Science.gov

Sample records for factor gene pro1

  1. Use of Random T-DNA Mutagenesis in Identification of Gene UvPRO1, A Regulator of Conidiation, Stress Response, and Virulence in Ustilaginoidea virens

    PubMed Central

    Lv, Bo; Zheng, Lu; Liu, Hao; Tang, Jintian; Hsiang, Tom; Huang, Jinbin

    2016-01-01

    False smut of rice, caused by Ustilaginoidea virens (Cooke) Takahashi (teleomorph: Villosiclava virens), is one of the most important diseases affecting rice worldwide. Agrobacterium tumefaciens-mediated transformation was used to identify functional genes in U. virens. In this study, we selected a single-copy insertion mutant T133 with deficiency in producing conidia by screening the T-DNA insertion mutant library of U. virens. The UvPRO1-deletion mutant was successfully obtained after cloning the targeted gene by analysis of the T-DNA insert site of mutant T133. Further research showed that the UvPRO1 mutant was reduced in growth rate and could not produce conidia in PSB medium, while sensitivities to sodium dodecyl sulfate, Congo red, and hyperosmotic stress increased. Moreover, the UvPRO1 deletion mutant hyphae could extend along the surface of spikelets at 1–3 dpi, but mycelia became shriveled and completely lost the ability to infect spikelets at 4 dpi. The relative expression level of UvPRO1 at 8 dpi was more than twice as high as that at 1–2 dpi. These results suggest that UvPRO1 plays a critical role in hyphal growth and conidiation, as well as in stress response and pathogenesis. These findings provide a novel mode of action for the PRO1 protein in fungi and improve the understanding of the function of UvPRO1 in the life cycle of U. virens. PMID:28082958

  2. The promoter of the nematode resistance gene Hs1pro-1 activates a nematode-responsive and feeding site-specific gene expression in sugar beet (Beta vulgaris L.) and Arabidopsis thaliana.

    PubMed

    Thurau, Tim; Kifle, Sirak; Jung, Christian; Cai, Daguang

    2003-06-01

    The Hs1pro-1 gene confers resistance to the beet cyst nematode Heterodera schachtii in sugar beet (Beta vulgaris L.) on the basis of a gene-for-gene relationship. RNA-gel blot analysis revealed that the transcript of Hs1pro-1 was present in uninfected roots of resistant beet at low levels but increased by about fourfold one day after nematode infection. Treatments of plants with external stimuli including salicylic acid, jasmonic acid, gibberellic acid and abscisic acid as well as wounding or salt stress did not result in changes in the gene transcription, indicating de novo transcription of Hs1pro-1 upon nematode infection specifically. To study transcriptional regulation of Hs1pro-1 expression at the cellular level, a 3082 bp genomic fragment representing the Hs1pro-1 promoter, isolated from the YAC-DNA housing the Hs1pro-1 gene, was fused to the beta-glucuronidase reporter gene (1832prm1::GUS) and transformed into susceptible beet roots and Arabidopsis plants, respectively. Fluorometric and histochemical GUS assays on transgenic beet roots and Arabidopsis plants carrying the 1832prm1::GUS construct demonstrated that the Hs1pro-1 promoter is functional in both species and drives a nematode responsive and feeding site-specific GUS-expression. GUS activity was detected as early as at initiation of the nematode feeding sites and GUS staining was restricted to the nematode feeding sites. To delineate the regulatory domains of the Hs1pro-1 promoter, fusion genes with various 5' deletions of the Hs1pro-1 promoter and the GUS gene were constructed and analysed in transgenic beet roots as well. Cis elements responsible for feeding site-specific gene expression reside between -355 and +247 from the transcriptional initiation site of Hs1pro-1 whereas an enhancer region necessary for higher gene expression is located between -1199 and -705 of the promoter. The Hs1pro-1 promoter drives a nematode feeding site-specific GUS expression in both sugar beet and Arabidopsis

  3. Molecular and cellular characterization of the tomato pollen profilin, LePro1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Profilin is an actin-binding protein involved in the dynamic turnover and restructuring of the actin cytoskeleton in all eukaryotic cells. We previously cloned a profilin gene, designated as LePro1 from tomato pollen. To investigate its biological role, in the present study, We investigated the tem...

  4. Engineering Factor Viii for Hemophilia Gene Therapy

    PubMed Central

    Roberts, Sean A.; Dong, Biao; Firrman, Jenni A.; Moore, Andrea R.; Sang, Nianli; Xiao, Weidong

    2012-01-01

    Current treatment of hemophilia A by intravenous infusion of factor VIII (fVIII) concentrates is very costly and has a potential adverse effect of developing inhibitors. Gene therapy, on the other hand, can potentially overcome these limitations associated with fVIII replacement therapy. Although hemophilia B gene therapy has achieved promising outcomes in human clinical trials, hemophilia A gene therapy lags far behind. Compared to factor IX, fVIII is a large protein which is difficult to express at sustaining therapeutic levels when delivered by either viral or non-viral vectors. To improve fVIII gene delivery, numerous strategies have been exploited to engineer the fVIII molecule and overcome the hurdles preventing long term and high level expression. Here we reviewed these strategies, and discussed their pros and cons in human gene therapy of hemophilia A. PMID:23565342

  5. Growth factor gene therapy for Alzheimer disease.

    PubMed

    Tuszynski, Mark H; U, Hoi Sang; Alksne, John; Bakay, Roy A; Pay, Mary Margaret; Merrill, David; Thal, Leon J

    2002-11-15

    The capacity to prevent neuronal degeneration and death during the course of progressive neurological disorders such as Alzheimer disease (AD) would represent a significant advance in therapy. Nervous system growth factors are families of naturally produced proteins that, in animal models, exhibit extensive potency in preventing neuronal death due to a variety of causes, reversing age-related atrophy of neurons, and ameliorating functional deficits. The main challenge in translating growth factor therapy to the clinic has been delivery of growth factors to the brain in sufficient concentrations to influence neuronal function. One means of achieving growth factor delivery to the central nervous system in a highly targeted, effective manner may be gene therapy. In this article the authors summarize the development and implementation of nerve growth factor gene delivery as a potential means of reducing cell loss in AD.

  6. Growth factors from genes to clinical application

    SciTech Connect

    Sara, V.R. ); Hall, K.; Low, H. )

    1990-01-01

    The last decade has witnessed an explosion in the identification of growth factors and their receptors. This has been greatly facilitated by recombinant DNA technology, which has provided the tools not only to identify these proteins at the gene level but also to produce recombinant proteins for evaluating their biological activities. With the help of such techniques, we are moving toward an understanding of the biosynthesis of growth factors and their receptors, structure-function relationships, as well as mechanisms for intracellular signal transmission. The possibility of modifying these factors has opened new fields of clinical application. In this paper, four major areas of growth factor research are presented: the characterization of growth factor genes and their protein products, growth factor receptors and signal transduction by the receptors to mediate biological action, the biological actions of the various growth factors, and the role of growth factors in health and disease and their possible clinical application. Some of the topics covered include: structure of the IGFs and their variants; isoforms of PDGF receptor types; tyrosine kinase activation; structure of G-proteins in biological membranes; possible therapeutic application of NGF in the treatment of Parkinson's and Alzheimer's diseases; PDGF's possible role in the development of several fibroproliferative diseases and its therapeutic application in wound healing; and the possible use of angiogenic inhibitors in tumor treatment.

  7. Autism risk factors: genes, environment, and gene-environment interactions

    PubMed Central

    Chaste, Pauline; Leboyer, Marion

    2012-01-01

    The aim of this review is to summarize the key findings from genetic and epidemiological research, which show that autism is a complex disorder resulting from the combination of genetic and environmental factors. Remarkable advances in the knowledge of genetic causes of autism have resulted from the great efforts made in the field of genetics. The identification of specific alleles contributing to the autism spectrum has supplied important pieces for the autism puzzle. However, many questions remain unanswered, and new questions are raised by recent results. Moreover, given the amount of evidence supporting a significant contribution of environmental factors to autism risk, it is now clear that the search for environmental factors should be reinforced. One aspect of this search that has been neglected so far is the study of interactions between genes and environmental factors. PMID:23226953

  8. Autism risk factors: genes, environment, and gene-environment interactions.

    PubMed

    Chaste, Pauline; Leboyer, Marion

    2012-09-01

    The aim of this review is to summarize the key findings from genetic and epidemiological research, which show that autism is a complex disorder resulting from the combination of genetic and environmental factors. Remarkable advances in the knowledge of genetic causes of autism have resulted from the great efforts made in the field of genetics. The identification of specific alleles contributing to the autism spectrum has supplied important pieces for the autism puzzle. However, many questions remain unanswered, and new questions are raised by recent results. Moreover, given the amount of evidence supporting a significant contribution of environmental factors to autism risk, it is now clear that the search for environmental factors should be reinforced. One aspect of this search that has been neglected so far is the study of interactions between genes and environmental factors.

  9. Gene variants as risk factors for gastroschisis

    PubMed Central

    Yang, Wei; Schultz, Kathleen; Tom, Lauren; Lin, Bin; Carmichael, Suzan L.; Lammer, Edward J.; Shaw, Gary M.

    2016-01-01

    In a population‐based case‐control study in California of 228 infants, we investigated 75 genetic variants in 20 genes and risk of gastroschisis with regard to maternal age, race/ethnicity, vitamin use, and smoking exposure. We hypothesized that genes related to vascular compromise may interact with environmental factors to affect the risk of gastroschisis. Haplotypes were constructed for 75 gene variants using the HaploView program. Risk for gastroschisis associated with each gene variant was calculated for both the homozygotes and the heterozygotes, with the homozygous wildtypes as the referent. Risks were estimated as odds ratios (ORs) with 95% confidence intervals (CIs) by logistic regression. We found 11 gene variants with increased risk and four variants with decreased risk of gastroschisis for heterozygous (ORh) or homozygous variants (ORv) genotypes. These included NOS3 (rs1036145) ORh = 0.4 (95% CI: 0.2–0.7); NOS3 (rs10277237) ORv = 2.7 (95% CI: 1.3–6.0); ADD1 (rs12503220) ORh = 2.9 (95% CI: 1.6–5.4), GNB3 (rs5443) ORh = 0.2 (95% CI: 0.1–0.5), ORv = 0.4 (95% CI: 0.2–0.9); ICAM1 (rs281428) ORv = 6.9 (95% CI: 2.1–22.9), ICAM1 (rs3093030) ORv = 2.6 (95% CI: 1.2–5.6); ICAM4 (rs281438) ORv = 4.9 (95% CI: 1.4–16.6), ICAM5 (rs281417) ORh = 2.1 (95% CI: 1.1–4.1), ORv = 4.8 (95% CI: 1.7–13.6); ICAM5 (rs281440) ORh = 23.7 (95% CI: 5.5–102.5), ORv = 20.6 (95% CI: 3.4–124.3); ICAM5 (rs2075741) ORv = 2.2 (95% CI: 1.1–4.4); NAT1 ORv = 0.3 (95% CI: 0.1–0.9). There were additional associations between several gene variants and gastroschisis among women aged 20–24 and among mothers with and without vitamin use. NOS3, ADD1, ICAM1, ICAM4, and ICAM5 warrant further investigation in additional populations and with the interaction of additional environmental exposures. © 2016 Wiley Periodicals, Inc. PMID:27616475

  10. Methods of Combinatorial Optimization to Reveal Factors Affecting Gene Length

    PubMed Central

    Bolshoy, Alexander; Tatarinova, Tatiana

    2012-01-01

    In this paper we present a novel method for genome ranking according to gene lengths. The main outcomes described in this paper are the following: the formulation of the genome ranking problem, presentation of relevant approaches to solve it, and the demonstration of preliminary results from prokaryotic genomes ordering. Using a subset of prokaryotic genomes, we attempted to uncover factors affecting gene length. We have demonstrated that hyperthermophilic species have shorter genes as compared with mesophilic organisms, which probably means that environmental factors affect gene length. Moreover, these preliminary results show that environmental factors group together in ranking evolutionary distant species. PMID:23300345

  11. Methods of combinatorial optimization to reveal factors affecting gene length.

    PubMed

    Bolshoy, Alexander; Tatarinova, Tatiana

    2012-01-01

    In this paper we present a novel method for genome ranking according to gene lengths. The main outcomes described in this paper are the following: the formulation of the genome ranking problem, presentation of relevant approaches to solve it, and the demonstration of preliminary results from prokaryotic genomes ordering. Using a subset of prokaryotic genomes, we attempted to uncover factors affecting gene length. We have demonstrated that hyperthermophilic species have shorter genes as compared with mesophilic organisms, which probably means that environmental factors affect gene length. Moreover, these preliminary results show that environmental factors group together in ranking evolutionary distant species.

  12. Central Leptin Gene Therapy to Reduce Breast Cancer Risk Factors

    DTIC Science & Technology

    2006-03-01

    W81XWH-04-1-0701 TITLE: Central Leptin Gene Therapy to Reduce Breast Cancer Risk Factors PRINCIPAL INVESTIGATOR: Urszula T. Iwaniec...CONTRACT NUMBER Central Leptin Gene Therapy to Reduce Breast Cancer Risk Factors 5b. GRANT NUMBER W81XWH-04-1-0701 5c. PROGRAM ELEMENT NUMBER...control of obesity through centrally administered, recombinant adeno-associated virus leptin gene (rAAV-lep) therapy will decrease the incidence of

  13. Building predictive gene signatures through simultaneous assessment of transcription factor activation and gene expression.

    EPA Science Inventory

    Building predictive gene signatures through simultaneous assessment of transcription factor activation and gene expression Exposure to many drugs and environmentally-relevant chemicals can cause adverse outcomes. These adverse outcomes, such as cancer, have been linked to mol...

  14. Cloning and activation of the bullfrog apelin receptor: Gi/o coupling and high affinity for [Pro1]apelin-13.

    PubMed

    Moon, Mi Jin; Oh, Da Young; Moon, Jung Sun; Kim, Dong-Ki; Hwang, Jong-Ik; Lee, Ju Yeon; Kim, Jae Il; Cho, Sehyung; Kwon, Hyuk Bang; Seong, Jae Young

    2007-10-15

    In mammals, apelin and its G protein-coupled receptor, APJ, regulate blood pressure, intake of food and water, and cardiac contractility. In this study, we report the cloning and functional characterization of APJ in the bullfrog, Rana catesbeiana. Bullfrog APJ (bfAPJ) cDNA contains an open reading frame of 1083 nucleotides encoding a protein of 360 amino acid residues. Sequence alignment reveals 75% amino acid identity with Xenopus, 63% identity with zebrafish and 40-42% identity with mammalian APJs. RT-PCR analysis and tissue binding assay reveal high expression of bfAPJ mRNA in the brain, particularly in the hypothalamus, and moderate expression in the pituitary, testis, adrenal gland and lung. Whereas [pGlu(1)]apelin-13 did not induce CRE-luc (protein kinase A-specific reporter) and SRE-luc (protein kinase C-specific reporter) activity in cells expressing bfAPJ, this apelin-13 decreased forskolin-induced CRE-luc activity and cAMP accumulation in a pertussis toxin-sensitive manner. This study indicates that bfAPJ may couple to G(i/o). [Pro(1)]apelin-13, a synthetic apelin based on the sequence of the putative apelin gene from many non-mammalian species, activates bfAPJ with 5-10-fold greater sensitivity/affinity than mammalian apelin-13. Collectively, this study expands our understanding of the physiological roles of this receptor system in non-mammalian species.

  15. Nuclear actin activates human transcription factor genes including the OCT4 gene.

    PubMed

    Yamazaki, Shota; Yamamoto, Koji; Tokunaga, Makio; Sakata-Sogawa, Kumiko; Harata, Masahiko

    2015-01-01

    RNA microarray analyses revealed that nuclear actin activated many human transcription factor genes including OCT4, which is required for gene reprogramming. Oct4 is known to be activated by nuclear actin in Xenopus oocytes. Our findings imply that this process of OCT4 activation is conserved in vertebrates and among cell types and could be used for gene reprogramming of human cells.

  16. Major psychological factors affecting acceptance of gene-recombination technology.

    PubMed

    Tanaka, Yutaka

    2004-12-01

    The purpose of this study was to verify the validity of a causal model that was made to predict the acceptance of gene-recombination technology. A structural equation model was used as a causal model. First of all, based on preceding studies, the factors of perceived risk, perceived benefit, and trust were set up as important psychological factors determining acceptance of gene-recombination technology in the structural equation model. An additional factor, "sense of bioethics," which I consider to be important for acceptance of biotechnology, was added to the model. Based on previous studies, trust was set up to have an indirect influence on the acceptance of gene-recombination technology through perceived risk and perceived benefit in the model. Participants were 231 undergraduate students in Japan who answered a questionnaire with a 5-point bipolar scale. The results indicated that the proposed model fits the data well, and showed that acceptance of gene-recombination technology is explained largely by four factors, that is, perceived risk, perceived benefit, trust, and sense of bioethics, whether the technology is applied to plants, animals, or human beings. However, the relative importance of the four factors was found to vary depending on whether the gene-recombination technology was applied to plants, animals, or human beings. Specifically, the factor of sense of bioethics is the most important factor in acceptance of plant gene-recombination technology and animal gene-recombination technology, and the factors of trust and perceived risk are the most important factors in acceptance of human being gene-recombination technology.

  17. Stochastic model of transcription factor-regulated gene expression

    NASA Astrophysics Data System (ADS)

    Karmakar, Rajesh; Bose, Indrani

    2006-09-01

    We consider a stochastic model of transcription factor (TF)-regulated gene expression. The model describes two genes, gene A and gene B, which synthesize the TFs and the target gene proteins, respectively. We show through analytic calculations that the TF fluctuations have a significant effect on the distribution of the target gene protein levels when the mean TF level falls in the highest sensitive region of the dose-response curve. We further study the effect of reducing the copy number of gene A from two to one. The enhanced TF fluctuations yield results different from those in the deterministic case. The probability that the target gene protein level exceeds a threshold value is calculated with the knowledge of the probability density functions associated with the TF and target gene protein levels. Numerical simulation results for a more detailed stochastic model are shown to be in agreement with those obtained through analytic calculations. The relevance of these results in the context of the genetic disorder haploinsufficiency is pointed out. Some experimental observations on the haploinsufficiency of the tumour suppressor gene, Nkx 3.1, are explained with the help of the stochastic model of TF-regulated gene expression.

  18. Virulence factors genes in enterococci isolated from beavers (Castor fiber).

    PubMed

    Lauková, Andrea; Strompfová, Viola; Kandričáková, Anna; Ščerbová, Jana; Semedo-Lemsaddek, Teresa; Miltko, Renata; Belzecki, Grzegorz

    2015-03-01

    Only limited information exists concerning the microbiota in beaver (Castor fiber). This study has been focused on the virulence factors genes detection in enterococci from beavers. In general, animals are not affected by enterococcal infections, but they can be a reservoir of, e.g. pathogenic strains. Moreover, detection of virulence factors genes in enterococci from beavers was never tested before. Free-living beavers (12), male and female (age 4-5 years) were caught in the north-east part of Poland. Sampling of lower gut and faeces was provided according to all ethical rules for animal handling. Samples were treated using a standard microbiological method. Pure bacterial colonies were identified by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) identification system. Virulence factors genes-gelE (gelatinase), agg (aggregation), cylA (cytolysin A), efaAfs (adhesin Enterococcus faecalis), efaAfm (adhesin Enterococcus faecium) and esp (surface protein) were tested by PCR. Moreover, gelatinase and antibiotic phenotypes were tested. Species detected were Enterococcus thailandicus, E. faecium, E. faecalis and Enterococcus durans. In literature, enterococcal species distribution was never reported yet up to now. Strains were mostly sensitive to antibiotics. Vancomycin-resistant E. faecalis EE9Tr1 possess cylA, efaAfs, esp and gelE genes. Strains were aggregation substance genes absent. Adhesin E. faecium (efaAfm) gene was detected in two of three E. faecium strains, but it was present also in E. thailandicus. Esp gene was present in EE9Tr1 and E. durans EDTr92. The most detected were gelE, efaAfm genes; in EF 4Hc1 also gelatinase phenotype was found. Strains with virulence factors genes will be tested for their sensitivity to antimicrobial enterocins.

  19. The Role of Multiple Transcription Factors In Archaeal Gene Expression

    SciTech Connect

    Charles J. Daniels

    2008-09-23

    Since the inception of this research program, the project has focused on two central questions: What is the relationship between the 'eukaryal-like' transcription machinery of archaeal cells and its counterparts in eukaryal cells? And, how does the archaeal cell control gene expression using its mosaic of eukaryal core transcription machinery and its bacterial-like transcription regulatory proteins? During the grant period we have addressed these questions using a variety of in vivo approaches and have sought to specifically define the roles of the multiple TATA binding protein (TBP) and TFIIB-like (TFB) proteins in controlling gene expression in Haloferax volcanii. H. volcanii was initially chosen as a model for the Archaea based on the availability of suitable genetic tools; however, later studies showed that all haloarchaea possessed multiple tbp and tfb genes, which led to the proposal that multiple TBP and TFB proteins may function in a manner similar to alternative sigma factors in bacterial cells. In vivo transcription and promoter analysis established a clear relationship between the promoter requirements of haloarchaeal genes and those of the eukaryal RNA polymerase II promoter. Studies on heat shock gene promoters, and the demonstration that specific tfb genes were induced by heat shock, provided the first indication that TFB proteins may direct expression of specific gene families. The construction of strains lacking tbp or tfb genes, coupled with the finding that many of these genes are differentially expressed under varying growth conditions, provided further support for this model. Genetic tools were also developed that led to the construction of insertion and deletion mutants, and a novel gene expression scheme was designed that allowed the controlled expression of these genes in vivo. More recent studies have used a whole genome array to examine the expression of these genes and we have established a linkage between the expression of specific tfb

  20. ULTRAPETALA trxG genes interact with KANADI transcription factor genes to regulate Aradopsis Gynoecium patterning

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organ formation relies upon precise patterns of gene expression that are under tight spatial and temporal regulation. Transcription patterns are specified by several cellular processes during development, including chromatin remodeling, but little is known about how chromatin remodeling factors cont...

  1. WRKY transcription factor genes in wild rice Oryza nivara.

    PubMed

    Xu, Hengjian; Watanabe, Kenneth A; Zhang, Liyuan; Shen, Qingxi J

    2016-08-01

    The WRKY transcription factor family is one of the largest gene families involved in plant development and stress response. Although many WRKY genes have been studied in cultivated rice (Oryza sativa), the WRKY genes in the wild rice species Oryza nivara, the direct progenitor of O. sativa, have not been studied. O. nivara shows abundant genetic diversity and elite drought and disease resistance features. Herein, a total of 97 O. nivara WRKY (OnWRKY) genes were identified. RNA-sequencing demonstrates that OnWRKY genes were generally expressed at higher levels in the roots of 30-day-old plants. Bioinformatic analyses suggest that most of OnWRKY genes could be induced by salicylic acid, abscisic acid, and drought. Abundant potential MAPK phosphorylation sites in OnWRKYs suggest that activities of most OnWRKYs can be regulated by phosphorylation. Phylogenetic analyses of OnWRKYs support a novel hypothesis that ancient group IIc OnWRKYs were the original ancestors of only some group IIc and group III WRKYs. The analyses also offer strong support that group IIc OnWRKYs containing the HVE sequence in their zinc finger motifs were derived from group Ia WRKYs. This study provides a solid foundation for the study of the evolution and functions of WRKY genes in O. nivara.

  2. WRKY transcription factor genes in wild rice Oryza nivara

    PubMed Central

    Xu, Hengjian; Watanabe, Kenneth A.; Zhang, Liyuan; Shen, Qingxi J.

    2016-01-01

    The WRKY transcription factor family is one of the largest gene families involved in plant development and stress response. Although many WRKY genes have been studied in cultivated rice (Oryza sativa), the WRKY genes in the wild rice species Oryza nivara, the direct progenitor of O. sativa, have not been studied. O. nivara shows abundant genetic diversity and elite drought and disease resistance features. Herein, a total of 97 O. nivara WRKY (OnWRKY) genes were identified. RNA-sequencing demonstrates that OnWRKY genes were generally expressed at higher levels in the roots of 30-day-old plants. Bioinformatic analyses suggest that most of OnWRKY genes could be induced by salicylic acid, abscisic acid, and drought. Abundant potential MAPK phosphorylation sites in OnWRKYs suggest that activities of most OnWRKYs can be regulated by phosphorylation. Phylogenetic analyses of OnWRKYs support a novel hypothesis that ancient group IIc OnWRKYs were the original ancestors of only some group IIc and group III WRKYs. The analyses also offer strong support that group IIc OnWRKYs containing the HVE sequence in their zinc finger motifs were derived from group Ia WRKYs. This study provides a solid foundation for the study of the evolution and functions of WRKY genes in O. nivara. PMID:27345721

  3. Muscle as a target for supplementary factor IX gene transfer.

    PubMed

    Hoffman, Brad E; Dobrzynski, Eric; Wang, Lixin; Hirao, Lauren; Mingozzi, Federico; Cao, Ou; Herzog, Roland W

    2007-07-01

    Immune responses to the factor IX (F.IX) transgene product are a concern in gene therapy for the X-linked bleeding disorder hemophilia B. The risk for such responses is determined by several factors, including the vector, target tissue, and others. Previously, we have demonstrated that hepatic gene transfer with adeno-associated viral (AAV) vectors can induce F.IX-specific immune tolerance. Muscle-derived F.IX expression, however, is limited by a local immune response. Here, skeletal muscle was investigated as a target for supplemental gene transfer. Given the low invasiveness of intramuscular injections, this route would be ideal for secondary gene transfer, thereby boosting levels of transgene expression. However, this is feasible only if immune tolerance established by compartmentalization of expression to the liver extends to other sites. Immune tolerance to human F.IX established by prior hepatic AAV-2 gene transfer was maintained after subsequent injection of AAV-1 or adenoviral vector into skeletal muscle, and tolerized mice failed to form antibodies or an interferon (IFN)-gamma(+) T cell response to human F.IX. A sustained increase in systemic transgene expression was obtained for AAV-1, whereas an increase after adenoviral gene transfer was transient. A CD8(+) T cell response specifically against adenovirus-transduced fibers was observed, suggesting that cytotoxic T cell responses against viral antigens were sufficient to eliminate expression in muscle. In summary, the data demonstrate that supplemental F.IX gene transfer to skeletal muscle does not break tolerance achieved by liver-derived expression. The approach is efficacious, if the vector for muscle gene transfer does not express immunogenic viral proteins.

  4. Strain Specific Factors Control Effector Gene Silencing in Phytophthora sojae

    PubMed Central

    Shrestha, Sirjana Devi; Chapman, Patrick; Zhang, Yun; Gijzen, Mark

    2016-01-01

    The Phytophthora sojae avirulence gene Avr3a encodes an effector that is capable of triggering immunity on soybean plants carrying the resistance gene Rps3a. P. sojae strains that express Avr3a are avirulent to Rps3a plants, while strains that do not are virulent. To study the inheritance of Avr3a expression and virulence towards Rps3a, genetic crosses and self-fertilizations were performed. A cross between P. sojae strains ACR10 X P7076 causes transgenerational gene silencing of Avr3a allele, and this effect is meiotically stable up to the F5 generation. However, test-crosses of F1 progeny (ACR10 X P7076) with strain P6497 result in the release of silencing of Avr3a. Expression of Avr3a in the progeny is variable and correlates with the phenotypic penetrance of the avirulence trait. The F1 progeny from a direct cross of P6497 X ACR10 segregate for inheritance for Avr3a expression, a result that could not be explained by parental imprinting or heterozygosity. Analysis of small RNA arising from the Avr3a gene sequence in the parental strains and hybrid progeny suggests that the presence of small RNA is necessary but not sufficient for gene silencing. Overall, we conclude that inheritance of the Avr3a gene silenced phenotype relies on factors that are variable among P. sojae strains. PMID:26930612

  5. A novel tumor necrosis factor-responsive transcription factor which recognizes a regulatory element in hemopoietic growth factor genes

    SciTech Connect

    Shannon, M.F.; Pell, L.M.; Kuczek, E.S.; Occhiodoro, F.S.; Dunn, S.M.; Vadas, M.A. ); Lenardo, M.J. )

    1990-06-01

    A conserved DNA sequence element, termed cytokine 1 (CK-1), is found in the promoter regions of many hemopoietic growth factor (HGF) genes. Mutational analyses and modification interference experiments show that this sequence specifically binds a nuclear transcription factor, NF-GMa, which is a protein with a molecular mass of 43 kilodaltons. It interacts with different affinities with the CK-1-like sequence from a number of HGF genes, including granulocyte macrophage colony-stimulating factor (GM-CSF), granulocyte (G)-CSF, interleukin 3 (IL-3), and IL-5. The authors show that the level of NF-GMa binding is induced in embryonic fibroblasts by tumor necrosis factor {alpha} (TNF-{alpha}) treatment and that the CK-1 sequence from the G-CSF gene is a TNF-{alpha}-responsive enhancer in these cells.

  6. Nerve growth factor gene therapy in Alzheimer disease.

    PubMed

    Tuszynski, Mark H

    2007-01-01

    Nervous system growth factors potently stimulate cell function and prevent neuronal death. These broad effects on survival and function arise from direct downstream activation of antiapoptotic pathways, inhibition of proapoptotic pathways, and stimulation of functionally important cellular mechanisms including ERK/MAP kinase and CREB. Thus, as a class, growth factors offer the potential to treat neurodegenerative disorders for the first time by preventing neuronal degeneration rather than compensating for cell loss after it has occurred. Different growth factors affect distinct and specific populations of neurons: the first nervous system growth factor identified, nerve growth factor, potentially stimulates the survival and function of basal forebrain cholinergic neurons, suggesting that nerve growth factor could be a means for reducing the cholinergic component of cell degeneration in Alzheimer disease. This review will discuss the transition of growth factors from preclinical studies to human clinical trials in Alzheimer disease. The implementation of clinical testing of growth factor therapy for neurologic disease has been constrained by the dual need to achieve adequate concentrations of these proteins in specific brain regions containing degenerating neurons, and preventing growth factor spread to nontargeted regions to avoid adverse effects. Gene therapy is one of a limited number of potential methods for achieving these requirements.

  7. Regulatory effects of introduction of an exogenous FGF2 gene on other growth factor genes in a healing tendon.

    PubMed

    Tang, Jin Bo; Chen, Chuan Hao; Zhou, You Lang; McKeever, Clarie; Liu, Paul Y

    2014-01-01

    In this study of a tendon injury model, we investigated how injection of a vector incorporating one growth factor gene changes expression levels of multiple growth factor genes in the healing process. The flexor tendon of chicken toes was completely cut and repaired surgically. The tendons in the experimental arm were injected with an adeno-associated virus-2 vector incorporating basic fibroblast growth-factor gene, whereas the tendons in the control arm were not injected or injected with sham vectors. Using real-time polymerase chain reaction, we found that, within the tendon healing period, a set of growth factor genes-transforming growth factor-β1, vascular endothelial growth factor, and connective tissue growth factor-were significantly up-regulated. Expression of the platelet-derived growth factor-B gene was not changed, and the insulin-like growth factor was down-regulated. A tendon marker gene, scleraxis, was significantly up-regulated in the period. Our study revealed an intriguing finding that introduction of one growth factor gene in the healing tendon modulated expression of multiple growth factor genes. We believe this study may have significant implications in determining the approach of gene therapy, and the findings substantiate that gene therapy using a single growth factor could affect multiple growth factors.

  8. Factoring nonviral gene therapy into a cure for hemophilia A.

    PubMed

    Gabrovsky, Vanessa; Calos, Michele P

    2008-10-01

    Gene therapy for hemophilia A has fallen short of success despite several clinical trials conducted over the past decade. Challenges to its success include vector immunogenicity, insufficient transgene expression levels of Factor VIII, and inhibitor antibody formation. Gene therapy has been dominated by the use of viral vectors, as well as the immunogenic and oncogenic concerns that accompany these strategies. Because of the complexity of viral vectors, the development of nonviral DNA delivery methods may provide an efficient and safe alternative for the treatment of hemophilia A. New types of nonviral strategies, such as DNA integrating vectors, and the success of several nonviral animal studies, suggest that nonviral gene therapy has curative potential and justifies its clinical development.

  9. Targeted genes and interacting proteins of hypoxia inducible factor-1

    PubMed Central

    Liu, Wei; Shen, Shao-Ming; Zhao, Xu-Yun; Chen, Guo-Qiang

    2012-01-01

    Heterodimeric transcription factor hypoxia inducible factor-1 (HIF-1) functions as a master regulator of oxygen homeostasis in almost all nucleated mammalian cells. The fundamental process adapted to cellular oxygen alteration largely depends on the refined regulation on its alpha subunit, HIF-1α. Recent studies have unraveled expanding and critical roles of HIF-1α, involving in a multitude of developmental, physiological, and pathophysiological processes. This review will focus on the current knowledge of HIF-1α-targeting genes and its interacting proteins, as well as the concomitant functional relationships between them. PMID:22773957

  10. Characterization of five partial deletions of the factor VIII gene

    SciTech Connect

    Youssoufian, H.; Antonarakis, S.E.; Aronis, S.; Tsiftis, G.; Phillips, D.G.; Kazazian, H.H. Jr.

    1987-06-01

    Hemophilia A is an X-linked disorder of coagulation caused by a deficiency of factor VIII. By using cloned DNA probes, the authors have characterized the following five different partial deletions of the factor VIII gene from a panel of 83 patients with hemophilia A: (i) a 7-kilobase (kb) deletion that eliminates exon 6; (ii) a 2.5-kb deletion that eliminates 5' sequences of exon 14; (iii) a deletion of at least 7 kb that eliminates exons 24 and 25; (iv) a deletion of at least 16 kb that eliminates exons 23-25; and (v) a 5.5-kb deletion that eliminates exon 22. The first four deletions are associated with severe hemophilia A. By contrast, the last deletion is associated with moderate disease, possibly because of in-frame splicing from adjacent exons. None of those patients with partial gene deletions had circulating inhibitors to factor VIII. One deletion occurred de novo in a germ cell of the maternal grandmother, while a second deletion occurred in a germ cell of the maternal grandfather. These observations demonstrate that de novo deletions of X-linked genes can occur in either male or female gametes.

  11. Inferring transcription factor collaborations in gene regulatory networks

    PubMed Central

    2014-01-01

    Background Living cells are realized by complex gene expression programs that are moderated by regulatory proteins called transcription factors (TFs). The TFs control the differential expression of target genes in the context of transcriptional regulatory networks (TRNs), either individually or in groups. Deciphering the mechanisms of how the TFs control the expression of target genes is a challenging task, especially when multiple TFs collaboratively participate in the transcriptional regulation. Results We model the underlying regulatory interactions in terms of the directions (activation or repression) and their logical roles (necessary and/or sufficient) with a modified association rule mining approach, called mTRIM. The experiment on Yeast discovered 670 regulatory interactions, in which multiple TFs express their functions on common target genes collaboratively. The evaluation on yeast genetic interactions, TF knockouts and a synthetic dataset shows that our algorithm is significantly better than the existing ones. Conclusions mTRIM is a novel method to infer TF collaborations in transcriptional regulation networks. mTRIM is available at http://www.msu.edu/~jinchen/mTRIM. PMID:24565025

  12. A genome-wide view of transcription factor gene diversity in chordate evolution: less gene loss in amphioxus?

    PubMed

    Paps, Jordi; Holland, Peter W H; Shimeld, Sebastian M

    2012-03-01

    Previous studies of gene diversity in the homeobox superclass have shown that the Florida amphioxus Branchiostoma floridae has undergone remarkably little gene family loss. Here we use a combined BLAST and HMM search strategy to assess the family level diversity of four other transcription factor superclasses: the Paired/Pax genes, Tbx genes, Fox genes and Sox genes. We apply this across genomes from five chordate taxa, including B. floridae and Ciona intestinalis, plus two outgroup taxa. Our results show scattered gene family loss. However, as also found for homeobox genes, B. floridae has retained all ancient Pax, Tbx, Fox and Sox gene families that were present in the common ancestor of living chordates. We conclude that, at least in terms of transcription factor gene complexity, the genome of amphioxus has experienced remarkable stasis compared to the genomes of other chordates.

  13. Tissue Engineering Using Transfected Growth-Factor Genes

    NASA Technical Reports Server (NTRS)

    Madry, Henning; Langer, Robert S.; Freed, Lisa E.; Trippel, Stephen; Vunjak-Novakovic, Gordana

    2005-01-01

    A method of growing bioengineered tissues includes, as a major component, the use of mammalian cells that have been transfected with genes for secretion of regulator and growth-factor substances. In a typical application, one either seeds the cells onto an artificial matrix made of a synthetic or natural biocompatible material, or else one cultures the cells until they secrete a desired amount of an extracellular matrix. If such a bioengineered tissue construct is to be used for surgical replacement of injured tissue, then the cells should preferably be the patient s own cells or, if not, at least cells matched to the patient s cells according to a human-leucocyteantigen (HLA) test. The bioengineered tissue construct is typically implanted in the patient's injured natural tissue, wherein the growth-factor genes enhance metabolic functions that promote the in vitro development of functional tissue constructs and their integration with native tissues. If the matrix is biodegradable, then one of the results of metabolism could be absorption of the matrix and replacement of the matrix with tissue formed at least partly by the transfected cells. The method was developed for articular chondrocytes but can (at least in principle) be extended to a variety of cell types and biocompatible matrix materials, including ones that have been exploited in prior tissue-engineering methods. Examples of cell types include chondrocytes, hepatocytes, islet cells, nerve cells, muscle cells, other organ cells, bone- and cartilage-forming cells, epithelial and endothelial cells, connective- tissue stem cells, mesodermal stem cells, and cells of the liver and the pancreas. Cells can be obtained from cell-line cultures, biopsies, and tissue banks. Genes, molecules, or nucleic acids that secrete factors that influence the growth of cells, the production of extracellular matrix material, and other cell functions can be inserted in cells by any of a variety of standard transfection techniques.

  14. Cloning the human gene for macrophage migration inhibitory factor (MIF)

    SciTech Connect

    Paralkar, V.; Wistow, G. )

    1994-01-01

    Macrophage migration inhibitory factor (MIF) was originally identified as a lymphokine. However, recent work strongly suggests a wider role for MIF beyond the immune system. It is expressed specifically in the differentiating cells of the immunologically privileged eye lens and brain, is a delayed early response gene in fibroblasts, and is expressed in many tissues. Here, the authors report the structure of the remarkably small gene for human MIF that has three exons separated by introns of only 189 and 95 bp and covers less than 1 kb. The cloned sequence also includes 1 kb of 5[prime] flanking region. Primer extension and 5[prime] rapid amplification of cDNA ends (RACE) of human brain RNA both indicate the presence of a single transcription start site in a TATA-less promoter. Northern blot analysis shows a single size of MIF mRNA (about 800 nt) in all human tissues examined. In contrast to previous reports, they find no evidence for multiple genes for MIF in the human genome. 20 refs., 3 figs.

  15. Epidermal growth factor gene is a newly identified candidate gene for gout

    PubMed Central

    Han, Lin; Cao, Chunwei; Jia, Zhaotong; Liu, Shiguo; Liu, Zhen; Xin, Ruosai; Wang, Can; Li, Xinde; Ren, Wei; Wang, Xuefeng; Li, Changgui

    2016-01-01

    Chromosome 4q25 has been identified as a genomic region associated with gout. However, the associations of gout with the genes in this region have not yet been confirmed. Here, we performed two-stage analysis to determine whether variations in candidate genes in the 4q25 region are associated with gout in a male Chinese Han population. We first evaluated 96 tag single nucleotide polymorphisms (SNPs) in eight inflammatory/immune pathway- or glucose/lipid metabolism-related genes in the 4q25 region in 480 male gout patients and 480 controls. The SNP rs12504538, located in the elongation of very-long-chain-fatty-acid-like family member 6 gene (Elovl6), was found to be associated with gout susceptibility (Padjusted = 0.00595). In the second stage of analysis, we performed fine mapping analysis of 93 tag SNPs in Elovl6 and in the epidermal growth factor gene (EGF) and its flanking regions in 1017 male patients gout and 1897 healthy male controls. We observed a significant association between the T allele of EGF rs2298999 and gout (odds ratio = 0.77, 95% confidence interval = 0.67–0.88, Padjusted = 6.42 × 10−3). These results provide the first evidence for an association between the EGF rs2298999 C/T polymorphism and gout. Our findings should be validated in additional populations. PMID:27506295

  16. Microbiota regulate intestinal epithelial gene expression by suppressing the transcription factor Hepatocyte nuclear factor 4 alpha.

    PubMed

    Davison, James M; Lickwar, Colin R; Song, Lingyun; Breton, Ghislain; Crawford, Gregory E; Rawls, John F

    2017-04-06

    Microbiota influence diverse aspects of intestinal physiology and disease in part by controlling tissue-specific transcription of host genes. However, host genomic mechanisms mediating microbial control of intestinal gene expression are poorly understood. Hepatocyte nuclear factor 4 (HNF4) is the most ancient family of nuclear receptor transcription factors with important roles in human metabolic and inflammatory bowel diseases, but a role in host response to microbes is unknown. Using an unbiased screening strategy, we found that zebrafish Hnf4a specifically binds and activates a microbiota-suppressed intestinal epithelial transcriptional enhancer. Genetic analysis revealed that zebrafish hnf4a activates nearly half of the genes that are suppressed by microbiota, suggesting microbiota negatively regulate Hnf4a. In support, analysis of genomic architecture in mouse intestinal epithelial cells disclosed that microbiota colonization leads to activation or inactivation of hundreds of enhancers along with drastic genome-wide reduction of HNF4A and HNF4G occupancy. Interspecies meta-analysis suggested interactions between HNF4A and microbiota promote gene expression patterns associated with human inflammatory bowel diseases. These results indicate a critical and conserved role for HNF4A in maintaining intestinal homeostasis in response to microbiota.

  17. Elongation factor-2: a useful gene for arthropod phylogenetics.

    PubMed

    Regier, J C; Shultz, J W

    2001-07-01

    Robust resolution of controversial higher-level groupings within Arthropoda requires additional sources of characters. Toward this end, elongation factor-2 sequences (1899 nucleotides) were generated from 17 arthropod taxa (5 chelicerates, 6 crustaceans, 3 hexapods, 3 myriapods) plus an onychophoran and a tardigrade as outgroups. Likelihood and parsimony analyses of nucleotide and amino acid data sets consistently recovered Myriapoda and major chelicerate groups with high bootstrap support. Crustacea + Hexapoda (= Pancrustacea) was recovered with moderate support, whereas the conflicting group Myriapoda + Hexapoda (= Atelocerata) was never recovered and bootstrap values were always <5%. With additional nonarthropod sequences included, one indel supports monophyly of Tardigrada, Onychophora, and Arthropoda relative to molluscan, annelidan, and mammalian outgroups. New and previously published sequences from RNA polymerase II (1038 nucleotides) and elongation factor-1alpha (1092 nucleotides) were analyzed for the same taxa. A comparison of bootstrap values from the three genes analyzed separately revealed widely varying values for some clades, although there was never strong support for conflicting groups. In combined analyses, there was strong bootstrap support for the generally accepted clades Arachnida, Arthropoda, Euchelicerata, Hexapoda, and Pycnogonida, and for Chelicerata, Myriapoda, and Pancrustacea, whose monophyly is more controversial. Recovery of some additional groups was fairly robust to method of analysis but bootstrap values were not high; these included Pancrustacea + Chelicerata, Hexapoda + Cephalocarida + Remipedia, Cephalocarida + Remipedia, and Malaocostraca + Cirripedia. Atelocerata (= Myriapoda + Hexapoda) was never recovered. Elongation factor-2 is now the second protein-encoding, nuclear gene (in addition to RNA polymerase II) to support Pancrustacea over Atelocerata. Atelocerata is widely cited in morphology-based analyses, and the

  18. Nerve growth factor and epidermal growth factor stimulate clusterin gene expression in PC12 cells.

    PubMed Central

    Gutacker, C; Klock, G; Diel, P; Koch-Brandt, C

    1999-01-01

    Clusterin (apolipoprotein J) is an extracellular glycoprotein that might exert functions in development, cell death and lipid transport. Clusterin gene expression is elevated at sites of tissue remodelling, such as differentiation and apoptosis; however, the signals responsible for this regulation have not been identified. We use here the clusterin gene as a model system to examine expression in PC12 cells under the control of differentiation and proliferation signals produced by nerve growth factor (NGF) and by epidermal growth factor (EGF) respectively. NGF induced clusterin mRNA, which preceded neurite outgrowth typical of neuronal differentiation. EGF also activated the clusterin mRNA, demonstrating that both proliferation and differentiation signals regulate the gene. To localize NGF- and EGF-responsive elements we isolated the clusterin promoter and tested it in PC12 cell transfections. A 2.5 kb promoter fragment and two 1.5 and 0.3 kb deletion mutants were inducible by NGF and EGF. The contribution to this response of a conserved activator protein 1 (AP-1) motif located in the 0.3 kb fragment was analysed by mutagenesis. The mutant promoter was not inducible by NGF or EGF, which identifies the AP-1 motif as an element responding to both factors. Binding studies with PC12 nuclear extracts showed that AP-1 binds to this sequence in the clusterin promoter. These findings suggest that NGF and EGF, which give differential gene regulation in PC12 cells, resulting in neuronal differentiation and proliferation respectively, use the common Ras/extracellular signal-regulated kinase/AP-1 signalling pathway to activate clusterin expression. PMID:10215617

  19. A transcription factor active on the epidermal growth factor receptor gene.

    PubMed Central

    Kageyama, R; Merlino, G T; Pastan, I

    1988-01-01

    We have developed an in vitro transcription system for the epidermal growth factor receptor (EGFR) oncogene by using nuclear extracts of A431 human epidermoid carcinoma cells, which overproduce EGFR. We found that a nuclear factor, termed EGFR-specific transcription factor (ETF), specifically stimulated EGFR transcription by 5- to 10-fold. In this report, ETF, purified by using sequence-specific oligonucleotide affinity chromatography, is shown by renaturing material eluted from a NaDodSO4/polyacrylamide gel to be a protein with a molecular mass of 120 kDa. ETF binds to the promoter region, as measured by DNase I "footprinting" and gel-mobility-shift assays, and specifically stimulates the transcription of the EGFR gene in a reconstituted in vitro transcription system. These results suggest that ETF could play a role in the overexpression of the cellular oncogene EGFR. Images PMID:3393529

  20. Transcription factors and target genes of pre-TCR signaling.

    PubMed

    López-Rodríguez, Cristina; Aramburu, Jose; Berga-Bolaños, Rosa

    2015-06-01

    Almost 30 years ago pioneering work by the laboratories of Harald von Boehmer and Susumo Tonegawa provided the first indications that developing thymocytes could assemble a functional TCRβ chain-containing receptor complex, the pre-TCR, before TCRα expression. The discovery and study of the pre-TCR complex revealed paradigms of signaling pathways in control of cell survival and proliferation, and culminated in the recognition of the multifunctional nature of this receptor. As a receptor integrated in a dynamic developmental process, the pre-TCR must be viewed not only in the light of the biological outcomes it promotes, but also in context with those molecular processes that drive its expression in thymocytes. This review article focuses on transcription factors and target genes activated by the pre-TCR to drive its different outcomes.

  1. Ets transcription factors bind and transactivate the core promoter of the von Willebrand factor gene.

    PubMed

    Schwachtgen, J L; Janel, N; Barek, L; Duterque-Coquillaud, M; Ghysdael, J; Meyer, D; Kerbiriou-Nabias, D

    1997-12-18

    von Willebrand factor (vWF) gene expression is restricted to endothelial cells and megakaryocytes. Previous results demonstrated that basal transcription of the human vWF gene is mediated through a promoter located between base pairs -89 and +19 (cap site: +1) which is functional in endothelial and non endothelial cells. Two DNA repeats TTTCCTTT correlating with inverted consensus binding sites for the Ets family of transcription factors are present in the -56/-36 sequence. In order to analyse whether these DNA elements are involved in transcription, human umbilical vein endothelial cells (HUVEC), bovine calf pulmonary endothelial cell line (CPAE), HeLa and COS cells were transfected with constructs containing deletions of the -89/+19 fragment, linked to the chloramphenicol acetyl transferase (CAT) reporter gene. The -60/+19 region exhibits significant promoter activity in HUVEC and CPAE cells only. The -42/+19 fragment is not active. Mutations of the -60/+19 promoter fragment in the 5' (-56/-49) Ets binding site abolish transcription in endothelial cells whereas mutations in the 3' (-43/-36) site does not. The -60/-33 fragment forms three complexes with proteins from HUVEC nuclear extracts in electrophoretic mobility shift assay which are dependent on the presence of the 5' Ets binding site. Binding of recombinant Ets-1 protein to the -60/-33 fragment gives a complex which also depends on the 5' site. The -60/+19 vWF gene core promoter is transactivated in HeLa cells by cotransfecting with Ets-1 or Erg (Ets-related gene) expression plasmids. In contrast to the wild type construct, transcription of the 5' site mutants is not increased by these expressed proteins. The results indicate that the promoter activity of the -60/+19 region of the vWF gene depends on transcription factors of the Ets family of which several members like Ets-1, Ets-2 and Erg are expressed in endothelium. Cotransfection of Ets-1 and Erg expression plasmids is sufficient to induce the -60/+19 v

  2. Anti-Epidermal Growth Factor Receptor Gene Therapy for Glioblastoma

    PubMed Central

    Hicks, Martin J.; Chiuchiolo, Maria J.; Ballon, Douglas; Dyke, Jonathan P.; Aronowitz, Eric; Funato, Kosuke; Tabar, Viviane; Havlicek, David; Fan, Fan; Sondhi, Dolan; Kaminsky, Stephen M.; Crystal, Ronald G.

    2016-01-01

    Glioblastoma multiforme (GBM) is the most common and aggressive primary intracranial brain tumor in adults with a mean survival of 14 to 15 months. Aberrant activation of the epidermal growth factor receptor (EGFR) plays a significant role in GBM progression, with amplification or overexpression of EGFR in 60% of GBM tumors. To target EGFR expressed by GBM, we have developed a strategy to deliver the coding sequence for cetuximab, an anti-EGFR antibody, directly to the CNS using an adeno-associated virus serotype rh.10 gene transfer vector. The data demonstrates that single, local delivery of an anti-EGFR antibody by an AAVrh.10 vector coding for cetuximab (AAVrh.10Cetmab) reduces GBM tumor growth and increases survival in xenograft mouse models of a human GBM EGFR-expressing cell line and patient-derived GBM. AAVrh10.CetMab-treated mice displayed a reduction in cachexia, a significant decrease in tumor volume and a prolonged survival following therapy. Adeno-associated-directed delivery of a gene encoding a therapeutic anti-EGFR monoclonal antibody may be an effective strategy to treat GBM. PMID:27711187

  3. Transcription factor regulation can be accurately predicted from the presence of target gene signatures in microarray gene expression data

    PubMed Central

    Essaghir, Ahmed; Toffalini, Federica; Knoops, Laurent; Kallin, Anders; van Helden, Jacques; Demoulin, Jean-Baptiste

    2010-01-01

    Deciphering transcription factor networks from microarray data remains difficult. This study presents a simple method to infer the regulation of transcription factors from microarray data based on well-characterized target genes. We generated a catalog containing transcription factors associated with 2720 target genes and 6401 experimentally validated regulations. When it was available, a distinction between transcriptional activation and inhibition was included for each regulation. Next, we built a tool (www.tfacts.org) that compares submitted gene lists with target genes in the catalog to detect regulated transcription factors. TFactS was validated with published lists of regulated genes in various models and compared to tools based on in silico promoter analysis. We next analyzed the NCI60 cancer microarray data set and showed the regulation of SOX10, MITF and JUN in melanomas. We then performed microarray experiments comparing gene expression response of human fibroblasts stimulated by different growth factors. TFactS predicted the specific activation of Signal transducer and activator of transcription factors by PDGF-BB, which was confirmed experimentally. Our results show that the expression levels of transcription factor target genes constitute a robust signature for transcription factor regulation, and can be efficiently used for microarray data mining. PMID:20215436

  4. [Association of schizophrenia with variations in genes encoding transcription factors].

    PubMed

    Boyajyan, A S; Atshemyan, S A; Zakharyan, R V

    2015-01-01

    Alterations in neuronal plasticity and immune system play a key role in pathogenesis of schizophrenia. Identification of genetic factors contributing to these alterations will significantly encourage elucidation of molecular etiopathomechanisms of this disorder. Transcription factors c-Fos, c-Jun, and Ier5 are the important regulators of neuronal plasticity and immune response. In the present work we investigated a potential association of schizophrenia with a number of single nucleotide polymorphisms of c-Fos-,c-Jun and Ier5 encoding genes (FOS, JUN, and IER5 respectively). Genotyping of DNA samples of patients with schizophrenia and healthy individuals was performed using polymerase chain reaction with allele specific primers. The results obtained demonstrated association between schizophrenia and FOS rs1063169, FOS rs7101, JUN rs11688, and IER5 rs6425663 polymorphisms. Namely, it was found that the inheritance of FOS rs1063169*T, JUN rs11688*A, and IER5 rs6425663*T minor variants decreases risk for development of schizophrenia whereas the inheritance of FOS rs7101*T minor variant, especially its homozygous form, increases risk for development of this disorder.

  5. Nuclear Factor-Y is an adipogenic factor that regulates leptin gene expression

    PubMed Central

    Lu, Yi-Hsueh; Dallner, Olof Stefan; Birsoy, Kivanc; Fayzikhodjaeva, Gulya; Friedman, Jeffrey M.

    2015-01-01

    Objective Leptin gene expression is highly correlated with cellular lipid content in adipocytes but the transcriptional mechanisms controlling leptin expression in vivo are poorly understood. In this report, we set out to identify cis- and trans-regulatory elements controlling leptin expression. Methods Leptin-BAC luciferase transgenic mice combining with other computational and molecular techniques were used to identify transcription regulatory elements including a CCAAT-binding protein Nuclear Factor Y (NF-Y). The function of NF-Y in adipocyte was studied in vitro with 3T3-L1 cells and in vivo with adipocyte-specific knockout of NF-Y. Results Using Leptin-BAC luciferase mice, we showed that DNA sequences between −22 kb and +8.8 kb can confer quantitative expression of a leptin reporter. Computational analysis of sequences and gel shift assays identified a 32 bp sequence (chr6: 28993820–2899385) consisting a CCAAT binding site for Nuclear Factor Y (NF-Y) and this was confirmed by a ChIP assay in vivo. A deletion of this 32 bp sequence in the −22 kb to +8.8 kb leptin-luciferase BAC reporter completely abrogates luciferase reporter activity in vivo. RNAi mediated knockdown of NF-Y interfered with adipogenesis in vitro and adipocyte-specific knockout of NF-Y in mice reduced expression of leptin and other fat specific genes in vivo. Further analyses of the fat specific NF-Y knockout revealed that these animals develop a moderately severe lipodystrophy that is remediable with leptin therapy. Conclusions These studies advance our understanding of leptin gene expression and show that NF-Y controls the expression of leptin and other adipocyte genes and identifies a new form of lipodystrophy. PMID:25973387

  6. Building gene expression signatures indicative of transcription factor activation to predict AOP modulation

    EPA Science Inventory

    Building gene expression signatures indicative of transcription factor activation to predict AOP modulation Adverse outcome pathways (AOPs) are a framework for predicting quantitative relationships between molecular initiatin...

  7. Insight into transcription factor gene duplication from Caenorhabditis elegans Promoterome-driven expression patterns

    PubMed Central

    Reece-Hoyes, John S; Shingles, Jane; Dupuy, Denis; Grove, Christian A; Walhout, Albertha JM; Vidal, Marc; Hope, Ian A

    2007-01-01

    Background The C. elegans Promoterome is a powerful resource for revealing the regulatory mechanisms by which transcription is controlled pan-genomically. Transcription factors will form the core of any systems biology model of genome control and therefore the promoter activity of Promoterome inserts for C. elegans transcription factor genes was examined, in vivo, with a reporter gene approach. Results Transgenic C. elegans strains were generated for 366 transcription factor promoter/gfp reporter gene fusions. GFP distributions were determined, and then summarized with reference to developmental stage and cell type. Reliability of these data was demonstrated by comparison to previously described gene product distributions. A detailed consideration of the results for one C. elegans transcription factor gene family, the Six family, comprising ceh-32, ceh-33, ceh-34 and unc-39 illustrates the value of these analyses. The high proportion of Promoterome reporter fusions that drove GFP expression, compared to previous studies, led to the hypothesis that transcription factor genes might be involved in local gene duplication events less frequently than other genes. Comparison of transcription factor genes of C. elegans and Caenorhabditis briggsae was therefore carried out and revealed very few examples of functional gene duplication since the divergence of these species for most, but not all, transcription factor gene families. Conclusion Examining reporter expression patterns for hundreds of promoters informs, and thereby improves, interpretation of this data type. Genes encoding transcription factors involved in intrinsic developmental control processes appear acutely sensitive to changes in gene dosage through local gene duplication, on an evolutionary time scale. PMID:17244357

  8. Nuclear gene-regulated expression of chloroplast genes for coupling factor one in maize

    SciTech Connect

    Kobayashi, H.; Bogorad, L.; Miles, C.D.

    1987-11-01

    In order to gain a better understanding of the interaction between the chloroplast and nuclear genomes in controlling the expression of plastid genes and the biosynthesis of chloroplast proteins, maize (Zea mays) nuclear gene mutant hcf*-38, in which ..cap alpha.. and ..beta.. subunits of coupling factor one (CF/sub 1/) are almost completely missing was studied. The mutant possesses all the other subunits of CF/sub 1/ but several peptides of photosystem II are present in reduced amounts. A competitive hybridization experiment showed the presence of the same plastid mRNA species in mutant and wild-type plants except for slightly lower levels of some transcripts in the mutant. Northern hybridization and dot blot hybridization experiments showed the features of transcripts for ..cap alpha.. and ..beta.. subunits of CF/sub 1/ in the mutant to be similar to those in the wild-type maize although their levels are somewhat lower in the mutant. In vivo and in organello protein labeling experiments with L-(/sup 35/S)Met have shown that ..cap alpha.. and ..beta.. subunits of CF/sub 1/ are synthesized, assembled into CF/sub 1/, and probably associated with thylakoid membranes in mutant plants. It is concluded that they are subsequently degraded.

  9. Scaling of Gene Expression with Transcription-Factor Fugacity

    PubMed Central

    Weinert, Franz M.; Brewster, Robert C.; Rydenfelt, Mattias; Phillips, Rob; Kegel, Willem K.

    2015-01-01

    The proteins associated with gene regulation are often shared between multiple pathways simultaneously. By way of contrast, models in regulatory biology often assume these pathways act independently. We demonstrate a framework for calculating the change in gene expression for the interacting case by decoupling repressor occupancy across the cell from the gene of interest by way of a chemical potential. The details of the interacting regulatory architecture are encompassed in an effective concentration, and thus, a single scaling function describes a collection of gene expression data from diverse regulatory situations and collapses it onto a single master curve. PMID:25554908

  10. Scaling of gene expression with transcription-factor fugacity.

    PubMed

    Weinert, Franz M; Brewster, Robert C; Rydenfelt, Mattias; Phillips, Rob; Kegel, Willem K

    2014-12-19

    The proteins associated with gene regulation are often shared between multiple pathways simultaneously. By way of contrast, models in regulatory biology often assume these pathways act independently. We demonstrate a framework for calculating the change in gene expression for the interacting case by decoupling repressor occupancy across the cell from the gene of interest by way of a chemical potential. The details of the interacting regulatory architecture are encompassed in an effective concentration, and thus, a single scaling function describes a collection of gene expression data from diverse regulatory situations and collapses it onto a single master curve.

  11. Problem-Based Test: The Effect of Fibroblast Growth Factor on Gene Expression

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2011-01-01

    This paper shows the results of an experiment in which the effects of fibroblast growth factor (FGF), actinomycin D (Act D; an inhibitor of transcription), and cycloheximide (CHX; an inhibitor of translation) were studied on the expression of two genes: a gene called "Fnk" and the gene coding for glyceraldehyde-3-phosphate dehydrogenase (GAPDH).…

  12. Gene-specific regulation by general translation factors.

    PubMed

    Dever, Thomas E

    2002-02-22

    Protein synthesis is the ultimate step of gene expression and a key control point for regulation. In particular, it enables cells to rapidly manipulate protein production without new mRNA synthesis, processing, or export. Recent studies have enhanced our understanding of the translation initiation process and helped elucidate how modifications of the general translational machinery regulate gene-specific protein production.

  13. Inferring gene correlation networks from transcription factor binding sites.

    PubMed

    Mahdevar, Ghasem; Nowzari-Dalini, Abbas; Sadeghi, Mehdi

    2013-01-01

    Gene expression is a highly regulated biological process that is fundamental to the existence of phenotypes of any living organism. The regulatory relations are usually modeled as a network; simply, every gene is modeled as a node and relations are shown as edges between two related genes. This paper presents a novel method for inferring correlation networks, networks constructed by connecting co-expressed genes, through predicting co-expression level from genes promoter's sequences. According to the results, this method works well on biological data and its outcome is comparable to the methods that use microarray as input. The method is written in C++ language and is available upon request from the corresponding author.

  14. Network analysis of microRNAs, transcription factors, target genes and host genes in human anaplastic astrocytoma

    PubMed Central

    XUE, LUCHEN; XU, ZHIWEN; WANG, KUNHAO; WANG, NING; ZHANG, XIAOXU; WANG, SHANG

    2016-01-01

    Numerous studies have investigated the roles played by various genes and microRNAs (miRNAs) in neoplasms, including anaplastic astrocytoma (AA). However, the specific regulatory mechanisms involving these genes and miRNAs remain unclear. In the present study, associated biological factors (miRNAs, transcription factors, target genes and host genes) from existing studies of human AA were combined methodically through the interactions between genes and miRNAs, as opposed to studying one or several. Three regulatory networks, including abnormally expressed, related and global networks were constructed with the aim of identifying significant gene and miRNA pathways. Each network is composed of three associations between miRNAs targeted at genes, transcription factors (TFs) regulating miRNAs and miRNAs located on their host genes. Among these, the abnormally expressed network, which involves the pathways of previously identified abnormally expressed genes and miRNAs, partially indicated the regulatory mechanism underlying AA. The network contains numerous abnormal regulation associations when AA emerges. By modifying the abnormally expressed network factors to a normal expression pattern, the faulty regulation may be corrected and tumorigenesis of AA may be prevented. Certain specific pathways are highlighted in AA, for example PTEN which is targeted by miR-21 and miR-106b, regulates miR-25 which in turn targets TP53. PTEN and miR-21 have been observed to form feedback loops. Furthermore, by comparing and analyzing the pathway predecessors and successors of abnormally expressed genes and miRNAs in three networks, similarities and differences of regulatory pathways may be identified and proposed. In summary, the present study aids in elucidating the occurrence, mechanism, prevention and treatment of AA. These results may aid further investigation into therapeutic approaches for this disease. PMID:27347075

  15. Activation of the human mitochondrial transcription factor A gene by nuclear respiratory factors: a potential regulatory link between nuclear and mitochondrial gene expression in organelle biogenesis.

    PubMed Central

    Virbasius, J V; Scarpulla, R C

    1994-01-01

    Mitochondrial transcription factor A (mtTFA), the product of a nuclear gene, stimulates transcription from the two divergent mitochondrial promoters and is likely the principal activator of mitochondrial gene expression in vertebrates. Here we establish that the proximal promoter of the human mtTFA gene is highly dependent upon recognition sites for the nuclear respiratory factors, NRF-1 and NRF-2, for activity. These factors have been previously implicated in the activation of numerous nuclear genes that contribute to mitochondrial respiratory function. The affinity-purified factors from HeLa cells specifically bind to the mtTFA NRF-1 and NRF-2 sites through guanine nucleotide contacts that are characteristic for each site. Mutations in these contacts eliminate NRF-1 and NRF-2 binding and also dramatically reduce promoter activity in transfected cells. Although both factors contribute, NRF-1 binding appears to be the major determinant of promoter function. This dependence on NRF-1 activation is confirmed by in vitro transcription using highly purified recombinant proteins that display the same binding specificities as the HeLa cell factors. The activation of the mtTFA promoter by both NRF-1 and NRF-2 therefore provides a link between the expression of nuclear and mitochondrial genes and suggests a mechanism for their coordinate regulation during organelle biogenesis. Images PMID:8108407

  16. Pituitary tumor transforming gene binding factor: a new gene in breast cancer.

    PubMed

    Watkins, Rachel J; Read, Martin L; Smith, Vicki E; Sharma, Neil; Reynolds, Gary M; Buckley, Laura; Doig, Craig; Campbell, Moray J; Lewy, Greg; Eggo, Margaret C; Loubiere, Laurence S; Franklyn, Jayne A; Boelaert, Kristien; McCabe, Christopher J

    2010-05-01

    Pituitary tumor transforming gene (PTTG) binding factor (PBF; PTTG1IP) is a relatively uncharacterized oncoprotein whose function remains obscure. Because of the presence of putative estrogen response elements (ERE) in its promoter, we assessed PBF regulation by estrogen. PBF mRNA and protein expression were induced by both diethylstilbestrol and 17beta-estradiol in estrogen receptor alpha (ERalpha)-positive MCF-7 cells. Detailed analysis of the PBF promoter showed that the region -399 to -291 relative to the translational start site contains variable repeats of an 18-bp sequence housing a putative ERE half-site (gcccctcGGTCAcgcctc). Sequencing the PBF promoter from 122 normal subjects revealed that subjects may be homozygous or heterozygous for between 1 and 6 repeats of the ERE. Chromatin immunoprecipitation and oligonucleotide pull-down assays revealed ERalpha binding to the PBF promoter. PBF expression was low or absent in normal breast tissue but was highly expressed in breast cancers. Subjects with greater numbers of ERE repeats showed higher PBF mRNA expression, and PBF protein expression positively correlated with ERalpha status. Cell invasion assays revealed that PBF induces invasion through Matrigel, an action that could be abrogated both by siRNA treatment and specific mutation. Furthermore, PBF is a secreted protein, and loss of secretion prevents PBF inducing cell invasion. Given that PBF is a potent transforming gene, we propose that estrogen treatment in postmenopausal women may upregulate PBF expression, leading to PBF secretion and increased cell invasion. Furthermore, the number of ERE half-sites in the PBF promoter may significantly alter the response to estrogen treatment in individual subjects.

  17. Evolution of the cutinase gene family: evidence for lateral gene transfer of a candidate Phytophthora virulence factor.

    PubMed

    Belbahri, Lassaad; Calmin, Gautier; Mauch, Felix; Andersson, Jan O

    2008-01-31

    Lateral gene transfer (LGT) can facilitate the acquisition of new functions in recipient lineages, which may enable them to colonize new environments. Several recent publications have shown that gene transfer between prokaryotes and eukaryotes occurs with appreciable frequency. Here we present a study of interdomain gene transfer of cutinases -- well documented virulence factors in fungi -- between eukaryotic plant pathogens Phytophthora species and prokaryotic bacterial lineages. Two putative cutinase genes were cloned from Phytophthora brassicae and Northern blotting experiments showed that these genes are expressed early during the infection of the host Arabidopsis thaliana and induced during cyst germination of the pathogen. Analysis of the gene organisation of this gene family in Phytophthora ramorum and P. sojae showed three and ten copies in tight succession within a region of 5 and 25 kb, respectively, probably indicating a recent expansion in Phytophthora lineages by gene duplications. Bioinformatic analyses identified orthologues only in three genera of Actinobacteria, and in two distantly related eukaryotic groups: oomycetes and fungi. Together with phylogenetic analyses this limited distribution of the gene in the tree of life strongly support a scenario where cutinase genes originated after the origin of land plants in a microbial lineage living in proximity of plants and subsequently were transferred between distantly related plant-degrading microbes. More precisely, a cutinase gene was likely acquired by an ancestor of P. brassicae, P. sojae, P. infestans and P. ramorum, possibly from an actinobacterial source, suggesting that gene transfer might be an important mechanism in the evolution of their virulence. These findings could indeed provide an interesting model system to study acquisition of virulence factors in these important plant pathogens.

  18. C-axis electrical resistivity of PrO1-aFaBiS2 single crystals

    NASA Astrophysics Data System (ADS)

    Nagao, Masanori; Miura, Akira; Watauchi, Satoshi; Takano, Yoshihiko; Tanaka, Isao

    2015-08-01

    The high anisotropy in RO1-aFaBiS2 (R denotes a rare-earth element) superconductors demonstrates their potential use as intrinsic Josephson junctions, considering the weak coupling among BiS2-PrO(F)-BiS2 (superconducting-normal-superconducting) layers along the c-axis. We grew PrO1-aFaBiS2 single crystals using CsCl/KCl flux. The superconducting anisotropies of the grown single crystals were estimated to be approximately 40-50 from the effective mass model. The c-axis transport properties were characterized using single-crystal s-shaped intrinsic Josephson junctions with a focused ion beam. Along the c-axis, the crystals showed zero resistivity at 2.7 K and a critical current density of 1.33 × 103 A/cm2 at 2.0 K. The current-voltage curve along the c-axis displayed hysteresis. The c-axis transport measurements under a magnetic field parallel to the ab-plane revealed a “lock-in” state due to the Josephson vortex flow, indicating that BiS2 superconductors are promising candidates for intrinsic Josephson junctions.

  19. DNA methylation profiling of transcription factor genes in normal lymphocyte development and lymphomas.

    PubMed

    Ivascu, Claudia; Wasserkort, Reinhold; Lesche, Ralf; Dong, Jun; Stein, Harald; Thiel, Andreas; Eckhardt, Florian

    2007-01-01

    Transcription factors play a crucial role during hematopoiesis by orchestrating lineage commitment and determining cellular fate. Although tight regulation of transcription factor expression appears to be essential, little is known about the epigenetic mechanisms involved in transcription factor gene regulation. We have analyzed DNA methylation profiles of 13 key transcription factor genes in primary cells of the hematopoietic cascade, lymphoma cell lines and lymph node biopsies of diffuse large B-cell- and T-cell-non-Hodgkin lymphoma patients. Several of the transcription factor genes (SPI1, GATA3, TCF-7, Etv5, c-maf and TBX21) are differentially methylated in specific cell lineages and stages of the hematopoietic cascade. For some genes, such as SPI1, Etv5 and Eomes, we found an inverse correlation between the methylation of the 5' untranslated region and expression of the associated gene suggesting that these genes are regulated by DNA methylation. Differential methylation is not limited to cells of the healthy hematopoietic cascade, as we observed aberrant methylation of c-maf, TCF7, Eomes and SPI1 in diffuse large B-cell lymphomas. Our results suggest that epigenetic remodelling of transcription factor genes is a frequent mechanism during hematopoietic development. Aberrant methylation of transcription factor genes is frequently observed in diffuse large B-cell lymphomas and might have a functional role during tumorigenesis.

