factors in motor cortex area in rat model of brain ischemia/reperfusion (I/R) were assessed. Transient middle cerebral artery occlusion (tMCAo) in rats was used as model brain I/R. Rats (6 in each group) were randomly divided into four groups of Control (Co+normal saline [NS]), Sham (Sh+NS), tMCAo+NS and tMCAo+FSO. After three weeks of pretreatment with vehicle or FSO (0.2 ml~800 mg/kg body weight), the rats were operated in sham and ischemic groups. Ischemia was induced for 1 h and then reperfused. After 24 h of reperfusion, neurological examination was performed, and animals were sacrificed, and their brains were used for molecular and histopathological studies. FSO significantly improved the functional motor recovery compared with tMCAo+NS group (P<0.05). A significant reduction in brain-derived neurotrophic factor (BDNF) and glial cell-derived neurotrophic factor (GDNF) mRNAs and protein levels were observed in the tMCAo+NS group compared with Co+NS and Sh+NS group (P<0.05). A significant increase of BDNF and GDNF mRNAs and proteins was recorded in the tMCAo+FSO group compared with Co+NS, Sh+NS and tMCAO+NS groups (P<0.05). The results of the current study demonstrated that pretreatment with FSO had neuroprotective effects on motor cortex area following cerebral ischemic stroke by increasing the neurotrophic factors (BDNF, GDNF).

  12. Effects of Hindlimb Unweighting on MBP and GDNF Expression and Morphology in Rat Dorsal Root Ganglia Neurons.

    PubMed

    Zhang, Heng; Ren, Ning-Tao; Zhou, Fang-Qiang; Li, Jie; Lei, Wei; Liu, Ning; Bi, Long; Wu, Zi-Xiang; Zhang, Ran; Zhang, Yong-Gang; Cui, Geng

    2016-09-01

    With the development of technology and space exploration, studies on long-duration space flights have shown that microgravity induces damage to multiple organs, including the dorsal root ganglia (DRG). However, very little is known about the effects of long-term microgravity on DRG neurons. This study investigated the effects of microgravity on lumbar 5 (L5) DRG neurons in rats using the hindlimb unweighting (HU) model. Male (M) and female (F) Sprague-Dawley rats were randomly divided into M- and F-control (CON) groups and M- and F-HU groups, respectively (n = 10). At the end of HU treatment for 4 weeks, morphological changes were detected. Myelin basic protein (MBP) and degenerated myelin basic protein (dgen-MBP) expressions were analyzed by immunofluorescence and western blot assays. Glial cell line-derived neurotrophic factor (GDNF) protein and mRNA expressions were also analyzed by immunohistochemistry, western blot, and RT-PCR analysis, respectively. Compared with the corresponding CON groups, the HU groups exhibited slightly loose junctions between DRG neurons, some separated ganglion cells and satellite cells, and lightly stained Nissl bodies that were of smaller size and had a scattered distribution. High levels of dgen-MBP and low MBP expressions were appeared and GDNF expressions were significantly decreased in both HU groups. Changes were more pronounced in the F-HU group than in the M-HU group. In conclusion, HU treatment induced damage of L5 DRG neurons, which was correlated with decreased total MBP protein expression, increased dgen-MBP expression, and reduced GDNF protein and mRNA expression. Importantly, these changes were more severe in F-HU rats compared with M-HU rats.

  13. GDNF family receptor α-1 in the catfish: Possible implication to brain dopaminergic activity.

    PubMed

    Mamta, Sajwan-Khatri; Senthilkumaran, Balasubramanian

    2018-05-31

    Glial cell line-derived neurotrophic factor (GDNF)is a potent trophic factor that preferentially binds to GDNF family receptor α-1 (GFRα-1)by regulating dopaminergic (DA-ergic) neuronsin brain. Present study aimed to evaluate the significance of GFRα-1 expression during early brain development in catfish. Initially, the full-length cDNA of GFRα-1 was cloned from adult brain which showed high homology with other vertebrate counterparts. Quantitative PCR analysis of tissue distribution revealed ubiquitous expression of GFRα-1 in the tissues analyzed with high levels in female brain and ovary. Significant high expression was evident in brain at 75 and 100 days post hatch females than the respective age-match males. Expression of GFRα-1 was high in brain during the spawning phase when compared to other reproductive phases. Localization of GFRα-1 revealed its presence in preoptic area-hypothalamus which correlated well with the expression profile in discrete areas of brain in adult catfish. Transient silencing of GFRα-1through siRNA lowered expression levels of GFRα-1, which further down regulated the expression of certain brain-specific genes. Expression of GFRα-1 in brain declined significantly upon treatment with the 1-methyl-1,2,3,6-tetrahydropyridinecausing neurodegeneration which further correlated with catecholamines (CA), L-3,4-dihydroxyphenylalanine, DA and norepinephrine levels. Taken together, GFRα-1 plausibly entrains gonadotropin-releasing hormone and gonadotropin axiseither directly or indirectly, at least by partially targeting CA-ergic activity. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Ultrasound-triggered effects of the microbubbles coupled to GDNF- and Nurr1-loaded PEGylated liposomes in a rat model of Parkinson's disease.

    PubMed

    Yue, Peijian; Gao, Lin; Wang, Xuejing; Ding, Xuebing; Teng, Junfang

    2018-06-01

    The purpose of this study was to investigate ultrasound-triggered effects of the glial cell line-derived neurotrophic factor (GDNF) + nuclear receptor-related factor 1 (Nurr1)-polyethylene glycol (PEG)ylated liposomes-coupled microbubbles (PLs-GDNF + Nurr1-MBs) on behavioral impairment and neuron loss in a rat model of Parkinson's disease (PD). The unloaded PEGylated liposomes-coupled microbubbles (PLs-MBs) were characterized for zeta potential, particle size, and concentration. 6-hydroxydopamine (6-OHDA) was used to establish the PD rat model. Rotational, climbing pole, and suspension tests were used to detect behavioral impairment. The immunohistochemical staining of tyrosine hydroxylase (TH) and dopamine transporter (DAT) was used to assess the neuron loss. Western blot and quantitative real-time PCR (qRT-PCR) analysis were used to measure the expression levels of GDNF and Nurr1. The particle size of PLs-MBs was gradually increased, while the concentration and absolute zeta potential were gradually decreased as the time prolongs. 6-OHDA increased amphetamine-induced rotations and loss of dopaminergic neurons as compared to sham group. Interestingly, PLs-GDNF-MBs or PLs-Nurr1-MBs decreased rotations and increased the TH and DAT immunoreactivity. Combined of both genes resulted in a robust reduction in the rotations and a greater increase of the dopaminergic neurons. The delivery of PLs-GDNF + Nurr1-MBs into the brains using magnetic resonance imaging (MRI)-guided focused ultrasound may be more efficacious for the treatment of PD than the single treatment. © 2017 Wiley Periodicals, Inc.

  15. Dendrobium alkaloids prevent Aβ25–35-induced neuronal and synaptic loss via promoting neurotrophic factors expression in mice

    PubMed Central

    Nie, Jing; Tian, Yong; Zhang, Yu; Lu, Yan-Liu; Li, Li-Sheng

    2016-01-01

    Background Neuronal and synaptic loss is the most important risk factor for cognitive impairment. Inhibiting neuronal apoptosis and preventing synaptic loss are promising therapeutic approaches for Alzheimer’s disease (AD). In this study, we investigate the protective effects of Dendrobium alkaloids (DNLA), a Chinese medicinal herb extract, on β-amyloid peptide segment 25–35 (Aβ25-35)-induced neuron and synaptic loss in mice. Method Aβ25–35(10 µg) was injected into the bilateral ventricles of male mice followed by an oral administration of DNLA (40 mg/kg) for 19 days. The Morris water maze was used for evaluating the ability of spatial learning and memory function of mice. The morphological changes were examined via H&E staining and Nissl staining. TUNEL staining was used to check the neuronal apoptosis. The ultrastructure changes of neurons were observed under electron microscope. Western blot was used to evaluate the protein expression levels of ciliary neurotrophic factor (CNTF), glial cell line-derived neurotrophic factor (GDNF), and brain-derived neurotrophic factor (BDNF) in the hippocampus and cortex. Results DNLA significantly attenuated Aβ25–35-induced spatial learning and memory impairments in mice. DNLA prevented Aβ25–35-induced neuronal loss in the hippocampus and cortex, increased the number of Nissl bodies, improved the ultrastructural injury of neurons and increased the number of synapses in neurons. Furthermore, DNLA increased the protein expression of neurotrophic factors BDNF, CNTF and GDNF in the hippocampus and cortex. Conclusions DNLA can prevent neuronal apoptosis and synaptic loss. This effect is mediated at least in part via increasing the expression of BDNF, GDNF and CNTF in the hippocampus and cortex; improving Aβ-induced spatial learning and memory impairment in mice. PMID:27994964

  16. Human neural stem cells survive long term in the midbrain of dopamine-depleted monkeys after GDNF overexpression and project neurites toward an appropriate target.

    PubMed

    Wakeman, Dustin R; Redmond, D Eugene; Dodiya, Hemraj B; Sladek, John R; Leranth, Csaba; Teng, Yang D; Samulski, R Jude; Snyder, Evan Y

    2014-06-01

    Transplanted multipotent human fetal neural stem cells (hfNSCs) significantly improved the function of parkinsonian monkeys in a prior study primarily by neuroprotection, with only 3%-5% of cells expressing a dopamine (DA) phenotype. In this paper, we sought to determine whether further manipulation of the neural microenvironment by overexpression of a developmentally critical molecule, glial cell-derived neurotrophic factor (GDNF), in the host striatum could enhance DA differentiation of hfNSCs injected into the substantia nigra and elicit growth of their axons to the GDNF-expressing target. hfNSCs were transplanted into the midbrain of 10 green monkeys exposed to 1-methyl-4-phenyl-1,2,3,6-tetrahydro-pyridine. GDNF was delivered concomitantly to the striatum via an adeno-associated virus serotype 5 vector, and the fate of grafted cells was assessed after 11 months. Donor cells remained predominantly within the midbrain at the injection site and sprouted numerous neurofilament-immunoreactive fibers that appeared to course rostrally toward the striatum in parallel with tyrosine hydroxylase-immunoreactive fibers from the host substantia nigra but did not mature into DA neurons. This work suggests that hfNSCs can generate neurons that project long fibers in the adult primate brain. However, in the absence of region-specific signals and despite GDNF overexpression, hfNSCs did not differentiate into mature DA neurons in large numbers. It is encouraging, however, that the adult primate brain appeared to retain axonal guidance cues. We believe that transplantation of stem cells, specifically instructed ex vivo to yield DA neurons, could lead to reconstruction of some portion of the nigrostriatal pathway and prove beneficial for the parkinsonian condition. ©AlphaMed Press.

  17. Use of GDNF Releasing Nanofiber Nerve Guide Conduits for the Repair of Conus Medullaris/Cauda Equina Injury in the Nonhuman Primate

    DTIC Science & Technology

    2015-02-01

    repair of conus medullaris/cauda equina injury in rhesus macaques using a biodegradable bridging graft that releasing the trophic factor, GDNF. All...and biodegradable nerve guidance channels as bridging grafts. The follow section describes the methods and protocols for laminectomy, ventral root...in saline until being grafted, 8. For use of a bridging biodegradable NGC segment, the NGCs were fabricated and comprised of electrospun

  18. Plasma glial cell line-derived neurotrophic factor in patients with major depressive disorder: a preliminary study.

    PubMed

    Lee, Bun-Hee; Hong, Jin-Pyo; Hwang, Jung-A; Na, Kyoung-Sae; Kim, Won-Joong; Trigo, Jose; Kim, Yong-Ku

    2016-02-01

    Some clinical studies have reported reduced peripheral glial cell line-derived neurotrophic factor (GDNF) level in elderly patients with major depressive disorder (MDD). We verified whether a reduction in plasma GDNF level was associated with MDD. Plasma GDNF level was measured in 23 healthy control subjects and 23 MDD patients before and after 6 weeks of treatment. Plasma GDNF level in MDD patients at baseline did not differ from that in healthy controls. Plasma GDNF in MDD patients did not differ significantly from baseline to the end of treatment. GDNF level was significantly lower in recurrent-episode MDD patients than in first-episode patients before and after treatment. Our findings revealed significantly lower plasma GDNF level in recurrent-episode MDD patients, although plasma GDNF levels in MDD patients and healthy controls did not differ significantly. The discrepancy between our study and previous studies might arise from differences in the recurrence of depression or the ages of the MDD patients.

  19. Autoregulation of glial cell line-derived neurotrophic factor expression: implications for the long-lasting actions of the anti-addiction drug, Ibogaine.

    PubMed

    He, Dao-Yao; Ron, Dorit

    2006-11-01

    We recently showed that the up-regulation of the glial cell line-derived neurotrophic factor (GDNF) pathway in the midbrain, is the molecular mechanism by which the putative anti-addiction drug Ibogaine mediates its desirable action of reducing alcohol consumption. Human reports and studies in rodents have shown that a single administration of Ibogaine results in a long-lasting reduction of drug craving (humans) and drug and alcohol intake (rodents). Here we determine whether, and how, Ibogaine exerts its long-lasting actions on GDNF expression and signaling. Using the dopaminergic-like SHSY5Y cell line as a culture model, we observed that short-term Ibogaine exposure results in a sustained increase in GDNF expression that is mediated via the induction of a long-lasting autoregulatory cycle by which GDNF positively regulates its own expression. We show that the initial exposure of cells to Ibogaine or GDNF results in an increase in GDNF mRNA, leading to protein expression and to the corresponding activation of the GDNF signaling pathway. This, in turn, leads to a further increase in the mRNA level of the growth factor. The identification of a GDNF-mediated, autoregulatory long-lasting feedback loop could have important implications for GDNF's potential value as a treatment for addiction and neurodegenerative diseases.

  20. Glial cell-derived neurotrophic factor gene polymorpisms affect severity and functionality of bipolar disorder.

    PubMed

    Safari, Roghaiyeh; Tunca, Zeliha; Özerdem, Ayşegül; Ceylan, Deniz; Yalçın, Yaprak; Sakizli, Meral

    2017-01-01

    Glial cell-derived neurotrophic factor and other neurotrophins have important role in the development of mental disorders. Here, we aimed to assess the effects of Single nucleotide polymorphisms at potentially regulated regions of GDNF on severity and functionality of bipolar disorder and GDNF serum levels in bipolar disorder patients and healthy volunteers. Severity and functionality of bipolar disorder were evaluated using the Clinical Global Impression and Global Assessment of Functioning scales in sixty-six bipolar disorder patients. The GDNF serum levels obtained from bipolar disorder patients and healthy volunteers who had been already reported SNPs information by our group. GAF scales were lower and GDNF serum levels were higher in Bipolar disorder patients with T/A genotype at 5:37812784 and 5:37812782 compared to patients with T/T genotype. There were significant difference in severity and functionality scores, but not in GDNF serum levels, between patients with G/G and G/A genotype of rs62360370 G > A SNP.rs2075680 C > A and rs79669773 T > C SNPs had no effect on bipolar disorder severity and functionality scores and GDNF serum levels. The results suggest that some SNPs of GDNF have potential association with severity and functionality of bipolar disorder. In addition, except two SNPs, none of GDNF SNPs had association with GDNF serum levels.

  1. Performance on the Wisconsin card-sorting test and serum levels of glial cell line-derived neurotrophic factor in patients with major depressive disorder.

    PubMed

    Zhang, Xiaobin; Ru, Bu; Sha, Weiwei; Xin, Wang; Zhou, Honghui; Zhang, Yumei

    2014-09-01

    Some evidence suggests that neurotrophic growth factor systems might be involved in the etiology of major depressive disorder (MDD). Glial cell line-derived neurotrophic factor (GDNF) is a neurotrophic factor from the transforming growth factor-β family that plays a role in the development and function of the brain. This study aimed to test whether GDNF in serum was abnormal in MDD, and whether it was related to the cognitive impairment of MDD. Serum GDNF levels in MDD patients (n = 32) and normal controls (n = 32) were measured with the enzyme-linked immunosorbent assay method. All subjects were assessed for performance on the Wisconsin card-sorting test (WCST). Performance on the WCST in MDD patients was significantly poorer than that in controls. Serum GDNF levels in MDD patients were significantly decreased compared to that of the control subjects (P < 0.001). Furthermore, the decrease in the serum GDNF levels positively correlated with performance in the WCST-% CONC and negatively with performance in the WCST-P in MDD patients. The findings suggest that MDD patients have extensive impairments of executive functioning, and lower serum GDNF might be involved in the pathogenesis of MDD, which may be associated with the cognitive dysfunction in MDD patients. © 2014 Wiley Publishing Asia Pty Ltd.

  2. Augmentation of the ascending component of the peristaltic reflex and substance P release by glial cell line-derived neurotrophic factor.

    PubMed

    Grider, J R; Heuckeroth, R O; Kuemmerle, J F; Murthy, K S

    2010-07-01

    Glial cell line-derived neurotrophic factor (GDNF) is present in adult gut although its role in the mature enteric nervous system is not well defined. The aim of the present study was to examine the role of GDNF as neuromodulator of the ascending phase of the peristaltic reflex. Colonic segments were prepared as flat sheets and placed in compartmented chambers so as to separate the sensory and motor limbs of the reflex. Ascending contraction was measured in the orad compartment and mucosal stroking stimuli (two to eight strokes) were applied in the caudad compartment. GDNF and substance P (SP) release were measured and the effects of GDNF and GDNF antibody on contraction and release were determined. Mice with reduced levels of GDNF (Gdnf(+/-)) and wild type littermates were also examined. GDNF was released in a stimulus-dependent manner into the orad motor but not caudad sensory compartment. Addition of GDNF to the orad motor but not caudad sensory compartment augmented ascending contraction and SP release. Conversely, addition of GDNF antibody to the orad motor but not caudad sensory compartment reduced ascending contraction and SP release. Similarly, the ascending contraction and SP release into the orad motor compartment was reduced in Gdnf(+/-) mice as compared to wild type littermates. The results suggest that endogenous GDNF is released during the ascending contraction component of the peristaltic reflex where it acts as a neuromodulator to augment SP release from motor neurons thereby augmenting contraction of circular muscle orad to the site of stimulation.

  3. Local delivery of glial cell line-derived neurotrophic factor improves facial nerve regeneration after late repair.

    PubMed

    Barras, Florian M; Kuntzer, Thierry; Zurn, Anne D; Pasche, Philippe

    2009-05-01

    Facial nerve regeneration is limited in some clinical situations: in long grafts, by aged patients, and when the delay between nerve lesion and repair is prolonged. This deficient regeneration is due to the limited number of regenerating nerve fibers, their immaturity and the unresponsiveness of Schwann cells after a long period of denervation. This study proposes to apply glial cell line-derived neurotrophic factor (GDNF) on facial nerve grafts via nerve guidance channels to improve the regeneration. Two situations were evaluated: immediate and delayed grafts (repair 7 months after the lesion). Each group contained three subgroups: a) graft without channel, b) graft with a channel without neurotrophic factor; and c) graft with a GDNF-releasing channel. A functional analysis was performed with clinical observation of facial nerve function, and nerve conduction study at 6 weeks. Histological analysis was performed with the count of number of myelinated fibers within the graft, and distally to the graft. Central evaluation was assessed with Fluoro-Ruby retrograde labeling and Nissl staining. This study showed that GDNF allowed an increase in the number and the maturation of nerve fibers, as well as the number of retrogradely labeled neurons in delayed anastomoses. On the contrary, after immediate repair, the regenerated nerves in the presence of GDNF showed inferior results compared to the other groups. GDNF is a potent neurotrophic factor to improve facial nerve regeneration in grafts performed several months after the nerve lesion. However, GDNF should not be used for immediate repair, as it possibly inhibits the nerve regeneration.

  4. Human neural progenitor cells over-expressing IGF-1 protect dopamine neurons and restore function in a rat model of Parkinson's disease.

    PubMed

    Ebert, Allison D; Beres, Amy J; Barber, Amelia E; Svendsen, Clive N

    2008-01-01

    Growth factors such as glial cell line-derived neurotrophic factor (GDNF) have been shown to prevent neurodegeneration and promote regeneration in many animal models of Parkinson's disease (PD). Insulin-like growth factor 1 (IGF-1) is also known to have neuroprotective effects in a number of disease models but has not been extensively studied in models of PD. We produced human neural progenitor cells (hNPC) releasing either GDNF or IGF-1 and transplanted them into a rat model of PD. hNPC secreting either GDNF or IGF-1 were shown to significantly reduce amphetamine-induced rotational asymmetry and dopamine neuron loss when transplanted 7 days after a 6-hydroxydopamine (6-OHDA) lesion. Neither untransduced hNPC nor a sham transplant had this effect suggesting GDNF and IGF-1 release was required. Interestingly, GDNF, but not IGF-1, was able to protect or regenerate tyrosine hydroxylase-positive fibers in the striatum. In contrast, IGF-1, but not GDNF, significantly increased the overall survival of hNPC both in vitro and following transplantation. This suggests a dual role of IGF-1 to both increase hNPC survival after transplantation and exert trophic effects on degenerating dopamine neurons in this rat model of PD.

  5. Dose-Dependent Differential Effect of Neurotrophic Factors on In Vitro and In Vivo Regeneration of Motor and Sensory Neurons

    PubMed Central

    Santos, Daniel; Gonzalez-Perez, Francisco; Navarro, Xavier

    2016-01-01

    Although peripheral axons can regenerate after nerve transection and repair, functional recovery is usually poor due to inaccurate reinnervation. Neurotrophic factors promote directional guidance to regenerating axons and their selective application may help to improve functional recovery. Hence, we have characterized in organotypic cultures of spinal cord and dorsal root ganglia the effect of GDNF, FGF-2, NGF, NT-3, and BDNF at different concentrations on motor and sensory neurite outgrowth. In vitro results show that GDNF and FGF-2 enhanced both motor and sensory neurite outgrowth, NGF and NT-3 were the most selective to enhance sensory neurite outgrowth, and high doses of BDNF selectively enhanced motor neurite outgrowth. Then, NGF, NT-3, and BDNF (as the most selective factors) were delivered in a collagen matrix within a silicone tube to repair the severed sciatic nerve of rats. Quantification of Fluorogold retrolabeled neurons showed that NGF and NT-3 did not show preferential effect on sensory regeneration whereas BDNF preferentially promoted motor axons regeneration. Therefore, the selective effects of NGF and NT-3 shown in vitro are lost when they are applied in vivo, but a high dose of BDNF is able to selectively enhance motor neuron regeneration both in vitro and in vivo. PMID:27867665

  6. Lesion-induced increase in survival and migration of human neural progenitor cells releasing GDNF

    PubMed Central

    Behrstock, Soshana; Ebert, Allison D.; Klein, Sandra; Schmitt, Melanie; Moore, Jeannette M.; Svendsen, Clive N.

    2009-01-01

    The use of human neural progenitor cells (hNPC) has been proposed to provide neuronal replacement or astrocytes delivering growth factors for brain disorders such as Parkinson’s and Huntington’s disease. Success in such studies likely requires migration from the site of transplantation and integration into host tissue in the face of ongoing damage. In the current study, hNPC modified to release glial cell line derived neurotrophic factor (hNPCGDNF) were transplanted into either intact or lesioned animals. GDNF release itself had no effect on the survival, migration or differentiation of the cells. The most robust migration and survival was found using a direct lesion of striatum (Huntington’s model) with indirect lesions of the dopamine system (Parkinson’s model) or intact animals showing successively less migration and survival. No lesion affected differentiation patterns. We conclude that the type of brain injury dictates migration and integration of hNPC which has important consequences when considering transplantation of these cells as a therapy for neurodegenerative diseases. PMID:19044202

  7. NANOS2 acts downstream of glial cell line-derived neurotrophic factor signaling to suppress differentiation of spermatogonial stem cells.

    PubMed

    Sada, Aiko; Hasegawa, Kazuteru; Pin, Pui Han; Saga, Yumiko

    2012-02-01

    Stem cells are maintained by both stem cell-extrinsic niche signals and stem cell-intrinsic factors. During murine spermatogenesis, glial cell line-derived neurotrophic factor (GDNF) signal emanated from Sertoli cells and germ cell-intrinsic factor NANOS2 represent key regulators for the maintenance of spermatogonial stem cells. However, it remains unclear how these factors intersect in stem cells to control their cellular state. Here, we show that GDNF signaling is essential to maintain NANOS2 expression, and overexpression of Nanos2 can alleviate the stem cell loss phenotype caused by the depletion of Gfra1, a receptor for GDNF. By using an inducible Cre-loxP system, we show that NANOS2 expression is downregulated upon the conditional knockout (cKO) of Gfra1, while ectopic expression of Nanos2 in GFRA1-negative spermatogonia does not induce de novo GFRA1 expression. Furthermore, overexpression of Nanos2 in the Gfra1-cKO testes prevents precocious differentiation of the Gfra1-knockout stem cells and partially rescues the stem cell loss phenotypes of Gfra1-deficient mice, indicating that the stem cell differentiation can be suppressed by NANOS2 even in the absence of GDNF signaling. Taken together, we suggest that NANOS2 acts downstream of GDNF signaling to maintain undifferentiated state of spermatogonial stem cells. Copyright © 2011 AlphaMed Press.

  8. [Partial dorsal root rhizotomy increases the anterograde transportation of neunotrophic factors in primary sensory neuron].

    PubMed

    Long, Shuang-lian; Li, Yong-mei; Yuan, Yuan; Wang, Ting-hua; Wu, Lin-yan

    2005-05-01

    To investigate whether partial dorsal root rhizotomy promotes the anterograde Five adult cats were transportation of BDNF, NT-3 and GDNF in the primary sensory neuron. Subjected to unilateral spared root rhizotomy (the DRGs of L1-L5 and L7-S2 were removed, but L6 DRG was spared) and bilateral dorsal roots of L6 were ligated at the same time. Three days after operation, dorsal roots were taken out and made into frozen sections 20 microm in thickness. The sections were stained using specific BDNF, NT-3, GDNF antibody (1:1500) by ABC method. The immunoreactive density was observed in a site near DRG and a site near spinal cord. In the control group (with spared L6 DRG), there were no marked differences in NT-3 and GDNF immunoreactivity between the site near DRG and the site near spinal cord, while BDNF immunoreactivity was more intense in the site near DRG than that in the site near spinal cord. In the operation group, the immunoreactivity of each neurotrophin in the site near DRG was stronger than that in the site near spinal cord, and the immunoreactivities of BDNF, NT-3, GDNF in the site near DRG of the operation were stronger than those of the control group respectively. The increasing of immunoreactivities of neurotrophins near DRG following partial dorsal root rhizotomy suggests that partial dorsal root rhizotomy can promote their anterograde transportation from spared DRG to the spinal cord.

  9. Glial-derived neurotropic factor and RET gene expression in normal human anterior pituitary cell types and in pituitary tumors.

    PubMed

    Japón, Miguel A; Urbano, Angel G; Sáez, Carmen; Segura, Dolores I; Cerro, Alfonso Leal; Diéguez, Carlos; Alvarez, Clara V

    2002-04-01

    Glial-derived neurotropic factor (GDNF) signaling is mediated through a 2-component system consisting of the so-called GDNF receptor-alpha (GFRalpha1), which binds to GDNF. This complex activates the tyrosine kinase receptor RET. In this paper we demonstrate GDNF, GFRalpha1, and RET mRNA and protein expression in the human anterior pituitary gland. Double immunohistochemistry of anterior pituitary sections showed GDNF immunoreactivity in more than 95% of somatotrophs and to a lesser extent in corticotrophs (20%); it was almost absent in the remaining cell types. Also, although more than 95% of somatotrophs were stained for RET, no positive immunostaining could be detected in other cell types. Furthermore, we have looked for GDNF and RET in human pituitary adenomas of various hormonal phenotypes. Strong positive immunostaining was found for c-RET in all of the GH-secreting adenomas screened as well as in 50% of ACTH-producing adenomas. Positive immunostaining for GDNF was found in all of the GH-secreting adenomas and in 10% of the corticotropinomas. Lastly, we found strong positive immunostaining for GFRalpha1 in 90% of the somatotropinomas and 50% of the corticotropinomas as well as in 1 of 8 prolactinomas and 1 of 13 nonfunctioning adenomas. All of the remaining pituitary tumors screened were negative for RET, GDNF, and GFRalpha1. This study indicates that GDNF may well be acting in the regulation of somatotroph cell growth and/or cell function in the normal human anterior pituitary gland. The expression of RET in all of the somatotropinomas and in 50% of the ACTH-producing tumors implies that GDNF and RET could be involved in the pathogenesis of pituitary tumors.

  10. Effect of glial cell line-derived neurotrophic factor on behavior and key members of the brain serotonin system in mouse strains genetically predisposed to behavioral disorders.

    PubMed

    Naumenko, Vladimir S; Bazovkina, Daria V; Semenova, Alina A; Tsybko, Anton S; Il'chibaeva, Tatyana V; Kondaurova, Elena M; Popova, Nina K

    2013-12-01

    The effect of glial cell line-derived neurotrophic factor (GDNF) on behavior and on the serotonin (5-HT) system of a mouse strain predisposed to depressive-like behavior, ASC/Icg (Antidepressant Sensitive Cataleptics), in comparison with the parental "nondepressive" CBA/Lac mice was studied. Within 7 days after acute administration, GDNF (800 ng, i.c.v.) decreased cataleptic immobility but increased depressive-like behavioral traits in both investigated mouse strains and produced anxiolytic effects in ASC mice. The expression of the gene encoding the key enzyme for 5-HT biosynthesis in the brain, tryptophan hydroxylase-2 (Tph-2), and 5-HT1A receptor gene in the midbrain as well as 5-HT2A receptor gene in the frontal cortex were increased in GDNF-treated ASC mice. At the same time, GDNF decreased 5-HT1A and 5-HT2A receptor gene expression in the hippocampus of ASC mice. GDNF failed to change Tph2, 5-HT1A , or 5-HT2A receptor mRNA levels in CBA mice as well as 5-HT transporter gene expression and 5-HT1A and 5-HT2A receptor functional activity in both investigated mouse strains. The results show 1) a GDNF-induced increase in the expression of key genes of the brain 5-HT system, Tph2, 5-HT1A , and 5-HT2A receptors, and 2) significant genotype-dependent differences in the 5-HT system response to GDNF treatment. The data suggest that genetically defined cross-talk between neurotrophic factors and the brain 5-HT system underlies the variability in behavioral response to GDNF. Copyright © 2013 Wiley Periodicals, Inc.

  11. Glial cell-derived neurotrophic factor alleviates sepsis-induced neuromuscular dysfunction by decreasing the expression of γ- and α7-nicotinic acetylcholine receptors in an experimental rat model of neuromyopathy.

    PubMed

    Wang, Xin; Min, Su; Xie, Fei; Yang, Jun; Li, Liang; Chen, Jingyuan

    2018-02-05

    Sepsis-induced neuromuscular dysfunction results from up-regulation of the expression of γ- and α7-nicotinic acetylcholine receptors (nAChR). Although glial cell derived neurotrophic factor (GDNF) has been implicated in repairing and supporting neurons, little is known about the effects of GDNF on demyelination of nerves in sepsis. In this study, we tested the hypothesis that GDNF could alleviate sepsis-induced neuromuscular dysfunction by decreasing the expression of γ- and α7-nAChR in an experimental rat model of neuromyopathy. Rats were randomly divided into a sham group and a sepsis group. Levels of inflammatory factors, muscle function, and nicotinic acetylcholine receptors were tested in rats after cecal ligation and puncture (CLP). At 24 h after CLP, GDNF was injected around the sciatic nerve of sepsis rats, cytokines were detected by enzyme-linked immunosorbent assay (ELISA), and immunofluorescence staining was used to detect the expression of nAChRs. GDNF and its downstream effector (Erk1/2 and GFR-α), neuregulin-1 (NRG-1) and γ- and α7-nAChR were measured using Western blot analysis. The expression of GDNF reached a minimum at 24 h after CLP. Compared with the sham group, the release of cytokines and the expression of γ- and α7-nAChR were significantly increased in the sepsis group. The administration of GDNF significantly alleviated sepsis-induced neuromuscular dysfunction, as well as reducing the expression of γ- and α7-nAChR. In addition, the expression of Erk1/2, GFR-α, NRG-1 were significantly increased after GDNF treatment. GDNF administration may improve patient outcomes by reducing the demyelination of nerves and the expression of γ- and α7-nAChR. Copyright © 2018. Published by Elsevier Inc.

  12. Serum brain-derived neurotrophic factor, glial-derived neurotrophic factor, nerve growth factor, and neurotrophin-3 levels in children with attention-deficit/hyperactivity disorder.

    PubMed

    Bilgiç, Ayhan; Toker, Aysun; Işık, Ümit; Kılınç, İbrahim

    2017-03-01

    It has been suggested that neurotrophins are involved in the etiopathogenesis of attention-deficit/hyperactivity disorder (ADHD). This study aimed to investigate whether there are differences in serum brain-derived neurotrophic factor (BDNF), glial-derived neurotrophic factor (GDNF), nerve growth factor (NGF), and neurotrophin-3 (NTF3) levels between children with ADHD and healthy controls. A total of 110 treatment-naive children with the combined presentation of ADHD and 44 healthy controls aged 8-18 years were enrolled in this study. The severity of ADHD symptoms was determined by scores on the Conners' Parent Rating Scale-Revised Short and Conners' Teacher Rating Scale-Revised Short. The severity of depression and anxiety symptoms of the children were evaluated by the self-report inventories. Serum levels of neurotrophins were measured using commercial enzyme-linked immunosorbent assay kits. The multivariate analysis of covariance (MANCOVA) revealed a significant main effect of groups in the levels of serum neurotrophins, an effect that was independent of age, sex, and the severity of the depression and anxiety. The analysis of covariance (ANCOVA) indicated that the mean serum GDNF and NTF3 levels of ADHD patients were significantly higher than that of controls. However, serum BDNF and NGF levels did not show any significant differences between groups. No correlations between the levels of serum neurotrophins and the severity of ADHD were observed. These results suggest that elevated serum GDNF and NTF3 levels may be related to ADHD in children.

  13. GPER: A new tool to protect dopaminergic neurons?

    PubMed

    Bessa, Agustina; Campos, Filipa Lopes; Videira, Rita Alexandra; Mendes-Oliveira, Julieta; Bessa-Neto, Diogo; Baltazar, Graça

    2015-10-01

    Parkinson's disease (PD) is characterized by a selective degeneration of nigrostriatal dopaminergic pathway. Epidemiological studies revealed a male predominance of the disease that has been attributed to the female steroid hormones, mainly the estrogen. Estrogen neuroprotective effects have been shown in several studies, however the mechanisms responsible by these effects are still unclear. Previous data from our group revealed that glial cell line-derived neurotrophic factor (GDNF) is crucial to the dopaminergic protection provided by 17β-estradiol, and also suggest that the intracellular estrogen receptors (ERs) are not required for that neuroprotective effects. The present study aimed to investigate the contribution of the G protein-coupled ER (GPER) activation in estrogen-mediated dopaminergic neuroprotection against an insult induced by 1-methyl-4-phenylpyridinium (MPP(+)), and whether GPER neuroprotective effects involve the regulation of GDNF expression. Using primary mesencephalic cultures, we found that GPER activation protects dopaminergic neurons from MPP(+) toxicity in an extent similar to the promoted by a 17β-estradiol. Moreover, GPER activation promotes an increase in GDNF levels. Both, GDNF antibody neutralization or RNA interference-mediated GDNF knockdown prevented the GPER-mediated dopaminergic protection verified in mesencephalic cultures challenged with MPP(+). Overall, these results revealed that G1, a selective agonist of GPER, is able to protect dopaminergic neurons and that GDNF overexpression is a key feature to GPER induced the neuroprotective effects. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Zirconium oxide ceramic foam: a promising supporting biomaterial for massive production of glial cell line-derived neurotrophic factor*

    PubMed Central

    Liu, Zhong-wei; Li, Wen-qiang; Wang, Jun-kui; Ma, Xian-cang; Liang, Chen; Liu, Peng; Chu, Zheng; Dang, Yong-hui

    2014-01-01

    This study investigated the potential application of a zirconium oxide (ZrO2) ceramic foam culturing system to the production of glial cell line-derived neurotrophic factor (GDNF). Three sets of ZrO2 ceramic foams with different pore densities of 10, 20, and 30 pores per linear inch (PPI) were prepared to support a 3D culturing system. After primary astrocytes were cultured in these systems, production yields of GDNF were evaluated. The biomaterial biocompatibility, cell proliferation and activation of cellular signaling pathways in GDNF synthesis and secretion in the culturing systems were also assessed and compared with a conventional culturing system. In this study, we found that the ZrO2 ceramic foam culturing system was biocompatible, using which the GDNF yields were elevated and sustained by stimulated cell proliferation and activation of signaling pathways in astrocytes cultured in the system. In conclusion, the ZrO2 ceramic foam is promising for the development of a GDNF mass production device for Parkinson’s disease treatment. PMID:25471830

  15. Glial cell line-derived neurotrophic factor-dependent RET activation can be mediated by two different cell-surface accessory proteins

    PubMed Central

    Sanicola, M.; Hession, C.; Worley, D.; Carmillo, P.; Ehrenfels, C.; Walus, L.; Robinson, S.; Jaworski, G.; Wei, H.; Tizard, R.; Whitty, A.; Pepinsky, R. B.; Cate, R. L.

    1997-01-01

    Glial cell line-derived neurotrophic factor (GDNF)-dependent activation of the tyrosine kinase receptor RET is necessary for kidney and enteric neuron development, and mutations in RET are associated with human diseases. Activation of RET by GDNF has been shown to require an accessory component, GDNFR-α (RETL1). We report the isolation and characterization of rat and human cDNAs for a novel cell-surface associated accessory protein, RETL2, that shares 49% identity with RETL1. Both RETL1 and RETL2 can mediate GDNF dependent phosphorylation of RET, but they exhibit different patterns of expression in fetal and adult tissues. The most striking differences in expression observed were in the adult central and peripheral nervous systems. In addition, the mechanisms by which the two accessory proteins facilitate the activation of RET by GDNF are quite distinct. In vitro binding experiments with soluble forms of RET, RETL1 and RETL2 demonstrate that while RETL1 binds GDNF tightly to form a membrane-associated complex which can then interact with RET, RETL2 only forms a high affinity complex with GDNF in the presence of RET. This strong RET dependence of the binding of RETL2 to GDNF was confirmed by FACS analysis on RETL1 and RETL2 expressing cells. Together with the recent discovery of a GDNF related protein, neurturin, these data raise the possibility that RETL1 and RETL2 have distinctive roles during development and in the nervous system of the adult. RETL1 and RETL2 represent new candidate susceptibility genes and/or modifier loci for RET-associated diseases. PMID:9177201

  16. Effects of Forskolin on Trefoil factor 1 expression in cultured ventral mesencephalic dopaminergic neurons.

    PubMed

    Jensen, P; Ducray, A D; Widmer, H R; Meyer, M

    2015-12-03

    Trefoil factor 1 (TFF1) belongs to a family of secreted peptides that are mainly expressed in the gastrointestinal tract. Notably, TFF1 has been suggested to operate as a neuropeptide, however, its specific cellular expression, regulation and function remain largely unknown. We have previously shown that TFF1 is expressed in developing and adult rat ventral mesencephalic tyrosine hydroxylase-immunoreactive (TH-ir) dopaminergic neurons. Here, we investigated the expression of TFF1 in rat ventral mesencephalic dopaminergic neurons (embryonic day 14) grown in culture for 5, 7 or 10 days in the absence (controls) or presence of either glial cell line-derived neurotrophic factor (GDNF), Forskolin or the combination. No TFF1-ir cells were identified at day 5 and only a few at day 7, whereas TH was markedly expressed at both time points. At day 10, several TFF1-ir cells were detected, and their numbers were significantly increased after the addition of GDNF (2.2-fold) or Forskolin (4.1-fold) compared to controls. Furthermore, the combination of GDNF and Forskolin had an additive effect and increased the number of TFF1-ir cells by 5.6-fold compared to controls. TFF1 expression was restricted to neuronal cells, and the percentage of TH/TFF1 co-expressing cells was increased to the same extent in GDNF and Forskolin-treated cultures (4-fold) as compared to controls. Interestingly, the combination of GDNF and Forskolin resulted in a significantly increased co-expression (8-fold) of TH/TFF1, which could indicate that GDNF and Forskolin targeted different subpopulations of TH/TFF1 neurons. Short-term treatment with Forskolin resulted in an increased number of TFF1-ir cells, and this effect was significantly reduced by the MEK1 inhibitor PD98059 or the protein kinase A (PKA) inhibitor H89, suggesting that Forskolin induced TFF1 expression through diverse signaling pathways. In conclusion, distinct populations of cultured dopaminergic neurons express TFF1, and their numbers can be

  17. Glial cell line-derived neurotrophic factor mediates the desirable actions of the anti-addiction drug ibogaine against alcohol consumption.

    PubMed

    He, Dao-Yao; McGough, Nancy N H; Ravindranathan, Ajay; Jeanblanc, Jerome; Logrip, Marian L; Phamluong, Khanhky; Janak, Patricia H; Ron, Dorit

    2005-01-19

    Alcohol addiction manifests as uncontrolled drinking despite negative consequences. Few medications are available to treat the disorder. Anecdotal reports suggest that ibogaine, a natural alkaloid, reverses behaviors associated with addiction including alcoholism; however, because of side effects, ibogaine is not used clinically. In this study, we first characterized the actions of ibogaine on ethanol self-administration in rodents. Ibogaine decreased ethanol intake by rats in two-bottle choice and operant self-administration paradigms. Ibogaine also reduced operant self-administration of ethanol in a relapse model. Next, we identified a molecular mechanism that mediates the desirable activities of ibogaine on ethanol intake. Microinjection of ibogaine into the ventral tegmental area (VTA), but not the substantia nigra, reduced self-administration of ethanol, and systemic administration of ibogaine increased the expression of glial cell line-derived neurotrophic factor (GDNF) in a midbrain region that includes the VTA. In dopaminergic neuron-like SHSY5Y cells, ibogaine treatment upregulated the GDNF pathway as indicated by increases in phosphorylation of the GDNF receptor, Ret, and the downstream kinase, ERK1 (extracellular signal-regulated kinase 1). Finally, the ibogaine-mediated decrease in ethanol self-administration was mimicked by intra-VTA microinjection of GDNF and was reduced by intra-VTA delivery of anti-GDNF neutralizing antibodies. Together, these results suggest that GDNF in the VTA mediates the action of ibogaine on ethanol consumption. These findings highlight the importance of GDNF as a new target for drug development for alcoholism that may mimic the effect of ibogaine against alcohol consumption but avoid the negative side effects.

  18. Glial Cell Line-Derived Neurotrophic Factor Mediates the Desirable Actions of the Anti-Addiction Drug Ibogaine against Alcohol Consumption

    PubMed Central

    He, Dao-Yao; McGough, Nancy N. H.; Ravindranathan, Ajay; Jeanblanc, Jerome; Logrip, Marian L.; Phamluong, Khanhky; Janak, Patricia H.; Ron, Dorit

    2005-01-01

    Alcohol addiction manifests as uncontrolled drinking despite negative consequences. Few medications are available to treat the disorder. Anecdotal reports suggest that ibogaine, a natural alkaloid, reverses behaviors associated with addiction including alcoholism; however, because of side effects, ibogaine is not used clinically. In this study, we first characterized the actions of ibogaine on ethanol self-administration in rodents. Ibogaine decreased ethanol intake by rats in two-bottle choice and operant self-administration paradigms. Ibogaine also reduced operant self-administration of ethanol in a relapse model. Next, we identified a molecular mechanism that mediates the desirable activities of ibogaine on ethanol intake. Microinjection of ibogaine into the ventral tegmental area (VTA), but not the substantia nigra, reduced self-administration of ethanol, and systemic administration of ibogaine increased the expression of glial cell line-derived neurotrophic factor (GDNF) in a midbrain region that includes the VTA. In dopaminergic neuron-like SHSY5Y cells, ibogaine treatment upregulated the GDNF pathway as indicated by increases in phosphorylation of the GDNF receptor, Ret, and the downstream kinase, ERK1 (extracellular signal-regulated kinase 1). Finally, the ibogaine-mediated decrease in ethanol self-administration was mimicked by intra-VTA microinjection of GDNF and was reduced by intra-VTA delivery of anti-GDNF neutralizing antibodies. Together, these results suggest that GDNF in the VTA mediates the action of ibogaine on ethanol consumption. These findings highlight the importance of GDNF as a new target for drug development for alcoholism that may mimic the effect of ibogaine against alcohol consumption but avoid the negative side effects. PMID:15659598

  19. Glial-derived neurotrophic factor is essential for blood-nerve barrier functional recovery in an experimental murine model of traumatic peripheral neuropathy.

    PubMed

    Dong, Chaoling; Helton, E Scott; Zhou, Ping; Ouyang, Xuan; d'Anglemont de Tassigny, Xavier; Pascual, Alberto; López-Barneo, José; Ubogu, Eroboghene E

    2018-06-18

    There is emerging evidence that glial-derived neurotrophic factor (GDNF) is a potent inducer of restrictive barrier function in tight junction-forming microvascular endothelium and epithelium, including the human blood-nerve barrier (BNB) in vitro. We sought to determine the role of GDNF in restoring BNB function in vivo by evaluating sciatic nerve horseradish peroxidase (HRP) permeability in tamoxifen-inducible GDNF conditional knockout (CKO) adult mice following non-transecting crush injury via electron microscopy, with appropriate wildtype (WT) and heterozygous (HET) littermate controls. A total of 24 age-, genotype- and sex-matched mice >12 weeks of age were injected with 30 mg/kg HRP via tail vein injection 7 or 14 days following unilateral sciatic nerve crush, and both sciatic nerves were harvested 30 minutes later for morphometric assessment by light and electron microscopy. The number and percentage of HRP-permeable endoneurial microvessels were ascertained to determine the effect of GDNF in restoring barrier function in vivo. Following sciatic nerve crush, there was significant upregulation in GDNF protein expression in WT and HET mice that was abrogated in CKO mice. GDNF significantly restored sciatic nerve BNB HRP impermeability to near normal levels by day 7, with complete restoration seen by day 14 in WT and HET mice. A significant recovery lag was observed in CKO mice. This effect was independent on VE-Cadherin or claudin-5 expression on endoneurial microvessels. These results imply an important role of GDNF in restoring restrictive BNB function in vivo, suggesting a potential strategy to re-establish the restrictive endoneurial microenvironment following traumatic peripheral neuropathies.

  20. The production of glial cell line-derived neurotrophic factor by human sertoli cells is substantially reduced in sertoli cell-only testes.

    PubMed

    Singh, D; Paduch, D A; Schlegel, P N; Orwig, K E; Mielnik, A; Bolyakov, A; Wright, W W

    2017-05-01

    Do human Sertoli cells in testes that exhibit the Sertoli cell-only (SCO) phenotype produce substantially less glial cell line-derived neurotrophic factor (GDNF) than Sertoli cells in normal testes? In human SCO testes, both the amounts of GDNF mRNA per testis and the concentration of GDNF protein per Sertoli cell are markedly reduced as compared to normal testes. In vivo, GDNF is required to sustain the numbers and function of mouse spermatogonial stem cells (SSCs) and their immediate progeny, transit-amplifying progenitor spermatogonia. GDNF is expressed in the human testis, and the ligand-binding domain of the GDNF receptor, GFRA1, has been detected on human SSCs. The numbers and/or function of these stem cells are markedly reduced in some infertile men, resulting in the SCO histological phenotype. We determined the numbers of human spermatogonia per mm2 of seminiferous tubule surface that express GFRA1 and/or UCHL1, another marker of human SSCs. We measured GFRA1 mRNA expression in order to document the reduced numbers and/or function of SSCs in SCO testes. We quantified GDNF mRNA in testes of humans and mice, a species with GDNF-dependent SSCs. We also compared GDNF mRNA expression in human testes with normal spermatogenesis to that in testes exhibiting the SCO phenotype. As controls, we also measured transcripts encoding two other Sertoli cell products, kit ligand (KITL) and clusterin (CLU). Finally, we compared the amounts of GDNF per Sertoli cell in normal and SCO testes. Normal human testes were obtained from beating heart organ donors. Biopsies of testes from men who were infertile due to maturation arrest or the SCO phenotype were obtained as part of standard care during micro-testicular surgical sperm extraction. Cells expressing GFRA1, UCHL1 or both on whole mounts of normal human seminiferous tubules were identified by immunohistochemistry and confocal microscopy and their numbers were determined by image analysis. Human GDNF mRNA and GFRA1 mRNA were

  1. Intervertebral disc degeneration-induced expression of pain-related molecules: glial cell-derived neurotropic factor as a key factor.

    PubMed

    Jung, Woon-Won; Kim, Hyun-Sook; Shon, Jong-Ryeul; Lee, Min; Lee, Sang-Heon; Sul, Donggeun; Na, Heung Sik; Kim, Joo Han; Kim, Byung-Jo

    2011-10-01

    Discogenic low back pain has been shown to develop into chronic intractable pain due to an unknown pathogenesis. To study the mechanism of discogenic pain, we analyzed the serial expression of pain-related molecules in the dorsal root ganglia (DRG) and thalamus using a newly developed rat model of disc degeneration. Ten microliters of complete Freund's adjuvant was injected into the L5-6 disc of male Sprague-Dawley rats for 10 minutes using a 26-gauge needle. Using a behavioral test, rats with significant pain were selected and subsequently serial gene expression of pain-related molecules in the DRG and the thalamus was analyzed by reverse transcriptase polymerase chain reaction. The expression of tumor necrosis factor-α and interleukin-1β significantly increased at 4 and 8 weeks in the DRG of rats with pain. Furthermore, interleukin-6 was significantly increased at 4 weeks in the DRG; however, these cytokines did not show a significant change in the thalamus. Calcitonin gene-related peptide and substance P were significantly increased in DRG at 4 and 8 weeks and in the thalamus at 2 and 4 weeks. The level of nerve growth factor-β did not significantly increase in the DRG or thalamus, whereas glial cell line-derived neurotropic factor (GDNF) was significantly increased at 2 weeks and was sustained through 8 weeks in both the DRG and thalamus. The disc degeneration rat model described herein led to significant pain of a chronic nature. The gradual and persistent increase of GDNF in both the thalamus and DRG suggests that GDNF might be a key factor in the development of intractable, chronic discogenic pain.

  2. Mechanisms of impaired nephrogenesis with fetal growth restriction: altered renal transcription and growth factor expression

    PubMed Central

    Abdel-Hakeem, Ahmed K; Henry, Tasmia Q; Magee, Thomas R; Desai, Mina; Ross, Michael; Mansano, Roy; Torday, John; Nast, Cynthia C.

    2010-01-01

    Objective Maternal food restriction during pregnancy results in growth restricted newborns and reduced glomerular number, contributing to programmed offspring hypertension. We investigated whether reduced nephrogenesis may be programmed by dysregulation of factors controlling ureteric bud branching and mesenchyme to epithelial transformation. Study Design 10 to 20 days gestation, Sprague Dawley pregnant rats (n=6/group) received ad libitum food; FR rats were 50% food restricted. At embryonic day 20, mRNA and protein expression of WT1, Pax2, FGF2, GDNF, cRET, WNT4, WNT11, BMP4, BMP7, and FGF7 were determined by real-time PCR and Western blotting. Results Maternal FR resulted in up-regulated mRNA expression for WT1, FGF2, and BMP7 whereas Pax2, GDNF, FGF7, BMP4, WNT4, and WNT11 mRNAs were down-regulated. Protein expression was concordant for WT1, GDNF, Pax2, FGF7, BMP4 and WNT4. Conclusion Maternal FR altered gene expression of fetal renal transcription and growth factors, and likely contributes to development of offspring hypertension. PMID:18639218

  3. Update of Neurotrophic Factors in Neurobiology of Addiction and Future Directions

    PubMed Central

    Koskela, Maryna; Bäck, Susanne; Võikar, Vootele; Richie, Christopher T.; Domanskyi, Andrii; Harvey, Brandon K.; Airavaara, Mikko

    2016-01-01

    Drug addiction is a chronic brain disease and drugs of abuse cause long lasting neuroadaptations. Addiction is characterized by the loss of control over drug use despite harmful consequences, and high rates of relapse even after long periods of abstinence. Neurotrophic factors (NTFs) are well known for their actions on neuronal survival in the peripheral nervous system. Moreover, NTFs have been shown to be involved in synaptic plasticity in the brain. Brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) are two of the most studied NTFs and both of them have been reported to increase craving when administered into the mesocorticolimbic dopaminergic system after drug self-administration. Here we review recent data on BDNF and GDNF functions in addiction-related behavior and discuss them in relation to previous findings. Finally, we give an insight into how new technologies could aid in further elucidating the role of these factors in drug addiction. PMID:27189755

  4. Functional analysis of Drosophila HSP70 promoter with different HSE numbers in human cells.

    PubMed

    Kust, Nadezda; Rybalkina, Ekaterina; Mertsalov, Ilya; Savchenko, Ekaterina; Revishchin, Alexander; Pavlova, Gali

    2014-01-01

    The activation of genetic constructs including the Drosophila hsp70 promoter with four and eight HSE sequences in the regulatory region has been described in human cells. The promoter was shown to be induced at lower temperatures compared to the human hsp70 promoter. The promoter activity increased after a 60-min heat shock already at 38 °C in human cells. The promoter activation was observed 24 h after heat shock for the constructs with eight HSEs, while those with four HSEs required 48 h. After transplantation of in vitro heat-shocked transfected cells, the promoter activity could be maintained for 3 days with a gradual decline. The promoter activation was confirmed in vivo without preliminary heat shock in mouse ischemic brain foci. Controlled expression of the Gdnf gene under a Drosophila hsp70 promoter was demonstrated. This promoter with four and eight HSE sequences in the regulatory region can be proposed as a regulated promoter in genetic therapeutic systems.

  5. Neurotrophic factors and receptors in the immature and adult spinal cord after mechanical injury or kainic acid.

    PubMed

    Widenfalk, J; Lundströmer, K; Jubran, M; Brene, S; Olson, L

    2001-05-15

    Delivery of neurotrophic factors to the injured spinal cord has been shown to stimulate neuronal survival and regeneration. This indicates that a lack of sufficient trophic support is one factor contributing to the absence of spontaneous regeneration in the mammalian spinal cord. Regulation of the expression of neurotrophic factors and receptors after spinal cord injury has not been studied in detail. We investigated levels of mRNA-encoding neurotrophins, glial cell line-derived neurotrophic factor (GDNF) family members and related receptors, ciliary neurotrophic factor (CNTF), and c-fos in normal and injured spinal cord. Injuries in adult rats included weight-drop, transection, and excitotoxic kainic acid delivery; in newborn rats, partial transection was performed. The regulation of expression patterns in the adult spinal cord was compared with that in the PNS and the neonate spinal cord. After mechanical injury of the adult rat spinal cord, upregulations of NGF and GDNF mRNA occurred in meningeal cells adjacent to the lesion. BDNF and p75 mRNA increased in neurons, GDNF mRNA increased in astrocytes close to the lesion, and GFRalpha-1 and truncated TrkB mRNA increased in astrocytes of degenerating white matter. The relatively limited upregulation of neurotrophic factors in the spinal cord contrasted with the response of affected nerve roots, in which marked increases of NGF and GDNF mRNA levels were observed in Schwann cells. The difference between the ability of the PNS and CNS to provide trophic support correlates with their different abilities to regenerate. Kainic acid delivery led to only weak upregulations of BDNF and CNTF mRNA. Compared with several brain regions, the overall response of the spinal cord tissue to kainic acid was weak. The relative sparseness of upregulations of endogenous neurotrophic factors after injury strengthens the hypothesis that lack of regeneration in the spinal cord is attributable at least partly to lack of trophic support.

  6. Use of GDNF-Releasing Nanofiber Nerve Guide Conduits for the Repair of Conus medullaris/Cauda Equina Injury in the Non-Human Primate

    DTIC Science & Technology

    2011-10-01

    Cauda equina, non-human primate, ventral root. neural repair, electromyography , magnetic resonance imaging 16. SECURITY CLASSIFICATION OF: 17...of a guidance channel without GDNF release and a peripheral nerve graft to bridge the tissue gap. A comprehensive set of electrodiagnostic, imaging ... Electromyography (EMG) recordings of the external anal sphincter are obtained pre-operatively as baseline records. The external anal sphincter muscle

  7. A novel GLP-1/GIP dual agonist is more effective than liraglutide in reducing inflammation and enhancing GDNF release in the MPTP mouse model of Parkinson's disease.

    PubMed

    Yuan, Ziyue; Li, Dongfang; Feng, Peng; Xue, Guofang; Ji, Chenhui; Li, Guanglai; Hölscher, Christian

    2017-10-05

    Type 2 diabetes mellitus (T2DM) is one of the risk factors for Parkinson's disease (PD). Insulin desensitisation has been observed in the brains of patients, which may promote neurodegeneration. Incretins are a family of growth factors that can re-sensitise insulin signalling. We have previously shown that mimetics of glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) have neuroprotective effects in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropypridine (MPTP) mouse model of PD. Recently, dual GLP-1/GIP receptor agonists have been developed. We therefore tested the novel dual agonist DA3-CH in comparison with the best GLP-1 analogue currently on the market, liraglutide (both drugs 25nmol/kg ip once-daily for 7 days) in the MPTP mouse model of PD (25mg/kg ip once-daily for 7 days). In the Rotarod and grip strength assessment, DA3-CH was superior to liraglutide in reversing the MPTP-induced motor impairment. Dopamine synthesis as indicated by levels of tyrosine hydroxylase was much reduced by MPTP in the substantia nigra and striatum, and DA3-CH reversed this while liragutide only partially reversed this. The chronic inflammation response as shown in increased levels of activated microglia and astrocytes was reduced by both drugs. Importantly, expression levels of the neuroprotective growth factor Glial Derived Neurotrophic Factor (GDNF) was much enhanced by both DA3-CH and liragutide. The results demonstrate that the combination of GLP-1 and GIP receptor activation is superior to single GLP-1 receptor activation alone. Therefore, new dual agonists may be a promising treatment for PD. The GLP-1 receptor agonist exendin-4 has already shown disease modifying effects in clinical trials in PD patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Low-intensity pulsed ultrasound promotes Schwann cell viability and proliferation via the GSK-3β/β-catenin signaling pathway

    PubMed Central

    Ren, Cong; Chen, Xiaohui; Du, Ning; Geng, Shuo; Hu, Yingying; Liu, Xin; Wu, Xianxian; Lin, Yuan; Bai, Xue; Yin, Wenzhe; Cheng, Shi; Yang, Lei; Zhang, Yong

    2018-01-01

    Background: It has been reported that ultrasound enhances peripheral nerve regeneration, but the mechanism remains elusive. Low-intensity pulsed ultrasound (LIPUS) has been reported to enhance proliferation and alter protein production in various types of cells. In this study, we detected the effects of LIPUS on Schwann cells. Material and methods: Schwann cells were separated from new natal Sprague-Dawley rat sciatic nerves and were cultured and purified. The Schwann cells were treated by LIPUS for 10 minutes every day, with an intensity of 27.37 mW/cm2. After treatment for 5 days, MTT, EdU staining, and flow cytometry were performed to examine cell viability and proliferation. Neurotrophic factors, including FGF, NGF, BDNF, and GDNF, were measured by western blot and real-time PCR. GSK-3β, p-GSK-3β, β-catenin and Cyclin D1 protein levels were detected using a western blot analysis. The expression of Cyclin D1 was also detected by immunofluorescence. Results: MTT and EdU staining showed that LIPUS increased the Schwann cells viability and proliferation. Compared to the control group, LIPUS increased the expression of growth factors and neurotrophic factors, including FGF, NGF, BDNF, GDNF, and Cyclin D1. Meanwhile, GSK-3β activity was inhibited in the LIPUS group as demonstrated by the increased level of p-GSK-3β and the ratio of the p-GSK-3β/GSK-3β level. The mRNA and protein expressions of β-catenin were increased in the LIPUS group. However, SB216763, a GSK-3β inhibitor, reversed the effects of LIPUS on Schwann cells. Conclusion: LIPUS promotes Schwann cell viability and proliferation by increasing Cyclin D1 expression via enhancing the GSK-3β/β-catenin signaling pathway.

  9. Prevention of Memory Impairment and Neurotrophic Factors Increased by Lithium in Wistar Rats Submitted to Pneumococcal Meningitis Model

    PubMed Central

    Simões, Lutiana R.; Abreu, Roberta R. E. S.; Goularte, Jéssica A.; Collodel, Allan; Giridharan, Vijayasree Vayalanellore

    2017-01-01

    The aim of this study was to investigate the effects of lithium on brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), and glial cell line-derived neurotrophic factor (GDNF) expression in the hippocampus and on memory in experimental pneumococcal meningitis. The mood-stabilizer lithium is known as a neuroprotective agent with many effects on the brain. In this study, animals received either artificial cerebrospinal fluid or Streptococcus pneumoniae suspension at a concentration of 5 × 109 CFU/mL. Eighteen hours after induction, all animals received ceftriaxone. The animals received saline or lithium (47.5 mg/kg) or tamoxifen (1 mg/kg) as adjuvant treatment, and they were separated into six groups: control/saline, control/lithium, control/tamoxifen, meningitis/saline, meningitis/lithium, and meningitis/tamoxifen. Ten days after meningitis induction, animals were subjected to open-field habituation and the step-down inhibitory avoidance tasks. Immediately after these tasks, the animals were killed and their hippocampus was removed to evaluate the expression of BDNF, NGF, and GDNF. In the meningitis group, treatment with lithium and tamoxifen resulted in improvement in memory. Meningitis group showed decreased expression of BDNF and GDNF in the hippocampus while lithium reestablished the neurotrophin expression. Lithium was able to prevent memory impairment and reestablishes hippocampal neurotrophin expression in experimental pneumococcal meningitis. PMID:29200666

  10. Optimizing neurotrophic factor combinations for neurite outgrowth

    NASA Astrophysics Data System (ADS)

    Deister, C.; Schmidt, C. E.

    2006-06-01

    Most neurotrophic factors are members of one of three families: the neurotrophins, the glial cell-line derived neurotrophic factor family ligands (GFLs) and the neuropoietic cytokines. Each family activates distinct but overlapping cellular pathways. Several studies have shown additive or synergistic interactions between neurotrophic factors from different families, though generally only a single combination has been studied. Because of possible interactions between the neurotrophic factors, the optimum concentration of a factor in a mixture may differ from the optimum when applied individually. Additionally, the effect of combinations of neurotrophic factors from each of the three families on neurite extension is unclear. This study examines the effects of several combinations of the neurotrophin nerve growth factor (NGF), the GFL glial cell-line derived neurotrophic factor (GDNF) and the neuropoietic cytokine ciliary neurotrophic factor (CNTF) on neurite outgrowth from young rat dorsal root ganglion (DRG) explants. The combination of 50 ng ml-1 NGF and 10 ng ml-1 of each GDNF and CNTF induced the highest level of neurite outgrowth at a 752 ± 53% increase over untreated DRGs and increased the longest neurite length to 2031 ± 97 µm compared to 916 ± 64 µm for untreated DRGs. The optimum concentrations of the three factors applied in combination corresponded to the optimum concentration of each factor when applied individually. These results indicate that the efficacy of future therapies for nerve repair would be enhanced by the controlled release of a combination of neurotrophins, GFLs and neuropoietic cytokines at higher concentrations than used in previous conduit designs.

  11. Heparin-binding epidermal growth factor-like growth factor promotes neuroblastoma differentiation.

    PubMed

    Gaviglio, Angela L; Knelson, Erik H; Blobe, Gerard C

    2017-05-01

    High-risk neuroblastoma is characterized by undifferentiated neuroblasts and low schwannian stroma content. The tumor stroma contributes to the suppression of tumor growth by releasing soluble factors that promote neuroblast differentiation. Here we identify heparin-binding epidermal growth factor-like growth factor (HBEGF) as a potent prodifferentiating factor in neuroblastoma. HBEGF mRNA expression is decreased in human neuroblastoma tumors compared with benign tumors, with loss correlating with decreased survival. HBEGF protein is expressed only in stromal compartments of human neuroblastoma specimens, with tissue from high-stage disease containing very little stroma or HBEGF expression. In 3 human neuroblastoma cell lines (SK-N-AS, SK-N-BE2, and SH-SY5Y), soluble HBEGF is sufficient to promote neuroblast differentiation and decrease proliferation. Heparan sulfate proteoglycans and heparin derivatives further enhance HBEGF-induced differentiation by forming a complex with the epidermal growth factor receptor, leading to activation of the ERK1/2 and STAT3 pathways and up-regulation of the inhibitor of DNA binding transcription factor. These data support a role for loss of HBEGF in the neuroblastoma tumor microenvironment in neuroblastoma pathogenesis.-Gaviglio, A. L., Knelson, E. H., Blobe, G. C. Heparin-binding epidermal growth factor-like growth factor promotes neuroblastoma differentiation. © FASEB.

  12. Analysis of DOK-6 function in downstream signaling of RET in human neuroblastoma cells.

    PubMed

    Kurotsuchi, Ai; Murakumo, Yoshiki; Jijiwa, Mayumi; Kurokawa, Kei; Itoh, Yasutomo; Kodama, Yoshinori; Kato, Takuya; Enomoto, Atsushi; Asai, Naoya; Terasaki, Hiroko; Takahashi, Masahide

    2010-05-01

    Point mutations and structural alterations of the RET tyrosine kinase gene cause multiple endocrine neoplasia type 2 (MEN 2) and papillary thyroid carcinoma, respectively. RET activation by glial cell line-derived neurotrophic factor (GDNF) is essential for the development of the enteric nervous system and the kidney. The signal through RET tyrosine kinase requires several adaptor proteins including the DOK (downstream of kinase) family of proteins. Of the seven members of the DOK protein family, DOK-1, -4, -5, and -6 have been reported to play roles in the GDNF-RET signaling pathway. Although DOK-6 has been shown to bind to RET and promote GDNF-induced neurite outgrowth in mouse Neuro2A cells, DOK-6 function in human cells remains unclear. In the present study, we investigated the role of DOK-6 in GDNF-RET signaling in human cells including neuroblastoma cells. DOK-6 was constitutively localized to the plasma membrane via its pleckstrin homology (PH) domain, and was phosphorylated following RET activation via a MEN2A mutation or GDNF stimulation. However, DOK-6 could not significantly affect downstream signaling and neurite outgrowth in human neuroblastoma cells. The binding affinity of the DOK-6 phosphotyrosine-binding (PTB) domain to RET was much lower than that of the DOK-1, DOK-4, and SHC PTB domains to RET. These findings indicate that DOK-6 is involved in RET signaling with less influence when compared with DOK-1, DOK-4, and SHC.

  13. Neuroprotective effects of electroacupuncture on hypoxic-ischemic encephalopathy in newborn rats are associated with increased expression of GDNF-RET and protein kinase B.

    PubMed

    Xu, Tao; Xu, Neng-Gui; Yang, Zhong-Hua; Wan, Yan-Zhen; Wu, Qing-Long; Huang, Kang-Bai

    2016-06-01

    To explore the neuroprotective effects of electroacupuncture (EA) on hypoxic-ischemic encephalopathy (HIE) and to further investigate the role of glial cell line-derived neurotrophic factor (GDNF) family receptor member RET (rearranged during transfection) and its key downstream phosphatidylinositol 3 kinase (PI-3K)/protein kinase B (Akt) pathway in the process. A total of 220 seven-day-old SD rats (of either sex, from 22 broods) were randomly divided into two groups, one (30 rats) for sham-surgery group and the other (190 rats) for HIE model group. The HIE model was established using the left common carotid artery ligation method in combination with hypoxic treatment. The successfully established rats were randomly divided into five groups, including control model group, EA group, sham-EA group, antagonist group and antagonist plus electroacupuncture group, with 35 rats in each group. Baihui (GV 20), Dazhui (GV 14), Quchi (LI 11) and Yongquan (KI 1) acupoints were chosen for acupuncture. EA was performed at Baihui and Quchi for 10 min once a day for continuous 1, 3, 7 and 21 days, respectively. The rats were then killed after the operation and injured cerebral cortex was taken for the measurement of neurologic damage by hematoxylin-eosin (HE) staining and the degenerative changes of cortical ultrastructure by transmission electron microscopy. RET mRNA level and Akt protein level were detected by real-time reverse-transcription polymerase chain reaction (RT-PCR) and western blot analysis, respectively. EA could ameliorate neurologic damage of the first somatic sensory area (S1Tr) and alleviate the degenerative changes of ultrastructure of cortical neurons in rats subjected to HIE. And the longer acupuncture treatment lasted, the better its therapeutic effect would be. This was accompanied by gradually increased expression of GDNF family receptor RET at the mRNA level and its downstream signaling Akt at the protein level in the ischemic cortex. EA has

  14. Heparin-binding epidermal growth factor-like growth factor promotes neuroblastoma differentiation

    PubMed Central

    Gaviglio, Angela L.; Knelson, Erik H.; Blobe, Gerard C.

    2017-01-01

    High-risk neuroblastoma is characterized by undifferentiated neuroblasts and low schwannian stroma content. The tumor stroma contributes to the suppression of tumor growth by releasing soluble factors that promote neuroblast differentiation. Here we identify heparin-binding epidermal growth factor–like growth factor (HBEGF) as a potent prodifferentiating factor in neuroblastoma. HBEGF mRNA expression is decreased in human neuroblastoma tumors compared with benign tumors, with loss correlating with decreased survival. HBEGF protein is expressed only in stromal compartments of human neuroblastoma specimens, with tissue from high-stage disease containing very little stroma or HBEGF expression. In 3 human neuroblastoma cell lines (SK-N-AS, SK-N-BE2, and SH-SY5Y), soluble HBEGF is sufficient to promote neuroblast differentiation and decrease proliferation. Heparan sulfate proteoglycans and heparin derivatives further enhance HBEGF-induced differentiation by forming a complex with the epidermal growth factor receptor, leading to activation of the ERK1/2 and STAT3 pathways and up-regulation of the inhibitor of DNA binding transcription factor. These data support a role for loss of HBEGF in the neuroblastoma tumor microenvironment in neuroblastoma pathogenesis.—Gaviglio, A. L., Knelson, E. H., Blobe, G. C. Heparin-binding epidermal growth factor-like growth factor promotes neuroblastoma differentiation. PMID:28174207

  15. Factors promoting sustainable work in women with fibromyalgia.

    PubMed

    Palstam, Annie; Gard, Gunvor; Mannerkorpi, Kaisa

    2013-09-01

    To examine and describe the factors promoting sustainable work in women with fibromyalgia (FM). A qualitative interview study. Twenty-seven gainfully employed women with FM participated in five focus group interviews. Their median age was 52 years, ranging from 33 to 62. The interviews were recorded, transcribed verbatim and analysed by qualitative latent content analysis. Four categories were identified describing factors promoting sustainable work: the meaning of work and individual strategies were individual promoters while a favourable work environment and social support outside work were environmental promoters. The meaning of work included individual meaning and social meaning. The individual strategies included handling symptoms, the work day and long-term work life. A favourable work environment included the physical and psychosocial work environment. Social support outside work included societal and private social supports. Promoting factors for work were identified, involving individual and environmental factors. These working women with FM had developed advanced well-functioning strategies to enhance their work ability. The development of such strategies should be supported by health-care professionals as well as employers to promote sustainable work in women with FM. Work disability is a common consequence of fibromyalgia (FM). Working women with FM appear to have developed advanced well-functioning individual strategies to enhance their work ability. The development of individual strategies should be supported by health-care professionals as well as employers to promote sustainable work and health in women with FM.

  16. The lack of CD131 and the inhibition of Neuro-2a growth by carbamylated erythropoietin.

    PubMed

    Ding, Jing; Li, Qin-Ying; Yu, Jie-Zhong; Wang, Xin; Lu, Chuan-Zhen; Ma, Cun-Gen; Xiao, Bao-Guo

    2015-02-01

    Recombinant human erythropoietin (EPO), a glycohormone, is one of the leading biopharmaceutical products, while carbamylated erythropoietin (CEPO), an EPO derivative, is attracting widespread interest due to its neuroprotective effects without erythropoiesis in several cells and animal models. However, exogenous EPO promotes an angiogenic response from tumor cells and is associated with tumor growth, but knowledge of CEPO on tumor growth is lacking. Here we show that CEPO, but not EPO, inhibited Neuro-2a growth and viability. As expected, CEPO--unlike EPO--did not activate JAK-2 either in primary neurons or in Neuro-2a cells. Interestingly, CEPO did not induce GDNF expression and subsequent AKT activation in Neuro-2a cells. Before CEPO/EPO treatment, glial cell line-derived neurotrophic factor (GDNF) neutralization and GFR receptor blocking decreased the viability of EPO-treated Neuro-2a cells but did not influence CEPO-treated Neuro-2a cells. As compared to primary neurons, the expression of CD131, as a receptor complex binding to CEPO, is almost lacking in Neuro-2a cells. In BABL/C-nu mice, CEPO did not promote the growth of Neuro-2a cells nor extended the survival time compared to mice treated with EPO. The results indicate that CEPO did not promote tumor growth because of lower expression of CD131 and subsequent dysfunction of CD131/GDNF/AKT pathway in Neuro-2a cells, revealing its therapeutic potential in future clinical application.

  17. GDNF and NGF family members and receptors in human fetal and adult spinal cord and dorsal root ganglia.

    PubMed

    Josephson, A; Widenfalk, J; Trifunovski, A; Widmer, H R; Olson, L; Spenger, C

    2001-11-12

    We describe the expression of mRNA encoding ligands and receptors of members of the GDNF family and members of the neurotrophin family in the adult human spinal cord and dorsal root ganglia (DRG). Fetal human spinal cord and ganglia were investigated for the presence of ligands and receptors of the neurotrophin family. Tissues were collected from human organ donors and after routine elective abortions. Messenger RNA was found encoding RET, GFR alpha-1, BDNF, trkB, and trkC in the adult human spinal cord and BDNF, NT-3, p75, trkB, and trkC in the fetal human spinal cord. The percentage of adult human DRG cells expressing p75, trkA, trkB, or trkC was 57, 46, 29, and 24%, respectively, and that of DRG cells expressing RET, GFR alpha-1, GFR alpha-2, or GFR alpha-3 was 79, 20, 51, and 32%, respectively. GFR alpha-2 was expressed selectively in small, GFR alpha-3 principally in small and GFR alpha-1 and RET in both large and small adult human DRG neurons. p75 and trkB were expressed by a wide range of DRG neurons while trkA was expressed in most small diameter and trkC primarily in large DRG neurons. Fetal DRG cells were positive for the same probes as adult DRG cells except for NT-3, which was only found in fetal DRG cells. Messenger RNA species only expressed at detectable levels in fetal but not adult spinal cord tissues included GDNF, GFR alpha-2, NT-3, and p75. Notably, GFR alpha-2, which is expressed in the adult rat spinal cord, was not found in the adult human spinal cord. Copyright 2001 Wiley-Liss, Inc.

