Science.gov

Sample records for factor gene pro1

  1. The pro1(+) gene from Sordaria macrospora encodes a C6 zinc finger transcription factor required for fruiting body development.

    PubMed

    Masloff, S; Pöggeler, S; Kück, U

    1999-05-01

    During sexual morphogenesis, the filamentous ascomycete Sordaria macrospora differentiates into multicellular fruiting bodies called perithecia. Previously it has been shown that this developmental process is under polygenic control. To further understand the molecular mechanisms involved in fruiting body formation, we generated the protoperithecia forming mutant pro1, in which the normal development of protoperithecia into perithecia has been disrupted. We succeeded in isolating a cosmid clone from an indexed cosmid library, which was able to complement the pro1(-) mutation. Deletion analysis, followed by DNA sequencing, subsequently demonstrated that fertility was restored to the pro1 mutant by an open reading frame encoding a 689-amino-acid polypeptide, which we named PRO1. A region from this polypeptide shares significant homology with the DNA-binding domains found in fungal C6 zinc finger transcription factors, such as the GAL4 protein from yeast. However, other typical regions of C6 zinc finger proteins, such as dimerization elements, are absent in PRO1. The involvement of the pro1(+) gene in fruiting body development was further confirmed by trying to complement the mutant phenotype with in vitro mutagenized and truncated versions of the pro1 open reading frame. Southern hybridization experiments also indicated that pro1(+) homologues are present in other sexually propagating filamentous ascomycetes.

  2. The pro1(+) gene from Sordaria macrospora encodes a C6 zinc finger transcription factor required for fruiting body development.

    PubMed Central

    Masloff, S; Pöggeler, S; Kück, U

    1999-01-01

    During sexual morphogenesis, the filamentous ascomycete Sordaria macrospora differentiates into multicellular fruiting bodies called perithecia. Previously it has been shown that this developmental process is under polygenic control. To further understand the molecular mechanisms involved in fruiting body formation, we generated the protoperithecia forming mutant pro1, in which the normal development of protoperithecia into perithecia has been disrupted. We succeeded in isolating a cosmid clone from an indexed cosmid library, which was able to complement the pro1(-) mutation. Deletion analysis, followed by DNA sequencing, subsequently demonstrated that fertility was restored to the pro1 mutant by an open reading frame encoding a 689-amino-acid polypeptide, which we named PRO1. A region from this polypeptide shares significant homology with the DNA-binding domains found in fungal C6 zinc finger transcription factors, such as the GAL4 protein from yeast. However, other typical regions of C6 zinc finger proteins, such as dimerization elements, are absent in PRO1. The involvement of the pro1(+) gene in fruiting body development was further confirmed by trying to complement the mutant phenotype with in vitro mutagenized and truncated versions of the pro1 open reading frame. Southern hybridization experiments also indicated that pro1(+) homologues are present in other sexually propagating filamentous ascomycetes. PMID:10224253

  3. Analysis of Ly49 gene transcripts in mature NK cells supports a role for the Pro1 element in gene activation, not gene expression.

    PubMed

    McCullen, M V; Li, H; Cam, M; Sen, S K; McVicar, D W; Anderson, S K

    2016-09-01

    The variegated expression of murine Ly49 loci has been associated with the probabilistic behavior of an upstream promoter active in immature cells, the Pro1 element. However, recent data suggest that Pro1 may be active in mature natural killer (NK) cells and function as an enhancer element. To assess directly if Pro1 transcripts are present in mature Ly49-expressing NK cells, RNA-sequencing of the total transcript pool was performed on freshly isolated splenic NK cells sorted for expression of either Ly49G or Ly49I. No Pro1 transcripts were detected from the Ly49a, Ly49c or Ly49i genes in mature Ly49(+) NK cells that contained high levels of Pro2 transcripts. Low levels of Ly49g Pro1 transcripts were found in both Ly49G(+) and Ly49G(-) populations, consistent with the presence of a small population of mature NK cells undergoing Ly49g gene activation, as previously demonstrated by culture of splenic NK cells in interleukin-2. Ly49 gene reporter constructs containing Pro1 failed to show any enhancer activity of Pro1 on Pro2 in a mature Ly49-expressing cell line. Taken together, the results are consistent with Pro1 transcription having a role in gene activation in developing NK, and argue against a role for Pro1 in Ly49 gene transcription by mature NK cells.

  4. Use of Random T-DNA Mutagenesis in Identification of Gene UvPRO1, A Regulator of Conidiation, Stress Response, and Virulence in Ustilaginoidea virens

    PubMed Central

    Lv, Bo; Zheng, Lu; Liu, Hao; Tang, Jintian; Hsiang, Tom; Huang, Jinbin

    2016-01-01

    False smut of rice, caused by Ustilaginoidea virens (Cooke) Takahashi (teleomorph: Villosiclava virens), is one of the most important diseases affecting rice worldwide. Agrobacterium tumefaciens-mediated transformation was used to identify functional genes in U. virens. In this study, we selected a single-copy insertion mutant T133 with deficiency in producing conidia by screening the T-DNA insertion mutant library of U. virens. The UvPRO1-deletion mutant was successfully obtained after cloning the targeted gene by analysis of the T-DNA insert site of mutant T133. Further research showed that the UvPRO1 mutant was reduced in growth rate and could not produce conidia in PSB medium, while sensitivities to sodium dodecyl sulfate, Congo red, and hyperosmotic stress increased. Moreover, the UvPRO1 deletion mutant hyphae could extend along the surface of spikelets at 1–3 dpi, but mycelia became shriveled and completely lost the ability to infect spikelets at 4 dpi. The relative expression level of UvPRO1 at 8 dpi was more than twice as high as that at 1–2 dpi. These results suggest that UvPRO1 plays a critical role in hyphal growth and conidiation, as well as in stress response and pathogenesis. These findings provide a novel mode of action for the PRO1 protein in fungi and improve the understanding of the function of UvPRO1 in the life cycle of U. virens. PMID:28082958

  5. The promoter of the nematode resistance gene Hs1pro-1 activates a nematode-responsive and feeding site-specific gene expression in sugar beet (Beta vulgaris L.) and Arabidopsis thaliana.

    PubMed

    Thurau, Tim; Kifle, Sirak; Jung, Christian; Cai, Daguang

    2003-06-01

    The Hs1pro-1 gene confers resistance to the beet cyst nematode Heterodera schachtii in sugar beet (Beta vulgaris L.) on the basis of a gene-for-gene relationship. RNA-gel blot analysis revealed that the transcript of Hs1pro-1 was present in uninfected roots of resistant beet at low levels but increased by about fourfold one day after nematode infection. Treatments of plants with external stimuli including salicylic acid, jasmonic acid, gibberellic acid and abscisic acid as well as wounding or salt stress did not result in changes in the gene transcription, indicating de novo transcription of Hs1pro-1 upon nematode infection specifically. To study transcriptional regulation of Hs1pro-1 expression at the cellular level, a 3082 bp genomic fragment representing the Hs1pro-1 promoter, isolated from the YAC-DNA housing the Hs1pro-1 gene, was fused to the beta-glucuronidase reporter gene (1832prm1::GUS) and transformed into susceptible beet roots and Arabidopsis plants, respectively. Fluorometric and histochemical GUS assays on transgenic beet roots and Arabidopsis plants carrying the 1832prm1::GUS construct demonstrated that the Hs1pro-1 promoter is functional in both species and drives a nematode responsive and feeding site-specific GUS-expression. GUS activity was detected as early as at initiation of the nematode feeding sites and GUS staining was restricted to the nematode feeding sites. To delineate the regulatory domains of the Hs1pro-1 promoter, fusion genes with various 5' deletions of the Hs1pro-1 promoter and the GUS gene were constructed and analysed in transgenic beet roots as well. Cis elements responsible for feeding site-specific gene expression reside between -355 and +247 from the transcriptional initiation site of Hs1pro-1 whereas an enhancer region necessary for higher gene expression is located between -1199 and -705 of the promoter. The Hs1pro-1 promoter drives a nematode feeding site-specific GUS expression in both sugar beet and Arabidopsis

  6. Molecular and cellular characterization of the tomato pollen profilin, LePro1

    USDA-ARS?s Scientific Manuscript database

    Profilin is an actin-binding protein involved in the dynamic turnover and restructuring of the actin cytoskeleton in all eukaryotic cells. We previously cloned a profilin gene, designated as LePro1 from tomato pollen. To investigate its biological role, in the present study, We investigated the tem...

  7. Engineering Factor Viii for Hemophilia Gene Therapy

    PubMed Central

    Roberts, Sean A.; Dong, Biao; Firrman, Jenni A.; Moore, Andrea R.; Sang, Nianli; Xiao, Weidong

    2012-01-01

    Current treatment of hemophilia A by intravenous infusion of factor VIII (fVIII) concentrates is very costly and has a potential adverse effect of developing inhibitors. Gene therapy, on the other hand, can potentially overcome these limitations associated with fVIII replacement therapy. Although hemophilia B gene therapy has achieved promising outcomes in human clinical trials, hemophilia A gene therapy lags far behind. Compared to factor IX, fVIII is a large protein which is difficult to express at sustaining therapeutic levels when delivered by either viral or non-viral vectors. To improve fVIII gene delivery, numerous strategies have been exploited to engineer the fVIII molecule and overcome the hurdles preventing long term and high level expression. Here we reviewed these strategies, and discussed their pros and cons in human gene therapy of hemophilia A. PMID:23565342

  8. Growth factor gene therapy for Alzheimer disease.

    PubMed

    Tuszynski, Mark H; U, Hoi Sang; Alksne, John; Bakay, Roy A; Pay, Mary Margaret; Merrill, David; Thal, Leon J

    2002-11-15

    The capacity to prevent neuronal degeneration and death during the course of progressive neurological disorders such as Alzheimer disease (AD) would represent a significant advance in therapy. Nervous system growth factors are families of naturally produced proteins that, in animal models, exhibit extensive potency in preventing neuronal death due to a variety of causes, reversing age-related atrophy of neurons, and ameliorating functional deficits. The main challenge in translating growth factor therapy to the clinic has been delivery of growth factors to the brain in sufficient concentrations to influence neuronal function. One means of achieving growth factor delivery to the central nervous system in a highly targeted, effective manner may be gene therapy. In this article the authors summarize the development and implementation of nerve growth factor gene delivery as a potential means of reducing cell loss in AD.

  9. Yeast TATA-box transcription factor gene.

    PubMed

    Schmidt, M C; Kao, C C; Pei, R; Berk, A J

    1989-10-01

    The first step in the transcription of most protein-encoding genes in eukaryotes is the binding of a transcription factor to the TATA-box promoter element. This TATA-box transcription factor was purified from extracts of the yeast Saccharomyces cerevisiae by using reconstitution of in vitro transcription reactions as an assay. The activity copurified with a protein whose sodium dodecyl sulfate/polyacrylamide gel mobility is 25 kDa. The sequence of the amino-terminal 21 residues of this protein was determined by sequential Edman degradation. A yeast genomic library was screened with mixed oligonucleotides encoding six residues of the protein sequence. The yeast TATA-box factor gene was cloned, and DNA sequencing revealed a 720-base-pair open reading frame encoding a 27,016-Da protein. The identity of the clone was confirmed by expressing the gene in Escherichia coli and detecting TATA-box factor DNA binding and transcriptional activities in extracts of the recombinant E. coli. The TATA-box factor gene was mapped to chromosome five of S. cerevisiae. RNA blot hybridization and nuclease S1 analysis indicated that the major TATA-box factor mRNA is 1.3 kilobases, including an unusually long 5' untranslated region of 188 +/- 5 nucleotides. Homology searches showed a region of distant similarity to the calcium-binding structures of calpains, a structure that has a conformation similar to the helix-turn-helix motif of DNA binding proteins.

  10. Growth factors from genes to clinical application

    SciTech Connect

    Sara, V.R. ); Hall, K.; Low, H. )

    1990-01-01

    The last decade has witnessed an explosion in the identification of growth factors and their receptors. This has been greatly facilitated by recombinant DNA technology, which has provided the tools not only to identify these proteins at the gene level but also to produce recombinant proteins for evaluating their biological activities. With the help of such techniques, we are moving toward an understanding of the biosynthesis of growth factors and their receptors, structure-function relationships, as well as mechanisms for intracellular signal transmission. The possibility of modifying these factors has opened new fields of clinical application. In this paper, four major areas of growth factor research are presented: the characterization of growth factor genes and their protein products, growth factor receptors and signal transduction by the receptors to mediate biological action, the biological actions of the various growth factors, and the role of growth factors in health and disease and their possible clinical application. Some of the topics covered include: structure of the IGFs and their variants; isoforms of PDGF receptor types; tyrosine kinase activation; structure of G-proteins in biological membranes; possible therapeutic application of NGF in the treatment of Parkinson's and Alzheimer's diseases; PDGF's possible role in the development of several fibroproliferative diseases and its therapeutic application in wound healing; and the possible use of angiogenic inhibitors in tumor treatment.

  11. Autism risk factors: genes, environment, and gene-environment interactions.

    PubMed

    Chaste, Pauline; Leboyer, Marion

    2012-09-01

    The aim of this review is to summarize the key findings from genetic and epidemiological research, which show that autism is a complex disorder resulting from the combination of genetic and environmental factors. Remarkable advances in the knowledge of genetic causes of autism have resulted from the great efforts made in the field of genetics. The identification of specific alleles contributing to the autism spectrum has supplied important pieces for the autism puzzle. However, many questions remain unanswered, and new questions are raised by recent results. Moreover, given the amount of evidence supporting a significant contribution of environmental factors to autism risk, it is now clear that the search for environmental factors should be reinforced. One aspect of this search that has been neglected so far is the study of interactions between genes and environmental factors.

  12. Autism risk factors: genes, environment, and gene-environment interactions

    PubMed Central

    Chaste, Pauline; Leboyer, Marion

    2012-01-01

    The aim of this review is to summarize the key findings from genetic and epidemiological research, which show that autism is a complex disorder resulting from the combination of genetic and environmental factors. Remarkable advances in the knowledge of genetic causes of autism have resulted from the great efforts made in the field of genetics. The identification of specific alleles contributing to the autism spectrum has supplied important pieces for the autism puzzle. However, many questions remain unanswered, and new questions are raised by recent results. Moreover, given the amount of evidence supporting a significant contribution of environmental factors to autism risk, it is now clear that the search for environmental factors should be reinforced. One aspect of this search that has been neglected so far is the study of interactions between genes and environmental factors. PMID:23226953

  13. [Intrinsic factors, genes, and skin aging].

    PubMed

    Makrantonaki, E; Pfeifer, G P; Zouboulis, C C

    2016-02-01

    Skin aging is determined by a combination of endogenous and environmental influences, including epigenetic, posttranslational, microbial, and lifestyle factors. In particular genetic changes, programmed or not, play a pivotal role and understanding of these complex mechanisms may contribute to the prevention of age-related diseases and extension of healthy lifespan. In this article, new knowledge about genes and biological processes that can significantly affect skin homeostasis in old age and can lead to the typical morphological and physiological characteristics of aging skin are summarized.

  14. Gene variants as risk factors for gastroschisis

    PubMed Central

    Yang, Wei; Schultz, Kathleen; Tom, Lauren; Lin, Bin; Carmichael, Suzan L.; Lammer, Edward J.; Shaw, Gary M.

    2016-01-01

    In a population‐based case‐control study in California of 228 infants, we investigated 75 genetic variants in 20 genes and risk of gastroschisis with regard to maternal age, race/ethnicity, vitamin use, and smoking exposure. We hypothesized that genes related to vascular compromise may interact with environmental factors to affect the risk of gastroschisis. Haplotypes were constructed for 75 gene variants using the HaploView program. Risk for gastroschisis associated with each gene variant was calculated for both the homozygotes and the heterozygotes, with the homozygous wildtypes as the referent. Risks were estimated as odds ratios (ORs) with 95% confidence intervals (CIs) by logistic regression. We found 11 gene variants with increased risk and four variants with decreased risk of gastroschisis for heterozygous (ORh) or homozygous variants (ORv) genotypes. These included NOS3 (rs1036145) ORh = 0.4 (95% CI: 0.2–0.7); NOS3 (rs10277237) ORv = 2.7 (95% CI: 1.3–6.0); ADD1 (rs12503220) ORh = 2.9 (95% CI: 1.6–5.4), GNB3 (rs5443) ORh = 0.2 (95% CI: 0.1–0.5), ORv = 0.4 (95% CI: 0.2–0.9); ICAM1 (rs281428) ORv = 6.9 (95% CI: 2.1–22.9), ICAM1 (rs3093030) ORv = 2.6 (95% CI: 1.2–5.6); ICAM4 (rs281438) ORv = 4.9 (95% CI: 1.4–16.6), ICAM5 (rs281417) ORh = 2.1 (95% CI: 1.1–4.1), ORv = 4.8 (95% CI: 1.7–13.6); ICAM5 (rs281440) ORh = 23.7 (95% CI: 5.5–102.5), ORv = 20.6 (95% CI: 3.4–124.3); ICAM5 (rs2075741) ORv = 2.2 (95% CI: 1.1–4.4); NAT1 ORv = 0.3 (95% CI: 0.1–0.9). There were additional associations between several gene variants and gastroschisis among women aged 20–24 and among mothers with and without vitamin use. NOS3, ADD1, ICAM1, ICAM4, and ICAM5 warrant further investigation in additional populations and with the interaction of additional environmental exposures. © 2016 Wiley Periodicals, Inc. PMID:27616475

  15. Methods of Combinatorial Optimization to Reveal Factors Affecting Gene Length

    PubMed Central

    Bolshoy, Alexander; Tatarinova, Tatiana

    2012-01-01

    In this paper we present a novel method for genome ranking according to gene lengths. The main outcomes described in this paper are the following: the formulation of the genome ranking problem, presentation of relevant approaches to solve it, and the demonstration of preliminary results from prokaryotic genomes ordering. Using a subset of prokaryotic genomes, we attempted to uncover factors affecting gene length. We have demonstrated that hyperthermophilic species have shorter genes as compared with mesophilic organisms, which probably means that environmental factors affect gene length. Moreover, these preliminary results show that environmental factors group together in ranking evolutionary distant species. PMID:23300345

  16. Methods of combinatorial optimization to reveal factors affecting gene length.

    PubMed

    Bolshoy, Alexander; Tatarinova, Tatiana

    2012-01-01

    In this paper we present a novel method for genome ranking according to gene lengths. The main outcomes described in this paper are the following: the formulation of the genome ranking problem, presentation of relevant approaches to solve it, and the demonstration of preliminary results from prokaryotic genomes ordering. Using a subset of prokaryotic genomes, we attempted to uncover factors affecting gene length. We have demonstrated that hyperthermophilic species have shorter genes as compared with mesophilic organisms, which probably means that environmental factors affect gene length. Moreover, these preliminary results show that environmental factors group together in ranking evolutionary distant species.

  17. Building predictive gene signatures through simultaneous assessment of transcription factor activation and gene expression.

    EPA Science Inventory

    Building predictive gene signatures through simultaneous assessment of transcription factor activation and gene expression Exposure to many drugs and environmentally-relevant chemicals can cause adverse outcomes. These adverse outcomes, such as cancer, have been linked to mol...

  18. Building predictive gene signatures through simultaneous assessment of transcription factor activation and gene expression.

    EPA Science Inventory

    Building predictive gene signatures through simultaneous assessment of transcription factor activation and gene expression Exposure to many drugs and environmentally-relevant chemicals can cause adverse outcomes. These adverse outcomes, such as cancer, have been linked to mol...

  19. Central Leptin Gene Therapy to Reduce Breast Cancer Risk Factors

    DTIC Science & Technology

    2006-03-01

    W81XWH-04-1-0701 TITLE: Central Leptin Gene Therapy to Reduce Breast Cancer Risk Factors PRINCIPAL INVESTIGATOR: Urszula T. Iwaniec...CONTRACT NUMBER Central Leptin Gene Therapy to Reduce Breast Cancer Risk Factors 5b. GRANT NUMBER W81XWH-04-1-0701 5c. PROGRAM ELEMENT NUMBER...control of obesity through centrally administered, recombinant adeno-associated virus leptin gene (rAAV-lep) therapy will decrease the incidence of

  20. Cloning and activation of the bullfrog apelin receptor: Gi/o coupling and high affinity for [Pro1]apelin-13.

    PubMed

    Moon, Mi Jin; Oh, Da Young; Moon, Jung Sun; Kim, Dong-Ki; Hwang, Jong-Ik; Lee, Ju Yeon; Kim, Jae Il; Cho, Sehyung; Kwon, Hyuk Bang; Seong, Jae Young

    2007-10-15

    In mammals, apelin and its G protein-coupled receptor, APJ, regulate blood pressure, intake of food and water, and cardiac contractility. In this study, we report the cloning and functional characterization of APJ in the bullfrog, Rana catesbeiana. Bullfrog APJ (bfAPJ) cDNA contains an open reading frame of 1083 nucleotides encoding a protein of 360 amino acid residues. Sequence alignment reveals 75% amino acid identity with Xenopus, 63% identity with zebrafish and 40-42% identity with mammalian APJs. RT-PCR analysis and tissue binding assay reveal high expression of bfAPJ mRNA in the brain, particularly in the hypothalamus, and moderate expression in the pituitary, testis, adrenal gland and lung. Whereas [pGlu(1)]apelin-13 did not induce CRE-luc (protein kinase A-specific reporter) and SRE-luc (protein kinase C-specific reporter) activity in cells expressing bfAPJ, this apelin-13 decreased forskolin-induced CRE-luc activity and cAMP accumulation in a pertussis toxin-sensitive manner. This study indicates that bfAPJ may couple to G(i/o). [Pro(1)]apelin-13, a synthetic apelin based on the sequence of the putative apelin gene from many non-mammalian species, activates bfAPJ with 5-10-fold greater sensitivity/affinity than mammalian apelin-13. Collectively, this study expands our understanding of the physiological roles of this receptor system in non-mammalian species.

  1. Tumor clustering using nonnegative matrix factorization with gene selection.

    PubMed

    Zheng, Chun-Hou; Huang, De-Shuang; Zhang, Lei; Kong, Xiang-Zhen

    2009-07-01

    Tumor clustering is becoming a powerful method in cancer class discovery. Nonnegative matrix factorization (NMF) has shown advantages over other conventional clustering techniques. Nonetheless, there is still considerable room for improving the performance of NMF. To this end, in this paper, gene selection and explicitly enforcing sparseness are introduced into the factorization process. Particularly, independent component analysis is employed to select a subset of genes so that the effect of irrelevant or noisy genes can be reduced. The NMF and its extensions, sparse NMF and NMF with sparseness constraint, are then used for tumor clustering on the selected genes. A series of elaborate experiments are performed by varying the number of clusters and the number of selected genes to evaluate the cooperation between different gene selection settings and NMF-based clustering. Finally, the experiments on three representative gene expression datasets demonstrated that the proposed scheme can achieve better clustering results.

  2. Human factors and pathways essential for mediating epigenetic gene silencing.

    PubMed

    Poleshko, Andrey; Kossenkov, Andrew V; Shalginskikh, Natalia; Pecherskaya, Anna; Einarson, Margret B; Marie Skalka, Anna; Katz, Richard A

    2014-09-01

    Cellular identity in both normal and disease processes is determined by programmed epigenetic activation or silencing of specific gene subsets. Here, we have used human cells harboring epigenetically silent GFP-reporter genes to perform a genome-wide siRNA knockdown screen for the identification of cellular factors that are required to maintain epigenetic gene silencing. This unbiased screen interrogated 21,121 genes, and we identified and validated a set of 128 protein factors. This set showed enrichment for functional categories, and protein-protein interactions. Among this set were known epigenetic silencing factors, factors with no previously identified role in epigenetic gene silencing, as well as unstudied factors. The set included non-nuclear factors, for example, components of the integrin-adhesome. A key finding was that the E1 and E2 enzymes of the small ubiquitin-like modifier (SUMO) pathway (SAE1, SAE2/UBA2, UBC9/UBE2I) are essential for maintenance of epigenetic silencing. This work provides the first genome-wide functional view of human factors that mediate epigenetic gene silencing. The screen output identifies novel epigenetic factors, networks, and mechanisms, and provides a set of candidate targets for epigenetic therapy and cellular reprogramming.

  3. Nuclear actin activates human transcription factor genes including the OCT4 gene.

    PubMed

    Yamazaki, Shota; Yamamoto, Koji; Tokunaga, Makio; Sakata-Sogawa, Kumiko; Harata, Masahiko

    2015-01-01

    RNA microarray analyses revealed that nuclear actin activated many human transcription factor genes including OCT4, which is required for gene reprogramming. Oct4 is known to be activated by nuclear actin in Xenopus oocytes. Our findings imply that this process of OCT4 activation is conserved in vertebrates and among cell types and could be used for gene reprogramming of human cells.

  4. The WRKY Transcription Factor Genes in Lotus japonicus.

    PubMed

    Song, Hui; Wang, Pengfei; Nan, Zhibiao; Wang, Xingjun

    2014-01-01

    WRKY transcription factor genes play critical roles in plant growth and development, as well as stress responses. WRKY genes have been examined in various higher plants, but they have not been characterized in Lotus japonicus. The recent release of the L. japonicus whole genome sequence provides an opportunity for a genome wide analysis of WRKY genes in this species. In this study, we identified 61 WRKY genes in the L. japonicus genome. Based on the WRKY protein structure, L. japonicus WRKY (LjWRKY) genes can be classified into three groups (I-III). Investigations of gene copy number and gene clusters indicate that only one gene duplication event occurred on chromosome 4 and no clustered genes were detected on chromosomes 3 or 6. Researchers previously believed that group II and III WRKY domains were derived from the C-terminal WRKY domain of group I. Our results suggest that some WRKY genes in group II originated from the N-terminal domain of group I WRKY genes. Additional evidence to support this hypothesis was obtained by Medicago truncatula WRKY (MtWRKY) protein motif analysis. We found that LjWRKY and MtWRKY group III genes are under purifying selection, suggesting that WRKY genes will become increasingly structured and functionally conserved.

  5. The WRKY Transcription Factor Genes in Lotus japonicus

    PubMed Central

    Wang, Pengfei; Wang, Xingjun

    2014-01-01

    WRKY transcription factor genes play critical roles in plant growth and development, as well as stress responses. WRKY genes have been examined in various higher plants, but they have not been characterized in Lotus japonicus. The recent release of the L. japonicus whole genome sequence provides an opportunity for a genome wide analysis of WRKY genes in this species. In this study, we identified 61 WRKY genes in the L. japonicus genome. Based on the WRKY protein structure, L. japonicus WRKY (LjWRKY) genes can be classified into three groups (I–III). Investigations of gene copy number and gene clusters indicate that only one gene duplication event occurred on chromosome 4 and no clustered genes were detected on chromosomes 3 or 6. Researchers previously believed that group II and III WRKY domains were derived from the C-terminal WRKY domain of group I. Our results suggest that some WRKY genes in group II originated from the N-terminal domain of group I WRKY genes. Additional evidence to support this hypothesis was obtained by Medicago truncatula WRKY (MtWRKY) protein motif analysis. We found that LjWRKY and MtWRKY group III genes are under purifying selection, suggesting that WRKY genes will become increasingly structured and functionally conserved. PMID:24745006

  6. Major psychological factors affecting acceptance of gene-recombination technology.

    PubMed

    Tanaka, Yutaka

    2004-12-01

    The purpose of this study was to verify the validity of a causal model that was made to predict the acceptance of gene-recombination technology. A structural equation model was used as a causal model. First of all, based on preceding studies, the factors of perceived risk, perceived benefit, and trust were set up as important psychological factors determining acceptance of gene-recombination technology in the structural equation model. An additional factor, "sense of bioethics," which I consider to be important for acceptance of biotechnology, was added to the model. Based on previous studies, trust was set up to have an indirect influence on the acceptance of gene-recombination technology through perceived risk and perceived benefit in the model. Participants were 231 undergraduate students in Japan who answered a questionnaire with a 5-point bipolar scale. The results indicated that the proposed model fits the data well, and showed that acceptance of gene-recombination technology is explained largely by four factors, that is, perceived risk, perceived benefit, trust, and sense of bioethics, whether the technology is applied to plants, animals, or human beings. However, the relative importance of the four factors was found to vary depending on whether the gene-recombination technology was applied to plants, animals, or human beings. Specifically, the factor of sense of bioethics is the most important factor in acceptance of plant gene-recombination technology and animal gene-recombination technology, and the factors of trust and perceived risk are the most important factors in acceptance of human being gene-recombination technology.

  7. Functional Profiling of Transcription Factor Genes in Neurospora crassa.

    PubMed

    Carrillo, Alexander J; Schacht, Patrick; Cabrera, Ilva E; Blahut, Johnathon; Prudhomme, Loren; Dietrich, Sarah; Bekman, Thomas; Mei, Jennifer; Carrera, Cristian; Chen, Vivian; Clark, Isaiah; Fierro, Gerardo; Ganzen, Logan; Orellana, Jose; Wise, Shelby; Yang, Kevin; Zhong, Hui; Borkovich, Katherine A

    2017-09-07

    Regulation of gene expression by DNA-binding transcription factors is essential for proper control of growth and development in all organisms. In this study, we annotate and characterize growth and developmental phenotypes for transcription factor genes in the model filamentous fungus Neurospora crassa We identified 312 transcription factor genes, corresponding to 3.2% of the protein coding genes in the genome. The largest class was the fungal-specific Zn2Cys6 (C6) binuclear cluster, with 135 members, followed by the highly conserved C2H2 zinc finger group, with 61 genes. Viable knockout mutants were produced for 273 genes, and complete growth and developmental phenotypic data are available for 242 strains, with 64% possessing at least one defect. The most prominent defect observed was in growth of basal hyphae (43% of mutants analyzed), followed by asexual sporulation (38%), and the various stages of sexual development (19%). Two growth or developmental defects were observed for 21% of the mutants, while 8% were defective in all three major phenotypes tested. Analysis of available mRNA expression data for a time course of sexual development revealed mutants with sexual phenotypes that correlate with transcription factor transcript abundance in wild type. Inspection of this data also implicated cryptic roles in sexual development for several cotranscribed transcription factor genes that do not produce a phenotype when mutated. Copyright © 2017 Carrillo et al.

  8. Comprehensive analysis of plant rapid alkalization factor (RALF) genes.

    PubMed

    Sharma, Arti; Hussain, Adil; Mun, Bong-Gyu; Imran, Qari Muhammad; Falak, Noreen; Lee, Sang-Uk; Kim, Jae Young; Hong, Jeum Kyu; Loake, Gary John; Ali, Asad; Yun, Byung-Wook

    2016-09-01

    Receptor mediated signal carriers play a critical role in the regulation of plant defense and development. Rapid alkalization factor (RALF) proteins potentially comprise important signaling components which may have a key role in plant biology. The RALF gene family contains large number of genes in several plant species, however, only a few RALF genes have been characterized to date. In this study, an extensive database search identified 39, 43, 34 and 18 RALF genes in Arabidopsis, rice, maize and soybean, respectively. These RALF genes were found to be highly conserved across the 4 plant species. A comprehensive analysis including the chromosomal location, gene structure, subcellular location, conserved motifs, protein structure, protein-ligand interaction and promoter analysis was performed. RALF genes from four plant species were divided into 7 groups based on phylogenetic analysis. In silico expression analysis of these genes, using microarray and EST data, revealed that these genes exhibit a variety of expression patterns. Furthermore, RALF genes showed distinct expression patterns of transcript accumulation in vivo following nitrosative and oxidative stresses in Arabidopsis. Predicted interaction between RALF and heme ligand also showed that RALF proteins may contribute towards transporting or scavenging oxygen moieties. This suggests a possible role for RALF genes during changes in cellular redox status. Collectively, our data provides a valuable resource to prime future research in the role of RALF genes in plant growth and development. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  9. Stochastic model of transcription factor-regulated gene expression

    NASA Astrophysics Data System (ADS)

    Karmakar, Rajesh; Bose, Indrani

    2006-09-01

    We consider a stochastic model of transcription factor (TF)-regulated gene expression. The model describes two genes, gene A and gene B, which synthesize the TFs and the target gene proteins, respectively. We show through analytic calculations that the TF fluctuations have a significant effect on the distribution of the target gene protein levels when the mean TF level falls in the highest sensitive region of the dose-response curve. We further study the effect of reducing the copy number of gene A from two to one. The enhanced TF fluctuations yield results different from those in the deterministic case. The probability that the target gene protein level exceeds a threshold value is calculated with the knowledge of the probability density functions associated with the TF and target gene protein levels. Numerical simulation results for a more detailed stochastic model are shown to be in agreement with those obtained through analytic calculations. The relevance of these results in the context of the genetic disorder haploinsufficiency is pointed out. Some experimental observations on the haploinsufficiency of the tumour suppressor gene, Nkx 3.1, are explained with the help of the stochastic model of TF-regulated gene expression.

  10. Pioneer transcription factors: establishing competence for gene expression

    PubMed Central

    Zaret, Kenneth S.; Carroll, Jason S.

    2011-01-01

    Transcription factors are adaptor molecules that detect regulatory sequences in the DNA and target the assembly of protein complexes that control gene expression. Yet much of the DNA in the eukaryotic cell is in nucleosomes and thereby occluded by histones, and can be further occluded by higher-order chromatin structures and repressor complexes. Indeed, genome-wide location analyses have revealed that, for all transcription factors tested, the vast majority of potential DNA-binding sites are unoccupied, demonstrating the inaccessibility of most of the nuclear DNA. This raises the question of how target sites at silent genes become bound de novo by transcription factors, thereby initiating regulatory events in chromatin. Binding cooperativity can be sufficient for many kinds of factors to simultaneously engage a target site in chromatin and activate gene expression. However, in cases in which the binding of a series of factors is sequential in time and thus not initially cooperative, special “pioneer transcription factors” can be the first to engage target sites in chromatin. Such initial binding can passively enhance transcription by reducing the number of additional factors that are needed to bind the DNA, culminating in activation. In addition, pioneer factor binding can actively open up the local chromatin and directly make it competent for other factors to bind. Passive and active roles for the pioneer factor FoxA occur in embryonic development, steroid hormone induction, and human cancers. Herein we review the field and describe how pioneer factors may enable cellular reprogramming. PMID:22056668

  11. Virulence factors genes in enterococci isolated from beavers (Castor fiber).

    PubMed

    Lauková, Andrea; Strompfová, Viola; Kandričáková, Anna; Ščerbová, Jana; Semedo-Lemsaddek, Teresa; Miltko, Renata; Belzecki, Grzegorz

    2015-03-01

    Only limited information exists concerning the microbiota in beaver (Castor fiber). This study has been focused on the virulence factors genes detection in enterococci from beavers. In general, animals are not affected by enterococcal infections, but they can be a reservoir of, e.g. pathogenic strains. Moreover, detection of virulence factors genes in enterococci from beavers was never tested before. Free-living beavers (12), male and female (age 4-5 years) were caught in the north-east part of Poland. Sampling of lower gut and faeces was provided according to all ethical rules for animal handling. Samples were treated using a standard microbiological method. Pure bacterial colonies were identified by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) identification system. Virulence factors genes-gelE (gelatinase), agg (aggregation), cylA (cytolysin A), efaAfs (adhesin Enterococcus faecalis), efaAfm (adhesin Enterococcus faecium) and esp (surface protein) were tested by PCR. Moreover, gelatinase and antibiotic phenotypes were tested. Species detected were Enterococcus thailandicus, E. faecium, E. faecalis and Enterococcus durans. In literature, enterococcal species distribution was never reported yet up to now. Strains were mostly sensitive to antibiotics. Vancomycin-resistant E. faecalis EE9Tr1 possess cylA, efaAfs, esp and gelE genes. Strains were aggregation substance genes absent. Adhesin E. faecium (efaAfm) gene was detected in two of three E. faecium strains, but it was present also in E. thailandicus. Esp gene was present in EE9Tr1 and E. durans EDTr92. The most detected were gelE, efaAfm genes; in EF 4Hc1 also gelatinase phenotype was found. Strains with virulence factors genes will be tested for their sensitivity to antimicrobial enterocins.

  12. The Role of Multiple Transcription Factors In Archaeal Gene Expression

    SciTech Connect

    Charles J. Daniels

    2008-09-23

    Since the inception of this research program, the project has focused on two central questions: What is the relationship between the 'eukaryal-like' transcription machinery of archaeal cells and its counterparts in eukaryal cells? And, how does the archaeal cell control gene expression using its mosaic of eukaryal core transcription machinery and its bacterial-like transcription regulatory proteins? During the grant period we have addressed these questions using a variety of in vivo approaches and have sought to specifically define the roles of the multiple TATA binding protein (TBP) and TFIIB-like (TFB) proteins in controlling gene expression in Haloferax volcanii. H. volcanii was initially chosen as a model for the Archaea based on the availability of suitable genetic tools; however, later studies showed that all haloarchaea possessed multiple tbp and tfb genes, which led to the proposal that multiple TBP and TFB proteins may function in a manner similar to alternative sigma factors in bacterial cells. In vivo transcription and promoter analysis established a clear relationship between the promoter requirements of haloarchaeal genes and those of the eukaryal RNA polymerase II promoter. Studies on heat shock gene promoters, and the demonstration that specific tfb genes were induced by heat shock, provided the first indication that TFB proteins may direct expression of specific gene families. The construction of strains lacking tbp or tfb genes, coupled with the finding that many of these genes are differentially expressed under varying growth conditions, provided further support for this model. Genetic tools were also developed that led to the construction of insertion and deletion mutants, and a novel gene expression scheme was designed that allowed the controlled expression of these genes in vivo. More recent studies have used a whole genome array to examine the expression of these genes and we have established a linkage between the expression of specific tfb

  13. ULTRAPETALA trxG genes interact with KANADI transcription factor genes to regulate Aradopsis Gynoecium patterning

    USDA-ARS?s Scientific Manuscript database

    Organ formation relies upon precise patterns of gene expression that are under tight spatial and temporal regulation. Transcription patterns are specified by several cellular processes during development, including chromatin remodeling, but little is known about how chromatin remodeling factors cont...

  14. Transcription factor clusters regulate genes in eukaryotic cells

    PubMed Central

    Hedlund, Erik G; Friemann, Rosmarie; Hohmann, Stefan

    2017-01-01

    Transcription is regulated through binding factors to gene promoters to activate or repress expression, however, the mechanisms by which factors find targets remain unclear. Using single-molecule fluorescence microscopy, we determined in vivo stoichiometry and spatiotemporal dynamics of a GFP tagged repressor, Mig1, from a paradigm signaling pathway of Saccharomyces cerevisiae. We find the repressor operates in clusters, which upon extracellular signal detection, translocate from the cytoplasm, bind to nuclear targets and turnover. Simulations of Mig1 configuration within a 3D yeast genome model combined with a promoter-specific, fluorescent translation reporter confirmed clusters are the functional unit of gene regulation. In vitro and structural analysis on reconstituted Mig1 suggests that clusters are stabilized by depletion forces between intrinsically disordered sequences. We observed similar clusters of a co-regulatory activator from a different pathway, supporting a generalized cluster model for transcription factors that reduces promoter search times through intersegment transfer while stabilizing gene expression. PMID:28841133

  15. Detecting regulatory gene-environment interactions with unmeasured environmental factors.

    PubMed

    Fusi, Nicoló; Lippert, Christoph; Borgwardt, Karsten; Lawrence, Neil D; Stegle, Oliver

    2013-06-01

    Genomic studies have revealed a substantial heritable component of the transcriptional state of the cell. To fully understand the genetic regulation of gene expression variability, it is important to study the effect of genotype in the context of external factors such as alternative environmental conditions. In model systems, explicit environmental perturbations have been considered for this purpose, allowing to directly test for environment-specific genetic effects. However, such experiments are limited to species that can be profiled in controlled environments, hampering their use in important systems such as human. Moreover, even in seemingly tightly regulated experimental conditions, subtle environmental perturbations cannot be ruled out, and hence unknown environmental influences are frequent. Here, we propose a model-based approach to simultaneously infer unmeasured environmental factors from gene expression profiles and use them in genetic analyses, identifying environment-specific associations between polymorphic loci and individual gene expression traits. In extensive simulation studies, we show that our method is able to accurately reconstruct environmental factors and their interactions with genotype in a variety of settings. We further illustrate the use of our model in a real-world dataset in which one environmental factor has been explicitly experimentally controlled. Our method is able to accurately reconstruct the true underlying environmental factor even if it is not given as an input, allowing to detect genuine genotype-environment interactions. In addition to the known environmental factor, we find unmeasured factors involved in novel genotype-environment interactions. Our results suggest that interactions with both known and unknown environmental factors significantly contribute to gene expression variability. and implementation: Software available at http://pmbio.github.io/envGPLVM/. Supplementary data are available at Bioinformatics online.

  16. Biomaterial Scaffolds for Controlled, Localized Gene Delivery of Regenerative Factors

    PubMed Central

    Gower, Robert Michael; Shea, Lonnie D.

    2013-01-01

    Significance Biomaterials play central roles in tissue regeneration by maintaining a space for tissue growth and facilitating its integration with the host. The regenerative capacity of materials can be enhanced through delivery of factors that promote tissue formation. Gene delivery is a versatile strategy to obtain sustained production of tissue inductive factors. Biomaterial scaffolds capable of gene delivery have been shown to induce transgene expression and tissue growth. Critical Issues The widespread application of biomaterial scaffold systems requires identifying the design principles for the material and vectors that modulate transgene expression temporally and spatially. These technologies and others will ultimately enable spatial and temporal control over expression to recreate the cellular organization and gene expression required for formation of complex tissues. Recent Advances The design parameters for the biomaterials and vectors that modulate the extent and duration of transgene expression and the distribution of transgene-expressing cells within and around the injury are emerging. The cellular interactions with the biomaterial, such as adhesion or migration rate, can influence expression. Furthermore, modulating the interaction between the vector and biomaterial can control vector release while minimizing the exposure to harsh processing conditions. Future Directions Biomaterial scaffolds that deliver genes encoding for regenerative factors may provide a platform for regenerating complex tissues such as skin, blood vessels, and nerves. Biomaterials capable of localized gene delivery can synergistically target multiple cell processes and will have application to the regeneration of many tissues, with great promise for clinical therapies. PMID:24527333

  17. Transcription factor trapping by RNA in gene regulatory elements.

    PubMed

    Sigova, Alla A; Abraham, Brian J; Ji, Xiong; Molinie, Benoit; Hannett, Nancy M; Guo, Yang Eric; Jangi, Mohini; Giallourakis, Cosmas C; Sharp, Phillip A; Young, Richard A

    2015-11-20

    Transcription factors (TFs) bind specific sequences in promoter-proximal and -distal DNA elements to regulate gene transcription. RNA is transcribed from both of these DNA elements, and some DNA binding TFs bind RNA. Hence, RNA transcribed from regulatory elements may contribute to stable TF occupancy at these sites. We show that the ubiquitously expressed TF Yin-Yang 1 (YY1) binds to both gene regulatory elements and their associated RNA species across the entire genome. Reduced transcription of regulatory elements diminishes YY1 occupancy, whereas artificial tethering of RNA enhances YY1 occupancy at these elements. We propose that RNA makes a modest but important contribution to the maintenance of certain TFs at gene regulatory elements and suggest that transcription of regulatory elements produces a positive-feedback loop that contributes to the stability of gene expression programs. Copyright © 2015, American Association for the Advancement of Science.

  18. WRKY transcription factor genes in wild rice Oryza nivara.

    PubMed

    Xu, Hengjian; Watanabe, Kenneth A; Zhang, Liyuan; Shen, Qingxi J

    2016-08-01

    The WRKY transcription factor family is one of the largest gene families involved in plant development and stress response. Although many WRKY genes have been studied in cultivated rice (Oryza sativa), the WRKY genes in the wild rice species Oryza nivara, the direct progenitor of O. sativa, have not been studied. O. nivara shows abundant genetic diversity and elite drought and disease resistance features. Herein, a total of 97 O. nivara WRKY (OnWRKY) genes were identified. RNA-sequencing demonstrates that OnWRKY genes were generally expressed at higher levels in the roots of 30-day-old plants. Bioinformatic analyses suggest that most of OnWRKY genes could be induced by salicylic acid, abscisic acid, and drought. Abundant potential MAPK phosphorylation sites in OnWRKYs suggest that activities of most OnWRKYs can be regulated by phosphorylation. Phylogenetic analyses of OnWRKYs support a novel hypothesis that ancient group IIc OnWRKYs were the original ancestors of only some group IIc and group III WRKYs. The analyses also offer strong support that group IIc OnWRKYs containing the HVE sequence in their zinc finger motifs were derived from group Ia WRKYs. This study provides a solid foundation for the study of the evolution and functions of WRKY genes in O. nivara. © The Author 2016. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  19. WRKY transcription factor genes in wild rice Oryza nivara

    PubMed Central

    Xu, Hengjian; Watanabe, Kenneth A.; Zhang, Liyuan; Shen, Qingxi J.

    2016-01-01

    The WRKY transcription factor family is one of the largest gene families involved in plant development and stress response. Although many WRKY genes have been studied in cultivated rice (Oryza sativa), the WRKY genes in the wild rice species Oryza nivara, the direct progenitor of O. sativa, have not been studied. O. nivara shows abundant genetic diversity and elite drought and disease resistance features. Herein, a total of 97 O. nivara WRKY (OnWRKY) genes were identified. RNA-sequencing demonstrates that OnWRKY genes were generally expressed at higher levels in the roots of 30-day-old plants. Bioinformatic analyses suggest that most of OnWRKY genes could be induced by salicylic acid, abscisic acid, and drought. Abundant potential MAPK phosphorylation sites in OnWRKYs suggest that activities of most OnWRKYs can be regulated by phosphorylation. Phylogenetic analyses of OnWRKYs support a novel hypothesis that ancient group IIc OnWRKYs were the original ancestors of only some group IIc and group III WRKYs. The analyses also offer strong support that group IIc OnWRKYs containing the HVE sequence in their zinc finger motifs were derived from group Ia WRKYs. This study provides a solid foundation for the study of the evolution and functions of WRKY genes in O. nivara. PMID:27345721

  20. Muscle as a target for supplementary factor IX gene transfer.

    PubMed

    Hoffman, Brad E; Dobrzynski, Eric; Wang, Lixin; Hirao, Lauren; Mingozzi, Federico; Cao, Ou; Herzog, Roland W

    2007-07-01

    Immune responses to the factor IX (F.IX) transgene product are a concern in gene therapy for the X-linked bleeding disorder hemophilia B. The risk for such responses is determined by several factors, including the vector, target tissue, and others. Previously, we have demonstrated that hepatic gene transfer with adeno-associated viral (AAV) vectors can induce F.IX-specific immune tolerance. Muscle-derived F.IX expression, however, is limited by a local immune response. Here, skeletal muscle was investigated as a target for supplemental gene transfer. Given the low invasiveness of intramuscular injections, this route would be ideal for secondary gene transfer, thereby boosting levels of transgene expression. However, this is feasible only if immune tolerance established by compartmentalization of expression to the liver extends to other sites. Immune tolerance to human F.IX established by prior hepatic AAV-2 gene transfer was maintained after subsequent injection of AAV-1 or adenoviral vector into skeletal muscle, and tolerized mice failed to form antibodies or an interferon (IFN)-gamma(+) T cell response to human F.IX. A sustained increase in systemic transgene expression was obtained for AAV-1, whereas an increase after adenoviral gene transfer was transient. A CD8(+) T cell response specifically against adenovirus-transduced fibers was observed, suggesting that cytotoxic T cell responses against viral antigens were sufficient to eliminate expression in muscle. In summary, the data demonstrate that supplemental F.IX gene transfer to skeletal muscle does not break tolerance achieved by liver-derived expression. The approach is efficacious, if the vector for muscle gene transfer does not express immunogenic viral proteins.

  1. Strain Specific Factors Control Effector Gene Silencing in Phytophthora sojae

    PubMed Central

    Shrestha, Sirjana Devi; Chapman, Patrick; Zhang, Yun; Gijzen, Mark

    2016-01-01

    The Phytophthora sojae avirulence gene Avr3a encodes an effector that is capable of triggering immunity on soybean plants carrying the resistance gene Rps3a. P. sojae strains that express Avr3a are avirulent to Rps3a plants, while strains that do not are virulent. To study the inheritance of Avr3a expression and virulence towards Rps3a, genetic crosses and self-fertilizations were performed. A cross between P. sojae strains ACR10 X P7076 causes transgenerational gene silencing of Avr3a allele, and this effect is meiotically stable up to the F5 generation. However, test-crosses of F1 progeny (ACR10 X P7076) with strain P6497 result in the release of silencing of Avr3a. Expression of Avr3a in the progeny is variable and correlates with the phenotypic penetrance of the avirulence trait. The F1 progeny from a direct cross of P6497 X ACR10 segregate for inheritance for Avr3a expression, a result that could not be explained by parental imprinting or heterozygosity. Analysis of small RNA arising from the Avr3a gene sequence in the parental strains and hybrid progeny suggests that the presence of small RNA is necessary but not sufficient for gene silencing. Overall, we conclude that inheritance of the Avr3a gene silenced phenotype relies on factors that are variable among P. sojae strains. PMID:26930612

  2. Stability-driven nonnegative matrix factorization to interpret spatial gene expression and build local gene networks.

    PubMed

    Wu, Siqi; Joseph, Antony; Hammonds, Ann S; Celniker, Susan E; Yu, Bin; Frise, Erwin

    2016-04-19

    Spatial gene expression patterns enable the detection of local covariability and are extremely useful for identifying local gene interactions during normal development. The abundance of spatial expression data in recent years has led to the modeling and analysis of regulatory networks. The inherent complexity of such data makes it a challenge to extract biological information. We developed staNMF, a method that combines a scalable implementation of nonnegative matrix factorization (NMF) with a new stability-driven model selection criterion. When applied to a set ofDrosophilaearly embryonic spatial gene expression images, one of the largest datasets of its kind, staNMF identified 21 principal patterns (PP). Providing a compact yet biologically interpretable representation ofDrosophilaexpression patterns, PP are comparable to a fate map generated experimentally by laser ablation and show exceptional promise as a data-driven alternative to manual annotations. Our analysis mapped genes to cell-fate programs and assigned putative biological roles to uncharacterized genes. Finally, we used the PP to generate local transcription factor regulatory networks. Spatially local correlation networks were constructed for six PP that span along the embryonic anterior-posterior axis. Using a two-tail 5% cutoff on correlation, we reproduced 10 of the 11 links in the well-studied gap gene network. The performance of PP with theDrosophiladata suggests that staNMF provides informative decompositions and constitutes a useful computational lens through which to extract biological insight from complex and often noisy gene expression data.

  3. Stability-driven nonnegative matrix factorization to interpret spatial gene expression and build local gene networks

    PubMed Central

    Wu, Siqi; Joseph, Antony; Hammonds, Ann S.; Celniker, Susan E.; Yu, Bin; Frise, Erwin

    2016-01-01

    Spatial gene expression patterns enable the detection of local covariability and are extremely useful for identifying local gene interactions during normal development. The abundance of spatial expression data in recent years has led to the modeling and analysis of regulatory networks. The inherent complexity of such data makes it a challenge to extract biological information. We developed staNMF, a method that combines a scalable implementation of nonnegative matrix factorization (NMF) with a new stability-driven model selection criterion. When applied to a set of Drosophila early embryonic spatial gene expression images, one of the largest datasets of its kind, staNMF identified 21 principal patterns (PP). Providing a compact yet biologically interpretable representation of Drosophila expression patterns, PP are comparable to a fate map generated experimentally by laser ablation and show exceptional promise as a data-driven alternative to manual annotations. Our analysis mapped genes to cell-fate programs and assigned putative biological roles to uncharacterized genes. Finally, we used the PP to generate local transcription factor regulatory networks. Spatially local correlation networks were constructed for six PP that span along the embryonic anterior–posterior axis. Using a two-tail 5% cutoff on correlation, we reproduced 10 of the 11 links in the well-studied gap gene network. The performance of PP with the Drosophila data suggests that staNMF provides informative decompositions and constitutes a useful computational lens through which to extract biological insight from complex and often noisy gene expression data. PMID:27071099

  4. Stability-driven nonnegative matrix factorization to interpret spatial gene expression and build local gene networks

    SciTech Connect

    Wu, Siqi; Joseph, Antony; Hammonds, Ann S.; Celniker, Susan E.; Yu, Bin; Frise, Erwin

    2016-04-06

    Spatial gene expression patterns enable the detection of local covariability and are extremely useful for identifying local gene interactions during normal development. The abundance of spatial expression data in recent years has led to the modeling and analysis of regulatory networks. The inherent complexity of such data makes it a challenge to extract biological information. We developed staNMF, a method that combines a scalable implementation of nonnegative matrix factorization (NMF) with a new stability-driven model selection criterion. When applied to a set of Drosophila early embryonic spatial gene expression images, one of the largest datasets of its kind, staNMF identified 21 principal patterns (PP). Providing a compact yet biologically interpretable representation of Drosophila expression patterns, PP are comparable to a fate map generated experimentally by laser ablation and show exceptional promise as a data-driven alternative to manual annotations. Our analysis mapped genes to cell-fate programs and assigned putative biological roles to uncharacterized genes. Finally, we used the PP to generate local transcription factor regulatory networks. Spatially local correlation networks were constructed for six PP that span along the embryonic anterior-posterior axis. Using a two-tail 5% cutoff on correlation, we reproduced 10 of the 11 links in the well-studied gap gene network. In conclusion, the performance of PP with the Drosophila data suggests that staNMF provides informative decompositions and constitutes a useful computational lens through which to extract biological insight from complex and often noisy gene expression data.

  5. Regulatory effects of introduction of an exogenous FGF2 gene on other growth factor genes in a healing tendon.

    PubMed

    Tang, Jin Bo; Chen, Chuan Hao; Zhou, You Lang; McKeever, Clarie; Liu, Paul Y

    2014-01-01

    In this study of a tendon injury model, we investigated how injection of a vector incorporating one growth factor gene changes expression levels of multiple growth factor genes in the healing process. The flexor tendon of chicken toes was completely cut and repaired surgically. The tendons in the experimental arm were injected with an adeno-associated virus-2 vector incorporating basic fibroblast growth-factor gene, whereas the tendons in the control arm were not injected or injected with sham vectors. Using real-time polymerase chain reaction, we found that, within the tendon healing period, a set of growth factor genes-transforming growth factor-β1, vascular endothelial growth factor, and connective tissue growth factor-were significantly up-regulated. Expression of the platelet-derived growth factor-B gene was not changed, and the insulin-like growth factor was down-regulated. A tendon marker gene, scleraxis, was significantly up-regulated in the period. Our study revealed an intriguing finding that introduction of one growth factor gene in the healing tendon modulated expression of multiple growth factor genes. We believe this study may have significant implications in determining the approach of gene therapy, and the findings substantiate that gene therapy using a single growth factor could affect multiple growth factors.

  6. Nerve growth factor gene therapy in Alzheimer disease.

    PubMed

    Tuszynski, Mark H

    2007-01-01

    Nervous system growth factors potently stimulate cell function and prevent neuronal death. These broad effects on survival and function arise from direct downstream activation of antiapoptotic pathways, inhibition of proapoptotic pathways, and stimulation of functionally important cellular mechanisms including ERK/MAP kinase and CREB. Thus, as a class, growth factors offer the potential to treat neurodegenerative disorders for the first time by preventing neuronal degeneration rather than compensating for cell loss after it has occurred. Different growth factors affect distinct and specific populations of neurons: the first nervous system growth factor identified, nerve growth factor, potentially stimulates the survival and function of basal forebrain cholinergic neurons, suggesting that nerve growth factor could be a means for reducing the cholinergic component of cell degeneration in Alzheimer disease. This review will discuss the transition of growth factors from preclinical studies to human clinical trials in Alzheimer disease. The implementation of clinical testing of growth factor therapy for neurologic disease has been constrained by the dual need to achieve adequate concentrations of these proteins in specific brain regions containing degenerating neurons, and preventing growth factor spread to nontargeted regions to avoid adverse effects. Gene therapy is one of a limited number of potential methods for achieving these requirements.

  7. Factoring nonviral gene therapy into a cure for hemophilia A.

    PubMed

    Gabrovsky, Vanessa; Calos, Michele P

    2008-10-01

    Gene therapy for hemophilia A has fallen short of success despite several clinical trials conducted over the past decade. Challenges to its success include vector immunogenicity, insufficient transgene expression levels of Factor VIII, and inhibitor antibody formation. Gene therapy has been dominated by the use of viral vectors, as well as the immunogenic and oncogenic concerns that accompany these strategies. Because of the complexity of viral vectors, the development of nonviral DNA delivery methods may provide an efficient and safe alternative for the treatment of hemophilia A. New types of nonviral strategies, such as DNA integrating vectors, and the success of several nonviral animal studies, suggest that nonviral gene therapy has curative potential and justifies its clinical development.

  8. A novel tumor necrosis factor-responsive transcription factor which recognizes a regulatory element in hemopoietic growth factor genes

    SciTech Connect

    Shannon, M.F.; Pell, L.M.; Kuczek, E.S.; Occhiodoro, F.S.; Dunn, S.M.; Vadas, M.A. ); Lenardo, M.J. )

    1990-06-01

    A conserved DNA sequence element, termed cytokine 1 (CK-1), is found in the promoter regions of many hemopoietic growth factor (HGF) genes. Mutational analyses and modification interference experiments show that this sequence specifically binds a nuclear transcription factor, NF-GMa, which is a protein with a molecular mass of 43 kilodaltons. It interacts with different affinities with the CK-1-like sequence from a number of HGF genes, including granulocyte macrophage colony-stimulating factor (GM-CSF), granulocyte (G)-CSF, interleukin 3 (IL-3), and IL-5. The authors show that the level of NF-GMa binding is induced in embryonic fibroblasts by tumor necrosis factor {alpha} (TNF-{alpha}) treatment and that the CK-1 sequence from the G-CSF gene is a TNF-{alpha}-responsive enhancer in these cells.

  9. Targeted genes and interacting proteins of hypoxia inducible factor-1

    PubMed Central

    Liu, Wei; Shen, Shao-Ming; Zhao, Xu-Yun; Chen, Guo-Qiang

    2012-01-01

    Heterodimeric transcription factor hypoxia inducible factor-1 (HIF-1) functions as a master regulator of oxygen homeostasis in almost all nucleated mammalian cells. The fundamental process adapted to cellular oxygen alteration largely depends on the refined regulation on its alpha subunit, HIF-1α. Recent studies have unraveled expanding and critical roles of HIF-1α, involving in a multitude of developmental, physiological, and pathophysiological processes. This review will focus on the current knowledge of HIF-1α-targeting genes and its interacting proteins, as well as the concomitant functional relationships between them. PMID:22773957

  10. Core promoter factor TAF9B regulates neuronal gene expression

    PubMed Central

    Herrera, Francisco J; Yamaguchi, Teppei; Roelink, Henk; Tjian, Robert

    2014-01-01

    Emerging evidence points to an unexpected diversification of core promoter recognition complexes that serve as important regulators of cell-type specific gene transcription. Here, we report that the orphan TBP-associated factor TAF9B is selectively up-regulated upon in vitro motor neuron differentiation, and is required for the transcriptional induction of specific neuronal genes, while dispensable for global gene expression in murine ES cells. TAF9B binds to both promoters and distal enhancers of neuronal genes, partially co-localizing at binding sites of OLIG2, a key activator of motor neuron differentiation. Surprisingly, in this neuronal context TAF9B becomes preferentially associated with PCAF rather than the canonical TFIID complex. Analysis of dissected spinal column from Taf9b KO mice confirmed that TAF9B also regulates neuronal gene transcription in vivo. Our findings suggest that alternative core promoter complexes may provide a key mechanism to lock in and maintain specific transcriptional programs in terminally differentiated cell types. DOI: http://dx.doi.org/10.7554/eLife.02559.001 PMID:25006164

  11. Characterization of five partial deletions of the factor VIII gene

    SciTech Connect

    Youssoufian, H.; Antonarakis, S.E.; Aronis, S.; Tsiftis, G.; Phillips, D.G.; Kazazian, H.H. Jr.

    1987-06-01

    Hemophilia A is an X-linked disorder of coagulation caused by a deficiency of factor VIII. By using cloned DNA probes, the authors have characterized the following five different partial deletions of the factor VIII gene from a panel of 83 patients with hemophilia A: (i) a 7-kilobase (kb) deletion that eliminates exon 6; (ii) a 2.5-kb deletion that eliminates 5' sequences of exon 14; (iii) a deletion of at least 7 kb that eliminates exons 24 and 25; (iv) a deletion of at least 16 kb that eliminates exons 23-25; and (v) a 5.5-kb deletion that eliminates exon 22. The first four deletions are associated with severe hemophilia A. By contrast, the last deletion is associated with moderate disease, possibly because of in-frame splicing from adjacent exons. None of those patients with partial gene deletions had circulating inhibitors to factor VIII. One deletion occurred de novo in a germ cell of the maternal grandmother, while a second deletion occurred in a germ cell of the maternal grandfather. These observations demonstrate that de novo deletions of X-linked genes can occur in either male or female gametes.

  12. Modulation of DNA binding by gene-specific transcription factors.

    PubMed

    Schleif, Robert F

    2013-10-01

    The transcription of many genes, particularly in prokaryotes, is controlled by transcription factors whose activity can be modulated by controlling their DNA binding affinity. Understanding the molecular mechanisms by which DNA binding affinity is regulated is important, but because forming definitive conclusions usually requires detailed structural information in combination with data from extensive biophysical, biochemical, and sometimes genetic experiments, little is truly understood about this topic. This review describes the biological requirements placed upon DNA binding transcription factors and their consequent properties, particularly the ways that DNA binding affinity can be modulated and methods for its study. What is known and not known about the mechanisms modulating the DNA binding affinity of a number of prokaryotic transcription factors, including CAP and lac repressor, is provided.

  13. Discovery of SNPs in the swine nerve growth factor gene.

    PubMed

    Chung, H Y; Kim, J Y

    2010-10-01

    This study was aimed to search genetic variants for the swine nerve growth factor gene that associated with regulation of proliferation and differentiation of nervous systems. The swine nerve growth factor gene was screened with 5 primer sets for random populations of crossbred pigs born 2005-2007 at National Institute of Animal Science (NIAS). To verify genetic variants of miniature pigs, a total of 288,000 BAC clones generated from NIAS in 2007 were used. The selection of primer sequences was based on sequences of the swine in GenBank (L31898), and genetic variants have been discovered in the crossbred population positioned at 381 (A/C), 412 (C/T), 422 (G/A), 468 (G/C), 496 (A/G), 538 (T/C), 540 (G/A), and 547 (A/G) showing substitutions of amino acids. The identified sequences of miniature pigs including SNPs were submitted into GenBank with an accession number (GQ423508). The sequence alignment conducted to compare genetic distances between species, revealing not many high similarities between swine and human as approximately 0.89 that was a little bit high value than expected. Consequently, we suggest that the identified SNPs of the swine NGF gene may be used in the future to identify genetic markers in coding regions, regarding explanations of phenotypic variations.

  14. Inferring transcription factor collaborations in gene regulatory networks

    PubMed Central

    2014-01-01

    Background Living cells are realized by complex gene expression programs that are moderated by regulatory proteins called transcription factors (TFs). The TFs control the differential expression of target genes in the context of transcriptional regulatory networks (TRNs), either individually or in groups. Deciphering the mechanisms of how the TFs control the expression of target genes is a challenging task, especially when multiple TFs collaboratively participate in the transcriptional regulation. Results We model the underlying regulatory interactions in terms of the directions (activation or repression) and their logical roles (necessary and/or sufficient) with a modified association rule mining approach, called mTRIM. The experiment on Yeast discovered 670 regulatory interactions, in which multiple TFs express their functions on common target genes collaboratively. The evaluation on yeast genetic interactions, TF knockouts and a synthetic dataset shows that our algorithm is significantly better than the existing ones. Conclusions mTRIM is a novel method to infer TF collaborations in transcriptional regulation networks. mTRIM is available at http://www.msu.edu/~jinchen/mTRIM. PMID:24565025

  15. Stability-driven nonnegative matrix factorization to interpret spatial gene expression and build local gene networks

    DOE PAGES

    Wu, Siqi; Joseph, Antony; Hammonds, Ann S.; ...

    2016-04-06

    Spatial gene expression patterns enable the detection of local covariability and are extremely useful for identifying local gene interactions during normal development. The abundance of spatial expression data in recent years has led to the modeling and analysis of regulatory networks. The inherent complexity of such data makes it a challenge to extract biological information. We developed staNMF, a method that combines a scalable implementation of nonnegative matrix factorization (NMF) with a new stability-driven model selection criterion. When applied to a set of Drosophila early embryonic spatial gene expression images, one of the largest datasets of its kind, staNMF identifiedmore » 21 principal patterns (PP). Providing a compact yet biologically interpretable representation of Drosophila expression patterns, PP are comparable to a fate map generated experimentally by laser ablation and show exceptional promise as a data-driven alternative to manual annotations. Our analysis mapped genes to cell-fate programs and assigned putative biological roles to uncharacterized genes. Finally, we used the PP to generate local transcription factor regulatory networks. Spatially local correlation networks were constructed for six PP that span along the embryonic anterior-posterior axis. Using a two-tail 5% cutoff on correlation, we reproduced 10 of the 11 links in the well-studied gap gene network. In conclusion, the performance of PP with the Drosophila data suggests that staNMF provides informative decompositions and constitutes a useful computational lens through which to extract biological insight from complex and often noisy gene expression data.« less

  16. A genome-wide view of transcription factor gene diversity in chordate evolution: less gene loss in amphioxus?

    PubMed

    Paps, Jordi; Holland, Peter W H; Shimeld, Sebastian M

    2012-03-01

    Previous studies of gene diversity in the homeobox superclass have shown that the Florida amphioxus Branchiostoma floridae has undergone remarkably little gene family loss. Here we use a combined BLAST and HMM search strategy to assess the family level diversity of four other transcription factor superclasses: the Paired/Pax genes, Tbx genes, Fox genes and Sox genes. We apply this across genomes from five chordate taxa, including B. floridae and Ciona intestinalis, plus two outgroup taxa. Our results show scattered gene family loss. However, as also found for homeobox genes, B. floridae has retained all ancient Pax, Tbx, Fox and Sox gene families that were present in the common ancestor of living chordates. We conclude that, at least in terms of transcription factor gene complexity, the genome of amphioxus has experienced remarkable stasis compared to the genomes of other chordates.

  17. Tissue Engineering Using Transfected Growth-Factor Genes

    NASA Technical Reports Server (NTRS)

    Madry, Henning; Langer, Robert S.; Freed, Lisa E.; Trippel, Stephen; Vunjak-Novakovic, Gordana

    2005-01-01

    A method of growing bioengineered tissues includes, as a major component, the use of mammalian cells that have been transfected with genes for secretion of regulator and growth-factor substances. In a typical application, one either seeds the cells onto an artificial matrix made of a synthetic or natural biocompatible material, or else one cultures the cells until they secrete a desired amount of an extracellular matrix. If such a bioengineered tissue construct is to be used for surgical replacement of injured tissue, then the cells should preferably be the patient s own cells or, if not, at least cells matched to the patient s cells according to a human-leucocyteantigen (HLA) test. The bioengineered tissue construct is typically implanted in the patient's injured natural tissue, wherein the growth-factor genes enhance metabolic functions that promote the in vitro development of functional tissue constructs and their integration with native tissues. If the matrix is biodegradable, then one of the results of metabolism could be absorption of the matrix and replacement of the matrix with tissue formed at least partly by the transfected cells. The method was developed for articular chondrocytes but can (at least in principle) be extended to a variety of cell types and biocompatible matrix materials, including ones that have been exploited in prior tissue-engineering methods. Examples of cell types include chondrocytes, hepatocytes, islet cells, nerve cells, muscle cells, other organ cells, bone- and cartilage-forming cells, epithelial and endothelial cells, connective- tissue stem cells, mesodermal stem cells, and cells of the liver and the pancreas. Cells can be obtained from cell-line cultures, biopsies, and tissue banks. Genes, molecules, or nucleic acids that secrete factors that influence the growth of cells, the production of extracellular matrix material, and other cell functions can be inserted in cells by any of a variety of standard transfection techniques.

  18. Epidermal growth factor gene is a newly identified candidate gene for gout

    PubMed Central

    Han, Lin; Cao, Chunwei; Jia, Zhaotong; Liu, Shiguo; Liu, Zhen; Xin, Ruosai; Wang, Can; Li, Xinde; Ren, Wei; Wang, Xuefeng; Li, Changgui

    2016-01-01

    Chromosome 4q25 has been identified as a genomic region associated with gout. However, the associations of gout with the genes in this region have not yet been confirmed. Here, we performed two-stage analysis to determine whether variations in candidate genes in the 4q25 region are associated with gout in a male Chinese Han population. We first evaluated 96 tag single nucleotide polymorphisms (SNPs) in eight inflammatory/immune pathway- or glucose/lipid metabolism-related genes in the 4q25 region in 480 male gout patients and 480 controls. The SNP rs12504538, located in the elongation of very-long-chain-fatty-acid-like family member 6 gene (Elovl6), was found to be associated with gout susceptibility (Padjusted = 0.00595). In the second stage of analysis, we performed fine mapping analysis of 93 tag SNPs in Elovl6 and in the epidermal growth factor gene (EGF) and its flanking regions in 1017 male patients gout and 1897 healthy male controls. We observed a significant association between the T allele of EGF rs2298999 and gout (odds ratio = 0.77, 95% confidence interval = 0.67–0.88, Padjusted = 6.42 × 10−3). These results provide the first evidence for an association between the EGF rs2298999 C/T polymorphism and gout. Our findings should be validated in additional populations. PMID:27506295

  19. Cloning the human gene for macrophage migration inhibitory factor (MIF)

    SciTech Connect

    Paralkar, V.; Wistow, G. )

    1994-01-01

    Macrophage migration inhibitory factor (MIF) was originally identified as a lymphokine. However, recent work strongly suggests a wider role for MIF beyond the immune system. It is expressed specifically in the differentiating cells of the immunologically privileged eye lens and brain, is a delayed early response gene in fibroblasts, and is expressed in many tissues. Here, the authors report the structure of the remarkably small gene for human MIF that has three exons separated by introns of only 189 and 95 bp and covers less than 1 kb. The cloned sequence also includes 1 kb of 5[prime] flanking region. Primer extension and 5[prime] rapid amplification of cDNA ends (RACE) of human brain RNA both indicate the presence of a single transcription start site in a TATA-less promoter. Northern blot analysis shows a single size of MIF mRNA (about 800 nt) in all human tissues examined. In contrast to previous reports, they find no evidence for multiple genes for MIF in the human genome. 20 refs., 3 figs.

  20. Microbiota regulate intestinal epithelial gene expression by suppressing the transcription factor Hepatocyte nuclear factor 4 alpha.

    PubMed

    Davison, James M; Lickwar, Colin R; Song, Lingyun; Breton, Ghislain; Crawford, Gregory E; Rawls, John F

    2017-04-06

    Microbiota influence diverse aspects of intestinal physiology and disease in part by controlling tissue-specific transcription of host genes. However, host genomic mechanisms mediating microbial control of intestinal gene expression are poorly understood. Hepatocyte nuclear factor 4 (HNF4) is the most ancient family of nuclear receptor transcription factors with important roles in human metabolic and inflammatory bowel diseases, but a role in host response to microbes is unknown. Using an unbiased screening strategy, we found that zebrafish Hnf4a specifically binds and activates a microbiota-suppressed intestinal epithelial transcriptional enhancer. Genetic analysis revealed that zebrafish hnf4a activates nearly half of the genes that are suppressed by microbiota, suggesting microbiota negatively regulate Hnf4a. In support, analysis of genomic architecture in mouse intestinal epithelial cells disclosed that microbiota colonization leads to activation or inactivation of hundreds of enhancers along with drastic genome-wide reduction of HNF4A and HNF4G occupancy. Interspecies meta-analysis suggested interactions between HNF4A and microbiota promote gene expression patterns associated with human inflammatory bowel diseases. These results indicate a critical and conserved role for HNF4A in maintaining intestinal homeostasis in response to microbiota.

  1. Elongation factor-2: a useful gene for arthropod phylogenetics.

    PubMed

    Regier, J C; Shultz, J W

    2001-07-01

    Robust resolution of controversial higher-level groupings within Arthropoda requires additional sources of characters. Toward this end, elongation factor-2 sequences (1899 nucleotides) were generated from 17 arthropod taxa (5 chelicerates, 6 crustaceans, 3 hexapods, 3 myriapods) plus an onychophoran and a tardigrade as outgroups. Likelihood and parsimony analyses of nucleotide and amino acid data sets consistently recovered Myriapoda and major chelicerate groups with high bootstrap support. Crustacea + Hexapoda (= Pancrustacea) was recovered with moderate support, whereas the conflicting group Myriapoda + Hexapoda (= Atelocerata) was never recovered and bootstrap values were always <5%. With additional nonarthropod sequences included, one indel supports monophyly of Tardigrada, Onychophora, and Arthropoda relative to molluscan, annelidan, and mammalian outgroups. New and previously published sequences from RNA polymerase II (1038 nucleotides) and elongation factor-1alpha (1092 nucleotides) were analyzed for the same taxa. A comparison of bootstrap values from the three genes analyzed separately revealed widely varying values for some clades, although there was never strong support for conflicting groups. In combined analyses, there was strong bootstrap support for the generally accepted clades Arachnida, Arthropoda, Euchelicerata, Hexapoda, and Pycnogonida, and for Chelicerata, Myriapoda, and Pancrustacea, whose monophyly is more controversial. Recovery of some additional groups was fairly robust to method of analysis but bootstrap values were not high; these included Pancrustacea + Chelicerata, Hexapoda + Cephalocarida + Remipedia, Cephalocarida + Remipedia, and Malaocostraca + Cirripedia. Atelocerata (= Myriapoda + Hexapoda) was never recovered. Elongation factor-2 is now the second protein-encoding, nuclear gene (in addition to RNA polymerase II) to support Pancrustacea over Atelocerata. Atelocerata is widely cited in morphology-based analyses, and the

  2. Controlling for Gene Expression Changes in Transcription Factor Protein Networks*

    PubMed Central

    Banks, Charles A. S.; Lee, Zachary T.; Boanca, Gina; Lakshminarasimhan, Mahadevan; Groppe, Brad D.; Wen, Zhihui; Hattem, Gaye L.; Seidel, Chris W.; Florens, Laurence; Washburn, Michael P.