  20. Correcting Transcription Factor Gene Sets for Copy Number and Promoter Methylation Variations

    PubMed Central

    Rathi, Komal S.; Gaykalova, Daria A.; Hennesey, Patrick; Califano, Joseph A.; Ochs, Michael F.

    2014-01-01

    Gene set analysis provides a method to generate statistical inferences across sets of linked genes, primarily using high-throughput expression data. Common gene sets include biological pathways, operons, and targets of transcriptional regulators. In higher eukaryotes, especially when dealing with diseases with strong genetic and epigenetic components such as cancer, copy number loss and gene silencing through promoter methylation can eliminate the possibility that a gene is transcribed. This, in turn, can adversely affect the estimation of transcription factor or pathway activity from a set of target genes, since some of the targets may not be responsive to transcriptional regulation. Here we introduce a simple filtering approach that removes genes from consideration if they show copy number loss or promoter methylation and demonstrate the improvement in inference of transcription factor activity in a simulated data set based on the background expression observed in normal head and neck tissue. PMID:25195578

  1. Correcting transcription factor gene sets for copy number and promoter methylation variations.

    PubMed

    Rathi, Komal S; Gaykalova, Daria A; Hennessey, Patrick; Califano, Joseph A; Ochs, Michael F

    2014-09-01

    Gene set analysis provides a method to generate statistical inferences across sets of linked genes, primarily using high-throughput expression data. Common gene sets include biological pathways, operons, and targets of transcriptional regulators. In higher eukaryotes, especially when dealing with diseases with strong genetic and epigenetic components such as cancer, copy number loss and gene silencing through promoter methylation can eliminate the possibility that a gene is transcribed. This, in turn, can adversely affect the estimation of transcription factor or pathway activity from a set of target genes, as some of the targets may not be responsive to transcriptional regulation. Here we introduce a simple filtering approach that removes genes from consideration if they show copy number loss or promoter methylation, and demonstrate the improvement in inference of transcription factor activity in a simulated dataset based on the background expression observed in normal head and neck tissue.

  2. Genome duplication and gene loss affect the evolution of heat shock transcription factor genes in legumes.

    PubMed

    Lin, Yongxiang; Cheng, Ying; Jin, Jing; Jin, Xiaolei; Jiang, Haiyang; Yan, Hanwei; Cheng, Beijiu

    2014-01-01

    Whole-genome duplication events (polyploidy events) and gene loss events have played important roles in the evolution of legumes. Here we show that the vast majority of Hsf gene duplications resulted from whole genome duplication events rather than tandem duplication, and significant differences in gene retention exist between species. By searching for intraspecies gene colinearity (microsynteny) and dating the age distributions of duplicated genes, we found that genome duplications accounted for 42 of 46 Hsf-containing segments in Glycine max, while paired segments were rarely identified in Lotus japonicas, Medicago truncatula and Cajanus cajan. However, by comparing interspecies microsynteny, we determined that the great majority of Hsf-containing segments in Lotus japonicas, Medicago truncatula and Cajanus cajan show extensive conservation with the duplicated regions of Glycine max. These segments formed 17 groups of orthologous segments. These results suggest that these regions shared ancient genome duplication with Hsf genes in Glycine max, but more than half of the copies of these genes were lost. On the other hand, the Glycine max Hsf gene family retained approximately 75% and 84% of duplicated genes produced from the ancient genome duplication and recent Glycine-specific genome duplication, respectively. Continuous purifying selection has played a key role in the maintenance of Hsf genes in Glycine max. Expression analysis of the Hsf genes in Lotus japonicus revealed their putative involvement in multiple tissue-/developmental stages and responses to various abiotic stimuli. This study traces the evolution of Hsf genes in legume species and demonstrates that the rates of gene gain and loss are far from equilibrium in different species.

  3. Molecular Analysis of Factor VIII and Factor IX Genes in Hemophilia Patients: Identification of Novel Mutations and Molecular Dynamics Studies

    PubMed Central

    Al-Allaf, Faisal A.; Taher, Mohiuddin M.; Abduljaleel, Zainularifeen; Bouazzaoui, Abdellatif; Athar, Mohammed; Bogari, Neda M.; Abalkhail, Halah A.; Owaidah, Tarek MA.

    2017-01-01

    Background Hemophilias A and B are X-linked bleeding disorders caused by mutations in the factor VIII and factor IX genes, respectively. Our objective was to identify the spectrum of mutations of the factor VIII and factor IX genes in Saudi Arabian population and determine the genotype and phenotype correlations by molecular dynamics (MD) simulation. Methods For genotyping, blood samples from Saudi Arabian patients were collected, and the genomic DNA was amplified, and then sequenced by Sanger method. For molecular simulations, we have used softwares such as CHARMM (Chemistry at Harvard Macromolecular Mechanics; http://www.charmm-gui.org) and GROMACS. In addition, the secondary structure was determined based on the solvent accessibility for the confirmation of the protein stability at the site of mutation. Results Six mutations (three novel and three known) were identified in factor VIII gene, and six mutations (one novel and five known) were identified in factor IX gene. The factor VIII novel mutations identified were c.99G>T, p. (W33C) in exon 1, c.2138 DelA, p. (N713Tfs*9) in eon14, also a novel mutation at splicing acceptor site of exon 23 c.6430 - 1G>A. In factor IX, we found a novel mutation c.855G>C, p. (E285D) in exon 8. These novel mutations were not reported in any factor VIII or factor IX databases previously. The deleterious effects of these novel mutations were confirmed by PolyPhen2 and SIFT programs. Conclusion The protein functional and structural studies and the models built in this work would be appropriate for predicting the effects of deleterious amino acid substitutions causing these genetic disorders. These findings are useful for genetic counseling in the case of consanguineous marriages which is more common in the Saudi Arabia. PMID:28270892

  4. Reciprocal regulation of transcription factors and PLC isozyme gene expression in adult cardiomyocytes.

    PubMed

    Singal, Tushi; Dhalla, Naranjan S; Tappia, Paramjit S

    2010-06-01

    By employing a pharmacological approach, we have shown that phospholipase C (PLC) activity is involved in the regulation of gene expression of transcription factors such as c-Fos and c-Jun in cardiomyocytes in response to norepinephrine (NE). However, there is no information available regarding the identity of specific PLC isozymes involved in the regulation of c-Fos and c-Jun or on the involvement of these transcription factors in PLC isozyme gene expression in adult cardiomyocytes. In this study, transfection of cardiomyocytes with PLC isozyme specific siRNA was found to prevent the NE-mediated increases in the corresponding PLC isozyme gene expression, protein content and activity. Unlike PLC gamma(1) gene, silencing of PLC beta(1), beta(3) and delta(1) genes with si RNA prevented the increases in c-Fos and c-Jun gene expression in response to NE. On the other hand, transfection with c-Jun si RNA suppressed the NE-induced increase in c-Jun as well as PLC beta(1), beta(3) and delta(1) gene expression, but had no effect on PLC gamma(1) gene expression. Although transfection of cardiomyocytes with c-Fos si RNA prevented NE-induced expression of c-Fos, PLC beta(1) and PLC beta(3) genes, it did not affect the increases in PLC delta(1) and PLC gamma(1) gene expression. Silencing of either c-Fos or c-Jun also depressed the NE-mediated increases in PLC beta(1), beta(3) and gamma(1) protein content and activity in an isozyme specific manner. Furthermore, silencing of all PLC isozymes as well as of c-Fos and c-Jun resulted in prevention of the NE-mediated increase in atrial natriuretic factor gene expression. These findings, by employing gene silencing techniques, demonstrate that there occurs a reciprocal regulation of transcription factors and specific PLC isozyme gene expression in cardiomyocytes.

  5. Gene Ranking of RNA-Seq Data via Discriminant Non-Negative Matrix Factorization.

    PubMed

    Jia, Zhilong; Zhang, Xiang; Guan, Naiyang; Bo, Xiaochen; Barnes, Michael R; Luo, Zhigang

    2015-01-01

    RNA-sequencing is rapidly becoming the method of choice for studying the full complexity of transcriptomes, however with increasing dimensionality, accurate gene ranking is becoming increasingly challenging. This paper proposes an accurate and sensitive gene ranking method that implements discriminant non-negative matrix factorization (DNMF) for RNA-seq data. To the best of our knowledge, this is the first work to explore the utility of DNMF for gene ranking. When incorporating Fisher's discriminant criteria and setting the reduced dimension as two, DNMF learns two factors to approximate the original gene expression data, abstracting the up-regulated or down-regulated metagene by using the sample label information. The first factor denotes all the genes' weights of two metagenes as the additive combination of all genes, while the second learned factor represents the expression values of two metagenes. In the gene ranking stage, all the genes are ranked as a descending sequence according to the differential values of the metagene weights. Leveraging the nature of NMF and Fisher's criterion, DNMF can robustly boost the gene ranking performance. The Area Under the Curve analysis of differential expression analysis on two benchmarking tests of four RNA-seq data sets with similar phenotypes showed that our proposed DNMF-based gene ranking method outperforms other widely used methods. Moreover, the Gene Set Enrichment Analysis also showed DNMF outweighs others. DNMF is also computationally efficient, substantially outperforming all other benchmarked methods. Consequently, we suggest DNMF is an effective method for the analysis of differential gene expression and gene ranking for RNA-seq data.

  6. Comparative analysis of transcription factor gene families from Papaver somniferum: identification of regulatory factors involved in benzylisoquinoline alkaloid biosynthesis.

    PubMed

    Agarwal, Parul; Pathak, Sumya; Lakhwani, Deepika; Gupta, Parul; Asif, Mehar Hasan; Trivedi, Prabodh Kumar

    2016-05-01

    Opium poppy (Papaver somniferum L.), known for biosynthesis of several therapeutically important benzylisoquinoline alkaloids (BIAs), has emerged as the premier organism to study plant alkaloid metabolism. The most prominent molecules produced in opium poppy include narcotic analgesic morphine, the cough suppressant codeine, the muscle relaxant papaverine and the anti-microbial agent sanguinarine and berberine. Despite several health benefits, biosynthesis of some of these molecules is very low due to tight temporal and spatial regulation of the genes committed to their biosynthesis. Transcription factors, one of the prime regulators of secondary plant product biosynthesis, might be involved in controlled biosynthesis of BIAs in P. somniferum. In this study, identification of members of different transcription factor gene families using transcriptome datasets of 10 cultivars of P. somniferum with distinct chemoprofile has been carried out. Analysis suggests that most represented transcription factor gene family in all the poppy cultivars is WRKY. Comparative transcriptome analysis revealed differential expression pattern of the members of a set of transcription factor gene families among 10 cultivars. Through analysis, two members of WRKY and one member of C3H gene family were identified as potential candidates which might regulate thebaine and papaverine biosynthesis, respectively, in poppy.

  7. Structure of the chromosomal gene for granulocyte-macrophage colony stimulating factor: comparison of the mouse and human genes.

    PubMed Central

    Miyatake, S; Otsuka, T; Yokota, T; Lee, F; Arai, K

    1985-01-01

    A cDNA clone that expresses granulocyte-macrophage colony stimulating factor (GM-CSF) activity in COS-7 cells has been isolated from a pcD library prepared from mRNA derived from concanavalin A-activated mouse helper T cell clones. Based on homology with the mouse GM-CSF cDNA sequence, the mouse GM-CSF gene was isolated. The human GM-CSF gene was also isolated based on homology with the human GM-CSF cDNA sequence. The nucleotide sequences determined for the genes and their flanking regions revealed that both the mouse and human GM-CSF genes are composed of three introns and four exons. The organization of the mouse and human GM-CSF genes are highly homologous and strong sequence homology between the two genes is found both in the coding and non-coding regions. A 'TATA'-like sequence was found 20-25 bp upstream from the transcription initiation site. In the 5'-flanking region, there is a highly homologous region extending 330 bp upstream of the putative TATA box. This sequence may play a role in regulation of expression of the GM-CSF gene. These structures are compared with those of different lymphokine genes and their regulatory regions. Images Fig. 2. Fig. 6. PMID:3876930

  8. Network and pathway analysis of microRNAs, transcription factors, target genes and host genes in human glioma

    PubMed Central

    ZHANG, YING; ZHAO, SHISHUN; XU, ZHIWEN

    2016-01-01

    To date, there has been rapid development with regard to gene and microRNA (miR/miRNA) research in gliomas. However, the regulatory mechanisms of the associated genes and miRNAs remain unclear. In the present study, the genes, miRNAs and transcription factors (TFs) were considered as elements in the regulatory network, and focus was placed on the associations between TFs and miRNAs, miRNAs and target genes, and miRNAs and host genes. In order to show the regulatory correlation clearly, all the elements were investigated and three regulatory networks, namely the differentially-expressed, related and global networks, were constructed. Certain important pathways were highlighted, with analysis of the similarities and differences among the networks. Next, the upstream and downstream elements of differentially-expressed genes, miRNAs and predicted TFs were listed. The most notable aspect of the present study was the three levels of network, particularly the differentially-expressed network, since the differentially-expressed associations that these networks provide appear at the initial stages of cancers such as glioma. If the states of the differentially-expressed associations can be adjusted to the normal state via alterations in regulatory associations, which were also recorded in the study networks and tables, it is likely that cancer can be regulated or even avoided. In the present study, the differentially-expressed network illuminated the pathogenesis of glioma; for example, a TF can regulate one or more miRNAs, and a target gene can be targeted by one or more miRNAs. Therefore, the host genes and target genes, the host genes and TFs, and the target genes and TFs indirectly affect each other through miRNAs. The association also exists between TFs and TFs, target genes and target genes, and host genes and host genes. The present study also demonstrated self-adaption associations and circle-regulations. The related network further described the regulatory mechanism

  9. Medusa structure of the gene regulatory network: dominance of transcription factors in cancer subtype classification.

    PubMed

    Guo, Yuchun; Feng, Ying; Trivedi, Niraj S; Huang, Sui

    2011-05-01

    Gene expression profiles consisting of ten thousands of transcripts are used for clustering of tissue, such as tumors, into subtypes, often without considering the underlying reason that the distinct patterns of expression arise because of constraints in the realization of gene expression profiles imposed by the gene regulatory network. The topology of this network has been suggested to consist of a regulatory core of genes represented most prominently by transcription factors (TFs) and microRNAs, that influence the expression of other genes, and of a periphery of 'enslaved' effector genes that are regulated but not regulating. This 'medusa' architecture implies that the core genes are much stronger determinants of the realized gene expression profiles. To test this hypothesis, we examined the clustering of gene expression profiles into known tumor types to quantitatively demonstrate that TFs, and even more pronounced, microRNAs, are much stronger discriminators of tumor type specific gene expression patterns than a same number of randomly selected or metabolic genes. These findings lend support to the hypothesis of a medusa architecture and of the canalizing nature of regulation by microRNAs. They also reveal the degree of freedom for the expression of peripheral genes that are less stringently associated with a tissue type specific global gene expression profile.

  10. Embryonic Expression of the Chicken Krüppel-like (KLF) Transcription Factor Gene Family

    PubMed Central

    Antin, Parker B.; Pier, Maricela; Sesepasara, Terry; Yatskievych, Tatiana A; Darnell, Diana K.

    2010-01-01

    The Krüppel-like transcription factors are zinc finger proteins that activate and suppress target gene transcription. Although KLF factors have been implicated in regulating many developmental processes, a comprehensive gene expression analysis has not been reported. Here we present the chicken KLF gene family and expression during the first five days of embryonic development. Fourteen chicken KLF genes or expressed sequences have been previously identified. Through synteny analysis and cDNA mapping we have identified the KLF9 gene and determined that the gene presently named KLF1 is the true ortholog of KLF17 in other species. In situ hybridization expression analyses show that in general KLFs are broadly expressed in multiple cell and tissue types. Expression of KLFs 3, 7, 8, and 9, is widespread at all stages examined. KLFs 2, 4, 5, 6, 10, 11, 15 and 17 show more restricted patterns that suggest multiple functions during early stages of embryonic development. PMID:20503383

  11. Gene Ranking of RNA-Seq Data via Discriminant Non-Negative Matrix Factorization

    PubMed Central

    Jia, Zhilong; Zhang, Xiang; Guan, Naiyang; Bo, Xiaochen; Barnes, Michael R.; Luo, Zhigang

    2015-01-01

    RNA-sequencing is rapidly becoming the method of choice for studying the full complexity of transcriptomes, however with increasing dimensionality, accurate gene ranking is becoming increasingly challenging. This paper proposes an accurate and sensitive gene ranking method that implements discriminant non-negative matrix factorization (DNMF) for RNA-seq data. To the best of our knowledge, this is the first work to explore the utility of DNMF for gene ranking. When incorporating Fisher’s discriminant criteria and setting the reduced dimension as two, DNMF learns two factors to approximate the original gene expression data, abstracting the up-regulated or down-regulated metagene by using the sample label information. The first factor denotes all the genes’ weights of two metagenes as the additive combination of all genes, while the second learned factor represents the expression values of two metagenes. In the gene ranking stage, all the genes are ranked as a descending sequence according to the differential values of the metagene weights. Leveraging the nature of NMF and Fisher’s criterion, DNMF can robustly boost the gene ranking performance. The Area Under the Curve analysis of differential expression analysis on two benchmarking tests of four RNA-seq data sets with similar phenotypes showed that our proposed DNMF-based gene ranking method outperforms other widely used methods. Moreover, the Gene Set Enrichment Analysis also showed DNMF outweighs others. DNMF is also computationally efficient, substantially outperforming all other benchmarked methods. Consequently, we suggest DNMF is an effective method for the analysis of differential gene expression and gene ranking for RNA-seq data. PMID:26348772

  12. Transcription factor co-localization patterns affect human cell type-specific gene expression

    PubMed Central

    2012-01-01

    Background Cellular development requires the precise control of gene expression states. Transcription factors are involved in this regulatory process through their combinatorial binding with DNA. Information about transcription factor binding sites can help determine which combinations of factors work together to regulate a gene, but it is unclear how far the binding data from one cell type can inform about regulation in other cell types. Results By integrating data on co-localized transcription factor binding sites in the K562 cell line with expression data across 38 distinct hematopoietic cell types, we developed regression models to describe the relationship between the expression of target genes and the transcription factors that co-localize nearby. With K562 binding sites identifying the predictors, the proportion of expression explained by the models is statistically significant only for monocytic cells (p-value< 0.001), which are closely related to K562. That is, cell type specific binding patterns are crucial for choosing the correct transcription factors for the model. Comparison of predictors obtained from binding sites in the GM12878 cell line with those from K562 shows that the amount of difference between binding patterns is directly related to the quality of the prediction. By identifying individual genes whose expression is predicted accurately by the binding sites, we are able to link transcription factors FOS, TAF1 and YY1 to a sparsely studied gene LRIG2. We also find that the activity of a transcription factor may be different depending on the cell type and the identity of other co-localized factors. Conclusion Our approach shows that gene expression can be explained by a modest number of co-localized transcription factors, however, information on cell-type specific binding is crucial for understanding combinatorial gene regulation. PMID:22721266

  13. Splicing factor gene mutations in the myelodysplastic syndromes: impact on disease phenotype and therapeutic applications.

    PubMed

    Pellagatti, Andrea; Boultwood, Jacqueline

    2017-01-01

    Splicing factor gene mutations are the most frequent mutations found in patients with the myeloid malignancy myelodysplastic syndrome (MDS), suggesting that spliceosomal dysfunction plays a major role in disease pathogenesis. The aberrantly spliced target genes and deregulated cellular pathways associated with the commonly mutated splicing factor genes in MDS (SF3B1, SRSF2 and U2AF1) are being identified, illuminating the molecular mechanisms underlying MDS. Emerging data from mouse modeling studies indicate that the presence of splicing factor gene mutations can lead to bone marrow hematopoietic stem/myeloid progenitor cell expansion, impaired hematopoiesis and dysplastic differentiation that are hallmarks of MDS. Importantly, recent evidence suggests that spliceosome inhibitors and splicing modulators may have therapeutic value in the treatment of splicing factor mutant myeloid malignancies.

  14. Vascular endothelial growth factor gene (VEGFA) polymorphisms may serve as prognostic factors for recurrent depressive disorder development.

    PubMed

    Gałecki, Piotr; Gałecka, Elżbieta; Maes, Michael; Orzechowska, Agata; Berent, Dominika; Talarowska, Monika; Bobińska, Kinga; Lewiński, Andrzej; Bieńkiewicz, Małgorzata; Szemraj, Janusz

    2013-08-01

    Recurrent depressive disorder (rDD) is a multifactorial disease. Vascular endothelial growth factor (VEGF) is one of the factors that have been suggested to play a role in the etiology and/or development of this disease. Limited information related to the role of VEGFA gene polymorphism in depressive disorder is available. The aim of the study was to analyze the association between VEGFA gene polymorphisms (+405G/C; rs2010963, +936C/T; rs 3025039), VEGFA gene expression, and its serum protein levels in rDD in the Caucasian population. In the current study, 268 patients and 200 healthy controls of the Caucasian origin were involved. Genotyping and gene expression were performed using polymerase chain reaction (PCR)-based methods. Enzyme-linked immunosorbent assay (ELISA) was used for detection of circulating serum VEGF levels. The distribution of VEGFA polymorphism +405G/C differed significantly between rDD patients and healthy subjects. The results of this study indicated that the C allele and CC genotype of VEGFA are risk factors for rDD. Haplotypes CC and TG are the important factors for depression development. Further, VEGFA mRNA expression and VEGF levels were higher in rDD patients than in controls. The VEGFA gene polymorphism may serve as a prognostic factor for rDD development. Our study showed higher levels of both VEGFA mRNA in the peripheral blood cells and serum VEGF in patients diagnosed with rDD than in healthy controls. The obtained results suggest VEGF and the gene encoding the molecule play a role in the etiology of the disease and should be further investigated.

  15. Dynamic control of gene regulatory logic by seemingly redundant transcription factors

    PubMed Central

    AkhavanAghdam, Zohreh; Sinha, Joydeb; Tabbaa, Omar P; Hao, Nan

    2016-01-01

    Many transcription factors co-express with their homologs to regulate identical target genes, however the advantages of such redundancies remain elusive. Using single-cell imaging and microfluidics, we study the yeast general stress response transcription factor Msn2 and its seemingly redundant homolog Msn4. We find that gene regulation by these two factors is analogous to logic gate systems. Target genes with fast activation kinetics can be fully induced by either factor, behaving as an 'OR' gate. In contrast, target genes with slow activation kinetics behave as an 'AND' gate, requiring distinct contributions from both factors, upon transient stimulation. Furthermore, such genes become an 'OR' gate when the input duration is prolonged, suggesting that the logic gate scheme is not static but rather dependent on the input dynamics. Therefore, Msn2 and Msn4 enable a time-based mode of combinatorial gene regulation that might be applicable to homologous transcription factors in other organisms. DOI: http://dx.doi.org/10.7554/eLife.18458.001 PMID:27690227

  16. Influential Factors and Synergies for Radiation-Gene Therapy on Cancer

    PubMed Central

    Lin, Mei; Huang, Junxing; Shi, Yujuan; Xiao, Yanhong; Guo, Ting

    2015-01-01

    Radiation-gene therapy, a dual anticancer strategy of radiation therapy and gene therapy through connecting radiation-inducible regulatory sequence to therapeutic gene, leading to the gene being induced to express by radiation while radiotherapy is performed and finally resulting in a double synergistic antitumor effect of radiation and gene, has become one of hotspots in the field of cancer treatment in recent years. But under routine dose of radiation, especially in the hypoxia environment of solid tumor, it is difficult for this therapy to achieve desired effect because of low activity of radiation-inducible regulatory elements, low level and transient expression of target gene induced by radiation, inferior target specificity and poor biosecurity, and so on. Based on the problems existing in radiation-gene therapy, many efforts have been devoted to the curative effect improvement of radiation-gene therapy by various means to increase radiation sensitivity or enhance target gene expression and the expression's controllability. Among these synergistic techniques, gene circuit, hypoxic sensitization, and optimization of radiation-induced sequence exhibit a good application potential. This review provides the main influential factors to radiation-gene therapy on cancer and the synergistic techniques to improve the anticancer effect of radiation-gene therapy. PMID:26783511

  17. Targetfinder.org: a resource for systematic discovery of transcription factor target genes

    PubMed Central

    Kiełbasa, Szymon M.; Blüthgen, Nils; Fähling, Michael

    2010-01-01

    Targetfinder.org (http://targetfinder.org/) provides a web-based resource for finding genes that show a similar expression pattern to a group of user-selected genes. It is based on a large-scale gene expression compendium (>1200 experiments, >13 000 genes). The primary application of Targetfinder.org is to expand a list of known transcription factor targets by new candidate target genes. The user submits a group of genes (the ‘seed’), and as a result the web site provides a list of other genes ranked by similarity of their expression to the expression of the seed genes. Additionally, the web site provides information on a recovery/cross-validation test to check for consistency of the provided seed and the quality of the ranking. Furthermore, the web site allows to analyse affinities of a selected transcription factor to the promoter regions of the top-ranked genes in order to select the best new candidate target genes for further experimental analysis. PMID:20460454

  18. Definition of constitutive gene expression in plants: the translation initiation factor 4A gene as a model.

    PubMed

    Mandel, T; Fleming, A J; Krähenbühl, R; Kuhlemeier, C

    1995-12-01

    The NeIF-4A10 gene belongs to a family of at least ten genes, all of which encode closely related isoforms of translation initiation factor 4A. The promoter region of NeIF-4A10 was sequenced, and four mRNA 5' ends were determined. Deletions containing 2750, 689 and 188 bp of untranscribed upstream DNA were fused to the GUS reporter gene and introduced into transgenic tobacco. The three constructs mediated GUS expression in all cells of the leaf, stem and shoot apical meristem. Control experiments using in situ hybridization and tissue printing indicated that the observed GUS expression matches the expression patterns of NeIF-4A mRNA and protein. This detailed analysis at the level of mRNA, protein and reporter gene expression shows that NeIF-4A10 is an ideal constitutively expressed control gene. We argue that inclusion of such a control gene in experiments dealing with specifically expressed genes is in many cases essential for the correct interpretation of observed expression patterns.

  19. Exploring the role of sigma factor gene expression on production by Corynebacterium glutamicum: sigma factor H and FMN as example

    PubMed Central

    Taniguchi, Hironori; Wendisch, Volker F.

    2015-01-01

    Bacteria are known to cope with environmental changes by using alternative sigma factors binding to RNA polymerase core enzyme. Sigma factor is one of the targets to modify transcription regulation in bacteria and to influence production capacities. In this study, the effect of overexpressing each annotated sigma factor gene in Corynebacterium glutamicum WT was assayed using an IPTG inducible plasmid system and different IPTG concentrations. It was revealed that growth was severely decreased when sigD or sigH were overexpressed with IPTG concentrations higher than 50 μM. Overexpression of sigH led to an obvious phenotypic change, a yellow-colored supernatant. High performance liquid chromatography analysis revealed that riboflavin was excreted to the medium when sigH was overexpressed and DNA microarray analysis confirmed increased expression of riboflavin biosynthesis genes. In addition, genes for enzymes related to the pentose phosphate pathway and for enzymes dependent on flavin mononucleotide (FMN), flavin adenine dinucleotide (FAD), or NADPH as cofactor were upregulated when sigH was overexpressed. To test if sigH overexpression can be exploited for production of riboflavin-derived FMN or FAD, the endogenous gene for bifunctional riboflavin kinase/FMN adenyltransferase was co-expressed with sigH from a plasmid. Balanced expression of sigH and ribF improved accumulation of riboflavin (19.8 ± 0.3 μM) and allowed for its conversion to FMN (33.1 ± 1.8 μM) in the supernatant. While a proof-of-concept was reached, conversion was not complete and titers were not high. This study revealed that inducible and gradable overexpression of sigma factor genes is an interesting approach to switch gene expression profiles and to discover untapped potential of bacteria for chemical production. PMID:26257719

  20. Exploring the role of sigma factor gene expression on production by Corynebacterium glutamicum: sigma factor H and FMN as example.

    PubMed

    Taniguchi, Hironori; Wendisch, Volker F

    2015-01-01

    Bacteria are known to cope with environmental changes by using alternative sigma factors binding to RNA polymerase core enzyme. Sigma factor is one of the targets to modify transcription regulation in bacteria and to influence production capacities. In this study, the effect of overexpressing each annotated sigma factor gene in Corynebacterium glutamicum WT was assayed using an IPTG inducible plasmid system and different IPTG concentrations. It was revealed that growth was severely decreased when sigD or sigH were overexpressed with IPTG concentrations higher than 50 μM. Overexpression of sigH led to an obvious phenotypic change, a yellow-colored supernatant. High performance liquid chromatography analysis revealed that riboflavin was excreted to the medium when sigH was overexpressed and DNA microarray analysis confirmed increased expression of riboflavin biosynthesis genes. In addition, genes for enzymes related to the pentose phosphate pathway and for enzymes dependent on flavin mononucleotide (FMN), flavin adenine dinucleotide (FAD), or NADPH as cofactor were upregulated when sigH was overexpressed. To test if sigH overexpression can be exploited for production of riboflavin-derived FMN or FAD, the endogenous gene for bifunctional riboflavin kinase/FMN adenyltransferase was co-expressed with sigH from a plasmid. Balanced expression of sigH and ribF improved accumulation of riboflavin (19.8 ± 0.3 μM) and allowed for its conversion to FMN (33.1 ± 1.8 μM) in the supernatant. While a proof-of-concept was reached, conversion was not complete and titers were not high. This study revealed that inducible and gradable overexpression of sigma factor genes is an interesting approach to switch gene expression profiles and to discover untapped potential of bacteria for chemical production.

  1. Functional gene group analysis identifies synaptic gene groups as risk factor for schizophrenia

    PubMed Central

    Lips, E S; Cornelisse, L N; Toonen, R F; Min, J L; Hultman, C M; Holmans, P A; O'Donovan, M C; Purcell, S M; Smit, A B; Verhage, M; Sullivan, P F; Visscher, P M; Posthuma, D

    2012-01-01

    Schizophrenia is a highly heritable disorder with a polygenic pattern of inheritance and a population prevalence of ∼1%. Previous studies have implicated synaptic dysfunction in schizophrenia. We tested the accumulated association of genetic variants in expert-curated synaptic gene groups with schizophrenia in 4673 cases and 4965 healthy controls, using functional gene group analysis. Identifying groups of genes with similar cellular function rather than genes in isolation may have clinical implications for finding additional drug targets. We found that a group of 1026 synaptic genes was significantly associated with the risk of schizophrenia (P=7.6 × 10−11) and more strongly associated than 100 randomly drawn, matched control groups of genetic variants (P<0.01). Subsequent analysis of synaptic subgroups suggested that the strongest association signals are derived from three synaptic gene groups: intracellular signal transduction (P=2.0 × 10−4), excitability (P=9.0 × 10−4) and cell adhesion and trans-synaptic signaling (P=2.4 × 10−3). These results are consistent with a role of synaptic dysfunction in schizophrenia and imply that impaired intracellular signal transduction in synapses, synaptic excitability and cell adhesion and trans-synaptic signaling play a role in the pathology of schizophrenia. PMID:21931320

  2. Functional gene group analysis identifies synaptic gene groups as risk factor for schizophrenia.

    PubMed

    Lips, E S; Cornelisse, L N; Toonen, R F; Min, J L; Hultman, C M; Holmans, P A; O'Donovan, M C; Purcell, S M; Smit, A B; Verhage, M; Sullivan, P F; Visscher, P M; Posthuma, D

    2012-10-01

    Schizophrenia is a highly heritable disorder with a polygenic pattern of inheritance and a population prevalence of ~1%. Previous studies have implicated synaptic dysfunction in schizophrenia. We tested the accumulated association of genetic variants in expert-curated synaptic gene groups with schizophrenia in 4673 cases and 4965 healthy controls, using functional gene group analysis. Identifying groups of genes with similar cellular function rather than genes in isolation may have clinical implications for finding additional drug targets. We found that a group of 1026 synaptic genes was significantly associated with the risk of schizophrenia (P=7.6 × 10(-11)) and more strongly associated than 100 randomly drawn, matched control groups of genetic variants (P<0.01). Subsequent analysis of synaptic subgroups suggested that the strongest association signals are derived from three synaptic gene groups: intracellular signal transduction (P=2.0 × 10(-4)), excitability (P=9.0 × 10(-4)) and cell adhesion and trans-synaptic signaling (P=2.4 × 10(-3)). These results are consistent with a role of synaptic dysfunction in schizophrenia and imply that impaired intracellular signal transduction in synapses, synaptic excitability and cell adhesion and trans-synaptic signaling play a role in the pathology of schizophrenia.

  3. Upstream stimulatory factor regulates expression of the cell cycle-dependent cyclin B1 gene promoter.

    PubMed Central

    Cogswell, J P; Godlevski, M M; Bonham, M; Bisi, J; Babiss, L

    1995-01-01

    Progression through the somatic cell cycle requires the temporal regulation of cyclin gene expression and cyclin protein turnover. One of the best-characterized examples of this regulation is seen for the B-type cyclins. These cyclins and their catalytic component, cdc2, have been shown to mediate both the entry into and maintenance of mitosis. The cyclin B1 gene has been shown to be expressed between the late S and G2 phases of the cell cycle, while the protein is degraded specifically at interphase via ubiquitination. To understand the molecular basis for transcriptional regulation of the cyclin B1 gene, we cloned the human cyclin B1 gene promoter region. Using a chloramphenicol acetyltransferase reporter system and both stable and transient assays, we have shown that the cyclin B1 gene promoter (extending to -3800 bp relative to the cap site) can confer G2-enhanced promoter activity. Further analysis revealed that an upstream stimulatory factor (USF)-binding site and its cognate transcription factor(s) are critical for expression from the cyclin B1 promoter in cycling HeLa cells. Interestingly, USF DNA-binding activity appears to be regulated in a G2-specific fashion, supporting the idea that USF may play some role in cyclin B1 gene activation. These studies suggest an important link between USF and the cyclin B1 gene, which in part explains how maturation promoting factor complex formation is regulated. PMID:7739559

  4. Inflammatory Genes and Psychological Factors Predict Induced Shoulder Pain Phenotype

    PubMed Central

    George, Steven Z.; Parr, Jeffrey J.; Wallace, Margaret R.; Wu, Samuel S.; Borsa, Paul A.; Dai, Yunfeng; Fillingim, Roger B.

    2014-01-01

    Purpose The pain experience has multiple influences but little is known about how specific biological and psychological factors interact to influence pain responses. The current study investigated the combined influences of genetic (pro-inflammatory) and psychological factors on several pre-clinical shoulder pain phenotypes. Methods An exercise-induced shoulder injury model was used, and a priori selected genetic (IL1B, TNF/LTA region, IL6 single nucleotide polymorphisms, SNPs) and psychological (anxiety, depressive symptoms, pain catastrophizing, fear of pain, kinesiophobia) factors were included as the predictors of interest. The phenotypes were pain intensity (5-day average and peak reported on numerical rating scale), upper-extremity disability (5-day average and peak reported on the QuickDASH instrument), and duration of shoulder pain (in days). Results After controlling for age, sex, and race, the genetic and psychological predictors were entered separately as main effects and interaction terms in regression models for each pain phenotype. Results from the recruited cohort (n = 190) indicated strong statistical evidence for the interactions between 1) TNF/LTA SNP rs2229094 and depressive symptoms for average pain intensity and duration and 2) IL1B two-SNP diplotype and kinesiophobia for average shoulder pain intensity. Moderate statistical evidence for prediction of additional shoulder pain phenotypes included interactions of kinesiophobia, fear of pain, or depressive symptoms with TNF/LTA rs2229094 and IL1B. Conclusion These findings support the combined predictive ability of specific genetic and psychological factors for shoulder pain phenotypes by revealing novel combinations that may merit further investigation in clinical cohorts, to determine their involvement in the transition from acute to chronic pain conditions. PMID:24598699

  5. In Vivo Gene Therapy of Hemophilia B: Sustained Partial Correction in Factor IX-Deficient Dogs

    NASA Astrophysics Data System (ADS)

    Kay, Mark A.; Rothenberg, Steven; Landen, Charles N.; Bellinger, Dwight A.; Leland, Frances; Toman, Carol; Finegold, Milton; Thompson, Arthur R.; Read, M. S.; Brinkhous, Kenneth M.; Woo, Savio L. C.

    1993-10-01

    The liver represents a model organ for gene therapy. A method has been developed for hepatic gene transfer in vivo by the direct infusion of recombinant retroviral vectors into the portal vasculature, which results in the persistent expression of exogenous genes. To determine if these technologies are applicable for the treatment of hemophilia B patients, preclinical efficacy studies were done in a hemophilia B dog model. When the canine factor IX complementary DNA was transduced directly into the hepatocytes of affected dogs in vivo, the animals constitutively expressed low levels of canine factor IX for more than 5 months. Persistent expression of the clotting. factor resulted in reductions of whole blood clotting and partial thromboplastin times of the treated animals. Thus, long-term treatment of hemophilia B patients may be feasible by direct hepatic gene therapy in vivo.

  6. A case study on the identification of confounding factors for gene disease association analysis.

    PubMed

    Han, Bin; Xie, Ruifei; Wu, Shixiu; Li, Lihua; Zhu, Lei

    2015-01-01

    Variation in the expression of genes arises from a variety of sources. It is important to remove sources of variation between arrays of non-biological origin. Non-biological variation, caused by lurking confounding factors, usually attracts little attention, although it may substantially influence the expression profile of genes. In this study, we proposed a method which is able to identify the potential confounding factors and highlight the non-biological variations. We also developed methods and statistical tests to study the confounding factors and their influence on the homogeneity of microarray data, gene selection, and disease classification. We explored an ovarian cancer gene expression profile and showed that data batches and arraying conditions are two confounding factors. Their influence on the homogeneity of data, gene selection, and disease classification are statistically analyzed. Experiments showed that after normalization, their influences were removed. Comparative studies further showed that the data became more homogeneous and the classification quality was improved. This research demonstrated that identifying and reducing the impact of confounding factors is paramount in making sense of gene-disease association analysis.

  7. The network of microRNAs, transcription factors, target genes and host genes in human renal cell carcinoma

    PubMed Central

    SONG, CHENGLU; XU, ZHIWEN; JIN, YUE; ZHU, MINGHUI; WANG, KUNHAO; WANG, NING

    2015-01-01

    At present, scientists have performed numerous studies investigating the morbidity of renal cell carcinoma (RCC) in the genetic and microRNA (miRNA) fields, obtaining a substantial amount of knowledge. However, the experimentally validated data of genes, miRNA and transcription factors (TFs) cannot be found in a unified form, which makes it challenging to decipher the regulatory mechanisms. In the present study, the genes, miRNAs and TFs involved in RCC are regarded as elements in the regulatory network, and the present study therefore focuses on the association between each entity. Three regulatory networks were constructed hierarchically to indicate the regulatory association between the genes, miRNAs and TFs clearly, including the differentially expressed, associated and global networks. All the elements were macroscopically investigated in these networks, instead of only investigating one or several of them. The present study not only compared and analyzed the similarities and the differences between the three networks, but also systematically expounded the pathogenesis of RCC and supplied theoretical foundations for future gene therapy investigations. Following the construction of the three networks, certain important pathways were highlighted. The upstream and downstream element table of differentially expressed genes and miRNAs was listed, in which self-adaption associations and circle-regulations were identified. In future studies, the identified genes and miRNAs should be granted more attention. PMID:25436016

  8. A novel mutation in the F5 gene (factor V Amsterdam) associated with bleeding independent of factor V procoagulant function.

    PubMed

    Cunha, Marisa L R; Bakhtiari, Kamran; Peter, Jorge; Marquart, J Arnoud; Meijers, Joost C M; Middeldorp, Saskia

    2015-03-12

    We investigated a small Dutch family with a bleeding diathesis, prolonged prothrombin, and activated partial thromboplastin times, in whom no classifying diagnosis was made. The 2 affected relatives had severely decreased in vitro thrombin generation, and levels of tissue factor pathway inhibitor (TFPI) were strongly increased. To identify the genetic cause of the bleeding diathesis, we performed whole exome sequencing analysis of all living relatives. We found a novel gain-of-function mutation in the F5 gene (c.C2588G), which leads to an aberrant splicing of F5 and ultimately to a short factor V protein (missing 623 amino acids from the B domain), which we called factor V Amsterdam. Factor V Amsterdam binds to TFPI, prolonging its half-life and concentration. This is the second report of an association between a shorter form of factor V and increased TFPI levels, resulting in severely reduced thrombin generation and a bleeding tendency.

  9. The myostatin gene is a downstream target gene of basic helix-loop-helix transcription factor MyoD.

    PubMed

    Spiller, Michael P; Kambadur, Ravi; Jeanplong, Ferenc; Thomas, Mark; Martyn, Julie K; Bass, John J; Sharma, Mridula

    2002-10-01

    Myostatin is a negative regulator of myogenesis, and inactivation of myostatin leads to heavy muscle growth. Here we have cloned and characterized the bovine myostatin gene promoter. Alignment of the upstream sequences shows that the myostatin promoter is highly conserved during evolution. Sequence analysis of 1.6 kb of the bovine myostatin gene upstream region revealed that it contains 10 E-box motifs (E1 to E10), arranged in three clusters, and a single MEF2 site. Deletion and mutation analysis of the myostatin gene promoter showed that out of three important E boxes (E3, E4, and E6) of the proximal cluster, E6 plays a significant role in the regulation of a reporter gene in C(2)C(12) cells. We also demonstrate by band shift and chromatin immunoprecipitation assay that the E6 E-box motif binds to MyoD in vitro and in vivo. Furthermore, cotransfection experiments indicate that among the myogenic regulatory factors, MyoD preferentially up-regulates myostatin promoter activity. Since MyoD expression varies during the myoblast cell cycle, we analyzed the myostatin promoter activity in synchronized myoblasts and quiescent "reserve" cells. Our results suggest that myostatin promoter activity is relatively higher during the G(1) phase of the cell cycle, when MyoD expression levels are maximal. However, in the reserve cells, which lack MyoD expression, a significant reduction in the myostatin promoter activity is observed. Taken together, these results suggest that the myostatin gene is a downstream target gene of MyoD. Since the myostatin gene is implicated in controlling G(1)-to-S progression of myoblasts, MyoD could be triggering myoblast withdrawal from the cell cycle by regulating myostatin gene expression.

  10. Molecular Evolution and Genetic Variation of G2-Like Transcription Factor Genes in Maize

    PubMed Central

    Han, Guomin; Zhou, Lingyan; Ali, Asif; Zhu, Suwen; Li, Xiaoyu

    2016-01-01

    The productivity of maize (Zea mays L.) depends on the development of chloroplasts, and G2-like transcription factors play a central role in regulating chloroplast development. In this study, we identified 59 G2-like genes in the B73 maize genome and systematically analyzed these genes at the molecular and evolutionary levels. Based on gene structure character, motif compositions and phylogenetic analysis, maize G2-like genes (ZmG1- ZmG59) were divided into seven groups (I-VII). By synteny analysis, 18 collinear gene pairs and strongly conserved microsyntny among regions hosting G2-like genes across maize and sorghum were found. Here, we showed that the vast majority of ZmG gene duplications resulted from whole genome duplication events rather than tandem duplications. After gene duplication events, some ZmG genes were silenced. The functions of G2-like genes were multifarious and most genes that are expressed in green tissues may relate to maize photosynthesis. The qRT-PCR showed that the expression of these genes was sensitive to low temperature and drought. Furthermore, we analyzed differences of ZmGs specific to cultivars in temperate and tropical regions at the population level. Interestingly, the single nucleotide polymorphism (SNP) analysis revealed that nucleotide polymorphism associated with different temperature zones. Above all, G2-like genes were highly conserved during evolution, but polymorphism could be caused due to a different geographical location. Moreover, G2-like genes might be related to cold and drought stresses. PMID:27560803

  11. Expression profile and transcription factor binding site exploration of imprinted genes in human and mouse

    PubMed Central

    Steinhoff, Christine; Paulsen, Martina; Kielbasa, Szymon; Walter, Jörn; Vingron, Martin

    2009-01-01

    Background In mammals, imprinted genes are regulated by an epigenetic mechanism that results in parental origin-specific expression. Though allele-specific regulation of imprinted genes has been studied for several individual genes in detail, little is known about their overall tissue-specific expression patterns and interspecies conservation of expression. Results We performed a computational analysis of microarray expression data of imprinted genes in human and mouse placentae and in a variety of adult tissues. For mouse, early embryonic stages were also included. The analysis reveals that imprinted genes are expressed in a broad spectrum of tissues for both species. Overall, the relative tissue-specific expression levels of orthologous imprinted genes in human and mouse are not highly correlated. However, in both species distinctive expression profiles are found in tissues of the endocrine pathways such as adrenal gland, pituitary, pancreas as well as placenta. In mouse, the placental and embryonic expression patterns of imprinted genes are highly similar. Transcription factor binding site (TFBS) prediction reveals correlation of tissue-specific expression patterns and the presence of distinct TFBS signatures in the upstream region of human imprinted genes. Conclusion Imprinted genes are broadly expressed pre- and postnatally and do not exhibit a distinct overall expression pattern when compared to non-imprinted genes. The relative expression of most orthologous gene pairs varies significantly between human and mouse suggesting rapid species-specific changes in gene regulation. Distinct expression profiles of imprinted genes are confined to certain human and mouse hormone producing tissues, and placentae. In contrast to the overall variability, distinct expression profiles and enriched TFBS signatures are found in human and mouse endocrine tissues and placentae. This points towards an important role played by imprinted gene regulation in these tissues. PMID

  12. Nonsense-mediated mRNA decay among coagulation factor genes

    PubMed Central

    Shahbazi, Shirin

    2016-01-01

    Objective(s): Haemostasis prevents blood loss following vascular injury. It depends on the unique concert of events involving platelets and specific blood proteins, known as coagulation factors. The clotting system requires precise regulation and coordinated reactions to maintain the integrity of the vasculature. Clotting insufficiency mostly occurs due to genetically inherited coagulation factor deficiencies such as hemophilia. Materials and Methods: A relevant literature search of PubMed was performed using the keywords coagulation factors, Nonsense-mediated mRNA decay and premature translation termination codons. Search limitations included English language and human-based studies. Results: Mutations that cause premature translation termination codons probably account for one-third of genetically inherited diseases. Transcripts bearing aberrant termination codons are selectively identified and eliminated by an evolutionarily conserved posttranscriptional pathway known as nonsense-mediated mRNA decay (NMD). There are many pieces of evidence of decay among coagulation factor genes. However, the hemophilia gene (F8) does not seem to be subjected to NMD. Since the F8 gene is located on the X-chromosome, a connection between X-linked traits and mRNA decay could be assumed. Conclusion: Considering that not all genes go through decay, this review focuses on the basics of the mechanism in coagulation genes. It is interesting to determine whether this translation-coupled surveillance system represents a general rule for the genes encoding components of the same physiological cascade. PMID:27279976

  13. Regulation of hypoxia-inducible genes by ETS1 transcription factor.

    PubMed

    Salnikow, Konstantin; Aprelikova, Olga; Ivanov, Sergey; Tackett, Sean; Kaczmarek, Monika; Karaczyn, Aldona; Yee, Herman; Kasprzak, Kazimierz S; Niederhuber, John

    2008-08-01

    Hypoxia-inducible factor (HIF-1) regulates the expression of genes that facilitate tumor cell survival by making them more resistant to therapeutic intervention. Recent evidence suggests that the activation of other transcription factors, in cooperation with HIF-1 or acting alone, is involved in the upregulation of hypoxia-inducible genes. Here we report that high cell density, a condition that might mimic the physiologic situation in growing tumor and most probably representing nutritional starvation, upregulates hypoxia-inducible genes. This upregulation can occur in HIF-independent manner since hypoxia-inducible genes carbonic anhydrase 9 (CA9), lysyloxidase like 2 (LOXL2) and n-myc-down regulated 1 (NDRG1)/calcium activated protein (Cap43) can be upregulated by increased cell density under both normoxic and hypoxic conditions in both HIF-1 alpha-proficient and -deficient mouse fibroblasts. Moreover, cell density upregulates the same genes in 1HAEo- and A549 human lung epithelial cells. Searching for other transcription factors involved in the regulation of hypoxia-inducible genes by cell density, we focused our attention on ETS1. As reported previously, members of v-ets erythroblastosis virus E26 oncogene homolog (ETS) family transcription factors participate in the upregulation of hypoxia-inducible genes. Here, we provide evidence that ETS1 protein is upregulated at high cell density in both human and mouse cells. The involvement of ETS1 in the upregulation of hypoxia-inducible genes was further confirmed in a luciferase reporter assay using cotransfection of ETS1 expression vector with NDRG1/Cap43 promoter construct. The downregulation of ETS1 expression with small interfering RNA (siRNA) inhibited the upregulation of CA9 and NDRG1/Cap43 caused by increased cell density. Collectively, our data indicate the involvement of ETS1 along with HIF-1 in regulating hypoxia-inducible genes.

  14. Transcription Factors Encoded on Core and Accessory Chromosomes of Fusarium oxysporum Induce Expression of Effector Genes

    PubMed Central

    van der Does, H. Charlotte; Schmidt, Sarah M.; Langereis, Léon; Hughes, Timothy R.

    2016-01-01

    Proteins secreted by pathogens during host colonization largely determine the outcome of pathogen-host interactions and are commonly called ‘effectors’. In fungal plant pathogens, coordinated transcriptional up-regulation of effector genes is a key feature of pathogenesis and effectors are often encoded in genomic regions with distinct repeat content, histone code and rate of evolution. In the tomato pathogen Fusarium oxysporum f. sp. lycopersici (Fol), effector genes reside on one of four accessory chromosomes, known as the ‘pathogenicity’ chromosome, which can be exchanged between strains through horizontal transfer. The three other accessory chromosomes in the Fol reference strain may also be important for virulence towards tomato. Expression of effector genes in Fol is highly up-regulated upon infection and requires Sge1, a transcription factor encoded on the core genome. Interestingly, the pathogenicity chromosome itself contains 13 predicted transcription factor genes and for all except one, there is a homolog on the core genome. We determined DNA binding specificity for nine transcription factors using oligonucleotide arrays. The binding sites for homologous transcription factors were highly similar, suggesting that extensive neofunctionalization of DNA binding specificity has not occurred. Several DNA binding sites are enriched on accessory chromosomes, and expression of FTF1, its core homolog FTF2 and SGE1 from a constitutive promoter can induce expression of effector genes. The DNA binding sites of only these three transcription factors are enriched among genes up-regulated during infection. We further show that Ftf1, Ftf2 and Sge1 can activate transcription from their binding sites in yeast. RNAseq analysis revealed that in strains with constitutive expression of FTF1, FTF2 or SGE1, expression of a similar set of plant-responsive genes on the pathogenicity chromosome is induced, including most effector genes. We conclude that the Fol

  15. The Transcription Factor FoxK Participates with Nup98 To Regulate Antiviral Gene Expression

    PubMed Central

    Panda, Debasis; Gold, Beth; Tartell, Michael A.; Rausch, Keiko; Casas-Tinto, Sergio

    2015-01-01

    ABSTRACT Upon infection, pathogen recognition leads to a rapidly activated gene expression program that induces antimicrobial effectors to clear the invader. We recently found that Nup98 regulates the expression of a subset of rapidly activated antiviral genes to restrict disparate RNA virus infections in Drosophila by promoting RNA polymerase occupancy at the promoters of these antiviral genes. How Nup98 specifically targets these loci was unclear; however, it is known that Nup98 participates with transcription factors to regulate developmental-gene activation. We reasoned that additional transcription factors may facilitate the Nup98-dependent expression of antiviral genes. In a genome-wide RNA interference (RNAi) screen, we identified a relatively understudied forkhead transcription factor, FoxK, as active against Sindbis virus (SINV) in Drosophila. Here we find that FoxK is active against the panel of viruses that are restricted by Nup98, including SINV and vesicular stomatitis virus (VSV). Mechanistically, we show that FoxK coordinately regulates the Nup98-dependent expression of antiviral genes. Depletion of FoxK significantly reduces Nup98-dependent induction of antiviral genes and reduces the expression of a forkhead response element-containing luciferase reporter. Together, these data show that FoxK-mediated activation of gene expression is Nup98 dependent. We extended our studies to mammalian cells and found that the mammalian ortholog FOXK1 is antiviral against two disparate RNA viruses, SINV and VSV, in human cells. Interestingly, FOXK1 also plays a role in the expression of antiviral genes in mammals: depletion of FOXK1 attenuates virus-inducible interferon-stimulated response element (ISRE) reporter expression. Overall, our results demonstrate a novel role for FOXK1 in regulating the expression of antiviral genes, from insects to humans. PMID:25852164

  16. Direct phylogenetic evidence for lateral transfer of elongation factor-like gene.

    PubMed

    Kamikawa, Ryoma; Inagaki, Yuji; Sako, Yoshihiko

    2008-05-13

    Genes encoding elongation factor-like (EFL) proteins, which show high similarity to elongation factor-1alpha (EF-1alpha), have been found in phylogenetically distantly related eukaryotes. The sporadic distribution of "EFL-containing" lineages within "EF-1alpha-containing" lineages indirectly, but strongly, suggests lateral gene transfer as the principal driving force in EFL evolution. However, one of the most critical aspects in the above hypothesis, the donor lineages in any putative cases of lateral EFL gene transfer, remained unclear. In this study, we provide direct evidence for lateral transfer of an EFL gene through the analyses of 10 diatom EFL genes. All diatom EFL homologues tightly clustered in phylogenetic analyses, suggesting acquisition of the exogenous EFL gene early in diatom evolution. Our survey additionally identified Thalassiosira pseudonana as a eukaryote bearing EF-1alpha and EFL genes and secondary EFL gene loss in Phaeodactylum tricornutum, the complete genome of which encodes only the EF-1alpha gene. Most importantly, the EFL phylogeny recovered a robust grouping of homologues from diatoms, the cercozoan Bigelowiella natans, and the foraminifer Planoglabratella opecularis, with the diatoms nested within the Bigelowiella plus Planoglabratella (Rhizaria) grouping. The particular relationships recovered are further consistent with two characteristic sequence motifs. The best explanation of our data analyses is an EFL gene transfer from a foraminifer to a diatom, the first case in which the donor-recipient relationship was clarified. Finally, based on a reverse transcriptase quantitative PCR assay and the genome information of Thalassiosira and Phaeodactylum, we propose the loss of elongation factor function in Thalassiosira EF-1alpha.

  17. Direct phylogenetic evidence for lateral transfer of elongation factor-like gene

    PubMed Central

    Kamikawa, Ryoma; Inagaki, Yuji; Sako, Yoshihiko

    2008-01-01

    Genes encoding elongation factor-like (EFL) proteins, which show high similarity to elongation factor-1α (EF-1α), have been found in phylogenetically distantly related eukaryotes. The sporadic distribution of “EFL-containing” lineages within “EF-1α-containing” lineages indirectly, but strongly, suggests lateral gene transfer as the principal driving force in EFL evolution. However, one of the most critical aspects in the above hypothesis, the donor lineages in any putative cases of lateral EFL gene transfer, remained unclear. In this study, we provide direct evidence for lateral transfer of an EFL gene through the analyses of 10 diatom EFL genes. All diatom EFL homologues tightly clustered in phylogenetic analyses, suggesting acquisition of the exogenous EFL gene early in diatom evolution. Our survey additionally identified Thalassiosira pseudonana as a eukaryote bearing EF-1α and EFL genes and secondary EFL gene loss in Phaeodactylum tricornutum, the complete genome of which encodes only the EF-1α gene. Most importantly, the EFL phylogeny recovered a robust grouping of homologues from diatoms, the cercozoan Bigelowiella natans, and the foraminifer Planoglabratella opecularis, with the diatoms nested within the Bigelowiella plus Planoglabratella (Rhizaria) grouping. The particular relationships recovered are further consistent with two characteristic sequence motifs. The best explanation of our data analyses is an EFL gene transfer from a foraminifer to a diatom, the first case in which the donor–recipient relationship was clarified. Finally, based on a reverse transcriptase quantitative PCR assay and the genome information of Thalassiosira and Phaeodactylum, we propose the loss of elongation factor function in Thalassiosira EF-1α. PMID:18458344

  18. Virulence factors genes of Staphylococcus spp. isolated from caprine subclinical mastitis.

    PubMed

    Salaberry, Sandra Renata Sampaio; Saidenberg, André Becker Simões; Zuniga, Eveline; Melville, Priscilla Anne; Santos, Franklin Gerônimo Bispo; Guimarães, Ednaldo Carvalho; Gregori, Fábio; Benites, Nilson Roberti

    2015-08-01

    The aim of this study was to investigate genes involved in adhesion expression, biofilm formation, and enterotoxin production in isolates of Staphylococcus spp. from goats with subclinical mastitis and associate these results with the staphylococcal species. One hundred and twenty-four isolates were identified and polymerase chain reaction (PCR) was performed to detect the following genes: cna, ebpS, eno, fib, fnbA, fnbB, bap, sea, seb, sec, sed and see. The most commonly Staphylococcus species included S. epidermidis, S. lugdunensis, S. chromogenes, S. capitis ss capitis and S. intermedius. With the exception of fnbB, the genes were detected in different frequencies of occurrence in 86.3% of the Staphylococcus spp. isolates. Eno (73.2%) and bap (94.8%) were more frequently detected in coagulase-negative staphylococci (CNS); ebpS (76%), fib (90.9%) and fnbA (87%) were the most frequent genes in coagulase-positive staphylococci (CPS). Regarding enterotoxins, genes sed (28.2%) and see (24.2%) had a higher frequency of occurrence; sec gene was more frequently detected in CPS (58.8%). There was no association between the presence of the genes and the Staphylococcus species. Different virulence factors genes can be detected in caprine subclinical mastitis caused by CNS and CPS. The knowledge of the occurrence of these virulence factors is important for the development of effective control and prevention measures of subclinical mastitis caused by CNS and CPS in goats.

  19. Identification, isolation and expression analysis of auxin response factor (ARF) genes in Solanum lycopersicum.

    PubMed

    Wu, Jian; Wang, Feiyan; Cheng, Lin; Kong, Fuling; Peng, Zhen; Liu, Songyu; Yu, Xiaolin; Lu, Gang

    2011-11-01

    Auxin response factors (ARFs) encode transcriptional factors that bind specifically to the TGTCTC-containing auxin response elements found in the promoters of primary/early auxin response genes that regulate plant development. In this study, investigation of the tomato genome revealed 21 putative functional ARF genes (SlARFs), a number comparable to that found in Arabidopsis (23) and rice (25). The full cDNA sequences of 15 novel SlARFs were isolated and delineated by sequencing of PCR products. A comprehensive genome-wide analysis of this gene family is presented, including the gene structures, chromosome locations, phylogeny, and conserved motifs. In addition, a comparative analysis between ARF family genes in tomato and maize was performed. A phylogenetic tree generated from alignments of the full-length protein sequences of 21 OsARFs, 23 AtARFs, 31 ZmARFs, and 21 SlARFs revealed that these ARFs were clustered into four major groups. However, we could not find homologous genes in rice, maize, or tomato with AtARF12-15 and AtARF20-23. The expression patterns of tomato ARF genes were analyzed by quantitative real-time PCR. Our comparative analysis will help to define possible functions for many of these newly isolated ARF-family genes in plant development.

  20. Various Enterotoxin and Other Virulence Factor Genes Widespread Among Bacillus cereus and Bacillus thuringiensis Strains.

    PubMed

    Kim, Min-Ju; Han, Jae-Kwang; Park, Jong-Su; Lee, Jin-Sung; Lee, Soon-Ho; Cho, Joon-Il; Kim, Keun-Sung

    2015-06-01

    Many strains of Bacillus cereus cause gastrointestinal diseases, and the closely related insect pathogen Bacillus thuringiensis has also been involved in outbreaks of diarrhea. The diarrheal diseases are attributed to enterotoxins. Sixteen reference strains of B. cereus and nine commercial and 12 reference strains of B. thuringiensis were screened by PCR for the presence of 10 enterotoxigenic genes (hblA, hblC, hblD, nheA, nheB, nheC, cytK, bceT, entFM, and entS), one emetogenic gene (ces), seven hemolytic genes (hlyA, hlyII, hlyIII, plcA, cerA, cerB, and cerO), and a pleiotropic transcriptional activator gene (plcR). These genes encode various enterotoxins and other virulence factors thought to play a role in infections of mammals. Amplicons were successfully generated from the strains of B. cereus and B. thuringiensis for each of these sequences, except the ces gene. Intriguingly, the majority of these B. cereus enterotoxin genes and other virulence factor genes appeared to be widespread among B. thuringiensis strains as well as B. cereus strains.

  1. Genetic risk factors for arterial ischemic stroke in children: a possible MTHFR and eNOS gene-gene interplay?

    PubMed

    Djordjevic, Valentina; Stankovic, Marija; Brankovic-Sreckovic, Vesna; Rakicevic, Ljiljana; Radojkovic, Dragica

    2009-07-01

    In order to investigate the influence of genetic factors in childhood stroke, we compared the distributions of mutations/ polymorphisms affecting hemostasis and/or endothelial function (factor V [FV] Leiden, factor II [FII] G20210A, methylenetetrahydrofolate reductase [MTHFR] C677T, angiotensin-converting enzyme [ACE] insertion/deletion [ID], and endothelial nitric oxide synthase [eNOS] G894T) among children with stroke and controls. A total number of 26 children with arterial ischemic stroke and a control group of 50 healthy children were included in the study. No statistically significant differences in allelic and genotypic distribution were detected in comparisons between groups. However, when combined genotypes were analyzed, statistical significance was observed for the association of MTHFR CT and eNOS TT gene variants. The results of our study suggest that this genotype combination represents a risk factor of 7.2 (P = .017) for arterial ischemic stroke in children.

  2. Upregulation of the Coagulation Factor VII Gene during Glucose Deprivation Is Mediated by Activating Transcription Factor 4

    PubMed Central

    Cronin, Katherine R.; Mangan, Thomas P.; Carew, Josephine A.

    2012-01-01

    Background Constitutive production of blood coagulation proteins by hepatocytes is necessary for hemostasis. Stressful conditions trigger adaptive cellular responses and delay processing of most proteins, potentially affecting plasma levels of proteins secreted exclusively by hepatocytes. We examined the effect of glucose deprivation on expression of coagulation proteins by the human hepatoma cell line, HepG2. Methodology/Principal Findings Expression of coagulation factor VII, which is required for initiation of blood coagulation, was elevated by glucose deprivation, while expression of other coagulation proteins decreased. Realtime PCR and ELISA demonstrated that the relative percentage expression +/− SD of steady-state F7 mRNA and secreted factor VII antigen were significantly increased (from 100+/−15% to 188+/−27% and 100+/−8.8% to 176.3+/−17.3% respectively, p<0.001) at 24 hr of treatment. The integrated stress response was induced, as indicated by upregulation of transcription factor ATF4 and of additional stress-responsive genes. Small interfering RNAs directed against ATF4 potently reduced basal F7 expression, and prevented F7 upregulation by glucose deprivation. The response of the endogenous F7 gene was replicated in reporter gene assays, which further indicated that ATF4 effects were mediated via interaction with an amino acid response element in the F7 promoter. Conclusions/Significance Our data indicated that glucose deprivation enhanced F7 expression in a mechanism reliant on prior ATF4 upregulation primarily due to increased transcription from the ATF4 gene. Of five coagulation protein genes examined, only F7 was upregulated, suggesting that its functions may be important in a systemic response to glucose deprivation stress. PMID:22848420

  3. Acetylation of RNA polymerase II regulates growth-factor-induced gene transcription in mammalian cells.

    PubMed

    Schröder, Sebastian; Herker, Eva; Itzen, Friederike; He, Daniel; Thomas, Sean; Gilchrist, Daniel A; Kaehlcke, Katrin; Cho, Sungyoo; Pollard, Katherine S; Capra, John A; Schnölzer, Martina; Cole, Philip A; Geyer, Matthias; Bruneau, Benoit G; Adelman, Karen; Ott, Melanie

    2013-11-07

    Lysine acetylation regulates transcription by targeting histones and nonhistone proteins. Here we report that the central regulator of transcription, RNA polymerase II, is subject to acetylation in mammalian cells. Acetylation occurs at eight lysines within the C-terminal domain (CTD) of the largest polymerase subunit and is mediated by p300/KAT3B. CTD acetylation is specifically enriched downstream of the transcription start sites of polymerase-occupied genes genome-wide, indicating a role in early stages of transcription initiation or elongation. Mutation of lysines or p300 inhibitor treatment causes the loss of epidermal growth-factor-induced expression of c-Fos and Egr2, immediate-early genes with promoter-proximally paused polymerases, but does not affect expression or polymerase occupancy at housekeeping genes. Our studies identify acetylation as a new modification of the mammalian RNA polymerase II required for the induction of growth factor response genes.

  4. Organization and chromosomal localization of the human platelet-derived endothelial cell growth factor gene.

    PubMed Central

    Hagiwara, K; Stenman, G; Honda, H; Sahlin, P; Andersson, A; Miyazono, K; Heldin, C H; Ishikawa, F; Takaku, F

    1991-01-01

    Human platelet-derived endothelial cell growth factor (hPD-ECGF) is a novel angiogenic factor which stimulates endothelial cell growth in vitro and promotes angiogenesis in vivo. We report here the cloning and sequencing of the gene for hPD-ECGF and its flanking regions. This gene is composed of 10 exons dispersed over a 4.3-kb region. Its promoter lacks a TATA box and a CCAAT box, structures characteristic of eukaryotic promoters. Instead, six copies of potential Sp1-binding sites (GGGCGG or CCGCCC) were clustered just upstream of the transcription start sites. Southern blot analysis using genomic DNAs from several vertebrates suggested that the gene for PD-ECGF is conserved phylogenetically among vertebrates. The gene for hPD-ECGF was localized to chromosome 22 by analysis of a panel of human-rodent somatic cell hybrid lines. Images PMID:2005900

  5. Transcription activation of a UV-inducible Clostridium perfringens bacteriocin gene by a novel sigma factor.

    PubMed

    Dupuy, Bruno; Mani, Nagraj; Katayama, Seiichi; Sonenshein, Abraham L

    2005-02-01

    Expression of the plasmid-encoded Clostridium perfringens gene for bacteriocin BCN5 was shown to depend in vivo and in vitro on the activity of UviA protein. UviA, also plasmid-encoded, proved to be an RNA polymerase sigma factor and was also partly autoregulatory. The uviA gene has two promoters; one provided a UviA-independent, basal level of gene expression while the stronger, UviA-dependent promoter was only utilized after the cell experienced DNA damage. As a result, BCN5 synthesis is induced by treatment with UV light or mitomycin C. UviA is related to a special class of sigma factors found to date only in Clostridium species and responsible for activating transcription of toxin genes in Clostridium difficile, Clostridium tetani, and Clostridium botulinum.

  6. Polymorphism of the human factor H-related gene (FHR-1) and of factor H in a West African individual

    SciTech Connect

    Meyer, C.G.; Skerka, C.; Zipfel, P.F.

    1995-03-01

    The human factor H-related 1 (FHR-1) protein is structurally and immunogenically related to the regulatory complement protein factor H (FH). Polymorphism of the FHR-1 gene is indicated by the nucleotide differences as described by the five cDNA clones isolated so far. In order to further analyze this polymorphism we identified PCR-primers which allow the simultaneous amplification of FHR-1 and FH alleles in a single polymerase chain reaction (PCR). By DNA sequence analysis, two novel FHR-1 variants and one as yet unrecognized FH allele could be characterized in an individual from Benin, West Africa. 2 refs., 1 fig.

  7. Formal modeling of Gene Ontology annotation predictions based on factor graphs

    NASA Astrophysics Data System (ADS)

    Spetale, Flavio; Murillo, Javier; Tapia, Elizabeth; Arce, Débora; Ponce, Sergio; Bulacio, Pilar

    2016-04-01

    Gene Ontology (GO) is a hierarchical vocabulary for gene product annotation. Its synergy with machine learning classification methods has been widely used for the prediction of protein functions. Current classification methods rely on heuristic solutions to check the consistency with some aspects of the underlying GO structure. In this work we formalize the GO is-a relationship through predicate logic. Moreover, an ontology model based on Forney Factor Graph (FFG) is shown on a general fragment of Cellular Component GO.

  8. Identification of the integration host factor genes of Erwinia chrysanthemi 3937.

    PubMed

    Douillié, A; Toussaint, A; Faelen, M

    1994-01-01

    Two Erwinia chrysanthemi homologues of the himA and himD genes of Escherichia coli which encode the integration host factor (IHF) were cloned, sequenced and compared to their homolog in other enterobacteria (EMBL accession nos X74749 and X74750). Both genes were inactivated by the insertion of an antibiotic resistance cassette, allowing for the isolation of IHF- mutants of E chrysanthemi.

  9. Factors affecting SFHR gene correction efficiency with single-stranded DNA fragment

    SciTech Connect

    Tsuchiya, Hiroyuki; Harashima, Hideyoshi; Kamiya, Hiroyuki . E-mail: hirokam@pharm.hokudai.ac.jp

    2005-11-04

    A 606-nt single-stranded (ss) DNA fragment, prepared by restriction enzyme digestion of ss phagemid DNA, improves the gene correction efficiency by 12-fold as compared with a PCR fragment, which is the conventional type of fragment used in the small fragment homologous replacement method [H. Tsuchiya, H. Harashima, H. Kamiya, Increased SFHR gene correction efficiency with sense single-stranded DNA, J. Gene Med. 7 (2005) 486-493]. To reveal the characteristic features of this gene correction with the ss DNA fragment, the effects on the gene correction in CHO-K1 cells of the chain length, 5'-phosphate, adenine methylation, and transcription were studied. Moreover, the possibility that the ss DNA fragment is integrated into the target DNA was examined with a radioactively labeled ss DNA fragment. The presence of methylated adenine, but not the 5'-phosphate, enhanced the gene correction efficiency, and the optimal length of the ss DNA fragment ({approx}600 nt) was determined. Transcription of the target gene did not affect the gene correction efficiency. In addition, the target DNA recovered from the transfected CHO-K1 cells was radioactive. The results obtained in this study indicate that length and adenine methylation were important factors affecting the gene correction efficiency, and that the ss DNA fragment was integrated into the double-stranded target DNA.

  10. Knockdown of Maternal Homeobox Transcription Factor SEBOX Gene Impaired Early Embryonic Development in Porcine Parthenotes

    PubMed Central

    ZHENG, Zhong; ZHAO, Ming-Hui; JIA, Jia-Lin; HEO, Young-Tae; CUI, Xiang-Shun; OH, Jeong Su; KIM, Nam-Hyung

    2013-01-01

    Abstract A number of germ cell-specific transcription factors essential for ovarian formation and folliculogenesis have been identified and studied. However, the role of these factors during early embryonic development has been poorly explored. In the present study, we investigated the role of SEBOX, a maternal homeobox transcription factor, during early embryonic development in porcine parthenotes. mRNA for SEBOX is preferentially expressed in oocytes, and expression persists until embryonic genome activation (EGA). Knockdown of SEBOX by siRNA disrupted early embryonic development, but not oocyte maturation. Many maternal genes essential for early embryonic development were upregulated in SEBOX-depleted embryos. Moreover, some pluripotency-associated genes, including SOX2 and NANOG, were upregulated when SEBOX was knocked down. Therefore, our data demonstrate that SEBOX is required for early embryonic development in pigs and appears to regulate the degradation of maternal transcripts and the expression of pluripotency genes. PMID:24018616

  11. Knockdown of maternal homeobox transcription factor SEBOX gene impaired early embryonic development in porcine parthenotes.