  18. Effect of Removal of Spermatogonial Stem Cells (SSCs) from In Vitro Culture on Gene Expression of Niche Factors in Bovine

    PubMed Central

    Akbarinejad, Vahid; Tajik, Parviz; Movahedin, Mansoureh; Youssefi, Reza

    2016-01-01

    Background: Niche cells, regulating Spermatogonial Stem Cells (SSCs) fate are believed to have a reciprocal communication with SSCs. The present study was conducted to evaluate the effect of SSC elimination on the gene expression of Glial cell line-Derived Neurotrophic Factor (GDNF), Fibroblast Growth Factor 2 (FGF2) and Kit Ligand (KITLG), which are the main growth factors regulating SSCs development and secreted by niche cells, primarily Sertoli cells. Methods: Following isolation, bovine testicular cells were cultured for 12 days on extracellular matrix-coated plates. In the germ cell-removed group, the SSCs were removed from the in vitro culture using differential plating; however, in the control group, no intervention in the culture was performed. Colony formation of SSCs was evaluated using an inverted microscope. The gene expression of growth factors and spermatogonia markers were assessed using quantitative real time PCR. Results: SSCs colonies were developed in the control group but they were rarely observed in the germ cell-removed group; moreover, the expression of spermatogonia markers was detected in the control group while it was not observed in the germ cell-removed group, substantiating the success of SSCs removal. The expression of Gdnf and Fgf2 was greater in the germ cell-removed than control group (p<0.05), whereas the expression of Kitlg was lower in the germ cell-removed than control group (p< 0.05). Conclusion: In conclusion, the results revealed that niche cells respond to SSCs removal by upregulation of GDNF and FGF2, and downregulation of KITLG in order to stimulate self-renewal and arrest differentiation. PMID:27563426

  19. TALE factors poise promoters for activation by Hox proteins.

    PubMed

    Choe, Seong-Kyu; Ladam, Franck; Sagerström, Charles G

    2014-01-27

    Hox proteins form complexes with TALE cofactors from the Pbx and Prep/Meis families to control transcription, but it remains unclear how Hox:TALE complexes function. Examining a Hoxb1b:TALE complex that regulates zebrafish hoxb1a transcription, we find maternally deposited TALE proteins at the hoxb1a promoter already during blastula stages. These TALE factors recruit histone-modifying enzymes to promote an active chromatin profile at the hoxb1a promoter and also recruit RNA polymerase II (RNAPII) and P-TEFb. However, in the presence of TALE factors, RNAPII remains phosphorylated on serine 5 and hoxb1a transcription is inefficient. By gastrula stages, Hoxb1b binds together with TALE factors to the hoxb1a promoter. This triggers P-TEFb-mediated transitioning of RNAPII to the serine 2-phosphorylated form and efficient hoxb1a transcription. We conclude that TALE factors access promoters during early embryogenesis to poise them for activation but that Hox proteins are required to trigger efficient transcription. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Transcription Factor Map Alignment of Promoter Regions

    PubMed Central

    Blanco, Enrique; Messeguer, Xavier; Smith, Temple F; Guigó, Roderic

    2006-01-01

    We address the problem of comparing and characterizing the promoter regions of genes with similar expression patterns. This remains a challenging problem in sequence analysis, because often the promoter regions of co-expressed genes do not show discernible sequence conservation. In our approach, thus, we have not directly compared the nucleotide sequence of promoters. Instead, we have obtained predictions of transcription factor binding sites, annotated the predicted sites with the labels of the corresponding binding factors, and aligned the resulting sequences of labels—to which we refer here as transcription factor maps (TF-maps). To obtain the global pairwise alignment of two TF-maps, we have adapted an algorithm initially developed to align restriction enzyme maps. We have optimized the parameters of the algorithm in a small, but well-curated, collection of human–mouse orthologous gene pairs. Results in this dataset, as well as in an independent much larger dataset from the CISRED database, indicate that TF-map alignments are able to uncover conserved regulatory elements, which cannot be detected by the typical sequence alignments. PMID:16733547

  1. Agavins Increase Neurotrophic Factors and Decrease Oxidative Stress in the Brains of High-Fat Diet-Induced Obese Mice.

    PubMed

    Franco-Robles, Elena; López, Mercedes G

    2016-08-02

    Fructans obtained from agave, called agavins, have recently shown significant benefits for human health including obesity. Therefore, we evaluated the potential of agavins as neuroprotectors and antioxidants by determining their effect on brain-derived neurotrophic factor (BDNF) and glial-derived neurotrophic factor (GDNF) as well as oxidative brain damage in of obese mice. Male C57BL/6J mice were fed a high-fat diet (HFD) and treated daily with 5% (HFD/A5) or 10% (HFD/A10) of agavins or a standard diet (SD) for 10 weeks. The levels of BDNF and GDNF were evaluated by ELISA. The oxidative stress was evaluated by lipid peroxidation (TBARS) and carbonyls. SCFAs were also measured with GC-FID. Differences between groups were assessed using ANOVA and by Tukey's test considering p < 0.05. The body weight gain and food intake of mice HFD/A10 group were significantly lower than those in the HFD group. Agavins restored BDNF levels in HFD/A5 group and GDNF levels of HFD/A5 and HFD/A10 groups in cerebellum. Interestingly, agavins decreased TBARS levels in HFD/A5 and HFD/A10 groups in the hippocampus, frontal cortex and cerebellum. Carbonyl levels were also lower in HFD/A5 and HFD/A10 for only the hippocampus and cerebellum. It was also found that agavins enhanced SCFAs production in feces. Agavins may act as bioactive ingredients with antioxidant and protective roles in the brain.

  2. Short-term ethanol exposure causes imbalanced neurotrophic factor allocation in the basal forebrain cholinergic system: a novel insight into understanding the initial processes of alcohol addiction.

    PubMed

    Miki, Takanori; Kusaka, Takashi; Yokoyama, Toshifumi; Ohta, Ken-ichi; Suzuki, Shingo; Warita, Katsuhiko; Jamal, Mostofa; Wang, Zhi-Yu; Ueki, Masaaki; Liu, Jun-Qian; Yakura, Tomiko; Tamai, Motoki; Sumitani, Kazunori; Hosomi, Naohisa; Takeuchi, Yoshiki

    2014-02-01

    Alcohol ingestion affects both motor and cognitive functions. One brain system that is influenced by ethanol is the basal forebrain (BF) cholinergic projection system, which projects to diverse neocortical and limbic areas. The BF is associated with memory and cognitive function. Our primary interest is the examination of how regions that receive BF cholinergic projections are influenced by short-term ethanol exposure through alterations in the mRNA levels of neurotrophic factors [nerve growth factor/TrkA, brain-derived neurotrophic factor/TrkB, and glial-derived neurotrophic factor (GDNF)/GDNF family receptor α1]. Male BALB/C mice were fed a liquid diet containing 5 % (v/v) ethanol. Pair-fed control mice were maintained on an identical liquid diet, except that the ethanol was isocalorically substituted with sucrose. Mice exhibiting signs of ethanol intoxication (stages 1-2) were used for real-time reverse transcription-polymerase chain reaction analyses. Among the BF cholinergic projection regions, decreased levels of GDNF mRNA and increased levels of TrkB mRNA were observed in the basal nucleus, and increased levels of TrkB mRNA were observed in the cerebral cortex. There were no significant alterations in the levels of expression of relevant neurotrophic factors in the septal nucleus and hippocampus. Given that neurotrophic factors function in retrograde/anterograde or autocrine/paracrine mechanisms and that BF cholinergic projection regions are neuroanatomically connected, these findings suggested that an imbalanced allocation of neurotrophic factor ligands and receptors is an initial phenomenon in alcohol addiction. The exact mechanisms underlying this phenomenon in the BF cholinergic system are unknown. However, our results provide a novel notion for the understanding of the initial processes in alcohol addiction.

  3. Opposite Smad and chicken ovalbumin upstream promoter transcription factor inputs in the regulation of the collagen VII gene promoter by transforming growth factor-beta.

    PubMed

    Calonge, María Julia; Seoane, Joan; Massagué, Joan

    2004-05-28

    A critical component of the epidermal basement membrane, collagen type VII, is produced by keratinocytes and fibroblasts, and its production is stimulated by the cytokine transforming growth factor-beta (TGF-beta). The gene, COL7A1, is activated by TGF-beta via Smad transcription factors in cooperation with AP1. Here we report a previously unsuspected level of complexity in this regulatory process. We provide evidence that TGF-beta may activate the COL7A1 promoter by two distinct inputs operating through a common region of the promoter. One input is provided by TGF-beta-induced Smad complexes via two Smad binding elements that function redundantly depending on the cell type. The second input is provided by relieving the COL7A1 promoter from chicken ovalbumin upstream promoter transcription factor (COUP-TF)-mediated transcriptional repression. We identified COUP-TFI and -TFII as factors that bind to the TGF-beta-responsive region of the COL7A1 promoter in an expression library screening. COUP-TFs bind to a site between the two Smad binding elements independently of Smad or AP1 and repress the basal and TGF-beta-stimulated activities of this promoter. We provide evidence that endogenous COUP-TF activity represses the COL7A1 promoter. Furthermore, we show that TGF-beta addition causes a rapid and profound down-regulation of COUP-TF expression in keratinocytes and fibroblasts. The results suggest that TGF-beta signaling may exert tight control over COL7A1 by offsetting the balance between opposing Smad and COUP-TFs.

  4. Neurotrophic factors as a therapeutic target for Parkinson's disease.

    PubMed

    Evans, Jonathan R; Barker, Roger A

    2008-04-01

    The search for therapeutic agents that might alter the disease course in Parkinson's disease (PD) is ongoing. One area of particular interest involves neurotrophic factors (NTFs), with those of the glial cell line-derived neurotrophic factor (GDNF) family showing greatest promise. The safety and efficacy of these therapies has recently come into question. Furthermore, many of the key questions pertaining to such therapies, such as the optimal method of delivery, timing of treatment and selection of patients most likely to benefit, remain unanswered. In this review we sought to evaluate the therapeutic potential of NTFs in the treatment of PD. We appraised the evidence provided by both in vitro and in vivo work before proceeding to a critical assessment of the relevant clinical trial data. Relevant literature was identified using a PubMed search of articles published up to October 2007. Search terms included: 'Parkinson's disease', 'Neurotrophic factors', 'BDNF' (Brain-derived neurotrophic factor), 'GDNF' and 'Neurturin'. Original articles were reviewed, and relevant citations from these articles were also appraised. NTF therapy has potential in the treatment of nigrostriatal dysfunction in PD but numerous methodological and safety issues will need to be addressed before this approach can be widely adopted. Furthermore PD is now recognized as being more than a pure motor disorder, and one in which neuronal loss is not just confined to the dopaminergic nigrostriatal system. Non-motor symptomatology in PD is unlikely to benefit from therapies that target only the nigrostriatal system, and this must inform our thinking as to the maximal achievable benefit that NTFs are ever likely to provide.

  5. GFRA1 promotes cisplatin-induced chemoresistance in osteosarcoma by inducing autophagy

    PubMed Central

    Kim, Mihwa; Jung, Ji-Yeon; Choi, Seungho; Lee, Hyunseung; Morales, Liza D.; Koh, Jeong-Tae; Kim, Sun Hun; Choi, Yoo-Duk; Choi, Chan; Slaga, Thomas J.; Kim, Won Jae; Kim, Dae Joon

    2017-01-01

    ABSTRACT Recent progress in chemotherapy has significantly increased its efficacy, yet the development of chemoresistance remains a major drawback. In this study, we show that GFRA1/GFRα1 (GDNF family receptor α 1), contributes to cisplatin-induced chemoresistance by regulating autophagy in osteosarcoma. We demonstrate that cisplatin treatment induced GFRA1 expression in human osteosarcoma cells. Induction of GFRA1 expression reduced cisplatin-induced apoptotic cell death and it significantly increased osteosarcoma cell survival via autophagy. GFRA1 regulates AMPK-dependent autophagy by promoting SRC phosphorylation independent of proto-oncogene RET kinase. Cisplatin-resistant osteosarcoma cells showed NFKB1/NFκB-mediated GFRA1 expression. GFRA1 expression promoted tumor formation and growth in mouse xenograft models and inhibition of autophagy in a GFRA1-expressing xenograft mouse model during cisplatin treatment effectively reduced tumor growth and increased survival. In cisplatin-treated patients, treatment period and metastatic status were associated with GFRA1-mediated autophagy. These findings suggest that GFRA1-mediated autophagy is a promising novel target for overcoming cisplatin resistance in osteosarcoma. PMID:27754745

  6. GFRA1 promotes cisplatin-induced chemoresistance in osteosarcoma by inducing autophagy.

    PubMed

    Kim, Mihwa; Jung, Ji-Yeon; Choi, Seungho; Lee, Hyunseung; Morales, Liza D; Koh, Jeong-Tae; Kim, Sun Hun; Choi, Yoo-Duk; Choi, Chan; Slaga, Thomas J; Kim, Won Jae; Kim, Dae Joon

    2017-01-02

    Recent progress in chemotherapy has significantly increased its efficacy, yet the development of chemoresistance remains a major drawback. In this study, we show that GFRA1/GFRα1 (GDNF family receptor α 1), contributes to cisplatin-induced chemoresistance by regulating autophagy in osteosarcoma. We demonstrate that cisplatin treatment induced GFRA1 expression in human osteosarcoma cells. Induction of GFRA1 expression reduced cisplatin-induced apoptotic cell death and it significantly increased osteosarcoma cell survival via autophagy. GFRA1 regulates AMPK-dependent autophagy by promoting SRC phosphorylation independent of proto-oncogene RET kinase. Cisplatin-resistant osteosarcoma cells showed NFKB1/NFκB-mediated GFRA1 expression. GFRA1 expression promoted tumor formation and growth in mouse xenograft models and inhibition of autophagy in a GFRA1-expressing xenograft mouse model during cisplatin treatment effectively reduced tumor growth and increased survival. In cisplatin-treated patients, treatment period and metastatic status were associated with GFRA1-mediated autophagy. These findings suggest that GFRA1-mediated autophagy is a promising novel target for overcoming cisplatin resistance in osteosarcoma.

  7. Effects of brain-derived and glial cell line-derived neurotrophic factors on startle response and disrupted prepulse inhibition in mice of DBA/2J inbred strain.

    PubMed

    Naumenko, Vladimir S; Bazovkina, Daria V; Morozova, Maryana V; Popova, Nina K

    2013-08-29

    Prepulse inhibition (PPI), the reduction in acoustic startle reflex when it is preceded by weak prepulse stimuli, is a measure of critical to normal brain functioning sensorimotor gating. PPI deficit was shown in a variety of psychiatric disorders including schizophrenia, and in DBA/2J mouse strain. In the current study, we examined the effects of brain-derived (BDNF) and glial cell line-derived (GDNF) neurotrophic factors on acoustic startle response and PPI in DBA/2J mice. It was found that BDNF (300 ng, i.c.v.) significantly increased amplitude of startle response and restored disrupted PPI in 7 days after acute administration. GDNF (800 ng, i.c.v.) did not produce significant alteration neither in amplitude of startle response nor in PPI in DBA/2J mice. The reversal effect of BDNF on PPI deficit was unusually long-lasting: significant increase in PPI was found 1.5 months after single acute BDNF administration. Long-term ameliorative effect BDNF on disrupted PPI suggested the implication of epigenetic mechanism in BDNF action on neurogenesis. BDNF rather than GDNF could be a perspective drug for the treatment of sensorimotor gating impairments. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. In vitro efficacy of a gene-activated nerve guidance conduit incorporating non-viral PEI-pDNA nanoparticles carrying genes encoding for NGF, GDNF and c-Jun.

    PubMed

    Lackington, William A; Raftery, Rosanne M; O'Brien, Fergal J

    2018-06-07

    Despite the success of tissue engineered nerve guidance conduits (NGCs) for the treatment of small peripheral nerve injuries, autografts remain the clinical gold standard for larger injuries. The delivery of neurotrophic factors from conduits might enhance repair for more effective treatment of larger injuries but the efficacy of such systems is dependent on a safe, effective platform for controlled and localised therapeutic delivery. Gene therapy might offer an innovative approach to control the timing, release and level of neurotrophic factor production by directing cells to transiently sustain therapeutic protein production in situ. In this study, a gene-activated NGC was developed by incorporating non-viral polyethyleneimine-plasmid DNA (PEI-pDNA) nanoparticles (N/P 7 ratio, 2μg dose) with the pDNA encoding for nerve growth factor (NGF), glial derived neurotrophic factor (GDNF) or the transcription factor c-Jun. The physicochemical properties of PEI-pDNA nanoparticles, morphology, size and charge, were shown to be suitable for gene delivery and demonstrated high Schwann cell transfection efficiency (60±13%) in vitro. While all three genes showed therapeutic potential in terms of enhancing neurotrophic cytokine production while promoting neurite outgrowth, delivery of the gene encoding for c-Jun showed the greatest capacity to enhance regenerative cellular processes in vitro. Ultimately, this gene-activated NGC construct was shown to be capable of transfecting both Schwann cells (S42 cells) and neuronal cells (PC12 and dorsal root ganglia) in vitro, demonstrating potential for future therapeutic applications in vivo. The basic requirements of biomaterial-based nerve guidance conduits have now been well established and include being able to bridge a nerve injury to support macroscopic guidance between nerve stumps, while being strong enough to withstand longitudinal tension and circumferential compression, in addition to being mechanically sound to facilitate

  9. Factors influencing primary health care professionals' physical activity promotion behaviors: a systematic review.

    PubMed

    Huijg, Johanna M; Gebhardt, Winifred A; Verheijden, Marieke W; van der Zouwe, Nicolette; de Vries, Juriena D; Middelkoop, Barend J C; Crone, Mathilde R

    2015-02-01

    Despite the promising findings related to the efficacy of interventions aimed at promoting physical activity (PA) in primary health care (PHC), the translation of these interventions to PHC practice does not always happen as desired. To help understand why efficacious PHC-based PA interventions are not effectively translated to practice, this study systematically reviewed the literature on factors influencing PHC professionals' PA promotion practices. Literature searches were conducted in Web of Science, PubMed, and PsycINFO for peer-reviewed articles published in English from 1990 onwards. Studies were included that met the following criteria: (1) involving PHC-based PA interventions, and (2) reporting factors influencing PHC professionals' PA promotion behaviors. Two researchers independently screened studies and extracted data. A narrative synthesis using thematic analysis was conducted to identify factors. Of the 4,469 identified articles, 59 were included in the review. Factors were identified by qualitative methods, barrier/facilitator ratings, and the examination of the relationship between factors and PA promotion, and the effectiveness of introduction strategies. Many factors related to the development, delivery, and effects of the innovation, the sociopolitical and organizational culture, resources, and support, patient and PHC professional characteristics, and innovation strategies were identified as potential influences on PHC professionals' PA promotion practices. However, the lack of evidence on the relationship between factors and PA promotion indicated insufficient evidence on PA promotion determinants. This extensive overview of potential factors can inform intervention developers and implementers on which factors may play a role when introducing PA interventions in PHC. Future research should further investigate relationships between factors and PA promotion, which should be guided by qualitative in-depth knowledge on influencing factors.

  10. Cumulative effects of mothers' risk and promotive factors on daughters' disruptive behavior.

    PubMed

    van der Molen, Elsa; Hipwell, Alison E; Vermeiren, Robert; Loeber, Rolf

    2012-07-01

    Little is known about the ways in which the accumulation of maternal factors increases or reduces risk for girls' disruptive behavior during preadolescence. In the current study, maternal risk and promotive factors and the severity of girls' disruptive behavior were assessed annually among girls' ages 7-12 in an urban community sample (N = 2043). Maternal risk and promotive factors were operative at different time points in girls' development. Maternal warmth explained variance in girls' disruptive behavior, even after controlling for maternal risk factors and relevant child and neighborhood factors. In addition, findings supported the cumulative hypothesis that the number of risk factors increased the chance on girls' disruptive behavior disorder (DBD), while the number of promotive factors decreased this probability. Daughters of mothers with a history of Conduct Disorder (CD) were exposed to more risk factors and fewer promotive factors compared to daughters of mothers without prior CD. The identification of malleable maternal factors that can serve as targets for intervention has important implications for intergenerational intervention. Cumulative effects show that the focus of prevention efforts should not be on single factors, but on multiple factors associated with girls' disruptive behavior.

  11. Cumulative Effects of Mothers’ Risk and Promotive Factors on Daughters’ Disruptive Behavior

    PubMed Central

    Hipwell, Alison E.; Vermeiren, Robert; Loeber, Rolf

    2012-01-01

    Little is known about the ways in which the accumulation of maternal factors increases or reduces risk for girls’ disruptive behavior during preadolescence. In the current study, maternal risk and promotive factors and the severity of girls’ disruptive behavior were assessed annually among girls’ ages 7–12 in an urban community sample (N=2043). Maternal risk and promotive factors were operative at different time points in girls’ development. Maternal warmth explained variance in girls’ disruptive behavior, even after controlling for maternal risk factors and relevant child and neighborhood factors. In addition, findings supported the cumulative hypothesis that the number of risk factors increased the chance on girls’ disruptive behavior disorder (DBD), while the number of promotive factors decreased this probability. Daughters of mothers with a history of Conduct Disorder (CD) were exposed to more risk factors and fewer promotive factors compared to daughters of mothers without prior CD. The identification of malleable maternal factors that can serve as targets for intervention has important implications for intergenerational intervention. Cumulative effects show that the focus of prevention efforts should not be on single factors, but on multiple factors associated with girls’ disruptive behavior. PMID:22127641

  12. Promotive Factors and Psychosocial Adjustment among Urban Youth

    ERIC Educational Resources Information Center

    O'Neal, LaToya J.; Cotten, Shelia R.

    2016-01-01

    Background: Urban youth are often exposed to compounded risk factors which make them more vulnerable to negative outcomes. Research examining promotive factors which may reduce vulnerabilities to poor psychosocial adjustment among this population is limited. Objective: The current study addresses this limitation by examining the impact of…

  13. Nuclear factor ETF specifically stimulates transcription from promoters without a TATA box.

    PubMed

    Kageyama, R; Merlino, G T; Pastan, I

    1989-09-15

    Transcription factor ETF stimulates the expression of the epidermal growth factor receptor (EGFR) gene which does not have a TATA box in the promoter region. Here, we show that ETF recognizes various GC-rich sequences including stretches of deoxycytidine or deoxyguanosine residues and GC boxes with similar affinities. ETF also binds to TATA boxes but with a lower affinity. ETF stimulated in vitro transcription from several promoters without TATA boxes but had little or no effect on TATA box-containing promoters even though they had strong ETF-binding sites. These inactive ETF-binding sites became functional when placed upstream of the EGFR promoter whose own ETF-binding sites were removed. Furthermore, when a TATA box was introduced into the EGFR promoter, the responsiveness to ETF was abolished. These results indicate that ETF is a specific transcription factor for promoters which do not contain TATA elements.

  14. [Health knowledge, health promoting behavior and factors influencing health promoting behavior of north korean defectors in South Korea].

    PubMed

    Choe, Myoung Ae; Yi, Myungsun; Choi, Jung An; Shin, Gisoo

    2012-10-01

    The purpose of this study was to identify health knowledge, health promoting behavior and factors influencing health promoting behavior of North Korean defectors in South Korea. Participants in this study were 410 North Korean defectors, over 20 years of age residing in Seoul. They were recruited by snowball sampling. Data were collected from April to June, 2010. Health knowledge, health promoting behavior, self-efficacy, perceived barriers to health promoting behavior and social support were measured by structured questionnaires, and perceived physical and mental health status were measured by one item with 10-point numeric rating scale. The data were analyzed using t-test, ANOVA, and multiple regression. Health knowledge, health promoting behavior, and perceived barriers to health promoting behavior were moderate while self-efficacy and social support were high. Factors influencing health promoting behavior of the participants were found to be self-efficacy, social support and perceived barrier to health promoting behavior. The results of this study indicate that nursing intervention programs enhancing self-efficacy, social support and reducing perceived barriers to health promoting behavior need to be developed for North Korean defectors in South Korea.

  15. NEUROTROPHIN SELECTIVITY IN ORGANIZING TOPOGRAPHIC REGENERATION OF NOCICEPTIVE AFFERENTS

    PubMed Central

    Kelamangalath, Lakshmi; Tang, Xiaoqing; Bezik, Kathleen; Sterling, Noelle; Son, Young-Jin; Smith, George M.

    2015-01-01

    Neurotrophins represent some of the best candidates to enhance regeneration. In the current study, we investigated the effects of artemin, a member of the glial derived neurotrophic factor (GDNF) family, on sensory axon regeneration following a lumbar dorsal root injury and compared these effects with that observed after either NGF or GDNF expression in the rat spinal cord. Unlike previously published data, artemin failed to induce regeneration of large-diameter myelinated sensory afferents when expressed within either the spinal cord or DRG. However, artemin or NGF induced regeneration of calcitonin gene related peptide positive (CGRP+) axons only when expressed within the spinal cord. Accordingly, artemin or NGF enhanced recovery of only nociceptive behavior and showed a cFos distribution similar to the topography of regenerating axons. Artemin and GDNF signaling requires binding to different co-receptors (GFRα3 or GFRα1, respectively) prior to binding to the signaling receptor, cRet. Approximately 70% of DRG neurons express cRet, but only 35% express either co-receptor. To enhance artemin-induced regeneration, we co-expressed artemin with either GFRα3 or GDNF. Co-expression of artemin and GFRα3 only slightly enhanced regeneration of IB4+ non-peptidergic nociceptive axons, but not myelinated axons. Interestingly, this co-expression also disrupted the ability of artemin to produce topographic targeting and lead to significant increases in cFos immunoreactivity within the deep dorsal laminae. This study failed to demonstrate artemin-induced regeneration of myelinated axons, even with co-expression of GFR-α3, which only promoted mistargeted regeneration. PMID:26054884

  16. Neurotrophin selectivity in organizing topographic regeneration of nociceptive afferents.

    PubMed

    Kelamangalath, Lakshmi; Tang, Xiaoqing; Bezik, Kathleen; Sterling, Noelle; Son, Young-Jin; Smith, George M

    2015-09-01

    Neurotrophins represent some of the best candidates to enhance regeneration. In the current study, we investigated the effects of artemin, a member of the glial derived neurotrophic factor (GDNF) family, on sensory axon regeneration following a lumbar dorsal root injury and compared these effects with that observed after either NGF or GDNF expression in the rat spinal cord. Unlike previously published data, artemin failed to induce regeneration of large-diameter myelinated sensory afferents when expressed within either the spinal cord or DRG. However, artemin or NGF induced regeneration of calcitonin gene related peptide positive (CGRP(+)) axons only when expressed within the spinal cord. Accordingly, artemin or NGF enhanced recovery of only nociceptive behavior and showed a cFos distribution similar to the topography of regenerating axons. Artemin and GDNF signaling requires binding to different co-receptors (GFRα3 or GFRα1, respectively) prior to binding to the signaling receptor, cRet. Approximately 70% of DRG neurons express cRet, but only 35% express either co-receptor. To enhance artemin-induced regeneration, we co-expressed artemin with either GFRα3 or GDNF. Co-expression of artemin and GFRα3 only slightly enhanced regeneration of IB4(+) non-peptidergic nociceptive axons, but not myelinated axons. Interestingly, this co-expression also disrupted the ability of artemin to produce topographic targeting and lead to significant increases in cFos immunoreactivity within the deep dorsal laminae. This study failed to demonstrate artemin-induced regeneration of myelinated axons, even with co-expression of GFRα3, which only promoted mistargeted regeneration. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Characterization of the stability and bio-functionality of tethered proteins on bioengineered scaffolds: implications for stem cell biology and tissue repair.

    PubMed

    Wang, Ting-Yi; Bruggeman, Kiara A F; Sheean, Rebecca K; Turner, Bradley J; Nisbet, David R; Parish, Clare L

    2014-05-23

    Various engineering applications have been utilized to deliver molecules and compounds in both innate and biological settings. In the context of biological applications, the timely delivery of molecules can be critical for cellular and organ function. As such, previous studies have demonstrated the superiority of long-term protein delivery, by way of protein tethering onto bioengineered scaffolds, compared with conventional delivery of soluble protein in vitro and in vivo. Despite such benefits little knowledge exists regarding the stability, release kinetics, longevity, activation of intracellular pathway, and functionality of these proteins over time. By way of example, here we examined the stability, degradation and functionality of a protein, glial-derived neurotrophic factor (GDNF), which is known to influence neuronal survival, differentiation, and neurite morphogenesis. Enzyme-linked immunosorbent assays (ELISA) revealed that GDNF, covalently tethered onto polycaprolactone (PCL) electrospun nanofibrous scaffolds, remained present on the scaffold surface for 120 days, with no evidence of protein leaching or degradation. The tethered GDNF protein remained functional and capable of activating downstream signaling cascades, as revealed by its capacity to phosphorylate intracellular Erk in a neural cell line. Furthermore, immobilization of GDNF protein promoted cell survival and differentiation in culture at both 3 and 7 days, further validating prolonged functionality of the protein, well beyond the minutes to hours timeframe observed for soluble proteins under the same culture conditions. This study provides important evidence of the stability and functionality kinetics of tethered molecules. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Targeting the Neural Microenvironment in Prostate Cancer

    DTIC Science & Technology

    2016-10-01

    neurotrophic factor (GDNF), which is expressed by peripheral nerves. GDNF binds to RET, a receptor tyrosine kinase, in conjunction with its co-receptor...kinase, in conjunction with its co- receptor GFRα1 and activates cellular signaling. Studies in pancreatic cancer strongly implicate RET signaling as

  19. Embryogenesis-promoting factors in rat serum.

    PubMed

    Katoh, M; Kimura, R; Shoji, R

    1998-06-15

    Regarding whole rat embryo cultures in vitro, rat serum as a culture medium is known to support the normal growth of rat embryos in the organogenesis phase. The purpose of the present study was to isolate the embryogenesis-promoting factors from rat serum as a first step in the development of a defined serum-free medium for a whole embryo culture system. Pooled rat serum after heat inactivation was fractionated into three major peaks (frA, containing a region of void volume, frB, and frC) by gel filtration. The 9.5-day rat embryos that were cultivated for 48 hr in essential salt medium containing frB (with a molecular size range of 100-500 kDa) revealed normal growth. Three proteins (27 kDa, 76 kDa, and 190 kDa) that had the embryogenesis-promoting effects were isolated from 3-hr delayed centrifuged rat serum by the ion exchange chromatography. The 76-kDa protein was found to be rat transferrin by immunoblotting. The 27-kDa protein was identified as apo-AI (the major apoprotein of high-density lipoprotein) by immunoblotting. High-density lipoprotein obtained from pooled rat serum by a NaBr density gradient ultracentrifugation was found to have a positive effect on embryogenesis. The 10-kDa protein was also identified as alpha 1-inhibitor 3 by immunoblotting. In addition, the embryogenesis-promoting effect of the fraction containing 27-kDa and 190-kDa proteins declined within a short period of storage at -20 degrees C. This decrease was countered by supplementing its fraction (D-2) with albumin isolated from rat serum. These results in the present study suggest that transferrin, high-density lipoprotein, and alpha 1-inhibitor 3 in rat serum may be embryogenesis-promoting factors, and that albumin appeared to play a role in the embryogenesis of rat embryos in whole embryo cultures.

  20. Characterization of Transcription from TATA-Less Promoters: Identification of a New Core Promoter Element XCPE2 and Analysis of Factor Requirements

    PubMed Central

    Anish, Ramakrishnan; Hossain, Mohammad B.; Jacobson, Raymond H.; Takada, Shinako

    2009-01-01

    Background More than 80% of mammalian protein-coding genes are driven by TATA-less promoters which often show multiple transcriptional start sites (TSSs). However, little is known about the core promoter DNA sequences or mechanisms of transcriptional initiation for this class of promoters. Methodology/Principal Findings Here we identify a new core promoter element XCPE2 (X core promoter element 2) (consensus sequence: A/C/G-C-C/T-C-G/A-T-T-G/A-C-C/A+1-C/T) that can direct specific transcription from the second TSS of hepatitis B virus X gene mRNA. XCPE2 sequences can also be found in human promoter regions and typically appear to drive one of the start sites within multiple TSS-containing TATA-less promoters. To gain insight into mechanisms of transcriptional initiation from this class of promoters, we examined requirements of several general transcription factors by in vitro transcription experiments using immunodepleted nuclear extracts and purified factors. Our results show that XCPE2-driven transcription uses at least TFIIB, either TFIID or free TBP, RNA polymerase II (RNA pol II) and the MED26-containing mediator complex but not Gcn5. Therefore, XCPE2-driven transcription can be carried out by a mechanism which differs from previously described TAF-dependent mechanisms for initiator (Inr)- or downstream promoter element (DPE)-containing promoters, the TBP- and SAGA (Spt-Ada-Gcn5-acetyltransferase)-dependent mechanism for yeast TATA-containing promoters, or the TFTC (TBP-free-TAF-containing complex)-dependent mechanism for certain Inr-containing TATA-less promoters. EMSA assays using XCPE2 promoter and purified factors further suggest that XCPE2 promoter recognition requires a set of factors different from those for TATA box, Inr, or DPE promoter recognition. Conclusions/Significance We identified a new core promoter element XCPE2 that are found in multiple TSS-containing TATA-less promoters. Mechanisms of promoter recognition and transcriptional initiation for

  1. Protection of dopaminergic neurons by electroconvulsive shock in an animal model of Parkinson's disease.

    PubMed

    Anastasia, Agustín; de Erausquin, Gabriel A; Wojnacki, José; Mascó, Daniel H

    2007-11-01

    Electroconvulsive shock (ECS) improves motor function in Parkinson's disease. In rats, ECS stimulates the expression of various factors some of which have been proposed to exert neuroprotective actions. We have investigated the effects of ECS on 6-hydroxydopamine (6-OHDA)-injected rats. Three weeks after a unilateral administration of 6-OHDA, 85-95% nigral dopaminergic neurons are lost. Chronic ECS prevented this cell loss, protect the nigrostriatal pathway (assessed by FloroGold retrograde labeling) and reduce motor impairment in 6-OHDA-treated animals. Injection of 6-OHDA caused loss of expression of glial cell-line derived neurotrophic factor (GDNF) in the substantia nigra. Chronic ECS completely prevented this loss of GDNF expression in 6-OHDA-treated animals. We also found that protected dopaminergic neurons co-express GDNF receptor proteins. These results strongly suggest that endogenous changes in GDNF expression may participate in the neuroprotective mechanism of ECS against 6-OHDA induced toxicity.

  2. Risk and promotive factors related to depressive symptoms among Japanese youth.

    PubMed

    Laser, Julie; Luster, Tom; Oshio, Toko

    2007-10-01

    Symptoms of depression include feelings of sadness, loneliness, suicidal ideation, and self-dislike. Adolescent depression is viewed as a problem in Japan, but there is little research on the correlates of depression in Japanese youth. Therefore, the purpose of this study was to investigate the prevalence of depression in Japanese youth and to examine correlates of depression using a risk and promotive factor framework. This study examined the symptoms of depression among 802 Japanese youth attending postsecondary schools in the Sapporo area. Separate analyses were conducted for males and females to determine whether the importance of risk and promotive factors varied by gender. The results showed that many factors that had been linked to depressive symptoms in Western samples were predictive of depressive symptoms in Japanese youth. The risk and promotive factors accounted for 50% and 59% of the variance in depressive symptoms for the female and male subsamples, respectively.

  3. Melatonin antagonizes interleukin-18-mediated inhibition on neural stem cell proliferation and differentiation.

    PubMed

    Li, Zheng; Li, Xingye; Chan, Matthew T V; Wu, William Ka Kei; Tan, DunXian; Shen, Jianxiong

    2017-09-01

    Neural stem cells (NSCs) are self-renewing, pluripotent and undifferentiated cells which have the potential to differentiate into neurons, oligodendrocytes and astrocytes. NSC therapy for tissue regeneration, thus, gains popularity. However, the low survivals rate of the transplanted cell impedes its utilities. In this study, we tested whether melatonin, a potent antioxidant, could promote the NSC proliferation and neuronal differentiation, especially, in the presence of the pro-inflammatory cytokine interleukin-18 (IL-18). Our results showed that melatonin per se indeed exhibited beneficial effects on NSCs and IL-18 inhibited NSC proliferation, neurosphere formation and their differentiation into neurons. All inhibitory effects of IL-18 on NSCs were significantly reduced by melatonin treatment. Moreover, melatonin application increased the production of both brain-derived and glial cell-derived neurotrophic factors (BDNF, GDNF) in IL-18-stimulated NSCs. It was observed that inhibition of BDNF or GDNF hindered the protective effects of melatonin on NSCs. A potentially protective mechanism of melatonin on the inhibition of NSC's differentiation caused IL-18 may attribute to the up-regulation of these two major neurotrophic factors, BNDF and GNDF. The findings indicate that melatonin may play an important role promoting the survival of NSCs in neuroinflammatory diseases. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  4. The Relevant Factors in Promoting Reading Activities in Elementary Schools

    ERIC Educational Resources Information Center

    Huang, Han-Chen; Tsai, Yao-Hsu; Huang, Shih-Hsiang

    2015-01-01

    In order to help students absorb knowledge, schools often conduct reading activities. Thorough planning and strategies, however, are needed to insure the effect of reading promotions, and make them a deeply-rooted part of life. This study adopted the analytic hierarchy process (AHP) to discuss the relevant factors in promoting reading activities…

  5. A combinatorial approach to synthetic transcription factor-promoter combinations for yeast strain engineering

    DOE PAGES

    Dossani, Zain Y.; Reider Apel, Amanda; Szmidt-Middleton, Heather; ...

    2017-10-30

    Despite the need for inducible promoters in strain development efforts, the majority of engineering in Saccharomyces cerevisiae continues to rely on a few constitutively active or inducible promoters. Building on advances that use the modular nature of both transcription factors and promoter regions, we have built a library of hybrid promoters that are regulated by a synthetic transcription factor. The hybrid promoters consist of native S. cerevisiae promoters, in which the operator regions have been replaced with sequences that are recognized by the bacterial LexA DNA binding protein. Correspondingly, the synthetic transcription factor (TF) consists of the DNA binding domainmore » of the LexA protein, fused with the human estrogen binding domain and the viral activator domain, VP16. The resulting system with a bacterial DNA binding domain avoids the transcription of native S. cerevisiae genes, and the hybrid promoters can be induced using estradiol, a compound with no detectable impact on S. cerevisiae physiology. Using combinations of one, two or three operator sequence repeats and a set of native S. cerevisiae promoters, we obtained a series of hybrid promoters that can be induced to different levels, using the same synthetic TF and a given estradiol. Finally, this set of promoters, in combination with our synthetic TF, has the potential to regulate numerous genes or pathways simultaneously, to multiple desired levels, in a single strain.« less

  6. A combinatorial approach to synthetic transcription factor-promoter combinations for yeast strain engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dossani, Zain Y.; Reider Apel, Amanda; Szmidt-Middleton, Heather

    Despite the need for inducible promoters in strain development efforts, the majority of engineering in Saccharomyces cerevisiae continues to rely on a few constitutively active or inducible promoters. Building on advances that use the modular nature of both transcription factors and promoter regions, we have built a library of hybrid promoters that are regulated by a synthetic transcription factor. The hybrid promoters consist of native S. cerevisiae promoters, in which the operator regions have been replaced with sequences that are recognized by the bacterial LexA DNA binding protein. Correspondingly, the synthetic transcription factor (TF) consists of the DNA binding domainmore » of the LexA protein, fused with the human estrogen binding domain and the viral activator domain, VP16. The resulting system with a bacterial DNA binding domain avoids the transcription of native S. cerevisiae genes, and the hybrid promoters can be induced using estradiol, a compound with no detectable impact on S. cerevisiae physiology. Using combinations of one, two or three operator sequence repeats and a set of native S. cerevisiae promoters, we obtained a series of hybrid promoters that can be induced to different levels, using the same synthetic TF and a given estradiol. Finally, this set of promoters, in combination with our synthetic TF, has the potential to regulate numerous genes or pathways simultaneously, to multiple desired levels, in a single strain.« less

  7. Absence of Ret Signaling in Mice Causes Progressive and Late Degeneration of the Nigrostriatal System

    PubMed Central

    Kramer, Edgar R; Aron, Liviu; Ramakers, Geert M. J; Seitz, Sabine; Zhuang, Xiaoxi; Beyer, Klaus; Smidt, Marten P; Klein, Rüdiger

    2007-01-01

    Support of ageing neurons by endogenous neurotrophic factors such as glial cell line–derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) may determine whether the neurons resist or succumb to neurodegeneration. GDNF has been tested in clinical trials for the treatment of Parkinson disease (PD), a common neurodegenerative disorder characterized by the loss of midbrain dopaminergic (DA) neurons. BDNF modulates nigrostriatal functions and rescues DA neurons in PD animal models. The physiological roles of GDNF and BDNF signaling in the adult nigrostriatal DA system are unknown. We generated mice with regionally selective ablations of the genes encoding the receptors for GDNF (Ret) and BDNF (TrkB). We find that Ret, but not TrkB, ablation causes progressive and adult-onset loss of DA neurons specifically in the substantia nigra pars compacta, degeneration of DA nerve terminals in striatum, and pronounced glial activation. These findings establish Ret as a critical regulator of long-term maintenance of the nigrostriatal DA system and suggest conditional Ret mutants as useful tools for gaining insights into the molecular mechanisms involved in the development of PD. PMID:17298183

  8. Fibroblast Growth Factors and Vascular Endothelial Growth Factor Promote Cardiac Reprogramming under Defined Conditions

    PubMed Central

    Yamakawa, Hiroyuki; Muraoka, Naoto; Miyamoto, Kazutaka; Sadahiro, Taketaro; Isomi, Mari; Haginiwa, Sho; Kojima, Hidenori; Umei, Tomohiko; Akiyama, Mizuha; Kuishi, Yuki; Kurokawa, Junko; Furukawa, Tetsushi; Fukuda, Keiichi; Ieda, Masaki

    2015-01-01

    Summary Fibroblasts can be directly reprogrammed into cardiomyocyte-like cells (iCMs) by overexpression of cardiac transcription factors, including Gata4, Mef2c, and Tbx5; however, this process is inefficient under serum-based culture conditions, in which conversion of partially reprogrammed cells into fully reprogrammed functional iCMs has been a major hurdle. Here, we report that a combination of fibroblast growth factor (FGF) 2, FGF10, and vascular endothelial growth factor (VEGF), termed FFV, promoted cardiac reprogramming under defined serum-free conditions, increasing spontaneously beating iCMs by 100-fold compared with those under conventional serum-based conditions. Mechanistically, FFV activated multiple cardiac transcriptional regulators and converted partially reprogrammed cells into functional iCMs through the p38 mitogen-activated protein kinase and phosphoinositol 3-kinase/AKT pathways. Moreover, FFV enabled cardiac reprogramming with only Mef2c and Tbx5 through the induction of cardiac reprogramming factors, including Gata4. Thus, defined culture conditions promoted the quality of cardiac reprogramming, and this finding provides new insight into the mechanism of cardiac reprogramming. PMID:26626177

  9. Promoter Recognition by Extracytoplasmic Function σ Factors: Analyzing DNA and Protein Interaction Motifs

    PubMed Central

    Guzina, Jelena

    2016-01-01

    ABSTRACT Extracytoplasmic function (ECF) σ factors are the largest and the most diverse group of alternative σ factors, but their mechanisms of transcription are poorly studied. This subfamily is considered to exhibit a rigid promoter structure and an absence of mixing and matching; both −35 and −10 elements are considered necessary for initiating transcription. This paradigm, however, is based on very limited data, which bias the analysis of diverse ECF σ subgroups. Here we investigate DNA and protein recognition motifs involved in ECF σ factor transcription by a computational analysis of canonical ECF subfamily members, much less studied ECF σ subgroups, and the group outliers, obtained from recently sequenced bacteriophages. The analysis identifies an extended −10 element in promoters for phage ECF σ factors; a comparison with bacterial σ factors points to a putative 6-amino-acid motif just C-terminal of domain σ2, which is responsible for the interaction with the identified extension of the −10 element. Interestingly, a similar protein motif is found C-terminal of domain σ2 in canonical ECF σ factors, at a position where it is expected to interact with a conserved motif further upstream of the −10 element. Moreover, the phiEco32 ECF σ factor lacks a recognizable −35 element and σ4 domain, which we identify in a homologous phage, 7-11, indicating that the extended −10 element can compensate for the lack of −35 element interactions. Overall, the results reveal greater flexibility in promoter recognition by ECF σ factors than previously recognized and raise the possibility that mixing and matching also apply to this group, a notion that remains to be biochemically tested. IMPORTANCE ECF σ factors are the most numerous group of alternative σ factors but have been little studied. Their promoter recognition mechanisms are obscured by the large diversity within the ECF σ factor group and the limited similarity with the well

  10. Natural Killer Cells Promote Fetal Development through the Secretion of Growth-Promoting Factors.

    PubMed

    Fu, Binqing; Zhou, Yonggang; Ni, Xiang; Tong, Xianhong; Xu, Xiuxiu; Dong, Zhongjun; Sun, Rui; Tian, Zhigang; Wei, Haiming

    2017-12-19

    Natural killer (NK) cells are present in large populations at the maternal-fetal interface during early pregnancy. However, the role of NK cells in fetal growth is unclear. Here, we have identified a CD49a + Eomes + subset of NK cells that secreted growth-promoting factors (GPFs), including pleiotrophin and osteoglycin, in both humans and mice. The crosstalk between HLA-G and ILT2 served as a stimulus for GPF-secreting function of this NK cell subset. Decreases in this GPF-secreting NK cell subset impaired fetal development, resulting in fetal growth restriction. The transcription factor Nfil3, but not T-bet, affected the function and the number of this decidual NK cell subset. Adoptive transfer of induced CD49a + Eomes + NK cells reversed impaired fetal growth and rebuilt an appropriate local microenvironment. These findings reveal properties of NK cells in promoting fetal growth. In addition, this research proposes approaches for therapeutic administration of NK cells in order to reverse restricted nourishments within the uterine microenvironment during early pregnancy. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Salidroside promotes peripheral nerve regeneration based on tissue engineering strategy using Schwann cells and PLGA: in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Liu, Hui; Lv, Peizhen; Zhu, Yongjia; Wu, Huayu; Zhang, Kun; Xu, Fuben; Zheng, Li; Zhao, Jinmin

    2017-01-01

    Salidriside (SDS), a phenylpropanoid glycoside derived from Rhodiola rosea L, has been shown to be neuroprotective in many studies, which may be promising in nerve recovery. In this study, the neuroprotective effects of SDS on engineered nerve constructed by Schwann cells (SCs) and Poly (lactic-co-glycolic acid) (PLGA) were studied in vitro. We further investigated the effect of combinational therapy of SDS and PLGA/SCs based tissue engineering on peripheral nerve regeneration based on the rat model of nerve injury by sciatic transection. The results showed that SDS dramatically enhanced the proliferation and function of SCs. The underlying mechanism may be that SDS affects SCs growth through the modulation of neurotrophic factors (BDNF, GDNF and CNTF). 12 weeks after implantation with a 12 mm gap of sciatic nerve injury, SDS-PLGA/SCs achieved satisfying outcomes of nerve regeneration, as evidenced by morphological and functional improvements upon therapy by SDS, PLGA/SCs or direct suture group assessed by sciatic function index, nerve conduction assay, HE staining and immunohistochemical analysis. Our results demonstrated the significant role of introducing SDS into neural tissue engineering to promote nerve regeneration.

  12. Inhibitory Effect of Memantine on Streptozotocin-Induced Insulin Receptor Dysfunction, Neuroinflammation, Amyloidogenesis, and Neurotrophic Factor Decline in Astrocytes.

    PubMed

    Rajasekar, N; Nath, Chandishwar; Hanif, Kashif; Shukla, Rakesh

    2016-12-01

    Our earlier studies showed that insulin receptor (IR) dysfunction along with neuroinflammation and amyloidogenesis played a major role in streptozotocin (STZ)-induced toxicity in astrocytes. N-methyl-D-aspartate (NMDA) receptor antagonist-memantine shows beneficial effects in Alzheimer's disease (AD) pathology. However, the protective molecular and cellular mechanism of memantine in astrocytes is not properly understood. Therefore, the present study was undertaken to investigate the effect of memantine on insulin receptors, neurotrophic factors, neuroinflammation, and amyloidogenesis in STZ-treated astrocytes. STZ (100 μM) treatment for 24 h in astrocytes resulted significant decrease in brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), and insulin-degrading enzyme (IDE) expression in astrocytes. Treatment with memantine (1-10 μM) improved STZ-induced neurotrophic factor decline (BDNF, GDNF) along with IR dysfunction as evidenced by a significant increase in IR protein expression, phosphorylation of IRS-1, Akt, and GSK-3 α/β in astrocytes. Further, memantine attenuated STZ-induced amyloid precursor protein (APP), β-site APP-cleaving enzyme-1 and amyloid-β 1-42 expression and restored IDE expression in astrocytes. In addition, memantine also displays protective effects against STZ-induced astrocyte activation showed by reduction of inflammatory markers, nuclear factor kappa-B translocation, glial fibrillary acidic protein, cyclooxygenase-2, tumor necrosis factor-α level, and oxidative-nitrostative stress. The results suggest that besides the NMDA receptor antagonisic activity, effect on astroglial IR and neurotrophic factor may also be an important factor in the beneficial effect of memantine in AD pathology. Graphical Abstract Novel neuroprotective mechanisms of memenatine in streptozotocin-induced toxicity in astrocytes.

  13. c-RET Molecule in Malignant Melanoma from Oncogenic RET-Carrying Transgenic Mice and Human Cell Lines

    PubMed Central

    Takeda, Kozue; Iida, Machiko; Kumasaka, Mayuko; Matsumoto, Yoshinari; Kato, Masashi

    2010-01-01

    Malignant melanoma is one of the most aggressive cancers and its incidence worldwide has been increasing at a greater rate than that of any other cancer. We previously reported that constitutively activated RFP-RET-carrying transgenic mice (RET-mice) spontaneously develop malignant melanoma. In this study, we showed that expression levels of intrinsic c-Ret, glial cell line-derived neurotrophic factor (Gdnf) and Gdnf receptor alpha 1 (Gfra1) transcripts in malignant melanomas from RET-transgenic mice were significantly upregulated compared with those in benign melanocytic tumors. These results suggest that not only introduced oncogenic RET but also intrinsic c-Ret/Gdnf are involved in murine melanomagenesis in RET-mice. We then showed that c-RET and GDNF transcript expression levels in human malignant melanoma cell lines (HM3KO and MNT-1) were higher than those in primary cultured normal human epithelial melanocytes (NHEM), while GFRa1 transcript expression levels were comparable among NHEM, HM3KO and MNT-1. We next showed c-RET and GFRa1 protein expression in HM3KO cells and GDNF-mediated increased levels of their phosphorylated c-RET tyrosine kinase and signal transduction molecules (ERK and AKT) sited potentially downstream of c-RET. Taken together with the finding of augmented proliferation of HM3KO cells after GDNF stimulation, our results suggest that GDNF-mediated c-RET kinase activation is associated with the pathogenesis of malignant melanoma. PMID:20422010

  14. c-RET molecule in malignant melanoma from oncogenic RET-carrying transgenic mice and human cell lines.

    PubMed

    Ohshima, Yuichiro; Yajima, Ichiro; Takeda, Kozue; Iida, Machiko; Kumasaka, Mayuko; Matsumoto, Yoshinari; Kato, Masashi

    2010-04-21

    Malignant melanoma is one of the most aggressive cancers and its incidence worldwide has been increasing at a greater rate than that of any other cancer. We previously reported that constitutively activated RFP-RET-carrying transgenic mice (RET-mice) spontaneously develop malignant melanoma. In this study, we showed that expression levels of intrinsic c-Ret, glial cell line-derived neurotrophic factor (Gdnf) and Gdnf receptor alpha 1 (Gfra1) transcripts in malignant melanomas from RET-transgenic mice were significantly upregulated compared with those in benign melanocytic tumors. These results suggest that not only introduced oncogenic RET but also intrinsic c-Ret/Gdnf are involved in murine melanomagenesis in RET-mice. We then showed that c-RET and GDNF transcript expression levels in human malignant melanoma cell lines (HM3KO and MNT-1) were higher than those in primary cultured normal human epithelial melanocytes (NHEM), while GFRa1 transcript expression levels were comparable among NHEM, HM3KO and MNT-1. We next showed c-RET and GFRa1 protein expression in HM3KO cells and GDNF-mediated increased levels of their phosphorylated c-RET tyrosine kinase and signal transduction molecules (ERK and AKT) sited potentially downstream of c-RET. Taken together with the finding of augmented proliferation of HM3KO cells after GDNF stimulation, our results suggest that GDNF-mediated c-RET kinase activation is associated with the pathogenesis of malignant melanoma.

  15. Motivating factors for small and midsized businesses to implement worksite health promotion.

    PubMed

    Witt, Laurel B; Olsen, Delane; Ablah, Elizabeth

    2013-11-01

    This study explores the decision-making process, including motivating factors, for small and midsized businesses in the Midwest to implement health promotion initiatives. This a replication of a study conducted in the Pacific Northwest. Semistructured qualitative interviews were conducted with key informants from 12 Midwestern metropolitan employers with fewer than 1,000 employees. Informants were interviewed regarding their companies' policies and practices around workplace health promotion programming adoption and valuation. Workplace health promotion adoption at these small and midsized businesses was motivated by three goals: to lower health care costs, to address human relations objectives, and to improve productivity. Low upfront cost was the most frequently considered criterion in choosing which workplace health promotion program to offer. Barriers to implementation included lack of employee buy-in, prohibitive costs, and personnel or time constraints. Aids to implementation included employee buy-in and affordability. This study suggests that cost considerations predominate in the workplace health promotion decision-making process at small to midsized businesses. Furthermore, employee buy-in cannot be underestimated as a factor in successful program implementation or longevity. Employees, along with executives and human resources management, must be appropriately targeted by health promotion practitioners in workplace health promotion efforts.

  16. Host factors that promote retrotransposon integration are similar in distantly related eukaryotes

    PubMed Central

    Rai, Sudhir Kumar; Sangesland, Maya; Lee, Michael; Esnault, Caroline; Cui, Yujin; Chatterjee, Atreyi Ghatak

    2017-01-01

    Retroviruses and Long Terminal Repeat (LTR)-retrotransposons have distinct patterns of integration sites. The oncogenic potential of retrovirus-based vectors used in gene therapy is dependent on the selection of integration sites associated with promoters. The LTR-retrotransposon Tf1 of Schizosaccharomyces pombe is studied as a model for oncogenic retroviruses because it integrates into the promoters of stress response genes. Although integrases (INs) encoded by retroviruses and LTR-retrotransposons are responsible for catalyzing the insertion of cDNA into the host genome, it is thought that distinct host factors are required for the efficiency and specificity of integration. We tested this hypothesis with a genome-wide screen of host factors that promote Tf1 integration. By combining an assay for transposition with a genetic assay that measures cDNA recombination we could identify factors that contribute differentially to integration. We utilized this assay to test a collection of 3,004 S. pombe strains with single gene deletions. Using these screens and immunoblot measures of Tf1 proteins, we identified a total of 61 genes that promote integration. The candidate integration factors participate in a range of processes including nuclear transport, transcription, mRNA processing, vesicle transport, chromatin structure and DNA repair. Two candidates, Rhp18 and the NineTeen complex were tested in two-hybrid assays and were found to interact with Tf1 IN. Surprisingly, a number of pathways we identified were found previously to promote integration of the LTR-retrotransposons Ty1 and Ty3 in Saccharomyces cerevisiae, indicating the contribution of host factors to integration are common in distantly related organisms. The DNA repair factors are of particular interest because they may identify the pathways that repair the single stranded gaps flanking the sites of strand transfer following integration of LTR retroelements. PMID:29232693

  17. Host factors that promote retrotransposon integration are similar in distantly related eukaryotes.

    PubMed

    Rai, Sudhir Kumar; Sangesland, Maya; Lee, Michael; Esnault, Caroline; Cui, Yujin; Chatterjee, Atreyi Ghatak; Levin, Henry L

    2017-12-01

    Retroviruses and Long Terminal Repeat (LTR)-retrotransposons have distinct patterns of integration sites. The oncogenic potential of retrovirus-based vectors used in gene therapy is dependent on the selection of integration sites associated with promoters. The LTR-retrotransposon Tf1 of Schizosaccharomyces pombe is studied as a model for oncogenic retroviruses because it integrates into the promoters of stress response genes. Although integrases (INs) encoded by retroviruses and LTR-retrotransposons are responsible for catalyzing the insertion of cDNA into the host genome, it is thought that distinct host factors are required for the efficiency and specificity of integration. We tested this hypothesis with a genome-wide screen of host factors that promote Tf1 integration. By combining an assay for transposition with a genetic assay that measures cDNA recombination we could identify factors that contribute differentially to integration. We utilized this assay to test a collection of 3,004 S. pombe strains with single gene deletions. Using these screens and immunoblot measures of Tf1 proteins, we identified a total of 61 genes that promote integration. The candidate integration factors participate in a range of processes including nuclear transport, transcription, mRNA processing, vesicle transport, chromatin structure and DNA repair. Two candidates, Rhp18 and the NineTeen complex were tested in two-hybrid assays and were found to interact with Tf1 IN. Surprisingly, a number of pathways we identified were found previously to promote integration of the LTR-retrotransposons Ty1 and Ty3 in Saccharomyces cerevisiae, indicating the contribution of host factors to integration are common in distantly related organisms. The DNA repair factors are of particular interest because they may identify the pathways that repair the single stranded gaps flanking the sites of strand transfer following integration of LTR retroelements.

  18. Factors Influencing Consumer Purchase Decisions for Health-Promoting Goods and Services in Malaysia

    PubMed Central

    CHEAH, Yong Kang

    2014-01-01

    Background: In the context of global increases in the prevalence of non-communicable diseases, the objective of the present study is to investigate the factors affecting individuals’ decisions to use health-promoting goods and services. Methods: The Third National Health and Morbidity Survey (NHMS III), consisting of 30992 respondents, was analysed. The Pearson chi-square test was applied to compare the distribution of categorical variables. A binary logistic regression model was used to assess the likelihood of using health-promoting goods and services. Results: Age, income, gender, ethnicity, education, marital status, location of residence, job characteristics, and being diagnosed with hypercholesterolemia were significantly associated with use of health-promoting goods and services. In contrast, young individuals, low income earners, males, Indians and others, the less-educated, single individuals, rural dwellers, the unemployed and individuals with hypercholesterolemia were less likely to use health-promoting goods and services than others. Conclusion: Socio-demographic and health factors played an important role in affecting the use of health-promoting goods and services. Based on these factors, several intervention measures with the intent of increasing the use of health-promoting goods and services were suggested, if only applicable to Malaysians. PMID:25897281

  19. Analysis on the restriction factors of the green building scale promotion based on DEMATEL

    NASA Astrophysics Data System (ADS)

    Wenxia, Hong; Zhenyao, Jiang; Zhao, Yang

    2017-03-01

    In order to promote the large-scale development of the green building in our country, DEMATEL method was used to classify influence factors of green building development into three parts, including green building market, green technology and macro economy. Through the DEMATEL model, the interaction mechanism of each part was analyzed. The mutual influence degree of each barrier factor that affects the green building promotion was quantitatively analysed and key factors for the development of green building in China were also finally determined. In addition, some implementation strategies of promoting green building scale development in our country were put forward. This research will show important reference value and practical value for making policies of the green building promotion.

  20. Fibroblast Growth Factors and Vascular Endothelial Growth Factor Promote Cardiac Reprogramming under Defined Conditions.

    PubMed

    Yamakawa, Hiroyuki; Muraoka, Naoto; Miyamoto, Kazutaka; Sadahiro, Taketaro; Isomi, Mari; Haginiwa, Sho; Kojima, Hidenori; Umei, Tomohiko; Akiyama, Mizuha; Kuishi, Yuki; Kurokawa, Junko; Furukawa, Tetsushi; Fukuda, Keiichi; Ieda, Masaki

    2015-12-08

    Fibroblasts can be directly reprogrammed into cardiomyocyte-like cells (iCMs) by overexpression of cardiac transcription factors, including Gata4, Mef2c, and Tbx5; however, this process is inefficient under serum-based culture conditions, in which conversion of partially reprogrammed cells into fully reprogrammed functional iCMs has been a major hurdle. Here, we report that a combination of fibroblast growth factor (FGF) 2, FGF10, and vascular endothelial growth factor (VEGF), termed FFV, promoted cardiac reprogramming under defined serum-free conditions, increasing spontaneously beating iCMs by 100-fold compared with those under conventional serum-based conditions. Mechanistically, FFV activated multiple cardiac transcriptional regulators and converted partially reprogrammed cells into functional iCMs through the p38 mitogen-activated protein kinase and phosphoinositol 3-kinase/AKT pathways. Moreover, FFV enabled cardiac reprogramming with only Mef2c and Tbx5 through the induction of cardiac reprogramming factors, including Gata4. Thus, defined culture conditions promoted the quality of cardiac reprogramming, and this finding provides new insight into the mechanism of cardiac reprogramming. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  1. PreImplantation factor (PIF*) promotes embryotrophic and neuroprotective decidual genes: effect negated by epidermal growth factor.

    PubMed

    Duzyj, Christina M; Paidas, Michael J; Jebailey, Lellean; Huang, Jing Shun; Barnea, Eytan R

    2014-01-01

    Intimate embryo-maternal interaction is paramount for pregnancy success post-implantation. The embryo follows a specific developmental timeline starting with neural system, dependent on endogenous and decidual factors. Beyond altered genetics/epigenetics, post-natal diseases may initiate at prenatal/neonatal, post-natal period, or through a continuum. Preimplantation factor (PIF) secreted by viable embryos promotes implantation and trophoblast invasion. Synthetic PIF reverses neuroinflammation in non-pregnant models. PIF targets embryo proteins that protect against oxidative stress and protein misfolding. We report of PIF's embryotrophic role and potential to prevent developmental disorders by regulating uterine milieu at implantation and first trimester. PIF's effect on human implantation (human endometrial stromal cells (HESC)) and first-trimester decidua cultures (FTDC) was examined, by global gene expression (Affymetrix), disease-biomarkers ranking (GeneGo), neuro-specific genes (Ingenuity) and proteins (mass-spectrometry). PIF co-cultured epidermal growth factor (EGF) in both HESC and FTDC (Affymetrix) was evaluated. In HESC, PIF promotes neural differentiation and transmission genes (TLX2, EPHA10) while inhibiting retinoic acid receptor gene, which arrests growth. PIF promotes axon guidance and downregulates EGF-dependent neuroregulin signaling. In FTDC, PIF promotes bone morphogenetic protein pathway (SMAD1, 53-fold) and axonal guidance genes (EPH5) while inhibiting PPP2R2C, negative cell-growth regulator, involved in Alzheimer's and amyotrophic lateral sclerosis. In HESC, PIF affects angiotensin via beta-arrestin, transforming growth factor-beta (TGF-β), notch, BMP, and wingless-int (WNT) signaling pathways that promote neurogenesis involved in childhood neurodevelopmental diseases-autism and also affected epithelial-mesenchymal transition involved in neuromuscular disorders. In FTDC, PIF upregulates neural development and hormone signaling, while

  2. PreImplantation factor (PIF*) promotes embryotrophic and neuroprotective decidual genes: effect negated by epidermal growth factor

    PubMed Central

    2014-01-01

    Background Intimate embryo-maternal interaction is paramount for pregnancy success post-implantation. The embryo follows a specific developmental timeline starting with neural system, dependent on endogenous and decidual factors. Beyond altered genetics/epigenetics, post-natal diseases may initiate at prenatal/neonatal, post-natal period, or through a continuum. Preimplantation factor (PIF) secreted by viable embryos promotes implantation and trophoblast invasion. Synthetic PIF reverses neuroinflammation in non-pregnant models. PIF targets embryo proteins that protect against oxidative stress and protein misfolding. We report of PIF’s embryotrophic role and potential to prevent developmental disorders by regulating uterine milieu at implantation and first trimester. Methods PIF’s effect on human implantation (human endometrial stromal cells (HESC)) and first-trimester decidua cultures (FTDC) was examined, by global gene expression (Affymetrix), disease-biomarkers ranking (GeneGo), neuro-specific genes (Ingenuity) and proteins (mass-spectrometry). PIF co-cultured epidermal growth factor (EGF) in both HESC and FTDC (Affymetrix) was evaluated. Results In HESC, PIF promotes neural differentiation and transmission genes (TLX2, EPHA10) while inhibiting retinoic acid receptor gene, which arrests growth. PIF promotes axon guidance and downregulates EGF-dependent neuroregulin signaling. In FTDC, PIF promotes bone morphogenetic protein pathway (SMAD1, 53-fold) and axonal guidance genes (EPH5) while inhibiting PPP2R2C, negative cell-growth regulator, involved in Alzheimer’s and amyotrophic lateral sclerosis. In HESC, PIF affects angiotensin via beta-arrestin, transforming growth factor-beta (TGF-β), notch, BMP, and wingless-int (WNT) signaling pathways that promote neurogenesis involved in childhood neurodevelopmental diseases—autism and also affected epithelial-mesenchymal transition involved in neuromuscular disorders. In FTDC, PIF upregulates neural development

  3. Use of In Vitro Transcription System for Analysis of Corynebacterium glutamicum Promoters Recognized by Two Sigma Factors.

    PubMed

    Šilar, Radoslav; Holátko, Jiří; Rucká, Lenka; Rapoport, Andrey; Dostálová, Hana; Kadeřábková, Pavla; Nešvera, Jan; Pátek, Miroslav

    2016-09-01

    Promoter activities in Corynebacterium glutamicum strains with deletions of genes encoding sigma factors of RNA polymerase suggested that transcription from some promoters is controlled by two sigma factors. To prove that different sigma factors are involved in the recognition of selected Corynebacterium glutamicum promoters, in vitro transcription system was applied. It was found that a typical housekeeping promoter Pper interacts with the alternative sigma factor σ(B) in addition to the primary sigma factor σ(A). On the other way round, the σ(B)-dependent promoter of the pqo gene that is expressed mainly in the stationary growth phase was active also with σ(A). Some promoters of genes involved in stress responses (P1clgR, P2dnaK, and P2dnaJ2) were found to be recognized by two stress-responding sigma factors, σ(H) and σ(E). In vitro transcription system thus proved to be a useful direct technique for demonstrating the overlap of different sigma factors in recognition of individual promoters in C. glutamicum.

  4. [Cynomorium songaricum improves sperm count and motility and serum testosterone level and promotes proliferation of undifferentiated spermatogonia in oligoasthenospermia rats].

    PubMed

    Cao, Yi-Juan; Li, Zhen-Bei; Qi, Yu-Juan; Liu, Ying; Gu, Juan; Hu, Fang-Fang; Zhang, Wen-da; Hao, Lin; Hou, Jian-Quan; Han, Cong-Hui

    2016-12-01

    To investigate the effects of cynomorium songaricum (CS) decoction on the testis weight, serum testosterone level, and sperm parameters of rats with oligoasthenospermia (OAS), explore its action mechanism of improving the proliferation of undifferentiated spermatogonial cells, and provide some experimental and theoretical evidence for the development of new Chinese drugs for OAS. Thirty 8-week-old male SD rats were randomly divided into five groups of equal number: blank control, model control, high-dose CS, medium-dose CS, and low-dose CS. OAS models were established by intraperitoneal injection of cyclophosphamide and, a month later, treated intragastrically with normal saline or CS at 2, 1, and 0.5 g per kg of the body weight per day, all for 4 weeks. Then, the testes of the animals were harvested to obtain the testicular weight, sperm concentration and motility, and the level of serum testosterone (T), detect the expressions of the transcription factor 1 (Oct4), Thy-1 cell surface antigen (Thy1), promyelocytic leukemia zinc finger (PLZF), KIT proto-oncogene receptor tyrosine kinase (C-kit) and glial cell-derived neurotrophic factor (GDNF) in the testis tissue of the rats in the low-dose CS group by real-time PCR. The testis weights in the blank control, model control, high-dose CS, medium-dose CS, and low-dose CS groups were (1.52±0.06), (1.55±0.06), (1.43±0.30), (1.35±0.40) and (1.34±0.04) g, respectively, not significantly different in the blank and model controls from those in the CS groups (P>0.05). The visual field sperm count per 10 HP was significantly increased in the high-, medium-, and low-dose CS groups (202±20, 196±5 and 216±25) as compared with the blank and model controls (200±15 and 134±30) (P<0.05). The mRNA expressions of the Oct4, Thy1, PLZF and GDNF genes were remarkably higher in the low-dose CS group than in the controls (P<0.05), but that of the C-kit gene showed no significant difference from the latter (P>0.05). The visual

  5. Hypoxia-inducible factors promote alveolar development and regeneration.

    PubMed

    Vadivel, Arul; Alphonse, Rajesh S; Etches, Nicholas; van Haaften, Timothy; Collins, Jennifer J P; O'Reilly, Megan; Eaton, Farah; Thébaud, Bernard

    2014-01-01

    Understanding how alveoli and the underlying capillary network develop and how these mechanisms are disrupted in disease states is critical for developing effective therapies for lung regeneration. Recent evidence suggests that lung angiogenesis promotes lung development and repair. Vascular endothelial growth factor (VEGF) preserves lung angiogenesis and alveolarization in experimental O2-induced arrested alveolar growth in newborn rats, but combined VEGF+angiopoietin 1 treatment is necessary to correct VEGF-induced vessel leakiness. Hypoxia-inducible factors (HIFs) are transcription factors that activate multiple O2-sensitive genes, including those encoding for angiogenic growth factors, but their role during postnatal lung growth is incompletely understood. By inducing the expression of a range of angiogenic factors in a coordinated fashion, HIF may orchestrate efficient and safe angiogenesis superior to VEGF. We hypothesized that HIF inhibition impairs alveolarization and that HIF activation regenerates irreversible O2-induced arrested alveolar growth. HIF inhibition by intratracheal dominant-negative adenovirus (dnHIF-1α)-mediated gene transfer or chetomin decreased lung HIF-1α, HIF-2α, and VEGF expression and led to air space enlargement and arrested lung vascular growth. In experimental O2-induced arrested alveolar growth in newborn rats, the characteristic features of air space enlargement and loss of lung capillaries were associated with decreased lung HIF-1α and HIF-2α expression. Intratracheal administration of Ad.HIF-1α restored HIF-1α, endothelial nitric oxide synthase, VEGF, VEGFR2, and Tie2 expression and preserved and rescued alveolar growth and lung capillary formation in this model. HIFs promote normal alveolar development and may be useful targets for alveolar regeneration.

  6. The common risk factor approach: a rational basis for promoting oral health.

    PubMed

    Sheiham, A; Watt, R G

    2000-12-01

    Conventional oral health education is not effective nor efficient. Many oral health programmes are developed and implemented in isolation from other health programmes. This often leads, at best to a duplication of effort, or worse, conflicting messages being delivered to the public. In addition, oral health programmes tend to concentrate on individual behaviour change and largely ignore the influence of socio-political factors as the key determinants of health. Based upon the general principles of health promotion this paper presents a rationale for an alternative approach for oral health policy. The common risk factor approach addresses risk factors common to many chronic conditions within the context of the wider socio-environmental milieu. Oral health is determined by diet, hygiene, smoking, alcohol use, stress and trauma. As these causes are common to a number of other chronic diseases, adopting a collaborative approach is more rational than one that is disease specific. The common risk factor approach can be implemented in a variety of ways. Food policy development and the Health Promoting Schools initiative are used as examples of effective ways of promoting oral health.

  7. The tumor secretory factor ZAG promotes white adipose tissue browning and energy wasting.

    PubMed

    Elattar, Sawsan; Dimri, Manali; Satyanarayana, Ande

    2018-03-23

    Cachexia is a complex tissue-wasting syndrome characterized by inflammation, hypermetabolism, increased energy expenditure, and anorexia. Browning of white adipose tissue (WAT) is one of the significant factors that contribute to energy wasting in cachexia. By utilizing a cell implantation model, we demonstrate here that the lipid mobilizing factor zinc-α 2 -glycoprotein (ZAG) induces WAT browning in mice. Increased circulating levels of ZAG not only induced lipolysis in adipose tissues but also caused robust browning in WAT. Stimulating WAT progenitors with ZAG recombinant protein or expression of ZAG in mouse embryonic fibroblasts (MEFs) strongly enhanced brown-like differentiation. At the molecular level, ZAG stimulated peroxisome proliferator-activated receptor γ (PPARγ) and early B cell factor 2 expression and promoted their recruitment to the PR/SET domain 16 (Prdm16) promoter, leading to enhanced expression of Prdm16, which determines brown cell fate. In brown adipose tissue, ZAG stimulated the expression of PPARγ and PPARγ coactivator 1α and promoted recruitment of PPARγ to the uncoupling protein 1 (Ucp1) promoter, leading to increased expression of Ucp1. Overall, our results reveal a novel function of ZAG in WAT browning and highlight the targeting of ZAG as a potential therapeutic application in humans with cachexia.-Elattar, S., Dimri, M., Satyanarayana, A. The tumor secretory factor ZAG promotes white adipose tissue browning and energy wasting.

  8. IGF-1 and BDNF promote chick bulbospinal neurite outgrowth in vitro.

    PubMed

    Salie, Rishard; Steeves, John D

    2005-11-01

    Injured neurons in the CNS do not experience significant functional regeneration and so spinal cord insult often results in permanently compromised locomotor ability. The capability of a severed axon to re-grow is thought to depend on numerous factors, one of which is the decreased availability of neurotrophic factors. Application of trophic factors to axotomized neurons has been shown to enhance survival and neurite outgrowth. Although brainstem-spinal connections play a pivotal role in motor dysfunction after spinal cord injury, relatively little is known about the trophic sensitivity of these populations. This study explores the response of bulbospinal populations to various trophic factors. Several growth factors were initially examined for potential trophic effects on the projection neurons of the brainstem. Brain derived neurotrophic factor (BDNF) and insulin-like growth factor (IGF-1) significantly enhance mean process length in both the vestibulospinal neurons and spinal projection neurons from the raphe nuclei. Nerve growth factor (NGF), neurotrophin-4 (NT-4) and glial derived neurotrophic factor (GDNF) did not effect process outgrowth in vestibulospinal neurons. At the developmental stages used in this study, it was determined that receptors for BDNF and IGF-1 were present both on bulbospinal neurons and on surrounding cells with a non-neuronal morphology.

  9. Repression of myoblast proliferation and fibroblast growth factor receptor 1 promoter activity by KLF10 protein.

    PubMed

    Parakati, Rajini; DiMario, Joseph X

    2013-05-10

    FGFR1 gene expression regulates myoblast proliferation and differentiation, and its expression is controlled by Krüppel-like transcription factors. KLF10 interacts with the FGFR1 promoter, repressing its activity and cell proliferation. KLF10 represses FGFR1 promoter activity and thereby myoblast proliferation. A model of transcriptional control of chicken FGFR1 gene regulation during myogenesis is presented. Skeletal muscle development is controlled by regulation of myoblast proliferation and differentiation into muscle fibers. Growth factors such as fibroblast growth factors (FGFs) and their receptors (FGFRs) regulate cell proliferation and differentiation in numerous tissues, including skeletal muscle. Transcriptional regulation of FGFR1 gene expression is developmentally regulated by the Sp1 transcription factor, a member of the Krüppel-like factor (KLF) family of transcriptional regulators. Here, we show that another KLF transcription factor, KLF10, also regulates myoblast proliferation and FGFR1 promoter activity. Expression of KLF10 reduced myoblast proliferation by 86%. KLF10 expression also significantly reduced FGFR1 promoter activity in myoblasts and Sp1-mediated FGFR1 promoter activity in Drosophila SL2 cells. Southwestern blot, electromobility shift, and chromatin immunoprecipitation assays demonstrated that KLF10 bound to the proximal Sp factor binding site of the FGFR1 promoter and reduced Sp1 complex formation with the FGFR1 promoter at that site. These results indicate that KLF10 is an effective repressor of myoblast proliferation and represses FGFR1 promoter activity in these cells via an Sp1 binding site.