    2014-01-01

    The development of affinity purification technologies combined with mass spectrometric analysis of purified protein mixtures has been used both to identify new protein–protein interactions and to define the subunit composition of protein complexes. Transcription factor protein interactions, however, have not been systematically analyzed using these approaches. Here, we investigated whether ectopic expression of an affinity tagged transcription factor as bait in affinity purification mass spectrometry experiments perturbs gene expression in cells, resulting in the false positive identification of bait-associated proteins when typical experimental controls are used. Using quantitative proteomics and RNA sequencing, we determined that the increase in the abundance of a set of proteins caused by overexpression of the transcription factor RelA is not sufficient for these proteins to then co-purify non-specifically and be misidentified as bait-associated proteins. Therefore, typical controls should be sufficient, and a number of different baits can be compared with a common set of controls. This is of practical interest when identifying bait interactors from a large number of different baits. As expected, we found several known RelA interactors enriched in our RelA purifications (NFκB1, NFκB2, Rel, RelB, IκBα, IκBβ, and IκBε). We also found several proteins not previously described in association with RelA, including the small mitochondrial chaperone Tim13. Using a variety of biochemical approaches, we further investigated the nature of the association between Tim13 and NFκB family transcription factors. This work therefore provides a conceptual and experimental framework for analyzing transcription factor protein interactions. PMID:24722732

  3. Nerve growth factor and epidermal growth factor stimulate clusterin gene expression in PC12 cells.

    PubMed Central

    Gutacker, C; Klock, G; Diel, P; Koch-Brandt, C

    1999-01-01

    Clusterin (apolipoprotein J) is an extracellular glycoprotein that might exert functions in development, cell death and lipid transport. Clusterin gene expression is elevated at sites of tissue remodelling, such as differentiation and apoptosis; however, the signals responsible for this regulation have not been identified. We use here the clusterin gene as a model system to examine expression in PC12 cells under the control of differentiation and proliferation signals produced by nerve growth factor (NGF) and by epidermal growth factor (EGF) respectively. NGF induced clusterin mRNA, which preceded neurite outgrowth typical of neuronal differentiation. EGF also activated the clusterin mRNA, demonstrating that both proliferation and differentiation signals regulate the gene. To localize NGF- and EGF-responsive elements we isolated the clusterin promoter and tested it in PC12 cell transfections. A 2.5 kb promoter fragment and two 1.5 and 0.3 kb deletion mutants were inducible by NGF and EGF. The contribution to this response of a conserved activator protein 1 (AP-1) motif located in the 0.3 kb fragment was analysed by mutagenesis. The mutant promoter was not inducible by NGF or EGF, which identifies the AP-1 motif as an element responding to both factors. Binding studies with PC12 nuclear extracts showed that AP-1 binds to this sequence in the clusterin promoter. These findings suggest that NGF and EGF, which give differential gene regulation in PC12 cells, resulting in neuronal differentiation and proliferation respectively, use the common Ras/extracellular signal-regulated kinase/AP-1 signalling pathway to activate clusterin expression. PMID:10215617

  4. Gene Tree Labeling Using Nonnegative Matrix Factorization on Biomedical Literature

    PubMed Central

    Heinrich, Kevin E.; Berry, Michael W.; Homayouni, Ramin

    2008-01-01

    Identifying functional groups of genes is a challenging problem for biological applications. Text mining approaches can be used to build hierarchical clusters or trees from the information in the biological literature. In particular, the nonnegative matrix factorization (NMF) is examined as one approach to label hierarchical trees. A generic labeling algorithm as well as an evaluation technique is proposed, and the effects of different NMF parameters with regard to convergence and labeling accuracy are discussed. The primary goals of this study are to provide a qualitative assessment of the NMF and its various parameters and initialization, to provide an automated way to classify biomedical data, and to provide a method for evaluating labeled data assuming a static input tree. As a byproduct, a method for generating gold standard trees is proposed. PMID:18431447

  5. Transcription factors and target genes of pre-TCR signaling.

    PubMed

    López-Rodríguez, Cristina; Aramburu, Jose; Berga-Bolaños, Rosa

    2015-06-01

    Almost 30 years ago pioneering work by the laboratories of Harald von Boehmer and Susumo Tonegawa provided the first indications that developing thymocytes could assemble a functional TCRβ chain-containing receptor complex, the pre-TCR, before TCRα expression. The discovery and study of the pre-TCR complex revealed paradigms of signaling pathways in control of cell survival and proliferation, and culminated in the recognition of the multifunctional nature of this receptor. As a receptor integrated in a dynamic developmental process, the pre-TCR must be viewed not only in the light of the biological outcomes it promotes, but also in context with those molecular processes that drive its expression in thymocytes. This review article focuses on transcription factors and target genes activated by the pre-TCR to drive its different outcomes.

  6. Anti-Epidermal Growth Factor Receptor Gene Therapy for Glioblastoma

    PubMed Central

    Hicks, Martin J.; Chiuchiolo, Maria J.; Ballon, Douglas; Dyke, Jonathan P.; Aronowitz, Eric; Funato, Kosuke; Tabar, Viviane; Havlicek, David; Fan, Fan; Sondhi, Dolan; Kaminsky, Stephen M.; Crystal, Ronald G.

    2016-01-01

    Glioblastoma multiforme (GBM) is the most common and aggressive primary intracranial brain tumor in adults with a mean survival of 14 to 15 months. Aberrant activation of the epidermal growth factor receptor (EGFR) plays a significant role in GBM progression, with amplification or overexpression of EGFR in 60% of GBM tumors. To target EGFR expressed by GBM, we have developed a strategy to deliver the coding sequence for cetuximab, an anti-EGFR antibody, directly to the CNS using an adeno-associated virus serotype rh.10 gene transfer vector. The data demonstrates that single, local delivery of an anti-EGFR antibody by an AAVrh.10 vector coding for cetuximab (AAVrh.10Cetmab) reduces GBM tumor growth and increases survival in xenograft mouse models of a human GBM EGFR-expressing cell line and patient-derived GBM. AAVrh10.CetMab-treated mice displayed a reduction in cachexia, a significant decrease in tumor volume and a prolonged survival following therapy. Adeno-associated-directed delivery of a gene encoding a therapeutic anti-EGFR monoclonal antibody may be an effective strategy to treat GBM. PMID:27711187

  7. A transcription factor active on the epidermal growth factor receptor gene.

    PubMed Central

    Kageyama, R; Merlino, G T; Pastan, I

    1988-01-01

    We have developed an in vitro transcription system for the epidermal growth factor receptor (EGFR) oncogene by using nuclear extracts of A431 human epidermoid carcinoma cells, which overproduce EGFR. We found that a nuclear factor, termed EGFR-specific transcription factor (ETF), specifically stimulated EGFR transcription by 5- to 10-fold. In this report, ETF, purified by using sequence-specific oligonucleotide affinity chromatography, is shown by renaturing material eluted from a NaDodSO4/polyacrylamide gel to be a protein with a molecular mass of 120 kDa. ETF binds to the promoter region, as measured by DNase I "footprinting" and gel-mobility-shift assays, and specifically stimulates the transcription of the EGFR gene in a reconstituted in vitro transcription system. These results suggest that ETF could play a role in the overexpression of the cellular oncogene EGFR. Images PMID:3393529

  8. Ets transcription factors bind and transactivate the core promoter of the von Willebrand factor gene.

    PubMed

    Schwachtgen, J L; Janel, N; Barek, L; Duterque-Coquillaud, M; Ghysdael, J; Meyer, D; Kerbiriou-Nabias, D

    1997-12-18

    von Willebrand factor (vWF) gene expression is restricted to endothelial cells and megakaryocytes. Previous results demonstrated that basal transcription of the human vWF gene is mediated through a promoter located between base pairs -89 and +19 (cap site: +1) which is functional in endothelial and non endothelial cells. Two DNA repeats TTTCCTTT correlating with inverted consensus binding sites for the Ets family of transcription factors are present in the -56/-36 sequence. In order to analyse whether these DNA elements are involved in transcription, human umbilical vein endothelial cells (HUVEC), bovine calf pulmonary endothelial cell line (CPAE), HeLa and COS cells were transfected with constructs containing deletions of the -89/+19 fragment, linked to the chloramphenicol acetyl transferase (CAT) reporter gene. The -60/+19 region exhibits significant promoter activity in HUVEC and CPAE cells only. The -42/+19 fragment is not active. Mutations of the -60/+19 promoter fragment in the 5' (-56/-49) Ets binding site abolish transcription in endothelial cells whereas mutations in the 3' (-43/-36) site does not. The -60/-33 fragment forms three complexes with proteins from HUVEC nuclear extracts in electrophoretic mobility shift assay which are dependent on the presence of the 5' Ets binding site. Binding of recombinant Ets-1 protein to the -60/-33 fragment gives a complex which also depends on the 5' site. The -60/+19 vWF gene core promoter is transactivated in HeLa cells by cotransfecting with Ets-1 or Erg (Ets-related gene) expression plasmids. In contrast to the wild type construct, transcription of the 5' site mutants is not increased by these expressed proteins. The results indicate that the promoter activity of the -60/+19 region of the vWF gene depends on transcription factors of the Ets family of which several members like Ets-1, Ets-2 and Erg are expressed in endothelium. Cotransfection of Ets-1 and Erg expression plasmids is sufficient to induce the -60/+19 v

  9. Transcription factor regulation can be accurately predicted from the presence of target gene signatures in microarray gene expression data

    PubMed Central

    Essaghir, Ahmed; Toffalini, Federica; Knoops, Laurent; Kallin, Anders; van Helden, Jacques; Demoulin, Jean-Baptiste

    2010-01-01

    Deciphering transcription factor networks from microarray data remains difficult. This study presents a simple method to infer the regulation of transcription factors from microarray data based on well-characterized target genes. We generated a catalog containing transcription factors associated with 2720 target genes and 6401 experimentally validated regulations. When it was available, a distinction between transcriptional activation and inhibition was included for each regulation. Next, we built a tool (www.tfacts.org) that compares submitted gene lists with target genes in the catalog to detect regulated transcription factors. TFactS was validated with published lists of regulated genes in various models and compared to tools based on in silico promoter analysis. We next analyzed the NCI60 cancer microarray data set and showed the regulation of SOX10, MITF and JUN in melanomas. We then performed microarray experiments comparing gene expression response of human fibroblasts stimulated by different growth factors. TFactS predicted the specific activation of Signal transducer and activator of transcription factors by PDGF-BB, which was confirmed experimentally. Our results show that the expression levels of transcription factor target genes constitute a robust signature for transcription factor regulation, and can be efficiently used for microarray data mining. PMID:20215436

  10. [Association of schizophrenia with variations in genes encoding transcription factors].

    PubMed

    Boyajyan, A S; Atshemyan, S A; Zakharyan, R V

    2015-01-01

    Alterations in neuronal plasticity and immune system play a key role in pathogenesis of schizophrenia. Identification of genetic factors contributing to these alterations will significantly encourage elucidation of molecular etiopathomechanisms of this disorder. Transcription factors c-Fos, c-Jun, and Ier5 are the important regulators of neuronal plasticity and immune response. In the present work we investigated a potential association of schizophrenia with a number of single nucleotide polymorphisms of c-Fos-,c-Jun and Ier5 encoding genes (FOS, JUN, and IER5 respectively). Genotyping of DNA samples of patients with schizophrenia and healthy individuals was performed using polymerase chain reaction with allele specific primers. The results obtained demonstrated association between schizophrenia and FOS rs1063169, FOS rs7101, JUN rs11688, and IER5 rs6425663 polymorphisms. Namely, it was found that the inheritance of FOS rs1063169*T, JUN rs11688*A, and IER5 rs6425663*T minor variants decreases risk for development of schizophrenia whereas the inheritance of FOS rs7101*T minor variant, especially its homozygous form, increases risk for development of this disorder.

  11. Nuclear Factor-Y is an adipogenic factor that regulates leptin gene expression

    PubMed Central

    Lu, Yi-Hsueh; Dallner, Olof Stefan; Birsoy, Kivanc; Fayzikhodjaeva, Gulya; Friedman, Jeffrey M.

    2015-01-01

    Objective Leptin gene expression is highly correlated with cellular lipid content in adipocytes but the transcriptional mechanisms controlling leptin expression in vivo are poorly understood. In this report, we set out to identify cis- and trans-regulatory elements controlling leptin expression. Methods Leptin-BAC luciferase transgenic mice combining with other computational and molecular techniques were used to identify transcription regulatory elements including a CCAAT-binding protein Nuclear Factor Y (NF-Y). The function of NF-Y in adipocyte was studied in vitro with 3T3-L1 cells and in vivo with adipocyte-specific knockout of NF-Y. Results Using Leptin-BAC luciferase mice, we showed that DNA sequences between −22 kb and +8.8 kb can confer quantitative expression of a leptin reporter. Computational analysis of sequences and gel shift assays identified a 32 bp sequence (chr6: 28993820–2899385) consisting a CCAAT binding site for Nuclear Factor Y (NF-Y) and this was confirmed by a ChIP assay in vivo. A deletion of this 32 bp sequence in the −22 kb to +8.8 kb leptin-luciferase BAC reporter completely abrogates luciferase reporter activity in vivo. RNAi mediated knockdown of NF-Y interfered with adipogenesis in vitro and adipocyte-specific knockout of NF-Y in mice reduced expression of leptin and other fat specific genes in vivo. Further analyses of the fat specific NF-Y knockout revealed that these animals develop a moderately severe lipodystrophy that is remediable with leptin therapy. Conclusions These studies advance our understanding of leptin gene expression and show that NF-Y controls the expression of leptin and other adipocyte genes and identifies a new form of lipodystrophy. PMID:25973387

  12. [GST genes expression as prognostic factor in papillary thyroid cancer].

    PubMed

    Gonçalves, Antonio Jose; Monte, Osmar; Morari, Eliane Cristina; Ward, Laura Sterian; Nakasako, Diana Shimoda; Nieto, Juliana; Nakai, Marianne Yumi

    2009-01-01

    Analyze the relationship between the AMES classification and molecular factors from Glutation-S-Transferase System, specifically the GSTT1 and GSTM1 in patients with well differentiated thyroid cancer. Samples of thyroid tissue of 66 patients with papillary thyroid carcinoma were obtained (53 women and 13 men). Patients were divided in two groups (high and low risk) according to the AMES classification. In each group, presence of the null genotype of both GST enzymes system was studied. These results were compared with the AMES classification. Samples were obtained in the operating room immediately after thyroidectomy, placed in cryotubes, immersed in liquid nitrogen and stored in a freezer at -80 masculineC. DNA of this enzymes was extracted by the fenol-cloroformium method. There were 17 high risk patients and 49 low risk patients. The null genotype of the high risk group was 5.8% and in the other group was 6.1%. There was no relationship between absence of genes GSTT1 and GSTM1 and prognosis of the papillary thyroid carcinoma when compared to the AMES classifications.

  13. Building gene expression signatures indicative of transcription factor activation to predict AOP modulation

    EPA Science Inventory

    Building gene expression signatures indicative of transcription factor activation to predict AOP modulation Adverse outcome pathways (AOPs) are a framework for predicting quantitative relationships between molecular initiatin...

  14. Building gene expression signatures indicative of transcription factor activation to predict AOP modulation

    EPA Science Inventory

    Building gene expression signatures indicative of transcription factor activation to predict AOP modulation Adverse outcome pathways (AOPs) are a framework for predicting quantitative relationships between molecular initiatin...

  15. Nuclear gene-regulated expression of chloroplast genes for coupling factor one in maize

    SciTech Connect

    Kobayashi, H.; Bogorad, L.; Miles, C.D.

    1987-11-01

    In order to gain a better understanding of the interaction between the chloroplast and nuclear genomes in controlling the expression of plastid genes and the biosynthesis of chloroplast proteins, maize (Zea mays) nuclear gene mutant hcf*-38, in which ..cap alpha.. and ..beta.. subunits of coupling factor one (CF/sub 1/) are almost completely missing was studied. The mutant possesses all the other subunits of CF/sub 1/ but several peptides of photosystem II are present in reduced amounts. A competitive hybridization experiment showed the presence of the same plastid mRNA species in mutant and wild-type plants except for slightly lower levels of some transcripts in the mutant. Northern hybridization and dot blot hybridization experiments showed the features of transcripts for ..cap alpha.. and ..beta.. subunits of CF/sub 1/ in the mutant to be similar to those in the wild-type maize although their levels are somewhat lower in the mutant. In vivo and in organello protein labeling experiments with L-(/sup 35/S)Met have shown that ..cap alpha.. and ..beta.. subunits of CF/sub 1/ are synthesized, assembled into CF/sub 1/, and probably associated with thylakoid membranes in mutant plants. It is concluded that they are subsequently degraded.

  16. Insight into transcription factor gene duplication from Caenorhabditis elegans Promoterome-driven expression patterns

    PubMed Central

    Reece-Hoyes, John S; Shingles, Jane; Dupuy, Denis; Grove, Christian A; Walhout, Albertha JM; Vidal, Marc; Hope, Ian A

    2007-01-01

    Background The C. elegans Promoterome is a powerful resource for revealing the regulatory mechanisms by which transcription is controlled pan-genomically. Transcription factors will form the core of any systems biology model of genome control and therefore the promoter activity of Promoterome inserts for C. elegans transcription factor genes was examined, in vivo, with a reporter gene approach. Results Transgenic C. elegans strains were generated for 366 transcription factor promoter/gfp reporter gene fusions. GFP distributions were determined, and then summarized with reference to developmental stage and cell type. Reliability of these data was demonstrated by comparison to previously described gene product distributions. A detailed consideration of the results for one C. elegans transcription factor gene family, the Six family, comprising ceh-32, ceh-33, ceh-34 and unc-39 illustrates the value of these analyses. The high proportion of Promoterome reporter fusions that drove GFP expression, compared to previous studies, led to the hypothesis that transcription factor genes might be involved in local gene duplication events less frequently than other genes. Comparison of transcription factor genes of C. elegans and Caenorhabditis briggsae was therefore carried out and revealed very few examples of functional gene duplication since the divergence of these species for most, but not all, transcription factor gene families. Conclusion Examining reporter expression patterns for hundreds of promoters informs, and thereby improves, interpretation of this data type. Genes encoding transcription factors involved in intrinsic developmental control processes appear acutely sensitive to changes in gene dosage through local gene duplication, on an evolutionary time scale. PMID:17244357

  17. Therapeutic angiogenesis using novel vascular endothelial growth factor-E/human placental growth factor chimera genes.

    PubMed

    Inoue, Natsuo; Kondo, Takahisa; Kobayashi, Koichi; Aoki, Mika; Numaguchi, Yasushi; Shibuya, Masabumi; Murohara, Toyoaki

    2007-01-01

    Vascular endothelial growth factor-A (VEGF-A) promotes angiogenesis but causes adverse side effects such as edema or tissue inflammation. VEGF-E, found in the genome of the Orf virus, specifically binds to VEGF receptor-2 and shows mitotic activity on endothelial cells. Recently, we created two forms of VEGF-E and human placental growth factor (PlGF) chimera genes (VEGF-E chimera #9 and VEGF-E chimera #33), which are humanized genes with VEGF-E function but showing less antigenicity. We examined potential proangiogenic activities of these chimera genes. Four types of expression plasmids (pCDNA3.1-LacZ, phVEGF-A, pVEGF-Echimera#9, and pVEGF-Echimera#33) were administered in a rat model of hindlimb ischemia. Either pVEGF-Echimera#9, pVEGF-Echimera#33, or phVEGF-A significantly increased the ratio of ischemic/normal hindlimb blood-flow compared with the control pCDNA3.1-LacZ treated group (by 1.5-fold, 1.5-fold, and 1.4-fold, respectively, P<0.05). Histochemical staining by alkaline phosphatase also revealed that either pVEGF-Echimera#9, pVEGF-Echimera#33, or phVEGF-A increased the capillary density compared with the pCDNA3.1-LacZ treated group (1.4-fold, 1.5-fold, and 1.5-fold, respectively, P<0.05). Furthermore, immunostaining for anti-ED1 revealed that fewer macrophages had infiltrated in both pVEGF-Echimera#9 and pVEGF-Echimera#33 groups compared with the phVEGF-A group (P<0.05). Novel VEGF-E/human PlGF chimera genes, pVEGF-Echimera#9, and pVEGF-Echimera#33 significantly stimulated angiogenesis in response to tissue ischemia to an almost identical extent to that induced by phVEGF-A with fewer tissue inflammation responses.

  18. Coagulation factor XI gene analysis in three factor XI deficient Austrian patients.

    PubMed

    Dossenbach-Glaninger, Astrid; Hopmeier, Pierre

    2006-04-01

    Hereditary factor XI deficiency is a rare bleeding disorder with worldwide distribution. In Austrian patients only one mutation leading to congenital factor XI deficiency has been reported. In the present study, we identified the molecular basis of factor XI deficiency in three Austrian patients. Patients attended hospital for other reasons than bleeding disorders. Routine laboratory tests revealed prolonged APTTs due to decreased factor XI levels. We performed automated fluorescent sequencing of the promotor region, exons 1-15 and the flanking intronic regions of the factor XI gene. The mutations found were confirmed by restriction enzyme analysis or sequencing of the non-coding strand. Fluorescent sequencing revealed two novel mutations, the nonsense mutation Gln116X (443C>T) in exon 5 and a deletion of Ile197 and Asp198 (687_692delTCGACA) in exon 7. Furthermore, we detected a heterozygous A>G exchange at the third nucleotide of IVS6 (IVS 6 +3A>G), which had already been reported in a FXI deficient individual of French Basque origin. While the IVS 6 +3A>G decreases the calculated splice consensus score from 0.98 in the wild type to 0.56 in the altered sequence and therefore interferes with the consensus splice sequence, the complete loss of the two amino acids Ile197 and Asp198 is expected to interfere with the steric structure and hence the functions of the third apple domain. The Gln116X leads to a premature termination codon resulting in a lack of the light as well as parts of the heavy chain of the FXI protein, most likely resulting in rapid degradation of the truncated mRNA.

  19. Keratinocyte growth factor gene therapy ameliorates ulcerative colitis in rats.

    PubMed

    Liu, Chun-Jie; Jin, Ji-De; Lv, Tong-De; Wu, Zu-Ze; Ha, Xiao-Qin

    2011-06-07

    To investigate the effect of keratinocyte growth factor (KGF) gene therapy in acetic acid-induced ulcerative colitis in rat model. The colitis of Sprague-Dawley rats was induced by intrarectal infusion of 1 mL 5% (v/v) acetic acid. Twenty-four hours after exposed to acetic acid, rats were divided into three experimental groups: control group, attenuated Salmonella typhimurium Ty21a strain (SP) group and SP strain carrying human KGF gene (SPK) group, and they were separately administered orally with 10% NaHCO(3), SP or SPK. Animals were sacrificed and colonic tissues were harvested respectively on day 3, 5, 7 and 10 after administration. Weights of rats, colonic weight/length ratio and stool score were evaluated. Histological changes of colonic tissues were examined by hematoxylin and eosin (HE) staining method. The expression of KGF, KGF receptor (KGFR) and TNF-α were measured either by enzyme-linked immunosorbent assay or Western blotting. Immunohistochemistry was used to detect the cellular localization of KGFR and Ki67. In addition, superoxide dismutase (SOD) activity and malondialdehyde (MDA) contents in the homogenate were measured. Body weight and colonic weight/length ratio were declined in SPK group compared with SP and control groups (body weight: 272.78 ± 17.92 g vs 243.72 ± 14.02 g and 240.68 ± 12.63 g, P < 0.01; colonic weight/length ratio: 115.76 ± 7.47 vs 150.32 ± 5.99 and 153.67 ± 5.50 mg/cm, P < 0.01). Moreover, pathological changes of damaged colon were improved in SPK group as well. After administration of SPK strain, KGF expression increased markedly from the 3rd d, and remained at a high level till the 10th d. Furthermore, KGFR expression and Ki67 expression elevated, whereas TNF-α expression was inhibited in SPK group. In the group administered with SPK, SOD activity increased significantly (d 5: 26.18 ± 5.84 vs 18.12 ± 3.30 and 18.79 ± 4.74 U/mg, P < 0.01; d 7: 35.48 ± 3.35 vs 22.57 ± 3.44 and 21.69 ± 3.94 U/mg, P < 0.01; d 10

  20. Keratinocyte growth factor gene therapy ameliorates ulcerative colitis in rats

    PubMed Central

    Liu, Chun-Jie; Jin, Ji-De; Lv, Tong-De; Wu, Zu-Ze; Ha, Xiao-Qin

    2011-01-01

    AIM: To investigate the effect of keratinocyte growth factor (KGF) gene therapy in acetic acid-induced ulcerative colitis in rat model. METHODS: The colitis of Sprague-Dawley rats was induced by intrarectal infusion of 1 mL 5% (v/v) acetic acid. Twenty-four hours after exposed to acetic acid, rats were divided into three experimental groups: control group, attenuated Salmonella typhimurium Ty21a strain (SP) group and SP strain carrying human KGF gene (SPK) group, and they were separately administered orally with 10% NaHCO3, SP or SPK. Animals were sacrificed and colonic tissues were harvested respectively on day 3, 5, 7 and 10 after administration. Weights of rats, colonic weight/length ratio and stool score were evaluated. Histological changes of colonic tissues were examined by hematoxylin and eosin (HE) staining method. The expression of KGF, KGF receptor (KGFR) and TNF-α were measured either by enzyme-linked immunosorbent assay or Western blotting. Immunohistochemistry was used to detect the cellular localization of KGFR and Ki67. In addition, superoxide dismutase (SOD) activity and malondialdehyde (MDA) contents in the homogenate were measured. RESULTS: Body weight and colonic weight/length ratio were declined in SPK group compared with SP and control groups (body weight: 272.78 ± 17.92 g vs 243.72 ± 14.02 g and 240.68 ± 12.63 g, P < 0.01; colonic weight/length ratio: 115.76 ± 7.47 vs 150.32 ± 5.99 and 153.67 ± 5.50 mg/cm, P < 0.01). Moreover, pathological changes of damaged colon were improved in SPK group as well. After administration of SPK strain, KGF expression increased markedly from the 3rd d, and remained at a high level till the 10th d. Furthermore, KGFR expression and Ki67 expression elevated, whereas TNF-α expression was inhibited in SPK group. In the group administered with SPK, SOD activity increased significantly (d 5: 26.18 ± 5.84 vs 18.12 ± 3.30 and 18.79 ± 4.74 U/mg, P < 0.01; d 7: 35.48 ± 3.35 vs 22.57 ± 3.44 and 21.69 ± 3.94 U

  1. Scaling of Gene Expression with Transcription-Factor Fugacity

    PubMed Central

    Weinert, Franz M.; Brewster, Robert C.; Rydenfelt, Mattias; Phillips, Rob; Kegel, Willem K.

    2015-01-01

    The proteins associated with gene regulation are often shared between multiple pathways simultaneously. By way of contrast, models in regulatory biology often assume these pathways act independently. We demonstrate a framework for calculating the change in gene expression for the interacting case by decoupling repressor occupancy across the cell from the gene of interest by way of a chemical potential. The details of the interacting regulatory architecture are encompassed in an effective concentration, and thus, a single scaling function describes a collection of gene expression data from diverse regulatory situations and collapses it onto a single master curve. PMID:25554908

  2. Scaling of gene expression with transcription-factor fugacity.

    PubMed

    Weinert, Franz M; Brewster, Robert C; Rydenfelt, Mattias; Phillips, Rob; Kegel, Willem K

    2014-12-19

    The proteins associated with gene regulation are often shared between multiple pathways simultaneously. By way of contrast, models in regulatory biology often assume these pathways act independently. We demonstrate a framework for calculating the change in gene expression for the interacting case by decoupling repressor occupancy across the cell from the gene of interest by way of a chemical potential. The details of the interacting regulatory architecture are encompassed in an effective concentration, and thus, a single scaling function describes a collection of gene expression data from diverse regulatory situations and collapses it onto a single master curve.

  3. Possible incorrect genotyping of heterozygous factor V Leiden and Prothrombin 20210 gene mutations by the GeneXpert assay.

    PubMed

    Marturano, Alessandro; Bury, Loredana; Gresele, Paolo

    2014-08-05

    The GeneXpert analyzer is a hands-off system for the detection of Factor V Leiden and of Prothrombin G20210A (GPRO) gene thrombophilic mutations. Although the system is efficient and easy to use, we report the rare possibility of incorrect genotyping. 1648 samples were evaluated using the GeneXpert HemosIL Factor II and Factor V assay: 1319 were freshly analyzed while 329 were frozen, thawed and diluted with saline prior to analysis to avoid clogging of the instrument syringe. Two samples, both heterozygous, one for the factor V Leiden and the other for the GPRO gene, were incorrectly genotyped as homozygous for the relative mutation. Inspection of the Ct values and amplification curves and genotyping with PCR revealed the correct genotype as heterozygous for factor V Leiden and GPRO mutation. The GeneXpert HemosIL Factor II and Factor V assay is an automated, fast genotyping assay requiring almost no sample manipulation, advantageous characteristics if compared with other PCR-based methods. However, an inattentive use of it can generate incorrect diagnosis. A careful handling of the sample, in particular correct dilution of frozen/thawed samples before analysis, and the inspection of the amplification curves and Ct values are required to avoid artifacts. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. The effects of transcription factor competition on gene regulation

    PubMed Central

    Zabet, Nicolae Radu; Adryan, Boris

    2013-01-01

    Transcription factor (TF) molecules translocate by facilitated diffusion (a combination of 3D diffusion around and 1D random walk on the DNA). Despite the attention this mechanism received in the last 40 years, only a few studies investigated the influence of the cellular environment on the facilitated diffusion mechanism and, in particular, the influence of “other” DNA binding proteins competing with the TF molecules for DNA space. Molecular crowding on the DNA is likely to influence the association rate of TFs to their target site and the steady state occupancy of those sites, but it is still not clear how it influences the search in a genome-wide context, when the model includes biologically relevant parameters (such as: TF abundance, TF affinity for DNA and TF dynamics on the DNA). We performed stochastic simulations of TFs performing the facilitated diffusion mechanism, and considered various abundances of cognate and non-cognate TFs. We show that, for both obstacles that move on the DNA and obstacles that are fixed on the DNA, changes in search time are not statistically significant in case of biologically relevant crowding levels on the DNA. In the case of non-cognate proteins that slide on the DNA, molecular crowding on the DNA always leads to statistically significant lower levels of occupancy, which may confer a general mechanism to control gene activity levels globally. When the “other” molecules are immobile on the DNA, we found a completely different behavior, namely: the occupancy of the target site is always increased by higher molecular crowding on the DNA. Finally, we show that crowding on the DNA may increase transcriptional noise through increased variability of the occupancy time of the target sites. PMID:24109486

  5. The effects of transcription factor competition on gene regulation.

    PubMed

    Zabet, Nicolae Radu; Adryan, Boris

    2013-01-01

    Transcription factor (TF) molecules translocate by facilitated diffusion (a combination of 3D diffusion around and 1D random walk on the DNA). Despite the attention this mechanism received in the last 40 years, only a few studies investigated the influence of the cellular environment on the facilitated diffusion mechanism and, in particular, the influence of "other" DNA binding proteins competing with the TF molecules for DNA space. Molecular crowding on the DNA is likely to influence the association rate of TFs to their target site and the steady state occupancy of those sites, but it is still not clear how it influences the search in a genome-wide context, when the model includes biologically relevant parameters (such as: TF abundance, TF affinity for DNA and TF dynamics on the DNA). We performed stochastic simulations of TFs performing the facilitated diffusion mechanism, and considered various abundances of cognate and non-cognate TFs. We show that, for both obstacles that move on the DNA and obstacles that are fixed on the DNA, changes in search time are not statistically significant in case of biologically relevant crowding levels on the DNA. In the case of non-cognate proteins that slide on the DNA, molecular crowding on the DNA always leads to statistically significant lower levels of occupancy, which may confer a general mechanism to control gene activity levels globally. When the "other" molecules are immobile on the DNA, we found a completely different behavior, namely: the occupancy of the target site is always increased by higher molecular crowding on the DNA. Finally, we show that crowding on the DNA may increase transcriptional noise through increased variability of the occupancy time of the target sites.

  6. Regulation of Cell Cycle Associated Genes by microRNA and Transcription Factor.

    PubMed

    Bhattacharyya, Nitai P; Das, Eashita; Bucha, Sudha; Das, Srijit; Choudhury, Ananyo

    2016-01-01

    Cell cycle is a complex process and regulated at transcriptional, post-transcriptional and posttranslational levels. Large numbers of genes are implicated in the process. Abnormality at any stage of cell cycle may lead to diseases including cancer. To gain global view of genes associated with cell cycle, their regulation by transcription factors and microRNAs, we collected genes related to cell cycle from different databases. Experimentally validated targets of microRNAs are collected from miRTarbase. Transcription factors that bind to upstream sequences of cell cycle associated genes and microRNA genes were collected from published papers. We collected 3028 genes associated with cell cycle. These proteins belong to different protein classes like nucleic acid binding (594 proteins), transcription factors (305 proteins), cytoskeletal (232 proteins), kinases (174 proteins), phosphatase (111 proteins) and chaperones (84 proteins). Among 3028 cell cycle associated genes, 2125 genes are validated targets of 424 microRNAs; CDKN1A is a target of 46 miRNAs and miR-335 targets 301 genes. About 100 transcription factors had binding sites at potential promoter regions of 2722 genes and 329 microRNAs that target cell cycle associated genes. We presented the largest numbers of cell cycle associated genes. Many transcription factors regulate both cell cycle associated genes and the miRNAs that target cell cycle associated genes. These resources will be utilized to identify the co-regulation of cell cycle associated genes by transcription factors and miRNAs and to test specific hypothesis for cell cycle regulation and its alteration in different diseases.

  7. Problem-Based Test: The Effect of Fibroblast Growth Factor on Gene Expression

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2011-01-01

    This paper shows the results of an experiment in which the effects of fibroblast growth factor (FGF), actinomycin D (Act D; an inhibitor of transcription), and cycloheximide (CHX; an inhibitor of translation) were studied on the expression of two genes: a gene called "Fnk" and the gene coding for glyceraldehyde-3-phosphate dehydrogenase (GAPDH).…

  8. Problem-Based Test: The Effect of Fibroblast Growth Factor on Gene Expression

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2011-01-01

    This paper shows the results of an experiment in which the effects of fibroblast growth factor (FGF), actinomycin D (Act D; an inhibitor of transcription), and cycloheximide (CHX; an inhibitor of translation) were studied on the expression of two genes: a gene called "Fnk" and the gene coding for glyceraldehyde-3-phosphate dehydrogenase (GAPDH).…

  9. Extracting unrecognized gene relationships from the biomedical literature via matrix factorizations

    PubMed Central

    Kim, Hyunsoo; Park, Haesun; Drake, Barry L

    2007-01-01

    Background The construction of literature-based networks of gene-gene interactions is one of the most important applications of text mining in bioinformatics. Extracting potential gene relationships from the biomedical literature may be helpful in building biological hypotheses that can be explored further experimentally. Recently, latent semantic indexing based on the singular value decomposition (LSI/SVD) has been applied to gene retrieval. However, the determination of the number of factors k used in the reduced rank matrix is still an open problem. Results In this paper, we introduce a way to incorporate a priori knowledge of gene relationships into LSI/SVD to determine the number of factors. We also explore the utility of the non-negative matrix factorization (NMF) to extract unrecognized gene relationships from the biomedical literature by taking advantage of known gene relationships. A gene retrieval method based on NMF (GR/NMF) showed comparable performance with LSI/SVD. Conclusion Using known gene relationships of a given gene, we can determine the number of factors used in the reduced rank matrix and retrieve unrecognized genes related with the given gene by LSI/SVD or GR/NMF. PMID:18047707

  10. C-axis electrical resistivity of PrO1-aFaBiS2 single crystals

    NASA Astrophysics Data System (ADS)

    Nagao, Masanori; Miura, Akira; Watauchi, Satoshi; Takano, Yoshihiko; Tanaka, Isao

    2015-08-01

    The high anisotropy in RO1-aFaBiS2 (R denotes a rare-earth element) superconductors demonstrates their potential use as intrinsic Josephson junctions, considering the weak coupling among BiS2-PrO(F)-BiS2 (superconducting-normal-superconducting) layers along the c-axis. We grew PrO1-aFaBiS2 single crystals using CsCl/KCl flux. The superconducting anisotropies of the grown single crystals were estimated to be approximately 40-50 from the effective mass model. The c-axis transport properties were characterized using single-crystal s-shaped intrinsic Josephson junctions with a focused ion beam. Along the c-axis, the crystals showed zero resistivity at 2.7 K and a critical current density of 1.33 × 103 A/cm2 at 2.0 K. The current-voltage curve along the c-axis displayed hysteresis. The c-axis transport measurements under a magnetic field parallel to the ab-plane revealed a “lock-in” state due to the Josephson vortex flow, indicating that BiS2 superconductors are promising candidates for intrinsic Josephson junctions.

  11. Gene-specific regulation by general translation factors.

    PubMed

    Dever, Thomas E

    2002-02-22

    Protein synthesis is the ultimate step of gene expression and a key control point for regulation. In particular, it enables cells to rapidly manipulate protein production without new mRNA synthesis, processing, or export. Recent studies have enhanced our understanding of the translation initiation process and helped elucidate how modifications of the general translational machinery regulate gene-specific protein production.

  12. Network analysis of microRNAs, transcription factors, target genes and host genes in human anaplastic astrocytoma

    PubMed Central

    XUE, LUCHEN; XU, ZHIWEN; WANG, KUNHAO; WANG, NING; ZHANG, XIAOXU; WANG, SHANG

    2016-01-01

    Numerous studies have investigated the roles played by various genes and microRNAs (miRNAs) in neoplasms, including anaplastic astrocytoma (AA). However, the specific regulatory mechanisms involving these genes and miRNAs remain unclear. In the present study, associated biological factors (miRNAs, transcription factors, target genes and host genes) from existing studies of human AA were combined methodically through the interactions between genes and miRNAs, as opposed to studying one or several. Three regulatory networks, including abnormally expressed, related and global networks were constructed with the aim of identifying significant gene and miRNA pathways. Each network is composed of three associations between miRNAs targeted at genes, transcription factors (TFs) regulating miRNAs and miRNAs located on their host genes. Among these, the abnormally expressed network, which involves the pathways of previously identified abnormally expressed genes and miRNAs, partially indicated the regulatory mechanism underlying AA. The network contains numerous abnormal regulation associations when AA emerges. By modifying the abnormally expressed network factors to a normal expression pattern, the faulty regulation may be corrected and tumorigenesis of AA may be prevented. Certain specific pathways are highlighted in AA, for example PTEN which is targeted by miR-21 and miR-106b, regulates miR-25 which in turn targets TP53. PTEN and miR-21 have been observed to form feedback loops. Furthermore, by comparing and analyzing the pathway predecessors and successors of abnormally expressed genes and miRNAs in three networks, similarities and differences of regulatory pathways may be identified and proposed. In summary, the present study aids in elucidating the occurrence, mechanism, prevention and treatment of AA. These results may aid further investigation into therapeutic approaches for this disease. PMID:27347075

  13. Inferring gene correlation networks from transcription factor binding sites.

    PubMed

    Mahdevar, Ghasem; Nowzari-Dalini, Abbas; Sadeghi, Mehdi

    2013-01-01

    Gene expression is a highly regulated biological process that is fundamental to the existence of phenotypes of any living organism. The regulatory relations are usually modeled as a network; simply, every gene is modeled as a node and relations are shown as edges between two related genes. This paper presents a novel method for inferring correlation networks, networks constructed by connecting co-expressed genes, through predicting co-expression level from genes promoter's sequences. According to the results, this method works well on biological data and its outcome is comparable to the methods that use microarray as input. The method is written in C++ language and is available upon request from the corresponding author.

  14. Activation of the human mitochondrial transcription factor A gene by nuclear respiratory factors: a potential regulatory link between nuclear and mitochondrial gene expression in organelle biogenesis.

    PubMed Central

    Virbasius, J V; Scarpulla, R C

    1994-01-01

    Mitochondrial transcription factor A (mtTFA), the product of a nuclear gene, stimulates transcription from the two divergent mitochondrial promoters and is likely the principal activator of mitochondrial gene expression in vertebrates. Here we establish that the proximal promoter of the human mtTFA gene is highly dependent upon recognition sites for the nuclear respiratory factors, NRF-1 and NRF-2, for activity. These factors have been previously implicated in the activation of numerous nuclear genes that contribute to mitochondrial respiratory function. The affinity-purified factors from HeLa cells specifically bind to the mtTFA NRF-1 and NRF-2 sites through guanine nucleotide contacts that are characteristic for each site. Mutations in these contacts eliminate NRF-1 and NRF-2 binding and also dramatically reduce promoter activity in transfected cells. Although both factors contribute, NRF-1 binding appears to be the major determinant of promoter function. This dependence on NRF-1 activation is confirmed by in vitro transcription using highly purified recombinant proteins that display the same binding specificities as the HeLa cell factors. The activation of the mtTFA promoter by both NRF-1 and NRF-2 therefore provides a link between the expression of nuclear and mitochondrial genes and suggests a mechanism for their coordinate regulation during organelle biogenesis. Images PMID:8108407

  15. Pituitary tumor transforming gene binding factor: a new gene in breast cancer.

    PubMed

    Watkins, Rachel J; Read, Martin L; Smith, Vicki E; Sharma, Neil; Reynolds, Gary M; Buckley, Laura; Doig, Craig; Campbell, Moray J; Lewy, Greg; Eggo, Margaret C; Loubiere, Laurence S; Franklyn, Jayne A; Boelaert, Kristien; McCabe, Christopher J

    2010-05-01

    Pituitary tumor transforming gene (PTTG) binding factor (PBF; PTTG1IP) is a relatively uncharacterized oncoprotein whose function remains obscure. Because of the presence of putative estrogen response elements (ERE) in its promoter, we assessed PBF regulation by estrogen. PBF mRNA and protein expression were induced by both diethylstilbestrol and 17beta-estradiol in estrogen receptor alpha (ERalpha)-positive MCF-7 cells. Detailed analysis of the PBF promoter showed that the region -399 to -291 relative to the translational start site contains variable repeats of an 18-bp sequence housing a putative ERE half-site (gcccctcGGTCAcgcctc). Sequencing the PBF promoter from 122 normal subjects revealed that subjects may be homozygous or heterozygous for between 1 and 6 repeats of the ERE. Chromatin immunoprecipitation and oligonucleotide pull-down assays revealed ERalpha binding to the PBF promoter. PBF expression was low or absent in normal breast tissue but was highly expressed in breast cancers. Subjects with greater numbers of ERE repeats showed higher PBF mRNA expression, and PBF protein expression positively correlated with ERalpha status. Cell invasion assays revealed that PBF induces invasion through Matrigel, an action that could be abrogated both by siRNA treatment and specific mutation. Furthermore, PBF is a secreted protein, and loss of secretion prevents PBF inducing cell invasion. Given that PBF is a potent transforming gene, we propose that estrogen treatment in postmenopausal women may upregulate PBF expression, leading to PBF secretion and increased cell invasion. Furthermore, the number of ERE half-sites in the PBF promoter may significantly alter the response to estrogen treatment in individual subjects.

  16. Gene expression of growth factors and growth factor receptors for potential targeted therapy of canine hepatocellular carcinoma.

    PubMed

    Iida, Gentoku; Asano, Kazushi; Seki, Mamiko; Sakai, Manabu; Kutara, Kenji; Ishigaki, Kumiko; Kagawa, Yumiko; Yoshida, Orie; Teshima, Kenji; Edamura, Kazuya; Watari, Toshihiro

    2014-03-01

    The purpose of this study was to evaluate the gene expression of growth factors and growth factor receptors of primary hepatic masses, including hepatocellular carcinoma (HCC) and nodular hyperplasia (NH), in dogs. Quantitative real-time reverse transcriptase-polymerase chain reaction was performed to measure the expression of 18 genes in 18 HCCs, 10 NHs, 11 surrounding non-cancerous liver tissues and 4 healthy control liver tissues. Platelet-derived growth factor-B (PDGF-B), transforming growth factor-α, epidermal growth factor receptor, epidermal growth factor and hepatocyte growth factor were found to be differentially expressed in HCC compared with NH and the surrounding non-cancerous and healthy control liver tissues. PDGF-B is suggested to have the potential to become a valuable ancillary target for the treatment of canine HCC.

  17. Evolution of the cutinase gene family: evidence for lateral gene transfer of a candidate Phytophthora virulence factor.

    PubMed

    Belbahri, Lassaad; Calmin, Gautier; Mauch, Felix; Andersson, Jan O

    2008-01-31

    Lateral gene transfer (LGT) can facilitate the acquisition of new functions in recipient lineages, which may enable them to colonize new environments. Several recent publications have shown that gene transfer between prokaryotes and eukaryotes occurs with appreciable frequency. Here we present a study of interdomain gene transfer of cutinases -- well documented virulence factors in fungi -- between eukaryotic plant pathogens Phytophthora species and prokaryotic bacterial lineages. Two putative cutinase genes were cloned from Phytophthora brassicae and Northern blotting experiments showed that these genes are expressed early during the infection of the host Arabidopsis thaliana and induced during cyst germination of the pathogen. Analysis of the gene organisation of this gene family in Phytophthora ramorum and P. sojae showed three and ten copies in tight succession within a region of 5 and 25 kb, respectively, probably indicating a recent expansion in Phytophthora lineages by gene duplications. Bioinformatic analyses identified orthologues only in three genera of Actinobacteria, and in two distantly related eukaryotic groups: oomycetes and fungi. Together with phylogenetic analyses this limited distribution of the gene in the tree of life strongly support a scenario where cutinase genes originated after the origin of land plants in a microbial lineage living in proximity of plants and subsequently were transferred between distantly related plant-degrading microbes. More precisely, a cutinase gene was likely acquired by an ancestor of P. brassicae, P. sojae, P. infestans and P. ramorum, possibly from an actinobacterial source, suggesting that gene transfer might be an important mechanism in the evolution of their virulence. These findings could indeed provide an interesting model system to study acquisition of virulence factors in these important plant pathogens.

  18. Nuclear factor erythroid 2-related factor gene variants and susceptibility of arsenic-related skin lesions.

    PubMed

    Cordova, E J; Valenzuela, O L; Sánchez-Peña, L C; Escamilla-Guerrero, G; Hernández-Zavala, A; Orozco, L; Del Razo, L M

    2014-06-01

    Inorganic arsenic (iAs) is an important pollutant associated with various chronic-degenerative diseases. The cytoprotective protein nuclear factor erythroid 2-related factor (NRF2) has been proposed as an important responsive mechanism against iAs exposure. The aim of this study was to determine whether the risk of skin lesions in people exposed to iAs-contaminated water could be modified by the presence of single nucleotide polymorphisms in the NRF2 coding gene. We studied 117 individuals with long-term iAs exposure and 120 nonexposed individuals. Total As was determined in water, meanwhile iAs and its metabolites were measured in urine. The iAs-induced skin lesion status was evaluated by expert dermatologists. We sequenced the promoter region of NRF2 in a sample of 120 healthy donors. We found four polymorphisms previously reported and one novel polymorphism in the 5' regulatory region of the NRF2. In this study, we did not find allelic and genotype association of NRF2 polymorphisms with iAs-related skin lesion. However, the analysis of haplotypes composed by -653GA, and -617CA NRF2 single nucleotide polymorphisms showed a significant association with protection against skin lesions in the low-As exposure group. This is the first report studying the association between NRF2 polymorphisms and susceptibility of As-related skin lesions. Increasing the sample size will allow us to confirm this data. © The Author(s) 2014.

  19. [Study on the analytical error factors and evaluation of an internal control gene for leukemia gene expression analysis].

    PubMed

    Satoh, Yumiko; Yokota, Hiromitsu; Takai, Daiya; Yatomi, Yutaka

    2012-08-01

    Quantitative analysis of the leukemia fusion gene by real-time PCR is a sensitive method to monitor minimal residual disease; the data obtained are very useful to evaluate the disease stage and prognosis, contributing to the clinical practice of hematology. However, there is no standard laboratory procedure for leukemia genetic testing. Therefore, this genetic testing has some problems related to precision management. To minimize analytical error factors, normalization by an internal control gene is necessary. Additionally, it is important to choose a gene suitable for leukemia gene expression analysis because the expression of an internal standard gene changes due to various factors. In this study, we examined analytical error factors (RNA extraction efficiency, reverse transcription reaction efficiency) and evaluated an internal control gene. As a result, in RNA extraction, the extraction efficiency of the acid-guanidium-phenol-chloroform (AGPC) method was high compared to the silica method. The reverse transcription reaction efficiency was significantly different with each reaction reagent. Furthermore, since three kinds of gene (18s rRNA, GUS, beta-actin) had few differences between samples, they were considered to be suitable as internal standards.

  20. DNA methylation profiling of transcription factor genes in normal lymphocyte development and lymphomas.

    PubMed

    Ivascu, Claudia; Wasserkort, Reinhold; Lesche, Ralf; Dong, Jun; Stein, Harald; Thiel, Andreas; Eckhardt, Florian

    2007-01-01

    Transcription factors play a crucial role during hematopoiesis by orchestrating lineage commitment and determining cellular fate. Although tight regulation of transcription factor expression appears to be essential, little is known about the epigenetic mechanisms involved in transcription factor gene regulation. We have analyzed DNA methylation profiles of 13 key transcription factor genes in primary cells of the hematopoietic cascade, lymphoma cell lines and lymph node biopsies of diffuse large B-cell- and T-cell-non-Hodgkin lymphoma patients. Several of the transcription factor genes (SPI1, GATA3, TCF-7, Etv5, c-maf and TBX21) are differentially methylated in specific cell lineages and stages of the hematopoietic cascade. For some genes, such as SPI1, Etv5 and Eomes, we found an inverse correlation between the methylation of the 5' untranslated region and expression of the associated gene suggesting that these genes are regulated by DNA methylation. Differential methylation is not limited to cells of the healthy hematopoietic cascade, as we observed aberrant methylation of c-maf, TCF7, Eomes and SPI1 in diffuse large B-cell lymphomas. Our results suggest that epigenetic remodelling of transcription factor genes is a frequent mechanism during hematopoietic development. Aberrant methylation of transcription factor genes is frequently observed in diffuse large B-cell lymphomas and might have a functional role during tumorigenesis.

  1. Correcting Transcription Factor Gene Sets for Copy Number and Promoter Methylation Variations

    PubMed Central

    Rathi, Komal S.; Gaykalova, Daria A.; Hennesey, Patrick; Califano, Joseph A.; Ochs, Michael F.

    2014-01-01

    Gene set analysis provides a method to generate statistical inferences across sets of linked genes, primarily using high-throughput expression data. Common gene sets include biological pathways, operons, and targets of transcriptional regulators. In higher eukaryotes, especially when dealing with diseases with strong genetic and epigenetic components such as cancer, copy number loss and gene silencing through promoter methylation can eliminate the possibility that a gene is transcribed. This, in turn, can adversely affect the estimation of transcription factor or pathway activity from a set of target genes, since some of the targets may not be responsive to transcriptional regulation. Here we introduce a simple filtering approach that removes genes from consideration if they show copy number loss or promoter methylation and demonstrate the improvement in inference of transcription factor activity in a simulated data set based on the background expression observed in normal head and neck tissue. PMID:25195578

  2. Correcting transcription factor gene sets for copy number and promoter methylation variations.

    PubMed

    Rathi, Komal S; Gaykalova, Daria A; Hennessey, Patrick; Califano, Joseph A; Ochs, Michael F

    2014-09-01

    Gene set analysis provides a method to generate statistical inferences across sets of linked genes, primarily using high-throughput expression data. Common gene sets include biological pathways, operons, and targets of transcriptional regulators. In higher eukaryotes, especially when dealing with diseases with strong genetic and epigenetic components such as cancer, copy number loss and gene silencing through promoter methylation can eliminate the possibility that a gene is transcribed. This, in turn, can adversely affect the estimation of transcription factor or pathway activity from a set of target genes, as some of the targets may not be responsive to transcriptional regulation. Here we introduce a simple filtering approach that removes genes from consideration if they show copy number loss or promoter methylation, and demonstrate the improvement in inference of transcription factor activity in a simulated dataset based on the background expression observed in normal head and neck tissue.

  3. Genome duplication and gene loss affect the evolution of heat shock transcription factor genes in legumes.

    PubMed

    Lin, Yongxiang; Cheng, Ying; Jin, Jing; Jin, Xiaolei; Jiang, Haiyang; Yan, Hanwei; Cheng, Beijiu

    2014-01-01

    Whole-genome duplication events (polyploidy events) and gene loss events have played important roles in the evolution of legumes. Here we show that the vast majority of Hsf gene duplications resulted from whole genome duplication events rather than tandem duplication, and significant differences in gene retention exist between species. By searching for intraspecies gene colinearity (microsynteny) and dating the age distributions of duplicated genes, we found that genome duplications accounted for 42 of 46 Hsf-containing segments in Glycine max, while paired segments were rarely identified in Lotus japonicas, Medicago truncatula and Cajanus cajan. However, by comparing interspecies microsynteny, we determined that the great majority of Hsf-containing segments in Lotus japonicas, Medicago truncatula and Cajanus cajan show extensive conservation with the duplicated regions of Glycine max. These segments formed 17 groups of orthologous segments. These results suggest that these regions shared ancient genome duplication with Hsf genes in Glycine max, but more than half of the copies of these genes were lost. On the other hand, the Glycine max Hsf gene family retained approximately 75% and 84% of duplicated genes produced from the ancient genome duplication and recent Glycine-specific genome duplication, respectively. Continuous purifying selection has played a key role in the maintenance of Hsf genes in Glycine max. Expression analysis of the Hsf genes in Lotus japonicus revealed their putative involvement in multiple tissue-/developmental stages and responses to various abiotic stimuli. This study traces the evolution of Hsf genes in legume species and demonstrates that the rates of gene gain and loss are far from equilibrium in different species.

  4. Genome Duplication and Gene Loss Affect the Evolution of Heat Shock Transcription Factor Genes in Legumes

    PubMed Central

    Jin, Jing; Jin, Xiaolei; Jiang, Haiyang; Yan, Hanwei; Cheng, Beijiu

    2014-01-01

    Whole-genome duplication events (polyploidy events) and gene loss events have played important roles in the evolution of legumes. Here we show that the vast majority of Hsf gene duplications resulted from whole genome duplication events rather than tandem duplication, and significant differences in gene retention exist between species. By searching for intraspecies gene colinearity (microsynteny) and dating the age distributions of duplicated genes, we found that genome duplications accounted for 42 of 46 Hsf-containing segments in Glycine max, while paired segments were rarely identified in Lotus japonicas, Medicago truncatula and Cajanus cajan. However, by comparing interspecies microsynteny, we determined that the great majority of Hsf-containing segments in Lotus japonicas, Medicago truncatula and Cajanus cajan show extensive conservation with the duplicated regions of Glycine max. These segments formed 17 groups of orthologous segments. These results suggest that these regions shared ancient genome duplication with Hsf genes in Glycine max, but more than half of the copies of these genes were lost. On the other hand, the Glycine max Hsf gene family retained approximately 75% and 84% of duplicated genes produced from the ancient genome duplication and recent Glycine-specific genome duplication, respectively. Continuous purifying selection has played a key role in the maintenance of Hsf genes in Glycine max. Expression analysis of the Hsf genes in Lotus japonicus revealed their putative involvement in multiple tissue-/developmental stages and responses to various abiotic stimuli. This study traces the evolution of Hsf genes in legume species and demonstrates that the rates of gene gain and loss are far from equilibrium in different species. PMID:25047803

  5. [Mutations of MTHFR, MTR, MTRR genes as high risk factors for neural tube defects].

    PubMed

    Sliwerska, Elzbieta; Szpecht-Potocka, Agnieszka

    2002-01-01

    Neural tube defects (NTDs) have a polygenic background. There are numerous genes known to be high-risk genetic factors for NTDs. Ones of them are mutations of foliate metabolisms pathways genes. This paper shows the results of analysis of common mutations of MTHFR, MTR and MTRR genes. Results of screening mutations 2756A-->G and 66A-->G in MTR and MTRR genes respectively show that are might have an effect on NTDs incidence among the examined population. Analysis of data for the studied population does not prove the influence of mutations 677C-->T and 1298A-->C of MTHFR gene on NTDs.

  6. Specific binding of TUF factor to upstream activation sites of yeast ribosomal protein genes.

    PubMed Central

    Vignais, M L; Woudt, L P; Wassenaar, G M; Mager, W H; Sentenac, A; Planta, R J

    1987-01-01

    Transcription activation of yeast ribosomal protein genes is mediated through homologous, 12-nucleotide-long and, in general, duplicated upstream promoter elements (HOMOL1 and RPG, referred to as UASrpg). As shown previously, a yeast protein factor, TUF, interacts specifically with these conserved boxes in the 5'-flanking sequences of the elongation factor genes TEF1 and TEF2 and the ribosomal protein gene RP51A. We have now extended our studies of TUF-UASrpg binding by analysing--using footprinting and gel electrophoretic retardation techniques--the genes encoding the ribosomal proteins L25, rp28 (both copy genes), S24 + L46 and S33. Most, but not all, conserved sequence elements occurring in front of these genes, turned out to represent binding sites for the same factor, TUF. The two functionally important boxes that are found in a tandem arrangement (a characteristic of many rp genes) upstream of the L25 gene are indistinguishable in their factor binding specificity. Large differences were shown to exist in the affinity of the TUF factor for the various individual boxes and in the half-life of the protein-DNA complexes. No binding cooperativity could be demonstrated on adjacent sites on L25 or RP51A promoters. Based on binding data, the UASrpg sequence ACACCCATACAT appears to be the one recognized most efficiently by the TUF factor. Previously, no conserved box was found in front of the gene encoding S33. Nevertheless, complex formation with the protein fraction used was observed in the upstream region of the S33 gene. Competition experiments disclosed the existence of an additional binding component, distinct from TUF. This component may possibly regulate a subset of genes for the translational apparatus. Images Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 7. PMID:3301327

  7. Gene Ranking of RNA-Seq Data via Discriminant Non-Negative Matrix Factorization.

    PubMed

    Jia, Zhilong; Zhang, Xiang; Guan, Naiyang; Bo, Xiaochen; Barnes, Michael R; Luo, Zhigang

    2015-01-01

    RNA-sequencing is rapidly becoming the method of choice for studying the full complexity of transcriptomes, however with increasing dimensionality, accurate gene ranking is becoming increasingly challenging. This paper proposes an accurate and sensitive gene ranking method that implements discriminant non-negative matrix factorization (DNMF) for RNA-seq data. To the best of our knowledge, this is the first work to explore the utility of DNMF for gene ranking. When incorporating Fisher's discriminant criteria and setting the reduced dimension as two, DNMF learns two factors to approximate the original gene expression data, abstracting the up-regulated or down-regulated metagene by using the sample label information. The first factor denotes all the genes' weights of two metagenes as the additive combination of all genes, while the second learned factor represents the expression values of two metagenes. In the gene ranking stage, all the genes are ranked as a descending sequence according to the differential values of the metagene weights. Leveraging the nature of NMF and Fisher's criterion, DNMF can robustly boost the gene ranking performance. The Area Under the Curve analysis of differential expression analysis on two benchmarking tests of four RNA-seq data sets with similar phenotypes showed that our proposed DNMF-based gene ranking method outperforms other widely used methods. Moreover, the Gene Set Enrichment Analysis also showed DNMF outweighs others. DNMF is also computationally efficient, substantially outperforming all other benchmarked methods. Consequently, we suggest DNMF is an effective method for the analysis of differential gene expression and gene ranking for RNA-seq data.

  8. Reciprocal regulation of transcription factors and PLC isozyme gene expression in adult cardiomyocytes.

    PubMed

    Singal, Tushi; Dhalla, Naranjan S; Tappia, Paramjit S

    2010-06-01

    By employing a pharmacological approach, we have shown that phospholipase C (PLC) activity is involved in the regulation of gene expression of transcription factors such as c-Fos and c-Jun in cardiomyocytes in response to norepinephrine (NE). However, there is no information available regarding the identity of specific PLC isozymes involved in the regulation of c-Fos and c-Jun or on the involvement of these transcription factors in PLC isozyme gene expression in adult cardiomyocytes. In this study, transfection of cardiomyocytes with PLC isozyme specific siRNA was found to prevent the NE-mediated increases in the corresponding PLC isozyme gene expression, protein content and activity. Unlike PLC gamma(1) gene, silencing of PLC beta(1), beta(3) and delta(1) genes with si RNA prevented the increases in c-Fos and c-Jun gene expression in response to NE. On the other hand, transfection with c-Jun si RNA suppressed the NE-induced increase in c-Jun as well as PLC beta(1), beta(3) and delta(1) gene expression, but had no effect on PLC gamma(1) gene expression. Although transfection of cardiomyocytes with c-Fos si RNA prevented NE-induced expression of c-Fos, PLC beta(1) and PLC beta(3) genes, it did not affect the increases in PLC delta(1) and PLC gamma(1) gene expression. Silencing of either c-Fos or c-Jun also depressed the NE-mediated increases in PLC beta(1), beta(3) and gamma(1) protein content and activity in an isozyme specific manner. Furthermore, silencing of all PLC isozymes as well as of c-Fos and c-Jun resulted in prevention of the NE-mediated increase in atrial natriuretic factor gene expression. These findings, by employing gene silencing techniques, demonstrate that there occurs a reciprocal regulation of transcription factors and specific PLC isozyme gene expression in cardiomyocytes.

  9. Network and pathway analysis of microRNAs, transcription factors, target genes and host genes in human glioma

    PubMed Central

    ZHANG, YING; ZHAO, SHISHUN; XU, ZHIWEN

    2016-01-01

    To date, there has been rapid development with regard to gene and microRNA (miR/miRNA) research in gliomas. However, the regulatory mechanisms of the associated genes and miRNAs remain unclear. In the present study, the genes, miRNAs and transcription factors (TFs) were considered as elements in the regulatory network, and focus was placed on the associations between TFs and miRNAs, miRNAs and target genes, and miRNAs and host genes. In order to show the regulatory correlation clearly, all the elements were investigated and three regulatory networks, namely the differentially-expressed, related and global networks, were constructed. Certain important pathways were highlighted, with analysis of the similarities and differences among the networks. Next, the upstream and downstream elements of differentially-expressed genes, miRNAs and predicted TFs were listed. The most notable aspect of the present study was the three levels of network, particularly the differentially-expressed network, since the differentially-expressed associations that these networks provide appear at the initial stages of cancers such as glioma. If the states of the differentially-expressed associations can be adjusted to the normal state via alterations in regulatory associations, which were also recorded in the study networks and tables, it is likely that cancer can be regulated or even avoided. In the present study, the differentially-expressed network illuminated the pathogenesis of glioma; for example, a TF can regulate one or more miRNAs, and a target gene can be targeted by one or more miRNAs. Therefore, the host genes and target genes, the host genes and TFs, and the target genes and TFs indirectly affect each other through miRNAs. The association also exists between TFs and TFs, target genes and target genes, and host genes and host genes. The present study also demonstrated self-adaption associations and circle-regulations. The related network further described the regulatory mechanism

  10. Structure of the chromosomal gene for granulocyte-macrophage colony stimulating factor: comparison of the mouse and human genes.

    PubMed Central

    Miyatake, S; Otsuka, T; Yokota, T; Lee, F; Arai, K

    1985-01-01

    A cDNA clone that expresses granulocyte-macrophage colony stimulating factor (GM-CSF) activity in COS-7 cells has been isolated from a pcD library prepared from mRNA derived from concanavalin A-activated mouse helper T cell clones. Based on homology with the mouse GM-CSF cDNA sequence, the mouse GM-CSF gene was isolated. The human GM-CSF gene was also isolated based on homology with the human GM-CSF cDNA sequence. The nucleotide sequences determined for the genes and their flanking regions revealed that both the mouse and human GM-CSF genes are composed of three introns and four exons. The organization of the mouse and human GM-CSF genes are highly homologous and strong sequence homology between the two genes is found both in the coding and non-coding regions. A 'TATA'-like sequence was found 20-25 bp upstream from the transcription initiation site. In the 5'-flanking region, there is a highly homologous region extending 330 bp upstream of the putative TATA box. This sequence may play a role in regulation of expression of the GM-CSF gene. These structures are compared with those of different lymphokine genes and their regulatory regions. Images Fig. 2. Fig. 6. PMID:3876930

  11. Molecular Analysis of Factor VIII and Factor IX Genes in Hemophilia Patients: Identification of Novel Mutations and Molecular Dynamics Studies

    PubMed Central

    Al-Allaf, Faisal A.; Taher, Mohiuddin M.; Abduljaleel, Zainularifeen; Bouazzaoui, Abdellatif; Athar, Mohammed; Bogari, Neda M.; Abalkhail, Halah A.; Owaidah, Tarek MA.

    2017-01-01

    Background Hemophilias A and B are X-linked bleeding disorders caused by mutations in the factor VIII and factor IX genes, respectively. Our objective was to identify the spectrum of mutations of the factor VIII and factor IX genes in Saudi Arabian population and determine the genotype and phenotype correlations by molecular dynamics (MD) simulation. Methods For genotyping, blood samples from Saudi Arabian patients were collected, and the genomic DNA was amplified, and then sequenced by Sanger method. For molecular simulations, we have used softwares such as CHARMM (Chemistry at Harvard Macromolecular Mechanics; http://www.charmm-gui.org) and GROMACS. In addition, the secondary structure was determined based on the solvent accessibility for the confirmation of the protein stability at the site of mutation. Results Six mutations (three novel and three known) were identified in factor VIII gene, and six mutations (one novel and five known) were identified in factor IX gene. The factor VIII novel mutations identified were c.99G>T, p. (W33C) in exon 1, c.2138 DelA, p. (N713Tfs*9) in eon14, also a novel mutation at splicing acceptor site of exon 23 c.6430 - 1G>A. In factor IX, we found a novel mutation c.855G>C, p. (E285D) in exon 8. These novel mutations were not reported in any factor VIII or factor IX databases previously. The deleterious effects of these novel mutations were confirmed by PolyPhen2 and SIFT programs. Conclusion The protein functional and structural studies and the models built in this work would be appropriate for predicting the effects of deleterious amino acid substitutions causing these genetic disorders. These findings are useful for genetic counseling in the case of consanguineous marriages which is more common in the Saudi Arabia. PMID:28270892

  12. Comparative analysis of transcription factor gene families from Papaver somniferum: identification of regulatory factors involved in benzylisoquinoline alkaloid biosynthesis.

    PubMed

    Agarwal, Parul; Pathak, Sumya; Lakhwani, Deepika; Gupta, Parul; Asif, Mehar Hasan; Trivedi, Prabodh Kumar

    2016-05-01

    Opium poppy (Papaver somniferum L.), known for biosynthesis of several therapeutically important benzylisoquinoline alkaloids (BIAs), has emerged as the premier organism to study plant alkaloid metabolism. The most prominent molecules produced in opium poppy include narcotic analgesic morphine, the cough suppressant codeine, the muscle relaxant papaverine and the anti-microbial agent sanguinarine and berberine. Despite several health benefits, biosynthesis of some of these molecules is very low due to tight temporal and spatial regulation of the genes committed to their biosynthesis. Transcription factors, one of the prime regulators of secondary plant product biosynthesis, might be involved in controlled biosynthesis of BIAs in P. somniferum. In this study, identification of members of different transcription factor gene families using transcriptome datasets of 10 cultivars of P. somniferum with distinct chemoprofile has been carried out. Analysis suggests that most represented transcription factor gene family in all the poppy cultivars is WRKY. Comparative transcriptome analysis revealed differential expression pattern of the members of a set of transcription factor gene families among 10 cultivars. Through analysis, two members of WRKY and one member of C3H gene family were identified as potential candidates which might regulate thebaine and papaverine biosynthesis, respectively, in poppy.

  13. Medusa structure of the gene regulatory network: dominance of transcription factors in cancer subtype classification.

    PubMed

    Guo, Yuchun; Feng, Ying; Trivedi, Niraj S; Huang, Sui

    2011-05-01

    Gene expression profiles consisting of ten thousands of transcripts are used for clustering of tissue, such as tumors, into subtypes, often without considering the underlying reason that the distinct patterns of expression arise because of constraints in the realization of gene expression profiles imposed by the gene regulatory network. The topology of this network has been suggested to consist of a regulatory core of genes represented most prominently by transcription factors (TFs) and microRNAs, that influence the expression of other genes, and of a periphery of 'enslaved' effector genes that are regulated but not regulating. This 'medusa' architecture implies that the core genes are much stronger determinants of the realized gene expression profiles. To test this hypothesis, we examined the clustering of gene expression profiles into known tumor types to quantitatively demonstrate that TFs, and even more pronounced, microRNAs, are much stronger discriminators of tumor type specific gene expression patterns than a same number of randomly selected or metabolic genes. These findings lend support to the hypothesis of a medusa architecture and of the canalizing nature of regulation by microRNAs. They also reveal the degree of freedom for the expression of peripheral genes that are less stringently associated with a tissue type specific global gene expression profile.

  14. Embryonic Expression of the Chicken Krüppel-like (KLF) Transcription Factor Gene Family

    PubMed Central

    Antin, Parker B.; Pier, Maricela; Sesepasara, Terry; Yatskievych, Tatiana A; Darnell, Diana K.

    2010-01-01

    The Krüppel-like transcription factors are zinc finger proteins that activate and suppress target gene transcription. Although KLF factors have been implicated in regulating many developmental processes, a comprehensive gene expression analysis has not been reported. Here we present the chicken KLF gene family and expression during the first five days of embryonic development. Fourteen chicken KLF genes or expressed sequences have been previously identified. Through synteny analysis and cDNA mapping we have identified the KLF9 gene and determined that the gene presently named KLF1 is the true ortholog of KLF17 in other species. In situ hybridization expression analyses show that in general KLFs are broadly expressed in multiple cell and tissue types. Expression of KLFs 3, 7, 8, and 9, is widespread at all stages examined. KLFs 2, 4, 5, 6, 10, 11, 15 and 17 show more restricted patterns that suggest multiple functions during early stages of embryonic development. PMID:20503383

  15. Assessment of Multifactor Gene-Environment Interactions and Ovarian Cancer Risk: Candidate Genes, Obesity, and Hormone-Related Risk Factors.

    PubMed

    Usset, Joseph L; Raghavan, Rama; Tyrer, Jonathan P; McGuire, Valerie; Sieh, Weiva; Webb, Penelope; Chang-Claude, Jenny; Rudolph, Anja; Anton-Culver, Hoda; Berchuck, Andrew; Brinton, Louise; Cunningham, Julie M; DeFazio, Anna; Doherty, Jennifer A; Edwards, Robert P; Gayther, Simon A; Gentry-Maharaj, Aleksandra; Goodman, Marc T; Høgdall, Estrid; Jensen, Allan; Johnatty, Sharon E; Kiemeney, Lambertus A; Kjaer, Susanne K; Larson, Melissa C; Lurie, Galina; Massuger, Leon; Menon, Usha; Modugno, Francesmary; Moysich, Kirsten B; Ness, Roberta B; Pike, Malcolm C; Ramus, Susan J; Rossing, Mary Anne; Rothstein, Joseph; Song, Honglin; Thompson, Pamela J; van den Berg, David J; Vierkant, Robert A; Wang-Gohrke, Shan; Wentzensen, Nicolas; Whittemore, Alice S; Wilkens, Lynne R; Wu, Anna H; Yang, Hannah; Pearce, Celeste Leigh; Schildkraut, Joellen M; Pharoah, Paul; Goode, Ellen L; Fridley, Brooke L

    2016-05-01

    Many epithelial ovarian cancer (EOC) risk factors relate to hormone exposure and elevated estrogen levels are associated with obesity in postmenopausal women. Therefore, we hypothesized that gene-environment interactions related to hormone-related risk factors could differ between obese and non-obese women. We considered interactions between 11,441 SNPs within 80 candidate genes related to hormone biosynthesis and metabolism and insulin-like growth factors with six hormone-related factors (oral contraceptive use, parity, endometriosis, tubal ligation, hormone replacement therapy, and estrogen use) and assessed whether these interactions differed between obese and non-obese women. Interactions were assessed using logistic regression models and data from 14 case-control studies (6,247 cases; 10,379 controls). Histotype-specific analyses were also completed. SNPs in the following candidate genes showed notable interaction: IGF1R (rs41497346, estrogen plus progesterone hormone therapy, histology = all, P = 4.9 × 10(-6)) and ESR1 (rs12661437, endometriosis, histology = all, P = 1.5 × 10(-5)). The most notable obesity-gene-hormone risk factor interaction was within INSR (rs113759408, parity, histology = endometrioid, P = 8.8 × 10(-6)). We have demonstrated the feasibility of assessing multifactor interactions in large genetic epidemiology studies. Follow-up studies are necessary to assess the robustness of our findings for ESR1, CYP11A1, IGF1R, CYP11B1, INSR, and IGFBP2 Future work is needed to develop powerful statistical methods able to detect these complex interactions. Assessment of multifactor interaction is feasible, and, here, suggests that the relationship between genetic variants within candidate genes and hormone-related risk factors may vary EOC susceptibility. Cancer Epidemiol Biomarkers Prev; 25(5); 780-90. ©2016 AACR. ©2016 American Association for Cancer Research.

  16. Gene Ranking of RNA-Seq Data via Discriminant Non-Negative Matrix Factorization

    PubMed Central

    Jia, Zhilong; Zhang, Xiang; Guan, Naiyang; Bo, Xiaochen; Barnes, Michael R.; Luo, Zhigang

    2015-01-01

    RNA-sequencing is rapidly becoming the method of choice for studying the full complexity of transcriptomes, however with increasing dimensionality, accurate gene ranking is becoming increasingly challenging. This paper proposes an accurate and sensitive gene ranking method that implements discriminant non-negative matrix factorization (DNMF) for RNA-seq data. To the best of our knowledge, this is the first work to explore the utility of DNMF for gene ranking. When incorporating Fisher’s discriminant criteria and setting the reduced dimension as two, DNMF learns two factors to approximate the original gene expression data, abstracting the up-regulated or down-regulated metagene by using the sample label information. The first factor denotes all the genes’ weights of two metagenes as the additive combination of all genes, while the second learned factor represents the expression values of two metagenes. In the gene ranking stage, all the genes are ranked as a descending sequence according to the differential values of the metagene weights. Leveraging the nature of NMF and Fisher’s criterion, DNMF can robustly boost the gene ranking performance. The Area Under the Curve analysis of differential expression analysis on two benchmarking tests of four RNA-seq data sets with similar phenotypes showed that our proposed DNMF-based gene ranking method outperforms other widely used methods. Moreover, the Gene Set Enrichment Analysis also showed DNMF outweighs others. DNMF is also computationally efficient, substantially outperforming all other benchmarked methods. Consequently, we suggest DNMF is an effective method for the analysis of differential gene expression and gene ranking for RNA-seq data. PMID:26348772

  17. Splicing factor gene mutations in the myelodysplastic syndromes: impact on disease phenotype and therapeutic applications.