    PubMed

    Zheng, Zhong; Zhao, Ming-Hui; Jia, Jia-Lin; Heo, Young-Tae; Cui, Xiang-Shun; Oh, Jeong Su; Kim, Nam-Hyung

    2013-12-17

    A number of germ cell-specific transcription factors essential for ovarian formation and folliculogenesis have been identified and studied. However, the role of these factors during early embryonic development has been poorly explored. In the present study, we investigated the role of SEBOX, a maternal homeobox transcription factor, during early embryonic development in porcine parthenotes. mRNA for SEBOX is preferentially expressed in oocytes, and expression persists until embryonic genome activation (EGA). Knockdown of SEBOX by siRNA disrupted early embryonic development, but not oocyte maturation. Many maternal genes essential for early embryonic development were upregulated in SEBOX-depleted embryos. Moreover, some pluripotency-associated genes, including SOX2 and NANOG, were upregulated when SEBOX was knocked down. Therefore, our data demonstrate that SEBOX is required for early embryonic development in pigs and appears to regulate the degradation of maternal transcripts and the expression of pluripotency genes.

  12. A rat gene with sequence homology to the Drosophila gene hairy is rapidly induced by growth factors known to influence neuronal differentiation.

    PubMed Central

    Feder, J N; Jan, L Y; Jan, Y N

    1993-01-01

    Several genes encoding transcription factors with a helix-loop-helix (HLH) motif are involved in the early process of neural development in Drosophila spp. We report the isolation from the rat a homolog of one of these genes, called hairy. The rat-hairy-like (RHL) gene is expressed early during embryogenesis. In contrast to the restricted expression of hairy mRNA in Drosophila spp., however, the mRNA encoded by RHL is detectable in all tissues examined. Stimulation of PC12 pheochromocytoma cells by nerve growth factor, basis fibroblast growth factor, or epidermal growth factor or of Rat-1 fibroblasts by epidermal growth factor causes a rapid and transient induction of the RHL gene. Thus, RHL acts as an immediate-early gene that can potentially transduce growth factor signals during the development of the mammalian embryo. Images PMID:8417318

  13. Molecular typing, pathogenicity factor genes and antimicrobial susceptibility of vancomycin resistant enterococci in Belgrade, Serbia.

    PubMed

    Jovanović, Milica; Milošević, Branko; Tošić, Tanja; Stevanović, Goran; Mioljević, Vesna; Inđić, Nikola; Velebit, Branko; Zervos, Marcus

    2015-06-01

    In this study the distribution of species and antimicrobial resistance among vancomycin resistant enterococci (VRE) recovered from clinical specimens obtained from five hospitals in Belgrade was analyzed. Strains were further characterized by pulsed-field gel electrophoresis (PFGE). Polymerase chain reaction (PCR) was used to investigate the presence of vanA and vanB genes and pathogenicity factor genes. Identification of 194 VRE isolates revealed 154 Enterococcus faecium, 21 Enterococcus faecalis, 10 Enterococcus raffinosus and 9 Enterococcus gallinarum. This study revealed existence of 8 major clones of VRE. PCR determined vanA gene to be present in all of the VRE studied. Esp and hyl genes were present in 29.22% and 27.92% of E. faecium, respectively, and in 76.19% and 0 of E. faecalis, respectively. Esp and hyl genes were not found more frequently in members of predominant clones of E. faecium than in single isolates; nor was their presence connected to invasiveness.

  14. Localization and characterization of the human ADP-ribosylation factor 5 (ARF5) gene

    SciTech Connect

    McGuire, R.E. |; Daiger, S.P.; Green, E.D.

    1997-05-01

    ADP-ribosylation factor 5 (ARF5) is a member of the ARF gene family. The ARF proteins stimulate the in vitro ADP-ribosyltransferase activity of cholera toxin and appear to play a role in vesicular trafficking in vivo. We have mapped ARF5, one of the six known mammalian ARF genes, to a well-defined yeast artificial chromosome contig on human chromosome 7q31.3. In addition, we have isolated and sequenced an {approximately}3.2-kb genomic segment that contains the entire ARF5 coding region, revealing the complete intron-exon structure of the gene. With six coding exons and five introns, the genomic structure of ARF5 is unique among the mammalian ARF genes and provides insight about the evolutionary history of this ancient gene family. 20 refs., 2 figs., 1 tab.

  15. Epidermal growth factor receptor gene amplification and protein expression in glioblastoma multiforme: prognostic significance and relationship to other prognostic factors.

    PubMed

    Layfield, Lester J; Willmore, Carlynn; Tripp, Sheryl; Jones, Claudia; Jensen, Randy L

    2006-03-01

    Epidermal growth factor receptor (EGFR) overexpression occurs in a significant percentage of cases of glioblastoma multiforme (GBM), and amplification has been found in approximately 40% of these neoplasms. Controversy exists as to the prognostic significance of EGFR gene amplification: some reports have indicated that amplification is associated with a poor prognosis, while other authors have reported no relationship between gene amplification and prognosis. Some reports have found a poor prognosis to be associated with amplification of the EGFR gene in patients of all ages with GBM, while other authors have found EGFR amplification to be an independent predictor of prolonged survival in patients with GBM who are older than 60 years of age. The authors studied a series of 34 specimens (32 patients) with histologically proven GBM by immunohistochemistry for the presence of EGFR overexpression and by fluorescence in situ hybridization (FISH) for gene amplification of the EGFR gene. Results of these studies and data on patient age, sex, functional status, therapy, and survival were correlated to determine which variables were predictive of survival. p53 expression was also determined by immunohistochemistry and correlated with the other variables and survival.

  16. Expression of insulin-like growth factor family genes in clear cell renal cell carcinoma

    PubMed Central

    Białożyt, Michał; Plato, Marta; Mazurek, Urszula; Braczkowska, Bogumiła

    2016-01-01

    Aim of the study Despite significant progress in the pathology of clear cell renal cell carcinoma (ccRCC), diagnostic and predictive factors of major importance have not been discovered. Some hopes are associated with insulin-like growth factors. The aim of the study was to compare the expression of genes for insulin-like growth factor family in tumours and in tissue of kidneys without cancer. Material and methods Fifty-two patients years with clear cell renal cell cancer were qualified to the study group; patients nephrectomised because of hydronephrosis were included in the control group. Expression of genes were evaluated by RT-PCR. Results Expression of IGFR-1 gene in tumour accounts for about 60% of cases. The incidence is higher than in corresponding adjacent non-cancerous kidney tissues and higher (but with no statistical significance) than in kidney without cancer. Expression of IGFR-2 gene in tumours has not been established. The incidence of the expression in corresponding adjacent non-cancerous kidney tissues is small. Expression of this gene has been present in all specimens from kidneys without cancer. Expression of IGFBP-3 gene ascertained in all (except four) cases of ccRCC and in the majority of clippings from adjacent tissue. It was not found in kidneys from the control group. IGF-1, IGF-2, and IGFR-1 mRNA copy numbers in ccRCC were higher than in the material from the control group PMID:27358591

  17. Search for regulatory factors of the pituitary-specific transcription factor PROP1 gene

    PubMed Central

    NISHIMURA, Naoto; UEHARU, Hiroki; NISHIHARA, Hiroto; SHIBUYA, Shiori; YOSHIDA, Saishu; HIGUCHI, Masashi; KANNO, Naoko; HORIGUCHI, Kotaro; KATO, Takako; KATO, Yukio

    2015-01-01

    Pituitary-specific transcription factor PROP1, a factor important for pituitary organogenesis, appears on rat embryonic day 11.5 (E11.5) in SOX2-expressing stem/progenitor cells and always coexists with SOX2 throughout life. PROP1-positive cells at one point occupy all cells in Rathke’s pouch, followed by a rapid decrease in their number. Their regulatory factors, except for RBP-J, have not yet been clarified. This study aimed to use the 3 kb upstream region and 1st intron of mouse prop1 to pinpoint a group of factors selected on the basis of expression in the early pituitary gland for expression of Prop1. Reporter assays for SOX2 and RBP-J showed that the stem/progenitor marker SOX2 has cell type-dependent inhibitory and activating functions through the proximal and distal upstream regions of Prop1, respectively, while RBP-J had small regulatory activity in some cell lines. Reporter assays for another 39 factors using the 3 kb upstream regions in CHO cells ultimately revealed that 8 factors, MSX2, PAX6, PIT1, PITX1, PITX2, RPF1, SOX8 and SOX11, but not RBP-J, regulate Prop1 expression. Furthermore, a synergy effect with SOX2 was observed for an additional 10 factors, FOXJ1, HES1, HEY1, HEY2, KLF6, MSX1, RUNX1, TEAD2, YBX2 and ZFP36Ll, which did not show substantial independent action. Thus, we demonstrated 19 candidates, including SOX2, to be regulatory factors of Prop1 expression. PMID:26640231

  18. Intracranial aneurysm risk factor genes: relationship with intracranial aneurysm risk in a Chinese Han population.

    PubMed

    Zhang, L T; Wei, F J; Zhao, Y; Zhang, Z; Dong, W T; Jin, Z N; Gao, F; Gao, N N; Cai, X W; Li, N X; Wei, W; Xiao, F S; Yue, S Y; Zhang, J N; Yang, S Y; Li, W D; Yang, X Y

    2015-06-18

    Few studies have examined the genes related to risk fac-tors that may contribute to intracranial aneurysms (IAs). This study in Chinese patients aimed to explore the relationship between IA and 28 gene loci, proven to be associated with risk factors for IA. We recruited 119 patients with aneurysms and 257 controls. Single factor and logistic regression models were used to analyze the association of IA and IA rup-ture with risk factors. Twenty-eight single nucleotide polymorphisms (SNPs) in 22 genes were genotyped for the patient and control groups. SNP genotypes and allele frequencies were analyzed by the chi-square test. Logistic regression analysis identified hypertension as a factor that increased IA risk (P = 1.0 x 10(-4); OR, 2.500; 95%CI, 1.573-3.972); IA was associated with two SNPs in the TSLC2A9 gene: rs7660895 (P = 0.007; OR, 1.541; 95%CI, 1.126-2.110); and in the TOX gene: rs11777927 (P = 0.013; OR, 1.511; 95%CI, 1.088-2.098). Subsequent removal of the influence of family relationship identified between 12 of 119 patients enhanced the significant association of these SNPs with IA (P = 0.001; OR, 1.691; 95%CI, 1.226-2.332; and P = 0.006; OR, 1.587; 95%CI, 1.137-2.213 for rs7660895 and rs11777927, respectively). Fur-thermore, the minor allele of rs7660895 (A) was also associated with IA rupture (P = 0.007; OR, 2.196; 95%CI, 1.230-3.921). Therefore, hypertension is an independent risk factor for IA. Importantly, the TSL-C2A9 (rs7660895) and TOX (rs11777927) gene polymorphisms may be associated with formation of IAs, and rs7660895 may be associated with IA rupture.

  19. Proteinase and Growth Factor Alterations Revealed by Gene Microarray Analysis of Human Diabetic Corneas

    PubMed Central

    Saghizadeh, Mehrnoosh; Kramerov, Andrei A.; Tajbakhsh, Jian; Aoki, Annette M.; Wang, Charles; Chai, Ning-Ning; Ljubimova, Julia Y.; Sasaki, Takako; Sosne, Gabriel; Carlson, Marc R. J.; Nelson, Stanley F.

    2005-01-01

    PURPOSE. To identify proteinases and growth factors abnormally expressed in human corneas of donors with diabetic retinopathy (DR), additional to previously described matrix metalloproteinase (MMP)-10 and -3 and insulin-like growth factor (IGF)-I. METHODS. RNA was isolated from 35 normal, diabetic, and DR autopsy human corneas ex vivo or after organ culture. Amplified cRNA was analyzed using 22,000-gene microarrays (Agi-lent Technologies, Palo Alto, CA). Gene expression in each diabetic corneal cRNA was assessed against pooled cRNA from 7 to 9 normal corneas. Select differentially expressed genes were validated by quantitative real-time RT-PCR (QPCR) and immunohistochemistry. Organ cultures were treated with a cathepsin inhibitor, cystatin C, or MMP-10. RESULTS. More than 100 genes were upregulated and 2200 were downregulated in DR corneas. Expression of cathepsin F and hepatocyte growth factor (HGF) genes was increased in ex vivo and organ-cultured DR corneas compared with normal corneas. HGF receptor c-met, fibroblast growth factor (FGF)-3, its receptor FGFR3, tissue inhibitor of metalloproteinase (TIMP)-4, laminin α4 chain, and thymosin β4 genes were down-regulated. The data were corroborated by QPCR and immuno-histochemistry analyses; main changes of these components occurred in corneal epithelium. In organ-cultured DR corneas, cystatin C increased laminin-10 and integrin α3β1, whereas in normal corneas MMP-10 decreased laminin-10 and integrin α3β1 expression. CONCLUSIONS. Elevated cathepsin F and the ability of its inhibitor to produce a more normal phenotype in diabetic corneas suggest increased proteolysis in these corneas. Proteinase changes may result from abnormalities of growth factors, such as HGF and FGF-3, in DR corneas. Specific modulation of proteinases and growth factors could reduce diabetic corneal epitheliopathy. PMID:16186340

  20. Differential usage of signal transduction pathways defines two types of serum response factor target gene.

    PubMed

    Gineitis, D; Treisman, R

    2001-07-06

    Activation of the transcription factor serum response factor (SRF) is dependent on Rho-controlled changes in actin dynamics. We used pathway-specific inhibitors to compare the roles of actin dynamics, extracellular signal-regulated kinase (ERK) signaling, and phosphatidylinositol 3-kinase in signaling either to SRF itself or to four cellular SRF target genes. Serum, lysophosphatidic acid, platelet-derived growth factor, and phorbol 12-myristate 13-acetate (PMA) each activated transcription of a stably integrated SRF reporter gene dependent on functional RhoA GTPase. Inhibition of mitogen-activated protein kinase-ERK kinase (MEK) signalling reduced activation of the SRF reporter by all stimuli by about 50%, except for PMA, which was effectively blocked. Inhibition of phosphatidylinositol 3-kinase slightly reduced reporter activation by serum and lysophosphatidic acid but substantially inhibited activation by platelet-derived growth factor and PMA. Reporter induction by all stimuli was absolutely dependent on actin dynamics. Regulation of the SRF (srf) and vinculin (vcl) genes was similar to that of the SRF reporter gene; activation by all stimuli was Rho-dependent and required actin dynamics but was largely independent of MEK activity. In contrast, activation of fos and egr1 occurred independently of RhoA and actin polymerization but was almost completely dependent on MEK activation. These results show that at least two classes of SRF target genes can be distinguished on the basis of their relative sensitivity to RhoA-actin and MEK-ERK signaling pathways.

  1. Identification and Network-Enabled Characterization of Auxin Response Factor Genes in Medicago truncatula

    PubMed Central

    Burks, David J.; Azad, Rajeev K.

    2016-01-01

    The Auxin Response Factor (ARF) family of transcription factors is an important regulator of environmental response and symbiotic nodulation in the legume Medicago truncatula. While previous studies have identified members of this family, a recent spurt in gene expression data coupled with genome update and reannotation calls for a reassessment of the prevalence of ARF genes and their interaction networks in M. truncatula. We performed a comprehensive analysis of the M. truncatula genome and transcriptome that entailed search for novel ARF genes and the co-expression networks. Our investigation revealed 8 novel M. truncatula ARF (MtARF) genes, of the total 22 identified, and uncovered novel gene co-expression networks as well. Furthermore, the topological clustering and single enrichment analysis of several network models revealed the roles of individual members of the MtARF family in nitrogen regulation, nodule initiation, and post-embryonic development through a specialized protein packaging and secretory pathway. In summary, this study not just shines new light on an important gene family, but also provides a guideline for identification of new members of gene families and their functional characterization through network analyses. PMID:28018393

  2. Environmental factors influencing gene transfer agent (GTA) mediated transduction in the subtropical ocean.

    PubMed

    McDaniel, Lauren D; Young, Elizabeth C; Ritchie, Kimberly B; Paul, John H

    2012-01-01

    Microbial genomic sequence analyses have indicated widespread horizontal gene transfer (HGT). However, an adequate mechanism accounting for the ubiquity of HGT has been lacking. Recently, high frequencies of interspecific gene transfer have been documented, catalyzed by Gene Transfer Agents (GTAs) of marine α-Proteobacteria. It has been proposed that the presence of bacterial genes in highly purified viral metagenomes may be due to GTAs. However, factors influencing GTA-mediated gene transfer in the environment have not yet been determined. Several genomically sequenced strains containing complete GTA sequences similar to Rhodobacter capsulatus (RcGTA, type strain) were screened to ascertain if they produced putative GTAs, and at what abundance. Five of nine marine strains screened to date spontaneously produced virus-like particles (VLP's) in stationary phase. Three of these strains have demonstrated gene transfer activity, two of which were documented by this lab. These two strains Roseovarius nubinhibens ISM and Nitratireductor 44B9s, were utilized to produce GTAs designated RnGTA and NrGTA and gene transfer activity was verified in culture. Cell-free preparations of purified RnGTA and NrGTA particles from marked donor strains were incubated with natural microbial assemblages to determine the level of GTA-mediated gene transfer. In conjunction, several ambient environmental parameters were measured including lysogeny indicated by prophage induction. GTA production in culture systems indicated that approximately half of the strains produced GTA-like particles and maximal GTA counts ranged from 10-30% of host abundance. Modeling of GTA-mediated gene transfer frequencies in natural samples, along with other measured environmental variables, indicated a strong relationship between GTA mediated gene transfer and the combined factors of salinity, multiplicity of infection (MOI) and ambient bacterial abundance. These results indicate that GTA-mediated HGT in the

  3. [Experimental approach to the gene therapy of motor neuron disease with the use of genes hypoxia-inducible factors].

    PubMed

    Ismailov, Sh M; Barykova, Iu A; Shmarov, M M; Tarantul, V Z; Barskov, I V; Kucherianu, V G; Brylev, L V; Logunov, D Iu; Tutykhina, I L; Bocharov, E V; Zakharova, M N; Naroditskiĭ, B S; Illarioshkin, S N

    2014-05-01

    Motor neuron disease (MND), or amyotrophic lateral sclerosis, is a fatal neurodegenerative disorder characterized by a progressive loss of motor neurons in the spinal cord and the brain. Several angiogenic and neurogenic growth factors, such as the vascular endothelial growth factor (VEGF), angiogenin (ANG), insulin-like growth factor (IGF) and others, have been shown to promote survival of the spinal motor neurons during ischemia. We constructed recombinant vectors using human adenovirus 5 (Ad5) carrying the VEGF, ANG or IGF genes under the control of the cytomegalovirus promoter. As a model for MND, we employed a transgenic mice strain, B6SJL-Tg (SOD1*G93A)d11 Gur/J that develops a progressive degeneration of the spinal motor neurons caused by the expression of a mutated Cu/Zn superoxide dismutase gene SOD1. Delivery of the therapeutic genes to the spinal motor neurons was done using the effect of the retrograde axonal transport after multiple injections of the Ad5-VEGF, Ad5-ANG and Ad5-IGF vectors and their combinations into the limbs and back muscles of the SOD1(G93A) mice. Viral transgene expression in the spinal cord motor neurons was confirmed by immunocytochemistry and RT-RCR. We assessed the neurological status, motor activity and lifespan of experimental and control animal groups. We discovered that SOD1(G93A) mice injected with the Ad5-VEGF + Ad5-ANG combination showed a 2-3 week delay in manifestation of the disease, higher motor activity at the advanced stages of the disease, and at least a 10% increase in the lifespan compared to the control and other experimental groups. These results support the safety and therapeutic efficacy of the tested recombinant treatment. We propose that the developed experimental MND treatment based on viral delivery of VEGF + ANG can be used as a basis for gene therapy drug development and testing in the preclinical and clinical trials of the MND.

  4. Linkage and evolutionary relationships of the genes for human clotting factors VII and X

    SciTech Connect

    Polumbo, P.A.; Dierwechter, L.M.; Whitesides, L.D.

    1994-09-01

    Factors VII and X are structurally similar serine proteases which are involved in blood coagulation. The gene for factor X (F10) has been previously mapped to human chromosome 13q34 by in situ hybridization and DNA linkage analysis, and both F10 and the gene for factor VII (F7) have been mapped to this region by dosage studies in patients with chromosomal aneuploidies. We have determined the genetic distance between F7 and F10 using PCR-based polymorphisms and DNA linkage analysis. The F7 locus lies 6 centiMorgans proximal to F10, and the most likely locus order is D13S123-[D13S107/D13S52]-F7-D13S49-D13S54-F10. F7 and F10 share 52% sequence homology in their coding regions, and their exonic organization is identical to the genes for factor IX and protein C. DNA sequence analysis using the neighbor-joining method confirms the evolution of F7 and F10 from a common ancestral gene, but the analysis suggests that one did not arise directly from the other by tandem duplication on chromosome 13. These data contribute to our knowledge of the evolution of the family of vitamin K-dependent serine proteases, and should prove useful in studying families with inherited deficiencies in factor VII or X.

  5. Gene Regulation by the AGL15 Transcription Factor Reveals Hormone Interactions in Somatic Embryogenesis1[OPEN

    PubMed Central

    Zheng, Qiaolin; Zheng, Yumei; Ji, Huihua; Burnie, Whitney

    2016-01-01

    The MADS box transcription factor Arabidopsis (Arabidopsis thaliana) AGAMOUS-LIKE15 (AGL15) and a putative ortholog from soybean (Glycine max), GmAGL15, are able to promote somatic embryogenesis (SE) in these plants when ectopically expressed. SE is an important means of plant regeneration, but many plants, or even particular cultivars, are recalcitrant for this process. Understanding how (Gm)AGL15 promotes SE by identifying and characterizing direct and indirect downstream regulated genes can provide means to improve regeneration by SE for crop improvement and to perform molecular tests of genes. Conserved transcription factors and the genes they regulate in common between species may provide the most promising avenue to identify targets for SE improvement. We show that (Gm)AGL15 negatively regulates auxin signaling in both Arabidopsis and soybean at many levels of the pathway, including the repression of AUXIN RESPONSE FACTOR6 (ARF6) and ARF8 and TRANSPORT INHIBITOR RESPONSE1 as well as the indirect control of components via direct expression of a microRNA-encoding gene. We demonstrate interaction between auxin and gibberellic acid in the promotion of SE and document an inverse correlation between bioactive gibberellic acid and SE in soybean, a difficult crop to transform. Finally, we relate hormone accumulation to transcript accumulation of important soybean embryo regulatory factors such as ABSCISIC ACID INSENSITIVE3 and FUSCA3 and provide a working model of hormone and transcription factor interaction in the control of SE. PMID:27794101

  6. Preimplantation embryo-secreted factors modulate maternal gene expression in rat uterus.

    PubMed

    Yamagami, Kazuki; Islam, M Rashedul; Yoshii, Yuka; Mori, Kazuki; Tashiro, Kosuke; Yamauchi, Nobuhiko

    2016-05-01

    In mammalian reproduction, embryo implantation into the uterus is spatiotemporally regulated by a complex process triggered by a number of factors. Although previous studies have suggested that uterine receptivity is mediated by blastocyst-derived factors, specific functions of embryos remain to be defined during preimplantation. Therefore, the present study was conducted to identify the maternal genes regulated by embryo-secreted factors in the rat uterus. RNA-sequencing (RNA-seq) data revealed that 10 genes are up-regulated in the delayed implantation uterus compared with the pseudopregnancy uterus. The RNA-seq results were further verified by real-time quantitative polymerase chain reaction. Sulf1 expression is significantly (P < 0.05) induced in the delayed implantation uterus, although Areg, Calca, Fxyd4 and Lamc3 show a definite but non-statistically significant increase in their expression levels. During early pregnancy, the levels of Areg, Calca, Fxyd4, Lamc3 and Sulf1 expression at 3.5 days post coitus (dpc) are significantly (P < 0.05) higher than those at 1.5 dpc. Treatment with embryo-conditioned media revealed that Lamc3 and Sulf1 are up-regulated compared with the other genes studied. Thus, embryo-derived factors regulate maternal gene expression, with Lamc3 and Sulf1 possibly being suitable markers for a response study of embryo-secreted factors to improve our understanding of embryo-maternal communication.

  7. E2F Transcription Factors Control the Roller Coaster Ride of Cell Cycle Gene Expression.

    PubMed

    Thurlings, Ingrid; de Bruin, Alain

    2016-01-01

    Initially, the E2F transcription factor was discovered as a factor able to bind the adenovirus E2 promoter and activate viral genes. Afterwards it was shown that E2F also binds to promoters of nonviral genes such as C-MYC and DHFR, which were already known at that time to be important for cell growth and DNA metabolism, respectively. These findings provided the first clues that the E2F transcription factor might be an important regulator of the cell cycle. Since this initial discovery in 1987, several additional E2F family members have been identified, and more than 100 targets genes have been shown to be directly regulated by E2Fs, the majority of these are important for controlling the cell cycle. The progression of a cell through the cell cycle is accompanied with the increased expression of a specific set of genes during one phase of the cell cycle and the decrease of the same set of genes during a later phase of the cell cycle. This roller coaster ride, or oscillation, of gene expression is essential for the proper progression through the cell cycle to allow accurate DNA replication and cell division. The E2F transcription factors have been shown to be critical for the temporal expression of the oscillating cell cycle genes. This review will focus on how the oscillation of E2Fs and their targets is regulated by transcriptional, post-transcriptional and post-translational mechanism in mammals, yeast, flies, and worms. Furthermore, we will discuss the functional impact of E2Fs on the cell cycle progression and outline the consequences when E2F expression is disturbed.

  8. The Role of Transcription Factors at Antisense-Expressing Gene Pairs in Yeast.

    PubMed

    Mostovoy, Yulia; Thiemicke, Alexander; Hsu, Tiffany Y; Brem, Rachel B

    2016-06-27

    Genes encoded close to one another on the chromosome are often coexpressed, by a mechanism and regulatory logic that remain poorly understood. We surveyed the yeast genome for tandem gene pairs oriented tail-to-head at which expression antisense to the upstream gene was conserved across species. The intergenic region at most such tandem pairs is a bidirectional promoter, shared by the downstream gene mRNA and the upstream antisense transcript. Genomic analyses of these intergenic loci revealed distinctive patterns of transcription factor regulation. Mutation of a given transcription factor verified its role as a regulator in trans of tandem gene pair loci, including the proximally initiating upstream antisense transcript and downstream mRNA and the distally initiating upstream mRNA. To investigate cis-regulatory activity at such a locus, we focused on the stress-induced NAD(P)H dehydratase YKL151C and its downstream neighbor, the metabolic enzyme GPM1 Previous work has implicated the region between these genes in regulation of GPM1 expression; our mutation experiments established its function in rich medium as a repressor in cis of the distally initiating YKL151C sense RNA, and an activator of the proximally initiating YKL151C antisense RNA. Wild-type expression of all three transcripts required the transcription factor Gcr2. Thus, at this locus, the intergenic region serves as a focal point of regulatory input, driving antisense expression and mediating the coordinated regulation of YKL151C and GPM1 Together, our findings implicate transcription factors in the joint control of neighboring genes specialized to opposing conditions and the antisense transcripts expressed between them.

  9. The Role of Transcription Factors at Antisense-Expressing Gene Pairs in Yeast

    PubMed Central

    Mostovoy, Yulia; Thiemicke, Alexander; Hsu, Tiffany Y.; Brem, Rachel B.

    2016-01-01

    Genes encoded close to one another on the chromosome are often coexpressed, by a mechanism and regulatory logic that remain poorly understood. We surveyed the yeast genome for tandem gene pairs oriented tail-to-head at which expression antisense to the upstream gene was conserved across species. The intergenic region at most such tandem pairs is a bidirectional promoter, shared by the downstream gene mRNA and the upstream antisense transcript. Genomic analyses of these intergenic loci revealed distinctive patterns of transcription factor regulation. Mutation of a given transcription factor verified its role as a regulator in trans of tandem gene pair loci, including the proximally initiating upstream antisense transcript and downstream mRNA and the distally initiating upstream mRNA. To investigate cis-regulatory activity at such a locus, we focused on the stress-induced NAD(P)H dehydratase YKL151C and its downstream neighbor, the metabolic enzyme GPM1. Previous work has implicated the region between these genes in regulation of GPM1 expression; our mutation experiments established its function in rich medium as a repressor in cis of the distally initiating YKL151C sense RNA, and an activator of the proximally initiating YKL151C antisense RNA. Wild-type expression of all three transcripts required the transcription factor Gcr2. Thus, at this locus, the intergenic region serves as a focal point of regulatory input, driving antisense expression and mediating the coordinated regulation of YKL151C and GPM1. Together, our findings implicate transcription factors in the joint control of neighboring genes specialized to opposing conditions and the antisense transcripts expressed between them. PMID:27190003

  10. A Homeodomain Transcription Factor Gene, PfMSX, Activates Expression of Pif Gene in the Pearl Oyster Pinctada fucata

    PubMed Central

    Zhao, Mi; He, Maoxian; Huang, Xiande; Wang, Qi

    2014-01-01

    We reported pearl oyster Pinctada fucata cDNA and genomic characterization of a new homeobox-containing protein, PfMSX. The PfMSX gene encodes a transcription factor that was localized to the nucleus. Analyses of PfMSX mRNA in tissues and developmental stages showed high expressions in mantle or D-shaped larvae. In electrophoretic mobility shift assays (EMSAs) PfMSX binded to MSX consensus binding sites in the 5′ flanking region of the Pif promoter. In co-transfection experiment PfMSX transactivated reporter constructs containing Pif promoter sequences, and mutation of the MSX-binding sites attenuated transactivation. A knockdown experiment using PfMSX dsRNA showed decreased Pif mRNA and unregular crystallization of the nacreous layer using scanning electron microscopy. Our results suggested that PfMSX was a conserved homeodomain transcription factor gene, which can activate Pif gene expression through MSX binding site, and was then involved in the mineralization process in pearl oyster Pinctada fucata. Our data provided important clues about mechanisms regulating biomineralization in pearl oyster. PMID:25099698

  11. Associating transcription factor-binding site motifs with target GO terms and target genes

    PubMed Central

    Bodén, Mikael; Bailey, Timothy L.

    2008-01-01

    The roles and target genes of many transcription factors (TFs) are still unknown. To predict the roles of TFs, we present a computational method for associating Gene Ontology (GO) terms with TF-binding motifs. The method works by ranking all genes as potential targets of the TF, and reporting GO terms that are significantly associated with highly ranked genes. We also present an approach, whereby these predicted GO terms can be used to improve predictions of TF target genes. This uses a novel gene-scoring function that reflects the insight that genes annotated with GO terms predicted to be associated with the TF are more likely to be its targets. We construct validation sets of GO terms highly associated with known targets of various yeast and human TF. On the yeast reference sets, our prediction method identifies at least one correct GO term for 73% of the TF, 49% of the correct GO terms are predicted and almost one-third of the predicted GO terms are correct. Results on human reference sets are similarly encouraging. Validation of our target gene prediction method shows that its accuracy exceeds that of simple motif scanning. PMID:18544606

  12. Evolution by gene duplication of Medicago truncatula PISTILLATA-like transcription factors.

    PubMed

    Roque, Edelín; Fares, Mario A; Yenush, Lynne; Rochina, Mari Cruz; Wen, Jiangqi; Mysore, Kirankumar S; Gómez-Mena, Concepción; Beltrán, José Pío; Cañas, Luis A

    2016-03-01

    PISTILLATA (PI) is a member of the B-function MADS-box gene family, which controls the identity of both petals and stamens in Arabidopsis thaliana. In Medicago truncatula (Mt), there are two PI-like paralogs, known as MtPI and MtNGL9. These genes differ in their expression patterns, but it is not known whether their functions have also diverged. Describing the evolution of certain duplicated genes, such as transcription factors, remains a challenge owing to the complex expression patterns and functional divergence between the gene copies. Here, we report a number of functional studies, including analyses of gene expression, protein-protein interactions, and reverse genetic approaches designed to demonstrate the respective contributions of each M. truncatula PI-like paralog to the B-function in this species. Also, we have integrated molecular evolution approaches to determine the mode of evolution of Mt PI-like genes after duplication. Our results demonstrate that MtPI functions as a master regulator of B-function in M. truncatula, maintaining the overall ancestral function, while MtNGL9 does not seem to have a role in this regard, suggesting that the pseudogenization could be the functional evolutionary fate for this gene. However, we provide evidence that purifying selection is the primary evolutionary force acting on this paralog, pinpointing the conservation of its biochemical function and, alternatively, the acquisition of a new role for this gene.

  13. Discovering gene functional relationships using FAUN (Feature Annotation Using Nonnegative matrix factorization)

    PubMed Central

    2010-01-01

    Background Searching the enormous amount of information available in biomedical literature to extract novel functional relationships among genes remains a challenge in the field of bioinformatics. While numerous (software) tools have been developed to extract and identify gene relationships from biological databases, few effectively deal with extracting new (or implied) gene relationships, a process which is useful in interpretation of discovery-oriented genome-wide experiments. Results In this study, we develop a Web-based bioinformatics software environment called FAUN or Feature Annotation Using Nonnegative matrix factorization (NMF) to facilitate both the discovery and classification of functional relationships among genes. Both the computational complexity and parameterization of NMF for processing gene sets are discussed. FAUN is tested on three manually constructed gene document collections. Its utility and performance as a knowledge discovery tool is demonstrated using a set of genes associated with Autism. Conclusions FAUN not only assists researchers to use biomedical literature efficiently, but also provides utilities for knowledge discovery. This Web-based software environment may be useful for the validation and analysis of functional associations in gene subsets identified by high-throughput experiments. PMID:20946597

  14. Transcription factor genes essential for cell proliferation and replicative lifespan in budding yeast

    SciTech Connect

    Kamei, Yuka; Tai, Akiko; Dakeyama, Shota; Yamamoto, Kaori; Inoue, Yamato; Kishimoto, Yoshifumi; Ohara, Hiroya; Mukai, Yukio

    2015-07-31

    Many of the lifespan-related genes have been identified in eukaryotes ranging from the yeast to human. However, there is limited information available on the longevity genes that are essential for cell proliferation. Here, we investigated whether the essential genes encoding DNA-binding transcription factors modulated the replicative lifespan of Saccharomyces cerevisiae. Heterozygous diploid knockout strains for FHL1, RAP1, REB1, and MCM1 genes showed significantly short lifespan. {sup 1}H-nuclear magnetic resonance analysis indicated a characteristic metabolic profile in the Δfhl1/FHL1 mutant. These results strongly suggest that FHL1 regulates the transcription of lifespan related metabolic genes. Thus, heterozygous knockout strains could be the potential materials for discovering further novel lifespan genes. - Highlights: • Involvement of yeast TF genes essential for cell growth in lifespan was evaluated. • The essential TF genes, FHL1, RAP1, REB1, and MCM1, regulate replicative lifespan. • Heterozygous deletion of FHL1 changes cellular metabolism related to lifespan.

  15. Genome-wide transcription factor gene prediction and their expressional tissue-specificities in maize.

    PubMed

    Jiang, Yi; Zeng, Biao; Zhao, Hainan; Zhang, Mei; Xie, Shaojun; Lai, Jinsheng

    2012-09-01

    Transcription factors (TFs) are important regulators of gene expression. To better understand TF-encoding genes in maize (Zea mays L.), a genome-wide TF prediction was performed using the updated B73 reference genome. A total of 2298 TF genes were identified, which can be classified into 56 families. The largest family, known as the MYB superfamily, comprises 322 MYB and MYB-related TF genes. The expression patterns of 2 014 (87.64%) TF genes were examined using RNA-seq data, which resulted in the identification of a subset of TFs that are specifically expressed in particular tissues (including root, shoot, leaf, ear, tassel and kernel). Similarly, 98 kernel-specific TF genes were further analyzed, and it was observed that 29 of the kernel-specific genes were preferentially expressed in the early kernel developmental stage, while 69 of the genes were expressed in the late kernel developmental stage. Identification of these TFs, particularly the tissue-specific ones, provides important information for the understanding of development and transcriptional regulation of maize.

  16. Genes, epigenetic regulation and environmental factors: which is the most relevant in developing autoimmune diseases?

    PubMed

    Costenbader, Karen H; Gay, Steffen; Alarcón-Riquelme, Marta E; Iaccarino, Luca; Doria, Andrea

    2012-06-01

    Autoimmune diseases such as rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis and inflammatory bowel disease, have complex pathogeneses and likely multifactorial etiologies. The current paradigm for understanding their development is that the disease is triggered in genetically-susceptible individuals by exposure to environmental factors. Some of these environmental factors have been specifically identified, while others are hypothesized and not yet proven, and it is likely that most have yet to be identified. One interesting hypothesis is that environmental effects on immune responses could be mediated by changes in epigenetic regulation. Major mechanisms of epigenetic gene regulation include DNA methylation and histone modification. In these cases, gene expression is modified without involving changes in DNA sequence. Epigenetics is a new and interesting research field in autoimmune diseases. We review the roles of genetic factors, epigenetic regulation and the most studied environmental risk factors such as cigarette smoke, crystalline silica, Epstein-Barr virus, and reproductive hormones in the pathogenesis of autoimmune disease.

  17. Chromatin Remodeling Mediated by Drosophila GAGA Factor and ISWI Activates fushi tarazu Gene Transcription In Vitro

    PubMed Central

    Okada, Masahiro; Hirose, Susumu

    1998-01-01

    GAGA factor is known to remodel the chromatin structure in concert with nucleosome-remodeling factor NURF in a Drosophila embryonic S150 extract. The promoter region of the Drosophila fushi tarazu (ftz) gene carries several binding sites for GAGA factor. Both the GAGA factor-binding sites and GAGA factor per se are necessary for the proper expression of ftz in vivo. We observed transcriptional activation of the ftz gene when a preassembled chromatin template was incubated with GAGA factor and the S150 extract. The chromatin structure within the ftz promoter was specifically disrupted by incubation of the preassembled chromatin with GAGA factor and the S150 extract. Both transcriptional activation and chromatin disruption were blocked by an antiserum raised against ISWI or by base substitutions in the GAGA factor-binding sites in the ftz promoter region. These results demonstrate that GAGA factor- and ISWI-mediated disruption of the chromatin structure within the promoter region of ftz activates transcription on the chromatin template. PMID:9566866

  18. A Histologically Distinctive Interstitial Pneumonia Induced by Overexpression of the Interleukin 6, Transforming Growth Factor β1, or Platelet-Derived Growth Factor B Gene

    NASA Astrophysics Data System (ADS)

    Yoshida, Mitsuhiro; Sakuma, Junko; Hayashi, Seiji; Abe, Kin'ya; Saito, Izumu; Harada, Shizuko; Sakatani, Mitsunoir; Yamamoto, Satoru; Matsumoto, Norinao; Kaneda, Yasufumi; Kishmoto, Tadamitsu

    1995-10-01

    Interstitial pneumonia is characterized by alveolitis with resulting fibrosis of the interstitium. To determine the relevance of humoral factors in the pathogenesis of interstitial pneumonia, we introduced expression vectors into Wistar rats via the trachea to locally overexpress humoral factors in the lungs. Human interleukin (IL) 6 and IL-6 receptor genes induced lymphocytic alveolitis without marked fibroblast proliferation. In contrast, overexpression of human transforming growth factor β1 or human platelet-derived growth factor B gene induced only mild or apparent cellular infiltration in the alveoli, respectively. However, both factors induced significant proliferation of fibroblasts and deposition of collagen fibrils. These histopathologic changes induced by the transforming growth factor β1 and platelet-derived growth factor B gene are partly akin to those changes seen in lung tissues from patients with pulmonary fibrosis and markedly contrast with the changes induced by overexpression of the IL-6 and IL-6 receptor genes that mimics lymphocytic interstitial pneumonia.

  19. Divergent Transactivation of Maize Storage Protein Zein Genes by the Transcription Factors Opaque2 and OHPs

    PubMed Central

    Yang, Jun; Ji, Chen; Wu, Yongrui

    2016-01-01

    Maize transcription factors (TFs) opaque2 (O2) and the O2 heterodimerizing proteins (OHP1 and OHP2) originated from an ancient segmental duplication. The 22-kDa (z1C) and 19-kDa (z1A, z1B, and z1D) α-zeins are the most abundant storage proteins in maize endosperm. O2 is known to regulate α-zein gene expression, but its target motifs in the 19-kDa α-zein gene promoters have not been identified. The mechanisms underlying the regulation of α-zein genes by these TFs are also not well understood. In this study, we found that the O2 binding motifs in the α-zein gene promoters are quite flexible, with ACGT being present in the z1C and z1A promoters and a variant, ACAT, being present in the z1B and z1D promoters. OHPs recognized and transactivated all of the α-zein promoters, although to much lower levels than did O2. In the presence of O2, the suppression of OHPs did not cause a significant reduction in the transcription of α-zein genes, but in the absence of O2, OHPs were critical for the expression of residual levels of α-zeins. These findings demonstrated that O2 is the primary TF and that OHPs function as minor TFs in this process. This relationship is the converse of that involved in 27-kDa γ-zein gene regulation, indicating that the specificities of O2 and the OHPs for regulating zein genes diverged after gene duplication. The prolamine-box binding factor by itself has limited transactivation activity, but it promotes the binding of O2 to O2 motifs, resulting in the synergistic transactivation of α-zein genes. PMID:27474726

  20. Alcohol-related genes show an enrichment of associations with a persistent externalizing factor.

    PubMed

    Ashenhurst, James R; Harden, K Paige; Corbin, William R; Fromme, Kim

    2016-10-01

    Research using twins has found that much of the variability in externalizing phenotypes-including alcohol and drug use, impulsive personality traits, risky sex, and property crime-is explained by genetic factors. Nevertheless, identification of specific genes and variants associated with these traits has proven to be difficult, likely because individual differences in externalizing are explained by many genes of small individual effect. Moreover, twin research indicates that heritable variance in externalizing behaviors is mostly shared across the externalizing spectrum rather than specific to any behavior. We use a longitudinal, "deep phenotyping" approach to model a general externalizing factor reflecting persistent engagement in a variety of socially problematic behaviors measured at 11 assessment occasions spanning early adulthood (ages 18 to 28). In an ancestrally homogenous sample of non-Hispanic Whites (N = 337), we then tested for enrichment of associations between the persistent externalizing factor and a set of 3,281 polymorphisms within 104 genes that were previously identified as associated with alcohol-use behaviors. Next, we tested for enrichment among domain-specific factors (e.g., property crime) composed of residual variance not accounted for by the common factor. Significance was determined relative to bootstrapped empirical thresholds derived from permutations of phenotypic data. Results indicated significant enrichment of genetic associations for persistent externalizing, but not for domain-specific factors. Consistent with twin research findings, these results suggest that genetic variants are broadly associated with externalizing behaviors rather than unique to specific behaviors. (PsycINFO Database Record

  1. Regulation of neural gene transcription by optogenetic inhibition of the RE1-silencing transcription factor.

    PubMed

    Paonessa, Francesco; Criscuolo, Stefania; Sacchetti, Silvio; Amoroso, Davide; Scarongella, Helena; Pecoraro Bisogni, Federico; Carminati, Emanuele; Pruzzo, Giacomo; Maragliano, Luca; Cesca, Fabrizia; Benfenati, Fabio

    2016-01-05

    Optogenetics provides new ways to activate gene transcription; however, no attempts have been made as yet to modulate mammalian transcription factors. We report the light-mediated regulation of the repressor element 1 (RE1)-silencing transcription factor (REST), a master regulator of neural genes. To tune REST activity, we selected two protein domains that impair REST-DNA binding or recruitment of the cofactor mSin3a. Computational modeling guided the fusion of the inhibitory domains to the light-sensitive Avena sativa light-oxygen-voltage-sensing (LOV) 2-phototrophin 1 (AsLOV2). By expressing AsLOV2 chimeras in Neuro2a cells, we achieved light-dependent modulation of REST target genes that was associated with an improved neural differentiation. In primary neurons, light-mediated REST inhibition increased Na(+)-channel 1.2 and brain-derived neurotrophic factor transcription and boosted Na(+) currents and neuronal firing. This optogenetic approach allows the coordinated expression of a cluster of genes impinging on neuronal activity, providing a tool for studying neuronal physiology and correcting gene expression changes taking place in brain diseases.

  2. Pituitary transcription factor Prop-1 stimulates porcine follicle-stimulating hormone beta subunit gene expression.

    PubMed

    Aikawa, Satoko; Kato, Takako; Susa, Takao; Tomizawa, Kyoko; Ogawa, Satoshi; Kato, Yukio

    2004-11-12

    Molecular cloning of the transcription factor that modulates the expression of porcine follicle-stimulating hormone beta subunit (FSHbeta) gene was performed by the yeast one-hybrid cloning system using the -852/-746 upstream region (Fd2) as a bait sequence. We eventually cloned a pituitary transcription factor, Prop-1, which has been identified as an upstream transcription factor of Pit-1 gene. Binding ability of Prop-1 to the bait sequence was confirmed using recombinant Prop-1, and the binding property was investigated by DNase I footprinting, revealing that Prop-1 certainly bound to the large AT-rich region throughout the Fd2. Co-transfection of Prop-1 expression vector together with a reporter gene fused with Fd2 in CHO cells demonstrated an attractive stimulation of reporter gene expression. Immunohistochemistry of adult porcine pituitary confirmed the colocalization of the Prop-1 and FSHbeta subunit. This study is the first to report that Prop-1 participates in the regulation of FSHbeta gene. The present finding will provide new insights into the development of pituitary cell lineage and combined pituitary hormone deficiency (CPHD), since why the defect of Prop-1 causes CPHD including gonadotropins (FSH and LH) has yet to be clarified.

  3. Genome-Wide Dissection of the Heat Shock Transcription Factor Family Genes in Arachis

    PubMed Central

    Wang, Pengfei; Song, Hui; Li, Changsheng; Li, Pengcheng; Li, Aiqin; Guan, Hongshan; Hou, Lei; Wang, Xingjun

    2017-01-01

    Heat shock transcription factors (Hsfs) are important transcription factors (TFs) in protecting plants from damages caused by various stresses. The released whole genome sequences of wild peanuts make it possible for genome-wide analysis of Hsfs in peanut. In this study, a total of 16 and 17 Hsf genes were identified from Arachis duranensis and A. ipaensis, respectively. We identified 16 orthologous Hsf gene pairs in both peanut species; however HsfXs was only identified from A. ipaensis. Orthologous pairs between two wild peanut species were highly syntenic. Based on phylogenetic relationship, peanut Hsfs were divided into groups A, B, and C. Selection pressure analysis showed that group B Hsf genes mainly underwent positive selection and group A Hsfs were affected by purifying selection. Small scale segmental and tandem duplication may play important roles in the evolution of these genes. Cis-elements, such as ABRE, DRE, and HSE, were found in the promoters of most Arachis Hsf genes. Five AdHsfs and two AiHsfs contained fungal elicitor responsive elements suggesting their involvement in response to fungi infection. These genes were differentially expressed in cultivated peanut under abiotic stress and Aspergillus flavus infection. AhHsf2 and AhHsf14 were significantly up-regulated after inoculation with A. flavus suggesting their possible role in fungal resistance. PMID:28220134

  4. Smooth Muscle Cell Genome Browser: Enabling the Identification of Novel Serum Response Factor Target Genes

    PubMed Central

    Lee, Moon Young; Park, Chanjae; Berent, Robyn M.; Park, Paul J.; Fuchs, Robert; Syn, Hannah; Chin, Albert; Townsend, Jared; Benson, Craig C.; Redelman, Doug; Shen, Tsai-wei; Park, Jong Kun; Miano, Joseph M.; Sanders, Kenton M.; Ro, Seungil

    2015-01-01

    Genome-scale expression data on the absolute numbers of gene isoforms offers essential clues in cellular functions and biological processes. Smooth muscle cells (SMCs) perform a unique contractile function through expression of specific genes controlled by serum response factor (SRF), a transcription factor that binds to DNA sites known as the CArG boxes. To identify SRF-regulated genes specifically expressed in SMCs, we isolated SMC populations from mouse small intestine and colon, obtained their transcriptomes, and constructed an interactive SMC genome and CArGome browser. To our knowledge, this is the first online resource that provides a comprehensive library of all genetic transcripts expressed in primary SMCs. The browser also serves as the first genome-wide map of SRF binding sites. The browser analysis revealed novel SMC-specific transcriptional variants and SRF target genes, which provided new and unique insights into the cellular and biological functions of the cells in gastrointestinal (GI) physiology. The SRF target genes in SMCs, which were discovered in silico, were confirmed by proteomic analysis of SMC-specific Srf knockout mice. Our genome browser offers a new perspective into the alternative expression of genes in the context of SRF binding sites in SMCs and provides a valuable reference for future functional studies. PMID:26241044

  5. Mitotic retention of gene expression patterns by the cell fate-determining transcription factor Runx2

    PubMed Central

    Young, Daniel W.; Hassan, Mohammad Q.; Yang, Xiao-Qing; Galindo, Mario; Javed, Amjad; Zaidi, Sayyed K.; Furcinitti, Paul; Lapointe, David; Montecino, Martin; Lian, Jane B.; Stein, Janet L.; van Wijnen, Andre J.; Stein, Gary S.

    2007-01-01

    During cell division, cessation of transcription is coupled with mitotic chromosome condensation. A fundamental biological question is how gene expression patterns are retained during mitosis to ensure the phenotype of progeny cells. We suggest that cell fate-determining transcription factors provide an epigenetic mechanism for the retention of gene expression patterns during cell division. Runx proteins are lineage-specific transcription factors that are essential for hematopoietic, neuronal, gastrointestinal, and osteogenic cell fates. Here we show that Runx2 protein is stable during cell division and remains associated with chromosomes during mitosis through sequence-specific DNA binding. Using siRNA-mediated silencing, mitotic cell synchronization, and expression profiling, we identify Runx2-regulated genes that are modulated postmitotically. Novel target genes involved in cell growth and differentiation were validated by chromatin immunoprecipitation. Importantly, we find that during mitosis, when transcription is shut down, Runx2 selectively occupies target gene promoters, and Runx2 deficiency alters mitotic histone modifications. We conclude that Runx proteins have an active role in retaining phenotype during cell division to support lineage-specific control of gene expression in progeny cells. PMID:17360627

  6. miR-370 suppresses HBV gene expression and replication by targeting nuclear factor IA.

    PubMed

    Fan, Hongxia; Lv, Ping; Lv, Jing; Zhao, Xiaopei; Liu, Min; Zhang, Guangling; Tang, Hua

    2017-05-01

    Hepatitis B virus (HBV) infection is a major health problem worldwide. The roles of microRNAs in the regulation of HBV expression are being increasingly recognized. In this study, we found that overexpression of miR-370 suppressed HBV gene expression and replication in Huh7 cells, whereas antisense knockdown of endogenous miR-370 enhanced HBV gene expression and replication in Huh7 cells and HepG2.2.15 cells. Further, we identified the transcription factor nuclear factor IA (NFIA) as a new host target of miR-370. Overexpression and knockdown studies showed that NFIA stimulated HBV gene expression and replication. Importantly, overexpression of NFIA counteracted the effect of miR-370 on HBV gene expression and replication. Further mechanistic studies showed that miR-370 suppressed HBV replication and gene expression by repressing HBV Enhancer I activity, and one of the NFIA binding site in the Enhancer I element was responsible for the repressive effect of miR-370 on HBV Enhancer I activity. Altogether, our results demonstrated that miR-370 suppressed HBV gene expression and replication through repressing NFIA expression, which stimulates HBV replication via direct regulation on HBV Enhancer I activities. Our findings may provide a new antiviral strategy for HBV infection. J. Med. Virol. 89:834-844, 2017. © 2016 Wiley Periodicals, Inc.

  7. Expression and comparative genomics of two serum response factor genes in zebrafish.

    PubMed

    Davis, Jody L; Long, Xiaochun; Georger, Mary A; Scott, Ian C; Rich, Adam; Miano, Joseph M

    2008-01-01

    Serum response factor (SRF) is a single copy, highly conserved transcription factor that governs the expression of hundreds of genes involved with actin cytoskeletal organization, cellular growth and signaling, neuronal circuitry and muscle differentiation. Zebrafish have emerged as a facile and inexpensive vertebrate model to delineate gene expression, regulation, and function, and yet the study of SRF in this animal has been virtually unexplored. Here, we report the existence of two srf genes in zebrafish, with partially overlapping patterns of expression in 3 and 7 day old developing animals. The mammalian ortholog (srf1) encodes for a 520 amino acid protein expressed in adult vascular and visceral smooth muscle cells, cardiac and skeletal muscle, as well as neuronal cells. The second zebrafish srf gene (srf2), encoding for a presumptive protein of only 314 amino acids, is transcribed at lower levels and appears to be less widely expressed across adult tissues. Both srf genes are induced by the SRF coactivator myocardin and attenuated with a short hairpin RNA to mammalian SRF. Promoter studies with srf1 reveal conserved CArG boxes that are the targets of SRF-myocardin in embryonic zebrafish cells. These results reveal that SRF was duplicated in the zebrafish genome and that its protein expression in all three muscle cell types is highly conserved across vertebrate animals suggesting an ancient code for transcriptional regulation of genes unique to muscle cell lineages.

  8. Autogenic synthesis of green- and red-emitting single-phase Pr(2)O(2)CO(3) and PrO(1.833) luminescent nanopowders.

    PubMed

    Calderon Moreno, Jose M; Pol, Vilas G; Suh, Soong-Hyuck; Popa, Monica

    2010-11-01

    This Article reveals a rare synthesis of pure Pr(2)O(2)CO(3) (POC) nanopowder by thermolysis (700 °C) of a single chemical precursor in an autogenic reaction. The autogenic thermolysis of praseodymium acetate is a solvent-free, efficient, and straightforward approach yielding luminescent POC nanoparticles. The as-prepared POC nanopowder converted to PrO(1.833) (PO) powder via combustion. Methodical morphological, structural, and compositional characterizations of POC and PO powders are carried out, supported by mechanistic elucidation and the photoluminescent properties.

  9. Demethionylation of Pro-1 variants of 4-oxalocrotonate tautomerase in Escherichia coli by co-expression with an engineered methionine aminopeptidase

    PubMed Central

    Baas, Bert-Jan; Zandvoort, Ellen; Wasiel, Anna A.; Poelarends, Gerrit J.

    2014-01-01

    4-Oxalocrotonate tautomerase (4-OT) catalyzes the enol-keto tautomerization of 2-hydroxymuconate, utilizing its N-terminal proline (Pro-1) as general base catalyst. Substituting Pro-1 with bulky or charged residues will result in poor or no post-translational removal of the translation-initiating methionine by the methionine aminopeptidase (MetAP) of the Escherichiacoli expression host. Here, we set out to investigate whether co-expression with previously engineered aminopeptidase MetAP-∗TG can be used to produce the P1S, P1H and P1Q variants of 4-OT in a demethionylated form. The P1S variant, which carries a small residue at the penultimate position (the first position after the initiating methionine), was found to be fully processed by wild-type MetAP. The P1S variant has low-level 2-hydroxymuconate tautomerase and promiscuous oxaloacetate decarboxylase activity. The P1Q and P1H variants of 4-OT, which carry bulky residues at the penultimate position, could only be obtained in a demethionylated form (a minor fraction of the purified protein is still composed of methionylated enzyme) by co-expression with MetAP-∗TG. Interestingly, the Gln-1 residue of the demethionylated P1Q variant undergoes intramolecular cyclization to form pyroglutamate (pE), yielding variant P1pE. Whereas the P1H/M1P2H mixture has low-level tautomerase activity, the P1pE/M1P2Q mixture has robust tautomerase activity. The substitution of Pro-1 by Gln, followed by removal of the initiating Met and cyclization of Gln-1 to form pE, is a unique way to obtain a structural analogue of proline on the N-terminus of 4-OT. This opens up new possibilities to study the importance of Pro-1 in recently discovered C–C bond-forming activities of this highly promiscuous tautomerase. PMID:25161874

  10. Association of brain-derived neurotrophic factor and nerve growth factor gene polymorphisms with susceptibility to migraine

    PubMed Central

    Coskun, Salih; Varol, Sefer; Ozdemir, Hasan H; Agacayak, Elif; Aydın, Birsen; Kapan, Oktay; Camkurt, Mehmet Akif; Tunc, Saban; Cevik, Mehmet Ugur

    2016-01-01

    Migraine is one of the most common neurological diseases worldwide. Migraine pathophysiology is very complex. Genetic factors play a major role in migraine. Neurotrophic factors, such as brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), play an important role in central nervous system functioning, development, and modulation of pain. This study investigates whether polymorphisms in the BDNF and NGF genes are associated with migraine disease in a Turkish case–control population. Overall, 576 subjects were investigated (288 patients with migraine and 288 healthy controls) for the following polymorphisms: rs6265(G/A), rs8192466(C/T), rs925946(G/T), rs2049046(A/T), and rs12273363(T/C) in the BDNF gene, and rs6330(C/T), rs11466112(C/T), rs11102930(C/A), and rs4839435(G/A) in the NGF gene using 5′-exonuclease allelic discrimination assays. We found no differences in frequency of the analyzed eight polymorphisms between migraine and control groups. However, the frequency of minor A alleles of rs6265 in BDNF gene was borderline significant in the patients compared with the healthy controls (P=0.049; odds ratios [ORs] [95% confidence intervals {CIs}] =0.723 [0.523–0.999]). Moreover, when the migraine patients were divided into two subgroups, migraine with aura (MA) and migraine without aura (MO), the minor TT genotype of rs6330 in NGF was significantly higher in MA patients than in MO patients (P=0.036) or healthy controls (P=0.026), and this disappeared after correction for multiple testing. Also, the rs6330*T minor allele was more common in the MA group than in the MO group or controls (P=0.011, ORs [95% CIs] =1.626 [1.117–2.365] or P=0.007, ORs [95% CIs] =1.610 [1.140–2.274], respectively). In conclusion, this is the first clinical study to evaluate the association between BDNF and NGF polymorphisms in migraine patients compared with health controls. Our findings suggest that the NGF rs6330*T minor allele might be nominated as a risk

  11. Hypoxia-Inducible Factor-1α Target Genes Contribute to Retinal Neuroprotection

    PubMed Central

    Cheng, Lin; Yu, Honghua; Yan, Naihong; Lai, Kunbei; Xiang, Mengqing

    2017-01-01

    Hypoxia-inducible factor (HIF) is a transcription factor that facilitates cellular adaptation to hypoxia and ischemia. Long-standing evidence suggests that one isotype of HIF, HIF-1α, is involved in the pathogenesis of various solid tumors and cardiac diseases. However, the role of HIF-1α in retina remains poorly understood. HIF-1α has been recognized as neuroprotective in cerebral ischemia in the past two decades. Additionally, an increasing number of studies has shown that HIF-1α and its target genes contribute to retinal neuroprotection. This review will focus on recent advances in the studies of HIF-1α and its target genes that contribute to retinal neuroprotection. A thorough understanding of the function of HIF-1α and its target genes may lead to identification of novel therapeutic targets for treating degenerative retinal diseases including glaucoma, age-related macular degeneration, diabetic retinopathy, and retinal vein occlusions. PMID:28289375

  12. Murine chromosomal location of five bHLH-Zip transcription factor genes

    SciTech Connect

    Steingrimsson, E.; Gilbert, D.J.; Copeland, N.G.; Jenkins, N.A.

    1995-07-20

    The genes for the bHLH-Zip transcription factors Tfap4, Mxi1, Tcfeb, Usf1, and Usf2 have been mapped in mouse by interspecific backcross analysis. Mxi1, Usf1, and Usf2 have been mapped previously by in situ hybridization, but their positions on the meiotic linkage map had not been determined. The other two genes have not previously been mapped in mouse. These transcription factors belong to a growing family of transcriptional regulators, some of which are known to form a complex network of interacting proteins that control cell proliferation and apoptosis. As expected, based on mapping studies of other bHLH-Zip genes, these loci were well distributed among mouse chromosomes. In addition, some of the probes used in this study detected multiple, independently segregating loci, suggesting the possible existence of additional family members or species-specific pseudogenes. 34 refs., 1 fig., 1 tab.

  13. Gene deregulation and chronic activation in natural killer cells deficient in the transcription factor ETS1.

    PubMed

    Ramirez, Kevin; Chandler, Katherine J; Spaulding, Christina; Zandi, Sasan; Sigvardsson, Mikael; Graves, Barbara J; Kee, Barbara L

    2012-06-29

    Multiple transcription factors guide the development of mature functional natural killer (NK) cells, yet little is known about their function. We used global gene expression and genome-wide binding analyses combined with developmental and functional studies to unveil three roles for the ETS1 transcription factor in NK cells. ETS1 functions at the earliest stages of NK cell development to promote expression of critical transcriptional regulators including T-BET and ID2, NK cell receptors (NKRs) including NKp46, Ly49H, and Ly49D, and signaling molecules essential for NKR function. As a consequence, Ets1(-/-) NK cells fail to degranulate after stimulation through activating NKRs. Nonetheless, these cells are hyperresponsive to cytokines and have characteristics of chronic stimulation including increased expression of inhibitory NKRs and multiple activation-associated genes. Therefore, ETS1 regulates a broad gene expression program in NK cells that promotes target cell recognition while limiting cytokine-driven activation.

  14. Distribution of fiber development genes and transcription factors between At and Dt subgenomes in tetraploid cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As the worlds leading natural material used in the manufacture of textiles, cotton fibers are important seed trichomes derived from individual cells of the epidermal layer of the seed coat. Cotton fiber development is determined by large numbers of genes and transcription factors. However, little ...

  15. Factor 8 (F8) gene mutation profile of Turkish hemophilia A patients with inhibitors.

    PubMed

    Fidanci, Inanç D; Kavakli, Kaan; Uçar, Canan; Timur, Cetin; Meral, Adalet; Kilinç, Yurdanur; Sayilan, Hülya; Kazanci, Elif; Cağlayan, S Hande

    2008-07-01

    Factor VIII (FVIII) replacement therapy is ineffective in hemophilia A patients who develop alloantibodies (inhibitors) against FVIII. The type of factor 8 (F8) gene mutation, genes in the major histocompatibility complex loci, and also polymorphisms in IL-10 and tumor necrosis factor-alpha are the major predisposing factors for inhibitor formation. The present study was initiated to reveal the F8 gene mutation profile of 30 severely affected high-responder patients with inhibitor levels of more than 5 Bethesda U (BU)/ml and four low-responder patients with inhibitors less than 5 BU/ml. Southern blot and PCR analysis were performed to detect intron 22 and intron 1 inversions, respectively. Point mutations were screened by DNA sequence analysis of all coding regions, intron/exon boundaries, promoter and 3' UTR regions of the F8 gene. The prevalent mutation was the intron 22 inversion among the high-responder patients followed by large deletions, small deletions, and nonsense mutations. Only one missense and one splicing error mutation was seen. Among the low-responder patients, three single nucleotide deletions and one intron 22 inversion were found. All mutation types detected were in agreement with the severe hemophilia A phenotype, most likely leading to a deficiency of and predisposition to the development of alloantibodies against FVIII. It is seen that Turkish hemophilia A patients with major molecular defects have a higher possibility of developing inhibitors.

  16. Gene-Environment Interplay in Internalizing Disorders: Consistent Findings across Six Environmental Risk Factors

    ERIC Educational Resources Information Center

    Hicks, Brian M.; Dirago, Ana C.; Iacono, William G.; McGue, Matt

    2009-01-01

    Background: Behavior genetic methods can help to elucidate gene-environment (G-E) interplay in the development of internalizing (INT) disorders (i.e., major depression and anxiety disorders). To date, however, no study has conducted a comprehensive analysis examining multiple environmental risk factors with the purpose of delineating general…

  17. Members of the barley NAC transcription factor gene family show differential co-regulation with senescence-associated genes during senescence of flag leaves.

    PubMed

    Christiansen, Michael W; Gregersen, Per L

    2014-07-01

    The senescence process of plants is important for the completion of their life cycle, particularly for crop plants, it is essential for efficient nutrient remobilization during seed filling. It is a highly regulated process, and in order to address the regulatory aspect, the role of genes in the NAC transcription factor family during senescence of barley flag leaves was studied. Several members of the NAC transcription factor gene family were up-regulated during senescence in a microarray experiment, together with a large range of senescence-associated genes, reflecting the coordinated activation of degradation processes in senescing barley leaf tissues. This picture was confirmed in a detailed quantitative reverse transcription-PCR (qRT-PCR) experiment, which also showed distinct gene expression patterns for different members of the NAC gene family, suggesting a group of ~15 out of the 47 studied NAC genes to be important for signalling processes and for the execution of degradation processes during leaf senescence in barley. Seven models for DNA-binding motifs for NAC transcription factors were designed based on published motifs, and available promoter sequences of barley genes were screened for the motifs. Genes up-regulated during senescence showed a significant over-representation of the motifs, suggesting regulation by the NAC transcription factors. Furthermore, co-regulation studies showed that genes possessing the motifs in the promoter in general were highly co-expressed with members of the NAC gene family. In conclusion, a list of up to 15 NAC genes from barley that are strong candidates for being regulatory factors of importance for senescence and biotic stress-related traits affecting the productivity of cereal crop plants has been generated. Furthermore, a list of 71 senescence-associated genes that are potential target genes for these NAC transcription factors is presented.

  18. The rates and patterns of deletions in the human factor IX gene

    SciTech Connect

    Ketterling, R.P.; Vielhaber, E.L.; Lind, T.J.; Thorland, E.C.; Sommer S.S. )

    1994-02-01

    Deletions are commonly observed in genes with either segments of highly homologous sequences or excessive gene length. However, in the factor IX gene and in most genes, deletions (of [ge]21 bp) are uncommon. The authors have analyzed DNA from 290 families with hemophilia B (203 independent mutations) and have found 12 deletions >20 bp. Eleven of these are >2 kb (range >3-163 kb), and one is 1.1 kb. The junctions of the four deletions that are completely contained within the factor IX gene have been determined. A novel mutation occurred in patient HB128: the data suggest that a 26.8-kb deletion occurred between two segments of alternating purines and pyrimidines and that a 2.3-kb sense strand segment derived from the deleted region was inserted. For a sample of 203 independent mutations, the authors estimate the [open quotes]baseline[close quotes] rates of deletional mutation per base pair per generation as a function of size. The rate for large (>2 kb)I deletions is exceedingly low. For every mutational event in which a given base is at the junction of a large deletion, there are an estimated 58 microdeletions (<20 bp) and 985 single-base substitutions at that base. Analysis of the nine reported deletion junctions in the factor IX gene literature reveals that (i) five are associated with inversion, orphan sequences, or sense strand insertions; (ii) four are simple deletions that display an excess of short direct repeats at their junctions; (iii) there is no dramatic clustering of junctions within the gene; and (iv) with the exception of alternating purines and pyrimidines, deletion junctions are not preferentially associated with repetitive DNA. 58 refs., 5 figs., 5 tabs.

  19. Two GATA transcription factors are downstream effectors of floral homeotic gene action in Arabidopsis.

    PubMed

    Mara, Chloe D; Irish, Vivian F

    2008-06-01

    Floral organogenesis is dependent on the combinatorial action of MADS-box transcription factors, which in turn control the expression of suites of genes required for growth, patterning, and differentiation. In Arabidopsis (Arabidopsis thaliana), the specification of petal and stamen identity depends on the action of two MADS-box gene products, APETALA3 (AP3) and PISTILLATA (PI). In a screen for genes whose expression was altered in response to the induction of AP3 activity, we identified GNC (GATA, nitrate-inducible, carbon-metabolism-involved) as being negatively regulated by AP3 and PI. The GNC gene encodes a member of the Arabidopsis GATA transcription factor family and has been implicated in the regulation of chlorophyll biosynthesis as well as carbon and nitrogen metabolism. In addition, we found that the GNC paralog, GNL (GNC-like), is also negatively regulated by AP3 and PI. Using chromatin immunoprecipitation, we showed that promoter sequences of both GNC and GNL are bound by PI protein, suggesting a direct regulatory interaction. Analyses of single and double gnc and gnl mutants indicated that the two genes share redundant roles in promoting chlorophyll biosynthesis, suggesting that in repressing GNC and GNL, AP3/PI have roles in negatively regulating this biosynthetic pathway in flowers. In addition, coexpression analyses of genes regulated by AP3, PI, GNC, and GNL indicate a complex regulatory interplay between these transcription factors in regulating a variety of light and nutrient responsive genes. Together, these results provide new insights into the transcriptional cascades controlling the specification of floral organ identities.

  20. Physiological factors affecting transcription of genes involved in the flavonoid biosynthetic pathway in different rice varieties.

    PubMed

    Chen, Xiaoqiong; Itani, Tomio; Wu, Xianjun; Chikawa, Yuuki; Irifune, Kohei

    2013-01-01

    Flavonoids play an important role in the grain color and flavor of rice. Since their characterization in maize, the flavonoid biosynthetic genes have been extensively studied in grape, Arabidopsis, and Petunia. However, we are still a long way from understanding the molecular features and mechanisms underlying the flavonoid biosynthetic pathway. The present study was undertaken to understand the physiological factors affecting the transcription and regulation of these genes. We report that the expression of CHI, CHS, DFR, LAR, and ANS, the 5 flavonoid biosynthetic genes in different rice varieties, differ dramatically with respect to the stage of development, white light, and sugar concentrations. We further demonstrate that white light could induce the transcription of the entire flavonoid biosynthetic gene pathway; however, differences were observed in the degrees of sensitivity and the required illumination time. Our study provides valuable insights into understanding the regulation of the flavonoid biosynthetic pathway.

  1. Systematic repression of transcription factors reveals limited patterns of gene expression changes in ES cells

    PubMed Central

    Nishiyama, Akira; Sharov, Alexei A.; Piao, Yulan; Amano, Misa; Amano, Tomokazu; Hoang, Hien G.; Binder, Bernard Y.; Tapnio, Richard; Bassey, Uwem; Malinou, Justin N.; Correa-Cerro, Lina S.; Yu, Hong; Xin, Li; Meyers, Emily; Zalzman, Michal; Nakatake, Yuhki; Stagg, Carole; Sharova, Lioudmila; Qian, Yong; Dudekula, Dawood; Sheer, Sarah; Cadet, Jean S.; Hirata, Tetsuya; Yang, Hsih-Te; Goldberg, Ilya; Evans, Michele K.; Longo, Dan L.; Schlessinger, David; Ko, Minoru S. H.