  10. Control of Aβ release from human neurons by differentiation status and RET signaling.

    PubMed

    Scholz, Diana; Chernyshova, Yana; Leist, Marcel

    2013-01-01

    Few studies have compared the processing of endogenous human amyloid precursor protein (APP) in younger and older neurons. Here, we characterized LUHMES cells as a human model to study Alzheimer's disease-related processes during neuronal maturation and aging. Differentiated LUHMES expressed and spontaneously processed APP via the secretase pathways, and they secreted amyloid β (Aβ) peptide. This was inhibited by cholesterol depletion or secretase inhibition, but not by block of tau phosphorylation. In vitro aged cells increased Aβ secretion without upregulation of APP or secretases. We identified the medium constituent glial cell line-derived neurotrophic factor (GDNF) as responsible for this effect. GDNF-triggered Aβ release was associated with rapid upregulation of the GDNF coreceptor "rearranged during transfection" (RET). Other direct (neurturin) or indirect (nerve growth factor) RET activators also increased Aβ, whereas different neurotrophins were ineffective. Downstream of RET, we found activation of protein kinase B (AKT) to be involved. Accordingly, inhibitors of the AKT regulator phosphatidylinositol-3-kinase completely blocked GDNF-triggered AKT phosphorylation and Aβ increase. This suggests that RET signaling affects Aβ release from aging neurons. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Encapsulated cell device approach for combined electrical stimulation and neurotrophic treatment of the deaf cochlea.

    PubMed

    Konerding, W S; Janssen, H; Hubka, P; Tornøe, J; Mistrik, P; Wahlberg, L; Lenarz, T; Kral, A; Scheper, V

    2017-07-01

    Profound hearing impairment can be overcome by electrical stimulation (ES) of spiral ganglion neurons (SGNs) via a cochlear implant (CI). Thus, SGN survival is critical for CI efficacy. Application of glial cell line-derived neurotrophic factor (GDNF) has been shown to reduce SGN degeneration following deafness. We tested a novel method for local, continuous GDNF-delivery in combination with ES via a CI. The encapsulated cell (EC) device contained a human ARPE-19 cell-line, genetically engineered for secretion of GDNF. In vitro, GDNF delivery was stable during ES delivered via a CI. In the chronic in vivo part, cats were systemically deafened and unilaterally implanted into the scala tympani with a CI and an EC device, which they wore for six months. The implantation of control devices (same cell-line not producing GDNF) had no negative effect on SGN survival. GDNF application without ES led to an unexpected reduction in SGN survival, however, the combination of GDNF with initial, short-term ES resulted in a significant protection of SGNs. A tight fibrous tissue formation in the scala tympani of the GDNF-only group is thought to be responsible for the increased SGN degeneration, due to mechanisms related to an aggravated foreign body response. Furthermore, the fibrotic encapsulation of the EC device led to cell death or cessation of GDNF release within the EC device during the six months in vivo. In both in vitro and in vivo, fibrosis was reduced by CI stimulation, enabling the neuroprotective effect of the combined treatment. Thus, fibrous tissue growth limits treatment possibilities with an EC device. For a stable and successful long-term neurotrophic treatment of the SGN via EC devices in human CI users, it would be necessary to make changes in the treatment approach (provision of anti-inflammatories), the EC device surface (reduced cell adhesion) and the ES (initiation prior to fibrosis formation). Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Factors that promote or hinder young disabled people in work participation: a systematic review.

    PubMed

    Achterberg, T J; Wind, H; de Boer, A G E M; Frings-Dresen, M H W

    2009-06-01

    The aim of this systematic review was to study factors which promote or hinder young disabled people entering the labor market. We systematically searched PubMed (by means of MESH and text words), EMBASE, PsycINFO, Web of Science and CINAHL for studies regarding (1) disabled patients diagnosed before the age of 18 years and (2) factors of work participation. Out of 1,268 retrieved studies and 28 extended studies from references and four from experts, ten articles were included. Promoting factors are male gender, high educational level, age at survey, low depression scores, high dispositional optimism and high psychosocial functioning. Female and low educational level gives high odds of unemployment just like low IQ, inpatient treatment during follow up, epilepsy, motor impairment, wheelchair dependency, functional limitations, co-morbidity, physical disability and chronic health conditions combined with mental retardation. High dose cranial radiotherapy, type of cancer, and age of diagnosis also interfered with employment. Of the promoting factors, education appeared to be important, and several physical obstructions were found to be hindering factors. The last mentioned factors can be influenced in contrast to for instance age and gender. However, to optimize work participation of this group of young disabled it is important to know the promoting or hindering influence for employment.

  13. Transcranial magnetic stimulation promotes the proliferation of dopaminergic neuronal cells in vitro

    NASA Astrophysics Data System (ADS)

    Zhong, Xiaojing; Luo, Jie; Rastogi, Priyam; Kanthasamy, Anumantha G.; Jiles, David C.; Fellow, IEEE

    2018-05-01

    Transcranial magnetic stimulation (TMS) is a safe and non-invasive treatment for neurological disorders. TMS has been approved as a treatment for major depressive disorders by the US Food and Drug Administration (FDA) in 2008. Due to the phenomenon of electromagnetic induction, a time-varying magnetic field induces an electric field in the conductive tissues in the brain, TMS has the ability to activate neurons in vivo. However, the effects of the magnetic fields on neurons in cell culture have not been investigated adequately. The magnetic fields affect the neurons when the potential across the neuronal membrane exceeds the threshold which in turn causes an action potential. Based on these theories, we investigated the effects of the magnetic fields generated by a monophasic stimulator with a 70 mm double coil on rat dopaminergic neuronal cell lines (N27). The directions of the magnetic fields in each coil of the double coil oppose each other. The effects of changing the direction of the magnetic field on N27 neurons was also investigated. The results of the experiments showed that both of the fields perpendicular to the coil surface promoted the proliferation of N27 dopaminergic neurons. In order to investigate the gene expression and protein expression affected by TMS, quantitative Polymerase Chain Reaction (qPCR) was used. Here we report changes in glial cell line-derived neurotrophic factor (GDNF) in dopaminergic neuronal cells (N27) after TMS treatment.

  14. Salutogenic factors for mental health promotion in work settings and organizations.

    PubMed

    Graeser, Silke

    2011-12-01

    Accompanied by an increasing awareness of companies and organizations for mental health conditions in work settings and organizations, the salutogenic perspective provides a promising approach to identify supportive factors and resources of organizations to promote mental health. Based on the sense of coherence (SOC) - usually treated as an individual and personality trait concept - an organization-based SOC scale was developed to identify potential salutogenic factors of a university as an organization and work place. Based on results of two samples of employees (n = 362, n = 204), factors associated with the organization-based SOC were evaluated. Statistical analysis yielded significant correlations between mental health and the setting-based SOC as well as the three factors of the SOC yielded by factor analysis yielded three factors comprehensibility, manageability and meaningfulness. Significant statistic results of bivariate and multivariate analyses emphasize the significance of aspects such as participation and comprehensibility referring to the organization, social cohesion and social climate on the social level, and recognition on the individual level for an organization-based SOC. Potential approaches for the further development of interventions for work-place health promotion based on salutogenic factors and resources on the individual, social and organization level are elaborated and the transcultural dimensions of these factors discussed.

  15. Evaluation of the effect of follicular stimulating hormone on the in vitro bovine spermatogonial stem cells self-renewal: An experimental study

    PubMed Central

    Jabarpour, Masoome; Tajik, Parviz

    2017-01-01

    Background: Spermatogonial stem cells (SSCs) are undifferentiated cells which are highly reproducible and expandable. Several studies have been conducted to reproduce these cells in culture. They used growth factors, hormones and different feeder cells to improve survival and proliferation of SSCs. Objective: This study was conducted to evaluate the effects of follicular stimulating hormone (FSH) on gene expression of fibroblast growth factor (FGF2) and glial cell-derived neurotrophic factor (GDNF) in Sertoli cells. Materials and Methods: Sertoli cells and SSCs were isolated from 3-5 month-old calves. Bovine testicular cells were cultured for 15 days with or without FSH. Identification of these cells was confirmed by immunocytochemistry analysis. Colony formation of SSCs was evaluated using an inverted microscope. The gene expression of FGF2 and GDNF and the gene markers bcl6b, thy-1, and C-kit were evaluated using the quantitative RT-PCR technique. Results: The results indicated that FSH increased colonization of SSCs. the expression of GDNF, FGF2, and markers of undifferentiated spermatogonia was increased following culture in control and FSH groups (p<0.05), this increase was more in FSH group. Conversely, the expression of C-kit was decreased in both groups (p<0.05). Conclusion: The results showed that FSH can increase the self-renewal of SSCs in vitro via upregulation of GDNF and FGF2 expression in Sertoli cells. PMID:29492477

  16. Implant materials generate different peri-implant inflammatory factors: poly-ether-ether-ketone promotes fibrosis and microtextured titanium promotes osteogenic factors.

    PubMed

    Olivares-Navarrete, Rene; Hyzy, Sharon L; Slosar, Paul J; Schneider, Jennifer M; Schwartz, Zvi; Boyan, Barbara D

    2015-03-15

    An in vitro study examining factors produced by human mesenchymal stem cells on spine implant materials. The aim of this study was to examine whether the inflammatory microenvironment generated by cells on titanium-aluminum-vanadium (Ti-alloy, TiAlV) surfaces is affected by surface microtexture and whether it differs from that generated on poly-ether-ether-ketone (PEEK). Histologically, implants fabricated from PEEK have a fibrous connective tissue surface interface whereas Ti-alloy implants demonstrate close approximation with surrounding bone. Ti-alloy surfaces with complex micron/submicron scale roughness promote osteoblastic differentiation and foster a specific cellular environment that favors bone formation whereas PEEK favors fibrous tissue formation. Human mesenchymal stem cells were cultured on tissue culture polystyrene, PEEK, smooth TiAlV, or macro-/micro-/nano-textured rough TiAlV (mmnTiAlV) disks. Osteoblastic differentiation and secreted inflammatory interleukins were assessed after 7 days. Fold changes in mRNAs for inflammation, necrosis, DNA damage, or apoptosis with respect to tissue culture polystyrene were measured by low-density polymerase chain reaction array. Data were analyzed by analysis of variance, followed by Bonferroni's correction of Student's t-test. Cells on PEEK upregulated mRNAs for chemokine ligand-2, interleukin (IL) 1β, IL6, IL8, and tumor necrosis factor. Cells grown on the mmnTiAlV had an 8-fold reduction in mRNAs for toll-like receptor-4. Cells grown on mmnTiAlV had reduced levels of proinflammatory interleukins. Cells on PEEK had higher mRNAs for factors strongly associated with cell death/apoptosis, whereas cells on mmnTiAlV exhibited reduced cytokine factor levels. All results were significant (P < 0.05). These results suggest that fibrous tissue around PEEK implants may be due to several factors: reduced osteoblastic differentiation of progenitor cells and production of an inflammatory environment that favors cell death

  17. Transdifferentiation of brain-derived neurotrophic factor (BDNF)-secreting mesenchymal stem cells significantly enhance BDNF secretion and Schwann cell marker proteins.

    PubMed

    Bierlein De la Rosa, Metzere; Sharma, Anup D; Mallapragada, Surya K; Sakaguchi, Donald S

    2017-11-01

    The use of genetically modified mesenchymal stem cells (MSCs) is a rapidly growing area of research targeting delivery of therapeutic factors for neuro-repair. Cells can be programmed to hypersecrete various growth/trophic factors such as brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), and nerve growth factor (NGF) to promote regenerative neurite outgrowth. In addition to genetic modifications, MSCs can be subjected to transdifferentiation protocols to generate neural cell types to physically and biologically support nerve regeneration. In this study, we have taken a novel approach by combining these two unique strategies and evaluated the impact of transdifferentiating genetically modified MSCs into a Schwann cell-like phenotype. After 8 days in transdifferentiation media, approximately 30-50% of transdifferentiated BDNF-secreting cells immunolabeled for Schwann cell markers such as S100β, S100, and p75 NTR . An enhancement was observed 20 days after inducing transdifferentiation with minimal decreases in expression levels. BDNF production was quantified by ELISA, and its biological activity tested via the PC12-TrkB cell assay. Importantly, the bioactivity of secreted BDNF was verified by the increased neurite outgrowth of PC12-TrkB cells. These findings demonstrate that not only is BDNF actively secreted by the transdifferentiated BDNF-MSCs, but also that it has the capacity to promote neurite sprouting and regeneration. Given the fact that BDNF production remained stable for over 20 days, we believe that these cells have the capacity to produce sustainable, effective, BDNF concentrations over prolonged time periods and should be tested within an in vivo system for future experiments. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  18. Factors associated with physical activity promotion by allied and other non-medical health professionals: A systematic review.

    PubMed

    Crisford, Paul; Winzenberg, Tania; Venn, Alison; Schultz, Martin; Aitken, Dawn; Cleland, Verity

    2018-05-21

    To identify factors associated with non-medical health professionals' engagement in physical activity (PA) promotion. Five electronic databases were searched for studies including practising health professionals (excluding medical doctors), a PA promotion practice measure, a test of association between potential influencing factors and PA promotion practice, and written in English. Two researchers independently screened studies and extracted data. Extracted data were synthesized in a tabular format with a narrative summary (thematic analysis). Thirty studies involving 7734 non-medical health professionals were included. Self-efficacy in PA promotion, positive beliefs in the benefits of PA, assessing patients' PA, and PA promotion training were the main factors associated with engaging in PA promotion. Lack of remuneration was not associated. Common study limitations included a lack of information on non-responders, data collection by survey only and limited reliability or validity testing of measurements. There are common factors influencing PA promotion, but the absence of studies from some health professions, limitations related to study measures, and the lack of randomised controlled intervention trials highlights the need for further research. The factors identified may prove useful for guiding the development of strategies to encourage greater engagement in PA promotion by health professionals. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Tumor necrosis factorpromotes the lymphangiogenesis of gallbladder carcinoma through nuclear factor-κB-mediated upregulation of vascular endothelial growth factor-C

    PubMed Central

    Du, Qiang; Jiang, Lei; Wang, Xiaoqian; Wang, Meiping; She, Feifei; Chen, Yanling

    2014-01-01

    Vascular endothelial growth factor (VEGF)-C is an important lymphangiogenic factor involved in the lymphangiogenesis of gallbladder carcinoma (GBC) and the lymph node metastasis of the tumor. Tumor necrosis factor (TNF)-α, a key inflammatory cytokine responding to chronic inflammation of GBC, has been reported to stimulate the expression of VEGF-C in some nonneoplastic cells. But whether TNF-α promotes the expression of VEGF-C in GBC has yet to be determined. Therefore, in the present study, the concentration of TNF-α and VEGF-C and the lymphatic vessel density (LVD) in the clinical GBC specimens were analyzed, and a linear correlation was found between the concentration of TNF-α and that of VEGF-C, the lymphatic vessel density (LVD); The transcription and protein level of VEGF-C in NOZ cell line were detected by real-time polymerase chain reaction (PCR) and enzyme linked immunosorbent assay (ELISA), and TNF-α enhanced the expression of VEGF-C in NOZ cell lines in a dose and time-dependent manner. Lymphatic tube formation in vitro was observed in a three-dimensional coculture system consisting of HDLECs and NOZ cell lines, and lymphatic vessels of GBC in nude mice model was detected by immunohistochemistry. TNF-α promoted the tube formation of lymphatic endothelial cells in vitro and the lymphangiogenesis of GBC in nude mice; The nuclear factor (NF)-κB binding site on the VEGF-C promoter was identified using Site-directed mutagenesis, electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation assay (ChIP). Taken together, TNF-α can upregulate the expression of VEGF-C and promote the lymphangiogenesis of GBC via NF-κB combining with the promoter of VEGF-C. PMID:25154789

  20. MGMT DNA repair gene promoter/enhancer haplotypes alter transcription factor binding and gene expression.

    PubMed

    Xu, Meixiang; Cross, Courtney E; Speidel, Jordan T; Abdel-Rahman, Sherif Z

    2016-10-01

    The O 6 -methylguanine-DNA methyltransferase (MGMT) protein removes O 6 -alkyl-guanine adducts from DNA. MGMT expression can thus alter the sensitivity of cells and tissues to environmental and chemotherapeutic alkylating agents. Previously, we defined the haplotype structure encompassing single nucleotide polymorphisms (SNPs) in the MGMT promoter/enhancer (P/E) region and found that haplotypes, rather than individual SNPs, alter MGMT promoter activity. The exact mechanism(s) by which these haplotypes exert their effect on MGMT promoter activity is currently unknown, but we noted that many of the SNPs comprising the MGMT P/E haplotypes are located within or in close proximity to putative transcription factor binding sites. Thus, these haplotypes could potentially affect transcription factor binding and, subsequently, alter MGMT promoter activity. In this study, we test the hypothesis that MGMT P/E haplotypes affect MGMT promoter activity by altering transcription factor (TF) binding to the P/E region. We used a promoter binding TF profiling array and a reporter assay to evaluate the effect of different P/E haplotypes on TF binding and MGMT expression, respectively. Our data revealed a significant difference in TF binding profiles between the different haplotypes evaluated. We identified TFs that consistently showed significant haplotype-dependent binding alterations (p ≤ 0.01) and revealed their role in regulating MGMT expression using siRNAs and a dual-luciferase reporter assay system. The data generated support our hypothesis that promoter haplotypes alter the binding of TFs to the MGMT P/E and, subsequently, affect their regulatory function on MGMT promoter activity and expression level.

  1. HGF/scatter factor selectively promotes cell invasion by increasing integrin avidity.

    PubMed

    Trusolino, L; Cavassa, S; Angelini, P; Andó, M; Bertotti, A; Comoglio, P M; Boccaccio, C

    2000-08-01

    Hepatocyte growth factor/scatter factor (HGF/SF) controls a genetic program known as 'invasive growth', which involves as critical steps cell adhesion, migration, and trespassing of basement membranes. We show here that in MDA-MB-231 carcinoma cells, these steps are elicited by HGF/SF but not by epidermal growth factor (EGF). Neither factor substantially alters the production or activity of extracellular matrix proteases. HGF/SF, but not EGF, selectively promotes cell adhesion on laminins 1 and 5, fibronectin, and vitronectin through a PI3-K-dependent mechanism. Increased adhesion is followed by enhanced invasiveness through isolated matrix proteins as well as through reconstituted basement membranes. Inhibition assays using function-blocking antibodies show that this phenomenon is mediated by multiple integrins including beta1, beta3, beta4, and beta5. HGF/SF triggers clustering of all these integrins at actin-rich adhesive sites and lamellipodia but does not quantitatively modify their membrane expression. These data suggest that HGF/SF promotes cell adhesion and invasiveness by increasing the avidity of integrins for their specific ligands.

  2. Targeting the Neural Microenvironment in Prostate Cancer

    DTIC Science & Technology

    2017-10-01

    exogenous GDNF, implying they are the only PCa cell line that expresses GFRα1. Indeed, as seen in Fig 2A, by western blotting and ELISA for GDNF, all PCa...lysates with anti-GDNF antibody. Positive control is recombinant GDNF. Actin is a loading control. B. GDNF quantitation by ELISA of PCa cell line

  3. Treatment with specific soluble factors promotes the functional maturation of transcription factor-mediated, pancreatic transdifferentiated cells.

    PubMed

    Motoyama, Hiroaki; Kobayashi, Akira; Yokoyama, Takahide; Shimizu, Akira; Sakai, Hiroshi; Notake, Tsuyoshi; Fukushima, Kentaro; Miyagawa, Shin-Ichi

    2018-01-01

    Pancreatic lineage-specific transcription factors (TFs) display instructive roles in converting adult cells to endocrine pancreatic cells through a process known as transdifferentiation. However, little is known about potential factors capable of accelerating transdifferentiation following transduction to achieve the functional maturation of transdifferentiated cells. In this study, we demonstrated, using adult liver-derived progenitor cells, that soluble factors utilized in pancreatic differentiation protocols of pluripotent stem cells promote functional maturation of TFs-mediated transdifferentiated cells. Treatment with an N2 supplement in combination with three soluble factors (glucagon-like peptide-1 [GLP-1] receptor agonist, notch inhibitor, and transforming growth factor-β [TGF-β] inhibitor) enhanced liver-to-pancreas transdifferentiation based on the following findings: i) the incidence of c-peptide-positive cells increased by approximately 1.2-fold after the aforementioned treatment; ii) the c-peptide expression level in the treated cells increased by approximately 12-fold as compared with the level in the untreated cells; iii) the treated cells secreted insulin in a glucose-dependent manner, whereas the untreated cells did not; and iv) transplantation of treated-transdifferentiated cells into streptozotocin-induced immunodeficient diabetic mice led to the amelioration of hyperglycemia. These results suggest that treatment with specific soluble factors promotes the functional maturation of transdifferentiated cells. Our findings could facilitate the development of new modalities for cell-replacement therapy for patients with diabetes.

  4. Transcription factor EGR1 directs tendon differentiation and promotes tendon repair

    PubMed Central

    Guerquin, Marie-Justine; Charvet, Benjamin; Nourissat, Geoffroy; Havis, Emmanuelle; Ronsin, Olivier; Bonnin, Marie-Ange; Ruggiu, Mathilde; Olivera-Martinez, Isabel; Robert, Nicolas; Lu, Yinhui; Kadler, Karl E.; Baumberger, Tristan; Doursounian, Levon; Berenbaum, Francis; Duprez, Delphine

    2013-01-01

    Tendon formation and repair rely on specific combinations of transcription factors, growth factors, and mechanical parameters that regulate the production and spatial organization of type I collagen. Here, we investigated the function of the zinc finger transcription factor EGR1 in tendon formation, healing, and repair using rodent animal models and mesenchymal stem cells (MSCs). Adult tendons of Egr1–/– mice displayed a deficiency in the expression of tendon genes, including Scx, Col1a1, and Col1a2, and were mechanically weaker compared with their WT littermates. EGR1 was recruited to the Col1a1 and Col2a1 promoters in postnatal mouse tendons in vivo. Egr1 was required for the normal gene response following tendon injury in a mouse model of Achilles tendon healing. Forced Egr1 expression programmed MSCs toward the tendon lineage and promoted the formation of in vitro–engineered tendons from MSCs. The application of EGR1-producing MSCs increased the formation of tendon-like tissues in a rat model of Achilles tendon injury. We provide evidence that the ability of EGR1 to promote tendon differentiation is partially mediated by TGF-β2. This study demonstrates EGR1 involvement in adult tendon formation, healing, and repair and identifies Egr1 as a putative target in tendon repair strategies. PMID:23863709

  5. Targeting the receptor tyrosine kinase RET in combination with aromatase inhibitors in ER positive breast cancer xenografts.

    PubMed

    Andreucci, Elena; Francica, Paola; Fearns, Antony; Martin, Lesley-Ann; Chiarugi, Paola; Isacke, Clare M; Morandi, Andrea

    2016-12-06

    The majority of breast cancers are estrogen receptor positive (ER+). Blockade of estrogen biosynthesis by aromatase inhibitors (AIs) is the first-line endocrine therapy for post-menopausal women with ER+ breast cancers. However, AI resistance remains a major challenge. We have demonstrated previously that increased GDNF/RET signaling in ER+ breast cancers promotes AI resistance. Here we investigated the efficacy of different small molecule RET kinase inhibitors, sunitinib, cabozantinib, NVP-BBT594 and NVP-AST487, and the potential of combining a RET inhibitor with the AI letrozole in ER+ breast cancers. The most effective inhibitor identified, NVP-AST487, suppressed GDNF-stimulated RET downstream signaling and 3D tumor spheroid growth. Ovariectomized mice were inoculated with ER+ aromatase-overexpressing MCF7-AROM1 cells and treated with letrozole, NVP-AST487 or the two drugs in combination. Surprisingly, the three treatment regimens showed similar efficacy in impairing MCF7-AROM1 tumor growth in vivo. However in vitro, NVP-AST487 was superior to letrozole in inhibiting the GDNF-induced motility and tumor spheroid growth of MCF7-AROM1 cells and required in combination with letrozole to inhibit GDNF-induced motility in BT474-AROM3 aromatase expressing cells. These data indicate that inhibiting RET is as effective as the current therapeutic regimen of AI therapy but that a combination treatment may delay cancer cell dissemination and metastasis.

  6. A purified transcription factor (TIF-IB) binds to essential sequences of the mouse rDNA promoter.

    PubMed Central

    Clos, J; Buttgereit, D; Grummt, I

    1986-01-01

    A transcription factor that is specific for mouse rDNA has been partially purified from Ehrlich ascites cells. This factor [designated transcription initiation factor (TIF)-IB] is required for accurate in vitro synthesis of mouse rRNA in addition to RNA polymerase I and another regulatory factor, TIF-IA. TIF-IB activity is present in extracts both from growing and nongrowing cells in comparable amounts. Prebinding competition experiments with wild-type and mutant templates suggest that TIF-IB interacts with the core control element of the rDNA promoter, which is located immediately upstream of the initiation site. The specific binding of TIF-IB to the RNA polymerase I promoter is demonstrated by exonuclease III protection experiments. The 3' border of the sequences protected by TIF-IB is shown to be on the coding strand at position -21 and on the noncoding strand at position -7. The results suggest that direct binding of TIF-IB to sequences in the core promoter element is the mechanism by which this factor imparts promoter selectivity to RNA polymerase I. Images PMID:3456157

  7. Factors Promoting Vocational Students' Learning at Work: Study on Student Experiences

    ERIC Educational Resources Information Center

    Virtanen, Anne; Tynjälä, Päivi; Eteläpelto, Anneli

    2014-01-01

    In order to promote effective pedagogical practices for students' work-based learning, we need to understand better how students' learning at work can be supported. This paper examines the factors explaining students' workplace learning (WPL) outcomes, addressing three aspects: (1) student-related individual factors, (2) social and…

  8. Building a Lasting Foundation for Promoting Protective Factors across Children's Bureau Programs

    ERIC Educational Resources Information Center

    Brodowski, Melissa Lim; Fischman, Lauren

    2014-01-01

    Over the years, various federal and non-federal organizations have disseminated and promoted a number of protective factor frameworks to reduce risk and optimize family functioning and child development. There is a growing interest in and commitment to examining factors that transcend the traditional deficit-based approach to addressing social and…

  9. Transplantation of bone marrow mononuclear cells modulates hippocampal expression of growth factors in chronically epileptic animals.

    PubMed

    Zanirati, Gabriele; Azevedo, Pamella Nunes; Marinowic, Daniel Rodrigo; Rodrigues, Felipe; de Oliveira Dias, Ana Christina; Venturin, Gianina Teribele; Greggio, Samuel; Simão, Fabrício; DaCosta, Jaderson Costa

    2015-05-01

    In previous studies, transplantation of bone marrow mononuclear cells (BMMCs) in epileptic animals has been found to be neuroprotective. However, the mechanism by which the BMMCs act remains unclear. We hypothesize that BMMCs may provide neuroprotection to the epileptic brain through trophic support. To test our hypothesis, we studied the temporal expression of neurotrophins after BMMC transplantation in the epileptic rat hippocampus. Chronically epileptic rats were intravenously transplanted with 1 × 10(7) BMMCs isolated from GFP transgenic mice. Expression levels of BDNF, GDNF, NGF, VEGF, and TGF-β1, and their receptors, were evaluated by ELISA and/or qRT-PCR analysis. Our data revealed increased protein expression of BDNF, GDNF, NGF, and VEGF and reduced levels of TGF-β1 in the hippocampus of transplanted epileptic animals. Additionally, an increase in the mRNA expression of BDNF, GDNF, and VEGF, a reduction in TGF-β1, and a decrease in mRNA levels of the TrkA and TGFR-β1 receptors were also observed. The gain provided by transplanted BMMCs in the epileptic brain may be related to the ability of these cells in modulating the network of neurotrophins and angiogenic signals. © 2015 John Wiley & Sons Ltd.

  10. Factors promoting sustainability of education innovations: a comparison of faculty perceptions and existing frameworks.

    PubMed

    Loh, Lawrence C; Friedman, Stacey R; Burdick, William P

    2013-01-01

    Health professions education uses innovative projects to promote faculty development and institution change. Faculty perceptions of the factors that promote project sustainability affect how faculty conceptualize and implement their innovations, which influences whether and how they plan for sustainability. This paper compares educators' perceptions of factors that influence sustainability in innovative projects with factors identified in project sustainability literature, to identify areas of convergence and divergence. Using questionnaires, faculty development fellowship participants from Brazil and India shared their perceptions on factors influencing their project's sustainability. An analysis framework was developed from existing project sustainability literature; faculty responses were then coded through an iterative process. Key sustainability themes identified by faculty included project-level factors related to project design, stakeholder support, monitoring and evaluation, and project outcomes. Identified context level factors were related to institutional and governmental support as well as self-motivation and peer support. Availability of resources and funding were identified as relevant at both the project and context levels. Project-level factors were more often cited than context-level factors as key to ensuring sustainability. Faculty development efforts in health professions education should employ strategies to target these themes in promoting innovation sustainability. These include preengagement with institutional leaders, alignment with public sector goals, strategic diffusion of information, project expansion and transferability, capacity building in monitoring and evaluation, and creation of a community of educators for information exchange and support.

  11. Cumulative Effects of Mothers' Risk and Promotive Factors on Daughters' Disruptive Behavior

    ERIC Educational Resources Information Center

    van der Molen, Elsa; Hipwell, Alison E.; Vermeiren, Robert; Loeber, Rolf

    2012-01-01

    Little is known about the ways in which the accumulation of maternal factors increases or reduces risk for girls' disruptive behavior during preadolescence. In the current study, maternal risk and promotive factors and the severity of girls' disruptive behavior were assessed annually among girls' ages 7-12 in an urban community sample (N = 2043).…

  12. runt Homology Domain Transcription Factors (Runx, Cbfa, and AML) Mediate Repression of the Bone Sialoprotein Promoter: Evidence for Promoter Context-Dependent Activity of Cbfa Proteins

    PubMed Central

    Javed, Amjad; Barnes, George L.; Jasanya, B. O.; Stein, Janet L.; Gerstenfeld, Louis; Lian, Jane B.; Stein, Gary S.

    2001-01-01

    Expression of the bone sialoprotein (BSP) gene, a marker of bone formation, is largely restricted to cells in mineralized tissues. Recent studies have shown that the Cbfa1 (also known as Runx2, AML-3, and PEBP2αA) transcription factor supports commitment and differentiation of progenitor cells to hypertrophic chondrocytes and osteoblasts. This study addresses the functional involvement of Cbfa sites in expression of the Gallus BSP gene. Gel mobility shift analyses with nuclear extracts from ROS 17/2.8 osteoblastic cells revealed that multiple Cbfa consensus sequences are functional Cbfa DNA binding sites. Responsiveness of the 1.2-kb Gallus BSP promoter to Cbfa factors Cbfa1, Cbfa2, and Cbfa3 was assayed in osseous and nonosseous cells. Each of the Cbfa factors mediated repression of the wild-type BSP promoter, in contrast to their well known activation of various hematopoietic and skeletal phenotypic genes. Suppression of BSP by Cbfa factors was not observed in BSP promoters in which Cbfa sites were deleted or mutated. Expression of the endogenous BSP gene in Gallus osteoblasts was similarly downregulated by forced expression of Cbfa factors. Our data indicate that Cbfa repression of the BSP promoter does not involve the transducin-like enhancer (TLE) proteins. Neither coexpression of TLE1 or TLE2 nor the absence of the TLE interaction motif of Cbfa1 (amino acids 501 to 513) influenced repressor activity. However, removal of the C terminus of Cbfa1 (amino acids 362 to 513) relieved suppression of the BSP promoter. Our results, together with the evolutionary conservation of the seven Cbfa sites in the Gallus and human BSP promoters, suggest that suppressor activity by Cbfa is of significant physiologic consequence and may contribute to spatiotemporal expression of BSP during bone development. PMID:11283267

  13. The Associations Among Individual Factors, eHealth Literacy, and Health-Promoting Lifestyles Among College Students

    PubMed Central

    Luo, Yi-Fang

    2017-01-01

    Background eHealth literacy is gaining importance for maintaining and promoting health. Studies have found that individuals with high eHealth literacy are more likely to adopt healthy eating, exercise, and sleep behaviors. In addition, previous studies have shown that various individual factors (eg, frequency of seeking information on health issues, degree of health concern, frequency of eating organic food, and students’ college major) are associated with eHealth literacy and health-promoting lifestyles. Nevertheless, few studies have explored the associations among individual factors, eHealth literacy, and health-promoting lifestyles among college students. Moreover, there is a lack of studies that focus on eHealth literacy as a predictor of psychological health behaviors. Objective To examine the associations among various individual factors, eHealth literacy, and health-promoting lifestyles. Methods The eHealth Literacy Scale is a 12-item instrument designed to measure college students’ functional, interactive, and critical eHealth literacy. The Health-promoting Lifestyle Scale is a 23-item instrument developed to measure college students’ self-actualization, health responsibility, interpersonal support, exercise, nutrition, and stress management. A nationally representative sample of 556 valid college students in Taiwan was surveyed. A questionnaire was administered to gather the respondents’ background information, including the frequency of seeking information on health issues, the frequency of eating organic food, the degree of health concern, and the students’ major. We then conducted a multiple regression analysis to examine the associations among individual factors, eHealth literacy, and health-promoting lifestyles. Results The study found that factors such as medical majors (t550=2.47-7.55, P<.05) and greater concern with health (t550=2.15-9.01, P<.05) predicted college students’ 4-6 health-promoting lifestyle dimensions and the 3 dimensions

  14. The Associations Among Individual Factors, eHealth Literacy, and Health-Promoting Lifestyles Among College Students.

    PubMed

    Yang, Shu-Ching; Luo, Yi-Fang; Chiang, Chia-Hsun

    2017-01-10

    eHealth literacy is gaining importance for maintaining and promoting health. Studies have found that individuals with high eHealth literacy are more likely to adopt healthy eating, exercise, and sleep behaviors. In addition, previous studies have shown that various individual factors (eg, frequency of seeking information on health issues, degree of health concern, frequency of eating organic food, and students' college major) are associated with eHealth literacy and health-promoting lifestyles. Nevertheless, few studies have explored the associations among individual factors, eHealth literacy, and health-promoting lifestyles among college students. Moreover, there is a lack of studies that focus on eHealth literacy as a predictor of psychological health behaviors. To examine the associations among various individual factors, eHealth literacy, and health-promoting lifestyles. The eHealth Literacy Scale is a 12-item instrument designed to measure college students' functional, interactive, and critical eHealth literacy. The Health-promoting Lifestyle Scale is a 23-item instrument developed to measure college students' self-actualization, health responsibility, interpersonal support, exercise, nutrition, and stress management. A nationally representative sample of 556 valid college students in Taiwan was surveyed. A questionnaire was administered to gather the respondents' background information, including the frequency of seeking information on health issues, the frequency of eating organic food, the degree of health concern, and the students' major. We then conducted a multiple regression analysis to examine the associations among individual factors, eHealth literacy, and health-promoting lifestyles. The study found that factors such as medical majors (t 550 =2.47-7.55, P<.05) and greater concern with health (t 550 =2.15-9.01, P<.05) predicted college students' 4-6 health-promoting lifestyle dimensions and the 3 dimensions of eHealth literacy. Moreover, critical e

  15. Endometrial Expression of Steroidogenic Factor 1 Promotes Cystic Glandular Morphogenesis

    PubMed Central

    Vasquez, Yasmin M.; Wu, San-Pin; Anderson, Matthew L.; Hawkins, Shannon M.; Creighton, Chad J.; Ray, Madhumita; Tsai, Sophia Y.; Tsai, Ming-Jer; Lydon, John P.

    2016-01-01

    Epigenetic silencing of steroidogenic factor 1 (SF1) is lost in endometriosis, potentially contributing to de novo local steroidogenesis favoring inflammation and growth of ectopic endometrial tissue. In this study, we examine the impact of SF1 expression in the eutopic uterus by a novel mouse model that conditionally expresses SF1 in endometrium. In vivo SF1 expression promoted the development of enlarged endometrial glands and attenuated estrogen and progesterone responsiveness. Endometriosis induction by autotransplantation of uterine tissue to the mesenteric membrane resulted in the increase in size of ectopic lesions from SF1-expressing mice. By integrating the SF1-dependent transcriptome with the whole genome binding profile of SF1, we identified uterine-specific SF1-regulated genes involved in Wingless and Progesterone receptor-Hedgehog-Chicken ovalbumin upstream promoter transcription factor II signaling for gland development and epithelium-stroma interaction, respectively. The present results indicate that SF1 directly contributes to the abnormal uterine gland morphogenesis, an inhibition of steroid hormone signaling and activation of an immune response, in addition to previously postulated estrogen production. PMID:27018534

  16. Expression, purification, crystallization and preliminary X-ray crystallographic analysis of a resuscitation-promoting factor from Mycobacterium tuberculosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruggiero, Alessia; Tizzano, Barbara; Geerlof, Arie

    2007-10-01

    The first crystallization of a resuscitation-promoting factor has been performed. Multiwavelength anomalous dispersion experiments have been carried out to obtain experimental phases using data at 2.9 Å resolution from a selenomethionine derivative. The resuscitation-promoting factor RpfB, the most complex of the five resuscitation-promoting factors produced by M. tuberculosis, is devoted to bacterial reactivation from the dormant state. RpfB consists of 362 residues predicted to form five domains. An RpfB fragment containing the protein catalytic domain and a G5 domain has been successfully crystallized using vapour-diffusion methods. This is the first crystallographic study of a resuscitation-promoting factor. Crystals of this proteinmore » belong to space group I422, with unit-cell parameters a = 97.63, b = 97.63, c = 114.87 Å. Diffraction data have also been collected from a selenomethionine derivative at 2.9 Å resolution. Model building using the phases derived from the multiwavelength anomalous dispersion experiment is in progress.« less

  17. Behavioral Counseling to Promote a Healthful Diet and Physical Activity for CVD Prevention in Adults with Risk Factors

    MedlinePlus

    ... Promote a Healthful Diet and Physical Activity for Cardiovascular Disease Prevention in Adults with Cardiovascular Risk Factors The ... Promote a Healthful Diet and Physical Activity for Cardiovascular Disease (CVD) Prevention in Adults with Cardiovascular Risk Factors. ...

  18. Isolation, purification and characterization of the hydrogen evolution promoting factor of hydrogenase of Spirulina platensis

    NASA Astrophysics Data System (ADS)

    Gu, Tian-Qing; Zhang, Hui-Miao; Sun, Shi-Hua

    1996-03-01

    A component (s-factor) with obvious promoting effect on hydrogen evolution of hydrogenase has been isolated and extracted from a cell-free preparation of Spirulina platensis. The effect of the s-factor in the reaction system is similar to that of Na2S2O4, but is coupled with light. The s-factor has the maximum absorption peak at 620 nm in the oxidized state, at 590 nm in the reduced state. The partially purified s-factor showed two bands by SDS-PAGE and is distinctly different from phycocyanin, which has no change of oxidized state and reduced state absorption spectra, and also has no promoting effect on hydrogenase of Spirulina platensis under the light.

  19. Human Mitochondrial Transcription Factor B2 Is Required for Promoter Melting during Initiation of Transcription.

    PubMed

    Posse, Viktor; Gustafsson, Claes M

    2017-02-17

    The mitochondrial transcription initiation machinery in humans consists of three proteins: the RNA polymerase (POLRMT) and two accessory factors, transcription factors A and B2 (TFAM and TFB2M, respectively). This machinery is required for the expression of mitochondrial DNA and the biogenesis of the oxidative phosphorylation system. Previous experiments suggested that TFB2M is required for promoter melting, but conclusive experimental proof for this effect has not been presented. Moreover, the role of TFB2M in promoter unwinding has not been discriminated from that of TFAM. Here we used potassium permanganate footprinting, DNase I footprinting, and in vitro transcription from the mitochondrial light-strand promoter to study the role of TFB2M in transcription initiation. We demonstrate that a complex composed of TFAM and POLRMT was readily formed at the promoter but alone was insufficient for promoter melting, which only occurred when TFB2M joined the complex. We also show that mismatch bubble templates could circumvent the requirement of TFB2M, but TFAM was still required for efficient initiation. Our findings support a model in which TFAM first recruits POLRMT to the promoter, followed by TFB2M binding and induction of promoter melting. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Optimising women's diets. An examination of factors that promote healthy eating and reduce the likelihood of unhealthy eating.

    PubMed

    Williams, Lauren K; Thornton, Lukar; Crawford, David

    2012-08-01

    The majority of nutrition promotion research that has examined the determinants of unhealthy or healthy dietary behaviours has focused on factors that promote consumption of these foods, rather than factors that may both promote healthy eating and buffer or protect consumption of unhealthy foods. The purpose of this paper is to identify factors that both promote healthy eating and also reduce the likelihood of eating unhealthily amongst women. A community sample of 1013 Australian women participated in a cross-sectional self-report survey that assessed factors associated with diet and obesity. Multiple logistic regressions were used to examine the associations between a range of individual, social and environmental factors and aspects of both healthy and unhealthy eating, whilst controlling for key covariates. Results indicated that women with high self efficacy for healthy eating, taste preferences for fruit and vegetables, family support for healthy eating and the absence of perceived barriers to healthy eating (time and cost) were more likely to consume components of a healthy diet and less likely to consume components of a unhealthy diet. Optimal benefits in overall diet quality amongst women may be achieved by targeting factors associated with both healthy and unhealthy eating in nutrition promotion efforts. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Resistance to diabetes-promoting lifestyle factors -- what is the mechanism?

    PubMed

    Kolb, Hubert

    2012-08-01

    Not all people exposed to diabetes-promoting lifestyle factors progress to overt type 2 diabetes. The emerging concept of hormesis provides an explanation for the resistance to metabolic stress. Hormesis requires limited stress or damage which elicits an adaptive repair and protective response which renders the organism resistant to further metabolic stress. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  2. Identification of estrogen-responsive genes using a genome-wide analysis of promoter elements for transcription factor binding sites.

    PubMed

    Kamalakaran, Sitharthan; Radhakrishnan, Senthil K; Beck, William T

    2005-06-03

    We developed a pipeline to identify novel genes regulated by the steroid hormone-dependent transcription factor, estrogen receptor, through a systematic analysis of upstream regions of all human and mouse genes. We built a data base of putative promoter regions for 23,077 human and 19,984 mouse transcripts from National Center for Biotechnology Information annotation and 8793 human and 6785 mouse promoters from the Data Base of Transcriptional Start Sites. We used this data base of putative promoters to identify potential targets of estrogen receptor by identifying estrogen response elements (EREs) in their promoters. Our program correctly identified EREs in genes known to be regulated by estrogen in addition to several new genes whose putative promoters contained EREs. We validated six genes (KIAA1243, NRIP1, MADH9, NME3, TPD52L, and ABCG2) to be estrogen-responsive in MCF7 cells using reverse transcription PCR. To allow for extensibility of our program in identifying targets of other transcription factors, we have built a Web interface to access our data base and programs. Our Web-based program for Promoter Analysis of Genome, PAGen@UIC, allows a user to identify putative target genes for vertebrate transcription factors through the analysis of their upstream sequences. The interface allows the user to search the human and mouse promoter data bases for potential target genes containing one or more listed transcription factor binding sites (TFBSs) in their upstream elements, using either regular expression-based consensus or position weight matrices. The data base can also be searched for promoters harboring user-defined TFBSs given as a consensus or a position weight matrix. Furthermore, the user can retrieve putative promoter sequences for any given gene together with identified TFBSs located on its promoter. Orthologous promoters are also analyzed to determine conserved elements.

  3. FOXO transcription factors directly activate bim gene expression and promote apoptosis in sympathetic neurons

    PubMed Central

    Gilley, Jonathan; Coffer, Paul J.; Ham, Jonathan

    2003-01-01

    Developing sympathetic neurons die by apoptosis when deprived of NGF. BIM, a BH3-only member of the BCL-2 family, is induced after NGF withdrawal in these cells and contributes to NGF withdrawal–induced death. Here, we have investigated the involvement of the Forkhead box, class O (FOXO) subfamily of Forkhead transcription factors in the regulation of BIM expression by NGF. We find that overexpression of FOXO transcription factors induces BIM expression and promotes death of sympathetic neurons in a BIM-dependent manner. In addition, we find that FKHRL1 (FOXO3a) directly activates the bim promoter via two conserved FOXO binding sites and that mutation of these sites abolishes bim promoter activation after NGF withdrawal. Finally, we show that FOXO activity contributes to the NGF deprivation–induced death of sympathetic neurons. PMID:12913110

  4. The Effect of Social and Classroom Ecological Factors on Promoting Self-Determination in Elementary School

    PubMed Central

    Cho, Hyunjeong; Wehmeyer, Michael; Kingston, Neil

    2014-01-01

    Promoting the self-determination of students with disabilities as a means to access the general curriculum has been the subject of research in recent years, as has the importance of efforts to promote self-determination during elementary years. To examine the status of such efforts in the field, 203 elementary special educators were surveyed in 23 states to determine how (a) classroom instructional practices or strategies, (b) classroom ecological or setting variables, and (c) self-reported barriers to promoting self-determination affected their perceptions of the importance of teaching self-determination and the frequency with which they did so. Results indicated that special educators’ perceived importance of teaching self-determination was not impacted by classroom instructional factors, but was affected by classroom ecological factors. Classroom ecological factors were not, however, significant in the frequency with which teachers provided instruction on self-determination, but classroom instructional practices were. Limitations and implications are discussed, and suggestions for future research are offered. PMID:25067895

  5. Nuclear factor Y regulates ancient budgerigar hepadnavirus core promoter activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Zhongliang; Liu, Yanfeng; Luo, Mengjun

    Endogenous viral elements (EVE) in animal genomes are the fossil records of ancient viruses and provide invaluable information on the origin and evolution of extant viruses. Extant hepadnaviruses include avihepadnaviruses of birds and orthohepadnaviruses of mammals. The core promoter (Cp) of hepadnaviruses is vital for viral gene expression and replication. We previously identified in the budgerigar genome two EVEs that contain the full-length genome of an ancient budgerigar hepadnavirus (eBHBV1 and eBHBV2). Here, we found eBHBV1 Cp and eBHBV2 Cp were active in several human and chicken cell lines. A region from nt −85 to −11 in eBHBV1 Cp was critical formore » the promoter activity. Bioinformatic analysis revealed a putative binding site of nuclear factor Y (NF-Y), a ubiquitous transcription factor, at nt −64 to −50 in eBHBV1 Cp. The NF-Y core binding site (ATTGG, nt −58 to −54) was essential for eBHBV1 Cp activity. The same results were obtained with eBHBV2 Cp and duck hepatitis B virus Cp. The subunit A of NF-Y (NF-YA) was recruited via the NF-Y core binding site to eBHBV1 Cp and upregulated the promoter activity. Finally, the NF-Y core binding site is conserved in the Cps of all the extant avihepadnaviruses but not of orthohepadnaviruses. Interestingly, a putative and functionally important NF-Y core binding site is located at nt −21 to −17 in the Cp of human hepatitis B virus. In conclusion, our findings have pinpointed an evolutionary conserved and functionally critical NF-Y binding element in the Cps of avihepadnaviruses. - Highlights: • Endogenous budgerigar hepadnavirus (eBHBV) core promoters (Cps) are active in cells. • NF-Y binding site exists in the Cps of eBHBVs and all the extant avihepadnaviruses. • NF-Y binding and mediated upregulation is critical for eBHBV Cp activity.« less

  6. Differential Effects of RET and TRKB on Axonal Branching and Survival of Parasympathetic Neurons

    PubMed Central

    Simpson, Julie; Keefe, Julie; Nishi, Rae

    2014-01-01

    Interactions between neurons and their targets of innervation influence many aspects of neural development. To examine how synaptic activity interacts with neurotrophic signaling, we determined the effects of blocking neuromuscular transmission on survival and axonal outgrowth of ciliary neurons from the embryonic chicken ciliary ganglion. Ciliary neurons undergo a period of cell loss due to programmed cell death between embryonic Days (E) 8 and 14 and they innervate the striated muscle of the iris. The nicotinic antagonist d-tubocurarine (dTC) induces an increase in branching measured by counting neurofilament-positive voxels (NF-VU) in the iris between E14–17 while reducing ciliary neuron survival. Blocking ganglionic transmission with dihyro-β-erythroidin and α-methyllycacontine does not mimic dTC. At E8, many trophic factors stimulate neurite outgrowth and branching of neurons placed in cell culture; however, at E13, only GDNF stimulates branching selectively in cultured ciliary neurons. The GDNF-induced branching at E13 could be inhibited by BDNF. Blocking ret signaling in vivo with a dominant negative (dn)ret decreases survival of ciliary and choroid neurons at E14 and prevents dTC induced increases in NF-VU in the iris at E17. Blocking TRKB signaling with dn TRKB increases NF-VU in the iris at E17 and decreases neuronal survival at E17, but not at E14. Thus, RET promotes survival during programmed cell death in the ciliary ganglion and contributes to promoting branching when synaptic transmission is blocked while TRKB inhibits branching and promotes maintenance of neuronal survival. These studies highlight the multifunctional nature of trophic molecule function during neuronal development. PMID:22648743

  7. Characterization of a spliced variant of human IRF-3 promoter and its regulation by the transcription factor Sp1.

    PubMed

    Ren, Wei; Zhu, Liang-Hua; Xu, Hua-Guo; Jin, Rui; Zhou, Guo-Ping

    2012-06-01

    Interferon regulatory factor 3 (IRF-3), an essential transcriptional regulator of the interferon genes, plays an important role in host defense against viral and microbial infection as well as in cell growth regulation. Promoter plays a crucial role in gene transcription. We have reported the characterization of the wide type of human IRF-3 promoter, but the characterization of the spliced variant of human IRF-3 Int2V1 promoter has not been systematically analyzed. To observe the spliced variant of human IRF-3 promoter, we have cloned the human IRF-3 gene promoter region containing 300 nucleotides upstream the transcription start site (TSS). Transient transfection of 5' deleted promoter-reporter constructs and luciferase assay illustrated the region -159/-100 relative to the TSS is sufficient for full promoter activity. This region contains GATA1 and specific protein-1 (Sp1) transcription factor binding sites. Interestingly, mutation of this Sp1 site reduced the promoter activity by 50%. However, overexpression of Sp1 increased the transcription activity by 2.4-fold. These results indicated that the spliced variant of human IRF-3 gene core promoter was located within the region -159/-100 relative to the TSS. Sp1 transcription factor upregulates the spliced variant of human IRF-3 gene promoter.

  8. Isolation and functional characterization of TIF-IB, a factor that confers promoter specificity to mouse RNA polymerase I.

    PubMed

    Schnapp, A; Clos, J; Hädelt, W; Schreck, R; Cvekl, A; Grummt, I

    1990-03-25

    The murine ribosomal gene promoter contains two cis-acting control elements which operate in concert to promote efficient and accurate transcription initiation by RNA polymerase I. The start site proximal core element which is indispensable for promoter recognition by RNA polymerase I (pol I) encompasses sequences from position -39 to -1. An upstream control element (UCE) which is located between nucleotides -142 and -112 stimulates the efficiency of transcription initiation both in vivo and in vitro. Here we report the isolation and functional characterization of a specific rDNA binding protein, the transcription initiation factor TIF-IB, which specifically interacts with the core region of the mouse ribosomal RNA gene promoter. Highly purified TIF-IB complements transcriptional activity in the presence of two other essential initiation factors TIF-IA and TIF-IC. We demonstrate that the binding efficiency of purified TIF-IB to the core promoter is strongly enhanced by the presence in cis of the UCE. This positive effect of upstream sequences on TIF-IB binding is observed throughout the purification procedure suggesting that the synergistic action of the two distant promoter elements is not mediated by a protein different from TIF-IB. Increasing the distance between both control elements still facilitates stable factor binding but eliminates transcriptional activation. The results demonstrate that TIF-IB binding to the rDNA promoter is an essential early step in the assembly of a functional transcription initiation complex. The subsequent interaction of TIF-IB with other auxiliary transcription initiation factors, however, requires the correct spacing between the UCE and the core promoter element.

  9. The oncoprotein HBXIP upregulates PDGFB via activating transcription factor Sp1 to promote the proliferation of breast cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yingyi; Zhao, Yu; Li, Leilei

    2013-05-03

    Highlights: •HBXIP is able to upregulate the expression of PDGFB in breast cancer cells. •HBXIP serves as a coactivator of activating transcription factor Sp1. •HBXIP stimulates the PDGFB promoter via activating transcription factor Sp1. •HBXIP promotes the proliferation of breast cancer cell via upregulating PDGFB. -- Abstract: We have reported that the oncoprotein hepatitis B virus X-interacting protein (HBXIP) acts as a novel transcriptional coactivator to promote proliferation and migration of breast cancer cells. Previously, we showed that HBXIP was able to activate nuclear factor-κB (NF-κB) in breast cancer cells. As an oncogene, the platelet-derived growth factor beta polypeptide (PDGFB)more » plays crucial roles in carcinogenesis. In the present study, we found that both HBXIP and PDGFB were highly expressed in breast cancer cell lines. Interestingly, HBXIP was able to increase transcriptional activity of NF-κB through PDGFB, suggesting that HBXIP is associated with PDGFB in the cells. Moreover, HBXIP was able to upregulate PDGFB at the levels of mRNA, protein and promoter in the cells. Then, we identified that HBXIP stimulated the promoter of PDGFB through activating transcription factor Sp1. In function, HBXIP enhanced the proliferation of breast cancer cells through PDGFB in vitro. Thus, we conclude that HBXIP upregulates PDGFB via activating transcription factor Sp1 to promote proliferation of breast cancer cells.« less

  10. Factors associated with the implementation of community-based peer-led health promotion programs: A scoping review.

    PubMed

    Lorthios-Guilledroit, Agathe; Richard, Lucie; Filiatrault, Johanne

    2018-06-01

    Peer education is growing in popularity as a useful health promotion strategy. However, optimal conditions for implementing peer-led health promotion programs (HPPs) remain unclear. This scoping review aimed to describe factors that can influence implementation of peer-led HPPs targeting adult populations. Five databases were searched using the keywords "health promotion/prevention", "implementation", "peers", and related terms. Studies were included if they reported at least one factor associated with the implementation of community-based peer-led HPPs. Fifty-five studies were selected for the analysis. The method known as "best fit framework synthesis" was used to analyze the factors identified in the selected papers. Many factors included in existing implementation conceptual frameworks were deemed applicable to peer-led HPPs. However, other factors related to individuals, programs, and implementation context also emerged from the analysis. Based on this synthesis, an adapted theoretical framework was elaborated, grounded in a complex adaptive system perspective and specifying potential mechanisms through which factors may influence implementation of community-based peer-led HPPs. Further research is needed to test the theoretical framework against empirical data. Findings from this scoping review increase our knowledge of the optimal conditions for implementing peer-led HPPs and thereby maximizing the benefits of such programs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Assessing and Promoting Spiritual Wellness as a Protective Factor in Secondary Schools

    ERIC Educational Resources Information Center

    Briggs, Michele Kielty; Akos, Patrick; Czyszczon, Greg; Eldridge, Ashley

    2011-01-01

    Spiritual wellness, much like resilience, is a multidimensional protective factor for students. This article reviews the relevant literature linking spiritual wellness and thriving in the adolescent population. Assessment and intervention methods that can be used in secondary school settings to promote spiritual wellness are provided.

  12. 3D axon growth by exogenous electrical stimulus and soluble factors.

    PubMed

    Tang-Schomer, Min D

    2018-01-01

    Axon growth and alignment are fundamental processes during nervous system development and neural regeneration after injury. The present study investigates the effects of exogenous stimulus of electrical signals and soluble factors on axon 3D growth, using a silk protein material-based 3D brain tissue model. Electrical stimulus was delivered via embedded gold wires positioned at the interface of the scaffold region and the center matrix gel-filled region, spanning the axon growth area. This setup delivered applied electrical field directly to growing axons, and the effects were compared to micro-needle assisted local delivery of soluble factors of extracellular (ECM) components and neurotrophins. Dissociated rat cortical neurons were exposed to an alternating field of 80 mV/mm at 0.5 Hz to 2 kHz or soluble factors for up to 4 days, and evaluated by of β III-tubulin immunostaining, confocal imaging and 3D neurite tracing. 0.5-20 Hz were found to promote axon growth, with 2 Hz producing the biggest effect of ∼30% axon length increase compared to control cultures. Delivery of ECM components of laminin and fibronectin resulted significantly greater axon initial length increases compared to neurotrophic factors, such as BDNF, GDNF, NGF and NT3 (all at 1 μM). Though axon lengths under 2 Hz stimulation and LN or FN exposure were statistically similar, significant AC-induced axon alignment was found under all frequencies tested. The effects included perpendicular orientation of axons trespassing an electrode, large populations of aligned axon tracts in parallel to the field direction with a few perpendicularly aligned along the middle point of the EF. These findings are consistent with the hypothesis that an electrode in AC field could act as an alternating cathode that attracts the growing tip of the axon. These results demonstrate the use of alternating electric field stimulation to direct axon 3D length growth and orientation. Our study provides basis

  13. Focal release of neurotrophic factors by biodegradable microspheres enhance motor and sensory axonal regeneration in vitro and in vivo.

    PubMed

    Santos, Daniel; Giudetti, Guido; Micera, Silvestro; Navarro, Xavier; Del Valle, Jaume

    2016-04-01

    Neurotrophic factors (NTFs) promote nerve regeneration and neuronal survival after peripheral nerve injury. However, drawbacks related with administration and bioactivity during long periods limit their therapeutic application. In this study, PLGA microspheres (MPs) were used to locally release different NTFs and evaluate whether they accelerate axonal regeneration in comparison with free NTFs or controls. ELISA, SEM, UV/visible light microscopy, organotypic cultures of DRG explants and spinal cord slices were used to characterize MP properties and the bioactivity of the released NTFs. Results of organotypic cultures showed that encapsulated NTFs maintain longer bioactivity and enhance neurite regeneration of both sensory and motor neurons compared with free NTFs. For in vivo assays, the rat sciatic nerve was transected and repaired with a silicone tube filled with collagen gel or collagen mixed with PBS encapsulated MPs (control groups) and with free or encapsulated NGF, BDNF, GDNF or FGF-2. After 20 days, a retrotracer was applied to the regenerated nerve to quantify motor and sensory axonal regeneration. NTF encapsulation in MPs improved regeneration of both motor and sensory axons, as evidenced by increased numbers of retrolabeled neurons. Hence, our results show that slow release of NTFs with PLGA MP enhance nerve regeneration. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Stimulus-Dependent, Promoter-Specific Binding of Transcription Factor WRKY1 to Its Native Promoter and the Defense-Related Gene PcPR1-1 in ParsleyW⃞

    PubMed Central

    Turck, Franziska; Zhou, Aifen; Somssich, Imre E.

    2004-01-01

    WRKY transcription factors form a large family that plays a role in plant responses to biotic stress and during senescence. Defining in vivo relevant WRKY/promoter relationships has been hampered by the factors' indiscriminate binding to known W box DNA elements and their possible genetic redundance. Employing chromatin immunoprecipitations (ChIP) of cultured cells, we show that parsley (Petroselinum crispum) WRKY1 protein binds to the W boxes of its native promoter as well as to that of PcWRKY3 and the defense-related PR10-class marker gene Pathogenesis-Related1-1 (PcPR1-1). Although present at low concentrations in resting cells, WRKY1 does not appear to play a role in the immediate early gene response upon elicitation because it does not bind to the promoter at this time. Paradoxically, in vivo binding at the PcWRKY1 promoter correlates more with downregulation of gene expression, whereas previous overexpression studies suggested an activating function of WRKY1 on PcWRKY1 expression. By contrast, PcPR1-1 expression remains strong when its promoter is occupied in vivo by WRKY1. Unexpectedly, ChIP revealed that W boxes at promoter sites are constitutively occupied by other WRKY transcription factors, indicating that site recruitment does not seem to play a major role in their regulation. Rather, WRKY proteins very likely act in a network of mutually competing participants with temporal displacement occurring at defined preoccupied sites by other family members in a stimulus-dependent manner. PMID:15367720

  15. Trophic and neurotrophic factors in human pituitary adenomas (Review).

    PubMed

    Spoletini, Marialuisa; Taurone, Samanta; Tombolini, Mario; Minni, Antonio; Altissimi, Giancarlo; Wierzbicki, Venceslao; Giangaspero, Felice; Parnigotto, Pier Paolo; Artico, Marco; Bardella, Lia; Agostinelli, Enzo; Pastore, Francesco Saverio

    2017-10-01

    The pituitary gland is an organ that functionally connects the hypothalamus with the peripheral organs. The pituitary gland is an important regulator of body homeostasis during development, stress, and other processes. Pituitary adenomas are a group of tumors arising from the pituitary gland: they may be subdivided in functional or non-functional, depending on their hormonal activity. Some trophic and neurotrophic factors seem to play a key role in the development and maintenance of the pituitary function and in the regulation of hypothalamo-pituitary-adrenocortical axis activity. Several lines of evidence suggest that trophic and neurotrophic factors may be involved in pituitary function, thus suggesting a possible role of the trophic and neurotrophic factors in the normal development of pituitary gland and in the progression of pituitary adenomas. Additional studies might be necessary to better explain the biological role of these molecules in the development and progression of this type of tumor. In this review, in light of the available literature, data on the following neurotrophic factors are discussed: ciliary neurotrophic factor (CNTF), transforming growth factors β (TGF‑β), glial cell line-derived neurotrophic factor (GDNF), nerve growth factor (NGF), vascular endothelial growth factor (VEGF), vascular endothelial growth inhibitor (VEGI), fibroblast growth factors (FGFs) and epidermal growth factor (EGF) which influence the proliferation and growth of pituitary adenomas.

  16. Assistive hearing technologies among students with hearing impairment: factors that promote satisfaction.

    PubMed

    Rekkedal, Ann Mette

    2012-01-01

    Hearing technology can play an essential part in the education of deaf and hard-of-hearing children in inclusive schools. Few studies have examined these children's experiences with this technology. This article explores factors pertaining to children's use of and attitudes toward hearing technologies, such as hearing aids, cochlear implants, teacher-worn microphones, and student-worn microphones. The study included 153 deaf and hard-of-hearing students. All students communicated orally and were in inclusive schools from grades 5-10. The results suggest that males view hearing technology more positively than do females. Having severe hearing loss also promoted positive attitudes toward hearing aids and cochlear implants, but not toward microphones. The students with positive self-descriptions tended to be more satisfied with hearing aids or cochlear implants than the students with negative self-descriptions. The main factors promoting the use of hearing aids were severe hearing loss, positive attitudes toward hearing aids, and the sound quality of hearing aids.

  17. Th17 cell-mediated immune responses promote mast cell proliferation by triggering stem cell factor in keratinocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Kyung-Ah; Park, Minhwa; Kim, Yu-Hee

    Although mast cells are traditionally thought to function as effector cells in allergic responses, they have increasingly been recognized as important regulators of various immune responses. Mast cells mature locally; thus, tissue-specific influences are important for promoting mast cell accumulation and survival in the skin and the gastrointestinal tract. In this study, we determined the effects of keratinocytes on mast cell accumulation during Th17-mediated skin inflammation. We observed increases in dermal mast cells in imiquimod-induced psoriatic dermatitis in mice accompanied by the expression of epidermal stem cell factor (SCF), a critical mast cell growth factor. Similar to mouse epidermal keratinocytes,more » SCF was highly expressed in the human HaCaT keratinocyte cell line following stimulation with IL−17. Further, keratinocytes promoted mast cell proliferation following stimulation with IL−17 in vitro. However, the effects of keratinocytes on mast cells were significantly diminished in the presence of anti−CD117 (stem cell factor receptor) blocking antibodies. Taken together, our results revealed that the Th17-mediated inflammatory environment promotes mast cell accumulation through keratinocyte-derived SCF. - Highlights: • Psoriasis-like skin inflammation increase dermal mast cells. • Keratinocyte produce stem cell factor in psoriasis-like skin inflammation. • Keratinocyte promote mast cell proliferation by stem cell factor dependent manner.« less

  18. Enhancing Peripheral Nerve Regeneration with a Novel Drug Delivering Nerve Conduit

    DTIC Science & Technology

    2017-12-01

    control group ) or a conduit that released GDNF. The main outcome measures were muscle atrophy, electrophysiology, motor endplate reinnervation...prepared NGF+GDNF ( Control groups ). 8 Gastrocnemius Atrophy The gastrocnemius muscle weight of the GDNF treated group was ~ 60% of the non...experimental side at 10 weeks. GDNF conduit group (49.4±1.4 %) had statistically less muscle atrophy than the control group (65.1±5.1 %) (pɘ.05) at 10

  19. TERT promoter mutation status as an independent prognostic factor in cutaneous melanoma.

    PubMed

    Griewank, Klaus G; Murali, Rajmohan; Puig-Butille, Joan Anton; Schilling, Bastian; Livingstone, Elisabeth; Potrony, Miriam; Carrera, Cristina; Schimming, Tobias; Möller, Inga; Schwamborn, Marion; Sucker, Antje; Hillen, Uwe; Badenas, Celia; Malvehy, Josep; Zimmer, Lisa; Scherag, André; Puig, Susana; Schadendorf, Dirk

    2014-09-01

    Recently, TERT promoter mutations were identified at high frequencies in cutaneous melanoma tumor samples and cell lines. The mutations were found to have a UV-signature and to lead to increased TERT gene expression. We analyzed a large cohort of melanoma patients for the presence and distribution of TERT promoter mutations and their association with clinico-pathological characteristics. 410 melanoma tumor samples were analyzed by Sanger sequencing for the presence of TERT promoter mutations. An analysis of associations between mutation status and various clinical and pathologic variables was performed. TERT promoter mutations were identified in 154 (43%) of 362 successfully sequenced melanomas. Mutation frequencies varied between melanoma subtype, being most frequent in melanomas arising in nonacral skin (48%) and melanomas with occult primary (50%), and less frequent in mucosal (23%), and acral (19%) melanomas. Mutations carried a UV signature (C>T or CC>TT). The presence of TERT promoter mutations was associated with factors such as BRAF or NRAS mutation (P < .001), histologic type (P = .002), and Breslow thickness (P < .001). TERT promoter mutation was independently associated with poorer overall survival in patients with nonacral cutaneous melanomas (median survival 80 months vs 291 months for wild-type; hazard ratio corrected for other covariates 2.47; 95% confidence interval [CI] = 1.29 to 4.74; P = .006). UV-induced TERT promoter mutations are one of the most frequent genetic alterations in melanoma, with frequencies varying depending on melanoma subtype. In nonacral cutaneous melanomas, presence of TERT promoter mutations is independently associated with poor prognosis. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Differential Transcription Factor Use by the KIR2DL4 Promoter Under Constitutive and IL-2/15-Treated Conditions

    PubMed Central

    Presnell, Steven R.; Zhang, Lei; Chlebowy, Corrin N.; Al-Attar, Ahmad; Lutz, Charles T.

    2012-01-01

    KIR2DL4 is unique among human KIR genes in expression, cellular localization, structure, and function, yet the transcription factors required for its expression have not been identified. Using mutagenesis, electrophoretic mobility shift assay, and co-transfection assays, we identified two redundant Runx binding sites in the 2DL4 promoter as essential for constitutive 2DL4 transcription, with contributions by a CRE site and initiator elements. IL-2-and IL-15-stimulated human NK cell lines increased 2DL4 promoter activity, which required functional Runx, CRE, and Ets sites. Chromatin immunoprecipitation experiments show that Runx3 and Ets1 bind the 2DL4 promoter in situ. 2DL4 promoter activity had similar transcription factor requirements in T cells. Runx, CRE, and Ets binding motifs are present in 2DL4 promoters from across primate species, but other postulated transcription factor binding sites are not preserved. Differences between 2DL4 and clonally-restricted KIR promoters suggest a model that explains the unique 2DL4 expression pattern in human NK cells. PMID:22467658

  1. Anxiety sensitivity and working memory capacity: Risk factors and targets for health behavior promotion.

    PubMed

    Otto, Michael W; Eastman, Abraham; Lo, Stephen; Hearon, Bridget A; Bickel, Warren K; Zvolensky, Michael; Smits, Jasper A J; Doan, Stacey N

    2016-11-01

    Understanding the nature and influence of specific risk profiles is increasingly important for health behavior promotion. The purpose of this article is to document the value of two factors-anxiety sensitivity (AS) and working memory capacity (WMC)-for enhancing risk for the initiation and/or maintenance of a range of negative health behaviors. AS is a distress-related risk factor that potentiates avoidance/coping motivations for negative health behaviors. Stress provides the conditions for negative somatic and affective states, and AS amplifies the aversiveness of these experiences and correspondingly hinders adaptive functioning. In contrast, low WMC is hypothesized to exert its effect by decreasing the capacity to filter out current temptations, attenuating a focus on longer-term goals and impairing the application of relevant coping skills at times of stress. In this review, we provide conceptual models for the separate roles of high AS and low WMC in negative health behaviors, review the influence of these factors on specific health behavior exemplars (eating behaviors/obesity, physical activity, smoking, alcohol use, and sleep promotion), provide preliminary evidence for their value as independent treatment targets for health-behavior promotion, and encourage specific research directions in relation to these variables. Copyright © 2016. Published by Elsevier Ltd.

  2. Community Violence Exposure and Adolescent Delinquency: Examining a Spectrum of Promotive Factors

    ERIC Educational Resources Information Center

    Chen, Pan; Voisin, Dexter R.; Jacobson, Kristen C.

    2016-01-01

    This study examined whether promotive factors (future expectations, family warmth, school attachment, and neighborhood cohesion) moderated relationships between community violence exposure and youth delinquency. Analyses were conducted using N = 2,980 sixth to eighth graders (M[subscript age] = 12.48; 41.1% males) from a racially, ethnically, and…

  3. Protective Family Factors in the Context of Neighborhood: Promoting Positive School Outcomes

    ERIC Educational Resources Information Center

    Woolley, Michael E.; Grogan-Kaylor, Andrew

    2006-01-01

    Three developmental contexts--school, neighborhood, and family--influence school outcomes. The focus of the current investigation was on the promotive role of 4 family factors--family satisfaction, family support, family integration, and home academic culture--on 3 school outcomes. These outcomes included student self-reported sense of school…

  4. Promotion Factors For Enlisted Infantry Marines

    DTIC Science & Technology

    2017-06-01

    description , billet accomplishments, mission accomplishment, individual character, leadership, intellect and wisdom, fulfillment of evaluation , RS...staff sergeant. To assess which ranks proportionally promote more high-quality Marines, we compare two performance evaluation methods: proficiency and...adverse fitness reports. From the two performance evaluation methods we find that the Marine Corps promotes proportionally more high-quality Marines

  5. [The relationship between adolescent body size and health promoting behavior and biochemical indicator factors].

    PubMed

    Chen, Hsiu-Chih; Chen, Hsing-Mei; Chen, Min-Li; Chiang, Chih-Ming; Chen, Mei-Yen

    2012-06-01

    Tainan City has the third highest prevalence of junior high school student obesity of all administrative districts in Taiwan. School nurses play an important role in promoting student health. Understanding the factors that significantly impact student weight is critical to designing effective student health promotion programs. This study explored the relationships between health promotion behavior and serum biomarker variables and body size. Researchers used a cross-sectional descriptive study design and stratified cluster random sampling. Subjects were 7th graders who received an in-school health checkup with blood test at 41 public junior high schools in Tainan City between July 2010 and May 2011. Research instruments included the adolescent health promotion (AHP) scale, serum biochemical profile and BMI (body mass index). Obtained data were analyzed using descriptive and inferential statistics. Of the 726 students who participated in this study, 22.2% were underweight and 23.8% were overweight or obese. Higher AHP scores correlated with better biomarkers and body size. Multivariate analysis found factors that increased the risk of being overweight included: being male, having a father with a relatively low level of education, playing video games frequently, and doing little or no exercise (odds ratio = 1.93, 1.75, 1.07, 1.04, respectively). Participants with relatively healthy behaviors had better biomarkers and a lower risk of being overweight. Findings can support the development of evidence-based school programs to promote student health.

  6. Fluoxetine Ameliorates Behavioral and Neuropathological Deficits in a Transgenic Model Mouse of α-synucleinopathy

    PubMed Central

    Ubhi, Kiren; Inglis, Chandra; Mante, Michael; Patrick, Christina; Adame, Anthony; Spencer, Brian; Rockenstein, Edward; May, Verena; Winkler, Juergen; Masliah, Eliezer

    2013-01-01

    The term α-synucleinopathies refers to a group of age-related neurological disorders including Parkinson’s disease (PD), Dementia with Lewy Bodies (DLB) and Multiple System Atrophy (MSA) that display an abnormal accumulation of alpha-synuclein (α-syn). In contrast to the neuronal α-syn accumulation observed in PD and DLB, MSA is characterized by a widespread oligodendrocytic α-syn accumulation. Transgenic mice expressing human α-syn under the oligodendrocyte-specific myelin basic protein promoter (MBP1-hαsyn tg mice) model many of the behavioral and neuropathological alterations observed in MSA. Fluoxetine, a selective serotonin reuptake inhibitor, has been shown to be protective in toxin-induced models of PD, however its effects in an in vivo transgenic model of α-synucleinopathy remain unclear. In this context, this study examined the effect of fluoxetine in the MBP1-hαsyn tg mice, a model of MSA. Fluoxetine adminstration ameliorated motor deficits in the MBP1-hαsyn tg mice, with a concomitant decrease in neurodegenerative pathology in the basal ganglia, neocortex and hippocampus. Fluoxetine adminstration also increased levels of the neurotrophic factors, GDNF (glial-derived neurotrophic factor) and BDNF (brain-derived neurotrophic factor) in the MBP1-hαsyn tg mice compared to vehicle-treated tg mice. This fluoxetine-induced increase in GDNF and BDNF protein levels was accompanied by activation of the ERK signaling pathway. The effects of fluoxetine adminstration on myelin and serotonin markers were also examined. Collectively these results indicate that fluoxetine may represent a novel therapeutic intervention for MSA and other neurodegenerative disorders. PMID:22281106

  7. Role of Estrogens in the Size of Neuronal Somata of Paravaginal Ganglia in Ovariectomized Rabbits

    PubMed Central

    Hernández-Aragón, Laura G.; García-Villamar, Verónica; Carrasco-Ruiz, María de los Ángeles; Nicolás-Toledo, Leticia; Ortega, Arturo; Cuevas-Romero, Estela; Martínez-Gómez, Margarita

    2017-01-01

    We aimed to determine the role of estrogens in modulating the size of neuronal somata of paravaginal ganglia. Rabbits were allocated into control (C), ovariectomized (OVX), and OVX treated with estradiol benzoate (OVX + EB) groups to evaluate the neuronal soma area; total serum estradiol (E2) and testosterone (T) levels; the percentage of immunoreactive (ir) neurons anti-aromatase, anti-estrogen receptor (ERα, ERβ) and anti-androgen receptor (AR); the intensity of the immunostaining anti-glial cell line-derived neurotrophic factor (GDNF) and the GDNF family receptor alpha type 1 (GFRα1); and the number of satellite glial cells (SGCs) per neuron. There was a decrease in the neuronal soma size for the OVX group, which was associated with low T, high percentages of aromatase-ir and neuritic AR-ir neurons, and a strong immunostaining anti-GDNF and anti-GFRα1. The decrease in the neuronal soma size was prevented by the EB treatment that increased the E2 without affecting the T levels. Moreover, there was a high percentage of neuritic AR-ir neurons, a strong GDNF immunostaining in the SGC, and an increase in the SGCs per neuron. Present findings show that estrogens modulate the soma size of neurons of the paravaginal ganglia, likely involving the participation of the SGC. PMID:28316975

  8. TITER AND PRODUCT AFFECTS THE DISTRIBUTION OF GENE EXPRESSION AFTER INTRAPUTAMINAL CONVECTION-ENHANCED DELIVERY

    PubMed Central

    Emborg, Marina E.; Hurley, Samuel A.; Joers, Valerie; Tromp, Do P.M.; Swanson, Christine R.; Ohshima-Hosoyama, Sachiko; Bondarenko, Viktorya; Cummisford, Kyle; Sonnemans, Marc; Hermening, Stephan; Blits, Bas; Alexander, Andrew L.