    PubMed

    Pellagatti, Andrea; Boultwood, Jacqueline

    2017-01-01

    Splicing factor gene mutations are the most frequent mutations found in patients with the myeloid malignancy myelodysplastic syndrome (MDS), suggesting that spliceosomal dysfunction plays a major role in disease pathogenesis. The aberrantly spliced target genes and deregulated cellular pathways associated with the commonly mutated splicing factor genes in MDS (SF3B1, SRSF2 and U2AF1) are being identified, illuminating the molecular mechanisms underlying MDS. Emerging data from mouse modeling studies indicate that the presence of splicing factor gene mutations can lead to bone marrow hematopoietic stem/myeloid progenitor cell expansion, impaired hematopoiesis and dysplastic differentiation that are hallmarks of MDS. Importantly, recent evidence suggests that spliceosome inhibitors and splicing modulators may have therapeutic value in the treatment of splicing factor mutant myeloid malignancies.

  18. Nonviral gene transfer of hepatocyte growth factor attenuates neurologic injury after spinal cord ischemia in rabbits.

    PubMed

    Shi, Enyi; Jiang, Xiaojing; Kazui, Teruhisa; Washiyama, Naoki; Yamashita, Katsushi; Terada, Hitoshi; Bashar, Abul Hasan Muhammad

    2006-10-01

    Paraplegia caused by spinal cord ischemia remains a serious complication after surgical repair of thoracoabdminal aortic aneurysms. Hepatocyte growth factor is a potent angiogenic and neurotrophic factor. We sought to investigate the neuroprotective effect of gene transfer of hepatocyte growth factor on spinal cord ischemia in rabbits. Human hepatocyte growth factor expression plasmid was combined with hemagglutinating virus of Japan envelope vector. Hemagglutinating virus of Japan envelope vector containing the hepatocyte growth factor gene was injected intrathecally into the experimental rabbits, whereas control vector or saline was given to the control animals. Five days later, spinal cord ischemia was induced by means of infrarenal aortic occlusion for 30 minutes. Hind-limb motor function was assessed during a 14-day recovery period with Tarlov criteria. Human hepatocyte growth factor was detected in the cerebrospinal fluid 3 days after gene transfer, and the level peaked on day 5. Compared with the control animals, hepatocyte growth factor gene transfer significantly increased the capillary density in the gray matter and decreased the spinal cord edema. All rabbits pretreated with saline or control vector had hind-limb paraplegia (Tarlov score = 0) 14 days after spinal cord ischemia. However, previous transfection of the hepatocyte growth factor gene remarkably enhanced the Tarlov scores, and 8 of the 9 rabbits showed normal motor function (Tarlov score = 5) after a 14-day recovery period. Histologic examination showed that the intact motor neurons were preserved to a much greater extent in the rabbits transfected with the hepatocyte growth factor gene. Gene transfer of hepatocyte growth factor attenuates neurologic injury after spinal cord ischemia.

  19. Transcription factor co-localization patterns affect human cell type-specific gene expression

    PubMed Central

    2012-01-01

    Background Cellular development requires the precise control of gene expression states. Transcription factors are involved in this regulatory process through their combinatorial binding with DNA. Information about transcription factor binding sites can help determine which combinations of factors work together to regulate a gene, but it is unclear how far the binding data from one cell type can inform about regulation in other cell types. Results By integrating data on co-localized transcription factor binding sites in the K562 cell line with expression data across 38 distinct hematopoietic cell types, we developed regression models to describe the relationship between the expression of target genes and the transcription factors that co-localize nearby. With K562 binding sites identifying the predictors, the proportion of expression explained by the models is statistically significant only for monocytic cells (p-value< 0.001), which are closely related to K562. That is, cell type specific binding patterns are crucial for choosing the correct transcription factors for the model. Comparison of predictors obtained from binding sites in the GM12878 cell line with those from K562 shows that the amount of difference between binding patterns is directly related to the quality of the prediction. By identifying individual genes whose expression is predicted accurately by the binding sites, we are able to link transcription factors FOS, TAF1 and YY1 to a sparsely studied gene LRIG2. We also find that the activity of a transcription factor may be different depending on the cell type and the identity of other co-localized factors. Conclusion Our approach shows that gene expression can be explained by a modest number of co-localized transcription factors, however, information on cell-type specific binding is crucial for understanding combinatorial gene regulation. PMID:22721266

  20. PreImplantation factor (PIF*) promotes embryotrophic and neuroprotective decidual genes: effect negated by epidermal growth factor

    PubMed Central

    2014-01-01

    Background Intimate embryo-maternal interaction is paramount for pregnancy success post-implantation. The embryo follows a specific developmental timeline starting with neural system, dependent on endogenous and decidual factors. Beyond altered genetics/epigenetics, post-natal diseases may initiate at prenatal/neonatal, post-natal period, or through a continuum. Preimplantation factor (PIF) secreted by viable embryos promotes implantation and trophoblast invasion. Synthetic PIF reverses neuroinflammation in non-pregnant models. PIF targets embryo proteins that protect against oxidative stress and protein misfolding. We report of PIF’s embryotrophic role and potential to prevent developmental disorders by regulating uterine milieu at implantation and first trimester. Methods PIF’s effect on human implantation (human endometrial stromal cells (HESC)) and first-trimester decidua cultures (FTDC) was examined, by global gene expression (Affymetrix), disease-biomarkers ranking (GeneGo), neuro-specific genes (Ingenuity) and proteins (mass-spectrometry). PIF co-cultured epidermal growth factor (EGF) in both HESC and FTDC (Affymetrix) was evaluated. Results In HESC, PIF promotes neural differentiation and transmission genes (TLX2, EPHA10) while inhibiting retinoic acid receptor gene, which arrests growth. PIF promotes axon guidance and downregulates EGF-dependent neuroregulin signaling. In FTDC, PIF promotes bone morphogenetic protein pathway (SMAD1, 53-fold) and axonal guidance genes (EPH5) while inhibiting PPP2R2C, negative cell-growth regulator, involved in Alzheimer’s and amyotrophic lateral sclerosis. In HESC, PIF affects angiotensin via beta-arrestin, transforming growth factor-beta (TGF-β), notch, BMP, and wingless-int (WNT) signaling pathways that promote neurogenesis involved in childhood neurodevelopmental diseases—autism and also affected epithelial-mesenchymal transition involved in neuromuscular disorders. In FTDC, PIF upregulates neural development

  1. Synergistic effect of electrical and chemical factors on endocytosis in micro-discharge plasma gene transfection

    NASA Astrophysics Data System (ADS)

    Jinno, M.; Ikeda, Y.; Motomura, H.; Isozaki, Y.; Kido, Y.; Satoh, S.

    2017-06-01

    We have developed a new micro-discharge plasma (MDP)-based gene transfection method, which transfers genes into cells with high efficiency and low cytotoxicity; however, the mechanism underlying the method is still unknown. Studies revealed that the N-acetylcysteine-mediated inhibition of reactive oxygen species (ROS) activity completely abolished gene transfer. In this study, we used laser-produced plasma to demonstrate that gene transfer does not occur in the absence of electrical factors. Our results show that both electrical and chemical factors are necessary for gene transfer inside cells by microplasma irradiation. This indicates that plasma-mediated gene transfection utilizes the synergy between electrical and chemical factors. The electric field threshold required for transfection was approximately 1 kV m-1 in our MDP system. This indicates that MDP irradiation supplies sufficient concentrations of ROS, and the stimulation intensity of the electric field determines the transfection efficiency in our system. Gene transfer by plasma irradiation depends mainly on endocytosis, which accounts for at least 80% of the transfer, and clathrin-mediated endocytosis is a dominant endocytosis. In plasma-mediated gene transfection, alterations in electrical and chemical factors can independently regulate plasmid DNA adhesion and triggering of endocytosis, respectively. This implies that plasma characteristics can be adjusted according to target cell requirements, and the transfection process can be optimized with minimum damage to cells and maximum efficiency. This may explain how MDP simultaneously achieves high transfection efficiency with minimal cell damage.

  2. Clustered Transcription Factor Genes Regulate Nicotine Biosynthesis in Tobacco[W][OA

    PubMed Central

    Shoji, Tsubasa; Kajikawa, Masataka; Hashimoto, Takashi

    2010-01-01

    Tobacco (Nicotiana tabacum) synthesizes nicotine and related pyridine alkaloids in the root, and their synthesis increases upon herbivory on the leaf via a jasmonate-mediated signaling cascade. Regulatory NIC loci that positively regulate nicotine biosynthesis have been genetically identified, and their mutant alleles have been used to breed low-nicotine tobacco varieties. Here, we report that the NIC2 locus, originally called locus B, comprises clustered transcription factor genes of an ethylene response factor (ERF) subfamily; in the nic2 mutant, at least seven ERF genes are deleted altogether. Overexpression, suppression, and dominant repression experiments using transgenic tobacco roots showed both functional redundancy and divergence among the NIC2-locus ERF genes. These transcription factors recognized a GCC-box element in the promoter of a nicotine pathway gene and specifically activated all known structural genes in the pathway. The NIC2-locus ERF genes are expressed in the root and upregulated by jasmonate with kinetics that are distinct among the members. Thus, gene duplication events generated a cluster of highly homologous transcription factor genes with transcriptional and functional diversity. The NIC2-locus ERFs are close homologs of ORCA3, a jasmonate-responsive transcriptional activator of indole alkaloid biosynthesis in Catharanthus roseus, indicating that the NIC2/ORCA3 ERF subfamily was recruited independently to regulate jasmonate-inducible secondary metabolism in distinct plant lineages. PMID:20959558

  3. The association of environmental, individual factors, and dopamine pathway gene variation with smoking cessation.

    PubMed

    Li, Suyun; Wang, Qiang; Pan, Lulu; Yang, Xiaorong; Li, Huijie; Jiang, Fan; Zhang, Nan; Han, Mingkui; Jia, Chongqi

    2017-09-01

    This study aimed to examine whether dopamine (DA) pathway gene variation were associated with smoking cessation, and compare the relative importance of infulence factors on smoking cessation. Participants were recruited from 17 villages of Shandong Province, China. Twenty-five single nucleotide polymorphisms in 8 DA pathway genes were genotyped. Weighted gene score of each gene was used to analyze the whole gene effect. Logistic regression was used to calculate odds ratios (OR) of the total gene score for smoking cessation. Dominance analysis was employed to compare the relative importance of individual, heaviness of smoking, psychological and genetic factors on smoking cessation. 415 successful spontaneous smoking quitters served as the cases, and 404 unsuccessful quitters served as the controls. A significant negative association of total DA pathway gene score and smoking cessation was observed (p < 0.001, OR: 0.25, 95% CI 0.16-0.38). Dominance analysis showed that the most important predictor for smoking cessation was heaviness of smoking score (42%), following by individual (40%), genetic (10%) and psychological score (8%). In conclusion, although the DA pathway gene variation was significantly associated with successful smoking cessation, heaviness of smoking and individual factors had bigger effect than genetic factors on smoking cessation.

  4. Molecular cloning of a human gene that is a member of the nerve growth factor family

    SciTech Connect

    Jones, K.R.; Reichardt, L.F. )

    1990-10-01

    Cell death within the developing vertebrate nervous system is regulated in part by interactions between neurons and their innervation targets that are mediated by neurotrophic factors. These factors also appear to have a role in the maintenance of the adult nervous system. Two neurotrophic factors, nerve growth factor and brain-derived neurotrophic factor, share substantial amino acid sequence identity. The authors have used a screen that combines polymerase chain reaction amplification of genomic DNA and low-stringency hybridization with degenerate oligonucleotides to isolate human BDNF and a human gene, neurotrophin-3, that is closely related to both nerve growth factor and brain-derived neurotrophic factor. mRNA products of the brain-derived neurotrophic factor and neurotrophin-3 genes were detected in the adult human brain, suggesting that these proteins are involved in the maintenance of the adult nervous system. Neurotrophin-3 is also expected to function in embryonic neural development.

  5. Gene duplication and the evolution of plant MADS-box transcription factors.

    PubMed

    Airoldi, Chiara A; Davies, Brendan

    2012-04-20

    Since the first MADS-box transcription factor genes were implicated in the establishment of floral organ identity in a couple of model plants, the size and scope of this gene family has begun to be appreciated in a much wider range of species. Over the course of millions of years the number of MADS-box genes in plants has increased to the point that the Arabidopsis genome contains more than 100. The understanding gained from studying the evolution, regulation and function of multiple MADS-box genes in an increasing set of species, makes this large plant transcription factor gene family an ideal subject to study the processes that lead to an increase in gene number and the selective birth, death and repurposing of its component members. Here we will use examples taken from the MADS-box gene family to review what is known about the factors that influence the loss and retention of genes duplicated in different ways and examine the varied fates of the retained genes and their associated biological outcomes. Copyright © 2012. Published by Elsevier Ltd.

  6. Vascular endothelial growth factor gene (VEGFA) polymorphisms may serve as prognostic factors for recurrent depressive disorder development.

    PubMed

    Gałecki, Piotr; Gałecka, Elżbieta; Maes, Michael; Orzechowska, Agata; Berent, Dominika; Talarowska, Monika; Bobińska, Kinga; Lewiński, Andrzej; Bieńkiewicz, Małgorzata; Szemraj, Janusz

    2013-08-01

    Recurrent depressive disorder (rDD) is a multifactorial disease. Vascular endothelial growth factor (VEGF) is one of the factors that have been suggested to play a role in the etiology and/or development of this disease. Limited information related to the role of VEGFA gene polymorphism in depressive disorder is available. The aim of the study was to analyze the association between VEGFA gene polymorphisms (+405G/C; rs2010963, +936C/T; rs 3025039), VEGFA gene expression, and its serum protein levels in rDD in the Caucasian population. In the current study, 268 patients and 200 healthy controls of the Caucasian origin were involved. Genotyping and gene expression were performed using polymerase chain reaction (PCR)-based methods. Enzyme-linked immunosorbent assay (ELISA) was used for detection of circulating serum VEGF levels. The distribution of VEGFA polymorphism +405G/C differed significantly between rDD patients and healthy subjects. The results of this study indicated that the C allele and CC genotype of VEGFA are risk factors for rDD. Haplotypes CC and TG are the important factors for depression development. Further, VEGFA mRNA expression and VEGF levels were higher in rDD patients than in controls. The VEGFA gene polymorphism may serve as a prognostic factor for rDD development. Our study showed higher levels of both VEGFA mRNA in the peripheral blood cells and serum VEGF in patients diagnosed with rDD than in healthy controls. The obtained results suggest VEGF and the gene encoding the molecule play a role in the etiology of the disease and should be further investigated.

  7. Definition of constitutive gene expression in plants: the translation initiation factor 4A gene as a model.

    PubMed

    Mandel, T; Fleming, A J; Krähenbühl, R; Kuhlemeier, C

    1995-12-01

    The NeIF-4A10 gene belongs to a family of at least ten genes, all of which encode closely related isoforms of translation initiation factor 4A. The promoter region of NeIF-4A10 was sequenced, and four mRNA 5' ends were determined. Deletions containing 2750, 689 and 188 bp of untranscribed upstream DNA were fused to the GUS reporter gene and introduced into transgenic tobacco. The three constructs mediated GUS expression in all cells of the leaf, stem and shoot apical meristem. Control experiments using in situ hybridization and tissue printing indicated that the observed GUS expression matches the expression patterns of NeIF-4A mRNA and protein. This detailed analysis at the level of mRNA, protein and reporter gene expression shows that NeIF-4A10 is an ideal constitutively expressed control gene. We argue that inclusion of such a control gene in experiments dealing with specifically expressed genes is in many cases essential for the correct interpretation of observed expression patterns.

  8. Alternaria Toxins: Potential Virulence Factors and Genes Related to Pathogenesis

    PubMed Central

    Meena, Mukesh; Gupta, Sanjay K.; Swapnil, Prashant; Zehra, Andleeb; Dubey, Manish K.; Upadhyay, Ram S.

    2017-01-01

    Alternaria is an important fungus to study due to their different life style from saprophytes to endophytes and a very successful fungal pathogen that causes diseases to a number of economically important crops. Alternaria species have been well-characterized for the production of different host-specific toxins (HSTs) and non-host specific toxins (nHSTs) which depend upon their physiological and morphological stages. The pathogenicity of Alternaria species depends on host susceptibility or resistance as well as quantitative production of HSTs and nHSTs. These toxins are chemically low molecular weight secondary metabolites (SMs). The effects of toxins are mainly on different parts of cells like mitochondria, chloroplast, plasma membrane, Golgi complex, nucleus, etc. Alternaria species produce several nHSTs such as brefeldin A, tenuazonic acid, tentoxin, and zinniol. HSTs that act in very low concentrations affect only certain plant varieties or genotype and play a role in determining the host range of specificity of plant pathogens. The commonly known HSTs are AAL-, AK-, AM-, AF-, ACR-, and ACT-toxins which are named by their host specificity and these toxins are classified into different family groups. The HSTs are differentiated on the basis of bio-statistical and other molecular analyses. All these toxins have different mode of action, biochemical reactions and signaling mechanisms to cause diseases. Different species of Alternaria produced toxins which reveal its biochemical and genetic effects on itself as well as on its host cells tissues. The genes responsible for the production of HSTs are found on the conditionally dispensable chromosomes (CDCs) which have been well characterized. Different bio-statistical methods like basic local alignment search tool (BLAST) data analysis used for the annotation of gene prediction, pathogenicity-related genes may provide surprising knowledge in present and future. PMID:28848500

  9. The loose evolutionary relationships between transcription factors and other gene products across prokaryotes.

    PubMed

    del Grande, Marc; Moreno-Hagelsieb, Gabriel

    2014-12-17

    Tests for the evolutionary conservation of associations between genes coding for transcription factors (TFs) and other genes have been limited to a few model organisms due to the lack of experimental information of functional associations in other organisms. We aimed at surmounting this limitation by using the most co-occurring gene pairs as proxies for the most conserved functional interactions available for each gene in a genome. We then used genes predicted to code for TFs to compare their most conserved interactions against the most conserved interactions for the rest of the genes within each prokaryotic genome available. We plotted profiles of phylogenetic profiles, p-cubic, to compare the maximally scoring interactions of TFs against those of other genes. In most prokaryotes, genes coding for TFs showed lower co-occurrences when compared to other genes. We also show that genes coding for TFs tend to have lower Codon Adaptation Indexes compared to other genes. The co-occurrence tests suggest that transcriptional regulation evolves quickly in most, if not all, prokaryotes. The Codon Adaptation Index analyses suggest quick gene exchange and rewiring of transcriptional regulation across prokaryotes.

  10. Influential Factors and Synergies for Radiation-Gene Therapy on Cancer

    PubMed Central

    Lin, Mei; Huang, Junxing; Shi, Yujuan; Xiao, Yanhong; Guo, Ting

    2015-01-01

    Radiation-gene therapy, a dual anticancer strategy of radiation therapy and gene therapy through connecting radiation-inducible regulatory sequence to therapeutic gene, leading to the gene being induced to express by radiation while radiotherapy is performed and finally resulting in a double synergistic antitumor effect of radiation and gene, has become one of hotspots in the field of cancer treatment in recent years. But under routine dose of radiation, especially in the hypoxia environment of solid tumor, it is difficult for this therapy to achieve desired effect because of low activity of radiation-inducible regulatory elements, low level and transient expression of target gene induced by radiation, inferior target specificity and poor biosecurity, and so on. Based on the problems existing in radiation-gene therapy, many efforts have been devoted to the curative effect improvement of radiation-gene therapy by various means to increase radiation sensitivity or enhance target gene expression and the expression's controllability. Among these synergistic techniques, gene circuit, hypoxic sensitization, and optimization of radiation-induced sequence exhibit a good application potential. This review provides the main influential factors to radiation-gene therapy on cancer and the synergistic techniques to improve the anticancer effect of radiation-gene therapy. PMID:26783511

  11. Targetfinder.org: a resource for systematic discovery of transcription factor target genes

    PubMed Central

    Kiełbasa, Szymon M.; Blüthgen, Nils; Fähling, Michael

    2010-01-01

    Targetfinder.org (http://targetfinder.org/) provides a web-based resource for finding genes that show a similar expression pattern to a group of user-selected genes. It is based on a large-scale gene expression compendium (>1200 experiments, >13 000 genes). The primary application of Targetfinder.org is to expand a list of known transcription factor targets by new candidate target genes. The user submits a group of genes (the ‘seed’), and as a result the web site provides a list of other genes ranked by similarity of their expression to the expression of the seed genes. Additionally, the web site provides information on a recovery/cross-validation test to check for consistency of the provided seed and the quality of the ranking. Furthermore, the web site allows to analyse affinities of a selected transcription factor to the promoter regions of the top-ranked genes in order to select the best new candidate target genes for further experimental analysis. PMID:20460454

  12. Dynamic control of gene regulatory logic by seemingly redundant transcription factors

    PubMed Central

    AkhavanAghdam, Zohreh; Sinha, Joydeb; Tabbaa, Omar P; Hao, Nan

    2016-01-01

    Many transcription factors co-express with their homologs to regulate identical target genes, however the advantages of such redundancies remain elusive. Using single-cell imaging and microfluidics, we study the yeast general stress response transcription factor Msn2 and its seemingly redundant homolog Msn4. We find that gene regulation by these two factors is analogous to logic gate systems. Target genes with fast activation kinetics can be fully induced by either factor, behaving as an 'OR' gate. In contrast, target genes with slow activation kinetics behave as an 'AND' gate, requiring distinct contributions from both factors, upon transient stimulation. Furthermore, such genes become an 'OR' gate when the input duration is prolonged, suggesting that the logic gate scheme is not static but rather dependent on the input dynamics. Therefore, Msn2 and Msn4 enable a time-based mode of combinatorial gene regulation that might be applicable to homologous transcription factors in other organisms. DOI: http://dx.doi.org/10.7554/eLife.18458.001 PMID:27690227

  13. Functional gene group analysis identifies synaptic gene groups as risk factor for schizophrenia

    PubMed Central

    Lips, E S; Cornelisse, L N; Toonen, R F; Min, J L; Hultman, C M; Holmans, P A; O'Donovan, M C; Purcell, S M; Smit, A B; Verhage, M; Sullivan, P F; Visscher, P M; Posthuma, D

    2012-01-01

    Schizophrenia is a highly heritable disorder with a polygenic pattern of inheritance and a population prevalence of ∼1%. Previous studies have implicated synaptic dysfunction in schizophrenia. We tested the accumulated association of genetic variants in expert-curated synaptic gene groups with schizophrenia in 4673 cases and 4965 healthy controls, using functional gene group analysis. Identifying groups of genes with similar cellular function rather than genes in isolation may have clinical implications for finding additional drug targets. We found that a group of 1026 synaptic genes was significantly associated with the risk of schizophrenia (P=7.6 × 10−11) and more strongly associated than 100 randomly drawn, matched control groups of genetic variants (P<0.01). Subsequent analysis of synaptic subgroups suggested that the strongest association signals are derived from three synaptic gene groups: intracellular signal transduction (P=2.0 × 10−4), excitability (P=9.0 × 10−4) and cell adhesion and trans-synaptic signaling (P=2.4 × 10−3). These results are consistent with a role of synaptic dysfunction in schizophrenia and imply that impaired intracellular signal transduction in synapses, synaptic excitability and cell adhesion and trans-synaptic signaling play a role in the pathology of schizophrenia. PMID:21931320

  14. Functional gene group analysis identifies synaptic gene groups as risk factor for schizophrenia.

    PubMed

    Lips, E S; Cornelisse, L N; Toonen, R F; Min, J L; Hultman, C M; Holmans, P A; O'Donovan, M C; Purcell, S M; Smit, A B; Verhage, M; Sullivan, P F; Visscher, P M; Posthuma, D

    2012-10-01

    Schizophrenia is a highly heritable disorder with a polygenic pattern of inheritance and a population prevalence of ~1%. Previous studies have implicated synaptic dysfunction in schizophrenia. We tested the accumulated association of genetic variants in expert-curated synaptic gene groups with schizophrenia in 4673 cases and 4965 healthy controls, using functional gene group analysis. Identifying groups of genes with similar cellular function rather than genes in isolation may have clinical implications for finding additional drug targets. We found that a group of 1026 synaptic genes was significantly associated with the risk of schizophrenia (P=7.6 × 10(-11)) and more strongly associated than 100 randomly drawn, matched control groups of genetic variants (P<0.01). Subsequent analysis of synaptic subgroups suggested that the strongest association signals are derived from three synaptic gene groups: intracellular signal transduction (P=2.0 × 10(-4)), excitability (P=9.0 × 10(-4)) and cell adhesion and trans-synaptic signaling (P=2.4 × 10(-3)). These results are consistent with a role of synaptic dysfunction in schizophrenia and imply that impaired intracellular signal transduction in synapses, synaptic excitability and cell adhesion and trans-synaptic signaling play a role in the pathology of schizophrenia.

  15. Patterns of gene expression in pig adipose tissue: insulin-like growth factor system proteins, neuropeptide Y (NPY), NPY receptors, neurotrophic factors and other secreted factors.

    PubMed

    Hausman, G J; Barb, C R; Dean, R G

    2008-07-01

    Although cDNA microarray studies have examined gene expression in human and rodent adipose tissue, only one microarray study of adipose tissue from growing pigs has been reported. Total RNA was collected at slaughter from outer subcutaneous adipose tissue (OSQ) and middle subcutaneous adipose tissue (MSQ) from gilts at 90, 150, and 210 d (n=5 age(-1)). Dye labeled cDNA probes were hybridized to custom porcine microarrays (70-mer oligonucleotides). Gene expression of insulin-like growth factor binding proteins (IGFBPs), hormones, growth factors, neuropeptide Y (NPY) receptors (NPYRs) and other receptors in OSQ and MSQ changed little with age in growing pigs. Distinct patterns of relative gene expression were evident within NPYR and IGFBP family members in adipose tissue from growing pigs. Relative gene expression levels of NPY2R, NPY4R and angiopoietin 2 (ANG-2) distinguished OSQ and MSQ depots in growing pigs. We demonstrated, for the first time, the expression of IGFBP-7, IGFBP-5, NPY1R, NPY2R, NPY, connective tissue growth factor (CTGF), brain-derived neurotrophic factor (BDNF) and ciliary neurotrophic factor (CNTF) genes in pig adipose tissue with microarray and RT-PCR assays. Furthermore, adipose tissue CTGF gene expression was upregulated while NPY and NPY2R gene expression were significantly down regulated by age. These studies demonstrate that expression of neuropeptides and neurotrophic factors in pig adipose tissue may be involved in regulation of leptin secretion. Many other regulatory factors were not influenced by age in growing pigs but may be influenced by location or depot.

  16. Available nitrogen is the key factor influencing soil microbial functional gene diversity in tropical rainforest.

    PubMed

    Cong, Jing; Liu, Xueduan; Lu, Hui; Xu, Han; Li, Yide; Deng, Ye; Li, Diqiang; Zhang, Yuguang

    2015-08-20

    Tropical rainforests cover over 50% of all known plant and animal species and provide a variety of key resources and ecosystem services to humans, largely mediated by metabolic activities of soil microbial communities. A deep analysis of soil microbial communities and their roles in ecological processes would improve our understanding on biogeochemical elemental cycles. However, soil microbial functional gene diversity in tropical rainforests and causative factors remain unclear. GeoChip, contained almost all of the key functional genes related to biogeochemical cycles, could be used as a specific and sensitive tool for studying microbial gene diversity and metabolic potential. In this study, soil microbial functional gene diversity in tropical rainforest was analyzed by using GeoChip technology. Gene categories detected in the tropical rainforest soils were related to different biogeochemical processes, such as carbon (C), nitrogen (N) and phosphorus (P) cycling. The relative abundance of genes related to C and P cycling detected mostly derived from the cultured bacteria. C degradation gene categories for substrates ranging from labile C to recalcitrant C were all detected, and gene abundances involved in many recalcitrant C degradation gene categories were significantly (P < 0.05) different among three sampling sites. The relative abundance of genes related to N cycling detected was significantly (P < 0.05) different, mostly derived from the uncultured bacteria. The gene categories related to ammonification had a high relative abundance. Both canonical correspondence analysis and multivariate regression tree analysis showed that soil available N was the most correlated with soil microbial functional gene structure. Overall high microbial functional gene diversity and different soil microbial metabolic potential for different biogeochemical processes were considered to exist in tropical rainforest. Soil available N could be the key factor in shaping the

  17. Exploring the role of sigma factor gene expression on production by Corynebacterium glutamicum: sigma factor H and FMN as example.

    PubMed

    Taniguchi, Hironori; Wendisch, Volker F

    2015-01-01

    Bacteria are known to cope with environmental changes by using alternative sigma factors binding to RNA polymerase core enzyme. Sigma factor is one of the targets to modify transcription regulation in bacteria and to influence production capacities. In this study, the effect of overexpressing each annotated sigma factor gene in Corynebacterium glutamicum WT was assayed using an IPTG inducible plasmid system and different IPTG concentrations. It was revealed that growth was severely decreased when sigD or sigH were overexpressed with IPTG concentrations higher than 50 μM. Overexpression of sigH led to an obvious phenotypic change, a yellow-colored supernatant. High performance liquid chromatography analysis revealed that riboflavin was excreted to the medium when sigH was overexpressed and DNA microarray analysis confirmed increased expression of riboflavin biosynthesis genes. In addition, genes for enzymes related to the pentose phosphate pathway and for enzymes dependent on flavin mononucleotide (FMN), flavin adenine dinucleotide (FAD), or NADPH as cofactor were upregulated when sigH was overexpressed. To test if sigH overexpression can be exploited for production of riboflavin-derived FMN or FAD, the endogenous gene for bifunctional riboflavin kinase/FMN adenyltransferase was co-expressed with sigH from a plasmid. Balanced expression of sigH and ribF improved accumulation of riboflavin (19.8 ± 0.3 μM) and allowed for its conversion to FMN (33.1 ± 1.8 μM) in the supernatant. While a proof-of-concept was reached, conversion was not complete and titers were not high. This study revealed that inducible and gradable overexpression of sigma factor genes is an interesting approach to switch gene expression profiles and to discover untapped potential of bacteria for chemical production.

  18. Exploring the role of sigma factor gene expression on production by Corynebacterium glutamicum: sigma factor H and FMN as example

    PubMed Central

    Taniguchi, Hironori; Wendisch, Volker F.

    2015-01-01

    Bacteria are known to cope with environmental changes by using alternative sigma factors binding to RNA polymerase core enzyme. Sigma factor is one of the targets to modify transcription regulation in bacteria and to influence production capacities. In this study, the effect of overexpressing each annotated sigma factor gene in Corynebacterium glutamicum WT was assayed using an IPTG inducible plasmid system and different IPTG concentrations. It was revealed that growth was severely decreased when sigD or sigH were overexpressed with IPTG concentrations higher than 50 μM. Overexpression of sigH led to an obvious phenotypic change, a yellow-colored supernatant. High performance liquid chromatography analysis revealed that riboflavin was excreted to the medium when sigH was overexpressed and DNA microarray analysis confirmed increased expression of riboflavin biosynthesis genes. In addition, genes for enzymes related to the pentose phosphate pathway and for enzymes dependent on flavin mononucleotide (FMN), flavin adenine dinucleotide (FAD), or NADPH as cofactor were upregulated when sigH was overexpressed. To test if sigH overexpression can be exploited for production of riboflavin-derived FMN or FAD, the endogenous gene for bifunctional riboflavin kinase/FMN adenyltransferase was co-expressed with sigH from a plasmid. Balanced expression of sigH and ribF improved accumulation of riboflavin (19.8 ± 0.3 μM) and allowed for its conversion to FMN (33.1 ± 1.8 μM) in the supernatant. While a proof-of-concept was reached, conversion was not complete and titers were not high. This study revealed that inducible and gradable overexpression of sigma factor genes is an interesting approach to switch gene expression profiles and to discover untapped potential of bacteria for chemical production. PMID:26257719

  19. Upstream stimulatory factor regulates expression of the cell cycle-dependent cyclin B1 gene promoter.

    PubMed Central

    Cogswell, J P; Godlevski, M M; Bonham, M; Bisi, J; Babiss, L

    1995-01-01

    Progression through the somatic cell cycle requires the temporal regulation of cyclin gene expression and cyclin protein turnover. One of the best-characterized examples of this regulation is seen for the B-type cyclins. These cyclins and their catalytic component, cdc2, have been shown to mediate both the entry into and maintenance of mitosis. The cyclin B1 gene has been shown to be expressed between the late S and G2 phases of the cell cycle, while the protein is degraded specifically at interphase via ubiquitination. To understand the molecular basis for transcriptional regulation of the cyclin B1 gene, we cloned the human cyclin B1 gene promoter region. Using a chloramphenicol acetyltransferase reporter system and both stable and transient assays, we have shown that the cyclin B1 gene promoter (extending to -3800 bp relative to the cap site) can confer G2-enhanced promoter activity. Further analysis revealed that an upstream stimulatory factor (USF)-binding site and its cognate transcription factor(s) are critical for expression from the cyclin B1 promoter in cycling HeLa cells. Interestingly, USF DNA-binding activity appears to be regulated in a G2-specific fashion, supporting the idea that USF may play some role in cyclin B1 gene activation. These studies suggest an important link between USF and the cyclin B1 gene, which in part explains how maturation promoting factor complex formation is regulated. PMID:7739559

  20. Inflammatory Genes and Psychological Factors Predict Induced Shoulder Pain Phenotype

    PubMed Central

    George, Steven Z.; Parr, Jeffrey J.; Wallace, Margaret R.; Wu, Samuel S.; Borsa, Paul A.; Dai, Yunfeng; Fillingim, Roger B.

    2014-01-01

    Purpose The pain experience has multiple influences but little is known about how specific biological and psychological factors interact to influence pain responses. The current study investigated the combined influences of genetic (pro-inflammatory) and psychological factors on several pre-clinical shoulder pain phenotypes. Methods An exercise-induced shoulder injury model was used, and a priori selected genetic (IL1B, TNF/LTA region, IL6 single nucleotide polymorphisms, SNPs) and psychological (anxiety, depressive symptoms, pain catastrophizing, fear of pain, kinesiophobia) factors were included as the predictors of interest. The phenotypes were pain intensity (5-day average and peak reported on numerical rating scale), upper-extremity disability (5-day average and peak reported on the QuickDASH instrument), and duration of shoulder pain (in days). Results After controlling for age, sex, and race, the genetic and psychological predictors were entered separately as main effects and interaction terms in regression models for each pain phenotype. Results from the recruited cohort (n = 190) indicated strong statistical evidence for the interactions between 1) TNF/LTA SNP rs2229094 and depressive symptoms for average pain intensity and duration and 2) IL1B two-SNP diplotype and kinesiophobia for average shoulder pain intensity. Moderate statistical evidence for prediction of additional shoulder pain phenotypes included interactions of kinesiophobia, fear of pain, or depressive symptoms with TNF/LTA rs2229094 and IL1B. Conclusion These findings support the combined predictive ability of specific genetic and psychological factors for shoulder pain phenotypes by revealing novel combinations that may merit further investigation in clinical cohorts, to determine their involvement in the transition from acute to chronic pain conditions. PMID:24598699

  1. Evidence for Horizontal Gene Transfer in Evolution of Elongation Factor Tu in Enterococci

    PubMed Central

    Ke, Danbing; Boissinot, Maurice; Huletsky, Ann; Picard, François J.; Frenette, Johanne; Ouellette, Marc; Roy, Paul H.; Bergeron, Michel G.

    2000-01-01

    The elongation factor Tu, encoded by tuf genes, is a GTP binding protein that plays a central role in protein synthesis. One to three tuf genes per genome are present, depending on the bacterial species. Most low-G+C-content gram-positive bacteria carry only one tuf gene. We have designed degenerate PCR primers derived from consensus sequences of the tuf gene to amplify partial tuf sequences from 17 enterococcal species and other phylogenetically related species. The amplified DNA fragments were sequenced either by direct sequencing or by sequencing cloned inserts containing putative amplicons. Two different tuf genes (tufA and tufB) were found in 11 enterococcal species, including Enterococcus avium, Enterococcus casseliflavus, Enterococcus dispar, Enterococcus durans, Enterococcus faecium, Enterococcus gallinarum, Enterococcus hirae, Enterococcus malodoratus, Enterococcus mundtii, Enterococcus pseudoavium, and Enterococcus raffinosus. For the other six enterococcal species (Enterococcus cecorum, Enterococcus columbae, Enterococcus faecalis, Enterococcus sulfureus, Enterococcus saccharolyticus, and Enterococcus solitarius), only the tufA gene was present. Based on 16S rRNA gene sequence analysis, the 11 species having two tuf genes all have a common ancestor, while the six species having only one copy diverged from the enterococcal lineage before that common ancestor. The presence of one or two copies of the tuf gene in enterococci was confirmed by Southern hybridization. Phylogenetic analysis of tuf sequences demonstrated that the enterococcal tufA gene branches with the Bacillus, Listeria, and Staphylococcus genera, while the enterococcal tufB gene clusters with the genera Streptococcus and Lactococcus. Primary structure analysis showed that four amino acid residues encoded within the sequenced regions are conserved and unique to the enterococcal tufB genes and the tuf genes of streptococci and Lactococcus lactis. The data suggest that an ancestral streptococcus

  2. In Vivo Gene Therapy of Hemophilia B: Sustained Partial Correction in Factor IX-Deficient Dogs

    NASA Astrophysics Data System (ADS)

    Kay, Mark A.; Rothenberg, Steven; Landen, Charles N.; Bellinger, Dwight A.; Leland, Frances; Toman, Carol; Finegold, Milton; Thompson, Arthur R.; Read, M. S.; Brinkhous, Kenneth M.; Woo, Savio L. C.

    1993-10-01

    The liver represents a model organ for gene therapy. A method has been developed for hepatic gene transfer in vivo by the direct infusion of recombinant retroviral vectors into the portal vasculature, which results in the persistent expression of exogenous genes. To determine if these technologies are applicable for the treatment of hemophilia B patients, preclinical efficacy studies were done in a hemophilia B dog model. When the canine factor IX complementary DNA was transduced directly into the hepatocytes of affected dogs in vivo, the animals constitutively expressed low levels of canine factor IX for more than 5 months. Persistent expression of the clotting. factor resulted in reductions of whole blood clotting and partial thromboplastin times of the treated animals. Thus, long-term treatment of hemophilia B patients may be feasible by direct hepatic gene therapy in vivo.

  3. NanoScript: A Nanoparticle-Based Artificial Transcription Factor for Effective Gene Regulation

    PubMed Central

    2015-01-01

    Transcription factor (TF) proteins are master regulators of transcriptional activity and gene expression. TF-based gene regulation is a promising approach for many biological applications; however, several limitations hinder the full potential of TFs. Herein, we developed an artificial, nanoparticle-based transcription factor, termed NanoScript, which is designed to mimic the structure and function of TFs. NanoScript was constructed by tethering functional peptides and small molecules called synthetic transcription factors, which mimic the individual TF domains, onto gold nanoparticles. We demonstrate that NanoScript localizes within the nucleus and initiates transcription of a reporter plasmid by over 15-fold. Moreover, NanoScript can effectively transcribe targeted genes on endogenous DNA in a nonviral manner. Because NanoScript is a functional replica of TF proteins and a tunable gene-regulating platform, it has great potential for various stem cell applications. PMID:25133310

  4. Signal-dependent dynamics of transcription factor translocation controls gene expression

    PubMed Central

    Hao, Nan; O'Shea, Erin K.

    2014-01-01

    Summary Information about environmental stimuli is often transmitted using common signalling molecules, but the mechanisms that ensure signalling specificity are not entirely known. Here we show that the identities and intensities of different stresses are transmitted by modulation of the amplitude, duration or frequency of nuclear translocation of the budding yeast general stress responsive transcription factor Msn2. Through artificial control of the dynamics of Msn2 translocation, we reveal how distinct dynamical schemes differentially affect reporter gene expression. Using a simple model, we predict stress-induced reporter gene expression from single-cell translocation dynamics. We then demonstrate that the response of natural target genes to dynamical modulation of Msn2 translocation is influenced by differences in the kinetics of promoter transitions and transcription factor binding properties. Thus, multiple environmental signals can trigger qualitatively different dynamics of a single transcription factor, and influence gene expression patterns. PMID:22179789

  5. A case study on the identification of confounding factors for gene disease association analysis.

    PubMed

    Han, Bin; Xie, Ruifei; Wu, Shixiu; Li, Lihua; Zhu, Lei

    2015-01-01

    Variation in the expression of genes arises from a variety of sources. It is important to remove sources of variation between arrays of non-biological origin. Non-biological variation, caused by lurking confounding factors, usually attracts little attention, although it may substantially influence the expression profile of genes. In this study, we proposed a method which is able to identify the potential confounding factors and highlight the non-biological variations. We also developed methods and statistical tests to study the confounding factors and their influence on the homogeneity of microarray data, gene selection, and disease classification. We explored an ovarian cancer gene expression profile and showed that data batches and arraying conditions are two confounding factors. Their influence on the homogeneity of data, gene selection, and disease classification are statistically analyzed. Experiments showed that after normalization, their influences were removed. Comparative studies further showed that the data became more homogeneous and the classification quality was improved. This research demonstrated that identifying and reducing the impact of confounding factors is paramount in making sense of gene-disease association analysis.

  6. The network of microRNAs, transcription factors, target genes and host genes in human renal cell carcinoma

    PubMed Central

    SONG, CHENGLU; XU, ZHIWEN; JIN, YUE; ZHU, MINGHUI; WANG, KUNHAO; WANG, NING

    2015-01-01

    At present, scientists have performed numerous studies investigating the morbidity of renal cell carcinoma (RCC) in the genetic and microRNA (miRNA) fields, obtaining a substantial amount of knowledge. However, the experimentally validated data of genes, miRNA and transcription factors (TFs) cannot be found in a unified form, which makes it challenging to decipher the regulatory mechanisms. In the present study, the genes, miRNAs and TFs involved in RCC are regarded as elements in the regulatory network, and the present study therefore focuses on the association between each entity. Three regulatory networks were constructed hierarchically to indicate the regulatory association between the genes, miRNAs and TFs clearly, including the differentially expressed, associated and global networks. All the elements were macroscopically investigated in these networks, instead of only investigating one or several of them. The present study not only compared and analyzed the similarities and the differences between the three networks, but also systematically expounded the pathogenesis of RCC and supplied theoretical foundations for future gene therapy investigations. Following the construction of the three networks, certain important pathways were highlighted. The upstream and downstream element table of differentially expressed genes and miRNAs was listed, in which self-adaption associations and circle-regulations were identified. In future studies, the identified genes and miRNAs should be granted more attention. PMID:25436016

  7. [Gene-gene and gene-environment interactions as modifier factors of prostatic cancer risk: "a case-only" design study].

    PubMed

    Cáceres, Dante; Iturrieta, Jeannette; Acevedo, Cristian; Huidobro, Christian; Varela, Nelson; Escala, Mario; Quiñones, Luis

    2004-08-01

    The role of susceptibility low penetrance genes and environmental factors in the etiology of prostate cancer (PCa) is unclear, but may involve in some cases multiple alleles at multiple loci. To evaluate the association of gene-gene and gene-environment interactions with PCa. One hundred three subjects with biopsy proven PCa were studied, using a case-only design. All were interrogated about smoking habits. Polymorphisms for Glutathione-S-transferase (GS7) and Cytochrome P4501A1 (CYP1A1), were measured in DNA extracted from peripheral lymphocytes, using a restriction fragment length polymorphism analysis. Our findings suggest that gene-gene interactions between GSTT1 and CYP1A1 high risk genotypes were positive modifiers and had a high predictive value for the presence of PCa, compared with non-susceptibility genotypes. The interaction between susceptibility genotypes and smoking did not modify the risk for PCa. Gene-gene interactions may play a role modulating the susceptibility to PCa in a proportion of affected individuals.

  8. The myostatin gene is a downstream target gene of basic helix-loop-helix transcription factor MyoD.

    PubMed

    Spiller, Michael P; Kambadur, Ravi; Jeanplong, Ferenc; Thomas, Mark; Martyn, Julie K; Bass, John J; Sharma, Mridula

    2002-10-01

    Myostatin is a negative regulator of myogenesis, and inactivation of myostatin leads to heavy muscle growth. Here we have cloned and characterized the bovine myostatin gene promoter. Alignment of the upstream sequences shows that the myostatin promoter is highly conserved during evolution. Sequence analysis of 1.6 kb of the bovine myostatin gene upstream region revealed that it contains 10 E-box motifs (E1 to E10), arranged in three clusters, and a single MEF2 site. Deletion and mutation analysis of the myostatin gene promoter showed that out of three important E boxes (E3, E4, and E6) of the proximal cluster, E6 plays a significant role in the regulation of a reporter gene in C(2)C(12) cells. We also demonstrate by band shift and chromatin immunoprecipitation assay that the E6 E-box motif binds to MyoD in vitro and in vivo. Furthermore, cotransfection experiments indicate that among the myogenic regulatory factors, MyoD preferentially up-regulates myostatin promoter activity. Since MyoD expression varies during the myoblast cell cycle, we analyzed the myostatin promoter activity in synchronized myoblasts and quiescent "reserve" cells. Our results suggest that myostatin promoter activity is relatively higher during the G(1) phase of the cell cycle, when MyoD expression levels are maximal. However, in the reserve cells, which lack MyoD expression, a significant reduction in the myostatin promoter activity is observed. Taken together, these results suggest that the myostatin gene is a downstream target gene of MyoD. Since the myostatin gene is implicated in controlling G(1)-to-S progression of myoblasts, MyoD could be triggering myoblast withdrawal from the cell cycle by regulating myostatin gene expression.

  9. Identification of transcriptional factors and key genes in primary osteoporosis by DNA microarray.

    PubMed

    Xie, Wengui; Ji, Lixin; Zhao, Teng; Gao, Pengfei

    2015-05-09

    A number of genes have been identified to be related with primary osteoporosis while less is known about the comprehensive interactions between regulating genes and proteins. We aimed to identify the differentially expressed genes (DEGs) and regulatory effects of transcription factors (TFs) involved in primary osteoporosis. The gene expression profile GSE35958 was obtained from Gene Expression Omnibus database, including 5 primary osteoporosis and 4 normal bone tissues. The differentially expressed genes between primary osteoporosis and normal bone tissues were identified by the same package in R language. The TFs of these DEGs were predicted with the Essaghir A method. DAVID (The Database for Annotation, Visualization and Integrated Discovery) was applied to perform the GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis of DEGs. After analyzing regulatory effects, a regulatory network was built between TFs and the related DEGs. A total of 579 DEGs was screened, including 310 up-regulated genes and 269 down-regulated genes in primary osteoporosis samples. In GO terms, more up-regulated genes were enriched in transcription regulator activity, and secondly in transcription factor activity. A total 10 significant pathways were enriched in KEGG analysis, including colorectal cancer, Wnt signaling pathway, Focal adhesion, and MAPK signaling pathway. Moreover, total 7 TFs were enriched, of which CTNNB1, SP1, and TP53 regulated most up-regulated DEGs. The discovery of the enriched TFs might contribute to the understanding of the mechanism of primary osteoporosis. Further research on genes and TFs related to the WNT signaling pathway and MAPK pathway is urgent for clinical diagnosis and directing treatment of primary osteoporosis.

  10. Expression profile and transcription factor binding site exploration of imprinted genes in human and mouse

    PubMed Central

    Steinhoff, Christine; Paulsen, Martina; Kielbasa, Szymon; Walter, Jörn; Vingron, Martin

    2009-01-01

    Background In mammals, imprinted genes are regulated by an epigenetic mechanism that results in parental origin-specific expression. Though allele-specific regulation of imprinted genes has been studied for several individual genes in detail, little is known about their overall tissue-specific expression patterns and interspecies conservation of expression. Results We performed a computational analysis of microarray expression data of imprinted genes in human and mouse placentae and in a variety of adult tissues. For mouse, early embryonic stages were also included. The analysis reveals that imprinted genes are expressed in a broad spectrum of tissues for both species. Overall, the relative tissue-specific expression levels of orthologous imprinted genes in human and mouse are not highly correlated. However, in both species distinctive expression profiles are found in tissues of the endocrine pathways such as adrenal gland, pituitary, pancreas as well as placenta. In mouse, the placental and embryonic expression patterns of imprinted genes are highly similar. Transcription factor binding site (TFBS) prediction reveals correlation of tissue-specific expression patterns and the presence of distinct TFBS signatures in the upstream region of human imprinted genes. Conclusion Imprinted genes are broadly expressed pre- and postnatally and do not exhibit a distinct overall expression pattern when compared to non-imprinted genes. The relative expression of most orthologous gene pairs varies significantly between human and mouse suggesting rapid species-specific changes in gene regulation. Distinct expression profiles of imprinted genes are confined to certain human and mouse hormone producing tissues, and placentae. In contrast to the overall variability, distinct expression profiles and enriched TFBS signatures are found in human and mouse endocrine tissues and placentae. This points towards an important role played by imprinted gene regulation in these tissues. PMID

  11. Molecular Evolution and Genetic Variation of G2-Like Transcription Factor Genes in Maize

    PubMed Central

    Han, Guomin; Zhou, Lingyan; Ali, Asif; Zhu, Suwen; Li, Xiaoyu

    2016-01-01

    The productivity of maize (Zea mays L.) depends on the development of chloroplasts, and G2-like transcription factors play a central role in regulating chloroplast development. In this study, we identified 59 G2-like genes in the B73 maize genome and systematically analyzed these genes at the molecular and evolutionary levels. Based on gene structure character, motif compositions and phylogenetic analysis, maize G2-like genes (ZmG1- ZmG59) were divided into seven groups (I-VII). By synteny analysis, 18 collinear gene pairs and strongly conserved microsyntny among regions hosting G2-like genes across maize and sorghum were found. Here, we showed that the vast majority of ZmG gene duplications resulted from whole genome duplication events rather than tandem duplications. After gene duplication events, some ZmG genes were silenced. The functions of G2-like genes were multifarious and most genes that are expressed in green tissues may relate to maize photosynthesis. The qRT-PCR showed that the expression of these genes was sensitive to low temperature and drought. Furthermore, we analyzed differences of ZmGs specific to cultivars in temperate and tropical regions at the population level. Interestingly, the single nucleotide polymorphism (SNP) analysis revealed that nucleotide polymorphism associated with different temperature zones. Above all, G2-like genes were highly conserved during evolution, but polymorphism could be caused due to a different geographical location. Moreover, G2-like genes might be related to cold and drought stresses. PMID:27560803

  12. PPB1, a putative spliced leader RNA gene transcription factor in Trypanosoma cruzi.

    PubMed

    Wen, L M; Xu, P; Benegal, G; Carvalho, M R; Buck, G A

    2000-10-01

    In trypanosomatids, the spliced leader RNA, or SL RNA, donates its 5' 39 nucleotides to mature nuclear mRNAs in a process termed trans-splicing. We have previously characterized the SL RNA gene from Trypanosoma cruzi and identified its transcription promoter, including a 14 nt proximal sequence element, or PSE, that binds a putative transcription factor and activates transcription of the gene. Herein, we describe establishment of a yeast one-hybrid system using the 14 nt PSE as bait, and use this system to select T. cruzi cDNAs encoding a putative transcription factor that activates transcription of the SL RNA gene. The cDNA was selected from a normalized library and encodes an approximately 45 kDa putative PSE promoter-binding protein, PPB1. PPB1 in vitro translated or overexpressed in and isolated from transformed E. coli, showed PSE-specific binding activity by electrophoretic mobility shift assays. Finally, overexpression of PPB1 in T. cruzi led to increased expression of the SL RNA gene as well as reporter genes in episomal constructs under the control of the SL RNA gene promoter. These observations suggest that PPB1 is a transcription factor that plays an important role in SL RNA gene expression.

  13. Differential expression and interaction of host factors augment HIV-1 gene expression in neonatal mononuclear cells

    SciTech Connect

    Sundaravaradan, Vasudha; Mehta, Roshni; Harris, David T.; Zack, Jerome A.; Ahmad, Nafees

    2010-04-25

    We have previously shown a higher level of HIV-1 replication and gene expression in neonatal (cord) blood mononuclear cells (CBMC) compared with adult blood cells (PBMC), which could be due to differential expression of host factors. We performed the gene expression profile of CBMC and PBMC and found that 8013 genes were expressed at higher levels in CBMC than PBMC and 8028 genes in PBMC than CBMC, including 1181 and 1414 genes upregulated after HIV-1 infection in CBMC and PBMC, respectively. Several transcription factors (NF-kappaB, E2F, HAT-1, TFIIE, Cdk9, Cyclin T1), signal transducers (STAT3, STAT5A) and cytokines (IL-1beta, IL-6, IL-10) were upregulated in CBMC than PBMC, which are known to influence HIV-1 replication. In addition, a repressor of HIV-1 transcription, YY1, was down regulated in CBMC than PBMC and several matrix metalloproteinase (MMP-7, -12, -14) were significantly upregulated in HIV-1 infected CBMC than PBMC. Furthermore, we show that CBMC nuclear extracts interacted with a higher extent to HIV-1 LTR cis-acting sequences, including NF-kappaB, NFAT, AP1 and NF-IL6 compared with PBMC nuclear extracts and retroviral based short hairpin RNA (shRNA) for STAT3 and IL-6 down regulated their own and HIV-1 gene expression, signifying that these factors influenced differential HIV-1 gene expression in CBMC than PBMC.

  14. Regulation of hypoxia-inducible genes by ETS1 transcription factor.

    PubMed

    Salnikow, Konstantin; Aprelikova, Olga; Ivanov, Sergey; Tackett, Sean; Kaczmarek, Monika; Karaczyn, Aldona; Yee, Herman; Kasprzak, Kazimierz S; Niederhuber, John

    2008-08-01

    Hypoxia-inducible factor (HIF-1) regulates the expression of genes that facilitate tumor cell survival by making them more resistant to therapeutic intervention. Recent evidence suggests that the activation of other transcription factors, in cooperation with HIF-1 or acting alone, is involved in the upregulation of hypoxia-inducible genes. Here we report that high cell density, a condition that might mimic the physiologic situation in growing tumor and most probably representing nutritional starvation, upregulates hypoxia-inducible genes. This upregulation can occur in HIF-independent manner since hypoxia-inducible genes carbonic anhydrase 9 (CA9), lysyloxidase like 2 (LOXL2) and n-myc-down regulated 1 (NDRG1)/calcium activated protein (Cap43) can be upregulated by increased cell density under both normoxic and hypoxic conditions in both HIF-1 alpha-proficient and -deficient mouse fibroblasts. Moreover, cell density upregulates the same genes in 1HAEo- and A549 human lung epithelial cells. Searching for other transcription factors involved in the regulation of hypoxia-inducible genes by cell density, we focused our attention on ETS1. As reported previously, members of v-ets erythroblastosis virus E26 oncogene homolog (ETS) family transcription factors participate in the upregulation of hypoxia-inducible genes. Here, we provide evidence that ETS1 protein is upregulated at high cell density in both human and mouse cells. The involvement of ETS1 in the upregulation of hypoxia-inducible genes was further confirmed in a luciferase reporter assay using cotransfection of ETS1 expression vector with NDRG1/Cap43 promoter construct. The downregulation of ETS1 expression with small interfering RNA (siRNA) inhibited the upregulation of CA9 and NDRG1/Cap43 caused by increased cell density. Collectively, our data indicate the involvement of ETS1 along with HIF-1 in regulating hypoxia-inducible genes.

  15. Master transcription factors and mediator establish super-enhancers at key cell identity genes.

    PubMed

    Whyte, Warren A; Orlando, David A; Hnisz, Denes; Abraham, Brian J; Lin, Charles Y; Kagey, Michael H; Rahl, Peter B; Lee, Tong Ihn; Young, Richard A

    2013-04-11

    Master transcription factors Oct4, Sox2, and Nanog bind enhancer elements and recruit Mediator to activate much of the gene expression program of pluripotent embryonic stem cells (ESCs). We report here that the ESC master transcription factors form unusual enhancer domains at most genes that control the pluripotent state. These domains, which we call super-enhancers, consist of clusters of enhancers that are densely occupied by the master regulators and Mediator. Super-enhancers differ from typical enhancers in size, transcription factor density and content, ability to activate transcription, and sensitivity to perturbation. Reduced levels of Oct4 or Mediator cause preferential loss of expression of super-enhancer-associated genes relative to other genes, suggesting how changes in gene expression programs might be accomplished during development. In other more differentiated cells, super-enhancers containing cell-type-specific master transcription factors are also found at genes that define cell identity. Super-enhancers thus play key roles in the control of mammalian cell identity. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Nonsense-mediated mRNA decay among coagulation factor genes.

    PubMed

    Shahbazi, Shirin

    2016-04-01

    Haemostasis prevents blood loss following vascular injury. It depends on the unique concert of events involving platelets and specific blood proteins, known as coagulation factors. The clotting system requires precise regulation and coordinated reactions to maintain the integrity of the vasculature. Clotting insufficiency mostly occurs due to genetically inherited coagulation factor deficiencies such as hemophilia. A relevant literature search of PubMed was performed using the keywords coagulation factors, Nonsense-mediated mRNA decay and premature translation termination codons. Search limitations included English language and human-based studies. Mutations that cause premature translation termination codons probably account for one-third of genetically inherited diseases. Transcripts bearing aberrant termination codons are selectively identified and eliminated by an evolutionarily conserved posttranscriptional pathway known as nonsense-mediated mRNA decay (NMD). There are many pieces of evidence of decay among coagulation factor genes. However, the hemophilia gene (F8) does not seem to be subjected to NMD. Since the F8 gene is located on the X-chromosome, a connection between X-linked traits and mRNA decay could be assumed. Considering that not all genes go through decay, this review focuses on the basics of the mechanism in coagulation genes. It is interesting to determine whether this translation-coupled surveillance system represents a general rule for the genes encoding components of the same physiological cascade.

  17. Nonsense-mediated mRNA decay among coagulation factor genes

    PubMed Central

    Shahbazi, Shirin

    2016-01-01

    Objective(s): Haemostasis prevents blood loss following vascular injury. It depends on the unique concert of events involving platelets and specific blood proteins, known as coagulation factors. The clotting system requires precise regulation and coordinated reactions to maintain the integrity of the vasculature. Clotting insufficiency mostly occurs due to genetically inherited coagulation factor deficiencies such as hemophilia. Materials and Methods: A relevant literature search of PubMed was performed using the keywords coagulation factors, Nonsense-mediated mRNA decay and premature translation termination codons. Search limitations included English language and human-based studies. Results: Mutations that cause premature translation termination codons probably account for one-third of genetically inherited diseases. Transcripts bearing aberrant termination codons are selectively identified and eliminated by an evolutionarily conserved posttranscriptional pathway known as nonsense-mediated mRNA decay (NMD). There are many pieces of evidence of decay among coagulation factor genes. However, the hemophilia gene (F8) does not seem to be subjected to NMD. Since the F8 gene is located on the X-chromosome, a connection between X-linked traits and mRNA decay could be assumed. Conclusion: Considering that not all genes go through decay, this review focuses on the basics of the mechanism in coagulation genes. It is interesting to determine whether this translation-coupled surveillance system represents a general rule for the genes encoding components of the same physiological cascade. PMID:27279976

  18. Transcription Factors Encoded on Core and Accessory Chromosomes of Fusarium oxysporum Induce Expression of Effector Genes

    PubMed Central

    van der Does, H. Charlotte; Schmidt, Sarah M.; Langereis, Léon; Hughes, Timothy R.

    2016-01-01

    Proteins secreted by pathogens during host colonization largely determine the outcome of pathogen-host interactions and are commonly called ‘effectors’. In fungal plant pathogens, coordinated transcriptional up-regulation of effector genes is a key feature of pathogenesis and effectors are often encoded in genomic regions with distinct repeat content, histone code and rate of evolution. In the tomato pathogen Fusarium oxysporum f. sp. lycopersici (Fol), effector genes reside on one of four accessory chromosomes, known as the ‘pathogenicity’ chromosome, which can be exchanged between strains through horizontal transfer. The three other accessory chromosomes in the Fol reference strain may also be important for virulence towards tomato. Expression of effector genes in Fol is highly up-regulated upon infection and requires Sge1, a transcription factor encoded on the core genome. Interestingly, the pathogenicity chromosome itself contains 13 predicted transcription factor genes and for all except one, there is a homolog on the core genome. We determined DNA binding specificity for nine transcription factors using oligonucleotide arrays. The binding sites for homologous transcription factors were highly similar, suggesting that extensive neofunctionalization of DNA binding specificity has not occurred. Several DNA binding sites are enriched on accessory chromosomes, and expression of FTF1, its core homolog FTF2 and SGE1 from a constitutive promoter can induce expression of effector genes. The DNA binding sites of only these three transcription factors are enriched among genes up-regulated during infection. We further show that Ftf1, Ftf2 and Sge1 can activate transcription from their binding sites in yeast. RNAseq analysis revealed that in strains with constitutive expression of FTF1, FTF2 or SGE1, expression of a similar set of plant-responsive genes on the pathogenicity chromosome is induced, including most effector genes. We conclude that the Fol

  19. The Transcription Factor FoxK Participates with Nup98 To Regulate Antiviral Gene Expression

    PubMed Central

    Panda, Debasis; Gold, Beth; Tartell, Michael A.; Rausch, Keiko; Casas-Tinto, Sergio

    2015-01-01

    ABSTRACT Upon infection, pathogen recognition leads to a rapidly activated gene expression program that induces antimicrobial effectors to clear the invader. We recently found that Nup98 regulates the expression of a subset of rapidly activated antiviral genes to restrict disparate RNA virus infections in Drosophila by promoting RNA polymerase occupancy at the promoters of these antiviral genes. How Nup98 specifically targets these loci was unclear; however, it is known that Nup98 participates with transcription factors to regulate developmental-gene activation. We reasoned that additional transcription factors may facilitate the Nup98-dependent expression of antiviral genes. In a genome-wide RNA interference (RNAi) screen, we identified a relatively understudied forkhead transcription factor, FoxK, as active against Sindbis virus (SINV) in Drosophila. Here we find that FoxK is active against the panel of viruses that are restricted by Nup98, including SINV and vesicular stomatitis virus (VSV). Mechanistically, we show that FoxK coordinately regulates the Nup98-dependent expression of antiviral genes. Depletion of FoxK significantly reduces Nup98-dependent induction of antiviral genes and reduces the expression of a forkhead response element-containing luciferase reporter. Together, these data show that FoxK-mediated activation of gene expression is Nup98 dependent. We extended our studies to mammalian cells and found that the mammalian ortholog FOXK1 is antiviral against two disparate RNA viruses, SINV and VSV, in human cells. Interestingly, FOXK1 also plays a role in the expression of antiviral genes in mammals: depletion of FOXK1 attenuates virus-inducible interferon-stimulated response element (ISRE) reporter expression. Overall, our results demonstrate a novel role for FOXK1 in regulating the expression of antiviral genes, from insects to humans. PMID:25852164

  20. Direct phylogenetic evidence for lateral transfer of elongation factor-like gene.

    PubMed

    Kamikawa, Ryoma; Inagaki, Yuji; Sako, Yoshihiko

    2008-05-13

    Genes encoding elongation factor-like (EFL) proteins, which show high similarity to elongation factor-1alpha (EF-1alpha), have been found in phylogenetically distantly related eukaryotes. The sporadic distribution of "EFL-containing" lineages within "EF-1alpha-containing" lineages indirectly, but strongly, suggests lateral gene transfer as the principal driving force in EFL evolution. However, one of the most critical aspects in the above hypothesis, the donor lineages in any putative cases of lateral EFL gene transfer, remained unclear. In this study, we provide direct evidence for lateral transfer of an EFL gene through the analyses of 10 diatom EFL genes. All diatom EFL homologues tightly clustered in phylogenetic analyses, suggesting acquisition of the exogenous EFL gene early in diatom evolution. Our survey additionally identified Thalassiosira pseudonana as a eukaryote bearing EF-1alpha and EFL genes and secondary EFL gene loss in Phaeodactylum tricornutum, the complete genome of which encodes only the EF-1alpha gene. Most importantly, the EFL phylogeny recovered a robust grouping of homologues from diatoms, the cercozoan Bigelowiella natans, and the foraminifer Planoglabratella opecularis, with the diatoms nested within the Bigelowiella plus Planoglabratella (Rhizaria) grouping. The particular relationships recovered are further consistent with two characteristic sequence motifs. The best explanation of our data analyses is an EFL gene transfer from a foraminifer to a diatom, the first case in which the donor-recipient relationship was clarified. Finally, based on a reverse transcriptase quantitative PCR assay and the genome information of Thalassiosira and Phaeodactylum, we propose the loss of elongation factor function in Thalassiosira EF-1alpha.

  1. Direct phylogenetic evidence for lateral transfer of elongation factor-like gene

    PubMed Central

    Kamikawa, Ryoma; Inagaki, Yuji; Sako, Yoshihiko

    2008-01-01

    Genes encoding elongation factor-like (EFL) proteins, which show high similarity to elongation factor-1α (EF-1α), have been found in phylogenetically distantly related eukaryotes. The sporadic distribution of “EFL-containing” lineages within “EF-1α-containing” lineages indirectly, but strongly, suggests lateral gene transfer as the principal driving force in EFL evolution. However, one of the most critical aspects in the above hypothesis, the donor lineages in any putative cases of lateral EFL gene transfer, remained unclear. In this study, we provide direct evidence for lateral transfer of an EFL gene through the analyses of 10 diatom EFL genes. All diatom EFL homologues tightly clustered in phylogenetic analyses, suggesting acquisition of the exogenous EFL gene early in diatom evolution. Our survey additionally identified Thalassiosira pseudonana as a eukaryote bearing EF-1α and EFL genes and secondary EFL gene loss in Phaeodactylum tricornutum, the complete genome of which encodes only the EF-1α gene. Most importantly, the EFL phylogeny recovered a robust grouping of homologues from diatoms, the cercozoan Bigelowiella natans, and the foraminifer Planoglabratella opecularis, with the diatoms nested within the Bigelowiella plus Planoglabratella (Rhizaria) grouping. The particular relationships recovered are further consistent with two characteristic sequence motifs. The best explanation of our data analyses is an EFL gene transfer from a foraminifer to a diatom, the first case in which the donor–recipient relationship was clarified. Finally, based on a reverse transcriptase quantitative PCR assay and the genome information of Thalassiosira and Phaeodactylum, we propose the loss of elongation factor function in Thalassiosira EF-1α. PMID:18458344

  2. Genetic risk factors for arterial ischemic stroke in children: a possible MTHFR and eNOS gene-gene interplay?

    PubMed

    Djordjevic, Valentina; Stankovic, Marija; Brankovic-Sreckovic, Vesna; Rakicevic, Ljiljana; Radojkovic, Dragica

    2009-07-01

    In order to investigate the influence of genetic factors in childhood stroke, we compared the distributions of mutations/ polymorphisms affecting hemostasis and/or endothelial function (factor V [FV] Leiden, factor II [FII] G20210A, methylenetetrahydrofolate reductase [MTHFR] C677T, angiotensin-converting enzyme [ACE] insertion/deletion [ID], and endothelial nitric oxide synthase [eNOS] G894T) among children with stroke and controls. A total number of 26 children with arterial ischemic stroke and a control group of 50 healthy children were included in the study. No statistically significant differences in allelic and genotypic distribution were detected in comparisons between groups. However, when combined genotypes were analyzed, statistical significance was observed for the association of MTHFR CT and eNOS TT gene variants. The results of our study suggest that this genotype combination represents a risk factor of 7.2 (P = .017) for arterial ischemic stroke in children.

  3. Various Enterotoxin and Other Virulence Factor Genes Widespread Among Bacillus cereus and Bacillus thuringiensis Strains.

    PubMed

    Kim, Min-Ju; Han, Jae-Kwang; Park, Jong-Su; Lee, Jin-Sung; Lee, Soon-Ho; Cho, Joon-Il; Kim, Keun-Sung

    2015-06-01

    Many strains of Bacillus cereus cause gastrointestinal diseases, and the closely related insect pathogen Bacillus thuringiensis has also been involved in outbreaks of diarrhea. The diarrheal diseases are attributed to enterotoxins. Sixteen reference strains of B. cereus and nine commercial and 12 reference strains of B. thuringiensis were screened by PCR for the presence of 10 enterotoxigenic genes (hblA, hblC, hblD, nheA, nheB, nheC, cytK, bceT, entFM, and entS), one emetogenic gene (ces), seven hemolytic genes (hlyA, hlyII, hlyIII, plcA, cerA, cerB, and cerO), and a pleiotropic transcriptional activator gene (plcR). These genes encode various enterotoxins and other virulence factors thought to play a role in infections of mammals. Amplicons were successfully generated from the strains of B. cereus and B. thuringiensis for each of these sequences, except the ces gene. Intriguingly, the majority of these B. cereus enterotoxin genes and other virulence factor genes appeared to be widespread among B. thuringiensis strains as well as B. cereus strains.

  4. Identification, isolation and expression analysis of auxin response factor (ARF) genes in Solanum lycopersicum.

    PubMed

    Wu, Jian; Wang, Feiyan; Cheng, Lin; Kong, Fuling; Peng, Zhen; Liu, Songyu; Yu, Xiaolin; Lu, Gang

    2011-11-01

    Auxin response factors (ARFs) encode transcriptional factors that bind specifically to the TGTCTC-containing auxin response elements found in the promoters of primary/early auxin response genes that regulate plant development. In this study, investigation of the tomato genome revealed 21 putative functional ARF genes (SlARFs), a number comparable to that found in Arabidopsis (23) and rice (25). The full cDNA sequences of 15 novel SlARFs were isolated and delineated by sequencing of PCR products. A comprehensive genome-wide analysis of this gene family is presented, including the gene structures, chromosome locations, phylogeny, and conserved motifs. In addition, a comparative analysis between ARF family genes in tomato and maize was performed. A phylogenetic tree generated from alignments of the full-length protein sequences of 21 OsARFs, 23 AtARFs, 31 ZmARFs, and 21 SlARFs revealed that these ARFs were clustered into four major groups. However, we could not find homologous genes in rice, maize, or tomato with AtARF12-15 and AtARF20-23. The expression patterns of tomato ARF genes were analyzed by quantitative real-time PCR. Our comparative analysis will help to define possible functions for many of these newly isolated ARF-family genes in plant development.

  5. Patterns of Positive Selection of the Myogenic Regulatory Factor Gene Family in Vertebrates

    PubMed Central

    Zhao, Xiao; Yu, Qi; Huang, Ling; Liu, Qing-Xin

    2014-01-01

    The functional divergence of transcriptional factors is critical in the evolution of transcriptional regulation. However, the mechanism of functional divergence among these factors remains unclear. Here, we performed an evolutionary analysis for positive selection in members of the myogenic regulatory factor (MRF) gene family of vertebrates. We selected 153 complete vertebrate MRF nucleotide sequences from our analyses, which revealed substantial evidence of positive selection. Here, we show that sites under positive selection were more frequently detected and identified from the genes encoding the myogenic differentiation factors (MyoG and Myf6) than the genes encoding myogenic determination factors (Myf5 and MyoD). Additionally, the functional divergence within the myogenic determination factors or differentiation factors was also under positive selection pressure. The positive selection sites were more frequently detected from MyoG and MyoD than Myf6 and Myf5, respectively. Amino acid residues under positive selection were identified mainly in their transcription activation domains and on the surface of protein three-dimensional structures. These data suggest that the functional gain and divergence of myogenic regulatory factors were driven by distinct positive selection of their transcription activation domains, whereas the function of the DNA binding domains was conserved in evolution. Our study evaluated the mechanism of functional divergence of the transcriptional regulation factors within a family, whereby the functions of their transcription activation domains diverged under positive selection during evolution. PMID:24651579

  6. DNA extraction from bovine mummified fetuses and detection of factor XI gene deficiency in the mummies.

    PubMed

    Ghanem, Mohamed Elshabrawy; Nishibori, Masahide; Nakao, Toshihiko; Moriyoshi, Masaharu

    2005-06-01

    Genomic DNA extracted from bovine mummified tissue is valuable material for detection of some genes that may contribute to fetal abnormalities. In this study bovine genomic DNA was extracted from the hardened tissue samples of ten bovine mummified fetuses. The amount of genomic DNA extracted from 2 g of the mummified tissues by the phenol/chloroform-ethanol method was low (less than 4 microg/ml) for all samples. The extracted DNA was then amplified by the GenomiPhi DNA amplification system. After amplification, the amount of DNA was increased to more than 100 microg/ml for all samples. This amplification system was shown to be a good tool for amplifying the genomic DNA of the mummified fetuses. The amplified genomic DNA was used for testing the mummies for Factor XI gene deficiency, an autosomal recessive deficiency involved in the early stages of the intrinsic blood coagulation pathway. Exon 12 of the Factor XI gene of the mummies was amplified by PCR. Two of the ten mummified fetuses were heterozygous for the Factor XI gene as indicated by the presence of two amplified DNA fragments of 320 bp and 244 bp. Factor XI deficiency has already been described in Holstein cattle. However, no report is available for bovine fetus. In this study, DNA was extracted and amplified from the bovine mummified fetuses, and the samples were successfully tested for Factor XI gene deficiency in the mummies.

  7. Aberrant RNA splicing in cancer; expression changes and driver mutations of splicing factor genes.

    PubMed

    Sveen, A; Kilpinen, S; Ruusulehto, A; Lothe, R A; Skotheim, R I

    2016-05-12

    Alternative splicing is a widespread process contributing to structural transcript variation and proteome diversity. In cancer, the splicing process is commonly disrupted, resulting in both functional and non-functional end-products. Cancer-specific splicing events are known to contribute to disease progression; however, the dysregulated splicing patterns found on a genome-wide scale have until recently been less well-studied. In this review, we provide an overview of aberrant RNA splicing and its regulation in cancer. We then focus on the executors of the splicing process. Based on a comprehensive catalog of splicing factor encoding genes and analyses of available gene expression and somatic mutation data, we identify cancer-associated patterns of dysregulation. Splicing factor genes are shown to be significantly differentially expressed between cancer and corresponding normal samples, and to have reduced inter-individual expression variation in cancer. Furthermore, we identify enrichment of predicted cancer-critical genes among the splicing factors. In addition to previously described oncogenic splicing factor genes, we propose 24 novel cancer-critical splicing factors predicted from somatic mutations.