    2013-01-01

    Networks of transcription factors (TFs) are thought to determine and maintain the identity of cells. Here we systematically repressed each of 100 TFs with shRNA and carried out global gene expression profiling in mouse embryonic stem (ES) cells. Unexpectedly, only the repression of a handful of TFs significantly affected transcriptomes, which changed in two directions/trajectories: one trajectory by the repression of either Pou5f1 or Sox2; the other trajectory by the repression of either Esrrb, Sall4, Nanog, or Tcfap4. The data suggest that the trajectories of gene expression change are already preconfigured by the gene regulatory network and roughly correspond to extraembryonic and embryonic fates of cell differentiation, respectively. These data also indicate the robustness of the pluripotency gene network, as the transient repression of most TFs did not alter the transcriptomes. PMID:23462645

  2. Construction of a mouse model of factor VIII deficiency by gene targeting

    SciTech Connect

    Bi, L.; Lawler, A.; Gearhart, J.

    1994-09-01

    To develop a small animal model of hemophilia A for gene therapy experiments, we set out to construct a mouse model for factor VIII deficiency by gene targeting. First, we screened a mouse liver cDNA library using a human FVIII cDNA probe. We cloned a 2.6 Kb partial mouse factor VIII cDNA which extends from 800 base pairs of the 3{prime} end of exon 14 to the 5{prime} end of exon 26. A mouse genomic library made from strain 129 was then screened to obtain genomic fragments covering the exons desired for homologous recombination. Two genomic clones were obtained, and one covering exon 15 through 22 was used for gene targeting. To make gene targeting constructs, a 5.8 Kb genomic DNA fragment covering exons 15 to 19 of the mouse FVIII gene was subcloned, and the neo expression cassette was inserted into exons 16 and 17 separately by different strategies. These two constructs were named MFVIIIC-16 and MFVIIIC-17. The constructs were linearized and transfected into strain 129 mouse ES cells by electroporation. Factor VIII gene-knockout ES cell lines were selected by G-418 and screened by genomic Southern blots. Eight exon 16 targeted cell lines and five exon 17 targeted cell lines were obtained. Three cell lines from each construct were injected into blastocysts and surgically transferred into foster mothers. Multiple chimeric mice with 70-90% hair color derived from the ES-cell genotype were seen with both constructs. Germ line transmission of the ES-cell genotype has been obtained for the MFVIIIC-16 construct, and multiple hemophilia A carrier females have been identified. Factor VIII-deficient males will be conceived soon.

  3. Heterogeneity in lipopolysaccharide responsiveness of endothelial cells identified by gene expression profiling: role of transcription factors

    PubMed Central

    Beck, G C; Rafat, N; Brinkkoetter, P; Hanusch, C; Schulte, J; Haak, M; van Ackern, K; van der Woude, F J; Yard, B A

    2006-01-01

    Interindividual differences of endothelial cells in response to endotoxins might contribute to the diversity in clinical outcome among septic patients. The present study was conducted to test the hypothesis that endothelial cells (EC) with high and low proinflammatory potential exist and to dissect the molecular basis underlying this phenomenon. Thirty human umbilical vein endothelial cell (HUVEC) lines were stimulated for 24 h with lipopolysaccharide (LPS) and screened for interleukin (IL)-8 production. Based on IL-8 production five low and five high producers, tentatively called types I and II responders, respectively, were selected for genome-wide gene expression profiling. From the 74 genes that were modulated by LPS in all type II responders, 33 genes were not influenced in type I responders. Among the 41 genes that were increased in both responders, 17 were expressed significantly stronger in type II responders. Apart from IL-8, significant differences in the expression of proinflammatory related genes between types I and II responders were found for adhesion molecules [intercellular adhesion molecule (ICAM-1), E-selectin)], chemokines [monocyte chemoattractant protein (MCP-1), granulocyte chemotactic protein (GCP-2)], cytokines (IL-6) and the transcription factor CCAAT/enhancer binding protein-delta (C/EBP-δ). Type I responders also displayed a low response towards tumour necrosis factor (TNF)-α. In general, maximal activation of nuclear factor (NF)-κB was achieved in type I responders at higher concentrations of LPS compared to type II responders. In the present study we demonstrate that LPS-mediated gene expression differs quantitatively and qualitatively in types I and II responders. Our results suggest a pivotal role for common transcription factors as a low inflammatory response was also observed after TNF-α stimulation. Further studies are required to elucidate the relevance of these findings in terms of clinical outcome in septic patients. PMID

  4. Gene duplication of type-B ARR transcription factors systematically extends transcriptional regulatory structures in Arabidopsis

    PubMed Central

    Choi, Seung Hee; Hyeon, Do Young; Lee, ll Hwan; Park, Su Jin; Han, Seungmin; Lee, In Chul; Hwang, Daehee; Nam, Hong Gil

    2014-01-01

    Many of duplicated genes are enriched in signaling pathways. Recently, gene duplication of kinases has been shown to provide genetic buffering and functional diversification in cellular signaling. Transcription factors (TFs) are also often duplicated. However, how duplication of TFs affects their regulatory structures and functions of target genes has not been explored at the systems level. Here, we examined regulatory and functional roles of duplication of three major ARR TFs (ARR1, 10, and 12) in Arabidopsis cytokinin signaling using wild-type and single, double, and triple deletion mutants of the TFs. Comparative analysis of gene expression profiles obtained from Arabidopsis roots in wild-type and these mutants showed that duplication of ARR TFs systematically extended their transcriptional regulatory structures, leading to enhanced robustness and diversification in functions of target genes, as well as in regulation of cellular networks of target genes. Therefore, our results suggest that duplication of TFs contributes to robustness and diversification in functions of target genes by extending transcriptional regulatory structures. PMID:25425016

  5. Correlation of genetic polymorphism of vascular endothelial growth factor gene with susceptibility to lung cancer.

    PubMed

    Liu, C; Zhou, X; Gao, F; Qi, Z; Zhang, Z; Guo, Y

    2015-06-01

    The aim of the study is to study the correlation of genetic polymorphism of vascular endothelial growth factor (VEGF) gene with susceptibility to primary lung cancer. A total of 414 patients with primary lung cancer and 338 healthy volunteers were enrolled in this case-control study from September 2008 to October 2011. Gene identification with PCR-RFLP (polymerase chain reaction-based restriction fragment length polymorphism) was used to detect in white blood cells from the subjects the single-nucleotide polymorphisms (SNP) of VEGF gene, including +405G/C, -460 T/C, -1154G/A, -2578C/A sites. Association of genotypes or haplotypes with susceptibility of lung cancer was analyzed with unconditional logistic regression adjusted by gender and age. Smoking was significantly associated with increased risk of lung cancer. Gene phenotypic analysis demonstrated that C allele of +405G/C in VEGF gene was significantly associated increased risk of lung cancer in males (P=0.0094, odds ratio=1.634.3), as that with carrying GCTC haplotype (odds ratio=1.349), whereas carrying GACG had decreased risk for lung cancer (odds ratio=0.044). No relationship existed between 460 T/C, -1154G/A, -2578C/A alleles of VEGF gene and risk of lung cancer. VEGF gene polymorphism may have a role in the development of lung cancer.

  6. Gene duplication of type-B ARR transcription factors systematically extends transcriptional regulatory structures in Arabidopsis.

    PubMed

    Choi, Seung Hee; Hyeon, Do Young; Lee, Ll Hwan; Park, Su Jin; Han, Seungmin; Lee, In Chul; Hwang, Daehee; Nam, Hong Gil

    2014-11-26

    Many of duplicated genes are enriched in signaling pathways. Recently, gene duplication of kinases has been shown to provide genetic buffering and functional diversification in cellular signaling. Transcription factors (TFs) are also often duplicated. However, how duplication of TFs affects their regulatory structures and functions of target genes has not been explored at the systems level. Here, we examined regulatory and functional roles of duplication of three major ARR TFs (ARR1, 10, and 12) in Arabidopsis cytokinin signaling using wild-type and single, double, and triple deletion mutants of the TFs. Comparative analysis of gene expression profiles obtained from Arabidopsis roots in wild-type and these mutants showed that duplication of ARR TFs systematically extended their transcriptional regulatory structures, leading to enhanced robustness and diversification in functions of target genes, as well as in regulation of cellular networks of target genes. Therefore, our results suggest that duplication of TFs contributes to robustness and diversification in functions of target genes by extending transcriptional regulatory structures.

  7. Unique role for translation initiation factor 3 in the light color regulation of photosynthetic gene expression.

    PubMed

    Gutu, Andrian; Nesbit, April D; Alverson, Andrew J; Palmer, Jeffrey D; Kehoe, David M

    2013-10-01

    Light-harvesting antennae are critical for collecting energy from sunlight and providing it to photosynthetic reaction centers. Their abundance and composition are tightly regulated to maintain efficient photosynthesis in changing light conditions. Many cyanobacteria alter their light-harvesting antennae in response to changes in ambient light-color conditions through the process of chromatic acclimation. The control of green light induction (Cgi) pathway is a light-color-sensing system that controls the expression of photosynthetic genes during chromatic acclimation, and while some evidence suggests that it operates via transcription attenuation, the components of this pathway have not been identified. We provide evidence that translation initiation factor 3 (IF3), an essential component of the prokaryotic translation initiation machinery that binds the 30S subunit and blocks premature association with the 50S subunit, is part of the control of green light induction pathway. Light regulation of gene expression has not been previously described for any translation initiation factor. Surprisingly, deletion of the IF3-encoding gene infCa was not lethal in the filamentous cyanobacterium Fremyella diplosiphon, and its genome was found to contain a second, redundant, highly divergent infC gene which, when deleted, had no effect on photosynthetic gene expression. Either gene could complement an Escherichia coli infC mutant and thus both encode bona fide IF3s. Analysis of prokaryotic and eukaryotic genome databases established that multiple infC genes are present in the genomes of diverse groups of bacteria and land plants, most of which do not undergo chromatic acclimation. This suggests that IF3 may have repeatedly evolved important roles in the regulation of gene expression in both prokaryotes and eukaryotes.

  8. Regulatory Factor X (RFX)-mediated transcriptional rewiring of ciliary genes in animals.

    PubMed

    Piasecki, Brian P; Burghoorn, Jan; Swoboda, Peter

    2010-07-20

    Cilia were present in the last eukaryotic common ancestor (LECA) and were retained by most organisms spanning all extant eukaryotic lineages, including organisms in the Unikonta (Amoebozoa, fungi, choanoflagellates, and animals), Archaeplastida, Excavata, Chromalveolata, and Rhizaria. In certain animals, including humans, ciliary gene regulation is mediated by Regulatory Factor X (RFX) transcription factors (TFs). RFX TFs bind X-box promoter motifs and thereby positively regulate >50 ciliary genes. Though RFX-mediated ciliary gene regulation has been studied in several bilaterian animals, little is known about the evolutionary conservation of ciliary gene regulation. Here, we explore the evolutionary relationships between RFX TFs and cilia. By sampling the genome sequences of >120 eukaryotic organisms, we show that RFX TFs are exclusively found in unikont organisms (whether ciliated or not), but are completely absent from the genome sequences of all nonunikont organisms (again, whether ciliated or not). Sampling the promoter sequences of 12 highly conserved ciliary genes from 23 diverse unikont and nonunikont organisms further revealed that phylogenetic footprints of X-box promoter motif sequences are found exclusively in ciliary genes of certain animals. Thus, there is no correlation between cilia/ciliary genes and the presence or absence of RFX TFs and X-box promoter motifs in nonanimal unikont and in nonunikont organisms. These data suggest that RFX TFs originated early in the unikont lineage, distinctly after cilia evolved. The evolutionary model that best explains these observations indicates that the transcriptional rewiring of many ciliary genes by RFX TFs occurred early in the animal lineage.

  9. Regulation of 2', 5'-oligoadenylate synthetase gene expression by interferons and platelet-derived growth factor

    SciTech Connect

    Garcia-Blanco, M.A. ); Lengyel, P. . Dept. of Molecular Biophysics and Biochemistry); Morrison, E.; BrownLee, C.; Stiles, C.D. ); Williams, B.R.G. )

    1989-03-01

    In murine BALB/c 3T3 cell cultures, either beta interferon or platelet-derived growth factor (PDGF) enhanced expression of the 2', 5-oligoadenylate synthetase mRNA and protein. The time course of induction in response to beta inteferon was similar to that in response to PDGF. Of several growth factors known to be present in clotted blood serum (i.e., epidermal growth factor, transforming growth factor beta, and PDGF), only PDGF enhanced expression of 2', 5-oligoadenylate synthetase. The linkage of an interferon response element-containing segment from the 5'-flanking region of a human or murine 2'-5'-oligoadenylate synthetase gene made a heterologous gene responsive to interferon. The expression of such a gene construct in transfected cells was also induced by PDGF. Induction by PDGF was inhibited by mono- or polyclonal antibodies to murine interferon, which suggested that induction by PDGF requires interferon. Both PDGF and interferon induced nuclear factors that bound to this interferon response element-containing segment in vitro.

  10. Factor IX gene analysis in 70 unrelated patients with haemophilia B: description of 13 new mutations.

    PubMed

    Attali, O; Vinciguerra, C; Trzeciak, M C; Durin, A; Pernod, G; Gay, V; Ménart, C; Sobas, F; Dechavanne, M; Négrier, C

    1999-11-01

    Seventy unrelated patients suffering from haemophilia B have been screened for determining the molecular defect and for evaluating the spectrum of factor IX mutations in the Rhône Alpes region in France. Most patients were characterized with respect to factor IX antigen and factor IX coagulant activity. We have used denaturing gradient gel electrophoresis to obtain a full scanning of the whole coding, promoter, and exon flanking sequences of the factor IX gene. This technique enabled us to determine the molecular defect in 68 out of 70 families (97%), and the mutation was further identified in the two last patients with a direct sequencing of the gene. A total of 2 complete gene deletions in patients with antifactor IX inhibitor, 6 small insertions/deletions and 62 point mutations were found. Two of these nucleotide substitutions (Arg145His and Ala233Thr) were detected in 21 patients (30%) suggesting the existence of a local founder effect. Thirteen mutations were previously undescribed, including 7 missense mutations. The detection of mutations in patients affected with haemophilia B may shed some light in the structure-function relationship of factor IX molecule within the coagulation system.

  11. Comparative analysis of the transcription-factor gene regulatory networks of E. coli and S. cerevisiae

    PubMed Central

    Guzmán-Vargas, Lev; Santillán, Moisés

    2008-01-01

    Background The regulatory interactions between transcription factors (TF) and regulated genes (RG) in a species genome can be lumped together in a single directed graph. The TF's and RG's conform the nodes of this graph, while links are drawn whenever a transcription factor regulates a gene's expression. Projections onto TF nodes can be constructed by linking every two nodes regulating a common gene. Similarly, projections onto RG nodes can be made by linking every two regulated genes sharing at least one common regulator. Recent studies of the connectivity pattern in the transcription-factor regulatory network of many organisms have revealed some interesting properties. However, the differences between TF and RG nodes have not been widely explored. Results After analysing the RG and TF projections of the transcription-factor gene regulatory networks of Escherichia coli and Saccharomyces cerevisiae, we found several common characteristic as well as some noticeable differences. To better understand these differences, we compared the properties of the E. coli and S. cerevisiae RG- and TF-projected networks with those of the corresponding projections built from randomized versions of the original bipartite networks. These last results indicate that the observed differences are mostly due to the very different ratios of TF to RG counts of the E. coli and S. cerevisiae bipartite networks, rather than to their having different connectivity patterns. Conclusion Since E. coli is a prokaryotic organism while S. cerevisiae is eukaryotic, there are important differences between them concerning processing of mRNA before translation, DNA packing, amount of junk DNA, and gene regulation. From the results in this paper we conclude that the most important effect such differences have had on the development of the corresponding transcription-factor gene regulatory networks is their very different ratios of TF to RG numbers. This ratio is more than three times larger in S

  12. Expression of E2F transcription factor family genes during chick wing development.

    PubMed

    Towers, Matthew; Fisunov, Gleb; Tickle, Cheryll

    2009-10-01

    The E2F family of transcriptional regulators activate or repress gene expression during specific phases of the cell cycle and control various processes including proliferation, apoptosis and differentiation. However, little is known about the developmental roles of E2F transcription factors in higher vertebrates. The chick wing is an excellent system for studying these processes because, in addition to having a rich classical embryology, it is increasingly amenable to molecular and genomic approaches. We show that the human and mouse complement of eight E2F transcription factors is conserved in the chicken and that chicken E2F genes are expressed in different spatial and temporal patterns during wing development. We discuss how the expression patterns of the eight chicken E2F transcription factors might be related to important morphogenetic events.

  13. Early nodulin gene expression during Nod factor-induced processes in Vicia sativa.

    PubMed

    Vijn, I; Martinez-Abarca, F; Yang, W C; das Neves, L; van Brussel, A; van Kammen, A; Bisseling, T

    1995-07-01

    Rhizobium leguminosarum bv. viciae-secreted Nod factors are able to induce root hair deformation, the formation of nodule primordia and the expression of early nodulin genes in Vicia sativa (vetch). To obtain more insight into the mode of action of Nod factors the expression of early nodulin genes was followed during Nod factor-induced root hair deformation and nodule primordium formation. The results of these studies suggested that the expression of VsENOD5 and VsENOD12 is not required for root hair deformation. In the Nod factor-induced primordia both VsENOD12 and VsENOD40 are expressed in a spatially controlled manner similar to that found in Rhizobium-induced nodule primordia. In contrast, VsENOD5 expression has never been observed in Nod factor-induced primordia, showing that the induction of VsENOD5 and VsENOD12 expression are not coupled. VsENOD5 expression is induced in the root epidermis by Nod factors and in Rhizobium-induced nodule primordia only in cells infected by the bacteria, suggesting that the Nod factor does not reach the inner cortical cells.

  14. Identification of genes encoding critical factors regulating B-cell terminal differentiation in torafugu (Takifugu rubripes).

    PubMed

    Ohtani, Maki; Miyadai, Toshiaki; Hiroishi, Shingo

    2006-03-01

    Many transcription factors, and associated co-factors, are involved in the regulation of B-cell terminal differentiation in mammals. In the teleost and cartilaginous fish, although evidence has strongly suggested the existence of B-cell like lymphocytes, the mechanism of terminal differentiation of B-cells remains to be elucidated. In the present study, we searched for the nucleotide and amino acid sequences similar to the critical regulatory factors facilitating the terminal differentiation of B-cells using the fugu BLAST server. We cloned the following cDNAs from Takifugu rubripes: (1) B-lymphocyte-induced maturation protein-1 (Blimp-1), which plays a major role in promoting plasma cell differentiation by repressing the transcription of many genes that participate in maintaining the differentiation of mature B-cells; (2) Bcl-6, which facilitates germinal center formation and represses Blimp-1 expression; (3) X-box binding protein-1 (XBP-1), which operates Ig secretion by activating transcription of the ER-stress responsible genes; (4) Pax-5, which suppresses XBP-1 and enhances the expression of activation-induced cytidine deaminase (AID), an inducer of somatic hypermutation and class-switch recombination of the immunoglobulin gene; and (5) TLE-3, one of the Groucho family proteins, a co-factor for Blimp-1. We also identified other co-factors and many target genes of Blimp-1 by in silico and/or cDNA cloning. These finding indicates that the basal process of B-cell terminal differentiation in fish is controlled by factors identical to those in mammals.

  15. Altered activities of transcription factors and their related gene expression in cardiac tissues of diabetic rats.

    PubMed

    Nishio, Y; Kashiwagi, A; Taki, H; Shinozaki, K; Maeno, Y; Kojima, H; Maegawa, H; Haneda, M; Hidaka, H; Yasuda, H; Horiike, K; Kikkawa, R

    1998-08-01

    Gene regulation in the cardiovascular tissues of diabetic subjects has been reported to be altered. To examine abnormal activities in transcription factors as a possible cause of this altered gene regulation, we studied the activity of two redox-sensitive transcription factors--nuclear factor-kappaB (NF-kappaB) and activating protein-1 (AP-1)--and the change in the mRNA content of heme oxygenase-1, which is regulated by these transcription factors in the cardiac tissues of rats with streptozotocin-induced diabetes. Increased activity of NF-kappaB and AP-1 but not nuclear transcription-activating factor, as determined by an electrophoretic mobility shift assay, was found in the hearts of 4-week diabetic rats. Glycemic control by a subcutaneous injection of insulin prevented these diabetes-induced changes in transcription factor activity. In accordance with these changes, the mRNA content of heme oxygenase-1 was increased fourfold in 4-week diabetic rats and threefold in 24-week diabetic rats as compared with control rats (P < 0.01 and P < 0.05, respectively). Insulin treatment also consistently prevented changes in the mRNA content of heme oxygenase-1. The oral administration of an antioxidant, probucol, to these diabetic rats partially prevented the elevation of the activity of both NF-kappaB and AP-1, and normalized the mRNA content of heme oxygenase-1 without producing any change in the plasma glucose concentration. These results suggest that elevated oxidative stress is involved in the activation of the transcription factors NF-kappaB and AP-1 in the cardiac tissues of diabetic rats, and that these abnormal activities of transcription factors could be associated with the altered gene regulation observed in the cardiovascular tissues of diabetic rats.

  16. Canakinumab reverses overexpression of inflammatory response genes in tumour necrosis factor receptor-associated periodic syndrome

    PubMed Central

    Torene, Rebecca; Nirmala, Nanguneri; Obici, Laura; Cattalini, Marco; Tormey, Vincent; Caorsi, Roberta; Starck-Schwertz, Sandrine; Letzkus, Martin; Hartmann, Nicole; Abrams, Ken; Lachmann, Helen; Gattorno, Marco

    2017-01-01

    Objective To explore whether gene expression profiling can identify a molecular mechanism for the clinical benefit of canakinumab treatment in patents with tumour necrosis factor receptor-associated periodic syndrome (TRAPS). Methods Blood samples were collected from 20 patients with active TRAPS who received canakinumab 150 mg every 4 weeks for 4 months in an open-label proof-of-concept phase II study, and from 20 aged-matched healthy volunteers. Gene expression levels were evaluated in whole blood samples by microarray analysis for arrays passing quality control checks. Results Patients with TRAPS exhibited a gene expression signature in blood that differed from that in healthy volunteers. Upon treatment with canakinumab, many genes relevant to disease pathogenesis moved towards levels seen in the healthy volunteers. Canakinumab downregulated the TRAPS-causing gene (TNF super family receptor 1A (TNFRSF1A)), the drug-target gene (interleukin (IL)-1B) and other inflammation-related genes (eg, MAPK14). In addition, several inflammation-related pathways were evident among the differentially expressed genes. Canakinumab treatment reduced neutrophil counts, but the observed expression differences remained after correction for this. Conclusions These gene expression data support a model in which canakinumab produces clinical benefit in TRAPS by increasing neutrophil apoptosis and reducing pro-inflammatory signals resulting from the inhibition of IL-1β. Notably, treatment normalised the overexpression of TNFRSF1A, suggesting that canakinumab has a direct impact on the main pathogenic mechanism in TRAPS. Trial registration number NCT01242813. PMID:27474763

  17. Network component analysis provides quantitative insights on an Arabidopsis transcription factor-gene regulatory network

    PubMed Central

    2013-01-01

    Background Gene regulatory networks (GRNs) are models of molecule-gene interactions instrumental in the coordination of gene expression. Transcription factor (TF)-GRNs are an important subset of GRNs that characterize gene expression as the effect of TFs acting on their target genes. Although such networks can qualitatively summarize TF-gene interactions, it is highly desirable to quantitatively determine the strengths of the interactions in a TF-GRN as well as the magnitudes of TF activities. To our knowledge, such analysis is rare in plant biology. A computational methodology developed for this purpose is network component analysis (NCA), which has been used for studying large-scale microbial TF-GRNs to obtain nontrivial, mechanistic insights. In this work, we employed NCA to quantitatively analyze a plant TF-GRN important in floral development using available regulatory information from AGRIS, by processing previously reported gene expression data from four shoot apical meristem cell types. Results The NCA model satisfactorily accounted for gene expression measurements in a TF-GRN of seven TFs (LFY, AG, SEPALLATA3 [SEP3], AP2, AGL15, HY5 and AP3/PI) and 55 genes. NCA found strong interactions between certain TF-gene pairs including LFY → MYB17, AG → CRC, AP2 → RD20, AGL15 → RAV2 and HY5 → HLH1, and the direction of the interaction (activation or repression) for some AGL15 targets for which this information was not previously available. The activity trends of four TFs - LFY, AG, HY5 and AP3/PI as deduced by NCA correlated well with the changes in expression levels of the genes encoding these TFs across all four cell types; such a correlation was not observed for SEP3, AP2 and AGL15. Conclusions For the first time, we have reported the use of NCA to quantitatively analyze a plant TF-GRN important in floral development for obtaining nontrivial information about connectivity strengths between TFs and their target genes as well as TF

  18. Chromosomal Organization and Sequence Diversity of Genes Encoding Lachrymatory Factor Synthase in Allium cepa L.

    PubMed

    Masamura, Noriya; McCallum, John; Khrustaleva, Ludmila; Kenel, Fernand; Pither-Joyce, Meegham; Shono, Jinji; Suzuki, Go; Mukai, Yasuhiko; Yamauchi, Naoki; Shigyo, Masayoshi

    2012-06-01

    Lachrymatory factor synthase (LFS) catalyzes the formation of lachrymatory factor, one of the most distinctive traits of bulb onion (Allium cepa L.). Therefore, we used LFS as a model for a functional gene in a huge genome, and we examined the chromosomal organization of LFS in A. cepa by multiple approaches. The first-level analysis completed the chromosomal assignment of LFS gene to chromosome 5 of A. cepa via the use of a complete set of A. fistulosum-shallot (A. cepa L. Aggregatum group) monosomic addition lines. Subsequent use of an F(2) mapping population from the interspecific cross A. cepa × A. roylei confirmed the assignment of an LFS locus to this chromosome. Sequence comparison of two BAC clones bearing LFS genes, LFS amplicons from diverse germplasm, and expressed sequences from a doubled haploid line revealed variation consistent with duplicated LFS genes. Furthermore, the BAC-FISH study using the two BAC clones as a probe showed that LFS genes are localized in the proximal region of the long arm of the chromosome. These results suggested that LFS in A. cepa is transcribed from at least two loci and that they are localized on chromosome 5.

  19. The hematopoietic transcription factor PU.1 regulates RANK gene expression in myeloid progenitors

    SciTech Connect

    Kwon, Oh Hyung; Lee, Chong-Kil; Lee, Young Ik; Paik, Sang-Gi; Lee, Hyun-Jun . E-mail: hjlee7@kribb.re.kr

    2005-09-23

    Osteoclasts are bone resorbing cells of hematopoietic origin. The hematopoietic transcription factor PU.1 is critical for osteoclastogenesis; however, the molecular mechanisms of PU.1-regulated osteoclastogenesis have not been explored. Here, we present evidence that the receptor activator of nuclear factor {kappa}B (RANK) gene that has been shown to be crucial for osteoclastogenesis is a transcriptional target of PU.1. The PU.1 {sup -/-} progenitor cells failed to express the RANK gene and reconstitution of PU.1 in these cells induced RANK expression. Treatment of the PU.1 reconstituted cells with M-CSF and RANKL further augmented the RANK gene expression. To explore the regulatory mechanism of the RANK gene expression by PU.1, we have cloned the human RANK promoter. Transient transfection assays have revealed that the 2.2-kb RANK promoter was functional in a monocyte line RAW264.7, whereas co-transfection of PU.1 transactivated the RANK promoter in HeLa cells. Taken together, these results suggest that PU.1 regulates the RANK gene transcription and this may represent one of the key roles of PU.1 in osteoclast differentiation.

  20. Does the possession of virulence factor genes mean that those genes will be active?

    PubMed

    Edberg, Stephen C

    2009-01-01

    There are a number of relationships the host can establish with the microbes we ingest. For the vast majority of microbes, they have a short-lived liaison with the human host. Either they are destroyed by the stomach acid or bile, or can not establish even a temporary residency in the gastrointestinal tract. Early in life the mucosal surfaces of the body establishes a resident, and generally stable, normal flora. These normal flora microbes, the majority of which are bacteria, have specific receptors for specific areas of the alimentary tract. If the foreign microbe can establish residency, it then may transiently or permanently become part of the normal flora. However, in order to produce disease, it must possess an additional set of virulence factors. While some of these are known, many are not. Those that are known include enzymes, such as protease, lipase, and esterase. Accordingly, VFAR may not be associated with human disease and its presence or absence has no public health meaning.

  1. Mutations and a polymorphism in the factor VIII gene discovered by denaturing gradient gel electrophoresis

    SciTech Connect

    Kogan, S.; Gitschier, J. )

    1990-03-01

    Hemophilia A results from mutations in the gene coding for coagulation factor VIII. The authors gradient gel electrophoresis to screen for mutations in the region of the factor VIII gene coding for the first acidic domain. Amplification primers were designed employing the MELTMAP computer program to optimize the ability to detect mutations. Screening of amplified DNA from 228 unselected hemophilia A patients revealed two mutations and one polymorphism. Rescreening the same population by making heteroduplexes between amplified patient and control samples prior to electrophoresis revealed one additional mutation. The mutations include two missense and one 4-base-pair deletion, and each mutation was found in patients with severe hemophilia. The polymorphism, located adjacent to the adenine branch site in intron 7, is useful for genetic prediction in some cases where the Bcl I and Xba I polymorphisms are uninformative. These results suggest that DNA amplification and denaturing gradient gel electrophoresis should be an excellent strategy for identifying mutations and polymorphisms in defined regions of the factor VIII gene and other large genes.

  2. Resveratrol regulates gene transcription via activation of stimulus-responsive transcription factors.

    PubMed

    Thiel, Gerald; Rössler, Oliver G

    2017-03-01

    Resveratrol (trans-3,4',5-trihydroxystilbene), a polyphenolic phytoalexin of grapes and other fruits and plants, is a common constituent of our diet and of dietary supplements. Many health-promoting benefits have been connected with resveratrol in the treatment of cardiovascular diseases, cancer, diabetes, inflammation, neurodegeneration, and diseases connected with aging. To explain the pleiotropic effects of resveratrol, the molecular targets of this compound have to be identified on the cellular level. Resveratrol induces intracellular signal transduction pathways which ultimately lead to changes in the gene expression pattern of the cells. Here, we review the effect of resveratrol on the activation of the stimulus-responsive transcription factors CREB, AP-1, Egr-1, Elk-1, and Nrf2. Following activation, these transcription factors induce transcription of delayed response genes. The gene products of these delayed response genes are ultimately responsible for the changes in the biochemistry and physiology of resveratrol-treated cells. The activation of stimulus-responsive transcription factors may explain many of the intracellular activities of resveratrol. However, results obtained in vitro may not easily be transferred to in vivo systems.

  3. Extracellular Matrix-Regulated Gene Expression RequiresCooperation of SWI/SNF and Transcription Factors

    SciTech Connect

    Xu, Ren; Spencer, Virginia A.; Bissell, Mina J.

    2006-05-25

    Extracellular cues play crucial roles in the transcriptional regulation of tissue-specific genes, but whether and how these signals lead to chromatin remodeling is not understood and subject to debate. Using chromatin immunoprecipitation (ChIP) assays and mammary-specific genes as models, we show here that extracellular matrix (ECM) molecules and prolactin cooperate to induce histone acetylation and binding of transcription factors and the SWI/SNF complex to the {beta}- and ?-casein promoters. Introduction of a dominant negative Brg1, an ATPase subunit of SWI/SNF complex, significantly reduced both {beta}- and ?-casein expression, suggesting that SWI/SNF-dependent chromatin remodeling is required for transcription of mammary-specific genes. ChIP analyses demonstrated that the ATPase activity of SWI/SNF is necessary for recruitment of RNA transcriptional machinery, but not for binding of transcription factors or for histone acetylation. Coimmunoprecipitation analyses showed that the SWI/SNF complex is associated with STAT5, C/EBP{beta}, and glucocorticoid receptor (GR). Thus, ECM- and prolactin-regulated transcription of the mammary-specific casein genes requires the concerted action of chromatin remodeling enzymes and transcription factors.

  4. Vascular endothelial growth factor receptor 2 gene (KDR) polymorphisms and expression levels in depressive disorder.

    PubMed

    Gałecki, Piotr; Orzechowska, Agata; Berent, Dominika; Talarowska, Monika; Bobińska, Kinga; Gałecka, Elżbieta; Lewiński, Andrzej; Maes, Michael; Szemraj, Janusz

    2013-05-01

    Recent research findings suggest that vascular endothelial growth factor (VEGF) participates in the development of depressive disorder. VEGF is involved in neurogenesis and neuroprotection processes, mediated by vascular endothelial growth factor receptor 2 (VEGFR2). VEGFR2 also plays a role in angiogenesis, a process related to neurogenesis and other biological processes. We examined VEGFR2 (KDR) gene polymorphism, mRNA expression levels, as well as VEGFR2 protein levels in 268 patients diagnosed with a recurrent depressive disorder (rDD) using the ICD-10 criteria, and in 200 healthy controls. Genotyping and gene expression level analysis was performed using polymerase chain reaction (PCR)-based methods. An Enzyme-Linked Immunosorbent Assay (ELISA) was used for measurement of KDR protein levels. Our study found that distribution of KDR polymorphism +1416T/A differs significantly in patients with rDD when compared to healthy subjects, while A allele and AA genotype are risk factors for rDD. KDR mRNA and protein expression are higher in patients with rDD. We also observed a significant association between the -271A/G variant and gene and protein levels. Our study is the first to demonstrate that the KDR gene may serve as a novel genetic marker that could participate in the etiology of rDD. This new pathway may play a role in the inflammatory pathophysiology of depression.

  5. Factor Analysis of MYB Gene Expression and Flavonoid Affecting Petal Color in Three Crabapple Cultivars.

    PubMed

    Zhang, Jie; Liu, Yingying; Bu, YuFen; Zhang, Xi; Yao, Yuncong

    2017-01-01

    Flavonoid biosynthesis has received much attention concerning the structural genes and expression of the associated transcription factors (TFs). In the present study, we examined the gene expression patterns for petals of three colors using a statistical method. Factor analysis was successfully used to examine the expression patterns most present during regulation. The first expression patterns in the white and red petals were clearly demonstrated and have revealed different mechanisms of producing the proper components, whereas that in the pink petals was more complex, requiring factor analysis to supplement the other results. Combining the results of the correlation analysis between TFs and structural genes, the effects of each TF on the main expression pattern in each cultivar were determined. Moreover, McMYB10 was implicated in the regulation of the gene expression pattern in red petals, and McMYB5 was implicated in the maintenance of the balance of the pigment components and proanthocyanin (PA) production in cooperation with McMYB4 to generate pigmentation in the pink petals.

  6. Progressive tarsal patterning in the Drosophila by temporally dynamic regulation of transcription factor genes.

    PubMed

    Natori, Kohei; Tajiri, Reiko; Furukawa, Shiori; Kojima, Tetsuya

    2012-01-15

    The morphology of insect appendages, such as the number and proportion of leg tarsal segments, is immensely diverse. In Drosophila melanogaster, adult legs have five tarsal segments. Accumulating evidence indicates that tarsal segments are formed progressively through dynamic changes in the expression of transcription factor genes, such as Bar genes, during development. In this study, to examine further the basis of progressive tarsal patterning, the precise expression pattern and function of several transcription factor genes were investigated in relation to the temporal regulation of Bar expression. The results indicate that nubbin is expressed over a broad region at early stages but gradually disappears from the middle of the tarsal region. This causes the progressive expansion of rotund expression, which in turn progressively represses Bar expression, leading to the formation of the tarsal segment 3. The region corresponding to the tarsal segment 4 is formed when apterous expression is initiated, which renders Bar expression refractory to rotund. In addition, the tarsal segment 2 appears to be derived from the region that expresses Bar at a very early stage. Cessation of Bar expression in this region requires the function of spineless, which also regulates rotund expression. These findings indicate that the temporally dynamic regulatory interaction of these transcription factor genes is the fundamental basis of the progressive patterning of the tarsal region.

  7. Factor Analysis of MYB Gene Expression and Flavonoid Affecting Petal Color in Three Crabapple Cultivars

    PubMed Central

    Zhang, Jie; Liu, Yingying; Bu, YuFen; Zhang, Xi; Yao, Yuncong

    2017-01-01

    Flavonoid biosynthesis has received much attention concerning the structural genes and expression of the associated transcription factors (TFs). In the present study, we examined the gene expression patterns for petals of three colors using a statistical method. Factor analysis was successfully used to examine the expression patterns most present during regulation. The first expression patterns in the white and red petals were clearly demonstrated and have revealed different mechanisms of producing the proper components, whereas that in the pink petals was more complex, requiring factor analysis to supplement the other results. Combining the results of the correlation analysis between TFs and structural genes, the effects of each TF on the main expression pattern in each cultivar were determined. Moreover, McMYB10 was implicated in the regulation of the gene expression pattern in red petals, and McMYB5 was implicated in the maintenance of the balance of the pigment components and proanthocyanin (PA) production in cooperation with McMYB4 to generate pigmentation in the pink petals. PMID:28223999

  8. Nodulation gene factors and plant response in the Rhizobium-legume symbiosis. [Nodulation

    SciTech Connect

    Long, S.R.

    1990-01-01

    Our original application aimed to identify genes outside the common nod region involved in nodulation and host range of alfalfa. This has been revised by adding other studies on nodulation gene action and removing molecular studies of gene action. Our restated goals and progress are as follows. An early goal was identification and characterization of additional nodulation genes. By means of transposon mutagenesis, mapping and marker exchange we have established 87 independent mutations in a 20kb area represented by plasmid pRmJT5. We discovered four new genes: nodP, nodD3, syrA and syrM. The sequence, start site and protein product for nodFe, nodG, and nodH were also identified. Regulation of nod FEGH was studied. nod FEGH can be induced by luteolin in the presence of noodle; nodD1; noD3 and syrM, a symbiotic regulator gene also increase transcription of nod FEGH. syrA will interact with syrM; syrM also regulates exopolysaccharide genes and is believed to be a master regulator. As part of these studies, an in vitro transcription/translation system for Rhizobium was developed. Adjacent to nodP we discussed nodQ, nodPQ occurrs in two highly consumed copies. nodQ appears by sequence analysis to be similar to initiation and elongation factors, with the highest homology in the GDP binding domain. We have also investigated the nod strain, WL131. WL131 has an insertion, ISRm3, interrupting nodG, and a nonsase mutation in nodH, nodH is responsible for the lack of nodulation. We are currently investigating supernatant factors, host range effects C by spot inoculation, glucaronidase fusion proteins, and are developing, a single root hair inoculation protocol. 7 refs., 6 figs., 1 tab.

  9. Regulation of photoreceptor gene expression by Crx-associated transcription factor network

    PubMed Central

    Hennig, Anne K.; Peng, Guang-Hua; Chen, Shiming

    2008-01-01

    Rod and cone photoreceptors in the mammalian retina are special types of neurons that are responsible for phototransduction, the first step of vision. Development and maintenance of photoreceptors require precisely regulated gene expression. This regulation is mediated by a network of photoreceptor transcription factors centered on Crx, an Otx-like homeodomain transcription factor. The cell type (subtype) specificity of this network is governed by factors that are preferentially expressed by rods or cones or both, including the rod-determining factors neural retina leucine zipper protein (Nrl) and the orphan nuclear receptor Nr2e3; and cone-determining factors, mostly nuclear receptor family members. The best-documented of these include thyroid hormone receptor β2 (Trβ2), retinoid related orphan receptor Rorβ, and retinoid X receptor Rxrγ. The appropriate function of this network also depends on general transcription factors and co-factors that are ubiquitously expressed, such as the Sp zinc finger transcription factors and STAGA coactivator complexes. These cell type-specific and general transcription regulators form complex interactomes; mutations that interfere with any of the interactions can cause photoreceptor development defects or degeneration. In this manuscript, we review recent progress on the roles of various photoreceptor transcription factors and interactions in photoreceptor subtype development. We also provide evidence of auto-, para-, and feedback regulation among these factors at the transcriptional level. These protein-protein and protein-promoter interactions provide precision and specificity in controlling photoreceptor subtype-specific gene expression, development and survival. Understanding these interactions may provide insights to more effective therapeutic interventions for photoreceptor diseases. PMID:17662965

  10. Localization of the human genes encoding the two subunits of general transcription factor TFIIE.

    PubMed

    Purrello, M; Di Pietro, C; Rapisarda, A; Motta, S; Pavone, L; Grzeschik, K H; Sichel, G

    1994-09-01

    TFIIE is a general transcription factor for class II genes composed of two types of subunits, a large one of 56 kDa and a small of 34 kDa. By Southern analysis at high and at low stringency of a panel of mouse/human hybrid cell lines and by in situ chromosomal hybridization, we have demonstrated that both polypeptides are encoded by genes that are single copy in the human genome and are localized at 3q13-q21 and at 8p12, respectively. A TaqI RFLP (heterozygosity index of 0.07) was detected at the locus for the 56-kDa subunit.

  11. Localization of the gene for the ciliary neutrotrophic factor receptor (CNTFR) to human chromosome 9

    SciTech Connect

    Donaldson, D.H.; Jones, C.; Patterson, D. Univ. of Colorado Health Science Center, Denver, CO ); Britt, D.E.; Jackson, C.L. )

    1993-09-01

    Ciliary neurotrophic factor (CNTF) has recently been found to be important for the survival of motor neurons and has shown activity in animal models of amyotrophic lateral sclerosis (ALS). CNTF therefore holds promise as a treatment for ALS, and it and its receptor (CNTFR) are candidates for a gene involved in familial ALS. The CNTFR gene was mapped to chromosome 9 by PCR on a panel of human/CHO somatic cell hybrids and localized to 9p13 by PCR on a panel of radiation hybrids. 18 ref., 1 fig., 2 tabs.

  12. Dynamics of potentiation and activation: GAGA factor and its role in heat shock gene regulation.

    PubMed Central

    Wilkins, R C; Lis, J T

    1997-01-01

    GAGA factor (GAF) binds to specific DNA sequences and participates in a complex spectrum of chromosomal activities.Products of the Trithorax-like locus (Trl), which encodes multiple GAF isoforms, are required for homeotic gene expression and are essential for Drosophila development. While homozygous null mutations in Trl are lethal, heterozygotes display enhanced position effect variegation (PEV) indicative of the broad role of GAF in chromatin architecture and its positive role in gene expression.The distribution of GAF on chromosomes is complex, as it is associated with hundreds of chromosomal loci in euchromatin of salivary gland polytene chromosomes, however, it also displays a strong association with pericentric heterochromatin in diploid cells, where it appears to have roles in chromosome condensation and segregation. At higher resolution GAF binding sites have been identified in the regulatory regions of many genes. In some cases, the positive role of GAF in gene expression has been examined in detail using a variety of genetic, biochemical, and cytological approaches. Here we review what is currently known of GAF and, in the context of the heat shock genes of Drosophila, we examine the effects of GAF on multiple steps in gene expression. PMID:9321643

  13. Hessian regularization based non-negative matrix factorization for gene expression data clustering.

    PubMed

    Liu, Xiao; Shi, Jun; Wang, Congzhi

    2015-01-01

    Since a key step in the analysis of gene expression data is to detect groups of genes that have similar expression patterns, clustering technique is then commonly used to analyze gene expression data. Data representation plays an important role in clustering analysis. The non-negative matrix factorization (NMF) is a widely used data representation method with great success in machine learning. Although the traditional manifold regularization method, Laplacian regularization (LR), can improve the performance of NMF, LR still suffers from the problem of its weak extrapolating power. Hessian regularization (HR) is a newly developed manifold regularization method, whose natural properties make it more extrapolating, especially for small sample data. In this work, we propose the HR-based NMF (HR-NMF) algorithm, and then apply it to represent gene expression data for further clustering task. The clustering experiments are conducted on five commonly used gene datasets, and the results indicate that the proposed HR-NMF outperforms LR-based NMM and original NMF, which suggests the potential application of HR-NMF for gene expression data.

  14. Locations of human and mouse genes encoding the RFX1 and RFX2 transcription factor proteins.

    PubMed

    Doyle, J; Hoffman, S; Ucla, C; Reith, W; Mach, B; Stubbs, L

    1996-07-01

    RFX transcription factors constitute a highly conserved family of site-specific DNA binding proteins involved in the expression of a variety of cellular and viral genes, including major histocompatibility complex class II genes and genes in human hepatitis B virus. Five members of the RFX gene family have been isolated from human and mouse, and all share a highly characteristic DNA binding domain that is distinct from other known DNA binding motifs. The human RFX1 and RFX2 genes have been assigned by in situ hybridization to chromosome 19p13.1 and 19p13.3, respectively. In this paper, we present data that localize RFX1 and RFX2 precisely within the detailed physical map of human chromosome 19 and genetic data that assign Rfx1 and Rfx2 to homologous regions of mouse chromosomes 8 and 17, respectively. These data define the established relationships between these homologous mouse and human regions in further detail and provide new tools for linking cloned genes to phenotypes in both species.

  15. Identifying Context-Specific Transcription Factor Targets from Prior Knowledge and Gene Expression Data

    PubMed Central

    Fertig, Elana J; Favorov, Alexander V; Ochs, Michael F

    2013-01-01

    Numerous methodologies, assays, and databases presently provide candidate targets of transcription factors (TFs). However, TFs rarely regulate their targets universally. The context of activation of a TF can change the transcriptional response of targets. Direct multiple regulation typical to mammalian genes complicates direct inference of TF targets from gene expression data. We present a novel statistic that infers context-specific TF regulation based upon the CoGAPS algorithm, which infers overlapping gene expression patterns resulting from coregulation. Numerical experiments with simulated data showed that this statistic correctly inferred targets that are common to multiple TFs, except in cases where the signal from a TF is negligible relative to noise level and signal from other TFs. The statistic is robust to moderate levels of error in the simulated gene sets, identifying fewer false positives than false negatives. Significantly, the regulatory statistic refines the number of TF targets relevant to cell signaling in gastrointestinal stromal tumors (GIST) to genes consistent with the phosphorylation patterns of TFs identified in previous studies. As formulated, the proposed regulatory statistic has wide applicability to inferring set membership in integrated datasets. This statistic could be naturally extended to account for prior probabilities of set membership or to add candidate gene targets. PMID:23694699

  16. Identifying context-specific transcription factor targets from prior knowledge and gene expression data.

    PubMed

    Fertig, Elana J; Favorov, Alexander V; Ochs, Michael F

    2013-09-01

    Numerous methodologies, assays, and databases presently provide candidate targets of transcription factors (TFs). However, TFs rarely regulate their targets universally. The context of activation of a TF can change the transcriptional response of targets. Direct multiple regulation typical to mammalian genes complicates direct inference of TF targets from gene expression data. We present a novel statistic that infers context-specific TF regulation based upon the CoGAPS algorithm, which infers overlapping gene expression patterns resulting from coregulation. Numerical experiments with simulated data showed that this statistic correctly inferred targets that are common to multiple TFs, except in cases where the signal from a TF is negligible relative to noise level and signal from other TFs. The statistic is robust to moderate levels of error in the simulated gene sets, identifying fewer false positives than false negatives. Significantly, the regulatory statistic refines the number of TF targets relevant to cell signaling in gastrointestinal stromal tumors (GIST) to genes consistent with the phosphorylation patterns of TFs identified in previous studies. As formulated, the proposed regulatory statistic has wide applicability to inferring set membership in integrated datasets. This statistic could be naturally extended to account for prior probabilities of set membership or to add candidate gene targets.

  17. Promoter region of the human platelet-derived growth factor A-chain gene

    SciTech Connect

    Takimoto, Yasuo; Wang, Zhao Yi; Kobler, K.; Deuel, T.F. )

    1991-03-01

    The platelet-derived growth factor (PDGF) A- and B-chain genes are widely expressed in mammalian tissues and their homodimeric gene products appear to regulate the autocrine growth of both normal and transformed cells. In this study, we analyzed the 5{prime} flanking sequences of the human PDGF A-chain gene to seek elements important to regulating its transcription. The promoter reigon was exceptionally G + C-rich and contained a TATA box but no CAAT box. The transcription start site was identified 845 base pairs 5{prime} to the translation initiation site by S1 nuclease mapping and by primer extension. Both in vitro transcription and transient expression of the chloramphenicol acetyltransferase gene linked to the PDGF A-chain 5{prime} flanking sequences established that the putative promoter region was active, and RNase H mapping established that the three characteristic mRNAs used the same transcription start site, which was used in normal endothelial cells and in two human tumor cell lines that express high levels of A-chain transcripts. The results extablished an exceptionally G + C-rich promoter region and a single transcription start site active for each of the three mRNAs of the PDGF A-chain gene. DNA sites of potential importance in mediating the activation of the PDGF A-chain gene in normal cells and in transformed cell lines expressing high levels of PDGF A-chain were identified.

  18. The cauliflower Orange gene enhances petiole elongation by suppressing expression of eukaryotic release factor 1.

    PubMed

    Zhou, Xiangjun; Sun, Tian-Hu; Wang, Ning; Ling, Hong-Qing; Lu, Shan; Li, Li

    2011-04-01

    The cauliflower (Brassica oleracea var. botrytis) Orange (Or) gene affects plant growth and development in addition to conferring β-carotene accumulation. This study was undertaken to investigate the molecular basis for the effects of the Or gene mutation in on plant growth. The OR protein was found to interact with cauliflower and Arabidopsis eukaryotic release factor 1-2 (eRF1-2), a member of the eRF1 family, by yeast two-hybrid analysis and by bimolecular fluorescence complementation (BiFC) assay. Concomitantly, the Or mutant showed reduced expression of the BoeRF1 family genes. Transgenic cauliflower plants with suppressed expression of BoeRF1-2 and BoeRF1-3 were generated by RNA interference. Like the Or mutant, the BoeRF1 RNAi lines showed increased elongation of the leaf petiole. This long-petiole phenotype was largely caused by enhanced cell elongation, which resulted from increased cell length and elevated expression of genes involved in cell-wall loosening. These findings demonstrate that the cauliflower Or gene controls petiole elongation by suppressing the expression of eRF1 genes, and provide new insights into the molecular mechanism of leaf petiole regulation.

  19. Gene expression induced by Toll-like receptors in macrophages requires the transcription factor NFAT5.

    PubMed

    Buxadé, Maria; Lunazzi, Giulia; Minguillón, Jordi; Iborra, Salvador; Berga-Bolaños, Rosa; Del Val, Margarita; Aramburu, José; López-Rodríguez, Cristina

    2012-02-13

    Toll-like receptors (TLRs) engage networks of transcriptional regulators to induce genes essential for antimicrobial immunity. We report that NFAT5, previously characterized as an osmostress responsive factor, regulates the expression of multiple TLR-induced genes in macrophages independently of osmotic stress. NFAT5 was essential for the induction of the key antimicrobial gene Nos2 (inducible nitric oxide synthase [iNOS]) in response to low and high doses of TLR agonists but is required for Tnf and Il6 mainly under mild stimulatory conditions, indicating that NFAT5 could regulate specific gene patterns depending on pathogen burden intensity. NFAT5 exhibited two modes of association with target genes, as it was constitutively bound to Tnf and other genes regardless of TLR stimulation, whereas its recruitment to Nos2 or Il6 required TLR activation. Further analysis revealed that TLR-induced recruitment of NFAT5 to Nos2 was dependent on inhibitor of κB kinase (IKK) β activity and de novo protein synthesis, and was sensitive to histone deacetylases. In vivo, NFAT5 was necessary for effective immunity against Leishmania major, a parasite whose clearance requires TLRs and iNOS expression in macrophages. These findings identify NFAT5 as a novel regulator of mammalian anti-pathogen responses.

  20. Gene expression induced by Toll-like receptors in macrophages requires the transcription factor NFAT5

    PubMed Central

    Buxadé, Maria; Lunazzi, Giulia; Minguillón, Jordi; Iborra, Salvador; Berga-Bolaños, Rosa; del Val, Margarita; Aramburu, José

    2012-01-01

    Toll-like receptors (TLRs) engage networks of transcriptional regulators to induce genes essential for antimicrobial immunity. We report that NFAT5, previously characterized as an osmostress responsive factor, regulates the expression of multiple TLR-induced genes in macrophages independently of osmotic stress. NFAT5 was essential for the induction of the key antimicrobial gene Nos2 (inducible nitric oxide synthase [iNOS]) in response to low and high doses of TLR agonists but is required for Tnf and Il6 mainly under mild stimulatory conditions, indicating that NFAT5 could regulate specific gene patterns depending on pathogen burden intensity. NFAT5 exhibited two modes of association with target genes, as it was constitutively bound to Tnf and other genes regardless of TLR stimulation, whereas its recruitment to Nos2 or Il6 required TLR activation. Further analysis revealed that TLR-induced recruitment of NFAT5 to Nos2 was dependent on inhibitor of κB kinase (IKK) β activity and de novo protein synthesis, and was sensitive to histone deacetylases. In vivo, NFAT5 was necessary for effective immunity against Leishmania major, a parasite whose clearance requires TLRs and iNOS expression in macrophages. These findings identify NFAT5 as a novel regulator of mammalian anti-pathogen responses. PMID:22312110

  1. Identification of the Drosophila Mes4 gene as a novel target of the transcription factor DREF

    SciTech Connect

    Suyari, Osamu; Ida, Hiroyuki; Yoshioka, Yasuhide; Kato, Yasuko; Hashimoto, Reina; Yamaguchi, Masamitsu

    2009-05-01

    The Mes4 gene has been identified as one of the maternal Dorsal target genes in Drosophila. In the present study, we found a DNA replication-related element (DRE, 5'-TATCGATA) in the Mes4 promoter recognized by the DRE-binding factor (DREF). Luciferase transient expression assays in S2 cells using Mes4 promoter-luciferase fusion plasmids revealed that the DRE sequence is essential for Mes4 promoter activity. Requirement of DRE for Mes4 promoter activity was further confirmed by anti-{beta}-galactosidase antibody-staining of various tissues from transgenic flies carrying Mes4 promoter-lacZ fusion genes. Furthermore, wild type Mes4 promoter activity was decreased by 40% in DREF-depleted S2 cells. These results indicate that DREF positively regulates Mes4 gene expression. Band mobility shift analyses using Kc cell nuclear extracts further indicated that the DRE sequence in the Mes4 promoter is especially important for binding to DREF. Moreover, specific binding of DREF to the involved genomic region could be demonstrated by chromatin immunoprecipitation assays using anti-DREF antibodies. These results, taken together, indicate that the DRE/DREF system activates transcription of the Mes4 gene. In addition, knockdown of the Mes4 gene in wing imaginal discs using the GAL4-UAS system caused an atrophied wing phenotype, suggesting that Mes4 is required for wing morphogenesis.

  2. Promoter region of the human platelet-derived growth factor A-chain gene.

    PubMed Central

    Takimoto, Y; Wang, Z Y; Kobler, K; Deuel, T F

    1991-01-01

    The platelet-derived growth factor (PDGF) A- and B-chain genes are widely expressed in mammalian tissues and their homodimeric gene products appear to regulate the autocrine growth of both normal and transformed cells. In this study, we analyzed the 5' flanking sequences of the human PDGF A-chain gene to seek elements important to regulating its transcription. The promoter region was exceptionally G + C-rich and contained a "TATA box" but no "CAAT box." The transcription start site was identified 845 base pairs 5' to the translation initiation site by S1 nuclease mapping and by primer extension. Both in vitro transcription and transient expression of the chloramphenicol acetyltransferase gene linked to the PDGF A-chain 5' flanking sequences established that the putative promoter region was active, and RNase H mapping established that the three characteristic mRNAs (1.9, 2.3, and 2.8 kilobases) used the same transcription start site, which was used in normal endothelial cells and in two human tumor cell lines that express high levels of A-chain transcripts. The results established an exceptionally G + C-rich promoter region and a single transcription start site active for each of the three mRNAs of the PDGF A-chain gene. DNA sites of potential importance in mediating the activation of the PDGF A-chain gene in normal cells and in transformed cell lines expressing high levels of PDGF A chain were identified. Images PMID:1848007

  3. Naked gene therapy of hepatocyte growth factor for dextran sulfate sodium-induced colitis in mice

    SciTech Connect

    Kanbe, Takamasa |; Murai, Rie; Mukoyama, Tomoyuki; Murawaki, Yoshiyuki |; Hashiguchi, Ko-ichi; Yoshida, Yoko; Tsuchiya, Hiroyuki; Kurimasa, Akihiro; Harada, Ken-ichi; Yashima, Kazuo; Nishimuki, Eiji; Shabana, Noriko; Kishimoto, Yukihiro; Kojyo, Haruhiko; Miura, Kunihiko; Kawasaki, Hironaka; Murawaki, Yoshikazu; Shiota, Goshi . E-mail: gshiota@grape.med.tottori-u.ac.jp

    2006-07-14

    Ulcerative colitis (UC) is progressive and relapsing disease. To explore the therapeutic effects of naked gene therapy of hepatocyte growth factor (HGF) on UC, the SR{alpha} promoter driving HGF gene was intrarectally administered to the mice in which colitis was induced by dextran sulfate sodium (DSS). Expression of the transgene was seen in surface epithelium, lamina propria, and muscularis mucosae. The HGF-treated mice showed reduced colonic mucosal damage and increased body weights, compared with control mice (P < 0.01 and P < 0.05, respectively). The HGF-treated mice displayed increased number of PCNA-positive cells and decreased number of apoptotic cells than in control mice (P < 0.01, each). Phosphorylated AKT was dramatically increased after HGF gene administration, however, phosphorylated ERK1/2 was not altered. Microarray analysis revealed that HGF induced expression of proliferation- and apoptosis-associated genes. These data suggest that naked HGF gene delivery causes therapeutic effects through regulation of many downstream genes.

  4. Divergence among genes encoding the elongation factor Tu of Yersinia Species.

    PubMed

    Isabel, Sandra; Leblanc, Eric; Boissinot, Maurice; Boudreau, Dominique K; Grondin, Myrian; Picard, François J; Martel, Eric A; Parham, Nicholas J; Chain, Patrick S G; Bader, Douglas E; Mulvey, Michael R; Bryden, Louis; Roy, Paul H; Ouellette, Marc; Bergeron, Michel G

    2008-11-01

    Elongation factor Tu (EF-Tu), encoded by tuf genes, carries aminoacyl-tRNA to the ribosome during protein synthesis. Duplicated tuf genes (tufA and tufB), which are commonly found in enterobacterial species, usually coevolve via gene conversion and are very similar to one another. However, sequence analysis of tuf genes in our laboratory has revealed highly divergent copies in 72 strains spanning the genus Yersinia (representing 12 Yersinia species). The levels of intragenomic divergence between tufA and tufB sequences ranged from 8.3 to 16.2% for the genus Yersinia, which is significantly greater than the 0.0 to 3.6% divergence observed for other enterobacterial genera. We further explored tuf gene evolution in Yersinia and other Enterobacteriaceae by performing directed sequencing and phylogenetic analyses. Phylogenetic trees constructed using concatenated tufA and tufB sequences revealed a monophyletic genus Yersinia in the family Enterobacteriaceae. Moreover, Yersinia strains form clades within the genus that mostly correlate with their phenotypic and genetic classifications. These genetic analyses revealed an unusual divergence between Yersinia tufA and tufB sequences, a feature unique among sequenced Enterobacteriaceae and indicative of a genus-wide loss of gene conversion. Furthermore, they provided valuable phylogenetic information for possible reclassification and identification of Yersinia species.

  5. The WRKY Transcription Factor Family in Citrus: Valuable and Useful Candidate Genes for Citrus Breeding.

    PubMed

    Ayadi, M; Hanana, M; Kharrat, N; Merchaoui, H; Marzoug, R Ben; Lauvergeat, V; Rebaï, A; Mzid, R

    2016-10-01

    WRKY transcription factors belong to a large family of plant transcriptional regulators whose members have been reported to be involved in a wide range of biological roles including plant development, adaptation to environmental constraints and response to several diseases. However, little or poor information is available about WRKY's in Citrus. The recent release of completely assembled genomes sequences of Citrus sinensis and Citrus clementina and the availability of ESTs sequences from other citrus species allowed us to perform a genome survey for Citrus WRKY proteins. In the present study, we identified 100 WRKY members from C. sinensis (51), C. clementina (48) and Citrus unshiu (1), and analyzed their chromosomal distribution, gene structure, gene duplication, syntenic relation and phylogenetic analysis. A phylogenetic tree of 100 Citrus WRKY sequences with their orthologs from Arabidopsis has distinguished seven groups. The CsWRKY genes were distributed across all ten sweet orange chromosomes. A comprehensive approach and an integrative analysis of Citrus WRKY gene expression revealed variable profiles of expression within tissues and stress conditions indicating functional diversification. Thus, candidate Citrus WRKY genes have been proposed as potentially involved in fruit acidification, essential oil biosynthesis and abiotic/biotic stress tolerance. Our results provided essential prerequisites for further WRKY genes cloning and functional analysis with an aim of citrus crop improvement.

  6. Cloning, characterization and subcellular localization of Nuclear LIM interactor interacting factor gene from Leishmania donovani.

    PubMed

    Ravinder, R; Goyal, N

    2017-05-05

    LIM domains are zinc-binding motifs that mediate protein-protein interactions and are found in a wide variety of cytoplasmic and nuclear proteins. The nuclear LIM domain family members have a number of different functions including transcription factors, gene regulation, cell fate determination, organization of the cytoskeleton and tumour formation exerting their function through various LIM domain interacting protein partners/cofactors. Nuclear LIM domain interacting proteins/factors have not been reported in any protozoan parasites including Leishmania. Here, we report for the first time cloning, characterization and subcellular localization of nuclear LIM interactor-interacting factor (NLI) like protein from Leishmania donovani, the causative agent of Indian Kala-azar. Primary sequence analysis of LdNLI revealed presence of characteristic features of nuclear LIM interactor-interacting factor. However, leishmanial NLI represents a distinct kinetoplastid group, clustered in a separate branch of the phylogenic tree. The sub-cellular distribution of LdNLI revealed the discreet localization in nucleus and kinetoplast only, suggesting that the gene may have a role in parasite gene expression.

  7. Analysis of mutations in the entire coding sequence of the factor VIII gene

    SciTech Connect

    Bidichadani, S.I.; Lanyon, W.G.; Connor, J.M.

    1994-09-01

    Hemophilia A is a common X-linked recessive disorder of bleeding caused by deleterious mutations in the gene for clotting factor VIII. The large size of the factor VIII gene, the high frequency of de novo mutations and its tissue-specific expression complicate the detection of mutations. We have used a combination of RT-PCR of ectopic factor VIII transcripts and genomic DNA-PCRs to amplify the entire essential sequence of the factor VIII gene. This is followed by chemical mismatch cleavage analysis and direct sequencing in order to facilitate a comprehensive search for mutations. We describe the characterization of nine potentially pathogenic mutations, six of which are novel. In each case, a correlation of the genotype with the observed phenotype is presented. In order to evaluate the pathogenicity of the five missense mutations detected, we have analyzed them for evolutionary sequence conservation and for their involvement of sequence motifs catalogued in the PROSITE database of protein sites and patterns.

  8. Neuroprotection for Amyotrophic Lateral Sclerosis: Role of Stem Cells, Growth Factors, and Gene Therapy

    PubMed Central

    Pandya, Rachna S.; Mao, Lilly L. J.; Zhou, Edward W.; Bowser, Robert; Zhu, Zhenglun; Zhu, Yongjin; Wang, Xin

    2014-01-01

    Various molecular mechanisms including apoptosis, inflammation, oxidative stress, and excitotoxicity have been implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS), though the exact mechanisms have yet to be specified. Furthermore, the underlying restorative molecular mechanisms resulting in neuronal and/or non-neuronal regeneration have to be yet elucidated. Therapeutic agents targeting one or more of these mechanisms to combat either initiation or progression of the disease are under research. Novel treatments including stem cell therapy, growth factors, and gene therapy might prolong survival and delay progression of symptoms. Harnessing the regenerative potential of the central nervous system would be a novel approach for the treatment of motor neuron death resulting from ALS. Endogenous neural replacement, if augmented with administration of exogenous growth factors or with pharmaceuticals that increase the rate of neural progenitor formation, neural migration, and neural maturation could slow the rate of cell loss enough to result in clinical improvement. In this review, we discuss the impact of therapeutic treatment involving stem cell therapy, trophic factors, gene therapy, and combination therapy on disease onset and progression of ALS. In addition, we summarize human clinical trials of stem cell therapy, growth factor therapy, and gene therapy in individuals with ALS. PMID:22283698

  9. Expression of myogenic factors in denervated chicken breast muscle: isolation of the chicken Myf5 gene.

    PubMed Central

    Saitoh, O; Fujisawa-Sehara, A; Nabeshima, Y; Periasamy, M

    1993-01-01

    In this study, we have isolated and characterized the chicken Myf5 gene, and cDNA clones encoding chicken MyoD1 and myogenin. The chicken Myf5 and MRF4 genes are tandemly located on a single genomic DNA fragment, and the chicken Myf5 gene is organized into at least three exons. Using genomic and cDNA probes, we further analyzed the mRNA levels of four myogenic factors during chicken breast muscle development. This analysis revealed that myogenin expression is restricted to in ovo stages in breast muscle, and is not detectable in neonatal and adult stages. On the other hand, Myf5 expression is detectable until day 7 post-hatching, and is not found in adult muscle, whereas high levels of MyoD1 and MRF4 are detectable at all stages. To further understand the roles of innervation on muscle maturation, we analyzed the expression of the four myogenic factors in denervated adult breast muscle. We found that MyoD1, myogenin, and MRF4 are induced at high levels in denervated muscle, whereas no change occurs in the level of Myf5. These studies suggest that innervation controls the relative abundance and type of myogenic factors that are expressed in adult muscle, and that when nerve control is removed, the muscle reverts to a neonatal phenotype, with the enhanced expression of three myogenic factors (MyoD1, myogenin, and MRF4). Images PMID:8389445

  10. Transient and stable transfections of mouse myoblasts with genes coding for pro-angiogenic factors.

    PubMed

    Bialas, M; Krupka, M; Janeczek, A; Rozwadowska, N; Fraczek, M; Kotlinowski, J; Kucharzewska, P; Lackowska, B; Kurpisz, M

    2011-04-01

    Cardiomyocyte loss in the ischaemic heart can be the reason of many complications, eventually being even the cause of patient's death. Despite many promises, cell therapy with the use of skeletal muscle stem cells (SMSC) still remains to be modified and improved. Combined cell and gene therapy seems to be a promising strategy to heal damaged myocardium. In the present study we have investigated the influence of a simultaneous overexpression of two potent pro-angiogenic genes encoding the fibroblast growth factor-4 (FGF-4) and the vascular endothelial growth factor-A (VEGF-A) on a myogenic murine C2C12 cell line. We have demonstrated in in vitro conditions that myoblasts which overexpressed these factors exhibited significant changes in the cell cycle and pro-angiogenic potential with only slight differences in the expression of the myogenic genes. There was not observed the influence of transient or stable overexpression of FGF-4 and VEGF on cell apoptosis/necrosis in standard or oxidative stress conditions comparing to non transfected controls. Overall, our results suggest that the possible transplantation of myoblasts overexpressing pro-angiogenic factors may potentially improve the functionality of the injured myocardium although the definite proof must originate from in situ conducted pre-clinical studies.

  11. Regulation of sperm gene expression by the GATA factor ELT-1.

    PubMed

    del Castillo-Olivares, Antonio; Kulkarni, Madhura; Smith, Harold E

    2009-09-15

    Cell fate specification is mediated primarily through the expression of cell-type-specific genes. The regulatory pathway that governs the sperm/egg decision in the hermaphrodite germ line of Caenorhabditis elegans has been well characterized, but the transcription factors that drive these developmental programs remain unknown. We report the identification of ELT-1, a GATA transcription factor that specifies hypodermal fate in the embryo, as a regulator of sperm-specific transcription in the germ line. Computational analysis identified a conserved bipartite sequence element that is found almost exclusively in the promoters of a number of sperm genes. ELT-1 was recovered in a yeast one-hybrid screen for factors that bind to that sperm consensus site. In vitro assays defined the sperm consensus sequence as an optimal binding site for ELT-1. We determined that expression of elt-1 is elevated in the sperm-producing germ line, and that ELT-1 is required for sperm function. Deletion of the ELT-1 binding site from a sperm promoter abrogates sperm-specific expression of a reporter transgene. This work demonstrates a role for the ELT-1 transcription factor in sperm, and provides a critical link between the germ line sex determination program and gamete-specific gene expression.

  12. Opposing functions of TFII-I spliced isoforms in growth factor-induced gene expression.

    PubMed

    Hakre, Shweta; Tussie-Luna, María Isabel; Ashworth, Todd; Novina, Carl D; Settleman, Jeffrey; Sharp, Phillip A; Roy, Ananda L

    2006-10-20

    Multifunctional transcription factor TFII-I has two spliced isoforms (Delta and beta) in murine fibroblasts. Here we show that these isoforms have distinct subcellular localization and mutually exclusive transcription functions in the context of growth factor signaling. In the absence of signaling, TFII-Ibeta is nuclear and recruited to the c-fos promoter in vivo. But upon growth factor stimulation, the promoter recruitment is abolished and it is exported out of the nucleus. Moreover, isoform-specific silencing of TFII-Ibeta results in transcriptional activation of the c-fos gene. In contrast, TFII-IDelta is largely cytoplasmic in the resting state but translocates to the nucleus upon growth factor signaling, undergoes signal-induced recruitment to the same site on the c-fos promoter, and activates the gene. Importantly, activated TFII-IDelta interacts with Erk1/2 (MAPK) kinase in the cell cytoplasm and imports the Erk1/2 to the nucleus, thereby transducing growth factor signaling. Our results identify a unique growth factor signaling pathway controlled by opposing activities of two TFII-I spliced isoforms.

  13. Structure and chromosomal localization of the human stromal cell-derived factor 1 (SDF1) gene

    SciTech Connect

    Shirozu, Michio; Takano, Toru; Tada, Hideaki; Honjo, Tasuku

    1995-08-10

    Stromal cell-derived factors 1{alpha} and 1{beta} are small cytokines belonging to the intercrine CXC subfamily and originally isolated from a murine bone-marrow stroma cell line by the signal sequence trap method. cDNA and genomic clones of human SDF1{alpha} and SDF1{beta} (SDF1A and SDF1B) were isolated and characterized. cDNAs of SDF1{alpha} and SDF1{beta} encode proteins of 89 and 93 amino acids, respectively. SDF1{alpha} and SDF1{beta} sequences are more than 92% identical to those of the human counterparts. The genomic structure of the SDF1 gene revealed that human SDF1{alpha} and SDF1{beta} are encoded by a single gene and arise by alternative splicing. SDF1{alpha} and SDF1{beta} are encoded by 3 and 4 exons, respectively. Ubiquitous expression of the SDF1 gene, except in blood cells, was consistent with the presence of the GC-rich sequence in the 5{prime}-flanking region of the SDF1 gene, as is often the case in the {open_quotes}housekeeping{close_quotes} genes. Although genes encoding other members of the intercrine family are localized on chromosome 4q or 17q, the human SDF1 gene was mapped to chromosome 10q by fluorescence in situ hybridization. Strong evolutionary conservation and unique chromosomal localization of the SDF1 gene suggest that SDF1{alpha} and SDF1{beta} may have important functions distinct from those of other members of the intercrine family. 37 refs., 5 figs.