    2014-01-01

    Background Efficacy and safety of intracerebral gene therapy for brain disorders, like Parkinson’s disease, depends on appropriate distribution of gene expression. Objectives To assess if the distribution of gene expression is affected by vector titer and protein type. Methods Four adult macaque monkeys seronegative for adeno-associated virus 5 (AAV5) received in the right and left ventral postcommisural putamen 30μl inoculation of a high or low titer suspension of AAV5 encoding glial derived neurotrophic factor (GDNF) or green fluorescent protein (GFP). Inoculations were performed using convection enhanced delivery and intraoperative MRI (IMRI). Results IMRI confirmed targeting and infusion cloud irradiating from the catheter tip into surrounding area. Postmortem analysis six weeks after surgery revealed GFP and GDNF expression ipsilateral to the injection side that had a titer-dependent distribution. GFP and GDNF expression was also observed in fibers in the Substantia Nigra (SN) pars reticulata (pr), demonstrating anterograde transport. Few GFP-positive neurons were present in the SN pars compacta (pc), possibly by direct retrograde transport of the vector. GDNF was present in many SNpc and SNpr neurons. Conclusions After controlling for target and infusate volume, intracerebral distribution of gene product is affected by vector titer and product biology. PMID:24943657

  9. Muscle and Liver Carbohydrates: Response to Military Task Performance by Women and Men

    DTIC Science & Technology

    2000-10-01

    rapidly synthesize glycogen from three-carbon compounds generated by muscle metabolism and taken up by the liver ( gluconeogenesis ). 20 UNPUBLISHED DATA...49008 Glial cell line-derived neturotrophic factor (GDNF) is a recently discovered nerrotrophic factor that afflets peripheral motor neurons . Increased

  10. Promotion of human early embryonic development and blastocyst outgrowth in vitro using autocrine/paracrine growth factors.

    PubMed

    Kawamura, Kazuhiro; Chen, Yuan; Shu, Yimin; Cheng, Yuan; Qiao, Jie; Behr, Barry; Pera, Renee A Reijo; Hsueh, Aaron J W

    2012-01-01

    Studies using animal models demonstrated the importance of autocrine/paracrine factors secreted by preimplantation embryos and reproductive tracts for embryonic development and implantation. Although in vitro fertilization-embryo transfer (IVF-ET) is an established procedure, there is no evidence that present culture conditions are optimal for human early embryonic development. In this study, key polypeptide ligands known to be important for early embryonic development in animal models were tested for their ability to improve human early embryo development and blastocyst outgrowth in vitro. We confirmed the expression of key ligand/receptor pairs in cleavage embryos derived from discarded human tri-pronuclear zygotes and in human endometrium. Combined treatment with key embryonic growth factors (brain-derived neurotrophic factor, colony-stimulating factor, epidermal growth factor, granulocyte macrophage colony-stimulating factor, insulin-like growth factor-1, glial cell-line derived neurotrophic factor, and artemin) in serum-free media promoted >2.5-fold the development of tri-pronuclear zygotes to blastocysts. For normally fertilized embryos, day 3 surplus embryos cultured individually with the key growth factors showed >3-fold increases in the development of 6-8 cell stage embryos to blastocysts and >7-fold increase in the proportion of high quality blastocysts based on Gardner's criteria. Growth factor treatment also led to a 2-fold promotion of blastocyst outgrowth in vitro when day 7 surplus hatching blastocysts were used. When failed-to-be-fertilized oocytes were used to perform somatic cell nuclear transfer (SCNT) using fibroblasts as donor karyoplasts, inclusion of growth factors increased the progression of reconstructed SCNT embryos to >4-cell stage embryos. Growth factor supplementation of serum-free cultures could promote optimal early embryonic development and implantation in IVF-ET and SCNT procedures. This approach is valuable for infertility

  11. [Profiles of factors enhancing teachers' occupational wellbeing and their use in health promoting schools].

    PubMed

    Woynarowska-Sołdan, Magdalena; Weziak-Białowolska, Dorota

    2012-01-01

    The aim of this article is to present the results of survey on general occupational being and factors contributing to the enhancement of teachers' occupational wellbeing. The authors also address the issue how to work out, analyze, present and use the survey results in health promotion at schools. Teachers of four selected health promoting schools (HPS) were surveyed and the results were analyzed. The Factors Enhancing Teachers's Occupational Wellbeing Scale was used. This instrument consisted of 45 statements on 5 subscales (working conditions, teachers' community, students' and parents' community, organization and workload, professional competences). They were measured from two points of view, the assessment of a current situation and the assessment of needs for the improvement. The scale was preceded by questions concerning the assessment of general occupational being and the assessment of general occupational being of other teachers at school. The self-assessment of the respondents' own and other teachers' occupational being was positive. The current situation related to factors influencing teachers' wellbeing was recognized by teachers as rather good and the need for change was rather low. There were differences between schools in the majority of analyzed factors. An easy method of analyzing data as numerical values and graphic profiles was proposed to be used in HPS. Factors influencing teachers' occupational wellbeing differed between schools. The results of their assessment should be analyzed in each school taking account of its individual context. The proposed instrument and method of data analysis are useful in the planning of teachers' health promotion projects, diagnosis of the initial status ("pre-test") and evaluation of their outcomes ("post-test").

  12. Peritubular Myoid Cells Participate in Male Mouse Spermatogonial Stem Cell Maintenance

    PubMed Central

    Chen, Liang-Yu; Brown, Paula R.; Willis, William B.

    2014-01-01

    Peritubular myoid (PM) cells surround the seminiferous tubule and together with Sertoli cells form the cellular boundary of the spermatogonial stem cell (SSC) niche. However, it remains unclear what role PM cells have in determining the microenvironment in the niche required for maintenance of the ability of SSCs to undergo self-renewal and differentiation into spermatogonia. Mice with a targeted disruption of the androgen receptor gene (Ar) in PM cells experienced a progressive loss of spermatogonia, suggesting that PM cells require testosterone (T) action to produce factors influencing SSC maintenance in the niche. Other studies showed that glial cell line-derived neurotrophic factor (GDNF) is required for SSC self-renewal and differentiation of SSCs in vitro and in vivo. This led us to hypothesize that T-regulated GDNF expression by PM cells contributes to the maintenance of SSCs. This hypothesis was tested using an adult mouse PM cell primary culture system and germ cell transplantation. We found that T induced GDNF expression at the mRNA and protein levels in PM cells. Furthermore, when thymus cell antigen 1-positive spermatogonia isolated from neonatal mice were cocultured with PM cells with or without T and transplanted to the testes of germ cell-depleted mice, the number and length of transplant-derived colonies was increased considerably by in vitro T treatment. These results support the novel hypothesis that T-dependent regulation of GDNF expression in PM cells has a significant influence on the microenvironment of the niche and SSC maintenance. PMID:25181385

  13. Factors Involved in Iranian Women Heads of Household’s Health Promotion Activities: A Grounded Theory Study

    PubMed Central

    Rafii, Forough; Seyedfatemi, Naima; Rezaei, Mahboubeh

    2013-01-01

    We aimed to explore and describe the factors involved in Iranian women heads of household’s health promotion activities. Grounded theory was used as the method. Sixteen women heads of household were recruited. Data were generated by semi structured interviews. Our findings indicated that remainder of resources (money, time and energy) alongside perceived severity of health risk were two main factors whereas women’s personal and socio-economic characteristics were two contextual factors involved in these women's health promotion activities. To help these women improve their health status, we recommended that the government, non-governmental organizations and health care professionals provide them with required resources and increase their knowledge by holding training sessions. PMID:24039645

  14. Factors influencing workplace health promotion intervention: a qualitative systematic review.

    PubMed

    Rojatz, Daniela; Merchant, Almas; Nitsch, Martina

    2017-10-01

    Although workplace health promotion (WHP) has evolved over the last 40 years, systematically collected knowledge on factors influencing the functioning of WHP is scarce. Therefore, a qualitative systematic literature review was carried out to systematically identify and synthesize factors influencing the phases of WHP interventions: needs assessment, planning, implementation and evaluation. Research evidence was identified by searching electronic databases (Scopus, PubMed, Social Sciences Citation Index, ASSIA, ERIC, IBBS and PsycINFO) from 1998 to 2013, as well as by cross-checking reference lists of included peer-reviewed articles. The inclusion criteria were: original empirical research, description of WHP, description of barriers to and/or facilitators of the planning, implementation and/or evaluation of WHP. Finally, 54 full texts were included. From these, influencing factors were extracted and summarized using thematic analysis. The majority of influencing factors referred to the implementation phase, few dealt with planning and/or evaluation and none with needs assessment. The influencing factors were condensed into topics with respect to factors at contextual level (e.g. economic crisis); factors at organizational level (e.g. management support); factors at intervention level (e.g. quality of intervention concept); factors at implementer level (e.g. resources); factors at participant level (e.g. commitment to intervention) and factors referring to methodological and data aspects (e.g. data-collection issues). Factors regarding contextual issues and organizational aspects were identified across three phases. Therefore, future research and practice should consider not only the influencing factors at different levels, but also at different phases of WHP interventions. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. An Analysis of Promotion and Retention Factors Among Hispanic and Non-Hispanic Marine Corps Officers

    DTIC Science & Technology

    2015-03-01

    PROMOTION AND RETENTION FACTORS AMONG HISPANIC AND NON-HISPANIC MARINE CORPS OFFICERS by Mateo E. Salas March 2015 Thesis Advisor: Simona...U.S. This thesis reviews Marine Corps policies on the recruitment, retention , and promotion of talented officers of a diverse background, and applies...source, military training and fitness report scores that explain any differences in job performance measures of Marine Corps officers of different ethnic

  16. Factors promoting resident deaths at aged care facilities in Japan: a review.

    PubMed

    Sugimoto, Kentaro; Ogata, Yasuko; Kashiwagi, Masayo

    2018-03-01

    Due to an increasingly ageing population, the Japanese government has promoted elderly deaths in aged care facilities. However, existing facilities were not designed to provide resident end-of-life care and the proportion of aged care facility deaths is currently less than 10%. Consequently, the present review evaluated the factors that promote aged care facility resident deaths in Japan from individual- and facility-level perspectives to exploring factors associated with increased resident deaths. To achieve this, MEDLINE, CINAHL, Web of Science and Ichushi databases were searched on 23 January 2016. Influential factors were reviewed for two healthcare services (insourcing and outsourcing facilities) as well as external healthcare agencies operating outside facilities. Of the original 2324 studies retrieved, 42 were included in analysis. Of these studies, five focused on insourcing, two on outsourcing, seven on external agencies and observed facility/agency-level factors. The other 28 studies identified individual-level factors related to death in aged care facilities. The present review found that at both facility and individual levels, in-facility resident deaths were associated with healthcare service provision, confirmation of resident/family end-of-life care preference and staff education. Additionally, while outsourcing facilities did not require employment of physicians/nursing staff to accommodate resident death, these facilities required visits by physicians and nursing staff from external healthcare agencies as well as residents' healthcare input. This review also found few studies examining outsourcing facilities. The number of healthcare outsourcing facilities is rapidly increasing as a result of the Japanese government's new tax incentives. Consequently, there may be an increase in elderly deaths in outsourcing healthcare facilities. Accordingly, it is necessary to identify the factors associated with residents' deaths at outsourcing facilities.

  17. Hormone induces binding of receptors and transcription factors to a rearranged nucleosome on the MMTV promoter in vivo.

    PubMed Central

    Truss, M; Bartsch, J; Schelbert, A; Haché, R J; Beato, M

    1995-01-01

    Hormonal induction of the mouse mammary tumour virus (MMTV) promoter is mediated by interactions between hormone receptors and other transcription factors bound to a complex array of sites. Previous results suggested that access to these sites is modulated by their precise organization into a positioned regulatory nucleosome. Using genomic footprinting, we show that MMTV promoter DNA is rotationally phased in intact cells containing either episomal or chromosomally integrated proviral fragments. Prior to induction there is no evidence for factors bound to the promoter. Following progesterone induction of cells with high levels of receptor, genomic footprinting detects simultaneous protection over the binding sites for hormone receptors, NF-I and the octamer binding proteins. Glucocorticoid or progestin induction leads to a characteristic chromatin remodelling that is independent of ongoing transcription. The centre of the regulatory nucleosome becomes more accessible to DNase I and restriction enzymes, but the limits of the nucleosome are unchanged and the 145 bp core region remains protected against micrococcal nuclease digestion. Thus, the nucleosome covering the MMTV promoter is neither removed nor shifted upon hormone induction, and all relevant transcription factors bind to the surface of the rearranged nucleosome. Since these factors cannot bind simultaneously to free DNA, maintainance of the nucleosome may be required for binding of factors to contiguous sites. Images PMID:7737125

  18. Factors promoting health-related quality of life in people with rheumatic diseases: a 12 month longitudinal study

    PubMed Central

    2011-01-01

    Background Rheumatic diseases have a significant adverse impact on the individual from physical, mental and social aspects, resulting in a low health-related quality of life (HRQL). There is a lack of longitudinal studies on HRQL in people with rheumatic diseases that focus on factors promoting HRQL instead of risk factors. The aim of this study was to investigate the associations between suggested health promoting factors at baseline and outcome in HRQL at a 12 month follow-up in people with rheumatic diseases. Methods A longitudinal cohort study was conducted in 185 individuals with rheumatic diseases with questionnaires one week and 12 months after rehabilitation in a Swedish rheumatology clinic. HRQL was assessed by SF-36 together with suggested health factors. The associations between SF-36 subscales and the health factors were analysed by multivariable logistic regressions. Results Factors predicting better outcome in HRQL in one or several SF-36 subscales were being younger or middle-aged, feeling painless, having good sleep structure, feeling rested after sleep, performing low effort of exercise more than twice per week, having strong sense of coherence (SOC), emotional support and practical assistance, higher educational level and work capacity. The most important factors were having strong SOC, feeling rested after sleep, having work capacity, being younger or middle-aged, and having good sleep structure. Conclusions This study identified several factors that promoted a good outcome in HRQL to people with rheumatic diseases. These health factors could be important to address in clinical work with rheumatic diseases in order to optimise treatment strategies. PMID:21599884

  19. PLOD2 regulated by transcription factor FOXA1 promotes metastasis in NSCLC

    PubMed Central

    Du, Hongzhi; Chen, Yulong; Hou, Xiaoying; Huang, Yue; Wei, Xiaohui; Yu, Xiaowen; Feng, Shuyun; Wu, Yao; Zhan, Meixiao; Shi, Xin; Lin, Sensen; Lu, Ligong; Yuan, Shengtao; Sun, Li

    2017-01-01

    In multiple types of tumors, fibrotic collagen is regarded as the 'highway' for cancer cell migration, which is mainly modified by lysyl hydroxylase 2 (PLOD2). The previous findings have demonstrated that the expression of PLOD2 was regulated by multiple factors, including HIF-1α, TGF-β and microRNA-26a/b. Although PLOD2 was confirmed to be related to poor prognosis in lung adenocarcinoma, the regulatory mechanism and function of PLOD2 in human lung adenocarcinoma is poorly understood. On the other hand, upregulation or hyperactivation of epidermal growth factor receptor is considered as a prognostic marker in many cancers, especially in non-small-cell lung cancer (NSCLC). In this study, we found that PLOD2 was elevated in NSCLC specimens and positively links to NSCLC poor prognosis. Gain- and loss-of-function studies and orthotopic implantation metastasis model pinpointed that PLOD2 promotes NSCLC metastasis directly by enhancing migration and indirectly by inducing collagen reorganization. In addition, we revealed that PLOD2 was regulated by PI3K/AKT-FOXA1 axis. The transcription factor FOXA1 directly bound to the PLOD2 promoter, and turned on PLOD2 transcription. In summary, our findings revealed a regulatory mechanism of NSCLC metastasis through EGFR-PI3K/AKT-FOXA1-PLOD2 pathway, and provided PLOD2 as a therapeutic target for NSCLC treatment. PMID:29072684

  20. Factors That Impact the Success of Interorganizational Health Promotion Collaborations: A Scoping Review.

    PubMed

    Seaton, Cherisse L; Holm, Nikolai; Bottorff, Joan L; Jones-Bricker, Margaret; Errey, Sally; Caperchione, Cristina M; Lamont, Sonia; Johnson, Steven T; Healy, Theresa

    2018-05-01

    To explore published empirical literature in order to identify factors that facilitate or inhibit collaborative approaches for health promotion using a scoping review methodology. A comprehensive search of MEDLINE, CINAHL, ScienceDirect, PsycINFO, and Academic Search Complete for articles published between January 2001 and October 2015 was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. To be included studies had to: be an original research article, published in English, involve at least 2 organizations in a health promotion partnership, and identify factors contributing to or constraining the success of an established (or prior) partnership. Studies were excluded if they focused on primary care collaboration or organizations jointly lobbying for a cause. Data extraction was completed by 2 members of the author team using a summary chart to extract information relevant to the factors that facilitated or constrained collaboration success. NVivo 10 was used to code article content into the thematic categories identified in the data extraction. Twenty-five studies across 8 countries were identified. Several key factors contributed to collaborative effectiveness, including a shared vision, leadership, member characteristics, organizational commitment, available resources, clear roles/responsibilities, trust/clear communication, and engagement of the target population. In general, the findings were consistent with previous reviews; however, additional novel themes did emerge.

  1. A previously unrecognized role of C3a in proteinuric progressive nephropathy

    PubMed Central

    Morigi, Marina; Locatelli, Monica; Rota, Cinzia; Buelli, Simona; Corna, Daniela; Rizzo, Paola; Abbate, Mauro; Conti, Debora; Perico, Luca; Longaretti, Lorena; Benigni, Ariela; Zoja, Carlamaria; Remuzzi, Giuseppe

    2016-01-01

    Podocyte loss is the initial event in the development of glomerulosclerosis, the structural hallmark of progressive proteinuric nephropathies. Understanding mechanisms underlying glomerular injury is the key challenge for identifying novel therapeutic targets. In mice with protein-overload induced by bovine serum albumin (BSA), we evaluated whether the alternative pathway (AP) of complement mediated podocyte depletion and podocyte-dependent parietal epithelial cell (PEC) activation causing glomerulosclerosis. Factor H (Cfh−/−) or factor B-deficient mice were studied in comparison with wild-type (WT) littermates. WT+BSA mice showed podocyte depletion accompanied by glomerular complement C3 and C3a deposits, PEC migration to capillary tuft, proliferation, and glomerulosclerosis. These changes were more prominent in Cfh−/− +BSA mice. The pathogenic role of AP was documented by data that factor B deficiency preserved glomerular integrity. In protein-overload mice, PEC dysregulation was associated with upregulation of CXCR4 and GDNF/c-Ret axis. In vitro studies provided additional evidence of a direct action of C3a on proliferation and CXCR4-related migration of PECs. These effects were enhanced by podocyte-derived GDNF. In patients with proteinuric nephropathy, glomerular C3/C3a paralleled PEC activation, CXCR4 and GDNF upregulation. These results indicate that mechanistically uncontrolled AP complement activation is not dispensable for podocyte-dependent PEC activation resulting in glomerulosclerosis. PMID:27345360

  2. Tumor Necrosis Factor Receptor-Associated Factor 5 Interacts with the NS3 Protein and Promotes Classical Swine Fever Virus Replication.

    PubMed

    Lv, Huifang; Dong, Wang; Guo, Kangkang; Jin, Mingxing; Li, Xiaomeng; Li, Cunfa; Zhang, Yanming

    2018-06-05

    Classical swine fever, caused by classical swine fever virus (CSFV), is a highly contagious and high-mortality viral disease, causing huge economic losses in the swine industry worldwide. CSFV non-structural protein 3 (NS3), a multifunctional protein, plays crucial roles in viral replication. However, how NS3 exactly exerts these functions is currently unknown. Here, we identified tumor necrosis factor receptor-associated factor 5 (TRAF5) as a novel binding partner of the NS3 protein via yeast two-hybrid, co-immunoprecipitation and glutathione S -transferase pull-down assays. Furthermore, we observed that TRAF5 promoted CSFV replication in porcine alveolar macrophages (PAMs). Additionally, CSFV infection or NS3 expression upregulated TRAF5 expression, implying that CSFV may exploit TRAF5 via NS3 for better growth. Moreover, CSFV infection and TRAF5 expression activated p38 mitogen activated protein kinase (MAPK) activity, and inhibition of p38 MAPK activation by the SB203580 inhibitor suppressed CSFV replication. Notably, TRAF5 overexpression did not promote CSFV replication following inhibition of p38 MAPK activation. Our findings reveal that TRAF5 promotes CSFV replication via p38 MAPK activation. This work provides a novel insight into the role of TRAF5 in CSFV replication capacity.

  3. Transcriptional activation of the human inducible nitric-oxide synthase promoter by Kruppel-like factor 6.

    PubMed

    Warke, Vishal G; Nambiar, Madhusoodana P; Krishnan, Sandeep; Tenbrock, Klaus; Geller, David A; Koritschoner, Nicolas P; Atkins, James L; Farber, Donna L; Tsokos, George C

    2003-04-25

    Nitric oxide is a ubiquitous free radical that plays a key role in a broad spectrum of signaling pathways in physiological and pathophysiological processes. We have explored the transcriptional regulation of inducible nitric-oxide synthase (iNOS) by Krüppel-like factor 6 (KLF6), an Sp1-like zinc finger transcription factor. Study of serial deletion constructs of the iNOS promoter revealed that the proximal 0.63-kb region can support a 3-6-fold reporter activity similar to that of the full-length 16-kb promoter. Within the 0.63-kb region, we identified two CACCC sites (-164 to -168 and -261 to -265) that bound KLF6 in both electrophoretic mobility shift and chromatin immunoprecipitation assays. Mutation of both these sites abrogated the KLF6-induced enhancement of the 0.63-kb iNOS promoter activity. The binding of KLF6 to the iNOS promoter was significantly increased in Jurkat cells, primary T lymphocytes, and COS-7 cells subjected to NaCN-induced hypoxia, heat shock, serum starvation, and phorbol 12-myristate 13-acetate/ ionophore stimulation. Furthermore, in KLF6-transfected and NaCN-treated COS-7 cells, there was a 3-4-fold increase in the expression of the endogenous iNOS mRNA and protein that correlated with increased production of nitric oxide. These findings indicate that KLF6 is a potential transactivator of the human iNOS promoter in diverse pathophysiological conditions.

  4. Minoxidil Promotes Hair Growth through Stimulation of Growth Factor Release from Adipose-Derived Stem Cells

    PubMed Central

    Choi, Nahyun; Shin, Soyoung; Song, Sun U.; Sung, Jong-Hyuk

    2018-01-01

    Minoxidil directly promotes hair growth via the stimulation of dermal papilla (DP) and epithelial cells. Alternatively, there is little evidence for indirect promotion of hair growth via stimulation of adipose-derived stem cells (ASCs). We investigated whether minoxidil stimulates ASCs and if increased growth factor secretion by ASCs facilitates minoxidil-induced hair growth. Telogen-to-anagen induction was examined in mice. Cultured DP cells and vibrissae hair follicle organ cultures were used to further examine the underlying mechanisms. Subcutaneous injection of minoxidil-treated ASCs accelerated telogen-to-anagen transition in mice, and increased hair weight at day 14 post-injection. Minoxidil did not alter ASC proliferation, but increased migration and tube formation. Minoxidil also increased the secretion of growth factors from ASCs, including chemokine (C-X-C motif) ligand 1 (CXCL1), platelet-derived endothelial cell growth factor (PD-ECGF), and platelet-derived growth factor-C (PDGF-C). Minoxidil increased extracellular signal–regulated kinases 1/2 (ERK1/2) phosphorylation, and concomitant upregulation of PD-ECGF and PDGF-C mRNA levels were attenuated by an ERK inhibitor. Subcutaneous injection of CXCL1, PD-ECGF, or PDGF-C enhanced anagen induction in mice, and both CXCL1 and PDGF-C increased hair length in ex vivo organ culture. Treatment with CXCL1, PD-ECGF, or PDGF-C also increased the proliferation index in DP cells. Finally, topical application of CXCL1, PD-ECGF, or PDGF-C with 2% minoxidil enhanced anagen induction when compared to minoxidil alone. Minoxidil stimulates ASC motility and increases paracrine growth factor signaling. Minoxidil-stimulated secretion of growth factors by ASCs may enhance hair growth by promoting DP proliferation. Therefore, minoxidil can be used as an ASC preconditioning agent for hair regeneration. PMID:29495622

  5. Minoxidil Promotes Hair Growth through Stimulation of Growth Factor Release from Adipose-Derived Stem Cells.

    PubMed

    Choi, Nahyun; Shin, Soyoung; Song, Sun U; Sung, Jong-Hyuk

    2018-02-28

    Minoxidil directly promotes hair growth via the stimulation of dermal papilla (DP) and epithelial cells. Alternatively, there is little evidence for indirect promotion of hair growth via stimulation of adipose-derived stem cells (ASCs). We investigated whether minoxidil stimulates ASCs and if increased growth factor secretion by ASCs facilitates minoxidil-induced hair growth. Telogen-to-anagen induction was examined in mice. Cultured DP cells and vibrissae hair follicle organ cultures were used to further examine the underlying mechanisms. Subcutaneous injection of minoxidil-treated ASCs accelerated telogen-to-anagen transition in mice, and increased hair weight at day 14 post-injection. Minoxidil did not alter ASC proliferation, but increased migration and tube formation. Minoxidil also increased the secretion of growth factors from ASCs, including chemokine (C-X-C motif) ligand 1 (CXCL1), platelet-derived endothelial cell growth factor (PD-ECGF), and platelet-derived growth factor-C (PDGF-C). Minoxidil increased extracellular signal-regulated kinases 1/2 (ERK1/2) phosphorylation, and concomitant upregulation of PD-ECGF and PDGF-C mRNA levels were attenuated by an ERK inhibitor. Subcutaneous injection of CXCL1, PD-ECGF, or PDGF-C enhanced anagen induction in mice, and both CXCL1 and PDGF-C increased hair length in ex vivo organ culture. Treatment with CXCL1, PD-ECGF, or PDGF-C also increased the proliferation index in DP cells. Finally, topical application of CXCL1, PD-ECGF, or PDGF-C with 2% minoxidil enhanced anagen induction when compared to minoxidil alone. Minoxidil stimulates ASC motility and increases paracrine growth factor signaling. Minoxidil-stimulated secretion of growth factors by ASCs may enhance hair growth by promoting DP proliferation. Therefore, minoxidil can be used as an ASC preconditioning agent for hair regeneration.

  6. High-frequency stimulation of the globus pallidus interna nucleus modulates GFRα1 gene expression in the basal ganglia.

    PubMed

    Ho, Duncun Xun Kiat; Tan, Yong Chee; Tan, Jiayi; Too, Heng Phon; Ng, Wai Hoe

    2014-04-01

    Deep brain stimulation (DBS) is an established therapy for movement disorders such as Parkinson's disease (PD). Although the efficacy of DBS is clear, its precise molecular mechanism remains unknown. The glial cell line derived factor (GDNF) family of ligands has been shown to confer neuroprotective effects on dopaminergic neurons, and putaminal infusion of GDNF have been investigated in PD patients with promising results. Despite the potential therapeutic role of GDNF in alleviating motor symptoms, there is no data on the effects of electrical stimulation on GDNF-family receptor (GFR) expression in the basal ganglia structures. Here, we report the effects of electrical stimulation on GFRα1 isoforms, particularly GFRα1a and GFRα1b. Wistar rats underwent 2 hours of high frequency stimulation (HFS) at the globus pallidus interna nucleus. A control group was subjected to a similar procedure but without stimulation. The HFS group, sacrificed 24 hours after treatment, had a threefold decrease in mRNA expression level of GFRα1b (p=0.037), but the expression level reverted to normal 72 hours after stimulation. Our preliminary data reveal the acute effects of HFS on splice isoforms of GFRα1, and suggest that HFS may modulate the splice isoforms of GFRα1a and GFRα1b to varying degrees. Going forward, elucidating the interactions between HFS and GFR may shed new insights into the complexity of GDNF signaling in the nervous system and lead to better design of clinical trials using these signaling pathways to halt disease progression in PD and other neurodegenerative diseases. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Human hepatocyte growth factor promotes functional recovery in primates after spinal cord injury.

    PubMed

    Kitamura, Kazuya; Fujiyoshi, Kanehiro; Yamane, Jun-Ichi; Toyota, Fumika; Hikishima, Keigo; Nomura, Tatsuji; Funakoshi, Hiroshi; Nakamura, Toshikazu; Aoki, Masashi; Toyama, Yoshiaki; Okano, Hideyuki; Nakamura, Masaya

    2011-01-01

    Many therapeutic interventions for spinal cord injury (SCI) using neurotrophic factors have focused on reducing the area damaged by secondary, post-injury degeneration, to promote functional recovery. Hepatocyte growth factor (HGF), which is a potent mitogen for mature hepatocytes and a mediator of the inflammatory responses to tissue injury, was recently highlighted as a potent neurotrophic factor in the central nervous system. We previously reported that introducing exogenous HGF into the injured rodent spinal cord using a herpes simplex virus-1 vector significantly reduces the area of damaged tissue and promotes functional recovery. However, that study did not examine the therapeutic effects of administering HGF after injury, which is the most critical issue for clinical application. To translate this strategy to human treatment, we induced a contusive cervical SCI in the common marmoset, a primate, and then administered recombinant human HGF (rhHGF) intrathecally. Motor function was assessed using an original open field scoring system focusing on manual function, including reach-and-grasp performance and hand placement in walking. The intrathecal rhHGF preserved the corticospinal fibers and myelinated areas, thereby promoting functional recovery. In vivo magnetic resonance imaging showed significant preservation of the intact spinal cord parenchyma. rhHGF-treatment did not give rise to an abnormal outgrowth of calcitonin gene related peptide positive fibers compared to the control group, indicating that this treatment did not induce or exacerbate allodynia. This is the first study to report the efficacy of rhHGF for treating SCI in non-human primates. In addition, this is the first presentation of a novel scale for assessing neurological motor performance in non-human primates after contusive cervical SCI.

  8. Human Hepatocyte Growth Factor Promotes Functional Recovery in Primates after Spinal Cord Injury

    PubMed Central

    Kitamura, Kazuya; Fujiyoshi, Kanehiro; Yamane, Jun-ichi; Toyota, Fumika; Hikishima, Keigo; Nomura, Tatsuji; Funakoshi, Hiroshi; Nakamura, Toshikazu; Aoki, Masashi; Toyama, Yoshiaki; Okano, Hideyuki; Nakamura, Masaya

    2011-01-01

    Many therapeutic interventions for spinal cord injury (SCI) using neurotrophic factors have focused on reducing the area damaged by secondary, post-injury degeneration, to promote functional recovery. Hepatocyte growth factor (HGF), which is a potent mitogen for mature hepatocytes and a mediator of the inflammatory responses to tissue injury, was recently highlighted as a potent neurotrophic factor in the central nervous system. We previously reported that introducing exogenous HGF into the injured rodent spinal cord using a herpes simplex virus-1 vector significantly reduces the area of damaged tissue and promotes functional recovery. However, that study did not examine the therapeutic effects of administering HGF after injury, which is the most critical issue for clinical application. To translate this strategy to human treatment, we induced a contusive cervical SCI in the common marmoset, a primate, and then administered recombinant human HGF (rhHGF) intrathecally. Motor function was assessed using an original open field scoring system focusing on manual function, including reach-and-grasp performance and hand placement in walking. The intrathecal rhHGF preserved the corticospinal fibers and myelinated areas, thereby promoting functional recovery. In vivo magnetic resonance imaging showed significant preservation of the intact spinal cord parenchyma. rhHGF-treatment did not give rise to an abnormal outgrowth of calcitonin gene related peptide positive fibers compared to the control group, indicating that this treatment did not induce or exacerbate allodynia. This is the first study to report the efficacy of rhHGF for treating SCI in non-human primates. In addition, this is the first presentation of a novel scale for assessing neurological motor performance in non-human primates after contusive cervical SCI. PMID:22140459

  9. Transactional Sex Involvement: Exploring Risk and Promotive Factors Among Substance-Using Youth in an Urban Emergency Department

    PubMed Central

    Patton, Rikki A; Cunningham, Rebecca M; Blow, Frederic C; Zimmerman, Marc A; Booth, Brenda M; Walton, Maureen A

    2014-01-01

    Objective: The current study aims to evaluate individual, relational, and community-level risk and promotive factors for transactional sex involvement among substance-using youth. Method: Youth (ages 14–24 years) presenting for care in an urban emergency department, who reported drug use within the past 6 months, were surveyed as part of a larger study assessing violence. Of the 600 youth enrolled in this study, 350 presented to the emergency department with violent injury. Based on youth presenting with violent injury, a proportionally selected (age and gender) comparison group of youth (n = 250) presenting without violent injury were enrolled. Participants were queried about both risk and promotive factors at the individual, relational, and community levels. Results: Of the sample, 7.3% reported involvement in transactional sex within the past month. Regression analyses indicated that being African American or other race (as compared with White), having more than one sexual partner, depressive symptoms, negative peer influence, and substance use treatment utilization were positively associated with transactional sex involvement. Increased school involvement was negatively related to involvement in transactional sex. Conclusions: Drug-using youth who reported recent transactional sex involvement are more likely to experience increased HIV risk, depressive symptoms, and negative peer influence and are less likely to experience the promotive factors of school involvement. Future research is needed to better understand the bidirectional relationship between transactional sex involvement and both risk and promotive factors at multiple ecological levels. PMID:24988256

  10. Promoter selection in human mitochondria involves binding of a transcription factor to orientation-independent upstream regulatory elements.

    PubMed

    Fisher, R P; Topper, J N; Clayton, D A

    1987-07-17

    Selective transcription of human mitochondrial DNA requires a transcription factor (mtTF) in addition to an essentially nonselective RNA polymerase. Partially purified mtTF is able to sequester promoter-containing DNA in preinitiation complexes in the absence of mitochondrial RNA polymerase, suggesting a DNA-binding mechanism for factor activity. Functional domains, required for positive transcriptional regulation by mtTF, are identified within both major promoters of human mtDNA through transcription of mutant promoter templates in a reconstituted in vitro system. These domains are essentially coextensive with DNA sequences protected from nuclease digestion by mtTF-binding. Comparison of the sequences of the two mtTF-responsive elements reveals significant homology only when one sequence is inverted; the binding sites are in opposite orientations with respect to the predominant direction of transcription. Thus mtTF may function bidirectionally, requiring additional protein-DNA interactions to dictate transcriptional polarity. The mtTF-responsive elements are arrayed as direct repeats, separated by approximately 80 bp within the displacement-loop region of human mitochondrial DNA; this arrangement may reflect duplication of an ancestral bidirectional promoter, giving rise to separate, unidirectional promoters for each strand.

  11. Genistein promotes DNA demethylation of the steroidogenic factor 1 (SF-1) promoter in endometrial stromal cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsukura, Hiroshi, E-mail: hmatsukura.epi@mri.tmd.ac.jp; Aisaki, Ken-ichi; Igarashi, Katsuhide

    2011-08-26

    Highlights: {yields} Genistein (GEN) is a phytoestrogen found in soy products. {yields} GEN demethylated/unsilenced the steroidogenic factor 1 gene in endometrial tissue. {yields} GEN thus altered mRNA expression in uteri of ovariectomized (OVX) mice. {yields} A high-resolution melting assay was used to screen for epigenetic change. {yields} We isolated an endometrial cell clone that was epigenetically modulated by GEN. -- Abstract: It has recently been demonstrated that genistein (GEN), a phytoestrogen in soy products, is an epigenetic modulator in various types of cells; but its effect on endometrium has not yet been determined. We investigated the effects of GEN onmore » mouse uterine cells, in vivo and in vitro. Oral administration of GEN for 1 week induced mild proliferation of the endometrium in ovariectomized (OVX) mice, which was accompanied by the induction of steroidogenic factor 1 (SF-1) gene expression. GEN administration induced demethylation of multiple CpG sites in the SF-1 promoter; these sites are extensively methylated and thus silenced in normal endometrium. The GEN-mediated promoter demethylation occurred predominantly on the luminal side, as opposed to myometrium side, indicating that the epigenetic change was mainly shown in regenerated cells. Primary cultures of endometrial stromal cell colonies were screened for GEN-mediated alterations of DNA methylation by a high-resolution melting (HRM) method. One out of 20 colony-forming cell clones showed GEN-induced demethylation of SF-1. This clone exhibited a high proliferation capacity with continuous colony formation activity through multiple serial clonings. We propose that only a portion of endometrial cells are capable of receiving epigenetic modulation by GEN.« less

  12. Factors promoting marine invasions: A chemoecological approach

    PubMed Central

    Mollo, Ernesto; Gavagnin, Margherita; Carbone, Marianna; Castelluccio, Francesco; Pozone, Ferdinando; Roussis, Vassilios; Templado, José; Ghiselin, Michael T.; Cimino, Guido

    2008-01-01

    The Mediterranean Sea is losing its biological distinctiveness, and the same phenomenon is occurring in other seas. It gives urgency to a better understanding of the factors that affect marine biological invasions. A chemoecological approach is proposed here to define biotic conditions that promote biological invasions in terms of enemy escape and resource opportunities. Research has focused on the secondary metabolite composition of three exotic sea slugs found in Greece that have most probably entered the Mediterranean basin by Lessepsian migration, an exchange that contributes significantly to Mediterranean biodiversity. We have found toxic compounds with significant activity as feeding deterrents both in the cephalaspidean Haminoea cyanomarginata and in the nudibranch Melibe viridis. These findings led us to propose aposematism in the former and dietary autonomy in producing defensive metabolites in the latter case, as predisposing factors to the migration. In the third mollusk investigated, the anaspidean Syphonota geographica, the topic of marine invasions has been approached through a study of its feeding biology. The identification of the same compounds from both the viscera of each individual, separately analyzed, and their food, the seagrass Halophila stipulacea, implies a dietary dependency. The survival of S. geographica in the Mediterranean seems to be related to the presence of H. stipulacea. The initial invasion of this exotic pest would seem to have paved the way for the subsequent invasion of a trophic specialist that takes advantage of niche opportunities. PMID:18337492

  13. Evaluating the behavior of cultured sertoli cells in the presence and absence of spermatogonial stem cell

    PubMed Central

    Jabarpour, Masoome

    2018-01-01

    Background The complex process of spermatogenesis is regulated by various factors. Several studies have been conducted to proliferate cells involved in the spermatogenesis process, in culture by used growth factors, different hormones and feeder cells. This study was conducted to evaluate the role of Sertoli cells on gene expression of fibroblast growth factor (FGF2) and glial cell derived neurotrophic factor (GDNF) after removal of spermatogonial stem cells (SSCs) from the culture medium. Methods Following isolation, bovine SSCs were co-cultured with Sertoli cells and follicular stimulating hormone (FSH) for 12 days. In the treatment group, SSCs were removed from the culture medium; in the control group no intervention was done in the culture. Colony formation of SSCs was evaluated by using an inverted microscope. Then, the expression of factors genes were assessed by quantitative RT-PCR. Data was analyzed by using paired-samples t-test. Results The results showed that removal of SSCs led to the increase in expression of GDNF and FGF2. These findings suggest that loss of SSCs population or decline in its population leads to changing in behavior of somatic cells which forming niche and consequently stimulates self-renewal and inhibits differentiation of SSCs. Conclusions The present study showed that removal of SSCs from the culture medium could be a model for damage to SSCs; the results revealed that niche cells respond to SSCs removal by upregulation of FGF2 and GDNF to stimulate self-renewal of SSCs and abrogation of differentiation. PMID:29430457

  14. MAOA promoter methylation and susceptibility to carotid atherosclerosis: role of familial factors in a monozygotic twin sample

    PubMed Central

    2012-01-01

    Background Atherosclerosis is a complex process involving both genetic and epigenetic factors. The monoamine oxidase A (MAOA) gene regulates the metabolism of key neurotransmitters and has been associated with cardiovascular risk factors. This study investigates whether MAOA promoter methylation is associated with atherosclerosis, and whether this association is confounded by familial factors in a monozygotic (MZ) twin sample. Methods We studied 84 monozygotic (MZ) twin pairs drawn from the Vietnam Era Twin Registry. Carotid intima-media thickness (IMT) was measured by ultrasound. DNA methylation in the MAOA promoter region was quantified by bisulfite pyrosequencing using genomic DNA isolated from peripheral blood leukocytes. The association between DNA methylation and IMT was first examined by generalized estimating equation, followed by matched pair analyses to determine whether the association was confounded by familial factors. Results When twins were analyzed as individuals, increased methylation level was associated with decreased IMT at four of the seven studied CpG sites. However, this association substantially reduced in the matched pair analyses. Further adjustment for MAOA genotype also considerably attenuated this association. Conclusions The association between MAOA promoter methylation and carotid IMT is largely explained by familial factors shared by the twins. Because twins reared together share early life experience, which may leave a long-lasting epigenetic mark, aberrant MAOA methylation may represent an early biomarker for unhealthy familial environment. Clarification of familial factors associated with DNA methylation and early atherosclerosis will provide important information to uncover clinical correlates of disease. PMID:23116433

  15. MAOA promoter methylation and susceptibility to carotid atherosclerosis: role of familial factors in a monozygotic twin sample.

    PubMed

    Zhao, Jinying; Forsberg, Christopher W; Goldberg, Jack; Smith, Nicholas L; Vaccarino, Viola

    2012-11-02

    Atherosclerosis is a complex process involving both genetic and epigenetic factors. The monoamine oxidase A (MAOA) gene regulates the metabolism of key neurotransmitters and has been associated with cardiovascular risk factors. This study investigates whether MAOA promoter methylation is associated with atherosclerosis, and whether this association is confounded by familial factors in a monozygotic (MZ) twin sample. We studied 84 monozygotic (MZ) twin pairs drawn from the Vietnam Era Twin Registry. Carotid intima-media thickness (IMT) was measured by ultrasound. DNA methylation in the MAOA promoter region was quantified by bisulfite pyrosequencing using genomic DNA isolated from peripheral blood leukocytes. The association between DNA methylation and IMT was first examined by generalized estimating equation, followed by matched pair analyses to determine whether the association was confounded by familial factors. When twins were analyzed as individuals, increased methylation level was associated with decreased IMT at four of the seven studied CpG sites. However, this association substantially reduced in the matched pair analyses. Further adjustment for MAOA genotype also considerably attenuated this association. The association between MAOA promoter methylation and carotid IMT is largely explained by familial factors shared by the twins. Because twins reared together share early life experience, which may leave a long-lasting epigenetic mark, aberrant MAOA methylation may represent an early biomarker for unhealthy familial environment. Clarification of familial factors associated with DNA methylation and early atherosclerosis will provide important information to uncover clinical correlates of disease.

  16. Induction of Cyclooxygenase-2 Expression by Hepatitis B Virus Depends on Demethylation-associated Recruitment of Transcription Factors to the Promoter

    PubMed Central

    2011-01-01

    Background The hepatitis B virus (HBV) is a major etiological factor of inflammation and damage to the liver resulting in hepatocellular carcinoma. Transcription factors play important roles in the disordered gene expression and liver injury caused by HBV. However, the molecular mechanisms behind this observation have not been defined. Results In this study, we observed that circulating prostaglandin (PGE) 2 synthesis was increased in patients with chronic hepatitis B infection, and detected elevated cyclooxygenase (COX)-2 expression in HBV- and HBx-expressing liver cells. Likewise, the association of HBx with C/EBPβ contributed to the induction of COX-2. The COX-2 promoter was hypomethylated in HBV-positive cells, and specific demethylation of CpG dinucleotides within each of the two NF-AT sites in the COX-2 promoter resulted in the increased binding affinity of NF-AT to the cognate sites in the promoter, followed by increased COX-2 expression and PGE2 accumulation. The DNA methylatransferase DNMT3B played a key role in the methylation of the COX-2 promoter, and its decreased binding to the promoter was responsible for the regional demethylation of CpG sites, and for the increased binding of transcription factors in HBV-positive cells. Conclusion Our results indicate that upregulation of COX-2 by HBV and HBx is mediated by both demethylation events and recruitment of multiple transcription factors binding to the promoter. PMID:21401943

  17. The surgeon's perspective: promoting and discouraging factors for choosing a career in surgery as perceived by surgeons.

    PubMed

    Seelandt, Julia C; Kaderli, Reto M; Tschan, Franziska; Businger, Adrian P

    2014-01-01

    The aim of this study was to identify the factors perceived by surgeons that promote surgery as an attractive or unattractive career choice for today's graduates. In addition, it examined whether the perspectives of surgeons in different professional situations converges. The content of work, contextual work conditions, and calling to this job are discussed in the context of choosing surgery as a career. Eight hundred sixty-nine surgeons were asked to answer open-ended questions regarding the factors that promote surgery as an attractive or unattractive career choice for today's graduates. Four hundred ninety-two surgeons participated, and 1,525 statements were analyzed using Mayring's content-analyses method. Chi-square tests were used to analyze the differences among hierarchical positions. With respect to the factors that promote surgery as a profession, 40.8% (209/492) of the surgeons stated that surgery is a calling, 29.1% (149/492) of the surgeons provided at least one argument related to the positive task characteristics, and 12.9% (66/492) of the surgeons provided statements related to the positive contextual factors. With respect to the factors that discourage surgery as a profession, 45.7% (234/492) of the surgeons provided at least one argument related to the discouraging work characteristics, and 67.6% (346/492) of the surgeons provided problematic contextual characteristics. This study emphasizes the importance of the calling to surgery as an important factor for choosing surgery as a career. However, the extensive workload, training, and poor work-family balance have been identified as factors that discourage graduates from choosing surgery as a career. The identified positive factors could be used to attract and maintain graduates in surgical disciplines.

  18. Fluoxetine ameliorates behavioral and neuropathological deficits in a transgenic model mouse of α-synucleinopathy.

    PubMed

    Ubhi, Kiren; Inglis, Chandra; Mante, Michael; Patrick, Christina; Adame, Anthony; Spencer, Brian; Rockenstein, Edward; May, Verena; Winkler, Juergen; Masliah, Eliezer

    2012-04-01

    The term α-synucleinopathies refers to a group of age-related neurological disorders including Parkinson's disease (PD), Dementia with Lewy Bodies (DLB) and Multiple System Atrophy (MSA) that display an abnormal accumulation of alpha-synuclein (α-syn). In contrast to the neuronal α-syn accumulation observed in PD and DLB, MSA is characterized by a widespread oligodendrocytic α-syn accumulation. Transgenic mice expressing human α-syn under the oligodendrocyte-specific myelin basic protein promoter (MBP1-hαsyn tg mice) model many of the behavioral and neuropathological alterations observed in MSA. Fluoxetine, a selective serotonin reuptake inhibitor, has been shown to be protective in toxin-induced models of PD, however its effects in an in vivo transgenic model of α-synucleinopathy remain unclear. In this context, this study examined the effect of fluoxetine in the MBP1-hαsyn tg mice, a model of MSA. Fluoxetine administration ameliorated motor deficits in the MBP1-hαsyn tg mice, with a concomitant decrease in neurodegenerative pathology in the basal ganglia, neocortex and hippocampus. Fluoxetine administration also increased levels of the neurotrophic factors, GDNF (glial-derived neurotrophic factor) and BDNF (brain-derived neurotrophic factor) in the MBP1-hαsyn tg mice compared to vehicle-treated tg mice. This fluoxetine-induced increase in GDNF and BDNF protein levels was accompanied by activation of the ERK signaling pathway. The effects of fluoxetine administration on myelin and serotonin markers were also examined. Collectively these results indicate that fluoxetine may represent a novel therapeutic intervention for MSA and other neurodegenerative disorders. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. An ancestral allele of grapevine transcription factor MYB14 promotes plant defence

    PubMed Central

    Duan, Dong; Fischer, Sabine; Merz, Patrick; Bogs, Jochen; Riemann, Michael; Nick, Peter

    2016-01-01

    Stilbene synthase is a key enzyme for the production of the phytoalexin resveratrol. Some clones of Vitis sylvestris, a wild European grapevine species which is almost extinct, have been shown to accumulate more resveratrol in response to different forms of stress. In the current study, we asked whether the induction of stilbene synthase transcripts in Hoe29, one of the V. sylvestris clones with elevated stilbene inducibility, might result from the elevated induction of the transcription factor MYB14. The MYB14 promoter of Hoe29 and of Ke83 (a second stilbene-inducible genotype) harboured distinct regions and were applied to a promoter–reporter system. We show that stilbene synthase inducibility correlates with differences in the induction of MYB14 transcripts for these two genotypes. Both alleles were induced by UV in a promoter–reporter assay, but only the MYB14 promoter from Hoe29 was induced by flg22, consistent with the stilbene synthase expression of the donor genotypes, where both respond to UV but only Hoe29 is responsive to Plasmopara viticola during defence. We mapped upstream signals and found that a RboH-dependent oxidative burst, calcium influx, a MAPK cascade, and jasmonate activated the MYB14 promoter, whereas salicylic acid was ineffective. Our data suggest that the Hoe29 allele of the MYB14 promoter has potential as a candidate target for resistance breeding. PMID:26842984

  20. The Jasmonate-Activated Transcription Factor MdMYC2 Regulates ETHYLENE RESPONSE FACTOR and Ethylene Biosynthetic Genes to Promote Ethylene Biosynthesis during Apple Fruit Ripening.

    PubMed

    Li, Tong; Xu, Yaxiu; Zhang, Lichao; Ji, Yinglin; Tan, Dongmei; Yuan, Hui; Wang, Aide

    2017-06-01

    The plant hormone ethylene is critical for ripening in climacteric fruits, including apple ( Malus domestica ). Jasmonate (JA) promotes ethylene biosynthesis in apple fruit, but the underlying molecular mechanism is unclear. Here, we found that JA-induced ethylene production in apple fruit is dependent on the expression of MdACS1 , an ACC synthase gene involved in ethylene biosynthesis. The expression of MdMYC2 , encoding a transcription factor involved in the JA signaling pathway, was enhanced by MeJA treatment in apple fruits, and MdMYC2 directly bound to the promoters of both MdACS1 and the ACC oxidase gene MdACO1 and enhanced their transcription. Furthermore, MdMYC2 bound to the promoter of MdERF3 , encoding a transcription factor involved in the ethylene-signaling pathway, thereby activating MdACS1 transcription. We also found that MdMYC2 interacted with MdERF2, a suppressor of MdERF3 and MdACS1 This protein interaction prevented MdERF2 from interacting with MdERF3 and from binding to the MdACS1 promoter, leading to increased transcription of MdACS1 Collectively, these results indicate that JA promotes ethylene biosynthesis through the regulation of MdERFs and ethylene biosynthetic genes by MdMYC2. © 2017 American Society of Plant Biologists. All rights reserved.

  1. The Jasmonate-Activated Transcription Factor MdMYC2 Regulates ETHYLENE RESPONSE FACTOR and Ethylene Biosynthetic Genes to Promote Ethylene Biosynthesis during Apple Fruit Ripening[OPEN

    PubMed Central

    Xu, Yaxiu; Zhang, Lichao; Ji, Yinglin; Tan, Dongmei; Yuan, Hui

    2017-01-01

    The plant hormone ethylene is critical for ripening in climacteric fruits, including apple (Malus domestica). Jasmonate (JA) promotes ethylene biosynthesis in apple fruit, but the underlying molecular mechanism is unclear. Here, we found that JA-induced ethylene production in apple fruit is dependent on the expression of MdACS1, an ACC synthase gene involved in ethylene biosynthesis. The expression of MdMYC2, encoding a transcription factor involved in the JA signaling pathway, was enhanced by MeJA treatment in apple fruits, and MdMYC2 directly bound to the promoters of both MdACS1 and the ACC oxidase gene MdACO1 and enhanced their transcription. Furthermore, MdMYC2 bound to the promoter of MdERF3, encoding a transcription factor involved in the ethylene-signaling pathway, thereby activating MdACS1 transcription. We also found that MdMYC2 interacted with MdERF2, a suppressor of MdERF3 and MdACS1. This protein interaction prevented MdERF2 from interacting with MdERF3 and from binding to the MdACS1 promoter, leading to increased transcription of MdACS1. Collectively, these results indicate that JA promotes ethylene biosynthesis through the regulation of MdERFs and ethylene biosynthetic genes by MdMYC2. PMID:28550149

  2. Identification of cis-regulatory modules in promoters of human genes exploiting mutual positioning of transcription factors

    PubMed Central

    Nandi, Soumyadeep; Blais, Alexandre; Ioshikhes, Ilya

    2013-01-01

    In higher organisms, gene regulation is controlled by the interplay of non-random combinations of multiple transcription factors (TFs). Although numerous attempts have been made to identify these combinations, important details, such as mutual positioning of the factors that have an important role in the TF interplay, are still missing. The goal of the present work is in silico mapping of some of such associating factors based on their mutual positioning, using computational screening. We have selected the process of myogenesis as a study case, and we focused on TF combinations involving master myogenic TF Myogenic differentiation (MyoD) with other factors situated at specific distances from it. The results of our work show that some muscle-specific factors occur together with MyoD within the range of ±100 bp in a large number of promoters. We confirm co-occurrence of the MyoD with muscle-specific factors as described in earlier studies. However, we have also found novel relationships of MyoD with other factors not specific for muscle. Additionally, we have observed that MyoD tends to associate with different factors in proximal and distal promoter areas. The major outcome of our study is establishing the genome-wide connection between biological interactions of TFs and close co-occurrence of their binding sites. PMID:23913413

  3. Statistical mechanical model of coupled transcription from multiple promoters due to transcription factor titration

    PubMed Central

    Rydenfelt, Mattias; Cox, Robert Sidney; Garcia, Hernan; Phillips, Rob

    2014-01-01

    Transcription factors (TFs) with regulatory action at multiple promoter targets is the rule rather than the exception, with examples ranging from the cAMP receptor protein (CRP) in E. coli that regulates hundreds of different genes simultaneously to situations involving multiple copies of the same gene, such as plasmids, retrotransposons, or highly replicated viral DNA. When the number of TFs heavily exceeds the number of binding sites, TF binding to each promoter can be regarded as independent. However, when the number of TF molecules is comparable to the number of binding sites, TF titration will result in correlation (“promoter entanglement”) between transcription of different genes. We develop a statistical mechanical model which takes the TF titration effect into account and use it to predict both the level of gene expression for a general set of promoters and the resulting correlation in transcription rates of different genes. Our results show that the TF titration effect could be important for understanding gene expression in many regulatory settings. PMID:24580252

  4. Induction of neurite outgrowth in 3D hydrogel-based environments.

    PubMed

    Assunção-Silva, Rita C; Oliveira, Cátia Costa; Ziv-Polat, Ofra; Gomes, Eduardo D; Sahar, Abraham; Sousa, Nuno; Silva, Nuno A; Salgado, António J

    2015-10-20

    The ability of peripheral nervous system (PNS) axons to regenerate and re-innervate their targets after an injury has been widely recognized. However, despite the considerable advances made in microsurgical techniques, complete functional recovery is rarely achieved, especially for severe peripheral nerve injuries (PNIs). Therefore, alternative therapies that can successfully repair peripheral nerves are still essential. In recent years the use of biodegradable hydrogels enriched with growth-supporting and guidance cues, cell transplantation, and biomolecular therapies have been explored for the treatment of PNIs. Bearing this in mind, the aim of this study was to assess whether Gly-Arg-Gly-Asp-Ser synthetic peptide (GRGDS)-modified gellan gum (GG) based hydrogels could foster an amenable environment for neurite/axonal growth. Additionally, strategies to further improve the rate of neurite outgrowth were also tested, namely the use of adipose tissue derived stem cells (ASCs), as well as the glial derived neurotrophic factor (GDNF). In order to increase its stability and enhance its bioactivity, the GDNF was conjugated covalently to iron oxide nanoparticles (IONPs). The impact of hydrogel modification as well as the effect of the GDNF-IONPs on ASC behavior was also screened. The results revealed that the GRGDS-GG hydrogel was able to support dorsal root ganglia (DRG)-based neurite outgrowth, which was not observed for non-modified hydrogels. Moreover, the modified hydrogels were also able to support ASCs attachment. In contrast, the presence of the GDNF-IONPs had no positive or negative impact on ASC behavior. Further experiments revealed that the presence of ASCs in the hydrogel improved axonal growth. On the other hand, GDNF-IONPs alone or combined with ASCs significantly increased neurite outgrowth from DRGs, suggesting a beneficial role of the proposed strategy for future applications in PNI regenerative medicine.

  5. Measurement and evaluation practices of factors that contribute to effective health promotion collaboration functioning: A scoping review.

    PubMed

    Stolp, Sean; Bottorff, Joan L; Seaton, Cherisse L; Jones-Bricker, Margaret; Oliffe, John L; Johnson, Steven T; Errey, Sally; Medhurst, Kerensa; Lamont, Sonia

    2017-04-01

    The purpose of this scoping review was to identify promising factors that underpin effective health promotion collaborations, measurement approaches, and evaluation practices. Measurement approaches and evaluation practices employed in 14 English-language articles published between January 2001 and October 2015 were considered. Data extraction included research design, health focus of the collaboration, factors being evaluated, how factors were conceptualized and measured, and outcome measures. Studies were methodologically diverse employing either quantitative methods (n=9), mixed methods (n=4), or qualitative methods (n=1). In total, these 14 studies examined 113 factors, 88 of which were only measured once. Leadership was the most commonly studied factor but was conceptualized differently across studies. Six factors were significantly associated with outcome measures across studies; leadership (n=3), gender (n=2), trust (n=2), length of the collaboration (n=2), budget (n=2) and changes in organizational model (n=2). Since factors were often conceptualized differently, drawing conclusions about their impact on collaborative functioning remains difficult. The use of reliable and validated tools would strengthen evaluation of health promotion collaborations and would support and enhance the effectiveness of collaboration. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. MAPK signaling promotes axonal degeneration by speeding the turnover of the axonal maintenance factor NMNAT2

    PubMed Central

    Walker, Lauren J; Summers, Daniel W; Sasaki, Yo; Brace, EJ; Milbrandt, Jeffrey; DiAntonio, Aaron

    2017-01-01

    Injury-induced (Wallerian) axonal degeneration is regulated via the opposing actions of pro-degenerative factors such as SARM1 and a MAPK signal and pro-survival factors, the most important of which is the NAD+ biosynthetic enzyme NMNAT2 that inhibits activation of the SARM1 pathway. Here we investigate the mechanism by which MAPK signaling facilitates axonal degeneration. We show that MAPK signaling promotes the turnover of the axonal survival factor NMNAT2 in cultured mammalian neurons as well as the Drosophila ortholog dNMNAT in motoneurons. The increased levels of NMNAT2 are required for the axonal protection caused by loss of MAPK signaling. Regulation of NMNAT2 by MAPK signaling does not require SARM1, and so cannot be downstream of SARM1. Hence, pro-degenerative MAPK signaling functions upstream of SARM1 by limiting the levels of the essential axonal survival factor NMNAT2 to promote injury-dependent SARM1 activation. These findings are consistent with a linear molecular pathway for the axonal degeneration program. DOI: http://dx.doi.org/10.7554/eLife.22540.001 PMID:28095293

  7. The effects of cumulative risks and promotive factors on urban adolescent alcohol and other drug use: a longitudinal study of resiliency.

    PubMed

    Ostaszewski, Krzysztof; Zimmerman, Marc A

    2006-12-01

    Resiliency theory provides a conceptual framework for studying why some youth exposed to risk factors do not develop the negative behaviors they predict. The purpose of this study was to test compensatory and protective models of resiliency in a longitudinal sample of urban adolescents (80% African American). The data were from Years 1 (9th grade) and 4 (12th grade). The study examined effects of cumulative risk and promotive factors on adolescent polydrug use including alcohol, tobacco and marijuana. Cumulative measures of risk/promotive factors represented individual characteristics, peer influence, and parental/familial influences. After controlling for demographics, results of multiple regression of polydrug use support the compensatory model of resiliency both cross-sectionally and longitudinally. Promotive factors were also found to have compensatory effects on change in adolescent polydrug use. The protective model of resiliency evidenced cross-sectionally was not supported in longitudinal analysis. The findings support resiliency theory and the use of cumulative risk/promotive measures in resiliency research. Implications focused on utilizing multiple assets and resources in prevention programming are discussed.

  8. Brain-derived neurotrophic factor promoter methylation and cortical thickness in recurrent major depressive disorder.

    PubMed

    Na, Kyoung-Sae; Won, Eunsoo; Kang, June; Chang, Hun Soo; Yoon, Ho-Kyoung; Tae, Woo Suk; Kim, Yong-Ku; Lee, Min-Soo; Joe, Sook-Haeng; Kim, Hyun; Ham, Byung-Joo

    2016-02-15

    Recent studies have reported that methylation of the brain-derived neurotrophic factor (BDNF) gene promoter is associated with major depressive disorder (MDD). This study aimed to investigate the association between cortical thickness and methylation of BDNF promoters as well as serum BDNF levels in MDD. The participants consisted of 65 patients with recurrent MDD and 65 age- and gender-matched healthy controls. Methylation of BDNF promoters and cortical thickness were compared between the groups. The right medial orbitofrontal, right lingual, right lateral occipital, left lateral orbitofrontal, left pars triangularis, and left lingual cortices were thinner in patients with MDD than in healthy controls. Among the MDD group, right pericalcarine, right medical orbitofrontal, right rostral middle frontal, right postcentral, right inferior temporal, right cuneus, right precuneus, left frontal pole, left superior frontal, left superior temporal, left rostral middle frontal and left lingual cortices had inverse correlations with methylation of BDNF promoters. Higher levels of BDNF promoter methylation may be closely associated with the reduced cortical thickness among patients with MDD. Serum BDNF levels were significantly lower in MDD, and showed an inverse relationship with BDNF methylation only in healthy controls. Particularly the prefrontal and occipital cortices seem to indicate key regions in which BDNF methylation has a significant effect on structure.

  9. Factors promoting or potentially impeding school success: disparities and state variations for children with special health care needs.

    PubMed

    Bethell, Christina; Forrest, Christopher B; Stumbo, Scott; Gombojav, Narangerel; Carle, Adam; Irwin, Charles E

    2012-04-01

    School success predicts many pathways for health and well-being across the life span. Factors promoting or potentially impeding school success are critical to understand for all children and for children with special health care needs (CSHCN), whose life course trajectories are already impacted by their chronic health problems. The 2007 National Survey of Children's Health was used (1) to estimate national and state prevalence and within and across states disparities in factors promoting school success (engagement, participation, safety) or potentially impeding success (missing school, grade repetition, school identified problems) for all children and CSHCN and (2) to evaluate associations with CSHCN service need complexity and presence of emotional, behavioral or developmental problems (EBD) as well as with school case management policies in states. Among school age children, 60 % experienced all three factors promoting school success (49.3-73.8 % across states), dropping to 51.3 % for CSHCN (39.4-64.7 % across states) and to 36.2 % for the 40 % of all CSHCN who have both more complex service needs and EBD. CSHCN were more likely to experience factors potentially impeding school success. After accounting for child factors, CSHCN living in states requiring case management in schools for children with disabilities were less likely to experience grade repetition (OR 0.65). Within-state disparities between non-CSHCN and CSHCN varied across states. Threats to school success for US children are pervasive and are especially pronounced for CSHCN with more complex needs and EBD. Findings support broad, non-condition specific efforts to promote school success for CSHCN and consideration of state school policies, such as case management.

  10. MiR-32 promotes gastric carcinoma tumorigenesis by targeting Kruppel-like factor 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Chao; Yu, Jianchun, E-mail: yu_jchpumch@163.com; Liu, Yuqin

    Gastric cancer (GC) is a prevalent malignant cancer worldwide and is highly lethal because of its fast growth. Currently, the clinical therapy options for GC remain limited. MiR-32 has been reported as an oncogenic microRNA in many cancers, but its role in GC is unclear. Here, we found that miR-32 was overexpressed in GC tissues compared with adjacent normal tissue, and miR-32 was higher in GC patients' plasma compared with healthy individuals. Furthermore, we have identified miR-32 to be oncogenic, by promoting gastric cell proliferation, migration and invasion. We also identified Kruppel-like factor 4 (KLF4) as a direct target ofmore » miR-32. Knockdown of KLF4 promoted proliferation, migration and invasion of GC cells. We conclude that miR-32 promotes GC cell proliferation, migration and invasion by targeting KLF4, suggesting that the miR-32-KLF4 pathway may be useful in clinical diagnosis and therapeutics. - Highlights: • miR-32 was overexpression in GC tissues than adjacent normal tissue. • miR-32 was higher in GC patients' plasma compared with healthy people. • miR-32 promotes GC cell proliferation, migration and invasion by targeting KLF4.« less

  11. Nuclear Factor I-C promotes proliferation and differentiation of apical papilla-derived human stem cells in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jing; Stomatologic Hospital & College, Anhui Medical University, Key Lab of Oral Diseases Research of Anhui Province, Hefei; Wang, Zhihua

    The transcription factor Nuclear Factor I-C (NFIC) has been implicated in the regulation of tooth root development, where it may be anticipated to impact on the behavior of stem cells from the apical papilla (SCAPs) and root odontoblast activity. We hypothesized that NFIC may provide an important target for promoting dentin/root regeneration. In the present study, the effects of NFIC on the proliferation and differentiation of SCAPs were investigated. Over-expression of NFIC increased cell proliferation, mineralization nodule formation and alkaline phosphatase (ALP) activity in SCAPs. Furthermore, NFIC up-regulated the mRNA levels of odontogenic-related markers, ALP, osteocalcin and collagen type Imore » as well as dentin sialoprotein protein levels. In contrast, knockdown of NFIC by si-RNA inhibited the mineralization capacity of SCAPs and down-regulated the expression of odontogenic-related markers. In conclusion, the results indicated that upregulation of NFIC activity in SCAPs may promote osteo/odontoblastic differentiation of SCAPs. - Highlights: • NFIC promotes the proliferation of SCAPs in vitro. • NFIC promotes osteo/odontogenic differentiation of SCAPs in vitro. • Knockdown of NFIC inhibits odontogenic differentiation in SCAPs.« less

  12. Promoter Methylation of PTEN Is a Significant Prognostic Factor in Melanoma Survival.

    PubMed

    Roh, Mi Ryung; Gupta, Sameer; Park, Kyu-Hyun; Chung, Kee Yang; Lauss, Martin; Flaherty, Keith T; Jönsson, Göran; Rha, Sun Young; Tsao, Hensin

    2016-05-01

    Structural compromise of the tumor suppressor gene, phosphatase and tensin homolog (PTEN), occurs in 10% of melanoma specimens, and loss of PTEN expression through DNA methylation of the PTEN promoter region has also been reported in a number of other malignancies. However, the role of PTEN promoter methylation in melanoma is not well understood. We thus sought to elucidate the prevalence of PTEN promoter methylation in melanoma specimens, its relationship to clinical features, and its impact on the outcome of patients with melanoma. PTEN promoter methylation data were acquired from an archived primary Korean melanoma cohort (KMC) of 158 patients and, for validation, 234 patients from The Cancer Genome Atlas melanoma (TCGA-MEL) cohort. Hierarchical clustering was performed to identify PTEN "high methylated" and "low methylated" samples. Subsequently, differences in clinical features and outcomes based on PTEN promoter methylation status were then analyzed using SPSS and R. In the KMC, all tumors were acquired from primary tumors and 65.7% (n = 105) were acral or mucosal by site, whereas in the TCGA-MEL cohort, 90.5% of the tumors were from regional lymph node and distant metastatic lesions. Overall, 17.7% and 45.7% of the specimens harbored BRAF mutations in the KMC and TCGA-MEL cohort, respectively. Neuroblastoma RAS viral oncogene homolog was mutated in 12.2% and 26.9% of the tumors in the KMC and TCGA-MEL cohort, respectively. In the KMC, 31 cases (19.6%) were included in the high methylated group versus 142 cases (60.7%) in the TCGA-MEL cohort (P < 0.001). Multivariate Cox-regression analysis revealed promoter methylation of PTEN to be an independent negative prognostic factor for survival in both the KMC (hazard ratio 3.76, 95% confidence interval = 1.24-11.12, P = 0.017) and TCGA-MEL cohort (HR 1.88, 95% confidence interval = 1.13-3.12, P = 0.015). Our results indicate that PTEN promoter methylation is an independent predictor for impaired survival in

  13. Identifying work ability promoting factors for home care aides and assistant nurses.

    PubMed

    Larsson, Agneta; Karlqvist, Lena; Westerberg, Mats; Gard, Gunvor

    2012-01-11

    In workplace health promotion, all potential resources needs to be taken into consideration, not only factors relating to the absence of injury and the physical health of the workers, but also psychological aspects. A dynamic balance between the resources of the individual employees and the demands of work is an important prerequisite. In the home care services, there is a noticeable trend towards increased psychosocial strain on employees at work. There are a high frequency of work-related musculoskeletal disorders and injuries, and a low prevalence of sustainable work ability. The aim of this research was to identify factors promoting work ability and self-efficacy in care aides and assistant nurses within home care services. This study is based on cross-sectional data collected in a municipality in northern Sweden. Care aides (n = 58) and assistant nurses (n = 79) replied to a self-administered questionnaire (response rate 46%). Hierarchical multiple regression analyses were performed to assess the influence of several independent variables on self-efficacy (model 1) and work ability (model 2) for care aides and assistant nurses separately. Perceptions of personal safety, self-efficacy and musculoskeletal wellbeing contributed to work ability for assistant nurses (R2adj of 0.36, p < 0.001), while for care aides, the safety climate, seniority and age contributed to work ability (R2adj of 0.29, p = 0.001). Self-efficacy was associated with the safety climate and the physical demands of the job in both professions (R2adj of 0.24, p = 0.003 for care aides), and also by sex and age for the assistant nurses (R2adj of 0.31, p < 0.001). The intermediate factors contributed differently to work ability in the two professions. Self-efficacy, personal safety and musculoskeletal wellbeing were important for the assistant nurses, while the work ability of the care aides was associated with the safety climate, but also with the non-changeable factors age and seniority. All

  14. Identifying work ability promoting factors for home care aides and assistant nurses

    PubMed Central

    2012-01-01

    Background In workplace health promotion, all potential resources needs to be taken into consideration, not only factors relating to the absence of injury and the physical health of the workers, but also psychological aspects. A dynamic balance between the resources of the individual employees and the demands of work is an important prerequisite. In the home care services, there is a noticeable trend towards increased psychosocial strain on employees at work. There are a high frequency of work-related musculoskeletal disorders and injuries, and a low prevalence of sustainable work ability. The aim of this research was to identify factors promoting work ability and self-efficacy in care aides and assistant nurses within home care services. Methods This study is based on cross-sectional data collected in a municipality in northern Sweden. Care aides (n = 58) and assistant nurses (n = 79) replied to a self-administered questionnaire (response rate 46%). Hierarchical multiple regression analyses were performed to assess the influence of several independent variables on self-efficacy (model 1) and work ability (model 2) for care aides and assistant nurses separately. Results Perceptions of personal safety, self-efficacy and musculoskeletal wellbeing contributed to work ability for assistant nurses (R2adj of 0.36, p < 0.001), while for care aides, the safety climate, seniority and age contributed to work ability (R2adj of 0.29, p = 0.001). Self-efficacy was associated with the safety climate and the physical demands of the job in both professions (R2adj of 0.24, p = 0.003 for care aides), and also by sex and age for the assistant nurses (R2adj of 0.31, p < 0.001). Conclusions The intermediate factors contributed differently to work ability in the two professions. Self-efficacy, personal safety and musculoskeletal wellbeing were important for the assistant nurses, while the work ability of the care aides was associated with the safety climate, but also with the non

  15. An evaluation of factors which can affect the implementation of a health promotion programme under the Schools for Health in Europe framework.

    PubMed

    Bennett, Annemarie E; Cunningham, Cara; Johnston Molloy, Charlotte

    2016-08-01

    The Health Promoting Schools concept helps schools to promote health in a sustainable and long-term fashion. However, developing the capacity to promote health in this way can be challenging when a busy teaching curriculum must be fulfilled. This study aimed to identify factors which affect the acceptability of health promotion programmes to the everyday school environment. Semi-structured qualitative interviews were audio-taped with primary school teachers in one Irish county and transcribed verbatim. The resulting transcripts were analysed using content analysis. Thirty-one teachers were interviewed. The factors which may adversely affect the acceptability of health promotion programmes include the: attitude of teachers towards an additional extra-curricular workload; lack of confidence amongst teachers to lead health promotion; and different organisational cultures between schools. When health promotion programmes under the Health Promoting Schools concept are being implemented, it's important to consider: the readiness for change amongst teachers; the resources available to increase staff capacity to promote health; and the ability of a programme to adapt to the different organisational cultures between schools. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Ciliary dyslexia candidate genes DYX1C1 and DCDC2 are regulated by Regulatory Factor X (RFX) transcription factors through X-box promoter motifs

    PubMed Central

    Tammimies, Kristiina; Bieder, Andrea; Lauter, Gilbert; Sugiaman-Trapman, Debora; Torchet, Rachel; Hokkanen, Marie-Estelle; Burghoorn, Jan; Castrén, Eero; Kere, Juha; Tapia-Páez, Isabel; Swoboda, Peter

    2016-01-01

    DYX1C1, DCDC2, and KIAA0319 are three of the most replicated dyslexia candidate genes (DCGs). Recently, these DCGs were implicated in functions at the cilium. Here, we investigate the regulation of these DCGs by Regulatory Factor X transcription factors (RFX TFs), a gene family known for transcriptionally regulating ciliary genes. We identify conserved X-box motifs in the promoter regions of DYX1C1, DCDC2, and KIAA0319 and demonstrate their functionality, as well as the ability to recruit RFX TFs using reporter gene and electrophoretic mobility shift assays. Furthermore, we uncover a complex regulation pattern between RFX1, RFX2, and RFX3 and their significant effect on modifying the endogenous expression of DYX1C1 and DCDC2 in a human retinal pigmented epithelial cell line immortalized with hTERT (hTERT-RPE1). In addition, induction of ciliogenesis increases the expression of RFX TFs and DCGs. At the protein level, we show that endogenous DYX1C1 localizes to the base of the cilium, whereas DCDC2 localizes along the entire axoneme of the cilium, thereby validating earlier localization studies using overexpression models. Our results corroborate the emerging role of DCGs in ciliary function and characterize functional noncoding elements, X-box promoter motifs, in DCG promoter regions, which thus can be targeted for mutation screening in dyslexia and ciliopathies associated with these genes.—Tammimies, K., Bieder, A., Lauter, G., Sugiaman-Trapman, D., Torchet, R., Hokkanen, M.-E., Burghoorn, J., Castrén, E., Kere, J., Tapia-Páez, I., Swoboda, P. Ciliary dyslexia candidate genes DYX1C1 and DCDC2 are regulated by Regulatory Factor (RF) X transcription factors through X-box promoter motifs. PMID:27451412

  17. Ciliary dyslexia candidate genes DYX1C1 and DCDC2 are regulated by Regulatory Factor X (RFX) transcription factors through X-box promoter motifs.