  8. The effect of hepatocyte growth factor on gene transcription during intestinal adaptation.

    PubMed

    Katz, Michael S; Thatch, Keith A; Schwartz, Marshall Z

    2011-02-01

    Previously, we investigated the physiologic effects of hepatocyte growth factor (HGF) on intestinal adaptation using a massive small bowel resection (MSBR) rat model. To correlate these altered physiologic changes with gene alterations, we used microarray technology at 7, 14, and 21 days after MSBR. Forty-five adult female rats were divided into 3 groups and underwent 70% MSBR, MSBR + HGF (intravenous 150 μg/kg per day), or sham operation (control). Five animals per group were killed at each time point. Ileal mucosa was harvested and RNA extracted. Rat Gene Chips and Expression Console software (Affymetrix, Santa Clara, CA) were used. Statistical analysis was done by analysis of variance using Partek Genomics Suite (Partek, Inc, St Louis, MO). Results were significant if fold change was more than 2 or less than -2, with P < .05. Compared with the control group, MSBR group had significant increases in up-regulated and down-regulated genes. The MSBR-HGF group had further increases in up-regulated and down-regulated genes compared with the MSBR group. At 7 days, 6 cellular hypertrophy families had 30 genes up-regulated, and HGF up-regulated an additional 14 genes. At 21 days, 5 hyperplasia gene families had 32 up-regulated genes. Hepatocyte growth factor up-regulated an additional 16 genes. Microarray analysis of intestinal adaptation identified an early emphasis on hypertrophy and later emphasis on hyperplasia. This is the first demonstration that the effect of HGF on intestinal adaptation is recruitment of more genes rather than an increase in the fold change of already up-regulated genes. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Sparse p-norm Nonnegative Matrix Factorization for clustering gene expression data.

    PubMed

    Liu, Weixiang; Yuan, Kehong

    2008-01-01

    Nonnegative Matrix Factorization (NMF) is a powerful tool for gene expression data analysis as it reduces thousands of genes to a few compact metagenes, especially in clustering gene expression samples for cancer class discovery. Enhancing sparseness of the factorisation can find only a few dominantly coexpressed metagenes and improve the clustering effectiveness. Sparse p-norm (p > 1) Nonnegative Matrix Factorization (Sp-NMF) is a more sparse representation method using high order norm to normalise the decomposed components. In this paper, we investigate the benefit of high order normalisation for clustering cancer-related gene expression samples. Experimental results demonstrate that Sp-NMF leads to robust and effective clustering in both automatically determining the cluster number, and achieving high accuracy.

  10. Transcription activation of a UV-inducible Clostridium perfringens bacteriocin gene by a novel sigma factor.

    PubMed

    Dupuy, Bruno; Mani, Nagraj; Katayama, Seiichi; Sonenshein, Abraham L

    2005-02-01

    Expression of the plasmid-encoded Clostridium perfringens gene for bacteriocin BCN5 was shown to depend in vivo and in vitro on the activity of UviA protein. UviA, also plasmid-encoded, proved to be an RNA polymerase sigma factor and was also partly autoregulatory. The uviA gene has two promoters; one provided a UviA-independent, basal level of gene expression while the stronger, UviA-dependent promoter was only utilized after the cell experienced DNA damage. As a result, BCN5 synthesis is induced by treatment with UV light or mitomycin C. UviA is related to a special class of sigma factors found to date only in Clostridium species and responsible for activating transcription of toxin genes in Clostridium difficile, Clostridium tetani, and Clostridium botulinum.

  11. Acetylation of RNA polymerase II regulates growth-factor-induced gene transcription in mammalian cells.

    PubMed

    Schröder, Sebastian; Herker, Eva; Itzen, Friederike; He, Daniel; Thomas, Sean; Gilchrist, Daniel A; Kaehlcke, Katrin; Cho, Sungyoo; Pollard, Katherine S; Capra, John A; Schnölzer, Martina; Cole, Philip A; Geyer, Matthias; Bruneau, Benoit G; Adelman, Karen; Ott, Melanie

    2013-11-07

    Lysine acetylation regulates transcription by targeting histones and nonhistone proteins. Here we report that the central regulator of transcription, RNA polymerase II, is subject to acetylation in mammalian cells. Acetylation occurs at eight lysines within the C-terminal domain (CTD) of the largest polymerase subunit and is mediated by p300/KAT3B. CTD acetylation is specifically enriched downstream of the transcription start sites of polymerase-occupied genes genome-wide, indicating a role in early stages of transcription initiation or elongation. Mutation of lysines or p300 inhibitor treatment causes the loss of epidermal growth-factor-induced expression of c-Fos and Egr2, immediate-early genes with promoter-proximally paused polymerases, but does not affect expression or polymerase occupancy at housekeeping genes. Our studies identify acetylation as a new modification of the mammalian RNA polymerase II required for the induction of growth factor response genes.

  12. Organization and chromosomal localization of the human platelet-derived endothelial cell growth factor gene.

    PubMed Central

    Hagiwara, K; Stenman, G; Honda, H; Sahlin, P; Andersson, A; Miyazono, K; Heldin, C H; Ishikawa, F; Takaku, F

    1991-01-01

    Human platelet-derived endothelial cell growth factor (hPD-ECGF) is a novel angiogenic factor which stimulates endothelial cell growth in vitro and promotes angiogenesis in vivo. We report here the cloning and sequencing of the gene for hPD-ECGF and its flanking regions. This gene is composed of 10 exons dispersed over a 4.3-kb region. Its promoter lacks a TATA box and a CCAAT box, structures characteristic of eukaryotic promoters. Instead, six copies of potential Sp1-binding sites (GGGCGG or CCGCCC) were clustered just upstream of the transcription start sites. Southern blot analysis using genomic DNAs from several vertebrates suggested that the gene for PD-ECGF is conserved phylogenetically among vertebrates. The gene for hPD-ECGF was localized to chromosome 22 by analysis of a panel of human-rodent somatic cell hybrid lines. Images PMID:2005900

  13. A targeted RNA interference screen reveals novel epigenetic factors that regulate herpesviral gene expression.

    PubMed

    Oh, Hyung Suk; Bryant, Kevin F; Nieland, Thomas J F; Mazumder, Aprotim; Bagul, Mukta; Bathe, Mark; Root, David E; Knipe, David M

    2014-02-04

    Herpes simplex virus (HSV) utilizes and subverts host chromatin mechanisms to express its lytic gene products in mammalian cells. The host cell attempts to silence the incoming viral genome by epigenetic mechanisms, but the viral VP16 and ICP0 proteins promote active chromatin on the viral genome by recruiting other host epigenetic factors. However, the dependence on VP16 and ICP0 differs in different cell lines, implying cell type-dependent functional contributions of epigenetic factors for HSV gene expression. In this study, we performed a targeted RNA interference (RNAi) screen for cellular chromatin factors that are involved in regulation of herpes simplex virus (HSV) gene expression in U2OS osteosarcoma cells, a cell line that complements ICP0 mutant and VP16 mutant virus replication. In this screen, we found the same general classes of chromatin factors that regulate HSV gene expression in U2OS cells as in other cell types, including histone demethylases (HDMs), histone deacetylases (HDACs), histone acetyltransferases (HATs), and chromatin-remodeling factors, but the specific factors within these classes are different from those identified previously for other cell types. For example, KDM3A and KDM1A (LSD1) both demethylate mono- and dimethylated H3K9, but KDM3A emerged in our screen of U2OS cells. Further, small interfering RNA (siRNA) and inhibitor studies support the idea that KDM1A is more critical in HeLa cells, as observed previously, while KDM3A is more critical in U2OS cells. These results argue that different cellular chromatin factors are critical in different cell lines to carry out the positive and negative epigenetic effects exerted on the HSV genome. Upon entry into the host cell nucleus, the herpes simplex virus genome is subjected to host epigenetic silencing mechanisms. Viral proteins recruit cellular epigenetic activator proteins to reverse and counter the cellular silencing mechanisms. Some of the host silencing and activator functions

  14. Upregulation of the coagulation factor VII gene during glucose deprivation is mediated by activating transcription factor 4.

    PubMed

    Cronin, Katherine R; Mangan, Thomas P; Carew, Josephine A

    2012-01-01

    Constitutive production of blood coagulation proteins by hepatocytes is necessary for hemostasis. Stressful conditions trigger adaptive cellular responses and delay processing of most proteins, potentially affecting plasma levels of proteins secreted exclusively by hepatocytes. We examined the effect of glucose deprivation on expression of coagulation proteins by the human hepatoma cell line, HepG2. Expression of coagulation factor VII, which is required for initiation of blood coagulation, was elevated by glucose deprivation, while expression of other coagulation proteins decreased. Realtime PCR and ELISA demonstrated that the relative percentage expression +/- SD of steady-state F7 mRNA and secreted factor VII antigen were significantly increased (from 100+/-15% to 188+/-27% and 100+/-8.8% to 176.3+/-17.3% respectively, p<0.001) at 24 hr of treatment. The integrated stress response was induced, as indicated by upregulation of transcription factor ATF4 and of additional stress-responsive genes. Small interfering RNAs directed against ATF4 potently reduced basal F7 expression, and prevented F7 upregulation by glucose deprivation. The response of the endogenous F7 gene was replicated in reporter gene assays, which further indicated that ATF4 effects were mediated via interaction with an amino acid response element in the F7 promoter. Our data indicated that glucose deprivation enhanced F7 expression in a mechanism reliant on prior ATF4 upregulation primarily due to increased transcription from the ATF4 gene. Of five coagulation protein genes examined, only F7 was upregulated, suggesting that its functions may be important in a systemic response to glucose deprivation stress.

  15. Upregulation of the Coagulation Factor VII Gene during Glucose Deprivation Is Mediated by Activating Transcription Factor 4

    PubMed Central

    Cronin, Katherine R.; Mangan, Thomas P.; Carew, Josephine A.

    2012-01-01

    Background Constitutive production of blood coagulation proteins by hepatocytes is necessary for hemostasis. Stressful conditions trigger adaptive cellular responses and delay processing of most proteins, potentially affecting plasma levels of proteins secreted exclusively by hepatocytes. We examined the effect of glucose deprivation on expression of coagulation proteins by the human hepatoma cell line, HepG2. Methodology/Principal Findings Expression of coagulation factor VII, which is required for initiation of blood coagulation, was elevated by glucose deprivation, while expression of other coagulation proteins decreased. Realtime PCR and ELISA demonstrated that the relative percentage expression +/− SD of steady-state F7 mRNA and secreted factor VII antigen were significantly increased (from 100+/−15% to 188+/−27% and 100+/−8.8% to 176.3+/−17.3% respectively, p<0.001) at 24 hr of treatment. The integrated stress response was induced, as indicated by upregulation of transcription factor ATF4 and of additional stress-responsive genes. Small interfering RNAs directed against ATF4 potently reduced basal F7 expression, and prevented F7 upregulation by glucose deprivation. The response of the endogenous F7 gene was replicated in reporter gene assays, which further indicated that ATF4 effects were mediated via interaction with an amino acid response element in the F7 promoter. Conclusions/Significance Our data indicated that glucose deprivation enhanced F7 expression in a mechanism reliant on prior ATF4 upregulation primarily due to increased transcription from the ATF4 gene. Of five coagulation protein genes examined, only F7 was upregulated, suggesting that its functions may be important in a systemic response to glucose deprivation stress. PMID:22848420

  16. Impact of experience-dependent and -independent factors on gene expression in songbird brain

    PubMed Central

    Drnevich, Jenny; Replogle, Kirstin L.; Lovell, Peter; Hahn, Thomas P.; Johnson, Frank; Mast, Thomas G.; Nordeen, Ernest; Nordeen, Kathy; Strand, Christy; London, Sarah E.; Mukai, Motoko; Wingfield, John C.; Arnold, Arthur P.; Ball, Gregory F.; Brenowitz, Eliot A.; Wade, Juli; Mello, Claudio V.; Clayton, David F.

    2012-01-01

    Songbirds provide rich natural models for studying the relationships between brain anatomy, behavior, environmental signals, and gene expression. Under the Songbird Neurogenomics Initiative, investigators from 11 laboratories collected brain samples from six species of songbird under a range of experimental conditions, and 488 of these samples were analyzed systematically for gene expression by microarray. ANOVA was used to test 32 planned contrasts in the data, revealing the relative impact of different factors. The brain region from which tissue was taken had the greatest influence on gene expression profile, affecting the majority of signals measured by 18,848 cDNA spots on the microarray. Social and environmental manipulations had a highly variable impact, interpreted here as a manifestation of paradoxical “constitutive plasticity” (fewer inducible genes) during periods of enhanced behavioral responsiveness. Several specific genes were identified that may be important in the evolution of linkages between environmental signals and behavior. The data were also analyzed using weighted gene coexpression network analysis, followed by gene ontology analysis. This revealed modules of coexpressed genes that are also enriched for specific functional annotations, such as “ribosome” (expressed more highly in juvenile brain) and “dopamine metabolic process” (expressed more highly in striatal song control nucleus area X). These results underscore the complexity of influences on neural gene expression and provide a resource for studying how these influences are integrated during natural experience. PMID:23045667

  17. Factors affecting SFHR gene correction efficiency with single-stranded DNA fragment

    SciTech Connect

    Tsuchiya, Hiroyuki; Harashima, Hideyoshi; Kamiya, Hiroyuki . E-mail: hirokam@pharm.hokudai.ac.jp

    2005-11-04

    A 606-nt single-stranded (ss) DNA fragment, prepared by restriction enzyme digestion of ss phagemid DNA, improves the gene correction efficiency by 12-fold as compared with a PCR fragment, which is the conventional type of fragment used in the small fragment homologous replacement method [H. Tsuchiya, H. Harashima, H. Kamiya, Increased SFHR gene correction efficiency with sense single-stranded DNA, J. Gene Med. 7 (2005) 486-493]. To reveal the characteristic features of this gene correction with the ss DNA fragment, the effects on the gene correction in CHO-K1 cells of the chain length, 5'-phosphate, adenine methylation, and transcription were studied. Moreover, the possibility that the ss DNA fragment is integrated into the target DNA was examined with a radioactively labeled ss DNA fragment. The presence of methylated adenine, but not the 5'-phosphate, enhanced the gene correction efficiency, and the optimal length of the ss DNA fragment ({approx}600 nt) was determined. Transcription of the target gene did not affect the gene correction efficiency. In addition, the target DNA recovered from the transfected CHO-K1 cells was radioactive. The results obtained in this study indicate that length and adenine methylation were important factors affecting the gene correction efficiency, and that the ss DNA fragment was integrated into the double-stranded target DNA.

  18. Formal modeling of Gene Ontology annotation predictions based on factor graphs

    NASA Astrophysics Data System (ADS)

    Spetale, Flavio; Murillo, Javier; Tapia, Elizabeth; Arce, Débora; Ponce, Sergio; Bulacio, Pilar

    2016-04-01

    Gene Ontology (GO) is a hierarchical vocabulary for gene product annotation. Its synergy with machine learning classification methods has been widely used for the prediction of protein functions. Current classification methods rely on heuristic solutions to check the consistency with some aspects of the underlying GO structure. In this work we formalize the GO is-a relationship through predicate logic. Moreover, an ontology model based on Forney Factor Graph (FFG) is shown on a general fragment of Cellular Component GO.

  19. Identification of the integration host factor genes of Erwinia chrysanthemi 3937.

    PubMed

    Douillié, A; Toussaint, A; Faelen, M

    1994-01-01

    Two Erwinia chrysanthemi homologues of the himA and himD genes of Escherichia coli which encode the integration host factor (IHF) were cloned, sequenced and compared to their homolog in other enterobacteria (EMBL accession nos X74749 and X74750). Both genes were inactivated by the insertion of an antibiotic resistance cassette, allowing for the isolation of IHF- mutants of E chrysanthemi.

  20. A rat gene with sequence homology to the Drosophila gene hairy is rapidly induced by growth factors known to influence neuronal differentiation.

    PubMed Central

    Feder, J N; Jan, L Y; Jan, Y N

    1993-01-01

    Several genes encoding transcription factors with a helix-loop-helix (HLH) motif are involved in the early process of neural development in Drosophila spp. We report the isolation from the rat a homolog of one of these genes, called hairy. The rat-hairy-like (RHL) gene is expressed early during embryogenesis. In contrast to the restricted expression of hairy mRNA in Drosophila spp., however, the mRNA encoded by RHL is detectable in all tissues examined. Stimulation of PC12 pheochromocytoma cells by nerve growth factor, basis fibroblast growth factor, or epidermal growth factor or of Rat-1 fibroblasts by epidermal growth factor causes a rapid and transient induction of the RHL gene. Thus, RHL acts as an immediate-early gene that can potentially transduce growth factor signals during the development of the mammalian embryo. Images PMID:8417318

  1. [Study on the expressions of basic fibroblast growth factor and nervous growth factor genes in rat cerebral concussion].

    PubMed

    Peng, Rui-yun; Gao, Ya-bing; Xiao, Xing-yi; Wang, De-wen; Chen, Hao-yu; Wu, Xiao-hong; Liu, Jie; Hu, Wen-hua; Cai, Bao-ren

    2003-04-01

    To study the expressions of basic fibroblast growth factor (bFGF) and nervous growth factor(NGF) genes in rat cerebral concussion. Eighty Wistar male rats were used for animal model of cerebral concussion, which were sacrificed on 1, 3, 7, 14 and 30 days after injury and the brain tissue was taken out. The expressions of bFGF and NGF genes were studied in the course of cerebral concussion by means of immunohistochemistry and in situ hybridization. Rats in 100 g group were seen the clinical manifestation for typical cerebral concussion. The protein and mRNA of bFGF were increased on day 1, obtained at peak on day 3-7, decreased on day 14 and also increased on day 30 compared with controls. The positive area was seen in the plasma of neurons in cerebral cortex, hippocampus, thalamus and cerebellum. NGF protein and mRNA showed strong positive and increased in the plasma of neurons in cerebral cortex, hippocampus, thalamus and cerebellum on day 1, and they were continuously positive but gradually decreased within 30 days after injury. The expression of bFGF gene participates in the course of cerebral concussion, might play an important role in the nervous cells degeneration and necrosis; NGF gene expression participates in the whole course of cerebral concussion, especially in the early phase.

  2. Integrative clustering by nonnegative matrix factorization can reveal coherent functional groups from gene profile data.

    PubMed

    Brdar, Sanja; Crnojević, Vladimir; Zupan, Blaz

    2015-03-01

    Recent developments in molecular biology and techniques for genome-wide data acquisition have resulted in abundance of data to profile genes and predict their function. These datasets may come from diverse sources and it is an open question how to commonly address them and fuse them into a joint prediction model. A prevailing technique to identify groups of related genes that exhibit similar profiles is profile-based clustering. Cluster inference may benefit from consensus across different clustering models. In this paper, we propose a technique that develops separate gene clusters from each of available data sources and then fuses them by means of nonnegative matrix factorization. We use gene profile data on the budding yeast S. cerevisiae to demonstrate that this approach can successfully integrate heterogeneous datasets and yield high-quality clusters that could otherwise not be inferred by simply merging the gene profiles prior to clustering.

  3. Localization and characterization of the human ADP-ribosylation factor 5 (ARF5) gene

    SciTech Connect

    McGuire, R.E. |; Daiger, S.P.; Green, E.D.

    1997-05-01

    ADP-ribosylation factor 5 (ARF5) is a member of the ARF gene family. The ARF proteins stimulate the in vitro ADP-ribosyltransferase activity of cholera toxin and appear to play a role in vesicular trafficking in vivo. We have mapped ARF5, one of the six known mammalian ARF genes, to a well-defined yeast artificial chromosome contig on human chromosome 7q31.3. In addition, we have isolated and sequenced an {approximately}3.2-kb genomic segment that contains the entire ARF5 coding region, revealing the complete intron-exon structure of the gene. With six coding exons and five introns, the genomic structure of ARF5 is unique among the mammalian ARF genes and provides insight about the evolutionary history of this ancient gene family. 20 refs., 2 figs., 1 tab.

  4. Molecular typing, pathogenicity factor genes and antimicrobial susceptibility of vancomycin resistant enterococci in Belgrade, Serbia.

    PubMed

    Jovanović, Milica; Milošević, Branko; Tošić, Tanja; Stevanović, Goran; Mioljević, Vesna; Inđić, Nikola; Velebit, Branko; Zervos, Marcus

    2015-06-01

    In this study the distribution of species and antimicrobial resistance among vancomycin resistant enterococci (VRE) recovered from clinical specimens obtained from five hospitals in Belgrade was analyzed. Strains were further characterized by pulsed-field gel electrophoresis (PFGE). Polymerase chain reaction (PCR) was used to investigate the presence of vanA and vanB genes and pathogenicity factor genes. Identification of 194 VRE isolates revealed 154 Enterococcus faecium, 21 Enterococcus faecalis, 10 Enterococcus raffinosus and 9 Enterococcus gallinarum. This study revealed existence of 8 major clones of VRE. PCR determined vanA gene to be present in all of the VRE studied. Esp and hyl genes were present in 29.22% and 27.92% of E. faecium, respectively, and in 76.19% and 0 of E. faecalis, respectively. Esp and hyl genes were not found more frequently in members of predominant clones of E. faecium than in single isolates; nor was their presence connected to invasiveness.

  5. Knockdown of Maternal Homeobox Transcription Factor SEBOX Gene Impaired Early Embryonic Development in Porcine Parthenotes

    PubMed Central

    ZHENG, Zhong; ZHAO, Ming-Hui; JIA, Jia-Lin; HEO, Young-Tae; CUI, Xiang-Shun; OH, Jeong Su; KIM, Nam-Hyung

    2013-01-01

    Abstract A number of germ cell-specific transcription factors essential for ovarian formation and folliculogenesis have been identified and studied. However, the role of these factors during early embryonic development has been poorly explored. In the present study, we investigated the role of SEBOX, a maternal homeobox transcription factor, during early embryonic development in porcine parthenotes. mRNA for SEBOX is preferentially expressed in oocytes, and expression persists until embryonic genome activation (EGA). Knockdown of SEBOX by siRNA disrupted early embryonic development, but not oocyte maturation. Many maternal genes essential for early embryonic development were upregulated in SEBOX-depleted embryos. Moreover, some pluripotency-associated genes, including SOX2 and NANOG, were upregulated when SEBOX was knocked down. Therefore, our data demonstrate that SEBOX is required for early embryonic development in pigs and appears to regulate the degradation of maternal transcripts and the expression of pluripotency genes. PMID:24018616

  6. Knockdown of maternal homeobox transcription factor SEBOX gene impaired early embryonic development in porcine parthenotes.

    PubMed

    Zheng, Zhong; Zhao, Ming-Hui; Jia, Jia-Lin; Heo, Young-Tae; Cui, Xiang-Shun; Oh, Jeong Su; Kim, Nam-Hyung

    2013-12-17

    A number of germ cell-specific transcription factors essential for ovarian formation and folliculogenesis have been identified and studied. However, the role of these factors during early embryonic development has been poorly explored. In the present study, we investigated the role of SEBOX, a maternal homeobox transcription factor, during early embryonic development in porcine parthenotes. mRNA for SEBOX is preferentially expressed in oocytes, and expression persists until embryonic genome activation (EGA). Knockdown of SEBOX by siRNA disrupted early embryonic development, but not oocyte maturation. Many maternal genes essential for early embryonic development were upregulated in SEBOX-depleted embryos. Moreover, some pluripotency-associated genes, including SOX2 and NANOG, were upregulated when SEBOX was knocked down. Therefore, our data demonstrate that SEBOX is required for early embryonic development in pigs and appears to regulate the degradation of maternal transcripts and the expression of pluripotency genes.

  7. Polymorphism of the human factor H-related gene (FHR-1) and of factor H in a West African individual

    SciTech Connect

    Meyer, C.G.; Skerka, C.; Zipfel, P.F.

    1995-03-01

    The human factor H-related 1 (FHR-1) protein is structurally and immunogenically related to the regulatory complement protein factor H (FH). Polymorphism of the FHR-1 gene is indicated by the nucleotide differences as described by the five cDNA clones isolated so far. In order to further analyze this polymorphism we identified PCR-primers which allow the simultaneous amplification of FHR-1 and FH alleles in a single polymerase chain reaction (PCR). By DNA sequence analysis, two novel FHR-1 variants and one as yet unrecognized FH allele could be characterized in an individual from Benin, West Africa. 2 refs., 1 fig.

  8. Engineering synthetic TALE and CRISPR/Cas9 transcription factors for regulating gene expression.

    PubMed

    Kabadi, Ami M; Gersbach, Charles A

    2014-09-01

    Engineered DNA-binding proteins that can be targeted to specific sites in the genome to manipulate gene expression have enabled many advances in biomedical research. This includes generating tools to study fundamental aspects of gene regulation and the development of a new class of gene therapies that alter the expression of endogenous genes. Designed transcription factors have entered clinical trials for the treatment of human diseases and others are in preclinical development. High-throughput and user-friendly platforms for designing synthetic DNA-binding proteins present innovative methods for deciphering cell biology and designing custom synthetic gene circuits. We review two platforms for designing synthetic transcription factors for manipulating gene expression: Transcription activator-like effectors (TALEs) and the RNA-guided clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system. We present an overview of each technology and a guide for designing and assembling custom TALE- and CRISPR/Cas9-based transcription factors. We also discuss characteristics of each platform that are best suited for different applications. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Expression of insulin-like growth factor family genes in clear cell renal cell carcinoma

    PubMed Central

    Białożyt, Michał; Plato, Marta; Mazurek, Urszula; Braczkowska, Bogumiła

    2016-01-01

    Aim of the study Despite significant progress in the pathology of clear cell renal cell carcinoma (ccRCC), diagnostic and predictive factors of major importance have not been discovered. Some hopes are associated with insulin-like growth factors. The aim of the study was to compare the expression of genes for insulin-like growth factor family in tumours and in tissue of kidneys without cancer. Material and methods Fifty-two patients years with clear cell renal cell cancer were qualified to the study group; patients nephrectomised because of hydronephrosis were included in the control group. Expression of genes were evaluated by RT-PCR. Results Expression of IGFR-1 gene in tumour accounts for about 60% of cases. The incidence is higher than in corresponding adjacent non-cancerous kidney tissues and higher (but with no statistical significance) than in kidney without cancer. Expression of IGFR-2 gene in tumours has not been established. The incidence of the expression in corresponding adjacent non-cancerous kidney tissues is small. Expression of this gene has been present in all specimens from kidneys without cancer. Expression of IGFBP-3 gene ascertained in all (except four) cases of ccRCC and in the majority of clippings from adjacent tissue. It was not found in kidneys from the control group. IGF-1, IGF-2, and IGFR-1 mRNA copy numbers in ccRCC were higher than in the material from the control group PMID:27358591

  10. Engineering Synthetic TALE and CRISPR/Cas9 Transcription Factors for Regulating Gene Expression

    PubMed Central

    Kabadi, Ami M.; Gersbach, Charles A.

    2014-01-01

    Engineered DNA-binding proteins that can be targeted to specific sites in the genome to manipulate gene expression have enabled many advances in biomedical research. This includes generating tools to study fundamental aspects of gene regulation and the development of a new class of gene therapies that alter the expression of endogenous genes. Designed transcription factors have entered clinical trials for the treatment of human diseases and others are in preclinical development. High-throughput and user-friendly platforms for designing synthetic DNA-binding proteins present innovative methods for deciphering cell biology and designing custom synthetic gene circuits. We review two platforms for designing synthetic transcription factors for manipulating gene expression: Transcription Activator-Like Effectors (TALEs) and the RNA-guided Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 system. We present an overview of each technology and a guide for designing and assembling custom TALE- and CRISPR/Cas9-based transcription factors. We also discuss characteristics of each platform that are best suited for different applications. PMID:25010559

  11. The R2R3-MYB Transcription Factor Gene Family in Maize

    PubMed Central

    Du, Hai; Feng, Bo-Run; Yang, Si-Si; Huang, Yu-Bi; Tang, Yi-Xiong

    2012-01-01

    MYB proteins comprise a large family of plant transcription factors, members of which perform a variety of functions in plant biological processes. To date, no genome-wide characterization of this gene family has been conducted in maize (Zea mays). In the present study, we performed a comprehensive computational analysis, to yield a complete overview of the R2R3-MYB gene family in maize, including the phylogeny, expression patterns, and also its structural and functional characteristics. The MYB gene structure in maize and Arabidopsis were highly conserved, indicating that they were originally compact in size. Subgroup-specific conserved motifs outside the MYB domain may reflect functional conservation. The genome distribution strongly supports the hypothesis that segmental and tandem duplication contribute to the expansion of maize MYB genes. We also performed an updated and comprehensive classification of the R2R3-MYB gene families in maize and other plant species. The result revealed that the functions were conserved between maize MYB genes and their putative orthologs, demonstrating the origin and evolutionary diversification of plant MYB genes. Species-specific groups/subgroups may evolve or be lost during evolution, resulting in functional divergence. Expression profile study indicated that maize R2R3-MYB genes exhibit a variety of expression patterns, suggesting diverse functions. Furthermore, computational prediction potential targets of maize microRNAs (miRNAs) revealed that miR159, miR319, and miR160 may be implicated in regulating maize R2R3-MYB genes, suggesting roles of these miRNAs in post-transcriptional regulation and transcription networks. Our comparative analysis of R2R3-MYB genes in maize confirm and extend the sequence and functional characteristics of this gene family, and will facilitate future functional analysis of the MYB gene family in maize. PMID:22719841

  12. [Experimental approach to the gene therapy of motor neuron disease with the use of genes hypoxia-inducible factors].

    PubMed

    Ismailov, Sh M; Barykova, Iu A; Shmarov, M M; Tarantul, V Z; Barskov, I V; Kucherianu, V G; Brylev, L V; Logunov, D Iu; Tutykhina, I L; Bocharov, E V; Zakharova, M N; Naroditskiĭ, B S; Illarioshkin, S N

    2014-05-01

    Motor neuron disease (MND), or amyotrophic lateral sclerosis, is a fatal neurodegenerative disorder characterized by a progressive loss of motor neurons in the spinal cord and the brain. Several angiogenic and neurogenic growth factors, such as the vascular endothelial growth factor (VEGF), angiogenin (ANG), insulin-like growth factor (IGF) and others, have been shown to promote survival of the spinal motor neurons during ischemia. We constructed recombinant vectors using human adenovirus 5 (Ad5) carrying the VEGF, ANG or IGF genes under the control of the cytomegalovirus promoter. As a model for MND, we employed a transgenic mice strain, B6SJL-Tg (SOD1*G93A)d11 Gur/J that develops a progressive degeneration of the spinal motor neurons caused by the expression of a mutated Cu/Zn superoxide dismutase gene SOD1. Delivery of the therapeutic genes to the spinal motor neurons was done using the effect of the retrograde axonal transport after multiple injections of the Ad5-VEGF, Ad5-ANG and Ad5-IGF vectors and their combinations into the limbs and back muscles of the SOD1(G93A) mice. Viral transgene expression in the spinal cord motor neurons was confirmed by immunocytochemistry and RT-RCR. We assessed the neurological status, motor activity and lifespan of experimental and control animal groups. We discovered that SOD1(G93A) mice injected with the Ad5-VEGF + Ad5-ANG combination showed a 2-3 week delay in manifestation of the disease, higher motor activity at the advanced stages of the disease, and at least a 10% increase in the lifespan compared to the control and other experimental groups. These results support the safety and therapeutic efficacy of the tested recombinant treatment. We propose that the developed experimental MND treatment based on viral delivery of VEGF + ANG can be used as a basis for gene therapy drug development and testing in the preclinical and clinical trials of the MND.

  13. Environmental factors influencing gene transfer agent (GTA) mediated transduction in the subtropical ocean.

    PubMed

    McDaniel, Lauren D; Young, Elizabeth C; Ritchie, Kimberly B; Paul, John H

    2012-01-01

    Microbial genomic sequence analyses have indicated widespread horizontal gene transfer (HGT). However, an adequate mechanism accounting for the ubiquity of HGT has been lacking. Recently, high frequencies of interspecific gene transfer have been documented, catalyzed by Gene Transfer Agents (GTAs) of marine α-Proteobacteria. It has been proposed that the presence of bacterial genes in highly purified viral metagenomes may be due to GTAs. However, factors influencing GTA-mediated gene transfer in the environment have not yet been determined. Several genomically sequenced strains containing complete GTA sequences similar to Rhodobacter capsulatus (RcGTA, type strain) were screened to ascertain if they produced putative GTAs, and at what abundance. Five of nine marine strains screened to date spontaneously produced virus-like particles (VLP's) in stationary phase. Three of these strains have demonstrated gene transfer activity, two of which were documented by this lab. These two strains Roseovarius nubinhibens ISM and Nitratireductor 44B9s, were utilized to produce GTAs designated RnGTA and NrGTA and gene transfer activity was verified in culture. Cell-free preparations of purified RnGTA and NrGTA particles from marked donor strains were incubated with natural microbial assemblages to determine the level of GTA-mediated gene transfer. In conjunction, several ambient environmental parameters were measured including lysogeny indicated by prophage induction. GTA production in culture systems indicated that approximately half of the strains produced GTA-like particles and maximal GTA counts ranged from 10-30% of host abundance. Modeling of GTA-mediated gene transfer frequencies in natural samples, along with other measured environmental variables, indicated a strong relationship between GTA mediated gene transfer and the combined factors of salinity, multiplicity of infection (MOI) and ambient bacterial abundance. These results indicate that GTA-mediated HGT in the

  14. Environmental Factors Influencing Gene Transfer Agent (GTA) Mediated Transduction in the Subtropical Ocean

    PubMed Central

    McDaniel, Lauren D.; Young, Elizabeth C.; Ritchie, Kimberly B.; Paul, John H.

    2012-01-01

    Microbial genomic sequence analyses have indicated widespread horizontal gene transfer (HGT). However, an adequate mechanism accounting for the ubiquity of HGT has been lacking. Recently, high frequencies of interspecific gene transfer have been documented, catalyzed by Gene Transfer Agents (GTAs) of marine α-Proteobacteria. It has been proposed that the presence of bacterial genes in highly purified viral metagenomes may be due to GTAs. However, factors influencing GTA-mediated gene transfer in the environment have not yet been determined. Several genomically sequenced strains containing complete GTA sequences similar to Rhodobacter capsulatus (RcGTA, type strain) were screened to ascertain if they produced putative GTAs, and at what abundance. Five of nine marine strains screened to date spontaneously produced virus-like particles (VLP's) in stationary phase. Three of these strains have demonstrated gene transfer activity, two of which were documented by this lab. These two strains Roseovarius nubinhibens ISM and Nitratireductor 44B9s, were utilized to produce GTAs designated RnGTA and NrGTA and gene transfer activity was verified in culture. Cell-free preparations of purified RnGTA and NrGTA particles from marked donor strains were incubated with natural microbial assemblages to determine the level of GTA-mediated gene transfer. In conjunction, several ambient environmental parameters were measured including lysogeny indicated by prophage induction. GTA production in culture systems indicated that approximately half of the strains produced GTA-like particles and maximal GTA counts ranged from 10–30% of host abundance. Modeling of GTA-mediated gene transfer frequencies in natural samples, along with other measured environmental variables, indicated a strong relationship between GTA mediated gene transfer and the combined factors of salinity, multiplicity of infection (MOI) and ambient bacterial abundance. These results indicate that GTA-mediated HGT in the

  15. Abf1 and other general regulatory factors control ribosome biogenesis gene expression in budding yeast.

    PubMed

    Bosio, Maria Cristina; Fermi, Beatrice; Spagnoli, Gloria; Levati, Elisabetta; Rubbi, Ludmilla; Ferrari, Roberto; Pellegrini, Matteo; Dieci, Giorgio

    2017-05-05

    Ribosome biogenesis in Saccharomyces cerevisiae involves a regulon of >200 genes (Ribi genes) coordinately regulated in response to nutrient availability and cellular growth rate. Two cis-acting elements called PAC and RRPE are known to mediate Ribi gene repression in response to nutritional downshift. Here, we show that most Ribi gene promoters also contain binding sites for one or more General Regulatory Factors (GRFs), most frequently Abf1 and Reb1, and that these factors are enriched in vivo at Ribi promoters. Abf1/Reb1/Tbf1 promoter association was required for full Ribi gene expression in rich medium and for its modulation in response to glucose starvation, characterized by a rapid drop followed by slow recovery. Such a response did not entail changes in Abf1 occupancy, but it was paralleled by a quick increase, followed by slow decrease, in Rpd3L histone deacetylase occupancy. Remarkably, Abf1 site disruption also abolished Rpd3L complex recruitment in response to starvation. Extensive mutational analysis of the DBP7 promoter revealed a complex interplay of Tbf1 sites, PAC and RRPE in the transcriptional regulation of this Ribi gene. Our observations point to GRFs as new multifaceted players in Ribi gene regulation both during exponential growth and under repressive conditions. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Identification and Network-Enabled Characterization of Auxin Response Factor Genes in Medicago truncatula

    PubMed Central

    Burks, David J.; Azad, Rajeev K.

    2016-01-01

    The Auxin Response Factor (ARF) family of transcription factors is an important regulator of environmental response and symbiotic nodulation in the legume Medicago truncatula. While previous studies have identified members of this family, a recent spurt in gene expression data coupled with genome update and reannotation calls for a reassessment of the prevalence of ARF genes and their interaction networks in M. truncatula. We performed a comprehensive analysis of the M. truncatula genome and transcriptome that entailed search for novel ARF genes and the co-expression networks. Our investigation revealed 8 novel M. truncatula ARF (MtARF) genes, of the total 22 identified, and uncovered novel gene co-expression networks as well. Furthermore, the topological clustering and single enrichment analysis of several network models revealed the roles of individual members of the MtARF family in nitrogen regulation, nodule initiation, and post-embryonic development through a specialized protein packaging and secretory pathway. In summary, this study not just shines new light on an important gene family, but also provides a guideline for identification of new members of gene families and their functional characterization through network analyses. PMID:28018393

  17. Identification and Network-Enabled Characterization of Auxin Response Factor Genes in Medicago truncatula.

    PubMed

    Burks, David J; Azad, Rajeev K

    2016-01-01

    The Auxin Response Factor (ARF) family of transcription factors is an important regulator of environmental response and symbiotic nodulation in the legume Medicago truncatula. While previous studies have identified members of this family, a recent spurt in gene expression data coupled with genome update and reannotation calls for a reassessment of the prevalence of ARF genes and their interaction networks in M. truncatula. We performed a comprehensive analysis of the M. truncatula genome and transcriptome that entailed search for novel ARF genes and the co-expression networks. Our investigation revealed 8 novel M. truncatula ARF (MtARF) genes, of the total 22 identified, and uncovered novel gene co-expression networks as well. Furthermore, the topological clustering and single enrichment analysis of several network models revealed the roles of individual members of the MtARF family in nitrogen regulation, nodule initiation, and post-embryonic development through a specialized protein packaging and secretory pathway. In summary, this study not just shines new light on an important gene family, but also provides a guideline for identification of new members of gene families and their functional characterization through network analyses.

  18. Plenary Lecture 2: Transcription factors, regulatory elements and nutrient-gene communication.

    PubMed

    Cousins, Robert J; Aydemir, Tolunay B; Lichten, Louis A

    2010-02-01

    Dramatic advances have been made in the understanding of the differing molecular mechanisms used by nutrients to regulate genes that are essential for their biological roles to carry out normal metabolism. Classical studies have focused on nutrients as ligands to activate specific transcription factors. New interest has focused on histone acetylation as a process for either global or limited gene activation and is the first mechanism to be discussed. Nuclear ATP-citrate lyase generates acetyl-CoA, which has been shown to have a role in the activation of specific genes via selective histone acetylation. Transcription factor acetylation may provide a second mode of control of nutrient-responsive gene transcription. The third mechanism relates to the availability of response elements within chromatin, which as well as the location of the elements in the gene may allow or prevent transcription. A fourth mechanism involves intracellular transport of Zn ions, which can orchestrate localized enzyme inhibition-activation. This process in turn influences signalling molecules that regulate gene expression. The examples provided in the present review point to a new level of complexity in understanding nutrient-gene communication.

  19. Epidermal growth factor receptor gene amplification and protein expression in glioblastoma multiforme: prognostic significance and relationship to other prognostic factors.

    PubMed

    Layfield, Lester J; Willmore, Carlynn; Tripp, Sheryl; Jones, Claudia; Jensen, Randy L

    2006-03-01

    Epidermal growth factor receptor (EGFR) overexpression occurs in a significant percentage of cases of glioblastoma multiforme (GBM), and amplification has been found in approximately 40% of these neoplasms. Controversy exists as to the prognostic significance of EGFR gene amplification: some reports have indicated that amplification is associated with a poor prognosis, while other authors have reported no relationship between gene amplification and prognosis. Some reports have found a poor prognosis to be associated with amplification of the EGFR gene in patients of all ages with GBM, while other authors have found EGFR amplification to be an independent predictor of prolonged survival in patients with GBM who are older than 60 years of age. The authors studied a series of 34 specimens (32 patients) with histologically proven GBM by immunohistochemistry for the presence of EGFR overexpression and by fluorescence in situ hybridization (FISH) for gene amplification of the EGFR gene. Results of these studies and data on patient age, sex, functional status, therapy, and survival were correlated to determine which variables were predictive of survival. p53 expression was also determined by immunohistochemistry and correlated with the other variables and survival.

  20. Proteinase and Growth Factor Alterations Revealed by Gene Microarray Analysis of Human Diabetic Corneas

    PubMed Central

    Saghizadeh, Mehrnoosh; Kramerov, Andrei A.; Tajbakhsh, Jian; Aoki, Annette M.; Wang, Charles; Chai, Ning-Ning; Ljubimova, Julia Y.; Sasaki, Takako; Sosne, Gabriel; Carlson, Marc R. J.; Nelson, Stanley F.

    2005-01-01

    PURPOSE. To identify proteinases and growth factors abnormally expressed in human corneas of donors with diabetic retinopathy (DR), additional to previously described matrix metalloproteinase (MMP)-10 and -3 and insulin-like growth factor (IGF)-I. METHODS. RNA was isolated from 35 normal, diabetic, and DR autopsy human corneas ex vivo or after organ culture. Amplified cRNA was analyzed using 22,000-gene microarrays (Agi-lent Technologies, Palo Alto, CA). Gene expression in each diabetic corneal cRNA was assessed against pooled cRNA from 7 to 9 normal corneas. Select differentially expressed genes were validated by quantitative real-time RT-PCR (QPCR) and immunohistochemistry. Organ cultures were treated with a cathepsin inhibitor, cystatin C, or MMP-10. RESULTS. More than 100 genes were upregulated and 2200 were downregulated in DR corneas. Expression of cathepsin F and hepatocyte growth factor (HGF) genes was increased in ex vivo and organ-cultured DR corneas compared with normal corneas. HGF receptor c-met, fibroblast growth factor (FGF)-3, its receptor FGFR3, tissue inhibitor of metalloproteinase (TIMP)-4, laminin α4 chain, and thymosin β4 genes were down-regulated. The data were corroborated by QPCR and immuno-histochemistry analyses; main changes of these components occurred in corneal epithelium. In organ-cultured DR corneas, cystatin C increased laminin-10 and integrin α3β1, whereas in normal corneas MMP-10 decreased laminin-10 and integrin α3β1 expression. CONCLUSIONS. Elevated cathepsin F and the ability of its inhibitor to produce a more normal phenotype in diabetic corneas suggest increased proteolysis in these corneas. Proteinase changes may result from abnormalities of growth factors, such as HGF and FGF-3, in DR corneas. Specific modulation of proteinases and growth factors could reduce diabetic corneal epitheliopathy. PMID:16186340

  1. Intracranial aneurysm risk factor genes: relationship with intracranial aneurysm risk in a Chinese Han population.

    PubMed

    Zhang, L T; Wei, F J; Zhao, Y; Zhang, Z; Dong, W T; Jin, Z N; Gao, F; Gao, N N; Cai, X W; Li, N X; Wei, W; Xiao, F S; Yue, S Y; Zhang, J N; Yang, S Y; Li, W D; Yang, X Y

    2015-06-18

    Few studies have examined the genes related to risk fac-tors that may contribute to intracranial aneurysms (IAs). This study in Chinese patients aimed to explore the relationship between IA and 28 gene loci, proven to be associated with risk factors for IA. We recruited 119 patients with aneurysms and 257 controls. Single factor and logistic regression models were used to analyze the association of IA and IA rup-ture with risk factors. Twenty-eight single nucleotide polymorphisms (SNPs) in 22 genes were genotyped for the patient and control groups. SNP genotypes and allele frequencies were analyzed by the chi-square test. Logistic regression analysis identified hypertension as a factor that increased IA risk (P = 1.0 x 10(-4); OR, 2.500; 95%CI, 1.573-3.972); IA was associated with two SNPs in the TSLC2A9 gene: rs7660895 (P = 0.007; OR, 1.541; 95%CI, 1.126-2.110); and in the TOX gene: rs11777927 (P = 0.013; OR, 1.511; 95%CI, 1.088-2.098). Subsequent removal of the influence of family relationship identified between 12 of 119 patients enhanced the significant association of these SNPs with IA (P = 0.001; OR, 1.691; 95%CI, 1.226-2.332; and P = 0.006; OR, 1.587; 95%CI, 1.137-2.213 for rs7660895 and rs11777927, respectively). Fur-thermore, the minor allele of rs7660895 (A) was also associated with IA rupture (P = 0.007; OR, 2.196; 95%CI, 1.230-3.921). Therefore, hypertension is an independent risk factor for IA. Importantly, the TSL-C2A9 (rs7660895) and TOX (rs11777927) gene polymorphisms may be associated with formation of IAs, and rs7660895 may be associated with IA rupture.

  2. Differential usage of signal transduction pathways defines two types of serum response factor target gene.

    PubMed

    Gineitis, D; Treisman, R

    2001-07-06

    Activation of the transcription factor serum response factor (SRF) is dependent on Rho-controlled changes in actin dynamics. We used pathway-specific inhibitors to compare the roles of actin dynamics, extracellular signal-regulated kinase (ERK) signaling, and phosphatidylinositol 3-kinase in signaling either to SRF itself or to four cellular SRF target genes. Serum, lysophosphatidic acid, platelet-derived growth factor, and phorbol 12-myristate 13-acetate (PMA) each activated transcription of a stably integrated SRF reporter gene dependent on functional RhoA GTPase. Inhibition of mitogen-activated protein kinase-ERK kinase (MEK) signalling reduced activation of the SRF reporter by all stimuli by about 50%, except for PMA, which was effectively blocked. Inhibition of phosphatidylinositol 3-kinase slightly reduced reporter activation by serum and lysophosphatidic acid but substantially inhibited activation by platelet-derived growth factor and PMA. Reporter induction by all stimuli was absolutely dependent on actin dynamics. Regulation of the SRF (srf) and vinculin (vcl) genes was similar to that of the SRF reporter gene; activation by all stimuli was Rho-dependent and required actin dynamics but was largely independent of MEK activity. In contrast, activation of fos and egr1 occurred independently of RhoA and actin polymerization but was almost completely dependent on MEK activation. These results show that at least two classes of SRF target genes can be distinguished on the basis of their relative sensitivity to RhoA-actin and MEK-ERK signaling pathways.

  3. Search for regulatory factors of the pituitary-specific transcription factor PROP1 gene

    PubMed Central

    NISHIMURA, Naoto; UEHARU, Hiroki; NISHIHARA, Hiroto; SHIBUYA, Shiori; YOSHIDA, Saishu; HIGUCHI, Masashi; KANNO, Naoko; HORIGUCHI, Kotaro; KATO, Takako; KATO, Yukio

    2015-01-01

    Pituitary-specific transcription factor PROP1, a factor important for pituitary organogenesis, appears on rat embryonic day 11.5 (E11.5) in SOX2-expressing stem/progenitor cells and always coexists with SOX2 throughout life. PROP1-positive cells at one point occupy all cells in Rathke’s pouch, followed by a rapid decrease in their number. Their regulatory factors, except for RBP-J, have not yet been clarified. This study aimed to use the 3 kb upstream region and 1st intron of mouse prop1 to pinpoint a group of factors selected on the basis of expression in the early pituitary gland for expression of Prop1. Reporter assays for SOX2 and RBP-J showed that the stem/progenitor marker SOX2 has cell type-dependent inhibitory and activating functions through the proximal and distal upstream regions of Prop1, respectively, while RBP-J had small regulatory activity in some cell lines. Reporter assays for another 39 factors using the 3 kb upstream regions in CHO cells ultimately revealed that 8 factors, MSX2, PAX6, PIT1, PITX1, PITX2, RPF1, SOX8 and SOX11, but not RBP-J, regulate Prop1 expression. Furthermore, a synergy effect with SOX2 was observed for an additional 10 factors, FOXJ1, HES1, HEY1, HEY2, KLF6, MSX1, RUNX1, TEAD2, YBX2 and ZFP36Ll, which did not show substantial independent action. Thus, we demonstrated 19 candidates, including SOX2, to be regulatory factors of Prop1 expression. PMID:26640231

  4. Autogenic synthesis of green- and red-emitting single-phase Pr(2)O(2)CO(3) and PrO(1.833) luminescent nanopowders.

    PubMed

    Calderon Moreno, Jose M; Pol, Vilas G; Suh, Soong-Hyuck; Popa, Monica

    2010-11-01

    This Article reveals a rare synthesis of pure Pr(2)O(2)CO(3) (POC) nanopowder by thermolysis (700 °C) of a single chemical precursor in an autogenic reaction. The autogenic thermolysis of praseodymium acetate is a solvent-free, efficient, and straightforward approach yielding luminescent POC nanoparticles. The as-prepared POC nanopowder converted to PrO(1.833) (PO) powder via combustion. Methodical morphological, structural, and compositional characterizations of POC and PO powders are carried out, supported by mechanistic elucidation and the photoluminescent properties.

  5. Demethionylation of Pro-1 variants of 4-oxalocrotonate tautomerase in Escherichia coli by co-expression with an engineered methionine aminopeptidase

    PubMed Central

    Baas, Bert-Jan; Zandvoort, Ellen; Wasiel, Anna A.; Poelarends, Gerrit J.

    2014-01-01

    4-Oxalocrotonate tautomerase (4-OT) catalyzes the enol-keto tautomerization of 2-hydroxymuconate, utilizing its N-terminal proline (Pro-1) as general base catalyst. Substituting Pro-1 with bulky or charged residues will result in poor or no post-translational removal of the translation-initiating methionine by the methionine aminopeptidase (MetAP) of the Escherichiacoli expression host. Here, we set out to investigate whether co-expression with previously engineered aminopeptidase MetAP-∗TG can be used to produce the P1S, P1H and P1Q variants of 4-OT in a demethionylated form. The P1S variant, which carries a small residue at the penultimate position (the first position after the initiating methionine), was found to be fully processed by wild-type MetAP. The P1S variant has low-level 2-hydroxymuconate tautomerase and promiscuous oxaloacetate decarboxylase activity. The P1Q and P1H variants of 4-OT, which carry bulky residues at the penultimate position, could only be obtained in a demethionylated form (a minor fraction of the purified protein is still composed of methionylated enzyme) by co-expression with MetAP-∗TG. Interestingly, the Gln-1 residue of the demethionylated P1Q variant undergoes intramolecular cyclization to form pyroglutamate (pE), yielding variant P1pE. Whereas the P1H/M1P2H mixture has low-level tautomerase activity, the P1pE/M1P2Q mixture has robust tautomerase activity. The substitution of Pro-1 by Gln, followed by removal of the initiating Met and cyclization of Gln-1 to form pE, is a unique way to obtain a structural analogue of proline on the N-terminus of 4-OT. This opens up new possibilities to study the importance of Pro-1 in recently discovered C–C bond-forming activities of this highly promiscuous tautomerase. PMID:25161874

  6. A Homeodomain Transcription Factor Gene, PfMSX, Activates Expression of Pif Gene in the Pearl Oyster Pinctada fucata

    PubMed Central

    Zhao, Mi; He, Maoxian; Huang, Xiande; Wang, Qi

    2014-01-01

    We reported pearl oyster Pinctada fucata cDNA and genomic characterization of a new homeobox-containing protein, PfMSX. The PfMSX gene encodes a transcription factor that was localized to the nucleus. Analyses of PfMSX mRNA in tissues and developmental stages showed high expressions in mantle or D-shaped larvae. In electrophoretic mobility shift assays (EMSAs) PfMSX binded to MSX consensus binding sites in the 5′ flanking region of the Pif promoter. In co-transfection experiment PfMSX transactivated reporter constructs containing Pif promoter sequences, and mutation of the MSX-binding sites attenuated transactivation. A knockdown experiment using PfMSX dsRNA showed decreased Pif mRNA and unregular crystallization of the nacreous layer using scanning electron microscopy. Our results suggested that PfMSX was a conserved homeodomain transcription factor gene, which can activate Pif gene expression through MSX binding site, and was then involved in the mineralization process in pearl oyster Pinctada fucata. Our data provided important clues about mechanisms regulating biomineralization in pearl oyster. PMID:25099698

  7. Efficient Gene Therapy for Parkinson's Disease Using Astrocytes as Hosts for Localized Neurotrophic Factor Delivery

    PubMed Central

    Drinkut, Anja; Tereshchenko, Yuliya; Schulz, Jörg B; Bähr, Mathias; Kügler, Sebastian

    2012-01-01

    Current gene therapy approaches for Parkinson's disease (PD) deliver neurotrophic factors like glial cell line-derived neurotrophic factor (GDNF) or neurturin via neuronal transgene expression. Since these potent signaling-inducing neurotrophic factors can be distributed through long-distance neuronal projections to unaffected brain sites, this mode of delivery may eventually cause side effects. To explore a localized and thus potentially safer alternative for gene therapy of PD, we expressed GDNF exclusively in astrocytes and evaluated the efficacy of this approach in the mouse 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and rat 6-hydroxy-dopamine (6-OHDA) models of PD. In terms of protection of dopaminergic cell bodies and projections, dopamine (DA) synthesis and behaviour, astrocyte-derived GDNF demonstrated the same efficacy as neuron-derived GDNF. In terms of safety, unilateral striatal GDNF expression in astrocytes did not result in delivery of bio-active GDNF to the contralateral hemispheres (potential off-target sites) as happened when GDNF was expressed in neurons. Thus, astrocytic GDNF expression represents a localized but efficient alternative to current gene therapeutic strategies for the treatment of PD, especially if viral vectors with enhanced tissue penetration are considered. Astrocytic neurotrophic factor expression may open new venues for neurotrophic factor-based gene therapy targeting severe diseases of the brain. PMID:22086235

  8. Linkage and evolutionary relationships of the genes for human clotting factors VII and X

    SciTech Connect

    Polumbo, P.A.; Dierwechter, L.M.; Whitesides, L.D.

    1994-09-01

    Factors VII and X are structurally similar serine proteases which are involved in blood coagulation. The gene for factor X (F10) has been previously mapped to human chromosome 13q34 by in situ hybridization and DNA linkage analysis, and both F10 and the gene for factor VII (F7) have been mapped to this region by dosage studies in patients with chromosomal aneuploidies. We have determined the genetic distance between F7 and F10 using PCR-based polymorphisms and DNA linkage analysis. The F7 locus lies 6 centiMorgans proximal to F10, and the most likely locus order is D13S123-[D13S107/D13S52]-F7-D13S49-D13S54-F10. F7 and F10 share 52% sequence homology in their coding regions, and their exonic organization is identical to the genes for factor IX and protein C. DNA sequence analysis using the neighbor-joining method confirms the evolution of F7 and F10 from a common ancestral gene, but the analysis suggests that one did not arise directly from the other by tandem duplication on chromosome 13. These data contribute to our knowledge of the evolution of the family of vitamin K-dependent serine proteases, and should prove useful in studying families with inherited deficiencies in factor VII or X.

  9. Gene Regulation by the AGL15 Transcription Factor Reveals Hormone Interactions in Somatic Embryogenesis1[OPEN

    PubMed Central

    Zheng, Qiaolin; Zheng, Yumei; Ji, Huihua; Burnie, Whitney

    2016-01-01

    The MADS box transcription factor Arabidopsis (Arabidopsis thaliana) AGAMOUS-LIKE15 (AGL15) and a putative ortholog from soybean (Glycine max), GmAGL15, are able to promote somatic embryogenesis (SE) in these plants when ectopically expressed. SE is an important means of plant regeneration, but many plants, or even particular cultivars, are recalcitrant for this process. Understanding how (Gm)AGL15 promotes SE by identifying and characterizing direct and indirect downstream regulated genes can provide means to improve regeneration by SE for crop improvement and to perform molecular tests of genes. Conserved transcription factors and the genes they regulate in common between species may provide the most promising avenue to identify targets for SE improvement. We show that (Gm)AGL15 negatively regulates auxin signaling in both Arabidopsis and soybean at many levels of the pathway, including the repression of AUXIN RESPONSE FACTOR6 (ARF6) and ARF8 and TRANSPORT INHIBITOR RESPONSE1 as well as the indirect control of components via direct expression of a microRNA-encoding gene. We demonstrate interaction between auxin and gibberellic acid in the promotion of SE and document an inverse correlation between bioactive gibberellic acid and SE in soybean, a difficult crop to transform. Finally, we relate hormone accumulation to transcript accumulation of important soybean embryo regulatory factors such as ABSCISIC ACID INSENSITIVE3 and FUSCA3 and provide a working model of hormone and transcription factor interaction in the control of SE. PMID:27794101

  10. Preimplantation embryo-secreted factors modulate maternal gene expression in rat uterus.

    PubMed

    Yamagami, Kazuki; Islam, M Rashedul; Yoshii, Yuka; Mori, Kazuki; Tashiro, Kosuke; Yamauchi, Nobuhiko

    2016-05-01

    In mammalian reproduction, embryo implantation into the uterus is spatiotemporally regulated by a complex process triggered by a number of factors. Although previous studies have suggested that uterine receptivity is mediated by blastocyst-derived factors, specific functions of embryos remain to be defined during preimplantation. Therefore, the present study was conducted to identify the maternal genes regulated by embryo-secreted factors in the rat uterus. RNA-sequencing (RNA-seq) data revealed that 10 genes are up-regulated in the delayed implantation uterus compared with the pseudopregnancy uterus. The RNA-seq results were further verified by real-time quantitative polymerase chain reaction. Sulf1 expression is significantly (P < 0.05) induced in the delayed implantation uterus, although Areg, Calca, Fxyd4 and Lamc3 show a definite but non-statistically significant increase in their expression levels. During early pregnancy, the levels of Areg, Calca, Fxyd4, Lamc3 and Sulf1 expression at 3.5 days post coitus (dpc) are significantly (P < 0.05) higher than those at 1.5 dpc. Treatment with embryo-conditioned media revealed that Lamc3 and Sulf1 are up-regulated compared with the other genes studied. Thus, embryo-derived factors regulate maternal gene expression, with Lamc3 and Sulf1 possibly being suitable markers for a response study of embryo-secreted factors to improve our understanding of embryo-maternal communication.

  11. Insulin-like growth factor-I gene expression in three models of accelerated lung growth.

    PubMed

    Nobuhara, K K; DiFiore, J W; Ibla, J C; Siddiqui, A M; Ferretti, M L; Fauza, D O; Schnitzer, J J; Wilson, J M

    1998-07-01

    We have learned previously that in utero tracheal ligation reverses the structural and physiological effects of surgically created congenital diaphragmatic hernia. In addition, we have discovered that postnatal lung growth similarly can be accelerated using liquid-based airway distension with perfluorocarbon. Another model of accelerated lung growth is that of compensatory growth seen after neonatal pneumonectomy. In all of these models, growth has occurred because of an increase in alveolar number rather than enlargement of preexisting alveoli. However, the molecular mechanisms underlying these processes remain unknown. The purpose of this study was to determine if gene expression could be altered by changes in physical forces in the prenatal and postnatal lung. The three models of accelerated lung growth studied were the following: (1) The prenatal group, consisted of fetal lambs (n = 12) that underwent the surgical creation of a left diaphragmatic hernia at 90 days' gestation. Six of these animals also underwent simultaneous tracheal ligation. (2) The PFC group consisted of five neonatal animals that underwent isolation of the superior segment of the right upper lobe, with intrabronchial distension with perfluorocarbon to 7 to 10 mm Hg pressure for a 3-week period. (3) The postpneumonectomy group consisted of four neonatal animals that underwent left pneumonectomy. In the fetal study, lungs were retrieved at term (130 days), and in the postnatal study, lungs were retrieved 3 weeks after initial intervention. In all cases, RNA was extracted from snap-frozen lung samples and Northern blot analysis performed. Insulinlike growth factor-I, insulinlike growth factor-II, and vascular endothelial growth factor gene expression were analyzed by densitometry. Insulinlike growth factor-I gene expression was found to be decreased in association with experimental diaphragmatic hernia (P = .005), but restored to normal with tracheal ligation. Insulinlike growth factor-I gene

  12. E2F Transcription Factors Control the Roller Coaster Ride of Cell Cycle Gene Expression.

    PubMed

    Thurlings, Ingrid; de Bruin, Alain

    2016-01-01

    Initially, the E2F transcription factor was discovered as a factor able to bind the adenovirus E2 promoter and activate viral genes. Afterwards it was shown that E2F also binds to promoters of nonviral genes such as C-MYC and DHFR, which were already known at that time to be important for cell growth and DNA metabolism, respectively. These findings provided the first clues that the E2F transcription factor might be an important regulator of the cell cycle. Since this initial discovery in 1987, several additional E2F family members have been identified, and more than 100 targets genes have been shown to be directly regulated by E2Fs, the majority of these are important for controlling the cell cycle. The progression of a cell through the cell cycle is accompanied with the increased expression of a specific set of genes during one phase of the cell cycle and the decrease of the same set of genes during a later phase of the cell cycle. This roller coaster ride, or oscillation, of gene expression is essential for the proper progression through the cell cycle to allow accurate DNA replication and cell division. The E2F transcription factors have been shown to be critical for the temporal expression of the oscillating cell cycle genes. This review will focus on how the oscillation of E2Fs and their targets is regulated by transcriptional, post-transcriptional and post-translational mechanism in mammals, yeast, flies, and worms. Furthermore, we will discuss the functional impact of E2Fs on the cell cycle progression and outline the consequences when E2F expression is disturbed.

  13. The Role of Transcription Factors at Antisense-Expressing Gene Pairs in Yeast.

    PubMed

    Mostovoy, Yulia; Thiemicke, Alexander; Hsu, Tiffany Y; Brem, Rachel B

    2016-06-27

    Genes encoded close to one another on the chromosome are often coexpressed, by a mechanism and regulatory logic that remain poorly understood. We surveyed the yeast genome for tandem gene pairs oriented tail-to-head at which expression antisense to the upstream gene was conserved across species. The intergenic region at most such tandem pairs is a bidirectional promoter, shared by the downstream gene mRNA and the upstream antisense transcript. Genomic analyses of these intergenic loci revealed distinctive patterns of transcription factor regulation. Mutation of a given transcription factor verified its role as a regulator in trans of tandem gene pair loci, including the proximally initiating upstream antisense transcript and downstream mRNA and the distally initiating upstream mRNA. To investigate cis-regulatory activity at such a locus, we focused on the stress-induced NAD(P)H dehydratase YKL151C and its downstream neighbor, the metabolic enzyme GPM1 Previous work has implicated the region between these genes in regulation of GPM1 expression; our mutation experiments established its function in rich medium as a repressor in cis of the distally initiating YKL151C sense RNA, and an activator of the proximally initiating YKL151C antisense RNA. Wild-type expression of all three transcripts required the transcription factor Gcr2. Thus, at this locus, the intergenic region serves as a focal point of regulatory input, driving antisense expression and mediating the coordinated regulation of YKL151C and GPM1 Together, our findings implicate transcription factors in the joint control of neighboring genes specialized to opposing conditions and the antisense transcripts expressed between them.

  14. The Role of Transcription Factors at Antisense-Expressing Gene Pairs in Yeast

    PubMed Central

    Mostovoy, Yulia; Thiemicke, Alexander; Hsu, Tiffany Y.; Brem, Rachel B.

    2016-01-01

    Genes encoded close to one another on the chromosome are often coexpressed, by a mechanism and regulatory logic that remain poorly understood. We surveyed the yeast genome for tandem gene pairs oriented tail-to-head at which expression antisense to the upstream gene was conserved across species. The intergenic region at most such tandem pairs is a bidirectional promoter, shared by the downstream gene mRNA and the upstream antisense transcript. Genomic analyses of these intergenic loci revealed distinctive patterns of transcription factor regulation. Mutation of a given transcription factor verified its role as a regulator in trans of tandem gene pair loci, including the proximally initiating upstream antisense transcript and downstream mRNA and the distally initiating upstream mRNA. To investigate cis-regulatory activity at such a locus, we focused on the stress-induced NAD(P)H dehydratase YKL151C and its downstream neighbor, the metabolic enzyme GPM1. Previous work has implicated the region between these genes in regulation of GPM1 expression; our mutation experiments established its function in rich medium as a repressor in cis of the distally initiating YKL151C sense RNA, and an activator of the proximally initiating YKL151C antisense RNA. Wild-type expression of all three transcripts required the transcription factor Gcr2. Thus, at this locus, the intergenic region serves as a focal point of regulatory input, driving antisense expression and mediating the coordinated regulation of YKL151C and GPM1. Together, our findings implicate transcription factors in the joint control of neighboring genes specialized to opposing conditions and the antisense transcripts expressed between them. PMID:27190003

  15. Discovering gene functional relationships using FAUN (Feature Annotation Using Nonnegative matrix factorization)

    PubMed Central

    2010-01-01

    Background Searching the enormous amount of information available in biomedical literature to extract novel functional relationships among genes remains a challenge in the field of bioinformatics. While numerous (software) tools have been developed to extract and identify gene relationships from biological databases, few effectively deal with extracting new (or implied) gene relationships, a process which is useful in interpretation of discovery-oriented genome-wide experiments. Results In this study, we develop a Web-based bioinformatics software environment called FAUN or Feature Annotation Using Nonnegative matrix factorization (NMF) to facilitate both the discovery and classification of functional relationships among genes. Both the computational complexity and parameterization of NMF for processing gene sets are discussed. FAUN is tested on three manually constructed gene document collections. Its utility and performance as a knowledge discovery tool is demonstrated using a set of genes associated with Autism. Conclusions FAUN not only assists researchers to use biomedical literature efficiently, but also provides utilities for knowledge discovery. This Web-based software environment may be useful for the validation and analysis of functional associations in gene subsets identified by high-throughput experiments. PMID:20946597

  16. Discovering gene functional relationships using FAUN (Feature Annotation Using Nonnegative matrix factorization).

    PubMed

    Tjioe, Elina; Berry, Michael W; Homayouni, Ramin

    2010-10-07

    Searching the enormous amount of information available in biomedical literature to extract novel functional relationships among genes remains a challenge in the field of bioinformatics. While numerous (software) tools have been developed to extract and identify gene relationships from biological databases, few effectively deal with extracting new (or implied) gene relationships, a process which is useful in interpretation of discovery-oriented genome-wide experiments. In this study, we develop a Web-based bioinformatics software environment called FAUN or Feature Annotation Using Nonnegative matrix factorization (NMF) to facilitate both the discovery and classification of functional relationships among genes. Both the computational complexity and parameterization of NMF for processing gene sets are discussed. FAUN is tested on three manually constructed gene document collections. Its utility and performance as a knowledge discovery tool is demonstrated using a set of genes associated with Autism. FAUN not only assists researchers to use biomedical literature efficiently, but also provides utilities for knowledge discovery. This Web-based software environment may be useful for the validation and analysis of functional associations in gene subsets identified by high-throughput experiments.

  17. Evolution by gene duplication of Medicago truncatula PISTILLATA-like transcription factors.

    PubMed

    Roque, Edelín; Fares, Mario A; Yenush, Lynne; Rochina, Mari Cruz; Wen, Jiangqi; Mysore, Kirankumar S; Gómez-Mena, Concepción; Beltrán, José Pío; Cañas, Luis A

    2016-03-01

    PISTILLATA (PI) is a member of the B-function MADS-box gene family, which controls the identity of both petals and stamens in Arabidopsis thaliana. In Medicago truncatula (Mt), there are two PI-like paralogs, known as MtPI and MtNGL9. These genes differ in their expression patterns, but it is not known whether their functions have also diverged. Describing the evolution of certain duplicated genes, such as transcription factors, remains a challenge owing to the complex expression patterns and functional divergence between the gene copies. Here, we report a number of functional studies, including analyses of gene expression, protein-protein interactions, and reverse genetic approaches designed to demonstrate the respective contributions of each M. truncatula PI-like paralog to the B-function in this species. Also, we have integrated molecular evolution approaches to determine the mode of evolution of Mt PI-like genes after duplication. Our results demonstrate that MtPI functions as a master regulator of B-function in M. truncatula, maintaining the overall ancestral function, while MtNGL9 does not seem to have a role in this regard, suggesting that the pseudogenization could be the functional evolutionary fate for this gene. However, we provide evidence that purifying selection is the primary evolutionary force acting on this paralog, pinpointing the conservation of its biochemical function and, alternatively, the acquisition of a new role for this gene.

  18. Associating transcription factor-binding site motifs with target GO terms and target genes

    PubMed Central

    Bodén, Mikael; Bailey, Timothy L.

    2008-01-01

    The roles and target genes of many transcription factors (TFs) are still unknown. To predict the roles of TFs, we present a computational method for associating Gene Ontology (GO) terms with TF-binding motifs. The method works by ranking all genes as potential targets of the TF, and reporting GO terms that are significantly associated with highly ranked genes. We also present an approach, whereby these predicted GO terms can be used to improve predictions of TF target genes. This uses a novel gene-scoring function that reflects the insight that genes annotated with GO terms predicted to be associated with the TF are more likely to be its targets. We construct validation sets of GO terms highly associated with known targets of various yeast and human TF. On the yeast reference sets, our prediction method identifies at least one correct GO term for 73% of the TF, 49% of the correct GO terms are predicted and almost one-third of the predicted GO terms are correct. Results on human reference sets are similarly encouraging. Validation of our target gene prediction method shows that its accuracy exceeds that of simple motif scanning. PMID:18544606

  19. Genome-wide transcription factor gene prediction and their expressional tissue-specificities in maize.

    PubMed

    Jiang, Yi; Zeng, Biao; Zhao, Hainan; Zhang, Mei; Xie, Shaojun; Lai, Jinsheng

    2012-09-01

    Transcription factors (TFs) are important regulators of gene expression. To better understand TF-encoding genes in maize (Zea mays L.), a genome-wide TF prediction was performed using the updated B73 reference genome. A total of 2298 TF genes were identified, which can be classified into 56 families. The largest family, known as the MYB superfamily, comprises 322 MYB and MYB-related TF genes. The expression patterns of 2 014 (87.64%) TF genes were examined using RNA-seq data, which resulted in the identification of a subset of TFs that are specifically expressed in particular tissues (including root, shoot, leaf, ear, tassel and kernel). Similarly, 98 kernel-specific TF genes were further analyzed, and it was observed that 29 of the kernel-specific genes were preferentially expressed in the early kernel developmental stage, while 69 of the genes were expressed in the late kernel developmental stage. Identification of these TFs, particularly the tissue-specific ones, provides important information for the understanding of development and transcriptional regulation of maize.

  20. Transcription factor genes essential for cell proliferation and replicative lifespan in budding yeast

    SciTech Connect

    Kamei, Yuka; Tai, Akiko; Dakeyama, Shota; Yamamoto, Kaori; Inoue, Yamato; Kishimoto, Yoshifumi; Ohara, Hiroya; Mukai, Yukio

    2015-07-31

    Many of the lifespan-related genes have been identified in eukaryotes ranging from the yeast to human. However, there is limited information available on the longevity genes that are essential for cell proliferation. Here, we investigated whether the essential genes encoding DNA-binding transcription factors modulated the replicative lifespan of Saccharomyces cerevisiae. Heterozygous diploid knockout strains for FHL1, RAP1, REB1, and MCM1 genes showed significantly short lifespan. {sup 1}H-nuclear magnetic resonance analysis indicated a characteristic metabolic profile in the Δfhl1/FHL1 mutant. These results strongly suggest that FHL1 regulates the transcription of lifespan related metabolic genes. Thus, heterozygous knockout strains could be the potential materials for discovering further novel lifespan genes. - Highlights: • Involvement of yeast TF genes essential for cell growth in lifespan was evaluated. • The essential TF genes, FHL1, RAP1, REB1, and MCM1, regulate replicative lifespan. • Heterozygous deletion of FHL1 changes cellular metabolism related to lifespan.

  1. TTG2-regulated development is related to expression of putative AUXIN RESPONSE FACTOR genes in tobacco.

    PubMed

    Zhu, Qian; Li, Baoyan; Mu, Shuyuan; Han, Bing; Cui, Runzhi; Xu, Manyu; You, Zhenzhen; Dong, Hansong

    2013-11-20

    The phytohormone auxin mediates a stunning array of plant development through the functions of AUXIN RESPONSE FACTORs (ARFs), which belong to transcription factors and are present as a protein family comprising 10-43 members so far identified in different plant species. Plant development is also subject to regulation by TRANSPARENT TESTA GLABRA (TTG) proteins, such as NtTTG2 that we recently characterized in tobacco Nicotiana tabacum. To find the functional linkage between TTG and auxin in the regulation of plant development, we performed de novo assembly of the tobacco transcriptome to identify candidates of NtTTG2-regulated ARF genes. The role of NtTTG2 in tobacco growth and development was studied by analyzing the biological effects of gene silencing and overexpression. The NtTTG2 gene silencing causes repressive effects on vegetative growth, floral anthocyanin synthesis, flower colorization, and seed production. By contrast, the plant growth and development processes are promoted by NtTTG2 overexpression. The growth/developmental function of NtTTG2 associates with differential expression of putative ARF genes identified by de novo assembly of the tobacco transcriptome. The transcriptome contains a total of 54,906 unigenes, including 30,124 unigenes (54.86%) with annotated functions and at least 8,024 unigenes (14.61%) assigned to plant growth and development. The transcriptome also contains 455 unigenes (0.83%) related to auxin responses, including 40 putative ARF genes. Based on quantitative analyses, the expression of the putative genes is either promoted or inhibited by NtTTG2. The biological effects of the NtTTG2 gene silencing and overexpression suggest that NtTTG2 is an essential regulator of growth and development in tobacco. The effects of the altered NtTTG2 expression on expression levels of putative ARF genes identified in the transcriptome suggest that NtTTG2 functions in relation to ARF transcription factors.

  2. Molecular characterization of metastatic osteosarcoma: Differentially expressed genes, transcription factors and microRNAs.