  14. Regularized Non-negative Matrix Factorization for Identifying Differential Genes and Clustering Samples: a Survey.

    PubMed

    Liu, Jin-Xing; Wang, Dong; Gao, Ying-Lian; Zheng, Chun-Hou; Xu, Yong; Yu, Jiguo

    2017-02-07

    Non-negative Matrix Factorization (NMF), a classical method for dimensionality reduction, has been applied in many fields. It is based on the idea that negative numbers are physically meaningless in various data-processing tasks. Apart from its contribution to conventional data analysis, the recent overwhelming interest in NMF is due to its newly discovered ability to solve challenging data mining and machine learning problems, especially in relation to gene expression data. This survey paper mainly focuses on research examining the application of NMF to identify differentially expressed genes and to cluster samples, and the main NMF models, properties, principles, and algorithms with its various generalizations, extensions, and modifications are summarized. The experimental results demonstrate the performance of the various NMF algorithms in identifying differentially expressed genes and clustering samples.

  15. Cross-Family Transcription Factor Interactions: An Additional Layer of Gene Regulation.

    PubMed

    Bemer, Marian; van Dijk, Aalt D J; Immink, Richard G H; Angenent, Gerco C

    2017-01-01

    Specific and dynamic gene expression strongly depends on transcription factor (TF) activity and most plant TFs function in a combinatorial fashion. They can bind to DNA and control the expression of the corresponding gene in an additive fashion or cooperate by physical interactions, forming larger protein complexes. The importance of protein-protein interactions between members of a particular plant TF family has long been recognised; however, a significant number of interfamily TF interactions has recently been reported. The biological implications and the molecular mechanisms involved in cross-family interactions have now started to be elucidated and the examples illustrate potential roles in the bridging of biological processes. Hence, cross-family TF interactions expand the molecular toolbox for plants with additional mechanisms to control and fine-tune robust gene expression patterns and to adapt to their continuously changing environment.

  16. Expression of the CD4 gene requires a Myb transcription factor.

    PubMed Central

    Siu, G; Wurster, A L; Lipsick, J S; Hedrick, S M

    1992-01-01

    We have analyzed the control of developmental expression of the CD4 gene, which encodes an important recognition molecule and differentiation antigen on T cells. We have determined that the CD4 promoter alone functions at high levels in the CD4+ CD8- mature T cell but not at the early CD4+ CD8+ stage of T-cell development. In addition, the CD4 promoter functions only in T lymphocytes; thus, the stage and tissue specificity of the CD4 gene is mediated in part by its promoter. We have determined that a Myb transcription factor binds to the CD4 promoter and is critical for full promoter function. Thus, Myb plays an important role in the expression of T-cell-specific developmentally regulated genes. Images PMID:1347906

  17. Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice.

    PubMed

    Hu, Honghong; You, Jun; Fang, Yujie; Zhu, Xiaoyi; Qi, Zhuyun; Xiong, Lizhong

    2008-05-01

    Plants respond to adverse environment by initiating a series of signaling processes including activation of transcription factors that can regulate expression of arrays of genes for stress response and adaptation. NAC (NAM, ATAF, and CUC) is a plant specific transcription factor family with diverse roles in development and stress regulation. In this report, a stress-responsive NAC gene (SNAC2) isolated from upland rice IRA109 (Oryza sativa L. ssp japonica) was characterized for its role in stress tolerance. SNAC2 was proven to have transactivation and DNA-binding activities in yeast and the SNAC2-GFP fusion protein was localized in the rice nuclei. Northern blot and SNAC2 promoter activity analyses suggest that SNAC2 gene was induced by drought, salinity, cold, wounding, and abscisic acid (ABA) treatment. The SNAC2 gene was over-expressed in japonica rice Zhonghua 11 to test the effect on improving stress tolerance. More than 50% of the transgenic plants remained vigorous when all WT plants died after severe cold stress (4-8 degrees C for 5 days). The transgenic plants had higher cell membrane stability than wild type during the cold stress. The transgenic rice had significantly higher germination and growth rate than WT under high salinity conditions. Over-expression of SNAC2 can also improve the tolerance to PEG treatment. In addition, the SNAC2-overexpressing plants showed significantly increased sensitivity to ABA. DNA chip profiling analysis of transgenic plants revealed many up-regulated genes related to stress response and adaptation such as peroxidase, ornithine aminotransferase, heavy metal-associated protein, sodium/hydrogen exchanger, heat shock protein, GDSL-like lipase, and phenylalanine ammonia lyase. Interestingly, none of the up-regulated genes in the SNAC2-overexpressing plants matched the genes up-regulated in the transgenic plants over-expressing other stress responsive NAC genes reported previously. These data suggest SNAC2 is a novel stress

  18. Combinations of SERPINB5 gene polymorphisms and environmental factors are associated with oral cancer risks

    PubMed Central

    Tsai, Hsiu-Ting; Hsieh, Ming-Ju; Lin, Chiao-Wen; Su, Shih-Chi; Miao, Nae-Fang; Yang, Shun-Fa; Huang, Hui-Chuan; Lai, Fu-Chih; Liu, Yu-Fan

    2017-01-01

    Background We identified rs17071138 T/C, rs3744941 C/T, and rs8089104 T/C gene polymorphisms of SERPINB5 (mammary serine protease inhibitor) that are specific to patients with oral cancer susceptibility and their clinicopathological status. Methodology/Principal findings In total, 1342 participants, including 601 healthy controls and 741 patients with oral cancer, were recruited for this study. Allelic discrimination of rs17071138 T/C, rs3744941 C/T, and rs8089104 T/C of the SERPINB5 gene was assessed by a real-time PCR with a TaqMan assay. We found that individuals carrying the polymorphic rs17071138 and rs8089104 are more susceptible to oral cancer (OR, 1.57; 95% CI, 1.07~2.31 and OR, 1.58; 95% CI, 1.04~2.39, respectively). Among oral cancer-related risk factor exposures, the individuals carrying the polymorphic rs17071138 had 4.26- (95% CI: 1.65~11.01; p = 0.002), 2.34- (95% CI: 1.19~4.61; p = 0.01), and 2.34-fold (95% CI: 1.38~3.96; p = 0.001) higher risks of developing oral cancer. Conclusions Heterozygous TC of the SERPINB5 rs17071138 polymorphism may be a factor that increases susceptibility to oral cancer. Interactions of gene-to-gene and gene-to-oral cancer-related environmental risk factors have a synergetic effect that can further enhance oral cancer development. PMID:28339463

  19. Overexpression of Transcription Factor Sp1 Leads to Gene Expression Perturbations and Cell Cycle Inhibition

    PubMed Central

    Deniaud, Emmanuelle; Baguet, Joël; Chalard, Roxane; Blanquier, Bariza; Brinza, Lilia; Meunier, Julien; Michallet, Marie-Cécile; Laugraud, Aurélie; Ah-Soon, Claudette; Wierinckx, Anne; Castellazzi, Marc; Lachuer, Joël; Gautier, Christian

    2009-01-01

    Background The ubiquitous transcription factor Sp1 regulates the expression of a vast number of genes involved in many cellular functions ranging from differentiation to proliferation and apoptosis. Sp1 expression levels show a dramatic increase during transformation and this could play a critical role for tumour development or maintenance. Although Sp1 deregulation might be beneficial for tumour cells, its overexpression induces apoptosis of untransformed cells. Here we further characterised the functional and transcriptional responses of untransformed cells following Sp1 overexpression. Methodology and Principal Findings We made use of wild-type and DNA-binding-deficient Sp1 to demonstrate that the induction of apoptosis by Sp1 is dependent on its capacity to bind DNA. Genome-wide expression profiling identified genes involved in cancer, cell death and cell cycle as being enriched among differentially expressed genes following Sp1 overexpression. In silico search to determine the presence of Sp1 binding sites in the promoter region of modulated genes was conducted. Genes that contained Sp1 binding sites in their promoters were enriched among down-regulated genes. The endogenous sp1 gene is one of the most down-regulated suggesting a negative feedback loop induced by overexpressed Sp1. In contrast, genes containing Sp1 binding sites in their promoters were not enriched among up-regulated genes. These results suggest that the transcriptional response involves both direct Sp1-driven transcription and indirect mechanisms. Finally, we show that Sp1 overexpression led to a modified expression of G1/S transition regulatory genes such as the down-regulation of cyclin D2 and the up-regulation of cyclin G2 and cdkn2c/p18 expression. The biological significance of these modifications was confirmed by showing that the cells accumulated in the G1 phase of the cell cycle before the onset of apoptosis. Conclusion This study shows that the binding to DNA of overexpressed Sp1

  20. A common mutation in the fibroblast growth factor receptor 1 gene in Pfeiffer syndrome.

    PubMed

    Muenke, M; Schell, U; Hehr, A; Robin, N H; Losken, H W; Schinzel, A; Pulleyn, L J; Rutland, P; Reardon, W; Malcolm, S

    1994-11-01

    Pfeiffer syndrome (PS) is one of the classic autosomal dominant craniosynostosis syndromes with craniofacial anomalies and characteristic broad thumbs and big toes. We have previously mapped one of the genes for PS to the centromeric region of chromosome 8 by linkage analysis. Here we present evidence that mutations in the fibroblast growth factor receptor-1 (FGFR1) gene, which maps to 8p, cause one form of familial Pfeiffer syndrome. A C to G transversion in exon 5, predicting a proline to arginine substitution in the putative extracellular domain, was identified in all affected members of five unrelated PS families but not in any unaffected individuals. FGFR1 therefore becomes the third fibroblast growth factor receptor to be associated with an autosomal dominant skeletal disorder.

  1. The role of gene regulatory factors in the evolutionary history of humans.

    PubMed

    Perdomo-Sabogal, Alvaro; Kanton, Sabina; Walter, Maria Beatriz C; Nowick, Katja

    2014-12-01

    Deciphering the molecular basis of how modern human phenotypes have evolved is one of the most fascinating challenges in biology. Here, we will focus on the roles of gene regulatory factors (GRFs), in particular transcription factors (TFs) and long non-coding RNAs (lncRNAs) during human evolution. We will present examples of TFs and lncRNAs that have changed or show signs of positive selection in humans compared to chimpanzees, in modern humans compared to archaic humans, or within modern human populations. On the basis of current knowledge about the functions of these GRF genes, we speculate that they have been involved in speciation as well as in shaping phenotypes such as brain functions, skeletal morphology, and metabolic processes.

  2. Role of non-coding RNA transcription around gene regulatory elements in transcription factor recruitment

    PubMed Central

    Ohta, Kunihiro

    2017-01-01

    ABSTRACT Eukaryotic cells produce a variety of non-coding RNAs (ncRNAs), many of which have been shown to play pivotal roles in biological processes such as differentiation, maintenance of pluripotency of stem cells, and cellular response to various stresses. Genome-wide analyses have revealed that many ncRNAs are transcribed around regulatory DNA elements located proximal or distal to gene promoters, but their biological functions are largely unknown. Recently, it has been demonstrated in yeast and mouse that ncRNA transcription around gene promoters and enhancers facilitates DNA binding of transcription factors to their target sites. These results suggest universal roles of promoter/enhancer-associated ncRNAs in the recruitment of transcription factors to their binding sites. PMID:27763805

  3. Sphingolipids, Transcription Factors, and Conserved Toolkit Genes: Developmental Plasticity in the Ant Cardiocondyla obscurior

    PubMed Central

    Schrader, Lukas; Simola, Daniel F.; Heinze, Jürgen; Oettler, Jan

    2015-01-01

    Developmental plasticity allows for the remarkable morphological specialization of individuals into castes in eusocial species of Hymenoptera. Developmental trajectories that lead to alternative caste fates are typically determined by specific environmental stimuli that induce larvae to express and maintain distinct gene expression patterns. Although most eusocial species express two castes, queens and workers, the ant Cardiocondyla obscurior expresses diphenic females and males; this provides a unique system with four discrete phenotypes to study the genomic basis of developmental plasticity in ants. We sequenced and analyzed the transcriptomes of 28 individual C. obscurior larvae of known developmental trajectory, providing the first in-depth analysis of gene expression in eusocial insect larvae. Clustering and transcription factor binding site analyses revealed that different transcription factors and functionally distinct sets of genes are recruited during larval development to induce the four alternative trajectories. In particular, we found complex patterns of gene regulation pertaining to sphingolipid metabolism, a conserved molecular pathway involved in development, obesity, and aging. PMID:25725431

  4. Transcription factor genes of Schizophyllum commune involved in regulation of mushroom formation.

    PubMed

    Ohm, Robin A; de Jong, Jan F; de Bekker, Charissa; Wösten, Han A B; Lugones, Luis G

    2011-09-01

    Mushrooms represent the most conspicuous structures of fungi. Their development is being studied in the model basidiomycete Schizophyllum commune. The genome of S. commune contains 472 genes encoding predicted transcription factors. Of these, fst3 and fst4 were shown to inhibit and induce mushroom development respectively. Here, we inactivated five additional transcription factor genes. This resulted in absence of mushroom development (in the case of deletion of bri1 and hom2), in arrested development at the stage of aggregate formation (in the case of c2h2) and in the formation of more but smaller mushrooms (in the case of hom1 and gat1). Moreover, strains in which hom2 and bri1 were inactivated formed symmetrical colonies instead of irregular colonies like the wild type. A genome-wide expression analysis identified several gene classes that were differentially expressed in the strains in which either hom2 or fst4 was inactivated. Among the genes that were downregulated in these strains were c2h2 and hom1. Based on these results, a regulatory model of mushroom development in S. commune is proposed. This model most likely also applies to other mushroom-forming fungi and will serve as a basis to understand mushroom formation in nature and to enable and improve commercial mushroom production.

  5. Effect of age on the gene expression of neural-restrictive silencing factor NRSF/REST.

    PubMed

    Mori, Nozomu; Mizuno, Takafumi; Murai, Kiyohito; Nakano, Itsuko; Yamashita, Hitoshi

    2002-01-01

    Aging affects a wide range of gene expression changes in the nervous system. Such effects could be attributed to random changes in the environment with age around each gene, but also could be caused by selective changes in a limited set of key regulatory transcription factors and/or chromatin remodeling components. To approach the question of whether neural-restrictive silencer factor NRSF, a key determinant of the neuron-specific gene expression, is involved in these changes, we examined the levels of NRSF in the rat brain and dosal root ganglia during aging by semi-quantitative reverse transcriptase-mediated polymerase chain reaction (PCR) (RT-PCR). Complementary expression profiles of transcripts of NRSF and SCG10 in the mature brain were shown by in situ hybridization. Neither the mRNA levels of NRSF nor a splicing variant NRnV were changed, at least in rats up to 26 months old. The gene expression level of SCG10, one of the NRSF targets, was also unaffected by age. The stable expression of SCG10 transcripts in aging was confirmed by in situ hybridization. The NRS-binding ability of NRSF was also unchanged significantly in the nuclear extracts of aged rat brain. These results suggest that the genetic machinery associated with the NRS-NRSF system is well maintained during aging.

  6. Banana ethylene response factors are involved in fruit ripening through their interactions with ethylene biosynthesis genes

    PubMed Central

    Xiao, Yun-yi; Chen, Jian-ye; Kuang, Jiang-fei; Shan, Wei; Xie, Hui; Jiang, Yue-ming; Lu, Wang-jin

    2013-01-01

    The involvement of ethylene response factor (ERF) transcription factor (TF) in the transcriptional regulation of ethylene biosynthesis genes during fruit ripening remains largely unclear. In this study, 15 ERF genes, designated as MaERF1–MaERF15, were isolated and characterized from banana fruit. These MaERFs were classified into seven of the 12 known ERF families. Subcellular localization showed that MaERF proteins of five different subfamilies preferentially localized to the nucleus. The 15 MaERF genes displayed differential expression patterns and levels in peel and pulp of banana fruit, in association with four different ripening treatments caused by natural, ethylene-induced, 1-methylcyclopropene (1-MCP)-delayed, and combined 1-MCP and ethylene treatments. MaERF9 was upregulated while MaERF11 was downregulated in peel and pulp of banana fruit during ripening or after treatment with ethylene. Furthermore, yeast-one hybrid (Y1H) and transient expression assays showed that the potential repressor MaERF11 bound to MaACS1 and MaACO1 promoters to suppress their activities and that MaERF9 activated MaACO1 promoter activity. Interestingly, protein–protein interaction analysis revealed that MaERF9 and -11 physically interacted with MaACO1. Taken together, these results suggest that MaERFs are involved in banana fruit ripening via transcriptional regulation of or interaction with ethylene biosynthesis genes. PMID:23599278

  7. Effect of Dynamic Interaction between microRNA and Transcription Factor on Gene Expression

    PubMed Central

    Liu, Hongsheng; Yao, Chenggui

    2016-01-01

    MicroRNAs (miRNAs) are endogenous noncoding RNAs which participate in diverse biological processes in animals and plants. They are known to join together with transcription factors and downstream gene, forming a complex and highly interconnected regulatory network. To recognize a few overrepresented motifs which are expected to perform important elementary regulatory functions, we constructed a computational model of miRNA-mediated feedforward loops (FFLs) in which a transcription factor (TF) regulates miRNA and targets gene. Based on the different dynamic interactions between miRNA and TF on gene expression, four possible structural topologies of FFLs with two gate functions (AND gate and OR gate) are introduced. We studied the dynamic behaviors of these different motifs. Furthermore, the relationship between the response time and maximal activation velocity of miRNA was investigated. We found that the curve of response time shows nonmonotonic behavior in Co1 loop with OR gate. This may help us to infer the mechanism of miRNA binding to the promoter region. At last we investigated the influence of important parameters on the dynamic response of system. We identified that the stationary levels of target gene in all loops were insensitive to the initial value of miRNA. PMID:27957492

  8. Effect of Dynamic Interaction between microRNA and Transcription Factor on Gene Expression.

    PubMed

    Zhao, Qi; Liu, Hongsheng; Yao, Chenggui; Shuai, Jianwei; Sun, Xiaoqiang

    2016-01-01

    MicroRNAs (miRNAs) are endogenous noncoding RNAs which participate in diverse biological processes in animals and plants. They are known to join together with transcription factors and downstream gene, forming a complex and highly interconnected regulatory network. To recognize a few overrepresented motifs which are expected to perform important elementary regulatory functions, we constructed a computational model of miRNA-mediated feedforward loops (FFLs) in which a transcription factor (TF) regulates miRNA and targets gene. Based on the different dynamic interactions between miRNA and TF on gene expression, four possible structural topologies of FFLs with two gate functions (AND gate and OR gate) are introduced. We studied the dynamic behaviors of these different motifs. Furthermore, the relationship between the response time and maximal activation velocity of miRNA was investigated. We found that the curve of response time shows nonmonotonic behavior in Co1 loop with OR gate. This may help us to infer the mechanism of miRNA binding to the promoter region. At last we investigated the influence of important parameters on the dynamic response of system. We identified that the stationary levels of target gene in all loops were insensitive to the initial value of miRNA.

  9. The GATA transcription factor gene gtaG is required for terminal differentiation in Dictyostelium.

    PubMed

    Katoh-Kurasawa, Mariko; Santhanam, Balaji; Shaulsky, Gad

    2016-03-09

    The GATA transcription factor GtaG is conserved in Dictyostelids and essential for terminal differentiation in Dictyostelium discoideum, but its function is not well understood. Here we show that gtaG is expressed in prestalk cells at the anterior region of fingers and in the extending stalk during culmination. The gtaG(-) phenotype is cell-autonomous in prestalk cells and non-cell-autonomous in prespore cells. Transcriptome analyses reveal that GtaG regulates prestalk gene expression during cell differentiation before culmination and is required for progression into culmination. GtaG-dependent genes include genetic suppressors of the Dd-STATa-defective phenotype as well as Dd-STATa target-genes, including extra cellular matrix genes. We show that GtaG may be involved in the production of two culmination-signaling molecules, cyclic di-GMP and the spore differentiation factor SDF-1 and that addition of c-di-GMP rescues the gtaG(-) culmination and spore formation deficiencies. We propose that GtaG is a regulator of terminal differentiation that functions in concert with Dd-STATa and controls culmination through regulating c-di-GMP and SDF-1 production in prestalk cells.

  10. The impact of non-electrical factors on electrical gene transfer

    PubMed Central

    Hu, Jiemiao; Cutrera, Jeffry; Li, Shulin

    2014-01-01

    Electrical pulses directly and effectively boost both in vitro and in vivo gene transfer, but this process is greatly affected by non-electrical factors that exist during electroporation. These factors include, but are not limited to, the types of cells or tissues used, the property of DNA, DNA formulation, and the expressed protein. In this mini-review, we only describe and discuss a summary of DNA properties and selected DNA formulations on gene transfer via electroporation. The properties of DNA were selected for review because a substantial amount of remarkable work has been performed during the past few years but has received less notice than other work, although DNA properties appear to be critical for boosting electroporation delivery. The selected formulations will be covered in this mini-review because we are only interested in the simple formulations that could be used for cell or gene therapy via electroporation. Plus, there was an extensive review of DNA formulations in the first edition of this book. The formulations discussed in this mini-review represent novel developments in recent years and may impact electroporation significantly. These advancements in DNA formulations could prove to be important for gene delivery and disease treatment. PMID:24510810

  11. Cloning and characterization of the A-factor receptor gene from Streptomyces griseus.

    PubMed Central

    Onaka, H; Ando, N; Nihira, T; Yamada, Y; Beppu, T; Horinouchi, S

    1995-01-01

    A-factor (2-isocapryloyl-3R-hydroxymethyl-gamma-butyrolactone) and its specific receptor protein control streptomycin production, streptomycin resistance, and aerial mycelium formation in Streptomyces griseus. The A-factor receptor protein (ArpA) was purified from a cell lysate of S. griseus IFO 13350. The NH2-terminal amino acid sequences of ArpA and lysyl endopeptidase-generated fragments were determined for the purpose of preparing oligonucleotide primers for cloning arpA by the PCR method. The arpA gene cloned in this way directed the synthesis of a protein having A-factor-specific binding activity when expressed in Escherichia coli under the control of the T7 promoter. The arpA gene was thus concluded to encode a 276-amino-acid protein with a calculated molecular mass of 29.1 kDa, as determined by nucleotide sequencing. The A-factor-binding activity was observed with a homodimer of ArpA. The NH2-terminal portion of ArpA contained an alpha-helix-turn-alpha-helix DNA-binding motif that showed great similarity to those of many DNA-binding proteins, which suggests that it exerts its regulatory function for the various phenotypes by directly binding to a certain key gene(s). Although a mutant strain deficient in both the ArpA protein and A-factor production overproduces streptomycin and forms aerial mycelium and spores earlier than the wild-type strain because of repressor-like behavior of ArpA, introduction of arpA into this mutant abolished simultaneously its streptomycin production and aerial mycelium formation. All of these data are consistent with the idea that ArpA acts as a repressor-type regulator for secondary metabolite formation and morphogenesis during the early growth phase and A-factor at a certain critical intracellular concentration releases the derepression, thus leading to the onset of secondary metabolism and aerial mycelium formation. The presence of ArpA-like proteins among Streptomyces spp., as revealed by PCR, together with the presence of A-factor

  12. The Synergistic Effect between Electrical and Chemical Factors in Plasma Gene/Molecule-Transfection

    NASA Astrophysics Data System (ADS)

    Jinno, Masafumi

    2016-09-01

    This study has been done to know what kind of factors in plasma and processes on cells promote plasma gene/molecule transfection. We have discovered a new plasma source using a microcapillary electrode which enables high transfection efficiency and high cell survivability simultaneously. However, the mechanism of the transfection by plasma was not clear. To clarify the transfection mechanisms by micro plasma, we focused on the effects of electrical (current, charge, field, etc.) and chemical (radicals, RONS, etc.) factors generated by the micro plasma and evaluated the contribution weight of three groups of the effects and processes, i.e. electrical, chemical and biochemical ones. At first, the necessity of the electrical factors was estimated by the laser produced plasma (LPP). Mouse L-929 fibroblast cell was cultured on a 96-well plate or 12-well micro slide chamber. Plasmids pCX-EGFP in Tris-EDTA buffer was dropped on the cells and they were exposed to the capillary discharge plasma (CDP) or the LPP. In the case of the CDP, the plasma was generated between the tip of the capillary electrode and the cells so that both electrical and chemical factors were supplied to the cells. In this setup, about 20% of average transfection efficiency was obtained. In the case of the LPP, the plasma was generated apart from the cells so that electrical factors were not supplied to the cells. In this setup, no transfection was observed. These results show that the electrical factors are necessary for the plasma gene transfection. Next, the necessity of the chemical factors was estimated the effect of catalase to remove H2O2 in CDP. The transfection efficiency decreased to 0.4 by scavenging H2O2 with catalase. However, only the solution of H2O2 caused no gene transfection in cells. These results shows that H2O2 is important species to cause gene/molecule transfection but still needs a synergistic effect with electrical or other chemical factors. This work was partly supported by

  13. Splicing Factor Spf30 Assists Exosome-Mediated Gene Silencing in Fission Yeast▿

    PubMed Central

    Bernard, Pascal; Drogat, Julie; Dheur, Sonia; Genier, Sylvie; Javerzat, Jean-Paul

    2010-01-01

    Heterochromatin assembly in fission yeast relies on the processing of cognate noncoding RNAs by both the RNA interference and the exosome degradation pathways. Recent evidence indicates that splicing factors facilitate the cotranscriptional processing of centromeric transcripts into small interfering RNAs (siRNAs). In contrast, how the exosome contributes to heterochromatin assembly and whether it also relies upon splicing factors were unknown. We provide here evidence that fission yeast Spf30 is a splicing factor involved in the exosome pathway of heterochromatin silencing. Spf30 and Dis3, the main exosome RNase, colocalize at centromeric heterochromatin and euchromatic genes. At the centromeres, Dis3 helps recruiting Spf30, whose deficiency phenocopies the dis3-54 mutant: heterochromatin is impaired, as evidenced by reduced silencing and the accumulation of polyadenylated centromeric transcripts, but the production of siRNAs appears to be unaffected. Consistent with a direct role, Spf30 binds centromeric transcripts and locates at the centromeres in an RNA-dependent manner. We propose that Spf30, bound to nascent centromeric transcripts, perhaps with other splicing factors, assists their processing by the exosome. Splicing factor intercession may thus be a common feature of gene silencing pathways. PMID:20028739

  14. Changing Paradigm of Hemophilia Management: Extended Half-Life Factor Concentrates and Gene Therapy.

    PubMed

    Kumar, Riten; Dunn, Amy; Carcao, Manuel

    2016-02-01

    Management of hemophilia has evolved significantly in the last century-from recognition of the causative mechanism in the 1950s to commercially available clotting factor concentrates in the 1960s. Availability of lyophilized concentrates in the 1970s set the stage for home-based therapy, followed by introduction of virally attenuated plasma-derived, and then recombinant factor concentrates in the 1980s and 1990s, respectively. The subsequent years saw a paradigm shift in treatment goals from on-demand therapy to prophylactic factor replacement starting at an early age, to prevent hemarthrosis becoming the standard of care for patients with severe hemophilia. In the developed world, the increasing use of home-based prophylactic regimens has significantly improved the quality of life, and life expectancy of patients with severe hemophilia. Seminal developments in the past 5 years, including the commercial availability of extended half-life factor concentrates and the publication of successful results of gene therapy for patients with hemophilia B, promise to further revolutionize hemophilia care over the next few decades. In this review, we summarize the evolution of management for hemophilia, with a focus on extended half-life factor concentrates and gene therapy.

  15. Interactions of Environmental Factors and APOA1-APOC3-APOA4-APOA5 Gene Cluster Gene Polymorphisms with Metabolic Syndrome

    PubMed Central

    Wu, Yanhua; Yu, Yaqin; Zhao, Tiancheng; Wang, Shibin; Fu, Yingli; Qi, Yue; Yang, Guang; Yao, Wenwang; Su, Yingying; Ma, Yue; Shi, Jieping; Jiang, Jing; Kou, Changgui

    2016-01-01

    Objective The present study investigated the prevalence and risk factors for Metabolic syndrome. We evaluated the association between single nucleotide polymorphisms (SNPs) in the apolipoprotein APOA1/C3/A4/A5 gene cluster and the MetS risk and analyzed the interactions of environmental factors and APOA1/C3/A4/A5 gene cluster polymorphisms with MetS. Methods A study on the prevalence and risk factors for MetS was conducted using data from a large cross-sectional survey representative of the population of Jilin Province situated in northeastern China. A total of 16,831 participations were randomly chosen by multistage stratified cluster sampling of residents aged from 18 to 79 years in all nine administrative areas of the province. Environmental factors associated with MetS were examined using univariate and multivariate logistic regression analyses based on the weighted sample data. A sub-sample of 1813 survey subjects who met the criteria for MetS patients and 2037 controls from this case-control study were used to evaluate the association between SNPs and MetS risk. Genomic DNA was extracted from peripheral blood lymphocytes, and SNP genotyping was determined by MALDI-TOF-MS. The associations between SNPs and MetS were examined using a case-control study design. The interactions of environmental factors and APOA1/C3/A4/A5 gene cluster polymorphisms with MetS were assessed using multivariate logistic regression analysis. Results The overall adjusted prevalence of MetS was 32.86% in Jilin province. The prevalence of MetS in men was 36.64%, which was significantly higher than the prevalence in women (29.66%). MetS was more common in urban areas (33.86%) than in rural areas (31.80%). The prevalence of MetS significantly increased with age (OR = 8.621, 95%CI = 6.594–11.272). Mental labor (OR = 1.098, 95%CI = 1.008–1.195), current smoking (OR = 1.259, 95%CI = 1.108–1.429), excess salt intake (OR = 1.252, 95%CI = 1.149–1.363), and a fruit and dairy intake less

  16. An environmental analysis of genes associated with schizophrenia: hypoxia and vascular factors as interacting elements in the neurodevelopmental model.

    PubMed

    Schmidt-Kastner, R; van Os, J; Esquivel, G; Steinbusch, H W M; Rutten, B P F

    2012-12-01

    Investigating and understanding gene-environment interaction (G × E) in a neurodevelopmentally and biologically plausible manner is a major challenge for schizophrenia research. Hypoxia during neurodevelopment is one of several environmental factors related to the risk of schizophrenia, and links between schizophrenia candidate genes and hypoxia regulation or vascular expression have been proposed. Given the availability of a wealth of complex genetic information on schizophrenia in the literature without knowledge on the connections to environmental factors, we now systematically collected genes from candidate studies (using SzGene), genome-wide association studies (GWAS) and copy number variation (CNV) analyses, and then applied four criteria to test for a (theoretical) link to ischemia-hypoxia and/or vascular factors. In all, 55% of the schizophrenia candidate genes (n=42 genes) met the criteria for a link to ischemia-hypoxia and/or vascular factors. Genes associated with schizophrenia showed a significant, threefold enrichment among genes that were derived from microarray studies of the ischemia-hypoxia response (IHR) in the brain. Thus, the finding of a considerable match between genes associated with the risk of schizophrenia and IHR and/or vascular factors is reproducible. An additional survey of genes identified by GWAS and CNV analyses suggested novel genes that match the criteria. Findings for interactions between specific variants of genes proposed to be IHR and/or vascular factors with obstetric complications in patients with schizophrenia have been reported in the literature. Therefore, the extended gene set defined here may form a reasonable and evidence-based starting point for hypothesis-based testing of G × E interactions in clinical genetic and translational neuroscience studies.

  17. Evaluation of gene expression classification studies: factors associated with classification performance.

    PubMed

    Novianti, Putri W; Roes, Kit C B; Eijkemans, Marinus J C

    2014-01-01

    Classification methods used in microarray studies for gene expression are diverse in the way they deal with the underlying complexity of the data, as well as in the technique used to build the classification model. The MAQC II study on cancer classification problems has found that performance was affected by factors such as the classification algorithm, cross validation method, number of genes, and gene selection method. In this paper, we study the hypothesis that the disease under study significantly determines which method is optimal, and that additionally sample size, class imbalance, type of medical question (diagnostic, prognostic or treatment response), and microarray platform are potentially influential. A systematic literature review was used to extract the information from 48 published articles on non-cancer microarray classification studies. The impact of the various factors on the reported classification accuracy was analyzed through random-intercept logistic regression. The type of medical question and method of cross validation dominated the explained variation in accuracy among studies, followed by disease category and microarray platform. In total, 42% of the between study variation was explained by all the study specific and problem specific factors that we studied together.

  18. Hypermethylation of apoptotic genes as independent prognostic factor in neuroblastoma disease.

    PubMed

    Grau, Elena; Martinez, Francisco; Orellana, Carmen; Canete, Adela; Yañez, Yania; Oltra, Silvestre; Noguera, Rosa; Hernandez, Miguel; Bermúdez, Jose D; Castel, Victoria

    2011-03-01

    Neuroblastoma (NB) is an embryonal tumour of neuroectodermal cells, and its prognosis is based on patient age at diagnosis, tumour stage and MYCN amplification, but it can also be classified according to their degree of methylation. Considering that epigenetic aberrations could influence patient survival, we studied the methylation status of a series of 17 genes functionally involved in different cellular pathways in patients with NB and their impact on survival. We studied 82 primary NB tumours and we used methylation-specific-PCR to perform the epigenetic analysis. We evaluated the putative association among the evidence of hypermethylation with the most important NB prognostic factors, as well as to determine the relationship among methylation, clinical classification and survival. CASP8 hypermethylation showed association with relapse susceptibility and, TMS1 and APAF1 hypermethylation are associated with bad prognosis and showed high influence on NB overall survival. Hypermethylation of apoptotic genes has been identified as a good candidate of prognostic factor. We propose the simultaneous analysis of hypermethylation of APAF1, TMS1 and CASP8 apoptotic genes on primary NB tumour as a good prognostic factor of disease progression.

  19. An Improved Systematic Approach to Predicting Transcription Factor Target Genes Using Support Vector Machine

    PubMed Central

    Cui, Song; Youn, Eunseog; Lee, Joohyun; Maas, Stephan J.

    2014-01-01

    Biological prediction of transcription factor binding sites and their corresponding transcription factor target genes (TFTGs) makes great contribution to understanding the gene regulatory networks. However, these approaches are based on laborious and time-consuming biological experiments. Numerous computational approaches have shown great potential to circumvent laborious biological methods. However, the majority of these algorithms provide limited performances and fail to consider the structural property of the datasets. We proposed a refined systematic computational approach for predicting TFTGs. Based on previous work done on identifying auxin response factor target genes from Arabidopsis thaliana co-expression data, we adopted a novel reverse-complementary distance-sensitive n-gram profile algorithm. This algorithm converts each upstream sub-sequence into a high-dimensional vector data point and transforms the prediction task into a classification problem using support vector machine-based classifier. Our approach showed significant improvement compared to other computational methods based on the area under curve value of the receiver operating characteristic curve using 10-fold cross validation. In addition, in the light of the highly skewed structure of the dataset, we also evaluated other metrics and their associated curves, such as precision-recall curves and cost curves, which provided highly satisfactory results. PMID:24743548

  20. Glial cell derived neurotrophic factor induces spermatogonial stem cell marker genes in chicken mesenchymal stem cells.

    PubMed

    Boozarpour, Sohrab; Matin, Maryam M; Momeni-Moghaddam, Madjid; Dehghani, Hesam; Mahdavi-Shahri, Naser; Sisakhtnezhad, Sajjad; Heirani-Tabasi, Asieh; Irfan-Maqsood, Muhammad; Bahrami, Ahmad Reza

    2016-06-01

    Mesenchymal stem cells (MSCs) are known with the potential of multi-lineage differentiation. Advances in differentiation technology have also resulted in the conversion of MSCs to other kinds of stem cells. MSCs are considered as a suitable source of cells for biotechnology purposes because they are abundant, easily accessible and well characterized cells. Nowadays small molecules are introduced as novel and efficient factors to differentiate stem cells. In this work, we examined the potential of glial cell derived neurotrophic factor (GDNF) for differentiating chicken MSCs toward spermatogonial stem cells. MSCs were isolated and characterized from chicken and cultured under treatment with all-trans retinoic acid (RA) or glial cell derived neurotrophic factor. Expression analysis of specific genes after 7days of RA treatment, as examined by RT-PCR, proved positive for some germ cell markers such as CVH, STRA8, PLZF and some genes involved in spermatogonial stem cell maintenance like BCL6b and c-KIT. On the other hand, GDNF could additionally induce expression of POU5F1, and NANOG as well as other genes which were induced after RA treatment. These data illustrated that GDNF is relatively more effective in diverting chicken MSCs towards Spermatogonial stem cell -like cells in chickens and suggests GDNF as a new agent to obtain transgenic poultry, nevertheless, exploitability of these cells should be verified by more experiments.

  1. Recessive Resistance to Plant Viruses: Potential Resistance Genes Beyond Translation Initiation Factors

    PubMed Central

    Hashimoto, Masayoshi; Neriya, Yutaro; Yamaji, Yasuyuki; Namba, Shigetou

    2016-01-01

    The ability of plant viruses to propagate their genomes in host cells depends on many host factors. In the absence of an agrochemical that specifically targets plant viral infection cycles, one of the most effective methods for controlling viral diseases in plants is taking advantage of the host plant’s resistance machinery. Recessive resistance is conferred by a recessive gene mutation that encodes a host factor critical for viral infection. It is a branch of the resistance machinery and, as an inherited characteristic, is very durable. Moreover, recessive resistance may be acquired by a deficiency in a negative regulator of plant defense responses, possibly due to the autoactivation of defense signaling. Eukaryotic translation initiation factor (eIF) 4E and eIF4G and their isoforms are the most widely exploited recessive resistance genes in several crop species, and they are effective against a subset of viral species. However, the establishment of efficient, recessive resistance-type antiviral control strategies against a wider range of plant viral diseases requires genetic resources other than eIF4Es. In this review, we focus on recent advances related to antiviral recessive resistance genes evaluated in model plants and several crop species. We also address the roles of next-generation sequencing and genome editing technologies in improving plant genetic resources for recessive resistance-based antiviral breeding in various crop species. PMID:27833593

  2. Recessive Resistance to Plant Viruses: Potential Resistance Genes Beyond Translation Initiation Factors.

    PubMed

    Hashimoto, Masayoshi; Neriya, Yutaro; Yamaji, Yasuyuki; Namba, Shigetou

    2016-01-01

    The ability of plant viruses to propagate their genomes in host cells depends on many host factors. In the absence of an agrochemical that specifically targets plant viral infection cycles, one of the most effective methods for controlling viral diseases in plants is taking advantage of the host plant's resistance machinery. Recessive resistance is conferred by a recessive gene mutation that encodes a host factor critical for viral infection. It is a branch of the resistance machinery and, as an inherited characteristic, is very durable. Moreover, recessive resistance may be acquired by a deficiency in a negative regulator of plant defense responses, possibly due to the autoactivation of defense signaling. Eukaryotic translation initiation factor (eIF) 4E and eIF4G and their isoforms are the most widely exploited recessive resistance genes in several crop species, and they are effective against a subset of viral species. However, the establishment of efficient, recessive resistance-type antiviral control strategies against a wider range of plant viral diseases requires genetic resources other than eIF4Es. In this review, we focus on recent advances related to antiviral recessive resistance genes evaluated in model plants and several crop species. We also address the roles of next-generation sequencing and genome editing technologies in improving plant genetic resources for recessive resistance-based antiviral breeding in various crop species.

  3. Characterization of a novel Medicago sativa NAC transcription factor gene involved in response to drought stress.

    PubMed

    Wang, Yong Xin

    2013-11-01

    Relying on the regulation of transcription factors, plants resist to various abiotic and biotic stresses. NAC (NAM, ATAF1/2, CUC2) are one of the largest families of plant-specific transcription factors and known to play important roles in plant development and response to environmental stresses. A new NAC gene was cloned on the basis of 503 bp EST fragment from the SSH cDNA library of Medicago sativa. It was 1,115 bp including an 816 bp ORF and encodes 271 amino acids. A highly conserved region is located from the 7th amino acid to the 315th amino acid in its N-terminal domain. The NAC protein is subcellularly localized in the nucleus of onion epidemical cells and possible functions as a transcription factor. The relative quantitative real-time RT-PCR was performed at different stress time. The results revealed that the transcription expression of NAC gene could be induced by drought, high salinity and ABA. The transgenic Arabidopsis with NAC gene has the drought tolerance better than the wild-type.

  4. Heparin-binding epidermal growth factor-like growth factor, a v-Jun target gene, induces oncogenic transformation

    PubMed Central

    Fu, Shu-ling; Bottoli, Ivan; Goller, Martin; Vogt, Peter K.

    1999-01-01

    Jun is a transcription factor belonging to the activator protein 1 family. A mutated version of Jun (v-Jun) transduced by the avian retrovirus ASV17 induces oncogenic transformation in avian cell cultures and sarcomas in young galliform birds. The oncogenicity of Jun probably results from transcriptional deregulation of v-Jun-responsive target genes. Here we describe the identification and characterization of a growth-related v-Jun target, a homolog of heparin-binding epidermal growth factor-like growth factor (HB-EGF). HB-EGF is strongly expressed in chicken embryo fibroblasts (CEF) transformed by v-Jun. HB-EGF expression is not detectable or is marginal in nontransformed CEF. Using a hormone-inducible Jun-estrogen receptor chimera, we found that HB-EGF expression is correlated with v-Jun activity. In this system, induction of v-Jun is followed within 1 hr by elevated levels of HB-EGF. In CEF infected with various Jun mutants, HB-EGF expression is correlated with the oncogenic potency of the mutant. Constitutive expression of HB-EGF conveys to CEF the ability to grow in soft agar and to form multilayered foci of transformed cells on a solid substrate. These observations suggest that HB-EGF is an effector of Jun-induced oncogenic transformation. PMID:10318950

  5. Instructive nanofibrous scaffold comprising runt-related transcription factor 2 gene delivery for bone tissue engineering.

    PubMed

    Monteiro, Nelson; Ribeiro, Diana; Martins, Albino; Faria, Susana; Fonseca, Nuno A; Moreira, João N; Reis, Rui L; Neves, Nuno M

    2014-08-26

    Inducer molecules capable of regulating mesenchymal stem cell differentiation into specific lineages have proven effective in basic science and in preclinical studies. Runt-related transcription factor 2 (RUNX2) is considered to be the central gene involved in the osteoblast phenotype induction, which may be advantageous for inducing bone tissue regeneration. This work envisions the development of a platform for gene delivery, combining liposomes as gene delivery devices, with electrospun nanofiber mesh (NFM) as a tissue engineering scaffold. pDNA-loaded liposomes were immobilized at the surface of functionalized polycaprolactone (PCL) NFM. Human bone-marrow-derived mesenchymal stem cells (hBMSCs) cultured on RUNX2-loaded liposomes immobilized at the surface of electrospun PCL NFM showed enhanced levels of metabolic activity and total protein synthesis. RUNX2-loaded liposomes immobilized at the surface of electrospun PCL NFMs induce a long-term gene expression of eGFP and RUNX2 by cultured hBMSCs. Furthermore, osteogenic differentiation of hBMSCs was also achieved by the overexpression of other osteogenic markers in medium free of osteogenic supplementation. These findings demonstrate that surface immobilization of RUNX2 plasmid onto elestrospun PCL NFM can produce long-term gene expression in vitro, which may be employed to enhance the osteoinductive properties of scaffolds used for bone tissue engineering strategies.

  6. The transcription factor ultraspiracle influences honey bee social behavior and behavior-related gene expression.

    PubMed

    Ament, Seth A; Wang, Ying; Chen, Chieh-Chun; Blatti, Charles A; Hong, Feng; Liang, Zhengzheng S; Negre, Nicolas; White, Kevin P; Rodriguez-Zas, Sandra L; Mizzen, Craig A; Sinha, Saurabh; Zhong, Sheng; Robinson, Gene E

    2012-01-01

    Behavior is among the most dynamic animal phenotypes, modulated by a variety of internal and external stimuli. Behavioral differences are associated with large-scale changes in gene expression, but little is known about how these changes are regulated. Here we show how a transcription factor (TF), ultraspiracle (usp; the insect homolog of the Retinoid X Receptor), working in complex transcriptional networks, can regulate behavioral plasticity and associated changes in gene expression. We first show that RNAi knockdown of USP in honey bee abdominal fat bodies delayed the transition from working in the hive (primarily "nursing" brood) to foraging outside. We then demonstrate through transcriptomics experiments that USP induced many maturation-related transcriptional changes in the fat bodies by mediating transcriptional responses to juvenile hormone. These maturation-related transcriptional responses to USP occurred without changes in USP's genomic binding sites, as revealed by ChIP-chip. Instead, behaviorally related gene expression is likely determined by combinatorial interactions between USP and other TFs whose cis-regulatory motifs were enriched at USP's binding sites. Many modules of JH- and maturation-related genes were co-regulated in both the fat body and brain, predicting that usp and cofactors influence shared transcriptional networks in both of these maturation-related tissues. Our findings demonstrate how "single gene effects" on behavioral plasticity can involve complex transcriptional networks, in both brain and peripheral tissues.

  7. Insulin-like Growth Factor 1 gene polymorphism and breast cancer risk.

    PubMed

    Costa-Silva, Danylo R; Barros-Oliveira, Maria DA Conceição; Borges, Rafael S; Tavares, Cléciton B; Borges, Umbelina S; Alves-Ribeiro, Francisco A; Silva, Vladimir C; Silva, Benedito B DA

    2016-01-01

    Insulin-like Growth Factor-1 (IGF-1) gene polymorphism has been associated with an increased risk for breast cancer. IGF-1 is a key regulator of proliferation, cell differentiation and apoptosis. It has important mitogenic and anti-apoptotic activities in normal cells and in breast cancer cells, acting synergistically with estrogen to increase neoplastic cell proliferation. This review aims to present the recent finds of IGF-1 gene polymorphism and its relationship with the risk of breast cancer through following the polymorphic dinucleotide repeat cytosine-adenine (CA) and single nucleotide polymorphisms (SNPs) by searching in the PubMed database publications focused studies published from 2010 to 2015 related to IGF-1 gene polymorphism and breast cancer risk. A growing number of studies support an association between IGF-1 gene polymorphism and breast cancer risk with conflicting results, nevertheless elucidation of the patterns of IGF-1 gene expression may permit characterization of women at high-risk for breast cancer, as well as the development of strategies for early diagnosis and efficient treatment against the disease.

  8. Fission Yeast CSL Transcription Factors: Mapping Their Target Genes and Biological Roles

    PubMed Central

    Převorovský, Martin; Oravcová, Martina; Tvarůžková, Jarmila; Zach, Róbert; Folk, Petr; Půta, František; Bähler, Jürg

    2015-01-01

    Background Cbf11 and Cbf12, the fission yeast CSL transcription factors, have been implicated in the regulation of cell-cycle progression, but no specific roles have been described and their target genes have been only partially mapped. Methodology/Principal Findings Using a combination of transcriptome profiling under various conditions and genome-wide analysis of CSL-DNA interactions, we identify genes regulated directly and indirectly by CSL proteins in fission yeast. We show that the expression of stress-response genes and genes that are expressed periodically during the cell cycle is deregulated upon genetic manipulation of cbf11 and/or cbf12. Accordingly, the coordination of mitosis and cytokinesis is perturbed in cells with genetically manipulated CSL protein levels, together with other specific defects in cell-cycle progression. Cbf11 activity is nutrient-dependent and Δcbf11-associated defects are mitigated by inactivation of the protein kinase A (Pka1) and stress-activated MAP kinase (Sty1p38) pathways. Furthermore, Cbf11 directly regulates a set of lipid metabolism genes and Δcbf11 cells feature a stark decrease in the number of storage lipid droplets. Conclusions/Significance Our results provide a framework for a more detailed understanding of the role of CSL proteins in the regulation of cell-cycle progression in fission yeast. PMID:26366556

  9. Gene expression analysis of WRKY transcription factors in Arabidopsis thaliana cell cultures during a parabolic flight

    NASA Astrophysics Data System (ADS)

    Babbick, Maren; Barjaktarović, Žarko; Hampp, Ruediger

    Plants sense gravity by specialized cells (statocytes) and adjust growth and development accordingly. It has, however, also been shown that plant cells which are not part of specialized tissues are also able to sense gravitational forces. Therefore we used undifferentiated, homogeneous cell cultures of Arabidopsis thaliana (cv. Columbia) in order to identify early alterations in gene expression as a response to altered gravitational field strengths. In this contribution we report on cell cultures exposed to parabolic flights (approximately 20 sec of microgravity). For this short-term exposure study, we specifically checked for genes at the beginning of signal transduction chains, such as those coding for transcription factors (TFs). TFs are small proteins that regulate expression of their target genes by binding to specific promoter sequences. Our main focus were members of the so-called WRKY TF family. WRKY TFs are known to be involved in various physiological processes like senescence and pathogen defense. By quantifying transcriptional changes of these genes by real-time RT-PCR, we wanted to find out, how gene expression is affected by both hyperand microgravity conditions during a parabolic flight. For this purpose Arabidopsis thaliana callus cultures were metabolically quenched by the injection of RNAlater at the end of the microgravity-phase of each parabola. The data we present will show how fast changes in amounts of transcripts will occur, and to what degree the expression profiles are comparable with data obtained from exposures to hypergravity and simulated microgravity.

  10. The Transcription Factor Ultraspiracle Influences Honey Bee Social Behavior and Behavior-Related Gene Expression

    PubMed Central

    Chen, Chieh-Chun; Blatti, Charles A.; Hong, Feng; Liang, Zhengzheng S.; Negre, Nicolas; White, Kevin P.; Rodriguez-Zas, Sandra L.; Mizzen, Craig A.; Sinha, Saurabh; Zhong, Sheng; Robinson, Gene E.

    2012-01-01

    Behavior is among the most dynamic animal phenotypes, modulated by a variety of internal and external stimuli. Behavioral differences are associated with large-scale changes in gene expression, but little is known about how these changes are regulated. Here we show how a transcription factor (TF), ultraspiracle (usp; the insect homolog of the Retinoid X Receptor), working in complex transcriptional networks, can regulate behavioral plasticity and associated changes in gene expression. We first show that RNAi knockdown of USP in honey bee abdominal fat bodies delayed the transition from working in the hive (primarily “nursing” brood) to foraging outside. We then demonstrate through transcriptomics experiments that USP induced many maturation-related transcriptional changes in the fat bodies by mediating transcriptional responses to juvenile hormone. These maturation-related transcriptional responses to USP occurred without changes in USP's genomic binding sites, as revealed by ChIP–chip. Instead, behaviorally related gene expression is likely determined by combinatorial interactions between USP and other TFs whose cis-regulatory motifs were enriched at USP's binding sites. Many modules of JH– and maturation-related genes were co-regulated in both the fat body and brain, predicting that usp and cofactors influence shared transcriptional networks in both of these maturation-related tissues. Our findings demonstrate how “single gene effects” on behavioral plasticity can involve complex transcriptional networks, in both brain and peripheral tissues. PMID:22479195

  11. Tumor Necrosis Factor-Superfamily 15 Gene Expression in Patients with Sickle Cell Disease

    PubMed Central

    Özçimen, Ahmet Ata; Ünal, Selma; Canacankatan, Necmiye; Antmen, Şerife Efsun

    2014-01-01

    Objective: The aim of this study was to investigate the relation between tumor necrosis factor-superfamily 15 (TNFSF15) gene expression and clinical findings in children with sickle cell disease (SCD). Materials and Methods: Forty-nine patients with SCD and 38 healthy controls were included in this study. TNFSF15 gene expression and plasma levels were analyzed. TNFSF15 gene expression was compared in subgroups considering the frequency of painful crises and acute chest syndrome (ACS). Results: It was found that TNFSF15 gene expression was significantly higher in patients with SCD than the controls (p=0.001), whereas there was no significant difference between the patients with SCD and the control groups considering plasma levels of TNFSF15. TNFSF15 gene expression was also significantly higher in SCD patients with ACS (p=0.008). Conclusion: These findings suggest that TNFSF15 may have a role in the pathogenesis of SCD presenting with ACS. Further studies on larger groups are needed to determine the function of TNFSF15 in SCD patients with ACS and pulmonary hypertension. Analysis of TNFSF15 expression may also serve as a promising approach in ACS therapy. PMID:25330517

  12. Integrative mixture of experts to combine clinical factors and gene markers

    PubMed Central

    Lê Cao, Kim-Anh; Meugnier, Emmanuelle; McLachlan, Geoffrey J.

    2010-01-01

    Motivation: Microarrays are being increasingly used in cancer research to better characterize and classify tumors by selecting marker genes. However, as very few of these genes have been validated as predictive biomarkers so far, it is mostly conventional clinical and pathological factors that are being used as prognostic indicators of clinical course. Combining clinical data with gene expression data may add valuable information, but it is a challenging task due to their categorical versus continuous characteristics. We have further developed the mixture of experts (ME) methodology, a promising approach to tackle complex non-linear problems. Several variants are proposed in integrative ME as well as the inclusion of various gene selection methods to select a hybrid signature. Results: We show on three cancer studies that prediction accuracy can be improved when combining both types of variables. Furthermore, the selected genes were found to be of high relevance and can be considered as potential biomarkers for the prognostic selection of cancer therapy. Availability: Integrative ME is implemented in the R package integrativeME (http://cran.r-project.org/). Contact: k.lecao@uq.edu.au Supplementary information: Supplementary data are available at Bioinformatics online. PMID:20223834

  13. Human tumor necrosis factor alpha gene regulation by virus and lipopolysaccharide.

    PubMed

    Goldfeld, A E; Doyle, C; Maniatis, T

    1990-12-01

    We have identified a region of the human tumor necrosis factor alpha (TNF-alpha) gene promoter that is necessary for maximal constitutive, virus-induced, and lipopolysaccharide (LPS)-induced transcription. This region contains three sites that match an NF-kappa B binding-site consensus sequence. We show that these three sites specifically bind NF-kappa B in vitro, yet each of these sites can be deleted from the TNF-alpha promoter with little effect on the induction of the gene by virus or LPS. Moreover, when multimers of these three sites are placed upstream from a truncated TNF-alpha promoter, or a heterologous promoter, an increase in the basal level of transcription is observed that is influenced by sequence context and cell type. However, these multimers are not sufficient for virus or LPS induction of either promoter. Thus, unlike other virus- and LPS-inducible promoters that contain NF-kappa B binding sites, these sites from the TNF-alpha promoter are neither required nor sufficient for virus or LPS induction. Comparison of the sequence requirements of virus induction of the human TNF-alpha gene in mouse L929 and P388D1 cells reveals significant differences, indicating that the sequence requirements for virus induction of the gene are cell type-specific. However, the sequences required for virus and LPS induction of the gene in a single cell type, P388D1, overlap.

  14. Transcription factor AP-2α regulates acute myeloid leukemia cell proliferation by influencing Hoxa gene expression.

    PubMed

    Ding, Xiaofeng; Yang, Zijian; Zhou, Fangliang; Wang, Fangmei; Li, Xinxin; Chen, Cheng; Li, Xiaofeng; Hu, Xiang; Xiang, Shuanglin; Zhang, Jian

    2013-08-01

    Transcription factor AP-2α mediates transcription of a number of genes implicated in mammalian development, cell proliferation and carcinogenesis. In the current study, we identified Hoxa7, Hoxa9 and Hox cofactor Meis1 as AP-2α target genes, which are involved in myeloid leukemogenesis. Luciferase reporter assays revealed that overexpression of AP-2α activated transcription activities of Hoxa7, Hoxa9 and Meis1, whereas siRNA of AP-2α inhibited their transcription activities. We found that AP-2 binding sites in regulatory regions of three genes activated their transcription by mutant analysis and AP-2α could interact with AP-2 binding sites in vivo by chromatin immunoprecipitation (ChIP). Further results showed that the AP-2α shRNA efficiently inhibited mRNA and protein levels of Hoxa7, Hoxa9 and Meis1 in AML cell lines U937 and HL60. Moreover, decreased expression of AP-2α resulted in a significant reduction in the growth and proliferation of AML cells in vitro. Remarkably, AP-2α knockdown leukemia cells exhibit decreased tumorigenicity in vivo compared with controls. Finally, AP-2α and target genes in clinical acute myeloid leukemia samples of M5b subtype revealed variable expression levels and broadly paralleled expression. These data support a role of AP-2α in mediating the expression of Hoxa genes in acute myeloid leukemia to influence the proliferation and cell survival.

  15. A Consensus Network of Gene Regulatory Factors in the Human Frontal Lobe

    PubMed Central

    Berto, Stefano; Perdomo-Sabogal, Alvaro; Gerighausen, Daniel; Qin, Jing; Nowick, Katja

    2016-01-01

    Cognitive abilities, such as memory, learning, language, problem solving, and planning, involve the frontal lobe and other brain areas. Not much is known yet about the molecular basis of cognitive abilities, but it seems clear that cognitive abilities are determined by the interplay of many genes. One approach for analyzing the genetic networks involved in cognitive functions is to study the coexpression networks of genes with known importance for proper cognitive functions, such as genes that have been associated with cognitive disorders like intellectual disability (ID) or autism spectrum disorders (ASD). Because many of these genes are gene regulatory factors (GRFs) we aimed to provide insights into the gene regulatory networks active in the human frontal lobe. Using genome wide human frontal lobe expression data from 10 independent data sets, we first derived 10 individual coexpression networks for all GRFs including their potential target genes. We observed a high level of variability among these 10 independently derived networks, pointing out that relying on results from a single study can only provide limited biological insights. To instead focus on the most confident information from these 10 networks we developed a method for integrating such independently derived networks into a consensus network. This consensus network revealed robust GRF interactions that are conserved across the frontal lobes of different healthy human individuals. Within this network, we detected a strong central module that is enriched for 166 GRFs known to be involved in brain development and/or cognitive disorders. Interestingly, several hubs of the consensus network encode for GRFs that have not yet been associated with brain functions. Their central role in the network suggests them as excellent new candidates for playing an essential role in the regulatory network of the human frontal lobe, which should be investigated in future studies. PMID:27014338

  16. Suppression of the transcription factor MSX1 gene delays bovine preimplantation embryo development in vitro.

    PubMed

    Tesfaye, D; Regassa, A; Rings, F; Ghanem, N; Phatsara, C; Tholen, E; Herwig, R; Un, C; Schellander, K; Hoelker, M

    2010-05-01

    This study was conducted to investigate the effect of suppressing transcription factor gene MSX1 on the development of in vitro produced bovine oocytes and embryos, and identify its potential target genes regulated by this gene. Injection of long double-stranded RNA (LdsRNA) and small interfering RNA (siRNA) at germinal vesicle stage oocyte reduced MSX1 mRNA expression by 73 and 37% respectively at metaphase II stage compared with non-injected controls. Similarly, injection of the same anti-sense oligomers at zygote stage reduced MSX1 mRNA expression by 52 and 33% at 8-cell stage compared with non-injected controls. Protein expression was also reduced in LdsRNA- and siRNA-injected groups compared with non-injected controls at both stages. Blastocysts rates were 33, 28, 20 and 18% in non-injected control, scrambled RNA (scRNA), LdsRNA- and siRNA-injected groups respectively. Cleavage rates were also significantly reduced in Smartpool siRNA (SpsiRNA)-injected group (53.76%) compared with scRNA-injected group (57.76%) and non-injected control group (61%). Large-scale gene expression analysis showed that 135 genes were differentially regulated in SpsiRNA-injected group compared with non-injected controls, of which 54 and 81 were down- and up-regulated respectively due to suppression of MSX1. Additionally, sequence homology mapping and gene enrichment analysis with known human pathway information identified several functional modules that were affected due to suppression of MSX1. In conclusion, suppression of MSX1 affects oocyte maturation, embryo cleavage rate and the expression of several genes, suggesting its potential role in the development of bovine preimplantation embryos.

  17. Structural characterization and chromosomal location of the mouse macrophage migration inhibitory factor gene and pseudogenes

    SciTech Connect

    Bozza, M.; Gerard, C.; Kolakowski, L.F. Jr.

    1995-06-10

    Macrophage migration inhibitory factor, MIF, is a cytokine released by T-lymphocytes, macrophages, and the pituitary gland that serves to integrate peripheral and central inflammatory responses. Ubiquitous expression and developmental regulation suggest that MIF may have additional roles outside of the immune system. Here we report the structure and chromosomal location of the mouse Mif gene and the partial characterization of five Mif pseudogenes. The mouse Mif gene spans less than 0.7 kb of chromosomal DNA and is composed of three exons. A comparison between the mouse and the human genes shows a similar gene structure and common regulatory elements in both promoter regions. The mouse Mif gene maps to the middle region of chromosome 10, between Bcr and S100b, which have been mapped to human chromosomes 22q11 and 21q22.3, respectively. The entire sequence of two pseudogenes demonstrates the absence of introns, the presence of the 5{prime} untranslated region of the cDNA, a 3{prime} poly(A) tail, and the lack of sequence similarity with untranscribed regions of the gene. The five pseudogenes are highly homologous to the cDNA, but contain a variable number of mutations that would produce mutated or truncated MIF-like proteins. Phylogenetic analyses of MIF genes and pseudogenes indicate several independent genetic events that can account for multiple genomic integrations. Three of the Mif pseudogenes were also mapped by interspecific backcross to chromosomes 1, 9, and 17. These results suggest that Mif pseudogenes originated by retrotransposition. 46 refs., 5 figs., 1 tab.

  18. Inhibition of spermidine synthase gene expression by transforming growth factor-beta 1 in hepatoma cells.

    PubMed Central

    Nishikawa, Y; Kar, S; Wiest, L; Pegg, A E; Carr, B I

    1997-01-01

    We screened genes responsive to transforming growth factor-beta (TGF-beta 1) protein in a human hepatoma cell line (Hep3B) using a PCR-mediated differential display technique, in order to investigate the mechanisms involved in TGF-beta-induced growth suppression. We found a gene that was down-regulated by TGF-beta 1 to be completely identical in an approx. 620 bp segment to the gene for the enzyme spermidine synthase, which mediates the conversion of putrescine into spermidine. Both spermidine synthase mRNA expression and its enzyme activity were decreased after TGF-beta 1 treatment of Hep3B cells. The inhibition of spermidine synthase gene expression by TGF-beta 1 protein was also observed in other hepatoma cell lines. The expression of genes for other biosynthetic enzymes in polyamine metabolism (ornithine decarboxylase and S-adenosylmethionine decarboxylase) was also inhibited to the same extent as for spermidine synthase, while the gene expression of spermidine/spermine N1-acetyltransferase, a catabolic enzyme, was relatively resistant to TGF-beta 1. Spermine levels in Hep3B cells were decreased by TGF-beta 1 treatment, although the levels of spermidine and putrescine were unchanged, probably due to compensation by remaining spermidine/spermine N1-acetyltransferase activity. Exogenously added spermidine or spermine, but not putrescine, partially antagonized the growth-inhibitor effects of TGF-beta 1 on Hep3B cells. Our data suggest that down-regulation of gene expression of the enzymes involved in polyamine metabolism, including spermidine synthase, may be associated with the mechanism of TGF-beta-induced growth suppression. PMID:9020892

  19. A Consensus Network of Gene Regulatory Factors in the Human Frontal Lobe.

    PubMed

    Berto, Stefano; Perdomo-Sabogal, Alvaro; Gerighausen, Daniel; Qin, Jing; Nowick, Katja

    2016-01-01

    Cognitive abilities, such as memory, learning, language, problem solving, and planning, involve the frontal lobe and other brain areas. Not much is known yet about the molecular basis of cognitive abilities, but it seems clear that cognitive abilities are determined by the interplay of many genes. One approach for analyzing the genetic networks involved in cognitive functions is to study the coexpression networks of genes with known importance for proper cognitive functions, such as genes that have been associated with cognitive disorders like intellectual disability (ID) or autism spectrum disorders (ASD). Because many of these genes are gene regulatory factors (GRFs) we aimed to provide insights into the gene regulatory networks active in the human frontal lobe. Using genome wide human frontal lobe expression data from 10 independent data sets, we first derived 10 individual coexpression networks for all GRFs including their potential target genes. We observed a high level of variability among these 10 independently derived networks, pointing out that relying on results from a single study can only provide limited biological insights. To instead focus on the most confident information from these 10 networks we developed a method for integrating such independently derived networks into a consensus network. This consensus network revealed robust GRF interactions that are conserved across the frontal lobes of different healthy human individuals. Within this network, we detected a strong central module that is enriched for 166 GRFs known to be involved in brain development and/or cognitive disorders. Interestingly, several hubs of the consensus network encode for GRFs that have not yet been associated with brain functions. Their central role in the network suggests them as excellent new candidates for playing an essential role in the regulatory network of the human frontal lobe, which should be investigated in future studies.

  20. Upstream stimulatory factor 2 and hypoxia-inducible factor 2α (HIF2α) cooperatively activate HIF2 target genes during hypoxia.

    PubMed

    Pawlus, Matthew R; Wang, Liyi; Ware, Katie; Hu, Cheng-Jun

    2012-11-01

    While the functions of hypoxia-inducible factor 1α (HIF1α)/aryl hydrocarbon receptor nuclear translocator (ARNT) and HIF2α/ARNT (HIF2) proteins in activating hypoxia-inducible genes are well established, the role of other transcription factors in the hypoxic transcriptional response is less clear. We report here for the first time that the basic helix-loop-helix-leucine-zip transcription factor upstream stimulatory factor 2 (USF2) is required for the hypoxic transcriptional response, specifically, for hypoxic activation of HIF2 target genes. We show that inhibiting USF2 activity greatly reduces hypoxic induction of HIF2 target genes in cell lines that have USF2 activity, while inducing USF2 activity in cells lacking USF2 activity restores hypoxic induction of HIF2 target genes. Mechanistically, USF2 activates HIF2 target genes by binding to HIF2 target gene promoters, interacting with HIF2α protein, and recruiting coactivators CBP and p300 to form enhanceosome complexes that contain HIF2α, USF2, CBP, p300, and RNA polymerase II on HIF2 target gene promoters. Functionally, the effect of USF2 knockdown on proliferation, motility, and clonogenic survival of HIF2-dependent tumor cells in vitro is phenocopied by HIF2α knockdown, indicating that USF2 works with HIF2 to activate HIF2 target genes and to drive HIF2-depedent tumorigenesis.

  1. Matrix immobilization enhances the tissue repair activity of growth factor gene therapy vectors.

    PubMed

    Doukas, J; Chandler, L A; Gonzalez, A M; Gu, D; Hoganson, D K; Ma, C; Nguyen, T; Printz, M A; Nesbit, M; Herlyn, M; Crombleholme, T M; Aukerman, S L; Sosnowski, B A; Pierce, G F

    2001-05-01

    Although growth factor proteins display potent tissue repair activities, difficulty in sustaining localized therapeutic concentrations limits their therapeutic activity. We reasoned that enhanced histogenesis might be achieved by combining growth factor genes with biocompatible matrices capable of immobilizing vectors at delivery sites. When delivered to subcutaneously implanted sponges, a platelet-derived growth factor B-encoding adenovirus (AdPDGF-B) formulated in a collagen matrix enhanced granulation tissue deposition 3- to 4-fold (p < or = 0.0002), whereas vectors encoding fibroblast growth factor 2 or vascular endothelial growth factor promoted primarily angiogenic responses. By day 8 posttreatment of ischemic excisional wounds, collagen-formulated AdPDGF-B enhanced granulation tissue and epithelial areas up to 13- and 6-fold (p < 0.009), respectively, and wound closure up to 2-fold (p < 0.05). At longer times, complete healing without excessive scar formation was achieved. Collagen matrices were shown to retain both vector and transgene products within delivery sites, enabling the transduction and stimulation of infiltrating repair cells. Quantitative PCR and RT-PCR demonstrated both vector DNA and transgene mRNA within wound beds as late as 28 days posttreatment. By contrast, aqueous formulations allowed vector seepage from application sites, leading to PDGF-induced hyperplasia in surrounding tissues but not wound beds. Finally, repeated applications of PDGF-BB protein were required for neotissue induction approaching equivalence to a single application of collagen-immobilized AdPDGF-B, confirming the utility of this gene transfer approach. Overall, these studies demonstrate that immobilizing matrices enable the controlled delivery and activity of tissue promoting genes for the effective regeneration of injured tissues.

  2. Arrangement of the Clostridium baratii F7 Toxin Gene Cluster with Identification of a σ Factor That Recognizes the Botulinum Toxin Gene Cluster Promoters

    SciTech Connect

    Dover, Nir; Barash, Jason R.; Burke, Julianne N.; Hill, Karen K.; Detter, John C.; Arnon, Stephen S.

    2014-05-22

    Botulinum neurotoxin (BoNT) is the most poisonous substances known and its eight toxin types (A to H) are distinguished by the inability of polyclonal antibodies that neutralize one toxin type to neutralize any of the other seven toxin types. Infant botulism, an intestinal toxemia orphan disease, is the most common form of human botulism in the United States. It results from swallowed spores of Clostridium botulinum (or rarely, neurotoxigenic Clostridium butyricum or Clostridium baratii) that germinate and temporarily colonize the lumen of the large intestine, where, as vegetative cells, they produce botulinum toxin. Botulinum neurotoxin is encoded by the bont gene that is part of a toxin gene cluster that includes several accessory genes. In this paper, we sequenced for the first time the complete botulinum neurotoxin gene cluster of nonproteolytic C. baratii type F7. Like the type E and the nonproteolytic type F6 botulinum toxin gene clusters, the C. baratii type F7 had an orfX toxin gene cluster that lacked the regulatory botR gene which is found in proteolytic C. botulinum strains and codes for an alternative σ factor. In the absence of botR, we identified a putative alternative regulatory gene located upstream of the C. baratii type F7 toxin gene cluster. This putative regulatory gene codes for a predicted σ factor that contains DNA-binding-domain homologues to the DNA-binding domains both of BotR and of other members of the TcdR-related group 5 of the σ70 family that are involved in the regulation of toxin gene expression in clostridia. We showed that this TcdR-related protein in association with RNA polymerase core enzyme specifically binds to the C. baratii type F7 botulinum toxin gene cluster promoters. Finally, this TcdR-related protein may therefore be involved in regulating the expression of the genes of the botulinum toxin gene cluster in neurotoxigenic C. baratii.

  3. Arrangement of the Clostridium baratii F7 toxin gene cluster with identification of a σ factor that recognizes the botulinum toxin gene cluster promoters.