    PubMed

    Tammimies, Kristiina; Bieder, Andrea; Lauter, Gilbert; Sugiaman-Trapman, Debora; Torchet, Rachel; Hokkanen, Marie-Estelle; Burghoorn, Jan; Castrén, Eero; Kere, Juha; Tapia-Páez, Isabel; Swoboda, Peter

    2016-10-01

    DYX1C1, DCDC2, and KIAA0319 are three of the most replicated dyslexia candidate genes (DCGs). Recently, these DCGs were implicated in functions at the cilium. Here, we investigate the regulation of these DCGs by Regulatory Factor X transcription factors (RFX TFs), a gene family known for transcriptionally regulating ciliary genes. We identify conserved X-box motifs in the promoter regions of DYX1C1, DCDC2, and KIAA0319 and demonstrate their functionality, as well as the ability to recruit RFX TFs using reporter gene and electrophoretic mobility shift assays. Furthermore, we uncover a complex regulation pattern between RFX1, RFX2, and RFX3 and their significant effect on modifying the endogenous expression of DYX1C1 and DCDC2 in a human retinal pigmented epithelial cell line immortalized with hTERT (hTERT-RPE1). In addition, induction of ciliogenesis increases the expression of RFX TFs and DCGs. At the protein level, we show that endogenous DYX1C1 localizes to the base of the cilium, whereas DCDC2 localizes along the entire axoneme of the cilium, thereby validating earlier localization studies using overexpression models. Our results corroborate the emerging role of DCGs in ciliary function and characterize functional noncoding elements, X-box promoter motifs, in DCG promoter regions, which thus can be targeted for mutation screening in dyslexia and ciliopathies associated with these genes.-Tammimies, K., Bieder, A., Lauter, G., Sugiaman-Trapman, D., Torchet, R., Hokkanen, M.-E., Burghoorn, J., Castrén, E., Kere, J., Tapia-Páez, I., Swoboda, P. Ciliary dyslexia candidate genes DYX1C1 and DCDC2 are regulated by Regulatory Factor (RF) X transcription factors through X-box promoter motifs. © The Author(s).

  18. Impact of Environmental Factors on Bacteriocin Promoter Activity in Gut-Derived Lactobacillus salivarius.

    PubMed

    Guinane, Caitriona M; Piper, Clare; Draper, Lorraine A; O'Connor, Paula M; Hill, Colin; Ross, R Paul; Cotter, Paul D

    2015-11-01

    Bacteriocin production is regarded as a desirable probiotic trait that aids in colonization and persistence in the gastrointestinal tract (GIT). Strains of Lactobacillus salivarius, a species associated with the GIT, are regarded as promising probiotic candidates and have a number of associated bacteriocins documented to date. These include multiple class IIb bacteriocins (salivaricin T, salivaricin P, and ABP-118) and the class IId bacteriocin bactofencin A, which show activity against medically important pathogens. However, the production of a bacteriocin in laboratory media does not ensure production under stressful environmental conditions, such as those encountered within the GIT. To allow this issue to be addressed, the promoter regions located upstream of the structural genes encoding the L. salivarius bacteriocins mentioned above were fused to a number of reporter proteins (green fluorescent protein [GFP], red fluorescent protein [RFP], and luciferase [Lux]). Of these, only transcriptional fusions to GFP generated signals of sufficient strength to enable the study of promoter activity in L. salivarius. While analysis of the class IIb bacteriocin promoter regions indicated relatively weak GFP expression, assessment of the promoter of the antistaphylococcal bacteriocin bactofencin A revealed a strong promoter that is most active in the absence of the antimicrobial peptide and is positively induced in the presence of mild environmental stresses, including simulated gastric fluid. Taken together, these data provide information on factors that influence bacteriocin production, which will assist in the development of strategies to optimize in vivo and in vitro production of these antimicrobials. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  19. Inhibition of Myocardin-Related Transcription Factor/Serum Response Factor Signaling Decreases Lung Fibrosis and Promotes Mesenchymal Cell Apoptosis

    PubMed Central

    Sisson, Thomas H.; Ajayi, Iyabode O.; Subbotina, Natalya; Dodi, Amos E.; Rodansky, Eva S.; Chibucos, Lauren N.; Kim, Kevin K.; Keshamouni, Venkateshwar G.; White, Eric S.; Zhou, Yong; Higgins, Peter D.R.; Larsen, Scott D.; Neubig, Richard R.; Horowitz, Jeffrey C.

    2016-01-01

    Myofibroblasts are crucial to the pathogenesis of tissue fibrosis. Their formation of stress fibers results in the release of myocardin-related transcription factor (MRTF), a transcriptional coactivator of serum response factor (SRF). MRTF-A (Mkl1)-deficient mice are protected from lung fibrosis. We hypothesized that the SRF/MRTF pathway inhibitor CCG-203971 would modulate myofibroblast function in vitro and limit lung fibrosis in vivo. Normal and idiopathic pulmonary fibrosis lung fibroblasts were treated with/without CCG-203971 (N-[4-chlorophenyl]-1-[3-(2-furanyl)benzoyl]-3-piperidine carboxamide) and/or Fas-activating antibody in the presence/absence of transforming growth factor (TGF)-β1, and apoptosis was assessed. In vivo studies examined the effect of therapeutically administered CCG-203971 on lung fibrosis in two distinct murine models of fibrosis induced by bleomycin or targeted type II alveolar epithelial injury. In vitro, CCG-203971 prevented nuclear localization of MRTF-A; increased the apoptotic susceptibility of normal and idiopathic pulmonary fibrosis fibroblasts; blocked TGF-β1–induced myofibroblast differentiation; and inhibited TGF-β1–induced expression of fibronectin, X-linked inhibitor of apoptosis, and plasminogen activator inhibitor-1. TGF-β1 did not protect fibroblasts or myofibroblasts from apoptosis in the presence of CCG-203971. In vivo, CCG-203971 significantly reduced lung collagen content in both murine models while decreasing alveolar plasminogen activator inhibitor-1 and promoting myofibroblast apoptosis. These data support a central role of the SRF/MRTF pathway in the pathobiology of lung fibrosis and suggest that its inhibition can help resolve lung fibrosis by promoting fibroblast apoptosis. PMID:25681733

  20. An Extracellular Serine/Threonine-Rich Protein from Lactobacillus plantarum NCIMB 8826 Is a Novel Aggregation-Promoting Factor with Affinity to Mucin

    PubMed Central

    Hevia, Arancha; Martínez, Noelia; Ladero, Víctor; Álvarez, Miguel A.; Margolles, Abelardo

    2013-01-01

    Autoaggregation in lactic acid bacteria is directly related to the production of certain extracellular proteins, notably, aggregation-promoting factors (APFs). Production of aggregation-promoting factors confers beneficial traits to probiotic-producing strains, contributing to their fitness for the intestinal environment. Furthermore, coaggregation with pathogens has been proposed to be a beneficial mechanism in probiotic lactic acid bacteria. This mechanism would limit attachment of the pathogen to the gut mucosa, favoring its removal by the human immune system. In the present paper, we have characterized a novel aggregation-promoting factor in Lactobacillus plantarum. A mutant with a knockout of the D1 gene showed loss of its autoaggregative phenotype and a decreased ability to bind to mucin, indicating an adhesion role of this protein. In addition, heterologous production of the D1 protein or an internal fragment of the protein, characterized by its abundance in serine/threonine, strongly induced autoaggregation in Lactococcus lactis. This result strongly suggested that this internal fragment is responsible for the bioactivity of D1 as an APF. To our knowledge, this is the first report on a gene coding for an aggregation-promoting factor in Lb. plantarum. PMID:23892754

  1. AMPK activation represses the human gene promoter of the cardiac isoform of acetyl-CoA carboxylase: Role of nuclear respiratory factor-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adam, Tasneem; Opie, Lionel H.; Essop, M. Faadiel, E-mail: mfessop@sun.ac.za

    Research highlights: {yields} AMPK inhibits acetyl-CoA carboxylase beta gene promoter activity. {yields} Nuclear respiratory factor-1 inhibits acetyl-CoA carboxylase beta promoter activity. {yields} AMPK regulates acetyl-CoA carboxylase beta at transcriptional level. -- Abstract: The cardiac-enriched isoform of acetyl-CoA carboxylase (ACC{beta}) produces malonyl-CoA, a potent inhibitor of carnitine palmitoyltransferase-1. AMPK inhibits ACC{beta} activity, lowering malonyl-CoA levels and promoting mitochondrial fatty acid {beta}-oxidation. Previously, AMPK increased promoter binding of nuclear respiratory factor-1 (NRF-1), a pivotal transcriptional modulator controlling gene expression of mitochondrial proteins. We therefore hypothesized that NRF-1 inhibits myocardial ACC{beta} promoter activity via AMPK activation. A human ACC{beta} promoter-luciferase construct was transientlymore » transfected into neonatal cardiomyocytes {+-} a NRF-1 expression construct. NRF-1 overexpression decreased ACC{beta} gene promoter activity by 71 {+-} 4.6% (p < 0.001 vs. control). Transfections with 5'-end serial promoter deletions revealed that NRF-1-mediated repression of ACC{beta} was abolished with a pPII{beta}-18/+65-Luc deletion construct. AMPK activation dose-dependently reduced ACC{beta} promoter activity, while NRF-1 addition did not further decrease it. We also investigated NRF-1 inhibition in the presence of upstream stimulatory factor 1 (USF1), a known transactivator of the human ACC{beta} gene promoter. Here NRF-1 blunted USF1-dependent induction of ACC{beta} promoter activity by 58 {+-} 7.5% (p < 0.001 vs. control), reversed with a dominant negative NRF-1 construct. NRF-1 also suppressed endogenous USF1 transcriptional activity by 55 {+-} 6.2% (p < 0.001 vs. control). This study demonstrates that NRF-1 is a novel transcriptional inhibitor of the human ACC{beta} gene promoter in the mammalian heart. Our data extends AMPK regulation of ACC{beta} to the transcriptional

  2. Role of nucleation-promoting factors in mouse early embryo development.

    PubMed

    Wang, Qiao-Chu; Liu, Jun; Wang, Fei; Duan, Xing; Dai, Xiao-Xin; Wang, Teng; Liu, Hong-Lin; Cui, Xiang-Shun; Sun, Shao-Chen; Kim, Nam-Hyung

    2013-06-01

    During mitosis nucleation-promoting factors (NPFs) bind to the Arp2/3 complex and activate actin assembly. JMY and WAVE2 are two critical members of the NPFs. Previous studies have demonstrated that NPFs promote multiple processes such as cell migration and cytokinesis. However, the role of NPFs in development of mammalian embryos is still unknown. Results of the present study show that the NPFs JMY and WAVE2 are critical for cytokinesis during development of mouse embryos. Both JMY and WAVE2 are expressed in mouse embryos. After injection of JMY or WAVE2 siRNA, all embryos failed to develop to the morula or blastocyst stages. Moreover, using fluorescence intensity analysis, we found that the expression of actin decreased, and multiple nuclei were observed within a single cell indicating that NPFs-induced actin reduction caused the failure of cell division. In addition, injection of JMY and WAVE2 siRNA also caused ARP2 degradation, indicating that involvement of NPFs in development of mouse embryos is mainly through regulation of ARP2/3-induced actin assembly. Taken together, these data suggested that WAVE2 and JMY are involved in development of mouse embryos, and their regulation may be through a NPFs-Arp2/3-actin pathway.

  3. Serious, Minor, and Non-Delinquents in Early Adolescence: The Impact of Cumulative Risk and Promotive Factors. The TRAILS Study

    ERIC Educational Resources Information Center

    van der Laan, Andre M.; Veenstra, Rene; Bogaerts, Stefan; Verhulst, Frank C.; Ormel, Johan

    2010-01-01

    This study uses a social-ecological approach to the development of delinquency. The authors emphasize that a balance between eliminating risk and enhancing protection across domains is essential in reducing problems and promoting competence. The cumulative risk and promotive effects of temperament, family and school factors in preadolescence were…

  4. Promoter classifier: software package for promoter database analysis.

    PubMed

    Gershenzon, Naum I; Ioshikhes, Ilya P

    2005-01-01

    Promoter Classifier is a package of seven stand-alone Windows-based C++ programs allowing the following basic manipulations with a set of promoter sequences: (i) calculation of positional distributions of nucleotides averaged over all promoters of the dataset; (ii) calculation of the averaged occurrence frequencies of the transcription factor binding sites and their combinations; (iii) division of the dataset into subsets of sequences containing or lacking certain promoter elements or combinations; (iv) extraction of the promoter subsets containing or lacking CpG islands around the transcription start site; and (v) calculation of spatial distributions of the promoter DNA stacking energy and bending stiffness. All programs have a user-friendly interface and provide the results in a convenient graphical form. The Promoter Classifier package is an effective tool for various basic manipulations with eukaryotic promoter sequences that usually are necessary for analysis of large promoter datasets. The program Promoter Divider is described in more detail as a representative component of the package.

  5. Views of policy makers and health promotion professionals on factors facilitating implementation and maintenance of interventions and policies promoting physical activity and healthy eating: results of the DEDIPAC project.

    PubMed

    Muellmann, Saskia; Steenbock, Berit; De Cocker, Katrien; De Craemer, Marieke; Hayes, Catherine; O'Shea, Miriam P; Horodyska, Karolina; Bell, Justyna; Luszczynska, Aleksandra; Roos, Gun; Langøien, Lars Jørun; Rugseth, Gro; Terragni, Laura; De Bourdeaudhuij, Ilse; Brug, Johannes; Pischke, Claudia R

    2017-12-06

    The uptake, implementation, and maintenance of effective interventions promoting physical activity (PA) and a healthy diet and the implementation of policies targeting these behaviors are processes not well understood. We aimed to gain a better understanding of what health promotion professionals and policy makers think are important factors facilitating adoption, implementation, and maintenance of multi-level interventions and policies promoting healthy eating and PA in Belgium, Germany, Ireland, Norway, and Poland. Six interventions and six policies were identified based on pre-defined criteria. Forty semi-structured interviews were conducted with stakeholders from various sectors to elicit information on factors impacting adoption, implementation, and maintenance of these interventions and policies. All interview transcripts were coded in NVivo, using a common categorization matrix. Coding in the respective countries was done by one researcher and validated by a second researcher. Active involvement of relevant stakeholders and good communication between coordinating organizations were described as important factors contributing to successful adoption and implementation of both interventions and policies. Additional facilitating factors included sufficient training of staff and tailoring of materials to match needs of various target groups. The respondents indicated that maintenance of implemented interventions/policies depended on whether they were embedded in existing or newly created organizational structures in different settings and whether continued funding was secured. Despite considerable heterogeneity of interventions and health policies in the five countries, stakeholders across these countries identify similar factors facilitating adoption, implementation, and maintenance of these interventions and policies.

  6. Caregivers' support needs and factors promoting resiliency after brain injury.

    PubMed

    Kitter, Bryony; Sharman, Rachael

    2015-01-01

    This article explores the challenges, support needs and coping strategies of caregivers of people with an acquired brain injury (ABI). Semi-structured interviews were conducted with caregivers (n = 20) to explore their support services received, access barriers, utility of services, needed supports, coping strategies and factors promoting life satisfaction. The team recorded, transcribed verbatim and inductively analysed all interviews. Through thematic data analysis, three central themes were revealed: (a) barriers impeding quality-of-life, (b) support needed to improve quality-of-life and (c) factors enabling quality-of-life. All perspectives from the participants involved are synthesized to provide a rich depiction of caregivers' support needs and coping strategies. Two specific findings of interest include a negative association between severity of brain injury and caregiver's desire to direct treatment, as well as a distinct service gap in assistance for caregivers who are caring for someone with violent/offending behaviours. This study recommends short- and long-term changes, given Australia's upcoming National Disability Insurance Scheme, to increase caregiver quality-of-life, which will ultimately affect the rehabilitation outcomes of persons with ABI.

  7. Effects of postnatal ethanol exposure at different developmental phases on neurotrophic factors and phosphorylated proteins on signal transductions in rat brain.

    PubMed

    Tsuji, Ryozo; Fattori, Vittorio; Abe, Shin-ichi; Costa, Lucio G; Kobayashi, Kumiko

    2008-01-01

    Exposure to ethanol during development induces severe brain damage resulting in a number of CNS dysfunctions including microencephaly and mental retardation in humans and in laboratory animals. The most vulnerable period to ethanol neurotoxicity coincides with the peak of brain growth spurt. Recently, neurotrophic factors and/or their signal transduction pathways have been reported as a potential relevant target for the developmental neurotoxicity of ethanol. The present studies were designed to investigate the effects of ethanol given in various developmental phases during the brain growth spurt in rats. Rat pups were assigned to the three treatment groups and treated with 5 g/kg of ethanol for three days, on postnatal days (PND) 2-4, 6-8 or 13-15. Whole brain weights were reduced only in the PND 6-8 group concurrently with the reduction of GDNF mRNA in cortex in this group. BDNF mRNA expression was reduced in both the PND 6-8 and 13-15 groups, while mRNA expressions of NT-3 and NGF were unchanged in all three groups. Phospho-Akt level was mostly reduced in the PND 6-8 group. Both phospho-MAPK and p-70S6 kinase levels were decreased in all groups whereas no changes were observed in either phospho-PKCzeta or CREB level. The phosphorylation of Akt was immediately inhibited after single administration of ethanol, and its inhibition was correlated with variations in blood ethanol concentration. These findings suggest that GDNF and the phosphorylation of Akt play a possible key role in the ethanol-induced developmental neurotoxicity.

  8. The Surgeon’s Perspective: Promoting and Discouraging Factors for Choosing a Career in Surgery as Perceived by Surgeons

    PubMed Central

    Seelandt, Julia C.; Kaderli, Reto M.; Tschan, Franziska; Businger, Adrian P.

    2014-01-01

    Background The aim of this study was to identify the factors perceived by surgeons that promote surgery as an attractive or unattractive career choice for today’s graduates. In addition, it examined whether the perspectives of surgeons in different professional situations converges. The content of work, contextual work conditions, and calling to this job are discussed in the context of choosing surgery as a career. Methods Eight hundred sixty-nine surgeons were asked to answer open-ended questions regarding the factors that promote surgery as an attractive or unattractive career choice for today’s graduates. Four hundred ninety-two surgeons participated, and 1,525 statements were analyzed using Mayring’s content-analyses method. Chi-square tests were used to analyze the differences among hierarchical positions. Results With respect to the factors that promote surgery as a profession, 40.8% (209/492) of the surgeons stated that surgery is a calling, 29.1% (149/492) of the surgeons provided at least one argument related to the positive task characteristics, and 12.9% (66/492) of the surgeons provided statements related to the positive contextual factors. With respect to the factors that discourage surgery as a profession, 45.7% (234/492) of the surgeons provided at least one argument related to the discouraging work characteristics, and 67.6% (346/492) of the surgeons provided problematic contextual characteristics. Conclusion This study emphasizes the importance of the calling to surgery as an important factor for choosing surgery as a career. However, the extensive workload, training, and poor work-family balance have been identified as factors that discourage graduates from choosing surgery as a career. The identified positive factors could be used to attract and maintain graduates in surgical disciplines. PMID:25025428

  9. Granulocyte colony-stimulating factor off-target effect on nerve outgrowth promotes prostate cancer development.

    PubMed

    Dobrenis, Kostantin; Gauthier, Laurent R; Barroca, Vilma; Magnon, Claire

    2015-02-15

    The hematopoietic growth factor granulocyte colony-stimulating factor (G-CSF) has a role in proliferation, differentiation and migration of the myeloid lineage and in mobilizing hematopoietic stem and progenitor cells into the bloodstream. However, G-CSF has been newly characterized as a neurotrophic factor in the brain. We recently uncovered that autonomic nerve development in the tumor microenvironment participates actively in prostate tumorigenesis and metastasis. Here, we found that G-CSF constrains cancer to grow and progress by, respectively, supporting the survival of sympathetic nerve fibers in 6-hydroxydopamine-sympathectomized mice and also, promoting the aberrant outgrowth of parasympathetic nerves in transgenic or xenogeneic prostate tumor models. This provides insight into how neurotrophic growth factors may control tumor neurogenesis and may lead to new antineurogenic therapies for prostate cancer. © 2014 UICC.

  10. Activation of Schwann cells in vitro by magnetic nanocomposites via applied magnetic field.

    PubMed

    Liu, Zhongyang; Huang, Liangliang; Liu, Liang; Luo, Beier; Liang, Miaomiao; Sun, Zhen; Zhu, Shu; Quan, Xin; Yang, Yafeng; Ma, Teng; Huang, Jinghui; Luo, Zhuojing

    2015-01-01

    Schwann cells (SCs) are attractive seed cells in neural tissue engineering, but their application is limited by attenuated biological activities and impaired functions with aging. Therefore, it is important to explore an approach to enhance the viability and biological properties of SCs. In the present study, a magnetic composite made of magnetically responsive magnetic nanoparticles (MNPs) and a biodegradable chitosan-glycerophosphate polymer were prepared and characterized. It was further explored whether such magnetic nanocomposites via applied magnetic fields would regulate SC biological activities. The magnetization of the magnetic nanocomposite was measured by a vibrating sample magnetometer. The compositional characterization of the magnetic nanocomposite was examined by Fourier-transform infrared and X-ray diffraction. The tolerance of SCs to the magnetic fields was tested by flow-cytometry assay. The proliferation of cells was examined by a 5-ethynyl-2-deoxyuridine-labeling assay, a PrestoBlue assay, and a Live/Dead assay. Messenger ribonucleic acid of BDNF, GDNF, NT-3, and VEGF in SCs was assayed by quantitative real-time polymerase chain reaction. The amount of BDNF, GDNF, NT-3, and VEGF secreted from SCs was determined by enzyme-linked immunosorbent assay. It was found that magnetic nanocomposites containing 10% MNPs showed a cross-section diameter of 32.33±1.81 µm, porosity of 80.41%±0.72%, and magnetization of 5.691 emu/g at 8 kOe. The 10% MNP magnetic nanocomposites were able to support cell adhesion and spreading and further promote proliferation of SCs under magnetic field exposure. Interestingly, a magnetic field applied through the 10% MNP magnetic scaffold significantly increased the gene expression and protein secretion of BDNF, GDNF, NT-3, and VEGF. This work is the first stage in our understanding of how to precisely regulate the viability and biological properties of SCs in tissue-engineering grafts, which combined with additional

  11. The Impact of an Incentive-Based Worksite Health Promotion Program on Modifiable Health Risk Factors.

    ERIC Educational Resources Information Center

    Poole, Kathleen; Kumpfer, Karol; Pett, Marjorie

    2001-01-01

    Examined the impact of participating in an incentive-based employee health promotion program on modifiable health risk factors over 4 years. Data from physiological and self-report measures indicated that modifiable health risks improved over time (smoking, physical activity, systolic and diastolic blood pressure, and seat belt use). Cholesterol…

  12. Factors and Conditions Promoting Academic Resilience: A TIMSS-Based Analysis of Five Asian Education Systems

    ERIC Educational Resources Information Center

    Sandoval-Hernández, Andrés; Bialowolski, Piotr

    2016-01-01

    It is well documented that academic achievement of students from families of low socioeconomic status (SES) tends to be below their more socially advantaged peers. Several studies have identified factors and conditions that facilitate academic success for disadvantaged students (i.e., promote academic resilience). However, one of the main…

  13. The association between runt-related transcription factor 3 gene promoter methylation and gastric cancer: A meta-analysis.

    PubMed

    Liu, Xu; Wang, Lina; Guo, Yongtie

    2016-10-01

    To systematically evaluate the relationship of the methylation of the human-runt-related transcription factor 3 (RUNX3) promoter region and gastric cancer risk through meta-analysis. The studies published in PubMed, EMBASE, Ovid, and CNKI were retrieved. The association between RUNX3 gene promoter methylation and gastric cancer was analyzed using Stata 11.0 (http://www.stata.com; Stata Corporation, College Station, TX, USA) and Review Man 5.0 software (http://ims.cochrane.org/revman/download). Seventeen studies are included in the analysis. Meta-analysis reveals that the odds ratio of the methylation of the RUNX3 promoter region in gastric was 7.32 (95% confidence interval: 5.12-10.47), which was significant higher than the normal gastric tissues (P < 0.05). The RUNX3 gene promoter methylation rate was much higher in tumor tissue than that in normal gastric tissue in patient with gastric cancer, which indicates a close association between gastric cancer and RUNX3 gene promoter methylation.

  14. What hinders healthcare professionals in promoting physical activity towards cancer patients? The influencing role of healthcare professionals' concerns, perceived patient characteristics and perceived structural factors.

    PubMed

    Haussmann, Alexander; Gabrian, Martina; Ungar, Nadine; Jooß, Stefan; Wiskemann, Joachim; Sieverding, Monika; Steindorf, Karen

    2018-05-09

    Despite a large body of evidence showing that physical activity (PA) is beneficial to patients with cancer, healthcare professionals (HCPs) are promoting it too scarcely. Factors that hinder HCPs from promoting PA have remained understudied so far. Using a qualitative approach, this study aimed at a comprehensive description of influencing factors for HCPs' PA promotion behaviour and at identifying the reasons and mechanisms behind them. Semi-structured interviews with 30 HCPs were undertaken with a focus on concerns, patient characteristics and structural factors. Answers were analysed using thematic analysis. Results revealed that HCPs had concerns regarding a physical overexertion and psychological stress for patients with cancer. A patient's physical condition and the assumed interest in PA, often derived from former PA, turned out to be the most crucial patient characteristics influencing if PA is addressed. Structural factors relevant for PA promotion pertained to in-house structures, HCPs' workload, timing and coordination, information material for HCPs and patients and availability of exercise programs. In conclusion, this study revealed undetected concerns of HCPs and underlined the relevance of patient characteristics and structural conditions for HCPs' PA promotion towards patients with cancer. A broader perspective is needed to assess these factors in their influence on HCPs' PA promotion. © 2018 John Wiley & Sons Ltd.

  15. Tyrosine Phosphorylation of the Pioneer Transcription Factor FoxA1 Promotes Activation of Estrogen Signaling.

    PubMed

    Yamaguchi, Noritaka; Shibazaki, Misato; Yamada, Chiaki; Anzai, Erina; Morii, Mariko; Nakayama, Yuji; Kuga, Takahisa; Hashimoto, Yuuki; Tomonaga, Takeshi; Yamaguchi, Naoto

    2017-06-01

    The pioneer transcription factor FoxA1 plays an important role in estrogen signaling by opening closed chromatin and promoting recruitment of the estrogen receptor to its target regions in DNA. In this study, we analyzed tyrosine phosphorylation of FoxA1 by the non-receptor-type tyrosine kinase c-Abl. c-Abl was shown to phosphorylate FoxA1 at multiple sites, especially in the N- and C-terminal regions. Tyr429 and Tyr464 were identified as the major phosphorylation sites in the FoxA1 C-terminal region. The phosphomimetic and nonphosphorylatable FoxA1 mutants were generated by glutamic acid and phenylalanine substitutions at these tyrosine residues, respectively. The phosphomimetic FoxA1 promoted the activation of estrogen signaling, whereas the nonphosphorylatable FoxA1 suppressed its activation. Stimulation with the epidermal growth factor, which activates c-Abl, enhanced the activation of estrogen signaling. In contrast, the c-Abl inhibitor imatinib reduced its activation. The phosphomimetic FoxA1 mutant showed a higher affinity toward histone H3 than the wild-type. These results suggest that c-Abl-mediated phosphorylation of FoxA1 promotes the activation of estrogen signaling by inducing its binding to histones. J. Cell. Biochem. 118: 1453-1461, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. The histone code reader SPIN1 controls RET signaling in liposarcoma

    PubMed Central

    Franz, Henriette; Greschik, Holger; Willmann, Dominica; Ozretić, Luka; Jilg, Cordula Annette; Wardelmann, Eva; Jung, Manfred; Buettner, Reinhard; Schüle, Roland

    2015-01-01

    The histone code reader Spindlin1 (SPIN1) has been implicated in tumorigenesis and tumor growth, but the underlying molecular mechanisms remain poorly understood. Here, we show that reducing SPIN1 levels strongly impairs proliferation and increases apoptosis of liposarcoma cells in vitro and in xenograft mouse models. Combining signaling pathway, genome-wide chromatin binding, and transcriptome analyses, we found that SPIN1 directly enhances expression of GDNF, an activator of the RET signaling pathway, in cooperation with the transcription factor MAZ. Accordingly, knockdown of SPIN1 or MAZ results in reduced levels of GDNF and activated RET explaining diminished liposarcoma cell proliferation and survival. In line with these observations, levels of SPIN1, GDNF, activated RET, and MAZ are increased in human liposarcoma compared to normal adipose tissue or lipoma. Importantly, a mutation of SPIN1 within the reader domain interfering with chromatin binding reduces liposarcoma cell proliferation and survival. Together, our data describe a molecular mechanism for SPIN1 function in liposarcoma and suggest that targeting SPIN1 chromatin association with small molecule inhibitors may represent a novel therapeutic strategy. PMID:25749382

  17. Obesity-related systemic factors promote an invasive phenotype in prostate cancer cells.

    PubMed

    Price, R S; Cavazos, D A; De Angel, R E; Hursting, S D; deGraffenried, L A

    2012-06-01

    Obesity is associated with larger tumors, shorter time to PSA failure, and higher Gleason scores. However, the mechanism(s) by which obesity promotes aggressive prostate cancer remains unknown. We hypothesize that circulating factors related to obesity promote prostate cancer progression by modulating components of the metastatic cascade. Male C57BL/6 mice (6 weeks) were fed an ad libitum diet-induced obesity (60% fat) or control diet (10% fat) for 12 weeks. Serum was collected, metabolic and inflammatory proteins were measured by an antibody array. Sera were used to measure, in vitro, characteristics of a metastatic phenotype. Comparable to obese men, obese sera contained higher levels or leptin, vascular endothelial growth factor, PAI-1, interleukin-6 (IL-6) and lower levels of testosterone. In prostate cells, serum was used to assess: proliferation, invasion, migration, epithelial-mesenchymal-transition (EMT) and matrix metalloproteinase (MMP) activity. LNCaP and PacMetUT1 cells exposed to obese sera increased proliferation, whereas PrEC and DU145 were unaffected. LNCaP, PacMetUT1 and DU145 cancer cells exposed to obese sera resulted in increased invasion, migration and MMP-9 activity. Prostate cancer cells exposed to obese sera showed increased vimentin, dispersion of e-cadherin and β-catenin from the plasma membrane. We report, prostate cancer cells exposed to sera from obese mice increases proliferation, invasion, migration, MMP activity and induces changes in proteins critical for EMT.

  18. A novel polymorphism in the PAI-1 gene promoter enhances gene expression. A novel pro-thrombotic risk factor?

    PubMed

    Liguori, Renato; Quaranta, Sandro; Di Fiore, Rosanna; Elce, Ausilia; Castaldo, Giuseppe; Amato, Felice

    2014-12-01

    Plasminogen activator inhibitor-1 (PAI-1) is the major physiological inhibitor of tissue-type plasminogen activator in plasma and the most important regulator of the fibrinolytic pathway. The 4G/5G polymorphism (rs1799889) in the PAI-1 promoter is associated with altered PAI-1 transcription. We have identified a new 4G/5G allele, in which a T is inserted near the 4G tract or replaces a G in the 5G tract, forming a T plus 4G (T4G) region. This new variant was first identified in two women, one had experienced juvenile myocardial infarction, the other repeated miscarriage; both had increased PAI-1 plasma activity. In view of the important influence of this promoter region on PAI-1 protein plasma level, we performed in vitro evaluation of the effects of the T4G variant on the transcription activity of the PAI-1 gene promoter. In silico prediction analysis showed that presence of the T4G allele disrupts the E-Box region upstream of the T4G variant, altering the affinity of the target sequence for E-Box binding factors like upstream stimulatory factor-1 (USF-1). Basal T4G promoter activity was 50% higher compared to 4G and 5G variants, but it was less stimulated by USF-1 overexpression. We also analyzed the effects of IL-1β and IL-6 on the PAI-1 promoter activity of our three constructs and showed that the T4G variant was less affected by IL-1β than the other variants. These findings indicate that the T4G variant may be a novel risk factor for thrombotic events. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. HMG I(Y) interferes with the DNA binding of NF-AT factors and the induction of the interleukin 4 promoter in T cells

    PubMed Central

    Klein-Hessling, Stefan; Schneider, Günter; Heinfling, Annette; Chuvpilo, Sergei; Serfling, Edgar

    1996-01-01

    HMG I(Y) proteins bind to double-stranded A+T oligonucleotides longer than three base pairs. Such motifs form part of numerous NF-AT-binding sites of lymphokine promoters, including the interleukin 4 (IL-4) promoter. NF-AT factors share short homologous peptide sequences in their DNA-binding domain with NF-κB factors and bind to certain NF-κB sites. It has been shown that HMG I(Y) proteins enhance NF-κB binding to the interferon β promoter and virus-mediated interferon β promoter induction. We show that HMG I(Y) proteins exert an opposite effect on the DNA binding of NF-AT factors and the induction of the IL-4 promoter in T lymphocytes. Introduction of mutations into a high-affinity HMG I(Y)-binding site of the IL-4 promoter, which decreased HMG I(Y)-binding to a NF-AT-binding sequence, the Pu-bB (or P) site, distinctly increased the induction of the IL-4 promoter in Jurkat T leukemia cells. High concentrations of HMG I(Y) proteins are able to displace NF-ATp from its binding to the Pu-bB site. High HMG I(Y) concentrations are typical for Jurkat cells and peripheral blood T lymphocytes, whereas El4 T lymphoma cells and certain T helper type 2 cell clones contain relatively low HMG I(Y) concentrations. Our results indicate that HMG I(Y) proteins do not cooperate, but instead compete with NF-AT factors for the binding to DNA even though NF-AT factors share some DNA-binding properties with NF-kB factors. This competition between HMG I(Y) and NF-AT proteins for DNA binding might be due to common contacts with minor groove nucleotides of DNA and may be one mechanism contributing to the selective IL-4 expression in certain T lymphocyte populations, such as T helper type 2 cells. PMID:8986808

  20. Brain-derived Neurotrophic Factor Promotes the Migration of Olfactory Ensheathing Cells Through TRPC Channels.

    PubMed

    Wang, Ying; Teng, Hong-Lin; Gao, Yuan; Zhang, Fan; Ding, Yu-Qiang; Huang, Zhi-Hui

    2016-12-01

    Olfactory ensheathing cells (OECs) are a unique type of glial cells with axonal growth-promoting properties in the olfactory system. Organized migration of OECs is essential for neural regeneration and olfactory development. However, the molecular mechanism of OEC migration remains unclear. In the present study, we examined the effects of brain-derived neurotrophic factor (BDNF) on OEC migration. Initially, the "scratch" migration assay, the inverted coverslip and Boyden chamber migration assays showed that BDNF could promote the migration of primary cultured OECs. Furthermore, BDNF gradient attracted the migration of OECs in single-cell migration assays. Mechanistically, TrkB receptor expressed in OECs mediated BDNF-induced OEC migration, and BDNF triggered calcium signals in OECs. Finally, transient receptor potential cation channels (TRPCs) highly expressed in OECs were responsible for BDNF-induced calcium signals, and required for BDNF-induced OEC migration. Taken together, these results demonstrate that BDNF promotes the migration of cultured OECs and an unexpected finding is that TRPCs are required for BDNF-induced OEC migration. GLIA 2016;64:2154-2165. © 2016 Wiley Periodicals, Inc.

  1. The Neuroprotective Disease-Modifying Potential of Psychotropics in Parkinson's Disease

    PubMed Central

    Lauterbach, Edward C.; Fontenelle, Leonardo F.; Teixeira, Antonio L.

    2012-01-01

    Neuroprotective treatments in Parkinson's disease (PD) have remained elusive. Psychotropics are commonly prescribed in PD without regard to their pathobiological effects. The authors investigated the effects of psychotropics on pathobiological proteins, proteasomal activity, mitochondrial functions, apoptosis, neuroinflammation, trophic factors, stem cells, and neurogenesis. Only findings replicated in at least 2 studies were considered for these actions. Additionally, PD-related gene transcription, animal model, and human neuroprotective clinical trial data were reviewed. Results indicate that, from a PD pathobiology perspective, the safest drugs (i.e., drugs least likely to promote cellular neurodegenerative mechanisms balanced against their likelihood of promoting neuroprotective mechanisms) include pramipexole, valproate, lithium, desipramine, escitalopram, and dextromethorphan. Fluoxetine favorably affects transcription of multiple genes (e.g., MAPT, GBA, CCDC62, HIP1R), although it and desipramine reduced MPTP mouse survival. Haloperidol is best avoided. The most promising neuroprotective investigative priorities will involve disease-modifying trials of the safest agents alone or in combination to capture salutary effects on H3 histone deacetylase, gene transcription, glycogen synthase kinase-3, α-synuclein, reactive oxygen species (ROS), reactive nitrogen species (RNS), apoptosis, inflammation, and trophic factors including GDNF and BDNF. PMID:22254151

  2. Epidermal growth factor receptor is required for colonic tumor promotion by dietary fat in the azoxymethane/dextran sulfate sodium model: roles of transforming growth factor-{alpha} and PTGS2.

    PubMed

    Dougherty, Urszula; Cerasi, Dario; Taylor, Ieva; Kocherginsky, Masha; Tekin, Ummuhan; Badal, Shamiram; Aluri, Lata; Sehdev, Amikar; Cerda, Sonia; Mustafi, Reba; Delgado, Jorge; Joseph, Loren; Zhu, Hongyan; Hart, John; Threadgill, David; Fichera, Alessandro; Bissonnette, Marc

    2009-11-15

    Colon cancer is a major cause of cancer deaths. Dietary factors contribute substantially to the risk of this malignancy. Western-style diets promote development of azoxymethane-induced colon cancer. Although we showed that epidermal growth factor receptors (EGFR) controlled azoxymethane tumorigenesis in standard fat conditions, the role of EGFR in tumor promotion by high dietary fat has not been examined. A/J x C57BL6/J mice with wild-type Egfr (Egfr(wt)) or loss-of-function waved-2 Egfr (Egfr(wa2)) received azoxymethane followed by standard (5% fat) or western-style (20% fat) diet. As F(1) mice were resistant to azoxymethane, we treated mice with azoxymethane followed by one cycle of inflammation-inducing dextran sulfate sodium to induce tumorigenesis. Mice were sacrificed 12 weeks after dextran sulfate sodium. Tumors were graded for histology and assessed for EGFR ligands and proto-oncogenes by immunostaining, Western blotting, and real-time PCR. Egfr(wt) mice gained significantly more weight and had exaggerated insulin resistance compared with Egfr(wa2) mice on high-fat diet. Dietary fat promoted tumor incidence (71.2% versus 36.7%; P < 0.05) and cancer incidence (43.9% versus 16.7%; P < 0.05) only in Egfr(wt) mice. The lipid-rich diet also significantly increased tumor and cancer multiplicity only in Egfr(wt) mice. In tumors, dietary fat and Egfr(wt) upregulated transforming growth factor-alpha, amphiregulin, CTNNB1, MYC, and CCND1, whereas PTGS2 was only increased in Egfr(wt) mice and further upregulated by dietary fat. Notably, dietary fat increased transforming growth factor-alpha in normal colon. EGFR is required for dietary fat-induced weight gain and tumor promotion. EGFR-dependent increases in receptor ligands and PTGS2 likely drive diet-related tumor promotion.

  3. An engineered tale-transcription factor rescues transcription of factor VII impaired by promoter mutations and enhances its endogenous expression in hepatocytes.

    PubMed

    Barbon, Elena; Pignani, Silvia; Branchini, Alessio; Bernardi, Francesco; Pinotti, Mirko; Bovolenta, Matteo

    2016-06-24

    Tailored approaches to restore defective transcription responsible for severe diseases have been poorly explored. We tested transcription activator-like effectors fused to an activation domain (TALE-TFs) in a coagulation factor VII (FVII) deficiency model. In this model, the deficiency is caused by the -94C > G or -61T > G mutation, which abrogate the binding of Sp1 or HNF-4 transcription factors. Reporter assays in hepatoma HepG2 cells naturally expressing FVII identified a single TALE-TF (TF4) that, by targeting the region between mutations, specifically trans-activated both the variant (>100-fold) and wild-type (20-40-fold) F7 promoters. Importantly, in the genomic context of transfected HepG2 and transduced primary hepatocytes, TF4 increased F7 mRNA and protein levels (2- to 3-fold) without detectable off-target effects, even for the homologous F10 gene. The ectopic F7 expression in renal HEK293 cells was modestly affected by TF4 or by TALE-TF combinations. These results provide experimental evidence for TALE-TFs as gene-specific tools useful to counteract disease-causing promoter mutations.

  4. Functional cooperation between GATA factors and cJUN on the star promoter in MA-10 Leydig cells.

    PubMed

    Martin, Luc J; Bergeron, Francis; Viger, Robert S; Tremblay, Jacques J

    2012-01-01

    Steroid hormone biosynthesis requires the steroidogenic acute regulatory protein (STAR). STAR is part of a protein complex that transports cholesterol through the mitochondrial membrane where steroidogenesis begins. Several transcription factors participate to direct the proper spatiotemporal and hormonal regulation of the Star gene in Leydig cells. Mechanistically, this is believed to involve the functional interplay between many of these factors. Here we report a novel transcriptional cooperation between GATA factors and cJUN on the mouse Star and human STAR promoters in MA-10 Leydig cells. This cooperation was observed with different GATA members (GATA1, 4, and 6), whereas only cJUN could cooperate with GATA factors. GATA/cJUN transcriptional cooperation on the Star promoter is mediated via closely juxtaposed GATA and AP-1 binding motifs. Mutation of all functional GATA and cJUN elements abolished GATA/cJUN cooperation, which is in agreement with previous data reporting a direct interaction between GATA4 and cJUN in a heterologous system. These data add valuable new insights that further define the molecular mechanisms that govern Star transcription in steroidogenic cells of the testis.

  5. Structural dissection of an interaction between transcription initiation and termination factors implicated in promoter-terminator cross-talk.

    PubMed

    Bratkowski, Matthew; Unarta, Ilona Christy; Zhu, Lizhe; Shubbar, Murtada; Huang, Xuhui; Liu, Xin

    2018-02-02

    Functional cross-talk between the promoter and terminator of a gene has long been noted. Promoters and terminators are juxtaposed to form gene loops in several organisms, and gene looping is thought to be involved in transcriptional regulation. The general transcription factor IIB (TFIIB) and the C-terminal domain phosphatase Ssu72, essential factors of the transcription preinitiation complex and the mRNA processing and polyadenylation complex, respectively, are important for gene loop formation. TFIIB and Ssu72 interact both genetically and physically, but the molecular basis of this interaction is not known. Here we present a crystal structure of the core domain of TFIIB in two new conformations that differ in the relative distance and orientation of the two cyclin-like domains. The observed extraordinary conformational plasticity may underlie the binding of TFIIB to multiple transcription factors and promoter DNAs that occurs in distinct stages of transcription, including initiation, reinitiation, and gene looping. We mapped the binding interface of the TFIIB-Ssu72 complex using a series of systematic, structure-guided in vitro binding and site-specific photocross-linking assays. Our results indicate that Ssu72 competes with acidic activators for TFIIB binding and that Ssu72 disrupts an intramolecular TFIIB complex known to impede transcription initiation. We also show that the TFIIB-binding site on Ssu72 overlaps with the binding site of symplekin, a component of the mRNA processing and polyadenylation complex. We propose a hand-off model in which Ssu72 mediates a conformational transition in TFIIB, accounting for the role of Ssu72 in transcription reinitiation, gene looping, and promoter-terminator cross-talk. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Factors Facilitating the Implementation of Church-Based Heart Health Promotion Programs for Older Adults: A Qualitative Study Guided by the Precede-Proceed Model.

    PubMed

    Banerjee, Ananya Tina; Kin, R; Strachan, Patricia H; Boyle, Michael H; Anand, Sonia S; Oremus, Mark

    2015-01-01

    To describe the factors facilitating the implementation of heart health promotion programs for older adults in Anglican, United, and Catholic churches. The study used qualitative methods comprising semistructured interviews and focus groups. The interviews and focus groups were conducted in Anglican, Catholic, and United churches located in the Canadian cities of Toronto and Hamilton, Ontario. Twelve ordained pastors and 21 older parishioners who attended church regularly and who had no health conditions were recruited to best explain how churches could be suitable locations for health promotion activities targeting older adults. Twelve semistructured interviews with the pastors and three focus groups with the 21 parishioners were undertaken. A component of the Precede-Proceed model (a model for planning health education and health promotion programs and policies) was applied to the findings after direct content analysis of the data. Participants identified pastor leadership, funding for a parish nurse, community-focused interventions, secured infrastructure, and social support from congregation members as pertinent factors required for implementing health promotion programs in Anglican, United, and Catholic churches. The findings have particular relevance for health promotion and public health because they suggest factors that would be necessary to design church-based heart health promotion programs for older adults at risk of chronic diseases.

  7. Biomimetic hybrid porous scaffolds immobilized with platelet derived growth factor-BB promote cellularization and vascularization in tissue engineering.

    PubMed

    Murali, Ragothaman; Ponrasu, Thangavel; Cheirmadurai, Kalirajan; Thanikaivelan, Palanisamy

    2016-02-01

    Development of hybrid scaffolds with synergistic combination of growth factor is a promising approach to promote early in vivo wound repair and tissue regeneration. Here, we show the rapid wound healing in Wistar albino rats using biomimetic collagen-poly(dialdehyde) guar gum based hybrid porous scaffolds covalently immobilized with platelet derived growth factor-BB. The immobilized platelet derived growth factor in the hybrid scaffolds not only enhance the total protein, collagen, hexosamine, and uronic acid contents in the granulation tissue but also provide stronger tissues. The wound closure analysis reveal that the complete epithelialization period is 15.4 ± 0.9 days for collagen-poly(dialdehyde) guar gum-platelet derived growth factor hybrid scaffolds, whereas it is significantly higher for control, collagen, collagen- poly(dialdehyde) guar gum and povidine-iodine treated groups. Further, the histological evaluation shows that the immobilized platelet derived growth factor in the hybrid scaffolds induced a more robust cellular and vascular response in the implanted site. Hence, we demonstrate that the collagen-poly(dialdehyde) guar gum hybrid scaffolds loaded with platelet derived growth factor stimulates chemotactic effects in the implanted site to promote rapid tissue regeneration and wound repair without the assistance of antibacterial agents. © 2015 Wiley Periodicals, Inc.

  8. The granulocyte-macrophage colony-stimulating factor promoter cis-acting element CLE0 mediates induction signals in T cells and is recognized by factors related to AP1 and NFAT.

    PubMed Central

    Masuda, E S; Tokumitsu, H; Tsuboi, A; Shlomai, J; Hung, P; Arai, K; Arai, N

    1993-01-01

    Expression of the granulocyte-macrophage colony-stimulating factor (GM-CSF) gene in T cells is activated by the combination of phorbol ester (phorbol myristate acetate) and calcium ionophore (A23187), which mimic antigen stimulation through the T-cell receptor. We have previously shown that a fragment containing bp -95 to +27 of the mouse GM-CSF promoter can confer inducibility to reporter genes in the human Jurkat T-cell line. Here we use an in vitro transcription system to demonstrate that a cis-acting element (positions -54 to -40), referred to as CLE0, is a target for the induction signals. We observed induction with templates containing intact CLE0 but not with templates with deleted or mutated CLE0. We also observed that two distinct signals were required for the stimulation through CLE0, since only extracts from cells treated with both phorbol myristate acetate and A23187 supported optimal induction. Stimulation probably was mediated by CLE0-binding proteins because depletion of these proteins specifically reduced GM-CSF transcription. One of the binding factors possessed biochemical and immunological features identical to those of the transcription factor AP1. Another factor resembled the T-cell-specific factor NFAT. The characteristics of these two factors are consistent with their involvement in GM-CSF induction. The presence of CLE0-like elements in the promoters of interleukin-3 (IL-3), IL-4, IL-5, GM-CSF, and NFAT sites in the IL-2 promoter suggests that the factors we detected, or related factors that recognize these sites, may account for the coordinate induction of these genes during T-cell activation. Images PMID:8246960

  9. [The health promotion programs for the children based at health promotion institutions].

    PubMed

    Kotenko, K V; Khan, M A; Rassulova, M A; Korchazhkina, N B; Kuyantseva, L V; Bykova, N I

    The research carried out in the framework of the health promotion programs for the children made it possible to obtain characteristics of the patients admitted to health promotion facilities, identify the risk factors for the development of acute respiratory diseases, and substantiate the principles of the differentiated approach to the rehabilitation of such patients based at the institutions of this type taking into consideration the health group to which a concrete patient is referred and the risk factors of acute respiratory diseases. The feasibility and effectiveness of the addition of aromatherapy and treatment with the use of polarized light into the health promotion programs for the children presenting with acute respiratory diseases that they develop during the period of adaptation based at health promotion institutions are discussed.

  10. Obesity-promoting factors in Mexican children and adolescents: challenges and opportunities.

    PubMed

    Aceves-Martins, Magaly; Llauradó, Elisabet; Tarro, Lucia; Solà, Rosa; Giralt, Montse

    2016-01-01

    Mexico is a developing country with one of the highest youth obesity rates worldwide; >34% of children and adolescents between 5 and 19 years of age are overweight or obese. The current review seeks to compile, describe, and analyze dietary conditions, physical activity, socioeconomic status, and cultural factors that create and exacerbate an obesogenic environment among Mexican youth. A narrative review was performed using PubMed and the Cochrane Library databases, as well as grey literature data from the Mexican government, academics, and statistical reports from nongovernmental organizations, included in electronic formats. The recent socioeconomic and nutritional transition has resulted in reduced healthy meal options at public schools, high rates of sedentary lifestyles among adolescents, lack of open spaces and playgrounds, socioeconomic deprivation, false or misunderstood sociocultural traditional beliefs, misconceptions about health, a high percentage of overweight or obese adults, and low rates of maternal breastfeeding. Some of the factors identified are exacerbating the obesity problem in this population. Current evidence also shows that more policies and health programs are needed for prevention of childhood and adolescent obesity. Mexico presents alarming obesity levels, which need to be curtailed and urgently reversed. The present narrative review presents an overview of dietary, physical activity, societal and cultural preconceptions that are potentially modifiable obesity-promoting factors in Mexican youth. Measures to control these factors need to be implemented in all similar developing countries by governments, policy makers, stakeholders, and health care professionals to tackle obesity in children and young people.

  11. The Realities of Management Promotion. An Investigation of Factors Influencing the Promotion of Managers in Three Major Companies.

    ERIC Educational Resources Information Center

    Ruderman, Marian N.; Ohlott, Patricia J.

    Promotions, particularly management promotions, play an important role in organizations. Despite their importance for both individuals and organizations, little is known about how and why most promotions occur. This publication presents findings of a study that examined 64 promotions that occurred in three Fortune 500 companies from 1986-89. The…

  12. Tissue Factor promotes breast cancer stem cell activity in vitro.

    PubMed

    Shaker, Hudhaifah; Harrison, Hannah; Clarke, Robert; Landberg, Goran; Bundred, Nigel J; Versteeg, Henri H; Kirwan, Cliona C

    2017-04-18

    Cancer stem cells (CSCs) are a subpopulation of cells that can self-renew and initiate tumours. The clotting-initiating protein Tissue Factor (TF) promotes metastasis and may be overexpressed in cancer cells with increased CSC activity. We sought to determine whether TF promotes breast CSC activity in vitro using human breast cancer cell lines. TF expression was compared in anoikis-resistant (CSC-enriched) and unselected cells. In cells sorted into of TF-expressing and TF-negative (FACS), and in cells transfected to knockdown TF (siRNA) and overexpress TF (cDNA), CSC activity was compared by (i) mammosphere forming efficiency (MFE) (ii) holoclone colony formation (Hc) and (iii) ALDH1 activity. TF expression was increased in anoikis-resistant and high ALDH1-activity T47D cells compared to unselected cells. FACS sorted TF-expressing T47Ds and TF-overexpressing MCF7s had increased CSC activity compared to TF-low cells. TF siRNA cells (MDAMB231,T47D) had reduced CSC activity compared to control cells. FVIIa increased MFE and ALDH1 in a dose-dependent manner (MDAMB231, T47D). The effects of FVIIa on MFE were abrogated by TF siRNA (T47D). Breast CSCs (in vitro) demonstrate increased activity when selected for high TF expression, when induced to overexpress TF, and when stimulated (with FVIIa). Targeting the TF pathway in vivo may abrogate CSC activity.

  13. Exploring Environmental Factors in Nursing Workplaces That Promote Psychological Resilience: Constructing a Unified Theoretical Model.

    PubMed

    Cusack, Lynette; Smith, Morgan; Hegney, Desley; Rees, Clare S; Breen, Lauren J; Witt, Regina R; Rogers, Cath; Williams, Allison; Cross, Wendy; Cheung, Kin

    2016-01-01

    Building nurses' resilience to complex and stressful practice environments is necessary to keep skilled nurses in the workplace and ensuring safe patient care. A unified theoretical framework titled Health Services Workplace Environmental Resilience Model (HSWERM), is presented to explain the environmental factors in the workplace that promote nurses' resilience. The framework builds on a previously-published theoretical model of individual resilience, which identified the key constructs of psychological resilience as self-efficacy, coping and mindfulness, but did not examine environmental factors in the workplace that promote nurses' resilience. This unified theoretical framework was developed using a literary synthesis drawing on data from international studies and literature reviews on the nursing workforce in hospitals. The most frequent workplace environmental factors were identified, extracted and clustered in alignment with key constructs for psychological resilience. Six major organizational concepts emerged that related to a positive resilience-building workplace and formed the foundation of the theoretical model. Three concepts related to nursing staff support (professional, practice, personal) and three related to nursing staff development (professional, practice, personal) within the workplace environment. The unified theoretical model incorporates these concepts within the workplace context, linking to the nurse, and then impacting on personal resilience and workplace outcomes, and its use has the potential to increase staff retention and quality of patient care.

  14. Exploring Environmental Factors in Nursing Workplaces That Promote Psychological Resilience: Constructing a Unified Theoretical Model

    PubMed Central

    Cusack, Lynette; Smith, Morgan; Hegney, Desley; Rees, Clare S.; Breen, Lauren J.; Witt, Regina R.; Rogers, Cath; Williams, Allison; Cross, Wendy; Cheung, Kin

    2016-01-01

    Building nurses' resilience to complex and stressful practice environments is necessary to keep skilled nurses in the workplace and ensuring safe patient care. A unified theoretical framework titled Health Services Workplace Environmental Resilience Model (HSWERM), is presented to explain the environmental factors in the workplace that promote nurses' resilience. The framework builds on a previously-published theoretical model of individual resilience, which identified the key constructs of psychological resilience as self-efficacy, coping and mindfulness, but did not examine environmental factors in the workplace that promote nurses' resilience. This unified theoretical framework was developed using a literary synthesis drawing on data from international studies and literature reviews on the nursing workforce in hospitals. The most frequent workplace environmental factors were identified, extracted and clustered in alignment with key constructs for psychological resilience. Six major organizational concepts emerged that related to a positive resilience-building workplace and formed the foundation of the theoretical model. Three concepts related to nursing staff support (professional, practice, personal) and three related to nursing staff development (professional, practice, personal) within the workplace environment. The unified theoretical model incorporates these concepts within the workplace context, linking to the nurse, and then impacting on personal resilience and workplace outcomes, and its use has the potential to increase staff retention and quality of patient care. PMID:27242567

  15. Factors promoting and inhibiting sustained impact of a mental health task-shifting program for HIV providers in Ethiopia.

    PubMed

    Jerene, D; Biru, M; Teklu, A; Rehman, T; Ruff, A; Wissow, L

    2017-01-01

    Task-shifting mental health into general medical care requires more than brief provider training. Generalists need long-term support to master new skills and changes to work context are required to sustain change in the face of competing priorities. We examined program and context factors promoting sustainability of a mental health task-shifting training for hospital-based HIV providers in Ethiopia. Convergent mixed-methods quasi-experimental study. Sustained impact was measured by trained/not-trained provider differences in case detection and management 16 months following the end of formal support. Factors related to sustainability were examined through interviews with trained providers. Extent of sustained impact: Trained providers demonstrated modest but better agreement with standardized screeners (greater sensitivity with similar specificity). They were more likely to request that patients with mental health problems return to see them v. making a referral. Factors promoting sustainability (reported in semi-structured interviews): provider belief that the treatments they had learned were effective. New interactions with on-site mental health staff were a source of ongoing learning and encouragement. Factors diminishing sustainability: providers feelings of isolation when mental health partners left for work elsewhere, failure to incorporate mental health indicators into administrative data, to re-stock staff education materials, and to build formal mechanisms for generalist-mental health staff interaction. An intervention seen as feasible and effective, and promotion of relationships across professional lines, helped generalists sustain new skills. Failure to address key system context issues made use of the skills unsustainable as external supports ended.

  16. Shikonins, phytocompounds from Lithospermum erythrorhizon, inhibit the transcriptional activation of human tumor necrosis factor alpha promoter in vivo.

    PubMed

    Staniforth, Vanisree; Wang, Sheng-Yang; Shyur, Lie-Fen; Yang, Ning-Sun

    2004-02-13

    Tumor necrosis factor alpha (TNF-alpha) contributes to the pathogenesis of both acute and chronic inflammatory diseases and has been a target for the development of new anti-inflammatory drugs. Shikonins, the naphthoquinone pigments present in the root tissues of Lithospermum erythrorhizon Sieb. et Zucc. (Boraginaceae), have been reported to exert anti-inflammatory effects both in vitro and in vivo. In this study, we evaluated the effects of shikonin and its derivatives on the transcriptional activation of human TNF-alpha promoter in a gene gun-transfected mouse skin system by using a luciferase reporter gene assay. The crude plant extract of L. erythrorhizon as well as derived individual compounds shikonin, isobutyryl shikonin, acetyl shikonin, dimethylacryl shikonin and isovaleryl shikonin showed significant dose-dependent inhibition of TNF-alpha promoter activation. Among the tested compounds, shikonin and isobutyryl shikonin exhibited the highest inhibition of TNF-alpha promoter activation and also showed significant suppression of transgenic human TNF-alpha mRNA expression and protein production. We demonstrated that shikonin-inhibitory response was retained in the core TNF-alpha promoter region containing the TATA box and a 48-bp downstream sequence relative to the transcription start site. Further our results indicated that shikonin suppressed the basal transcription and activator-regulated transcription of TNF-alpha by inhibiting the binding of transcription factor IID protein complex (TATA box-binding protein) to TATA box. These in vivo results suggest that shikonins inhibit the transcriptional activation of the human TNF-alpha promoter through interference with the basal transcription machinery. Thus, shikonins may have clinical potential as anti-inflammatory therapeutics.

  17. Serum neurotrophin concentrations in polish adolescent girls with anorexia nervosa.

    PubMed

    Dmitrzak-Weglarz, Monika; Skibinska, Maria; Slopien, Agnieszka; Tyszkiewicz, Marta; Pawlak, Joanna; Maciukiewicz, Małgorzata; Zaremba, Dorota; Rajewski, Andrzej; Hauser, Joanna

    2013-01-01

    Several lines of evidence suggest that brain-derived neurotrophic factor (BDNF) plays an important role in weight regulation and eating behaviors as well as in the activity-dependent neuroplasticity underlying learning and memory behaviors involving the hippocampus. In anorexia nervosa (AN) patients, abnormal serum BDNF concentrations, cognitive impairments and specific personality traits have been traditionally observed. This study explores the levels of four serum neurotrophins [BDNF, neurotrophin 3 (NTF3), neurotrophin 4 (NTF4) and glial cell line-derived neurotrophic factor (GDNF)] with respect to their use as potential biomarkers for AN. This study also investigates any associations that might exist between serum neurotrophin levels and neurocognitive impairment or personality traits. Serum neurotrophin concentrations were measured in 60 AN patients (AN group) and 45 healthy controls (HC group). We correlated the serum levels of the four neurotrophins BDNF, NTF3, NTF4 and GDNF and the clinical type of anorexia. We also analyzed the relationship between serum neurotrophin levels and the Beck Depression Inventory, body mass index, executive functions by the Wisconsin Card Sorting test (WCST) and personality dimensions by the Temperament and Character Inventory (TCI) test. Serum NTF4 concentrations were significantly lower when comparing all AN patients (34.7 ± 72.5 pg/ml) or restriction type AN patients (29.1 ± 62.5 pg/ml) with the HC group (58.4 ± 135.8 pg/ml; p = 0.004 and p = 0.005, respectively). A significant correlation (p < 0.005) between BDNF serum levels and patient personality dimensions as measured by the TCI test was observed. Furthermore, significant correlations were observed between NTF4 and GDNF serum levels and executive function as measured by the WCST. These data suggest that NTF4 might serve as a biomarker for AN. Furthermore, BDNF and GDNF serum levels appear to be associated with personality traits and executive function. Copyright

  18. Scleroderma keratinocytes promote fibroblast activation independent of transforming growth factor beta.

    PubMed

    McCoy, Sara S; Reed, Tamra J; Berthier, Celine C; Tsou, Pei-Suen; Liu, Jianhua; Gudjonsson, Johann E; Khanna, Dinesh; Kahlenberg, J Michelle

    2017-11-01

    SSc is a devastating disease that results in fibrosis of the skin and other organs. Fibroblasts are a key driver of the fibrotic process through deposition of extracellular matrix. The mechanisms by which fibroblasts are induced to become pro-fibrotic remain unclear. Thus, we examined the ability of SSc keratinocytes to promote fibroblast activation and the source of this effect. Keratinocytes were isolated from skin biopsies of 9 lcSSc, 10 dcSSc and 13 control patients. Conditioned media was saved from the cultures. Normal fresh primary fibroblasts were exposed to healthy control and SSc keratinocyte conditioned media in the presence or absence of neutralizing antibodies for TGF-β. Gene expression was assessed by microarrays and real-time PCR. Immunocytochemistry was performed for α-smooth muscle actin (α-SMA), collagen type 1 (COL1A1) and CCL5 expression. SSc keratinocyte conditioned media promoted fibroblast activation, characterized by increased α-SMA and COL1A1 mRNA and protein expression. This effect was independent of TGF-β. Microarray analysis identified upregulation of nuclear factor κB (NF-κB) and downregulation of peroxisome proliferator-activated receptor γ (PPAR-γ) pathways in both SSc subtypes. Scleroderma keratinocytes exhibited increased expression of NF-κB-regulated cytokines and chemokines and lesional skin staining confirmed upregulation of CCL5 in basal keratinocytes. Scleroderma keratinocytes promote the activation of fibroblasts in a TGF-β-independent manner and demonstrate an imbalance in NF-κB1 and PPAR-γ expression leading to increased cytokine and CCL5 production. Further study of keratinocyte mediators of fibrosis, including CCL5, may provide novel targets for skin fibrosis therapy. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  19. A common FADS2 promoter polymorphism increases promoter activity and facilitates binding of transcription factor ELK1

    PubMed Central

    Lattka, E.; Eggers, S.; Moeller, G.; Heim, K.; Weber, M.; Mehta, D.; Prokisch, H.; Illig, T.; Adamski, J.

    2010-01-01

    Fatty acid desaturases (FADS) play an important role in the formation of omega-6 and omega-3 highly unsaturated fatty acids (HUFAs). The composition of HUFAs in the human metabolome is important for membrane fluidity and for the modulation of essential physiological functions such as inflammation processes and brain development. Several recent studies reported significant associations of single nucleotide polymorphisms (SNPs) in the human FADS gene cluster with HUFA levels and composition. The presence of the minor allele correlated with a decrease of desaturase reaction products and an accumulation of substrates. We performed functional studies with two of the associated polymorphisms (rs3834458 and rs968567) and showed an influence of polymorphism rs968567 on FADS2 promoter activity by luciferase reporter gene assays. Electrophoretic mobility shift assays proved allele-dependent DNA-binding ability of at least two protein complexes to the region containing SNP rs968567. One of the proteins binding to this region in an allele-specific manner was shown to be the transcription factor ELK1 (a member of ETS domain transcription factor family). These results indicate that rs968567 influences FADS2 transcription and offer first insights into the modulation of complex regulation mechanisms of FADS2 gene transcription by SNPs. PMID:19546342

  20. A common FADS2 promoter polymorphism increases promoter activity and facilitates binding of transcription factor ELK1.

    PubMed

    Lattka, E; Eggers, S; Moeller, G; Heim, K; Weber, M; Mehta, D; Prokisch, H; Illig, T; Adamski, J

    2010-01-01

    Fatty acid desaturases (FADS) play an important role in the formation of omega-6 and omega-3 highly unsaturated fatty acids (HUFAs). The composition of HUFAs in the human metabolome is important for membrane fluidity and for the modulation of essential physiological functions such as inflammation processes and brain development. Several recent studies reported significant associations of single nucleotide polymorphisms (SNPs) in the human FADS gene cluster with HUFA levels and composition. The presence of the minor allele correlated with a decrease of desaturase reaction products and an accumulation of substrates. We performed functional studies with two of the associated polymorphisms (rs3834458 and rs968567) and showed an influence of polymorphism rs968567 on FADS2 promoter activity by luciferase reporter gene assays. Electrophoretic mobility shift assays proved allele-dependent DNA-binding ability of at least two protein complexes to the region containing SNP rs968567. One of the proteins binding to this region in an allele-specific manner was shown to be the transcription factor ELK1 (a member of ETS domain transcription factor family). These results indicate that rs968567 influences FADS2 transcription and offer first insights into the modulation of complex regulation mechanisms of FADS2 gene transcription by SNPs.

  1. Repression of Virus-Induced Interferon A Promoters by Homeodomain Transcription Factor Ptx1

    PubMed Central

    Lopez, Sébastien; Island, Marie-Laure; Drouin, Jacques; Bandu, Marie-Thérese; Christeff, Nicolas; Darracq, Nicole; Barbey, Régine; Doly, Janine; Thomas, Dominique; Navarro, Sébastien

    2000-01-01

    Interferon A (IFN-A) genes are differentially expressed after virus induction. The differential expression of individual IFN-A genes is modulated by substitutions in the proximal positive virus responsive element A (VRE-A) of their promoters and by the presence or absence of a distal negative regulatory element (DNRE). The functional feature of the DNRE is to specifically act by repression of VRE-A activity. With the use of the yeast one-hybrid system, we describe here the identification of a specific DNRE-binding protein, the pituitary homeobox 1 (Ptx1 or Pitx1). Ptx1 is detectable in different cell types that differentially express IFN-A genes, and the endogenous Ptx1 protein binds specifically to the DNRE. Upon virus induction, Ptx1 negatively regulates the transcription of DNRE-containing IFN-A promoters, and the C-terminal region, as well as the homeodomain of the Ptx1 protein, is required for this repression. After virus induction, the expression of the Ptx1 antisense RNA leads to a significant increase of endogenous IFN-A gene transcription and is able to modify the pattern of differential expression of individual IFN-A genes. These studies suggest that Ptx1 contributes to the differential transcriptional strength of the promoters of different IFN-A genes and that these genes may provide new targets for transcriptional regulation by a homeodomain transcription factor. PMID:11003649

  2. The Belief that Alcohol Use Is Inconsistent with Personal Autonomy: A Promotive Factor for Younger Adolescents

    ERIC Educational Resources Information Center

    Henry, Kimberly L.; Shtivelband, Annette; Comello, Maria Leonora G.; Slater, Michael D.

    2011-01-01

    This study explored an understudied promotive factor, a belief that alcohol use is inconsistent with personal autonomy, which may reduce adolescent intention to drink and subsequent alcohol use. Autonomy was examined as an attitudinal construct within the Theory of Reasoned Action. Longitudinal data from 2,493 seventh grade students nested in 40…

  3. Bid Promotes K63-Linked Polyubiquitination of Tumor Necrosis Factor Receptor Associated Factor 6 (TRAF6) and Sensitizes to Mutant SOD1-Induced Proinflammatory Signaling in Microglia.

    PubMed

    Kinsella, Sinéad; König, Hans-Georg; Prehn, Jochen H M

    2016-01-01

    Mutations in the superoxide dismutase 1 (SOD1) gene contribute to motoneuron degeneration and are evident in 20% of familial amyotrophic lateral sclerosis cases. Mutant SOD1 induces microglial activation through a stimulation of Toll-like receptors 2 and 4 (TLR2 and TLR4). In the present study, we identified the proapoptotic Bcl-2 family protein Bid as a positive regulator of mutant SOD1-induced TLR-nuclear factor-κB (NF-κB) signaling in microglia. bid-deficient primary mouse microglia showed reduced NF-κB signaling in response to TLR4 activation or exposure to conditioned medium derived from SOD1 (G93A) expressing NSC-34 cells. Attenuation of NF-κB signaling in bid-deficient microglia was associated with lower levels of phosphorylated IKKα/β and p65, with a delayed degradation of IκBα and enhanced degradation of Peli1. Upstream of IKK, we found that Bid interacted with, and promoted, the K63-linked polyubiquitination of the E3 ubiquitin ligase tumor necrosis factor receptor associated factor 6 (TRAF6) in microglia. Our study suggests a key role for Bid in the regulation of TLR4-NF-κB proinflammatory signaling during mutant SOD1-induced disease pathology. Bid promotes TLR4-NF-κB signaling by interacting with TRAF6 and promoting TRAF6 K63-linked polyubiquitination in microglia.

  4. UV-B-Responsive Association of the Arabidopsis bZIP Transcription Factor ELONGATED HYPOCOTYL5 with Target Genes, Including Its Own Promoter[W][OPEN

    PubMed Central

    Binkert, Melanie; Kozma-Bognár, László; Terecskei, Kata; De Veylder, Lieven; Nagy, Ferenc; Ulm, Roman

    2014-01-01

    In plants subjected to UV-B radiation, responses are activated that minimize damage caused by UV-B. The bZIP transcription factor ELONGATED HYPOCOTYL5 (HY5) acts downstream of the UV-B photoreceptor UV RESISTANCE LOCUS8 (UVR8) and promotes UV-B-induced photomorphogenesis and acclimation. Expression of HY5 is induced by UV-B; however, the transcription factor(s) that regulate HY5 transcription in response to UV-B and the impact of UV-B on the association of HY5 with its target promoters are currently unclear. Here, we show that HY5 binding to the promoters of UV-B-responsive genes is enhanced by UV-B in a UVR8-dependent manner in Arabidopsis thaliana. In agreement, overexpression of REPRESSOR OF UV-B PHOTOMORPHOGENESIS2, a negative regulator of UVR8 function, blocks UV-B-responsive HY5 enrichment at target promoters. Moreover, we have identified a T/G-box in the HY5 promoter that is required for its UV-B responsiveness. We show that HY5 and its homolog HYH bind to the T/GHY5-box cis-acting element and that they act redundantly in the induction of HY5 expression upon UV-B exposure. Therefore, HY5 is enriched at target promoters in response to UV-B in a UVR8 photoreceptor-dependent manner, and HY5 and HYH interact directly with a T/G-box cis-acting element of the HY5 promoter, mediating the transcriptional activation of HY5 in response to UV-B. PMID:25351492

  5. [Factors related to awareness on tobacco advertisement and promotion among adults in six cities in China].

    PubMed

    Yang, Yan; Wu, Xi; Li, Qiang; Jiao, Shu-fang; Li, Xun; Li, Xin-jian; Zhu, Guo-ping; Du, Lin; Zhao, Jian-hua; Jiang, Yuan; Feng, Guo-ze

    2009-04-01

    To know the situation of tobacco advertisement, promotions and related factors in six cities in China. 4815 adults (above 18 years), selected form Beijing, Shanghai, Shenyang, Changsha, Guangzhou and Yinchuan through probability proportionate sampling and simple random sampling, were investigated through questionnaires. The most commonly reported channels that smokers noticed tobacco advertisements were billboards (35.6%) and television (34.4%). The most commonly reported tobacco promotional activities that were noticed by smokers were free gifts when buying cigarettes (23.1%) and free samples of cigarettes (13.9%). Smokers in Changsha were more likely to report noticing tobacco advertisement on billboards (chi2 = 562.474, P < 0.00 1), and on television (chi2 = 265.570, P < 0.001). Smokers in Changsha (chi2 = 58.314, P < 0.001) were more likely to notice tobacco related news and games. A logistic regression analysis showed that the living and education level were related to awareness of tobacco advertisement and promotion. It was universal to see tobacco advertisement and promotions in cities in China but the laws and regulations about tobacco-control were not uniformly executed in different cities. It is necessary to perfect and uniform related laws and regulations.

  6. Health Promotion Behavior of Chinese International Students in Korea Including Acculturation Factors: A Structural Equation Model.

    PubMed

    Kim, Sun Jung; Yoo, Il Young

    2016-03-01

    The purpose of this study was to explain the health promotion behavior of Chinese international students in Korea using a structural equation model including acculturation factors. A survey using self-administered questionnaires was employed. Data were collected from 272 Chinese students who have resided in Korea for longer than 6 months. The data were analyzed using structural equation modeling. The p value of final model is .31. The fitness parameters of the final model such as goodness of fit index, adjusted goodness of fit index, normed fit index, non-normed fit index, and comparative fit index were more than .95. Root mean square of residual and root mean square error of approximation also met the criteria. Self-esteem, perceived health status, acculturative stress and acculturation level had direct effects on health promotion behavior of the participants and the model explained 30.0% of variance. The Chinese students in Korea with higher self-esteem, perceived health status, acculturation level, and lower acculturative stress reported higher health promotion behavior. The findings can be applied to develop health promotion strategies for this population. Copyright © 2016. Published by Elsevier B.V.