    PubMed

    Heng, Lisong; Jia, Zhen; Bai, Jie; Zhang, Kun; Zhu, Yangjun; Ma, Jianbing; Zhang, Jun; Duan, Honghao

    2017-05-01

    The present study aimed to understand the molecular mechanisms underlying osteosarcoma metastasis. Microarray dataset GSE49003 was downloaded from the Gene Expression Omnibus database and used for analysis. Raw expression data were preprocessed using the preprocessCore, impute and aggregate packages in R. Differentially expressed genes (DEGs) between metastatic and non‑metastatic osteosarcoma cell lines were screened using the limma package following exclusion of DEGs with a higher significance in intra‑groups compared with inter‑groups using the genefilter package. Enrichment analysis was performed on DEGs using TargetMine, followed by identification of transcription factors (TFs) and microRNAs (miRNAs). Regulatory networks were constructed using Cytoscape software. A total of 248 upregulated and 208 downregulated genes were obtained. The upregulated genes were significantly enriched in the following pathways: Downregulation of transforming growth factor β (TGF‑β) receptor signaling and TGF‑β receptor signaling activates SMADs; these upregulated genes included protein phosphatase 1, regulatory subunit 15A, transforming growth factor, β receptor II and ubiquitin carboxyl‑terminal hydrolase L5. In addition, some upregulated genes were enriched in lung cancer disease ontology, including epidermal growth factor receptor (EGFR), insulin‑like growth factor 2 mRNA binding protein 3 (IGF2BP3), runt‑related transcription factor 3 (RUNX3) and secreted frizzled‑related protein 1 (SFRP1). Conversely, the downregulated genes were significantly enriched in extracellular matrix‑associated pathways or functions, such as collagen, type XII, α 1; collagen, type I, α 1; collagen, type IV, α 1; and collagen, type V, α 1. In addition, some downregulated genes were significantly enriched in the TGF‑β signaling pathway, including bone morphogenetic protein 4, inhibitor of DNA binding 3 and SMAD family member 6. A total of 10 TFs and 84 miRNAs (e.g. miR-21

  3. Divergent Transactivation of Maize Storage Protein Zein Genes by the Transcription Factors Opaque2 and OHPs

    PubMed Central

    Yang, Jun; Ji, Chen; Wu, Yongrui

    2016-01-01

    Maize transcription factors (TFs) opaque2 (O2) and the O2 heterodimerizing proteins (OHP1 and OHP2) originated from an ancient segmental duplication. The 22-kDa (z1C) and 19-kDa (z1A, z1B, and z1D) α-zeins are the most abundant storage proteins in maize endosperm. O2 is known to regulate α-zein gene expression, but its target motifs in the 19-kDa α-zein gene promoters have not been identified. The mechanisms underlying the regulation of α-zein genes by these TFs are also not well understood. In this study, we found that the O2 binding motifs in the α-zein gene promoters are quite flexible, with ACGT being present in the z1C and z1A promoters and a variant, ACAT, being present in the z1B and z1D promoters. OHPs recognized and transactivated all of the α-zein promoters, although to much lower levels than did O2. In the presence of O2, the suppression of OHPs did not cause a significant reduction in the transcription of α-zein genes, but in the absence of O2, OHPs were critical for the expression of residual levels of α-zeins. These findings demonstrated that O2 is the primary TF and that OHPs function as minor TFs in this process. This relationship is the converse of that involved in 27-kDa γ-zein gene regulation, indicating that the specificities of O2 and the OHPs for regulating zein genes diverged after gene duplication. The prolamine-box binding factor by itself has limited transactivation activity, but it promotes the binding of O2 to O2 motifs, resulting in the synergistic transactivation of α-zein genes. PMID:27474726

  4. Chromatin Remodeling Mediated by Drosophila GAGA Factor and ISWI Activates fushi tarazu Gene Transcription In Vitro

    PubMed Central

    Okada, Masahiro; Hirose, Susumu

    1998-01-01

    GAGA factor is known to remodel the chromatin structure in concert with nucleosome-remodeling factor NURF in a Drosophila embryonic S150 extract. The promoter region of the Drosophila fushi tarazu (ftz) gene carries several binding sites for GAGA factor. Both the GAGA factor-binding sites and GAGA factor per se are necessary for the proper expression of ftz in vivo. We observed transcriptional activation of the ftz gene when a preassembled chromatin template was incubated with GAGA factor and the S150 extract. The chromatin structure within the ftz promoter was specifically disrupted by incubation of the preassembled chromatin with GAGA factor and the S150 extract. Both transcriptional activation and chromatin disruption were blocked by an antiserum raised against ISWI or by base substitutions in the GAGA factor-binding sites in the ftz promoter region. These results demonstrate that GAGA factor- and ISWI-mediated disruption of the chromatin structure within the promoter region of ftz activates transcription on the chromatin template. PMID:9566866

  5. Gene-environment interaction between adiponectin gene polymorphisms and environmental factors on the risk of diabetic retinopathy.

    PubMed

    Li, Yuan; Wu, Qun Hong; Jiao, Ming Li; Fan, Xiao Hong; Hu, Quan; Hao, Yan Hua; Liu, Ruo Hong; Zhang, Wei; Cui, Yu; Han, Li Yuan

    2015-01-01

    To evaluate whether the adiponectin gene is associated with diabetic retinopathy (DR) risk and interaction with environmental factors modifies the DR risk, and to investigate the relationship between serum adiponectin levels and DR. Four adiponectin polymorphisms were evaluated in 372 DR cases and 145 controls. Differences in environmental factors between cases and controls were evaluated by unconditional logistic regression analysis. The model-free multifactor dimensionality reduction method and traditional multiple regression models were applied to explore interactions between the polymorphisms and environmental factors. Using the Bonferroni method, we found no significant associations between four adiponectin polymorphisms and DR susceptibility. Multivariate logistic regression found that physical activity played a protective role in the progress of DR, whereas family history of diabetes (odds ratio 1.75) and insulin therapy (odds ratio 1.78) were associated with an increased risk for DR. The interaction between the C-11377 G (rs266729) polymorphism and insulin therapy might be associated with DR risk. Family history of diabetes combined with insulin therapy also increased the risk of DR. No adiponectin gene polymorphisms influenced the serum adiponectin levels. Serum adiponectin levels did not differ between the DR group and non-DR group. No significant association was identified between four adiponectin polymorphisms and DR susceptibility after stringent Bonferroni correction. The interaction between C-11377G (rs266729) polymorphism and insulin therapy, as well as the interaction between family history of diabetes and insulin therapy, might be associated with DR susceptibility.

  6. Pituitary transcription factor Prop-1 stimulates porcine follicle-stimulating hormone beta subunit gene expression.

    PubMed

    Aikawa, Satoko; Kato, Takako; Susa, Takao; Tomizawa, Kyoko; Ogawa, Satoshi; Kato, Yukio

    2004-11-12

    Molecular cloning of the transcription factor that modulates the expression of porcine follicle-stimulating hormone beta subunit (FSHbeta) gene was performed by the yeast one-hybrid cloning system using the -852/-746 upstream region (Fd2) as a bait sequence. We eventually cloned a pituitary transcription factor, Prop-1, which has been identified as an upstream transcription factor of Pit-1 gene. Binding ability of Prop-1 to the bait sequence was confirmed using recombinant Prop-1, and the binding property was investigated by DNase I footprinting, revealing that Prop-1 certainly bound to the large AT-rich region throughout the Fd2. Co-transfection of Prop-1 expression vector together with a reporter gene fused with Fd2 in CHO cells demonstrated an attractive stimulation of reporter gene expression. Immunohistochemistry of adult porcine pituitary confirmed the colocalization of the Prop-1 and FSHbeta subunit. This study is the first to report that Prop-1 participates in the regulation of FSHbeta gene. The present finding will provide new insights into the development of pituitary cell lineage and combined pituitary hormone deficiency (CPHD), since why the defect of Prop-1 causes CPHD including gonadotropins (FSH and LH) has yet to be clarified.

  7. Gene therapy, bioengineered clotting factors and novel technologies for hemophilia treatment.

    PubMed

    Pierce, G F; Lillicrap, D; Pipe, S W; Vandendriessche, T

    2007-05-01

    The World Federation of Hemophilia estimates that of the 400,000 individuals worldwide with hemophilia, 300,000 receive either no, or very sporadic, treatment. Thus, considerable innovation will be required to provide cost-effective therapies/cures for all affected individuals. The high cost of prophylactic regimens hampers their widespread use, which further justifies the search for novel cost-effective therapies and ultimately a cure. Five gene transfer phase I clinical trials have been conducted using either direct in vivo gene delivery with viral vectors or ex vivo plasmid transfections and reimplantation of gene-engineered cells. Although there was evidence of gene transfer and therapeutic effects in some of these trials, stable expression of therapeutic factor VIII or FIX levels has not yet been obtained. Further improvements of the vectors and a better understanding of the immune consequences of gene transfer is warranted, as new trials are being initiated. Bioengineered clotting factors with increased stability and/or activity are being validated further in preclinical studies. Novel clotting factor formulations based on PEGylated liposomes with prolonged activities are being tested in the clinic, and are yielding encouraging results.

  8. Regulation of neural gene transcription by optogenetic inhibition of the RE1-silencing transcription factor.

    PubMed

    Paonessa, Francesco; Criscuolo, Stefania; Sacchetti, Silvio; Amoroso, Davide; Scarongella, Helena; Pecoraro Bisogni, Federico; Carminati, Emanuele; Pruzzo, Giacomo; Maragliano, Luca; Cesca, Fabrizia; Benfenati, Fabio

    2016-01-05

    Optogenetics provides new ways to activate gene transcription; however, no attempts have been made as yet to modulate mammalian transcription factors. We report the light-mediated regulation of the repressor element 1 (RE1)-silencing transcription factor (REST), a master regulator of neural genes. To tune REST activity, we selected two protein domains that impair REST-DNA binding or recruitment of the cofactor mSin3a. Computational modeling guided the fusion of the inhibitory domains to the light-sensitive Avena sativa light-oxygen-voltage-sensing (LOV) 2-phototrophin 1 (AsLOV2). By expressing AsLOV2 chimeras in Neuro2a cells, we achieved light-dependent modulation of REST target genes that was associated with an improved neural differentiation. In primary neurons, light-mediated REST inhibition increased Na(+)-channel 1.2 and brain-derived neurotrophic factor transcription and boosted Na(+) currents and neuronal firing. This optogenetic approach allows the coordinated expression of a cluster of genes impinging on neuronal activity, providing a tool for studying neuronal physiology and correcting gene expression changes taking place in brain diseases.

  9. Regulation of neural gene transcription by optogenetic inhibition of the RE1-silencing transcription factor

    PubMed Central

    Paonessa, Francesco; Criscuolo, Stefania; Sacchetti, Silvio; Amoroso, Davide; Scarongella, Helena; Pecoraro Bisogni, Federico; Carminati, Emanuele; Pruzzo, Giacomo; Maragliano, Luca; Cesca, Fabrizia; Benfenati, Fabio

    2016-01-01

    Optogenetics provides new ways to activate gene transcription; however, no attempts have been made as yet to modulate mammalian transcription factors. We report the light-mediated regulation of the repressor element 1 (RE1)-silencing transcription factor (REST), a master regulator of neural genes. To tune REST activity, we selected two protein domains that impair REST-DNA binding or recruitment of the cofactor mSin3a. Computational modeling guided the fusion of the inhibitory domains to the light-sensitive Avena sativa light–oxygen–voltage-sensing (LOV) 2-phototrophin 1 (AsLOV2). By expressing AsLOV2 chimeras in Neuro2a cells, we achieved light-dependent modulation of REST target genes that was associated with an improved neural differentiation. In primary neurons, light-mediated REST inhibition increased Na+-channel 1.2 and brain-derived neurotrophic factor transcription and boosted Na+ currents and neuronal firing. This optogenetic approach allows the coordinated expression of a cluster of genes impinging on neuronal activity, providing a tool for studying neuronal physiology and correcting gene expression changes taking place in brain diseases. PMID:26699507

  10. MGMT DNA repair gene promoter/enhancer haplotypes alter transcription factor binding and gene expression.

    PubMed

    Xu, Meixiang; Cross, Courtney E; Speidel, Jordan T; Abdel-Rahman, Sherif Z

    2016-10-01

    The O(6)-methylguanine-DNA methyltransferase (MGMT) protein removes O(6)-alkyl-guanine adducts from DNA. MGMT expression can thus alter the sensitivity of cells and tissues to environmental and chemotherapeutic alkylating agents. Previously, we defined the haplotype structure encompassing single nucleotide polymorphisms (SNPs) in the MGMT promoter/enhancer (P/E) region and found that haplotypes, rather than individual SNPs, alter MGMT promoter activity. The exact mechanism(s) by which these haplotypes exert their effect on MGMT promoter activity is currently unknown, but we noted that many of the SNPs comprising the MGMT P/E haplotypes are located within or in close proximity to putative transcription factor binding sites. Thus, these haplotypes could potentially affect transcription factor binding and, subsequently, alter MGMT promoter activity. In this study, we test the hypothesis that MGMT P/E haplotypes affect MGMT promoter activity by altering transcription factor (TF) binding to the P/E region. We used a promoter binding TF profiling array and a reporter assay to evaluate the effect of different P/E haplotypes on TF binding and MGMT expression, respectively. Our data revealed a significant difference in TF binding profiles between the different haplotypes evaluated. We identified TFs that consistently showed significant haplotype-dependent binding alterations (p ≤ 0.01) and revealed their role in regulating MGMT expression using siRNAs and a dual-luciferase reporter assay system. The data generated support our hypothesis that promoter haplotypes alter the binding of TFs to the MGMT P/E and, subsequently, affect their regulatory function on MGMT promoter activity and expression level.

  11. Genome-Wide Dissection of the Heat Shock Transcription Factor Family Genes in Arachis

    PubMed Central

    Wang, Pengfei; Song, Hui; Li, Changsheng; Li, Pengcheng; Li, Aiqin; Guan, Hongshan; Hou, Lei; Wang, Xingjun

    2017-01-01

    Heat shock transcription factors (Hsfs) are important transcription factors (TFs) in protecting plants from damages caused by various stresses. The released whole genome sequences of wild peanuts make it possible for genome-wide analysis of Hsfs in peanut. In this study, a total of 16 and 17 Hsf genes were identified from Arachis duranensis and A. ipaensis, respectively. We identified 16 orthologous Hsf gene pairs in both peanut species; however HsfXs was only identified from A. ipaensis. Orthologous pairs between two wild peanut species were highly syntenic. Based on phylogenetic relationship, peanut Hsfs were divided into groups A, B, and C. Selection pressure analysis showed that group B Hsf genes mainly underwent positive selection and group A Hsfs were affected by purifying selection. Small scale segmental and tandem duplication may play important roles in the evolution of these genes. Cis-elements, such as ABRE, DRE, and HSE, were found in the promoters of most Arachis Hsf genes. Five AdHsfs and two AiHsfs contained fungal elicitor responsive elements suggesting their involvement in response to fungi infection. These genes were differentially expressed in cultivated peanut under abiotic stress and Aspergillus flavus infection. AhHsf2 and AhHsf14 were significantly up-regulated after inoculation with A. flavus suggesting their possible role in fungal resistance. PMID:28220134

  12. Undifferentiated embryonic cell transcription factor 1 regulates ESC chromatin organization and gene expression.

    PubMed

    Kooistra, Susanne M; van den Boom, Vincent; Thummer, Rajkumar P; Johannes, Frank; Wardenaar, René; Tesson, Bruno M; Veenhoff, Liesbeth M; Fusetti, Fabrizia; O'Neill, Laura P; Turner, Bryan M; de Haan, Gerald; Eggen, Bart J L

    2010-10-01

    Previous reports showed that embryonic stem (ES) cells contain hyperdynamic and globally transcribed chromatin-properties that are important for ES cell pluripotency and differentiation. Here, we demonstrate a role for undifferentiated embryonic cell transcription factor 1 (UTF1) in regulating ES cell chromatin structure. Using chromatin immunoprecipitation-on-chip analysis, we identified >1,700 UTF1 target genes that significantly overlap with previously identified Nanog, Oct4, Klf-4, c-Myc, and Rex1 targets. Gene expression profiling showed that UTF1 knock down results in increased expression of a large set of genes, including a significant number of UTF1 targets. UTF1 knock down (KD) ES cells are, irrespective of the increased expression of several self-renewal genes, Leukemia inhibitory factor (LIF) dependent. However, UTF1 KD ES cells are perturbed in their differentiation in response to dimethyl sulfoxide (DMSO) or after LIF withdrawal and display increased colony formation. UTF1 KD ES cells display extensive chromatin decondensation, reflected by a dramatic increase in nucleosome release on micrococcal nuclease (MNase) treatment and enhanced MNase sensitivity of UTF1 target genes in UTF1 KD ES cells. Summarizing, our data show that UTF1 is a key chromatin component in ES cells, preventing ES cell chromatin decondensation, and aberrant gene expression; both essential for proper initiation of lineage-specific differentiation of ES cells.

  13. Mitotic retention of gene expression patterns by the cell fate-determining transcription factor Runx2

    PubMed Central

    Young, Daniel W.; Hassan, Mohammad Q.; Yang, Xiao-Qing; Galindo, Mario; Javed, Amjad; Zaidi, Sayyed K.; Furcinitti, Paul; Lapointe, David; Montecino, Martin; Lian, Jane B.; Stein, Janet L.; van Wijnen, Andre J.; Stein, Gary S.

    2007-01-01

    During cell division, cessation of transcription is coupled with mitotic chromosome condensation. A fundamental biological question is how gene expression patterns are retained during mitosis to ensure the phenotype of progeny cells. We suggest that cell fate-determining transcription factors provide an epigenetic mechanism for the retention of gene expression patterns during cell division. Runx proteins are lineage-specific transcription factors that are essential for hematopoietic, neuronal, gastrointestinal, and osteogenic cell fates. Here we show that Runx2 protein is stable during cell division and remains associated with chromosomes during mitosis through sequence-specific DNA binding. Using siRNA-mediated silencing, mitotic cell synchronization, and expression profiling, we identify Runx2-regulated genes that are modulated postmitotically. Novel target genes involved in cell growth and differentiation were validated by chromatin immunoprecipitation. Importantly, we find that during mitosis, when transcription is shut down, Runx2 selectively occupies target gene promoters, and Runx2 deficiency alters mitotic histone modifications. We conclude that Runx proteins have an active role in retaining phenotype during cell division to support lineage-specific control of gene expression in progeny cells. PMID:17360627

  14. miR-370 suppresses HBV gene expression and replication by targeting nuclear factor IA.

    PubMed

    Fan, Hongxia; Lv, Ping; Lv, Jing; Zhao, Xiaopei; Liu, Min; Zhang, Guangling; Tang, Hua

    2017-05-01

    Hepatitis B virus (HBV) infection is a major health problem worldwide. The roles of microRNAs in the regulation of HBV expression are being increasingly recognized. In this study, we found that overexpression of miR-370 suppressed HBV gene expression and replication in Huh7 cells, whereas antisense knockdown of endogenous miR-370 enhanced HBV gene expression and replication in Huh7 cells and HepG2.2.15 cells. Further, we identified the transcription factor nuclear factor IA (NFIA) as a new host target of miR-370. Overexpression and knockdown studies showed that NFIA stimulated HBV gene expression and replication. Importantly, overexpression of NFIA counteracted the effect of miR-370 on HBV gene expression and replication. Further mechanistic studies showed that miR-370 suppressed HBV replication and gene expression by repressing HBV Enhancer I activity, and one of the NFIA binding site in the Enhancer I element was responsible for the repressive effect of miR-370 on HBV Enhancer I activity. Altogether, our results demonstrated that miR-370 suppressed HBV gene expression and replication through repressing NFIA expression, which stimulates HBV replication via direct regulation on HBV Enhancer I activities. Our findings may provide a new antiviral strategy for HBV infection. J. Med. Virol. 89:834-844, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Smooth Muscle Cell Genome Browser: Enabling the Identification of Novel Serum Response Factor Target Genes

    PubMed Central

    Lee, Moon Young; Park, Chanjae; Berent, Robyn M.; Park, Paul J.; Fuchs, Robert; Syn, Hannah; Chin, Albert; Townsend, Jared; Benson, Craig C.; Redelman, Doug; Shen, Tsai-wei; Park, Jong Kun; Miano, Joseph M.; Sanders, Kenton M.; Ro, Seungil

    2015-01-01

    Genome-scale expression data on the absolute numbers of gene isoforms offers essential clues in cellular functions and biological processes. Smooth muscle cells (SMCs) perform a unique contractile function through expression of specific genes controlled by serum response factor (SRF), a transcription factor that binds to DNA sites known as the CArG boxes. To identify SRF-regulated genes specifically expressed in SMCs, we isolated SMC populations from mouse small intestine and colon, obtained their transcriptomes, and constructed an interactive SMC genome and CArGome browser. To our knowledge, this is the first online resource that provides a comprehensive library of all genetic transcripts expressed in primary SMCs. The browser also serves as the first genome-wide map of SRF binding sites. The browser analysis revealed novel SMC-specific transcriptional variants and SRF target genes, which provided new and unique insights into the cellular and biological functions of the cells in gastrointestinal (GI) physiology. The SRF target genes in SMCs, which were discovered in silico, were confirmed by proteomic analysis of SMC-specific Srf knockout mice. Our genome browser offers a new perspective into the alternative expression of genes in the context of SRF binding sites in SMCs and provides a valuable reference for future functional studies. PMID:26241044

  16. Analysis of inner ear potassium recycling genes as potential factors associated with tinnitus.

    PubMed

    Pawełczyk, Małgorzata; Rajkowska, Elżbieta; Kotyło, Piotr; Dudarewicz, Adam; Van Camp, Guy; Śliwińska-Kowalska, Mariola

    2012-09-01

    Tinnitus is defined as a perception of sound in the absence of an external acoustic stimulus. Several factors are known to influence tinnitus, e.g. hearing loss, noise exposure, age, and hypertension. As only certain individuals develop tinnitus in the presence of the above risks and in approximately 50% of cases tinnitus is not attributed to any particular cause, the question arose whether this inter-individual susceptibility to tinnitus could be explained by the influence of genetic factors. To test the hypothesis that genetic variability in genes of the potassium recycling pathway is associated with increased susceptibility to tinnitus. The study group consisted of 626 subjects exposed to occupational noise (128 with tinnitus and 498 without tinnitus). 99 single nucleotide polymorphisms were investigated in 10 genes involved in the potassium recycling pathway in the inner ear, previously selected as putative noise-induced hearing loss (NIHL) candidate genes. Nominally significant associations were obtained for 2 variants in KCNE1 (potassium voltage-gated channel, Isk-related family, member 1) and SLC12A2 (solute carrier family 12, member 2) genes. The first gene contributed to tinnitus that developed independently of hearing loss, while the second one was associated with increased susceptibility to noise-induced hearing loss. Present findings lend support to the notion of potassium recycling pathway genes as possible risk modifiers of tinnitus in individuals with and without hearing loss. Due to the lack of replication in other independent populations these results should be seen as suggestive.

  17. Direct transfer of hepatocyte growth factor gene into kidney suppresses cyclosporin A nephrotoxicity in rats.

    PubMed

    Yazawa, Koji; Isaka, Yoshitaka; Takahara, Shiro; Imai, Enyu; Ichimaru, Naotsugu; Shi, Yi; Namba, Yukiomi; Okuyama, Akihiko

    2004-04-01

    The clinical utility of cyclosporin A (CsA) has been limited by its nephrotoxicity, which is characterized by tubular atrophy, interstitial fibrosis and progressive renal impairment. Hepatocyte growth factor (HGF), which plays diverse roles in the regeneration of the kidney following acute renal failure, has been reported to protect against and salvage renal injury by acting as a renotropic and anti-fibrotic factor. Here, we investigated protective effects of HGF gene therapy on CsA-induced nephrotoxicity by using an electroporation-mediated gene transfer method. CsA was orally administered as a daily dose of 30 mg/kg in male Sprague-Dawley rats receiving a low sodium diet (0.03% sodium). Plasmid vector encoding HGF (200 micro g) was transferred into the kidney by electroporation. HGF gene transfer resulted in significant increases in plasma HGF levels. Morphological assessment revealed that HGF gene transfer reduced CsA-induced initial tubular injury and inhibited interstitial infiltration of ED-1-positive macrophages. In addition, northern blot analysis demonstrated that cortical mRNA levels of TGF-beta and type I collagen were suppressed in the HGF group. Finally, HGF gene transfer significantly reduced striped interstitial phenotypic alterations and fibrosis in CsA-treated rats, as assessed by alpha-smooth muscle actin expression and Masson's trichrome staining. These results suggest that HGF may prevent CsA-induced tubulointerstitial fibrosis, indicating that HGF gene transfer may provide a potential strategy for preventing renal fibrosis.

  18. Decoupling of evolutionary changes in transcription factor binding and gene expression in mammals.

    PubMed

    Wong, Emily S; Thybert, David; Schmitt, Bianca M; Stefflova, Klara; Odom, Duncan T; Flicek, Paul

    2015-02-01

    To understand the evolutionary dynamics between transcription factor (TF) binding and gene expression in mammals, we compared transcriptional output and the binding intensities for three tissue-specific TFs in livers from four closely related mouse species. For each transcription factor, TF-dependent genes and the TF binding sites most likely to influence mRNA expression were identified by comparing mRNA expression levels between wild-type and TF knockout mice. Independent evolution was observed genome-wide between the rate of change in TF binding and the rate of change in mRNA expression across taxa, with the exception of a small number of TF-dependent genes. We also found that binding intensities are preferentially conserved near genes whose expression is dependent on the TF, and the conservation is shared among binding peaks in close proximity to each other near the TSS. Expression of TF-dependent genes typically showed an increased sensitivity to changes in binding levels as measured by mRNA abundance. Taken together, these results highlight a significant tolerance to evolutionary changes in TF binding intensity in mammalian transcriptional networks and suggest that some TF-dependent genes may be largely regulated by a single TF across evolution.

  19. Genome-Wide Dissection of the Heat Shock Transcription Factor Family Genes in Arachis.

    PubMed

    Wang, Pengfei; Song, Hui; Li, Changsheng; Li, Pengcheng; Li, Aiqin; Guan, Hongshan; Hou, Lei; Wang, Xingjun

    2017-01-01

    Heat shock transcription factors (Hsfs) are important transcription factors (TFs) in protecting plants from damages caused by various stresses. The released whole genome sequences of wild peanuts make it possible for genome-wide analysis of Hsfs in peanut. In this study, a total of 16 and 17 Hsf genes were identified from Arachis duranensis and A. ipaensis, respectively. We identified 16 orthologous Hsf gene pairs in both peanut species; however HsfXs was only identified from A. ipaensis. Orthologous pairs between two wild peanut species were highly syntenic. Based on phylogenetic relationship, peanut Hsfs were divided into groups A, B, and C. Selection pressure analysis showed that group B Hsf genes mainly underwent positive selection and group A Hsfs were affected by purifying selection. Small scale segmental and tandem duplication may play important roles in the evolution of these genes. Cis-elements, such as ABRE, DRE, and HSE, were found in the promoters of most Arachis Hsf genes. Five AdHsfs and two AiHsfs contained fungal elicitor responsive elements suggesting their involvement in response to fungi infection. These genes were differentially expressed in cultivated peanut under abiotic stress and Aspergillus flavus infection. AhHsf2 and AhHsf14 were significantly up-regulated after inoculation with A. flavus suggesting their possible role in fungal resistance.

  20. Expression and comparative genomics of two serum response factor genes in zebrafish.

    PubMed

    Davis, Jody L; Long, Xiaochun; Georger, Mary A; Scott, Ian C; Rich, Adam; Miano, Joseph M

    2008-01-01

    Serum response factor (SRF) is a single copy, highly conserved transcription factor that governs the expression of hundreds of genes involved with actin cytoskeletal organization, cellular growth and signaling, neuronal circuitry and muscle differentiation. Zebrafish have emerged as a facile and inexpensive vertebrate model to delineate gene expression, regulation, and function, and yet the study of SRF in this animal has been virtually unexplored. Here, we report the existence of two srf genes in zebrafish, with partially overlapping patterns of expression in 3 and 7 day old developing animals. The mammalian ortholog (srf1) encodes for a 520 amino acid protein expressed in adult vascular and visceral smooth muscle cells, cardiac and skeletal muscle, as well as neuronal cells. The second zebrafish srf gene (srf2), encoding for a presumptive protein of only 314 amino acids, is transcribed at lower levels and appears to be less widely expressed across adult tissues. Both srf genes are induced by the SRF coactivator myocardin and attenuated with a short hairpin RNA to mammalian SRF. Promoter studies with srf1 reveal conserved CArG boxes that are the targets of SRF-myocardin in embryonic zebrafish cells. These results reveal that SRF was duplicated in the zebrafish genome and that its protein expression in all three muscle cell types is highly conserved across vertebrate animals suggesting an ancient code for transcriptional regulation of genes unique to muscle cell lineages.

  1. A Histologically Distinctive Interstitial Pneumonia Induced by Overexpression of the Interleukin 6, Transforming Growth Factor β1, or Platelet-Derived Growth Factor B Gene

    NASA Astrophysics Data System (ADS)

    Yoshida, Mitsuhiro; Sakuma, Junko; Hayashi, Seiji; Abe, Kin'ya; Saito, Izumu; Harada, Shizuko; Sakatani, Mitsunoir; Yamamoto, Satoru; Matsumoto, Norinao; Kaneda, Yasufumi; Kishmoto, Tadamitsu

    1995-10-01

    Interstitial pneumonia is characterized by alveolitis with resulting fibrosis of the interstitium. To determine the relevance of humoral factors in the pathogenesis of interstitial pneumonia, we introduced expression vectors into Wistar rats via the trachea to locally overexpress humoral factors in the lungs. Human interleukin (IL) 6 and IL-6 receptor genes induced lymphocytic alveolitis without marked fibroblast proliferation. In contrast, overexpression of human transforming growth factor β1 or human platelet-derived growth factor B gene induced only mild or apparent cellular infiltration in the alveoli, respectively. However, both factors induced significant proliferation of fibroblasts and deposition of collagen fibrils. These histopathologic changes induced by the transforming growth factor β1 and platelet-derived growth factor B gene are partly akin to those changes seen in lung tissues from patients with pulmonary fibrosis and markedly contrast with the changes induced by overexpression of the IL-6 and IL-6 receptor genes that mimics lymphocytic interstitial pneumonia.

  2. Alcohol-related genes show an enrichment of associations with a persistent externalizing factor.

    PubMed

    Ashenhurst, James R; Harden, K Paige; Corbin, William R; Fromme, Kim

    2016-10-01

    Research using twins has found that much of the variability in externalizing phenotypes-including alcohol and drug use, impulsive personality traits, risky sex, and property crime-is explained by genetic factors. Nevertheless, identification of specific genes and variants associated with these traits has proven to be difficult, likely because individual differences in externalizing are explained by many genes of small individual effect. Moreover, twin research indicates that heritable variance in externalizing behaviors is mostly shared across the externalizing spectrum rather than specific to any behavior. We use a longitudinal, "deep phenotyping" approach to model a general externalizing factor reflecting persistent engagement in a variety of socially problematic behaviors measured at 11 assessment occasions spanning early adulthood (ages 18 to 28). In an ancestrally homogenous sample of non-Hispanic Whites (N = 337), we then tested for enrichment of associations between the persistent externalizing factor and a set of 3,281 polymorphisms within 104 genes that were previously identified as associated with alcohol-use behaviors. Next, we tested for enrichment among domain-specific factors (e.g., property crime) composed of residual variance not accounted for by the common factor. Significance was determined relative to bootstrapped empirical thresholds derived from permutations of phenotypic data. Results indicated significant enrichment of genetic associations for persistent externalizing, but not for domain-specific factors. Consistent with twin research findings, these results suggest that genetic variants are broadly associated with externalizing behaviors rather than unique to specific behaviors. (PsycINFO Database Record

  3. Hepatic nuclear factor 3 and nuclear factor 1 regulate 5-aminolevulinate synthase gene expression and are involved in insulin repression.

    PubMed

    Scassa, María E; Guberman, Alejandra S; Ceruti, Julieta M; Cánepa, Eduardo T

    2004-07-02

    Although the negative regulation of gene expression by insulin has been widely studied, the transcription factors responsible for the insulin effect are still unknown. The purpose of this work was to explore the molecular mechanisms involved in the insulin repression of the 5-aminolevulinate synthase (ALAS) gene. Deletion analysis of the 5'-regulatory region allowed us to identify an insulin-responsive region located at -459 to -354 bp. This fragment contains a highly homologous insulin-responsive (IRE) sequence. By transient transfection assays, we determined that hepatic nuclear factor 3 (HNF3) and nuclear factor 1 (NF1) are necessary for an appropriate expression of the ALAS gene. Insulin overrides the HNF3beta or HNF3beta plus NF1-mediated stimulation of ALAS transcriptional activity. Electrophoretic mobility shift assay and Southwestern blotting indicate that HNF3 binds to the ALAS promoter. Mutational analysis of this region revealed that IRE disruption abrogates insulin action, whereas mutation of the HNF3 element maintains hormone responsiveness. This dissociation between HNF3 binding and insulin action suggests that HNF3beta is not the sole physiologic mediator of insulin-induced transcriptional repression. Furthermore, Southwestern blotting assay shows that at least two polypeptides other than HNF3beta can bind to ALAS promoter and that this binding is dependent on the integrity of the IRE. We propose a model in which insulin exerts its negative effect through the disturbance of HNF3beta binding or transactivation potential, probably due to specific phosphorylation of this transcription factor by Akt. In this regard, results obtained from transfection experiments using kinase inhibitors support this hypothesis. Due to this event, NF1 would lose accessibility to the promoter. The posttranslational modification of HNF3 would allow the binding of a protein complex that recognizes the core IRE. These results provide a potential mechanism for the insulin

  4. Nerve Growth Factor Gene Therapy: Activation of Neuronal Responses in Alzheimer Disease.

    PubMed

    Tuszynski, Mark H; Yang, Jennifer H; Barba, David; U, Hoi-Sang; Bakay, Roy A E; Pay, Mary M; Masliah, Eliezer; Conner, James M; Kobalka, Peter; Roy, Subhojit; Nagahara, Alan H

    2015-10-01

    Alzheimer disease (AD) is the most common neurodegenerative disorder and lacks effective disease-modifying therapies. In 2001, we initiated a clinical trial of nerve growth factor (NGF) gene therapy in AD, the first effort at gene delivery in an adult neurodegenerative disorder. This program aimed to determine whether a nervous system growth factor prevents or reduces cholinergic neuronal degeneration in patients with AD. We present postmortem findings in 10 patients with survival times ranging from 1 to 10 years after treatment. To determine whether degenerating neurons in AD retain an ability to respond to a nervous system growth factor delivered after disease onset. Patients in this anatomicopathological study were enrolled in clinical trials from March 2001 to October 2012 at the University of California, San Diego, Medical Center in La Jolla. Ten patients with early AD underwent NGF gene therapy using ex vivo or in vivo gene transfer. The brains of all 8 patients in the first phase 1 ex vivo trial and of 2 patients in a subsequent phase 1 in vivo trial were examined. Brains were immunolabeled to evaluate in vivo gene expression, cholinergic neuronal responses to NGF, and activation of NGF-related cell signaling. In 2 patients, NGF protein levels were measured by enzyme-linked immunosorbent assay. Among 10 patients, degenerating neurons in the AD brain responded to NGF. All patients exhibited a trophic response to NGF in the form of axonal sprouting toward the NGF source. Comparing treated and nontreated sides of the brain in 3 patients who underwent unilateral gene transfer, cholinergic neuronal hypertrophy occurred on the NGF-treated side (P < .05). Activation of cellular signaling and functional markers was present in 2 patients who underwent adeno-associated viral vectors (serotype 2)-mediated NGF gene transfer. Neurons exhibiting tau pathology and neurons free of tau expressed NGF, indicating that degenerating cells can be infected with therapeutic

  5. Members of the barley NAC transcription factor gene family show differential co-regulation with senescence-associated genes during senescence of flag leaves.

    PubMed

    Christiansen, Michael W; Gregersen, Per L

    2014-07-01

    The senescence process of plants is important for the completion of their life cycle, particularly for crop plants, it is essential for efficient nutrient remobilization during seed filling. It is a highly regulated process, and in order to address the regulatory aspect, the role of genes in the NAC transcription factor family during senescence of barley flag leaves was studied. Several members of the NAC transcription factor gene family were up-regulated during senescence in a microarray experiment, together with a large range of senescence-associated genes, reflecting the coordinated activation of degradation processes in senescing barley leaf tissues. This picture was confirmed in a detailed quantitative reverse transcription-PCR (qRT-PCR) experiment, which also showed distinct gene expression patterns for different members of the NAC gene family, suggesting a group of ~15 out of the 47 studied NAC genes to be important for signalling processes and for the execution of degradation processes during leaf senescence in barley. Seven models for DNA-binding motifs for NAC transcription factors were designed based on published motifs, and available promoter sequences of barley genes were screened for the motifs. Genes up-regulated during senescence showed a significant over-representation of the motifs, suggesting regulation by the NAC transcription factors. Furthermore, co-regulation studies showed that genes possessing the motifs in the promoter in general were highly co-expressed with members of the NAC gene family. In conclusion, a list of up to 15 NAC genes from barley that are strong candidates for being regulatory factors of importance for senescence and biotic stress-related traits affecting the productivity of cereal crop plants has been generated. Furthermore, a list of 71 senescence-associated genes that are potential target genes for these NAC transcription factors is presented.

  6. Hypoxia-Inducible Factor-1α Target Genes Contribute to Retinal Neuroprotection

    PubMed Central

    Cheng, Lin; Yu, Honghua; Yan, Naihong; Lai, Kunbei; Xiang, Mengqing

    2017-01-01

    Hypoxia-inducible factor (HIF) is a transcription factor that facilitates cellular adaptation to hypoxia and ischemia. Long-standing evidence suggests that one isotype of HIF, HIF-1α, is involved in the pathogenesis of various solid tumors and cardiac diseases. However, the role of HIF-1α in retina remains poorly understood. HIF-1α has been recognized as neuroprotective in cerebral ischemia in the past two decades. Additionally, an increasing number of studies has shown that HIF-1α and its target genes contribute to retinal neuroprotection. This review will focus on recent advances in the studies of HIF-1α and its target genes that contribute to retinal neuroprotection. A thorough understanding of the function of HIF-1α and its target genes may lead to identification of novel therapeutic targets for treating degenerative retinal diseases including glaucoma, age-related macular degeneration, diabetic retinopathy, and retinal vein occlusions. PMID:28289375

  7. Murine chromosomal location of five bHLH-Zip transcription factor genes

    SciTech Connect

    Steingrimsson, E.; Gilbert, D.J.; Copeland, N.G.; Jenkins, N.A.

    1995-07-20

    The genes for the bHLH-Zip transcription factors Tfap4, Mxi1, Tcfeb, Usf1, and Usf2 have been mapped in mouse by interspecific backcross analysis. Mxi1, Usf1, and Usf2 have been mapped previously by in situ hybridization, but their positions on the meiotic linkage map had not been determined. The other two genes have not previously been mapped in mouse. These transcription factors belong to a growing family of transcriptional regulators, some of which are known to form a complex network of interacting proteins that control cell proliferation and apoptosis. As expected, based on mapping studies of other bHLH-Zip genes, these loci were well distributed among mouse chromosomes. In addition, some of the probes used in this study detected multiple, independently segregating loci, suggesting the possible existence of additional family members or species-specific pseudogenes. 34 refs., 1 fig., 1 tab.

  8. Gene deregulation and chronic activation in natural killer cells deficient in the transcription factor ETS1.

    PubMed

    Ramirez, Kevin; Chandler, Katherine J; Spaulding, Christina; Zandi, Sasan; Sigvardsson, Mikael; Graves, Barbara J; Kee, Barbara L

    2012-06-29

    Multiple transcription factors guide the development of mature functional natural killer (NK) cells, yet little is known about their function. We used global gene expression and genome-wide binding analyses combined with developmental and functional studies to unveil three roles for the ETS1 transcription factor in NK cells. ETS1 functions at the earliest stages of NK cell development to promote expression of critical transcriptional regulators including T-BET and ID2, NK cell receptors (NKRs) including NKp46, Ly49H, and Ly49D, and signaling molecules essential for NKR function. As a consequence, Ets1(-/-) NK cells fail to degranulate after stimulation through activating NKRs. Nonetheless, these cells are hyperresponsive to cytokines and have characteristics of chronic stimulation including increased expression of inhibitory NKRs and multiple activation-associated genes. Therefore, ETS1 regulates a broad gene expression program in NK cells that promotes target cell recognition while limiting cytokine-driven activation.

  9. Gene-Environment Interplay in Internalizing Disorders: Consistent Findings across Six Environmental Risk Factors

    ERIC Educational Resources Information Center

    Hicks, Brian M.; Dirago, Ana C.; Iacono, William G.; McGue, Matt

    2009-01-01

    Background: Behavior genetic methods can help to elucidate gene-environment (G-E) interplay in the development of internalizing (INT) disorders (i.e., major depression and anxiety disorders). To date, however, no study has conducted a comprehensive analysis examining multiple environmental risk factors with the purpose of delineating general…

  10. Factor 8 (F8) gene mutation profile of Turkish hemophilia A patients with inhibitors.

    PubMed

    Fidanci, Inanç D; Kavakli, Kaan; Uçar, Canan; Timur, Cetin; Meral, Adalet; Kilinç, Yurdanur; Sayilan, Hülya; Kazanci, Elif; Cağlayan, S Hande

    2008-07-01

    Factor VIII (FVIII) replacement therapy is ineffective in hemophilia A patients who develop alloantibodies (inhibitors) against FVIII. The type of factor 8 (F8) gene mutation, genes in the major histocompatibility complex loci, and also polymorphisms in IL-10 and tumor necrosis factor-alpha are the major predisposing factors for inhibitor formation. The present study was initiated to reveal the F8 gene mutation profile of 30 severely affected high-responder patients with inhibitor levels of more than 5 Bethesda U (BU)/ml and four low-responder patients with inhibitors less than 5 BU/ml. Southern blot and PCR analysis were performed to detect intron 22 and intron 1 inversions, respectively. Point mutations were screened by DNA sequence analysis of all coding regions, intron/exon boundaries, promoter and 3' UTR regions of the F8 gene. The prevalent mutation was the intron 22 inversion among the high-responder patients followed by large deletions, small deletions, and nonsense mutations. Only one missense and one splicing error mutation was seen. Among the low-responder patients, three single nucleotide deletions and one intron 22 inversion were found. All mutation types detected were in agreement with the severe hemophilia A phenotype, most likely leading to a deficiency of and predisposition to the development of alloantibodies against FVIII. It is seen that Turkish hemophilia A patients with major molecular defects have a higher possibility of developing inhibitors.

  11. Fibroblast growth factor-1-inducible gene FR-17 encodes a nonmuscle alpha-actinin isoform.

    PubMed

    Hsu, D K; Guo, Y; Alberts, G F; Peifley, K A; Winkles, J A

    1996-05-01

    Polypeptide growth factor binding to cell surface receptors activates a cytoplasmic signaling cascade that ultimately promotes the expression of specific nuclear genes. As an approach to investigate the molecular mechanism of fibroblast growth factor (FGF)-1 mitogenic signaling, we have begun to identify and characterize FGF-1-inducible genes in murine NIH 3T3 cells. Here we report that one of these genes, termed FGF-regulated (FR)-17, is predicted to encode a nonmuscle isoform of alpha-actinin, an actin cross-linking protein found along microfilaments and in focal adhesion plaques. FGF-1 induction of alpha-actinin mRNA expression is first detectable at 2 h after mitogen addition and is dependent on the novo RNA and protein synthesis. Maximal alpha-actinin mRNA expression, corresponding to an approximately nineteenfold level of induction, is present after 12 h of FGF-1 stimulation. Western blot analysis indicated that FGF-1-stimulated cells also produce an increased amount of alpha-actinin protein. The FGF-1-related mitogen FGF-2, calf serum, several of the polypeptide growth factors present in serum, and the tumor promoter phorbol myristate acetate can also induce alpha-actinin mRNA expression. Finally, nonmuscle alpha-actinin mRNA is expressed in vivo in a tissue-specific manner, with relatively high levels detected in adult mouse intestine and kidney. These results indicate that nonmuscle alpha-actinin is a serum-, polypeptide growth factor-, and tumor promoter-inducible gene in mouse fibroblasts.

  12. Distribution of fiber development genes and transcription factors between At and Dt subgenomes in tetraploid cotton

    USDA-ARS?s Scientific Manuscript database

    As the worlds leading natural material used in the manufacture of textiles, cotton fibers are important seed trichomes derived from individual cells of the epidermal layer of the seed coat. Cotton fiber development is determined by large numbers of genes and transcription factors. However, little ...

  13. Gene-Environment Interplay in Internalizing Disorders: Consistent Findings across Six Environmental Risk Factors

    ERIC Educational Resources Information Center

    Hicks, Brian M.; Dirago, Ana C.; Iacono, William G.; McGue, Matt

    2009-01-01

    Background: Behavior genetic methods can help to elucidate gene-environment (G-E) interplay in the development of internalizing (INT) disorders (i.e., major depression and anxiety disorders). To date, however, no study has conducted a comprehensive analysis examining multiple environmental risk factors with the purpose of delineating general…

  14. The Pneumocystis Ace2 transcription factor regulates cell wall-remodeling genes and organism virulence.

    PubMed

    Kottom, Theodore J; Limper, Andrew H

    2013-08-16

    Pneumocystis carinii (Pc) β-glucans are major components of the organism cell wall; yet, the regulation of Pc cell wall genesis and remodeling is not well understood. Ace2 transcription factors, which are present in many fungi, regulate glucanases and other enzymes needed for cell wall remodeling. The cloning and heterologous expression of PcAce2 in ace2Δ Saccharomyces cerevisiae demonstrated that PcAce2 can restore the defective glucanase and endochitinase gene expression of the mutant as well as regulate cell wall β-glucan biosynthetic genes. Furthermore, when a reconstructed yeast system was used, PcAce2 activated the transcription of the Pneumocystis gsc1 β-glucan synthetase, confirming the activity of a Pc transcription factor on a native Pneumocystis promoter and gene for the first time. We further observed that Pneumocystis binding to host extracellular matrix proteins and lung epithelial cells induced the phosphorylation (activation) of the PcAce2 transcription factor. Finally, we present a novel method that confirms the role of PcAce2 in modulating organism virulence using ace2Δ Candida glabrata infection in neutropenic mice. Together, these results indicate that the adherence of Pc to lung matrix proteins and epithelial cells leads to the activation of the Ace2 transcription factor, which regulates cell wall degradation and biosynthesis genes that are required for cell wall remodeling.

  15. Semi-supervised Nonnegative Matrix Factorization for gene expression deconvolution: a case study.

    PubMed

    Gaujoux, Renaud; Seoighe, Cathal

    2012-07-01

    Heterogeneity in sample composition is an inherent issue in many gene expression studies and, in many cases, should be taken into account in the downstream analysis to enable correct interpretation of the underlying biological processes. Typical examples are infectious diseases or immunology-related studies using blood samples, where, for example, the proportions of lymphocyte sub-populations are expected to vary between cases and controls. Nonnegative Matrix Factorization (NMF) is an unsupervised learning technique that has been applied successfully in several fields, notably in bioinformatics where its ability to extract meaningful information from high-dimensional data such as gene expression microarrays has been demonstrated. Very recently, it has been applied to biomarker discovery and gene expression deconvolution in heterogeneous tissue samples. Being essentially unsupervised, standard NMF methods are not guaranteed to find components corresponding to the cell types of interest in the sample, which may jeopardize the correct estimation of cell proportions. We have investigated the use of prior knowledge, in the form of a set of marker genes, to improve gene expression deconvolution with NMF algorithms. We found that this improves the consistency with which both cell type proportions and cell type gene expression signatures are estimated. The proposed method was tested on a microarray dataset consisting of pure cell types mixed in known proportions. Pearson correlation coefficients between true and estimated cell type proportions improved substantially (typically from about 0.5 to approximately 0.8) with the semi-supervised (marker-guided) versions of commonly used NMF algorithms. Furthermore known marker genes associated with each cell type were assigned to the correct cell type more frequently for the guided versions. We conclude that the use of marker genes improves the accuracy of gene expression deconvolution using NMF and suggest modifications to how

  16. Multiple cis elements and GATA factors regulate a cuticle collagen gene in C. elegans

    PubMed Central

    Yin, Jianghua; Madaan, Uday; Park, Amy; Aftab, Neelum; Savage-Dunn, Cathy

    2015-01-01

    The cuticle of the nematode Caenorhabditis elegans is a specialized extracellular matrix whose major component is collagen. Cuticle collagens are encoded by a large multi-gene family consisting of more than 150 members. Cuticle collagen genes are expressed in epidermis (hypodermis) and may be stage-specific or cyclically expressed. We identified cuticle collagen genes as transcriptional targets of the DBL-1 TGF-β-related signaling pathway. These studies prompted us to investigate the cis-regulatory sequences required for transcription of one of the target genes, col-41. We generated reporter constructs that reproduce stage- and tissue-specific expression of fluorescent markers. We identify four conserved sequence elements that are required for transcription of reporters. Finally, we provide evidence that col-41 expression is controlled by a sequence element containing two GATA sites and by the epidermal GATA transcription factors ELT-1 and ELT-3. PMID:25711168

  17. Physiological factors affecting transcription of genes involved in the flavonoid biosynthetic pathway in different rice varieties.

    PubMed

    Chen, Xiaoqiong; Itani, Tomio; Wu, Xianjun; Chikawa, Yuuki; Irifune, Kohei

    2013-01-01

    Flavonoids play an important role in the grain color and flavor of rice. Since their characterization in maize, the flavonoid biosynthetic genes have been extensively studied in grape, Arabidopsis, and Petunia. However, we are still a long way from understanding the molecular features and mechanisms underlying the flavonoid biosynthetic pathway. The present study was undertaken to understand the physiological factors affecting the transcription and regulation of these genes. We report that the expression of CHI, CHS, DFR, LAR, and ANS, the 5 flavonoid biosynthetic genes in different rice varieties, differ dramatically with respect to the stage of development, white light, and sugar concentrations. We further demonstrate that white light could induce the transcription of the entire flavonoid biosynthetic gene pathway; however, differences were observed in the degrees of sensitivity and the required illumination time. Our study provides valuable insights into understanding the regulation of the flavonoid biosynthetic pathway.

  18. Systematic repression of transcription factors reveals limited patterns of gene expression changes in ES cells

    PubMed Central

    Nishiyama, Akira; Sharov, Alexei A.; Piao, Yulan; Amano, Misa; Amano, Tomokazu; Hoang, Hien G.; Binder, Bernard Y.; Tapnio, Richard; Bassey, Uwem; Malinou, Justin N.; Correa-Cerro, Lina S.; Yu, Hong; Xin, Li; Meyers, Emily; Zalzman, Michal; Nakatake, Yuhki; Stagg, Carole; Sharova, Lioudmila; Qian, Yong; Dudekula, Dawood; Sheer, Sarah; Cadet, Jean S.; Hirata, Tetsuya; Yang, Hsih-Te; Goldberg, Ilya; Evans, Michele K.; Longo, Dan L.; Schlessinger, David; Ko, Minoru S. H.

    2013-01-01

    Networks of transcription factors (TFs) are thought to determine and maintain the identity of cells. Here we systematically repressed each of 100 TFs with shRNA and carried out global gene expression profiling in mouse embryonic stem (ES) cells. Unexpectedly, only the repression of a handful of TFs significantly affected transcriptomes, which changed in two directions/trajectories: one trajectory by the repression of either Pou5f1 or Sox2; the other trajectory by the repression of either Esrrb, Sall4, Nanog, or Tcfap4. The data suggest that the trajectories of gene expression change are already preconfigured by the gene regulatory network and roughly correspond to extraembryonic and embryonic fates of cell differentiation, respectively. These data also indicate the robustness of the pluripotency gene network, as the transient repression of most TFs did not alter the transcriptomes. PMID:23462645

  19. Chromosomal Duplication Involving the Forkhead Transcription Factor Gene FOXC1 Causes Iris Hypoplasia and Glaucoma

    PubMed Central

    Lehmann, Ordan J.; Ebenezer, Neil D.; Jordan, Tim; Fox, Margaret; Ocaka, Louise; Payne, Annette; Leroy, Bart P.; Clark, Brian J.; Hitchings, Roger A.; Povey, Sue; Khaw, Peng T.; Bhattacharya, Shomi S.

    2000-01-01

    The forkhead transcription factor gene FOXC1 (formerly FKHL7) is responsible for a number of glaucoma phenotypes in families in which the disease maps to 6p25, although mutations have not been found in all families in which the disease maps to this region. In a large pedigree with iris hypoplasia and glaucoma mapping to 6p25 (peak LOD score 6.20 [recombination fraction 0] at D6S967), no FOXC1 mutations were detected by direct sequencing. However, genotyping with microsatellite repeat markers suggested the presence of a chromosomal duplication that segregated with the disease phenotype. The duplication was confirmed in affected individuals by FISH with markers encompassing FOXC1. These results provide evidence of gene duplication causing developmental disease in humans, with increased gene dosage of either FOXC1 or other, as yet unknown genes within the duplicated segment being the probable mechanism responsible for the phenotype. PMID:11007653

  20. Bookmarking target genes in mitosis: a shared epigenetic trait of phenotypic transcription factors and oncogenes?

    PubMed

    Zaidi, Sayyed K; Grandy, Rodrigo A; Lopez-Camacho, Cesar; Montecino, Martin; van Wijnen, Andre J; Lian, Jane B; Stein, Janet L; Stein, Gary S

    2014-01-15

    The regulatory information for phenotype, proliferation, and growth of normal and tumor cells must be maintained through genome replication in the S phase and cell division during mitosis. Epigenetic mechanisms that include DNA methylation, posttranslational modifications of histones, selective utilization of histone variants, and inheritable RNA molecules play pivotal roles in maintaining cellular identity through mitotic divisions. Recent studies demonstrate that mitotic occupancy of genes, which are determinants of cell fate, growth, and proliferation, by lineage-restricted transcription factors is a key epigenetic mechanism for retention and transmission of cellular expression memory. Evidence is emerging for the presence of distinct transcriptional regulatory microenvironments in mitotic chromosomes in which the genes bookmarked for reactivation postmitotically reside. Importantly, some oncoproteins are present in mitotic microenvironments where they occupy target genes during mitosis and may contribute to perpetuating the transformed phenotype. We discuss emerging regulatory implications of epigenetically bookmarking genes during mitosis for physiologic control as well as for the onset and progression of cancer.

  1. Two GATA transcription factors are downstream effectors of floral homeotic gene action in Arabidopsis.

    PubMed

    Mara, Chloe D; Irish, Vivian F

    2008-06-01

    Floral organogenesis is dependent on the combinatorial action of MADS-box transcription factors, which in turn control the expression of suites of genes required for growth, patterning, and differentiation. In Arabidopsis (Arabidopsis thaliana), the specification of petal and stamen identity depends on the action of two MADS-box gene products, APETALA3 (AP3) and PISTILLATA (PI). In a screen for genes whose expression was altered in response to the induction of AP3 activity, we identified GNC (GATA, nitrate-inducible, carbon-metabolism-involved) as being negatively regulated by AP3 and PI. The GNC gene encodes a member of the Arabidopsis GATA transcription factor family and has been implicated in the regulation of chlorophyll biosynthesis as well as carbon and nitrogen metabolism. In addition, we found that the GNC paralog, GNL (GNC-like), is also negatively regulated by AP3 and PI. Using chromatin immunoprecipitation, we showed that promoter sequences of both GNC and GNL are bound by PI protein, suggesting a direct regulatory interaction. Analyses of single and double gnc and gnl mutants indicated that the two genes share redundant roles in promoting chlorophyll biosynthesis, suggesting that in repressing GNC and GNL, AP3/PI have roles in negatively regulating this biosynthetic pathway in flowers. In addition, coexpression analyses of genes regulated by AP3, PI, GNC, and GNL indicate a complex regulatory interplay between these transcription factors in regulating a variety of light and nutrient responsive genes. Together, these results provide new insights into the transcriptional cascades controlling the specification of floral organ identities.

  2. The rates and patterns of deletions in the human factor IX gene

    SciTech Connect

    Ketterling, R.P.; Vielhaber, E.L.; Lind, T.J.; Thorland, E.C.; Sommer S.S. )

    1994-02-01

    Deletions are commonly observed in genes with either segments of highly homologous sequences or excessive gene length. However, in the factor IX gene and in most genes, deletions (of [ge]21 bp) are uncommon. The authors have analyzed DNA from 290 families with hemophilia B (203 independent mutations) and have found 12 deletions >20 bp. Eleven of these are >2 kb (range >3-163 kb), and one is 1.1 kb. The junctions of the four deletions that are completely contained within the factor IX gene have been determined. A novel mutation occurred in patient HB128: the data suggest that a 26.8-kb deletion occurred between two segments of alternating purines and pyrimidines and that a 2.3-kb sense strand segment derived from the deleted region was inserted. For a sample of 203 independent mutations, the authors estimate the [open quotes]baseline[close quotes] rates of deletional mutation per base pair per generation as a function of size. The rate for large (>2 kb)I deletions is exceedingly low. For every mutational event in which a given base is at the junction of a large deletion, there are an estimated 58 microdeletions (<20 bp) and 985 single-base substitutions at that base. Analysis of the nine reported deletion junctions in the factor IX gene literature reveals that (i) five are associated with inversion, orphan sequences, or sense strand insertions; (ii) four are simple deletions that display an excess of short direct repeats at their junctions; (iii) there is no dramatic clustering of junctions within the gene; and (iv) with the exception of alternating purines and pyrimidines, deletion junctions are not preferentially associated with repetitive DNA. 58 refs., 5 figs., 5 tabs.

  3. Transcription factors, sucrose, and sucrose metabolic genes interact to regulate potato phenylpropanoid metabolism

    PubMed Central

    Payyavula, Raja S.; Navarre, Duroy A.

    2013-01-01

    Much remains unknown about how transcription factors and sugars regulate phenylpropanoid metabolism in tuber crops like potato (Solanum tuberosum). Based on phylogeny and protein similarity to known regulators of phenylpropanoid metabolism, 15 transcription factors were selected and their expression was compared in white, yellow, red, and purple genotypes with contrasting phenolic and anthocyanin profiles. Red and purple genotypes had increased phenylalanine ammonia lyase (PAL) enzyme activity, markedly higher levels of phenylpropanoids, and elevated expression of most phenylpropanoid structural genes, including a novel anthocyanin O-methyltransferase. The transcription factors Anthocyanin1 (StAN1), basic Helix Loop Helix1 (StbHLH1), and StWD40 were more strongly expressed in red and purple potatoes. Expression of 12 other transcription factors was not associated with phenylpropanoid content, except for StMYB12B, which showed a negative relationship. Increased expression of AN1, bHLH1, and WD40 was also associated with environmentally mediated increases in tuber phenylpropanoids. Treatment of potato plantlets with sucrose induced hydroxycinnamic acids, flavonols, anthocyanins, structural genes, AN1, bHLH1, WD40, and genes encoding the sucrose-hydrolysing enzymes SUSY1, SUSY4, and INV2. Transient expression of StAN1 in tobacco leaves induced bHLH1, structural genes, SUSY1, SUSY4, and INV1, and increased phenylpropanoid amounts. StAN1 infiltration into tobacco leaves decreased sucrose and glucose concentrations. In silico promoter analysis revealed the presence of MYB and bHLH regulatory elements on sucrolytic gene promoters and sucrose-responsive elements on the AN1 promoter. These findings reveal an interesting dynamic between AN1, sucrose, and sucrose metabolic genes in modulating potato phenylpropanoids. PMID:24098049

  4. Heterogeneity in lipopolysaccharide responsiveness of endothelial cells identified by gene expression profiling: role of transcription factors

    PubMed Central

    Beck, G C; Rafat, N; Brinkkoetter, P; Hanusch, C; Schulte, J; Haak, M; van Ackern, K; van der Woude, F J; Yard, B A

    2006-01-01

    Interindividual differences of endothelial cells in response to endotoxins might contribute to the diversity in clinical outcome among septic patients. The present study was conducted to test the hypothesis that endothelial cells (EC) with high and low proinflammatory potential exist and to dissect the molecular basis underlying this phenomenon. Thirty human umbilical vein endothelial cell (HUVEC) lines were stimulated for 24 h with lipopolysaccharide (LPS) and screened for interleukin (IL)-8 production. Based on IL-8 production five low and five high producers, tentatively called types I and II responders, respectively, were selected for genome-wide gene expression profiling. From the 74 genes that were modulated by LPS in all type II responders, 33 genes were not influenced in type I responders. Among the 41 genes that were increased in both responders, 17 were expressed significantly stronger in type II responders. Apart from IL-8, significant differences in the expression of proinflammatory related genes between types I and II responders were found for adhesion molecules [intercellular adhesion molecule (ICAM-1), E-selectin)], chemokines [monocyte chemoattractant protein (MCP-1), granulocyte chemotactic protein (GCP-2)], cytokines (IL-6) and the transcription factor CCAAT/enhancer binding protein-delta (C/EBP-δ). Type I responders also displayed a low response towards tumour necrosis factor (TNF)-α. In general, maximal activation of nuclear factor (NF)-κB was achieved in type I responders at higher concentrations of LPS compared to type II responders. In the present study we demonstrate that LPS-mediated gene expression differs quantitatively and qualitatively in types I and II responders. Our results suggest a pivotal role for common transcription factors as a low inflammatory response was also observed after TNF-α stimulation. Further studies are required to elucidate the relevance of these findings in terms of clinical outcome in septic patients. PMID

  5. Construction of a mouse model of factor VIII deficiency by gene targeting

    SciTech Connect

    Bi, L.; Lawler, A.; Gearhart, J.

    1994-09-01

    To develop a small animal model of hemophilia A for gene therapy experiments, we set out to construct a mouse model for factor VIII deficiency by gene targeting. First, we screened a mouse liver cDNA library using a human FVIII cDNA probe. We cloned a 2.6 Kb partial mouse factor VIII cDNA which extends from 800 base pairs of the 3{prime} end of exon 14 to the 5{prime} end of exon 26. A mouse genomic library made from strain 129 was then screened to obtain genomic fragments covering the exons desired for homologous recombination. Two genomic clones were obtained, and one covering exon 15 through 22 was used for gene targeting. To make gene targeting constructs, a 5.8 Kb genomic DNA fragment covering exons 15 to 19 of the mouse FVIII gene was subcloned, and the neo expression cassette was inserted into exons 16 and 17 separately by different strategies. These two constructs were named MFVIIIC-16 and MFVIIIC-17. The constructs were linearized and transfected into strain 129 mouse ES cells by electroporation. Factor VIII gene-knockout ES cell lines were selected by G-418 and screened by genomic Southern blots. Eight exon 16 targeted cell lines and five exon 17 targeted cell lines were obtained. Three cell lines from each construct were injected into blastocysts and surgically transferred into foster mothers. Multiple chimeric mice with 70-90% hair color derived from the ES-cell genotype were seen with both constructs. Germ line transmission of the ES-cell genotype has been obtained for the MFVIIIC-16 construct, and multiple hemophilia A carrier females have been identified. Factor VIII-deficient males will be conceived soon.

  6. Association of brain-derived neurotrophic factor and nerve growth factor gene polymorphisms with susceptibility to migraine

    PubMed Central

    Coskun, Salih; Varol, Sefer; Ozdemir, Hasan H; Agacayak, Elif; Aydın, Birsen; Kapan, Oktay; Camkurt, Mehmet Akif; Tunc, Saban; Cevik, Mehmet Ugur

    2016-01-01

    Migraine is one of the most common neurological diseases worldwide. Migraine pathophysiology is very complex. Genetic factors play a major role in migraine. Neurotrophic factors, such as brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), play an important role in central nervous system functioning, development, and modulation of pain. This study investigates whether polymorphisms in the BDNF and NGF genes are associated with migraine disease in a Turkish case–control population. Overall, 576 subjects were investigated (288 patients with migraine and 288 healthy controls) for the following polymorphisms: rs6265(G/A), rs8192466(C/T), rs925946(G/T), rs2049046(A/T), and rs12273363(T/C) in the BDNF gene, and rs6330(C/T), rs11466112(C/T), rs11102930(C/A), and rs4839435(G/A) in the NGF gene using 5′-exonuclease allelic discrimination assays. We found no differences in frequency of the analyzed eight polymorphisms between migraine and control groups. However, the frequency of minor A alleles of rs6265 in BDNF gene was borderline significant in the patients compared with the healthy controls (P=0.049; odds ratios [ORs] [95% confidence intervals {CIs}] =0.723 [0.523–0.999]). Moreover, when the migraine patients were divided into two subgroups, migraine with aura (MA) and migraine without aura (MO), the minor TT genotype of rs6330 in NGF was significantly higher in MA patients than in MO patients (P=0.036) or healthy controls (P=0.026), and this disappeared after correction for multiple testing. Also, the rs6330*T minor allele was more common in the MA group than in the MO group or controls (P=0.011, ORs [95% CIs] =1.626 [1.117–2.365] or P=0.007, ORs [95% CIs] =1.610 [1.140–2.274], respectively). In conclusion, this is the first clinical study to evaluate the association between BDNF and NGF polymorphisms in migraine patients compared with health controls. Our findings suggest that the NGF rs6330*T minor allele might be nominated as a risk

  7. Gene duplication of type-B ARR transcription factors systematically extends transcriptional regulatory structures in Arabidopsis.

    PubMed

    Choi, Seung Hee; Hyeon, Do Young; Lee, Ll Hwan; Park, Su Jin; Han, Seungmin; Lee, In Chul; Hwang, Daehee; Nam, Hong Gil

    2014-11-26

    Many of duplicated genes are enriched in signaling pathways. Recently, gene duplication of kinases has been shown to provide genetic buffering and functional diversification in cellular signaling. Transcription factors (TFs) are also often duplicated. However, how duplication of TFs affects their regulatory structures and functions of target genes has not been explored at the systems level. Here, we examined regulatory and functional roles of duplication of three major ARR TFs (ARR1, 10, and 12) in Arabidopsis cytokinin signaling using wild-type and single, double, and triple deletion mutants of the TFs. Comparative analysis of gene expression profiles obtained from Arabidopsis roots in wild-type and these mutants showed that duplication of ARR TFs systematically extended their transcriptional regulatory structures, leading to enhanced robustness and diversification in functions of target genes, as well as in regulation of cellular networks of target genes. Therefore, our results suggest that duplication of TFs contributes to robustness and diversification in functions of target genes by extending transcriptional regulatory structures.

  8. Cloning and sequence determination of a human rheumatoid factor light-chain gene.

    PubMed Central

    Jirik, F R; Sorge, J; Fong, S; Heitzmann, J G; Curd, J G; Chen, P P; Goldfien, R; Carson, D A

    1986-01-01

    The contribution of germ-line variable regions to autoantibody formation in humans is poorly understood. To study the gene structure of a human autoantibody, chronic lymphatic leukemia (CLL) cells from a patient with an IgM anti-IgG (rheumatoid factor, RF) paraprotein were utilized. The rearranged immunoglobulin gene encoding the kappa light chain for the RF was cloned, and the nucleic acid sequence of its variable region was determined. As demonstrated by Southern blot analysis using a kappa joining-region probe, the CLL cells, stable CLL-WIL2-729-HF2 RF-secreting hybridomas, and the cloned light-chain gene all had an identical restriction fragment containing the rearranged light-chain gene. The CLL RF light chains reacted weakly with an antipeptide antibody against a primary structure-dependent idiotype present on the light chains of the majority of IgM RF paraproteins. The nucleotide and predicted amino acid sequences of the CLL light-chain gene place it in the kappa III variable-region subgroup, and a comparison to known RF paraproteins reveals marked homology to the light-chain amino acid sequence of the IgM RF paraprotein Pom. Both Pom and the CLL light chain appear to identify a second kappa III gene or gene group that is able to encode RF paraprotein light chains. Images PMID:3083417

  9. Gene duplication of type-B ARR transcription factors systematically extends transcriptional regulatory structures in Arabidopsis

    PubMed Central

    Choi, Seung Hee; Hyeon, Do Young; Lee, ll Hwan; Park, Su Jin; Han, Seungmin; Lee, In Chul; Hwang, Daehee; Nam, Hong Gil

    2014-01-01

    Many of duplicated genes are enriched in signaling pathways. Recently, gene duplication of kinases has been shown to provide genetic buffering and functional diversification in cellular signaling. Transcription factors (TFs) are also often duplicated. However, how duplication of TFs affects their regulatory structures and functions of target genes has not been explored at the systems level. Here, we examined regulatory and functional roles of duplication of three major ARR TFs (ARR1, 10, and 12) in Arabidopsis cytokinin signaling using wild-type and single, double, and triple deletion mutants of the TFs. Comparative analysis of gene expression profiles obtained from Arabidopsis roots in wild-type and these mutants showed that duplication of ARR TFs systematically extended their transcriptional regulatory structures, leading to enhanced robustness and diversification in functions of target genes, as well as in regulation of cellular networks of target genes. Therefore, our results suggest that duplication of TFs contributes to robustness and diversification in functions of target genes by extending transcriptional regulatory structures. PMID:25425016

  10. Virus-induced gene complementation reveals a transcription factor network in modulation of tomato fruit ripening

    PubMed Central

    Zhou, Tao; Zhang, Hang; Lai, Tongfei; Qin, Cheng; Shi, Nongnong; Wang, Huizhong; Jin, Mingfei; Zhong, Silin; Fan, Zaifeng; Liu, Yule; Wu, Zirong; Jackson, Stephen; Giovannoni, James J.; Rolin, Dominique; Gallusci, Philippe; Hong, Yiguo

    2012-01-01

    Plant virus technology, in particular virus-induced gene silencing, is a widely used reverse- and forward-genetics tool in plant functional genomics. However the potential of virus technology to express genes to induce phenotypes or to complement mutants in order to understand the function of plant genes is not well documented. Here we exploit Potato virus X as a tool for virus-induced gene complementation (VIGC). Using VIGC in tomato, we demonstrated that ectopic viral expression of LeMADS-RIN, which encodes a MADS-box transcription factor (TF), resulted in functional complementation of the non-ripening rin mutant phenotype and caused fruits to ripen. Comparative gene expression analysis indicated that LeMADS-RIN up-regulated expression of the SBP-box (SQUAMOSA promoter binding protein-like) gene LeSPL-CNR, but down-regulated the expression of LeHB-1, an HD-Zip homeobox TF gene. Our data support the hypothesis that a transcriptional network may exist among key TFs in the modulation of fruit ripening in tomato. PMID:23150786

  11. Correlation of genetic polymorphism of vascular endothelial growth factor gene with susceptibility to lung cancer.

    PubMed

    Liu, C; Zhou, X; Gao, F; Qi, Z; Zhang, Z; Guo, Y

    2015-06-01

    The aim of the study is to study the correlation of genetic polymorphism of vascular endothelial growth factor (VEGF) gene with susceptibility to primary lung cancer. A total of 414 patients with primary lung cancer and 338 healthy volunteers were enrolled in this case-control study from September 2008 to October 2011. Gene identification with PCR-RFLP (polymerase chain reaction-based restriction fragment length polymorphism) was used to detect in white blood cells from the subjects the single-nucleotide polymorphisms (SNP) of VEGF gene, including +405G/C, -460 T/C, -1154G/A, -2578C/A sites. Association of genotypes or haplotypes with susceptibility of lung cancer was analyzed with unconditional logistic regression adjusted by gender and age. Smoking was significantly associated with increased risk of lung cancer. Gene phenotypic analysis demonstrated that C allele of +405G/C in VEGF gene was significantly associated increased risk of lung cancer in males (P=0.0094, odds ratio=1.634.3), as that with carrying GCTC haplotype (odds ratio=1.349), whereas carrying GACG had decreased risk for lung cancer (odds ratio=0.044). No relationship existed between 460 T/C, -1154G/A, -2578C/A alleles of VEGF gene and risk of lung cancer. VEGF gene polymorphism may have a role in the development of lung cancer.

  12. Elevated transcription factor specificity protein 1 in autistic brains alters the expression of autism candidate genes.

    PubMed

    Thanseem, Ismail; Anitha, Ayyappan; Nakamura, Kazuhiko; Suda, Shiro; Iwata, Keiko; Matsuzaki, Hideo; Ohtsubo, Masafumi; Ueki, Takatoshi; Katayama, Taiichi; Iwata, Yasuhide; Suzuki, Katsuaki; Minoshima, Shinsei; Mori, Norio

    2012-03-01

    Profound changes in gene expression can result from abnormalities in the concentrations of sequence-specific transcription factors like specificity protein 1 (Sp1). Specificity protein 1 binding sites have been reported in the promoter regions of several genes implicated in autism. We hypothesize that dysfunction of Sp1 could affect the expression of multiple autism candidate genes, contributing to the heterogeneity of autism. We assessed any alterations in the expression of Sp1 and that of autism candidate genes in the postmortem brain (anterior cingulate gyrus [ACG], motor cortex, and thalamus) of autism patients (n = 8) compared with healthy control subjects (n = 13). Alterations in the expression of candidate genes upon Sp1/DNA binding inhibition with mithramycin and Sp1 silencing by RNAi were studied in SK-N-SH neuronal cells. We observed elevated expression of Sp1 in ACG of autism patients (p = .010). We also observed altered expression of several autism candidate genes. GABRB3, RELN, and HTR2A showed reduced expression, whereas CD38, ITGB3, MAOA, MECP2, OXTR, and PTEN showed elevated expression in autism. In SK-N-SH cells, OXTR, PTEN, and RELN showed reduced expression upon Sp1/DNA binding inhibition and Sp1 silencing. The RNA integrity number was not available for any of the samples. Transcription factor Sp1 is dysfunctional in the ACG of autistic brain. Consequently, the expression of potential autism candidate genes regulated by Sp1, especially OXTR and PTEN, could be affected. The diverse downstream pathways mediated by the Sp1-regulated genes, along with the environmental and intracellular signal-related regulation of Sp1, could explain the complex phenotypes associated with autism.