    PubMed

    Dover, Nir; Barash, Jason R; Burke, Julianne N; Hill, Karen K; Detter, John C; Arnon, Stephen S

    2014-01-01

    Botulinum neurotoxin (BoNT) is the most poisonous substances known and its eight toxin types (A to H) are distinguished by the inability of polyclonal antibodies that neutralize one toxin type to neutralize any of the other seven toxin types. Infant botulism, an intestinal toxemia orphan disease, is the most common form of human botulism in the United States. It results from swallowed spores of Clostridium botulinum (or rarely, neurotoxigenic Clostridium butyricum or Clostridium baratii) that germinate and temporarily colonize the lumen of the large intestine, where, as vegetative cells, they produce botulinum toxin. Botulinum neurotoxin is encoded by the bont gene that is part of a toxin gene cluster that includes several accessory genes. We sequenced for the first time the complete botulinum neurotoxin gene cluster of nonproteolytic C. baratii type F7. Like the type E and the nonproteolytic type F6 botulinum toxin gene clusters, the C. baratii type F7 had an orfX toxin gene cluster that lacked the regulatory botR gene which is found in proteolytic C. botulinum strains and codes for an alternative σ factor. In the absence of botR, we identified a putative alternative regulatory gene located upstream of the C. baratii type F7 toxin gene cluster. This putative regulatory gene codes for a predicted σ factor that contains DNA-binding-domain homologues to the DNA-binding domains both of BotR and of other members of the TcdR-related group 5 of the σ70 family that are involved in the regulation of toxin gene expression in clostridia. We showed that this TcdR-related protein in association with RNA polymerase core enzyme specifically binds to the C. baratii type F7 botulinum toxin gene cluster promoters. This TcdR-related protein may therefore be involved in regulating the expression of the genes of the botulinum toxin gene cluster in neurotoxigenic C. baratii.

  4. Expression of growth factor ligand and receptor genes in the preimplantation bovine embryo.

    PubMed

    Watson, A J; Hogan, A; Hahnel, A; Wiemer, K E; Schultz, G A

    1992-02-01

    The sensitive technique of mRNA phenotyping with the reverse transcription-polymerase chain reaction was employed to determine the patterns of gene expression for several growth factor ligand and receptor genes during bovine preimplantation development. Several thousand bovine embryos encompassing a developmental series from one-cell zygotes to hatched blastocysts were produced by the application of in vitro maturation, fertilization, and oviductal epithelial cell embryo coculture methods. Transcripts for transforming growth factor (TGF-alpha) and platelet-derived growth factor (PDGF-A) are detectable in all preimplantation bovine stages as observed in the mouse. Transcripts for TGF-beta 2 and insulin-like growth factor (IGF-II) and the receptors for PDGF-alpha, insulin, IGF-I, and IGF-II are also detectable throughout bovine preimplantation development, suggesting that these mRNAs are products of both the maternal and the embryonic genomes in the cow, whereas in the mouse they are present only following the activation of the embryonic genome at the two-cell stage. In contrast to the mouse embryo, IGF-I mRNA was detected within preimplantation bovine embryos. Basic fibroblast growth factor (bFGF) is a maternal message in the bovine embryo, since it is only detectable up until the eight-cell embryo stage. Bovine trophoblast protein (bTP) mRNA was detectable within day 8 bovine blastocysts. As was observed in the mouse, the transcripts for insulin, epidermal growth factor (EGF), or nerve growth factor (NGF) were not detectable in any bovine embryo stage. Analyses of this type should aid the development of a completely defined culture medium for the more efficient production of preimplantation bovine embryos.

  5. Expression profiling of genes regulated by Fra-1/AP-1 transcription factor during bleomycin-induced pulmonary fibrosis

    PubMed Central

    2013-01-01

    Background The Fra-1/AP-1 transcription factor regulates the expression of genes controlling various processes including migration, invasion, and survival as well as extracellular remodeling. We recently demonstrated that loss of Fra-1 leads to exacerbated bleomycin-induced pulmonary fibrosis, accompanied by enhanced expression of various inflammatory and fibrotic genes. To better understand the molecular mechanisms by which Fra-1 confers protection during bleomycin-induced lung injury, genome-wide mRNA expression profiling was performed. Results We found that Fra-1 regulates gene expression programs that include: 1) several cytokines and chemokines involved in inflammation, 2) several genes involved in the extracellular remodeling and cell adhesion, and 3) several genes involved in programmed cell death. Conclusion Loss of Fra-1 leads to the enhanced expression of genes regulating inflammation and immune responses and decreased the expression of genes involved in apoptosis, suggesting that this transcription factor distinctly modulates early pro-fibrotic cellular responses. PMID:23758685

  6. Expression of the vascular permeability factor/vascular endothelial growth factor gene in central nervous system neoplasms.

    PubMed Central

    Berkman, R A; Merrill, M J; Reinhold, W C; Monacci, W T; Saxena, A; Clark, W C; Robertson, J T; Ali, I U; Oldfield, E H

    1993-01-01

    Expression of the vascular permeability factor/vascular endothelial growth factor (VEGPF) gene was investigated in human central nervous system (CNS) neoplasms and normal brain. Adsorption of capillary permeability activity from human glioblastoma multiforme (GBM) cell conditioned medium and GBM cyst fluids by anti-VEGPF antibodies demonstrated that VEGPF is secreted by GBM cells and is present in sufficient quantities in vivo to induce vascular permeability. Cloning and sequencing of polymerase chain reaction-amplified GBM and normal brain cDNA demonstrated three forms of the VEGPF coding region (567, 495, and 363 nucleotides), corresponding to mature polypeptides of 189, 165, and 121 amino acids, respectively. VEGPF mRNA levels in CNS tumors vs. normal brain were investigated by the RNase protection assay. Significant elevation of VEGPF gene expression was observed in 81% (22/27) of the highly vascular and edema-associated CNS neoplasms (6/8 GBM, 8/8 capillary hemangioblastomas, 6/7 meningiomas, and 2/4 cerebral metastases). In contrast, only 13% (2/15) of those CNS tumors that are not commonly associated with significant neovascularity or cerebral edema (2/10 pituitary adenomas and 0/5 nonastrocytic gliomas) had significantly increased levels of VEGPF mRNA. The relative abundance of the forms of VEGPF mRNA was consistent in tumor and normal brain: VEGPF495 > VEGPF363 > VEGPF567. In situ hybridization confirmed the presence of VEGPF mRNA in tumor cells and its increased abundance in capillary hemangioblastomas. Our results suggest a significant role for VEGPF in the development of CNS tumor neovascularity and peritumoral edema. Images PMID:8380810

  7. Expression of myocyte enhancer factor-2 and downstream genes in ground squirrel skeletal muscle during hibernation.

    PubMed

    Tessier, Shannon N; Storey, Kenneth B

    2010-11-01

    Myocyte enhancer factor-2 (MEF2) transcription factors regulate the expression of a variety of genes encoding contractile proteins and other proteins associated with muscle performance. We proposed that changes in MEF2 levels and expression of selected downstream targets would aid the skeletal muscle of thirteen-lined ground squirrels (Spermophilus tridecemlineatus) in meeting metabolic challenges associated with winter hibernation; e.g., cycles of torpor-arousal, body temperature that can fall to near 0°C, long periods of inactivity that could lead to atrophy. MEF2A protein levels were significantly elevated when animals were in torpor (maximally 2.8-fold higher than in active squirrels) and the amount of phosphorylated active MEF2A Thr312 increased during entrance into torpor. MEF2C levels also rose significantly during entrance and torpor as did the amount of phosphorylated MEF2C Ser387. Furthermore, both MEF2 members showed elevated amounts in the nuclear fraction during torpor as well as enhanced binding to DNA indicating that MEF2-mediated gene expression was up-regulated in torpid animals. Indeed, the protein products of two MEF2 downstream gene targets increased in muscle during torpor (glucose transporter isoforms 4; GLUT4) or early arousal (myogenic differentiation; MyoD). Significant increases in Glut4 and MyoD mRNA transcript levels correlated with the rise in protein product levels and provided further support for the activation of MEF2-mediated gene expression in the hibernator. Transcript levels of Mef2a and Mef2c also showed time-dependent patterns with levels of both being highest during arousal from torpor. The data suggest a significant role for MEF2-mediated gene transcription in the selective adjustment of muscle protein complement over the course of torpor-arousal cycles.

  8. Transcription factor NFE2L2/NRF2 is a regulator of macroautophagy genes.

    PubMed

    Pajares, Marta; Jiménez-Moreno, Natalia; García-Yagüe, Ángel J; Escoll, Maribel; de Ceballos, María L; Van Leuven, Fred; Rábano, Alberto; Yamamoto, Masayuki; Rojo, Ana I; Cuadrado, Antonio

    2016-10-02

    Autophagy is a highly coordinated process that is controlled at several levels including transcriptional regulation. Here, we identify the transcription factor NFE2L2/NRF2 (nuclear factor, erythroid 2 like 2) as a regulator of autophagy gene expression and its relevance in a mouse model of Alzheimer disease (AD) that reproduces impaired APP (amyloid β precursor protein) and human (Hs)MAPT/TAU processing, clearance and aggregation. We screened the chromatin immunoprecipitation database ENCODE for 2 proteins, MAFK and BACH1, that bind the NFE2L2-regulated enhancer antioxidant response element (ARE). Using a script generated from the JASPAR's consensus ARE sequence, we identified 27 putative AREs in 16 autophagy-related genes. Twelve of these sequences were validated as NFE2L2 regulated AREs in 9 autophagy genes by additional ChIP assays and quantitative RT-PCR on human and mouse cells after NFE2L2 activation with sulforaphane. Mouse embryo fibroblasts of nfe2l2-knockout mice exhibited reduced expression of autophagy genes, which was rescued by an NFE2L2 expressing lentivirus, and impaired autophagy flux when exposed to hydrogen peroxide. NFE2L2-deficient mice co-expressing HsAPP(V717I) and HsMAPT(P301L), exhibited more intracellular aggregates of these proteins and reduced neuronal levels of SQSTM1/p62, CALCOCO2/NDP52, ULK1, ATG5 and GABARAPL1. Also, colocalization of HsAPP(V717I) and HsMAPT(P301L) with the NFE2L2-regulated autophagy marker SQSTM1/p62 was reduced in the absence of NFE2L2. In AD patients, neurons expressing high levels of APP or MAPT also expressed SQSTM1/p62 and nuclear NFE2L2, suggesting their attempt to degrade intraneuronal aggregates through autophagy. This study shows that NFE2L2 modulates autophagy gene expression and suggests a new strategy to combat proteinopathies.

  9. Transcription factor NFE2L2/NRF2 is a regulator of macroautophagy genes

    PubMed Central

    Pajares, Marta; Jiménez-Moreno, Natalia; García-Yagüe, Ángel J.; Escoll, Maribel; de Ceballos, María L.; Van Leuven, Fred; Rábano, Alberto; Yamamoto, Masayuki; Rojo, Ana I.; Cuadrado, Antonio

    2016-01-01

    ABSTRACT Autophagy is a highly coordinated process that is controlled at several levels including transcriptional regulation. Here, we identify the transcription factor NFE2L2/NRF2 (nuclear factor, erythroid 2 like 2) as a regulator of autophagy gene expression and its relevance in a mouse model of Alzheimer disease (AD) that reproduces impaired APP (amyloid β precursor protein) and human (Hs)MAPT/TAU processing, clearance and aggregation. We screened the chromatin immunoprecipitation database ENCODE for 2 proteins, MAFK and BACH1, that bind the NFE2L2-regulated enhancer antioxidant response element (ARE). Using a script generated from the JASPAR's consensus ARE sequence, we identified 27 putative AREs in 16 autophagy-related genes. Twelve of these sequences were validated as NFE2L2 regulated AREs in 9 autophagy genes by additional ChIP assays and quantitative RT-PCR on human and mouse cells after NFE2L2 activation with sulforaphane. Mouse embryo fibroblasts of nfe2l2-knockout mice exhibited reduced expression of autophagy genes, which was rescued by an NFE2L2 expressing lentivirus, and impaired autophagy flux when exposed to hydrogen peroxide. NFE2L2-deficient mice co-expressing HsAPPV717I and HsMAPTP301L, exhibited more intracellular aggregates of these proteins and reduced neuronal levels of SQSTM1/p62, CALCOCO2/NDP52, ULK1, ATG5 and GABARAPL1. Also, colocalization of HsAPPV717I and HsMAPTP301L with the NFE2L2-regulated autophagy marker SQSTM1/p62 was reduced in the absence of NFE2L2. In AD patients, neurons expressing high levels of APP or MAPT also expressed SQSTM1/p62 and nuclear NFE2L2, suggesting their attempt to degrade intraneuronal aggregates through autophagy. This study shows that NFE2L2 modulates autophagy gene expression and suggests a new strategy to combat proteinopathies. PMID:27427974

  10. The chicken vitellogenin II gene is flanked by a GATA factor-dependent estrogen response unit.

    PubMed

    Davis, D L; Burch, J B

    1996-08-01

    The chicken vitellogenin II (VTGII) gene is flanked by an imperfect estrogen response element (ERE) at -350 and a perfect ERE at -620. In the present study we show that this imperfect ERE lies within an estrogen response unit (ERU) that requires a GATA factor and the estrogen receptor to function as an estrogen-dependent enhancer. We infer that GATA-6 contributes to the estrogen-dependent and liver-specific regulation of the endogenous VTGII gene since this is the predominant GATA factor expressed in adult liver. Our analysis of the VTGII ERU revealed four salient points. First, this ERU is comprised of an ERE and a bank of functionally redundant GATA-binding sites. Second, the GATA-6 transactivation domain is necessary (and sufficient, when tethered near the ERE) to render this ERU functional. Third, ERU enhancer activity is dependent on GATA 6, regardless of whether the resident ERE is imperfect or perfect. Fourth, in contrast to a report that the estrogen receptor antagonizes the activity of another GATA factor (GATA-1), we show that these two factors can function in a synergistic manner within the context of the VTGII ERU.

  11. Stem cell-based delivery of brain-derived neurotrophic factor gene in the rat retina.

    PubMed

    Park, Hae-Young Lopilly; Kim, Jie Hyun; Sun Kim, Hwa; Park, Chan Kee

    2012-08-21

    As an alternative to a viral vector, the application of stem cells to transfer specific genes is under investigation in various organs. Using this strategy may provide more effective method to supply neurotrophic factor to the neurodegenerative diseases caused by neurotrophic factor deprivation. This study investigated the possibility and efficacy of stem cell-based delivery of the brain-derived neurotrophic factor (BDNF) gene to rat retina. Rat BDNF cDNA was transduced into rat bone marrow mesenchymal stem cells (rMSCs) using a retroviral vector. Its incorporation into the experimental rat retina and the expression of BDNF after intravitreal injection or subretinal injection were detected by real-time PCR, western blot analysis, and immunohistochemical staining. For the incorporated rMSCs, retinal-specific marker staining was performed to investigate the changes in morphology and the characteristics of the stem cells. Transduction of the rMSCs by retrovirus was effective, and the transduced rMSCs expressed high levels of the BDNF gene and protein. The subretinal injection of rMSCs produced rMSC migration and incorporation into the rat retina (about 15.7% incorporation rate), and retinal BDNF mRNA and protein expression was increased at 4 weeks after transplantation. When subretinal injection of rMSCs was applied to axotomized rat retina, it significantly increased the expression of BDNF until 4 weeks after transplantation. Some of the transplanted rMSCs exhibited morphological changes, but the retinal-specific marker stain was not sufficient to indicate whether neuronal differentiation had occurred. Using mesenchymal stem cells to deliver the BDNF gene to the retina may provide new treatment for glaucoma.

  12. Molecular characterization of a positively photoregulated nuclear gene for a chloroplast RNA polymerase sigma factor in Cyanidium caldarium.

    PubMed Central

    Liu, B; Troxler, R F

    1996-01-01

    We have cloned the gene for a putative chloroplast RNA polymerase sigma factor from the unicellular rhodophyte Cyanidium caldarium. This gene contains an open reading frame encoding a protein of 609 amino acids with domains highly homologous to all four conserved regions found in bacterial and cyanobacterial sigma 70-type subunits. When Southern blots of genomic DNA were hybridized to the "rpoD box" oligonucleotide probe, up to six hybridizing hands were observed. Transcripts of the sigma factor gene were undetectable in RNA from dark-grown cells but were abundant in the poly(A)+ fraction of RNA from illuminated cells. The sigma factor gene was expressed in Escherichia coli, and antibodies against the expressed sigma factor fusion protein cross-reacted with a 55-kDa protein in partially purified chloroplast RNA polymerase. Antibodies directed against a cyanobacterial RNA polymerase sigma factor also cross-reacted with a 55-kDa protein in the same enzyme preparation. Immunoprecipitation experiments showed that this enzyme preparation contains proteins with the same molecular weights as the alpha, beta, beta', and beta" subunits of chloroplast RNA polymerase in higher plants. This study identifies a gene for a plastid RNA polymerase sigma factor and indicates that there may be a family of nuclear-encoded sigma factors that recognize promoters in subsets of plastid genes and regulate differential gene expression at the transcriptional level. Images Fig. 1 Fig. 4 Fig. 6 PMID:8622935

  13. Gene amplification of the transcription factor DP1 and CTNND1 in human lung cancer.

    PubMed

    Castillo, Sandra D; Angulo, Barbara; Suarez-Gauthier, Ana; Melchor, Lorenzo; Medina, Pedro P; Sanchez-Verde, Lydia; Torres-Lanzas, Juan; Pita, Guillermo; Benitez, Javier; Sanchez-Cespedes, Montse

    2010-09-01

    The search for novel oncogenes is important because they could be the target of future specific anticancer therapies. In the present paper we report the identification of novel amplified genes in lung cancer by means of global gene expression analysis. To screen for amplicons, we aligned the gene expression data according to the position of transcripts in the human genome and searched for clusters of over-expressed genes. We found several clusters with gene over-expression, suggesting an underlying genomic amplification. FISH and microarray analysis for DNA copy number in two clusters, at chromosomes 11q12 and 13q34, confirmed the presence of amplifications spanning about 0.4 and 1 Mb for 11q12 and 13q34, respectively. Amplification at these regions each occurred at a frequency of 3%. Moreover, quantitative RT-PCR of each individual transcript within the amplicons allowed us to verify the increased in gene expression of several genes. The p120ctn and DP1 proteins, encoded by two candidate oncogenes, CTNND1 and TFDP1, at 11q12 and 13q amplicons, respectively, showed very strong immunostaining in lung tumours with gene amplification. We then focused on the 13q34 amplicon and in the TFDP1 candidate oncogene. To further determine the oncogenic properties of DP1, we searched for lung cancer cell lines carrying TFDP1 amplification. Depletion of TFDP1 expression by small interference RNA in a lung cancer cell line (HCC33) with TFDP1 amplification and protein over-expression reduced cell viability by 50%. In conclusion, we report the identification of two novel amplicons, at 13q34 and 11q12, each occurring at a frequency of 3% of non-small cell lung cancers. TFDP1, which encodes the E2F-associated transcription factor DP1 is a candidate oncogene at 13q34. The data discussed in this publication have been deposited in NCBIs Gene Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/) and are accessible through GEO Series Accession No. GSE21168.

  14. Evaluating Transcription Factor Activity Changes by Scoring Unexplained Target Genes in Expression Data

    PubMed Central

    Berchtold, Evi; Csaba, Gergely; Zimmer, Ralf

    2016-01-01

    Several methods predict activity changes of transcription factors (TFs) from a given regulatory network and measured expression data. But available gene regulatory networks are incomplete and contain many condition-dependent regulations that are not relevant for the specific expression measurement. It is not known which combination of active TFs is needed to cause a change in the expression of a target gene. A method to systematically evaluate the inferred activity changes is missing. We present such an evaluation strategy that indicates for how many target genes the observed expression changes can be explained by a given set of active TFs. To overcome the problem that the exact combination of active TFs needed to activate a gene is typically not known, we assume a gene to be explained if there exists any combination for which the predicted active TFs can possibly explain the observed change of the gene. We introduce the i-score (inconsistency score), which quantifies how many genes could not be explained by the set of activity changes of TFs. We observe that, even for these minimal requirements, published methods yield many unexplained target genes, i.e. large i-scores. This holds for all methods and all expression datasets we evaluated. We provide new optimization methods to calculate the best possible (minimal) i-score given the network and measured expression data. The evaluation of this optimized i-score on a large data compendium yields many unexplained target genes for almost every case. This indicates that currently available regulatory networks are still far from being complete. Both the presented Act-SAT and Act-A* methods produce optimal sets of TF activity changes, which can be used to investigate the difficult interplay of expression and network data. A web server and a command line tool to calculate our i-score and to find the active TFs associated with the minimal i-score is available from https://services.bio.ifi.lmu.de/i-score. PMID:27723775

  15. Evolution of a Sigma Factor: An All-In-One of Gene Duplication, Horizontal Gene Transfer, Purifying Selection, and Promoter Differentiation

    PubMed Central

    López-Leal, Gamaliel; Cevallos, Miguel A.; Castillo-Ramírez, Santiago

    2016-01-01

    Sigma factors are an essential part of bacterial gene regulation and have been extensively studied as far as their molecular mechanisms and protein structure are concerned. However, their molecular evolution, especially for the alternative sigma factors, is poorly understood. Here, we analyze the evolutionary forces that have shaped the rpoH sigma factors within the alphaproteobacteria. We found that an ancient duplication gave rise to two major groups of rpoH sigma factors and that after this event horizontal gene transfer (HGT) occurred in rpoH1 group. We also noted that purifying selection has differentially affected distinct parts of the gene; singularly, the gene segment that encodes the region 4.2, which interacts with the −35 motif of the RpoH-dependent genes, has been under relaxed purifying selection. Furthermore, these two major groups are clearly differentiated from one another regarding their promoter selectivity, as rpoH1 is under the transcriptional control of σ70 and σ32, whereas rpoH2 is under the transcriptional control of σ24. Our results suggest a scenario in which HGT, gene loss, variable purifying selection and clear promoter specialization occurred after the ancestral duplication event. More generally, our study offers insights into the molecular evolution of alternative sigma factors and highlights the importance of analyzing not only the coding regions but also the promoter regions. PMID:27199915

  16. Intermedin/adrenomedullin 2 is a stress-inducible gene controlled by activating transcription factor 4.

    PubMed

    Kovaleva, Irina E; Garaeva, Alisa A; Chumakov, Peter M; Evstafieva, Alexandra G

    2016-09-15

    Intermedin or adrenomedullin 2 is a set of calcitonin-related peptides with a putative tumor angiogenesis promoting activity that are formed by proteolytic processing of the ADM2 gene product. It has been proposed that the ADM2 gene is regulated by the estrogen response element (ERE) and hypoxia response elements (HRE) found within its promoter region. In the present study we reveal a functional mechanism by which ADM2 participates in the unfolded protein response (UPR) and in responses to the mitochondrial respiration chain inhibition. We show that the ADM2 gene is controlled by activating transcription factor 4 (ATF4), the principal regulator of the integrated stress response (ISR). The upregulation of ADM2 mRNA could be prevented by the pharmacological ISR inhibitor ISRIB and by the downregulation of ATF4 with specific shRNA, while ectopic expression of ATF4 cDNA resulted in a notable increase in ADM2 gene transcription. A potential ATF4-binding site was identified in the coding region of the ADM2 gene and the requirement of this site during the ATF4-mediated ADM2 gene promoter activation was validated by the luciferase reporter assay. Mutagenesis of the putative ATF4-response element prevented the induction of luciferase activity in response to ATF4 overproduction, as well as in response to mitochondrial electron transfer chain inhibition by piericidin A and ER stress induction by tunicamycin and brefeldin A. Since ADM2 was shown to inhibit ATF4 expression during myocardial ER stress, a feedback mechanism could be proposed for the ADM2 regulation under ER stress conditions.

  17. Rhodococcus erythropolis BG43 Genes Mediating Pseudomonas aeruginosa Quinolone Signal Degradation and Virulence Factor Attenuation.

    PubMed

    Müller, Christine; Birmes, Franziska S; Rückert, Christian; Kalinowski, Jörn; Fetzner, Susanne

    2015-11-01

    Rhodococcus erythropolis BG43 is able to degrade the Pseudomonas aeruginosa quorum sensing signal molecules PQS (Pseudomonas quinolone signal) [2-heptyl-3-hydroxy-4(1H)-quinolone] and HHQ [2-heptyl-4(1H)-quinolone] to anthranilic acid. Based on the hypothesis that degradation of HHQ might involve hydroxylation to PQS followed by dioxygenolytic cleavage of the heterocyclic ring and hydrolysis of the resulting N-octanoylanthranilate, the genome was searched for corresponding candidate genes. Two gene clusters, aqdA1B1C1 and aqdA2B2C2, each predicted to code for a hydrolase, a flavin monooxygenase, and a dioxygenase related to 1H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase, were identified on circular plasmid pRLCBG43 of strain BG43. Transcription of all genes was upregulated by PQS, suggesting that both gene clusters code for alkylquinolone-specific catabolic enzymes. An aqdR gene encoding a putative transcriptional regulator, which was also inducible by PQS, is located adjacent to the aqdA2B2C2 cluster. Expression of aqdA2B2C2 in Escherichia coli conferred the ability to degrade HHQ and PQS to anthranilic acid; however, for E. coli transformed with aqdA1B1C1, only PQS degradation was observed. Purification of the recombinant AqdC1 protein verified that it catalyzes the cleavage of PQS to form N-octanoylanthranilic acid and carbon monoxide and revealed apparent Km and kcat values for PQS of ∼27 μM and 21 s(-1), respectively. Heterologous expression of the PQS dioxygenase gene aqdC1 or aqdC2 in P. aeruginosa PAO1 quenched the production of the virulence factors pyocyanin and rhamnolipid and reduced the synthesis of the siderophore pyoverdine. Thus, the toolbox of quorum-quenching enzymes is expanded by new PQS dioxygenases.

  18. Rhodococcus erythropolis BG43 Genes Mediating Pseudomonas aeruginosa Quinolone Signal Degradation and Virulence Factor Attenuation

    PubMed Central

    Müller, Christine; Birmes, Franziska S.; Rückert, Christian; Kalinowski, Jörn

    2015-01-01

    Rhodococcus erythropolis BG43 is able to degrade the Pseudomonas aeruginosa quorum sensing signal molecules PQS (Pseudomonas quinolone signal) [2-heptyl-3-hydroxy-4(1H)-quinolone] and HHQ [2-heptyl-4(1H)-quinolone] to anthranilic acid. Based on the hypothesis that degradation of HHQ might involve hydroxylation to PQS followed by dioxygenolytic cleavage of the heterocyclic ring and hydrolysis of the resulting N-octanoylanthranilate, the genome was searched for corresponding candidate genes. Two gene clusters, aqdA1B1C1 and aqdA2B2C2, each predicted to code for a hydrolase, a flavin monooxygenase, and a dioxygenase related to 1H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase, were identified on circular plasmid pRLCBG43 of strain BG43. Transcription of all genes was upregulated by PQS, suggesting that both gene clusters code for alkylquinolone-specific catabolic enzymes. An aqdR gene encoding a putative transcriptional regulator, which was also inducible by PQS, is located adjacent to the aqdA2B2C2 cluster. Expression of aqdA2B2C2 in Escherichia coli conferred the ability to degrade HHQ and PQS to anthranilic acid; however, for E. coli transformed with aqdA1B1C1, only PQS degradation was observed. Purification of the recombinant AqdC1 protein verified that it catalyzes the cleavage of PQS to form N-octanoylanthranilic acid and carbon monoxide and revealed apparent Km and kcat values for PQS of ∼27 μM and 21 s−1, respectively. Heterologous expression of the PQS dioxygenase gene aqdC1 or aqdC2 in P. aeruginosa PAO1 quenched the production of the virulence factors pyocyanin and rhamnolipid and reduced the synthesis of the siderophore pyoverdine. Thus, the toolbox of quorum-quenching enzymes is expanded by new PQS dioxygenases. PMID:26319870

  19. Wheat drought-responsive WXPL transcription factors regulate cuticle biosynthesis genes.

    PubMed

    Bi, Huihui; Luang, Sukanya; Li, Yuan; Bazanova, Natalia; Borisjuk, Nikolai; Hrmova, Maria; Lopato, Sergiy

    2017-02-04

    The cuticle forms a hydrophobic waxy layer that covers plant organs and provides protection from biotic and abiotic stresses. Transcription of genes responsible for cuticle formation is regulated by several types of transcription factors (TFs). Five orthologous to WAX PRODUCTION (WXP1 and WXP2) genes from Medicago truncatula were isolated from a cDNA library prepared from flag leaves and spikes of drought tolerant wheat (Triticum aestivum, breeding line RAC875) and designated TaWXP-like (TaWXPL) genes. Tissue-specific and drought-responsive expression of TaWXPL1D and TaWXPL2B was investigated by quantitative RT-PCR in two Australian wheat genotypes, RAC875 and Kukri, with contrasting glaucousness and drought tolerance. Rapid dehydration and/or slowly developing cyclic drought induced specific expression patterns of WXPL genes in flag leaves of the two cultivars RAC875 and Kukri. TaWXPL1D and TaWXPL2B proteins acted as transcriptional activators in yeast and in wheat cell cultures, and conserved sequences in their activation domains were localised at their C-termini. The involvement of wheat WXPL TFs in regulation of cuticle biosynthesis was confirmed by transient expression in wheat cells, using the promoters of wheat genes encoding two cuticle biosynthetic enzymes, the 3-ketoacyl-CoA-synthetase and the cytochrome P450 monooxygenase. Using the yeast 1-hybrid (Y1H) assay we also demonstrated the differential binding preferences of TaWXPL1D and TaWXPL2B towards three stress-related DNA cis-elements. Protein structural determinants underlying binding selectivity were revealed using comparative 3D molecular modelling of AP2 domains in complex with cis-elements. A scheme is proposed, which links the roles of WXPL and cuticle-related MYB TFs in regulation of genes responsible for the synthesis of cuticle components.

  20. Cloning and characterization of the human trefoil factor 3 gene promoter.

    PubMed

    Sun, Yong; Wang, Liangxi; Zhou, Yifang; Mao, Xuefei; Deng, Xiangdong

    2014-01-01

    Human trefoil factor 3 (hTFF3) is a small-molecule peptide with potential medicinal value. Its main pharmacological function is to alleviate gastrointestinal mucosal injuries caused by various factors and promote the repair of damaged mucosa. However, how its transcription is regulated is not yet known. The aim of this study was to clone the hTFF3 gene promoter region, identify the core promoter and any transcription factors that bind to the promoter, and begin to clarify the regulation of its expression. The 5' flanking sequence of the hTFF3 gene was cloned from human whole blood genomic DNA by PCR. Truncated promoter fragments with different were cloned and inserted into the pGL3-Basic vector to determine the position of the core hTFF3 promoter. Transcription element maintaining basic transcriptional activity was assessed by mutation techniques. Protein-DNA interactions were analyzed by chromatin immunoprecipitation (ChIP). RNA interference and gene over-expression were performed to assay the effect of transcription factor on the hTFF3 expression. The results showed that approximately 1,826 bp of the fragment upstream of hTFF3 was successfully amplified, and its core promoter region was determined to be from -300 bp to -280 bp through analysis of truncated mutants. Mutation analysis confirmed that the sequence required to maintain basic transcriptional activity was accurately positioned from -300 bp to -296 bp. Bioinformatic analysis indicated that this area contained a Sp1 binding site. Sp1 binding to the hTFF3 promoter was confirmed by ChIP experiments. Sp1 over-expression and interference experiments showed that Sp1 enhanced the transcriptional activity of the hTFF3 promoter and increased hTFF3 expression. This study demonstrated that Sp1 plays an important role in maintaining the transcription of hTFF3.

  1. Regulation of toxin and bacteriocin gene expression in Clostridium by interchangeable RNA polymerase sigma factors.

    PubMed

    Dupuy, Bruno; Raffestin, Stéphanie; Matamouros, Susana; Mani, Nagraj; Popoff, Michel R; Sonenshein, Abraham L

    2006-05-01

    The production of major extracellular toxins by pathogenic strains of Clostridium botulinum, Clostridium tetani and Clostridium difficile, and a bacteriocin by Clostridium perfringens is dependent on a related group of RNA polymerase sigma-factors. These sigma-factors (BotR, TetR, TcdR and UviA) were shown to be sufficiently similar that they could substitute for one another in in vitro DNA binding and run-off transcription experiments. In cells, however, the sigma-factors fell into two subclasses. BotR and TetR were able to direct transcription of their target genes in a fully reciprocal manner. Similarly, UviA and TcdR were fully interchangeable. Neither BotR nor TetR could substitute for UviA or TcdR, however, and neither UviA nor TcdR could direct transcription of the natural targets of BotR or TetR. The extent of functional interchangeability of the sigma-factors was attributed to the strong conservation of their subregion 4.2 sequences and the conserved -35 sequences of their target promoters, while restrictions on interchangeability were attributed to variations in their subregion 2.4 sequences and the target site -10 sequences. The four sigma-factors have been assigned to group 5 of the sigma(70) family and seem to have arisen from a common ancestral protein that may have co-evolved with the genes whose transcription they direct. A fifth Clostridiumsigma-factor, sigma(Y) of Clostridium acetobutylicum, resembles the TcdR family, but was not functionally interchangeable with members of this family.

  2. In silico mining and PCR-based approaches to transcription factor discovery in non-model plants: gene discovery of the WRKY transcription factors in conifers.

    PubMed

    Liu, Jun-Jun; Xiang, Yu

    2011-01-01

    WRKY transcription factors are key regulators of numerous biological processes in plant growth and development, as well as plant responses to abiotic and biotic stresses. Research on biological functions of plant WRKY genes has focused in the past on model plant species or species with largely characterized transcriptomes. However, a variety of non-model plants, such as forest conifers, are essential as feed, biofuel, and wood or for sustainable ecosystems. Identification of WRKY genes in these non-model plants is equally important for understanding the evolutionary and function-adaptive processes of this transcription factor family. Because of limited genomic information, the rarity of regulatory gene mRNAs in transcriptomes, and the sequence divergence to model organism genes, identification of transcription factors in non-model plants using methods similar to those generally used for model plants is difficult. This chapter describes a gene family discovery strategy for identification of WRKY transcription factors in conifers by a combination of in silico-based prediction and PCR-based experimental approaches. Compared to traditional cDNA library screening or EST sequencing at transcriptome scales, this integrated gene discovery strategy provides fast, simple, reliable, and specific methods to unveil the WRKY gene family at both genome and transcriptome levels in non-model plants.

  3. Isolation and characterization of StERF transcription factor genes from potato (Solanum tuberosum L.).

    PubMed

    Wang, Zemin; Zhang, Ning; Zhou, Xiangyan; Fan, Qiang; Si, Huaijun; Wang, Di

    2015-04-01

    Ethylene response factor (ERF) is a major subfamily of the AP2/ERF family and plays significant roles in the regulation of abiotic- and biotic-stress responses. ERF proteins can interact with the GCC-box cis-element and then initiate a transcriptional cascade activating downstream ethylene response and enhancing plant stress tolerance. In this research, we cloned five StERF genes from potato (Solanum tuberosum L.). The expressional analysis of StERF genes revealed that they showed tissue- or organ-specific expression patterns and the expression levels in leaf, stem, root, flower, and tuber were different. The assays of quantitative real-time polymerase chain reaction (qRT-PCR) and the reverse transcription-PCR (RT-PCR) showed that the expression of five StERF genes was regulated by ethephon, methyl jasmonate (MeJA), salt and drought stress. The result from the yeast one-hybrid experiment showed that five StERFs had trans-activation activity and could specifically bind to the GCC-box cis-elements. The StERFs responded to abiotic factors and hormones suggested that they possibly had diverse roles in stress and hormone regulation of potato.

  4. Histone modifications silence the GATA transcription factor genes in ovarian cancer.

    PubMed

    Caslini, C; Capo-chichi, C D; Roland, I H; Nicolas, E; Yeung, A T; Xu, X-X

    2006-08-31

    Altered expression of GATA factors was found and proposed as the underlying mechanism for dedifferentiation in ovarian carcinogenesis. In particular, GATA6 is lost or excluded from the nucleus in 85% of ovarian tumors and GATA4 expression is absent in majority of ovarian cancer cell lines. Here, we evaluated their DNA and histone epigenetic modifications in five ovarian epithelial and carcinoma cell lines (human 'immortalized' ovarian surface epithelium (HIO)-117, HIO-114, A2780, SKOV3 and ES2). GATA4 and GATA6 gene silencing was found to correlate with hypoacetylation of histones H3 and H4 and loss of histone H3/lysine K4 tri-methylation at their promoters in all lines. Conversely, histone H3/lysine K9 di-methylation and HP1gamma association were not observed, excluding reorganization of GATA genes into heterochromatic structures. The histone deacetylase inhibitor trichostatin A, but not the DNA methylation inhibitor 5'-aza-2'-deoxycytidine, re-established the expression of GATA4 and/or GATA6 in A2780 and HIO-114 cells, correlating with increased histone H3 and H4 acetylation, histone H3 lysine K4 methylation and DNase I sensitivity at the promoters. Therefore, altered histone modification of the promoter loci is one mechanism responsible for the silencing of GATA transcription factors and the subsequent loss of a target gene, the tumor suppressor Disabled-2, in ovarian carcinogenesis.

  5. Analysis of gene expression of secreted factors associated with breast cancer metastases in breast cancer subtypes

    PubMed Central

    Fertig, Elana J.; Lee, Esak; Pandey, Niranjan B.; Popel, Aleksander S.

    2015-01-01

    Breast cancer is a heterogeneous disease, having multiple subtypes with different malignant phenotypes. The triple-negative breast cancer, or basal breast cancer, is highly aggressive, metastatic, and difficult to treat. Previously, we identified that key molecules (IL6, CSF2, CCL5, VEGFA, and VEGFC) secreted by tumor cells and stromal cells in basal breast cancer can promote metastasis. It remains to assess whether these molecules function similarly in other subtypes of breast cancer. Here, we characterize the relative gene expression of the five secreted molecules and their associated receptors (GP130, GMRA, GMRB, CCR5, VEGFR2, NRP1, VEGFR3, NRP2) in the basal, HER2 (human epidermal growth factor receptor 2) positive, luminal A, and luminal B subtypes using high throughput data from tumor samples in The Cancer Genome Atlas (TCGA) and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC). IL6 and CCL5 gene expression are basal breast cancer specific, whereas high gene expression of GP130 was observed in luminal A/B. VEGFA/C and CSF2 mRNA are overexpressed in HER2 positive breast cancer, with VEGFA and CSF2 also overexpressed in basal breast cancer. Further study of the specific protein function of these factors within their associated cancer subtypes may yield personalized biomarkers and treatment modalities. PMID:26173622

  6. Gene expression profiling of M. truncatula transcription factors identifies putative regulators of grain legume seed filling.

    PubMed

    Verdier, Jérôme; Kakar, Klementina; Gallardo, Karine; Le Signor, Christine; Aubert, Grégoire; Schlereth, Armin; Town, Christopher D; Udvardi, Michael K; Thompson, Richard D

    2008-08-01

    Legume seeds represent a major source of proteins for human and livestock diets. The model legume Medicago truncatula is characterized by a process of seed development very similar to that of other legumes, involving the interplay of sets of transcription factors (TFs). Here, we report the first expression profiling of over 700 M. truncatula genes encoding putative TFs throughout seven stages of seed development, obtained using real-time quantitative RT-PCR. A total of 169 TFs were selected which were expressed at late embryogenesis, seed filling or desiccation. The site of expression within the seed was examined for 41 highly expressed transcription factors out of the 169. To identify possible target genes for these TFs, the data were combined with a microarray-derived transcriptome dataset. This study identified 17 TFs preferentially expressed in individual seed tissues and 135 corresponding co-expressed genes, including possible targets. Certain of the TFs co-expressed with storage protein mRNAs correspond to those already known to regulate seed storage protein synthesis in Arabidopsis, whereas the timing of expression of others may be more specifically related to the delayed expression of the legumin-class storage proteins observed in legumes.

  7. Genomic organization of the mouse fibroblast growth factor receptor 3 (Fgfr3) gene

    SciTech Connect

    Perez-Castro, A.V.; Wilson, J.; Altherr, M.R.

    1995-11-20

    The fibroblast growth factor receptor 3 (Fgfr3) protein is a tyrosine kinase receptor involved in the signal transduction of various fibroblast growth factors. Recent studies suggest its important role in normal development. In humans, mutation in Fgfr3 is responsible for growth disorders such as achondroplasia, hypoachondroplasia, and thanatophoric dysplasia. Here, we report the complete genomic organization of the mouse Fgfr3 gene. The murine gene spans approximately 15 kb and consists of 19 exons and 18 introns. One major and one minor transcription initiation site were identified. Position +1 is located 614 nucleotides upstream from the ATG initiation codon. The translation initiation and termination sites are located in exons 2 and 19, respectively. Five Sp1 sites, two AP2 sites, one Zeste site, and one Krox 24 site were observed in the 5{prime}-flanking region. The Fgfr3 promoter appears to be contained within a CpG island and, as is common in genes having multiple Sp1-binding sites, lacks a TATA box. 35 refs., 3 figs., 1 tab.

  8. Cloning and characterization of the gene for mouse macrophage migration inhibitory factor (MIF)

    SciTech Connect

    Mitchell, R.; Bacher, M.; Bernhagen, J.

    1995-04-15

    An emerging body of data indicates that the protein mediator described originally as macrophage migration inhibitory factor (MIF) exerts a central and wide ranging role in host inflammatory responses. MIF is a major constituent of corticotrophic cells within the anterior pituitary gland and is secreted into the circulation in a hormone-like fashion. MIF also exists preformed in monocytes/macrophages and is a pivotal mediator in the host response to endotoxic shock. To gain further insight into the biologic expression of this protein that encompasses components of both the immune and the endocrine systems, we have cloned the mouse MIF gene and identified potential regulatory sequences present within the 5{prime}-proximal promoter region. The gene for mouse MIF is located on chromosome 10, spans approximately 1 kb, and shares a high degree of structural homology with its human counterpart. Of note, the consensus enhancer/promoter motifs identified include both inflammatory/growth factor-related elements and sites associated with the genes for certain peptide hormones. We also report the structures of two MIF pseudogenes that account for early observations suggesting that mouse MIF is encoded by a highly homologous multigene family. 38 refs., 5 figs., 1 tab.

  9. The effect of hyperammonemia on myostatin and myogenic regulatory factor gene expression in broiler embryos

    PubMed Central

    Stern, R.A.; Ashwell, C.M.; Dasarathy, S.; Mozdziak, P.E.

    2015-01-01

    Myogenesis is facilitated by four myogenic regulatory factors and is significantly inhibited by myostatin. The objective of the current study was to examine embryonic gene regulation of myostatin/myogenic regulatory factors, and subsequent manipulations of protein synthesis, in broiler embryos under induced hyperammonemia. Broiler eggs were injected with ammonium acetate solution four times over 48 hours beginning on either embryonic day (ED) 15 or 17. Serum ammonia concentration was significantly higher (P < 0.05) in ammonium acetate injected embryos for both ED17 and ED19 collected samples when compared to sham-injected controls. Expression of mRNA, extracted from pectoralis major of experimental and control embryos, was measured using real-time quantitative PCR for myostatin, myogenic regulatory factors myogenic factor 5, myogenic determination factor 1, myogenin, myogenic regulatory factor 4, and paired box 7. A significantly lower (P < 0.01) myostatin expression was accompanied by a higher serum ammonia concentration in both ED17 and ED19 collected samples. Myogenic factor 5 expression was higher (P < 0.05) in ED17 collected samples administered ammonium acetate. In both ED17 and ED19 collected samples, myogenic regulatory factor 4 was lower (P ≤ 0.05) in ammonium acetate injected embryos. No significant difference was seen in myogenic determination factor 1, myogenin, or paired box 7 expression between treatment groups for either age of sample collection. Additionally, there was no significant difference in BrdU staining of histological samples taken from treated and control embryos. Myostatin protein levels were evaluated by Western blot analysis, and also showed lower myostatin expression (P < 0.05). Overall, it appears possible to inhibit myostatin expression through hyperammonemia, which is expected to have a positive effect on embryonic myogenesis and postnatal muscle growth. PMID:25689990

  10. Two distinct factors interact with the promoter regions of several liver-specific genes.

    PubMed Central

    Hardon, E M; Frain, M; Paonessa, G; Cortese, R

    1988-01-01

    A segment of the human alpha 1-antitrypsin (alpha 1AT) 5'-flanking region comprising nucleotides -137 to -37 from the start of transcription is sufficient to drive liver-specific transcription from the homologous alpha 1AT promoter and from the heterologous SV40 promoter. In this paper we characterize two proteins, LF-A1 and LF-B1, whose ability to bind wild-type and mutant alpha 1AT promoter segments correlates with the ability of these segments to activate transcription in vivo. DNase I protection and methylation interference analysis reveals that LF-A1 recognizes sequences present in the regulatory region of the human alpha 1-antitrypsin, apolipoprotein A1 and haptoglobin-related genes. These sequences share a common 5' TGG/A A/C CC 3' motif. LF-B1 binds to the palindrome 5' TGGTTAAT/ATTCACCA 3' which is present in the human alpha 1-antitrypsin gene between positions -78 and -62 from the start of transcription. LF-B1 also recognizes a related sequence present in the human albumin gene between -66 and -50. These results suggest that LF-A1 and LF-B1 are common positive trans-acting factors which are required for the expression of several genes in the hepatocyte. Images PMID:2844524

  11. Class I BASIC PENTACYSTEINE factors regulate HOMEOBOX genes involved in meristem size maintenance.

    PubMed

    Simonini, Sara; Kater, Martin M

    2014-04-01

    The BASIC PENTACYSTEINE (BCP) family is a poorly characterized plant transcription factor family of GAGA BINDING PROTEINS. In Arabidopsis, there are seven members (BPC1-7) that are broadly expressed, and they can potentially bind more than 3000 Arabidopsis GAGA-repeat-containing genes. To date, BPCs are known to be direct regulators of the INNER NO OUTER (INO), SEEDSTICK (STK), and LEAFY COTYLEDON 2 (LEC2) genes. Because of the high functional redundancy, neither single knockout nor double bpc mutant combinations cause aberrant phenotypes. The bpc1-2 bpc2 bpc3 triple mutant shows several pleiotropic developmental defects, including enlargement of the inflorescence meristem and flowers with supernumerary floral organs. Here, we demonstrated through expression analysis and chromatin immunoprecipitation assays that this phenotype is probably due to deregulation of the expression of the SHOOTMERISTEMLESS (STM) and BREVIPEDICELLUS/KNAT1 (BP) genes, which are both direct targets of BPCs. Moreover, we assigned a role to BPCs in the fine regulation of the cytokinin content in the meristem, as both ISOPENTENYLTRANSFERASE 7 (IPT7) and ARABIDOPSIS RESPONSE REGULATOR 7 (ARR7) genes were shown to be overexpressed in the bpc1-2 bpc2 bpc3 triple mutant.

  12. Functional significance of Wnt inhibitory factor-1 gene in kidney cancer.

    PubMed

    Kawakami, Kazumori; Hirata, Hiroshi; Yamamura, Soichiro; Kikuno, Nobuyuki; Saini, Sharanjot; Majid, Shahana; Tanaka, Yuichiro; Kawamoto, Ken; Enokida, Hideki; Nakagawa, Masayuki; Dahiya, Rajvir

    2009-11-15

    Wnt inhibitory factor-1 (WIF-1) has been identified as one of the secreted antagonists that bind Wnt protein. WIF-1 has been described as a tumor suppressor in various types of cancer. However, the molecular function of WIF-1 gene has never been examined in human renal cell carcinoma (RCC). Therefore, we hypothesized that WIF-1 functions as a tumor suppressor gene and overexpression of this gene may induce apoptosis and inhibit tumor growth in RCC cells. Immunohistochemistry and real-time reverse transcription-PCR revealed that WIF-1 was significantly downregulated in RCC samples and RCC cell lines, respectively. Bisulfite sequencing of the WIF-1 promoter region in RCC cell lines showed it to be densely methylated, whereas there was no methylation of WIF-1 promoter in normal kidney. Significant inhibition of cell growth and colony formation in WIF-1-transfected cells compared with controls were observed. WIF-1 transfection significantly induced apoptosis and suppressed in vivo tumor growth. Also, Wnt signaling activity and beta-catenin expression were reduced by WIF-1 transfection. In conclusion, this is the first report documenting that the WIF-1 is downregulated by promoter methylation and functions as a tumor suppressor gene by inducing apoptosis in RCC cells.

  13. Uncovering early response of gene regulatory networks in ES cells by systematic induction of transcription factors

    PubMed Central

    Nishiyama, Akira; Xin, Li; Sharov, Alexei A.; Thomas, Marshall; Mowrer, Gregory; Meyers, Emily; Piao, Yulan; Mehta, Samir; Yee, Sarah; Nakatake, Yuhki; Stagg, Carole; Sharova, Lioudmila; Correa-Cerro, Lina S.; Bassey, Uwem; Hoang, Hien; Kim, Eugene; Tapnio, Richard; Qian, Yong; Dudekula, Dawood; Zalzman, Michal; Li, Manxiang; Falco, Geppino; Yang, Hsih-Te; Lee, Sung-Lim; Monti, Manuela; Stanghellini, Ilaria; Islam, Md. Nurul; Nagaraja, Ramaiah; Goldberg, Ilya; Wang, Weidong; Longo, Dan L.; Schlessinger, David; Ko, Minoru S. H.

    2009-01-01

    SUMMARY To examine transcription factor (TF) network(s), we created mouse ES cell lines, in each of which one of 50 TFs tagged with a FLAG moiety is inserted into a ubiquitously controllable tetracycline-repressible locus. Of the 50 TFs, Cdx2 provoked the most extensive transcriptome perturbation in ES cells, followed by Esx1, Sox9, Tcf3, Klf4, and Gata3. ChIP-Seq revealed that CDX2 binds to promoters of up-regulated target genes. By contrast, genes down-regulated by CDX2 did not show CDX2 binding, but were enriched with binding sites for POU5F1, SOX2, and NANOG. Genes with binding sites for these core TFs were also down-regulated by the induction of at least 15 other TFs, suggesting a common initial step for ES cell differentiation mediated by interference with the binding of core TFs to their target genes. These ES cell lines provide a fundamental resource to study biological networks in ES cells and mice. PMID:19796622

  14. Regulation of a transcription factor network by Cdk1 coordinates late cell cycle gene expression.

    PubMed

    Landry, Benjamin D; Mapa, Claudine E; Arsenault, Heather E; Poti, Kristin E; Benanti, Jennifer A

    2014-05-02

    To maintain genome stability, regulators of chromosome segregation must be expressed in coordination with mitotic events. Expression of these late cell cycle genes is regulated by cyclin-dependent kinase (Cdk1), which phosphorylates a network of conserved transcription factors (TFs). However, the effects of Cdk1 phosphorylation on many key TFs are not known. We find that elimination of Cdk1-mediated phosphorylation of four S-phase TFs decreases expression of many late cell cycle genes, delays mitotic progression, and reduces fitness in budding yeast. Blocking phosphorylation impairs degradation of all four TFs. Consequently, phosphorylation-deficient mutants of the repressors Yox1 and Yhp1 exhibit increased promoter occupancy and decreased expression of their target genes. Interestingly, although phosphorylation of the transcriptional activator Hcm1 on its N-terminus promotes its degradation, phosphorylation on its C-terminus is required for its activity, indicating that Cdk1 both activates and inhibits a single TF. We conclude that Cdk1 promotes gene expression by both activating transcriptional activators and inactivating transcriptional repressors. Furthermore, our data suggest that coordinated regulation of the TF network by Cdk1 is necessary for faithful cell division.

  15. Structure of the rat platelet factor 4 gene: a marker for megakaryocyte differentiation.

    PubMed Central

    Doi, T; Greenberg, S M; Rosenberg, R D

    1987-01-01

    A rat platelet factor 4 (PF4) cDNA has been isolated by immunoscreening a g lambda 11 rat megakaryocyte cDNA expression library. Sequence analysis of the rat PF4 cDNA revealed that this megakaryocyte protein is composed of a leader sequence of 29 amino acid residues and a mature protein sequence of 76 amino acid residues. The structure of rat PF4 derived from its cDNA shows a marked homology with the amino acid sequence of human PF4 obtained by classical protein chemistry techniques. This observation is particularly striking with regard to the carboxy-terminal region of rat and human PF4, where 28 of the last 31 C-terminal residues are identical. The rat PF4 gene was obtained from a rat genomic library by using rat PF4 cDNA as a hybridization probe. Sequence analysis showed that the gene is constructed of three exons and two short introns. The transcriptional start site is located 73 base pairs upstream of the translational start codon as judged by S1 nuclease mapping and primer extension. The 5' noncoding region of the gene also exhibited a sequence homologous to the TATA box at -31, as well as a series of direct and inverted repeat sequences and a cluster of 26 T residues at -155 to -218. This latter domain may be involved in regulating PF4 gene expression during megakaryocytopoiesis. Images PMID:3821732

  16. Hereditary juvenile cobalamin deficiency caused by mutations in the intrinsic factor gene.

    PubMed

    Tanner, Stephan M; Li, Zhongyuan; Perko, James D; Oner, Cihan; Cetin, Mualla; Altay, Cigdem; Yurtsever, Zekiye; David, Karen L; Faivre, Laurence; Ismail, Essam A; Gräsbeck, Ralph; de la Chapelle, Albert

    2005-03-15

    Hereditary juvenile megaloblastic anemia due to vitamin B12 (cobalamin) deficiency is caused by intestinal malabsorption of cobalamin. In Imerslund-Grasbeck syndrome (IGS), cobalamin absorption is completely abolished and not corrected by the administration of intrinsic factor (IF); if untreated, the disease is fatal. Biallelic mutations either in the cubilin (CUBN) or amnionless (AMN) gene cause IGS. In a series of families clinically diagnosed with likely IGS, at least six displayed no evidence of mutations in CUBN or AMN. A genome-wide search for linkage followed by mutational analysis of candidate genes was performed in five of these families. A region in chromosome 11 showed evidence of linkage in four families. The gastric IF (GIF) gene located in this region harbored homozygous nonsense and missense mutations in these four families and in three additional families. The disease in these cases therefore should be classified as hereditary IF deficiency. Clinically, these patients resembled those with typical IGS; radiocobalamin absorption tests had been inconclusive regarding the nature of the defect. In the diagnosis of juvenile cobalamin deficiency, mutational analysis of the CUBN, AMN, and GIF genes provides a molecular characterization of the underlying defect and may be the diagnostic method of choice.

  17. Arabidopsis Ensemble Reverse-Engineered Gene Regulatory Network Discloses Interconnected Transcription Factors in Oxidative Stress[W

    PubMed Central

    Vermeirssen, Vanessa; De Clercq, Inge; Van Parys, Thomas; Van Breusegem, Frank; Van de Peer, Yves

    2014-01-01

    The abiotic stress response in plants is complex and tightly controlled by gene regulation. We present an abiotic stress gene regulatory network of 200,014 interactions for 11,938 target genes by integrating four complementary reverse-engineering solutions through average rank aggregation on an Arabidopsis thaliana microarray expression compendium. This ensemble performed the most robustly in benchmarking and greatly expands upon the availability of interactions currently reported. Besides recovering 1182 known regulatory interactions, cis-regulatory motifs and coherent functionalities of target genes corresponded with the predicted transcription factors. We provide a valuable resource of 572 abiotic stress modules of coregulated genes with functional and regulatory information, from which we deduced functional relationships for 1966 uncharacterized genes and many regulators. Using gain- and loss-of-function mutants of seven transcription factors grown under control and salt stress conditions, we experimentally validated 141 out of 271 predictions (52% precision) for 102 selected genes and mapped 148 additional transcription factor-gene regulatory interactions (49% recall). We identified an intricate core oxidative stress regulatory network where NAC13, NAC053, ERF6, WRKY6, and NAC032 transcription factors interconnect and function in detoxification. Our work shows that ensemble reverse-engineering can generate robust biological hypotheses of gene regulation in a multicellular eukaryote that can be tested by medium-throughput experimental validation. PMID:25549671

  18. The Composition and Spatial Patterns of Bacterial Virulence Factors and Antibiotic Resistance Genes in 19 Wastewater Treatment Plants

    PubMed Central

    Zhang, Bing; Xia, Yu; Wen, Xianghua; Wang, Xiaohui; Yang, Yunfeng; Zhou, Jizhong; Zhang, Yu

    2016-01-01

    Bacterial pathogenicity and antibiotic resistance are of concern for environmental safety and public health. Accumulating evidence suggests that wastewater treatment plants (WWTPs) are as an important sink and source of pathogens and antibiotic resistance genes (ARGs). Virulence genes (encoding virulence factors) are good indicators for bacterial pathogenic potentials. To achieve a comprehensive understanding of bacterial pathogenic potentials and antibiotic resistance in WWTPs, bacterial virulence genes and ARGs in 19 WWTPs covering a majority of latitudinal zones of China were surveyed by using GeoChip 4.2. A total of 1610 genes covering 13 virulence factors and 1903 genes belonging to 11 ARG families were detected respectively. The bacterial virulence genes exhibited significant spatial distribution patterns of a latitudinal biodiversity gradient and a distance-decay relationship across China. Moreover, virulence genes tended to coexist with ARGs as shown by their strongly positive associations. In addition, key environmental factors shaping the overall virulence gene structure were identified. This study profiles the occurrence, composition and distribution of virulence genes and ARGs in current WWTPs in China, and uncovers spatial patterns and important environmental variables shaping their structure, which may provide the basis for further studies of bacterial virulence factors and antibiotic resistance in WWTPs. PMID:27907117

  19. The Composition and Spatial Patterns of Bacterial Virulence Factors and Antibiotic Resistance Genes in 19 Wastewater Treatment Plants.

    PubMed

    Zhang, Bing; Xia, Yu; Wen, Xianghua; Wang, Xiaohui; Yang, Yunfeng; Zhou, Jizhong; Zhang, Yu

    2016-01-01

    Bacterial pathogenicity and antibiotic resistance are of concern for environmental safety and public health. Accumulating evidence suggests that wastewater treatment plants (WWTPs) are as an important sink and source of pathogens and antibiotic resistance genes (ARGs). Virulence genes (encoding virulence factors) are good indicators for bacterial pathogenic potentials. To achieve a comprehensive understanding of bacterial pathogenic potentials and antibiotic resistance in WWTPs, bacterial virulence genes and ARGs in 19 WWTPs covering a majority of latitudinal zones of China were surveyed by using GeoChip 4.2. A total of 1610 genes covering 13 virulence factors and 1903 genes belonging to 11 ARG families were detected respectively. The bacterial virulence genes exhibited significant spatial distribution patterns of a latitudinal biodiversity gradient and a distance-decay relationship across China. Moreover, virulence genes tended to coexist with ARGs as shown by their strongly positive associations. In addition, key environmental factors shaping the overall virulence gene structure were identified. This study profiles the occurrence, composition and distribution of virulence genes and ARGs in current WWTPs in China, and uncovers spatial patterns and important environmental variables shaping their structure, which may provide the basis for further studies of bacterial virulence factors and antibiotic resistance in WWTPs.

  20. Genetic Variation of Goat Interferon Regulatory Factor 3 Gene and Its Implication in Goat Evolution

    PubMed Central

    Shu, Liping; Zhang, Yesheng; Wang, Yangzi; Sanni, Timothy M.; Imumorin, Ikhide G.; Peters, Sunday O.; Zhang, Jiajin; Dong, Yang; Wang, Wen

    2016-01-01

    The immune systems are fundamentally vital for evolution and survival of species; as such, selection patterns in innate immune loci are of special interest in molecular evolutionary research. The interferon regulatory factor (IRF) gene family control many different aspects of the innate and adaptive immune responses in vertebrates. Among these, IRF3 is known to take active part in very many biological processes. We assembled and evaluated 1356 base pairs of the IRF3 gene coding region in domesticated goats from Africa (Nigeria, Ethiopia and South Africa) and Asia (Iran and China) and the wild goat (Capra aegagrus). Five segregating sites with θ value of 0.0009 for this gene demonstrated a low diversity across the goats’ populations. Fu and Li tests were significantly positive but Tajima’s D test was significantly negative, suggesting its deviation from neutrality. Neighbor joining tree of IRF3 gene in domesticated goats, wild goat and sheep showed that all domesticated goats have a closer relationship than with the wild goat and sheep. Maximum likelihood tree of the gene showed that different domesticated goats share a common ancestor and suggest single origin. Four unique haplotypes were observed across all the sequences, of which, one was particularly common to African goats (MOCH-K14-0425, Poitou and WAD). In assessing the evolution mode of the gene, we found that the codon model dN/dS ratio for all goats was greater than one. Phylogenetic Analysis by Maximum Likelihood (PAML) gave a ω0 (dN/dS) value of 0.067 with LnL value of -6900.3 for the first Model (M1) while ω2 = 1.667 in model M2 with LnL value of -6900.3 with positive selection inferred in 3 codon sites. Mechanistic empirical combination (MEC) model for evaluating adaptive selection pressure on particular codons also confirmed adaptive selection pressure in three codons (207, 358 and 408) in IRF3 gene. Positive diversifying selection inferred with recent evolutionary changes in domesticated goat

  1. Gene-specific factors determine mitotic expression and bookmarking via alternate regulatory elements

    PubMed Central

    Arampatzi, Panagiota; Gialitakis, Manolis; Makatounakis, Takis; Papamatheakis, Joseph

    2013-01-01

    Transcriptional silencing during mitosis is caused by inactivation of critical transcriptional regulators and/or chromatin condensation. Inheritance of gene expression patterns through cell division involves various bookmarking mechanisms. In this report, we have examined the mitotic and post-mitotic expression of the DRA major histocompatibility class II (MHCII) gene in different cell types. During mitosis the constitutively MHCII-expressing B lymphoblastoid cells showed sustained occupancy of the proximal promoter by the cognate enhanceosome and general transcription factors. In contrast, although mitotic epithelial cells were depleted of these proteins irrespectively of their MHCII transcriptional activity, a distal enhancer selectively recruited the PP2A phosphatase via NFY and maintained chromatin accessibility. Based on our data, we propose a novel chromatin anti-condensation role for this element in mitotic bookmarking and timing of post-mitotic transcriptional reactivation. PMID:23303784

  2. The multiple lives of NMD factors: balancing roles in gene and genome regulation

    PubMed Central

    Isken, Olaf; Maquat, Lynne E.

    2013-01-01

    Nonsense-mediated mRNA decay (NMD) largely functions to ensure the quality of gene expression. However, NMD is also crucial to regulating appropriate expression levels for certain genes and for maintaining genome stability. Furthermore, just as NMD serves cells in multiple ways, so do its constituent proteins. Recent studies have clarified that UPF and SMG proteins, which were originally discovered to function in NMD, also have roles in other pathways, including specialized pathways of mRNA decay, DNA synthesis and cell-cycle progression, and the maintenance of telomeres. These findings suggest a delicate balance of metabolic events — some not obviously related to NMD — that can be influenced by the cellular abundance, location and activity of NMD factors and their binding partners. PMID:18679436

  3. Validation of candidate genes associated with cardiovascular risk factors in psychiatric patients

    PubMed Central

    Windemuth, Andreas; de Leon, Jose; Goethe, John W.; Schwartz, Harold I.; Woolley, Stephen; Susce, Margaret; Kocherla, Mohan; Bogaard, Kali; Holford, Theodore R.; Seip, Richard L.; Ruaño, Gualberto

    2016-01-01

    The purpose of this study was to identify genetic variants predictive of cardiovascular risk factors in a psychiatric population treated with second generation antipsychotics (SGA). 924 patients undergoing treatment for severe mental illness at four US hospitals were genotyped at 1.2 million single nucleotide polymorphisms. Patients were assessed for fasting serum lipid (low density lipoprotein cholesterol [LDLc], high density lipoprotein cholesterol [HDLc], and triglycerides) and obesity phenotypes (body mass index, BMI). Thirteen candidate genes from previous studies of the same phenotypes in non-psychiatric populations were tested for association. We confirmed 8 of the 13 candidate genes at the 95% confidence level. An increased genetic effect size was observed for triglycerides in the psychiatric population compared to that in the cardiovascular population. PMID:21851846

  4. Validation of candidate genes associated with cardiovascular risk factors in psychiatric patients.

    PubMed

    Windemuth, Andreas; de Leon, Jose; Goethe, John W; Schwartz, Harold I; Woolley, Stephen; Susce, Margaret; Kocherla, Mohan; Bogaard, Kali; Holford, Theodore R; Seip, Richard L; Ruaño, Gualberto

    2012-03-30

    The purpose of this study was to identify genetic variants predictive of cardiovascular risk factors in a psychiatric population treated with second generation antipsychotics (SGA). 924 patients undergoing treatment for severe mental illness at four US hospitals were genotyped at 1.2 million single nucleotide polymorphisms. Patients were assessed for fasting serum lipid (low density lipoprotein cholesterol [LDLc], high density lipoprotein cholesterol [HDLc], and triglycerides) and obesity phenotypes (body mass index, BMI). Thirteen candidate genes from previous studies of the same phenotypes in non-psychiatric populations were tested for association. We confirmed 8 of the 13 candidate genes at the 95% confidence level. An increased genetic effect size was observed for triglycerides in the psychiatric population compared to that in the cardiovascular population.

  5. Characterization of a splicing mutation in the factor VIII gene at the RNA level.

    PubMed

    David, D; Tavares, A; Lavinha, J

    1995-01-01

    Haemophilia A is an X-linked bleeding disorder caused by mutations in the coagulation factor VIII (FVIII) gene. The identification and characterization of naturally occurring disease-producing mutations allows the recognition of new mechanisms of pathogenesis in haemophilia A. Analysis of the illegitimately transcribed FVIII mRNA in a severely affected patient has revealed that the A-->G transition at position -2 of the acceptor splice site of intron 4 results in the skipping of exon 5 in 90% of the processed pre-mRNA. Another minor mRNA species arising from the skipping of exons 4 and 5 has also been observed. The skipping of exon 5 predicts the removal of the corresponding 13 amino acids from the A1 domain of FVIII. A novel missense mutation, C329S, in exon 8 of FVIII gene has been identified in another patient.

  6. Identification of a minimal promoter element of the mouse epidermal growth factor gene.

    PubMed Central

    Pascall, J C; Brown, K D

    1997-01-01

    We have previously generated a transgenic mouse line (EGF/Tag) in which simian virus 40 (SV40) T-antigen expression is directed by the mouse epidermal growth factor (EGF) gene promoter. In these mice, cellular hyperproliferation is observed in the submaxillary gland associated with SV40 T-antigen expression. In addition, SV40 T-antigen-expressing tumours of prostatic origin are seen. We have now derived immortalized cell lines from these tissues and have used the cells to perform a functional analysis of the EGF gene promoter. Cells were transfected with EGF promoter/reporter constructs, and an element located between 51 and 35 bases upstream of the EGF mRNA start site required for basal activity of the promoter was identified. Electrophoretic mobility-shift analysis suggests that three proteins bind to this region, one of which is either Sp1 or a closely related protein. PMID:9210411

  7. Regulation of Translation Factor EEF1D Gene Function by Alternative Splicing

    PubMed Central

    Kaitsuka, Taku; Matsushita, Masayuki

    2015-01-01

    Alternative splicing is an exquisite mechanism that allows one coding gene to have multiple functions. The alternative splicing machinery is necessary for proper development, differentiation and stress responses in a variety of organisms, and disruption of this machinery is often implicated in human diseases. Previously, we discovered a long form of eukaryotic elongation factor 1Bδ (eEF1Bδ; this long-form eEF1Bδ results from alternative splicing of EEF1D transcripts and regulates the cellular stress response by transcriptional activation, not translational enhancement, of heat-shock responsive genes. In this review, we discuss the molecular function of EEF1D alternative splicing products and the estimated implication of human diseases. PMID:25686034

  8. The multiple sulfatase deficiency gene encodes an essential and limiting factor for the activity of sulfatases.

    PubMed

    Cosma, Maria Pia; Pepe, Stefano; Annunziata, Ida; Newbold, Robert F; Grompe, Markus; Parenti, Giancarlo; Ballabio, Andrea

    2003-05-16

    In multiple sulfatase deficiency (MSD), a human inherited disorder, the activities of all sulfatases are impaired due to a defect in posttranslational modification. Here we report the identification, by functional complementation using microcell-mediated chromosome transfer, of a gene that is mutated in MSD and is able to rescue the enzymatic deficiency in patients' cell lines. Functional conservation of this gene was observed among distantly related species, suggesting a critical biological role. Coexpression of SUMF1 with sulfatases results in a strikingly synergistic increase of enzymatic activity, indicating that SUMF1 is both an essential and a limiting factor for sulfatases. These data have profound implications on the feasibility of enzyme replacement therapy for eight distinct inborn errors of metabolism.

  9. Genomewide analysis of Drosophila GAGA factor target genes reveals context-dependent DNA binding

    PubMed Central

    van Steensel, Bas; Delrow, Jeffrey; Bussemaker, Harmen J.

    2003-01-01

    The association of sequence-specific DNA-binding factors with their cognate target sequences in vivo depends on the local molecular context, yet this context is poorly understood. To address this issue, we have performed genomewide mapping of in vivo target genes of Drosophila GAGA factor (GAF). The resulting list of ≈250 target genes indicates that GAF regulates many cellular pathways. We applied unbiased motif-based regression analysis to identify the sequence context that determines GAF binding. Our results confirm that GAF selectively associates with (GA)n repeat elements in vivo. GAF binding occurs in upstream regulatory regions, but less in downstream regions. Surprisingly, GAF binds abundantly to introns but is virtually absent from exons, even though the density of (GA)n is roughly the same. Intron binding occurs equally frequently in last introns compared with first introns, suggesting that GAF may not only regulate transcription initiation, but possibly also elongation. We provide evidence for cooperative binding of GAF to closely spaced (GA)n elements and explain the lack of GAF binding to exons by the absence of such closely spaced GA repeats. Our approach for revealing determinants of context-dependent DNA binding will be applicable to many other transcription factors. PMID:12601174

  10. Extracting transcription factor binding sites from unaligned gene sequences with statistical models

    PubMed Central

    Lu, Chung-Chin; Yuan, Wei-Hao; Chen, Te-Ming

    2008-01-01

    Background Transcription factor binding sites (TFBSs) are crucial in the regulation of gene transcription. Recently, chromatin immunoprecipitation followed by cDNA microarray hybridization (ChIP-chip array) has been used to identify potential regulatory sequences, but the procedure can only map the probable protein-DNA interaction loci within 1–2 kb resolution. To find out the exact binding motifs, it is necessary to build a computational method to examine the ChIP-chip array binding sequences and search for possible motifs representing the transcription factor binding sites. Results We developed a program to find out accurate motif sites from a set of unaligned DNA sequences in the yeast genome. Compared with MDscan, the prediction results suggest that, overall, our algorithm outperforms MDscan since the predicted motifs are more consistent with previously known specificities reported in the literature and have better prediction ranks. Our program also outperforms the constraint-less Cosmo program, especially in the elimination of false positives. Conclusion In this study, an improved sampling algorithm is proposed to incorporate the binomial probability model to build significant initial candidate motif sets. By investigating the statistical dependence between base positions in TFBSs, the method of dependency graphs and their expanded Bayesian networks is combined. The results show that our program satisfactorily extract transcription factor binding sites from unaligned gene sequences. PMID:19091030

  11. Foxp transcription factors suppress a non-pulmonary gene expression program to permit proper lung development.

    PubMed

    Li, Shanru; Morley, Michael; Lu, MinMin; Zhou, Su; Stewart, Kathleen; French, Catherine A; Tucker, Haley O; Fisher, Simon E; Morrisey, Edward E

    2016-08-15

    The inhibitory mechanisms that prevent gene expression programs from one tissue to be expressed in another are poorly understood. Foxp1/2/4 are forkhead transcription factors that repress gene expression and are individually important for endoderm development. We show that combined loss of all three Foxp1/2/4 family members in the developing anterior foregut endoderm leads to a loss of lung endoderm lineage commitment and subsequent development. Foxp1/2/4 deficient lungs express high levels of transcriptional regulators not normally expressed in the developing lung, including Pax2, Pax8, Pax9 and the Hoxa9-13 cluster. Ectopic expression of these transcriptional regulators is accompanied by decreased expression of lung restricted transcription factors including Nkx2-1, Sox2, and Sox9. Foxp1 binds to conserved forkhead DNA binding sites within the Hoxa9-13 cluster, indicating a direct repression mechanism. Thus, Foxp1/2/4 are essential for promoting lung endoderm development by repressing expression of non-pulmonary transcription factors.