  7. Obesity-promoting factors in Mexican children and adolescents: challenges and opportunities

    PubMed Central

    Aceves-Martins, Magaly; Llauradó, Elisabet; Tarro, Lucia; Solà, Rosa; Giralt, Montse

    2016-01-01

    Background Mexico is a developing country with one of the highest youth obesity rates worldwide; >34% of children and adolescents between 5 and 19 years of age are overweight or obese. Objectives The current review seeks to compile, describe, and analyze dietary conditions, physical activity, socioeconomic status, and cultural factors that create and exacerbate an obesogenic environment among Mexican youth. Design A narrative review was performed using PubMed and the Cochrane Library databases, as well as grey literature data from the Mexican government, academics, and statistical reports from nongovernmental organizations, included in electronic formats. Results The recent socioeconomic and nutritional transition has resulted in reduced healthy meal options at public schools, high rates of sedentary lifestyles among adolescents, lack of open spaces and playgrounds, socioeconomic deprivation, false or misunderstood sociocultural traditional beliefs, misconceptions about health, a high percentage of overweight or obese adults, and low rates of maternal breastfeeding. Some of the factors identified are exacerbating the obesity problem in this population. Current evidence also shows that more policies and health programs are needed for prevention of childhood and adolescent obesity. Mexico presents alarming obesity levels, which need to be curtailed and urgently reversed. Conclusions The present narrative review presents an overview of dietary, physical activity, societal and cultural preconceptions that are potentially modifiable obesity-promoting factors in Mexican youth. Measures to control these factors need to be implemented in all similar developing countries by governments, policy makers, stakeholders, and health care professionals to tackle obesity in children and young people. PMID:26787421

  8. Antiphospholipid antibodies promote tissue factor-dependent angiogenic switch and tumor progression.

    PubMed

    Wu, Yuan-Yuan; V Nguyen, Andrew; Wu, Xiao-Xuan; Loh, Mingyu; Vu, Michelle; Zou, Yiyu; Liu, Qiang; Guo, Peng; Wang, Yanhua; Montgomery, Leslie L; Orlofsky, Amos; Rand, Jacob H; Lin, Elaine Y

    2014-12-01

    Progression to an angiogenic state is a critical event in tumor development, yet few patient characteristics have been identified that can be mechanistically linked to this transition. Antiphospholipid autoantibodies (aPLs) are prevalent in many human cancers and can elicit proangiogenic expression in several cell types, but their role in tumor biology is unknown. Herein, we observed that the elevation of circulating aPLs among breast cancer patients is specifically associated with invasive-stage tumors. By using multiple in vivo models of breast cancer, we demonstrated that aPL-positive IgG from patients with autoimmune disease rapidly accelerates tumor angiogenesis and consequent tumor progression, particularly in slow-growing avascular tumors. The action of aPLs was local to the tumor site and elicited leukocytic infiltration and tumor invasion. Tumor cells treated with aPL-positive IgG expressed multiple proangiogenic genes, including vascular endothelial growth factor, tissue factor (TF), and colony-stimulating factor 1. Knockdown and neutralization studies demonstrated that the effects of aPLs on tumor angiogenesis and growth were dependent on tumor cell-derived TF. Tumor-derived TF was essential for the development of pericyte coverage of tumor microvessels and aPL-induced tumor cell expression of chemokine ligand 2, a mediator of pericyte recruitment. These findings identify antiphospholipid autoantibodies as a potential patient-specific host factor promoting the transition of indolent tumors to an angiogenic malignant state through a TF-mediated pathogenic mechanism. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  9. Activation of YUCCA5 by the Transcription Factor TCP4 Integrates Developmental and Environmental Signals to Promote Hypocotyl Elongation in Arabidopsis.

    PubMed

    Challa, Krishna Reddy; Aggarwal, Pooja; Nath, Utpal

    2016-09-05

    Cell expansion is an essential process in plant morphogenesis and is regulated by the coordinated action of environmental stimuli and endogenous factors, such as the phytohormones auxin and brassinosteroid. Although the biosynthetic pathways that generate these hormones and their downstream signaling mechanisms have been extensively studied, the upstream transcriptional network that modulates their levels and connects their action to cell morphogenesis is less clear. Here we show that the miR319-regulated TCP (TEOSINTE BRANCHED 1, CYCLODEA, PROLIFERATING CELL FACTORS) transcription factors, notably TCP4, directly activate YUCCA5 transcription and integrate the auxin response to a brassinosteroid-dependent molecular circuit that promotes cell elongation in Arabidopsis hypocotyls. Further, TCP4 modulates the common transcriptional network downstream to auxin-BR signaling, which is also triggered by environmental cues, such as light, to promote cell expansion. Our study links TCP function with the hormone response during cell morphogenesis and shows that developmental and environmental signals converge on a common transcriptional network to promote cell elongation. {copyright, serif} 2016 American Society of Plant Biologists. All rights reserved.

  10. Exploring Factors That Promote Online Learning Experiences and Academic Self-Concept of Minority High School Students

    ERIC Educational Resources Information Center

    Kumi-Yeboah, Alex; Dogbey, James; Yuan, Guangji

    2018-01-01

    The rapid growth of online education at the K-12 level in recent years presents the need to explore issues that influence the academic experiences of students choosing this method of learning. In this study, we examined factors that promote/hinder the learning experiences and academic self-concept of minority students attending an online high…

  11. What factors promote resilience and protect against burnout in first-year pediatric and medicine-pediatric residents?

    PubMed

    Olson, Kayloni; Kemper, Kathi J; Mahan, John D

    2015-07-01

    Burnout has high costs for pediatricians and their patients. There is increasing interest in educational interventions to promote resilience and minimize burnout among pediatric trainees. This study tested a conceptual model of factors that might promote resilience and protect against burnout, and which could serve as targets for addressing burnout in pediatric residents. Questionnaires were administered in a cross-sectional survey of (n = 45) first-year pediatric and medicine-pediatric residents. A minority (40%) of residents met one or more criteria for burnout. Physician empathy and emotional intelligence were not significantly correlated with burnout or resilience. Self-compassion and mindfulness were positively associated with resilience and inversely associated with burnout. Thus many residents in this sample endorsed burnout; mindfulness and self-compassion were associated with resilience and may promote resilience and protect against burnout in these trainees. Future studies should explore the impact of training in mindfulness and self-compassion in pediatric trainees. © The Author(s) 2015.

  12. Platelet-Derived Growth Factor Promotes Repair of Chronically Demyelinated White Matter

    PubMed Central

    Vana, Adam C.; Flint, Nicole C.; Harwood, Norah E.; Le, Tuan Q.; Fruttiger, Marcus; Armstrong, Regina C.

    2009-01-01

    In multiple sclerosis, remyelination becomes limited after repeated or prolonged episodes of demyelination. To test the effect of platelet-derived growth factor-A (PDGF-A) in recovery from chronic demyelination we induced corpus callosum demyelination using cuprizone treatment in hPDGF-A transgenic (tg) mice with the human PDGF-A gene under control of an astrocyte-specific promoter. After chronic demyelination and removal of cuprizone from the diet, remyelination and oligodendrocyte density improved significantly in hPDGF-A tg mice compared with wild-type mice. In hPDGF-A tg mice, oligodendrocyte progenitor density and proliferation values were increased in the corpus callosum during acute demyelination but not during chronic demyelination or the subsequent recovery period, compared with hPDGF-A tg mice without cuprizone or to treatment-matched wild-type mice. Proliferation within the subventricular zone and subcallosal zone was elevated throughout cuprizone treatment but was not different between hPDGF-A tg and wild-type mice. Importantly, hPDGF-A tg mice had reduced apoptosis in the corpus callosum during the recovery period after chronic demyelination. Therefore, PDGF-A may support oligodendrocyte generation and survival to promote remyelination of chronic lesions. Furthermore, preventing oligodendrocyte apoptosis may be important not only during active demyelination but also for supporting the generation of new oligodendrocytes to remyelinate chronic lesions. PMID:17984680

  13. Dietary Factors Promoting Brown and Beige Fat Development and Thermogenesis12

    PubMed Central

    Okla, Meshail; Kim, Jiyoung

    2017-01-01

    Brown adipose tissue (BAT) is a specialized fat tissue that has a high capacity to dissociate cellular respiration from ATP utilization, resulting in the release of stored energy as heat. Adult humans possess a substantial amount of BAT in the form of constitutively active brown fat or inducible beige fat. BAT activity in humans is inversely correlated with adiposity, blood glucose concentrations, and insulin sensitivity; this suggests that strategies aimed at BAT-mediated bioenergetics are an attractive therapeutic target in combating the continuing epidemic of obesity and diabetes. Despite advances in knowledge regarding the developmental lineage and transcriptional regulators of brown and beige adipocytes, our current understanding of environmental modifiers of BAT thermogenesis, such as diet, is limited. In this review, we consolidated the latest research on dietary molecules that may serve to promote BAT thermogenesis. Here, we summarized the thermogenic function of selected phytochemicals (e.g., capsaicin, resveratrol, curcumin, green tea, and berberine), dietary fatty acids (e.g., fish oil and conjugated linoleic acids), and all-trans retinoic acid, a vitamin A metabolite. We also delineated the proposed mechanisms whereby these dietary molecules promote BAT activity and/or browning of white adipose tissue. Characterizing thermogenic dietary factors may offer novel insight into revising nutritional intervention strategies aimed at obesity and diabetes prevention and management. PMID:28507012

  14. Epigenetic Changes and Suppression of the Nuclear Factor of Activated T Cell 1 (NFATC1) Promoter in Human Lymphomas with Defects in Immunoreceptor Signaling

    PubMed Central

    Akimzhanov, Askar; Krenacs, Laszlo; Schlegel, Timm; Klein-Hessling, Stefan; Bagdi, Enikö; Stelkovics, Eva; Kondo, Eisaku; Chuvpilo, Sergei; Wilke, Philipp; Avots, Andris; Gattenlöhner, Stefan; Müller-Hermelink, Hans-Konrad; Palmetshofer, Alois; Serfling, Edgar

    2008-01-01

    The nuclear factor of activated T cell 1 (Nfatc1) locus is a common insertion site for murine tumorigenic retroviruses, suggesting a role of transcription factor NFATc1 in lymphomagenesis. Although NFATc1 is expressed in most human primary lymphocytes and mature human T- and B-cell neoplasms, we show by histochemical stainings that NFATc1 expression is suppressed in anaplastic large cell lymphomas and classical Hodgkin’s lymphomas (HLs). In HL cell lines, NFATc1 silencing correlated with a decrease in histone H3 acetylation, H3-K4 trimethylation, and Sp1 factor binding but with an increase in HP1 binding to the NFATC1 P1 promoter. Together with DNA hypermethylation of the NFATC1 P1 promoter, which we detected in all anaplastic large cell lymphoma and many HL lines, these observations reflect typical signs of transcriptional silencing. In several lymphoma lines, methylation of NFATC1 promoter DNA resulted in a “window of hypomethylation,” which is flanked by Sp1-binding sites. Together with the under-representation of Sp1 at the NFATC1 P1 promoter in HL cells, this suggests that Sp1 factors can protect P1 DNA methylation in a directional manner. Blocking immunoreceptor signaling led to NFATC1 P1 promoter silencing and to a decrease in H3 acetylation and H3-K4 methylation but not DNA methylation. This shows that histone modifications precede the DNA methylation in NFATC1 promoter silencing. PMID:18156209

  15. Perlecan and vascular endothelial growth factor-encoding DNA-loaded chitosan scaffolds promote angiogenesis and wound healing.

    PubMed

    Lord, Megan S; Ellis, April L; Farrugia, Brooke L; Whitelock, John M; Grenett, Hernan; Li, Chuanyu; O'Grady, Robert L; DeCarlo, Arthur A

    2017-03-28

    The repair of dermal wounds, particularly in the diabetic population, poses a significant healthcare burden. The impaired wound healing of diabetic wounds is attributed to low levels of endogenous growth factors, including vascular endothelial growth factor (VEGF), that normally stimulate multiple phases of wound healing. In this study, chitosan scaffolds were prepared via freeze drying and loaded with plasmid DNA encoding perlecan domain I and VEGF189 and analyzed in vivo for their ability to promote dermal wound healing. The plasmid DNA encoding perlecan domain I and VEGF189 loaded scaffolds promoted dermal wound healing in normal and diabetic rats. This treatment resulted in an increase in the number of blood vessels and sub-epithelial connective tissue matrix components within the wound beds compared to wounds treated with chitosan scaffolds containing control DNA or wounded controls. These results suggest that chitosan scaffolds containing plasmid DNA encoding VEGF189 and perlecan domain I have the potential to induce angiogenesis and wound healing. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Bioinformatics Identification of Modules of Transcription Factor Binding Sites in Alzheimer's Disease-Related Genes by In Silico Promoter Analysis and Microarrays

    PubMed Central

    Augustin, Regina; Lichtenthaler, Stefan F.; Greeff, Michael; Hansen, Jens; Wurst, Wolfgang; Trümbach, Dietrich

    2011-01-01

    The molecular mechanisms and genetic risk factors underlying Alzheimer's disease (AD) pathogenesis are only partly understood. To identify new factors, which may contribute to AD, different approaches are taken including proteomics, genetics, and functional genomics. Here, we used a bioinformatics approach and found that distinct AD-related genes share modules of transcription factor binding sites, suggesting a transcriptional coregulation. To detect additional coregulated genes, which may potentially contribute to AD, we established a new bioinformatics workflow with known multivariate methods like support vector machines, biclustering, and predicted transcription factor binding site modules by using in silico analysis and over 400 expression arrays from human and mouse. Two significant modules are composed of three transcription factor families: CTCF, SP1F, and EGRF/ZBPF, which are conserved between human and mouse APP promoter sequences. The specific combination of in silico promoter and multivariate analysis can identify regulation mechanisms of genes involved in multifactorial diseases. PMID:21559189

  17. Factors Influencing Childcare Workers' Promotion of Physical Activity in Children Aged 0-4 Years: A Qualitative Study

    ERIC Educational Resources Information Center

    Wilke, Sarah; Opdenakker, Claudia; Kremers, Stef P. J; Gubbels, Jessica S

    2013-01-01

    The present study examined the factors influencing childcare workers' promotion of physical activity (PA) among children aged 0-4?years, a particularly interesting context because of the increasing number of children attending childcare. Twenty Dutch childcare workers were interviewed. The interviews revealed some important barriers to the…

  18. Clec11a/osteolectin is an osteogenic growth factor that promotes the maintenance of the adult skeleton

    PubMed Central

    Yue, Rui; Shen, Bo; Morrison, Sean J

    2016-01-01

    Bone marrow stromal cells maintain the adult skeleton by forming osteoblasts throughout life that regenerate bone and repair fractures. We discovered that subsets of these stromal cells, osteoblasts, osteocytes, and hypertrophic chondrocytes secrete a C-type lectin domain protein, Clec11a, which promotes osteogenesis. Clec11a-deficient mice appeared developmentally normal and had normal hematopoiesis but reduced limb and vertebral bone. Clec11a-deficient mice exhibited accelerated bone loss during aging, reduced bone strength, and delayed fracture healing. Bone marrow stromal cells from Clec11a-deficient mice showed impaired osteogenic differentiation, but normal adipogenic and chondrogenic differentiation. Recombinant Clec11a promoted osteogenesis by stromal cells in culture and increased bone mass in osteoporotic mice in vivo. Recombinant human Clec11a promoted osteogenesis by human bone marrow stromal cells in culture and in vivo. Clec11a thus maintains the adult skeleton by promoting the differentiation of mesenchymal progenitors into mature osteoblasts. In light of this, we propose to call this factor Osteolectin. DOI: http://dx.doi.org/10.7554/eLife.18782.001 PMID:27976999

  19. Histone Deacetylase-1 Is Enriched at the Platelet-derived Growth Factor-D Promoter in Response to Interleukin-1β and Forms a Cytokine-inducible Gene-silencing Complex with NF-κB p65 and Interferon Regulatory Factor-1*

    PubMed Central

    Liu, Mary Y.; Khachigian, Levon M.

    2009-01-01

    Understanding the mechanisms governing cytokine control of growth factor expression in smooth muscle cells would provide invaluable insight into the molecular regulation of vascular phenotypes and create future opportunities for therapeutic intervention. Here, we report that the proinflammatory cytokine interleukin (IL)-1β suppresses platelet-derived growth factor (PDGF)-D promoter activity and mRNA and protein expression in smooth muscle cells. NF-κB p65, induced by IL-1β, interacts with a novel element in the PDGF-D promoter and inhibits PDGF-D transcription. Interferon regulatory factor-1 (IRF-1) is also induced by IL-1β and binds to a different element upstream in the promoter. Immunoprecipitation and chromatin immunoprecipitation experiments showed that IL-1β stimulates p65 interaction with IRF-1 and the accumulation of both factors at the PDGF-D promoter. Mutation of the IRF-1 and p65 DNA-binding elements relieved the promoter from IL-1β-mediated repression. PDGF-D repression by IL-1β involves histone deacetylation and interaction of HDAC-1 with IRF-1 and p65. HDAC-1 small interfering RNA ablates complex formation with IRF-1 and p65 and abrogates IRF-1 and p65 occupancy of the PDGF-D promoter. Thus, HDAC-1 is enriched at the PDGF-D promoter in cells exposed to IL-1β and forms a cytokine-inducible gene-silencing complex with p65 and IRF-1. PMID:19843519

  20. The hormone prolactin is a novel, endogenous trophic factor able to regulate reactive glia and to limit retinal degeneration.

    PubMed

    Arnold, Edith; Thebault, Stéphanie; Baeza-Cruz, German; Arredondo Zamarripa, David; Adán, Norma; Quintanar-Stéphano, Andrés; Condés-Lara, Miguel; Rojas-Piloni, Gerardo; Binart, Nadine; Martínez de la Escalera, Gonzalo; Clapp, Carmen

    2014-01-29

    Retinal degeneration is characterized by the progressive destruction of retinal cells, causing the deterioration and eventual loss of vision. We explored whether the hormone prolactin provides trophic support to retinal cells, thus protecting the retina from degenerative pressure. Inducing hyperprolactinemia limited photoreceptor apoptosis, gliosis, and changes in neurotrophin expression, and it preserved the photoresponse in the phototoxicity model of retinal degeneration, in which continuous exposure of rats to bright light leads to retinal cell death and retinal dysfunction. In this model, the expression levels of prolactin receptors in the retina were upregulated. Moreover, retinas from prolactin receptor-deficient mice exhibited photoresponsive dysfunction and gliosis that correlated with decreased levels of retinal bFGF, GDNF, and BDNF. Collectively, these data unveiled prolactin as a retinal trophic factor that may regulate glial-neuronal cell interactions and is a potential therapeutic molecule against retinal degeneration.

  1. Transcription Factor Runx2 Promotes Aortic Fibrosis and Stiffness in Type 2 Diabetes Mellitus.

    PubMed

    Raaz, Uwe; Schellinger, Isabel N; Chernogubova, Ekaterina; Warnecke, Christina; Kayama, Yosuke; Penov, Kiril; Hennigs, Jan K; Salomons, Florian; Eken, Suzanne; Emrich, Fabian C; Zheng, Wei H; Adam, Matti; Jagger, Ann; Nakagami, Futoshi; Toh, Ryuji; Toyama, Kensuke; Deng, Alicia; Buerke, Michael; Maegdefessel, Lars; Hasenfuß, Gerd; Spin, Joshua M; Tsao, Philip S

    2015-08-28

    Accelerated arterial stiffening is a major complication of diabetes mellitus with no specific therapy available to date. The present study investigates the role of the osteogenic transcription factor runt-related transcription factor 2 (Runx2) as a potential mediator and therapeutic target of aortic fibrosis and aortic stiffening in diabetes mellitus. Using a murine model of type 2 diabetes mellitus (db/db mice), we identify progressive structural aortic stiffening that precedes the onset of arterial hypertension. At the same time, Runx2 is aberrantly upregulated in the medial layer of db/db aortae, as well as in thoracic aortic samples from patients with type 2 diabetes mellitus. Vascular smooth muscle cell-specific overexpression of Runx2 in transgenic mice increases expression of its target genes, Col1a1 and Col1a2, leading to medial fibrosis and aortic stiffening. Interestingly, increased Runx2 expression per se is not sufficient to induce aortic calcification. Using in vivo and in vitro approaches, we further demonstrate that expression of Runx2 in diabetes mellitus is regulated via a redox-sensitive pathway that involves a direct interaction of NF-κB with the Runx2 promoter. In conclusion, this study highlights Runx2 as a previously unrecognized inducer of vascular fibrosis in the setting of diabetes mellitus, promoting arterial stiffness irrespective of calcification. © 2015 American Heart Association, Inc.

  2. Self-evaluations of factors promoting and disturbing sleep: an epidemiological survey in Finland.

    PubMed

    Urponen, H; Vuori, I; Hasan, J; Partinen, M

    1988-01-01

    The purpose of this epidemiological survey (N = 1600) was to describe the factors which middle-aged urban people in Finland perceived as promoting or disturbing sleep. The response rate was 75%. The results suggested that quality of sleep is determined by numerous factors; social and psychological factors, health status, external sleeping conditions, life style and living habits. Every third respondent felt that exercise had a positive impact on sleep. Second in importance were reading and listening to music. Furthermore, sauna, shower and bath, stability in life, psychological factors, positive experience in work, satisfactory sexual life and good and quiet sleeping environment were reported to have positive effects on sleep. Men considered work-related pressure and fatigue (20%) as the most important factor disturbing falling asleep or quality of sleep. In women's ranking work problems appeared no sooner than in the third place. Women reported worries, interpersonal problems, and marital and family discord as the most disturbing factors to sleep (37%). Coffee in the evening had a negative effect on falling asleep. Although a 'nightcap' was considered to improve relaxation on falling sleep, men ranked alcohol as the fourth disturbing factor. Other disturbing factors were stress, irregularities in everyday life because of social events, travelling or atypical catnaps. Eating and exercising too heavily or too late in the evening were found to disturb sleep. On the other hand, temporary lack of exercise seemed to impair the quality of sleep. As external factors disturbing sleep the subjects considered noise light, too high room temperature, tight clothing, unfamiliar sleeping environment and restless children.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Pharmacokinetics and pharmacodynamics of multiple doses of BG00010, a neurotrophic factor with anti-hyperalgesic effects, in patients with sciatica.

    PubMed

    Okkerse, Pieter; Hay, Justin L; Versage, Eve; Tang, Yongqiang; Galluppi, Gerald; Ravina, Bernard; Verma, Ajay; Williams, Leslie; Aycardi, Ernesto; Groeneveld, Geert Jan

    2016-07-01

    BG00010 is a protein in the glial cell line-derived neurotrophic factor (GDNF) family. It is a selective ligand for the GDNF family receptor alpha-3 (GFRα3) co-receptor that normalizes cellular changes resulting from damage or disease, and potentially alleviates neuropathic pain. The main objectives of this study were to evaluate the pharmacokinetic and safety profiles and to determine the effects on pain of ascending doses of intravenous injections of BG00010 in patients with sciatica. This was a randomized, blinded, placebo-controlled multiple-dose study in subjects with sciatica. In Part I (16 patients), four IV dose levels were examined (50, 150, 400, 800 μg kg(-1) ) and in Part II (12 patients), three dose levels were examined (400, 600 and 1200 μg kg(-1) ). Safety and efficacy assessments were used as endpoints. The BG00010 concentration-time data indicated relatively low inter-patient variability and there was a dose-dependent (not dose-proportional) increase in serum exposure from 150 to 1200 μg kg(-1) . The effective half-life was between 40 and 60 h. The most frequently occurring adverse events (AEs) reported by patients receiving BG00010 were headache (67-83%), feeling hot (50-100%), and pruritus (42-67%). Most AEs were mild; no serious AEs or AEs leading to discontinuation occurred. Higher dose regimens of BG00010 resulted in greater pain reduction than placebo or lower dose regimens, although a clear dose-response relationship was not seen. The pharmacokinetic profile of BG00010 was characterized by low intra-patient variability. These data from a small sample suggest that BG00010 may have a benefit for patients with sciatica. © 2016 The British Pharmacological Society.

  4. Downstream promoter interactions of TFIID TAFs facilitate transcription reinitiation

    PubMed Central

    Joo, Yoo Jin; Ficarro, Scott B.; Soares, Luis M.; Chun, Yujin; Marto, Jarrod A.; Buratowski, Stephen

    2017-01-01

    TFIID binds promoter DNA to recruit RNA polymerase II and other basal factors for transcription. Although the TATA-binding protein (TBP) subunit of TFIID is necessary and sufficient for in vitro transcription, the TBP-associated factor (TAF) subunits recognize downstream promoter elements, act as coactivators, and interact with nucleosomes. In yeast nuclear extracts, transcription induces stable TAF binding to downstream promoter DNA, promoting subsequent activator-independent transcription reinitiation. In vivo, promoter responses to TAF mutations correlate with the level of downstream, rather than overall, Taf1 cross-linking. We propose a new model in which TAFs function as reinitiation factors, accounting for the differential responses of promoters to various transcription factor mutations. PMID:29203645

  5. Involvement of activator protein 1 complexes in the epithelium-specific activation of the laminin gamma2-chain gene promoter by hepatocyte growth factor (scatter factor).

    PubMed Central

    Olsen, J; Lefebvre, O; Fritsch, C; Troelsen, J T; Orian-Rousseau, V; Kedinger, M; Simon-Assmann, P

    2000-01-01

    Laminin-5 is a trimer of laminin alpha3, beta3 and gamma2 chains that is found in the intestinal basement membrane. Deposition of the laminin gamma2 chain at the basement membrane is of great interest because it undergoes a developmental shift in its cellular expression. Here we study the regulatory elements that control basal and cytokine-activated transcriptional expression of the LAMC2 gene, which encodes the laminin gamma2 chain. By using transient transfection experiments we demonstrated the presence of constitutive and cytokine-responsive cis-elements. Comparison of the transcriptional activity of the LAMC2 promoter in the epithelial HT29mtx cells with that in small-intestinal fibroblastic cells (C20 cells) led us to conclude that two regions with constitutive epithelium-specific activity are present between positions -1.2 and -0.12 kb. This was further validated by transfections of primary foetal intestinal endoderm and mesenchyme. A 2.5 kb portion of the LAMC2 5' flanking region was equally responsive to PMA and hepatocyte growth factor (HGF), whereas it was less responsive to transforming growth factor beta1. A minimal promoter limited to the initial 120 bp upstream of the transcriptional start site maintained inducibility by PMA and HGF. This short promoter fragment contains two activator protein 1 (AP-1) elements and the 5'-most of these is a composite AP-1/Sp1 element. The 5'AP-1 element is crucial to the HGF-mediated activity of the promoter; analysis of interacting nuclear proteins demonstrated that AP-1 proteins containing JunD mediate the response to HGF. PMID:10749670

  6. Bid Promotes K63-Linked Polyubiquitination of Tumor Necrosis Factor Receptor Associated Factor 6 (TRAF6) and Sensitizes to Mutant SOD1-Induced Proinflammatory Signaling in Microglia123

    PubMed Central

    Kinsella, Sinéad

    2016-01-01

    Mutations in the superoxide dismutase 1 (SOD1) gene contribute to motoneuron degeneration and are evident in 20% of familial amyotrophic lateral sclerosis cases. Mutant SOD1 induces microglial activation through a stimulation of Toll-like receptors 2 and 4 (TLR2 and TLR4). In the present study, we identified the proapoptotic Bcl-2 family protein Bid as a positive regulator of mutant SOD1-induced TLR-nuclear factor-κB (NF-κB) signaling in microglia. bid-deficient primary mouse microglia showed reduced NF-κB signaling in response to TLR4 activation or exposure to conditioned medium derived from SOD1 G93A expressing NSC-34 cells. Attenuation of NF-κB signaling in bid-deficient microglia was associated with lower levels of phosphorylated IKKα/β and p65, with a delayed degradation of IκBα and enhanced degradation of Peli1. Upstream of IKK, we found that Bid interacted with, and promoted, the K63-linked polyubiquitination of the E3 ubiquitin ligase tumor necrosis factor receptor associated factor 6 (TRAF6) in microglia. Our study suggests a key role for Bid in the regulation of TLR4-NF-κB proinflammatory signaling during mutant SOD1-induced disease pathology. Bid promotes TLR4-NF-κB signaling by interacting with TRAF6 and promoting TRAF6 K63-linked polyubiquitination in microglia. PMID:27257617

  7. Measuring health-promoting behaviors: cross-cultural validation of the Health-Promoting Lifestyle Profile-II.

    PubMed

    Sousa, Pedro; Gaspar, Pedro; Vaz, Daniela C; Gonzaga, Sílvia; Dixe, M Anjos

    2015-04-01

    Individual lifestyles have emerged as valuable health constructs. This study aims to psychometrically test the Portuguese (European) version of the Health-Promoting Lifestyle Profile-II. After an adequate linguistic and cultural adaptation of the Health-Promoting Lifestyle Profile-II scale, their psychometric properties were assessed (N = 889) by Cronbach's alpha and confirmatory factor analysis. Results showed an adequate fit to a 52-item, six-factor structure. A global alpha of .925 was obtained. The Portuguese version demonstrated good validity and reliability in a wide adult sample, and can thus be applied to the Portuguese population. This instrument is useful as an evaluation tool for health-promoting lifestyles and as an instrument for testing the effectiveness of health-promoting programs. © 2014 NANDA International, Inc.

  8. Template-dependent polypeptide synthesis in a factor- and energy-free translation system promoted by pyridine.

    PubMed

    Nitta, I; Ueda, T; Nojima, T; Watanabe, K

    1995-10-01

    We demonstrate here that a high concentration (40-70%) of pyridine, an aromatic tertiary amine catalyst, is able to promote translation on ribosomes without the presence of soluble protein factors or chemical energy sources. Compared with Monro's fragment reaction [Methods Enzymol. 20, 472-481 (1971)] which reflects only the peptidyltransferase step, this novel translation system can produce polypeptides with chain lengths of at least several tens of residues depending on the template RNA. In the presence of 60% pyridine, poly(U) and poly(UC) promoted incorporation of the respective amino acids, phenylalanine and serine-leucine, twofold, whereas poly(A) promoted the incorporation of lysine by only 25%. The degrees of polymerization of phenylalanine and lysine were up to the decamer and around 40mer, respectively. In poly(UC)-dependent oligo(serine-leucine) synthesis, oligopeptides with a serine and leucine alternate sequence were the main products. This novel pyridine system evidently differs from the non-enzymatic translation system reported by Gavrilova and Spirin [FEBS Lett. 17, 324-326 (1971)]; the former system displays partial resistance toward deproteinization reagents such as SDS and proteinase K, whereas the latter system is completely sensitive.

  9. Cloning the promoter for transforming growth factor-beta type III receptor. Basal and conditional expression in fetal rat osteoblasts

    NASA Technical Reports Server (NTRS)

    Ji, C.; Chen, Y.; McCarthy, T. L.; Centrella, M.

    1999-01-01

    Transforming growth factor-beta binds to three high affinity cell surface molecules that directly or indirectly regulate its biological effects. The type III receptor (TRIII) is a proteoglycan that lacks significant intracellular signaling or enzymatic motifs but may facilitate transforming growth factor-beta binding to other receptors, stabilize multimeric receptor complexes, or segregate growth factor from activating receptors. Because various agents or events that regulate osteoblast function rapidly modulate TRIII expression, we cloned the 5' region of the rat TRIII gene to assess possible control elements. DNA fragments from this region directed high reporter gene expression in osteoblasts. Sequencing showed no consensus TATA or CCAAT boxes, whereas several nuclear factors binding sequences within the 3' region of the promoter co-mapped with multiple transcription initiation sites, DNase I footprints, gel mobility shift analysis, or loss of activity by deletion or mutation. An upstream enhancer was evident 5' proximal to nucleotide -979, and a silencer region occurred between nucleotides -2014 and -2194. Glucocorticoid sensitivity mapped between nucleotides -687 and -253, whereas bone morphogenetic protein 2 sensitivity co-mapped within the silencer region. Thus, the TRIII promoter contains cooperative basal elements and dispersed growth factor- and hormone-sensitive regulatory regions that can control TRIII expression by osteoblasts.

  10. Isolation and properties of the leukocytosis- and lymphocytosis- promoting factor of Bordetella pertussis

    PubMed Central

    1976-01-01

    The leukocytosis- and lymphocytosis-promoting factor (LPF) of Bordetella pertussis has been isolated to near homogeneity by physical, chemical, and electron microscopical criteria. LPF contains 14.5% nitrogen and is lipid and carbohydrate free. It is apparently composed of four polypeptide subunits. LPF caused leukocytosis and lymphocytosis in "nude" as well as in normal mice. In addition, purified LPF also induced histamine sensitization and hypoglycemia and refractoriness to the hyperglycemic effect of epinephrine. A monospecific LPF antiserum blocked these reactions as well as leukocytosis and lymphocytosis. LPF is clearly distinct from the hemagglutinating pili of B. pertussis. PMID:58054

  11. Mesenchymal stem cells promote pancreatic adenocarcinoma cells invasion by transforming growth factor-β1 induced epithelial-mesenchymal transition.

    PubMed

    Zhou, Hai-Sen; Su, Xiao-Fang; Fu, Xing-Li; Wu, Guo-Zhong; Luo, Kun-Lun; Fang, Zheng; Yu, Feng; Liu, Hong; Hu, Hong-Juan; Chen, Liu-Sheng; Cai, Bing; Tian, Zhi-Qiang

    2016-07-05

    Mesenchymal stem cells (MSCs) could be ideal delivery vehicles for antitumor biological agents in pancreatic adenocarcinoma (PA). While the role of MSCs in tumor growth is elusive. Inflammation is an important feature of PA. In this study, we reported that MSCs pre-stimulated with the combination of TNF-α and IFN-γ promote PA cells invasion. The invasion of PA cell lines were evaluate by wound healing assay and transwell assay in vitro and liver metastasis in nude mice. We observed MSCs pre-stimulated with the combination of TNF-α and IFN-γ promoted PA cells invasion in vitro and in vivo. Consistent with MSCs promoting PA cells invasion, PA cells were found undergo epithelial-mesenchymal transition (EMT). We demonstrated that MSCs pre-stimulated with both of TNF-α and IFN-γ provoked expression transforming growth factor-β1 (TGF-β1). MSCs promoting EMT-mediated PA cells invasion could be reversed by short interfering RNA of TGF-β1. Our results suggest that MSCs could promote PA cells invasion in inflammation microenvironment and should be cautious as delivery vehicles in molecular target therapy.

  12. Performance as a Factor in Enlisted Promotions

    DTIC Science & Technology

    1981-04-01

    the Airman Performance Report. When one reviews the previous research into the matter of enlisted promotions, one senses a feeling of corporate " deja ... vu ." An Air War College research report noted in 1952 that the 7 _... .. . .. _. ._. . . . . I I ’ . Air Force NCO corps had been "destroyed" during

  13. Can the Nerve Growth Factor promote the reinnervation of the transplanted heart?

    PubMed

    Galli, Alessio

    2014-02-01

    The activity of the heart is widely regulated by the autonomous nervous system. This important mechanism of control may be impaired in chronic diseases such as heart failure or lost in those patients who undergo heart transplantation, owing to the surgical interruption of cardiac nerves in the transplanted heart. It has been demonstrated that spontaneous reinnervation can occur in transplanted hearts and is associated with an improvement in cardiac function. However, this process may require many years and the restoration of a proper cardiac innervation and functioning during exercise is never complete. In this perspective, the Nerve Growth Factor (NGF) and other neurotrophic hormones might ameliorate cardiac innervation in the transplanted heart and should be tried in animal models. Endothelial cells engineered with a viral vector to overexpress the NGF might be engrafted in the heart and integrate into cardiac small vessels, thus providing a source of neurotrophic factors which might promote and direct regrowth and axonal sprouting of cardiac nerves. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Institutional barriers and strategies to health promotion: perspectives and experiences of Cape Verdean women health promoters.

    PubMed

    De Jesus, Maria

    2010-06-01

    Health promoters are critical resources in improving health care access and in providing culturally-responsive health education and interventions to members of medically underserved communities. Little is known about the barriers that impede their health-promoting practices and the strategies used to overcome these barriers. In-depth, semi-structured interviews were conducted with nine Cape Verdean women health promoters to examine their perspectives on barriers and strategies to health promotion. Findings revealed how their health promotion practice is influenced by a host of institutional barriers, including insufficient program funding, restrictive institutional policies, and a lack of culturally and linguistically appropriate health resources. Adaptive and resistant strategies used to counterbalance these barriers included forming supportive internal and external alliances, having a good mentor, and "making noise." A complete and effective model of health promotion must embrace not only individual-level factors, but also macro-level factors, thus emphasizing the need for institutional change to enhance health-promoting practices.

  15. Institutional Barriers and Strategies to Health Promotion: Perspectives and Experiences of Cape Verdean Women Health Promoters

    PubMed Central

    2015-01-01

    Background Health promoters are critical resources in improving health care access and in providing culturally-responsive health education and interventions to members of medically underserved communities. Little is known about the barriers that impede their health-promoting practices and the strategies used to overcome these barriers. Methods In-depth, semi-structured interviews were conducted with nine Cape Verdean women health promoters to examine their perspectives on barriers and strategies to health promotion. Results Findings revealed how their health promotion practice is influenced by a host of institutional barriers, including insufficient program funding, restrictive institutional policies, and a lack of culturally and linguistically appropriate health resources. Adaptive and resistant strategies used to counterbalance these barriers included forming supportive internal and external alliances, having a good mentor, and “making noise.” Discussion A complete and effective model of health promotion must embrace not only individual-level factors, but also macro-level factors, thus emphasizing the need for institutional change to enhance health-promoting practices. PMID:18307042

  16. Examining the Factors That Promote Long-Term Change in Elementary Teachers' Instructional Practices: Sustaining Formative Assessment Reform

    ERIC Educational Resources Information Center

    Sherbinko, Thomas, Jr.

    2011-01-01

    The purpose of this holistic case study with a mixed methods approach was two-fold: first, to investigate the extent to which elementary teachers in the BTSD sustained the use of formative assessment reform to regulate instruction, and second, to explore the factors that promoted fidelity to formative assessment reform. Although this study…

  17. Ciliary neurotrophic factor promotes the activation of corneal epithelial stem/progenitor cells and accelerates corneal epithelial wound healing.

    PubMed

    Zhou, Qingjun; Chen, Peng; Di, Guohu; Zhang, Yangyang; Wang, Yao; Qi, Xia; Duan, Haoyun; Xie, Lixin

    2015-05-01

    Ciliary neurotrophic factor (CNTF), a well-known neuroprotective cytokine, has been found to play an important role in neurogenesis and functional regulations of neural stem cells. As one of the most innervated tissue, however, the role of CNTF in cornea epithelium remains unclear. This study was to explore the roles and mechanisms of CNTF in the activation of corneal epithelial stem/progenitor cells and wound healing of both normal and diabetic mouse corneal epithelium. In mice subjecting to mechanical removal of corneal epithelium, the corneal epithelial stem/progenitor cell activation and wound healing were promoted by exogenous CNTF application, while delayed by CNTF neutralizing antibody. In cultured corneal epithelial stem/progenitor cells, CNTF enhanced the colony-forming efficiency, stimulated the mitogenic proliferation, and upregulated the expression levels of corneal epithelial stem/progenitor cell-associated transcription factors. Furthermore, the promotion of CNTF on the corneal epithelial stem/progenitor cell activation and wound healing was mediated by the activation of STAT3. Moreover, in diabetic mice, the content of CNTF in corneal epithelium decreased significantly when compared with that of normal mice, and the supplement of CNTF promoted the diabetic corneal epithelial wound healing, accompanied with the advanced activation of corneal epithelial stem/progenitor cells and the regeneration of corneal nerve fibers. Thus, the capability of expanding corneal epithelial stem/progenitor cells and promoting corneal epithelial wound healing and nerve regeneration indicates the potential application of CNTF in ameliorating limbal stem cell deficiency and treating diabetic keratopathy. © 2014 AlphaMed Press.

  18. Stromal Tissue Rigidity Promotes Mesenchymal Stem Cell-Mediated Corneal Wound Healing Through the Transforming Growth Factor β Signaling Pathway.

    PubMed

    Yang, Yun-Hsiang; Hsieh, Ting-Lieh; Ji, Andrea Tung-Qian; Hsu, Wei-Tse; Liu, Chia-Yu; Lee, Oscar Kuang-Sheng; Ho, Jennifer Hui-Chun

    2016-10-01

    The healing of a corneal epithelial defect is essential for preventing infectious corneal ulcers and subsequent blindness. We previously demonstrated that mesenchymal stem cells (MSCs) in the corneal stroma, through a paracrine mechanism, yield a more favorable therapeutic benefit for corneal wound re-epithelialization than do MSCs in the corneal epithelium. In this study, MSCs were grown on a matrix with the rigidity of the physiological human vitreous (1 kPa), corneal epithelium (8 kPa), or corneal stroma (25 kPa) for investigating the role of corneal tissue rigidity in MSC functions regarding re-epithelialization promotion. MSC growth on a 25-kPa dish significantly promoted the wound healing of human corneal epithelial (HCE-T) cells. Among growth factors contributing to corneal epithelial wound healing, corneal stromal rigidity selectively enhanced transforming growth factor-beta (TGF-β) secretion from MSCs. Inhibitors of TGF-β pan receptor, TGF-β receptor 1, and Smad2 dose dependently abrogated MSC-mediated HCE-T wound healing. Furthermore, MSCs growth on a matrix with corneal stromal rigidity enhanced the ability of themselves to promote corneal re-epithelialization by activating matrix metalloproteinase (MMP) expression and integrin β1 production in HCE-T cells through TGF-β signaling pathway activation. Smad2 activation resulted in the upregulation of MMP-2 and -13 expression in HCE-T cells, whereas integrin β1 production favored a Smad2-independent TGF-β pathway. Altogether, we conclude that corneal stromal rigidity is a critical factor for MSC-induced promotion of corneal re-epithelialization. The activation of the TGF-β signaling pathway, which maintains the balance between integrin and MMP expression, in HCE-T cells is the major pathway responsible for MSC-mediated wound healing. Stem Cells 2016;34:2525-2535. © 2016 AlphaMed Press.

  19. The transcription factor CCAAT-binding factor CBF/NF-Y regulates the proximal promoter activity in the human alpha 1(XI) collagen gene (COL11A1).

    PubMed

    Matsuo, Noritaka; Yu-Hua, Wang; Sumiyoshi, Hideaki; Sakata-Takatani, Keiko; Nagato, Hitoshi; Sakai, Kumiko; Sakurai, Mami; Yoshioka, Hidekatsu

    2003-08-29

    We have characterized the proximal promoter region of the human COL11A1 gene. Transient transfection assays indicate that the segment from -199 to +1 is necessary for the activation of basal transcription. Electrophoretic mobility shift assays (EMSAs) demonstrated that the ATTGG sequence, within the -147 to -121 fragment, is critical to bind nuclear proteins in the proximal COL11A1 promoter. We demonstrated that the CCAAT binding factor (CBF/NF-Y) bound to this region using an interference assay with consensus oligonucleotides and a supershift assay with specific antibodies in an EMSA. In a chromatin immunoprecipitation assay and EMSA using DNA-affinity-purified proteins, CBF/NF-Y proteins directly bound this region in vitro and in vivo. We also showed that four tandem copies of the CBF/NF-Y-binding fragment produced higher transcriptional activity than one or two copies, whereas the absence of a CBF/NF-Y-binding fragment suppressed the COL11A1 promoter activity. Furthermore, overexpression of a dominant-negative CBF-B/NF-YA subunit significantly inhibited promoter activity in both transient and stable cells. These results indicate that the CBF/NF-Y proteins regulate the transcription of COL11A1 by directly binding to the ATTGG sequence in the proximal promoter region.

  20. Factors related to the development of health-promoting community activities in Spanish primary healthcare: two case–control studies

    PubMed Central

    March, Sebastià; Ripoll, Joana; Jordan Martin, Matilde; Zabaleta-del-Olmo, Edurne; Benedé Azagra, Carmen Belén; Elizalde Soto, Lázaro; Vidal, Mª Clara; Bauzà Amengual, María de Lluc; Planas Juan, Trinidad; Pérez Mariano, Damiana Maria; Llull Sarralde, Micaela; Ruiz-Giménez, Juan Luís; Bajo Viñas, Rosa; Solano Villarubia, Carmen; Rodriguez Bajo, Maria; Cordoba Victoria, Manuela; Badia Capdevila, Marta; Serrano Ferrandez, Elena; Bosom Diumenjo, Maria; Montaner-Gomis, Isabel; Bolibar-Ribas, Buenaventura; Antoñanzas Lombarte, Angel; Bregel Cotaina, Samantha; Calvo Tocado, Ana; Olivan Blázquez, Barbara; Magallon Botaya, Rosa; Marín Palacios, Pilar; Echauri Ozcoidi, Margarita; Perez - arauta, María Jose; Llobera, Joan; Ramos, Maria

    2017-01-01

    Objective Spanish primary healthcare teams have the responsibility of performing health-promoting community activities (CAs), although such activities are not widespread. Our aim was to identify the factors related to participation in those activities. Design Two case–control studies. Setting Performed in primary care of five Spanish regions. Subjects In the first study, cases were teams that performed health-promoting CAs and controls were those that did not. In the second study (on case teams from the first study), cases were professionals who developed these activities and controls were those who did not. Main outcome measures Team, professional and community characteristics collected through questionnaires (team managers/professionals) and from secondary sources. Results The first study examined 203 teams (103 cases, 100 controls). Adjusted factors associated with performing CAs were percentage of nurses (OR 1.07, 95% CI 1.01 to 1.14), community socioeconomic status (higher vs lower OR 2.16, 95% CI 1.18 to 3.95) and performing undergraduate training (OR 0.44, 95% CI 0.21 to 0.93). In the second study, 597 professionals responded (254 cases, 343 controls). Adjusted factors were professional classification (physicians do fewer activities than nurses and social workers do more), training in CAs (OR 1.9, 95% CI 1.2 to 3.1), team support (OR 2.9, 95% CI 1.5 to 5.7), seniority (OR 1.06, 95% CI 1.03 to 1.09), nursing tutor (OR 2.0, 95% CI 1.1 to 3.5), motivation (OR 3.7, 95% CI 1.8 to 7.5), collaboration with non-governmental organisations (OR 1.9, 95% CI 1.2 to 3.1) and participation in neighbourhood activities (OR 3.1, 95% CI 1.9 to 5.1). Conclusions Professional personal characteristics, such as social sensitivity, profession, to feel team support or motivation, have influence in performing health-promoting CAs. In contrast to the opinion expressed by many professionals, workload is not related to performance of health-promoting CAs. PMID:28993380

  1. Conditioned Medium Derived from Neural Progenitor Cells Induces Long-term Post-ischemic Neuroprotection, Sustained Neurological Recovery, Neurogenesis, and Angiogenesis.

    PubMed

    Doeppner, Thorsten R; Traut, Viktorija; Heidenreich, Alexander; Kaltwasser, Britta; Bosche, Bert; Bähr, Mathias; Hermann, Dirk M

    2017-03-01

    Adult neural progenitor cells (NPCs) induce post-ischemic long-term neuroprotection and brain remodeling by releasing of survival- and plasticity-promoting mediators. To evaluate whether secreted factors may mimic neuroprotective and restorative effects of NPCs, we exposed male C57BL6 mice to focal cerebral ischemia and intravenously applied conditioned medium (CM) derived from subventricular zone NPCs. CM dose-dependently reduced infarct volume and brain leukocyte infiltration after 48 h when delivered up to 12 h after focal cerebral ischemia. Neuroprotection persisted in the post-acute stroke phase yielding enhanced neurological recovery that lasted throughout the 28-day observation period. Increased Bcl-2, phosphorylated Akt and phosphorylated STAT-3 abundance, and reduced caspase-3 activity and Bax abundance were noted in ischemic brains of CM-treated mice at 48 h post-stroke, indicative of enhanced cell survival signaling. Long-term neuroprotection was associated with increased brain glial cell line-derived neurotrophic factor (GDNF) and vascular endothelial growth factor (VEGF) concentrations at 28 days resulting in increased neurogenesis and angiogenesis. The observation that NPC-derived CM induces sustained neuroprotection and neurological recovery suggests that cell transplantation may be dispensable when secreted factors are instead administered.

  2. Specific induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation

    PubMed Central

    Dezawa, Mari; Kanno, Hiroshi; Hoshino, Mikio; Cho, Hirotomi; Matsumoto, Naoya; Itokazu, Yutaka; Tajima, Nobuyoshi; Yamada, Hitoshi; Sawada, Hajime; Ishikawa, Hiroto; Mimura, Toshirou; Kitada, Masaaki; Suzuki, Yoshihisa; Ide, Chizuka

    2004-01-01

    Bone marrow stromal cells (MSCs) have the capability under specific conditions of differentiating into various cell types such as osteocytes, chondrocytes, and adipocytes. Here we demonstrate a highly efficient and specific induction of cells with neuronal characteristics, without glial differentiation, from both rat and human MSCs using gene transfection with Notch intracellular domain (NICD) and subsequent treatment with bFGF, forskolin, and ciliary neurotrophic factor. MSCs expressed markers related to neural stem cells after transfection with NICD, and subsequent trophic factor administration induced neuronal cells. Some of them showed voltage-gated fast sodium and delayed rectifier potassium currents and action potentials compatible with characteristics of functional neurons. Further treatment of the induced neuronal cells with glial cell line–derived neurotrophic factor (GDNF) increased the proportion of tyrosine hydroxylase–positive and dopamine-producing cells. Transplantation of these GDNF-treated cells showed improvement in apomorphine-induced rotational behavior and adjusting step and paw-reaching tests following intrastriatal implantation in a 6-hydroxy dopamine rat model of Parkinson disease. This study shows that a population of neuronal cells can be specifically generated from MSCs and that induced cells may allow for a neuroreconstructive approach. PMID:15199405

  3. Epidermal growth factor and tumor necrosis factor α cooperatively promote the motility of hepatocellular carcinoma cell lines via synergistic induction of fibronectin by NF-κB/p65.

    PubMed

    Liu, Zong-Cai; Ning, Fen; Wang, Hai-Fang; Chen, Dan-Yang; Cai, Yan-Na; Sheng, Hui-Ying; Lash, Gendie E; Liu, Li; Du, Jun

    2017-11-01

    The interaction between hepatocellular carcinoma (HCC) cells and their microenvironment plays a fundamental role in tumor metastasis. The HCC microenvironment is rich in epidermal growth factor (EGF) and tumor necrosis factor α (TNFα), which may cooperatively, rather than individually, interact with tumor cells to influence their biological behavior. Immunohistochemistry was performed to study the expression of EGF and TNFα in HCCs. Western blotting, immunofluorescence, qRT-PCR, wound healing scratch and invasion assay, and chromatin immunoprecipitation assays were used to study the combined roles of EGF and TNFα in the motility of HCC cells in vitro. We demonstrated that both EGF and TNFα were highly expressed in HCCs, and HCCs with higher expression of both EGF and TNFα were more frequently rated as high-grade tumors. In vitro, EGF and TNFα cooperatively promoted the motility of HCC cells mainly via synergistic induction of an extracellular matrix glycoprotein fibronectin (FN). Mechanistically, EGF and TNFα jointly increased the nuclear translocation and PKC mediated phosphorylation of NF-κB/p65 which could bind to the -356bp to -259bp fragment of the FN promoter, leading to a markedly increased activity of the FN promoter in HCC cells. HCCs with higher expression of both EGF and TNFα were more frequently rated as high-grade tumors. EGF and TNFα cooperatively promoted the motility of HCC cells mainly through NF-κB/p65 mediated synergistic induction of FN in vitro. These findings highlight the crosstalk between EGF and TNFα in promoting HCC, and provide potential targets for HCC prevention and treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Association between age factors and strategies for promoting participation in gastric and colorectal cancer screenings.

    PubMed

    Hamashima, Chisato; Sano, Hiroshi

    2018-03-27

    Despite the long history of cancer screening in Japan, the participation rates in gastric and colorectal cancer screenings have not increased. Strategies for improving the participation rates have been proposed, but differences in their effects among different age groups remain unclear. The Japanese government conducted a national survey in all municipalities in Japan in 2010 to investigate whether the implementation of promotion strategies increased participation in cancer screening. We investigated the association between age factors and strategies for promoting participation in cancer screening based on this national survey. Multiple regression analysis with generalized linear model was performed using the participation rates in gastric and colorectal cancer screenings as dependent variables, and the following strategies for promoting participation as independent variables: 1) personal invitation letters, 2) household invitation letters, 3) home visits by community nurses, 4) screenings in medical offices, and 5) free cancer screening programs. One thousand six hundred thirty nine municipalities for gastric cancer screening and 1666 municipalities for colorectal cancer screening were selected for the analysis. In gastric and colorectal cancer screenings, the participation rates of individuals aged 60-69 years was higher than those of other age groups. Personal and household invitation letters were effective promotion strategies for all age groups, which encouraged even older people to participate in gastric and colorectal cancer screenings. Screening in medical offices and free screenings were not effective in all age groups. Home visits were effective, but their adoption was limited to small municipalities. To clarify whether promotion strategies can increase the participation rate in cancer screening among different age groups, 5 strategies were assessed on the basis of a national survey. Although personal and household invitation letters were effective

  5. FGF2 deficit during development leads to specific neuronal cell loss in the enteric nervous system.

    PubMed

    Hagl, Cornelia Irene; Wink, Elvira; Scherf, Sabrina; Heumüller-Klug, Sabine; Hausott, Barbara; Schäfer, Karl-Herbert

    2013-01-01

    The largest part of the peripheral nervous system is the enteric nervous system (ENS). It consists of an intricate network of several enteric neuronal subclasses with distinct phenotypes and functions within the gut wall. The generation of these enteric phenotypes is dependent upon appropriate neurotrophic support during development. Glial cell line-derived neurotrophic factor (GDNF) and fibroblast growth factor-2 (FGF2) play an important role in the differentiation and function of the ENS. A lack of GDNF or its receptor (Ret) causes intestinal aganglionosis in mice, while fibroblast growth factor receptor signaling antagonist is identified as regulating proteins in the GDNF/Ret signaling in the developing ENS. Primary myenteric plexus cultures and wholemount preparations of wild type (WT) and FGF2-knockout mice were used to analyze distinct enteric subpopulations. Fractal dimension (D) as a measure of self-similarity is an excellent tool to analyze complex geometric shape and was applied to classify the subclasses of enteric neurons concerning their individual morphology. As a consequence of a detailed analysis of subpopulation variations, wholemount preparations were stained for the calcium binding proteins calbindin and calretinin. The fractal analysis showed a reliable consistence of subgroups with different fractal dimensions (D) in each culture investigated. Seven different neuronal subtypes could be differentiated according to a rising D. Within the same D, the neurite length revealed significant differences between wild type and FGF2-knockout cultures, while the subclass distribution was also altered. Depending on the morphological characteristics, the reduced subgroup was supposed to be a secretomotor neuronal type, which could be confirmed by calbindin and calretinin staining of the wholemount preparations. These revealed a reduction up to 40 % of calbindin-positive neurons in the FGF2-knockout mouse. We therefore consider FGF2 playing a more important

  6. Transcription factor NFAT5 promotes macrophage survival in rheumatoid arthritis

    PubMed Central

    Choi, Susanna; Choi, Soo Youn; Kwon, H. Moo; Hwang, Daehee; Park, Yune-Jung; Cho, Chul-Soo

    2017-01-01

    Defective apoptotic death of activated macrophages has been implicated in the pathogenesis of rheumatoid arthritis (RA). However, the molecular signatures defining apoptotic resistance of RA macrophages are not fully understood. Here, global transcriptome profiling of RA macrophages revealed that the osmoprotective transcription factor nuclear factor of activated T cells 5 (NFAT5) critically regulates diverse pathologic processes in synovial macrophages including the cell cycle, apoptosis, and proliferation. Transcriptomic analysis of NFAT5-deficient macrophages revealed the molecular networks defining cell survival and proliferation. Proinflammatory M1-polarizing stimuli and hypoxic conditions were responsible for enhanced NFAT5 expression in RA macrophages. An in vitro functional study demonstrated that NFAT5-deficient macrophages were more susceptible to apoptotic death. Specifically, CCL2 secretion in an NFAT5-dependent fashion bestowed apoptotic resistance to RA macrophages in vitro. Injection of recombinant CCL2 into one of the affected joints of Nfat5+/– mice increased joint destruction and macrophage infiltration, demonstrating the essential role of the NFAT5/CCL2 axis in arthritis progression in vivo. Moreover, after intra-articular injection, NFAT5-deficient macrophages were more susceptible to apoptosis and less efficient at promoting joint destruction than were NFAT5-sufficient macrophages. Thus, NFAT5 regulates macrophage survival by inducing CCL2 secretion. Our results provide evidence that NFAT5 expression in macrophages enhances chronic arthritis by conferring apoptotic resistance to activated macrophages. PMID:28192374

  7. MicroRNA-202 maintains spermatogonial stem cells by inhibiting cell cycle regulators and RNA binding proteins

    PubMed Central

    Chen, Jian; Cai, Tanxi; Zheng, Chunwei; Lin, Xiwen; Wang, Guojun; Liao, Shangying; Wang, Xiuxia; Gan, Haiyun; Zhang, Daoqin; Hu, Xiangjing; Wang, Si; Li, Zhen; Feng, Yanmin

    2017-01-01

    Abstract miRNAs play important roles during mammalian spermatogenesis. However, the function of most miRNAs in spermatogenesis and the underlying mechanisms remain unknown. Here, we report that miR-202 is highly expressed in mouse spermatogonial stem cells (SSCs), and is oppositely regulated by Glial cell-Derived Neurotrophic Factor (GDNF) and retinoic acid (RA), two key factors for SSC self-renewal and differentiation. We used inducible CRISPR-Cas9 to knockout miR-202 in cultured SSCs, and found that the knockout SSCs initiated premature differentiation accompanied by reduced stem cell activity and increased mitosis and apoptosis. Target genes were identified with iTRAQ-based proteomic analysis and RNA sequencing, and are enriched with cell cycle regulators and RNA-binding proteins. Rbfox2 and Cpeb1 were found to be direct targets of miR-202 and Rbfox2 but not Cpeb1, is essential for the differentiation of SSCs into meiotic cells. Accordingly, an SSC fate-regulatory network composed of signaling molecules of GDNF and RA, miR-202 and diverse downstream effectors has been identified. PMID:27998933

  8. Factors promoting sense of coherence among university students in urban areas of Japan: individual-level social capital, self-efficacy, and mental health.

    PubMed

    Mato, Mie; Tsukasaki, Keiko

    2017-04-01

    Sense of coherence (SOC) is a concept that helps to explain the relation between personal intentionality as psychosocial factors and health-related behaviors. Thus, it is essential to enhance SOC when encouraging a healthy lifestyle. However, the factors that promote SOC have not been fully investigated among university students. The objective of this study was to clarify the general resistance resources (GRRs) that may promote the development of the SOC among university students. Therefore, we examined the relationship between SOC and social capital (SC), self-efficacy, and mental health. Participants included 443 students from nine academic departments at eight universities in the Kanto or Kinki metropolitan areas of Japan. Participants completed an anonymous questionnaire. Individual-level cognitive and structural SC, generalized self-efficacy, mental health inventory (from SF-36v2), and SOC were measured. Confirmatory factor analysis using structural equation modeling was conducted to verify the factor structure of the SOC-13 scale. Stepwise multiple regression analysis and two-way layout analysis of variance were performed with SOC as the dependent variable. The factor structure of SOC indicated the optimal model fit in the second-order three-factor model of the 12 items. SOC was predicted by five variables: age, cognitive SC, structural SC, mental health, and self-efficacy. For students from urban areas, SOC was predicted by the interaction between cognitive and structural SC. SOC was significantly related to cognitive SC, structural SC, and self-efficacy as well as mental health in university students from urban areas. Furthermore, the combination of higher-level cognitive SC and higher-level structural SC exerted an inhibitory influence on SOC among students who previously and currently live in urban areas. Therefore, the findings indicated that both cognitive and structural SC as well as self-efficacy may act as GRRs that promote the development of SOC

  9. Promoting mental health as an essential aspect of health promotion.

    PubMed

    Sturgeon, Shona

    2006-12-01

    This paper advocates that mental health promotion receive appropriate attention within health promotion. It is of great concern that, in practice, mental health promotion is frequently overlooked in health promotion programmes although the WHO definitions of health and the Ottawa Charter describe mental health as an integral part of health. It is suggested that more attention be given to addressing the determinants of mental health in terms of protective and risk factors for both physical and mental conditions, particularly in developing countries. Examples of evidence-based mental health programmes operating in widely diverse settings are presented to demonstrate that well designed interventions can contribute to the well-being of populations. It is advocated that particular attention be given to the intersectorial cooperation needed for this work.

  10. Stigmatization and Promotive Factors in Relation to Psychological Health and Life Satisfaction of Adolescents in Planned Lesbian Families

    ERIC Educational Resources Information Center

    van Gelderen, Loes; Gartrell, Nanette N.; Bos, Henny M. W.; Hermanns, Jo M. A.

    2013-01-01

    The aim of this study was to investigate whether stigmatization was associated with psychological adjustment in adolescents from planned lesbian families and, if so, to examine whether individual and interpersonal promotive factors influenced this association. Seventy-eight adolescents (39 girls, 39 boys; mean age = 17.05 years) completed an…

  11. Role of promoter DNA sequence variations on the binding of EGR1 transcription factor.

    PubMed

    Mikles, David C; Schuchardt, Brett J; Bhat, Vikas; McDonald, Caleb B; Farooq, Amjad

    2014-05-01

    In response to a wide variety of stimuli such as growth factors and hormones, EGR1 transcription factor is rapidly induced and immediately exerts downstream effects central to the maintenance of cellular homeostasis. Herein, our biophysical analysis reveals that DNA sequence variations within the target gene promoters tightly modulate the energetics of binding of EGR1 and that nucleotide substitutions at certain positions are much more detrimental to EGR1-DNA interaction than others. Importantly, the reduction in binding affinity poorly correlates with the loss of enthalpy and gain of entropy-a trend indicative of a complex interplay between underlying thermodynamic factors due to the differential role of water solvent upon nucleotide substitution. We also provide a rationale for the physical basis of the effect of nucleotide substitutions on the EGR1-DNA interaction at atomic level. Taken together, our study bears important implications on understanding the molecular determinants of a key protein-DNA interaction at the cross-roads of human health and disease. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Structure-Function Analysis of the Drosophila melanogaster Caudal Transcription Factor Provides Insights into Core Promoter-preferential Activation.

    PubMed

    Shir-Shapira, Hila; Sharabany, Julia; Filderman, Matan; Ideses, Diana; Ovadia-Shochat, Avital; Mannervik, Mattias; Juven-Gershon, Tamar

    2015-07-10

    Regulation of RNA polymerase II transcription is critical for the proper development, differentiation, and growth of an organism. The RNA polymerase II core promoter is the ultimate target of a multitude of transcription factors that control transcription initiation. Core promoters encompass the RNA start site and consist of functional elements such as the TATA box, initiator, and downstream core promoter element (DPE), which confer specific properties to the core promoter. We have previously discovered that Drosophila Caudal, which is a master regulator of genes involved in development and differentiation, is a DPE-specific transcriptional activator. Here, we show that the mouse Caudal-related homeobox (Cdx) proteins (mCdx1, mCdx2, and mCdx4) are also preferential core promoter transcriptional activators. To elucidate the mechanism that enables Caudal to preferentially activate DPE transcription, we performed structure-function analysis. Using a systematic series of deletion mutants (all containing the intact DNA-binding homeodomain) we discovered that the C-terminal region of Caudal contributes to the preferential activation of the fushi tarazu (ftz) Caudal target gene. Furthermore, the region containing both the homeodomain and the C terminus of Caudal was sufficient to confer core promoter-preferential activation to the heterologous GAL4 DNA-binding domain. Importantly, we discovered that Drosophila CREB-binding protein (dCBP) is a co-activator for Caudal-regulated activation of ftz. Strikingly, dCBP conferred the ability to preferentially activate the DPE-dependent ftz reporter to mini-Caudal proteins that were unable to preferentially activate ftz transcription themselves. Taken together, it is the unique combination of dCBP and Caudal that enables the co-activation of ftz in a core promoter-preferential manner. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Simian Virus 40 Large T Antigen Interacts with Human TFIIB-Related Factor and Small Nuclear RNA-Activating Protein Complex for Transcriptional Activation of TATA-Containing Polymerase III Promoters

    PubMed Central

    Damania, Blossom; Mital, Renu; Alwine, James C.

    1998-01-01

    The TATA-binding protein (TBP) is common to the basal transcription factors of all three RNA polymerases, being associated with polymerase-specific TBP-associated factors (TAFs). Simian virus 40 large T antigen has previously been shown to interact with the TBP-TAFII complexes, TFIID (B. Damania and J. C. Alwine, Genes Dev. 10:1369–1381, 1996), and the TBP-TAFI complex, SL1 (W. Zhai, J. Tuan, and L. Comai, Genes Dev. 11:1605–1617, 1997), and in both cases these interactions are critical for transcriptional activation. We show a similar mechanism for activation of the class 3 polymerase III (pol III) promoter for the U6 RNA gene. Large T antigen can activate this promoter, which contains a TATA box and an upstream proximal sequence element but cannot activate the TATA-less, intragenic VAI promoter (a class 2, pol III promoter). Mutants of large T antigen that cannot activate pol II promoters also fail to activate the U6 promoter. We provide evidence that large T antigen can interact with the TBP-containing pol III transcription factor human TFIIB-related factor (hBRF), as well as with at least two of the three TAFs in the pol III-specific small nuclear RNA-activating protein complex (SNAPc). In addition, we demonstrate that large T antigen can cofractionate and coimmunoprecipitate with the hBRF-containing complex TFIIIB derived from HeLa cells infected with a recombinant adenovirus which expresses large T antigen. Hence, similar to its function with pol I and pol II promoters, large T antigen interacts with TBP-containing, basal pol III transcription factors and appears to perform a TAF-like function. PMID:9488448

  14. Casein Kinase II Regulation of the Hot1 Transcription Factor Promotes Stochastic Gene Expression*

    PubMed Central

    Burns, Laura T.; Wente, Susan R.

    2014-01-01

    In Saccharomyces cerevisiae, Hog1 MAPK is activated and induces a transcriptional program in response to hyperosmotic stress. Several Hog1-responsive genes exhibit stochastic transcription, resulting in cell-to-cell variability in mRNA and protein levels. However, the mechanisms governing stochastic gene activity are not fully defined. Here we uncover a novel role for casein kinase II (CK2) in the cellular response to hyperosmotic stress. CK2 interacts with and phosphorylates the Hot1 transcription factor; however, Hot1 phosphorylation is not sufficient for controlling the stochastic response. The CK2 protein itself is required to negatively regulate mRNA expression of Hot1-responsive genes and Hot1 enrichment at target promoters. Single-cell gene expression analysis reveals altered activation of Hot1-targeted STL1 in ck2 mutants, resulting in a bimodal to unimodal shift in expression. Together, this work reveals a novel CK2 function during the hyperosmotic stress response that promotes cell-to-cell variability in gene expression. PMID:24817120

  15. A Study of Predictive Factors Affecting Health: Promoting Behaviors of North Korean Adolescent Refugees.

    PubMed

    Noh, Jin-Won; Yun, Hyo-Young; Park, Hyunchun; Yu, Shi-Eun

    2015-09-01

    The present study aimed to analyze the factors that could affect the health-promoting behaviors of North Korean adolescent refugees residing in South Korea. Questions about their sociodemographic variables, subjective health status, healthy living habits, and health-promoting behaviors were asked. Statistically significant differences were found in religion (t=2.30, p<0.05), having family members in South Korea (t=2.02, p<0.05), and subjective health status (t=4.96, p<0.01). Scores on health-responsible behaviors were higher with higher age (t=2.90, p<0.01) and for subjects without family or friends (t=2.43, p<0.05). Higher physical-activity behaviors were observed in males (t=3.32, p<0.01), in those with better subjective health status (t=3.46, p<0.05) and lower body mas index (t=3.48, p<0.05), and in smokers (t=3.17, p<0.01). Nutritional behaviors were higher in those who followed a religion (t=2.17, p<0.05). Spiritual growth behaviors were higher in those who followed a religion (t=4.21, p<0.001), had no family in South Korea (t=2.04, p<0.05), and had higher subjective health status (t=5.74, p<0.01). Scores on interpersonal relationships and stress-management behaviors were higher for those with higher subjective health status. A multiple regression analysis showed greater effects on health-promoting behaviors when subjective health status was better. Older people and non-smokers exhibited more health-responsible behaviors, while more physical-activity behaviors and spiritual growth activities were observed when subjective health status was better. Interpersonal relationship behaviors had positive effects on those with good subjective heath status and on non-smokers. Based on the results of the current study, an alternative was suggested for promoting health in North Korean adolescent refugees.

  16. Regenerated Sciatic Nerve Axons Stimulated through a Chronically Implanted Macro-Sieve Electrode.

    PubMed

    MacEwan, Matthew R; Zellmer, Erik R; Wheeler, Jesse J; Burton, Harold; Moran, Daniel W

    2016-01-01

    Sieve electrodes provide a chronic interface for stimulating peripheral nerve axons. Yet, successful utilization requires robust axonal regeneration through the implanted electrode. The present study determined the effect of large transit zones in enhancing axonal regeneration and revealed an intimate neural interface with an implanted sieve electrode. Fabrication of the polyimide sieve electrodes employed sacrificial photolithography. The manufactured macro-sieve electrode (MSE) contained nine large transit zones with areas of ~0.285 mm 2 surrounded by eight Pt-Ir metallized electrode sites. Prior to implantation, saline, or glial derived neurotropic factor (GDNF) was injected into nerve guidance silicone-conduits with or without a MSE. The MSE assembly or a nerve guidance conduit was implanted between transected ends of the sciatic nerve in adult male Lewis rats. At 3 months post-operation, fiber counts were similar through both implant types. Likewise, stimulation of nerves regenerated through a MSE or an open silicone conduit evoked comparable muscle forces. These results showed that nerve regeneration was comparable through MSE transit zones and an open conduit. GDNF had a minimal positive effect on the quality and morphology of fibers regenerating through the MSE; thus, the MSE may reduce reliance on GDNF to augment axonal regeneration. Selective stimulation of several individual muscles was achieved through monopolar stimulation of individual electrodes sites suggesting that the MSE might be an optimal platform for functional neuromuscular stimulation.

  17. Role of Wnt5a-Ror2 Signaling in Morphogenesis of the Metanephric Mesenchyme during Ureteric Budding

    PubMed Central

    Qiao, Sen; Miyamoto, Mari; Okinaka, Yuka; Yamada, Makiko; Hashimoto, Ryuju; Iijima, Kazumoto; Otani, Hiroki; Hartmann, Christine; Nishinakamura, Ryuichi

    2014-01-01

    Development of the metanephric kidney begins with the induction of a single ureteric bud (UB) on the caudal Wolffian duct (WD) in response to GDNF (glial cell line-derived neurotrophic factor) produced by the adjacent metanephric mesenchyme (MM). Mutual interaction between the UB and MM maintains expression of GDNF in the MM, thereby supporting further outgrowth and branching morphogenesis of the UB, while the MM also grows and aggregates around the branched tips of the UB. Ror2, a member of the Ror family of receptor tyrosine kinases, has been shown to act as a receptor for Wnt5a to mediate noncanonical Wnt signaling. We show that Ror2 is predominantly expressed in the MM during UB induction and that Ror2- and Wnt5a-deficient mice exhibit duplicated ureters and kidneys due to ectopic UB induction. During initial UB formation, these mutant embryos show dysregulated positioning of the MM, resulting in spatiotemporally aberrant interaction between the MM and WD, which provides the WD with inappropriate GDNF signaling. Furthermore, the numbers of proliferating cells in the mutant MM are markedly reduced compared to the wild-type MM. These results indicate an important role of Wnt5a-Ror2 signaling in morphogenesis of the MM to ensure proper epithelial tubular formation of the UB required for kidney development. PMID:24891614

  18. Regenerated Sciatic Nerve Axons Stimulated through a Chronically Implanted Macro-Sieve Electrode

    PubMed Central

    MacEwan, Matthew R.; Zellmer, Erik R.; Wheeler, Jesse J.; Burton, Harold; Moran, Daniel W.

    2016-01-01

    Sieve electrodes provide a chronic interface for stimulating peripheral nerve axons. Yet, successful utilization requires robust axonal regeneration through the implanted electrode. The present study determined the effect of large transit zones in enhancing axonal regeneration and revealed an intimate neural interface with an implanted sieve electrode. Fabrication of the polyimide sieve electrodes employed sacrificial photolithography. The manufactured macro-sieve electrode (MSE) contained nine large transit zones with areas of ~0.285 mm2 surrounded by eight Pt-Ir metallized electrode sites. Prior to implantation, saline, or glial derived neurotropic factor (GDNF) was injected into nerve guidance silicone-conduits with or without a MSE. The MSE assembly or a nerve guidance conduit was implanted between transected ends of the sciatic nerve in adult male Lewis rats. At 3 months post-operation, fiber counts were similar through both implant types. Likewise, stimulation of nerves regenerated through a MSE or an open silicone conduit evoked comparable muscle forces. These results showed that nerve regeneration was comparable through MSE transit zones and an open conduit. GDNF had a minimal positive effect on the quality and morphology of fibers regenerating through the MSE; thus, the MSE may reduce reliance on GDNF to augment axonal regeneration. Selective stimulation of several individual muscles was achieved through monopolar stimulation of individual electrodes sites suggesting that the MSE might be an optimal platform for functional neuromuscular stimulation. PMID:28008303

  19. Acetyl Coenzyme A Stimulates RNA Polymerase II Transcription and Promoter Binding by Transcription Factor IID in the Absence of Histones

    PubMed Central

    Galasinski, Shelly K.; Lively, Tricia N.; Grebe de Barron, Alexandra; Goodrich, James A.

    2000-01-01

    Protein acetylation has emerged as a means of controlling levels of mRNA synthesis in eukaryotic cells. Here we report that acetyl coenzyme A (acetyl-CoA) stimulates RNA polymerase II transcription in vitro in the absence of histones. The effect of acetyl-CoA on basal and activated transcription was studied in a human RNA polymerase II transcription system reconstituted from recombinant and highly purified transcription factors. Both basal and activated transcription were stimulated by the addition of acetyl-CoA to transcription reaction mixtures. By varying the concentrations of general transcription factors in the reaction mixtures, we found that acetyl-CoA decreased the concentration of TFIID required to observe transcription. Electrophoretic mobility shift assays and DNase I footprinting revealed that acetyl-CoA increased the affinity of the general transcription factor TFIID for promoter DNA in a TBP-associated factor (TAF)-dependent manner. Interestingly, acetyl-CoA also caused a conformational change in the TFIID-TFIIA-promoter complex as assessed by DNase I footprinting. These results show that acetyl-CoA alters the DNA binding activity of TFIID and indicate that this biologically important cofactor functions at multiple levels to control gene expression. PMID:10688640

  20. Acetyl coenzyme A stimulates RNA polymerase II transcription and promoter binding by transcription factor IID in the absence of histones.

    PubMed

    Galasinski, S K; Lively, T N; Grebe De Barron, A; Goodrich, J A

    2000-03-01

    Protein acetylation has emerged as a means of controlling levels of mRNA synthesis in eukaryotic cells. Here we report that acetyl coenzyme A (acetyl-CoA) stimulates RNA polymerase II transcription in vitro in the absence of histones. The effect of acetyl-CoA on basal and activated transcription was studied in a human RNA polymerase II transcription system reconstituted from recombinant and highly purified transcription factors. Both basal and activated transcription were stimulated by the addition of acetyl-CoA to transcription reaction mixtures. By varying the concentrations of general transcription factors in the reaction mixtures, we found that acetyl-CoA decreased the concentration of TFIID required to observe transcription. Electrophoretic mobility shift assays and DNase I footprinting revealed that acetyl-CoA increased the affinity of the general transcription factor TFIID for promoter DNA in a TBP-associated factor (TAF)-dependent manner. Interestingly, acetyl-CoA also caused a conformational change in the TFIID-TFIIA-promoter complex as assessed by DNase I footprinting. These results show that acetyl-CoA alters the DNA binding activity of TFIID and indicate that this biologically important cofactor functions at multiple levels to control gene expression.