  13. Vertebrate GAGA factor associated insulator elements demarcate homeotic genes in the HOX clusters.

    PubMed

    Srivastava, Surabhi; Puri, Deepika; Garapati, Hita Sony; Dhawan, Jyotsna; Mishra, Rakesh K

    2013-04-22

    Hox genes impart segment identity to body structures along the anterior-posterior axis and are crucial for the proper development of all organisms. Multiple regulatory elements, best defined in Drosophila melanogaster, ensure that Hox expression patterns follow the spatial and temporal colinearity reflected in their tight genomic organization. However, the precise mechanisms that regulate colinear patterns of Hox gene expression remain unclear, especially in higher vertebrates where it is not fully determined how the distinct activation domains of the tightly clustered Hox genes are defined independently of each other. Here, we report the identification of a large number of novel cis-elements at mammalian Hox clusters that can help in regulating their precise expression pattern. We have identified DNA elements at all four murine Hox clusters that show poor association with histone H3 in chromatin immunoprecipitation (ChIP)-chip tiling arrays. The majority of these elements lie in the intergenic regions segregating adjacent Hox genes; we demonstrate that they possess efficient enhancer-blocking activity in mammalian cells. Further, we find that these histone-free intergenic regions bear GA repeat motifs and associate with the vertebrate homolog of the GAGA binding boundary factor. This suggests that they can act as GAGA factor-dependent chromatin boundaries that create independent domains, insulating each Hox gene from the influence of neighboring regulatory elements. Our results reveal a large number of potential regulatory elements throughout the murine Hox clusters. We further demarcate the precise location of several novel cis-elements bearing chromatin boundary activity that appear to segregate successive Hox genes. This reflects a pattern reminiscent of the organization of homeotic genes in Drosophila, where such regulatory elements have been characterized. Our findings thus provide new insights into the regulatory processes and evolutionarily conserved

  14. Unique role for translation initiation factor 3 in the light color regulation of photosynthetic gene expression.

    PubMed

    Gutu, Andrian; Nesbit, April D; Alverson, Andrew J; Palmer, Jeffrey D; Kehoe, David M

    2013-10-01

    Light-harvesting antennae are critical for collecting energy from sunlight and providing it to photosynthetic reaction centers. Their abundance and composition are tightly regulated to maintain efficient photosynthesis in changing light conditions. Many cyanobacteria alter their light-harvesting antennae in response to changes in ambient light-color conditions through the process of chromatic acclimation. The control of green light induction (Cgi) pathway is a light-color-sensing system that controls the expression of photosynthetic genes during chromatic acclimation, and while some evidence suggests that it operates via transcription attenuation, the components of this pathway have not been identified. We provide evidence that translation initiation factor 3 (IF3), an essential component of the prokaryotic translation initiation machinery that binds the 30S subunit and blocks premature association with the 50S subunit, is part of the control of green light induction pathway. Light regulation of gene expression has not been previously described for any translation initiation factor. Surprisingly, deletion of the IF3-encoding gene infCa was not lethal in the filamentous cyanobacterium Fremyella diplosiphon, and its genome was found to contain a second, redundant, highly divergent infC gene which, when deleted, had no effect on photosynthetic gene expression. Either gene could complement an Escherichia coli infC mutant and thus both encode bona fide IF3s. Analysis of prokaryotic and eukaryotic genome databases established that multiple infC genes are present in the genomes of diverse groups of bacteria and land plants, most of which do not undergo chromatic acclimation. This suggests that IF3 may have repeatedly evolved important roles in the regulation of gene expression in both prokaryotes and eukaryotes.

  15. Virulence factors genes of Staphylococcus spp. isolated from caprine subclinical mastitis.

    PubMed

    Salaberry, Sandra Renata Sampaio; Saidenberg, André Becker Simões; Zuniga, Eveline; Melville, Priscilla Anne; Santos, Franklin Gerônimo Bispo; Guimarães, Ednaldo Carvalho; Gregori, Fábio; Benites, Nilson Roberti

    2015-08-01

    The aim of this study was to investigate genes involved in adhesion expression, biofilm formation, and enterotoxin production in isolates of Staphylococcus spp. from goats with subclinical mastitis and associate these results with the staphylococcal species. One hundred and twenty-four isolates were identified and polymerase chain reaction (PCR) was performed to detect the following genes: cna, ebpS, eno, fib, fnbA, fnbB, bap, sea, seb, sec, sed and see. The most commonly Staphylococcus species included S. epidermidis, S. lugdunensis, S. chromogenes, S. capitis ss capitis and S. intermedius. With the exception of fnbB, the genes were detected in different frequencies of occurrence in 86.3% of the Staphylococcus spp. isolates. Eno (73.2%) and bap (94.8%) were more frequently detected in coagulase-negative staphylococci (CNS); ebpS (76%), fib (90.9%) and fnbA (87%) were the most frequent genes in coagulase-positive staphylococci (CPS). Regarding enterotoxins, genes sed (28.2%) and see (24.2%) had a higher frequency of occurrence; sec gene was more frequently detected in CPS (58.8%). There was no association between the presence of the genes and the Staphylococcus species. Different virulence factors genes can be detected in caprine subclinical mastitis caused by CNS and CPS. The knowledge of the occurrence of these virulence factors is important for the development of effective control and prevention measures of subclinical mastitis caused by CNS and CPS in goats. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. The transcription factor ST18 regulates proapoptotic and proinflammatory gene expression in fibroblasts

    PubMed Central

    Yang, Julia; Siqueira, Michelle F.; Behl, Yugal; Alikhani, Mani; Graves, Dana T.

    2008-01-01

    Suppression of tumorigenicity 18 (ST18) and the homologues neural zinc-finger protein-3 (NZF3) and myelin transcription factor 3 (Myt3) are transcription factors with unknown function. Previous studies have established that they repress transcription of a synthetic reporter construct consisting of the consensus sequence AAAGTTT linked to the thymidine kinase promoter. In addition, ST18 exhibits significantly reduced expression in breast cancer and breast cancer cell lines. We report here for the first time evidence that ST18 mediates tumor necrosis factor (TNF) -α induced mRNA levels of proapoptotic and proinflammatory genes in fibroblasts by mRNA profiling and silencing with ST18 small interfering RNA (siRNA). Gene set enrichment analysis and mRNA profiling support this conclusion by identifying several apoptotic and inflammatory pathways that are down-regulated by ST18 siRNA. In addition, ST18 siRNA reduces TNF-induced fibroblast apoptosis and caspase-3/7 activity. Fibroblasts that overexpress ST18 by transient transfection exhibit significantly increased apoptosis and increased expression of TNF-α, interleukin (IL) -1α, and IL-6. In addition, cotransfection of ST18 and a TNF-α or IL-1α reporter construct demonstrates that ST18 overexpression in fibroblasts significantly enhanced promoter activity of these genes. Taken together, these studies demonstrate that the transcription factor ST18/NZF3 regulates the mRNA levels of proapoptotic and proinflammatory genes in revealing a previously unrecognized function.—Yang, J., Siqueira, M. F., Behl, Y., Alikhani, M., and Graves, D. T. The transcription factor ST18 regulates proapoptotic and proinflammatory gene expression in fibroblasts. PMID:18676404

  17. Expression of different calmodulin genes in bean (Phaseolus vulgaris L.): role of nod factor on calmodulin gene regulation.

    PubMed

    Camas, Alberto; Cárdenas, Luis; Quinto, Carmen; Lara, Miguel

    2002-05-01

    Three calmodulin (PvCaM-1, PvCaM-2, and PvCaM-3) clones were isolated from a Phaseolus vulgaris nodule cDNA library. All clones contain the complete coding region and are 62 to 74% homologous within this region. Compared to plant CaM consensus sequences, PvCaM-2 has a novel tyrosine118 residue, representing a putative phosphorylation site. Southern analysis suggested that calmodulin is encoded by a gene family. These three CaM clones are expressed mainly in young tissues and meristems. The expression pattern of PvCaM-2 and PvCaM-3 is almost identical but different from that of PvCaM-1, suggesting that PvCaM-1 is a well-defined CaM gene, whereas PvCaM-2 and PvCaM-3 could be alleles. PvCaM clones are expressed early in nodules, and transcript levels increase from nodule primordia to nodule-like structures induced by the Nod factor. Conversely, in roots, Nod factor lowers mRNA levels of all three PvCaM clones, but especially of PvCaM-1. Inhibition of PvCaM-1 expression also is observed when 2,3,5-triiodobenzoic acid is added and is prevented when roots are treated with indole-3-acetic acid, suggesting that PvCaM-1 regulation is related to the Nod factor inhibition of polar auxin transport. These results could suggest that CaM clones do not participate in the early signaling generated by the Nod factor but do participate in early events of nodule formation.

  18. Comparative analysis of the transcription-factor gene regulatory networks of E. coli and S. cerevisiae

    PubMed Central

    Guzmán-Vargas, Lev; Santillán, Moisés

    2008-01-01

    Background The regulatory interactions between transcription factors (TF) and regulated genes (RG) in a species genome can be lumped together in a single directed graph. The TF's and RG's conform the nodes of this graph, while links are drawn whenever a transcription factor regulates a gene's expression. Projections onto TF nodes can be constructed by linking every two nodes regulating a common gene. Similarly, projections onto RG nodes can be made by linking every two regulated genes sharing at least one common regulator. Recent studies of the connectivity pattern in the transcription-factor regulatory network of many organisms have revealed some interesting properties. However, the differences between TF and RG nodes have not been widely explored. Results After analysing the RG and TF projections of the transcription-factor gene regulatory networks of Escherichia coli and Saccharomyces cerevisiae, we found several common characteristic as well as some noticeable differences. To better understand these differences, we compared the properties of the E. coli and S. cerevisiae RG- and TF-projected networks with those of the corresponding projections built from randomized versions of the original bipartite networks. These last results indicate that the observed differences are mostly due to the very different ratios of TF to RG counts of the E. coli and S. cerevisiae bipartite networks, rather than to their having different connectivity patterns. Conclusion Since E. coli is a prokaryotic organism while S. cerevisiae is eukaryotic, there are important differences between them concerning processing of mRNA before translation, DNA packing, amount of junk DNA, and gene regulation. From the results in this paper we conclude that the most important effect such differences have had on the development of the corresponding transcription-factor gene regulatory networks is their very different ratios of TF to RG numbers. This ratio is more than three times larger in S

  19. Regulation of 2', 5'-oligoadenylate synthetase gene expression by interferons and platelet-derived growth factor

    SciTech Connect

    Garcia-Blanco, M.A. ); Lengyel, P. . Dept. of Molecular Biophysics and Biochemistry); Morrison, E.; BrownLee, C.; Stiles, C.D. ); Williams, B.R.G. )

    1989-03-01

    In murine BALB/c 3T3 cell cultures, either beta interferon or platelet-derived growth factor (PDGF) enhanced expression of the 2', 5-oligoadenylate synthetase mRNA and protein. The time course of induction in response to beta inteferon was similar to that in response to PDGF. Of several growth factors known to be present in clotted blood serum (i.e., epidermal growth factor, transforming growth factor beta, and PDGF), only PDGF enhanced expression of 2', 5-oligoadenylate synthetase. The linkage of an interferon response element-containing segment from the 5'-flanking region of a human or murine 2'-5'-oligoadenylate synthetase gene made a heterologous gene responsive to interferon. The expression of such a gene construct in transfected cells was also induced by PDGF. Induction by PDGF was inhibited by mono- or polyclonal antibodies to murine interferon, which suggested that induction by PDGF requires interferon. Both PDGF and interferon induced nuclear factors that bound to this interferon response element-containing segment in vitro.

  20. Factor IX gene analysis in 70 unrelated patients with haemophilia B: description of 13 new mutations.

    PubMed

    Attali, O; Vinciguerra, C; Trzeciak, M C; Durin, A; Pernod, G; Gay, V; Ménart, C; Sobas, F; Dechavanne, M; Négrier, C

    1999-11-01

    Seventy unrelated patients suffering from haemophilia B have been screened for determining the molecular defect and for evaluating the spectrum of factor IX mutations in the Rhône Alpes region in France. Most patients were characterized with respect to factor IX antigen and factor IX coagulant activity. We have used denaturing gradient gel electrophoresis to obtain a full scanning of the whole coding, promoter, and exon flanking sequences of the factor IX gene. This technique enabled us to determine the molecular defect in 68 out of 70 families (97%), and the mutation was further identified in the two last patients with a direct sequencing of the gene. A total of 2 complete gene deletions in patients with antifactor IX inhibitor, 6 small insertions/deletions and 62 point mutations were found. Two of these nucleotide substitutions (Arg145His and Ala233Thr) were detected in 21 patients (30%) suggesting the existence of a local founder effect. Thirteen mutations were previously undescribed, including 7 missense mutations. The detection of mutations in patients affected with haemophilia B may shed some light in the structure-function relationship of factor IX molecule within the coagulation system.

  1. Isolation of genomic DNA fragments corresponding to genes modulated in vivo by a transcription factor.

    PubMed Central

    Caubín, J; Iglesias, T; Bernal, J; Muñoz, A; Márquez, G; Barbero, J L; Zaballos, A

    1994-01-01

    A new methodology for the identification of genes modulated by transcription factors in vivo is described. Mouse genomic DNA fragments bound by the thyroid hormone receptor (T3R) were selected and amplified in vitro. Subsequent hybridisation with biotinylated cDNA allowed the selection of those DNA fragments containing binding sites for T3R that corresponded to transcribed DNA. Expression analysis of the corresponding genes showed that more than 80% are indeed modulated by thyroid hormones in vivo in the liver. Together with the presence of consensus binding sites for T3R this result suggests that the selected DNA fragments may contain T3R transcriptional regulatory elements. This method, extensive to other ligand-modulated transcription factors, might be useful to all transcription factors with slight modifications. Images PMID:7937138

  2. Impaired cutaneous wound healing in transforming growth factor-β inducible early gene1 knockout mice.

    PubMed

    Hori, Keijiro; Ding, Jie; Marcoux, Yvonne; Iwashina, Takashi; Sakurai, Hiroyuki; Tredget, Edward E

    2012-01-01

    Transforming growth factor-β inducible early gene (TIEG) is induced by transforming growth factor-β (TGF-β) and acts as the primary response gene in the TGF-β/Smad pathway. TGF-β is a multifunctional growth factor that affects dermal wound healing; however, the mechanism of how TGF-β affects wound healing is still not well understood because of the complexity of its function and signaling pathways. We hypothesize that TIEG may play a role in dermal wound healing, with involvement in wound closure, contraction, and reepithelialization. In this study, we have shown that TIEG1 knockout (TIEG1-/-) mice have a delay in wound closure related to an impairment in wound contraction, granulation tissue formation, collagen synthesis, and reepithelialization. We also found that Smad7 was increased in the wounds and appeared to play a role in this wound healing model in TIEG1-/- mice. © 2012 by the Wound Healing Society.

  3. Expression of E2F transcription factor family genes during chick wing development.

    PubMed

    Towers, Matthew; Fisunov, Gleb; Tickle, Cheryll

    2009-10-01

    The E2F family of transcriptional regulators activate or repress gene expression during specific phases of the cell cycle and control various processes including proliferation, apoptosis and differentiation. However, little is known about the developmental roles of E2F transcription factors in higher vertebrates. The chick wing is an excellent system for studying these processes because, in addition to having a rich classical embryology, it is increasingly amenable to molecular and genomic approaches. We show that the human and mouse complement of eight E2F transcription factors is conserved in the chicken and that chicken E2F genes are expressed in different spatial and temporal patterns during wing development. We discuss how the expression patterns of the eight chicken E2F transcription factors might be related to important morphogenetic events.

  4. Does the possession of virulence factor genes mean that those genes will be active?

    PubMed

    Edberg, Stephen C

    2009-01-01

    There are a number of relationships the host can establish with the microbes we ingest. For the vast majority of microbes, they have a short-lived liaison with the human host. Either they are destroyed by the stomach acid or bile, or can not establish even a temporary residency in the gastrointestinal tract. Early in life the mucosal surfaces of the body establishes a resident, and generally stable, normal flora. These normal flora microbes, the majority of which are bacteria, have specific receptors for specific areas of the alimentary tract. If the foreign microbe can establish residency, it then may transiently or permanently become part of the normal flora. However, in order to produce disease, it must possess an additional set of virulence factors. While some of these are known, many are not. Those that are known include enzymes, such as protease, lipase, and esterase. Accordingly, VFAR may not be associated with human disease and its presence or absence has no public health meaning.

  5. The precise regulation of different COR genes by individual CBF transcription factors in Arabidopsis thaliana.

    PubMed

    Shi, Yihao; Huang, Jiaying; Sun, Tianshu; Wang, Xuefei; Zhu, Chenqi; Ai, Yuxi; Gu, Hongya

    2017-02-01

    The transcription factors CBF1/2/3 are reported to play a dominant role in the cold responsive network of Arabidopsis by directly regulating the expression levels of cold responsive (COR) genes. In this study, we obtained CRISPR/Cas9-mediated loss-of-function mutants of cbf1∼3. Over 3,000 COR genes identified by RNA-seq analysis showed a slight but significant change in their expression levels in the mutants compared to the wild-type plants after being treated at 4 °C for 12 h. The C-repeat (CRT) motif (5'-CCGAC-3') was enriched in promoters of genes that were up-regulated by CBF2 and CBF3 but not in promoters of genes up-regulated by CBF1. These data suggest that CBF2 and CBF3 play a more important role in directing the cold response by regulating different sets of downstream COR genes. More than 2/3 of COR genes were co-regulated by two or three CBFs and were involved mainly in cellular signal transduction and metabolic processes; less than 1/3 of the genes were regulated by one CBF, and those genes up-regulated were enriched in cold-related abiotic stress responses. Our results indicate that CBFs play an important role in the trade-off between cold tolerance and plant growth through the precise regulation of COR genes in the complicated transcriptional network. © 2016 The Authors. Journal of Integrative Plant Biology Published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.

  6. Discovering transcription factor regulatory targets using gene expression and binding data.

    PubMed

    Maienschein-Cline, Mark; Zhou, Jie; White, Kevin P; Sciammas, Roger; Dinner, Aaron R

    2012-01-15

    Identifying the target genes regulated by transcription factors (TFs) is the most basic step in understanding gene regulation. Recent advances in high-throughput sequencing technology, together with chromatin immunoprecipitation (ChIP), enable mapping TF binding sites genome wide, but it is not possible to infer function from binding alone. This is especially true in mammalian systems, where regulation often occurs through long-range enhancers in gene-rich neighborhoods, rather than proximal promoters, preventing straightforward assignment of a binding site to a target gene. We present EMBER (Expectation Maximization of Binding and Expression pRofiles), a method that integrates high-throughput binding data (e.g. ChIP-chip or ChIP-seq) with gene expression data (e.g. DNA microarray) via an unsupervised machine learning algorithm for inferring the gene targets of sets of TF binding sites. Genes selected are those that match overrepresented expression patterns, which can be used to provide information about multiple TF regulatory modes. We apply the method to genome-wide human breast cancer data and demonstrate that EMBER confirms a role for the TFs estrogen receptor alpha, retinoic acid receptors alpha and gamma in breast cancer development, whereas the conventional approach of assigning regulatory targets based on proximity does not. Additionally, we compare several predicted target genes from EMBER to interactions inferred previously, examine combinatorial effects of TFs on gene regulation and illustrate the ability of EMBER to discover multiple modes of regulation. All code used for this work is available at http://dinner-group.uchicago.edu/downloads.html.

  7. Canakinumab reverses overexpression of inflammatory response genes in tumour necrosis factor receptor-associated periodic syndrome

    PubMed Central

    Torene, Rebecca; Nirmala, Nanguneri; Obici, Laura; Cattalini, Marco; Tormey, Vincent; Caorsi, Roberta; Starck-Schwertz, Sandrine; Letzkus, Martin; Hartmann, Nicole; Abrams, Ken; Lachmann, Helen; Gattorno, Marco

    2017-01-01

    Objective To explore whether gene expression profiling can identify a molecular mechanism for the clinical benefit of canakinumab treatment in patents with tumour necrosis factor receptor-associated periodic syndrome (TRAPS). Methods Blood samples were collected from 20 patients with active TRAPS who received canakinumab 150 mg every 4 weeks for 4 months in an open-label proof-of-concept phase II study, and from 20 aged-matched healthy volunteers. Gene expression levels were evaluated in whole blood samples by microarray analysis for arrays passing quality control checks. Results Patients with TRAPS exhibited a gene expression signature in blood that differed from that in healthy volunteers. Upon treatment with canakinumab, many genes relevant to disease pathogenesis moved towards levels seen in the healthy volunteers. Canakinumab downregulated the TRAPS-causing gene (TNF super family receptor 1A (TNFRSF1A)), the drug-target gene (interleukin (IL)-1B) and other inflammation-related genes (eg, MAPK14). In addition, several inflammation-related pathways were evident among the differentially expressed genes. Canakinumab treatment reduced neutrophil counts, but the observed expression differences remained after correction for this. Conclusions These gene expression data support a model in which canakinumab produces clinical benefit in TRAPS by increasing neutrophil apoptosis and reducing pro-inflammatory signals resulting from the inhibition of IL-1β. Notably, treatment normalised the overexpression of TNFRSF1A, suggesting that canakinumab has a direct impact on the main pathogenic mechanism in TRAPS. Trial registration number NCT01242813. PMID:27474763

  8. Transplantation of novel vascular endothelial growth factor gene delivery system manipulated skeletal myoblasts promote myocardial repair.

    PubMed

    Zhu, Kai; Guo, Changfa; Xia, Yu; Lai, Hao; Yang, Wuli; Wang, Yang; Song, Dongli; Wang, Chunsheng

    2013-10-03

    Skeletal myoblast (SkM) transplantation combined with vascular endothelial growth factor (VEGF) gene delivery has been proposed as a promising therapy for cardiac repair. Nevertheless, the defective gene vectors and unregulable VEGF expression in vivo hinder its application. Therefore, the search for an economical, effective, controllable gene delivery system is quite necessary. In our study, hyperbranched polyamidoamine (h-PAMAM) dendrimer was synthesized as a novel gene delivery vector using a modified method. And hypoxia-regulated human VEGF-165 plasmids (pHRE-hVEGF165) were constructed for controllable VEGF gene expression. The efficiency and feasibility of h-PAMAM-HRE-hVEGF165 gene delivery system manipulated SkM transplantation for cardiac repair were investigated in myocardial infarction models. The h-PAMAM encapsulated pHRE-hVEGF165 could resist nuclease digestion for over 120 min. In primary SkMs, h-PAMAM-pHRE-hVEGF165 gene delivery system showed high transfection efficiency (43.47 ± 2.22%) and minor cytotoxicity (cell viability = 91.38 ± 0.48%). And the transfected SkMs could express hVEGF165 for 18 days under hypoxia in vitro. For myocardial infarction models, intramyocardial transplantation of the transfected SkMs could result in reduction of apoptotic myocardiocytes, improvement of grafted cell survival, decrease of infarct size and interstitial fibrosis, and increase of blood vessel density, which inhibited left ventricle remodeling and improved heart function at the late phase following infarction. These results indicate that h-PAMAM based pHRE-hVEGF165 gene delivery into SkMs is feasible and effective, and may serve as a novel and promising gene therapy strategy in ischemic heart disease. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  9. A novel mutation in the F5 gene (factor V Amsterdam) associated with bleeding independent of factor V procoagulant function.

    PubMed

    Cunha, Marisa L R; Bakhtiari, Kamran; Peter, Jorge; Marquart, J Arnoud; Meijers, Joost C M; Middeldorp, Saskia

    2015-03-12

    We investigated a small Dutch family with a bleeding diathesis, prolonged prothrombin, and activated partial thromboplastin times, in whom no classifying diagnosis was made. The 2 affected relatives had severely decreased in vitro thrombin generation, and levels of tissue factor pathway inhibitor (TFPI) were strongly increased. To identify the genetic cause of the bleeding diathesis, we performed whole exome sequencing analysis of all living relatives. We found a novel gain-of-function mutation in the F5 gene (c.C2588G), which leads to an aberrant splicing of F5 and ultimately to a short factor V protein (missing 623 amino acids from the B domain), which we called factor V Amsterdam. Factor V Amsterdam binds to TFPI, prolonging its half-life and concentration. This is the second report of an association between a shorter form of factor V and increased TFPI levels, resulting in severely reduced thrombin generation and a bleeding tendency. © 2015 by The American Society of Hematology.

  10. Network component analysis provides quantitative insights on an Arabidopsis transcription factor-gene regulatory network

    PubMed Central

    2013-01-01

    Background Gene regulatory networks (GRNs) are models of molecule-gene interactions instrumental in the coordination of gene expression. Transcription factor (TF)-GRNs are an important subset of GRNs that characterize gene expression as the effect of TFs acting on their target genes. Although such networks can qualitatively summarize TF-gene interactions, it is highly desirable to quantitatively determine the strengths of the interactions in a TF-GRN as well as the magnitudes of TF activities. To our knowledge, such analysis is rare in plant biology. A computational methodology developed for this purpose is network component analysis (NCA), which has been used for studying large-scale microbial TF-GRNs to obtain nontrivial, mechanistic insights. In this work, we employed NCA to quantitatively analyze a plant TF-GRN important in floral development using available regulatory information from AGRIS, by processing previously reported gene expression data from four shoot apical meristem cell types. Results The NCA model satisfactorily accounted for gene expression measurements in a TF-GRN of seven TFs (LFY, AG, SEPALLATA3 [SEP3], AP2, AGL15, HY5 and AP3/PI) and 55 genes. NCA found strong interactions between certain TF-gene pairs including LFY → MYB17, AG → CRC, AP2 → RD20, AGL15 → RAV2 and HY5 → HLH1, and the direction of the interaction (activation or repression) for some AGL15 targets for which this information was not previously available. The activity trends of four TFs - LFY, AG, HY5 and AP3/PI as deduced by NCA correlated well with the changes in expression levels of the genes encoding these TFs across all four cell types; such a correlation was not observed for SEP3, AP2 and AGL15. Conclusions For the first time, we have reported the use of NCA to quantitatively analyze a plant TF-GRN important in floral development for obtaining nontrivial information about connectivity strengths between TFs and their target genes as well as TF

  11. Identification of genes encoding critical factors regulating B-cell terminal differentiation in torafugu (Takifugu rubripes).

    PubMed

    Ohtani, Maki; Miyadai, Toshiaki; Hiroishi, Shingo

    2006-03-01

    Many transcription factors, and associated co-factors, are involved in the regulation of B-cell terminal differentiation in mammals. In the teleost and cartilaginous fish, although evidence has strongly suggested the existence of B-cell like lymphocytes, the mechanism of terminal differentiation of B-cells remains to be elucidated. In the present study, we searched for the nucleotide and amino acid sequences similar to the critical regulatory factors facilitating the terminal differentiation of B-cells using the fugu BLAST server. We cloned the following cDNAs from Takifugu rubripes: (1) B-lymphocyte-induced maturation protein-1 (Blimp-1), which plays a major role in promoting plasma cell differentiation by repressing the transcription of many genes that participate in maintaining the differentiation of mature B-cells; (2) Bcl-6, which facilitates germinal center formation and represses Blimp-1 expression; (3) X-box binding protein-1 (XBP-1), which operates Ig secretion by activating transcription of the ER-stress responsible genes; (4) Pax-5, which suppresses XBP-1 and enhances the expression of activation-induced cytidine deaminase (AID), an inducer of somatic hypermutation and class-switch recombination of the immunoglobulin gene; and (5) TLE-3, one of the Groucho family proteins, a co-factor for Blimp-1. We also identified other co-factors and many target genes of Blimp-1 by in silico and/or cDNA cloning. These finding indicates that the basal process of B-cell terminal differentiation in fish is controlled by factors identical to those in mammals.

  12. Altered activities of transcription factors and their related gene expression in cardiac tissues of diabetic rats.

    PubMed

    Nishio, Y; Kashiwagi, A; Taki, H; Shinozaki, K; Maeno, Y; Kojima, H; Maegawa, H; Haneda, M; Hidaka, H; Yasuda, H; Horiike, K; Kikkawa, R

    1998-08-01

    Gene regulation in the cardiovascular tissues of diabetic subjects has been reported to be altered. To examine abnormal activities in transcription factors as a possible cause of this altered gene regulation, we studied the activity of two redox-sensitive transcription factors--nuclear factor-kappaB (NF-kappaB) and activating protein-1 (AP-1)--and the change in the mRNA content of heme oxygenase-1, which is regulated by these transcription factors in the cardiac tissues of rats with streptozotocin-induced diabetes. Increased activity of NF-kappaB and AP-1 but not nuclear transcription-activating factor, as determined by an electrophoretic mobility shift assay, was found in the hearts of 4-week diabetic rats. Glycemic control by a subcutaneous injection of insulin prevented these diabetes-induced changes in transcription factor activity. In accordance with these changes, the mRNA content of heme oxygenase-1 was increased fourfold in 4-week diabetic rats and threefold in 24-week diabetic rats as compared with control rats (P < 0.01 and P < 0.05, respectively). Insulin treatment also consistently prevented changes in the mRNA content of heme oxygenase-1. The oral administration of an antioxidant, probucol, to these diabetic rats partially prevented the elevation of the activity of both NF-kappaB and AP-1, and normalized the mRNA content of heme oxygenase-1 without producing any change in the plasma glucose concentration. These results suggest that elevated oxidative stress is involved in the activation of the transcription factors NF-kappaB and AP-1 in the cardiac tissues of diabetic rats, and that these abnormal activities of transcription factors could be associated with the altered gene regulation observed in the cardiovascular tissues of diabetic rats.

  13. Identification of target genes of the lymphoid-specific transcription factor Oct2.

    PubMed

    Pfisterer, P; Hess, J; Wirth, T

    1997-12-01

    The Oct2 transcription factor is expressed predominantly in B lymphocytes and plays an essential role during the terminal phase of B cell differentiation. The regulatory regions of several genes specifically expressed in B cells contain functional binding sites for Oct2. Nevertheless, none of the genes originally thought to be regulated by Oct2 were affected in their expression in Oct2-deficient B cells. In an attempt to find such elusive Oct2 target genes and to understand the molecular function of Oct2 in B cell development, we isolated cDNAs for Oct2 target genes. So far, we have identified five potential targets for Oct2: the membrane glycoprotein CD36, the cysteine-rich secreted protein 3 (CRISP-3), a mouse homolog of the human monocyte/neutrophil elastase inhibitor (mEI) and two unknown cDNA sequences Nov1 and Nov2. These target genes show quite distinct expression patterns demonstrating that transcription factors in addition to Oct2 are involved in their regulation. Whereas CD36 and mEI were expressed in all hematopoetic cell lines containing Oct2,. CRISP-3 is pre-B cell-specific, Nov1 is plasma B cell-specific and Nov2 is B cell-specifically expressed.

  14. The transcription factor NRSF contributes to epileptogenesis by selective repression of a subset of target genes

    PubMed Central

    McClelland, Shawn; Brennan, Gary P; Dubé, Celine; Rajpara, Seeta; Iyer, Shruti; Richichi, Cristina; Bernard, Christophe; Baram, Tallie Z

    2014-01-01

    The mechanisms generating epileptic neuronal networks following insults such as severe seizures are unknown. We have previously shown that interfering with the function of the neuron-restrictive silencer factor (NRSF/REST), an important transcription factor that influences neuronal phenotype, attenuated development of this disorder. In this study, we found that epilepsy-provoking seizures increased the low NRSF levels in mature hippocampus several fold yet surprisingly, provoked repression of only a subset (∼10%) of potential NRSF target genes. Accordingly, the repressed gene-set was rescued when NRSF binding to chromatin was blocked. Unexpectedly, genes selectively repressed by NRSF had mid-range binding frequencies to the repressor, a property that rendered them sensitive to moderate fluctuations of NRSF levels. Genes selectively regulated by NRSF during epileptogenesis coded for ion channels, receptors, and other crucial contributors to neuronal function. Thus, dynamic, selective regulation of NRSF target genes may play a role in influencing neuronal properties in pathological and physiological contexts. DOI: http://dx.doi.org/10.7554/eLife.01267.001 PMID:25117540

  15. The hematopoietic transcription factor PU.1 regulates RANK gene expression in myeloid progenitors

    SciTech Connect

    Kwon, Oh Hyung; Lee, Chong-Kil; Lee, Young Ik; Paik, Sang-Gi; Lee, Hyun-Jun . E-mail: hjlee7@kribb.re.kr

    2005-09-23

    Osteoclasts are bone resorbing cells of hematopoietic origin. The hematopoietic transcription factor PU.1 is critical for osteoclastogenesis; however, the molecular mechanisms of PU.1-regulated osteoclastogenesis have not been explored. Here, we present evidence that the receptor activator of nuclear factor {kappa}B (RANK) gene that has been shown to be crucial for osteoclastogenesis is a transcriptional target of PU.1. The PU.1 {sup -/-} progenitor cells failed to express the RANK gene and reconstitution of PU.1 in these cells induced RANK expression. Treatment of the PU.1 reconstituted cells with M-CSF and RANKL further augmented the RANK gene expression. To explore the regulatory mechanism of the RANK gene expression by PU.1, we have cloned the human RANK promoter. Transient transfection assays have revealed that the 2.2-kb RANK promoter was functional in a monocyte line RAW264.7, whereas co-transfection of PU.1 transactivated the RANK promoter in HeLa cells. Taken together, these results suggest that PU.1 regulates the RANK gene transcription and this may represent one of the key roles of PU.1 in osteoclast differentiation.

  16. ETS transcription factor family member GABPA contributes to vitamin D receptor target gene regulation.

    PubMed

    Seuter, Sabine; Neme, Antonio; Carlberg, Carsten

    2017-09-11

    Binding motifs of the ETS-domain transcription factor GABPA are found with high significance below the summits of the vitamin D receptor (VDR) cistrome. VDR is the nuclear receptor for the biologically most active vitamin D metabolite 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3). In this study, we determined the GABPA cistrome in THP-1 human monocytes and found that it is comprised of 3822 genomic loci, some 20% of which were modulated by 1,25(OH)2D3. The GABPA cistrome showed a high overlap rate with accessible chromatin and the pioneer transcription factor PU.1. Interestingly, 23 and 12% of persistent and transient VDR binding sites, respectively, co-localized with GABPA, which is clearly higher than the rate of secondary VDR loci (4%). Some 40% of GABPA binding sites were found at transcription start sites, nearly 100 of which are of 1,25(OH)2D3 target genes. On 593 genomic loci VDR and GABPA co-localized with PU.1, while only 175 VDR sites bound GABPA in the absence of PU.1. In total, VDR sites with GABPA co-localization may control some 450 vitamin D target genes. Those genes that are co-controlled by PU.1 preferentially participate in cellular and immune signaling processes, while the remaining genes are involved in cellular metabolism pathways. In conclusion, GABPA may contribute to differential VDR target gene regulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Chromosomal Organization and Sequence Diversity of Genes Encoding Lachrymatory Factor Synthase in Allium cepa L.

    PubMed

    Masamura, Noriya; McCallum, John; Khrustaleva, Ludmila; Kenel, Fernand; Pither-Joyce, Meegham; Shono, Jinji; Suzuki, Go; Mukai, Yasuhiko; Yamauchi, Naoki; Shigyo, Masayoshi

    2012-06-01

    Lachrymatory factor synthase (LFS) catalyzes the formation of lachrymatory factor, one of the most distinctive traits of bulb onion (Allium cepa L.). Therefore, we used LFS as a model for a functional gene in a huge genome, and we examined the chromosomal organization of LFS in A. cepa by multiple approaches. The first-level analysis completed the chromosomal assignment of LFS gene to chromosome 5 of A. cepa via the use of a complete set of A. fistulosum-shallot (A. cepa L. Aggregatum group) monosomic addition lines. Subsequent use of an F(2) mapping population from the interspecific cross A. cepa × A. roylei confirmed the assignment of an LFS locus to this chromosome. Sequence comparison of two BAC clones bearing LFS genes, LFS amplicons from diverse germplasm, and expressed sequences from a doubled haploid line revealed variation consistent with duplicated LFS genes. Furthermore, the BAC-FISH study using the two BAC clones as a probe showed that LFS genes are localized in the proximal region of the long arm of the chromosome. These results suggested that LFS in A. cepa is transcribed from at least two loci and that they are localized on chromosome 5.

  18. Chromosomal Organization and Sequence Diversity of Genes Encoding Lachrymatory Factor Synthase in Allium cepa L.

    PubMed Central

    Masamura, Noriya; McCallum, John; Khrustaleva, Ludmila; Kenel, Fernand; Pither-Joyce, Meegham; Shono, Jinji; Suzuki, Go; Mukai, Yasuhiko; Yamauchi,, Naoki; Shigyo, Masayoshi

    2012-01-01

    Lachrymatory factor synthase (LFS) catalyzes the formation of lachrymatory factor, one of the most distinctive traits of bulb onion (Allium cepa L.). Therefore, we used LFS as a model for a functional gene in a huge genome, and we examined the chromosomal organization of LFS in A. cepa by multiple approaches. The first-level analysis completed the chromosomal assignment of LFS gene to chromosome 5 of A. cepa via the use of a complete set of A. fistulosum–shallot (A. cepa L. Aggregatum group) monosomic addition lines. Subsequent use of an F2 mapping population from the interspecific cross A. cepa × A. roylei confirmed the assignment of an LFS locus to this chromosome. Sequence comparison of two BAC clones bearing LFS genes, LFS amplicons from diverse germplasm, and expressed sequences from a doubled haploid line revealed variation consistent with duplicated LFS genes. Furthermore, the BAC-FISH study using the two BAC clones as a probe showed that LFS genes are localized in the proximal region of the long arm of the chromosome. These results suggested that LFS in A. cepa is transcribed from at least two loci and that they are localized on chromosome 5. PMID:22690373

  19. Gene transfer of hepatocyte growth factor gene improves learning and memory in the chronic stage of cerebral infarction.

    PubMed

    Shimamura, Munehisa; Sato, Naoyuki; Waguri, Satoshi; Uchiyama, Yasuo; Hayashi, Takuya; Iida, Hidehiro; Nakamura, Toshikazu; Ogihara, Toshio; Kaneda, Yasufumi; Morishita, Ryuichi

    2006-04-01

    There is no specific treatment to improve the functional recovery in the chronic stage of ischemic stroke. To provide the new therapeutic options, we examined the effect of overexpression of hepatocyte growth factor (HGF) in the chronic stage of cerebral infarction by transferring the HGF gene into the brain using hemagglutinating virus of Japan envelope vector. Sixty rats were exposed to permanent middle cerebral artery occlusion (day 1). Based on the sensorimotor deficits at day 7, the rats were divided equally into control vector or HGF-treated rats. At day 56, rats transfected with the HGF gene showed a significant recovery of learning and memory in Morris water maze tests (control vector 50+/-4 s; HGF 33+/-5 s; P<0.05) and passive avoidance task (control vector 132.4+/-37.5 s; HGF 214.8+/-26.5 s; P<0.05). Although the total volume of cerebral infarction was not related to the outcome, immunohistochemical analysis for Cdc42 and synaptophysin in the peri-infarct region revealed that HGF enhanced the neurite extension and increased synapses. Immunohistochemistry for glial fibriary acidic protein revealed that the formation of glial scar was also prevented by HGF gene treatment. Additionally, the number of the arteries was increased in the HGF group at day 56. These data demonstrated that HGF has a pivotal role for the functional recovery after cerebral infarction through neuritogenesis, improved microcirculation, and the prevention of gliosis. Our results also provide evidence for the feasibility of gene therapy in the chronic stage of cerebral infarction.

  20. Factor Analysis of MYB Gene Expression and Flavonoid Affecting Petal Color in Three Crabapple Cultivars

    PubMed Central

    Zhang, Jie; Liu, Yingying; Bu, YuFen; Zhang, Xi; Yao, Yuncong

    2017-01-01

    Flavonoid biosynthesis has received much attention concerning the structural genes and expression of the associated transcription factors (TFs). In the present study, we examined the gene expression patterns for petals of three colors using a statistical method. Factor analysis was successfully used to examine the expression patterns most present during regulation. The first expression patterns in the white and red petals were clearly demonstrated and have revealed different mechanisms of producing the proper components, whereas that in the pink petals was more complex, requiring factor analysis to supplement the other results. Combining the results of the correlation analysis between TFs and structural genes, the effects of each TF on the main expression pattern in each cultivar were determined. Moreover, McMYB10 was implicated in the regulation of the gene expression pattern in red petals, and McMYB5 was implicated in the maintenance of the balance of the pigment components and proanthocyanin (PA) production in cooperation with McMYB4 to generate pigmentation in the pink petals. PMID:28223999

  1. Factor Analysis of MYB Gene Expression and Flavonoid Affecting Petal Color in Three Crabapple Cultivars.

    PubMed

    Zhang, Jie; Liu, Yingying; Bu, YuFen; Zhang, Xi; Yao, Yuncong

    2017-01-01

    Flavonoid biosynthesis has received much attention concerning the structural genes and expression of the associated transcription factors (TFs). In the present study, we examined the gene expression patterns for petals of three colors using a statistical method. Factor analysis was successfully used to examine the expression patterns most present during regulation. The first expression patterns in the white and red petals were clearly demonstrated and have revealed different mechanisms of producing the proper components, whereas that in the pink petals was more complex, requiring factor analysis to supplement the other results. Combining the results of the correlation analysis between TFs and structural genes, the effects of each TF on the main expression pattern in each cultivar were determined. Moreover, McMYB10 was implicated in the regulation of the gene expression pattern in red petals, and McMYB5 was implicated in the maintenance of the balance of the pigment components and proanthocyanin (PA) production in cooperation with McMYB4 to generate pigmentation in the pink petals.

  2. Extracellular Matrix-Regulated Gene Expression RequiresCooperation of SWI/SNF and Transcription Factors

    SciTech Connect

    Xu, Ren; Spencer, Virginia A.; Bissell, Mina J.

    2006-05-25

    Extracellular cues play crucial roles in the transcriptional regulation of tissue-specific genes, but whether and how these signals lead to chromatin remodeling is not understood and subject to debate. Using chromatin immunoprecipitation (ChIP) assays and mammary-specific genes as models, we show here that extracellular matrix (ECM) molecules and prolactin cooperate to induce histone acetylation and binding of transcription factors and the SWI/SNF complex to the {beta}- and ?-casein promoters. Introduction of a dominant negative Brg1, an ATPase subunit of SWI/SNF complex, significantly reduced both {beta}- and ?-casein expression, suggesting that SWI/SNF-dependent chromatin remodeling is required for transcription of mammary-specific genes. ChIP analyses demonstrated that the ATPase activity of SWI/SNF is necessary for recruitment of RNA transcriptional machinery, but not for binding of transcription factors or for histone acetylation. Coimmunoprecipitation analyses showed that the SWI/SNF complex is associated with STAT5, C/EBP{beta}, and glucocorticoid receptor (GR). Thus, ECM- and prolactin-regulated transcription of the mammary-specific casein genes requires the concerted action of chromatin remodeling enzymes and transcription factors.

  3. Resveratrol regulates gene transcription via activation of stimulus-responsive transcription factors.

    PubMed

    Thiel, Gerald; Rössler, Oliver G

    2017-03-01

    Resveratrol (trans-3,4',5-trihydroxystilbene), a polyphenolic phytoalexin of grapes and other fruits and plants, is a common constituent of our diet and of dietary supplements. Many health-promoting benefits have been connected with resveratrol in the treatment of cardiovascular diseases, cancer, diabetes, inflammation, neurodegeneration, and diseases connected with aging. To explain the pleiotropic effects of resveratrol, the molecular targets of this compound have to be identified on the cellular level. Resveratrol induces intracellular signal transduction pathways which ultimately lead to changes in the gene expression pattern of the cells. Here, we review the effect of resveratrol on the activation of the stimulus-responsive transcription factors CREB, AP-1, Egr-1, Elk-1, and Nrf2. Following activation, these transcription factors induce transcription of delayed response genes. The gene products of these delayed response genes are ultimately responsible for the changes in the biochemistry and physiology of resveratrol-treated cells. The activation of stimulus-responsive transcription factors may explain many of the intracellular activities of resveratrol. However, results obtained in vitro may not easily be transferred to in vivo systems.

  4. Matrix factorization-based data fusion for gene function prediction in baker's yeast and slime mold.

    PubMed

    Zitnik, Marinka; Zupan, Blaž

    2014-01-01

    The development of effective methods for the characterization of gene functions that are able to combine diverse data sources in a sound and easily-extendible way is an important goal in computational biology. We have previously developed a general matrix factorization-based data fusion approach for gene function prediction. In this manuscript, we show that this data fusion approach can be applied to gene function prediction and that it can fuse various heterogeneous data sources, such as gene expression profiles, known protein annotations, interaction and literature data. The fusion is achieved by simultaneous matrix tri-factorization that shares matrix factors between sources. We demonstrate the effectiveness of the approach by evaluating its performance on predicting ontological annotations in slime mold D. discoideum and on recognizing proteins of baker's yeast S. cerevisiae that participate in the ribosome or are located in the cell membrane. Our approach achieves predictive performance comparable to that of the state-of-the-art kernel-based data fusion, but requires fewer data preprocessing steps.

  5. Structure and expression of sulfatase and sulfatase modifying factor genes in the diamondback moth, Plutella xylostella.

    PubMed

    Ma, Xiao-Li; He, Wei-Yi; Chen, Wei; Xu, Xue-Jiao; Qi, Wei-Ping; Zou, Ming-Min; You, Yan-Chun; Baxter, Simon W; Wang, Ping; You, Min-Sheng

    2017-06-01

    The diamondback moth, Plutella xylostella (L.), uses sulfatases (SULF) to counteract the glucosinolate-myrosinase defensive system that cruciferous plants have evolved to deter insect feeding. Sulfatase activity is regulated by post-translational modification of a cysteine residue by sulfatase modifying factor 1 (SUMF1). We identified 12 SULF genes (PxylSulfs) and two SUMF1 genes (PxylSumf1s) in the P. xylostella genome. Phylogenetic analysis of SULFs and SUMFs from P. xylostella, Bombyx mori, Manduca sexta, Heliconius melpomene, Danaus plexippus, Drosophila melanogaster, Tetranychus urticae and Homo sapiens showed that the SULFs were clustered into five groups, and the SUMFs could be divided into two groups. Profiling of the expression of PxylSulfs and PxylSumfs by RNA-seq and by quantitative real-time polymerase chain reaction showed that two glucosinolate sulfatase genes (GSS), PxylSulf2 and PxylSulf3, were primarily expressed in the midgut of 3rd- and 4th-instar larvae. Moreover, expression of sulfatases PxylSulf2, PxylSulf3 and PxylSulf4 were correlated with expression of the sulfatases modifying factor PxylSumf1a. The findings from this study provide new insights into the structure and expression of SUMF1 and PxylSulf genes that are considered to be key factors for the evolutionary success of P. xylostella as a specialist herbivore of cruciferous plants. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  6. Mutations and a polymorphism in the factor VIII gene discovered by denaturing gradient gel electrophoresis

    SciTech Connect

    Kogan, S.; Gitschier, J. )

    1990-03-01

    Hemophilia A results from mutations in the gene coding for coagulation factor VIII. The authors gradient gel electrophoresis to screen for mutations in the region of the factor VIII gene coding for the first acidic domain. Amplification primers were designed employing the MELTMAP computer program to optimize the ability to detect mutations. Screening of amplified DNA from 228 unselected hemophilia A patients revealed two mutations and one polymorphism. Rescreening the same population by making heteroduplexes between amplified patient and control samples prior to electrophoresis revealed one additional mutation. The mutations include two missense and one 4-base-pair deletion, and each mutation was found in patients with severe hemophilia. The polymorphism, located adjacent to the adenine branch site in intron 7, is useful for genetic prediction in some cases where the Bcl I and Xba I polymorphisms are uninformative. These results suggest that DNA amplification and denaturing gradient gel electrophoresis should be an excellent strategy for identifying mutations and polymorphisms in defined regions of the factor VIII gene and other large genes.

  7. Progressive tarsal patterning in the Drosophila by temporally dynamic regulation of transcription factor genes.

    PubMed

    Natori, Kohei; Tajiri, Reiko; Furukawa, Shiori; Kojima, Tetsuya

    2012-01-15

    The morphology of insect appendages, such as the number and proportion of leg tarsal segments, is immensely diverse. In Drosophila melanogaster, adult legs have five tarsal segments. Accumulating evidence indicates that tarsal segments are formed progressively through dynamic changes in the expression of transcription factor genes, such as Bar genes, during development. In this study, to examine further the basis of progressive tarsal patterning, the precise expression pattern and function of several transcription factor genes were investigated in relation to the temporal regulation of Bar expression. The results indicate that nubbin is expressed over a broad region at early stages but gradually disappears from the middle of the tarsal region. This causes the progressive expansion of rotund expression, which in turn progressively represses Bar expression, leading to the formation of the tarsal segment 3. The region corresponding to the tarsal segment 4 is formed when apterous expression is initiated, which renders Bar expression refractory to rotund. In addition, the tarsal segment 2 appears to be derived from the region that expresses Bar at a very early stage. Cessation of Bar expression in this region requires the function of spineless, which also regulates rotund expression. These findings indicate that the temporally dynamic regulatory interaction of these transcription factor genes is the fundamental basis of the progressive patterning of the tarsal region.

  8. Vascular endothelial growth factor receptor 2 gene (KDR) polymorphisms and expression levels in depressive disorder.

    PubMed

    Gałecki, Piotr; Orzechowska, Agata; Berent, Dominika; Talarowska, Monika; Bobińska, Kinga; Gałecka, Elżbieta; Lewiński, Andrzej; Maes, Michael; Szemraj, Janusz

    2013-05-01

    Recent research findings suggest that vascular endothelial growth factor (VEGF) participates in the development of depressive disorder. VEGF is involved in neurogenesis and neuroprotection processes, mediated by vascular endothelial growth factor receptor 2 (VEGFR2). VEGFR2 also plays a role in angiogenesis, a process related to neurogenesis and other biological processes. We examined VEGFR2 (KDR) gene polymorphism, mRNA expression levels, as well as VEGFR2 protein levels in 268 patients diagnosed with a recurrent depressive disorder (rDD) using the ICD-10 criteria, and in 200 healthy controls. Genotyping and gene expression level analysis was performed using polymerase chain reaction (PCR)-based methods. An Enzyme-Linked Immunosorbent Assay (ELISA) was used for measurement of KDR protein levels. Our study found that distribution of KDR polymorphism +1416T/A differs significantly in patients with rDD when compared to healthy subjects, while A allele and AA genotype are risk factors for rDD. KDR mRNA and protein expression are higher in patients with rDD. We also observed a significant association between the -271A/G variant and gene and protein levels. Our study is the first to demonstrate that the KDR gene may serve as a novel genetic marker that could participate in the etiology of rDD. This new pathway may play a role in the inflammatory pathophysiology of depression.

  9. SMAD3 and SP1/SP3 Transcription Factors Collaborate to Regulate Connective Tissue Growth Factor Gene Expression in Myoblasts in Response to Transforming Growth Factor β.

    PubMed

    Córdova, Gonzalo; Rochard, Alice; Riquelme-Guzmán, Camilo; Cofré, Catalina; Scherman, Daniel; Bigey, Pascal; Brandan, Enrique

    2015-09-01

    Fibrotic disorders are characterized by an increase in extracellular matrix protein expression and deposition, Duchene Muscular Dystrophy being one of them. Among the factors that induce fibrosis are Transforming Growth Factor type β (TGF-β) and the matricellular protein Connective Tissue Growth Factor (CTGF/CCN2), the latter being a target of the TGF-β/SMAD signaling pathway and is the responsible for the profibrotic effects of TGF-β. Both CTGF and TGF are increased in tissues affected by fibrosis but little is known about the regulation of the expression of CTGF mediated by TGF-β in muscle cells. By using luciferase reporter assays, site directed mutagenesis and specific inhibitors in C2C12 cells; we described a novel SMAD Binding Element (SBE) located in the 5' UTR region of the CTGF gene important for the TGF-β-mediated expression of CTGF in myoblasts. In addition, our results suggest that additional transcription factor binding sites (TFBS) present in the 5' UTR of the CTGF gene are important for this expression and that SP1/SP3 factors are involved in TGF-β-mediated CTGF expression.

  10. Nodulation gene factors and plant response in the Rhizobium-legume symbiosis. [Nodulation

    SciTech Connect

    Long, S.R.

    1990-01-01

    Our original application aimed to identify genes outside the common nod region involved in nodulation and host range of alfalfa. This has been revised by adding other studies on nodulation gene action and removing molecular studies of gene action. Our restated goals and progress are as follows. An early goal was identification and characterization of additional nodulation genes. By means of transposon mutagenesis, mapping and marker exchange we have established 87 independent mutations in a 20kb area represented by plasmid pRmJT5. We discovered four new genes: nodP, nodD3, syrA and syrM. The sequence, start site and protein product for nodFe, nodG, and nodH were also identified. Regulation of nod FEGH was studied. nod FEGH can be induced by luteolin in the presence of noodle; nodD1; noD3 and syrM, a symbiotic regulator gene also increase transcription of nod FEGH. syrA will interact with syrM; syrM also regulates exopolysaccharide genes and is believed to be a master regulator. As part of these studies, an in vitro transcription/translation system for Rhizobium was developed. Adjacent to nodP we discussed nodQ, nodPQ occurrs in two highly consumed copies. nodQ appears by sequence analysis to be similar to initiation and elongation factors, with the highest homology in the GDP binding domain. We have also investigated the nod strain, WL131. WL131 has an insertion, ISRm3, interrupting nodG, and a nonsase mutation in nodH, nodH is responsible for the lack of nodulation. We are currently investigating supernatant factors, host range effects C by spot inoculation, glucaronidase fusion proteins, and are developing, a single root hair inoculation protocol. 7 refs., 6 figs., 1 tab.

  11. Localization of the human genes encoding the two subunits of general transcription factor TFIIE.

    PubMed

    Purrello, M; Di Pietro, C; Rapisarda, A; Motta, S; Pavone, L; Grzeschik, K H; Sichel, G

    1994-09-01

    TFIIE is a general transcription factor for class II genes composed of two types of subunits, a large one of 56 kDa and a small of 34 kDa. By Southern analysis at high and at low stringency of a panel of mouse/human hybrid cell lines and by in situ chromosomal hybridization, we have demonstrated that both polypeptides are encoded by genes that are single copy in the human genome and are localized at 3q13-q21 and at 8p12, respectively. A TaqI RFLP (heterozygosity index of 0.07) was detected at the locus for the 56-kDa subunit.

  12. Localization of the gene for the ciliary neutrotrophic factor receptor (CNTFR) to human chromosome 9

    SciTech Connect

    Donaldson, D.H.; Jones, C.; Patterson, D. Univ. of Colorado Health Science Center, Denver, CO ); Britt, D.E.; Jackson, C.L. )

    1993-09-01

    Ciliary neurotrophic factor (CNTF) has recently been found to be important for the survival of motor neurons and has shown activity in animal models of amyotrophic lateral sclerosis (ALS). CNTF therefore holds promise as a treatment for ALS, and it and its receptor (CNTFR) are candidates for a gene involved in familial ALS. The CNTFR gene was mapped to chromosome 9 by PCR on a panel of human/CHO somatic cell hybrids and localized to 9p13 by PCR on a panel of radiation hybrids. 18 ref., 1 fig., 2 tabs.

  13. Divergence among genes encoding the elongation factor Tu of Yersinia Species.

    PubMed

    Isabel, Sandra; Leblanc, Eric; Boissinot, Maurice; Boudreau, Dominique K; Grondin, Myrian; Picard, François J; Martel, Eric A; Parham, Nicholas J; Chain, Patrick S G; Bader, Douglas E; Mulvey, Michael R; Bryden, Louis; Roy, Paul H; Ouellette, Marc; Bergeron, Michel G

    2008-11-01

    Elongation factor Tu (EF-Tu), encoded by tuf genes, carries aminoacyl-tRNA to the ribosome during protein synthesis. Duplicated tuf genes (tufA and tufB), which are commonly found in enterobacterial species, usually coevolve via gene conversion and are very similar to one another. However, sequence analysis of tuf genes in our laboratory has revealed highly divergent copies in 72 strains spanning the genus Yersinia (representing 12 Yersinia species). The levels of intragenomic divergence between tufA and tufB sequences ranged from 8.3 to 16.2% for the genus Yersinia, which is significantly greater than the 0.0 to 3.6% divergence observed for other enterobacterial genera. We further explored tuf gene evolution in Yersinia and other Enterobacteriaceae by performing directed sequencing and phylogenetic analyses. Phylogenetic trees constructed using concatenated tufA and tufB sequences revealed a monophyletic genus Yersinia in the family Enterobacteriaceae. Moreover, Yersinia strains form clades within the genus that mostly correlate with their phenotypic and genetic classifications. These genetic analyses revealed an unusual divergence between Yersinia tufA and tufB sequences, a feature unique among sequenced Enterobacteriaceae and indicative of a genus-wide loss of gene conversion. Furthermore, they provided valuable phylogenetic information for possible reclassification and identification of Yersinia species.

  14. The cauliflower Orange gene enhances petiole elongation by suppressing expression of eukaryotic release factor 1.

    PubMed

    Zhou, Xiangjun; Sun, Tian-Hu; Wang, Ning; Ling, Hong-Qing; Lu, Shan; Li, Li

    2011-04-01

    The cauliflower (Brassica oleracea var. botrytis) Orange (Or) gene affects plant growth and development in addition to conferring β-carotene accumulation. This study was undertaken to investigate the molecular basis for the effects of the Or gene mutation in on plant growth. The OR protein was found to interact with cauliflower and Arabidopsis eukaryotic release factor 1-2 (eRF1-2), a member of the eRF1 family, by yeast two-hybrid analysis and by bimolecular fluorescence complementation (BiFC) assay. Concomitantly, the Or mutant showed reduced expression of the BoeRF1 family genes. Transgenic cauliflower plants with suppressed expression of BoeRF1-2 and BoeRF1-3 were generated by RNA interference. Like the Or mutant, the BoeRF1 RNAi lines showed increased elongation of the leaf petiole. This long-petiole phenotype was largely caused by enhanced cell elongation, which resulted from increased cell length and elevated expression of genes involved in cell-wall loosening. These findings demonstrate that the cauliflower Or gene controls petiole elongation by suppressing the expression of eRF1 genes, and provide new insights into the molecular mechanism of leaf petiole regulation. © 2010 The Authors. New Phytologist © 2010 New Phytologist Trust.

  15. Naked gene therapy of hepatocyte growth factor for dextran sulfate sodium-induced colitis in mice

    SciTech Connect

    Kanbe, Takamasa |; Murai, Rie; Mukoyama, Tomoyuki; Murawaki, Yoshiyuki |; Hashiguchi, Ko-ichi; Yoshida, Yoko; Tsuchiya, Hiroyuki; Kurimasa, Akihiro; Harada, Ken-ichi; Yashima, Kazuo; Nishimuki, Eiji; Shabana, Noriko; Kishimoto, Yukihiro; Kojyo, Haruhiko; Miura, Kunihiko; Kawasaki, Hironaka; Murawaki, Yoshikazu; Shiota, Goshi . E-mail: gshiota@grape.med.tottori-u.ac.jp

    2006-07-14

    Ulcerative colitis (UC) is progressive and relapsing disease. To explore the therapeutic effects of naked gene therapy of hepatocyte growth factor (HGF) on UC, the SR{alpha} promoter driving HGF gene was intrarectally administered to the mice in which colitis was induced by dextran sulfate sodium (DSS). Expression of the transgene was seen in surface epithelium, lamina propria, and muscularis mucosae. The HGF-treated mice showed reduced colonic mucosal damage and increased body weights, compared with control mice (P < 0.01 and P < 0.05, respectively). The HGF-treated mice displayed increased number of PCNA-positive cells and decreased number of apoptotic cells than in control mice (P < 0.01, each). Phosphorylated AKT was dramatically increased after HGF gene administration, however, phosphorylated ERK1/2 was not altered. Microarray analysis revealed that HGF induced expression of proliferation- and apoptosis-associated genes. These data suggest that naked HGF gene delivery causes therapeutic effects through regulation of many downstream genes.

  16. Identifying Context-Specific Transcription Factor Targets from Prior Knowledge and Gene Expression Data

    PubMed Central

    Fertig, Elana J; Favorov, Alexander V; Ochs, Michael F

    2013-01-01

    Numerous methodologies, assays, and databases presently provide candidate targets of transcription factors (TFs). However, TFs rarely regulate their targets universally. The context of activation of a TF can change the transcriptional response of targets. Direct multiple regulation typical to mammalian genes complicates direct inference of TF targets from gene expression data. We present a novel statistic that infers context-specific TF regulation based upon the CoGAPS algorithm, which infers overlapping gene expression patterns resulting from coregulation. Numerical experiments with simulated data showed that this statistic correctly inferred targets that are common to multiple TFs, except in cases where the signal from a TF is negligible relative to noise level and signal from other TFs. The statistic is robust to moderate levels of error in the simulated gene sets, identifying fewer false positives than false negatives. Significantly, the regulatory statistic refines the number of TF targets relevant to cell signaling in gastrointestinal stromal tumors (GIST) to genes consistent with the phosphorylation patterns of TFs identified in previous studies. As formulated, the proposed regulatory statistic has wide applicability to inferring set membership in integrated datasets. This statistic could be naturally extended to account for prior probabilities of set membership or to add candidate gene targets. PMID:23694699

  17. Identifying context-specific transcription factor targets from prior knowledge and gene expression data.

    PubMed

    Fertig, Elana J; Favorov, Alexander V; Ochs, Michael F

    2013-09-01

    Numerous methodologies, assays, and databases presently provide candidate targets of transcription factors (TFs). However, TFs rarely regulate their targets universally. The context of activation of a TF can change the transcriptional response of targets. Direct multiple regulation typical to mammalian genes complicates direct inference of TF targets from gene expression data. We present a novel statistic that infers context-specific TF regulation based upon the CoGAPS algorithm, which infers overlapping gene expression patterns resulting from coregulation. Numerical experiments with simulated data showed that this statistic correctly inferred targets that are common to multiple TFs, except in cases where the signal from a TF is negligible relative to noise level and signal from other TFs. The statistic is robust to moderate levels of error in the simulated gene sets, identifying fewer false positives than false negatives. Significantly, the regulatory statistic refines the number of TF targets relevant to cell signaling in gastrointestinal stromal tumors (GIST) to genes consistent with the phosphorylation patterns of TFs identified in previous studies. As formulated, the proposed regulatory statistic has wide applicability to inferring set membership in integrated datasets. This statistic could be naturally extended to account for prior probabilities of set membership or to add candidate gene targets.

  18. The Future of Hemophilia Treatment: Longer-Acting Factor Concentrates versus Gene Therapy.

    PubMed

    Giangrande, Paul

    2016-07-01

    Gene therapy is the only novel technology that currently offers the prospect of a lasting cure for hemophilia and freedom from the burden of repeated injections. Recent data from a handful of patients who have undergone gene therapy for hemophilia B are very encouraging with a sustained factor IX (FIX) level of 0.05 IU/mL maintained for over 4 years. While this level is above the current usual target trough levels, it falls well short of the level that patients on prophylaxis with longer-acting products can expect. Prophylaxis is also associated with high peak levels, which permits patients to maintain an active lifestyle. A major barrier to widespread adoption of gene therapy is a high seroprevalence of antibodies to adeno-associated virus (AAV) vectors in the general population. Young children would be the best candidates for gene therapy in view of much lower seroprevalence to AAV in infants. A stable level of FIX early in life would prevent the onset of joint bleeds and the development of arthropathy. The recent experience with apolipoprotein tiparvovec (Glybera; uniQure, Amsterdam, the Netherlands) indicates that gene therapy is unlikely to prove to be a cheap therapeutic option. It is also quite possible that other new technologies that do not require viral vectors (such as stem cell therapy) may overtake gene therapy during development and make it redundant. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  19. Promoter region of the human platelet-derived growth factor A-chain gene.

    PubMed Central

    Takimoto, Y; Wang, Z Y; Kobler, K; Deuel, T F

    1991-01-01

    The platelet-derived growth factor (PDGF) A- and B-chain genes are widely expressed in mammalian tissues and their homodimeric gene products appear to regulate the autocrine growth of both normal and transformed cells. In this study, we analyzed the 5' flanking sequences of the human PDGF A-chain gene to seek elements important to regulating its transcription. The promoter region was exceptionally G + C-rich and contained a "TATA box" but no "CAAT box." The transcription start site was identified 845 base pairs 5' to the translation initiation site by S1 nuclease mapping and by primer extension. Both in vitro transcription and transient expression of the chloramphenicol acetyltransferase gene linked to the PDGF A-chain 5' flanking sequences established that the putative promoter region was active, and RNase H mapping established that the three characteristic mRNAs (1.9, 2.3, and 2.8 kilobases) used the same transcription start site, which was used in normal endothelial cells and in two human tumor cell lines that express high levels of A-chain transcripts. The results established an exceptionally G + C-rich promoter region and a single transcription start site active for each of the three mRNAs of the PDGF A-chain gene. DNA sites of potential importance in mediating the activation of the PDGF A-chain gene in normal cells and in transformed cell lines expressing high levels of PDGF A chain were identified. Images PMID:1848007

  20. Promoter region of the human platelet-derived growth factor A-chain gene

    SciTech Connect

    Takimoto, Yasuo; Wang, Zhao Yi; Kobler, K.; Deuel, T.F. )

    1991-03-01

    The platelet-derived growth factor (PDGF) A- and B-chain genes are widely expressed in mammalian tissues and their homodimeric gene products appear to regulate the autocrine growth of both normal and transformed cells. In this study, we analyzed the 5{prime} flanking sequences of the human PDGF A-chain gene to seek elements important to regulating its transcription. The promoter reigon was exceptionally G + C-rich and contained a TATA box but no CAAT box. The transcription start site was identified 845 base pairs 5{prime} to the translation initiation site by S1 nuclease mapping and by primer extension. Both in vitro transcription and transient expression of the chloramphenicol acetyltransferase gene linked to the PDGF A-chain 5{prime} flanking sequences established that the putative promoter region was active, and RNase H mapping established that the three characteristic mRNAs used the same transcription start site, which was used in normal endothelial cells and in two human tumor cell lines that express high levels of A-chain transcripts. The results extablished an exceptionally G + C-rich promoter region and a single transcription start site active for each of the three mRNAs of the PDGF A-chain gene. DNA sites of potential importance in mediating the activation of the PDGF A-chain gene in normal cells and in transformed cell lines expressing high levels of PDGF A-chain were identified.

  1. Locations of human and mouse genes encoding the RFX1 and RFX2 transcription factor proteins.

    PubMed

    Doyle, J; Hoffman, S; Ucla, C; Reith, W; Mach, B; Stubbs, L

    1996-07-01

    RFX transcription factors constitute a highly conserved family of site-specific DNA binding proteins involved in the expression of a variety of cellular and viral genes, including major histocompatibility complex class II genes and genes in human hepatitis B virus. Five members of the RFX gene family have been isolated from human and mouse, and all share a highly characteristic DNA binding domain that is distinct from other known DNA binding motifs. The human RFX1 and RFX2 genes have been assigned by in situ hybridization to chromosome 19p13.1 and 19p13.3, respectively. In this paper, we present data that localize RFX1 and RFX2 precisely within the detailed physical map of human chromosome 19 and genetic data that assign Rfx1 and Rfx2 to homologous regions of mouse chromosomes 8 and 17, respectively. These data define the established relationships between these homologous mouse and human regions in further detail and provide new tools for linking cloned genes to phenotypes in both species.

  2. Identification of the Drosophila Mes4 gene as a novel target of the transcription factor DREF

    SciTech Connect

    Suyari, Osamu; Ida, Hiroyuki; Yoshioka, Yasuhide; Kato, Yasuko; Hashimoto, Reina; Yamaguchi, Masamitsu

    2009-05-01

    The Mes4 gene has been identified as one of the maternal Dorsal target genes in Drosophila. In the present study, we found a DNA replication-related element (DRE, 5'-TATCGATA) in the Mes4 promoter recognized by the DRE-binding factor (DREF). Luciferase transient expression assays in S2 cells using Mes4 promoter-luciferase fusion plasmids revealed that the DRE sequence is essential for Mes4 promoter activity. Requirement of DRE for Mes4 promoter activity was further confirmed by anti-{beta}-galactosidase antibody-staining of various tissues from transgenic flies carrying Mes4 promoter-lacZ fusion genes. Furthermore, wild type Mes4 promoter activity was decreased by 40% in DREF-depleted S2 cells. These results indicate that DREF positively regulates Mes4 gene expression. Band mobility shift analyses using Kc cell nuclear extracts further indicated that the DRE sequence in the Mes4 promoter is especially important for binding to DREF. Moreover, specific binding of DREF to the involved genomic region could be demonstrated by chromatin immunoprecipitation assays using anti-DREF antibodies. These results, taken together, indicate that the DRE/DREF system activates transcription of the Mes4 gene. In addition, knockdown of the Mes4 gene in wing imaginal discs using the GAL4-UAS system caused an atrophied wing phenotype, suggesting that Mes4 is required for wing morphogenesis.

  3. Hessian regularization based non-negative matrix factorization for gene expression data clustering.

    PubMed

    Liu, Xiao; Shi, Jun; Wang, Congzhi

    2015-01-01

    Since a key step in the analysis of gene expression data is to detect groups of genes that have similar expression patterns, clustering technique is then commonly used to analyze gene expression data. Data representation plays an important role in clustering analysis. The non-negative matrix factorization (NMF) is a widely used data representation method with great success in machine learning. Although the traditional manifold regularization method, Laplacian regularization (LR), can improve the performance of NMF, LR still suffers from the problem of its weak extrapolating power. Hessian regularization (HR) is a newly developed manifold regularization method, whose natural properties make it more extrapolating, especially for small sample data. In this work, we propose the HR-based NMF (HR-NMF) algorithm, and then apply it to represent gene expression data for further clustering task. The clustering experiments are conducted on five commonly used gene datasets, and the results indicate that the proposed HR-NMF outperforms LR-based NMM and original NMF, which suggests the potential application of HR-NMF for gene expression data.

  4. Dynamics of potentiation and activation: GAGA factor and its role in heat shock gene regulation.

    PubMed Central

    Wilkins, R C; Lis, J T

    1997-01-01

    GAGA factor (GAF) binds to specific DNA sequences and participates in a complex spectrum of chromosomal activities.Products of the Trithorax-like locus (Trl), which encodes multiple GAF isoforms, are required for homeotic gene expression and are essential for Drosophila development. While homozygous null mutations in Trl are lethal, heterozygotes display enhanced position effect variegation (PEV) indicative of the broad role of GAF in chromatin architecture and its positive role in gene expression.The distribution of GAF on chromosomes is complex, as it is associated with hundreds of chromosomal loci in euchromatin of salivary gland polytene chromosomes, however, it also displays a strong association with pericentric heterochromatin in diploid cells, where it appears to have roles in chromosome condensation and segregation. At higher resolution GAF binding sites have been identified in the regulatory regions of many genes. In some cases, the positive role of GAF in gene expression has been examined in detail using a variety of genetic, biochemical, and cytological approaches. Here we review what is currently known of GAF and, in the context of the heat shock genes of Drosophila, we examine the effects of GAF on multiple steps in gene expression. PMID:9321643

  5. The WRKY Transcription Factor Family in Citrus: Valuable and Useful Candidate Genes for Citrus Breeding.

    PubMed

    Ayadi, M; Hanana, M; Kharrat, N; Merchaoui, H; Marzoug, R Ben; Lauvergeat, V; Rebaï, A; Mzid, R

    2016-10-01

    WRKY transcription factors belong to a large family of plant transcriptional regulators whose members have been reported to be involved in a wide range of biological roles including plant development, adaptation to environmental constraints and response to several diseases. However, little or poor information is available about WRKY's in Citrus. The recent release of completely assembled genomes sequences of Citrus sinensis and Citrus clementina and the availability of ESTs sequences from other citrus species allowed us to perform a genome survey for Citrus WRKY proteins. In the present study, we identified 100 WRKY members from C. sinensis (51), C. clementina (48) and Citrus unshiu (1), and analyzed their chromosomal distribution, gene structure, gene duplication, syntenic relation and phylogenetic analysis. A phylogenetic tree of 100 Citrus WRKY sequences with their orthologs from Arabidopsis has distinguished seven groups. The CsWRKY genes were distributed across all ten sweet orange chromosomes. A comprehensive approach and an integrative analysis of Citrus WRKY gene expression revealed variable profiles of expression within tissues and stress conditions indicating functional diversification. Thus, candidate Citrus WRKY genes have been proposed as potentially involved in fruit acidification, essential oil biosynthesis and abiotic/biotic stress tolerance. Our results provided essential prerequisites for further WRKY genes cloning and functional analysis with an aim of citrus crop improvement.

  6. Gene expression induced by Toll-like receptors in macrophages requires the transcription factor NFAT5.

    PubMed

    Buxadé, Maria; Lunazzi, Giulia; Minguillón, Jordi; Iborra, Salvador; Berga-Bolaños, Rosa; Del Val, Margarita; Aramburu, José; López-Rodríguez, Cristina

    2012-02-13

    Toll-like receptors (TLRs) engage networks of transcriptional regulators to induce genes essential for antimicrobial immunity. We report that NFAT5, previously characterized as an osmostress responsive factor, regulates the expression of multiple TLR-induced genes in macrophages independently of osmotic stress. NFAT5 was essential for the induction of the key antimicrobial gene Nos2 (inducible nitric oxide synthase [iNOS]) in response to low and high doses of TLR agonists but is required for Tnf and Il6 mainly under mild stimulatory conditions, indicating that NFAT5 could regulate specific gene patterns depending on pathogen burden intensity. NFAT5 exhibited two modes of association with target genes, as it was constitutively bound to Tnf and other genes regardless of TLR stimulation, whereas its recruitment to Nos2 or Il6 required TLR activation. Further analysis revealed that TLR-induced recruitment of NFAT5 to Nos2 was dependent on inhibitor of κB kinase (IKK) β activity and de novo protein synthesis, and was sensitive to histone deacetylases. In vivo, NFAT5 was necessary for effective immunity against Leishmania major, a parasite whose clearance requires TLRs and iNOS expression in macrophages. These findings identify NFAT5 as a novel regulator of mammalian anti-pathogen responses.

  7. Gene expression induced by Toll-like receptors in macrophages requires the transcription factor NFAT5

    PubMed Central

    Buxadé, Maria; Lunazzi, Giulia; Minguillón, Jordi; Iborra, Salvador; Berga-Bolaños, Rosa; del Val, Margarita; Aramburu, José

    2012-01-01

    Toll-like receptors (TLRs) engage networks of transcriptional regulators to induce genes essential for antimicrobial immunity. We report that NFAT5, previously characterized as an osmostress responsive factor, regulates the expression of multiple TLR-induced genes in macrophages independently of osmotic stress. NFAT5 was essential for the induction of the key antimicrobial gene Nos2 (inducible nitric oxide synthase [iNOS]) in response to low and high doses of TLR agonists but is required for Tnf and Il6 mainly under mild stimulatory conditions, indicating that NFAT5 could regulate specific gene patterns depending on pathogen burden intensity. NFAT5 exhibited two modes of association with target genes, as it was constitutively bound to Tnf and other genes regardless of TLR stimulation, whereas its recruitment to Nos2 or Il6 required TLR activation. Further analysis revealed that TLR-induced recruitment of NFAT5 to Nos2 was dependent on inhibitor of κB kinase (IKK) β activity and de novo protein synthesis, and was sensitive to histone deacetylases. In vivo, NFAT5 was necessary for effective immunity against Leishmania major, a parasite whose clearance requires TLRs and iNOS expression in macrophages. These findings identify NFAT5 as a novel regulator of mammalian anti-pathogen responses. PMID:22312110

  8. Why do young women smoke? VII COMT as a risk modifying gene for Nicotine dependence - role of gene-gene interaction, personality, and environmental factors.