  12. Cytokinin Response Factor 6 Represses Cytokinin-Associated Genes during Oxidative Stress1[OPEN

    PubMed Central

    Howton, Timothy C.; Hallmark, H. Tucker; Keshishian, Erika A.; Parish, Alyssa M.; Benkova, Eva; Mukhtar, M. Shahid

    2016-01-01

    Cytokinin is a phytohormone that is well known for its roles in numerous plant growth and developmental processes, yet it has also been linked to abiotic stress response in a less defined manner. Arabidopsis (Arabidopsis thaliana) Cytokinin Response Factor 6 (CRF6) is a cytokinin-responsive AP2/ERF-family transcription factor that, through the cytokinin signaling pathway, plays a key role in the inhibition of dark-induced senescence. CRF6 expression is also induced by oxidative stress, and here we show a novel function for CRF6 in relation to oxidative stress and identify downstream transcriptional targets of CRF6 that are repressed in response to oxidative stress. Analysis of transcriptomic changes in wild-type and crf6 mutant plants treated with H2O2 identified CRF6-dependent differentially expressed transcripts, many of which were repressed rather than induced. Moreover, many repressed genes also show decreased expression in 35S:CRF6 overexpressing plants. Together, these findings suggest that CRF6 functions largely as a transcriptional repressor. Interestingly, among the H2O2 repressed CRF6-dependent transcripts was a set of five genes associated with cytokinin processes: (signaling) ARR6, ARR9, ARR11, (biosynthesis) LOG7, and (transport) ABCG14. We have examined mutants of these cytokinin-associated target genes to reveal novel connections to oxidative stress. Further examination of CRF6-DNA interactions indicated that CRF6 may regulate its targets both directly and indirectly. Together, this shows that CRF6 functions during oxidative stress as a negative regulator to control this cytokinin-associated module of CRF6-dependent genes and establishes a novel connection between cytokinin and oxidative stress response. PMID:27550996

  13. Targeted disruption of the CP2 gene, a member of the NTF family of transcription factors.

    PubMed

    Ramamurthy, L; Barbour, V; Tuckfield, A; Clouston, D R; Topham, D; Cunningham, J M; Jane, S M

    2001-03-16

    The NTF-like family of transcription factors have been implicated in developmental regulation in organisms as diverse as Drosophila and man. The two mammalian members of this family, CP2 (LBP-1c/LSF) and LBP-1a (NF2d9), are highly related proteins sharing an overall amino acid identity of 72%. CP2, the best characterized of these factors, is a ubiquitously expressed 66-kDa protein that binds the regulatory regions of many diverse genes. Consequently, a role for CP2 has been proposed in globin gene expression, T-cell responses to mitogenic stimulation, and several other cellular processes. To elucidate the in vivo role of CP2, we have generated mice nullizygous for the CP2 allele. These animals were born in a normal Mendelian distribution and displayed no defects in growth, behavior, fertility, or development. Specifically, no perturbation of hematopoietic differentiation, globin gene expression, or immunological responses to T- and B-cell mitogenic stimulation was observed. RNA and protein analysis confirmed that the nullizygous mice expressed no full-length or truncated version of CP2. Electrophoretic mobility shift assays with nuclear extracts from multiple tissues demonstrated loss of CP2 DNA binding activity in the -/- lines. However, a slower migrating complex that was ablated with antiserum to NF2d9, the murine homologue of LBP-1a, was observed with these extracts. Furthermore, we demonstrate that recombinant LBP-1a can bind to known CP2 consensus sites and form protein complexes with previously defined heteromeric partners of CP2. These results suggest that LBP-1a/NF2d9 may compensate for loss of CP2 expression in vivo and that further analysis of the role of the NTF family of proteins requires the targeting of the NF2d9 gene.

  14. Simultaneous Non-Negative Matrix Factorization for Multiple Large Scale Gene Expression Datasets in Toxicology

    PubMed Central

    Lee, Clare M.; Mudaliar, Manikhandan A. V.; Haggart, D. R.; Wolf, C. Roland; Miele, Gino; Vass, J. Keith; Higham, Desmond J.; Crowther, Daniel

    2012-01-01

    Non-negative matrix factorization is a useful tool for reducing the dimension of large datasets. This work considers simultaneous non-negative matrix factorization of multiple sources of data. In particular, we perform the first study that involves more than two datasets. We discuss the algorithmic issues required to convert the approach into a practical computational tool and apply the technique to new gene expression data quantifying the molecular changes in four tissue types due to different dosages of an experimental panPPAR agonist in mouse. This study is of interest in toxicology because, whilst PPARs form potential therapeutic targets for diabetes, it is known that they can induce serious side-effects. Our results show that the practical simultaneous non-negative matrix factorization developed here can add value to the data analysis. In particular, we find that factorizing the data as a single object allows us to distinguish between the four tissue types, but does not correctly reproduce the known dosage level groups. Applying our new approach, which treats the four tissue types as providing distinct, but related, datasets, we find that the dosage level groups are respected. The new algorithm then provides separate gene list orderings that can be studied for each tissue type, and compared with the ordering arising from the single factorization. We find that many of our conclusions can be corroborated with known biological behaviour, and others offer new insights into the toxicological effects. Overall, the algorithm shows promise for early detection of toxicity in the drug discovery process. PMID:23272042

  15. Evaluation of common genetic variants in 82 candidate genes as risk factors for neural tube defects

    PubMed Central

    2012-01-01

    Background Neural tube defects (NTDs) are common birth defects (~1 in 1000 pregnancies in the US and Europe) that have complex origins, including environmental and genetic factors. A low level of maternal folate is one well-established risk factor, with maternal periconceptional folic acid supplementation reducing the occurrence of NTD pregnancies by 50-70%. Gene variants in the folate metabolic pathway (e.g., MTHFR rs1801133 (677 C > T) and MTHFD1 rs2236225 (R653Q)) have been found to increase NTD risk. We hypothesized that variants in additional folate/B12 pathway genes contribute to NTD risk. Methods A tagSNP approach was used to screen common variation in 82 candidate genes selected from the folate/B12 pathway and NTD mouse models. We initially genotyped polymorphisms in 320 Irish triads (NTD cases and their parents), including 301 cases and 341 Irish controls to perform case–control and family based association tests. Significantly associated polymorphisms were genotyped in a secondary set of 250 families that included 229 cases and 658 controls. The combined results for 1441 SNPs were used in a joint analysis to test for case and maternal effects. Results Nearly 70 SNPs in 30 genes were found to be associated with NTDs at the p < 0.01 level. The ten strongest association signals (p-value range: 0.0003–0.0023) were found in nine genes (MFTC, CDKN2A, ADA, PEMT, CUBN, GART, DNMT3A, MTHFD1 and T (Brachyury)) and included the known NTD risk factor MTHFD1 R653Q (rs2236225). The single strongest signal was observed in a new candidate, MFTC rs17803441 (OR = 1.61 [1.23-2.08], p = 0.0003 for the minor allele). Though nominally significant, these associations did not remain significant after correction for multiple hypothesis testing. Conclusions To our knowledge, with respect to sample size and scope of evaluation of candidate polymorphisms, this is the largest NTD genetic association study reported to date. The scale of the study and the

  16. Association between CYP1B1 Gene Polymorphisms and Risk Factors and Susceptibility to Laryngeal Cancer

    PubMed Central

    Yu, Peng-Ju; Chen, Wei-Guan; Feng, Quan-Lin; Chen, Wei; Jiang, Man-Jie; Li, Ze-Qing

    2015-01-01

    Background The aim of this study was to investigate the association between polymorphism of the cytochrome P450 1B1 (CYP1B1) gene, a metabolic enzyme gene, and the susceptibility to laryngeal cancer among the Chinese Han population. Material/Methods In a case-control study, we investigated polymorphisms in the CYP1B1 gene (rs10012, rs1056827, and rs1056836) with a real-time quantitative polymerase chain reaction (PCR) assay (TaqMan). The study was conducted with 300 Chinese Han patients with laryngeal cancer and 300 healthy Chinese Han subjects in a control group. We also studied the interactions between genetic polymorphism and risk factors such as smoking and alcohol consumption in the pathogenesis of laryngeal cancer. Results There were statistically significant differences in the distributions of the rs1056827 and rs1056836 genotypes between the 2 groups. Regarding rs1056827, carriers of the T allele had a significantly higher risk of laryngeal cancer than the G-allele carriers (OR=1.4339, 95% CI: 1.1268–1.8247; P=0.0034). The difference was still statistically significant after adjusting for factors such as age, sex, smoking, and drinking (adjusted OR=1.743, 95% CI: 1.124–3.743, P<0.001). However, regarding rs1056836, the G allele carriers had a significantly lower risk of laryngeal cancer than the C allele carriers (OR=0.5557, 95% CI: 0.3787–0.8154; P=0.0027). The difference was statistically significant even after adjusting for factors such as age, sex, smoking, and drinking (adjusted OR=0.5641, 95% CI: 0.3212–0.8121, P=0.001). Subjects who carry the C-T-C haplotype have a significantly increased incidence of laryngeal cancer. We also found that CYP1B1 rs1056827 polymorphism had synergistic effects with smoking or alcohol consumption regarding the risk of laryngeal cancer. Conclusions CYP1B1 gene polymorphism is closely related to the onset of laryngeal cancer. There is a mutually synergistic effect between smoking, alcohol consumption, and CYP1B1

  17. Analysis of inversions in the factor VIII gene in Spanish hemophilia A patients and families

    SciTech Connect

    Domenech, M.; Tizzano, E.; Baiget, M.; Altisent, C.

    1994-09-01

    Intron 22 is the largest intron of the factor VIII gene and contains a CpG island from which two additional transcripts originate. One of these transcripts corresponds to the F8A gene which have telomeric extragenic copies in the X chromosome. An inversion involving homologous recombination between the intragenic and the distal or proximal copies of the F8A gene has been recently described as a common cause of severe hemophilia A (HA). We analyzed intron 22 rearrangements in 195 HA patients (123 familial and 72 sporadic cases). According to factor VIII levels, our sample was classified as severe in 114 cases, moderate in 29 cases and mild in 52 cases. An intron 22 (F8A) probe was hybridized to Southern blots of BcII digested DNA obtained from peripheral blood. A clear pattern of altered bands identifies distal or proximal inversions. We detected an abnormal pattern identifying an inversion in 49 (25%) of the analyzed cases. 43% of severe HA patients (49 cases) showed an inversion. As expected, no inversion was found in the moderate and mild group of patients. We found a high proportion (78%) of the distal rearrangement. From 49 identified inversions, 33 were found in familial cases (27%), while the remaining 15 were detected in sporadic patients (22%) in support that this mutational event occurs with a similar frequency in familial or sporadic cases. In addition, we detected a significant tendency of distal inversion to occur more frequently in familial cases than in sporadic cases. Inhibitor development to factor VIII was documented in approximately 1/3 of the patients with inversion. The identification of such a frequent molecular event in severe hemophilia A patients has been applied in our families to carrier and prenatal diagnosis, to determine the origin of the mutation in the sporadic cases and to detect the presence of germinal mosaicism.

  18. Tumour necrosis factor-alpha gene promoter polymorphism in chronic obstructive pulmonary disease.

    PubMed

    Higham, M A; Pride, N B; Alikhan, A; Morrell, N W

    2000-02-01

    Tumour necrosis factor(TNF)-alpha levels are elevated in airways of patients with chronic obstructive pulmonary disease (COPD) and may contribute to its pathogenesis. A guanine to adenine substitution at position -308 of the TNF-alpha gene promoter (TNF1/2) has been associated with chronic bronchitis of various aetiologies in a Taiwanese population. The authors performed a study investigating association of the polymorphism with smoking-related COPD in Caucasians. Frequencies of TNF1/2 alleles in 86 Caucasians (52 males) with COPD were compared with 63 (52 males) asymptomatic smoker/exsmoker control subjects and a population control of 199 (99 males) blood donors. Genotyping was performed by the polymerase chain reaction-restriction fragment length polymorphism technique on genomic deoxyribonucleic acid (DNA) obtained from peripheral blood. There were no significant differences in TNF1/2 allele frequencies between groups: 0.85/0.15 in COPD, 0.85/0.15 in smoker control subjects, 0.83/0.17 in population control subjects. Within the COPD group there was no association of TNF1/2 alleles with indices of airflow obstruction (% predicted forced expiratory volume in one second (FEV1) and % predicted FEV1/vital capacity ratio) nor gas transfer (% predicted carbon monoxide transfer coefficient and % predicted carbon monoxide diffusing capacity of the lung). It is concluded that: 1) the tumour necrosis factor gene promoter allele does not influence the risk of developing chronic obstructive pulmonary disease in a Caucasian population of smokers; and 2) there is no association of the tumour necrosis factor gene promoter genotype with severity of airflow obstruction nor degree of emphysema in chronic obstructive pulmonary disease.

  19. Advanced Glycation End-Products affect transcription factors regulating insulin gene expression

    SciTech Connect

    Puddu, A.; Storace, D.; Odetti, P.; Viviani, G.L.

    2010-04-23

    Advanced Glycation End-Products (AGEs) are generated by the covalent interaction of reducing sugars with proteins, lipids or nucleic acids. AGEs are implicated in diabetic complications and pancreatic {beta}-cell dysfunction. We previously demonstrated that exposure of the pancreatic islet cell line HIT-T15 to high concentrations of AGEs leads to a significant decrease of insulin secretion and content. Insulin gene transcription is positively regulated by the beta cell specific transcription factor PDX-1 (Pancreatic and Duodenal Homeobox-1). On the contrary, the forkhead transcription factor FoxO1 inhibits PDX-1 gene transcription. Activity of FoxO1 is regulated by post-translational modifications: phosphorylation deactivates FoxO1, and acetylation prevents FoxO1 ubiquitination. In this work we investigated whether AGEs affect expression and subcellular localization of PDX-1 and FoxO1. HIT-T15 cells were cultured for 5 days in presence of AGEs. Cells were then lysed and processed for subcellular fractionation. We determined intracellular insulin content, then we assessed the expression and subcellular localization of PDX-1, FoxO1, phosphoFoxO1 and acetylFoxO1. As expected intracellular insulin content was lower in HIT-T15 cells cultured with AGEs. The results showed that AGEs decreased expression and nuclear localization of PDX-1, reduced phosphorylation of FoxO1, and increased expression and acetylation of FoxO1. These results suggest that AGEs decrease insulin content unbalancing transcription factors regulating insulin gene expression.

  20. Glial cell line-derived neurotrophic factor gene delivery via a polyethylene imine grafted chitosan carrier.

    PubMed

    Peng, Yu-Shiang; Lai, Po-Liang; Peng, Sydney; Wu, His-Chin; Yu, Siang; Tseng, Tsan-Yun; Wang, Li-Fang; Chu, I-Ming

    2014-01-01

    Parkinson's disease is known to result from the loss of dopaminergic neurons. Direct intracerebral injections of high doses of recombinant glial cell line-derived neurotrophic factor (GDNF) have been shown to protect adult nigral dopaminergic neurons. Because GDNF does not cross the blood-brain barrier, intracerebral gene transfer is an ideal option. Chitosan (CHI) is a naturally derived material that has been used for gene transfer. However, the low water solubility often leads to decreased transfection efficiency. Grafting of highly water-soluble polyethylene imines (PEI) and polyethylene glycol onto polymers can increase their solubility. The purpose of this study was to design a non-viral gene carrier with improved water solubility as well as enhanced transfection efficiency for treating Parkinsonism. Two molecular weights (Mw =600 and 1,800 g/mol) of PEI were grafted onto CHI (PEI600-g-CHI and PEI1800-g-CHI, respectively) by opening the epoxide ring of ethylene glycol diglycidyl ether (EX-810). This modification resulted in a non-viral gene carrier with less cytotoxicity. The transfection efficiency of PEI600-g-CHI/deoxyribonucleic acid (DNA) polyplexes was significantly higher than either PEI1800-g-CHI/DNA or CHI/DNA polyplexes. The maximal GDNF expression of PEI600-g-CHI/DNA was at the polymer:DNA weight ratio of 10:1, which was 1.7-fold higher than the maximal GDNF expression of PEI1800-g-CHI/DNA. The low toxicity and high transfection efficiency of PEI600-g-CHI make it ideal for application to GDNF gene therapy, which has potential for the treatment of Parkinson's disease.

  1. Glial cell line-derived neurotrophic factor gene delivery via a polyethylene imine grafted chitosan carrier

    PubMed Central

    Peng, Yu-Shiang; Lai, Po-Liang; Peng, Sydney; Wu, His-Chin; Yu, Siang; Tseng, Tsan-Yun; Wang, Li-Fang; Chu, I-Ming

    2014-01-01

    Parkinson’s disease is known to result from the loss of dopaminergic neurons. Direct intracerebral injections of high doses of recombinant glial cell line-derived neurotrophic factor (GDNF) have been shown to protect adult nigral dopaminergic neurons. Because GDNF does not cross the blood–brain barrier, intracerebral gene transfer is an ideal option. Chitosan (CHI) is a naturally derived material that has been used for gene transfer. However, the low water solubility often leads to decreased transfection efficiency. Grafting of highly water-soluble polyethylene imines (PEI) and polyethylene glycol onto polymers can increase their solubility. The purpose of this study was to design a non-viral gene carrier with improved water solubility as well as enhanced transfection efficiency for treating Parkinsonism. Two molecular weights (Mw =600 and 1,800 g/mol) of PEI were grafted onto CHI (PEI600-g-CHI and PEI1800-g-CHI, respectively) by opening the epoxide ring of ethylene glycol diglycidyl ether (EX-810). This modification resulted in a non-viral gene carrier with less cytotoxicity. The transfection efficiency of PEI600-g-CHI/deoxyribonucleic acid (DNA) polyplexes was significantly higher than either PEI1800-g-CHI/DNA or CHI/DNA polyplexes. The maximal GDNF expression of PEI600-g-CHI/DNA was at the polymer:DNA weight ratio of 10:1, which was 1.7-fold higher than the maximal GDNF expression of PEI1800-g-CHI/DNA. The low toxicity and high transfection efficiency of PEI600-g-CHI make it ideal for application to GDNF gene therapy, which has potential for the treatment of Parkinson’s disease. PMID:25061293

  2. Co-stimulatory CD28 and transcription factor NFKB1 gene variants affect idiopathic recurrent miscarriages.

    PubMed

    Misra, Maneesh Kumar; Singh, Bharti; Mishra, Aditi; Agrawal, Suraksha

    2016-12-01

    Co-stimulatory CD28 and transcription factor NFKB1 genes are considered as a crucial player in the determination of inflammatory responses; genetic variability in these may modulate the risk for idiopathic recurrent miscarriages (IRM). We investigated the association of functional variants of CD28 (rs3116496 T/C) and NFKB1 (rs28362491 ins/del and rs696 A/G) with IRM cases. We recruited 200 IRM women with a history of at least three consecutive pregnancy losses before 20th week of pregnancy and 300 fertile control women. Determination of CD28 (rs3116496 T/C) and NFKB1 (rs28362491 ins/del and rs696 A/G) gene variants were based on the polymerase chain reaction pursued by restriction fragment length polymorphism analysis and validated with Sanger sequencing. Single marker analysis and multifactor dimensionality reduction (MDR) model used to predict the IRM risk. We observed nearly three- to twofold increased risk in single marker analysis for minor homozygous genotypes of rs3116496 T/C, rs28362491 ins/del and rs696 A/G tag-SNPs in IRM cases, suggesting the risk association. In MDR analysis, we observed 10.5-fold augmented risk among IRM women in three-SNP model (rs3116496 T/C, rs28362491 ins/del and rs696 A/G). The eQTL mapping analyses was performed to strengthen the results of our study. The eQTL mapping analysis revealed that the variations in CD28 and NFKB1 gene content might affect the abundance of transcripts of CD28 and Family with sequence similarity 177 member A1 (FAM177A1) genes, respectively. These results suggest that CD28 and NFKB1 gene variants may be associated with increased risks to IRM.

  3. Nerve Growth Factor gene ovarian expression, polymorphism identification, and association with litter size in goats.

    PubMed

    Naicy, T; Venkatachalapathy, R T; Aravindakshan, T V; Radhika, G; Raghavan, K C; Mini, M; Shyama, K

    2016-12-01

    The Nerve Growth Factor (NGF) plays an important role in reproduction by augmenting folliculogenesis. In this study, the coding regions of caprine NGF gene were analyzed to detect single-nucleotide polymorphisms (SNPs), their association with litter size, and the relative ovarian expression of NGF gene in the two indigenous goat breeds of South India viz., the prolific Malabari and less-prolific Attappady Black. The sequence analysis of the third exon containing the entire open reading frame of NGF gene was observed to be of 808 bp with one nonsynonymous mutation at 217th position. Later, polymerase chain reaction (PCR) was performed to amplify a region of 188 bp covering the region carrying the detected mutation. The genomic DNAs from the goats under study (n = 277) were subjected to PCR and single strand conformation polymorphism (SSCP). On analysis, four diplotypes viz., AA, AB, AC, and AD were observed with respective frequencies of 0.50, 0.22, 0.27, and 0.01. Sequencing of the representative samples revealed an additional synonymous mutation, i.e., g.291C>A. Statistical analysis indicated that NGF diplotypes and the SNP g.217G>A were associated with litter size in goats (P < 0.05). Relative expression of NGF gene was significantly higher in the ovaries of goats with history of multiple than single births (P < 0.05). The results of the present study suggest the significant effect of the NGF gene on litter size in goats and identified SNPs would benefit the selection of prolific animals in future marker-assisted breeding programs. The two novel PCR-restriction fragment length polymorphisms designed, based on the detected SNPs, would help in the rapid screening of large number of animals in a breeding population for identifying individual animals with desired genetic characteristics.

  4. Function search in a large transcription factor gene family in Arabidopsis: assessing the potential of reverse genetics to identify insertional mutations in R2R3 MYB genes.

    PubMed Central

    Meissner, R C; Jin, H; Cominelli, E; Denekamp, M; Fuertes, A; Greco, R; Kranz, H D; Penfield, S; Petroni, K; Urzainqui, A; Martin, C; Paz-Ares, J; Smeekens, S; Tonelli, C; Weisshaar, B; Baumann, E; Klimyuk, V; Marillonnet, S; Patel, K; Speulman, E; Tissier, A F; Bouchez, D; Jones, J J; Pereira, A; Wisman, E

    1999-01-01

    More than 92 genes encoding MYB transcription factors of the R2R3 class have been described in Arabidopsis. The functions of a few members of this large gene family have been described, indicating important roles for R2R3 MYB transcription factors in the regulation of secondary metabolism, cell shape, and disease resistance, and in responses to growth regulators and stresses. For the majority of the genes in this family, however, little functional information is available. As the first step to characterizing these genes functionally, the sequences of >90 family members, and the map positions and expression profiles of >60 members, have been determined previously. An important second step in the functional analysis of the MYB family, through a process of reverse genetics that entails the isolation of insertion mutants, is described here. For this purpose, a variety of gene disruption resources has been used, including T-DNA-insertion populations and three distinct populations that harbor transposon insertions. We report the isolation of 47 insertions into 36 distinct MYB genes by screening a total of 73 genes. These defined insertion lines will provide the foundation for subsequent detailed functional analyses for the assignment of specific functions to individual members of the R2R3 MYB gene family. PMID:10521515

  5. [Brain-derived neurotrophic factor gene (BDNF) polymorphism among Moscow citizens].

    PubMed

    2013-12-01

    Recent studies showed that brain-derived neurotrophic factor (BDNF) can participate in pathogenesis of various CNS disorders, being connected with proliferation, differentiation, and survival of neurons. In present study, analysis of occurrence rate was performed for three single nucleotide polymorphisms (SNPs) located in BDNF gene (rs6267 (A/G) allele A-0.265; rs2049046 (A/T) allele A-0.407; rs11030107 (A/G) allele A-0.872) in randomized selection of Moscow citizens. Linkage disequilibrium of rs6165 and rs2049046 loci was shown. Differences in allele frequencies in studied selection and populations of other re- gions were discovered.

  6. DNA polymorphisms associated with the factor VIII:C gene in the Portuguese population.

    PubMed

    David, D; Mergulhão, C; Capucho, I; Lavinha, J

    1992-01-01

    We have determined the allele frequencies of seven restriction fragment length polymorphisms within or close to factor VIII:C gene in the Portuguese population. The allele frequency of all studied intra- and extragenic biallelic polymorphisms does not differ significantly from those found in other European or Asian populations. On the contrary, the distribution of the different alleles of the TaqI RFLP at the DXS52 locus revealed similarity only with Algerians. We observed a correspondence between the TaqI and BclI alleles at this locus.

  7. Targeted gene transfer of human hepatocyte growth factor into rat skin by the use of laser-induced stress waves

    NASA Astrophysics Data System (ADS)

    Terakawa, Mitsuhiro; Sato, Shunichi; Saitoh, Daizoh; Ashida, Hiroshi; Okano, Hideyuki; Obara, Minoru

    2006-02-01

    We successfully delivered therapeutic gene, Hepatocyte Growth Factor (HGF), to rat skin in vivo. The level of hHGF protein increased by the application of LISWs when compared with that of control samples without LISW application.

  8. Insulin-Like Growth Factor-1 Inscribes a Gene Expression Profile for Angiogenic Factors and Cancer Progression in Breast Epithelial Cells1

    PubMed Central

    Oh, JS; Kucab, JE; Bushel, PR; Martin, K; Bennett, L; Collins, J; DiAugustine, RP; Barrett, JC; Afshari, CA; Dunn, SE

    2002-01-01

    Abstract Activation of the insulin-like growth factor-1 receptor (IGF-1R) by IGF-1 is associated with the risk and progression of many types of cancer, although despite this it remains unclear how activated IGF-1R contributes to cancer progression. In this study, gene expression changes elicited by IGF-1 were profiled in breast epithelial cells. We noted that many genes are functionally linked to cancer progression and angiogenesis. To validate some of the changes observed, the RNA and/or protein was confirmed for c-fos, cytochrome P450 1A1, cytochrome P450 1B1, interleukin-1 beta, fas ligand, vascular endothelial growth factor, and urokinase plasminogen activator. Nuclear proteins were also temporally monitored to address how gene expression changes were regulated. We found that IGF-1 stimulated the nuclear translocation of phosphorylated AKT, hypoxic-inducible factor-1 alpha, and phosphorylated cAMP-responsive element-binding protein, which correlated with temporal changes in gene expression. Next, the promoter regions of IGF-1-regulated genes were searched in silico. The promoters of genes that clustered together had similar regulatory regions. In summary, IGF-1 inscribes a gene expression profile relevant to cancer progression, and this study provides insight into the mechanism(s) whereby some of these changes occur. PMID:11988840

  9. Haemophilia A: database of nucleotide substitutions, deletions, insertions and rearrangements of the factor VIII gene, second edition.

    PubMed Central

    Tuddenham, E G; Schwaab, R; Seehafer, J; Millar, D S; Gitschier, J; Higuchi, M; Bidichandani, S; Connor, J M; Hoyer, L W; Yoshioka, A

    1994-01-01

    A large number of different mutations in the factor VIII (F8) gene have been identified as a cause of haemophilia A. This compilation lists known single base-pair substitutions, deletions and insertions in the F8 gene and reviews the status of the inversional events which account for a substantial proportion of mutations causing severe haemophilia A. PMID:7984443

  10. Haemophilia A: database of nucleotide substitutions, deletions, insertions and rearrangements of the factor VIII gene, second edition.

    PubMed Central

    Tuddenham, E G; Schwaab, R; Seehafer, J; Millar, D S; Gitschier, J; Higuchi, M; Bidichandani, S; Connor, J M; Hoyer, L W; Yoshioka, A

    1994-01-01

    A large number of different mutations in the factor VIII (F8) gene have been identified as a cause of haemophilia A. This compilation lists known single base-pair substitutions, deletions and insertions in the F8 gene and reviews the status of the inversional events which account for a substantial proportion of mutations causing severe haemophilia A. PMID:7937051

  11. Developmental regulation of insulin-like growth factor-I and growth hormone receptor gene expression.

    PubMed

    Shoba, L; An, M R; Frank, S J; Lowe, W L

    1999-06-25

    During development, the insulin-like growth factor I (IGF-I) gene is expressed in a tissue specific manner; however, the molecular mechanisms governing its developmental regulation remain poorly defined. To examine the hypothesis that expression of the growth hormone (GH) receptor accounts, in part, for the tissue specific expression of the IGF-I gene during development, the developmental regulation of IGF-I and GH receptor gene expression in rat tissues was examined. The level of IGF-I and GH receptor mRNA was quantified in RNA prepared from rats between day 17 of gestation (E17) and 17 months of age (17M) using an RNase protection assay. Developmental regulation of IGF-I gene expression was tissue specific with four different patterns of expression seen. In liver, IGF-I mRNA levels increased markedly between E17 and postnatal day 45 (P45) and declined thereafter. In contrast, in brain, skeletal muscle and testis, IGF-I mRNA levels decreased between P5 and 4M but were relatively unchanged thereafter. In heart and kidney, a small increase in IGF-I mRNA levels was observed between the early postnatal period and 4 months, whereas in lung, minimal changes were observed during development. The changes in GH receptor mRNA levels were, in general, coordinate with the changes in IGF-I mRNA levels, except in skeletal muscle. Interestingly, quantification of GH receptor levels by Western blot analysis in skeletal muscle demonstrated changes coordinate with IGF-I mRNA levels. The levels of the proteins which mediate GH receptor signaling (STAT1, -3, and -5, and JAK2) were quantified by Western blot analysis. These proteins also are expressed in a tissue specific manner during development. In some cases, the pattern of expression was coordinate with IGF-I gene expression, whereas in others it was discordant. To further define molecular mechanisms for the developmental regulation of IGF-I gene expression, protein binding to IGFI-FP1, a protein binding site that is in the major

  12. Analysis of factor VIII gene inversions in 164 unrelated hemophilia A families

    SciTech Connect

    Vnencak-Jones, L.; Phillips, J.A. III; Janco, R.L.

    1994-09-01

    Hemophilia A is an X-linked recessive disease with variable phenotype and both heterogeneous and wide spread mutations in the factor VIII (F8) gene. As a result, diagnostic carrier or prenatal testing often relies upon laborious DNA linkage analysis. Recently, inversion mutations resulting from an intrachromosomal recombination between DNA sequences in one of two A genes {approximately}500 kb upstream from the F8 gene and a homologous A gene in intron 22 of the F8 gene were identified and found in 45% of severe hemophiliacs. We have analyzed banked DNA collected since 1986 from affected males or obligate carrier females representing 164 unrelated hemophilia A families. The disease was sporadic in 37%, familial in 54% and in 10% of families incomplete information was given. A unique deletion was identified in 1/164, a normal pattern was observed in 110/164 (67%), and 53/164 (32%) families had inversion mutations with 43/53 (81%) involving the distal A gene (R3 pattern) and 10/53 (19%) involving the proximal A gene (R2 pattern). While 19% of all rearrangements were R2, in 35 families with severe disease (< 1% VIII:C activity) all 16 rearrangements seen were R3. In 18 families with the R3 pattern and known activities, 16 (89%) had levels < 1%, with the remaining 2 families having {le} 2.4% activity. Further, 18 referrals specifically noted the production of inhibitors and 8/18 (45%) had the R3 pattern. Our findings demonstrate that the R3 inversion mutation patterns is (1) only seen with VIII:C activity levels of {le} 2.4%, (2) seen in 46% of families with severe hemophilia, (3) seen in 45% of hemophiliacs known to have inhibitors, (4) not correlated with sporadic or familial disease and (5) not in disequilibrium with the Bcl I or Taq I intron 18 or ST14 polymorphisms. Finally, in families positive for an inversion mutation, direct testing offers a highly accurate and less expensive alternative to DNA linkage analysis.

  13. Thyroid hormone and androgen regulation of nerve growth factor gene expression in the mouse submandibular gland.

    PubMed

    Black, M A; Lefebvre, F A; Pope, L; Lefebvre, Y A; Walker, P

    1992-03-01

    The nerve growth factor (NGF) content of the mouse submandibular gland (SMG) is under hormonal control and is modulated by both thyroid hormones (TH) and androgens. The sexual dimorphism of the gland is well documented. In the adult male mouse, the SMG contains 10 times more NGF compared to the female. Conversely, castration of male mice reduces the SMG NGF levels to those found in control females. In order to determine the locus at which androgens and TH exert their effect on NGF gene expression in the SMG, steady-state NGF mRNA levels were determined. Daily treatment of adult female mice with TH for 1 week increased NGF mRNA levels 6-fold. Androgen treatment produced a 20-fold increase in SMG NGF mRNA, which was comparable to levels detected in the control adult male SMG. The effect of TH on NGF mRNA levels was time-dependent and coincided with the increase in NGF protein concentrations. At 48 h after a single TH injection, NGF mRNA levels (measured in SMG total RNA) increased 2-4-fold, while heteronuclear (hn) RNA levels were increased 1.5-2-fold. The NGF gene transcription rate was determined by run-on assay following TH treatment. A small but significant 2-fold induction by TH of NGF gene transcription was found at 24-48 h. Cytoplasmic RNA prepared from the same SMGs used in the run-on experiments was tested by S1 nuclease protection; NGF cytoplasmic RNA was increased 7-fold in the SMGs of females treated with TH 48 h previously. These results demonstrate that the effect of TH on NGF gene expression is due in part to an induction of NGF gene transcription. The discrepancies observed between transcription rate and mRNA levels suggest that the major effect of TH is at the post-transcriptional level, possibly mRNA stabilization. The time required to observe an induction of TH on NGF gene transcription is suggestive of an indirect effect, possibly through the induction by TH of another protein which in turn activates the NGF gene.

  14. Isolation, structural analysis, and expression characteristics of the maize nuclear factor Y gene families.

    PubMed

    Zhang, Zhongbao; Li, Xianglong; Zhang, Chun; Zou, Huawen; Wu, Zhongyi

    2016-09-16

    NUCLEAR FACTOR-Y (NF-Y) has been shown to play an important role in growth, development, and response to environmental stress. A NF-Y complex, which consists of three subunits, NF-YA, NF-YB, and, NF-YC, binds to CCAAT sequences in a promoter to control the expression of target genes. Although NF-Y proteins have been reported in Arabidopsis and rice, a comprehensive and systematic analysis of ZmNF-Y genes has not yet been performed. To examine the functions of ZmNF-Y genes in this family, we isolated and characterized 50 ZmNF-Y (14 ZmNF-YA, 18 ZmNF-YB, and 18 ZmNF-YC) genes in an analysis of the maize genome. The 50 ZmNF-Y genes were distributed on all 10 maize chromosomes, and 12 paralogs were identified. Multiple alignments showed that maize ZmNF-Y family proteins had conserved regions and relatively variable N-terminal or C-terminal domains. The comparative syntenic map illustrated 40 paralogous NF-Y gene pairs among the 10 maize chromosomes. Microarray data showed that the ZmNF-Y genes had tissue-specific expression patterns in various maize developmental stages and in response to biotic and abiotic stresses. The results suggested that ZmNF-YB2, 4, 8, 10, 13, and 16 and ZmNF-YC6, 8, and 15 were induced, while ZmNF-YA1, 3, 4, 6, 7, 10, 12, and 13, ZmNF-YB15, and ZmNF-YC3 and 9 were suppressed by drought stress. ZmNF-YA3, ZmNF-YA8 and ZmNF-YA12 were upregulated after infection by the three pathogens, while ZmNF-YA1 and ZmNF-YB2 were suppressed. These results indicate that the ZmNF-Ys may have significant roles in the response to abiotic and biotic stresses.

  15. A soluble factor from Trypanosoma cruzi inhibits transforming growth factor-ß-induced MAP kinase activation and gene expression in dermal fibroblasts.

    PubMed

    Mott, G Adam; Costales, Jaime A; Burleigh, Barbara A

    2011-01-01

    The protozoan parasite Trypanosoma cruzi, which causes human Chagas' disease, exerts a variety of effects on host extracellular matrix (ECM) including proteolytic degradation of collagens and dampening of ECM gene expression. Exposure of primary human dermal fibroblasts to live infective T. cruzi trypomastigotes or their shed/secreted products results in a rapid down-regulation of the fibrogenic genes collagenIα1, fibronectin and connective tissue growth factor (CTGF/CCN2). Here we demonstrate the ability of a secreted/released T. cruzi factor to antagonize ctgf/ccn2 expression in dermal fibroblasts in response to TGF-ß, lysophosphatidic acid or serum, where agonist-induced phosphorylation of the mitogen-activated protein (MAP) kinases Erk1/2, p38 and JNK was also inhibited. Global analysis of gene expression in dermal fibroblasts identified a discrete subset of TGF-ß-inducible genes involved in cell proliferation, wound repair, and immune regulation that are inhibited by T. cruzi secreted/released factors, where the genes exhibiting the highest sensitivity to T. cruzi are known to be regulated by MAP kinase-activated transcription factors. Consistent with this observation, the Ets-family transcription factor binding site in the proximal promoter region of the ctgf/ccn2 gene (-91 bp to -84 bp) was shown to be required for T. cruzi-mediated down-regulation of ctgf/ccn2 reporter expression. The cumulative data suggest a model in which T. cruzi-derived molecules secreted/released early in the infective process dampen MAP kinase signaling and the activation of transcription factors that regulate expression of fibroblast genes involved in wound repair and tissue remodelling, including ctgf/ccn2. These findings have broader implications for local modulation of ECM synthesis/remodelling by T. cruzi during the early establishment of infection in the mammalian host and highlight the potential for pathogen-derived molecules to be exploited as tools to modulate the

  16. Osmotically- induced genes are controlled by the transcription factor TonEBP in cultured cardiomyocytes

    PubMed Central

    Navarro, Paola; Chiong, Mario; Volkwein, Karen; Moraga, Francisco; Ocaranza, María Paz; Jalil, Jorge E.; Lim, Sun Woo; Kim, Jeong-Ah; Kwon, H. Moo; Lavandero, Sergio

    2008-01-01

    Changes in cardiac osmolarity occur in myocardial infarction. Osmoregulatory mechanisms may, therefore, play a crucial role in cardiomyocyte survival. Tonicity-responsive enhancer binding protein (TonEBP) is a key transcription factor participating in the adaptation of cells to increases in tonicity. However, it is unknown whether cardiac TonEBP is activated by tonicity. Hypertonicity activated transcriptional activity of TonEBP, increased the amounts of both TonEBP mRNA and protein, and induced both the mRNA and protein of TonEBP target genes (aldose reductase and heat shock protein-70). Hypotonicity decreased the amount of TonEBP protein indicating bidirectional osmoregulation of this transcription factor. Adenoviral expression of a dominant negative TonEBP suppressed the hypertonicity-dependent increase of aldose reductase protein. These results indicated that TonEBP controls osmoregulatory mechanisms in cardiomyocytes. PMID:18502201

  17. In vivo transformation of factor-dependent hemopoietic cells: role of intracisternal A-particle transposition for growth factor gene activation.

    PubMed Central

    Dührsen, U; Stahl, J; Gough, N M

    1990-01-01

    Cells of the granulocyte-macrophage colony stimulating factor (GM-CSF) or multi-lineage colony stimulating factor (Multi-CSF) dependent line FDC-P1 undergo leukemic transformation after injection into irradiated DBA/2 mice. About one third of factor-independent FDC-P1 variants isolated from leukemic animals express GM-CSF or Multi-CSF, assessed either by bioassay or by sensitive RNA detection using the polymerase chain reaction. All of the GM-CSF-secreting lines studied had a rearrangement in one allele of the GM-CSF gene, three of four Multi-CSF-secreting lines had Multi-CSF gene rearrangements, while factor-independent lines lacking evidence of growth factor production had no demonstrable CSF gene alterations. All rearrangements were characterized by insertions of novel DNA in the 5'-flanking regions of the CSF genes. The inserted segments of DNA varied in size between 0.35 and 6.5 kb and displayed restriction enzyme cleavage maps reminiscent of intracisternal A-particle (IAP) genomes. This was confirmed in two cases by molecular cloning and nucleotide sequence analysis. In these instances, the insertion consisted of solitary IAP long terminal repeats. The transformation system described provides a model for the study of IAP transpositions and their effects on gene activation. Images Fig. 2. Fig. 3. Fig. 4. Fig. 6. Fig. 9. PMID:2108861

  18. Interferon regulatory factor 5 gene polymorphism in Egyptian children with systemic lupus erythematosus.

    PubMed

    Hammad, A; Mossad, Y M; Nasef, N; Eid, R

    2017-01-01

    Background Increased expression of interferon-inducible genes is implicated in the pathogenesis of systemic lupus erythematosus (SLE). Interferon regulatory factor 5 (IRF5) is one of the transcription factors regulating interferon and was proved to be implicated in the pathogenesis of SLE in different populations. Objectives The objective of this study was to investigate the correlation between polymorphisms of the IRF5 gene and SLE susceptibility in a cohort of Egyptian children and to investigate their association with clinico-pathological features, especially lupus nephritis. Subjects and methods Typing of interferon regulatory factor 5 rs10954213, rs2004640 and rs2280714 polymorphisms were done using polymerase chain reaction-restriction fragment length polymorphism for 100 children with SLE and 100 matched healthy controls. Results Children with SLE had more frequent T allele and TT genotype of rs2004640 ( Pc = 0.003 and 0.024, respectively) compared to controls. Patients with nephritis had more frequent T allele of rs2004640 compared to controls ( Pc = 0.003). However the allele and genotype frequencies of the three studied polymorphisms did not show any difference in patients with nephritis in comparison to those without nephritis. Haplotype GTA of rs10954213, rs2004640 and rs2280714, respectively, was more frequent in lupus patients in comparison to controls ( p = 0.01) while the haplotype GGG was more frequent in controls than lupus patients ( p = 0.011). Conclusion The rs2004640 T allele and TT genotype and GTA haplotype of rs rs10954213, rs2004640, and rs2280714, respectively, can be considered as risk factors for the development of SLE. The presence of the rs2004640 T allele increases the risk of nephritis development in Egyptian children with SLE.

  19. Involvement of the leucine response transcription factor LeuO in regulation of the genes for sulfa drug efflux.

    PubMed

    Shimada, Tomohiro; Yamamoto, Kaneyoshi; Ishihama, Akira

    2009-07-01

    LeuO, a LysR family transcription factor, exists in a wide variety of bacteria of the family Enterobacteriaceae and is involved in the regulation of as yet unidentified genes affecting the stress response and pathogenesis expression. Using genomic screening by systematic evolution of ligands by exponential enrichment (SELEX) in vitro, a total of 106 DNA sequences were isolated from 12 different regions of the Escherichia coli genome. All of the SELEX fragments formed complexes in vitro with purified LeuO. After Northern blot analysis of the putative target genes located downstream of the respective LeuO-binding sequence, a total of nine genes were found to be activated by LeuO, while three genes were repressed by LeuO. The LeuO target gene collection included several multidrug resistance genes. A phenotype microarray assay was conducted to identify the gene(s) responsible for drug resistance and the drug species that are under the control of the LeuO target gene(s). The results described herein indicate that the yjcRQP operon, one of the LeuO targets, is involved in sensitivity control against sulfa drugs. We propose to rename the yjcRQP genes the sdsRQP genes (sulfa drug sensitivity determinant).

  20. CREB1 gene polymorphisms combined with environmental risk factors increase susceptibility to major depressive disorder (MDD).

    PubMed

    Wang, Peng; Yang, Yanjie; Yang, Xiuxian; Qiu, Xiaohui; Qiao, Zhengxue; Wang, Lin; Zhu, Xiongzhao; Sui, Hong; Ma, Jingsong

    2015-01-01

    Major depressive disorder (MDD) is one of the most severe psychiatric disorders. The objective of this study was to explore the effects of CREB1 gene polymorphisms on risk of developing MDD and the joint effects of gene-environment interactions. Genotyping was performed by Taqman allelic discrimination assay among 586 patients and 586 healthy controls. A significant impact on rs6740584 genotype distribution was found for childhood trauma (P = 0.015). We did not find an association of CREB1 polymorphisms with MDD susceptibility. However, we found a significantly increased risk associated with the interactions of CREB1 polymorphisms and drinking (OR = 11.67, 95% CI = 2.52-54.18; OR = 11.52, 95% CI = 2.55-51.95 for rs11904814; OR = 4.18, 95% CI = 1.87-9.38; OR = 5.02, 95% CI = 2.27-11.14 for rs6740584; OR = 7.58, 95% CI = 2.05-27.98; OR = 7.59, 95% CI = 2.12-27.14 for rs2553206; OR = 8.37, 95% CI = 3.02-23.23; OR = 7.84, 95% CI = 2.93-20.98 for rs2551941). We also noted that CREB polymorphisms combined with family harmony and childhood trauma conferred increased susceptibility for MDD. In conclusion, polymorphisms in the CREB gene may not be independently associated with MDD risk, but they are likely to confer increased susceptibility by interacting with environmental risk factors in the Chinese population.

  1. Role of transcription factor-mediated nucleosome disassembly in PHO5 gene expression.

    PubMed

    Kharerin, Hungyo; Bhat, Paike J; Marko, John F; Padinhateeri, Ranjith

    2016-02-04

    Studying nucleosome dynamics in promoter regions is crucial for understanding gene regulation. Nucleosomes regulate gene expression by sterically occluding transcription factors (TFs) and other non-histone proteins accessing genomic DNA. How the binding competition between nucleosomes and TFs leads to transcriptionally compatible promoter states is an open question. Here, we present a computational study of the nucleosome dynamics and organization in the promoter region of PHO5 gene in Saccharomyces cerevisiae. Introducing a model for nucleosome kinetics that takes into account ATP-dependent remodeling activity, DNA sequence effects, and kinetics of TFs (Pho4p), we compute the probability of obtaining different "promoter states" having different nucleosome configurations. Comparing our results with experimental data, we argue that the presence of local remodeling activity (LRA) as opposed to basal remodeling activity (BRA) is crucial in determining transcriptionally active promoter states. By modulating the LRA and Pho4p binding rate, we obtain different mRNA distributions-Poisson, bimodal, and long-tail. Through this work we explain many features of the PHO5 promoter such as sequence-dependent TF accessibility and the role of correlated dynamics between nucleosomes and TFs in opening/coverage of the TATA box. We also obtain possible ranges for TF binding rates and the magnitude of LRA.

  2. Gene expression based mouse brain parcellation using Markov random field regularized non-negative matrix factorization

    NASA Astrophysics Data System (ADS)

    Pathak, Sayan D.; Haynor, David R.; Thompson, Carol L.; Lein, Ed; Hawrylycz, Michael

    2009-02-01

    Understanding the geography of genetic expression in the mouse brain has opened previously unexplored avenues in neuroinformatics. The Allen Brain Atlas (www.brain-map.org) (ABA) provides genome-wide colorimetric in situ hybridization (ISH) gene expression images at high spatial resolution, all mapped to a common three-dimensional 200μm3 spatial framework defined by the Allen Reference Atlas (ARA) and is a unique data set for studying expression based structural and functional organization of the brain. The goal of this study was to facilitate an unbiased data-driven structural partitioning of the major structures in the mouse brain. We have developed an algorithm that uses nonnegative matrix factorization (NMF) to perform parts based analysis of ISH gene expression images. The standard NMF approach and its variants are limited in their ability to flexibly integrate prior knowledge, in the context of spatial data. In this paper, we introduce spatial connectivity as an additional regularization in NMF decomposition via the use of Markov Random Fields (mNMF). The mNMF algorithm alternates neighborhood updates with iterations of the standard NMF algorithm to exploit spatial correlations in the data. We present the algorithm and show the sub-divisions of hippocampus and somatosensory-cortex obtained via this approach. The results are compared with established neuroanatomic knowledge. We also highlight novel gene expression based sub divisions of the hippocampus identified by using the mNMF algorithm.

  3. Tumor Necrosis Factor Gene Polymorphisms in Advanced Non-exudative Age-related Macular Degeneration

    PubMed Central

    Bonyadi, Mohammad Hossein Jabbarpoor; Bonyadi, Morteza; Ahmadieh, Hamid; Fotuhi, Nikoo; Shoeibi, Nasser; Saadat, Saeed; Yagubi, Zakieh

    2015-01-01

    Purpose: To investigate tumor necrosis factor (TNF)-α gene polymorphisms in advanced dry-type age-related macular degeneration (AMD) in a population from Northeastern Iran. Methods: In this case-control study, 50 patients with geographic macular atrophy and 73 gender-matched controls were enrolled. Genomic deoxyribonucleic acid (DNA) was extracted from the peripheral blood. Polymerase chain reaction was performed to analyze 2 candidate single nucleotide polymorphisms in the TNF-α gene, namely −1031 thymine (T)/cytosine (C) and −308 guanine (G)/adenine (A). Results: The distribution of the - 1031 T/C genotype was TT, 62%; TC, 36%; CC, 2% in the patients and TT, 60%; TC, 36%; CC, 4% in the controls (P = 0.94). Genotype analysis of TNF-α −308 also revealed no significant difference in distribution between patients (G, 78%; GA, 22%; AA, 0%) and controls (GG, 74%; GA, 23%; AA, 3%) (P = 0.51). None of the haplotypes nor alleles of studied TNF-α polymorphisms were significantly associated with advanced dry-type AMD. Conclusion: The findings of this study show that polymorphisms in the TNF-α gene, do not play an important role in dry-type AMD in the studied population. PMID:26425318

  4. CREB1 gene polymorphisms combined with environmental risk factors increase susceptibility to major depressive disorder (MDD)

    PubMed Central

    Wang, Peng; Yang, Yanjie; Yang, Xiuxian; Qiu, Xiaohui; Qiao, Zhengxue; Wang, Lin; Zhu, Xiongzhao; Sui, Hong; Ma, Jingsong

    2015-01-01

    Major depressive disorder (MDD) is one of the most severe psychiatric disorders. The objective of this study was to explore the effects of CREB1 gene polymorphisms on risk of developing MDD and the joint effects of gene-environment interactions. Genotyping was performed by Taqman allelic discrimination assay among 586 patients and 586 healthy controls. A significant impact on rs6740584 genotype distribution was found for childhood trauma (P = 0.015). We did not find an association of CREB1 polymorphisms with MDD susceptibility. However, we found a significantly increased risk associated with the interactions of CREB1 polymorphisms and drinking (OR = 11.67, 95% CI = 2.52-54.18; OR = 11.52, 95% CI = 2.55-51.95 for rs11904814; OR = 4.18, 95% CI = 1.87-9.38; OR = 5.02, 95% CI = 2.27-11.14 for rs6740584; OR = 7.58, 95% CI = 2.05-27.98; OR = 7.59, 95% CI = 2.12-27.14 for rs2553206; OR = 8.37, 95% CI = 3.02-23.23; OR = 7.84, 95% CI = 2.93-20.98 for rs2551941). We also noted that CREB polymorphisms combined with family harmony and childhood trauma conferred increased susceptibility for MDD. In conclusion, polymorphisms in the CREB gene may not be independently associated with MDD risk, but they are likely to confer increased susceptibility by interacting with environmental risk factors in the Chinese population. PMID:25755794

  5. Key factors determining the efficacy of gene therapy for continuous DOPA delivery in the Parkinsonian brain.

    PubMed

    Cederfjäll, Erik; Sahin, Gurdal; Kirik, Deniz

    2012-11-01

    L-DOPA is currently the standard treatment for alleviating the motor symptoms in Parkinson's disease. The therapeutic efficacy, however, diminishes as the disease progresses. It has been suggested that the beneficial effect of L-DOPA could be reestablished by changing the mode of administration. Indeed, continuous delivery of l-DOPA has been shown to be an effective way to circumvent many of the side effects seen with traditional oral administration, which results in an intermittent supply of the dopamine precursor to the brain. However, all currently tested continuous dopaminergic stimulation approaches rely on peripheral administration. This is not ideal since it gives rise to off target effects and is difficult to maintain long-term. Thus, there is an unmet need for an effective continuous administration method with an acceptable side effect profile. Viral-mediated gene therapy is a promising alternative paradigm that can meet this demand. Encouraging preclinical studies in animal models of Parkinson's disease showed therapeutic efficacy after expression of the genes encoding the enzymes required for biosynthesis of dopamine. Although the first phase I clinical trials using these approaches have been conducted, clear positive data in placebo controlled efficacy studies is still lacking. We are now at a critical junction and need to carefully review the preclinical data from the clinical translation perspective and identify the key factors that will determine the potential for success in gene therapy for Parkinson's disease.

  6. Role of transcription factor-mediated nucleosome disassembly in PHO5 gene expression

    NASA Astrophysics Data System (ADS)

    Kharerin, Hungyo; Bhat, Paike J.; Marko, John F.; Padinhateeri, Ranjith

    2016-02-01

    Studying nucleosome dynamics in promoter regions is crucial for understanding gene regulation. Nucleosomes regulate gene expression by sterically occluding transcription factors (TFs) and other non–histone proteins accessing genomic DNA. How the binding competition between nucleosomes and TFs leads to transcriptionally compatible promoter states is an open question. Here, we present a computational study of the nucleosome dynamics and organization in the promoter region of PHO5 gene in Saccharomyces cerevisiae. Introducing a model for nucleosome kinetics that takes into account ATP-dependent remodeling activity, DNA sequence effects, and kinetics of TFs (Pho4p), we compute the probability of obtaining different “promoter states” having different nucleosome configurations. Comparing our results with experimental data, we argue that the presence of local remodeling activity (LRA) as opposed to basal remodeling activity (BRA) is crucial in determining transcriptionally active promoter states. By modulating the LRA and Pho4p binding rate, we obtain different mRNA distributions—Poisson, bimodal, and long-tail. Through this work we explain many features of the PHO5 promoter such as sequence-dependent TF accessibility and the role of correlated dynamics between nucleosomes and TFs in opening/coverage of the TATA box. We also obtain possible ranges for TF binding rates and the magnitude of LRA.

  7. Association between leukaemia inhibitory factor gene polymorphism and pregnancy outcomes after assisted reproduction techniques.

    PubMed

    Oliveira, Joao Batista A; Vagnini, Laura D; Petersen, Claudia G; Renzi, Adriana; Oliveira-Pelegrin, Gabriela R; Mauri, Ana L; Ricci, Juliana; Massaro, Fabiana C; Dieamant, Felipe; Cavagna, Mario; Baruffi, Ricardo L R; Franco, Jose G

    2016-01-01

    Certain gene polymorphisms are associated with implantation failure and pregnancy loss. Studies of leukaemia inhibitory factor (LIF) gene polymorphisms are scarce. The LIF single nucleotide polymorphism (SNP) thymine (T)/guanine (G) (rs929271) was studied in women to determine whether an association existed with pregnancy outcomes after intracytoplasmic sperm injection (ICSI); 411 women who underwent ICSI were recruited. DNA was extracted from the peripheral blood, and the LIF gene SNP T/G (rs929271) was genotyped using real-time polymerase chain reaction. Participants were divided into three groups according to their LIF genotype: T/T (n = 168), T/G (n = 202) and G/G (n = 41). All IVF and ICSI procedures were carried out under the same clinical and laboratory conditions. The ICSI cumulative results (from fresh plus frozen cycles) of each genotype group were analysed. The G/G genotype in women was associated with a higher implantation rate (T/T: 15.9%, T/G: 16.2%, G/G: 27.0%; P < 0.05), ongoing pregnancy rate/patient (T/T: 31.5%, T/G: 36.1%, G/G: 53.7%; P < 0.05) and ongoing pregnancy rate/transfer (T/T: 18.5%, T/G: 20.2%, G/G: 36.7%; P < 0.05). LIF SNP T/G (rs929271) seems to be a susceptibility biomarker capable of predicting implantation efficiency and pregnancy outcomes.

  8. Factors affecting drug and gene delivery: effects of interaction with blood components.

    PubMed

    Opanasopit, Praneet; Nishikawa, Makiya; Hashida, Mitsuru

    2002-01-01

    Targeted drug delivery systems have been used extensively to improve the pharmacological and therapeutic activities of a wide variety of drugs and genes. In this article, we summarize the factors determining the tissue disposition of delivery systems: the physicochemical and biological characteristics of the delivery system and the anatomic and physiological characteristics of the tissues. There are several modes of drug and gene targeting, ranging from passive to active targeting, and each of these can be achieved by optimizing the design of the delivery system to suit a specific aim. After entering the systemic circulation, either by an intravascular injection or through absorption from an administration site, however, a delivery system encounters a variety of blood components, including blood cells and a range of serum proteins. These components are by no means inert as far as interaction with the delivery system is concerned, and they can sometimes markedly effect its tissue disposition. The interaction with blood components is known to occur with particulate delivery systems, such as liposomes, or with cationic charge-mediated delivery systems for genes. In addition to these rather nonspecific ones, interactions via the targeting ligand of the delivery system can occur. We recently found that mannosylated carriers interact with serum mannan binding protein, greatly altering their tissue disposition in a number of ways that depend on the properties of the carriers involved.

  9. Zinc finger transcription factor Slug is a novel target gene of aryl hydrocarbon receptor

    SciTech Connect

    Ikuta, Togo; Kawajiri, Kaname . E-mail: kawajiri@cancer-c.pref.saitama.jp

    2006-11-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor. We previously showed that AhR localizes predominantly in the cytoplasm under high cell densities of a keratinocytes cell line, HaCaT, but accumulates in the nucleus at low cell densities. In the current report, we show that the Slug, which is a member of the snail/slug family of zinc finger transcriptional repressors critical for induction of epithelial-mesenchymal transitions (EMT), is activated transcriptionally in accordance with nuclear accumulation of AhR. By reporter assay of the promoter of the Slug gene, gel shift and chromatin immunoprecipitation analyses showed AhR directly binds to xenobiotic responsive element 5 at - 0.7 kb of the gene. AhR-targeted gene silencing by small interfering RNA duplexes led to the abolishment of not only CYP1A1 but also Slug induction by 3-methycholanthrene. The Slug was co-localized to the AhR at the wound margins of HaCaT cells, where apparent nuclear distribution of AhR and Slug was observed. The induced Slug was associated with reduction of an epithelial marker of cytokeratin-18 and with an increase in the mesenchymal marker, fibronectin. Taken together, these findings suggest that AhR participated in Slug induction, which, in turn, regulates cellular physiology including cell adhesion and migration.

  10. Exchange factors directly activated by cAMP mediate melanocortin 4 receptor-induced gene expression

    PubMed Central

    Glas, Evi; Mückter, Harald; Gudermann, Thomas; Breit, Andreas

    2016-01-01

    Gs protein-coupled receptors regulate many vital body functions by activation of cAMP response elements (CRE) via cAMP-dependent kinase A (PKA)-mediated phosphorylation of the CRE binding protein (CREB). Melanocortin 4 receptors (MC4R) are prototypical Gs-coupled receptors that orchestrate the hypothalamic control of food-intake and metabolism. Remarkably, the significance of PKA for MC4R-induced CRE-dependent transcription in hypothalamic cells has not been rigorously interrogated yet. In two hypothalamic cell lines, we observed that blocking PKA activity had only weak or no effects on reporter gene expression. In contrast, inhibitors of exchange factors directly activated by cAMP-1/2 (EPAC-1/2) mitigated MC4R-induced CRE reporter activation and mRNA induction of the CREB-dependent genes c-fos and thyrotropin-releasing hormone. Furthermore, we provide first evidence that extracellular-regulated kinases-1/2 (ERK-1/2) activated by EPACs and not PKA are the elusive CREB kinases responsible for MC4R-induced CREB/CRE activation in hypothalamic cells. Overall, these data emphasize the pivotal role of EPACs rather than PKA in hypothalamic gene expression elicited by a prototypical Gs-coupled receptor. PMID:27612207

  11. Combining transcription factor binding affinities with open-chromatin data for accurate gene expression prediction.

    PubMed

    Schmidt, Florian; Gasparoni, Nina; Gasparoni, Gilles; Gianmoena, Kathrin; Cadenas, Cristina; Polansky, Julia K; Ebert, Peter; Nordström, Karl; Barann, Matthias; Sinha, Anupam; Fröhler, Sebastian; Xiong, Jieyi; Dehghani Amirabad, Azim; Behjati Ardakani, Fatemeh; Hutter, Barbara; Zipprich, Gideon; Felder, Bärbel; Eils, Jürgen; Brors, Benedikt; Chen, Wei; Hengstler, Jan G; Hamann, Alf; Lengauer, Thomas; Rosenstiel, Philip; Walter, Jörn; Schulz, Marcel H

    2017-01-09

    The binding and contribution of transcription factors (TF) to cell specific gene expression is often deduced from open-chromatin measurements to avoid costly TF ChIP-seq assays. Thus, it is important to develop computational methods for accurate TF binding prediction in open-chromatin regions (OCRs). Here, we report a novel segmentation-based method, TEPIC, to predict TF binding by combining sets of OCRs with position weight matrices. TEPIC can be applied to various open-chromatin data, e.g. DNaseI-seq and NOMe-seq. Additionally, Histone-Marks (HMs) can be used to identify candidate TF binding sites. TEPIC computes TF affinities and uses open-chromatin/HM signal intensity as quantitative measures of TF binding strength. Using machine learning, we find low affinity binding sites to improve our ability to explain gene expression variability compared to the standard presence/absence classification of binding sites. Further, we show that both footprints and peaks capture essential TF binding events and lead to a good prediction performance. In our application, gene-based scores computed by TEPIC with one open-chromatin assay nearly reach the quality of several TF ChIP-seq data sets. Finally, these scores correctly predict known transcriptional regulators as illustrated by the application to novel DNaseI-seq and NOMe-seq data for primary human hepatocytes and CD4+ T-cells, respectively.

  12. The WRKY transcription factor genes in eggplant (Solanum melongena L.) and Turkey Berry (Solanum torvum Sw.).

    PubMed

    Yang, Xu; Deng, Cao; Zhang, Yu; Cheng, Yufu; Huo, Qiuyue; Xue, Linbao

    2015-04-07

    WRKY transcription factors, which play critical roles in stress responses, have not been characterized in eggplant or its wild relative, turkey berry. The recent availability of RNA-sequencing data provides the opportunity to examine WRKY genes from a global perspective. We identified 50 and 62 WRKY genes in eggplant (SmelWRKYs) and turkey berry (StorWRKYs), respectively, all of which could be classified into three groups (I-III) based on the WRKY protein structure. The SmelWRKYs and StorWRKYs contain ~76% and ~95% of the number of WRKYs found in other sequenced asterid species, respectively. Positive selection analysis revealed that different selection constraints could have affected the evolution of these groups. Positively-selected sites were found in Groups IIc and III. Branch-specific selection pressure analysis indicated that most WRKY domains from SmelWRKYs and StorWRKYs are conserved and have evolved at low rates since their divergence. Comparison to homologous WRKY genes in Arabidopsis revealed several potential pathogen resistance-related SmelWRKYs and StorWRKYs, providing possible candidate genetic resources for improving stress tolerance in eggplant and probably other Solanaceae plants. To our knowledge, this is the first report of a genome-wide analyses of the SmelWRKYs and StorWRKYs.

  13. Detecting Cooperativity between Transcription Factors Based on Functional Coherence and Similarity of Their Target Gene Sets

    PubMed Central

    Wu, Wei-Sheng; Lai, Fu-Jou

    2016-01-01

    In eukaryotic cells, transcriptional regulation of gene expression is usually achieved by cooperative transcription factors (TFs). Therefore, knowing cooperative TFs is the first step toward uncovering the molecular mechanisms of gene expression regulation. Many algorithms based on different rationales have been proposed to predict cooperative TF pairs in yeast. Although various types of rationales have been used in the existing algorithms, functional coherence is not yet used. This prompts us to develop a new algorithm based on functional coherence and similarity of the target gene sets to identify cooperative TF pairs in yeast. The proposed algorithm predicted 40 cooperative TF pairs. Among them, three (Pdc2-Thi2, Hot1-Msn1 and Leu3-Met28) are novel predictions, which have not been predicted by any existing algorithms. Strikingly, two (Pdc2-Thi2 and Hot1-Msn1) of the three novel predictions have been experimentally validated, demonstrating the power of the proposed algorithm. Moreover, we show that the predictions of the proposed algorithm are more biologically meaningful than the predictions of 17 existing algorithms under four evaluation indices. In summary, our study suggests that new algorithms based on novel rationales are worthy of developing for detecting previously unidentifiable cooperative TF pairs. PMID:27623007

  14. Combining transcription factor binding affinities with open-chromatin data for accurate gene expression prediction

    PubMed Central

    Schmidt, Florian; Gasparoni, Nina; Gasparoni, Gilles; Gianmoena, Kathrin; Cadenas, Cristina; Polansky, Julia K.; Ebert, Peter; Nordström, Karl; Barann, Matthias; Sinha, Anupam; Fröhler, Sebastian; Xiong, Jieyi; Dehghani Amirabad, Azim; Behjati Ardakani, Fatemeh; Hutter, Barbara; Zipprich, Gideon; Felder, Bärbel; Eils, Jürgen; Brors, Benedikt; Chen, Wei; Hengstler, Jan G.; Hamann, Alf; Lengauer, Thomas; Rosenstiel, Philip; Walter, Jörn; Schulz, Marcel H.

    2017-01-01

    The binding and contribution of transcription factors (TF) to cell specific gene expression is often deduced from open-chromatin measurements to avoid costly TF ChIP-seq assays. Thus, it is important to develop computational methods for accurate TF binding prediction in open-chromatin regions (OCRs). Here, we report a novel segmentation-based method, TEPIC, to predict TF binding by combining sets of OCRs with position weight matrices. TEPIC can be applied to various open-chromatin data, e.g. DNaseI-seq and NOMe-seq. Additionally, Histone-Marks (HMs) can be used to identify candidate TF binding sites. TEPIC computes TF affinities and uses open-chromatin/HM signal intensity as quantitative measures of TF binding strength. Using machine learning, we find low affinity binding sites to improve our ability to explain gene expression variability compared to the standard presence/absence classification of binding sites. Further, we show that both footprints and peaks capture essential TF binding events and lead to a good prediction performance. In our application, gene-based scores computed by TEPIC with one open-chromatin assay nearly reach the quality of several TF ChIP-seq data sets. Finally, these scores correctly predict known transcriptional regulators as illustrated by the application to novel DNaseI-seq and NOMe-seq data for primary human hepatocytes and CD4+ T-cells, respectively. PMID:27899623

  15. The WRKY Transcription Factor Genes in Eggplant (Solanum melongena L.) and Turkey Berry (Solanum torvum Sw.)

    PubMed Central

    Yang, Xu; Deng, Cao; Zhang, Yu; Cheng, Yufu; Huo, Qiuyue; Xue, Linbao

    2015-01-01

    WRKY transcription factors, which play critical roles in stress responses, have not been characterized in eggplant or its wild relative, turkey berry. The recent availability of RNA-sequencing data provides the opportunity to examine WRKY genes from a global perspective. We identified 50 and 62 WRKY genes in eggplant (SmelWRKYs) and turkey berry (StorWRKYs), respectively, all of which could be classified into three groups (I–III) based on the WRKY protein structure. The SmelWRKYs and StorWRKYs contain ~76% and ~95% of the number of WRKYs found in other sequenced asterid species, respectively. Positive selection analysis revealed that different selection constraints could have affected the evolution of these groups. Positively-selected sites were found in Groups IIc and III. Branch-specific selection pressure analysis indicated that most WRKY domains from SmelWRKYs and StorWRKYs are conserved and have evolved at low rates since their divergence. Comparison to homologous WRKY genes in Arabidopsis revealed several potential pathogen resistance-related SmelWRKYs and StorWRKYs, providing possible candidate genetic resources for improving stress tolerance in eggplant and probably other Solanaceae plants. To our knowledge, this is the first report of a genome-wide analyses of the SmelWRKYs and StorWRKYs. PMID:25853261

  16. The Bordetella pertussis model of exquisite gene control by the global transcription factor BvgA

    PubMed Central

    James, Tamara D.; Stibitz, Scott; Hinton, Deborah M.

    2012-01-01

    Bordetella pertussis causes whooping cough, an infectious disease that is reemerging despite widespread vaccination. A more complete understanding of B. pertussis pathogenic mechanisms will involve unravelling the regulation of its impressive arsenal of virulence factors. Here we review the action of the B. pertussis response regulator BvgA in the context of what is known about bacterial RNA polymerase and various modes of transcription activation. At most virulence gene promoters, multiple dimers of phosphorylated BvgA (BvgA~P) bind upstream of the core promoter sequence, using a combination of high- and low-affinity sites that fill through cooperativity. Activation by BvgA~P is typically mediated by a novel form of class I/II mechanisms, but two virulence genes, fim2 and fim3, which encode serologically distinct fimbrial subunits, are regulated using a previously unrecognized RNA polymerase/activator architecture. In addition, the fim genes undergo phase variation because of an extended cytosine (C) tract within the promoter sequences that is subject to slipped-strand mispairing during replication. These sophisticated systems of regulation demonstrate one aspect whereby B. pertussis, which is highly clonal and lacks the extensive genetic diversity observed in many other bacterial pathogens, has been highly successful as an obligate human pathogen. PMID:22628479

  17. Human Gene-Centered Transcription Factor Networks for Enhancers and Disease Variants

    PubMed Central

    Bass, Juan I. Fuxman; Sahni, Nidhi; Shrestha, Shaleen; Garcia-Gonzalez, Aurian; Mori, Akihiro; Bhat, Numana; Yi, Song; Hill, David E.; Vidal, Marc; Walhout, Albertha J.M.