  1. Dystroglycan modulates the ability of insulin-like growth factor-1 to promote oligodendrocyte differentiation.

    PubMed

    Galvin, Jason; Eyermann, Christopher; Colognato, Holly

    2010-11-15

    The adhesion receptor dystroglycan positively regulates terminal differentiation of oligodendrocytes, but the mechanism by which this occurs remains unclear. Using primary oligodendrocyte cultures, we identified and examined a connection between dystroglycan and the ability of insulin-like growth factor-1 (IGF-1) to promote oligodendrocyte differentiation. Consistent with previous reports, treatment with exogenous IGF-1 caused an increase in MBP protein that was preceded by activation of PI3K (AKT) and MAPK (ERK) signaling pathways. The extracellular matrix protein laminin was further shown to potentiate the effect of IGF-1 on oligodendrocyte differentiation. Depletion of the laminin receptor dystroglycan using siRNA, however, blocked the ability of IGF-1 to promote oligodendrocyte differentiation of cells grown on laminin, suggesting a role for dystroglycan in IGF-1-mediated differentiation. Indeed, loss of dystroglycan led to a reduction in the ability of IGF-1 to activate MAPK, but not PI3K, signaling pathways. Pharmacological inhibition of MAPK signaling also prevented IGF-1-induced increases in myelin basic protein (MBP), indicating that MAPK signaling was necessary to drive IGF-1-mediated enhancement of oligodendrocyte differentiation. Using immunoprecipitation, we found that dystroglycan, the adaptor protein Grb2, and insulin receptor substrate-1 (IRS-1), were associated in a protein complex. Taken together, our results suggest that the positive regulatory effect of laminin on oligodendrocyte differentiation may be attributed, at least in part, to dystroglycan's ability to promote IGF-1-induced differentiation.

  2. Promoting Resilience in Children.

    ERIC Educational Resources Information Center

    Rolfe, Sharne A.

    2002-01-01

    This booklet invites reflection on ways in which childhood resilience can be promoted, thereby helping children to adapt effectively in the face of adversity. The attributes of resilient children are described, as is the importance of protective factors in building or promoting resilience. The booklet discusses the complex interplay between risk…

  3. Identification of a Serratia marcescens virulence factor that promotes hemolymph bleeding in the silkworm, Bombyx mori.

    PubMed

    Ishii, Kenichi; Adachi, Tatsuo; Hara, Takashi; Hamamoto, Hiroshi; Sekimizu, Kazuhisa

    2014-03-01

    Injection of culture supernatant of Serratia marcescens, a Gram-negative bacterium pathogenic to a wide range of host animals including insects and mammals, into the hemolymph of silkworm (Bombyx mori) larvae led to continuous flow of the hemolymph (blood of insects) from the injection site. The amount of hemolymph lost within 60 min reached 15-20% of the total larval weight. Using a bioassay with live silkworms, we purified Serralysin, a metalloprotease that requires divalent cations for its activity, as the factor responsible for the promotion of hemolymph bleeding from the culture supernatant of S. marcescens. Recombinant protein also induced hemolymph bleeding in silkworms. Moreover, the culture supernatant of an S. marcescens disruption mutant of the ser gene showed attenuated ability to promote hemolymph bleeding. In addition, this bleeding-promoting activity of the S. marcescens culture supernatant was attenuated by disruption of the wecA gene, which is involved in the biosynthesis of the lipopolysaccharide O-antigen. These findings suggest that Serralysin metalloprotease contributes to the pathogenesis of S. marcescens by inhibiting wound healing, which leads to a massive loss of hemolymph from silkworm larvae. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Mit1 Transcription Factor Mediates Methanol Signaling and Regulates the Alcohol Oxidase 1 (AOX1) Promoter in Pichia pastoris*

    PubMed Central

    Wang, Xiaolong; Wang, Qi; Wang, Jinjia; Bai, Peng; Shi, Lei; Shen, Wei; Zhou, Mian; Zhou, Xiangshan; Zhang, Yuanxing; Cai, Menghao

    2016-01-01

    The alcohol oxidase 1 (AOX1) promoter (PAOX1) of Pichia pastoris is the most powerful and commonly used promoter for driving protein expression. However, mechanisms regulating its transcriptional activity are unclear. Here, we identified a Zn(II)2Cys6-type methanol-induced transcription factor 1 (Mit1) and elucidated its roles in regulating PAOX1 activity in response to glycerol and methanol. Mit1 regulated the expression of many genes involved in methanol utilization pathway, including AOX1, but did not participate in peroxisome proliferation and transportation of peroxisomal proteins during methanol metabolism. Structural analysis of Mit1 by performing domain deletions confirmed its specific and critical role in the strict repression of PAOX1 in glycerol medium. Importantly, Mit1, Mxr1, and Prm1, which positively regulated PAOX1 in response to methanol, were bound to PAOX1 at different sites and did not interact with each other. However, these factors cooperatively activated PAOX1 through a cascade. Mxr1 mainly functioned during carbon derepression, whereas Mit1 and Prm1 functioned during methanol induction, with Prm1 transmitting methanol signal to Mit1 by binding to the MIT1 promoter (PMIT1), thus increasingly expressing Mit1 and subsequently activating PAOX1. PMID:26828066

  5. Physical activity promotion in schools: which strategies do schools (not) implement and which socioecological factors are associated with implementation?

    PubMed

    Cardon, Greet M; Van Acker, Ragnar; Seghers, Jan; De Martelaer, Kristine; Haerens, Leen L; De Bourdeaudhuij, Ilse M M

    2012-06-01

    We studied the implementation and associated factors of strategies (e.g. sports after school and during lunch break, active schoolyards, active school commuting) and organizational principles (e.g. safe bike racks, pupil involvement) that facilitate the physical activity (PA)-promoting role of schools. Key representatives of 111 elementary and 125 secondary schools filled out an online survey. Less than half of the elementary schools organized sports during lunch-break or after school. In secondary schools the least implemented strategies were the promotion of active school commuting and after-school sports. In general pupil, parental and community involvement scored low. Better knowledge of community schools and having attended in-service training were associated with higher implementation scores in elementary and secondary schools. Better implementation of the strategies was found in larger schools. Participation in activities from the School Sports Association and more perceived interest from parents and the school board were also associated with higher implementation scores. In conclusion, knowledge of community schools and in-service training next to sufficient human resources are potential key factors to promote PA. Efforts are needed to convince and help schools to increase parental and pupil involvement and to build a policy on school-community partnerships.

  6. Lower brain-derived neurotrophic factor levels associated with worsening fatigue in prostate cancer patients during repeated stress from radiation therapy.

    PubMed

    Saligan, L N; Lukkahatai, N; Holder, G; Walitt, B; Machado-Vieira, R

    2016-12-01

    Fatigue during cancer treatment is associated with depression. Neurotrophic factors play a major role in depression and stress and might provide insight into mechanisms of fatigue. This study investigated the association between plasma concentrations of three neurotrophic factors (BDNF, brain-derived neurotrophic factor; GDNF, glial-derived neurotrophic factor; and SNAPIN, soluble N-ethylmaleimide sensitive fusion attachment receptor-associated protein) and initial fatigue intensification during external beam radiation therapy (EBRT) in euthymic non-metastatic prostate cancer men. Fatigue, as measured by the 13-item Functional Assessment of Cancer Therapy-Fatigue (FACT-F), and plasma neurotrophic factors were collected at baseline (prior to EBRT) and mid-EBRT. Subjects were categorized into fatigue and no fatigue groups using a > 3-point change in FACT-F scores between the two time points. Multiple linear regressions analysed the associations between fatigue and neurotrophic factors. FACT-F scores of 47 subjects decreased from baseline (43.95 ± 1.3) to mid-EBRT (38.36 ± 1.5, P < 0.001), indicating worsening fatigue. SNAPIN levels were associated with fatigue scores (r s = 0.43, P = 0.005) at baseline. A significant decrease of BDNF concentration (P = 0.008) was found in fatigued subjects during EBRT (n = 39). Baseline SNAPIN and decreasing BDNF levels may influence worsening fatigue during EBRT. Further investigations are warranted to confirm their role in the pathophysiology and therapeutics of fatigue.

  7. Factors that Facilitate and Impede Effective Knowledge Translation in Population Health Promotion: Results from a Consultation Workshop in Iran.

    PubMed

    Shooshtari, Shahin

    2012-01-01

    The workshop that this paper reports, held in Iran in May of 2011, at the 1st Inter-national and 4th National Congress on Health Education and Promotion, had three main objec-tives: 1) to introduce participants to the knowledge translation (KT) concept, along with its mod-els and methods; 2) to enhance participants' knowledge of how KT could apply to public health education and promotion ; and 3) to learn from different participating stakeholder groups about the factors that facilitate or impede effective KT in public health education and promotion in Iran. The workshop consisted of three components: introducing the KT concept, assessing the KT capacity of participants, and facilitating a discussion of the important contextual factors that promote and impede effective KT. Of the 26 individuals from across the country participat-ing in the workshop, 17 took part in a KT capacity assessment activity. They classified them-selves into one of the following three stakeholder groups: administrators and policymakers (n=6), practitioners (n=2), and researchers (n=9). There were different capacities for KT across the three stakeholder groups. The re-ported challenges for effective KT include "lack of resources and funding"; "lack of time"; "poor quality of relationships and lack of trust between health policymakers, administrators, re-searchers, and clinicians"; "inadequate skills possessed by healthcare professionals and adminis-trators for assessment and adaptation of research findings"; and "poor involvement of commu-nity partners in the research process." There is a great need to develop effective strategies to overcome the reported barri-ers for effective KT.

  8. Therapeutic value of nerve growth factor in promoting neural stem cell survival and differentiation and protecting against neuronal hearing loss.

    PubMed

    Han, Zhao; Wang, Cong-Pin; Cong, Ning; Gu, Yu-Yan; Ma, Rui; Chi, Fang-Lu

    2017-04-01

    Nerve growth factor (NGF) is a neurotrophic factor that modulates survival and differentiation of neural stem cells (NSCs). We investigated the function of NGF in promoting growth and neuronal differentiation of NSCs isolated from mouse cochlear tissue, as well as its protective properties against gentamicin (GMC) ototoxicity. NSCs were isolated from the cochlea of mice and cultured in vitro. Effect of NGF on survival, neurosphere formation, and differentiation of the NSCs, as well as neurite outgrowth and neural excitability in the subsequent in vitro neuronal network, was examined. Mechanotransduction capacity of intact cochlea and auditory brainstem response (ABR) threshold in mice were also measured following GMC treatment to evaluate protection using NGF against GMC-induced neuronal hearing loss. NGF improved survival, neurosphere formation, and neuronal differentiation of mouse cochlear NSCs in vitro, as well as promoted neurite outgrowth and neural excitability in the NSC-differentiated neuronal culture. In addition, NGF protected mechanotransduction capacity and restored ABR threshold in gentamicin ototoxicity mouse model. Our study supports a potential therapeutic value of NGF in promoting proliferation and differentiation of NSCs into functional neurons in vitro, supporting its protective role in the treatment of neuronal hearing loss.

  9. Understanding the factors which promote registered nurses' intent to stay in emergency and critical care areas.

    PubMed

    Van Osch, Mary; Scarborough, Kathy; Crowe, Sarah; Wolff, Angela C; Reimer-Kirkham, Sheryl

    2018-03-01

    To explore the influential factors and strategies that promote an experienced nurse's intent to stay in their emergency or critical care area. Turnover among registered nurses (herein referred to as nurses) working in specialty areas of practice can result in a range of negative outcomes. The retention of specialty nurses at the unit level has important implications for hospital and health systems. These implications include lost knowledge and experience which may in turn impact staff performance levels, patient outcomes, hiring, orientating, development of clinical competence and other aspects of organizational performance. This qualitative study used an interpretive descriptive design to understand nurses' perceptions of the current factors and strategies that promote them staying in emergency or critical care settings for two or more years. Focus groups were conducted with 13 emergency and critical care nurses. Data analysis involved thematic analysis that evolved from codes to categories to themes. Four themes were identified: leadership, interprofessional relationships, job fit and practice environment. In addition, the ideas of feeling valued, respected and acknowledged were woven throughout. Factors often associated with nurse attrition such as burnout and job stresses were not emphasised by the respondents in our study as critical to their intent to stay in their area of practice. This study has highlighted positive aspects that motivate nurses to stay in their specialty areas. To ensure quality care for patients, retention of experienced emergency and critical care nurses is essential to maintaining specialty expertise in these practice settings. © 2017 John Wiley & Sons Ltd.

  10. Engineering of synthetic, stress-responsive yeast promoters

    PubMed Central

    Rajkumar, Arun S.; Liu, Guodong; Bergenholm, David; Arsovska, Dushica; Kristensen, Mette; Nielsen, Jens; Jensen, Michael K.; Keasling, Jay D.

    2016-01-01

    Advances in synthetic biology and our understanding of the rules of promoter architecture have led to the development of diverse synthetic constitutive and inducible promoters in eukaryotes and prokaryotes. However, the design of promoters inducible by specific endogenous or environmental conditions is still rarely undertaken. In this study, we engineered and characterized a set of strong, synthetic promoters for budding yeast Saccharomyces cerevisiae that are inducible under acidic conditions (pH ≤ 3). Using available expression and transcription factor binding data, literature on transcriptional regulation, and known rules of promoter architecture we improved the low-pH performance of the YGP1 promoter by modifying transcription factor binding sites in its upstream activation sequence. The engineering strategy outlined for the YGP1 promoter was subsequently applied to create a response to low pH in the unrelated CCW14 promoter. We applied our best promoter variants to low-pH fermentations, enabling ten-fold increased production of lactic acid compared to titres obtained with the commonly used, native TEF1 promoter. Our findings outline and validate a general strategy to iteratively design and engineer synthetic yeast promoters inducible to environmental conditions or stresses of interest. PMID:27325743

  11. Identification of a factor in HeLa cells specific for an upstream transcriptional control sequence of an EIA-inducible adenovirus promoter and its relative abundance in infected and uninfected cells.

    PubMed Central

    SivaRaman, L; Subramanian, S; Thimmappaya, B

    1986-01-01

    Utilizing the gel electrophoresis/DNA binding assay, a factor specific for the upstream transcriptional control sequence of the EIA-inducible adenovirus EIIA-early promoter has been detected in HeLa cell nuclear extract. Analysis of linker-scanning mutants of the promoter by DNA binding assays and methylation-interference experiments show that the factor binds to the 17-nucleotide sequence 5' TGGAGATGACGTAGTTT 3' located between positions -66 and -82 upstream from the cap site. This sequence has been shown to be essential for transcription of this promoter. The EIIA-early-promoter specific factor was found to be present at comparable levels in uninfected HeLa cells and in cells infected with either wild-type adenovirus or the EIA-deletion mutant dl312 under conditions in which the EIA proteins are induced to high levels [7 or 20 hr after infection in the presence of arabinonucleoside (cytosine arabinoside)]. Based on the quantitation in DNA binding assays, it appears that the mechanism of EIA-activated transcription of the EIIA-early promoter does not involve a net change in the amounts of this factor. Images PMID:2942943

  12. Soluble Tumor Necrosis Factor Alpha Promotes Retinal Ganglion Cell Death in Glaucoma via Calcium-Permeable AMPA Receptor Activation.

    PubMed

    Cueva Vargas, Jorge L; Osswald, Ingrid K; Unsain, Nicolas; Aurousseau, Mark R; Barker, Philip A; Bowie, Derek; Di Polo, Adriana

    2015-09-02

    Loss of vision in glaucoma results from the selective death of retinal ganglion cells (RGCs). Tumor necrosis factor α (TNFα) signaling has been linked to RGC damage, however, the mechanism by which TNFα promotes neuronal death remains poorly defined. Using an in vivo rat glaucoma model, we show that TNFα is upregulated by Müller cells and microglia/macrophages soon after induction of ocular hypertension. Administration of XPro1595, a selective inhibitor of soluble TNFα, effectively protects RGC soma and axons. Using cobalt permeability assays, we further demonstrate that endogenous soluble TNFα triggers the upregulation of Ca(2+)-permeable AMPA receptor (CP-AMPAR) expression in RGCs of glaucomatous eyes. CP-AMPAR activation is not caused by defects in GluA2 subunit mRNA editing, but rather reflects selective downregulation of GluA2 in neurons exposed to elevated eye pressure. Intraocular administration of selective CP-AMPAR blockers promotes robust RGC survival supporting a critical role for non-NMDA glutamate receptors in neuronal death. Our study identifies glia-derived soluble TNFα as a major inducer of RGC death through activation of CP-AMPARs, thereby establishing a novel link between neuroinflammation and cell loss in glaucoma. Tumor necrosis factor α (TNFα) has been implicated in retinal ganglion cell (RGC) death, but how TNFα exerts this effect is poorly understood. We report that ocular hypertension, a major risk factor in glaucoma, upregulates TNFα production by Müller cells and microglia. Inhibition of soluble TNFα using a dominant-negative strategy effectively promotes RGC survival. We find that TNFα stimulates the expression of calcium-permeable AMPA receptors (CP-AMPAR) in RGCs, a response that does not depend on abnormal GluA2 mRNA editing but on selective downregulation of the GluA2 subunit by these neurons. Consistent with this, CP-AMPAR blockers promote robust RGC survival supporting a critical role for non-NMDA glutamate receptors

  13. Factors promoting a successful return to work: from an employer and employee perspective.

    PubMed

    Jakobsen, Klara; Lillefjell, Monica

    2014-01-01

    Efforts have been made to explain the inability to return to work (RTW) due to employees' chronic musculoskeletal pain. Knowledge of factors facilitating the RTW process is however still limited. Based on the experiences of employees and employers, this study aims to identify factors promoting a successful return process for persons with chronic musculoskeletal pain. The findings from interviews, involving six employees with musculoskeletal pain, and five employers with various work experience, were analysed by Giorgi's phenomenological analysis through four stages. The major themes underlying the employees' comments for a successful RTW were identifying and mobilizing their personal resources, adapting a balanced daily life, and requiring a positive dialogue with family and their employer, while the employers underlined the need for a helpful adjustment at work and how they wanted to become more involved in the rehabilitation process. In conclusion our findings underline the need for extended collaboration between the employees, employer, and rehabilitation staff, and should encourage occupational therapists to direct even more of their expertise towards the situation at the workplace.

  14. Streamlining Appointment, Promotion, and Tenure Procedures to Promote Early-Career Faculty Success.

    PubMed

    Smith, Shannon B; Hollerbach, Ann; Donato, Annemarie Sipkes; Edlund, Barbara J; Atz, Teresa; Kelechi, Teresa J

    2016-01-01

    A critical component of the progression of a successful academic career is being promoted in rank. Early-career faculty are required to have an understanding of appointment, promotion, and tenure (APT) guidelines, but many factors often impede this understanding, thwarting a smooth and planned promotion pathway for professional advancement. This article outlines the steps taken by an APT committee to improve the promotion process from instructor to assistant professor. Six sigma's DMAIC improvement model was selected as the guiding operational framework to remove variation in the promotion process. After faculty handbook revisions were made, several checklists developed, and a process review rubric was implemented; recently promoted faculty were surveyed on satisfaction with the process. Faculty opinions captured in the survey suggest increased transparency in the process and perceived support offered by the APT committee. Positive outcomes include a strengthened faculty support framework, streamlined promotion processes, and improved faculty satisfaction. Changes to the APT processes resulted in an unambiguous and standardized pathway for successful promotion. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Factors affecting the initiation of breastfeeding: implications for breastfeeding promotion.

    PubMed

    Earle, Sarah

    2002-09-01

    Breastfeeding rates in the United Kingdom (UK) are one of the lowest in the developed world and certainly the lowest in Europe. There have been numerous studies of breastfeeding in the UK, most of which have adopted a quantitative approach, and they have largely focused on obstetric or socio-demographic factors in the decision to breastfeed. Whilst these studies have an important role to play, this paper draws on a study that adopts a qualitative methodology to explore women's personal experiences and perceptions of breastfeeding. A qualitative study of 19 primagravidae was undertaken and completed in 1998. Participants were recruited to the study via 12 antenatal clinics in the West Midlands, England, UK. Their ages ranged from 16 to 30 years and the majority described themselves as 'white'. The majority of participants were in paid employment in a variety of occupations. The study was prospective in design. Participants were interviewed three times either during pregnancy or after childbirth: the first stage was between 6 and 14 weeks of pregnancy; the second stage was between 34 and 39 weeks; and the third stage was between 6 and 14 weeks after childbirth. The data indicate that there are several factors affecting breastfeeding initiation. First, infant feeding decisions seem to be made prior to, or irrespective of, contact with health professionals. Secondly, the data suggest that health promotion campaigns in the UK have been influential in their ability to educate women about the benefits of breastfeeding. However, this did not dissuade participants from formula feeding once their decision was made. The desire for paternal involvement also seemed to be another influential factor; fathers were either seen as able to alleviate the daily grind of early motherhood, or there was a desire for 'shared parenting'. Finally, some of the formula feeding women expressed a strong desire to re-establish their identities as separate individuals and as 'non-mothers'.

  16. Bax Interacting Factor-1 Promotes Survival and Mitochondrial Elongation in Neurons

    PubMed Central

    Wang, David B.; Uo, Takuma; Kinoshita, Chizuru; Sopher, Bryce L.; Lee, Rona J.; Murphy, Sean P.; Kinoshita, Yoshito; Garden, Gwenn A.; Wang, Hong-Gang

    2014-01-01

    Bax-interacting factor 1 (Bif-1, also known as endophilin B1) is a multifunctional protein involved in the regulation of apoptosis, mitochondrial morphology, and autophagy. Previous studies in non-neuronal cells have shown that Bif-1 is proapoptotic and promotes mitochondrial fragmentation. However, the role of Bif-1 in postmitotic neurons has not been investigated. In contrast to non-neuronal cells, we now report that in neurons Bif-1 promotes viability and mitochondrial elongation. In mouse primary cortical neurons, Bif-1 knockdown exacerbated apoptosis induced by the DNA-damaging agent camptothecin. Neurons from Bif-1-deficient mice contained fragmented mitochondria and Bif-1 knockdown in wild-type neurons also resulted in fragmented mitochondria which were more depolarized, suggesting mitochondrial dysfunction. During ischemic stroke, Bif-1 expression was downregulated in the penumbra of wild-type mice. Consistent with Bif-1 being required for neuronal viability, Bif-1-deficient mice developed larger infarcts and an exaggerated astrogliosis response following ischemic stroke. Together, these data suggest that, in contrast to non-neuronal cells, Bif-1 is essential for the maintenance of mitochondrial morphology and function in neurons, and that loss of Bif-1 renders neurons more susceptible to apoptotic stress. These unique actions may relate to the presence of longer, neuron-specific Bif-1 isoforms, because only these forms of Bif-1 were able to rescue deficiencies caused by Bif-1 suppression. This finding not only demonstrates an unexpected role for Bif-1 in the nervous system but this work also establishes Bif-1 as a potential therapeutic target for the treatment of neurological diseases, especially degenerative disorders characterized by alterations in mitochondrial dynamics. PMID:24523556

  17. A novel lymphoid enhancer-binding factor 1-cytoglobin axis promotes extravasation of osteosarcoma cells into the lungs.

    PubMed

    Pongsuchart, Mongkol; Kuchimaru, Takahiro; Yonezawa, Sakiko; Tran, Diem Thi Phuong; Kha, Nguyen The; Hoang, Ngoc Thi Hong; Kadonosono, Tetsuya; Kizaka-Kondoh, Shinae

    2018-06-21

    Lung metastasis is a major cause of mortality in patients with osteosarcoma (OS). A better understanding of the molecular mechanism of OS lung metastasis may facilitate development of new therapeutic strategies to prevent the metastasis. We have established high- and low-metastatic sublines (LM8-H and LM8-L respectively) from Dunn OS cell line LM8 by using in vivo image-guided screening. Among the genes whose expression was significantly increased in LM8-H compared to LM8-L, the transcription factor lymphoid enhancer-binding factor 1 (LEF1) was identified as a factor that promotes LM8-H cell extravasation into the lungs. To identify downstream effectors of LEF1 that are involved in OS lung metastasis, 13 genes were selected based on the LM8 microarray data and genome-wide meta-analysis of a public database for OS patients. Among them, the cytoglobin (Cygb) gene was identified as a key effector in promoting OS extravasation into the lungs. CYGB overexpression increased the extravasation ability of LM8-L cells, whereas knocking out the Cygb gene in LM8-H cells reduced this ability. Our results uncovered a novel LEF1-CYGB axis in OS lung metastasis and may open a new avenue for developing therapeutic strategies to prevent OS lung metastasis. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  18. Improved muscle-derived expression of human coagulation factor IX from a skeletal actin/CMV hybrid enhancer/promoter.

    PubMed

    Hagstrom, J N; Couto, L B; Scallan, C; Burton, M; McCleland, M L; Fields, P A; Arruda, V R; Herzog, R W; High, K A

    2000-04-15

    Hemophilia B is caused by the absence of functional coagulation factor IX (F.IX) and represents an important model for treatment of genetic diseases by gene therapy. Recent studies have shown that intramuscular injection of an adeno-associated viral (AAV) vector into mice and hemophilia B dogs results in vector dose-dependent, long-term expression of biologically active F.IX at therapeutic levels. In this study, we demonstrate that levels of expression of approximately 300 ng/mL (6% of normal human F.IX levels) can be reached by intramuscular injection of mice using a 2- to 4-fold lower vector dose (1 x 10(11) vector genomes/mouse, injected into 4 intramuscular sites) than previously described. This was accomplished through the use of an improved expression cassette that uses the cytomegalovirus (CMV) immediate early enhancer/promoter in combination with a 1.2-kilobase portion of human skeletal actin promoter. These results correlated with enhanced levels of F.IX transcript and secreted F.IX protein in transduced murine C2C12 myotubes. Systemic F.IX expression from constructs containing the CMV enhancer/promoter alone was 120 to 200 ng/mL in mice injected with 1 x 10(11) vector genomes. Muscle-specific promoters performed poorly for F.IX transgene expression in vitro and in vivo. However, the incorporation of a sequence from the alpha-skeletal actin promoter containing at least 1 muscle-specific enhancer and 1 enhancer-like element further improved muscle-derived expression of F.IX from a CMV enhancer/promoter-driven expression cassette over previously published results. These findings will allow the design of a clinical protocol for therapeutic levels of F.IX expression with lower vector doses, thus enhancing efficacy and safety of the protocol. (Blood. 2000;95:2536-2542)

  19. Understanding of Factors that Enable Health Promoters in Implementing Health-Promoting Schools: A Systematic Review and Narrative Synthesis of Qualitative Evidence

    PubMed Central

    Hung, Tommy Tsz Man; Chiang, Vico Chung Lim; Dawson, Angela; Lee, Regina Lai Tong

    2014-01-01

    Health-promoting schools have been regarded as an important initiative in promoting child and adolescent health in school settings using the whole-school approach. Quantitative research has proved its effectiveness in various school-based programmes. However, few qualitative studies have been conducted to investigate the strategies used by health promoters to implement such initiatives. In this study, the researchers conducted a systematic review and narrative synthesis of the qualitative literature to identify important enablers assisting the implementation of health-promoting schools from the perspectives of health promoters. Five enablers have been identified from the review: (a) Following a framework/guideline to implement health-promoting schools; (b) Obtaining committed support and contributions from the school staff, school board management, government authorities, health agencies and other stakeholders; (c) Adopting a multidisciplinary, collaborative approach to implementing HPS; (d) Establishing professional networks and relationships; and (e) Continuing training and education in school health promotion. This highlights the importance of developing school health policies that meet local health needs, and socio-cultural characteristics that can foster mutual understanding between the health and education sectors so as to foster health promotion in children and adolescents. PMID:25264789

  20. Mit1 Transcription Factor Mediates Methanol Signaling and Regulates the Alcohol Oxidase 1 (AOX1) Promoter in Pichia pastoris.

    PubMed

    Wang, Xiaolong; Wang, Qi; Wang, Jinjia; Bai, Peng; Shi, Lei; Shen, Wei; Zhou, Mian; Zhou, Xiangshan; Zhang, Yuanxing; Cai, Menghao

    2016-03-18

    The alcohol oxidase 1 (AOX1) promoter (P AOX1) of Pichia pastoris is the most powerful and commonly used promoter for driving protein expression. However, mechanisms regulating its transcriptional activity are unclear. Here, we identified a Zn(II)2Cys6-type methanol-induced transcription factor 1 (Mit1) and elucidated its roles in regulating PAOX1 activity in response to glycerol and methanol. Mit1 regulated the expression of many genes involved in methanol utilization pathway, including AOX1, but did not participate in peroxisome proliferation and transportation of peroxisomal proteins during methanol metabolism. Structural analysis of Mit1 by performing domain deletions confirmed its specific and critical role in the strict repression of P AOX1 in glycerol medium. Importantly, Mit1, Mxr1, and Prm1, which positively regulated P AOX1 in response to methanol, were bound to P AOX1 at different sites and did not interact with each other. However, these factors cooperatively activated P AOX1 through a cascade. Mxr1 mainly functioned during carbon derepression, whereas Mit1 and Prm1 functioned during methanol induction, with Prm1 transmitting methanol signal to Mit1 by binding to the MIT1 promoter (P MIT1), thus increasingly expressing Mit1 and subsequently activating P AOX1. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Bridging Grafts and Transient Nerve Growth Factor Infusions Promote Long-Term Central Nervous System Neuronal Rescue and Partial Functional Recovery

    NASA Astrophysics Data System (ADS)

    Tuszynski, Mark H.; Gage, Fred H.

    1995-05-01

    Grafts of favorable axonal growth substrates were combined with transient nerve growth factor (NGF) infusions to promote morphological and functional recovery in the adult rat brain after lesions of the septohippocampal projection. Long-term septal cholinergic neuronal rescue and partial hippocampal reinnervation were achieved, resulting in partial functional recovery on a simple task assessing habituation but not on a more complex task assessing spatial reference memory. Control animals that received transient NGF infusions without axonal-growth-promoting grafts lacked behavioral recovery but also showed long-term septal neuronal rescue. These findings indicate that (i) partial recovery from central nervous system injury can be induced by both preventing host neuronal loss and promoting host axonal regrowth and (ii) long-term neuronal loss can be prevented with transient NGF infusions.

  2. Fibroblast growth factor-2-induced host stroma reaction during initial tumor growth promotes progression of mouse melanoma via vascular endothelial growth factor A-dependent neovascularization.

    PubMed

    Tsunoda, Satoshi; Nakamura, Toshiyuki; Sakurai, Hiroaki; Saiki, Ikuo

    2007-04-01

    Fibroblast growth factor (FGF)-2 has been considered to play a critical role in neovascularization in several tumors; however, its precise role in tumor progression is not fully understood. In the present study, we have characterized the role of FGF-2 in B16-BL6 mouse melanoma cells, focusing on effects during the initial phase of tumor growth. FGF-2 was injected at the tumor inoculation site of dorsal skin during the initial phase. FGF-2 induced marked tumor growth and lymph node metastasis. This was well correlated with an increase in neovascularization in the host stroma. FGF-2 also recruited inflammatory and mesenchymal cells in host stroma. Marked tumor growth, pulmonary metastasis and intensive neovascularization in tumor parenchyma were also observed after a single injection of FGF-2 into the footpad inoculation site. In contrast, repeated injections of FGF-2 at a site remote from the footpad tumor were ineffective in promoting tumor growth and metastasis. These promoting activities of FGF-2 were blocked by local injections of a glucocorticoid hormone, suggesting that host inflammatory responses induced by FGF-2 are associated with FGF-2-induced tumor progression. In addition, although FGF-2 did not promote cellular proliferation and vascular endothelial growth factor A (VEGFA) mRNA expression in B16-BL6 cells in vitro, FGF-2 induced VEGFA expression in host stroma rather than tumor tissue, and local injections of a neutralizing antibody against VEGFA inhibited these activities of FGF-2 in vivo. These results indicate that abundant FGF-2 during the initial phase of tumor growth induces VEGFA-dependent intensive neovascularization in host stroma, and supports marked tumor growth and metastasis.

  3. Critical success factors for physical activity promotion through community partnerships.

    PubMed

    Lucidarme, Steffie; Marlier, Mathieu; Cardon, Greet; De Bourdeaudhuij, Ilse; Willem, Annick

    2014-02-01

    To define key factors of effective evidence-based policy implementation for physical activity promotion by use of a partnership approach. Using Parent and Harvey's model for sport and physical activity community-based partnerships, we defined determinants of implementation based on 13 face-to-face interviews with network organisations and 39 telephone interviews with partner organisations. Furthermore, two quantitative data-sets (n = 991 and n = 965) were used to measure implementation. In total, nine variables were found to influence implementation. Personal contact was the most powerful variable since its presence contributed to success while its absence led to a negative outcome. Four contributed directly to success: political motive, absence of a metropolis, high commitment and more qualified staff. Four others resulted in a less successful implementation: absence of positive merger effects, exposure motive and governance, and dispersed leadership. Community networks are a promising instrument for the implementation of evidence-based policies. However, determinants of both formation and management of partnerships influence the implementation success. During partnership formation, special attention should be given to partnership motives while social skills are of utmost importance for the management.

  4. Resilience-promoting factors in war-exposed adolescents: an epidemiologic study.

    PubMed

    Fayyad, John; Cordahi-Tabet, C; Yeretzian, J; Salamoun, M; Najm, C; Karam, E G

    2017-02-01

    Studies of war-exposed children have not investigated a comprehensive array of resilience-promoting factors, nor representative samples of children and adolescents. A representative sample of N = 710 adolescents was randomly selected from communities recently exposed to war. All those who had experienced war trauma were administered questionnaires measuring war exposure, family violence, availability of leisure activities, school-related problems, interpersonal and peer problems, socialization, daily routine problems, displacement, availability of parental supervision and contact and medical needs as well as coping skills related to religious coping, denial, self-control, avoidance and problem solving. Mental health was measured by the Strengths and Difficulties Questionnaire (SDQ) and the Child-Revised Impact of Events Scale (CRIES). Resilient adolescents were defined as those who experienced war trauma, but did not manifest any symptoms on the SDQ or CRIES. Resilience was related to being male, using problem-solving techniques, having leisure activities, and having parents who spent time with their adolescents and who supported them with school work. Interventions designed for war-traumatized youth must build individual coping skills of children and adolescents, yet at the same time target parents and teachers in an integrated manner.

  5. Pin1 promotes transforming growth factor-beta-induced migration and invasion.

    PubMed

    Matsuura, Isao; Chiang, Keng-Nan; Lai, Chen-Yu; He, Dongming; Wang, Guannan; Ramkumar, Romila; Uchida, Takafumi; Ryo, Akihide; Lu, Kunping; Liu, Fang

    2010-01-15

    Transforming growth factor-beta (TGF-beta) regulates a wide variety of biological activities. It induces potent growth-inhibitory responses in normal cells but promotes migration and invasion of cancer cells. Smads mediate the TGF-beta responses. TGF-beta binding to the cell surface receptors leads to the phosphorylation of Smad2/3 in their C terminus as well as in the proline-rich linker region. The serine/threonine phosphorylation sites in the linker region are followed by the proline residue. Pin1, a peptidyl-prolyl cis/trans isomerase, recognizes phosphorylated serine/threonine-proline motifs. Here we show that Smad2/3 interacts with Pin1 in a TGF-beta-dependent manner. We further show that the phosphorylated threonine 179-proline motif in the Smad3 linker region is the major binding site for Pin1. Although epidermal growth factor also induces phosphorylation of threonine 179 and other residues in the Smad3 linker region the same as TGF-beta, Pin1 is unable to bind to the epidermal growth factor-stimulated Smad3. Further analysis suggests that phosphorylation of Smad3 in the C terminus is necessary for the interaction with Pin1. Depletion of Pin1 by small hairpin RNA does not significantly affect TGF-beta-induced growth-inhibitory responses and a number of TGF-beta/Smad target genes analyzed. In contrast, knockdown of Pin1 in human PC3 prostate cancer cells strongly inhibited TGF-beta-mediated migration and invasion. Accordingly, TGF-beta induction of N-cadherin, which plays an important role in migration and invasion, is markedly reduced when Pin1 is depleted in PC3 cells. Because Pin1 is overexpressed in many cancers, our findings highlight the importance of Pin1 in TGF-beta-induced migration and invasion of cancer cells.

  6. How effectors promote beneficial interactions.

    PubMed

    Miwa, Hiroki; Okazaki, Shin

    2017-08-01

    Beneficial microbes such as rhizobia possess effector proteins that are secreted into the host cytoplasm where they modulate host-signaling pathways. Among these effectors, type 3 secreted effectors (T3Es) of rhizobia play roles in promoting nitrogen-fixing nodule symbiosis, suppressing host defenses and directly activating symbiosis-related processes. Rhizobia use the same strategy as pathogenic bacteria to suppress host defenses such as targeting the MAPK cascade. In addition, rhizobial T3E can promote root nodule symbiosis by directly activating Nod factor signaling, which bypasses Nod factor perception. The various strategies employed by beneficial microbes to promote infection and maintain viability in the host are therefore crucial for plant endosymbiosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Physical Activity Promotion in Schools: Which Strategies Do Schools (Not) Implement and Which Socioecological Factors Are Associated with Implementation?

    ERIC Educational Resources Information Center

    Cardon, Greet M.; Van Acker, Ragnar; Seghers, Jan; De Martelaer, Kristine; Haerens, Leen L.; De Bourdeaudhuij, Ilse M. M.

    2012-01-01

    We studied the implementation and associated factors of strategies (e.g. sports after school and during lunch break, active schoolyards, active school commuting) and organizational principles (e.g. safe bike racks, pupil involvement) that facilitate the physical activity (PA)-promoting role of schools. Key representatives of 111 elementary and 125…

  8. Interaction of the Transcription Start Site Core Region and Transcription Factor YY1 Determine Ascorbate Transporter SVCT2 Exon 1a Promoter Activity

    PubMed Central

    Qiao, Huan; May, James M.

    2012-01-01

    Transcription of the ascorbate transporter, SVCT2, is driven by two distinct promoters in exon 1 of the transporter sequence. The exon 1a promoter lacks a classical transcription start site and little is known about regulation of promoter activity in the transcription start site core (TSSC) region. Here we present evidence that the TSSC binds the multifunctional initiator-binding protein YY1. Electrophoresis shift assays using YY1 antibody showed that YY1 is present as one of two major complexes that specifically bind to the TSSC. The other complex contains the transcription factor NF-Y. Mutations in the TSSC that decreased YY1 binding also impaired the exon 1a promoter activity despite the presence of an upstream activating NF-Y/USF complex, suggesting that YY1 is involved in the regulation of the exon 1a transcription. Furthermore, YY1 interaction with NF-Y and/or USF synergistically enhanced the exon 1a promoter activity in transient transfections and co-activator p300 enhanced their synergistic activation. We propose that the TSSC plays a vital role in the exon 1a transcription and that this function is partially carried out by the transcription factor YY1. Moreover, co-activator p300 might be able to synergistically enhance the TSSC function via a “bridge” mechanism with upstream sequences. PMID:22532872

  9. A Study of Predictive Factors Affecting Health: Promoting Behaviors of North Korean Adolescent Refugees

    PubMed Central

    Noh, Jin-Won; Yun, Hyo-Young; Park, Hyunchun; Yu, Shi-Eun

    2015-01-01

    Objectives: The present study aimed to analyze the factors that could affect the health-promoting behaviors of North Korean adolescent refugees residing in South Korea. Methods: Questions about their sociodemographic variables, subjective health status, healthy living habits, and health-promoting behaviors were asked. Results: Statistically significant differences were found in religion (t=2.30, p<0.05), having family members in South Korea (t=2.02, p<0.05), and subjective health status (t=4.96, p<0.01). Scores on health-responsible behaviors were higher with higher age (t=2.90, p<0.01) and for subjects without family or friends (t=2.43, p<0.05). Higher physical-activity behaviors were observed in males (t=3.32, p<0.01), in those with better subjective health status (t=3.46, p<0.05) and lower body mas index (t=3.48, p<0.05), and in smokers (t=3.17, p<0.01). Nutritional behaviors were higher in those who followed a religion (t=2.17, p<0.05). Spiritual growth behaviors were higher in those who followed a religion (t=4.21, p<0.001), had no family in South Korea (t=2.04, p<0.05), and had higher subjective health status (t=5.74, p<0.01). Scores on interpersonal relationships and stress-management behaviors were higher for those with higher subjective health status. A multiple regression analysis showed greater effects on health-promoting behaviors when subjective health status was better. Older people and non-smokers exhibited more health-responsible behaviors, while more physical-activity behaviors and spiritual growth activities were observed when subjective health status was better. Interpersonal relationship behaviors had positive effects on those with good subjective heath status and on non-smokers. Conclusions: Based on the results of the current study, an alternative was suggested for promoting health in North Korean adolescent refugees. PMID:26429289

  10. Production of Zebrafish Offspring from Cultured Female Germline Stem Cells

    PubMed Central

    Wong, Ten-Tsao; Tesfamichael, Abraham; Collodi, Paul

    2013-01-01

    Zebrafish female germline stem cell (FGSC) cultures were generated from a transgenic line of fish that expresses Neo and DsRed under the control of the germ cell specific promoter, ziwi [Tg(ziwi:neo);Tg(ziwi:DsRed)]. Homogeneous FGSC cultures were established by G418 selection and continued to express ziwi for more than 6 weeks along with the germ cell markers nanos3, dnd, dazl and vasa. A key component of the cell culture system was the use of a feeder cell line that was initiated from ovaries of a transgenic line of fish [Tg(gsdf:neo)] that expresses Neo controlled by the zebrafish gonadal soma derived factor (gsdf) promoter. The feeder cell line was selected in G418 and engineered to express zebrafish leukemia inhibitory factor (Lif), basic fibroblast growth factor (Fgf2) and glial-cell-line derived neurotrophic factor (Gdnf). These factors were shown to significantly enhance FGSC growth, survival and germline competency in culture. Results from cell transplantation experiments revealed that the cultured FGSCs were able to successfully colonize the gonad of sterile recipient fish and generate functional gametes. Up to 20% of surviving recipient fish that were injected with the cultured FGSCs were fertile and generated multiple batches of normal offspring for at least 6 months. The FGSC cultures will provide an in vitro system for studies of zebrafish germ cell growth and differentiation and their high frequency of germline transmission following transplantation could form the basis of a stem cell-mediated strategy for gene transfer and manipulation of the zebrafish genome. PMID:23671620

  11. Instructive role of the vascular niche in promoting tumour growth and tissue repair by angiocrine factors

    PubMed Central

    Butler, Jason M.; Kobayashi, Hideki; Rafii, Shahin

    2010-01-01

    The precise mechanisms whereby anti-angiogenesis therapy blocks tumour growth or causes vascular toxicity are unknown. We propose that endothelial cells establish a vascular niche that promotes tumour growth and tissue repair not only by delivering nutrients and O2 but also through an ‘angiocrine’ mechanism by producing stem and progenitor cell-active trophogens. Identification of endothelial-derived instructive angiocrine factors will allow direct tumour targeting, while diminishing the unwanted side effects associated with the use of anti-angiogenic agents. PMID:20094048

  12. Instructive role of the vascular niche in promoting tumour growth and tissue repair by angiocrine factors.

    PubMed

    Butler, Jason M; Kobayashi, Hideki; Rafii, Shahin

    2010-02-01

    The precise mechanisms whereby anti-angiogenesis therapy blocks tumour growth or causes vascular toxicity are unknown. We propose that endothelial cells establish a vascular niche that promotes tumour growth and tissue repair not only by delivering nutrients and O2 but also through an 'angiocrine' mechanism by producing stem and progenitor cell-active trophogens. Identification of endothelial-derived instructive angiocrine factors will allow direct tumour targeting, while diminishing the unwanted side effects associated with the use of anti-angiogenic agents.

  13. Sigma-1 receptor chaperones regulate the secretion of brain-derived neurotrophic factor

    PubMed Central

    Fujimoto, Michiko; Hayashi, Teruo; Urfer, Roman; Mita, Shiro; Su, Tsung-Ping

    2013-01-01

    The sigma-1 receptor (Sig-1R) is a novel endoplasmic reticulum (ER) molecular chaperone that regulates protein folding and degradation. The Sig-1R activation by agonists is known to improve memory, promote cell survival, and exert an antidepressant-like action in animals. Cutamesine (SA4503), a selective Sig-1R ligand, was shown to increase BDNF in the hippocampus of rats. How exactly the intracellular chaperone Sig-1R or associated ligand causes the increase of BDNF or any other neurotrophins is unknown. We examined here whether the action of Sig-1Rs may relate to the post-translational processing and release of BDNF in neuroblastoma cell lines. We used in vitro assays and confirmed that cutamesine possesses the bona fide Sig-1R agonist property by causing the dissociation of BiP from Sig-1Rs. The C-terminus of Sig-1Rs exerted robust chaperone activity by completely blocking the aggregation of BDNF and GDNF in vitro. Chronic treatment with cutamesine in rat B104 neuroblastoma caused a time- and dose-dependent potentiation of the secretion of BDNF without affecting the mRNA level of BDNF. Cutamesine decreased the intracellular level of pro-BDNF and mature BDNF whereas increased the extracellular level of mature BDNF. The pulse-chase experiment indicated that the knockdown of Sig-1Rs decreased the secreted mature BDNF in B104 cells without affecting the synthesis of BDNF. Our findings indicate that, in contrast to clinically used antidepressants that promote the transcriptional upregulation of BDNF, the Sig-1R agonist cutamesine potentiates the post-translational processing of neurotrophins. This unique pharmacological profile may provide a novel therapeutic opportunity for the treatment of neuropsychiatric disorders. PMID:22337473

  14. Streptococcus pyogenes CAMP factor promotes bacterial adhesion and invasion in pharyngeal epithelial cells without serum via PI3K/Akt signaling pathway.

    PubMed

    Kurosawa, Mie; Oda, Masataka; Domon, Hisanori; Isono, Toshihito; Nakamura, Yuki; Saitoh, Issei; Hayasaki, Haruaki; Yamaguchi, Masaya; Kawabata, Shigetada; Terao, Yutaka

    2018-01-01

    Streptococcus pyogenes is a bacterium that causes systemic diseases, such as pharyngitis and toxic shock syndrome, via oral- or nasal-cavity infection. S. pyogenes produces various molecules known to function with serum components that lead to bacterial adhesion and invasion in human tissues. In this study, we identified a novel S. pyogenes adhesin/invasin. Our results revealed that CAMP factor promoted streptococcal adhesion and invasion in pharyngeal epithelial Detroit562 cells without serum. Recombinant CAMP factor initially localized on the membranes of cells and then became internalized in the cytosol following S. pyogenes infection. Additionally, CAMP factor phosphorylated phosphoinositide 3-kinase and serine-threonine kinase in the cells. ELISA results demonstrate that CAMP factor affected the amount of phosphorylated phosphoinositide 3-kinase and serine-threonine kinase in Detroit562 cells. Furthermore, CAMP factor did not reverse the effect of phosphoinositide 3-kinase knockdown by small interfering RNA in reducing the level of adhesion and invasion of S. pyogenes isogenic cfa-deficient mutant. These results suggested that S. pyogenes CAMP factor activated the phosphoinositide 3-kinase/serine-threonine kinase signaling pathway, promoting S. pyogenes invasion of Detroit562 cells without serum. Our findings suggested that CAMP factor played an important role on adhesion and invasion in pharyngeal epithelial cells. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  15. Health-Promoting Behavior and Influencing Factors in Young North Korean Refugees (NKRs) Living in South Korea.

    PubMed

    Park, Jumin; Kwon, Young Dae; Park, Hyunchun; Yu, Shi Eun; Noh, Jin-Won

    2018-02-02

    The number of young North Korean refugees (NKRs) entering South Korea to escape famine and poverty and improve their quality of life is drastically increasing. The aims of this study were to identify and compare health promoting lifestyle behaviors (HPLBs) of young NKRs, compared to South Koreans, and to investigate influencing factors related to HPLBs in young NKRs. Data were obtained from 150 NKRs residing in South Korea and 161 South Koreans. Respondents provided their psychological status (depression, stress, and life satisfaction) and HPLBs. The NKRs reported lower interpersonal relations scores and higher spiritual growth scores compared to the control group. Attendance in religious services, stress, and life satisfaction were significantly associated with HPLBs in young NKRs. Health education and/or promotion programs focusing interpersonal relations and spiritual growth may be beneficial. In addition, regular psychological health screening is proposed as part of health-checkup programs, potentially improving adjustment to South Korean society.

  16. Role of activator protein-1 on the effect of arginine-glycine-aspartic acid containing peptides on transforming growth factor-beta1 promoter activity.

    PubMed

    Ruiz-Torres, M P; Perez-Rivero, G; Diez-Marques, M L; Griera, M; Ortega, R; Rodriguez-Puyol, M; Rodríguez-Puyol, D

    2007-01-01

    While arginine-glycine-aspartic acid-based peptidomimetics have been employed for the treatment of cardiovascular disorders and cancer, their use in other contexts remains to be explored. Arginine-glycine-aspartic acid-serine induces Transforming growth factor-beta1 transcription in human mesangial cells, but the molecular mechanisms involved have not been studied extensively. We explored whether this effect could be due to Activator protein-1 activation and studied the potential pathways involved. Addition of arginine-glycine-aspartic acid-serine promoted Activator protein-1 binding to its cognate sequence within the Transforming growth factor-beta1 promoter as well as c-jun and c-fos protein abundance. Moreover, this effect was suppressed by curcumin, a c-Jun N terminal kinase inhibitor, and was absent when the Activator protein-1 cis-regulatory element was deleted. Activator protein-1 binding was dependent on the activity of integrin linked kinase, as transfection with a dominant negative mutant suppressed both Activator protein-1 binding and c-jun and c-fos protein increment. Integrin linked kinase was, in turn, dependent on Phosphoinositol-3 kinase activity. Arginine-glycine-aspartic acid-serine stimulated Phosphoinositol-3 kinase activity, and Transforming growth factor-beta1 promoter activation was abrogated by the use of Phosphoinositol-3 kinase specific inhibitors. In summary, we propose that arginine-glycine-aspartic acid-serine activates Integrin linked kinase via the Phosphoinositol-3 kinase pathway and this leads to activation of c-jun and c-fos and increased Activator protein-1 binding and Transforming growth factor-beta1 promoter activity. These data may contribute to understand the molecular mechanisms involved in the cellular actions of arginine-glycine-aspartic acid-related peptides and enhance their relevance as these products evolve into clinical therapeutic use.

  17. Exercise promotes the expression of brain derived neurotrophic factor (BDNF) through the action of the ketone body β-hydroxybutyrate.

    PubMed

    Sleiman, Sama F; Henry, Jeffrey; Al-Haddad, Rami; El Hayek, Lauretta; Abou Haidar, Edwina; Stringer, Thomas; Ulja, Devyani; Karuppagounder, Saravanan S; Holson, Edward B; Ratan, Rajiv R; Ninan, Ipe; Chao, Moses V

    2016-06-02

    Exercise induces beneficial responses in the brain, which is accompanied by an increase in BDNF, a trophic factor associated with cognitive improvement and the alleviation of depression and anxiety. However, the exact mechanisms whereby physical exercise produces an induction in brain Bdnf gene expression are not well understood. While pharmacological doses of HDAC inhibitors exert positive effects on Bdnf gene transcription, the inhibitors represent small molecules that do not occur in vivo. Here, we report that an endogenous molecule released after exercise is capable of inducing key promoters of the Mus musculus Bdnf gene. The metabolite β-hydroxybutyrate, which increases after prolonged exercise, induces the activities of Bdnf promoters, particularly promoter I, which is activity-dependent. We have discovered that the action of β-hydroxybutyrate is specifically upon HDAC2 and HDAC3, which act upon selective Bdnf promoters. Moreover, the effects upon hippocampal Bdnf expression were observed after direct ventricular application of β-hydroxybutyrate. Electrophysiological measurements indicate that β-hydroxybutyrate causes an increase in neurotransmitter release, which is dependent upon the TrkB receptor. These results reveal an endogenous mechanism to explain how physical exercise leads to the induction of BDNF.

  18. Exposure to 60% oxygen promotes migration and upregulates angiogenesis factor secretion in breast cancer cells.

    PubMed

    Crowley, Peter D; Stuttgen, Vivian; O'Carroll, Emma; Ash, Simon A; Buggy, Donal J; Gallagher, Helen C

    2017-01-01

    Peri-operative factors, including anaesthetic drugs and techniques, may affect cancer cell biology and clinical recurrence. In breast cancer cells, we demonstrated that sevoflurane promotes migration and angiogenesis in high fractional oxygen but not in air. Follow-up analysis of the peri-operative oxygen fraction trial found an association between high inspired oxygen during cancer surgery and reduced tumor-free survival. Here we evaluated effects of acute, high oxygen exposure on breast cancer cell viability, migration and secretion of angiogenesis factors in vitro . MDA-MB-231 and MCF-7 breast cancer cells were exposed to 21%, 30%, 60%, or 80% v/v O 2 for 3 hours. Cell viability at 24 hours was determined by MTT and migration at 24 hours with the Oris™ Cell Migration Assay. Secretion of angiogenesis factors at 24 hours was measured via membrane-based immunoarray. Exposure to 30%, 60% or 80% oxygen did not affect cell viability. Migration of MDA-MB-231 and MCF-7 cells was increased by 60% oxygen ( P = 0.012 and P = 0.007, respectively) while 30% oxygen increased migration in MCF-7 cells ( P = 0.011). These effects were reversed by dimethyloxaloylglycine. In MDA-MB-231 cells high fractional oxygen increased secretion of angiogenesis factors monocyte chemotactic protein 1, regulated on activation normal T-cell expressed and vascular endothelial growth factor. In MCF-7 cells, interleukin-8, angiogenin and vascular endothelial growth factor secretion was significantly increased by high fractional oxygen. High oxygen exposure stimulates migration and secretion of angiogenesis factors in breast cancer cells in vitro .

  19. Copper-tolerant rhizosphere bacteria-characterization and assessment of plant growth promoting factors.

    PubMed

    Rathi, Manohari; Nandabalan, Yogalakshmi Kadapakkam

    2017-04-01

    Remediation of heavy metal contaminated soil is a major problem or concern worldwide. Heavy metal accumulation in the soil is increasing day by day by industries, mines, agriculture, fuel combustion and municipal waste discharge. Such contaminated soils harbour a large number of resistant microbial populations. Screening and isolation of such microbes would be utilized for natural remediation of metal contaminated soils. Therefore, in the present study, highly copper-tolerant bacteria from rhizosphere soil of Cynodon dactylon grown in brass effluent contaminated soil were isolated and assessed for plant growth promoting factors. A total of 61 isolates were isolated from the rhizosphere of three contaminated sites. Six highly copper-tolerant isolates named as MYS1, MYS2, MYS3, MYS4, MYS5 and MYS6 were isolated through enrichment in copper containing nutrient broth. 16S rRNA analysis revealed that the isolates were from genera Stenotrophomonas and Brevundimonas and belong to classes Alpha Proteobacteriacea and Gamma Proteobacteriacea, respectively. Strain MYS1, MYS2 and MYS4 showed 95-99% similarity with Stenotrophomonas acidaminiphila, strain MYS3 and MYS5 showed 99 and 97% similarity with Stenotrophomonas maltophilia and Stenotrophomonas sp. Strain MYS6 showed 94% similarity with Brevundimonas diminuta. All the rhizobacteria showed plant growth promoting traits such as production of siderophores, indole acetic acid (IAA), phosphate solubilization and 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity. From this study, we can conclude that all the isolates possess copper resistance and potential for phytoremediation of copper polluted soils.

  20. The SUMO Pathway Promotes Basic Helix-Loop-Helix Proneural Factor Activity via a Direct Effect on the Zn Finger Protein Senseless

    PubMed Central

    Chen, Angela; Huang, Yan Chang; Wang, Pin Yao; Kemp, Sadie E.

    2012-01-01

    During development, proneural transcription factors of the basic helix-loop-helix (bHLH) family are required to commit cells to a neural fate. In Drosophila neurogenesis, a key mechanism promoting sense organ precursor (SOP) fate is the synergy between proneural factors and their coactivator Senseless in transcriptional activation of target genes. Here we present evidence that posttranslational modification by SUMO enhances this synergy via an effect on Senseless protein. We show that Senseless is a direct target for SUMO modification and that mutagenesis of a predicted SUMOylation motif in Senseless reduces Senseless/proneural synergy both in vivo and in cell culture. We propose that SUMOylation of Senseless via lysine 509 promotes its synergy with proneural proteins during transcriptional activation and hence regulates an important step in neurogenesis leading to the formation and maturation of the SOPs. PMID:22586269

  1. Impact factor of medical education journals and recently developed indices: Can any of them support academic promotion criteria?

    PubMed

    Azer, S A; Holen, A; Wilson, I; Skokauskas, N

    2016-01-01

    Journal Impact Factor (JIF) has been used in assessing scientific journals. Other indices, h- and g-indices and Article Influence Score (AIS), have been developed to overcome some limitations of JIF. The aims of this study were, first, to critically assess the use of JIF and other parameters related to medical education research, and second, to discuss the capacity of these indices in assessing research productivity as well as their utility in academic promotion. The JIF of 16 medical education journals from 2000 to 2011 was examined together with the research evidence about JIF in assessing research outcomes of medical educators. The findings were discussed in light of the nonnumerical criteria often used in academic promotion. In conclusion, JIF was not designed for assessing individual or group research performance, and it seems unsuitable for such purposes. Although the g- and h-indices have demonstrated promising outcomes, further developments are needed for their use as academic promotion criteria. For top academic positions, additional criteria could include leadership, evidence of international impact, and contributions to the advancement of knowledge with regard to medical education.

  2. Virulence Factors of Geminivirus Interact with MYC2 to Subvert Plant Resistance and Promote Vector Performance[C][W

    PubMed Central

    Li, Ran; Weldegergis, Berhane T.; Li, Jie; Jung, Choonkyun; Qu, Jing; Sun, Yanwei; Qian, Hongmei; Tee, ChuanSia; van Loon, Joop J.A.; Dicke, Marcel; Chua, Nam-Hai; Liu, Shu-Sheng

    2014-01-01

    A pathogen may cause infected plants to promote the performance of its transmitting vector, which accelerates the spread of the pathogen. This positive effect of a pathogen on its vector via their shared host plant is termed indirect mutualism. For example, terpene biosynthesis is suppressed in begomovirus-infected plants, leading to reduced plant resistance and enhanced performance of the whiteflies (Bemisia tabaci) that transmit these viruses. Although begomovirus-whitefly mutualism has been known, the underlying mechanism is still elusive. Here, we identified βC1 of Tomato yellow leaf curl China virus, a monopartite begomovirus, as the viral genetic factor that suppresses plant terpene biosynthesis. βC1 directly interacts with the basic helix-loop-helix transcription factor MYC2 to compromise the activation of MYC2-regulated terpene synthase genes, thereby reducing whitefly resistance. MYC2 associates with the bipartite begomoviral protein BV1, suggesting that MYC2 is an evolutionarily conserved target of begomoviruses for the suppression of terpene-based resistance and the promotion of vector performance. Our findings describe how this viral pathogen regulates host plant metabolism to establish mutualism with its insect vector. PMID:25490915

  3. Promoter analysis reveals cis-regulatory motifs associated with the expression of the WRKY transcription factor CrWRKY1 in Catharanthus roseus.

    PubMed

    Yang, Zhirong; Patra, Barunava; Li, Runzhi; Pattanaik, Sitakanta; Yuan, Ling

    2013-12-01

    WRKY transcription factors (TFs) are emerging as an important group of regulators of plant secondary metabolism. However, the cis-regulatory elements associated with their regulation have not been well characterized. We have previously demonstrated that CrWRKY1, a member of subgroup III of the WRKY TF family, regulates biosynthesis of terpenoid indole alkaloids in the ornamental and medicinal plant, Catharanthus roseus. Here, we report the isolation and functional characterization of the CrWRKY1 promoter. In silico analysis of the promoter sequence reveals the presence of several potential TF binding motifs, indicating the involvement of additional TFs in the regulation of the TIA pathway. The CrWRKY1 promoter can drive the expression of a β-glucuronidase (GUS) reporter gene in native (C. roseus protoplasts and transgenic hairy roots) and heterologous (transgenic tobacco seedlings) systems. Analysis of 5'- or 3'-end deletions indicates that the sequence located between positions -140 to -93 bp and -3 to +113 bp, relative to the transcription start site, is critical for promoter activity. Mutation analysis shows that two overlapping as-1 elements and a CT-rich motif contribute significantly to promoter activity. The CrWRKY1 promoter is induced in response to methyl jasmonate (MJ) treatment and the promoter region between -230 and -93 bp contains a putative MJ-responsive element. The CrWRKY1 promoter can potentially be used as a tool to isolate novel TFs involved in the regulation of the TIA pathway.

  4. The angiogenic factor CCN1 promotes adhesion and migration of circulating CD34+ progenitor cells: potential role in angiogenesis and endothelial regeneration.

    PubMed

    Grote, Karsten; Salguero, Gustavo; Ballmaier, Matthias; Dangers, Marc; Drexler, Helmut; Schieffer, Bernhard

    2007-08-01

    Tissue regeneration involves the formation of new blood vessels regulated by angiogenic factors. We reported recently that the expression of the angiogenic factor CCN1 is up-regulated under various pathophysiologic conditions within the cardiovascular system. Because CD34+ progenitor cells participate in cardiovascular tissue regeneration, we investigated whether CCN1-detected for the first time in human plasma-promotes the recruitment of CD34+ progenitor cells to endothelial cells, thereby enhancing endothelial proliferation and neovascularization. In this study, we demonstrated that CCN1 and supernatants from CCN1-stimulated human CD34+ progenitor cells promoted proliferation of endothelial cells and angiogenesis in vitro and in vivo. In addition, CCN1 induced migration and transendothelial migration of CD34+ cells and the release of multiple growth factors, chemokines, and matrix metalloproteinase-9 (MMP-9) from these cells. Moreover, the CCN1-specific integrins alpha(M)beta(2) and alpha(V)beta(3) are expressed on CD34+ cells and CCN1 stimulated integrin-dependent signaling. Furthermore, integrin antagonists (RGD-peptides) suppressed both binding of CCN1 to CD34+ cells and CCN1-induced adhesion of CD34+ cells to endothelial cells. These data suggest that CCN1 promotes integrin-dependent recruitment of CD34+ progenitor cells to endothelial cells, which may contribute to paracrine effects on angiogenesis and tissue regeneration.

  5. Inhibitor of differentiation 1 transcription factor promotes metabolic reprogramming in hepatocellular carcinoma cells

    PubMed Central

    Sharma, Bal Krishan; Kolhe, Ravindra; Black, Stephen M.; Keller, Jonathan R.; Mivechi, Nahid F.; Satyanarayana, Ande

    2016-01-01

    Reprograming of metabolism is one of the central hallmarks of cancer. The majority of cancer cells depend on high rates of glycolysis and glutaminolysis for their growth and survival. A number of oncogenes and tumor suppressors have been connected to the regulation of altered glucose and glutamine metabolism in cancer cells. For example, the oncogene c-Myc plays vital roles in cancer cell metabolic adaptation by directly regulating various genes that participate in aerobic glycolysis and glutaminolysis. Inhibitor of differentiation 1 (Id1) is a helix-loop-helix transcription factor that plays important roles in cell proliferation, differentiation, and cell fate determination. Overexpression of Id1 causes intestinal adenomas and thymic lymphomas in mice, suggesting that Id1 could function as an oncogene. Despite it being an oncogene, whether Id1 plays any prominent role in cancer cell metabolic reprograming is unknown. Here, we demonstrate that Id1 is strongly expressed in human and mouse liver tumors and in hepatocellular carcinoma (HCC) cell lines, whereas its expression is very low or undetectable in normal liver tissues. In HCC cells, Id1 expression is regulated by the MAPK/ERK pathway at the transcriptional level. Knockdown of Id1 suppressed aerobic glycolysis and glutaminolysis, suggesting that Id1 promotes a metabolic shift toward aerobic glycolysis. At the molecular level, Id1 mediates its metabolic effects by regulating the expression levels of c-Myc. Knockdown of Id1 resulted in down-regulation (∼75%) of c-Myc, whereas overexpression of Id1 strongly induced (3-fold) c-Myc levels. Interestingly, knockdown of c-Myc resulted in down-regulation (∼60%) of Id1, suggesting a positive feedback-loop regulatory mechanism between Id1 and c-Myc. Under anaerobic conditions, both Id1 and c-Myc are down-regulated (50–70%), and overexpression of oxygen-insensitive hypoxia-inducible factor 1α (Hif1α) or its downstream target Mxi1 resulted in a significant reduction

  6. Trophic factors from adipose tissue-derived multi-lineage progenitor cells promote cytodifferentiation of periodontal ligament cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawada, Keigo; Takedachi, Masahide, E-mail: takedati@dent.osaka-u.ac.jp; Yamamoto, Satomi

    Stem and progenitor cells are currently being investigated for their applicability in cell-based therapy for periodontal tissue regeneration. We recently demonstrated that the transplantation of adipose tissue-derived multi-lineage progenitor cells (ADMPCs) enhances periodontal tissue regeneration in beagle dogs. However, the molecular mechanisms by which transplanted ADMPCs induce periodontal tissue regeneration remain to be elucidated. In this study, trophic factors released by ADMPCs were examined for their paracrine effects on human periodontal ligament cell (HPDL) function. ADMPC conditioned medium (ADMPC-CM) up-regulated osteoblastic gene expression, alkaline phosphatase activity and calcified nodule formation in HPDLs, but did not significantly affect their proliferative response.more » ADMPCs secreted a number of growth factors, including insulin-like growth factor binding protein 6 (IGFBP6), hepatocyte growth factor and vascular endothelial growth factor. Among these, IGFBP6 was most highly expressed. Interestingly, the positive effects of ADMPC-CM on HPDL differentiation were significantly suppressed by transfecting ADMPCs with IGFBP6 siRNA. Our results suggest that ADMPCs transplanted into a defect in periodontal tissue release trophic factors that can stimulate the differentiation of HPDLs to mineralized tissue-forming cells, such as osteoblasts and cementoblasts. IGFBP6 may play crucial roles in ADMPC-induced periodontal regeneration. - Highlights: • ADMPC-derived humoral factors stimulate cytodifferentiation of HPDLs. • ADMPCs secret growth factors including IGFBP6, VEGF and HGF. • IGFBP6 is involved in the promotion effect of ADMPC-CM on HPDL cytodifferentiation.« less

  7. Connective tissue growth factor promotes temozolomide resistance in glioblastoma through TGF-β1-dependent activation of Smad/ERK signaling.

    PubMed

    Zeng, Huijun; Yang, Zhao; Xu, Ningbo; Liu, Boyang; Fu, Zhao; Lian, Changlin; Guo, Hongbo

    2017-06-15

    Limited benefits and clinical utility of temozolomide (TMZ) for glioblastoma (GB) are frequently compromised by the development of acquired drug resistance. Overcoming TMZ resistance and uncovering the underlying mechanisms are challenges faced during GB chemotherapy. In this study, we reported that connective tissue growth factor (CTGF) was associated with GB chemoresistance and significantly upregulated in TMZ-treated GB cells. CTGF knockdown promoted TMZ-induced cell apoptosis and enhanced chemosensitivity, whereas its overexpression markedly conferred TMZ resistance in vitro and in vivo. Moreover, CTGF promoted TMZ resistance through stem-like properties acquisition and CD44 interference reversed the CTGF-induced TMZ resistance. Mechanistically, further investigation revealed that the TMZ-induced CTGF upregulation was tissue growth factor (TGF-β) dependent, and regulated by TGF-β1 activation through Smad and ERK1/2 signaling. Together, our results suggest a pivotal role of CTGF-mediated TMZ resistance through TGF-β1-dependent activation of Smad/ERK signaling pathways. These data provide us insights for identifying potential targets that are beneficial for overcoming TMZ resistance in GB.

  8. Biological basis of neuroprotection and neurotherapeutic effects of Whole Body Periodic Acceleration (pGz).

    PubMed

    Adams, Jose A; Uryash, Arkady; Bassuk, Jorge; Sackner, Marvin A; Kurlansky, Paul

    2014-06-01

    Exercise is a well known neuroprotective and neurotherapeutic strategy in animal models and humans with brain injury and cognitive dysfunction. In part, exercise induced beneficial effects relate to endothelial derived nitric oxide (eNO) production and induction of the neurotrophins; Brain Derived Neurotrophic Factor (BDNF) and Glial Derived Neurotrophic Factor (GDNF). Whole Body Periodic Acceleration (WBPA (pGz), is the motion of the supine body headward to footward in a sinusoidal fashion, at frequencies of 100-160 cycles/min, inducing pulsatile shear stress to the vascular endothelium. WBPA (pGz) increases eNO in the cardiovascular system in animal models and humans. We hypothesized that WBPA (pGz) has neuroprotective and neurotherapeutic effects due to enhancement of biological pathways that include eNOS, BDNF and GDNF. We discuss protein expression analysis of these in brain of rodents. Animal and observational human data affirm a neuroprotective and neurotherapeutic role for WBPA (pGz). These findings suggest that WBPA (pGz) in addition to its well known beneficial cardiovascular effects can be a simple non-invasive neuroprotective and neurotherapeutic strategy with far reaching health benefits. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Bm-TFF2, a toad trefoil factor, promotes cell migration, survival and wound healing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yong; Graduate School of Chinese Academy of Sciences, Beijing 100049; Yu, Guoyu

    2010-07-30

    Research highlights: {yields} Bm-TFF2 binds to epithelial cells and induces cell migration and wound healing. {yields} Bm-TFF2 suppresses cell apoptosis. {yields} Bm-TFF2 has no effect on cell proliferation. -- Abstract: Toad skin is naked and continually confronted by various injurious factors. Constant skin renewal and repairs occur frequently. However, the mechanisms of the renewal and repair have not clearly elucidated. In our previous work, a trefoil factor (TFF), Bm-TFF2, has been purified from the Bombina maxima skin and characterized as a platelet agonist. The mRNA of TFFs in toad skin was up-regulated greatly during the metamorphosis, indicating a pivotal rolemore » of TFFs in amphibian skin. Here, we presented the effects of Bm-TFF2 on the cell migration, apoptosis and proliferation. Bm-TFF2 bound to epithelial cells and showed strong cell motility activity. At the concentrations of 1-100 nM, Bm-TFF2-induced migration of human epithelial AGS and HT-29 cells, and rat intestinal epithelial IEC-6 cell lines. The in vitro wound healing assay also verified the activity of Bm-TFF2. Bm-TFF2 could also inhibit cell apoptosis induced by ceramide and sodium butyrate. The cell migration-promoting activity was abolished by MEK1 inhibitors, U0126 and PD98059, suggesting that ERK1/2 activation is crucial for Bm-TFF2 to stimulate cell migration. Taken together, Bm-TFF2 promoted wound healing by stimulating cell migration via MAPK pathway and preventing cell apoptosis. The potent biological activity of Bm-TFF2 makes it a useful molecular tool for further studies of structure-function relationship of the related human TFFs.« less

  10. JunB transcription factor maintains skeletal muscle mass and promotes hypertrophy

    PubMed Central

    Raffaello, Anna; Milan, Giulia; Masiero, Eva; Carnio, Silvia; Lee, Donghoon

    2010-01-01

    The size of skeletal muscle cells is precisely regulated by intracellular signaling networks that determine the balance between overall rates of protein synthesis and degradation. Myofiber growth and protein synthesis are stimulated by the IGF-1/Akt/mammalian target of rapamycin (mTOR) pathway. In this study, we show that the transcription factor JunB is also a major determinant of whether adult muscles grow or atrophy. We found that in atrophying myotubes, JunB is excluded from the nucleus and that decreasing JunB expression by RNA interference in adult muscles causes atrophy. Furthermore, JunB overexpression induces hypertrophy without affecting satellite cell proliferation and stimulated protein synthesis independently of the Akt/mTOR pathway. When JunB is transfected into denervated muscles, fiber atrophy is prevented. JunB blocks FoxO3 binding to atrogin-1 and MuRF-1 promoters and thus reduces protein breakdown. Therefore, JunB is important not only in dividing populations but also in adult muscle, where it is required for the maintenance of muscle size and can induce rapid hypertrophy and block atrophy. PMID:20921137

  11. Barriers to promote cardiovascular health in community pharmacies: a systematic review.

    PubMed

    Alonso-Perales, María Del Mar; Lasheras, Berta; Beitia, Guadalupe; Beltrán, Idoia; Marcos, Beatriz; Núñez-Córdoba, Jorge M

    2017-06-01

    Community pharmacists play an important role in the provision of health promotion services, and community pharmacies are considered as a potentially ideal site for cardiovascular health promotion. Information based on a systematic review of barriers to promoting cardiovascular health in community pharmacy is currently lacking. We have sought to identify the most important barriers to cardiovascular health promotion in the community pharmacy. We have systematically searched PubMed and International Pharmaceutical Abstracts for a period of 15 years from 1 April 1998 to 1 April 2013, contacted subject experts and hand-searched bibliographies. We have included peer-reviewed articles, with English abstracts in the analysis, if they reported community pharmacists' perceptions of the barriers to cardiovascular health promotion activities in a community pharmacy setting. Two reviewers have independently extracted study characteristics and data. We identified 24 studies that satisfy the eligibility criteria. The main barriers to cardiovascular health promotion in the community pharmacy included pharmacist-related factors; practice site factors; financial factors; legal factors; and patient-related factors. This review will help to provide reliable evidence for health promotion practitioners of the barriers to promoting cardiovascular health in the community pharmacy setting. This knowledge is valuable for the improvement of cardiovascular health promotion in this setting and guiding future research. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Mutational analysis of Escherichia coli heat shock transcription factor sigma 32 reveals similarities with sigma 70 in recognition of the -35 promoter element and differences in promoter DNA melting and -10 recognition.

    PubMed

    Kourennaia, Olga V; Tsujikawa, Laura; Dehaseth, Pieter L

    2005-10-01

    Upon the exposure of Escherichia coli to high temperature (heat shock), cellular levels of the transcription factor sigma32 rise greatly, resulting in the increased formation of the sigma32 holoenzyme, which is capable of transcription initiation at heat shock promoters. Higher levels of heat shock proteins render the cell better able to cope with the effects of higher temperatures. To conduct structure-function studies on sigma32 in vivo, we have carried out site-directed mutagenesis and employed a previously developed system involving sigma32 expression from one plasmid and a beta-galactosidase reporter gene driven by the sigma32-dependent groE promoter on another in order to monitor the effects of single amino acid substitutions on sigma32 activity. It was found that the recognition of the -35 region involves similar amino acid residues in regions 4.2 of E. coli sigma32 and sigma70. Three conserved amino acids in region 2.3 of sigma32 were found to be only marginally important in determining activity in vivo. Differences between sigma32 and sigma70 in the effects of mutation in region 2.4 on the activities of the two sigma factors are consistent with the pronounced differences between both the amino acid sequences in this region and the recognized promoter DNA sequences.

  13. Improvement in the neural stem cell proliferation in rats treated with modified "Shengyu" decoction may contribute to the neurorestoration.