    PubMed

    Greenbaum, Lior; Kanyas, Kyra Sarner; Rigbi, Amihai; Alkelai, Anna; Kohn, Yoav; Lerer, Bernard

    2010-11-01

    Catechol-O-methyltransferase (COMT) may be a risk modifying gene for Nicotine dependence (ND) rather than a direct susceptibility gene for this phenotype. Brain nicotinic cholinergic receptors modulate dopaminergic transmission, and several variants within the neighboring CHRNA5-CHRNA3 genes have been associated with ND. Therefore, it is biologically reasonable to study the interactive contribution of COMT and the CHRNA5 and CHRNA3 genes to ND. Using a case-control sample of 90 young, Israeli, Jewish female smokers (FTND ≥ 4) and 108 controls (FTND = 0 during heaviest period of smoking), we studied association with ND of 8 COMT tagging SNPs, their interaction with tagging CHRNA5-A3 SNPs and the role of background, personality, and environmental factors. None of the COMT SNPs were associated directly with ND. In pairwise interaction analysis of SNPs from the two loci (COMT SNP-CHRNA5-CHRNA3 SNP), the interaction of intronic COMT SNP, rs9332377, with CHRNA3 3'UTR SNP rs660652 was significantly associated with ND (p = 0.0005), withstanding correction for multiple testing. Addition of the genetic interaction variable into a model of non-genetic ND predictors [parental smoking, novelty seeking (NS), and lifetime history of trauma], substantially increases the percentage of ND variance explained by the model, as well as the percentage of cases correctly identified by it. Copyright © 2010 John Wiley & Sons, Ltd.

  9. Temporal hierarchy of gene expression mediated by transcription factor binding affinity and activation dynamics.

    PubMed

    Gao, Rong; Stock, Ann M

    2015-05-26

    Understanding cellular responses to environmental stimuli requires not only the knowledge of specific regulatory components but also the quantitative characterization of the magnitude and timing of regulatory events. The two-component system is one of the major prokaryotic signaling schemes and is the focus of extensive interest in quantitative modeling and investigation of signaling dynamics. Here we report how the binding affinity of the PhoB two-component response regulator (RR) to target promoters impacts the level and timing of expression of PhoB-regulated genes. Information content has often been used to assess the degree of conservation for transcription factor (TF)-binding sites. We show that increasing the information content of PhoB-binding sites in designed phoA promoters increased the binding affinity and that the binding affinity and concentration of phosphorylated PhoB (PhoB~P) together dictate the level and timing of expression of phoA promoter variants. For various PhoB-regulated promoters with distinct promoter architectures, expression levels appear not to be correlated with TF-binding affinities, in contrast to the intuitive and oversimplified assumption that promoters with higher affinity for a TF tend to have higher expression levels. However, the expression timing of the core set of PhoB-regulated genes correlates well with the binding affinity of PhoB~P to individual promoters and the temporal hierarchy of gene expression appears to be related to the function of gene products during the phosphate starvation response. Modulation of the information content and binding affinity of TF-binding sites may be a common strategy for temporal programming of the expression profile of RR-regulated genes. A single TF often orchestrates the expression of multiple genes in response to environmental stimuli. It is not clear how different TF-binding sites within the regulon dictate the expression profile. Our studies of Escherichia coli PhoB, a response

  10. Missense mutations in the coagulation factor XII (Hageman factor) gene in hereditary angioedema with normal C1 inhibitor.

    PubMed

    Dewald, Georg; Bork, Konrad

    2006-05-19

    Hereditary angioedema is characterized by recurrent skin swelling, abdominal pain attacks, and potentially life-threatening upper airway obstruction. The two classic types are both caused by mutations within the complement C1 inhibitor gene. A recently described new type does not show a deficiency of C1 inhibitor and affects almost exclusively women. We screened twenty unrelated index patients with this new type of hereditary angioedema for mutations in the coagulation factor XII gene. Two different missense mutations were identified in exactly the same position within exon 9 of the F12 gene. 'Mutation 1' (1032C-->A), encountered in five patients, predicts a threonine-to-lysine substitution (Thr309Lys). 'Mutation 2' (1032C-->G), observed in one patient, results in a threonine-to-arginine substitution (Thr309Arg). The predicted structural and functional impact of the mutations, their absence in 145 healthy controls, and their co-segregation with the phenotype in five families provide strong support that they cause disease.

  11. Regulation of sperm gene expression by the GATA factor ELT-1.

    PubMed

    del Castillo-Olivares, Antonio; Kulkarni, Madhura; Smith, Harold E

    2009-09-15

    Cell fate specification is mediated primarily through the expression of cell-type-specific genes. The regulatory pathway that governs the sperm/egg decision in the hermaphrodite germ line of Caenorhabditis elegans has been well characterized, but the transcription factors that drive these developmental programs remain unknown. We report the identification of ELT-1, a GATA transcription factor that specifies hypodermal fate in the embryo, as a regulator of sperm-specific transcription in the germ line. Computational analysis identified a conserved bipartite sequence element that is found almost exclusively in the promoters of a number of sperm genes. ELT-1 was recovered in a yeast one-hybrid screen for factors that bind to that sperm consensus site. In vitro assays defined the sperm consensus sequence as an optimal binding site for ELT-1. We determined that expression of elt-1 is elevated in the sperm-producing germ line, and that ELT-1 is required for sperm function. Deletion of the ELT-1 binding site from a sperm promoter abrogates sperm-specific expression of a reporter transgene. This work demonstrates a role for the ELT-1 transcription factor in sperm, and provides a critical link between the germ line sex determination program and gamete-specific gene expression.

  12. Cloning, characterization and subcellular localization of Nuclear LIM interactor interacting factor gene from Leishmania donovani.

    PubMed

    Ravinder, R; Goyal, N

    2017-05-05

    LIM domains are zinc-binding motifs that mediate protein-protein interactions and are found in a wide variety of cytoplasmic and nuclear proteins. The nuclear LIM domain family members have a number of different functions including transcription factors, gene regulation, cell fate determination, organization of the cytoskeleton and tumour formation exerting their function through various LIM domain interacting protein partners/cofactors. Nuclear LIM domain interacting proteins/factors have not been reported in any protozoan parasites including Leishmania. Here, we report for the first time cloning, characterization and subcellular localization of nuclear LIM interactor-interacting factor (NLI) like protein from Leishmania donovani, the causative agent of Indian Kala-azar. Primary sequence analysis of LdNLI revealed presence of characteristic features of nuclear LIM interactor-interacting factor. However, leishmanial NLI represents a distinct kinetoplastid group, clustered in a separate branch of the phylogenic tree. The sub-cellular distribution of LdNLI revealed the discreet localization in nucleus and kinetoplast only, suggesting that the gene may have a role in parasite gene expression.

  13. Neuroprotection for Amyotrophic Lateral Sclerosis: Role of Stem Cells, Growth Factors, and Gene Therapy

    PubMed Central

    Pandya, Rachna S.; Mao, Lilly L. J.; Zhou, Edward W.; Bowser, Robert; Zhu, Zhenglun; Zhu, Yongjin; Wang, Xin

    2014-01-01

    Various molecular mechanisms including apoptosis, inflammation, oxidative stress, and excitotoxicity have been implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS), though the exact mechanisms have yet to be specified. Furthermore, the underlying restorative molecular mechanisms resulting in neuronal and/or non-neuronal regeneration have to be yet elucidated. Therapeutic agents targeting one or more of these mechanisms to combat either initiation or progression of the disease are under research. Novel treatments including stem cell therapy, growth factors, and gene therapy might prolong survival and delay progression of symptoms. Harnessing the regenerative potential of the central nervous system would be a novel approach for the treatment of motor neuron death resulting from ALS. Endogenous neural replacement, if augmented with administration of exogenous growth factors or with pharmaceuticals that increase the rate of neural progenitor formation, neural migration, and neural maturation could slow the rate of cell loss enough to result in clinical improvement. In this review, we discuss the impact of therapeutic treatment involving stem cell therapy, trophic factors, gene therapy, and combination therapy on disease onset and progression of ALS. In addition, we summarize human clinical trials of stem cell therapy, growth factor therapy, and gene therapy in individuals with ALS. PMID:22283698

  14. A zinc finger transcription factor ART1 regulates multiple genes implicated in aluminum tolerance in rice.

    PubMed

    Yamaji, Naoki; Huang, Chao Feng; Nagao, Sakiko; Yano, Masahiro; Sato, Yutaka; Nagamura, Yoshiaki; Ma, Jian Feng

    2009-10-01

    Aluminum (Al) toxicity is the major limiting factor of crop production on acid soils, but some plant species have evolved ways of detoxifying Al. Here, we report a C2H2-type zinc finger transcription factor ART1 (for Al resistance transcription factor 1), which specifically regulates the expression of genes related to Al tolerance in rice (Oryza sativa). ART1 is constitutively expressed in the root, and the expression level is not affected by Al treatment. ART1 is localized in the nucleus of all root cells. A yeast one-hybrid assay showed that ART1 has a transcriptional activation potential and interacts with the promoter region of STAR1, an important factor in rice Al tolerance. Microarray analysis revealed 31 downstream transcripts regulated by ART1, including STAR1 and 2 and a couple of homologs of Al tolerance genes in other plants. Some of these genes were implicated in both internal and external detoxification of Al at different cellular levels. Our findings shed light on comprehensively understanding how plants detoxify aluminum to survive in an acidic environment.

  15. Effect of Growth Factors on the Proliferation and Gene Expression of Human Meibomian Gland Epithelial Cells

    PubMed Central

    Liu, Shaohui; Kam, Wendy R.; Ding, Juan; Hatton, Mark P.; Sullivan, David A.

    2013-01-01

    Purpose. We hypothesize that growth factors, including epidermal growth factor (EGF) and bovine pituitary extract (BPE), induce proliferation, but not differentiation (e.g., lipid accumulation), of human meibomian gland epithelial cells. We also hypothesize that these actions involve a significant upregulation of genes linked to cell cycle processes, and a significant downregulation of genes associated with differentiation. Our objective was to test these hypotheses. Methods. Immortalized human meibomian gland and conjunctival epithelial cells were cultured for varying time periods in the presence or absence of EGF, BPE, EGF + BPE, or serum, followed by cell counting, neutral lipid staining, or RNA isolation for molecular biological procedures. Results. Our studies show that growth factors stimulate a significant, time-dependent proliferation of human meibomian gland epithelial cells. These effects are associated with a significant upregulation of genes linked to cell cycle, DNA replication, ribosomes, and translation, and a significant decrease in those related to cell differentiation, tissue development, lipid metabolic processes, and peroxisome proliferator-activated receptor signaling. Serum-induced differentiation, but not growth factor-related proliferation, elicits a pronounced lipid accumulation in human meibomian gland epithelial cells. This lipogenic response is unique, and is not duplicated by human conjunctival epithelial cells. Conclusions. Our results demonstrate that EGF and BPE stimulate human meibomian gland epithelial cells to proliferate. Further, our findings show that action is associated with an upregulation of cell cycle and translation ontologies, and a downregulation of genetic pathways linked to differentiation and lipid biosynthesis. PMID:23493293

  16. Analysis of mutations in the entire coding sequence of the factor VIII gene

    SciTech Connect

    Bidichadani, S.I.; Lanyon, W.G.; Connor, J.M.

    1994-09-01

    Hemophilia A is a common X-linked recessive disorder of bleeding caused by deleterious mutations in the gene for clotting factor VIII. The large size of the factor VIII gene, the high frequency of de novo mutations and its tissue-specific expression complicate the detection of mutations. We have used a combination of RT-PCR of ectopic factor VIII transcripts and genomic DNA-PCRs to amplify the entire essential sequence of the factor VIII gene. This is followed by chemical mismatch cleavage analysis and direct sequencing in order to facilitate a comprehensive search for mutations. We describe the characterization of nine potentially pathogenic mutations, six of which are novel. In each case, a correlation of the genotype with the observed phenotype is presented. In order to evaluate the pathogenicity of the five missense mutations detected, we have analyzed them for evolutionary sequence conservation and for their involvement of sequence motifs catalogued in the PROSITE database of protein sites and patterns.

  17. Expression of myogenic factors in denervated chicken breast muscle: isolation of the chicken Myf5 gene.

    PubMed Central

    Saitoh, O; Fujisawa-Sehara, A; Nabeshima, Y; Periasamy, M

    1993-01-01

    In this study, we have isolated and characterized the chicken Myf5 gene, and cDNA clones encoding chicken MyoD1 and myogenin. The chicken Myf5 and MRF4 genes are tandemly located on a single genomic DNA fragment, and the chicken Myf5 gene is organized into at least three exons. Using genomic and cDNA probes, we further analyzed the mRNA levels of four myogenic factors during chicken breast muscle development. This analysis revealed that myogenin expression is restricted to in ovo stages in breast muscle, and is not detectable in neonatal and adult stages. On the other hand, Myf5 expression is detectable until day 7 post-hatching, and is not found in adult muscle, whereas high levels of MyoD1 and MRF4 are detectable at all stages. To further understand the roles of innervation on muscle maturation, we analyzed the expression of the four myogenic factors in denervated adult breast muscle. We found that MyoD1, myogenin, and MRF4 are induced at high levels in denervated muscle, whereas no change occurs in the level of Myf5. These studies suggest that innervation controls the relative abundance and type of myogenic factors that are expressed in adult muscle, and that when nerve control is removed, the muscle reverts to a neonatal phenotype, with the enhanced expression of three myogenic factors (MyoD1, myogenin, and MRF4). Images PMID:8389445

  18. Transient and stable transfections of mouse myoblasts with genes coding for pro-angiogenic factors.

    PubMed

    Bialas, M; Krupka, M; Janeczek, A; Rozwadowska, N; Fraczek, M; Kotlinowski, J; Kucharzewska, P; Lackowska, B; Kurpisz, M

    2011-04-01

    Cardiomyocyte loss in the ischaemic heart can be the reason of many complications, eventually being even the cause of patient's death. Despite many promises, cell therapy with the use of skeletal muscle stem cells (SMSC) still remains to be modified and improved. Combined cell and gene therapy seems to be a promising strategy to heal damaged myocardium. In the present study we have investigated the influence of a simultaneous overexpression of two potent pro-angiogenic genes encoding the fibroblast growth factor-4 (FGF-4) and the vascular endothelial growth factor-A (VEGF-A) on a myogenic murine C2C12 cell line. We have demonstrated in in vitro conditions that myoblasts which overexpressed these factors exhibited significant changes in the cell cycle and pro-angiogenic potential with only slight differences in the expression of the myogenic genes. There was not observed the influence of transient or stable overexpression of FGF-4 and VEGF on cell apoptosis/necrosis in standard or oxidative stress conditions comparing to non transfected controls. Overall, our results suggest that the possible transplantation of myoblasts overexpressing pro-angiogenic factors may potentially improve the functionality of the injured myocardium although the definite proof must originate from in situ conducted pre-clinical studies.

  19. Opposing functions of TFII-I spliced isoforms in growth factor-induced gene expression.

    PubMed

    Hakre, Shweta; Tussie-Luna, María Isabel; Ashworth, Todd; Novina, Carl D; Settleman, Jeffrey; Sharp, Phillip A; Roy, Ananda L

    2006-10-20

    Multifunctional transcription factor TFII-I has two spliced isoforms (Delta and beta) in murine fibroblasts. Here we show that these isoforms have distinct subcellular localization and mutually exclusive transcription functions in the context of growth factor signaling. In the absence of signaling, TFII-Ibeta is nuclear and recruited to the c-fos promoter in vivo. But upon growth factor stimulation, the promoter recruitment is abolished and it is exported out of the nucleus. Moreover, isoform-specific silencing of TFII-Ibeta results in transcriptional activation of the c-fos gene. In contrast, TFII-IDelta is largely cytoplasmic in the resting state but translocates to the nucleus upon growth factor signaling, undergoes signal-induced recruitment to the same site on the c-fos promoter, and activates the gene. Importantly, activated TFII-IDelta interacts with Erk1/2 (MAPK) kinase in the cell cytoplasm and imports the Erk1/2 to the nucleus, thereby transducing growth factor signaling. Our results identify a unique growth factor signaling pathway controlled by opposing activities of two TFII-I spliced isoforms.

  20. Identification of novel anti-angiogenic factors by in silico functional gene screening method.

    PubMed

    Lee, Seok-Ki; Choi, Yong S; Cha, Jaehyuk; Moon, Eun-Joung; Lee, Sae-Won; Bae, Moon-Kyoung; Sohn, Tae-Kwon; Won, Youjip; Ma, Sangback; Kong, Eun Bae; Lee, Hwangu; Lim, Sangteak; Chang, Daejin; Kim, Yung-Jin; Kim, Chul Woo; Zhang, Byoung-Tak; Kim, Kyu-Won

    2003-10-09

    Angiogenesis, the formation of new blood vessels out of pre-existing capillaries, occurs in a variety of pathophysiological conditions, and is regulated by a balance of angiogenic activators and inhibitors. To identify novel angiogenic factors, we developed a gene screening method by combining the prediction analysis of transcription factor (TF) binding site and the chromosomal localization analysis. First, we analyzed the promoter sequences from known angiogenesis-related factors using the MATINSPECTOR program in TRANSFAC database. Interestingly, we found that the binding site of LMO2 complex is highly conserved in the promoter regions of these factors. Second, we analyzed chromosome loci based on the hypothesis that angiogenesis-related factors might be co-localized in a specific chromosomal band. We found that angiogenesis-related factors are localized in specific 14 chromosomal bands including 5q31 and 19q13 using AngioDB and LocusLink database mining. From these two approaches, we identified 32 novel candidates that have the LMO2 complex binding site in their promoter and are located on one of 14 chromosomal bands. Among them, human recombinant troponin T and spectrin markedly inhibited the neovascularization in vivo and in vitro. Collectively, we suggest that the combination of the prediction analysis of TF binding site and the chromosomal localization analysis might be a useful strategy for gene screening of angiogenesis.

  1. Structure and chromosomal localization of the human stromal cell-derived factor 1 (SDF1) gene

    SciTech Connect

    Shirozu, Michio; Takano, Toru; Tada, Hideaki; Honjo, Tasuku

    1995-08-10

    Stromal cell-derived factors 1{alpha} and 1{beta} are small cytokines belonging to the intercrine CXC subfamily and originally isolated from a murine bone-marrow stroma cell line by the signal sequence trap method. cDNA and genomic clones of human SDF1{alpha} and SDF1{beta} (SDF1A and SDF1B) were isolated and characterized. cDNAs of SDF1{alpha} and SDF1{beta} encode proteins of 89 and 93 amino acids, respectively. SDF1{alpha} and SDF1{beta} sequences are more than 92% identical to those of the human counterparts. The genomic structure of the SDF1 gene revealed that human SDF1{alpha} and SDF1{beta} are encoded by a single gene and arise by alternative splicing. SDF1{alpha} and SDF1{beta} are encoded by 3 and 4 exons, respectively. Ubiquitous expression of the SDF1 gene, except in blood cells, was consistent with the presence of the GC-rich sequence in the 5{prime}-flanking region of the SDF1 gene, as is often the case in the {open_quotes}housekeeping{close_quotes} genes. Although genes encoding other members of the intercrine family are localized on chromosome 4q or 17q, the human SDF1 gene was mapped to chromosome 10q by fluorescence in situ hybridization. Strong evolutionary conservation and unique chromosomal localization of the SDF1 gene suggest that SDF1{alpha} and SDF1{beta} may have important functions distinct from those of other members of the intercrine family. 37 refs., 5 figs.

  2. Expression profile of CBF-like transcriptional factor genes from Eucalyptus in response to cold.

    PubMed

    El Kayal, Walid; Navarro, Marie; Marque, Gilles; Keller, Guylaine; Marque, Christiane; Teulieres, Chantal

    2006-01-01

    Two CBF (CRT/DRE-binding factor) homologues isolated from Eucalyptus gunnii were designated EguCBF1a and EguCBF1b and belong to a gene family which includes at least five members. Both promoter and coding sequences were found to exhibit the main characteristics of a CBF transcription activator gene and, as expected, the corresponding protein targeted the nucleus. Gene expression was quantitatively analysed using real-time reverse transcription-polymerase chain reaction (RT-PCR) after a short exposure to different environmental conditions or along a two-step cold acclimation programme with either short or long daylengths. A very strong and fast response to cold was observed, with dark conditions and cold intensity (down to 0 degrees C) having a positive effect on the magnitude of induction. The two genes under study exhibited several similar features such as light response. However, interestingly, their regulation by cold proved differential and complementary as EguCBF1a was more transiently induced by a direct and intense exposure while EguCBF1b responded to milder treatments and exhibited a longer (i.e. which started earlier and finished later) time course. During acclimation, the short daylength positively affected the freezing tolerance in the same way as it positively affected the CBF transcript accumulation, suggesting a potential involvement of these genes in the adaptive response. Although very quick after the first signal, the up-regulation of the two EguCBF1 genes unexpectedly lasted throughout the chilling culture, and new inductions were seen during the thermoperiod transitions. Using a quantitative and highly sensitive measurement of gene expression combined with the application of a cold treatment consistent with natural environmental conditions, this study provides new information on the regulation of CBF-like genes by cold in planta.

  3. Characterization of shark complement factor I gene(s): genomic analysis of a novel shark-specific sequence.

    PubMed

    Shin, Dong-Ho; Webb, Barbara M; Nakao, Miki; Smith, Sylvia L

    2009-07-01

    Complement factor I is a crucial regulator of mammalian complement activity. Very little is known of complement regulators in non-mammalian species. We isolated and sequenced four highly similar complement factor I cDNAs from the liver of the nurse shark (Ginglymostoma cirratum), designated as GcIf-1, GcIf-2, GcIf-3 and GcIf-4 (previously referred to as nsFI-a, -b, -c and -d) which encode 689, 673, 673 and 657 amino acid residues, respectively. They share 95% (factor I of mammals and banded houndshark (Triakis scyllium), respectively. The modular structure of the GcIf is similar to that of mammals with one notable exception, the presence of a novel shark-specific sequence between the leader peptide (LP) and the factor I membrane attack complex (FIMAC) domain. The cDNA sequences differ only in the size and composition of the shark-specific region (SSR). Sequence analysis of each SSR has identified within the region two novel short sequences (SS1 and SS2) and three repeat sequences (RS1-3). Genomic analysis has revealed the existence of three introns between the leader peptide and the FIMAC domain, tentatively designated intron 1, intron 2, and intron 3 which span 4067, 2293 and 2082bp, respectively. Southern blot analysis suggests the presence of a single gene copy for each cDNA type. Phylogenetic analysis suggests that complement factor I of cartilaginous fish diverged prior to the emergence of mammals. All four GcIf cDNA species are expressed in four different tissues and the liver is the main tissue in which expression level of all four is high. This suggests that the expression of GcIf isotypes is tissue-dependent.

  4. Characterization of shark complement factor I gene(s): genomic analysis of a novel shark-specific sequence

    PubMed Central

    Shin, Dong-Ho; Webb, Barbara M.; Nakao, Miki; Smith, Sylvia L.

    2009-01-01

    Complement factor I is a crucial regulator of mammalian complement activity. Very little is known of complement regulators in non-mammalian species. We isolated and sequenced four highly similar complement factor I cDNAs from the liver of the nurse shark (Ginglymostoma cirratum), designated as GcIf-1, GcIf-2, GcIf-3 and GcIf-4 (previously referred to as nsFI-a, -b, -c and –d) which encode 689, 673, 673 and 657 amino acid residues, respectively. They share 95% (≤) amino acid identities with each other, 35.4 ~ 39.6% and 62.8 ~ 65.9% with factor I of mammals and banded houndshark (Triakis scyllium), respectively. The modular structure of the GcIf is similar to that of mammals with one notable exception, the presence of a novel shark-specific sequence between the leader peptide (LP) and the factor I membrane attack complex (FIMAC) domain. The cDNA sequences differ only in the size and composition of the shark-specific region (SSR). Sequence analysis of each SSR has identified within the region two novel short sequences (SS1 and SS2) and three repeat sequences (RS1, 2 and 3). Genomic analysis has revealed the existence of three introns between the leader peptide and the FIMAC domain, tentatively designated intron 1, intron 2, and intron 3 which span 4067, 2293 and 2082 bp, respectively. Southern blot analysis suggests the presence of a single gene copy for each cDNA type. Phylogenetic analysis suggests that complement factor I of cartilaginous fish diverged prior to the emergence of mammals. All four GcIf cDNA species are expressed in four different tissues and the liver is the main tissue in which expression level of all four is high. This suggests that the expression of GcIf isotypes is tissue-dependent. PMID:19423168

  5. Glucagon and Insulin Cooperatively Stimulate Fibroblast Growth Factor 21 Gene Transcription by Increasing the Expression of Activating Transcription Factor 4.

    PubMed

    Alonge, Kimberly M; Meares, Gordon P; Hillgartner, F Bradley

    2017-03-31

    Previous studies have shown that glucagon cooperatively interacts with insulin to stimulate hepatic FGF21 gene expression. Here we investigated the mechanism by which glucagon and insulin increased FGF21 gene transcription in primary hepatocyte cultures. Transfection analyses demonstrated that glucagon plus insulin induction of FGF21 transcription was conferred by two activating transcription factor 4 (ATF4) binding sites in the FGF21 gene. Glucagon plus insulin stimulated a 5-fold increase in ATF4 protein abundance, and knockdown of ATF4 expression suppressed the ability of glucagon plus insulin to increase FGF21 expression. In hepatocytes incubated in the presence of insulin, treatment with a PKA-selective agonist mimicked the ability of glucagon to stimulate ATF4 and FGF21 expression. Inhibition of PKA, PI3K, Akt, and mammalian target of rapamycin complex 1 (mTORC1) suppressed the ability of glucagon plus insulin to stimulate ATF4 and FGF21 expression. Additional analyses demonstrated that chenodeoxycholic acid (CDCA) induced a 6-fold increase in ATF4 expression and that knockdown of ATF4 expression suppressed the ability of CDCA to increase FGF21 gene expression. CDCA increased the phosphorylation of eIF2α, and inhibition of eIF2α signaling activity suppressed CDCA regulation of ATF4 and FGF21 expression. These results demonstrate that glucagon plus insulin increases FGF21 transcription by stimulating ATF4 expression and that activation of cAMP/PKA and PI3K/Akt/mTORC1 mediates the effect of glucagon plus insulin on ATF4 expression. These results also demonstrate that CDCA regulation of FGF21 transcription is mediated at least partially by an eIF2α-dependent increase in ATF4 expression. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. [Prokaryotic expression and activity identification of gene recombinant protein of brain-derivedneurotrophic factor precursor].

    PubMed

    Chen, Jia; Liang, Xiaomin; Xu, Zhiqiang

    2014-08-19

    To generate the gene recombinant protein of brain-derived neurotrophic factor precursor (proBDNF) in prokaryotic cells and investigate its biological activity. Rat-derived cDNA of proBDNF with point mutation was amplified by polymerase chain reaction (PCR) and cloned into plasmid pET-28a for expression in E. coli BL21. Western blot was used to identify the product and DAPI performed to test its effect on apoptosis of PC12 cells. PCR product of recombinant gene was successfully expressed in E. coli. And the product agreed with the target protein in molecular weight and showed reactivity with its specific antibody. Apoptosis of PC12 cells was induced by a certain concentration of recombinant proBDNF. The prokaryotic expression vector has been successfully constructed for recombinant gene of proBDNF. And the product has biological toxicity and it may induce the apoptosis of PC12 cells.

  7. Expression of the CD4 gene requires a Myb transcription factor.

    PubMed Central

    Siu, G; Wurster, A L; Lipsick, J S; Hedrick, S M

    1992-01-01

    We have analyzed the control of developmental expression of the CD4 gene, which encodes an important recognition molecule and differentiation antigen on T cells. We have determined that the CD4 promoter alone functions at high levels in the CD4+ CD8- mature T cell but not at the early CD4+ CD8+ stage of T-cell development. In addition, the CD4 promoter functions only in T lymphocytes; thus, the stage and tissue specificity of the CD4 gene is mediated in part by its promoter. We have determined that a Myb transcription factor binds to the CD4 promoter and is critical for full promoter function. Thus, Myb plays an important role in the expression of T-cell-specific developmentally regulated genes. Images PMID:1347906

  8. Cross-Family Transcription Factor Interactions: An Additional Layer of Gene Regulation.

    PubMed

    Bemer, Marian; van Dijk, Aalt D J; Immink, Richard G H; Angenent, Gerco C

    2017-01-01

    Specific and dynamic gene expression strongly depends on transcription factor (TF) activity and most plant TFs function in a combinatorial fashion. They can bind to DNA and control the expression of the corresponding gene in an additive fashion or cooperate by physical interactions, forming larger protein complexes. The importance of protein-protein interactions between members of a particular plant TF family has long been recognised; however, a significant number of interfamily TF interactions has recently been reported. The biological implications and the molecular mechanisms involved in cross-family interactions have now started to be elucidated and the examples illustrate potential roles in the bridging of biological processes. Hence, cross-family TF interactions expand the molecular toolbox for plants with additional mechanisms to control and fine-tune robust gene expression patterns and to adapt to their continuously changing environment.

  9. Regularized Non-negative Matrix Factorization for Identifying Differential Genes and Clustering Samples: a Survey.

    PubMed

    Liu, Jin-Xing; Wang, Dong; Gao, Ying-Lian; Zheng, Chun-Hou; Xu, Yong; Yu, Jiguo

    2017-02-07

    Non-negative Matrix Factorization (NMF), a classical method for dimensionality reduction, has been applied in many fields. It is based on the idea that negative numbers are physically meaningless in various data-processing tasks. Apart from its contribution to conventional data analysis, the recent overwhelming interest in NMF is due to its newly discovered ability to solve challenging data mining and machine learning problems, especially in relation to gene expression data. This survey paper mainly focuses on research examining the application of NMF to identify differentially expressed genes and to cluster samples, and the main NMF models, properties, principles, and algorithms with its various generalizations, extensions, and modifications are summarized. The experimental results demonstrate the performance of the various NMF algorithms in identifying differentially expressed genes and clustering samples.

  10. Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice.

    PubMed

    Hu, Honghong; You, Jun; Fang, Yujie; Zhu, Xiaoyi; Qi, Zhuyun; Xiong, Lizhong

    2008-05-01

    Plants respond to adverse environment by initiating a series of signaling processes including activation of transcription factors that can regulate expression of arrays of genes for stress response and adaptation. NAC (NAM, ATAF, and CUC) is a plant specific transcription factor family with diverse roles in development and stress regulation. In this report, a stress-responsive NAC gene (SNAC2) isolated from upland rice IRA109 (Oryza sativa L. ssp japonica) was characterized for its role in stress tolerance. SNAC2 was proven to have transactivation and DNA-binding activities in yeast and the SNAC2-GFP fusion protein was localized in the rice nuclei. Northern blot and SNAC2 promoter activity analyses suggest that SNAC2 gene was induced by drought, salinity, cold, wounding, and abscisic acid (ABA) treatment. The SNAC2 gene was over-expressed in japonica rice Zhonghua 11 to test the effect on improving stress tolerance. More than 50% of the transgenic plants remained vigorous when all WT plants died after severe cold stress (4-8 degrees C for 5 days). The transgenic plants had higher cell membrane stability than wild type during the cold stress. The transgenic rice had significantly higher germination and growth rate than WT under high salinity conditions. Over-expression of SNAC2 can also improve the tolerance to PEG treatment. In addition, the SNAC2-overexpressing plants showed significantly increased sensitivity to ABA. DNA chip profiling analysis of transgenic plants revealed many up-regulated genes related to stress response and adaptation such as peroxidase, ornithine aminotransferase, heavy metal-associated protein, sodium/hydrogen exchanger, heat shock protein, GDSL-like lipase, and phenylalanine ammonia lyase. Interestingly, none of the up-regulated genes in the SNAC2-overexpressing plants matched the genes up-regulated in the transgenic plants over-expressing other stress responsive NAC genes reported previously. These data suggest SNAC2 is a novel stress

  11. Overexpression of Transcription Factor Sp1 Leads to Gene Expression Perturbations and Cell Cycle Inhibition

    PubMed Central

    Deniaud, Emmanuelle; Baguet, Joël; Chalard, Roxane; Blanquier, Bariza; Brinza, Lilia; Meunier, Julien; Michallet, Marie-Cécile; Laugraud, Aurélie; Ah-Soon, Claudette; Wierinckx, Anne; Castellazzi, Marc; Lachuer, Joël; Gautier, Christian

    2009-01-01

    Background The ubiquitous transcription factor Sp1 regulates the expression of a vast number of genes involved in many cellular functions ranging from differentiation to proliferation and apoptosis. Sp1 expression levels show a dramatic increase during transformation and this could play a critical role for tumour development or maintenance. Although Sp1 deregulation might be beneficial for tumour cells, its overexpression induces apoptosis of untransformed cells. Here we further characterised the functional and transcriptional responses of untransformed cells following Sp1 overexpression. Methodology and Principal Findings We made use of wild-type and DNA-binding-deficient Sp1 to demonstrate that the induction of apoptosis by Sp1 is dependent on its capacity to bind DNA. Genome-wide expression profiling identified genes involved in cancer, cell death and cell cycle as being enriched among differentially expressed genes following Sp1 overexpression. In silico search to determine the presence of Sp1 binding sites in the promoter region of modulated genes was conducted. Genes that contained Sp1 binding sites in their promoters were enriched among down-regulated genes. The endogenous sp1 gene is one of the most down-regulated suggesting a negative feedback loop induced by overexpressed Sp1. In contrast, genes containing Sp1 binding sites in their promoters were not enriched among up-regulated genes. These results suggest that the transcriptional response involves both direct Sp1-driven transcription and indirect mechanisms. Finally, we show that Sp1 overexpression led to a modified expression of G1/S transition regulatory genes such as the down-regulation of cyclin D2 and the up-regulation of cyclin G2 and cdkn2c/p18 expression. The biological significance of these modifications was confirmed by showing that the cells accumulated in the G1 phase of the cell cycle before the onset of apoptosis. Conclusion This study shows that the binding to DNA of overexpressed Sp1

  12. Combinations of SERPINB5 gene polymorphisms and environmental factors are associated with oral cancer risks

    PubMed Central

    Tsai, Hsiu-Ting; Hsieh, Ming-Ju; Lin, Chiao-Wen; Su, Shih-Chi; Miao, Nae-Fang; Yang, Shun-Fa; Huang, Hui-Chuan; Lai, Fu-Chih; Liu, Yu-Fan

    2017-01-01

    Background We identified rs17071138 T/C, rs3744941 C/T, and rs8089104 T/C gene polymorphisms of SERPINB5 (mammary serine protease inhibitor) that are specific to patients with oral cancer susceptibility and their clinicopathological status. Methodology/Principal findings In total, 1342 participants, including 601 healthy controls and 741 patients with oral cancer, were recruited for this study. Allelic discrimination of rs17071138 T/C, rs3744941 C/T, and rs8089104 T/C of the SERPINB5 gene was assessed by a real-time PCR with a TaqMan assay. We found that individuals carrying the polymorphic rs17071138 and rs8089104 are more susceptible to oral cancer (OR, 1.57; 95% CI, 1.07~2.31 and OR, 1.58; 95% CI, 1.04~2.39, respectively). Among oral cancer-related risk factor exposures, the individuals carrying the polymorphic rs17071138 had 4.26- (95% CI: 1.65~11.01; p = 0.002), 2.34- (95% CI: 1.19~4.61; p = 0.01), and 2.34-fold (95% CI: 1.38~3.96; p = 0.001) higher risks of developing oral cancer. Conclusions Heterozygous TC of the SERPINB5 rs17071138 polymorphism may be a factor that increases susceptibility to oral cancer. Interactions of gene-to-gene and gene-to-oral cancer-related environmental risk factors have a synergetic effect that can further enhance oral cancer development. PMID:28339463

  13. Risk factors for acquisition of CTX-M genes in pilgrims during Hajj 2013 and 2014.

    PubMed

    Leangapichart, Thongpan; Tissot-Dupont, Hervé; Raoult, Didier; Memish, Ziad A; Rolain, Jean-Marc; Gautret, Philippe

    2017-09-01

    Mass gatherings, especially the Hajj pilgrimage, provide favourable conditions for bacterial transmission among participants, which might contribute to the international spread of ESBL-producing Enterobacteriaceae (ESBL-E). We conducted an analysis aimed at investigating risk factors for CTX-M gene (blaCTX-M) rectal carriage in 2013 and 2014 Hajj pilgrims. A total of 218 pilgrims provided paired pre- and post-Hajj rectal samples (2013, 129 pilgrims; 2014, 89 pilgrims). CTX-M genes in rectal samples were identified by PCR and confirmed by sequencing. Pilgrims' characteristics, including possible factors relating to ESBL acquisition, were collected and analysed using XLSTAT version 2016.05.34687 (Addinsoft). For the univariate analysis, the frequencies of nominal data were compared using Pearson's χ2 test and Fisher's exact test, and the means of quantitative data were compared using Student's t-test. A difference was considered significant when P < 0.05. For multivariate analysis, a logistic regression was carried out, considering all the significant data in univariate analysis. The acquisition rates of CTX-M genes among pilgrims during the 2013 and 2014 Hajj were similar, at 31.0% and 34.83%, respectively. Being of Moroccan origin, having chronic conditions, shortness of breath or diarrhoea, and using β-lactams were associated with higher CTX-M gene acquisition, while being of Algerian origin and using macrolides were associated with lower CTX-M acquisition in univariate analysis. Shortness of breath and diarrhoea remained associated with increased CTX-M gene acquisition and consumption of macrolides with lower CTX-M gene acquisition in multivariate analysis. The possible gut colonization by CTX-M-type ESBL bacteria should be taken into account when prescribing empirical antibiotic treatments for infections that occur in returning Hajj pilgrims.

  14. A common mutation in the fibroblast growth factor receptor 1 gene in Pfeiffer syndrome.

    PubMed

    Muenke, M; Schell, U; Hehr, A; Robin, N H; Losken, H W; Schinzel, A; Pulleyn, L J; Rutland, P; Reardon, W; Malcolm, S

    1994-11-01

    Pfeiffer syndrome (PS) is one of the classic autosomal dominant craniosynostosis syndromes with craniofacial anomalies and characteristic broad thumbs and big toes. We have previously mapped one of the genes for PS to the centromeric region of chromosome 8 by linkage analysis. Here we present evidence that mutations in the fibroblast growth factor receptor-1 (FGFR1) gene, which maps to 8p, cause one form of familial Pfeiffer syndrome. A C to G transversion in exon 5, predicting a proline to arginine substitution in the putative extracellular domain, was identified in all affected members of five unrelated PS families but not in any unaffected individuals. FGFR1 therefore becomes the third fibroblast growth factor receptor to be associated with an autosomal dominant skeletal disorder.

  15. Role of non-coding RNA transcription around gene regulatory elements in transcription factor recruitment

    PubMed Central

    Ohta, Kunihiro

    2017-01-01

    ABSTRACT Eukaryotic cells produce a variety of non-coding RNAs (ncRNAs), many of which have been shown to play pivotal roles in biological processes such as differentiation, maintenance of pluripotency of stem cells, and cellular response to various stresses. Genome-wide analyses have revealed that many ncRNAs are transcribed around regulatory DNA elements located proximal or distal to gene promoters, but their biological functions are largely unknown. Recently, it has been demonstrated in yeast and mouse that ncRNA transcription around gene promoters and enhancers facilitates DNA binding of transcription factors to their target sites. These results suggest universal roles of promoter/enhancer-associated ncRNAs in the recruitment of transcription factors to their binding sites. PMID:27763805

  16. Requirement for the c-Maf transcription factor in crystallin gene regulation and lens development

    PubMed Central

    Kim, James I.; Li, Tiansen; Ho, I.-Cheng; Grusby, Michael J.; Glimcher, Laurie H.

    1999-01-01

    The vertebrate lens is a tissue composed of terminally differentiated fiber cells and anterior lens epithelial cells. The abundant, preferential expression of the soluble proteins called crystallins creates a transparent, refractive index gradient in the lens. Several transcription factors such as Pax6, Sox1, and L-Maf have been shown to regulate lens development. Here we show that mice lacking the transcription factor c-Maf are microphthalmic secondary to defective lens formation, specifically from the failure of posterior lens fiber elongation. The marked impairment of crystallin gene expression observed is likely explained by the ability of c-Maf to transactivate the crystallin gene promoter. Thus, c-Maf is required for the differentiation of the vertebrate lens. PMID:10097114

  17. The role of gene regulatory factors in the evolutionary history of humans.

    PubMed

    Perdomo-Sabogal, Alvaro; Kanton, Sabina; Walter, Maria Beatriz C; Nowick, Katja

    2014-12-01

    Deciphering the molecular basis of how modern human phenotypes have evolved is one of the most fascinating challenges in biology. Here, we will focus on the roles of gene regulatory factors (GRFs), in particular transcription factors (TFs) and long non-coding RNAs (lncRNAs) during human evolution. We will present examples of TFs and lncRNAs that have changed or show signs of positive selection in humans compared to chimpanzees, in modern humans compared to archaic humans, or within modern human populations. On the basis of current knowledge about the functions of these GRF genes, we speculate that they have been involved in speciation as well as in shaping phenotypes such as brain functions, skeletal morphology, and metabolic processes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Interactions of Environmental Factors and APOA1-APOC3-APOA4-APOA5 Gene Cluster Gene Polymorphisms with Metabolic Syndrome

    PubMed Central

    Wu, Yanhua; Yu, Yaqin; Zhao, Tiancheng; Wang, Shibin; Fu, Yingli; Qi, Yue; Yang, Guang; Yao, Wenwang; Su, Yingying; Ma, Yue; Shi, Jieping; Jiang, Jing; Kou, Changgui

    2016-01-01

    Objective The present study investigated the prevalence and risk factors for Metabolic syndrome. We evaluated the association between single nucleotide polymorphisms (SNPs) in the apolipoprotein APOA1/C3/A4/A5 gene cluster and the MetS risk and analyzed the interactions of environmental factors and APOA1/C3/A4/A5 gene cluster polymorphisms with MetS. Methods A study on the prevalence and risk factors for MetS was conducted using data from a large cross-sectional survey representative of the population of Jilin Province situated in northeastern China. A total of 16,831 participations were randomly chosen by multistage stratified cluster sampling of residents aged from 18 to 79 years in all nine administrative areas of the province. Environmental factors associated with MetS were examined using univariate and multivariate logistic regression analyses based on the weighted sample data. A sub-sample of 1813 survey subjects who met the criteria for MetS patients and 2037 controls from this case-control study were used to evaluate the association between SNPs and MetS risk. Genomic DNA was extracted from peripheral blood lymphocytes, and SNP genotyping was determined by MALDI-TOF-MS. The associations between SNPs and MetS were examined using a case-control study design. The interactions of environmental factors and APOA1/C3/A4/A5 gene cluster polymorphisms with MetS were assessed using multivariate logistic regression analysis. Results The overall adjusted prevalence of MetS was 32.86% in Jilin province. The prevalence of MetS in men was 36.64%, which was significantly higher than the prevalence in women (29.66%). MetS was more common in urban areas (33.86%) than in rural areas (31.80%). The prevalence of MetS significantly increased with age (OR = 8.621, 95%CI = 6.594–11.272). Mental labor (OR = 1.098, 95%CI = 1.008–1.195), current smoking (OR = 1.259, 95%CI = 1.108–1.429), excess salt intake (OR = 1.252, 95%CI = 1.149–1.363), and a fruit and dairy intake less

  19. Banana ethylene response factors are involved in fruit ripening through their interactions with ethylene biosynthesis genes.

    PubMed

    Xiao, Yun-yi; Chen, Jian-ye; Kuang, Jiang-fei; Shan, Wei; Xie, Hui; Jiang, Yue-ming; Lu, Wang-jin

    2013-05-01

    The involvement of ethylene response factor (ERF) transcription factor (TF) in the transcriptional regulation of ethylene biosynthesis genes during fruit ripening remains largely unclear. In this study, 15 ERF genes, designated as MaERF1-MaERF15, were isolated and characterized from banana fruit. These MaERFs were classified into seven of the 12 known ERF families. Subcellular localization showed that MaERF proteins of five different subfamilies preferentially localized to the nucleus. The 15 MaERF genes displayed differential expression patterns and levels in peel and pulp of banana fruit, in association with four different ripening treatments caused by natural, ethylene-induced, 1-methylcyclopropene (1-MCP)-delayed, and combined 1-MCP and ethylene treatments. MaERF9 was upregulated while MaERF11 was downregulated in peel and pulp of banana fruit during ripening or after treatment with ethylene. Furthermore, yeast-one hybrid (Y1H) and transient expression assays showed that the potential repressor MaERF11 bound to MaACS1 and MaACO1 promoters to suppress their activities and that MaERF9 activated MaACO1 promoter activity. Interestingly, protein-protein interaction analysis revealed that MaERF9 and -11 physically interacted with MaACO1. Taken together, these results suggest that MaERFs are involved in banana fruit ripening via transcriptional regulation of or interaction with ethylene biosynthesis genes.

  20. Evaluation of vascular endothelial growth factor gene and protein expression in canine metastatic mammary carcinomas.

    PubMed

    Raposo-Ferreira, Talita M M; Salvador, Rosana C L; Terra, Erika M; Ferreira, Juarez H; Vechetti-Junior, Ivan José; Tinucci-Costa, Mirela; Rogatto, Silvia R; Laufer-Amorim, Renée

    2016-11-01

    Vascular endothelial growth factor (VEGF) is a potent angiogenic factor that could be associated with the induction of endothelial cell proliferation and metastasis. In this study, we evaluated VEGF gene and protein expression in canine mammary tumors (CMT), including metastatic carcinomas, to determine if there is an influence of this marker in the malignant processes and aggressiveness of CMT. We also compared VEGF protein levels with clinicopathological features. The VEGF gene and protein expression levels were evaluated by reverse transcription-quantitative polymerase chain reaction and immunohistochemistry, respectively, in normal mammary gland samples, benign mammary tumors, nonmetastatic mammary carcinomas, and metastatic mammary carcinomas. High VEGF gene and protein levels were associated with malignant tumors compared with normal mammary glands (p = 0.0089 and p < 0.0001, respectively). Benign tumors showed an increased VEGF protein expression compared with normal samples (p = 0.0467). No significant differences in VEGF gene or protein levels were detected between benign and malignant tumors or between nonmetastatic and metastatic carcinomas, suggesting an absence in the correlation of VEGF with malignant processes and aggressiveness of CMT. No correlation of VEGF expression with clinical and histopathological parameters was observed, suggesting that VEGF could be important in the beginning of the mammary gland carcinogenic process and could be related to survival time. © 2016 Wiley Periodicals, Inc.

  1. Association of the Hepatocyte Growth Factor Gene with Keratoconus in an Australian Population

    PubMed Central

    Sahebjada, Srujana; Schache, Maria; Richardson, Andrea J.; Snibson, Grant; Daniell, Mark; Baird, Paul N.

    2014-01-01

    Purpose A previous study has indicated suggestive association of the hepatocyte growth factor (HGF) gene with Keratoconus. We wished to assess this association in an independent Caucasian cohort as well as assess its association with corneal curvature. Participants Keratoconus patients were recruited from private and public clinics in Melbourne, Australia. Non-keratoconic individuals were identified from the Genes in Myopia (GEM) study from Australia. A total of 830 individuals were used for the analysis including 157 keratoconic and 673 non keratoconic subjects. Methods Tag single nucleotide polymorphisms (tSNPs) were chosen to encompass the hepatocyte growth factor gene as well as 2 kb upstream of the start codon through to 2 kb downstream of the stop codon. Logistic and linear regression including age and gender as covariates were applied in statistical analysis with subsequent Bonferroni correction. Results Ten tSNPs were genotyped. Following statistical analysis and multiple testing correction, a statistically significant association was found for the tSNP rs2286194 {p = 1.1×10-3 Odds Ratio 0.52, 95% CI - 0.35, 0.77} for keratoconus. No association was found between the 10 tSNPs and corneal curvature. Conclusions These findings provide additional evidence of significant association of the HGF gene with Keratoconus. This association does not appear to act through the corneal curvature route. PMID:24416191

  2. Effect of Dynamic Interaction between microRNA and Transcription Factor on Gene Expression

    PubMed Central

    Liu, Hongsheng; Yao, Chenggui

    2016-01-01

    MicroRNAs (miRNAs) are endogenous noncoding RNAs which participate in diverse biological processes in animals and plants. They are known to join together with transcription factors and downstream gene, forming a complex and highly interconnected regulatory network. To recognize a few overrepresented motifs which are expected to perform important elementary regulatory functions, we constructed a computational model of miRNA-mediated feedforward loops (FFLs) in which a transcription factor (TF) regulates miRNA and targets gene. Based on the different dynamic interactions between miRNA and TF on gene expression, four possible structural topologies of FFLs with two gate functions (AND gate and OR gate) are introduced. We studied the dynamic behaviors of these different motifs. Furthermore, the relationship between the response time and maximal activation velocity of miRNA was investigated. We found that the curve of response time shows nonmonotonic behavior in Co1 loop with OR gate. This may help us to infer the mechanism of miRNA binding to the promoter region. At last we investigated the influence of important parameters on the dynamic response of system. We identified that the stationary levels of target gene in all loops were insensitive to the initial value of miRNA. PMID:27957492

  3. GATA factors regulate proliferation, differentiation, and gene expression in small intestine of mature mice

    PubMed Central

    Beuling, Eva; Baffour-Awuah, Nana Yaa A.; Stapleton, Kelly A.; Aronson, Boaz E.; Noah, Taeko K.; Shroyer, Noah F.; Duncan, Stephen A.; Fleet, James C.; Krasinski, Stephen D.

    2012-01-01

    Background & Aims GATA transcription factors regulate genes in multiple organs to control proliferation and differentiation. GATA4 is expressed in the proximal 85% of the small intestine, where it regulates the expression of genes that are specifically expressed by absorptive enterocytes. GATA6 is co-expressed with GATA4 but is also expressed in the ileum; its function in the mature small intestine is unknown. Methods We investigated the function of GATA6 in small intestine using adult mice with inducible disruption of Gata6, or Gata6 and Gata4, specifically in the intestine. Results In ileum, deletion of Gata6 reduced in proliferation and numbers of enteroendocrine cells, increased numbers of goblet-like cells in crypts, caused loss of Paneth cells, and altered expression of genes specific to absorptive enterocytes. In contrast, in jejunum and duodenum, deletion of Gata6 increased numbers of Paneth cells. Deletion of Gata6 and Gata4 resulted jejunal and duodenal phenotype that was nearly identical to that in the ileum after deletion of Gata6 alone, demonstrating that most GATA4 functions are redundant with those of GATA6. Conclusion GATA transcription factors are required for proliferation, secretory cell differentiation, and expression of genes by absorptive enterocytes in the small intestinal epithelium. PMID:21262227

  4. Sphingolipids, Transcription Factors, and Conserved Toolkit Genes: Developmental Plasticity in the Ant Cardiocondyla obscurior

    PubMed Central

    Schrader, Lukas; Simola, Daniel F.; Heinze, Jürgen; Oettler, Jan

    2015-01-01

    Developmental plasticity allows for the remarkable morphological specialization of individuals into castes in eusocial species of Hymenoptera. Developmental trajectories that lead to alternative caste fates are typically determined by specific environmental stimuli that induce larvae to express and maintain distinct gene expression patterns. Although most eusocial species express two castes, queens and workers, the ant Cardiocondyla obscurior expresses diphenic females and males; this provides a unique system with four discrete phenotypes to study the genomic basis of developmental plasticity in ants. We sequenced and analyzed the transcriptomes of 28 individual C. obscurior larvae of known developmental trajectory, providing the first in-depth analysis of gene expression in eusocial insect larvae. Clustering and transcription factor binding site analyses revealed that different transcription factors and functionally distinct sets of genes are recruited during larval development to induce the four alternative trajectories. In particular, we found complex patterns of gene regulation pertaining to sphingolipid metabolism, a conserved molecular pathway involved in development, obesity, and aging. PMID:25725431

  5. Effect of age on the gene expression of neural-restrictive silencing factor NRSF/REST.

    PubMed

    Mori, Nozomu; Mizuno, Takafumi; Murai, Kiyohito; Nakano, Itsuko; Yamashita, Hitoshi

    2002-01-01

    Aging affects a wide range of gene expression changes in the nervous system. Such effects could be attributed to random changes in the environment with age around each gene, but also could be caused by selective changes in a limited set of key regulatory transcription factors and/or chromatin remodeling components. To approach the question of whether neural-restrictive silencer factor NRSF, a key determinant of the neuron-specific gene expression, is involved in these changes, we examined the levels of NRSF in the rat brain and dosal root ganglia during aging by semi-quantitative reverse transcriptase-mediated polymerase chain reaction (PCR) (RT-PCR). Complementary expression profiles of transcripts of NRSF and SCG10 in the mature brain were shown by in situ hybridization. Neither the mRNA levels of NRSF nor a splicing variant NRnV were changed, at least in rats up to 26 months old. The gene expression level of SCG10, one of the NRSF targets, was also unaffected by age. The stable expression of SCG10 transcripts in aging was confirmed by in situ hybridization. The NRS-binding ability of NRSF was also unchanged significantly in the nuclear extracts of aged rat brain. These results suggest that the genetic machinery associated with the NRS-NRSF system is well maintained during aging.

  6. Effect of Dynamic Interaction between microRNA and Transcription Factor on Gene Expression.

    PubMed

    Zhao, Qi; Liu, Hongsheng; Yao, Chenggui; Shuai, Jianwei; Sun, Xiaoqiang

    2016-01-01

    MicroRNAs (miRNAs) are endogenous noncoding RNAs which participate in diverse biological processes in animals and plants. They are known to join together with transcription factors and downstream gene, forming a complex and highly interconnected regulatory network. To recognize a few overrepresented motifs which are expected to perform important elementary regulatory functions, we constructed a computational model of miRNA-mediated feedforward loops (FFLs) in which a transcription factor (TF) regulates miRNA and targets gene. Based on the different dynamic interactions between miRNA and TF on gene expression, four possible structural topologies of FFLs with two gate functions (AND gate and OR gate) are introduced. We studied the dynamic behaviors of these different motifs. Furthermore, the relationship between the response time and maximal activation velocity of miRNA was investigated. We found that the curve of response time shows nonmonotonic behavior in Co1 loop with OR gate. This may help us to infer the mechanism of miRNA binding to the promoter region. At last we investigated the influence of important parameters on the dynamic response of system. We identified that the stationary levels of target gene in all loops were insensitive to the initial value of miRNA.

  7. The GATA transcription factor gene gtaG is required for terminal differentiation in Dictyostelium.

    PubMed

    Katoh-Kurasawa, Mariko; Santhanam, Balaji; Shaulsky, Gad

    2016-03-09

    The GATA transcription factor GtaG is conserved in Dictyostelids and essential for terminal differentiation in Dictyostelium discoideum, but its function is not well understood. Here we show that gtaG is expressed in prestalk cells at the anterior region of fingers and in the extending stalk during culmination. The gtaG(-) phenotype is cell-autonomous in prestalk cells and non-cell-autonomous in prespore cells. Transcriptome analyses reveal that GtaG regulates prestalk gene expression during cell differentiation before culmination and is required for progression into culmination. GtaG-dependent genes include genetic suppressors of the Dd-STATa-defective phenotype as well as Dd-STATa target-genes, including extra cellular matrix genes. We show that GtaG may be involved in the production of two culmination-signaling molecules, cyclic di-GMP and the spore differentiation factor SDF-1 and that addition of c-di-GMP rescues the gtaG(-) culmination and spore formation deficiencies. We propose that GtaG is a regulator of terminal differentiation that functions in concert with Dd-STATa and controls culmination through regulating c-di-GMP and SDF-1 production in prestalk cells.

  8. Banana ethylene response factors are involved in fruit ripening through their interactions with ethylene biosynthesis genes

    PubMed Central

    Xiao, Yun-yi; Chen, Jian-ye; Kuang, Jiang-fei; Shan, Wei; Xie, Hui; Jiang, Yue-ming; Lu, Wang-jin

    2013-01-01

    The involvement of ethylene response factor (ERF) transcription factor (TF) in the transcriptional regulation of ethylene biosynthesis genes during fruit ripening remains largely unclear. In this study, 15 ERF genes, designated as MaERF1–MaERF15, were isolated and characterized from banana fruit. These MaERFs were classified into seven of the 12 known ERF families. Subcellular localization showed that MaERF proteins of five different subfamilies preferentially localized to the nucleus. The 15 MaERF genes displayed differential expression patterns and levels in peel and pulp of banana fruit, in association with four different ripening treatments caused by natural, ethylene-induced, 1-methylcyclopropene (1-MCP)-delayed, and combined 1-MCP and ethylene treatments. MaERF9 was upregulated while MaERF11 was downregulated in peel and pulp of banana fruit during ripening or after treatment with ethylene. Furthermore, yeast-one hybrid (Y1H) and transient expression assays showed that the potential repressor MaERF11 bound to MaACS1 and MaACO1 promoters to suppress their activities and that MaERF9 activated MaACO1 promoter activity. Interestingly, protein–protein interaction analysis revealed that MaERF9 and -11 physically interacted with MaACO1. Taken together, these results suggest that MaERFs are involved in banana fruit ripening via transcriptional regulation of or interaction with ethylene biosynthesis genes. PMID:23599278

  9. Transcription factor genes of Schizophyllum commune involved in regulation of mushroom formation.

    PubMed

    Ohm, Robin A; de Jong, Jan F; de Bekker, Charissa; Wösten, Han A B; Lugones, Luis G

    2011-09-01

    Mushrooms represent the most conspicuous structures of fungi. Their development is being studied in the model basidiomycete Schizophyllum commune. The genome of S. commune contains 472 genes encoding predicted transcription factors. Of these, fst3 and fst4 were shown to inhibit and induce mushroom development respectively. Here, we inactivated five additional transcription factor genes. This resulted in absence of mushroom development (in the case of deletion of bri1 and hom2), in arrested development at the stage of aggregate formation (in the case of c2h2) and in the formation of more but smaller mushrooms (in the case of hom1 and gat1). Moreover, strains in which hom2 and bri1 were inactivated formed symmetrical colonies instead of irregular colonies like the wild type. A genome-wide expression analysis identified several gene classes that were differentially expressed in the strains in which either hom2 or fst4 was inactivated. Among the genes that were downregulated in these strains were c2h2 and hom1. Based on these results, a regulatory model of mushroom development in S. commune is proposed. This model most likely also applies to other mushroom-forming fungi and will serve as a basis to understand mushroom formation in nature and to enable and improve commercial mushroom production. © 2011 Blackwell Publishing Ltd.

  10. The impact of non-electrical factors on electrical gene transfer

    PubMed Central

    Hu, Jiemiao; Cutrera, Jeffry; Li, Shulin

    2014-01-01

    Electrical pulses directly and effectively boost both in vitro and in vivo gene transfer, but this process is greatly affected by non-electrical factors that exist during electroporation. These factors include, but are not limited to, the types of cells or tissues used, the property of DNA, DNA formulation, and the expressed protein. In this mini-review, we only describe and discuss a summary of DNA properties and selected DNA formulations on gene transfer via electroporation. The properties of DNA were selected for review because a substantial amount of remarkable work has been performed during the past few years but has received less notice than other work, although DNA properties appear to be critical for boosting electroporation delivery. The selected formulations will be covered in this mini-review because we are only interested in the simple formulations that could be used for cell or gene therapy via electroporation. Plus, there was an extensive review of DNA formulations in the first edition of this book. The formulations discussed in this mini-review represent novel developments in recent years and may impact electroporation significantly. These advancements in DNA formulations could prove to be important for gene delivery and disease treatment. PMID:24510810

  11. Interleukin 10 and transforming growth factor beta 1 gene polymorphisms in juvenile idiopathic arthritis.

    PubMed

    Harsini, S; Ziaee, V; Maddah, M; Rezaei, A; Sadr, M; Zoghi, S; Moradinejad, M H; Tahghighi, F; Aghighi, Y; Rezaei, N

    2016-01-01

    The aim of this study is to identify the associations between interleukin 10 (IL-10) and transforming growth factor beta 1 (TGF-β1) gene polymorphisms and individual susceptibility to juvenile idiopathic arthritis (JIA) in a group of Iranian patients. Cytokine genes, including IL-10 and TGF-β1, are known to play important roles in the pathogenesis of JIA. Using polymerase chain reaction with sequence-specific primers method, the frequency of alleles, genotypes and haplotypes of IL-10 (positions -1082, -819, -592) and TGF-β1 (codon 10, codon 25) single-nucleotide polymorphisms (SNPs) were investigated in 55 patients with JIA as a case group and compared with 140 healthy unrelated controls. The G allele was significantly less frequent at TGF-β1 codon 25 in patients with JIA than in the controls (p < 0.01). The frequency of CT genotype at TGF-β1 codon 10 was found to be higher in healthy individuals in comparison with that in patients group (p = 0.04). We observed no differences in the frequency of alleles, genotypes and haplotypes of IL-10 gene between the groups of patients and controls. Considering the low frequency of existence of TGF-β1 G allele at codon 25 as well as TGF-β1 CT genotype at codon 10 in patients with JIA, it seems that these cytokine gene polymorphisms could play role as the protective factors against JIA.

  12. The Xenopus laevis ribosomal gene promoter contains a binding site for nuclear factor-1.

    PubMed Central

    Walker, P; Reeder, R H

    1988-01-01

    Nuclear Factor I (NF1) is a DNA binding protein that is known to function in the replication of Adeno virus and also binds to many promoters recognized by RNA polymerase II. We have found that there is also an NF1 binding site within the ribosomal gene promoter from Xenopus laevis as well as in several other promoters recognized by RNA polymerase I. The function of a binding site for a polymerase II transcription factor within a promoter recognized by polymerase I is not known. However, its presence suggests interesting regulatory possibilities. Images PMID:3205719

  13. The Synergistic Effect between Electrical and Chemical Factors in Plasma Gene/Molecule-Transfection

    NASA Astrophysics Data System (ADS)

    Jinno, Masafumi

    2016-09-01

    This study has been done to know what kind of factors in plasma and processes on cells promote plasma gene/molecule transfection. We have discovered a new plasma source using a microcapillary electrode which enables high transfection efficiency and high cell survivability simultaneously. However, the mechanism of the transfection by plasma was not clear. To clarify the transfection mechanisms by micro plasma, we focused on the effects of electrical (current, charge, field, etc.) and chemical (radicals, RONS, etc.) factors generated by the micro plasma and evaluated the contribution weight of three groups of the effects and processes, i.e. electrical, chemical and biochemical ones. At first, the necessity of the electrical factors was estimated by the laser produced plasma (LPP). Mouse L-929 fibroblast cell was cultured on a 96-well plate or 12-well micro slide chamber. Plasmids pCX-EGFP in Tris-EDTA buffer was dropped on the cells and they were exposed to the capillary discharge plasma (CDP) or the LPP. In the case of the CDP, the plasma was generated between the tip of the capillary electrode and the cells so that both electrical and chemical factors were supplied to the cells. In this setup, about 20% of average transfection efficiency was obtained. In the case of the LPP, the plasma was generated apart from the cells so that electrical factors were not supplied to the cells. In this setup, no transfection was observed. These results show that the electrical factors are necessary for the plasma gene transfection. Next, the necessity of the chemical factors was estimated the effect of catalase to remove H2O2 in CDP. The transfection efficiency decreased to 0.4 by scavenging H2O2 with catalase. However, only the solution of H2O2 caused no gene transfection in cells. These results shows that H2O2 is important species to cause gene/molecule transfection but still needs a synergistic effect with electrical or other chemical factors. This work was partly supported by

  14. Cloning and characterization of the A-factor receptor gene from Streptomyces griseus.

    PubMed Central

    Onaka, H; Ando, N; Nihira, T; Yamada, Y; Beppu, T; Horinouchi, S

    1995-01-01

    A-factor (2-isocapryloyl-3R-hydroxymethyl-gamma-butyrolactone) and its specific receptor protein control streptomycin production, streptomycin resistance, and aerial mycelium formation in Streptomyces griseus. The A-factor receptor protein (ArpA) was purified from a cell lysate of S. griseus IFO 13350. The NH2-terminal amino acid sequences of ArpA and lysyl endopeptidase-generated fragments were determined for the purpose of preparing oligonucleotide primers for cloning arpA by the PCR method. The arpA gene cloned in this way directed the synthesis of a protein having A-factor-specific binding activity when expressed in Escherichia coli under the control of the T7 promoter. The arpA gene was thus concluded to encode a 276-amino-acid protein with a calculated molecular mass of 29.1 kDa, as determined by nucleotide sequencing. The A-factor-binding activity was observed with a homodimer of ArpA. The NH2-terminal portion of ArpA contained an alpha-helix-turn-alpha-helix DNA-binding motif that showed great similarity to those of many DNA-binding proteins, which suggests that it exerts its regulatory function for the various phenotypes by directly binding to a certain key gene(s). Although a mutant strain deficient in both the ArpA protein and A-factor production overproduces streptomycin and forms aerial mycelium and spores earlier than the wild-type strain because of repressor-like behavior of ArpA, introduction of arpA into this mutant abolished simultaneously its streptomycin production and aerial mycelium formation. All of these data are consistent with the idea that ArpA acts as a repressor-type regulator for secondary metabolite formation and morphogenesis during the early growth phase and A-factor at a certain critical intracellular concentration releases the derepression, thus leading to the onset of secondary metabolism and aerial mycelium formation. The presence of ArpA-like proteins among Streptomyces spp., as revealed by PCR, together with the presence of A-factor

  15. FOXO1 Transcription Factor Inhibits Luteinizing Hormone β Gene Expression in Pituitary Gonadotrope Cells*

    PubMed Central

    Arriola, David J.; Mayo, Susan L.; Skarra, Danalea V.; Benson, Courtney A.; Thackray, Varykina G.

    2012-01-01

    Synthesis of luteinizing hormone (LH) is tightly controlled by a complex network of hormonal signaling pathways that can be modulated by metabolic cues, such as insulin. One group of candidate genes that may be regulated by insulin signaling in pituitary gonadotrope cells is the FOXO subfamily of forkhead transcription factors. In this study we investigated whether FOXO1 is expressed in gonadotropes and if it can modulate LH β-subunit (Lhb) gene expression. We demonstrated that FOXO1 is expressed in murine gonadotrope cells and that insulin signaling increased FOXO1 phosphorylation and cytoplasmic localization in a PI3K-dependent manner. We also showed that FOXO1 repressed basal transcription and gonadotropin-releasing hormone (GnRH) induction of both the murine and human LHB genes in LβT2 cells, suggesting that FOXO1 regulation of LHB transcription may be conserved between rodents and humans. Although we did not detect FOXO1 binding to the proximal Lhb promoter, the FOXO1 DNA binding domain was necessary for the suppression, suggesting that FOXO1 exerts its effect through protein-protein interactions with transcription factors/cofactors required for Lhb gene expression. FOXO1 repression mapped to the proximal Lhb promoter containing steroidogenic factor 1 (SF1), pituitary homeobox 1 (PTX1), and early growth response protein 1 (EGR1) binding elements. Additionally, FOXO1 blocked induction of the Lhb promoter with overexpressed SF1, PTX1, and EGR1, indicating that FOXO1 repression occurs via these transcription factors but not through regulation of their promoters. In summary, we demonstrate that FOXO1 phosphorylation and cellular localization is regulated by insulin signaling in gonadotropes and that FOXO1 inhibits Lhb transcription. Our study also suggests that FOXO1 may play an important role in controlling LH levels in response to metabolic cues. PMID:22865884

  16. FOXO1 transcription factor inhibits luteinizing hormone β gene expression in pituitary gonadotrope cells.

    PubMed

    Arriola, David J; Mayo, Susan L; Skarra, Danalea V; Benson, Courtney A; Thackray, Varykina G

    2012-09-28

    Synthesis of luteinizing hormone (LH) is tightly controlled by a complex network of hormonal signaling pathways that can be modulated by metabolic cues, such as insulin. One group of candidate genes that may be regulated by insulin signaling in pituitary gonadotrope cells is the FOXO subfamily of forkhead transcription factors. In this study we investigated whether FOXO1 is expressed in gonadotropes and if it can modulate LH β-subunit (Lhb) gene expression. We demonstrated that FOXO1 is expressed in murine gonadotrope cells and that insulin signaling increased FOXO1 phosphorylation and cytoplasmic localization in a PI3K-dependent manner. We also showed that FOXO1 repressed basal transcription and gonadotropin-releasing hormone (GnRH) induction of both the murine and human LHB genes in LβT2 cells, suggesting that FOXO1 regulation of LHB transcription may be conserved between rodents and humans. Although we did not detect FOXO1 binding to the proximal Lhb promoter, the FOXO1 DNA binding domain was necessary for the suppression, suggesting that FOXO1 exerts its effect through protein-protein interactions with transcription factors/cofactors required for Lhb gene expression. FOXO1 repression mapped to the proximal Lhb promoter containing steroidogenic factor 1 (SF1), pituitary homeobox 1 (PTX1), and early growth response protein 1 (EGR1) binding elements. Additionally, FOXO1 blocked induction of the Lhb promoter with overexpressed SF1, PTX1, and EGR1, indicating that FOXO1 repression occurs via these transcription factors but not through regulation of their promoters. In summary, we demonstrate that FOXO1 phosphorylation and cellular localization is regulated by insulin signaling in gonadotropes and that FOXO1 inhibits Lhb transcription. Our study also suggests that FOXO1 may play an important role in controlling LH levels in response to metabolic cues.

  17. Hippocampal epigenetic modification at the brain-derived neurotrophic factor gene induced by an enriched environment.

    PubMed

    Kuzumaki, Naoko; Ikegami, Daigo; Tamura, Rie; Hareyama, Nana; Imai, Satoshi; Narita, Michiko; Torigoe, Kazuhiro; Niikura, Keiichi; Takeshima, Hideyuki; Ando, Takayuki; Igarashi, Katsuhide; Kanno, Jun; Ushijima, Toshikazu; Suzuki, Tsutomu; Narita, Minoru

    2011-02-01

    Environmental enrichment is an experimental paradigm that increases brain-derived neurotrophic factor (BDNF) gene expression accompanied by neurogenesis in the hippocampus of rodents. In the present study, we investigated whether an enriched environment could cause epigenetic modification at the BDNF gene in the hippocampus of mice. Exposure to an enriched environment for 3-4 weeks caused a dramatic increase in the mRNA expression of BDNF, but not platelet-derived growth factor A (PDGF-A), PDGF-B, vascular endothelial growth factor (VEGF), nerve growth factor (NGF), epidermal growth factor (EGF), or glial fibrillary acidic protein (GFAP), in the hippocampus of mice. Under these conditions, exposure to an enriched environment induced a significant increase in histone H3 lysine 4 (H3K4) trimethylation at the BDNF P3 and P6 promoters, in contrast to significant decreases in histone H3 lysine 9 (H3K9) trimethylation at the BDNF P4 promoter and histone H3 lysine 27 (H3K27) trimethylation at the BDNF P3 and P4 promoters without any changes in the expression of their associated histone methylases and demethylases in the hippocampus. The expression levels of several microRNAs in the hippocampus were not changed by an enriched environment. These results suggest that an enriched environment increases BDNF mRNA expression via sustained epigenetic modification in the mouse hippocampus. Copyright © 2010 Wiley-Liss, Inc.

  18. Changing Paradigm of Hemophilia Management: Extended Half-Life Factor Concentrates and Gene Therapy.

    PubMed

    Kumar, Riten; Dunn, Amy; Carcao, Manuel

    2016-02-01

    Management of hemophilia has evolved significantly in the last century-from recognition of the causative mechanism in the 1950s to commercially available clotting factor concentrates in the 1960s. Availability of lyophilized concentrates in the 1970s set the stage for home-based therapy, followed by introduction of virally attenuated plasma-derived, and then recombinant factor concentrates in the 1980s and 1990s, respectively. The subsequent years saw a paradigm shift in treatment goals from on-demand therapy to prophylactic factor replacement starting at an early age, to prevent hemarthrosis becoming the standard of care for patients with severe hemophilia. In the developed world, the increasing use of home-based prophylactic regimens has significantly improved the quality of life, and life expectancy of patients with severe hemophilia. Seminal developments in the past 5 years, including the commercial availability of extended half-life factor concentrates and the publication of successful results of gene therapy for patients with hemophilia B, promise to further revolutionize hemophilia care over the next few decades. In this review, we summarize the evolution of management for hemophilia, with a focus on extended half-life factor concentrates and gene therapy.

  19. Splicing Factor Spf30 Assists Exosome-Mediated Gene Silencing in Fission Yeast▿

    PubMed Central

    Bernard, Pascal; Drogat, Julie; Dheur, Sonia; Genier, Sylvie; Javerzat, Jean-Paul

    2010-01-01

    Heterochromatin assembly in fission yeast relies on the processing of cognate noncoding RNAs by both the RNA interference and the exosome degradation pathways. Recent evidence indicates that splicing factors facilitate the cotranscriptional processing of centromeric transcripts into small interfering RNAs (siRNAs). In contrast, how the exosome contributes to heterochromatin assembly and whether it also relies upon splicing factors were unknown. We provide here evidence that fission yeast Spf30 is a splicing factor involved in the exosome pathway of heterochromatin silencing. Spf30 and Dis3, the main exosome RNase, colocalize at centromeric heterochromatin and euchromatic genes. At the centromeres, Dis3 helps recruiting Spf30, whose deficiency phenocopies the dis3-54 mutant: heterochromatin is impaired, as evidenced by reduced silencing and the accumulation of polyadenylated centromeric transcripts, but the production of siRNAs appears to be unaffected. Consistent with a direct role, Spf30 binds centromeric transcripts and locates at the centromeres in an RNA-dependent manner. We propose that Spf30, bound to nascent centromeric transcripts, perhaps with other splicing factors, assists their processing by the exosome. Splicing factor intercession may thus be a common feature of gene silencing pathways. PMID:20028739

  20. Allelic mutations in noncoding genomic sequences construct novel transcription factor binding sites that promote gene overexpression.

    PubMed

    Tian, Erming; Børset, Magne; Sawyer, Jeffrey R; Brede, Gaute; Våtsveen, Thea K; Hov, Håkon; Waage, Anders; Barlogie, Bart; Shaughnessy, John D; Epstein, Joshua; Sundan, Anders

    2015-11-01

    The growth and survival factor hepatocyte growth factor (HGF) is expressed at high levels in multiple myeloma (MM) cells. We report here that elevated HGF transcription in MM was traced to DNA mutations in the promoter alleles of HGF. Sequence analysis revealed a previously undiscovered single-nucleotide polymorphism (SNP) and crucial single-nucleotide variants (SNVs) in the promoters of myeloma cells that produce large amounts of HGF. The allele-specific mutations functionally reassembled wild-type sequences into the motifs that affiliate with endogenous transcription factors NFKB (nuclear factor kappa-B), MZF1 (myeloid zinc finger 1), and NRF-2 (nuclear factor erythroid 2-related factor 2). In vitro, a mutant allele that gained novel NFKB-binding sites directly responded to transcriptional signaling induced by tumor necrosis factor alpha (TNFα) to promote high levels of luciferase reporter. Given the recent discovery by genome-wide sequencing (GWS) of numerous non-coding mutations in myeloma genomes, our data provide evidence that heterogeneous SNVs in the gene regulatory regions may frequently transform wild-type alleles into novel transcription factor binding properties to aberrantly interact with dysregulated transcriptional signals in MM and other cancer cells.