    PubMed

    Chen, Miao-Miao; Zhao, Guang-Wei; He, Peng; Jiang, Zheng-Lin; Xi, Xin; Xu, Shi-Hui; Ma, Dong-Ming; Wang, Yong; Li, Yong-Cai; Wang, Guo-Hua

    2015-05-13

    "Shengyu" decoction, a traditional Chinese medicine, has been used to treat diseases with deficit in "qi" and "blood". The modified "Shengyu" decoction (MSD) used in the present study was designed to treat traumatic brain injury (TBI) on the basis of the "Shengyu" decoction, in which additional four herbs were added. Many ingredients in these herbs have been demonstrated to be effective for the treatment of brain injury. The present study was performed to evaluate the neurorestorative effect and the underlying mechanisms of MSD on the rat brain after a TBI. TBI was induced in the right cerebral cortex of adult rats using Feeney's weight-drop method. Intragastrical administration of MSD (1.0 ml/200 g) was begun 6h after TBI. The neurological functions and neuronal loss in the cortex and hippocampus were determined. The levels of nerve growth-related factors GDNF, NGF, NCAM, TN-C, and Nogo-A and the number of GFAP(+)/GDNF(+), BrdU(+)/nestin(+), BrdU(+)/NeuN(+) immunoreactive cells in the brain ipsilateral to TBI were also measured. Moreover, the influences of MSD on these variables were observed at the same time. We found that treatment with MSD in TBI rats ameliorated the neurological functions and alleviated neuronal loss. MSD treatment elevated the expression of GDNF, NGF, NCAM, and TN-C, and inhibited the expression of Nogo-A. Moreover, MSD treatment increased the number of GFAP(+)/GDNF(+), BrdU(+)/nestin(+), and BrdU(+)/NeuN(+) immunoreactive cells in the cortex and hippocampus. The present results suggest that MSD treatment in TBI rats could improve the proliferation of neural stem/progenitor cells and differentiation into neurons, which may facilitate neural regeneration and tissue repair and thus contribute to the recovery of neurological functions. These effects of modified "Shengyu" decoction may provide a foundation for the use of MSD as a prescription of medicinal herbs in the traditional medicine to treat brain injuries in order to improve the

  14. Transforming growth factor-β stimulates the expression of eotaxin/CC chemokine ligand 11 and its promoter activity through binding site for nuclear factor-κB in airway smooth muscle cells

    PubMed Central

    Matsukura, S.; Odaka, M.; Kurokawa, M.; Kuga, H.; Homma, T.; Takeuchi, H.; Notomi, K.; Kokubu, F.; Kawaguchi, M.; Schleimer, R. P.; Johnson, M. W.; Adachi, M.

    2013-01-01

    Summary Background Chemokines ligands of CCR3 including eotaxin/CC chemokine ligand 11 (CCL11) may contribute to the pathogenesis of asthma. These chemokines and a growth factor (TGF-β) may be involved in the process of airway remodelling. Objective We analysed the effects of TGF-β on the expression of CCR3 ligands in human airway smooth muscle (HASM) cells and investigated the mechanisms. Methods HASM cells were cultured and treated with TGF-β and Th2 cytokines IL-4 or IL-13. Expression of mRNA was analysed by real-time PCR. Secretion of CCL11 into the culture medium was analysed by ELISA. Transcriptional regulation of CCL11 was analysed by luciferase assay using CCL11 promoter-luciferase reporter plasmids. Results IL-4 or IL-13 significantly up-regulated the expression of mRNAs for CCL11 and CCL26. TGF-β alone did not increase the expression of chemokine mRNAs, but enhanced the induction of only CCL11 by IL-4 or IL-13 among CCR3 ligands. Activity of the CCL11 promoter was stimulated by IL-4, and this activity was enhanced by TGF-β. Activation by IL-4 or IL-4 plus TGF-β was lost by mutation of the binding site for signal transducers and activators of transcription-6 (STAT6) in the promoter. Cooperative activation by IL-4 and TGF-β was inhibited by mutation of the binding site for nuclear factor-κB (NF-κB) in the promoter. Pretreatment with an inhibitor of NF-κB and glucocorticoid fluticasone propionate significantly inhibited the expression of CCL11 mRNA induced by IL-4 plus TGF-β, indicating the importance of NF-κB in the cooperative activation of CCL11 transcription by TGF-β and IL-4. Conclusion These results indicate that Th2 cytokines and TGF-β may contribute to the pathogenesis of asthma by stimulating expression of CCL11. The transcription factors STAT6 and NF-κB may play pivotal roles in this process. PMID:20214667

  15. Transforming growth factor-β stimulates the expression of eotaxin/CC chemokine ligand 11 and its promoter activity through binding site for nuclear factor-κβ in airway smooth muscle cells.

    PubMed

    Matsukura, S; Odaka, M; Kurokawa, M; Kuga, H; Homma, T; Takeuchi, H; Notomi, K; Kokubu, F; Kawaguchi, M; Schleimer, R P; Johnson, M W; Adachi, M

    2010-05-01

    Chemokines ligands of CCR3 including eotaxin/CC chemokine ligand 11 (CCL11) may contribute to the pathogenesis of asthma. These chemokines and a growth factor (TGF-beta) may be involved in the process of airway remodelling. We analysed the effects of TGF-beta on the expression of CCR3 ligands in human airway smooth muscle (HASM) cells and investigated the mechanisms. HASM cells were cultured and treated with TGF-beta and Th2 cytokines IL-4 or IL-13. Expression of mRNA was analysed by real-time PCR. Secretion of CCL11 into the culture medium was analysed by ELISA. Transcriptional regulation of CCL11 was analysed by luciferase assay using CCL11 promoter-luciferase reporter plasmids. IL-4 or IL-13 significantly up-regulated the expression of mRNAs for CCL11 and CCL26. TGF-beta alone did not increase the expression of chemokine mRNAs, but enhanced the induction of only CCL11 by IL-4 or IL-13 among CCR3 ligands. Activity of the CCL11 promoter was stimulated by IL-4, and this activity was enhanced by TGF-beta. Activation by IL-4 or IL-4 plus TGF-beta was lost by mutation of the binding site for signal transducers and activators of transcription-6 (STAT6) in the promoter. Cooperative activation by IL-4 and TGF-beta was inhibited by mutation of the binding site for nuclear factor-kappaB (NF-kappaB) in the promoter. Pretreatment with an inhibitor of NF-kappaB and glucocorticoid fluticasone propionate significantly inhibited the expression of CCL11 mRNA induced by IL-4 plus TGF-beta, indicating the importance of NF-kappaB in the cooperative activation of CCL11 transcription by TGF-beta and IL-4. These results indicate that Th2 cytokines and TGF-beta may contribute to the pathogenesis of asthma by stimulating expression of CCL11. The transcription factors STAT6 and NF-kappaB may play pivotal roles in this process.

  16. Mechano-growth factor protects against mechanical overload induced damage and promotes migration of growth plate chondrocytes through RhoA/YAP pathway.

    PubMed

    Jing, Xingzhi; Ye, Yaping; Bao, Yuan; Zhang, Jinming; Huang, Junming; Wang, Rui; Guo, Jiachao; Guo, Fengjing

    2018-05-15

    Epiphyseal growth plate is highly dynamic tissue which is controlled by a variety of endocrine, paracrine hormones, and by complex local signaling loops and mechanical loading. Mechano growth factor (MGF), the splice variant of the IGF-I gene, has been discovered to play important roles in tissue growth and repair. However, the effect of MGF on the growth plate remains unclear. In the present study, we found that MGF mRNA expression of growth plate chondrocytes was upregulated in response to mechanical stimuli. Treatment of MGF had no effect on growth plate chondrocytes proliferation and differentiation. But it could inhibit growth plate chondrocytes apoptosis and inflammation under mechanical overload. Moreover, both wound healing and transwell assay indicated that MGF could significantly enhance growth plate chondrocytes migration which was accompanied with YAP activation and nucleus translocation. Knockdown of YAP with YAP siRNA suppressed migration induced by MGF, indicating the essential role of YAP in MGF promoting growth plate chondrocytes migration. Furthermore, MGF promoted YAP activation through RhoA GTPase mediated cytoskeleton reorganization, RhoA inhibition using C3 toxin abrogated MGF induced YAP activation. Importantly, we found that MGF promoted focal adhesion(FA) formation and knockdown of YAP with YAP siRNA partially suppressed the activation of FA kinase, implying that YAP is associated with FA formation. In conclusion, MGF is an autocrine growth factor which is regulated by mechanical stimuli. MGF could not only protect growth plate chondrocytes against damage by mechanical overload, but also promote migration through activation of RhoA/YAP signaling axis. Most importantly, our findings indicate that MGF promote cell migration through YAP mediated FA formation to determine the FA-cytoskeleton remodeling. Copyright © 2018. Published by Elsevier Inc.

  17. Defining the Status of RNA Polymerase at Promoters

    PubMed Central

    Core, Leighton J.; Waterfall, Joshua J.; Gilchrist, Daniel A.; Fargo, David C.; Kwak, Hojoong; Adelman, Karen; Lis, John T.

    2012-01-01

    Summary Recent genome-wide studies in metazoans have shown that RNA Polymerase II (Pol II) accumulates to high densities on many promoters at a rate-limited step in transcription. However, the status of this Pol II remains an area of debate. Here, we compare quantitative outputs of GRO-seq and ChIP-seq assays and demonstrate the majority of the Pol II on Drosophila promoters is transcriptionally-engaged - very little exists in a preinitiation or arrested complex. These promoter-proximal polymerases are inhibited from further elongation by detergent sensitive factors, and knockdown of negative elongation factor, NELF, reduces their levels. These results not only solidify that pausing occurs at most promoters, but demonstrate that it is the major rate-limiting step in early transcription at these promoters. Finally, the divergent elongation complexes seen at mammalian promoters are far less prevalent in Drosophila, and this specificity in orientation correlates with directional core promoter elements, which are abundant in Drosophila. PMID:23062713

  18. A serum factor promotes collagenase synthesis by an osteoblastic cell line

    NASA Technical Reports Server (NTRS)

    Puccinelli, J. M.; Omura, T. H.; Strege, D. W.; Jeffrey, J. J.; Partridge, N. C.

    1991-01-01

    Regulation of the synthesis of collagenase was investigated in the osteoblastic cell line, UMR 106-01. The cells were stained by the avidin-biotin-complex technique for the presence of the enzyme. By this method, it was possible to identify cells producing collagenase. Synthesis, but not secretion, was found to be constitutive in these cells with the enzyme located intracellularly in cytoplasmic vesicles and the Golgi apparatus. The amount of collagenase contained within UMR cells and the number of cells synthesizing the enzyme were proportional to the concentration of fetal bovine serum in the incubating medium. When serum was withdrawn from the osteosarcoma cells, the content of collagenase decreased with time and the enzyme became undetectable by 48 h of serum depletion. The decrease in collagenase content could be completely reversed by resupplying serum to the cells. The collagenase promoting activity of serum could not be eliminated by adsorption on activated charcoal but was retained by a dialysis membrane with a 12,000 mol wt cutoff. A range of bone-seeking hormones or agents known to affect collagenase secretion was added to the medium in an attempt to mimic the effect of serum on collagenase accumulation. None of these agonists, including parathyroid hormone, could reproduce the effect of serum on these cells, although parathyroid hormone could act as a collagenase secretagogue in the presence or absence of serum. It is concluded that fetal bovine serum contains a yet unidentified factor or factors greater than 12,000 mol wt responsible for the continued synthesis of collagenase by UMR 106-01 cells.

  19. Role of the testis interstitial compartment in spermatogonial stem cell function

    PubMed Central

    Potter, Sarah J.; DeFalco, Tony

    2017-01-01

    Male fertility is maintained through intricate cellular and molecular interactions that ensure spermatogonial stem cells (SSCs) proceed in a step-wise differentiation process through spermatogenesis and spermiogenesis to produce sperm. SSCs lie within the seminiferous tubule compartment, which provides a nurturing environment for the development of sperm. Cells outside of the tubules, such as interstitial and peritubular cells, also help direct SSC activity. This review focuses on interstitial (interstitial macrophages, Leydig cells, and vasculature) and peritubular (peritubular macrophages, peritubular myoid cells) cells and their role in regulating SSC self-renewal and differentiation in mammals. Leydig cells, the major steroidogenic cells in the testis, influence SSCs through secreted factors, such as insulin growth factor 1 (IGF1) and colony stimulating factor 1 (CSF1). Macrophages interact with SSCs through various potential mechanisms, such as CSF1 and retinoic acid (RA), to induce proliferation or differentiation of SSCs, respectively. Vasculature influences SSC dynamics through CSF1, vascular endothelial growth factor (VEGF), and regulating oxygen levels. Lastly, peritubular myoid cells produce one of the most well-known factors that is required for SSC self-renewal, glial cell line derived neurotrophic factor (GDNF), as well as CSF1. Overall, SSC interactions with interstitial and peritubular cells are critical for SSC function and are an important underlying factor promoting male fertility. PMID:28115580

  20. Programming gene expression with combinatorial promoters

    PubMed Central

    Cox, Robert Sidney; Surette, Michael G; Elowitz, Michael B

    2007-01-01

    Promoters control the expression of genes in response to one or more transcription factors (TFs). The architecture of a promoter is the arrangement and type of binding sites within it. To understand natural genetic circuits and to design promoters for synthetic biology, it is essential to understand the relationship between promoter function and architecture. We constructed a combinatorial library of random promoter architectures. We characterized 288 promoters in Escherichia coli, each containing up to three inputs from four different TFs. The library design allowed for multiple −10 and −35 boxes, and we observed varied promoter strength over five decades. To further analyze the functional repertoire, we defined a representation of promoter function in terms of regulatory range, logic type, and symmetry. Using these results, we identified heuristic rules for programming gene expression with combinatorial promoters. PMID:18004278

  1. Cortical Proteins are Chemokinetic to Cells from the Medial Ganglionic Eminence

    DTIC Science & Technology

    2011-05-28

    et al., 2009). Disruption of interneuron migration can lead to improper distribution within the cortex and is associated with schizophrenia, autism ...include the neurotrophins; the growth factors NRG1 and GDNF, the chemokine, SDF-1 and neurotransmitters, glutamate, GABA, and dopamine (Stumm et al...Bhide PG ( Dopamine receptor activation modulates GABA neuron migration from the basal forebrain to the cerebral cortex. J Neurosci 27:3813-3822.2007

  2. Adaptive growth factor delivery from a polyelectrolyte coating promotes synergistic bone tissue repair and reconstruction

    PubMed Central

    Shah, Nisarg J.; Hyder, Md. Nasim; Quadir, Mohiuddin A.; Dorval Courchesne, Noémie-Manuelle; Seeherman, Howard J.; Nevins, Myron; Spector, Myron; Hammond, Paula T.

    2014-01-01

    Traumatic wounds and congenital defects that require large-scale bone tissue repair have few successful clinical therapies, particularly for craniomaxillofacial defects. Although bioactive materials have demonstrated alternative approaches to tissue repair, an optimized materials system for reproducible, safe, and targeted repair remains elusive. We hypothesized that controlled, rapid bone formation in large, critical-size defects could be induced by simultaneously delivering multiple biological growth factors to the site of the wound. Here, we report an approach for bone repair using a polyelectrolye multilayer coating carrying as little as 200 ng of bone morphogenetic protein-2 and platelet-derived growth factor-BB that were eluted over readily adapted time scales to induce rapid bone repair. Based on electrostatic interactions between the polymer multilayers and growth factors alone, we sustained mitogenic and osteogenic signals with these growth factors in an easily tunable and controlled manner to direct endogenous cell function. To prove the role of this adaptive release system, we applied the polyelectrolyte coating on a well-studied biodegradable poly(lactic-co-glycolic acid) support membrane. The released growth factors directed cellular processes to induce bone repair in a critical-size rat calvaria model. The released growth factors promoted local bone formation that bridged a critical-size defect in the calvaria as early as 2 wk after implantation. Mature, mechanically competent bone regenerated the native calvaria form. Such an approach could be clinically useful and has significant benefits as a synthetic, off-the-shelf, cell-free option for bone tissue repair and restoration. PMID:25136093

  3. Analytic thinking promotes religious disbelief.

    PubMed

    Gervais, Will M; Norenzayan, Ara

    2012-04-27

    Scientific interest in the cognitive underpinnings of religious belief has grown in recent years. However, to date, little experimental research has focused on the cognitive processes that may promote religious disbelief. The present studies apply a dual-process model of cognitive processing to this problem, testing the hypothesis that analytic processing promotes religious disbelief. Individual differences in the tendency to analytically override initially flawed intuitions in reasoning were associated with increased religious disbelief. Four additional experiments provided evidence of causation, as subtle manipulations known to trigger analytic processing also encouraged religious disbelief. Combined, these studies indicate that analytic processing is one factor (presumably among several) that promotes religious disbelief. Although these findings do not speak directly to conversations about the inherent rationality, value, or truth of religious beliefs, they illuminate one cognitive factor that may influence such discussions.

  4. Loss of connective tissue growth factor as an unfavorable prognosis factor activates miR-18b by PI3K/AKT/C-Jun and C-Myc and promotes cell growth in nasopharyngeal carcinoma.

    PubMed

    Yu, X; Zhen, Y; Yang, H; Wang, H; Zhou, Y; Wang, E; Marincola, F M; Mai, C; Chen, Y; Wei, H; Song, Y; Lyu, X; Ye, Y; Cai, L; Wu, Q; Zhao, M; Hua, S; Fu, Q; Zhang, Y; Yao, K; Liu, Z; Li, X; Fang, W

    2013-05-16

    Connective tissue growth factor (CTGF) has different roles in different types of cancer. However, the involvement and molecular basis of CTGF in tumor progression and prognosis of human nasopharyngeal carcinoma (NPC) have almost never been reported. In this study, we observed that downregulated CTGF expression was significantly associated with NPC progression and poor prognosis. Knockdown of CTGF markedly elevated the ability of cell proliferation in vivo and in vitro. Subsequently, we discovered that the reduction of CTGF increased the expression of miR-18b, an oncomir-promoting cell proliferation. Further, we discovered that attenuated CTGF-mediated upregulation of miR-18b was dependent on the increased binding of transcription factors Jun proto-oncogene (C-Jun) and v-Myc myelocytomatosis viral oncogene homolog (C-Myc) to miR-18b promoter region via phosphoinositide 3-kinase (PI3K)/AKT pathway. Finally, we further found that miR-18b directly suppressed the expression of CTGF in NPC. In clinical fresh specimens, miR-18b was widely overexpressed and inversely correlated with CTGF expression in NPC. Our studies are the first to demonstrate that reduced CTGF as an unfavorable prognosis factor mediates the activation of miR-18b, an oncomir directly suppresses CTGF expression, by PI3K/AKT/C-Jun and C-Myc and promotes cell growth of NPC.

  5. Exposure to transforming growth factor-β1 after basic fibroblast growth factor promotes the fibroblastic differentiation of human periodontal ligament stem/progenitor cell lines.

    PubMed

    Kono, Kiyomi; Maeda, Hidefumi; Fujii, Shinsuke; Tomokiyo, Atsushi; Yamamoto, Naohide; Wada, Naohisa; Monnouchi, Satoshi; Teramatsu, Yoko; Hamano, Sayuri; Koori, Katsuaki; Akamine, Akifumi

    2013-05-01

    Basic fibroblast growth factor (bFGF) is a cytokine that promotes the regeneration of the periodontium, the specialized tissues supporting the teeth. bFGF, does not, however, induce the synthesis of smooth muscle actin alpha 2 (ACTA2), type I collagen (COL1), or COL3, which are principal molecules in periodontal ligament (PDL) tissue, a component of the periodontium. We have suggested the feasibility of using transforming growth factor-β1 (TGFβ1) to induce fibroblastic differentiation of PDL stem/progenitor cells (PDLSCs). Here, we investigated the effect of the subsequent application of TGFβ1 after bFGF (bFGF/TGFβ1) on the differentiation of PDLSCs into fibroblastic cells. We first confirmed the expression of bFGF and TGFβ1 in rat PDL tissue and primary human PDL cells. Receptors for both bFGF and TGFβ1 were expressed in the human PDLSC lines 1-11 and 1-17. Exposure to bFGF for 2 days promoted vascular endothelial growth factor gene and protein expression in both cell lines and down-regulated the expression of ACTA2, COL1, and COL3 mRNA in both cell lines and the gene fibrillin 1 (FBN1) in cell line 1-11 alone. Furthermore, bFGF stimulated cell proliferation of these cell lines and significantly increased the number of cells in phase G2/M in the cell lines. Exposure to TGFβ1 for 2 days induced gene expression of ACTA2 and COL1 in both cell lines and FBN1 in cell line 1-11 alone. BFGF/TGFβ1 treatment significantly up-regulated ACTA2, COL1, and FBN1 expression as compared with the group treated with bFGF alone or the untreated control. This method might thus be useful for accelerating the generation and regeneration of functional periodontium.

  6. Vasohibin 2 promotes human luminal breast cancer angiogenesis in a non-paracrine manner via transcriptional activation of fibroblast growth factor 2.

    PubMed

    Tu, Min; Lu, Cheng; Lv, Nan; Wei, Jishu; Lu, Zipeng; Xi, Chunhua; Chen, Jianmin; Guo, Feng; Jiang, Kuirong; Li, Qiang; Wu, Junli; Song, Guoxin; Wang, Shui; Gao, Wentao; Miao, Yi

    2016-12-28

    Vasohibin 2 (VASH2) is an angiogenic factor and cancer-related protein that acts via paracrine mechanisms. Here, we investigated the angiogenic function and mechanism of action of VASH2 in 200 human breast cancer tissues by performing immunohistochemical staining, western blot, indirect sandwich enzyme-linked immunosorbent assay (ELISA), and a semi-quantitative sandwich-based antibody array. Breast cancer cells stably overexpressing VASH2 or with knocked-down VASH2 were established and used for in vivo and in vitro models. In human luminal tissue, but not in HER2-positive or basal-like breast cancer tissues, VASH2 was positively correlated with CD31-positive microvascular density, induced angiogenesis in xenograft tumors, and promoted human umbilical vein endothelial cell tube formation in vitro. VASH2 expression was absent in the concentrated conditioned medium collected from knocked-down VASH2 and VASH2-overexpressing luminal breast cancer cells. Further, VASH2 regulated the expression of fibroblast growth factor 2 (FGF2) in human luminal breast cancer cells, and the pro-angiogenic effect induced by VASH2 overexpression was blocked by FGF2 neutralization in vitro. Additionally, dual luciferase reporter assay and Chromatin immunoprecipitation analysis results showed that FGF2 promoter was transcriptionally activated by VASH2 via histone modifications. In conclusion, VASH2 expression is positively correlated with FGF2 expression and promotes angiogenesis in human luminal breast cancer by transcriptional activation of fibroblast growth factor 2 through non-paracrine mechanisms. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Small Molecule-Induced Complement Factor D (Adipsin) Promotes Lipid Accumulation and Adipocyte Differentiation

    PubMed Central

    Jang, Byung-Hyun; Chang, Seo-Hyuk; Yun, Ui Jeong; Park, Ki-Moon; Waki, Hironori; Li, Dean Y.; Tontonoz, Peter; Park, Kye Won

    2016-01-01

    Adipocytes are differentiated by various transcriptional cascades integrated on the master regulator, Pparγ. To discover new genes involved in adipocyte differentiation, preadipocytes were treated with three newly identified pro-adipogenic small molecules and GW7845 (a Pparγ agonist) for 24 hours and transcriptional profiling was analyzed. Four genes, Peroxisome proliferator-activated receptor γ (Pparγ), human complement factor D homolog (Cfd), Chemokine (C-C motif) ligand 9 (Ccl9), and GIPC PDZ Domain Containing Family Member 2 (Gipc2) were induced by at least two different small molecules but not by GW7845. Cfd and Ccl9 expressions were specific to adipocytes and they were altered in obese mice. Small hairpin RNA (shRNA) mediated knockdown of Cfd in preadipocytes inhibited lipid accumulation and expression of adipocyte markers during adipocyte differentiation. Overexpression of Cfd promoted adipocyte differentiation, increased C3a production, and led to induction of C3a receptor (C3aR) target gene expression. Similarly, treatments with C3a or C3aR agonist (C4494) also promoted adipogenesis. C3aR knockdown suppressed adipogenesis and impaired the pro-adipogenic effects of Cfd, further suggesting the necessity for C3aR signaling in Cfd-mediated pro-adipogenic axis. Together, these data show the action of Cfd in adipogenesis and underscore the application of small molecules to identify genes in adipocytes. PMID:27611793

  8. Organizational factors and the attitude toward health promotion in German ICT-companies.

    PubMed

    Jung, Julia; Nitzsche, Anika; Ansmann, Lena; Ernstmann, Nicole; Ommen, Oliver; Stieler-Lorenz, Brigitte; Wasem, Jürgen; Pfaff, Holger

    2012-09-01

    This study takes a first step toward examining the relationship between organizational characteristics and the perceived attitude toward health promotion in companies from the perspective of chief executive officers (CEOs). Data for the cross-sectional study were collected through telephone interviews with one CEO from randomly selected companies within the German information and communication technology (ICT) sector. Multivariate logistic regression analysis (LRA) was performed, and further LRA was conducted after stratifying on company size. LRA of data from a total of n = 522 interviews found significant associations between the attitude toward health promotion and the company's market position, its number of hierarchical levels, the percentage of permanent positions and the percentage of employees with an academic education. After stratification on company size, the association between the attitude toward health promotion and both market position and the percentage of employees with an academic education was still present in small companies. There were no significant relationships between the attitude toward health promotion and the structural characteristics of medium-sized and large companies. The preliminary results of the study indicate that a perceived attitude toward health promotion in companies can be explained, to a certain degree, by the intraorganizational characteristics analyzed. Our key findings highlight that efforts toward establishing a positive attitude toward health promotion should focus on small companies with a lower market position and a greater number of employees with a lower education level.

  9. Alerting the general population to genetic risks: the value of health messages communicating the existence of genetic risk factors for public health promotion.

    PubMed

    Smerecnik, Chris M R; Mesters, Ilse; de Vries, Nanne K; de Vries, Hein

    2009-11-01

    Health messages alerting the public to previously unknown genetic risk factors for multifactorial diseases are a potentially useful strategy to create public awareness, and may be an important first step in promoting public health. However, there is a lack of evidence-based insight into its impact on individuals who were unaware of the existence of genetic risk factors at the moment of information exposure. The authors conducted 3 experimental studies with health messages communicating information about genetic risk factors for salt sensitivity (Studies 1A and 1B) and heightened cholesterol (Study 2) compared with general information without reference to genetic risk factors as a between-subjects variable and risk perception and intention to engage in preventive behavior as dependent variables. All 3 studies revealed lower perceived susceptibility among participants who received information on genetic risk factors, which was associated with lowered intentions to engage in preventive behavior. In Studies 1A and 1B, these effects were observed only for previously unaware individuals, whereas in Study 2, they were observed for the entire sample. Alerting the public to the existence of genetic risk factors may not necessarily be beneficial to public health. Public health promoters should be aware of the possible adverse effects of alerting the general population to genetic risk factors, and should simultaneously educate the public about the meaning and consequences of such factors. PsycINFO Database Record (c) 2009 APA, all rights reserved.

  10. Functional characterization of the human phosphodiesterase 7A1 promoter.

    PubMed Central

    Torras-Llort, Mònica; Azorín, Fernando

    2003-01-01

    In this paper, the human phosphodiesterase 7A1 (h PDE7A1 ) promoter region was identified and functionally characterized. Transient transfection experiments indicated that a 2.9 kb fragment of the h PDE7A1 5'-flanking region, to position -2907, has strong promoter activity in Jurkat T-cells. Deletion analysis showed that the proximal region, up to position -988, contains major cis -regulatory elements of the h PDE7A1 promoter. This minimal promoter region contains a regulatory CpG island which is essential for promoter activity. The CpG island contains three potential cAMP-response-element-binding protein (CREB)-binding sites that, as judged by in vivo dimethyl sulphate (DMS) footprinting, are occupied in Jurkat T-cells. Moreover, over-expression of CREB results in increased promoter activity, but, on the other hand, promoter activity decreases when a dominant-negative form of CREB (KCREB) is over-expressed. In vivo DMS footprinting strongly indicates that other transcription factors, such Ets-2, nuclear factor of activated T-cells 1 (NFAT-1) and nuclear factor kappaB (NF-kappaB), might also contribute to the regulation of h PDE7A1 promoter. Finally, h PDE7A1 promoter was found to be induced by treatment with PMA, but not by treatment with dibutyryl cAMP or forskolin. These results provide insights into the factors and mechanisms that regulate expression of the h PDE7A gene. PMID:12737631

  11. Impact factor of medical education journals and recently developed indices: Can any of them support academic promotion criteria?

    PubMed Central

    Azer, SA; Holen, A; Wilson, I; Skokauskas, N

    2016-01-01

    Journal Impact Factor (JIF) has been used in assessing scientific journals. Other indices, h- and g-indices and Article Influence Score (AIS), have been developed to overcome some limitations of JIF. The aims of this study were, first, to critically assess the use of JIF and other parameters related to medical education research, and second, to discuss the capacity of these indices in assessing research productivity as well as their utility in academic promotion. The JIF of 16 medical education journals from 2000 to 2011 was examined together with the research evidence about JIF in assessing research outcomes of medical educators. The findings were discussed in light of the nonnumerical criteria often used in academic promotion. In conclusion, JIF was not designed for assessing individual or group research performance, and it seems unsuitable for such purposes. Although the g- and h-indices have demonstrated promising outcomes, further developments are needed for their use as academic promotion criteria. For top academic positions, additional criteria could include leadership, evidence of international impact, and contributions to the advancement of knowledge with regard to medical education. PMID:26732194

  12. Isolation of Viable but Non-culturable Bacteria from Printing and Dyeing Wastewater Bioreactor Based on Resuscitation Promoting Factor.

    PubMed

    Jin, Yi; Gan, Guojuan; Yu, Xiaoyun; Wu, Dongdong; Zhang, Li; Yang, Na; Hu, Jiadan; Liu, Zhiheng; Zhang, Lixin; Hong, Huachang; Yan, Xiaoqing; Liang, Yan; Ding, Linxian; Pan, Yonglong

    2017-07-01

    Printing and dyeing wastewater with high content of organic matters, high colority, and poor biochemical performance is hard to be degraded. In this study, we isolated viable but non-culturable (VBNC) bacteria from printing and dyeing wastewater with the culture media contained resuscitation promoting factor (Rpf) protein secreted by Micrococcus luteus, counted the culturable cells number with the most probable number, sequenced 16S rRNA genes, and performed polymerase chain reaction-denaturing gradient gel electrophoresis. It is obviously that the addition of Rpf in the enrichment culture could promote growth and resuscitation of bacteria in VBNC state to obtain more fastidious bacteria significantly. The identified bacteria were assigned to nine genera in the treatment group, while the two strains of Ochrobactrum anthropi and Microbacterium sp. could not be isolated from the control group. The function of isolated strains was explored and these strains could degrade the dye of Congo red. This study provides a new sight into the further study including the present state, composition, formation mechanism, and recovery mechanism about VBNC bacteria in printing and dyeing wastewater, which would promote to understand bacterial community in printing and dyeing wastewater, and to obtain VBNC bacteria from ecological environment.

  13. Cartilage fragments from osteoarthritic knee promote chondrogenesis of mesenchymal stem cells without exogenous growth factor induction.

    PubMed

    Chen, Chia-Chun; Liao, Cheng-Hao; Wang, Yao-Horng; Hsu, Yuan-Ming; Huang, Shih-Horng; Chang, Chih-Hung; Fang, Hsu-Wei

    2012-03-01

    Extracellular matrix (ECM) is thought to participate significantly in guiding the differentiation process of mesenchymal stem cells (MSCs). In this study, we hypothesized that cartilage fragments from osteoarthritic knee could promote chondrogenesis of MSCs. Nonworn parts of cartilage tissues were obtained during total knee arthroplasty (TKA) surgery. Cartilage fragments and MSCs were wrapped into fibrin glue; and the constructs were implanted subcutaneously into nude mice. Histological analysis showed neocartilage-like structure with positive Alcian blue staining in the cartilage fragment-fibrin-MSC constructs. However, constructs with only MSCs in fibrin showed condensed appearance like MSCs in the pellet culture. Gene expression of type II collagen in the constructs with 60 mg cartilage fragments were significantly elevated after 4 weeks of implantation. Conversely, the constructs without cartilage fragments failed to express type II collagen, which indicated MSCs did not differentiate into a chondrogenic lineage. In conclusion, we demonstrated the effect of cartilage fragments from osteoarthritic knee in promoting chondrogenic differentiation of MSCs. This may be a favorable strategy for MSC chondrogenesis without exogenous growth factor induction. Copyright © 2011 Orthopaedic Research Society.

  14. Early Patterns of Self-Regulation as Risk and Promotive Factors in Development: A Longitudinal Study from Childhood to Adulthood in a High-Risk Sample

    ERIC Educational Resources Information Center

    Causadias, Jose M.; Salvatore, Jessica E.; Sroufe, L. Alan

    2012-01-01

    The present study examines two childhood markers of self-regulation, ego control and ego resiliency, as promotive factors for the development of global adjustment and as risk factors for the development of internalizing and externalizing behavior problems in a high-risk sample. Teachers and observers rated ego control and ego resiliency when…

  15. Validation of an instrument to measure tutor performance in promoting self-directed learning by using confirmatory factor analysis.

    PubMed

    Amador Fierros, Genoveva; Montesinos-López, Osval Antonio; Alcaráz Moreno, Noemí

    2016-04-01

    This work sought to validate and propose an instrument to measure the performance of tutors in promoting self-directed learning in students involved in processes of problem-based learning. Confirmatory factor analysis (CFA) was applied to validate the instrument composed of 60 items and six factors (self-assessment of learning gaps within the United Nations specific context: self-assessment, reflexion, critical thinking, administration of information, group skills), using a sample of 207 students from a total of 279, which comprise the student population of the Faculty of Nursing at Universidad de Colima in Mexico. (2007). The CFA results demonstrated that the instrument is acceptable to measure performance of tutors in promoting self-directed learning, given that all the indicators, variances, covariances, and thresholds are statistically significant. The instrument permits obtaining students' opinions on how much professors contribute for them to develop each of the 60 skills described in the scale. Lastly, the results could report if professors are placing more emphasis in some areas than in other areas they should address during the problem-based learning (PBL) process, or if definitely their actions are removed from the premises of PBL, information that will be useful for school management in decision making on the direction of teaching as a whole.

  16. Plasma rich in growth factors promotes dermal fibroblast proliferation, migration and biosynthetic activity.

    PubMed

    Anitua, E; Pino, A; Orive, G

    2016-11-02

    The use of plasma rich in growth factors (PRGF) has gained importance in many medical fields due to its regenerative potential. The aim of this study is to evaluate the effects of PRGF on primary skin fibroblasts assessing cell proliferation, migration and secretion of growth factors. The age of the patients from who PRGF was prepared was also studied to determine whether it influenced the outcomes. Human dermal fibroblasts were isolated from three healthy volunteers. Using PRGF-Endoret technology, PRGF was prepared from two groups of different ages (18-35 years and 50+ years). The effects of increasing concentration of PRGF (5%, 10% and 20%) on cell proliferation and migration was evaluated. Biosynthetic behaviour of cells was also analysed measuring vascular endothelial growth factor (VEGF), transforming growth factor b1 (TGFb1) and pro-collagen type I secreted levels with or without PRGF treatment. Mean platelet enrichment reached 2.4X and 2X in 18-35 and 50+ groups respectively. A dose-dependent response was observed in proliferation assays achieving the highest levels with 20% PRGF. Migration was also promoted in cells but not in a dose-dependent manner. Cell proliferation and migration outcomes obtained with PRGF (from both groups) were significantly higher compared to non-stimulated groups (p<0.05), with no statistical significances were observed between the different age groups. Production of VEGF, TGFb and procollagen type I was significantly increased by cells treated with PRGF, however, with the exception of VEGF, no statistical significances were observed between the different age groups. Results from this study concluded that PRGF is safe and effective in stimulating skin regeneration by enhancing proliferation, migration and expression of pivotal bioactive molecules involved in wound healing and haemostasis.

  17. Promoter-dependent and -independent activation of insulin-like growth factor binding protein-5 gene expression by prostaglandin E2 in primary rat osteoblasts

    NASA Technical Reports Server (NTRS)

    McCarthy, T. L.; Casinghino, S.; Mittanck, D. W.; Ji, C. H.; Centrella, M.; Rotwein, P.

    1996-01-01

    Insulin-like growth factor (IGF) action is mediated by high affinity cell surface IGF receptors and modulated by a family of secreted IGF binding proteins (IGFBPs). IGFBP-5, the most conserved of six IGFBPs characterized to date, uniquely potentiates the anabolic actions of IGF-I for skeletal cells. In osteoblasts, IGFBP-5 production is stimulated by prostaglandin E2 (PGE2), a local factor that mediates certain effects induced by parathyroid hormone, cytokines such as interleukin-1 and transforming growth factor-beta, and mechanical strain. In this study, we show that transcriptional and post-transcriptional events initiated by PGE2 collaborate to enhance IGFBP-5 gene expression in primary fetal rat osteoblast cultures. PGE2 treatment stimulated up to a 7-fold rise in steady-state levels of IGFBP-5 mRNA throughout 32 h of incubation. Analysis of nascent IGFBP-5 mRNA suggested that PGE2 had only a modest stimulatory effect on IGFBP-5 gene transcription, and transient transfection studies with IGFBP-5 promoter-reporter genes confirmed that PGE2 enhanced promoter activity by approximately 2-fold. Similar stimulatory effects were seen with forskolin. A DNA fragment with only 51 base pairs of the 5'-flanking sequence retained hormonal responsiveness, which may be mediated by a binding site for transcription factor AP-2 located at positions -44 to -36 in the proximal IGFBP-5 promoter. Incubation of osteoblasts with the mRNA transcriptional inhibitor 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole demonstrated that PGE2 enhanced IGFBP-5 mRNA stability by 2-fold, increasing the t1/2 from 9 to 18 h. The effects of PGE2 on steady-state IGFBP-5 transcripts were abrogated by preincubating cells with cycloheximide, indicating that the effects of PGE2 on both gene transcription and mRNA stability required ongoing protein synthesis. Therefore, both promoter-dependent and -independent pathways converge to enhance IGFBP-5 gene expression in response to PGE2 in osteoblasts.

  18. Brain-derived neurotrophic factor promotes VEGF-C-dependent lymphangiogenesis by suppressing miR-624-3p in human chondrosarcoma cells.

    PubMed

    Lin, Chih-Yang; Wang, Shih-Wei; Chen, Yen-Ling; Chou, Wen-Yi; Lin, Ting-Yi; Chen, Wei-Cheng; Yang, Chen-Yu; Liu, Shih-Chia; Hsieh, Chia-Chu; Fong, Yi-Chin; Wang, Po-Chuan; Tang, Chih-Hsin

    2017-08-03

    Chondrosarcoma is the second most common primary malignancy of bone, and one of the most difficult bone tumors to diagnose and treat. It is well known that increased levels of vascular endothelial growth factor-C (VEGF-C) promote active tumor lymphangiogenesis and lymphatic tumor spread to regional lymph nodes. Brain-derived neurotrophic factor (BDNF) is known to promote metastasis in human chondrosarcoma cells. Knowing more about the mechanism of BDNF in VEGF-C expression and lymphangiogenesis in human chondrosarcoma would improve our understanding as how to prevent chondrosarcoma angiogenesis and metastasis, which currently lacks effective adjuvant treatment. Here, we found that BDNF expression was at least 2.5-fold higher in the highly migratory JJ012(S10) cell line as compared with the primordial cell line (JJ012). In addition, VEGF-C expression and secretion was markedly increased in JJ012(S10) cells. Conditioned medium from JJ012(S10) cells significantly promoted migration and tube formation of human lymphatic endothelial cells (LECs), whereas knockdown of BDNF attenuated LEC migration and tube formation by suppressing VEGF-C production in JJ012(S10) cells. Mechanistic investigations indicated that BDNF facilitated VEGF-C-dependent lymphangiogenesis through the MEK/ERK/mTOR signaling pathway. We also showed that microRNA (miR)-624-3p expression was negatively regulated by BDNF via the MEK/ERK/mTOR cascade. Importantly, BDNF knockdown profoundly inhibited tumor-associated lymphangiogenesis in vivo. Further analyses identified that BDNF promoted tumor lymphangiogenesis by downregulating miR-624-3p in human chondrosarcoma tissues. In conclusion, this study is the first to reveal the mechanism underlying BDNF-induced lymphangiogenesis. We suggest that BDNF may serve as a promising therapeutic target for the restriction of VEGF-C-mediated tumor lymphangiogenesis and lymphatic metastasis.

  19. Brain-derived neurotrophic factor promotes VEGF-C-dependent lymphangiogenesis by suppressing miR-624-3p in human chondrosarcoma cells

    PubMed Central

    Lin, Chih-Yang; Wang, Shih-Wei; Chen, Yen-Ling; Chou, Wen-Yi; Lin, Ting-Yi; Chen, Wei-Cheng; Yang, Chen-Yu; Liu, Shih-Chia; Hsieh, Chia-Chu; Fong, Yi-Chin; Wang, Po-Chuan; Tang, Chih-Hsin

    2017-01-01

    Chondrosarcoma is the second most common primary malignancy of bone, and one of the most difficult bone tumors to diagnose and treat. It is well known that increased levels of vascular endothelial growth factor-C (VEGF-C) promote active tumor lymphangiogenesis and lymphatic tumor spread to regional lymph nodes. Brain-derived neurotrophic factor (BDNF) is known to promote metastasis in human chondrosarcoma cells. Knowing more about the mechanism of BDNF in VEGF-C expression and lymphangiogenesis in human chondrosarcoma would improve our understanding as how to prevent chondrosarcoma angiogenesis and metastasis, which currently lacks effective adjuvant treatment. Here, we found that BDNF expression was at least 2.5-fold higher in the highly migratory JJ012(S10) cell line as compared with the primordial cell line (JJ012). In addition, VEGF-C expression and secretion was markedly increased in JJ012(S10) cells. Conditioned medium from JJ012(S10) cells significantly promoted migration and tube formation of human lymphatic endothelial cells (LECs), whereas knockdown of BDNF attenuated LEC migration and tube formation by suppressing VEGF-C production in JJ012(S10) cells. Mechanistic investigations indicated that BDNF facilitated VEGF-C-dependent lymphangiogenesis through the MEK/ERK/mTOR signaling pathway. We also showed that microRNA (miR)-624-3p expression was negatively regulated by BDNF via the MEK/ERK/mTOR cascade. Importantly, BDNF knockdown profoundly inhibited tumor-associated lymphangiogenesis in vivo. Further analyses identified that BDNF promoted tumor lymphangiogenesis by downregulating miR-624-3p in human chondrosarcoma tissues. In conclusion, this study is the first to reveal the mechanism underlying BDNF-induced lymphangiogenesis. We suggest that BDNF may serve as a promising therapeutic target for the restriction of VEGF-C-mediated tumor lymphangiogenesis and lymphatic metastasis. PMID:28771226

  20. Temporal expression of the human alcohol dehydrogenase gene family during liver development correlates with differential promoter activation by hepatocyte nuclear factor 1, CCAAT/enhancer-binding protein alpha, liver activator protein, and D-element-binding protein.

    PubMed Central

    van Ooij, C; Snyder, R C; Paeper, B W; Duester, G

    1992-01-01

    The human class I alcohol dehydrogenase (ADH) gene family consists of ADH1, ADH2, and ADH3, which are sequentially activated in early fetal, late fetal, and postnatal liver, respectively. Analysis of ADH promoters revealed differential activation by several factors previously shown to control liver transcription. In cotransfection assays, the ADH1 promoter, but not the ADH2 or ADH3 promoter, was shown to respond to hepatocyte nuclear factor 1 (HNF-1), which has previously been shown to regulate transcription in early liver development. The ADH2 promoter, but not the ADH1 or ADH3 promoter, was shown to respond to CCAAT/enhancer-binding protein alpha (C/EBP alpha), a transcription factor particularly active during late fetal liver and early postnatal liver development. The ADH1, ADH2, and ADH3 promoters all responded to the liver transcription factors liver activator protein (LAP) and D-element-binding protein (DBP), which are most active in postnatal liver. For all three promoters, the activation by LAP or DBP was higher than that seen by HNF-1 or C/EBP alpha, and a significant synergism between C/EBP alpha and LAP was noticed for the ADH2 and ADH3 promoters when both factors were simultaneously cotransfected. A hierarchy of ADH promoter responsiveness to C/EBP alpha and LAP homo- and heterodimers is suggested. In all three ADH genes, LAP bound to the same four sites previously reported for C/EBP alpha (i.e., -160, -120, -40, and -20 bp), but DBP bound strongly only to the site located at -40 bp relative to the transcriptional start. Mutational analysis of ADH2 indicated that the -40 bp element accounts for most of the promoter regulation by the bZIP factors analyzed. These studies suggest that HNF-1 and C/EBP alpha help establish ADH gene family transcription in fetal liver and that LAP and DBP help maintain high-level ADH gene family transcription in postnatal liver. Images PMID:1620113

  1. Heat shock transcription factor 1 promotes the proliferation, migration and invasion of osteosarcoma cells.

    PubMed

    Zhou, Zhenhua; Li, Yan; Jia, Qi; Wang, Zhiwei; Wang, Xudong; Hu, Jingjing; Xiao, Jianru

    2017-08-01

    Osteosarcoma is the most commonly diagnosed primary malignancy of bone and its overall survival rate is still very low. The molecular mechanisms underlying the progression of osteosarcoma have not been clearly illuminated. Heat shock transcription factor 1 (HSF1) is a key regulator of the heat shock response and also plays important roles in many cancers, but its function in osteosarcoma remains unexplored. In this study, the proliferation of osteosarcoma cells was determined by Cell Counting Kit-8 assays and colony formation assays. Transwell assays were used to demonstrate the migration and invasion abilities of osteosarcoma cells. A tumour formation assay in a nude mouse model was performed to assess the effect of HSF1 on osteosarcoma cell growth in vivo. The protein levels of HSF1 were analysed with immunohistochemical staining in samples from osteosarcoma patients. We demonstrated that knockdown of HSF1 reduced the proliferation, migration and invasion of osteosarcoma cells, while overexpression of HSF1 promoted the proliferation, migration and invasion of osteosarcoma cells. Furthermore, HSF1 promoted the proliferation of osteosarcoma cells in vivo. In addition, high levels of HSF1 were associated with a poor prognosis in osteosarcoma. These data highlight an important role of HSF1 in proliferation, migration and invasion of osteosarcoma cells. Moreover, the expression of HSF1 was associated with prognosis in osteosarcoma. © 2017 John Wiley & Sons Ltd.

  2. Leukemia inhibitory factor promote trophoblast invasion via urokinase-type plasminogen activator receptor in preeclampsia.

    PubMed

    Zheng, Qin; Dai, Kuixing; Cui, Xinyuan; Yu, Ming; Yang, Xuesong; Yan, Bin; Liu, Shuai; Yan, Qiu

    2016-05-01

    Preeclampsia is a pregnancy-related syndrome which can cause perinatal mortality and morbidity. Inadequate invasion by trophoblast cells may lead to poor perfusion of the placenta, even result in preeclampsia. Understanding the molecular mechanisms underlying placentation facilitates the better intervention of preeclampsia. Urokinase-type plasminogen activator receptor (uPAR) is involved in the physiological and pathological processes. Leukemia inhibitory factor (LIF) is an important regulator in the establishment of pregnancy. However, the expression of uPAR in preeclamptic patients and its relationship with LIF remains unclear. In the current study, we found that the level of uPAR was relatively lower in the placentas from preeclamptic patients as compared with normal pregnant women. LIF promoted trophoblast cell outgrowth by upregulating uPAR in an explants culture, and LIF also enhanced migration and invasion potential through uPAR in trophoblast JAR and JEG-3 cell lines, and with increased gelatinolytic activities of matrix metalloproteinase 2 (MMP-2). The effect of LIF and uPAR on trophoblast migration and invasion was mediated by PI3K/AKT signaling pathway. Our data indicates the roles of LIF in promoting trophoblast migration and invasion through uPAR and suggest that abnormal expression of uPAR might be associated with the etiology of preeclampsia. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  3. Neuroprotective effects of electro acupuncture on hypoxic-ischemic encephalopathy in newborn rats Ass.

    PubMed

    Xu, Tao; Li, Wenjie; Liang, Yiqun; Yang, Zhonghua; Liu, Jingdong; Wang, Yejun; Su, Nailun

    2014-11-01

    Hypoxic-ischemic encephalopathy (HIE) is a common and potentially devastating condition in the neonate, associated with high mortality and morbidity. Effective treatment options are limited and therefore alternative therapies such as acupuncture are increasingly used. Previous studies have shown that electro acupuncture promoted proliferation of neural progenitor cell and increased expression of neurotrophic factor in HIE. However, effects of electro acupuncture on downstream signaling pathways have been rarely researched. So, in the present study, we aimed to evaluate the neuroprotective effects of electro acupuncture on HIE and to further investigate the role of GDNF family receptor member RET and its key downstream PI3-K/Akt pathway in the process. A rat HIE model was constructed by the left common carotid artery (LCCA) ligation method in combination with hypoxic treatment. Considering that Baihui (GV20), Dazhui (GV14), Quchi (LI11) and Yongquan (KI1) are commonly used in clinics for stroke treatment and are easy to locate, we chose the above four acupoints as the combination for electro acupuncture treatment which was performed once a day for different time periods. Hematoxylin-eosin (HE) staining and transmission electron microscopy results showed that electro acupuncture could ameliorate neurologic damage and alleviate the degenerative changes of ultra structure of cortical neurons in rats subjected to HIE. And the longer acupuncture treatment lasted, the better its therapeutic effect would be. This was accompanied by gradually increased expression of GDNF family receptor RET at the mRNA level and its downstream signaling Akt at the protein level in the ischemic cortex. These findings suggest that electro acupuncture shows neuroprotective effects in HIE, which at least in part is attributed to activation of PI3-K/Akt signaling pathway.

  4. Neurotropic effects of venoms and other factors that promote prey acquisition.

    PubMed

    Gennaro, Joseph Francis; Hall, Hollis Pace; Casey, Ernest Raymond; Hayes, William Kent

    2007-09-01

    Mammals envenomed by either the Eastern diamondback rattlesnake (Crotalus adamanteus) or the cottonmouth (Agkistrodon piscivorus piscivorus) exhibit an immediate but transitory pupillar contraction, a parasympathomimetic effect mediated through the ciliary ganglion that can be prevented by a retrobulbar injection of anesthetic. The venom of the cottonmouth injected into the lymph spaces of the frog (Rana pipiens) produces an immediate and total collapse of the lung sacs. Applied locally to the surface, it produces a constriction that eventually collapses the entire sac. Tests of venoms and toxins from both anterior and posterior parts of the venom apparatus indicate that the lung-collapsing moiety originates in the accessory, not the main portion of the venom gland. This is the first example of a functional specialization within the whole structure. It seems that this factor is elaborated primarily in snakes that prey upon frogs, although insufficient data are available from this study to confirm this. In both reptile species, the predatory strike is accompanied by an immediate effect, perhaps mediated by the parasympathetic nervous system, designed to incapacitate the prey and facilitate capture. These effects cannot now be attributed to neurotoxins because the effect of the former is transitory (and not lethal) and neither has been purified sufficiently to determine potency or structure. Both take part in securing, but not killing, the prey, and both directly oppose the sympathetic nervous system "fright-fight/flight" response. Evidence is presented to support the possibility that known epigenetic mechanisms are capable of effecting heritable changes in gene expression that could allow for the development of factors that facilitate prey acquisition and promote rapid adaptation to environmental change. (c) 2007 Wiley-Liss, Inc.

  5. Effectiveness of exercise intervention and health promotion on cardiovascular risk factors in middle-aged men: a protocol of a randomized controlled trial

    PubMed Central

    2013-01-01

    Background Although cardiovascular disease has decreased, there is still potential for prevention as obesity and diabetes increase. Exercise has a positive effect on many cardiovascular risk factors, and it can significantly reduce the components of metabolic syndrome. The main challenge with exercise in primary care is how to succeed in motivating the patients at risk to change and increase their exercise habits. The objective of this study is to modify the cardiovascular risk in middle-aged men, either through a health promotion intervention alone or combined with an exercise intervention. Methods/design During a two-year period we recruit 300 men aged from 35 to 45 years with elevated cardiovascular risk (> two traditional risk factors). The men are randomized into three arms: 1) a health promotion intervention alone, 2) both health promotion and exercise intervention, or 3) control with usual community care and delayed health promotion (these men receive the intervention after one year). The main outcome measures will be the existence of metabolic syndrome and physical activity frequency (times per week). The participants are assessed at baseline, and at 3, 6, and 12 months. The follow-up of the study will last 12 months. Discussion This pragmatic trial in primary health care aimed to assess the effect of a health promotion programme with or without exercise intervention on cardiovascular risk and physical activity in middle-aged men. The results of this study may help to plan the primary care interventions to further reduce cardiovascular mortality. The study was registered at the Controlled Trials ( http://www.controlled-trials.com). Trial number: ISRCTN80672011. The study received ethics approval from the Coordinating Ethics Committee at Helsinki University Hospital on 8 June 2009 (ref: 4/13/03/00/09). PMID:23398957

  6. Effectiveness of exercise intervention and health promotion on cardiovascular risk factors in middle-aged men: a protocol of a randomized controlled trial.

    PubMed

    From, Svetlana; Liira, Helena; Leppävuori, Jenni; Remes-Lyly, Taina; Tikkanen, Heikki; Pitkälä, Kaisu

    2013-02-11

    Although cardiovascular disease has decreased, there is still potential for prevention as obesity and diabetes increase. Exercise has a positive effect on many cardiovascular risk factors, and it can significantly reduce the components of metabolic syndrome. The main challenge with exercise in primary care is how to succeed in motivating the patients at risk to change and increase their exercise habits. The objective of this study is to modify the cardiovascular risk in middle-aged men, either through a health promotion intervention alone or combined with an exercise intervention. During a two-year period we recruit 300 men aged from 35 to 45 years with elevated cardiovascular risk (> two traditional risk factors). The men are randomized into three arms: 1) a health promotion intervention alone, 2) both health promotion and exercise intervention, or 3) control with usual community care and delayed health promotion (these men receive the intervention after one year). The main outcome measures will be the existence of metabolic syndrome and physical activity frequency (times per week). The participants are assessed at baseline, and at 3, 6, and 12 months. The follow-up of the study will last 12 months. This pragmatic trial in primary health care aimed to assess the effect of a health promotion programme with or without exercise intervention on cardiovascular risk and physical activity in middle-aged men. The results of this study may help to plan the primary care interventions to further reduce cardiovascular mortality.The study was registered at the Controlled Trials ( http://www.controlled-trials.com). ISRCTN80672011. The study received ethics approval from the Coordinating Ethics Committee at Helsinki University Hospital on 8 June 2009 (ref: 4/13/03/00/09).

  7. Krüppel-like factor 8 involved in hypoxia promotes the invasion and metastasis of gastric cancer via epithelial to mesenchymal transition.

    PubMed

    Liu, Na; Wang, Yafang; Zhou, Yongan; Pang, Hailin; Zhou, Jing; Qian, Pei; Liu, Lili; Zhang, Helong

    2014-12-01

    Previously, we reported that hypoxia was able to induce invasion and metastasis in gastric cancer and that hypoxia-inducible factor-1 (HIF-1) is a key factor involved in this tumor type. Krüppel-like factor 8 (KLF8) as a transcriptional repressor has been suggested as a promoter of tumor metastasis in breast cancer and an inducer of the epithelial‑mesenchymal transition (EMT). KLF8 is also highly expressed in gastric cancer tissues, contributing to poor prognosis. However, the association between KLF8 and HIF-1 in regulating the progression of human gastric cancer in hypoxia is unclear. In the present study, we found that KLF8 was overexpressed in gastric cancer metastatic tissues and cells. Additionally, KLF8 siRNA significantly inhibited SGC7901 cell invasion and migration compared with SGC7901, SGC7901/Scr-si cells. Hypoxia is thus able to induce KLF8 expression and EMT in SGC7901 cells. However, following the examination of changes in cell morphology and epithelial and mesenchymal markers, it was found that KLF8 siRNA and HIF-1 siRNA strongly reversed EMT in cells undergoing hypoxia. Furthermore, hypoxia-induced KLF8 overexpression was attenuated by HIF-1 siRNA. Experiments using luciferase promoter constructs resulted in a marked increase in the activity of cells exposed to hypoxia and decreased activity in cells co-transfected with HIF-1 siRNA. The chromatin immunoprecipitation assay revealed proximal HRE at -133 is the main HIF-1 binding site in the KLF8 promoter. In conclusion, the results demonstrated that KLF8 is actively enhanced by hypoxia and is a novel HIF-1 target. KLF8 is a novel EMT regulating transcription factor that involved in the progression of gastric cancer. The specific anti-EMT drugs in combination with anti-hypoxia are new promising cancer therapies.

  8. Transforming the culture of surgical education: promoting teacher identity through human factors training.

    PubMed

    Cahan, Mitchell A; Starr, Susan; Larkin, Anne C; Litwin, Demetrius E M; Sullivan, Kate M; Quirk, Mark E

    2011-07-01

    Promoting a culture of teaching may encourage students to choose a surgical career. Teaching in a human factors (HF) curriculum, the nontechnical skills of surgery, is associated with surgeons' stronger identity as teachers and with clinical students' improved perception of surgery and satisfaction with the clerkship experience. To describe the effects of an HF curriculum on teaching culture in surgery. Surgeons and educators developed an HF curriculum including communication, teamwork, and work-life balance. Teacher identity, student interest in a surgical career, student perception of the HF curriculum, and teaching awards. Ninety-two of 123 faculty and residents in a single program (75% of total) completed a survey on teacher identity. Fifteen of the participants were teachers of HF. Teachers of HF scored higher than control participants on the total score for teacher identity (P < .001) and for subcategories of global teacher identity (P = .001), intrinsic satisfaction (P = .001), skills and knowledge (P = .006), belonging to a group of teachers (P < .001), feeling a responsibility to teach (P = .008), receiving rewards (P =.01), and HF (P = .02). Third-year clerks indicated that they were more likely to select surgery as their career after the clerkship and rated the curriculum higher when it was taught by surgeons than when taught by educators. Of the teaching awards presented to surgeons during HF years, 100% of those awarded to attending physicians and 80% of those awarded to residents went to teachers of HF. Curricular focus on HF can strengthen teacher identity, improve teacher evaluations, and promote surgery as a career choice.

  9. Mechanism of Promoter Melting by the Xeroderma Pigmentosum Complementation Group B Helicase of Transcription Factor IIH Revealed by Protein-DNA Photo-Cross-Linking

    PubMed Central

    Douziech, Maxime; Coin, Frédéric; Chipoulet, Jean-Marc; Arai, Yoko; Ohkuma, Yoshiaki; Egly, Jean-Marc; Coulombe, Benoit

    2000-01-01

    The p89/xeroderma pigmentosum complementation group B (XPB) ATPase-helicase of transcription factor IIH (TFIIH) is essential for promoter melting prior to transcription initiation by RNA polymerase II (RNAPII). By studying the topological organization of the initiation complex using site-specific protein-DNA photo-cross-linking, we have shown that p89/XPB makes promoter contacts both upstream and downstream of the initiation site. The upstream contact, which is in the region where promoter melting occurs (positions −9 to +2), requires tight DNA wrapping around RNAPII. The addition of hydrolyzable ATP tethers the template strand at positions −5 and +1 to RNAPII subunits. A mutation in p89/XPB found in a xeroderma pigmentosum patient impairs the ability of TFIIH to associate correctly with the complex and thereby melt promoter DNA. A model for open complex formation is proposed. PMID:11027286

  10. Soluble factors from biofilm of Candida albicans and Staphylococcus aureus promote cell death and inflammatory response.

    PubMed

    de Carvalho Dias, Kassia; Barbugli, Paula Aboud; de Patto, Fernanda; Lordello, Virginia Barreto; de Aquino Penteado, Letícia; Medeiros, Alexandra Ivo; Vergani, Carlos Eduardo

    2017-06-30

    The objective of this study was to better understand the effects of soluble factors from biofilm of single- and mixed-species Candida albicans (C. albicans) and methicillin-sensitive Staphylococcus aureus (MSSA) cultures after 36 h in culture on keratinocytes (NOK-si and HaCaT) and macrophages (J774A.1). Soluble factors from biofilms of C. albicans and MSSA were collected and incubated with keratinocytes and macrophages, which were subsequently evaluated by cell viability assays (MTT). Lactate dehydrogenase (LDH) enzyme release was measured to assess cell membrane damage to keratinocytes. Cells were analysed by brightfield microscopy after 2 and 24 h of exposure to the soluble factors from biofilm. Cell death was detected by labelling apoptotic cells with annexin V and necrotic cells with propidium iodide (PI) and was visualized via fluorescence microscopy. Soluble factors from biofilm were incubated with J774A.1 cells for 24 h; the subsequent production of NO and the cytokines IL-6 and TNF-α was measured by ELISA. The cell viability assays showed that the soluble factors of single-species C. albicans cultures were as toxic as the soluble factors from biofilm of mixed cultures, whereas the soluble factors of MSSA cultures were less toxic than those of C. albicans or mixed cultures. The soluble factors from biofilm of mixed cultures were the most toxic to the NOK-si and HaCaT cells, as confirmed by analyses of PI labelling and cell morphology. Soluble factors from biofilm of single-species MSSA and mixed-species cultures induced the production of IL-6, NO and TNF-α by J744A.1 macrophages. The production of IL-6 and NO induced by the soluble factors from biofilm of mixed cultures was lower than that induced by the soluble factors from biofilm of single-species MSSA cultures, whereas the soluble factors from biofilm of C. albicans cultures induced only low levels of NO. Soluble factors from 36-h-old biofilm of C. albicans and MSSA cultures promoted cell death and

  11. The Impact of Exercise on the Vulnerability of Dopamine Neurons to Cell Death in Animal Models of Parkinson’s Disease

    DTIC Science & Technology

    2006-07-01

    and methamphetamine Our basic assumption is that protective treatments alter both post-translational and translational events so as to reduce the...impact of voluntary running on trophic factor levels and the neurotoxic effects of 6-OHDA. Reportable Outcomes: • Like exercise, GDNF protects DA...also protects against the increased vulnerability to toxins caused by other stressors; and (4) the generality of our results with 6-OHDA to other

  12. GPER Promoter Methylation Controls GPER Expression in Breast Cancer Patients.

    PubMed

    Weissenborn, Christine; Ignatov, Tanja; Nass, Norbert; Kalinski, Thomas; Dan Costa, Serban; Zenclussen, Ana Claudia; Ignatov, Atanas

    2017-02-07

    Recently, we found that G-protein-coupled estrogen receptor (GPER) protein expression decreased during breast carcinogenesis, and that GPER promoter is methylated. Here we analyzed GPER promoter methylation in 260 primary breast cancer specimens by methylation-specific polymerized chain reaction. The results demonstrated that GPER protein down-regulation significantly correlated with GPER promoter hypermethylation (p < .001). Comparison of 108 tumors and matched normal breast tissues indicated a significant GPER down-regulation in cancer tissues correlating with GPER promoter hypermethylation (p < .001). The latter was an unfavorable factor for overall survival of patients with triple-negative breast cancer (p = .025). Thus GPER promoter hypermethylation might be used as a prognostic factor.

  13. Characterization of human mitochondrial ferritin promoter: identification of transcription factors and evidences of epigenetic control

    NASA Astrophysics Data System (ADS)

    Guaraldo, Michela; Santambrogio, Paolo; Rovelli, Elisabetta; di Savino, Augusta; Saglio, Giuseppe; Cittaro, Davide; Roetto, Antonella; Levi, Sonia

    2016-09-01

    Mitochondrial ferritin (FtMt) is an iron storage protein belonging to the ferritin family but, unlike the cytosolic ferritin, it has an iron-unrelated restricted tissue expression. FtMt appears to be preferentially expressed in cell types characterized by high metabolic activity and oxygen consumption, suggesting a role in protecting mitochondria from iron-dependent oxidative damage. The human gene (FTMT) is intronless and its promoter region has not been described yet. To analyze the regulatory mechanisms controlling FTMT expression, we characterized the 5‧ flanking region upstream the transcriptional starting site of FTMT by in silico enquiry of sequences conservation, DNA deletion analysis, and ChIP assay. The data revealed a minimal promoter region and identified the presence of SP1, CREB and YY1 as positive regulators, and GATA2, FoxA1 and C/EBPβ as inhibitors of the transcriptional regulation. Furthermore, the FTMT transcription is increased by acetylating and de-methylating agent treatments in K562 and HeLa cells. These treatments up-regulate FtMt expression even in fibroblasts derived from a Friedreich ataxia patient, where it might exert a beneficial effect against mitochondrial oxidative damage. The expression of FTMT appears regulated by a complex mechanism involving epigenetic events and interplay between transcription factors.

  14. Intranasal gene delivery for treating Parkinson's disease: overcoming the blood-brain barrier.

    PubMed

    Aly, Amirah E-E; Waszczak, Barbara L

    2015-01-01

    Developing a disease-modifying gene therapy for Parkinson's disease (PD) has been a high priority for over a decade. However, due to the inability of large biomolecules to cross the blood-brain barrier (BBB), the only means of delivery to the brain has been intracerebral infusion. Intranasal administration offers a non-surgical means of bypassing the BBB to deliver neurotrophic factors, and the genes encoding them, directly to the brain. This review summarizes: i) evidence demonstrating intranasal delivery to the brain of a number of biomolecules having therapeutic potential for various CNS disorders; and ii) evidence demonstrating neuroprotective efficacy of a subset of biomolecules specifically for PD. The intersection of these two spheres represents the area of opportunity for development of new intranasal gene therapies for PD. To that end, our laboratory showed that intranasal administration of glial cell line-derived neurotrophic factor (GDNF), or plasmid DNA nanoparticles encoding GDNF, provides neuroprotection in a rat model of PD, and that the cells transfected by the nanoparticle vector are likely to be pericytes. A number of genes encoding neurotrophic factors have therapeutic potential for PD, but few have been tested by the intranasal route and shown to be neuroprotective in a model of PD. Intranasal delivery provides a largely unexplored, promising approach for development of a non-invasive gene therapy for PD.

  15. A nuclear factor I-like activity and a liver-specific repressor govern estrogen-regulated in vitro transcription from the Xenopus laevis vitellogenin B1 promoter.

    PubMed

    Corthésy, B; Cardinaux, J R; Claret, F X; Wahli, W

    1989-12-01

    A hormone-controlled in vitro transcription system derived from Xenopus liver nuclear extracts was exploited to identify novel cis-acting elements within the vitellogenin gene B1 promoter region. In addition to the already well-documented estrogen-responsive element (ERE), two elements were found within the 140 base pairs upstream of the transcription initiation site. One of them, a negative regulatory element, is responsible for the lack of promoter activity in the absence of the hormone and, as demonstrated by DNA-binding assays, interacts with a liver-specific transcription factor. The second is required in association with the estrogen-responsive element to mediate hormonal induction and is recognized by the Xenopus liver homolog of nuclear factor I.

  16. Acetyl-11-Keto-β-Boswellic Acid Promotes Osteoblast Differentiation by Inhibiting Tumor Necrosis Factor-α and Nuclear Factor-κB Activity.

    PubMed

    Bai, Fan; Chen, Xuewu; Yang, Hui; Xu, Hong-Guang

    2018-06-20

    Tumor necrosis factor (TNF) -α plays a crucial role in rheumatoid arthritis (RA)-related bone loss disease. The main mechanism of action of RA induced bone loss is the significant inhibitory effect of TNF-α on osteoblast differentiation. TNF-α inhibits osteoblast differentiation mainly by activating nuclear factor (NF) -κB signaling pathway. Owing to the crucial role of TNF-α and NF-κB in the inhibition of osteoblast differentiation, they are considered as targets for the development of therapeutic drugs. In the present study, we evaluated the NF-κB inhibitor Boswellic acid (BA) and its derivatives in the regulation of osteoblast differentiation and the molecular mechanism. Based on the cell model of TNF-α induced inhibition of osteoblast differentiation of MC3T3-E1, the regulatory role of BAs was studied. The result of MTT assay indicated that bone morphogenetic protein (BMP) -2, TNF-α, or acetyl-11-keto-β-BA (AKBA) impact no significant effect for cell viability of MC3T3-E1. The results of alkaline phosphatase (ALP activity assay and real-time polymerase chain reaction indicated that AKBA blocked TNF-α-induced inhibition of the expression of osteoblast markers, suggesting that AKBA rescued osteoblast differentiation from TNF-α-induced inhibition. Additionally, AKBA stimulated the BMP-2-induced expression of osteoblast markers, suggesting that AKBA promotes osteoblast differentiation directly. The results of western blotting and luciferase assay indicated that N-κB signaling was activated by TNF-α. The overexpression of NF-κB component p65 in MC3T3-E1 was found to attenuate the positive effect of AKBA in osteoblast differentiation, suggesting that AKBA potentiates osteoblast differentiation by inhibiting NF-κB signaling. Collectively, AKBA promotes osteoblast differentiation by inhibiting TNF-α and NF-κB. Our study revealed a new discovery of AKBA in regulating osteoblast differentiation, and demonstrated that AKBA may be a potential anabolic

  17. The predictive role of health-promoting behaviours and perceived stress in aneurysmal rupture.

    PubMed

    Lee, Mi-Sun; Park, Chang G; Hughes, Tonda L; Jun, Sang-Eun; Whang, Kum; Kim, Nahyun

    2018-03-01

    To examine the roles of two modifiable factors-health-promoting behaviours and perceived stress-in predicting aneurysmal rupture. Unruptured intracranial aneurysm detection produces significant stress and anxiety in patients because of the risk of rupture. Compared to nonmodifiable risk factors for rupture such as age, gender and aneurysm size/location, less attention has been given to modifiable risk factors. Two modifiable factors, health-promoting behaviours and perceived stress, have hardly been examined as potential predictors of rupture. This study used a cross-sectional design. We assessed 155 patients with intracranial aneurysms-that is, subarachnoid haemorrhage (n = 77) or unruptured intracranial aneurysm (n = 78)-to examine (i) baseline characteristics (patient and aneurysmal factors), (ii) health-related factors (lifestyle habits and health-promoting behaviour) and (iii) perceived stress levels (psychological stress and physical stress). Patient records provided medical histories and aneurysmal factors; other data were collected using a structured questionnaire addressing lifestyle habits, the Health-Promoting Lifestyle Profile-II to measure health-promoting behaviour and the Perceived Stress Questionnaire to measure perceived-psychological stress and perceived-physical stress levels. Bivariate analysis indicated that aneurysm rupture risk was associated with female gender, aneurysm size/location, defecation frequency, hyperlipidaemia, sedentary time, low Health-Promoting Lifestyle Profile-II mean scores and high perceived-psychological stress scores. After adjusting for known risk factors, the mean Health-Promoting Lifestyle Profile-II and perceived-psychological stress scores remained robust predictors of rupture. Furthermore, known risk factors combined with these scores had greater predictive power than known risk factors alone. Health-promoting behaviour and psychological stress are promising modifiable factors for reducing risk of aneurysmal

  18. The Worksite Health Promotion Capacity Instrument (WHPCI): development, validation and approaches for determining companies' levels of health promotion capacity.

    PubMed

    Jung, Julia; Nitzsche, Anika; Neumann, Melanie; Wirtz, Markus; Kowalski, Christoph; Wasem, Jürgen; Stieler-Lorenz, Brigitte; Pfaff, Holger

    2010-09-13

    The Worksite Health Promotion Capacity Instrument (WHPCI) was developed to assess two key factors for effective worksite health promotion: collective willingness and the systematic implementation of health promotion activities in companies. This study evaluates the diagnostic qualities of the WHPCI based on its subscales Health Promotion Willingness and Health Promotion Management, which can be used to place companies into four different categories based on their level of health promotion capacity. Psychometric evaluation was conducted using exploratory factor and reliability analyses with data taken from a random sample of managers from n = 522 German information and communication technology (ICT) companies. Receiver operating characteristic (ROC) analyses were conducted to determine further diagnostic qualities of the instrument and to establish the cut-off scores used to determine each company's level of health promotion capacity. The instrument's subscales, Health Promotion Willingness and Health Promotion Management, are based on one-dimensional constructs, each with very good reliability (Cronbach's alpha = 0.83/0.91). ROC analyses demonstrated satisfactory diagnostic accuracy with an area under the curve (AUC) of 0.76 (SE = 0.021; 95% CI 0.72-0.80) for the Health Promotion Willingness scale and 0.81 (SE = 0.021; 95% CI 0.77-0.86) for the Health Promotion Management scale. A cut-off score with good sensitivity (71%/76%) and specificity (69%/75%) was determined for each scale. Both scales were found to have good predictive power and exhibited good efficiency. Our findings indicate preliminary evidence for the validity and reliability of both subscales of the WHPCI. The goodness of each cut-off score suggests that the scales are appropriate for determining companies' levels of health promotion capacity. Support in implementing (systematic) worksite health promotion can then be tailored to each company's needs based on their current capacity level.

  19. Connective tissue growth factor is expressed in bone marrow stromal cells and promotes interleukin-7-dependent B lymphopoiesis.

    PubMed

    Cheung, Laurence C; Strickland, Deborah H; Howlett, Meegan; Ford, Jette; Charles, Adrian K; Lyons, Karen M; Brigstock, David R; Goldschmeding, Roel; Cole, Catherine H; Alexander, Warren S; Kees, Ursula R

    2014-07-01

    Hematopoiesis occurs in a complex bone marrow microenvironment in which bone marrow stromal cells provide critical support to the process through direct cell contact and indirectly through the secretion of cytokines and growth factors. We report that connective tissue growth factor (Ctgf, also known as Ccn2) is highly expressed in murine bone marrow stromal cells. In contrast, connective tissue growth factor is barely detectable in unfractionated adult bone marrow cells. While connective tissue growth factor has been implicated in hematopoietic malignancies, and is known to play critical roles in skeletogenesis and regulation of bone marrow stromal cells, its role in hematopoiesis has not been described. Here we demonstrate that the absence of connective tissue growth factor in mice results in impaired hematopoiesis. Using a chimeric fetal liver transplantation model, we show that absence of connective tissue growth factor has an impact on B-cell development, in particular from pro-B to more mature stages, which is linked to a requirement for connective tissue growth factor in bone marrow stromal cells. Using in vitro culture systems, we demonstrate that connective tissue growth factor potentiates B-cell proliferation and promotes pro-B to pre-B differentiation in the presence of interleukin-7. This study provides a better understanding of the functions of connective tissue growth factor within the bone marrow, showing the dual regulatory role of the growth factor in skeletogenesis and in stage-specific B lymphopoiesis. Copyright© Ferrata Storti Foundation.

  20. Connective tissue growth factor is expressed in bone marrow stromal cells and promotes interleukin-7-dependent B lymphopoiesis

    PubMed Central

    Cheung, Laurence C.; Strickland, Deborah H.; Howlett, Meegan; Ford, Jette; Charles, Adrian K.; Lyons, Karen M.; Brigstock, David R.; Goldschmeding, Roel; Cole, Catherine H.; Alexander, Warren S.; Kees, Ursula R.

    2014-01-01

    Hematopoiesis occurs in a complex bone marrow microenvironment in which bone marrow stromal cells provide critical support to the process through direct cell contact and indirectly through the secretion of cytokines and growth factors. We report that connective tissue growth factor (Ctgf, also known as Ccn2) is highly expressed in murine bone marrow stromal cells. In contrast, connective tissue growth factor is barely detectable in unfractionated adult bone marrow cells. While connective tissue growth factor has been implicated in hematopoietic malignancies, and is known to play critical roles in skeletogenesis and regulation of bone marrow stromal cells, its role in hematopoiesis has not been described. Here we demonstrate that the absence of connective tissue growth factor in mice results in impaired hematopoiesis. Using a chimeric fetal liver transplantation model, we show that absence of connective tissue growth factor has an impact on B-cell development, in particular from pro-B to more mature stages, which is linked to a requirement for connective tissue growth factor in bone marrow stromal cells. Using in vitro culture systems, we demonstrate that connective tissue growth factor potentiates B-cell proliferation and promotes pro-B to pre-B differentiation in the presence of interleukin-7. This study provides a better understanding of the functions of connective tissue growth factor within the bone marrow, showing the dual regulatory role of the growth factor in skeletogenesis and in stage-specific B lymphopoiesis. PMID:24727816