  1. An environmental analysis of genes associated with schizophrenia: hypoxia and vascular factors as interacting elements in the neurodevelopmental model.

    PubMed

    Schmidt-Kastner, R; van Os, J; Esquivel, G; Steinbusch, H W M; Rutten, B P F

    2012-12-01

    Investigating and understanding gene-environment interaction (G × E) in a neurodevelopmentally and biologically plausible manner is a major challenge for schizophrenia research. Hypoxia during neurodevelopment is one of several environmental factors related to the risk of schizophrenia, and links between schizophrenia candidate genes and hypoxia regulation or vascular expression have been proposed. Given the availability of a wealth of complex genetic information on schizophrenia in the literature without knowledge on the connections to environmental factors, we now systematically collected genes from candidate studies (using SzGene), genome-wide association studies (GWAS) and copy number variation (CNV) analyses, and then applied four criteria to test for a (theoretical) link to ischemia-hypoxia and/or vascular factors. In all, 55% of the schizophrenia candidate genes (n=42 genes) met the criteria for a link to ischemia-hypoxia and/or vascular factors. Genes associated with schizophrenia showed a significant, threefold enrichment among genes that were derived from microarray studies of the ischemia-hypoxia response (IHR) in the brain. Thus, the finding of a considerable match between genes associated with the risk of schizophrenia and IHR and/or vascular factors is reproducible. An additional survey of genes identified by GWAS and CNV analyses suggested novel genes that match the criteria. Findings for interactions between specific variants of genes proposed to be IHR and/or vascular factors with obstetric complications in patients with schizophrenia have been reported in the literature. Therefore, the extended gene set defined here may form a reasonable and evidence-based starting point for hypothesis-based testing of G × E interactions in clinical genetic and translational neuroscience studies.

  2. Gene expression analysis of WRKY transcription factors in Arabidopsis thaliana cell cultures during a parabolic flight

    NASA Astrophysics Data System (ADS)

    Babbick, Maren; Barjaktarović, Žarko; Hampp, Ruediger

    Plants sense gravity by specialized cells (statocytes) and adjust growth and development accordingly. It has, however, also been shown that plant cells which are not part of specialized tissues are also able to sense gravitational forces. Therefore we used undifferentiated, homogeneous cell cultures of Arabidopsis thaliana (cv. Columbia) in order to identify early alterations in gene expression as a response to altered gravitational field strengths. In this contribution we report on cell cultures exposed to parabolic flights (approximately 20 sec of microgravity). For this short-term exposure study, we specifically checked for genes at the beginning of signal transduction chains, such as those coding for transcription factors (TFs). TFs are small proteins that regulate expression of their target genes by binding to specific promoter sequences. Our main focus were members of the so-called WRKY TF family. WRKY TFs are known to be involved in various physiological processes like senescence and pathogen defense. By quantifying transcriptional changes of these genes by real-time RT-PCR, we wanted to find out, how gene expression is affected by both hyperand microgravity conditions during a parabolic flight. For this purpose Arabidopsis thaliana callus cultures were metabolically quenched by the injection of RNAlater at the end of the microgravity-phase of each parabola. The data we present will show how fast changes in amounts of transcripts will occur, and to what degree the expression profiles are comparable with data obtained from exposures to hypergravity and simulated microgravity.

  3. Human tumor necrosis factor alpha gene regulation by virus and lipopolysaccharide.

    PubMed

    Goldfeld, A E; Doyle, C; Maniatis, T

    1990-12-01

    We have identified a region of the human tumor necrosis factor alpha (TNF-alpha) gene promoter that is necessary for maximal constitutive, virus-induced, and lipopolysaccharide (LPS)-induced transcription. This region contains three sites that match an NF-kappa B binding-site consensus sequence. We show that these three sites specifically bind NF-kappa B in vitro, yet each of these sites can be deleted from the TNF-alpha promoter with little effect on the induction of the gene by virus or LPS. Moreover, when multimers of these three sites are placed upstream from a truncated TNF-alpha promoter, or a heterologous promoter, an increase in the basal level of transcription is observed that is influenced by sequence context and cell type. However, these multimers are not sufficient for virus or LPS induction of either promoter. Thus, unlike other virus- and LPS-inducible promoters that contain NF-kappa B binding sites, these sites from the TNF-alpha promoter are neither required nor sufficient for virus or LPS induction. Comparison of the sequence requirements of virus induction of the human TNF-alpha gene in mouse L929 and P388D1 cells reveals significant differences, indicating that the sequence requirements for virus induction of the gene are cell type-specific. However, the sequences required for virus and LPS induction of the gene in a single cell type, P388D1, overlap.

  4. Integrative mixture of experts to combine clinical factors and gene markers

    PubMed Central

    Lê Cao, Kim-Anh; Meugnier, Emmanuelle; McLachlan, Geoffrey J.

    2010-01-01

    Motivation: Microarrays are being increasingly used in cancer research to better characterize and classify tumors by selecting marker genes. However, as very few of these genes have been validated as predictive biomarkers so far, it is mostly conventional clinical and pathological factors that are being used as prognostic indicators of clinical course. Combining clinical data with gene expression data may add valuable information, but it is a challenging task due to their categorical versus continuous characteristics. We have further developed the mixture of experts (ME) methodology, a promising approach to tackle complex non-linear problems. Several variants are proposed in integrative ME as well as the inclusion of various gene selection methods to select a hybrid signature. Results: We show on three cancer studies that prediction accuracy can be improved when combining both types of variables. Furthermore, the selected genes were found to be of high relevance and can be considered as potential biomarkers for the prognostic selection of cancer therapy. Availability: Integrative ME is implemented in the R package integrativeME (http://cran.r-project.org/). Contact: k.lecao@uq.edu.au Supplementary information: Supplementary data are available at Bioinformatics online. PMID:20223834

  5. Instructive nanofibrous scaffold comprising runt-related transcription factor 2 gene delivery for bone tissue engineering.

    PubMed

    Monteiro, Nelson; Ribeiro, Diana; Martins, Albino; Faria, Susana; Fonseca, Nuno A; Moreira, João N; Reis, Rui L; Neves, Nuno M

    2014-08-26

    Inducer molecules capable of regulating mesenchymal stem cell differentiation into specific lineages have proven effective in basic science and in preclinical studies. Runt-related transcription factor 2 (RUNX2) is considered to be the central gene involved in the osteoblast phenotype induction, which may be advantageous for inducing bone tissue regeneration. This work envisions the development of a platform for gene delivery, combining liposomes as gene delivery devices, with electrospun nanofiber mesh (NFM) as a tissue engineering scaffold. pDNA-loaded liposomes were immobilized at the surface of functionalized polycaprolactone (PCL) NFM. Human bone-marrow-derived mesenchymal stem cells (hBMSCs) cultured on RUNX2-loaded liposomes immobilized at the surface of electrospun PCL NFM showed enhanced levels of metabolic activity and total protein synthesis. RUNX2-loaded liposomes immobilized at the surface of electrospun PCL NFMs induce a long-term gene expression of eGFP and RUNX2 by cultured hBMSCs. Furthermore, osteogenic differentiation of hBMSCs was also achieved by the overexpression of other osteogenic markers in medium free of osteogenic supplementation. These findings demonstrate that surface immobilization of RUNX2 plasmid onto elestrospun PCL NFM can produce long-term gene expression in vitro, which may be employed to enhance the osteoinductive properties of scaffolds used for bone tissue engineering strategies.

  6. The transcription factor ultraspiracle influences honey bee social behavior and behavior-related gene expression.

    PubMed

    Ament, Seth A; Wang, Ying; Chen, Chieh-Chun; Blatti, Charles A; Hong, Feng; Liang, Zhengzheng S; Negre, Nicolas; White, Kevin P; Rodriguez-Zas, Sandra L; Mizzen, Craig A; Sinha, Saurabh; Zhong, Sheng; Robinson, Gene E

    2012-01-01

    Behavior is among the most dynamic animal phenotypes, modulated by a variety of internal and external stimuli. Behavioral differences are associated with large-scale changes in gene expression, but little is known about how these changes are regulated. Here we show how a transcription factor (TF), ultraspiracle (usp; the insect homolog of the Retinoid X Receptor), working in complex transcriptional networks, can regulate behavioral plasticity and associated changes in gene expression. We first show that RNAi knockdown of USP in honey bee abdominal fat bodies delayed the transition from working in the hive (primarily "nursing" brood) to foraging outside. We then demonstrate through transcriptomics experiments that USP induced many maturation-related transcriptional changes in the fat bodies by mediating transcriptional responses to juvenile hormone. These maturation-related transcriptional responses to USP occurred without changes in USP's genomic binding sites, as revealed by ChIP-chip. Instead, behaviorally related gene expression is likely determined by combinatorial interactions between USP and other TFs whose cis-regulatory motifs were enriched at USP's binding sites. Many modules of JH- and maturation-related genes were co-regulated in both the fat body and brain, predicting that usp and cofactors influence shared transcriptional networks in both of these maturation-related tissues. Our findings demonstrate how "single gene effects" on behavioral plasticity can involve complex transcriptional networks, in both brain and peripheral tissues.

  7. Tumor Necrosis Factor-Superfamily 15 Gene Expression in Patients with Sickle Cell Disease

    PubMed Central

    Özçimen, Ahmet Ata; Ünal, Selma; Canacankatan, Necmiye; Antmen, Şerife Efsun

    2014-01-01

    Objective: The aim of this study was to investigate the relation between tumor necrosis factor-superfamily 15 (TNFSF15) gene expression and clinical findings in children with sickle cell disease (SCD). Materials and Methods: Forty-nine patients with SCD and 38 healthy controls were included in this study. TNFSF15 gene expression and plasma levels were analyzed. TNFSF15 gene expression was compared in subgroups considering the frequency of painful crises and acute chest syndrome (ACS). Results: It was found that TNFSF15 gene expression was significantly higher in patients with SCD than the controls (p=0.001), whereas there was no significant difference between the patients with SCD and the control groups considering plasma levels of TNFSF15. TNFSF15 gene expression was also significantly higher in SCD patients with ACS (p=0.008). Conclusion: These findings suggest that TNFSF15 may have a role in the pathogenesis of SCD presenting with ACS. Further studies on larger groups are needed to determine the function of TNFSF15 in SCD patients with ACS and pulmonary hypertension. Analysis of TNFSF15 expression may also serve as a promising approach in ACS therapy. PMID:25330517

  8. Fission Yeast CSL Transcription Factors: Mapping Their Target Genes and Biological Roles

    PubMed Central

    Převorovský, Martin; Oravcová, Martina; Tvarůžková, Jarmila; Zach, Róbert; Folk, Petr; Půta, František; Bähler, Jürg

    2015-01-01

    Background Cbf11 and Cbf12, the fission yeast CSL transcription factors, have been implicated in the regulation of cell-cycle progression, but no specific roles have been described and their target genes have been only partially mapped. Methodology/Principal Findings Using a combination of transcriptome profiling under various conditions and genome-wide analysis of CSL-DNA interactions, we identify genes regulated directly and indirectly by CSL proteins in fission yeast. We show that the expression of stress-response genes and genes that are expressed periodically during the cell cycle is deregulated upon genetic manipulation of cbf11 and/or cbf12. Accordingly, the coordination of mitosis and cytokinesis is perturbed in cells with genetically manipulated CSL protein levels, together with other specific defects in cell-cycle progression. Cbf11 activity is nutrient-dependent and Δcbf11-associated defects are mitigated by inactivation of the protein kinase A (Pka1) and stress-activated MAP kinase (Sty1p38) pathways. Furthermore, Cbf11 directly regulates a set of lipid metabolism genes and Δcbf11 cells feature a stark decrease in the number of storage lipid droplets. Conclusions/Significance Our results provide a framework for a more detailed understanding of the role of CSL proteins in the regulation of cell-cycle progression in fission yeast. PMID:26366556

  9. The transcription factor TEAD1 represses smooth muscle-specific gene expression by abolishing myocardin function.

    PubMed

    Liu, Fang; Wang, Xiaobo; Hu, Guoqing; Wang, Yong; Zhou, Jiliang

    2014-02-07

    The TEAD (transcriptional enhancer activator domain) proteins share an evolutionarily conserved DNA-binding TEA domain, which binds to the MCAT cis-acting regulatory element. Previous studies have shown that TEAD proteins are involved in regulating the expression of smooth muscle α-actin. However, it remains undetermined whether TEAD proteins play a broader role in regulating expression of other genes in vascular smooth muscle cells. In this study, we show that the expression of TEAD1 is significantly induced during smooth muscle cell phenotypic modulation and negatively correlates with smooth muscle-specific gene expression. We further demonstrate that TEAD1 plays a novel role in suppressing expression of smooth muscle-specific genes, including smooth muscle α-actin, by abolishing the promyogenic function of myocardin, a key mediator of smooth muscle differentiation. Mechanistically, we found that TEAD1 competes with myocardin for binding to serum response factor (SRF), resulting in disruption of myocardin and SRF interactions and thereby attenuating expression of smooth muscle-specific genes. This study provides the first evidence demonstrating that TEAD1 is a novel general repressor of smooth muscle-specific gene expression through interfering with myocardin binding to SRF.

  10. The Transcription Factor Ultraspiracle Influences Honey Bee Social Behavior and Behavior-Related Gene Expression

    PubMed Central

    Chen, Chieh-Chun; Blatti, Charles A.; Hong, Feng; Liang, Zhengzheng S.; Negre, Nicolas; White, Kevin P.; Rodriguez-Zas, Sandra L.; Mizzen, Craig A.; Sinha, Saurabh; Zhong, Sheng; Robinson, Gene E.

    2012-01-01

    Behavior is among the most dynamic animal phenotypes, modulated by a variety of internal and external stimuli. Behavioral differences are associated with large-scale changes in gene expression, but little is known about how these changes are regulated. Here we show how a transcription factor (TF), ultraspiracle (usp; the insect homolog of the Retinoid X Receptor), working in complex transcriptional networks, can regulate behavioral plasticity and associated changes in gene expression. We first show that RNAi knockdown of USP in honey bee abdominal fat bodies delayed the transition from working in the hive (primarily “nursing” brood) to foraging outside. We then demonstrate through transcriptomics experiments that USP induced many maturation-related transcriptional changes in the fat bodies by mediating transcriptional responses to juvenile hormone. These maturation-related transcriptional responses to USP occurred without changes in USP's genomic binding sites, as revealed by ChIP–chip. Instead, behaviorally related gene expression is likely determined by combinatorial interactions between USP and other TFs whose cis-regulatory motifs were enriched at USP's binding sites. Many modules of JH– and maturation-related genes were co-regulated in both the fat body and brain, predicting that usp and cofactors influence shared transcriptional networks in both of these maturation-related tissues. Our findings demonstrate how “single gene effects” on behavioral plasticity can involve complex transcriptional networks, in both brain and peripheral tissues. PMID:22479195

  11. GENE EXPRESSION PROFILES AS MARKERS OF AGGRESSIVE DISEASE—EGFR AS A FACTOR

    PubMed Central

    CHung, Christine H.; Parker, Joel; Levy, Shawn; Slebos, Robbert J.; Dicker, Adam P.; ROdeck, Ulrich

    2008-01-01

    We previously reported that 43 (58%) of 75 head and neck squamous cell carcinoma (HNSCC) tumors harbor increased epidermal growth factor receptor (EGFR) gene copy numbers as determined by fluorescent in situ hybridization. In this study, an increased EGFR copy number was associated with decreased progression-free survival and overall survival of HNSCC patients. However, activated EGFR protein levels are difficult to quantify by immunohistochemistry and are subject to dynamic regulation, specifically receptor downregulation on ligand binding. Therefore, we generated an activated EGFR gene expression signature in an in vitro HaCaT keratinocyte model system to further study genes involved in the EGFR signaling pathway in HNSCC. The results from this model system have suggested that the activated EGFR signature might reflect the activated state of the EGFR pathway in human HNSCC tumors and that it is associated with the increased EGFR gene copy number by fluorescent in situ hybridization. Furthermore, the activated EGFR signature has provided additional leads, because they are related to co-regulated molecular pathways and associated gene products on activation of EGFR. These could be exploited to refine and optimize combination therapies to be used in conjunction with available EGFR inhibitors in individual HNSCC patients. PMID:17848272

  12. Transcription factor AP-2α regulates acute myeloid leukemia cell proliferation by influencing Hoxa gene expression.

    PubMed

    Ding, Xiaofeng; Yang, Zijian; Zhou, Fangliang; Wang, Fangmei; Li, Xinxin; Chen, Cheng; Li, Xiaofeng; Hu, Xiang; Xiang, Shuanglin; Zhang, Jian

    2013-08-01

    Transcription factor AP-2α mediates transcription of a number of genes implicated in mammalian development, cell proliferation and carcinogenesis. In the current study, we identified Hoxa7, Hoxa9 and Hox cofactor Meis1 as AP-2α target genes, which are involved in myeloid leukemogenesis. Luciferase reporter assays revealed that overexpression of AP-2α activated transcription activities of Hoxa7, Hoxa9 and Meis1, whereas siRNA of AP-2α inhibited their transcription activities. We found that AP-2 binding sites in regulatory regions of three genes activated their transcription by mutant analysis and AP-2α could interact with AP-2 binding sites in vivo by chromatin immunoprecipitation (ChIP). Further results showed that the AP-2α shRNA efficiently inhibited mRNA and protein levels of Hoxa7, Hoxa9 and Meis1 in AML cell lines U937 and HL60. Moreover, decreased expression of AP-2α resulted in a significant reduction in the growth and proliferation of AML cells in vitro. Remarkably, AP-2α knockdown leukemia cells exhibit decreased tumorigenicity in vivo compared with controls. Finally, AP-2α and target genes in clinical acute myeloid leukemia samples of M5b subtype revealed variable expression levels and broadly paralleled expression. These data support a role of AP-2α in mediating the expression of Hoxa genes in acute myeloid leukemia to influence the proliferation and cell survival.

  13. Global Developmental Gene Programing Involves a Nuclear Form of Fibroblast Growth Factor Receptor-1 (FGFR1).

    PubMed

    Terranova, Christopher; Narla, Sridhar T; Lee, Yu-Wei; Bard, Jonathan; Parikh, Abhirath; Stachowiak, Ewa K; Tzanakakis, Emmanuel S; Buck, Michael J; Birkaya, Barbara; Stachowiak, Michal K

    2015-01-01

    Genetic studies have placed the Fgfr1 gene at the top of major ontogenic pathways that enable gastrulation, tissue development and organogenesis. Using genome-wide sequencing and loss and gain of function experiments the present investigation reveals a mechanism that underlies global and direct gene regulation by the nuclear form of FGFR1, ensuring that pluripotent Embryonic Stem Cells differentiate into Neuronal Cells in response to Retinoic Acid. Nuclear FGFR1, both alone and with its partner nuclear receptors RXR and Nur77, targets thousands of active genes and controls the expression of pluripotency, homeobox, neuronal and mesodermal genes. Nuclear FGFR1 targets genes in developmental pathways represented by Wnt/β-catenin, CREB, BMP, the cell cycle and cancer-related TP53 pathway, neuroectodermal and mesodermal programing networks, axonal growth and synaptic plasticity pathways. Nuclear FGFR1 targets the consensus sequences of transcription factors known to engage CREB-binding protein, a common coregulator of transcription and established binding partner of nuclear FGFR1. This investigation reveals the role of nuclear FGFR1 as a global genomic programmer of cell, neural and muscle development.

  14. Glial cell derived neurotrophic factor induces spermatogonial stem cell marker genes in chicken mesenchymal stem cells.

    PubMed

    Boozarpour, Sohrab; Matin, Maryam M; Momeni-Moghaddam, Madjid; Dehghani, Hesam; Mahdavi-Shahri, Naser; Sisakhtnezhad, Sajjad; Heirani-Tabasi, Asieh; Irfan-Maqsood, Muhammad; Bahrami, Ahmad Reza

    2016-06-01

    Mesenchymal stem cells (MSCs) are known with the potential of multi-lineage differentiation. Advances in differentiation technology have also resulted in the conversion of MSCs to other kinds of stem cells. MSCs are considered as a suitable source of cells for biotechnology purposes because they are abundant, easily accessible and well characterized cells. Nowadays small molecules are introduced as novel and efficient factors to differentiate stem cells. In this work, we examined the potential of glial cell derived neurotrophic factor (GDNF) for differentiating chicken MSCs toward spermatogonial stem cells. MSCs were isolated and characterized from chicken and cultured under treatment with all-trans retinoic acid (RA) or glial cell derived neurotrophic factor. Expression analysis of specific genes after 7days of RA treatment, as examined by RT-PCR, proved positive for some germ cell markers such as CVH, STRA8, PLZF and some genes involved in spermatogonial stem cell maintenance like BCL6b and c-KIT. On the other hand, GDNF could additionally induce expression of POU5F1, and NANOG as well as other genes which were induced after RA treatment. These data illustrated that GDNF is relatively more effective in diverting chicken MSCs towards Spermatogonial stem cell -like cells in chickens and suggests GDNF as a new agent to obtain transgenic poultry, nevertheless, exploitability of these cells should be verified by more experiments.

  15. Hypermethylation of apoptotic genes as independent prognostic factor in neuroblastoma disease.

    PubMed

    Grau, Elena; Martinez, Francisco; Orellana, Carmen; Canete, Adela; Yañez, Yania; Oltra, Silvestre; Noguera, Rosa; Hernandez, Miguel; Bermúdez, Jose D; Castel, Victoria

    2011-03-01

    Neuroblastoma (NB) is an embryonal tumour of neuroectodermal cells, and its prognosis is based on patient age at diagnosis, tumour stage and MYCN amplification, but it can also be classified according to their degree of methylation. Considering that epigenetic aberrations could influence patient survival, we studied the methylation status of a series of 17 genes functionally involved in different cellular pathways in patients with NB and their impact on survival. We studied 82 primary NB tumours and we used methylation-specific-PCR to perform the epigenetic analysis. We evaluated the putative association among the evidence of hypermethylation with the most important NB prognostic factors, as well as to determine the relationship among methylation, clinical classification and survival. CASP8 hypermethylation showed association with relapse susceptibility and, TMS1 and APAF1 hypermethylation are associated with bad prognosis and showed high influence on NB overall survival. Hypermethylation of apoptotic genes has been identified as a good candidate of prognostic factor. We propose the simultaneous analysis of hypermethylation of APAF1, TMS1 and CASP8 apoptotic genes on primary NB tumour as a good prognostic factor of disease progression.

  16. CTF/NF1 transcription factors act as potent genetic insulators for integrating gene transfer vectors.

    PubMed

    Gaussin, A; Modlich, U; Bauche, C; Niederländer, N J; Schambach, A; Duros, C; Artus, A; Baum, C; Cohen-Haguenauer, O; Mermod, N

    2012-01-01

    Gene transfer-based therapeutic approaches have greatly benefited from the ability of some viral vectors to efficiently integrate within the cell genome and ensure persistent transmission of newly acquired transgenes to the target cell progeny. However, integration of provirus has been associated with epigenetic repercussions that may influence the expression of both the transgene and cellular genes close to vector integration loci. The exploitation of genetic insulator elements may overcome both issues through their ability to act as barriers that limit transgene silencing and/or as enhancer-blockers preventing the activation of endogenous genes by the vector enhancer. We established quantitative plasmid-based assay systems to screen enhancer-blocker and barrier genetic elements. Short synthetic insulators that bind to nuclear factor-I protein family transcription factors were identified to exert both enhancer-blocker and barrier functions, and were compared to binding sites for the insulator protein CTCF (CCCTC-binding factor). Gamma-retroviral vectors enclosing these insulator elements were produced at titers similar to their non-insulated counterparts and proved to be less genotoxic in an in vitro immortalization assay, yielding lower activation of Evi1 oncogene expression and reduced clonal expansion of bone marrow cells.

  17. Recessive Resistance to Plant Viruses: Potential Resistance Genes Beyond Translation Initiation Factors.

    PubMed

    Hashimoto, Masayoshi; Neriya, Yutaro; Yamaji, Yasuyuki; Namba, Shigetou

    2016-01-01

    The ability of plant viruses to propagate their genomes in host cells depends on many host factors. In the absence of an agrochemical that specifically targets plant viral infection cycles, one of the most effective methods for controlling viral diseases in plants is taking advantage of the host plant's resistance machinery. Recessive resistance is conferred by a recessive gene mutation that encodes a host factor critical for viral infection. It is a branch of the resistance machinery and, as an inherited characteristic, is very durable. Moreover, recessive resistance may be acquired by a deficiency in a negative regulator of plant defense responses, possibly due to the autoactivation of defense signaling. Eukaryotic translation initiation factor (eIF) 4E and eIF4G and their isoforms are the most widely exploited recessive resistance genes in several crop species, and they are effective against a subset of viral species. However, the establishment of efficient, recessive resistance-type antiviral control strategies against a wider range of plant viral diseases requires genetic resources other than eIF4Es. In this review, we focus on recent advances related to antiviral recessive resistance genes evaluated in model plants and several crop species. We also address the roles of next-generation sequencing and genome editing technologies in improving plant genetic resources for recessive resistance-based antiviral breeding in various crop species.

  18. Characterization of a novel Medicago sativa NAC transcription factor gene involved in response to drought stress.

    PubMed

    Wang, Yong Xin

    2013-11-01

    Relying on the regulation of transcription factors, plants resist to various abiotic and biotic stresses. NAC (NAM, ATAF1/2, CUC2) are one of the largest families of plant-specific transcription factors and known to play important roles in plant development and response to environmental stresses. A new NAC gene was cloned on the basis of 503 bp EST fragment from the SSH cDNA library of Medicago sativa. It was 1,115 bp including an 816 bp ORF and encodes 271 amino acids. A highly conserved region is located from the 7th amino acid to the 315th amino acid in its N-terminal domain. The NAC protein is subcellularly localized in the nucleus of onion epidemical cells and possible functions as a transcription factor. The relative quantitative real-time RT-PCR was performed at different stress time. The results revealed that the transcription expression of NAC gene could be induced by drought, high salinity and ABA. The transgenic Arabidopsis with NAC gene has the drought tolerance better than the wild-type.

  19. Recessive Resistance to Plant Viruses: Potential Resistance Genes Beyond Translation Initiation Factors

    PubMed Central

    Hashimoto, Masayoshi; Neriya, Yutaro; Yamaji, Yasuyuki; Namba, Shigetou

    2016-01-01

    The ability of plant viruses to propagate their genomes in host cells depends on many host factors. In the absence of an agrochemical that specifically targets plant viral infection cycles, one of the most effective methods for controlling viral diseases in plants is taking advantage of the host plant’s resistance machinery. Recessive resistance is conferred by a recessive gene mutation that encodes a host factor critical for viral infection. It is a branch of the resistance machinery and, as an inherited characteristic, is very durable. Moreover, recessive resistance may be acquired by a deficiency in a negative regulator of plant defense responses, possibly due to the autoactivation of defense signaling. Eukaryotic translation initiation factor (eIF) 4E and eIF4G and their isoforms are the most widely exploited recessive resistance genes in several crop species, and they are effective against a subset of viral species. However, the establishment of efficient, recessive resistance-type antiviral control strategies against a wider range of plant viral diseases requires genetic resources other than eIF4Es. In this review, we focus on recent advances related to antiviral recessive resistance genes evaluated in model plants and several crop species. We also address the roles of next-generation sequencing and genome editing technologies in improving plant genetic resources for recessive resistance-based antiviral breeding in various crop species. PMID:27833593

  20. Evaluation of gene expression classification studies: factors associated with classification performance.

    PubMed

    Novianti, Putri W; Roes, Kit C B; Eijkemans, Marinus J C

    2014-01-01

    Classification methods used in microarray studies for gene expression are diverse in the way they deal with the underlying complexity of the data, as well as in the technique used to build the classification model. The MAQC II study on cancer classification problems has found that performance was affected by factors such as the classification algorithm, cross validation method, number of genes, and gene selection method. In this paper, we study the hypothesis that the disease under study significantly determines which method is optimal, and that additionally sample size, class imbalance, type of medical question (diagnostic, prognostic or treatment response), and microarray platform are potentially influential. A systematic literature review was used to extract the information from 48 published articles on non-cancer microarray classification studies. The impact of the various factors on the reported classification accuracy was analyzed through random-intercept logistic regression. The type of medical question and method of cross validation dominated the explained variation in accuracy among studies, followed by disease category and microarray platform. In total, 42% of the between study variation was explained by all the study specific and problem specific factors that we studied together.

  1. Target Genes of Neuron-Restrictive Silencer Factor Are Abnormally Up-Regulated in Human Myotilinopathy

    PubMed Central

    Barrachina, Marta; Moreno, Jesús; Juvés, Salvador; Moreno, Dolores; Olivé, Montse; Ferrer, Isidre

    2007-01-01

    Myotilinopathy is a subgroup of myofibrillar myopathies caused by mutations in the myotilin gene in which there is aggregation of abnormal cytoskeletal proteins and ubiquitin. We report here on the accumulation of neuron-related proteins such as ubiquitin carboxy-terminal hydrolase L1 (UCHL1), synaptosomal-associated protein 25, synaptophysin, and α-internexin in aberrant protein aggregates in myotilinopathy. We have determined that the neuron-restrictive silencer factor (NRSF)/RE1 silencing transcription factor (REST), a transcription factor expressed in non-neuronal tissues repressing the expression of several neuronal genes, is reduced in myotilinopathies. Moreover, NRSF transfection reduces UCHL1, synaptosomal-associated protein 25, synaptophysin, and α-internexin mRNA levels in DMS53 cells, whereas short interferring NRSF transfection increases UCHL1 and synaptophysin mRNA levels in U87-MG cells. Chromatin immunoprecipitation assays have shown that NRSF interacts with the UCHL1 promoter in U87-MG and HeLa cells. In silico analysis of the UCHL1 gene promoter sequence using the MatInspector software has predicted three potential neuron-restrictive silencer elements (NRSEs): NRSE1 located in the complementary DNA chain and NRSE2 and NRSE3 in intron 1, in the coding and complementary chains, respectively. Together, these findings show, for the first time, abnormal regulation of NRSF/REST as a mechanism associated with the aberrant expression of selected neuron-related proteins, which in turn accumulate in abnormal protein aggregates, in myotilinopathy. PMID:17823282

  2. An Improved Systematic Approach to Predicting Transcription Factor Target Genes Using Support Vector Machine

    PubMed Central

    Cui, Song; Youn, Eunseog; Lee, Joohyun; Maas, Stephan J.

    2014-01-01

    Biological prediction of transcription factor binding sites and their corresponding transcription factor target genes (TFTGs) makes great contribution to understanding the gene regulatory networks. However, these approaches are based on laborious and time-consuming biological experiments. Numerous computational approaches have shown great potential to circumvent laborious biological methods. However, the majority of these algorithms provide limited performances and fail to consider the structural property of the datasets. We proposed a refined systematic computational approach for predicting TFTGs. Based on previous work done on identifying auxin response factor target genes from Arabidopsis thaliana co-expression data, we adopted a novel reverse-complementary distance-sensitive n-gram profile algorithm. This algorithm converts each upstream sub-sequence into a high-dimensional vector data point and transforms the prediction task into a classification problem using support vector machine-based classifier. Our approach showed significant improvement compared to other computational methods based on the area under curve value of the receiver operating characteristic curve using 10-fold cross validation. In addition, in the light of the highly skewed structure of the dataset, we also evaluated other metrics and their associated curves, such as precision-recall curves and cost curves, which provided highly satisfactory results. PMID:24743548

  3. Structural characterization and chromosomal location of the mouse macrophage migration inhibitory factor gene and pseudogenes

    SciTech Connect

    Bozza, M.; Gerard, C.; Kolakowski, L.F. Jr.

    1995-06-10

    Macrophage migration inhibitory factor, MIF, is a cytokine released by T-lymphocytes, macrophages, and the pituitary gland that serves to integrate peripheral and central inflammatory responses. Ubiquitous expression and developmental regulation suggest that MIF may have additional roles outside of the immune system. Here we report the structure and chromosomal location of the mouse Mif gene and the partial characterization of five Mif pseudogenes. The mouse Mif gene spans less than 0.7 kb of chromosomal DNA and is composed of three exons. A comparison between the mouse and the human genes shows a similar gene structure and common regulatory elements in both promoter regions. The mouse Mif gene maps to the middle region of chromosome 10, between Bcr and S100b, which have been mapped to human chromosomes 22q11 and 21q22.3, respectively. The entire sequence of two pseudogenes demonstrates the absence of introns, the presence of the 5{prime} untranslated region of the cDNA, a 3{prime} poly(A) tail, and the lack of sequence similarity with untranscribed regions of the gene. The five pseudogenes are highly homologous to the cDNA, but contain a variable number of mutations that would produce mutated or truncated MIF-like proteins. Phylogenetic analyses of MIF genes and pseudogenes indicate several independent genetic events that can account for multiple genomic integrations. Three of the Mif pseudogenes were also mapped by interspecific backcross to chromosomes 1, 9, and 17. These results suggest that Mif pseudogenes originated by retrotransposition. 46 refs., 5 figs., 1 tab.

  4. Suppression of the transcription factor MSX1 gene delays bovine preimplantation embryo development in vitro.

    PubMed

    Tesfaye, D; Regassa, A; Rings, F; Ghanem, N; Phatsara, C; Tholen, E; Herwig, R; Un, C; Schellander, K; Hoelker, M

    2010-05-01

    This study was conducted to investigate the effect of suppressing transcription factor gene MSX1 on the development of in vitro produced bovine oocytes and embryos, and identify its potential target genes regulated by this gene. Injection of long double-stranded RNA (LdsRNA) and small interfering RNA (siRNA) at germinal vesicle stage oocyte reduced MSX1 mRNA expression by 73 and 37% respectively at metaphase II stage compared with non-injected controls. Similarly, injection of the same anti-sense oligomers at zygote stage reduced MSX1 mRNA expression by 52 and 33% at 8-cell stage compared with non-injected controls. Protein expression was also reduced in LdsRNA- and siRNA-injected groups compared with non-injected controls at both stages. Blastocysts rates were 33, 28, 20 and 18% in non-injected control, scrambled RNA (scRNA), LdsRNA- and siRNA-injected groups respectively. Cleavage rates were also significantly reduced in Smartpool siRNA (SpsiRNA)-injected group (53.76%) compared with scRNA-injected group (57.76%) and non-injected control group (61%). Large-scale gene expression analysis showed that 135 genes were differentially regulated in SpsiRNA-injected group compared with non-injected controls, of which 54 and 81 were down- and up-regulated respectively due to suppression of MSX1. Additionally, sequence homology mapping and gene enrichment analysis with known human pathway information identified several functional modules that were affected due to suppression of MSX1. In conclusion, suppression of MSX1 affects oocyte maturation, embryo cleavage rate and the expression of several genes, suggesting its potential role in the development of bovine preimplantation embryos.

  5. A Consensus Network of Gene Regulatory Factors in the Human Frontal Lobe

    PubMed Central

    Berto, Stefano; Perdomo-Sabogal, Alvaro; Gerighausen, Daniel; Qin, Jing; Nowick, Katja

    2016-01-01

    Cognitive abilities, such as memory, learning, language, problem solving, and planning, involve the frontal lobe and other brain areas. Not much is known yet about the molecular basis of cognitive abilities, but it seems clear that cognitive abilities are determined by the interplay of many genes. One approach for analyzing the genetic networks involved in cognitive functions is to study the coexpression networks of genes with known importance for proper cognitive functions, such as genes that have been associated with cognitive disorders like intellectual disability (ID) or autism spectrum disorders (ASD). Because many of these genes are gene regulatory factors (GRFs) we aimed to provide insights into the gene regulatory networks active in the human frontal lobe. Using genome wide human frontal lobe expression data from 10 independent data sets, we first derived 10 individual coexpression networks for all GRFs including their potential target genes. We observed a high level of variability among these 10 independently derived networks, pointing out that relying on results from a single study can only provide limited biological insights. To instead focus on the most confident information from these 10 networks we developed a method for integrating such independently derived networks into a consensus network. This consensus network revealed robust GRF interactions that are conserved across the frontal lobes of different healthy human individuals. Within this network, we detected a strong central module that is enriched for 166 GRFs known to be involved in brain development and/or cognitive disorders. Interestingly, several hubs of the consensus network encode for GRFs that have not yet been associated with brain functions. Their central role in the network suggests them as excellent new candidates for playing an essential role in the regulatory network of the human frontal lobe, which should be investigated in future studies. PMID:27014338

  6. A Consensus Network of Gene Regulatory Factors in the Human Frontal Lobe.

    PubMed

    Berto, Stefano; Perdomo-Sabogal, Alvaro; Gerighausen, Daniel; Qin, Jing; Nowick, Katja

    2016-01-01

    Cognitive abilities, such as memory, learning, language, problem solving, and planning, involve the frontal lobe and other brain areas. Not much is known yet about the molecular basis of cognitive abilities, but it seems clear that cognitive abilities are determined by the interplay of many genes. One approach for analyzing the genetic networks involved in cognitive functions is to study the coexpression networks of genes with known importance for proper cognitive functions, such as genes that have been associated with cognitive disorders like intellectual disability (ID) or autism spectrum disorders (ASD). Because many of these genes are gene regulatory factors (GRFs) we aimed to provide insights into the gene regulatory networks active in the human frontal lobe. Using genome wide human frontal lobe expression data from 10 independent data sets, we first derived 10 individual coexpression networks for all GRFs including their potential target genes. We observed a high level of variability among these 10 independently derived networks, pointing out that relying on results from a single study can only provide limited biological insights. To instead focus on the most confident information from these 10 networks we developed a method for integrating such independently derived networks into a consensus network. This consensus network revealed robust GRF interactions that are conserved across the frontal lobes of different healthy human individuals. Within this network, we detected a strong central module that is enriched for 166 GRFs known to be involved in brain development and/or cognitive disorders. Interestingly, several hubs of the consensus network encode for GRFs that have not yet been associated with brain functions. Their central role in the network suggests them as excellent new candidates for playing an essential role in the regulatory network of the human frontal lobe, which should be investigated in future studies.

  7. Inhibition of spermidine synthase gene expression by transforming growth factor-beta 1 in hepatoma cells.

    PubMed Central

    Nishikawa, Y; Kar, S; Wiest, L; Pegg, A E; Carr, B I

    1997-01-01

    We screened genes responsive to transforming growth factor-beta (TGF-beta 1) protein in a human hepatoma cell line (Hep3B) using a PCR-mediated differential display technique, in order to investigate the mechanisms involved in TGF-beta-induced growth suppression. We found a gene that was down-regulated by TGF-beta 1 to be completely identical in an approx. 620 bp segment to the gene for the enzyme spermidine synthase, which mediates the conversion of putrescine into spermidine. Both spermidine synthase mRNA expression and its enzyme activity were decreased after TGF-beta 1 treatment of Hep3B cells. The inhibition of spermidine synthase gene expression by TGF-beta 1 protein was also observed in other hepatoma cell lines. The expression of genes for other biosynthetic enzymes in polyamine metabolism (ornithine decarboxylase and S-adenosylmethionine decarboxylase) was also inhibited to the same extent as for spermidine synthase, while the gene expression of spermidine/spermine N1-acetyltransferase, a catabolic enzyme, was relatively resistant to TGF-beta 1. Spermine levels in Hep3B cells were decreased by TGF-beta 1 treatment, although the levels of spermidine and putrescine were unchanged, probably due to compensation by remaining spermidine/spermine N1-acetyltransferase activity. Exogenously added spermidine or spermine, but not putrescine, partially antagonized the growth-inhibitor effects of TGF-beta 1 on Hep3B cells. Our data suggest that down-regulation of gene expression of the enzymes involved in polyamine metabolism, including spermidine synthase, may be associated with the mechanism of TGF-beta-induced growth suppression. PMID:9020892

  8. Arrangement of the Clostridium baratii F7 Toxin Gene Cluster with Identification of a σ Factor That Recognizes the Botulinum Toxin Gene Cluster Promoters

    SciTech Connect

    Dover, Nir; Barash, Jason R.; Burke, Julianne N.; Hill, Karen K.; Detter, John C.; Arnon, Stephen S.

    2014-05-22

    Botulinum neurotoxin (BoNT) is the most poisonous substances known and its eight toxin types (A to H) are distinguished by the inability of polyclonal antibodies that neutralize one toxin type to neutralize any of the other seven toxin types. Infant botulism, an intestinal toxemia orphan disease, is the most common form of human botulism in the United States. It results from swallowed spores of Clostridium botulinum (or rarely, neurotoxigenic Clostridium butyricum or Clostridium baratii) that germinate and temporarily colonize the lumen of the large intestine, where, as vegetative cells, they produce botulinum toxin. Botulinum neurotoxin is encoded by the bont gene that is part of a toxin gene cluster that includes several accessory genes. In this paper, we sequenced for the first time the complete botulinum neurotoxin gene cluster of nonproteolytic C. baratii type F7. Like the type E and the nonproteolytic type F6 botulinum toxin gene clusters, the C. baratii type F7 had an orfX toxin gene cluster that lacked the regulatory botR gene which is found in proteolytic C. botulinum strains and codes for an alternative σ factor. In the absence of botR, we identified a putative alternative regulatory gene located upstream of the C. baratii type F7 toxin gene cluster. This putative regulatory gene codes for a predicted σ factor that contains DNA-binding-domain homologues to the DNA-binding domains both of BotR and of other members of the TcdR-related group 5 of the σ70 family that are involved in the regulation of toxin gene expression in clostridia. We showed that this TcdR-related protein in association with RNA polymerase core enzyme specifically binds to the C. baratii type F7 botulinum toxin gene cluster promoters. Finally, this TcdR-related protein may therefore be involved in regulating the expression of the genes of the botulinum toxin gene cluster in neurotoxigenic C. baratii.

  9. Arrangement of the Clostridium baratii F7 Toxin Gene Cluster with Identification of a σ Factor That Recognizes the Botulinum Toxin Gene Cluster Promoters

    PubMed Central

    Dover, Nir; Barash, Jason R.; Burke, Julianne N.; Hill, Karen K.; Detter, John C.; Arnon, Stephen S.

    2014-01-01

    Botulinum neurotoxin (BoNT) is the most poisonous substances known and its eight toxin types (A to H) are distinguished by the inability of polyclonal antibodies that neutralize one toxin type to neutralize any of the other seven toxin types. Infant botulism, an intestinal toxemia orphan disease, is the most common form of human botulism in the United States. It results from swallowed spores of Clostridium botulinum (or rarely, neurotoxigenic Clostridium butyricum or Clostridium baratii) that germinate and temporarily colonize the lumen of the large intestine, where, as vegetative cells, they produce botulinum toxin. Botulinum neurotoxin is encoded by the bont gene that is part of a toxin gene cluster that includes several accessory genes. We sequenced for the first time the complete botulinum neurotoxin gene cluster of nonproteolytic C. baratii type F7. Like the type E and the nonproteolytic type F6 botulinum toxin gene clusters, the C. baratii type F7 had an orfX toxin gene cluster that lacked the regulatory botR gene which is found in proteolytic C. botulinum strains and codes for an alternative σ factor. In the absence of botR, we identified a putative alternative regulatory gene located upstream of the C. baratii type F7 toxin gene cluster. This putative regulatory gene codes for a predicted σ factor that contains DNA-binding-domain homologues to the DNA-binding domains both of BotR and of other members of the TcdR-related group 5 of the σ70 family that are involved in the regulation of toxin gene expression in clostridia. We showed that this TcdR-related protein in association with RNA polymerase core enzyme specifically binds to the C. baratii type F7 botulinum toxin gene cluster promoters. This TcdR-related protein may therefore be involved in regulating the expression of the genes of the botulinum toxin gene cluster in neurotoxigenic C. baratii. PMID:24853378

  10. Arrangement of the Clostridium baratii F7 toxin gene cluster with identification of a σ factor that recognizes the botulinum toxin gene cluster promoters.

    PubMed

    Dover, Nir; Barash, Jason R; Burke, Julianne N; Hill, Karen K; Detter, John C; Arnon, Stephen S

    2014-01-01

    Botulinum neurotoxin (BoNT) is the most poisonous substances known and its eight toxin types (A to H) are distinguished by the inability of polyclonal antibodies that neutralize one toxin type to neutralize any of the other seven toxin types. Infant botulism, an intestinal toxemia orphan disease, is the most common form of human botulism in the United States. It results from swallowed spores of Clostridium botulinum (or rarely, neurotoxigenic Clostridium butyricum or Clostridium baratii) that germinate and temporarily colonize the lumen of the large intestine, where, as vegetative cells, they produce botulinum toxin. Botulinum neurotoxin is encoded by the bont gene that is part of a toxin gene cluster that includes several accessory genes. We sequenced for the first time the complete botulinum neurotoxin gene cluster of nonproteolytic C. baratii type F7. Like the type E and the nonproteolytic type F6 botulinum toxin gene clusters, the C. baratii type F7 had an orfX toxin gene cluster that lacked the regulatory botR gene which is found in proteolytic C. botulinum strains and codes for an alternative σ factor. In the absence of botR, we identified a putative alternative regulatory gene located upstream of the C. baratii type F7 toxin gene cluster. This putative regulatory gene codes for a predicted σ factor that contains DNA-binding-domain homologues to the DNA-binding domains both of BotR and of other members of the TcdR-related group 5 of the σ70 family that are involved in the regulation of toxin gene expression in clostridia. We showed that this TcdR-related protein in association with RNA polymerase core enzyme specifically binds to the C. baratii type F7 botulinum toxin gene cluster promoters. This TcdR-related protein may therefore be involved in regulating the expression of the genes of the botulinum toxin gene cluster in neurotoxigenic C. baratii.

  11. Heparin-binding epidermal growth factor-like growth factor, a v-Jun target gene, induces oncogenic transformation

    PubMed Central

    Fu, Shu-ling; Bottoli, Ivan; Goller, Martin; Vogt, Peter K.

    1999-01-01

    Jun is a transcription factor belonging to the activator protein 1 family. A mutated version of Jun (v-Jun) transduced by the avian retrovirus ASV17 induces oncogenic transformation in avian cell cultures and sarcomas in young galliform birds. The oncogenicity of Jun probably results from transcriptional deregulation of v-Jun-responsive target genes. Here we describe the identification and characterization of a growth-related v-Jun target, a homolog of heparin-binding epidermal growth factor-like growth factor (HB-EGF). HB-EGF is strongly expressed in chicken embryo fibroblasts (CEF) transformed by v-Jun. HB-EGF expression is not detectable or is marginal in nontransformed CEF. Using a hormone-inducible Jun-estrogen receptor chimera, we found that HB-EGF expression is correlated with v-Jun activity. In this system, induction of v-Jun is followed within 1 hr by elevated levels of HB-EGF. In CEF infected with various Jun mutants, HB-EGF expression is correlated with the oncogenic potency of the mutant. Constitutive expression of HB-EGF conveys to CEF the ability to grow in soft agar and to form multilayered foci of transformed cells on a solid substrate. These observations suggest that HB-EGF is an effector of Jun-induced oncogenic transformation. PMID:10318950

  12. Identification of candidate downstream genes for the homeodomain transcription factor Labial in Drosophila through oligonucleotide-array transcript imaging

    PubMed Central

    Leemans, Ronny; Loop, Thomas; Egger, Boris; He, Haiqiong; Kammermeier, Lars; Hartmann, Beate; Certa, Ullrich; Reichert, Heinrich; Hirth, Frank

    2001-01-01

    Background: Homeotic genes are key developmental regulators that are highly conserved throughout evolution. Their encoded homeoproteins function as transcription factors to control a wide range of developmental processes. Although much is known about homeodomain-DNA interactions, only a small number of genes acting downstream of homeoproteins have been identified. Here we use a functional genomic approach to identify candidate target genes of the Drosophila homeodomain transcription factor Labial. Results: High-density oligonucleotide arrays with probe sets representing 1,513 identified and sequenced genes were used to analyze differential gene expression following labial overexpression in Drosophila embryos. We find significant expression level changes for 96 genes belonging to all functional classes represented on the array. In accordance with our experimental procedure, we expect that these genes are either direct or indirect targets of labial gene action. Among these genes, 48 were upregulated and 48 were downregulated following labial overexpression. This corresponds to 6.3% of the genes represented on the array. For a selection of these genes, we show that the data obtained with the oligonucleotide arrays are consistent with data obtained using quantitative RT-PCR. Conclusions: Our results identify a number of novel candidate downstream target genes for Labial, suggesting that this homeoprotein differentially regulates a limited and distinct set of embryonically expressed Drosophila genes. PMID:11387036

  13. Gene expression array of HTLV type 1-infected T cells: Up-regulation of transcription factors and cell cycle genes.

    PubMed

    de La Fuente, C; Deng, L; Santiago, F; Arce, L; Wang, L; Kashanchi, F

    2000-11-01

    By utilizing a human cDNA expression array blot (588 genes), we have observed overexpression of various transcription factors, cell cycle regulated kinases, and DNA repair genes in HTLV-1-infected T cells. One of the genes of interest, and focus in this study, is the cyclin-dependent kinase inhibitor, p21/waf1. The p21/waf1 transcription and protein is overexpressed in all HTLV-1-infected cell lines tested as well as ATL and HAM/TSP patient samples. While p21/waf1 has been shown to display a selectivity for G(1)/S cyclin/cdk complexes, we have observed p21/waf1 to be complexed with cyclin A/cdk2. Functionally, the association of p21/cyclin A/cdk2 decreased the histone H1 phosphorylation in vitro, as observed in immunoprecipitations followed by kinase assays, as well as affecting other substrates such as the C-terminus of Rb protein involved in c-Abl and HDAC1 regulation. Wild-type, but not a mutant form (M47) of Tax, was found to be able to transactivate the p21/waf1 promoter in a p53-independent manner. We found that the minimal p21/waf1 promoter (-49 to +49 sequence) was activated by Tax and the minimal promoter contained two E2A transcription factor binding sites located between the TATA box and the initiation site. E2A proteins, E12 and E47, as well as a related helix-loop-helix protein, HEB, are all up-regulated in HTLV-1-infected T cells. When using band shift analysis, we found that only the E1 site (overlapping the transcription start site) was a functional DNA binding site. By using a chromatin immunoprecipitation (ChIP) assay, we observed that histone H4, and not histone H3, was acetylated from the endogenous p21/waf1 promoter in vivo, implying that CBP/p300, and not the SAGA complex, was critical in complexing with E2A in up-regulation of p21/waf1 in HTLV-1-infected cells.

  14. Matrix immobilization enhances the tissue repair activity of growth factor gene therapy vectors.

    PubMed

    Doukas, J; Chandler, L A; Gonzalez, A M; Gu, D; Hoganson, D K; Ma, C; Nguyen, T; Printz, M A; Nesbit, M; Herlyn, M; Crombleholme, T M; Aukerman, S L; Sosnowski, B A; Pierce, G F

    2001-05-01

    Although growth factor proteins display potent tissue repair activities, difficulty in sustaining localized therapeutic concentrations limits their therapeutic activity. We reasoned that enhanced histogenesis might be achieved by combining growth factor genes with biocompatible matrices capable of immobilizing vectors at delivery sites. When delivered to subcutaneously implanted sponges, a platelet-derived growth factor B-encoding adenovirus (AdPDGF-B) formulated in a collagen matrix enhanced granulation tissue deposition 3- to 4-fold (p < or = 0.0002), whereas vectors encoding fibroblast growth factor 2 or vascular endothelial growth factor promoted primarily angiogenic responses. By day 8 posttreatment of ischemic excisional wounds, collagen-formulated AdPDGF-B enhanced granulation tissue and epithelial areas up to 13- and 6-fold (p < 0.009), respectively, and wound closure up to 2-fold (p < 0.05). At longer times, complete healing without excessive scar formation was achieved. Collagen matrices were shown to retain both vector and transgene products within delivery sites, enabling the transduction and stimulation of infiltrating repair cells. Quantitative PCR and RT-PCR demonstrated both vector DNA and transgene mRNA within wound beds as late as 28 days posttreatment. By contrast, aqueous formulations allowed vector seepage from application sites, leading to PDGF-induced hyperplasia in surrounding tissues but not wound beds. Finally, repeated applications of PDGF-BB protein were required for neotissue induction approaching equivalence to a single application of collagen-immobilized AdPDGF-B, confirming the utility of this gene transfer approach. Overall, these studies demonstrate that immobilizing matrices enable the controlled delivery and activity of tissue promoting genes for the effective regeneration of injured tissues.

  15. Upstream stimulatory factor 2 and hypoxia-inducible factor 2α (HIF2α) cooperatively activate HIF2 target genes during hypoxia.

    PubMed

    Pawlus, Matthew R; Wang, Liyi; Ware, Katie; Hu, Cheng-Jun

    2012-11-01

    While the functions of hypoxia-inducible factor 1α (HIF1α)/aryl hydrocarbon receptor nuclear translocator (ARNT) and HIF2α/ARNT (HIF2) proteins in activating hypoxia-inducible genes are well established, the role of other transcription factors in the hypoxic transcriptional response is less clear. We report here for the first time that the basic helix-loop-helix-leucine-zip transcription factor upstream stimulatory factor 2 (USF2) is required for the hypoxic transcriptional response, specifically, for hypoxic activation of HIF2 target genes. We show that inhibiting USF2 activity greatly reduces hypoxic induction of HIF2 target genes in cell lines that have USF2 activity, while inducing USF2 activity in cells lacking USF2 activity restores hypoxic induction of HIF2 target genes. Mechanistically, USF2 activates HIF2 target genes by binding to HIF2 target gene promoters, interacting with HIF2α protein, and recruiting coactivators CBP and p300 to form enhanceosome complexes that contain HIF2α, USF2, CBP, p300, and RNA polymerase II on HIF2 target gene promoters. Functionally, the effect of USF2 knockdown on proliferation, motility, and clonogenic survival of HIF2-dependent tumor cells in vitro is phenocopied by HIF2α knockdown, indicating that USF2 works with HIF2 to activate HIF2 target genes and to drive HIF2-depedent tumorigenesis.

  16. Expression of growth factor ligand and receptor genes in the preimplantation bovine embryo.

    PubMed

    Watson, A J; Hogan, A; Hahnel, A; Wiemer, K E; Schultz, G A

    1992-02-01

    The sensitive technique of mRNA phenotyping with the reverse transcription-polymerase chain reaction was employed to determine the patterns of gene expression for several growth factor ligand and receptor genes during bovine preimplantation development. Several thousand bovine embryos encompassing a developmental series from one-cell zygotes to hatched blastocysts were produced by the application of in vitro maturation, fertilization, and oviductal epithelial cell embryo coculture methods. Transcripts for transforming growth factor (TGF-alpha) and platelet-derived growth factor (PDGF-A) are detectable in all preimplantation bovine stages as observed in the mouse. Transcripts for TGF-beta 2 and insulin-like growth factor (IGF-II) and the receptors for PDGF-alpha, insulin, IGF-I, and IGF-II are also detectable throughout bovine preimplantation development, suggesting that these mRNAs are products of both the maternal and the embryonic genomes in the cow, whereas in the mouse they are present only following the activation of the embryonic genome at the two-cell stage. In contrast to the mouse embryo, IGF-I mRNA was detected within preimplantation bovine embryos. Basic fibroblast growth factor (bFGF) is a maternal message in the bovine embryo, since it is only detectable up until the eight-cell embryo stage. Bovine trophoblast protein (bTP) mRNA was detectable within day 8 bovine blastocysts. As was observed in the mouse, the transcripts for insulin, epidermal growth factor (EGF), or nerve growth factor (NGF) were not detectable in any bovine embryo stage. Analyses of this type should aid the development of a completely defined culture medium for the more efficient production of preimplantation bovine embryos.

  17. Expression profiling of genes regulated by Fra-1/AP-1 transcription factor during bleomycin-induced pulmonary fibrosis

    PubMed Central

    2013-01-01

    Background The Fra-1/AP-1 transcription factor regulates the expression of genes controlling various processes including migration, invasion, and survival as well as extracellular remodeling. We recently demonstrated that loss of Fra-1 leads to exacerbated bleomycin-induced pulmonary fibrosis, accompanied by enhanced expression of various inflammatory and fibrotic genes. To better understand the molecular mechanisms by which Fra-1 confers protection during bleomycin-induced lung injury, genome-wide mRNA expression profiling was performed. Results We found that Fra-1 regulates gene expression programs that include: 1) several cytokines and chemokines involved in inflammation, 2) several genes involved in the extracellular remodeling and cell adhesion, and 3) several genes involved in programmed cell death. Conclusion Loss of Fra-1 leads to the enhanced expression of genes regulating inflammation and immune responses and decreased the expression of genes involved in apoptosis, suggesting that this transcription factor distinctly modulates early pro-fibrotic cellular responses. PMID:23758685

  18. The Enhancement of Bone Regeneration by Gene Activated Matrix Encoding for Platelet Derived Growth Factor

    PubMed Central

    Elangovan, Satheesh; D’Mello, Sheetal R.; Hong, Liu; Ross, Ryan D.; Allamargot, Chantal; Dawson, Deborah V.; Stanford, Clark M.; Johnson, Georgia K.; Sumner, D. Rick; Salem, Aliasger K.

    2013-01-01

    Gene therapy using non-viral vectors that are safe and efficient in transfecting target cells is an effective approach to overcome the shortcomings of protein delivery of growth factors. The objective of this study was to develop and test a non-viral gene delivery system for bone regeneration utilizing a collagen scaffold to deliver polyethylenimine (PEI)-plasmid DNA (pDNA) [encoding platelet derived growth factor-B (PDGF-B)] complexes. The PEI-pPDGF-B complexes were fabricated at amine (N) to phosphate (P) ratio of 10 and characterized for size, surface charge, and in vitro cytotoxicity and transfection efficacy in human bone marrow stromal cells (BMSCs). The influence of the complex-loaded collagen scaffold on cellular attachment and recruitment was evaluated in vitro using microscopic techniques. The in vivo regenerative capacity of the gene delivery system was assessed in 5 mm diameter critical-sized calvarial defects in Fisher 344 rats. The complexes were ~100 nm in size with a positive surface charge. Complexes prepared at an N/P ratio of 10 displayed low cytotoxicity as assessed by a cell viability assay. Confocal microscopy revealed significant proliferation of BMSCs on complex-loaded collagen scaffolds compared to empty scaffolds. In vivo studies showed significantly higher new bone volume/total volume (BV/TV) % in calvarial defects treated with the complex-activated scaffolds following 4 weeks of implantation (14- and 44-fold higher) when compared to empty defects or empty scaffolds, respectively. Together, these findings suggest that non-viral PDGF-B gene-activated scaffolds are effective for bone regeneration and are an attractive gene delivery system with significant potential for clinical translation. PMID:24161167

  19. Transcription factor NFE2L2/NRF2 is a regulator of macroautophagy genes.

    PubMed

    Pajares, Marta; Jiménez-Moreno, Natalia; García-Yagüe, Ángel J; Escoll, Maribel; de Ceballos, María L; Van Leuven, Fred; Rábano, Alberto; Yamamoto, Masayuki; Rojo, Ana I; Cuadrado, Antonio

    2016-10-02

    Autophagy is a highly coordinated process that is controlled at several levels including transcriptional regulation. Here, we identify the transcription factor NFE2L2/NRF2 (nuclear factor, erythroid 2 like 2) as a regulator of autophagy gene expression and its relevance in a mouse model of Alzheimer disease (AD) that reproduces impaired APP (amyloid β precursor protein) and human (Hs)MAPT/TAU processing, clearance and aggregation. We screened the chromatin immunoprecipitation database ENCODE for 2 proteins, MAFK and BACH1, that bind the NFE2L2-regulated enhancer antioxidant response element (ARE). Using a script generated from the JASPAR's consensus ARE sequence, we identified 27 putative AREs in 16 autophagy-related genes. Twelve of these sequences were validated as NFE2L2 regulated AREs in 9 autophagy genes by additional ChIP assays and quantitative RT-PCR on human and mouse cells after NFE2L2 activation with sulforaphane. Mouse embryo fibroblasts of nfe2l2-knockout mice exhibited reduced expression of autophagy genes, which was rescued by an NFE2L2 expressing lentivirus, and impaired autophagy flux when exposed to hydrogen peroxide. NFE2L2-deficient mice co-expressing HsAPP(V717I) and HsMAPT(P301L), exhibited more intracellular aggregates of these proteins and reduced neuronal levels of SQSTM1/p62, CALCOCO2/NDP52, ULK1, ATG5 and GABARAPL1. Also, colocalization of HsAPP(V717I) and HsMAPT(P301L) with the NFE2L2-regulated autophagy marker SQSTM1/p62 was reduced in the absence of NFE2L2. In AD patients, neurons expressing high levels of APP or MAPT also expressed SQSTM1/p62 and nuclear NFE2L2, suggesting their attempt to degrade intraneuronal aggregates through autophagy. This study shows that NFE2L2 modulates autophagy gene expression and suggests a new strategy to combat proteinopathies.

  20. Expression of myocyte enhancer factor-2 and downstream genes in ground squirrel skeletal muscle during hibernation.

    PubMed

    Tessier, Shannon N; Storey, Kenneth B

    2010-11-01

    Myocyte enhancer factor-2 (MEF2) transcription factors regulate the expression of a variety of genes encoding contractile proteins and other proteins associated with muscle performance. We proposed that changes in MEF2 levels and expression of selected downstream targets would aid the skeletal muscle of thirteen-lined ground squirrels (Spermophilus tridecemlineatus) in meeting metabolic challenges associated with winter hibernation; e.g., cycles of torpor-arousal, body temperature that can fall to near 0°C, long periods of inactivity that could lead to atrophy. MEF2A protein levels were significantly elevated when animals were in torpor (maximally 2.8-fold higher than in active squirrels) and the amount of phosphorylated active MEF2A Thr312 increased during entrance into torpor. MEF2C levels also rose significantly during entrance and torpor as did the amount of phosphorylated MEF2C Ser387. Furthermore, both MEF2 members showed elevated amounts in the nuclear fraction during torpor as well as enhanced binding to DNA indicating that MEF2-mediated gene expression was up-regulated in torpid animals. Indeed, the protein products of two MEF2 downstream gene targets increased in muscle during torpor (glucose transporter isoforms 4; GLUT4) or early arousal (myogenic differentiation; MyoD). Significant increases in Glut4 and MyoD mRNA transcript levels correlated with the rise in protein product levels and provided further support for the activation of MEF2-mediated gene expression in the hibernator. Transcript levels of Mef2a and Mef2c also showed time-dependent patterns with levels of both being highest during arousal from torpor. The data suggest a significant role for MEF2-mediated gene transcription in the selective adjustment of muscle protein complement over the course of torpor-arousal cycles.

  1. Chicken Ovalbumin Upstream Promoter Transcription Factor II Regulates Renin Gene Expression*

    PubMed Central

    Mayer, Sandra; Roeser, Marc; Lachmann, Peter; Ishii, Sumiyashi; Suh, Jae Mi; Harlander, Sabine; Desch, Michael; Brunssen, Coy; Morawietz, Henning; Tsai, Sophia Y.; Tsai, Ming-Jer; Hohenstein, Bernd; Hugo, Christian; Todorov, Vladimir T.

    2012-01-01

    This study aimed to investigate the possible involvement of the orphan nuclear receptor chicken ovalbumin upstream promoter transcription factor II (COUP-TFII) in the regulation of renin gene expression. COUP-TFII colocalized with renin in the juxtaglomerular cells of the kidney, which are the main source of renin in vivo. Protein-DNA binding studies demonstrated that COUP-TFII binds to an imperfect direct repeat COUP-TFII recognition sequence (termed hereafter proxDR) in the proximal renin promoter. Because cAMP signaling plays a central role in the control of the renin gene expression, we suggested that COUP-TFII may modulate this cAMP effect. Accordingly, knockdown of COUP-TFII in the clonal renin-producing cell lines As4.1 and Calu-6 diminished the stimulation of the renin mRNA expression by cAMP agonists. In addition, the mutation of the proxDR element in renin promoter reporter gene constructs abrogated the inducibility by cAMP. The proxDR sequence was found to be necessary for the function of a proximal renin promoter cAMP-response element (CRE). Knockdown of COUP-TFII or cAMP-binding protein (CREB), which is the archetypal transcription factor binding to CRE, decreased the basal renin gene expression. However, the deficiency of COUP-TFII did not further diminish the renin expression when CREB was knocked down. In agreement with the cell culture studies, mutant mice deficient in COUP-TFII have lower renin expression than their control strain. Altogether our data show that COUP-TFII is involved in the control of renin gene expression. PMID:22645148

  2. Chicken ovalbumin upstream promoter transcription factor II regulates renin gene expression.

    PubMed

    Mayer, Sandra; Roeser, Marc; Lachmann, Peter; Ishii, Sumiyashi; Suh, Jae Mi; Harlander, Sabine; Desch, Michael; Brunssen, Coy; Morawietz, Henning; Tsai, Sophia Y; Tsai, Ming-Jer; Hohenstein, Bernd; Hugo, Christian; Todorov, Vladimir T

    2012-07-13

    This study aimed to investigate the possible involvement of the orphan nuclear receptor chicken ovalbumin upstream promoter transcription factor II (COUP-TFII) in the regulation of renin gene expression. COUP-TFII colocalized with renin in the juxtaglomerular cells of the kidney, which are the main source of renin in vivo. Protein-DNA binding studies demonstrated that COUP-TFII binds to an imperfect direct repeat COUP-TFII recognition sequence (termed hereafter proxDR) in the proximal renin promoter. Because cAMP signaling plays a central role in the control of the renin gene expression, we suggested that COUP-TFII may modulate this cAMP effect. Accordingly, knockdown of COUP-TFII in the clonal renin-producing cell lines As4.1 and Calu-6 diminished the stimulation of the renin mRNA expression by cAMP agonists. In addition, the mutation of the proxDR element in renin promoter reporter gene constructs abrogated the inducibility by cAMP. The proxDR sequence was found to be necessary for the function of a proximal renin promoter cAMP-response element (CRE). Knockdown of COUP-TFII or cAMP-binding protein (CREB), which is the archetypal transcription factor binding to CRE, decreased the basal renin gene expression. However, the deficiency of COUP-TFII did not further diminish the renin expression when CREB was knocked down. In agreement with the cell culture studies, mutant mice deficient in COUP-TFII have lower renin expression than their control strain. Altogether our data show that COUP-TFII is involved in the control of renin gene expression.

  3. Transcription factor NFE2L2/NRF2 is a regulator of macroautophagy genes

    PubMed Central

    Pajares, Marta; Jiménez-Moreno, Natalia; García-Yagüe, Ángel J.; Escoll, Maribel; de Ceballos, María L.; Van Leuven, Fred; Rábano, Alberto; Yamamoto, Masayuki; Rojo, Ana I.; Cuadrado, Antonio

    2016-01-01

    ABSTRACT Autophagy is a highly coordinated process that is controlled at several levels including transcriptional regulation. Here, we identify the transcription factor NFE2L2/NRF2 (nuclear factor, erythroid 2 like 2) as a regulator of autophagy gene expression and its relevance in a mouse model of Alzheimer disease (AD) that reproduces impaired APP (amyloid β precursor protein) and human (Hs)MAPT/TAU processing, clearance and aggregation. We screened the chromatin immunoprecipitation database ENCODE for 2 proteins, MAFK and BACH1, that bind the NFE2L2-regulated enhancer antioxidant response element (ARE). Using a script generated from the JASPAR's consensus ARE sequence, we identified 27 putative AREs in 16 autophagy-related genes. Twelve of these sequences were validated as NFE2L2 regulated AREs in 9 autophagy genes by additional ChIP assays and quantitative RT-PCR on human and mouse cells after NFE2L2 activation with sulforaphane. Mouse embryo fibroblasts of nfe2l2-knockout mice exhibited reduced expression of autophagy genes, which was rescued by an NFE2L2 expressing lentivirus, and impaired autophagy flux when exposed to hydrogen peroxide. NFE2L2-deficient mice co-expressing HsAPPV717I and HsMAPTP301L, exhibited more intracellular aggregates of these proteins and reduced neuronal levels of SQSTM1/p62, CALCOCO2/NDP52, ULK1, ATG5 and GABARAPL1. Also, colocalization of HsAPPV717I and HsMAPTP301L with the NFE2L2-regulated autophagy marker SQSTM1/p62 was reduced in the absence of NFE2L2. In AD patients, neurons expressing high levels of APP or MAPT also expressed SQSTM1/p62 and nuclear NFE2L2, suggesting their attempt to degrade intraneuronal aggregates through autophagy. This study shows that NFE2L2 modulates autophagy gene expression and suggests a new strategy to combat proteinopathies. PMID:27427974

  4. Epidermal growth factor gene polymorphism is different between schizophrenia and lung cancer patients in Korean population.

    PubMed

    Lim, Yun Jeong; Kim, Jong-Woo; Song, Ji Young; Hong, Mee-Suk; Jin, Sheng-Yu; Yoon, Seo Hyun; Park, Hae Jeong; Choe, Bong-Keun; Lee, Jung Joo; Yim, Sung-Vin; Hong, Seok-Il; Baik, Hyung Hwan; Ha, Eunyoung; Park, Yeon Hee

    2005-02-21

    Low incidence of cancer in schizophrenia is one of the interesting puzzles in psychiatric field over decades. Analysis of genetic difference between schizophrenia and lung cancer might provide us with possible clues to understand molecular mechanisms of pathophysiology of schizophrenia. Epidermal growth factor (EGF), one of the potent growth promoting factors, has been studied for its roles in cancer development. EGF is also known to be involved in cognitive function. In order to analyze the genetic difference between schizophrenia and lung cancer, polymorphism of EGF gene was studied from 174 schizophrenia patients, 122 lung cancer patients and 132 controls in Korean population. Genotype frequency analysis of EGF gene (AluI restriction site, 5'-UTR, rs4444903) in the EGF gene was studied. The genotype and allele frequencies of the AluI polymorphism showed significant differences between schizophrenia and lung cancer patients [p<0.0001; p<0.0001, odds ratio (95% CI), 0.3690 (0.2600-0.5236)]. When compared with controls, schizophrenia patients showed no significant differences from controls in genotype and allele frequencies [p=0.5151; p=0.3516, odds ratio (95% CI), 0.8589 (0.6235-1.1830)]. However, lung cancer patients showed significant differences from controls in genotype and allele frequencies [p<0.0001; p<0.0001, odds ratio (95% CI), 2.3275 (1.6082-3.3687)]. These results indicate that schizophrenia is not associated with AluI polymorphism of EGF gene and EGF gene polymorphism is different between schizophrenia and lung cancer patients.

  5. Stem cell-based delivery of brain-derived neurotrophic factor gene in the rat retina.

    PubMed

    Park, Hae-Young Lopilly; Kim, Jie Hyun; Sun Kim, Hwa; Park, Chan Kee

    2012-08-21

    As an alternative to a viral vector, the application of stem cells to transfer specific genes is under investigation in various organs. Using this strategy may provide more effective method to supply neurotrophic factor to the neurodegenerative diseases caused by neurotrophic factor deprivation. This study investigated the possibility and efficacy of stem cell-based delivery of the brain-derived neurotrophic factor (BDNF) gene to rat retina. Rat BDNF cDNA was transduced into rat bone marrow mesenchymal stem cells (rMSCs) using a retroviral vector. Its incorporation into the experimental rat retina and the expression of BDNF after intravitreal injection or subretinal injection were detected by real-time PCR, western blot analysis, and immunohistochemical staining. For the incorporated rMSCs, retinal-specific marker staining was performed to investigate the changes in morphology and the characteristics of the stem cells. Transduction of the rMSCs by retrovirus was effective, and the transduced rMSCs expressed high levels of the BDNF gene and protein. The subretinal injection of rMSCs produced rMSC migration and incorporation into the rat retina (about 15.7% incorporation rate), and retinal BDNF mRNA and protein expression was increased at 4 weeks after transplantation. When subretinal injection of rMSCs was applied to axotomized rat retina, it significantly increased the expression of BDNF until 4 weeks after transplantation. Some of the transplanted rMSCs exhibited morphological changes, but the retinal-specific marker stain was not sufficient to indicate whether neuronal differentiation had occurred. Using mesenchymal stem cells to deliver the BDNF gene to the retina may provide new treatment for glaucoma.

  6. Glial Cell Line-Derived Neurotrophic Factor (GDNF) as a Novel Candidate Gene of Anxiety

    PubMed Central

    Kotyuk, Eszter; Keszler, Gergely; Nemeth, Nora; Ronai, Zsolt; Sasvari-Szekely, Maria; Szekely, Anna

    2013-01-01

    Glial cell line-derived neurotrophic factor (GDNF) is a neurotrophic factor for dopaminergic neurons with promising therapeutic potential in Parkinson's disease. A few association analyses between GDNF gene polymorphisms and psychiatric disorders such as schizophrenia, attention deficit hyperactivity disorder and drug abuse have also been published but little is known about any effects of these polymorphisms on mood characteristics such as anxiety and depression. Here we present an association study between eight (rs1981844, rs3812047, rs3096140, rs2973041, rs2910702, rs1549250, rs2973050 and rs11111) GDNF single nucleotide polymorphisms (SNPs) and anxiety and depression scores measured by the Hospital Anxiety and Depression Scale (HADS) on 708 Caucasian young adults with no psychiatric history. Results of the allele-wise single marker association analyses provided significant effects of two single nucleotide polymorphisms on anxiety scores following the Bonferroni correction for multiple testing (p = 0.00070 and p = 0.00138 for rs3812047 and rs3096140, respectively), while no such result was obtained on depression scores. Haplotype analysis confirmed the role of these SNPs; mean anxiety scores raised according to the number of risk alleles present in the haplotypes (p = 0.00029). A significant sex-gene interaction was also observed since the effect of the rs3812047 A allele as a risk factor of anxiety was more pronounced in males. In conclusion, this is the first demonstration of a significant association between the GDNF gene and mood characteristics demonstrated by the association of two SNPs of the GDNF gene (rs3812047 and rs3096140) and individual variability of anxiety using self-report data from a non-clinical sample. PMID:24324616

  7. Genes, epigenetic regulation and environmental factors: which is the most relevant in developing autoimmune diseases?

    PubMed

    Costenbader, Karen H; Gay, Steffen; Alarcón-Riquelme, Marta E; Iaccarino, Luca; Doria, Andrea

    2012-06-01

    Autoimmune diseases such as rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis and inflammatory bowel disease, have complex pathogeneses and likely multifactorial etiologies. The current paradigm for understanding their development is that the disease is triggered in genetically-susceptible individuals by exposure to environmental factors. Some of these environmental factors have been specifically identified, while others are hypothesized and not yet proven, and it is likely that most have yet to be identified. One interesting hypothesis is that environmental effects on immune responses could be mediated by changes in epigenetic regulation. Major mechanisms of epigenetic gene regulation include DNA methylation and histone modification. In these cases, gene expression is modified with