    2015-01-01

    SUMMARY Gene regulatory networks (GRNs) comprising interactions between transcription factors (TFs) and regulatory loci control development and physiology. Numerous disease-associated mutations have been identified, the vast majority residing in non-coding regions of the genome. As current GRN mapping methods test one TF at a time and require the use of cells harboring the mutation(s) of interest, they are not suitable to identify TFs that bind to wild type and mutant loci. Here, we use gene-centered yeast one-hybrid (eY1H) assays to interrogate binding of 1,086 human TFs to 246 enhancers, as well as to 109 non-coding disease mutations. We detect both loss and gain of TF interactions with mutant loci that are concordant with target gene expression changes. This work establishes eY1H assays as a powerful addition to the toolkit of mapping human GRNs and for the high-throughput characterization of genomic variants that are rapidly being identified by genome-wide association studies. PMID:25910213

  18. Role of transcription factor-mediated nucleosome disassembly in PHO5 gene expression

    PubMed Central

    Kharerin, Hungyo; Bhat, Paike J.; Marko, John F.; Padinhateeri, Ranjith

    2016-01-01

    Studying nucleosome dynamics in promoter regions is crucial for understanding gene regulation. Nucleosomes regulate gene expression by sterically occluding transcription factors (TFs) and other non–histone proteins accessing genomic DNA. How the binding competition between nucleosomes and TFs leads to transcriptionally compatible promoter states is an open question. Here, we present a computational study of the nucleosome dynamics and organization in the promoter region of PHO5 gene in Saccharomyces cerevisiae. Introducing a model for nucleosome kinetics that takes into account ATP-dependent remodeling activity, DNA sequence effects, and kinetics of TFs (Pho4p), we compute the probability of obtaining different “promoter states” having different nucleosome configurations. Comparing our results with experimental data, we argue that the presence of local remodeling activity (LRA) as opposed to basal remodeling activity (BRA) is crucial in determining transcriptionally active promoter states. By modulating the LRA and Pho4p binding rate, we obtain different mRNA distributions—Poisson, bimodal, and long-tail. Through this work we explain many features of the PHO5 promoter such as sequence-dependent TF accessibility and the role of correlated dynamics between nucleosomes and TFs in opening/coverage of the TATA box. We also obtain possible ranges for TF binding rates and the magnitude of LRA. PMID:26843321

  19. Major role of local immune responses in antibody formation to factor IX in AAV gene transfer.

    PubMed

    Wang, L; Cao, O; Swalm, B; Dobrzynski, E; Mingozzi, F; Herzog, R W

    2005-10-01

    The risk of an immune response to the coagulation factor IX (F.IX) transgene product is a concern in gene therapy for the X-linked bleeding disorder hemophilia B. In order to investigate the mechanism of F.IX-specific lymphocyte activation in the context of adeno-associated viral (AAV) gene transfer to skeletal muscle, we injected AAV-2 vector expressing human F.IX (hF.IX) into outbred immune-competent mice. Systemic hF.IX levels were transiently detected in the circulation, but diminished concomitant with activation of CD4+ T and B cells. ELISPOT assays documented robust responses to hF.IX in the draining lymph nodes of injected muscle by day 14. Formation of inhibitory antibodies to hF.IX was observed over a wide range of vector doses, with increased doses causing stronger immune responses. A prolonged inflammatory reaction in muscle started at 1.5-2 months, but ultimately failed to eliminate transgene expression. By 1.5 months, hF.IX antigen re-emerged in circulation in approximately 70% of animals injected with high vector dose. Hepatic gene transfer elicited only infrequent and weaker immune responses, with higher vector doses causing a reduction in T-cell responses to hF.IX. In summary, the data document substantial influence of target tissue, local antigen presentation, and antigen levels on lymphocyte responses to F.IX.

  20. Elongation Factor-Tu (EF-Tu) proteins structural stability and bioinformatics in ancestral gene reconstruction

    NASA Astrophysics Data System (ADS)

    Dehipawala, Sunil; Nguyen, A.; Tremberger, G.; Cheung, E.; Schneider, P.; Lieberman, D.; Holden, T.; Cheung, T.

    2013-09-01

    A paleo-experimental evolution report on elongation factor EF-Tu structural stability results has provided an opportunity to rewind the tape of life using the ancestral protein sequence reconstruction modeling approach; consistent with the book of life dogma in current biology and being an important component in the astrobiology community. Fractal dimension via the Higuchi fractal method and Shannon entropy of the DNA sequence classification could be used in a diagram that serves as a simple summary. Results from biomedical gene research provide examples on the diagram methodology. Comparisons between biomedical genes such as EEF2 (elongation factor 2 human, mouse, etc), WDR85 in epigenetics, HAR1 in human specificity, DLG1 in cognitive skill, and HLA-C in mosquito bite immunology with EF Tu DNA sequences have accounted for the reported circular dichroism thermo-stability data systematically; the results also infer a relatively less volatility geologic time period from 2 to 3 Gyr from adaptation viewpoint. Comparison to Thermotoga maritima MSB8 and Psychrobacter shows that Thermus thermophilus HB8 EF-Tu calibration sequence could be an outlier, consistent with free energy calculation by NUPACK. Diagram methodology allows computer simulation studies and HAR1 shows about 0.5% probability from chimp to human in terms of diagram location, and SNP simulation results such as amoebic meningoencephalitis NAF1 suggest correlation. Extensions to the studies of the translation and transcription elongation factor sequences in Megavirus Chiliensis, Megavirus Lba and Pandoravirus show that the studied Pandoravirus sequence could be an outlier with the highest fractal dimension and lowest entropy, as compared to chicken as a deviant in the DNMT3A DNA methylation gene sequences from zebrafish to human and to the less than one percent probability in computer simulation using the HAR1 0.5% probability as reference. The diagram methodology would be useful in ancestral gene

  1. Expression of jasmonic ethylene responsive factor gene in transgenic poplar tree leads to increased salt tolerance.

    PubMed

    Li, Yiliang; Su, Xiaohua; Zhang, Bingyu; Huang, Qinjun; Zhang, Xianghua; Huang, Rongfeng

    2009-02-01

    The stress resistance of plants can be enhanced by regulating the expression of multiple downstream genes associated with stress resistance. We used the Agrobacterium method to transfer the tomato jasmonic ethylene responsive factors (JERFs) gene that encodes the ethylene response factor (ERF) like transcription factor to the genome of a hybrid poplar (Populus alba x Populus berolinensis). Eighteen resistant plants were obtained, of which 13 were identified by polymerase chain reaction (PCR), reverse transcriptase PCR and Southern blot analyses as having incorporated the JERFs gene and able to express it at the transcriptional level. Salinity tests were conducted in a greenhouse with 0, 100, 200 and 300 mM NaCl. In the absence of NaCl, the transgenic plants were significantly taller than the control plants, but no statistically significant differences in the concentrations of proline and chlorophyll were observed. With increasing salinity, the extent of damage was significantly less in transgenic plants than that in control plants, and the reductions in height, basal diameter and biomass were less in transgenic plants than those in control plants. At 200 and 300 mM NaCl concentrations, transgenic plants were 128.9% and 98.8% taller, respectively, and had 199.8% and 113.0% more dry biomass, respectively, than control plants. The saline-induced reduction in leaf water content and increase in root/crown ratio were less in transgenic plants than in control plants. Foliar proline concentration increased more in response to salt treatment in transgenic plants than in control plants. Foliar Na(+) concentration was higher in transgenic plants than in control plants. In the coastal area in Panjin of Liaoning where the total soil salt concentration is 0.3%, a salt tolerance trial of transgenic plants indicated that 3-year-old transgenic plants were 14.5% and 33.6% taller than the control plants at two field sites. The transgenic plants at the two field sites were growing

  2. Hemophilia A gene therapy via intraosseous delivery of factor VIII-lentiviral vectors.

    PubMed

    Miao, Carol H

    2016-01-01

    Current treatment of hemophilia A (HemA) patients with repeated infusions of factor VIII (FVIII; abbreviated as F8 in constructs) is costly, inconvenient, and incompletely effective. In addition, approximately 25 % of treated patients develop anti-factor VIII immune responses. Gene therapy that can achieve long-term phenotypic correction without the complication of anti-factor VIII antibody formation is highly desired. Lentiviral vector (LV)-mediated gene transfer into hematopoietic stem cells (HSCs) results in stable integration of FVIII gene into the host genome, leading to persistent therapeutic effect. However, ex vivo HSC gene therapy requires pre-conditioning which is highly undesirable for hemophilia patients. The recently developed novel methodology of direct intraosseous (IO) delivery of LVs can efficiently transduce bone marrow cells, generating high levels of transgene expression in HSCs. IO delivery of E-F8-LV utilizing a ubiquitous EF1α promoter generated initially therapeutic levels of FVIII, however, robust anti-FVIII antibody responses ensued neutralized functional FVIII activity in the circulation. In contrast, a single IO delivery of G-FVIII-LV utilizing a megakaryocytic-specific GP1bα promoter achieved platelet-specific FVIII expression, leading to persistent, partial correction of HemA in treated animals. Most interestingly, comparable therapeutic benefit with G-F8-LV was obtained in HemA mice with pre-existing anti-FVIII inhibitors. Platelets is an ideal IO delivery vehicle since FVIII stored in α-granules of platelets is protected from high-titer anti-FVIII antibodies; and that even relatively small numbers of activated platelets that locally excrete FVIII may be sufficient to promote efficient clot formation during bleeding. Additionally, combination of pharmacological agents improved transduction of LVs and persistence of transduced cells and transgene expression. Overall, a single IO infusion of G-F8-LV can generate long-term stable

  3. Platelet derived growth factor B gene expression in the Xenopus laevis developing central nervous system.

    PubMed

    Giannetti, Kety; Corsinovi, Debora; Rossino, Cristina; Appolloni, Irene; Malatesta, Paolo; Ori, Michela

    2016-01-01

    Platelet-derived growth factor B (PDGF-B) belongs to the mitogen and growth factor family and like the other members it has many roles in cell differentiation, proliferation and migration during development, adult life and in pathological conditions. Among them it has been observed that aberrant PDGF signalling is frequently linked to glioma development and progression, and Pdgf-b over-expression in mouse neural progenitors leads to the formation of gliomas. Despite this evidence, the mechanisms underlying PDGF-B driven tumorigenesis and its role during brain development are not fully understood. In order to contribute to clarifying possible new roles of pdgf-b signalling, we present here the embryonic gene expression pattern of pdgf-b, so far unknown in early vertebrate development. By using Xenopus laevis as a model system we performed qRT-PCR and whole mount in situ hybridization. Pdgf-b mRNA is expressed in discrete regions of the developing central nervous system, in the cranial nerve placodes and in the notochord. We also compared the gene expression of pdgf-b with that of its receptor pdgfr-α suggesting so far unsuspected roles for this signalling pathway during the development of specific embryonic structures.

  4. Alfalfa Enod12 genes are differentially regulated during nodule development by Nod factors and Rhizobium invasion.

    PubMed Central

    Bauer, P; Crespi, M D; Szécsi, J; Allison, L A; Schultze, M; Ratet, P; Kondorosi, E; Kondorosi, A

    1994-01-01

    MsEnod12A and MsEnod12B are two early nodulin genes from alfalfa (Medicago sativa). Differential expression of these genes was demonstrated using a reverse transcription-polymerase chain reaction approach. MsEnod12A RNA was detected only in nodules and not in other plant tissues. In contrast, MsEnod12B transcripts were found in nodules and also at low levels in roots, flowers, stems, and leaves. MsEnod12B expression was enhanced in the root early after inoculation with the microsymbiont Rhizobium meliloti and after treatment with purified Nod factors, whereas MsEnod12A induction was detected only when developing nodules were visible. In situ hybridization showed that in nodules, MsEnod12 expression occurred in the infection zone. In empty Fix- nodules the MsEnod12A transcript level was much reduced, and in spontaneous nodules it was not detectable. These data indicate that MsEnod12B expression in roots is related to the action of Nod factors, whereas MsEnod12A expression is associated with the invasion process in nodules. Therefore, alfalfa possesses different mechanisms regulating MsEnod12A and MsEnod12B expression. PMID:8066132

  5. Comparative expression analysis of transcription factor genes in the endostyle of invertebrate chordates.

    PubMed

    Hiruta, Jin; Mazet, Francoise; Yasui, Kinya; Zhang, Peijun; Ogasawara, Michio

    2005-07-01

    The endostyle of invertebrate chordates is a pharyngeal organ that is thought to be homologous with the follicular thyroid of vertebrates. Although thyroid-like features such as iodine-concentrating and peroxidase activities are located in the dorsolateral part of both ascidian and amphioxus endostyles, the structural organization and numbers of functional units are different. To estimate phylogenetic relationships of each functional zone with special reference to the evolution of the thyroid, we have investigated, in ascidian and amphioxus, the expression patterns of thyroid-related transcription factors such as TTF-2/FoxE4 and Pax2/5/8, as well as the forkhead transcription factors FoxQ1 and FoxA. Comparative gene expression analyses depicted an overall similarity between ascidians and amphioxus endostyles, while differences in expression patterns of these genes might be specifically related to the addition or elimination of a pair of glandular zones. Expressions of Ci-FoxE and BbFoxE4 suggest that the ancestral FoxE class might have been recruited for the formation of thyroid-like region in a possible common ancestor of chordates. Furthermore, coexpression of FoxE4, Pax2/5/8, and TPO in the dorsolateral part of both ascidian and amphioxus endostyles suggests that genetic basis of the thyroid function was already in place before the vertebrate lineage.

  6. Development of a novel gene silencer pyrrole-imidazole polyamide targeting human connective tissue growth factor.

    PubMed

    Wan, Jian-Xin; Fukuda, Noboru; Ueno, Takahiro; Watanabe, Takayoshi; Matsuda, Hiroyuki; Saito, Kosuke; Nagase, Hiroki; Matsumoto, Yoshiaki; Matsumoto, Koichi

    2011-01-01

    Pyrrole-imidazole (PI) polyamide can bind to specific sequences in the minor groove of double-helical DNA and inhibit transcription of the genes. We designed and synthesized a PI polyamide to target the human connective tissue growth factor (hCTGF) promoter region adjacent to the Smads binding site. Among coupling activators that yield PI polyamides, 1-[bis(dimethylamino)methylene]-5-chloro-1H-benzotriazolium 3-oxide hexafluorophosphate (HCTU) was most effective in total yields of PI polyamides. A gel shift assay showed that a PI polyamide designed specifically for hCTGF (PI polyamide to hCTGF) bound the appropriate double-stranded oligonucleotide. A fluorescein isothiocyanate (FITC)-conjugated PI polyamide to CTGF permeated cell membranes and accumulated in the nuclei of cultured human mesangial cells (HMCs) and remained there for 48 h. The PI polyamide to hCTGF significantly decreased phorbol 12-myristate acetate (PMA)- or transforming growth factor-β1 (TGF-β1)-stimulated luciferase activity of the hCTGF promoter in cultured HMCs. The PI polyamide to hCTGF significantly decreased PMA- or TGF-β1-stimulated expression of hCTGF mRNA in a dose-dependent manner. The PI polyamide to hCTGF significantly decreased PMA- or TGF-β1-stimulated levels of hCTGF protein in HMCs. These results indicate that the developed synthetic PI polyamide to hCTGF could be a novel gene silencer for fibrotic diseases.

  7. Testicular gene expression of steroidogenesis-related factors in prepubertal, postpubertal, and aging dogs.

    PubMed

    Ogawa, E; Kawate, N; Inaba, T; Tamada, H

    2017-03-01

    Developmental and aging changes in testicular factors related to steroidogenesis are unknown in dogs. Using reverse transcription quantitative real-time PCR, this study examined testicular mRNA levels of CYP11A1 (P450 cholesterol side-chain cleavage enzyme, P450scc), CYP17A1 (P450 17α-hydroxylase/C17-20 lyase, P450c17), HSD3B2 (3β-hydroxysteroid dehydrogenase, 3β-HSD), CYP19A (P450 aromatase, P450arom), STAR (steroidogenic acute regulatory protein, StAR), cyclooxygenase (COX) -1 and COX-2 in prepubertal (4-6 months of age), postpubertal (1 year of age), and aging (2-18 years of age) dogs. Testicular mRNA levels for P450scc, 3β-HSD, StAR, COX-1, and COX-2 did not change from prepubertal to postpubertal stages, whereas that for P450arom markedly and abruptly increased and that for P450c17 gradually decreased. In postpubertal and aging dogs, a negative correlation was found between aging and testicular P450arom mRNA levels. Based on the rapid testicular growth observed during puberty, these results suggested that total testis gene expression for steroidogenesis-related factors, in particular for P450arom, increases during puberty in dogs. In addition, the decline in P450arom gene expression during aging may affect the ability to synthesize steroids in canine testes.

  8. Vascular behcet and mutations in thrombogenic genes: methylene tetrahydrofolate reductase, factor V, and prothrombin.

    PubMed

    Dagan, Efrat; Baruch, Yoav; Fiorilli, Massimo; Rozenbaum, Michael; Rosner, Itzhak; Gershoni-Baruch, Ruth

    2012-01-01

    Vasculitis, thrombophlebitis, arterial aneurysms, and occlusions occur in about 25% of patients with Behçet's disease (BD). The common inherited gene defects, factor V (FV) 1691A (Leiden), methylene tetrahydrofolate reductase (MTHFR) 677T, and prothrombin 20210A, are known risk factors for thrombosis. The aim of the study was to evaluate the contribution of these mutations to thrombosis in Israeli patients with BD. Fifty-four patients with BD (n=54; 27 men and 27 women) underwent clinical and genetic evaluation. Most patients (n=43; 79.6%) were of Arab descent (31 sporadic and 12 familial cases from 4 families), and 11 patients (20.4%) were of Jewish descent (all sporadic cases). The FV Leiden mutation was identified in five patients (9.2%), and eight patients were MTHFR 677TT homozygotes (14.8%). None had the 20210A mutant prothrombin allele. No statistical differences between carriers and noncarriers with regards to demographic and disease manifestations were calculated. Arabs were diagnosed earlier than Jewish patients (25.8±11.6 compared with 37.2±10.7, p=0.01, respectively), but Jewish patients had, respectively, more events of deep vein thrombosis (DVT) compared with Arabs (3 of 11, 27.3% and 3 of 43, 7%, p=0.09). Thrombotic events in our patients with BD were not associated with variations in thrombophilic genes.

  9. Developmentally Regulated Expression of the Nerve Growth Factor Receptor Gene in the Periphery and Brain

    NASA Astrophysics Data System (ADS)

    Buck, C. R.; Martinez, Humberto J.; Black, Ira B.; Chao, Moses V.

    1987-05-01

    Nerve growth factor (NGF) regulates development and maintenance of function of peripheral sympathetic and sensory neurons. A potential role for the trophic factor in brain has been detected only recently. The ability of a cell to respond to NGF is due, in part, to expression of specific receptors on the cell surface. To study tissue-specific expression of the NGF receptor gene, we have used sensitive cRNA probes for detection of NGF receptor mRNA. Our studies indicate that the receptor gene is selectively and specifically expressed in sympathetic (superior cervical) and sensory (dorsal root) ganglia in the periphery, and by the septum-basal forebrain centrally, in the neonatal rat in vivo. Moreover, examination of tissues from neonatal and adult rats reveals a marked reduction in steady-state NGF receptor mRNA levels in sensory ganglia. In contrast, a 2- to 4-fold increase was observed in the basal forebrain and in the sympathetic ganglia over the same time period. Our observations suggest that NGF receptor mRNA expression is developmentally regulated in specific areas of the nervous system in a differential fashion.

  10. APP-dependent glial cell line-derived neurotrophic factor gene expression drives neuromuscular junction formation.

    PubMed

    Stanga, Serena; Zanou, Nadège; Audouard, Emilie; Tasiaux, Bernadette; Contino, Sabrina; Vandermeulen, Gaëlle; René, Frédérique; Loeffler, Jean-Philippe; Clotman, Frédéric; Gailly, Philippe; Dewachter, Ilse; Octave, Jean-Noël; Kienlen-Campard, Pascal

    2016-05-01

    Besides its crucial role in the pathogenesis of Alzheimer's disease, the knowledge of amyloid precursor protein (APP) physiologic functions remains surprisingly scarce. Here, we show that APP regulates the transcription of the glial cell line-derived neurotrophic factor (GDNF). APP-dependent regulation of GDNF expression affects muscle strength, muscular trophy, and both neuronal and muscular differentiation fundamental for neuromuscular junction (NMJ) maturation in vivo In a nerve-muscle coculture model set up to modelize NMJ formation in vitro, silencing of muscular APP induces a 30% decrease in secreted GDNF levels and a 40% decrease in the total number of NMJs together with a significant reduction in the density of acetylcholine vesicles at the presynaptic site and in neuronal maturation. These defects are rescued by GDNF expression in muscle cells in the conditions where muscular APP has been previously silenced. Expression of GDNF in muscles of amyloid precursor protein null mice corrected the aberrant synaptic morphology of NMJs. Our findings highlight for the first time that APP-dependent GDNF expression drives the process of NMJ formation, providing new insights into the link between APP gene regulatory network and physiologic functions.-Stanga, S., Zanou, N., Audouard, E., Tasiaux, B., Contino, S., Vandermeulen, G., René, F., Loeffler, J.-P., Clotman, F., Gailly, P., Dewachter, I., Octave, J.-N., Kienlen-Campard, P. APP-dependent glial cell line-derived neurotrophic factor gene expression drives neuromuscular junction formation.

  11. Bacillus cereus from blood cultures: virulence genes, antimicrobial susceptibility and risk factors for blood stream infection.

    PubMed

    Horii, Toshinobu; Notake, Shigeyuki; Tamai, Kiyoko; Yanagisawa, Hideji

    2011-11-01

    We characterized the profiles of virulence genes and antimicrobial susceptibility of Bacillus cereus isolates from blood cultures as well as the risk factors for blood stream infections (BSIs). The diversity of virulence gene patterns was found to be wide among 15 B. cereus isolates from BSIs and also among 11 isolates from contaminated blood cultures. The MicroScan broth microdilution method yielded results corresponding with those of the agar dilution (reference) method for levofloxacin, linezolid, and vancomycin, while the Etest results were consistent with the reference results for clindamycin, gentamicin, imipenem, levofloxacin, and linezolid. Compared with the reference values, however, some isolates showed marked differences of the minimum inhibitory concentrations (MICs) for ampicillin and clindamycin when determined using the MicroScan method, or the MICs for ampicillin, meropenem, and vancomycin when determined using the Etest method. Significantly more patients were treated with antimicrobials for more than 3 days during the 3-month period before isolation in the BSI group. Prior antimicrobial therapy may be a risk factor for BSIs due to B. cereus.

  12. Multiple transcription factor codes activate epidermal wound-response genes in Drosophila.

    PubMed

    Pearson, Joseph C; Juarez, Michelle T; Kim, Myungjin; Drivenes, Øyvind; McGinnis, William

    2009-02-17

    Wounds in Drosophila and mouse embryos induce similar genetic pathways to repair epidermal barriers. However, the transcription factors that transduce wound signals to repair epidermal barriers are largely unknown. We characterize the transcriptional regulatory enhancers of 4 genes-Ddc, ple, msn, and kkv-that are rapidly activated in epidermal cells surrounding wounds in late Drosophila embryos and early larvae. These epidermal wound enhancers all contain evolutionarily conserved sequences matching binding sites for JUN/FOS and GRH transcription factors, but vary widely in trans- and cis-requirements for these inputs and their binding sites. We propose that the combination of GRH and FOS is part of an ancient wound-response pathway still used in vertebrates and invertebrates, but that other mechanisms have evolved that result in similar transcriptional output. A common, but largely untested assumption of bioinformatic analyses of gene regulatory networks is that transcription units activated in the same spatial and temporal patterns will require the same cis-regulatory codes. Our results indicate that this is an overly simplistic view.

  13. Effective gene therapy for haemophilic mice with pathogenic factor IX antibodies.

    PubMed

    Markusic, David M; Hoffman, Brad E; Perrin, George Q; Nayak, Sushrusha; Wang, Xiaomei; LoDuca, Paul A; High, Katherine A; Herzog, Roland W

    2013-11-01

    Formation of pathogenic antibodies is a major problem in replacement therapies for inherited protein deficiencies. For example, antibodies to coagulation factors ('inhibitors') seriously complicate treatment of haemophilia. While immune tolerance induction (ITI) protocols have been developed, inhibitors against factor IX (FIX) are difficult to eradicate due to anaphylactic reactions and nephrotic syndrome and thus substantially elevate risks for morbidity and mortality. However, hepatic gene transfer with an adeno-associated virus (AAV) serotype 8 vector expressing FIX (at levels of ≥4% of normal) rapidly reversed pre-existing high-titre inhibitors in haemophilia B mice, eliminated antibody production by B cells, desensitized from anaphylaxis (even if protein therapy was resumed) and provided long-term correction. High levels of FIX protein suppressed memory B cells and increased Treg induction, indicating direct and indirect mechanisms of suppression of inhibitor formation. Persistent presence of Treg was required to prevent relapse of antibodies. Together, these data suggest that hepatic gene transfer-based ITI provides a safe and effective alternative to eradicate inhibitors. This strategy may be broadly applicable to reversal of antibodies in different genetic diseases.

  14. Landscape-scale variation in an anthropogenic factor shapes immune gene variation within a wild population.

    PubMed

    Gonzalez-Quevedo, Catalina; Davies, Richard G; Phillips, Karl P; Spurgin, Lewis G; Richardson, David S

    2016-09-01

    Understanding the spatial scale at which selection acts upon adaptive genetic variation in natural populations is fundamental to our understanding of evolutionary ecology, and has important ramifications for conservation. The environmental factors to which individuals of a population are exposed can vary at fine spatial scales, potentially generating localized patterns of adaptation. Here, we compared patterns of neutral and major histocompatibility complex (MHC) variation within an island population of Berthelot's pipit (Anthus berthelotii) to assess whether landscape-level differences in pathogen-mediated selection generate fine-scale spatial structuring in these immune genes. Specifically, we tested for spatial associations between the distribution of avian malaria, and the factors previously shown to influence that distribution, and MHC variation within resident individuals. Although we found no overall genetic structure across the population for either neutral or MHC loci, we did find localized associations between environmental factors and MHC variation. One MHC class I allele (ANBE48) was directly associated with malaria infection risk, while the presence of the ANBE48 and ANBE38 alleles within individuals correlated (positively and negatively, respectively) with distance to the nearest poultry farm, an anthropogenic factor previously shown to be an important determinant of disease distribution in the study population. Our findings highlight the importance of considering small spatial scales when studying the patterns and processes involved in evolution at adaptive loci.

  15. Prospects of Neurotrophic Factors for Parkinson's Disease: Comparison of Protein and Gene Therapy.

    PubMed

    Domanskyi, Andrii; Saarma, Mart; Airavaara, Mikko

    2015-08-01

    Neurotrophic factors (NTFs) hold great potential as therapeutic agents in the treatment of neurodegenerative conditions, including Parkinson's disease (PD), in which the progressive loss of dopamine neurons in the substantia nigra pars compacta causes severe motor symptoms. There is extensive evidence that in preclinical animal models of PD NTFs are both neuroprotective and neurorestorative. In particular, glial cell line-derived neurotrophic factor (GDNF), neurturin (NRTN), cerebral dopamine neurotrophic factor, and mesencephalic astrocyte-derived neurotrophic factor have shown great potential to restore dopamine neurocircuitry. Although some previous clinical trials have demonstrated limited efficacy of GDNF and NRTN, there are several concerns raised with these studies. Moreover, open-label studies with GDNF as well as a study with NRTN showed clinical improvement, particularly in patients with early-stage PD. Indeed, as previous clinical trials with NTFs were associated with several technical problems, there is a great need for further investigations. In this review we discuss the emerging and existing possibilities to use NTFs as neurorestorative agents and the ways to improve their efficacy, and compare gene therapy and recombinant protein therapy approaches for restoring the dopamine circuitry in PD.

  16. Serum Response Factor Mediated Gene Activity in Physiological and Pathological Processes of Neuronal Motility

    PubMed Central

    Knöll, Bernd

    2011-01-01

    In recent years, the transcription factor serum response factor (SRF) was shown to contribute to various physiological processes linked to neuronal motility. The latter include cell migration, axon guidance, and, e.g., synapse function relying on cytoskeletal dynamics, neurite outgrowth, axonal and dendritic differentiation, growth cone motility, and neurite branching. SRF teams up with myocardin related transcription factors (MRTFs) and ternary complex factors (TCFs) to mediate cellular actin cytoskeletal dynamics and the immediate-early gene (IEG) response, a bona fide indicator of neuronal activation. Herein, I will discuss how SRF and cofactors might modulate physiological processes of neuronal motility. Further, potential mechanisms engaged by neurite growth promoting molecules and axon guidance cues to target SRF’s transcriptional machinery in physiological neuronal motility will be presented. Of note, altered cytoskeletal dynamics and rapid initiation of an IEG response are a hallmark of injured neurons in various neurological disorders. Thus, SRF and its MRTF and TCF cofactors might emerge as a novel trio modulating peripheral and central axon regeneration. PMID:22164132

  17. Origins of immunity: transcription factors and homologues of effector genes of the vertebrate immune system expressed in sea urchin coelomocytes.

    PubMed

    Pancer, Z; Rast, J P; Davidson, E H

    1999-08-01

    Echinoderms share common ancestry with the chordates within the deuterostome clade. Molecular features that are shared between their immune systems and that of mammals thus illuminate the basal genetic framework on which these immune systems have been constructed during evolution. The immune effector cells of sea urchins are the coelomocytes, whose primary function is protection against invasive marine pathogens; here we identify six genes expressed in coelomocytes, homologues of which are also expressed in cells of the mammalian immune system. Three coelomocyte genes reported here encode transcription factors. These are an NFKB homologue (SpNFKB); a GATA-2/3 homologue (SpGATAc); and a runt domain factor (SpRunt-1). All three of these coelomocyte genes respond sharply to bacterial challenge: SpNFKB and SpRunt-1 genes are rapidly up-regulated, while transcripts of SpGATAc factor disappear within hours of injection of bacteria. Sham injection also activates SpNFKB and SpRunt, though with slower kinetics, but does not affect SpGATAc levels. Another gene, SpHS, encodes a protein related to the signal transduction intermediate HS1 of lymphoid cells. Two other newly discovered genes, SpSRCR1 and SpSRCR5, encode proteins featuring SRCR repeats. These genes are members of a complex family of SRCR genes all expressed specifically in coelomocytes. The SRCR repeats most closely resemble those of mammalian macrophage scavenger receptors. Remarkably, each individual sea urchin expresses a specific pattern of SRCR genes. Our results imply some shared immune functions and more generally, a shared regulatory architecture which underlies immune system gene expression in all deuterostomes. We conclude that the vertebrate immune system has evolved by inserting new genes into old gene regulatory networks dedicated to immunity.

  18. Identification of Heat Shock Transcription Factor Genes Involved in Thermotolerance of Octoploid Cultivated Strawberry

    PubMed Central

    Liao, Wan-Yu; Lin, Lee-Fong; Jheng, Jing-Lian; Wang, Chun-Chung; Yang, Jui-Hung; Chou, Ming-Lun

    2016-01-01

    Heat shock transcription factors (HSFs) are mainly involved in the activation of genes in response to heat stress as well as other abiotic and biotic stresses. The growth, development, reproduction, and yield of strawberry are strongly limited by extreme temperatures and droughts. In this study, we used Illumina sequencing and obtained transcriptome data set from Fragaria × ananassa Duchessne cv. Toyonoka. Six contigs and three unigenes were confirmed to encode HSF proteins (FaTHSFs). Subsequently, we characterized the biological functions of two particularly selected unigenes, FaTHSFA2a and FaTHSFB1a, which were classified into class A2 and B HSFs, respectively. Expression assays revealed that FaTHSFA2a and FaTHSFB1a expression was induced by heat shock and correlated well with elevated ambient temperatures. Overexpression of FaTHSFA2a and FaTHSFB1a resulted in the activation of their downstream stress-associated genes, and notably enhanced the thermotolerance of transgenic Arabidopsis plants. Besides, both FaTHSFA2a and FaTHSFB1a fusion proteins localized in the nucleus, indicating their similar subcellular distributions as transcription factors. Our yeast one-hybrid assay suggested that FaTHSFA2a has trans-activation activity, whereas FaTHSFB1a expresses trans-repression function. Altogether, our annotated transcriptome sequences provide a beneficial resource for identifying most genes expressed in octoploid strawberry. Furthermore, HSF studies revealed the possible insights into the molecular mechanisms of thermotolerance, thus rendering valuable molecular breeding to improve the tolerance of strawberry in response to high-temperature stress. PMID:27999304

  19. Activation of transcription factor genes in striatum by cocaine: role of both serotonin and dopamine systems.

    PubMed

    Bhat, R V; Baraban, J M

    1993-10-01

    Acute administration of cocaine increases expression of the transcription factor genes c-fos and zif268 in the striatum. This response is thought to be mediated via D1 dopamine (DA) receptors, as it is blocked by the selective D1 receptor antagonist SCH 23390. However, the directly acting D1 receptor agonists, apomorphine and SKF 38393, do not mimic cocaine's activation of these genes raising the possibility that D1 receptor activation is necessary, but not sufficient, to trigger transcription factor expression. Because cocaine blocks uptake of norepinephrine (NE) and serotonin (5-HT), as well as DA, we examined whether cocaine's ability to inhibit NE and 5-HT uptake may contribute to its induction of c-fos and zif268 expression in striatum. In examining the effects of selective monoamine uptake inhibitors, we observed that fluoxetine or citalopram, selective inhibitors of 5-HT uptake, potentiated the ability of mazindol, a DA and NE uptake inhibitor, to induce zif268 and c-fos expression, even though these 5-HT uptake inhibitors had no effect when administered alone. In contrast, the selective NE uptake inhibitor, desipramine, administered alone, or in combination with fluoxetine, did not increase expression of zif268 or c-fos. Furthermore, selective denervation of 5-HT projections by p-chloroamphetamine treatment attenuated the increase in zif268 and c-fos expression induced by cocaine in the striatum. In contrast, selective lesions of NE projections with N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride failed to block cocaine's activation of these genes in the striatum. Taken together, these findings indicate that cocaine's ability to induce striatal expression of c-fos and zif268 is mediated by its effects on both the 5-HT and DA systems.

  20. Transforming growth factor-beta receptor requirements for the induction of the endothelin-1 gene.

    PubMed

    Castañares, Cristina; Redondo-Horcajo, Mariano; Magan-Marchal, Noemi; Lamas, Santiago; Rodriguez-Pascual, Fernando

    2006-06-01

    Expression of the endothelin (ET)-1 gene is subject to complex regulation by numerous factors, among which the cytokine transforming growth factor-beta (TGF-beta) is one of the most important. TGF-beta action is based on the activation of the Smad signaling pathway. Smad proteins activate transcription of the gene by cooperation with activator protein-1 (AP-1) at specific sites on the ET-1 promoter. Smad signaling pathway is initiated by binding of the cytokine to a heteromeric complex of type I and type II receptors. Signal is then propagated to the nucleus by specific members of the Smad family. Most cell types contain a type I receptor known as ALK5. However, endothelial cells are unique because they coexpress an additional type I receptor named ALK1. These forms do not constitute redundant receptors with the same function, but they actually activate different Smad-mediated expression programs that lead to specific endothelial phenotypes. TGF-beta/ALK5/Smad3 pathway is associated to a mature endothelium because it leads to inhibition of cell migration/proliferation. Conversely, TGF-beta/ALK1/Smad5 activates both processes and is more related to the angiogenic state. We have analyzed the TGF-beta receptor subtype requirements for the activation of the ET-1 gene. For that purpose, we have overexpressed type I receptor and Smad isoforms in endothelial cells and analyzed the effect on ET-1 expression. Our experiments indicate that TGF-beta induces ET-1 expression preferentially through the activation of the ALK5/Smad3 pathway and, therefore, the expression of the vaso-constrictor may be associated to a quiescent and mature endothelial phenotype.

  1. c-Jun Gene-Modified Schwann Cells: Upregulating Multiple Neurotrophic Factors and Promoting Neurite Outgrowth

    PubMed Central

    Huang, Liangliang; Quan, Xin; Liu, Zhongyang; Ma, Teng; Wu, Yazhen; Ge, Jun; Zhu, Shu; Yang, Yafeng; Liu, Liang; Sun, Zhen

    2015-01-01

    Genetically modified Schwann cells (SCs) that overexpress neurotrophic factors (NFs), especially those that overexpress multiple NFs, hold great potential for promoting nerve regeneration. Currently, only one NF can be upregulated in most genetically modified SCs, and simultaneously upregulating multiple NFs in SCs remains challenging. In this study, we found that the overexpression of c-Jun, a component of the AP-1 transcription factor, effectively upregulated the expression and secretion of multiple NFs, including glial cell line-derived neurotrophic factor, brain-derived neurotrophic factor, artemin, leukemia inhibitory factor, and nerve growth factor. The c-Jun gene-modified SCs showed a normal morphology in scanning electron microscopy and fluorescent staining analysis. In addition, the c-Jun-modified SCs showed enhanced proliferation and migration abilities compared with vector control cells. We used transwell chambers to establish coculture systems imitating the in vivo conditions in which transplanted SCs might influence native SCs and neurons. We found that the c-Jun-modified SCs enhanced native SC migration and promoted the proliferation of native SCs in the presence of axons. Further analysis revealed that in the c-Jun group, the average length and the total area of neurites divided by the total area of the explant body were μm 1180±25 and 6.4±0.4, respectively, which were significantly greater compared with the other groups. These findings raise the possibility of constructing an optimal therapeutic alternative for nerve repair using c-Jun-modified SCs, which have the potential to promote axonal regeneration and functional recovery by upregulating multiple NFs. In addition, these cells exhibit enhanced migration and proliferation abilities, enhance the biological functions of native SCs, and promote neurite outgrowth. PMID:25588149

  2. Gene expression factor analysis to differentiate pathways linked to fibromyalgia, chronic fatigue syndrome, and depression in a diverse patient sample

    PubMed Central

    Iacob, Eli; Light, Alan R.; Donaldson, Gary W.; Okifuji, Akiko; Hughen, Ronald W.; White, Andrea T.; Light, Kathleen C.

    2015-01-01

    Objective To determine if independent candidate genes can be grouped into meaningful biological factors and if these factors are associated with the diagnosis of chronic fatigue syndrome (CFS) and fibromyalgia (FMS) while controlling for co-morbid depression, sex, and age. Methods We included leukocyte mRNA gene expression from a total of 261 individuals including healthy controls (n=61), patients with FMS only (n=15), CFS only (n=33), co-morbid CFS and FMS (n=79), and medication-resistant (n=42) or medication-responsive (n=31) depression. We used Exploratory Factor Analysis (EFA) on 34 candidate genes to determine factor scores and regression analysis to examine if these factors were associated with specific diagnoses. Results EFA resulted in four independent factors with minimal overlap of genes between factors explaining 51% of the variance. We labeled these factors by function as: 1) Purinergic and cellular modulators; 2) Neuronal growth and immune function; 3) Nociception and stress mediators; 4) Energy and mitochondrial function. Regression analysis predicting these biological factors using FMS, CFS, depression severity, age, and sex revealed that greater expression in Factors 1 and 3 was positively associated with CFS and negatively associated with depression severity (QIDS score), but not associated with FMS. Conclusion Expression of candidate genes can be grouped into meaningful clusters, and CFS and depression are associated with the same 2 clusters but in opposite directions when controlling for co-morbid FMS. Given high co-morbid disease and interrelationships between biomarkers, EFA may help determine patient subgroups in this population based on gene expression. PMID:26097208

  3. Construction and analysis of regulatory genetic networks in cervical cancer based on involved microRNAs, target genes, transcription factors and host genes

    PubMed Central

    WANG, NING; XU, ZHIWEN; WANG, KUNHAO; ZHU, MINGHUI; LI, YANG

    2014-01-01

    Over recent years, genes and microRNA (miRNA/miR) have been considered as key biological factors in human carcinogenesis. During cancer development, genes may act as multiple identities, including target genes of miRNA, transcription factors and host genes. The present study concentrated on the regulatory networks consisting of the biological factors involved in cervical cancer in order to investigate their features and affect on this specific pathology. Numerous raw data was collected and organized into purposeful structures, and adaptive procedures were defined for application to the prepared data. The networks were therefore built with the factors as basic components according to their interacting associations. The networks were constructed at three levels of interdependency, including a differentially-expressed network, a related network and a global network. Comparisons and analyses were made at a systematic level rather than from an isolated gene or miRNA. Critical hubs were extracted in the core networks and notable features were discussed, including self-adaption feedback regulation. The present study expounds the pathogenesis from a novel point of view and is proposed to provide inspiration for further investigation and therapy. PMID:24944708

  4. Gene Expression Changes during the Development of Acute Lung Injury Role of Transforming Growth Factor β

    PubMed Central

    Wesselkamper, Scott C.; Case, Lisa M.; Henning, Lisa N.; Borchers, Michael T.; Tichelaar, Jay W.; Mason, John M.; Dragin, Nadine; Medvedovic, Mario; Sartor, Maureen A.; Tomlinson, Craig R.; Leikauf, George D.

    2005-01-01

    Rationale: Acute lung injury can occur from multiple causes, resulting in high mortality. The pathophysiology of nickel-induced acute lung injury in mice is remarkably complex, and the molecular mechanisms are uncertain. Objectives: To integrate molecular pathways and investigate the role of transforming growth factor β (TGF-β) in acute lung injury in mice. Methods: cDNA microarray analyses were used to identify lung gene expression changes after nickel exposure. MAPPFinder analysis of the microarray data was used to determine significantly altered molecular pathways. TGF-β1 protein in bronchoalveolar lavage fluid, as well as the effect of inhibition of TGF-β, was assessed in nickel-exposed mice. The effect of TGF-β on surfactant-associated protein B (Sftpb) promoter activity was measured in mouse lung epithelial cells. Measurements and Main Results: Genes that decreased the most after nickel exposure play important roles in lung fluid absorption or surfactant and phospholipid synthesis, and genes that increased the most were involved in TGF-β signaling. MAPPFinder analysis further established TGF-β signaling to be significantly altered. TGF-β–inducible genes involved in the regulation of extracellular matrix function and fibrinolysis were significantly increased after nickel exposure, and TGF-β1 protein was also increased in the lavage fluid. Pharmacologic inhibition of TGF-β attenuated nickel-induced protein in bronchoalveolar lavage. In addition, treatment with TGF-β1 dose-dependently repressed Sftpb promoter activity in vitro, and a novel TGF-β–responsive region in the Sftpb promoter was identified. Conclusions: These data suggest that TGF-β acts as a central mediator of acute lung injury through the alteration of several different molecular pathways. PMID:16100012

  5. Methylmercury tolerance is associated with the humoral stress factor gene Turandot A

    PubMed Central

    Mahapatra, Cecon T.; Rand, Matthew D.

    2013-01-01

    Methylmercury (MeHg) is an environmental neurotoxicant that targets the developing nervous system. In an effort to understand mechanisms of MeHg toxicity we have identified candidate genes that confer tolerance to MeHg using a Drosophila model. Whole genome transcript profiling of developing larval brains of MeHg-tolerant and non-tolerant flies has identified Turandot A (TotA) as a potential MeHg tolerance gene. TotA is a secreted humoral stress response factor in Drosophila that is a direct target of conserved innate immunity signaling pathways. Here we characterize TotA expression in newly generated isogenic lines (isolines) of flies derived from our previously established MeHg-tolerant and non-tolerant populations. TotA mRNA transcript and protein expression is seen to be higher in the tolerant isolines than the non-tolerant lines. Elevated TotA expression in the tolerant lines was seen to span all the larval developmental stages pointing toward a difference in the TotA gene regulation between the MeHg tolerant and non-tolerant strains. We show that TotA is most highly expressed in the fat body (liver equivalent) and is selectively upregulated in the fat body of tolerant flies relative to brain and gut tissues. Fat body-specific transgenic expression of TotA invokes MeHg tolerance as seen by enhanced development of flies reared on MeHg food. In addition, cell based assays show that high TotA expressing C6 cells are more tolerant to MeHg than the low TotA expressing S2 cells. Knockdown of TotA in the C6 cells trends toward a reduction in MeHg tolerance. Identification of TotA as a MeHg tolerance gene suggests a role for conserved cytokine/immune signaling pathways in modulating MeHg toxicity. PMID:22546818

  6. Methylmercury tolerance is associated with the humoral stress factor gene Turandot A.

    PubMed

    Mahapatra, Cecon T; Rand, Matthew D

    2012-07-01

    Methylmercury (MeHg) is an environmental neurotoxicant that targets the developing nervous system. In an effort to understand mechanisms of MeHg toxicity we have identified candidate genes that confer tolerance to MeHg using a Drosophila model. Whole genome transcript profiling of developing larval brains of MeHg-tolerant and non-tolerant flies has identified Turandot A (TotA) as a potential MeHg tolerance gene. TotA is a secreted humoral stress response factor in Drosophila that is a direct target of conserved innate immunity signaling pathways. Here we characterize TotA expression in newly generated isogenic lines (isolines) of flies derived from our previously established MeHg-tolerant and non-tolerant populations. TotA mRNA transcript and protein expression is seen to be higher in the tolerant isolines than the non-tolerant lines. Elevated TotA expression in the tolerant lines was seen to span all the larval developmental stages pointing toward a difference in the TotA gene regulation between the MeHg tolerant and non-tolerant strains. We show that TotA is most highly expressed in the fat body (liver equivalent) and is selectively upregulated in the fat body of tolerant flies relative to brain and gut tissues. Fat body-specific transgenic expression of TotA invokes MeHg tolerance as seen by enhanced development of flies reared on MeHg food. In addition, cell based assays show that high TotA expressing C6 cells are more tolerant to MeHg than the low TotA expressing S2 cells. Knockdown of TotA in the C6 cells trends toward a reduction in MeHg tolerance. Identification of TotA as a MeHg tolerance gene suggests a role for conserved cytokine/immune signaling pathways in modulating MeHg toxicity.

  7. Brain-derived neurotrophic factor gene-modified bone marrow mesenchymal stem cells

    PubMed Central

    HAN, ZHONG-MIN; HUANG, HE-MEI; WANG, FEI-FEI

    2015-01-01

    The present study aimed to investigate the effects of human brain-derived neurotrophic factor (hBDNF) on the differentiation of bone marrow mesenchymal stem cells (MSCs) into neuron-like cells. Lentiviral vectors carrying the hBDNF gene were used to modify the bone marrow stromal cells (BMSCs) of Sprague-Dawley (SD) rats. The rat BMSCs were isolated, cultured and identified. A lentivirus bearing hBDNF and enhanced green fluorescent protein (eGFP) genes was subcultured and used to infect the SD rat BMSCs. The expression of eGFP was observed under a fluorescence microscope to determine the infection rate and growth of the transfected cells. Methylthiazolyldiphenyl-tetrazolium bromide (MTT) was used to detect the proliferation rate of cells following transfection. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blot analysis were used to detect the expression levels of hBDNF. Differentiation of neuron-like cells was induced in vitro and the differentiation rate of the induced neural-like cells was compared with that in control groups and analyzed statistically. In the cultured cells, flow cytometry demonstrated positive expression of cluster of differentiation (CD)90 and CD44, and negative expression of CD34 and CD45. The proliferation rate of the rat BMSCs increased following gene transfection. The expression of hBDNF-eGFP was detected in the BMSCs of the experimental group. The differentiation rate of hBDNF-modified cells into neuron-like cells in the experimental group was higher compared with that in empty plasmid and untransfected negative control groups. The difference was statistically significant (P<0.05). Thus, BDNF gene transfection is able to promote the differentiation of BMSCs into neuron-like cells. BDNF may play an important role in the differentiation of MSCs into neuron-like cells. PMID:25574226

  8. Transcript abundance supercedes editing efficiency as a factor in developmental variation of chloroplast gene expression.

    PubMed Central

    Peeters, Nemo M; Hanson, Maureen R

    2002-01-01

    In maize plastids, transcripts are known to be modified at 27 C-to-U RNA editing sites, affecting the expression-of 15 different genes. The relative contribution of editing efficiency versus transcript abundance in regulation of chloroplast gene expression has previously been analyzed for only a few genes. We undertook a comprehensive analysis of the editing efficiency of each of the 27 maize editing sites in 10 different maize tissues, which contain a range of plastid types including chloroplasts, etioplasts, and amyloplasts. Using a reproducible poisoned primer extension assay, we detected variation between RNA editing extent of different sites in the same transcript in the same tissue, and between the same site in different tissues. The most striking editing deficiency is in an editing site in ndhB that is edited at only 8% and 1% in roots and callus plastids respectively, whereas green leaf chloroplasts edit this site at 100%. Editing efficiencies of some sites are not affected by the developmental stages we examined and are always edited close to 80-100%. The relative amounts of transcripts of each of the 10 genes that exhibited variable editing extents were determined by real-time PCR. Seven genes exhibited over 100 times lower transcript abundance in either roots or tissue-cultured cells relative to green leaf tissue. The quantitative analysis indicates that a particular editing site can be efficiently edited over a large range of transcript abundance, resulting in no general correlation of transcript abundance and editing extent. The independent variation of editing efficiency of different sites within the same transcript fits with a model that postulates individual trans-acting factors specific to each editing site. Because tissues where editing efficiency at certain sites is low invariably also exhibited greatly decreased abundance of the transcripts carrying those sites, decrease in the amounts of particular RNAs rather than a lack of editing is

  9. Factor IXMadrid 2: a deletion/insertion in factor IX gene which abolishes the sequence of the donor junction at the exon IV-intron d splice site.

    PubMed Central

    Solera, J; Magallón, M; Martin-Villar, J; Coloma, A

    1992-01-01

    DNA from a patient with severe hemophilia B was evaluated by RFLP analysis, producing results which suggested the existence of a partial deletion within the factor IX gene. The deletion was further localized and characterized by PCR amplification and sequencing. The altered allele has a 4,442-bp deletion which removes both the donor splice site located at the 5' end of intron d and the two last coding nucleotides located at the 3' end of exon IV in the normal factor IX gene; this fragment has been replaced by a 47-bp sequence from the normal factor IX gene, although this fragment has been inserted in inverted orientation. Two homologous sequences have been discovered at the ends of the deleted DNA fragment. Images Figure 1 PMID:1346483

  10. Factor IXMadrid 2: a deletion/insertion in factor IX gene which abolishes the sequence of the donor junction at the exon IV-intron d splice site.

    PubMed

    Solera, J; Magallón, M; Martin-Villar, J; Coloma, A

    1992-02-01

    DNA from a patient with severe hemophilia B was evaluated by RFLP analysis, producing results which suggested the existence of a partial deletion within the factor IX gene. The deletion was further localized and characterized by PCR amplification and sequencing. The altered allele has a 4,442-bp deletion which removes both the donor splice site located at the 5' end of intron d and the two last coding nucleotides located at the 3' end of exon IV in the normal factor IX gene; this fragment has been replaced by a 47-bp sequence from the normal factor IX gene, although this fragment has been inserted in inverted orientation. Two homologous sequences have been discovered at the ends of the deleted DNA fragment.

  11. Role of Dicer1-Dependent Factors in the Paracrine Regulation of Epididymal Gene Expression.

    PubMed

    Jerczynski, Olivia; Lacroix-Pépin, Nicolas; Boilard, Eric; Calvo, Ezequiel; Bernet, Agathe; Fortier, Michel A; Björkgren, Ida; Sipilä, Petra; Belleannée, Clémence

    2016-01-01

    Dicer1 is an endoribonuclease involved in the biogenesis of functional molecules such as microRNAs (miRNAs) and endogenous small interfering RNAs (endo-siRNAs). These small non-coding RNAs are important regulators of post-transcriptional gene expression and participate in the control of male fertility. With the knowledge that 1) Dicer1-dependent factors are required for proper sperm maturation in the epididymis, and that 2) miRNAs are potent mediators of intercellular communication in most biological systems, we investigated the role of Dicer1-dependent factors produced by the proximal epididymis (initial segment/caput)- including miRNAs- on the regulation of epididymal gene expression in the distal epididymis regions (i.e. corpus and cauda). To this end, we performed comparative microarray and ANOVA analyses on control vs. Defb41iCre/wt;Dicer1fl/fl mice in which functional Dicer1 is absent from the principal cells of the proximal epididymis. We identified 35 and 33 transcripts that displayed significant expression level changes in the corpus and cauda regions (Fold change > 2 or < -2; p < 0.002), respectively. Among these transcripts, Zn-alpha 2-glycoprotein (Azgp1) encodes for a sperm equatorial protein whose expression in the epididymis of Dicer1 cKO mice is significantly increased compared to controls. In addition, 154 miRNAs, including miR-210, miR-672, miR-191 and miR-204, showed significantly impaired biogenesis in the absence of Dicer1 from the principal cells of the proximal epididymis (Fold change > 2 or < -2; p < 0.01). These miRNAs are secreted via extracellular vesicles (EVs) derived from the DC2 epididymal principal cell line, and their expression correlates with target transcripts involved in distinct biological pathways, as evidenced by in silico analysis. Albeit correlative and based on in silico approach, our study proposes that Dicer1-dependent factors trigger- directly or not-significant genes expression changes in distinct regions of this organ

  12. Role of Dicer1-Dependent Factors in the Paracrine Regulation of Epididymal Gene Expression

    PubMed Central

    Jerczynski, Olivia; Lacroix-Pépin, Nicolas; Boilard, Eric; Calvo, Ezequiel; Bernet, Agathe; Fortier, Michel A.; Björkgren, Ida; Sipilä, Petra; Belleannée, Clémence

    2016-01-01

    Dicer1 is an endoribonuclease involved in the biogenesis of functional molecules such as microRNAs (miRNAs) and endogenous small interfering RNAs (endo-siRNAs). These small non-coding RNAs are important regulators of post-transcriptional gene expression and participate in the control of male fertility. With the knowledge that 1) Dicer1-dependent factors are required for proper sperm maturation in the epididymis, and that 2) miRNAs are potent mediators of intercellular communication in most biological systems, we investigated the role of Dicer1-dependent factors produced by the proximal epididymis (initial segment/caput)- including miRNAs- on the regulation of epididymal gene expression in the distal epididymis regions (i.e. corpus and cauda). To this end, we performed comparative microarray and ANOVA analyses on control vs. Defb41iCre/wt;Dicer1fl/fl mice in which functional Dicer1 is absent from the principal cells of the proximal epididymis. We identified 35 and 33 transcripts that displayed significant expression level changes in the corpus and cauda regions (Fold change > 2 or < −2; p < 0.002), respectively. Among these transcripts, Zn-alpha 2-glycoprotein (Azgp1) encodes for a sperm equatorial protein whose expression in the epididymis of Dicer1 cKO mice is significantly increased compared to controls. In addition, 154 miRNAs, including miR-210, miR-672, miR-191 and miR-204, showed significantly impaired biogenesis in the absence of Dicer1 from the principal cells of the proximal epididymis (Fold change > 2 or < −2; p < 0.01). These miRNAs are secreted via extracellular vesicles (EVs) derived from the DC2 epididymal principal cell line, and their expression correlates with target transcripts involved in distinct biological pathways, as evidenced by in silico analysis. Albeit correlative and based on in silico approach, our study proposes that Dicer1-dependent factors trigger- directly or not—significant genes expression changes in distinct regions of this

  13. Association of Nuclear Factor-Erythroid 2-Related Factor 2, Thioredoxin Interacting Protein, and Heme Oxygenase-1 Gene Polymorphisms with Diabetes and Obesity in Mexican Patients

    PubMed Central

    Jiménez-Osorio, Angélica Saraí; González-Reyes, Susana; García-Niño, Wylly Ramsés; Moreno-Macías, Hortensia; Rodríguez-Arellano, Martha Eunice; Vargas-Alarcón, Gilberto; Zúñiga, Joaquín; Barquera, Rodrigo; Pedraza-Chaverri, José

    2016-01-01

    The nuclear factor-erythroid 2- (NF-E2-) related factor 2 (Nrf2) is abated and its ability to reduce oxidative stress is impaired in type 2 diabetes and obesity. Thus, the aim of this study was to explore if polymorphisms in Nrf2 and target genes are associated with diabetes and obesity in Mexican mestizo subjects. The rs1800566 of NAD(P)H:quinone oxidoreductase 1 (NQO1) gene, rs7211 of thioredoxin interacting protein (TXNIP) gene, rs2071749 of heme oxygenase-1 (HMOX1) gene, and the rs6721961 and the rs2364723 from Nrf2 gene were genotyped in 627 diabetic subjects and 1020 controls. The results showed that the rs7211 polymorphism is a protective factor against obesity in nondiabetic subjects (CC + CT versus TT, OR = 0.40, P = 0.005) and in women (CC versus CT + TT, OR = 0.7, P = 0.016). TT carriers had lower high-density lipoprotein cholesterol levels and lower body mass index. The rs2071749 was positively associated with obesity (AA versus AG + GG, OR = 1.25, P = 0.026). Finally, the rs6721961 was negatively associated with diabetes in men (CC versus CA + AA, OR = 0.62, P = 0.003). AA carriers showed lower glucose concentrations. No association was found for rs1800566 and rs2364723 polymorphisms. In conclusion, the presence of Nrf2 and related genes polymorphisms are associated with diabetes and obesity in Mexican patients. PMID:27274779

  14. Responsiveness of genes to manipulation of transcription factors in ES cells is associated with histone modifications and tissue specificity

    PubMed Central

    2011-01-01

    Background In addition to determining static states of gene expression (high vs. low), it is important to characterize their dynamic status. For example, genes with H3K27me3 chromatin marks are not only suppressed but also poised for activation. However, the responsiveness of genes to perturbations has never been studied systematically. To distinguish gene responses to specific factors from responsiveness in general, it is necessary to analyze gene expression profiles of cells responding to a large variety of disturbances, and such databases did not exist before. Results We estimated the responsiveness of all genes in mouse ES cells using our recently published database on expression change after controlled induction of 53 transcription factors (TFs) and other genes. Responsive genes (N = 4746), which were readily upregulated or downregulated depending on the kind of perturbation, mostly have regulatory functions and a propensity to become tissue-specific upon differentiation. Tissue-specific expression was evaluated on the basis of published (GNF) and our new data for 15 organs and tissues. Non-responsive genes (N = 9562), which did not change their expression much following any perturbation, were enriched in housekeeping functions. We found that TF-responsiveness in ES cells is the best predictor known for tissue-specificity in gene expression. Among genes with CpG islands, high responsiveness is associated with H3K27me3 chromatin marks, and low responsiveness is associated with H3K36me3 chromatin, stronger tri-methylation of H3K4, binding of E2F1, and GABP binding motifs in promoters. Conclusions We thus propose the responsiveness of expression to perturbations as a new way to define the dynamic status of genes, which brings new insights into mechanisms of regulation of gene expression and tissue specificity. PMID:21306619

  15. Action of multiple intra-QTL genes concerted around a co-localized transcription factor underpins a large effect QTL

    PubMed Central

    Dixit, Shalabh; Kumar Biswal, Akshaya; Min, Aye; Henry, Amelia; Oane, Rowena H.; Raorane, Manish L.; Longkumer, Toshisangba; Pabuayon, Isaiah M.; Mutte, Sumanth K.; Vardarajan, Adithi R.; Miro, Berta; Govindan, Ganesan; Albano-Enriquez, Blesilda; Pueffeld, Mandy; Sreenivasulu, Nese; Slamet-Loedin, Inez; Sundarvelpandian, Kalaipandian; Tsai, Yuan-Ching; Raghuvanshi, Saurabh; Hsing, Yue-Ie C.; Kumar, Arvind; Kohli, Ajay

    2015-01-01

    Sub-QTLs and multiple intra-QTL genes are hypothesized to underpin large-effect QTLs. Known QTLs over gene families, biosynthetic pathways or certain traits represent functional gene-clusters of genes of the same gene ontology (GO). Gene-clusters containing genes of different GO have not been elaborated, except in silico as coexpressed genes within QTLs. Here we demonstrate the requirement of multiple intra-QTL genes for the full impact of QTL qDTY12.1 on rice yield under drought. Multiple evidences are presented for the need of the transcription factor ‘no apical meristem’ (OsNAM12.1) and its co-localized target genes of separate GO categories for qDTY12.1 function, raising a regulon-like model of genetic architecture. The molecular underpinnings of qDTY12.1 support its effectiveness in further improving a drought tolerant genotype and for its validity in multiple genotypes/ecosystems/environments. Resolving the combinatorial value of OsNAM12.1 with individual intra-QTL genes notwithstanding, identification and analyses of qDTY12.1has fast-tracked rice improvement towards food security. PMID:26507552

  16. Providencia stuartii genes activated by cell-to-cell signaling and identification of a gene required for production or activity of an extracellular factor.

    PubMed

    Rather, P N; Ding, X; Baca-DeLancey, R R; Siddiqui, S

    1999-12-01

    By utilizing reporter transposons, five Providencia stuartii genes that are activated by the accumulation of self-produced extracellular signals have been identified. These genes have been designated cma for conditioned medium activated. The presence of conditioned medium from stationary-phase cultures grown in rich media resulted in the premature activation of each gene in cells at early log phase, with activation values ranging from 6- to 26-fold. Preparation of conditioned medium from an M9 salts medium and fractionation by gel filtration chromatography resulted in fractions within the included volume which activated three of the cma fusions. In addition, depending on the reporter fusion, peak activity was found in different fractions. The partially purified factors activated in a dose-dependent manner. Characterization of the factors activating the cma fusions indicated that they were stable to heat, alkali, and acid. Furthermore, for each cma fusion, factor activity was not reproduced by the addition of homoserine lactone, homocysteine thiolactone, pyruvate, Casamino Acids, or alpha-ketoglutarate. The identities of three cma genes have been determined and revealed physiological roles in amino acid biosynthesis and nutrient import. To begin to address the pathways for production of or response to the extracellular factors, we have identified a locus, aarA, that is required for the activation of four cma fusions. The AarA product was required for factor activity in extracellular supernatants, indicating a possible role in biosynthesis or export.

  17. Identifying key stage-specific genes and transcription factors for gastric cancer based on RNA-sequencing data

    PubMed Central

    Wang, Yan

    2017-01-01

    Abstract Background: To identify gastric cancer (GC)-associated genes and transcription factors (TFs) using RNA-sequencing (RNA-seq) data of Asians. Materials and methods: The RNA-seq data (GSE36968) were downloaded from Gene Expression Omnibus database, including 6 noncancerous gastric tissue samples, 5 stage I GC samples, 5 stage II GC samples, 8 stage III GC samples, and 6 stage IV GC samples. The gene expression values in each sample were calculated using Cuffdiff. Following, stage-specific genes were identified by 1-way analysis of variance and hierarchical clustering analysis. Upstream TFs were identified using Seqpos. Besides, functional enrichment analysis of stage-specific genes was performed by DAVID. In addition, the underlying protein–protein interactions (PPIs) information among stage IV-specific genes were extracted from STRING database and PPI network was constructed using Cytoscape software. Results: A total of 3576 stage-specific genes were identified, including 813 specifically up-regulated genes in the normal gastric tissues, 2224 stage I and II-specific genes, and 539 stage IV-specific genes. Also, a total of 9 and 11 up-regulated TFs were identified for the stage I and II-specific genes and stage IV-specific genes, respectively. Functional enrichment showed SPARC, MMP17, and COL6A3 were related to extracellular matrix. Notably, 2 regulatory pathways HOXA4-GLI3-RUNX2-FGF2 and HMGA2-PRKCA were obtained from the PPI network for stage IV-specific genes. In the PPI network, TFs HOXA4 and HMGA2 might function via mediating other genes. Conclusion: These stage-specific genes and TFs might act in the pathogenesis of GC in Asians. PMID:28121923

  18. Arrangement of the Clostridium baratii F7 Toxin Gene Cluster with Identification of a σ Factor That Recognizes the Botulinum Toxin Gene Cluster Promoters

    DOE PAGES

    Dover, Nir; Barash, Jason R.; Burke, Julianne N.; ...

    2014-05-22

    Botulinum neurotoxin (BoNT) is the most poisonous substances known and its eight toxin types (A to H) are distinguished by the inability of polyclonal antibodies that neutralize one toxin type to neutralize any of the other seven toxin types. Infant botulism, an intestinal toxemia orphan disease, is the most common form of human botulism in the United States. It results from swallowed spores of Clostridium botulinum (or rarely, neurotoxigenic Clostridium butyricum or Clostridium baratii) that germinate and temporarily colonize the lumen of the large intestine, where, as vegetative cells, they produce botulinum toxin. Botulinum neurotoxin is encoded by the bontmore » gene that is part of a toxin gene cluster that includes several accessory genes. In this paper, we sequenced for the first time the complete botulinum neurotoxin gene cluster of nonproteolytic C. baratii type F7. Like the type E and the nonproteolytic type F6 botulinum toxin gene clusters, the C. baratii type F7 had an orfX toxin gene cluster that lacked the regulatory botR gene which is found in proteolytic C. botulinum strains and codes for an alternative σ factor. In the absence of botR, we identified a putative alternative regulatory gene located upstream of the C. baratii type F7 toxin gene cluster. This putative regulatory gene codes for a predicted σ factor that contains DNA-binding-domain homologues to the DNA-binding domains both of BotR and of other members of the TcdR-related group 5 of the σ70 family that are involved in the regulation of toxin gene expression in clostridia. We showed that this TcdR-related protein in association with RNA polymerase core enzyme specifically binds to the C. baratii type F7 botulinum toxin gene cluster promoters. Finally, this TcdR-related protein may therefore be involved in regulating the expression of the genes of the botulinum toxin gene cluster in neurotoxigenic C. baratii.« less

  19. A growth factor-responsive gene of murine BALB/c 3T3 cells encodes a protein homologous to human tissue factor

    SciTech Connect

    Hartzell, S.; Ryder, K.; Lanahan, A.; Nathans, D.; Lau, L.F.

    1989-06-01

    Polypeptide growth factors rapidly induce the transcription of a set of genes that appear to mediate cell growth. The authors report that one of the genes induced in BALB/c mouse 3T3 cells encodes a transmembrane protein (mTF) homologous to human tissue factor, which is involved in the proteolytic activation of blood clotting. mTF mRNA is present in many murine tissues and cell lines. The authors' results raise the possibility that mTF may also play a role in cell growth.

  20. Binding Sites for Ets Family of Transcription Factors Dominate the Promoter Regions of Differentially Expressed Genes in Abdominal Aortic Aneurysms

    PubMed Central

    Nischan, Jennifer; Gatalica, Zoran; Curtis, Mindee; Lenk, Guy M.; Tromp, Gerard; Kuivaniemi, Helena

    2011-01-01

    Background Previously, we identified 3,274 distinct differentially expressed genes in abdominal aortic aneurysm (AAA) tissue compared to non-aneurysmal controls. As transcriptional control is responsible for these expression changes, we sought to find common transcriptional elements in the promoter regions of the differentially expressed genes. Methods and Results We analyzed the up- and downregulated gene sets with Whole Genome rVISTA to determine the transcription factor binding sites (TFBSs) overrepresented in the 5 kb promoter regions of the 3,274 genes. The downregulated gene set yielded 144 TFBSs that were overrepresented in the subset when compared to the entire genome. In contrast, the upregulated gene set yielded only 13 distinct overrepresented TFBSs. Interestingly, as classified by TRANSFAC®, 8 of the 13 transcription factors (TFs) binding to these regions belong to the ETS family. Additionally, NFKB and its subunits p50 and p65 showed enrichment. Immunohistochemical analyses in 10 of the TFs from the upregulated analysis showed 9 to be present in AAA tissue. Based on Gene Ontology analysis of biological process categories of the upregulated target genes of enriched TFs, 10 TFs had enrichment in immune system process among their target genes. Conclusions Our genome-wide analysis provides further evidence of ETS and NFKB involvement in AAA. Additionally, our results provide novel insight for future studies aiming to dissect the pathogenesis of AAA and have uncovered potential therapeutic targets for AAA prevention. PMID:20031636

  1. Identification of a putative FR901469 biosynthesis gene cluster in fungal sp. No. 11243 and enhancement of the productivity by overexpressing the transcription factor gene frbF.

    PubMed

    Matsui, Makoto; Yokoyama, Tatsuya; Nemoto, Kaoru; Kumagai, Toshitaka; Terai, Goro; Tamano, Koichi; Machida, Masayuki; Shibata, Takashi

    2017-02-01

    FR901469 is an antifungal antibiotic produced by fungal sp. No. 11243. Here, we searched for FR901469 biosynthesis genes in the genome of No. 11243. Based on the molecular structure of FR901469 and endogenous functional motifs predicted in each genomic NRPS gene, a putative FR901469 biosynthesis gene cluster harboring the most plausible NRPS gene was identified. A transcription factor gene, designated frbF, was found in the cluster. To improve FR901469 productivity, we constructed a strain in which frbF was overexpressed and named it TFH2-2. FR901469 productivity of TFH2-2 was 3.4 times higher than that of the wild-type strain. Transcriptome analysis revealed that most of the genes in the putative FR901469 biosynthesis gene cluster were upregulated in TFH2-2. It also showed that the expression of genes related to ergosterol biosynthesis, β-1,3-glucan catabolism, and chitin synthesis was inclined to exhibit significant differences in TFH2-2.

  2. Immunoglobulin Gene Polymorphisms are Susceptibility Factors for Clinical and Autoantibody Subgroups of the Idiopathic Inflammatory Myopathies

    PubMed Central

    O’Hanlon, Terrance P.; Rider, Lisa G.; Schiffenbauer, Adam; Targoff, Ira N.; Malley, Karen; Pandey, Janardan P.; Miller, Frederick W.

    2009-01-01

    Objective To investigate possible associations of GM and KM markers in European Americans (EA) and African Americans (AA) with adult and juvenile forms of the idiopathic inflammatory myopathies (IIM). Methods We performed serologic analyses of polymorphic determinants associated with immunoglobulin gamma heavy (GM) and kappa light chains (KM) in large populations of EA (n=514: 297 adults and 217 juveniles) and AA IIM patients (n=109: 73 adults and 50 juveniles) representing the major clinicopathologic and autoantibody groups. Results For EA dermatomyositis (DM) patients, the GM 3 23 5,13 phenotype was a risk factor for both adults (OR=2.2; Pc=0.020) and juveniles (OR=2.2; Pc=0.0013). Of interest, the GM 13 allotype was a risk factor for juvenile DM (JDM) for both EA (OR=3.9; Pc<0.0001) and AA (OR=4.8; Pc=0.033). However, the GM 1,3,17 5,13,21 phenotype was a risk factor for JDM in EA but not in AA. Among the IIM autoantibody groups, GM 3 23 5,13 was a risk factor for EA adults with anti-Jo-1 autoantibodies (OR=3.4; Pc=0.0031), while the GM 3 allotype was protective for adults with anti-threonyl tRNA synthetase or anti-RNP autoantibodies (OR=0.1; Pc=0.047 and OR=0.2; Pc=0.034, respectively). In contrast, GM 6 was a risk factor for AA adults with anti-SRP autoantibodies (OR=7.5; Pc=0.041). Conclusions These data suggest that polymorphic alleles of GM and KM loci are differentially associated with IIM subgroups defined by age, ethnicity, clinical features and autoantibodies, and expand the list of immune response genes possibly important in the pathogenesis of myositis. PMID:18821675

  3. Hippocampal gene expression dysregulation of Klotho, nuclear factor kappa B and tumor necrosis factor in temporal lobe epilepsy patients

    PubMed Central

    2013-01-01

    Background Previous research in animal seizure models indicates that the pleiotropic cytokine TNF is an important effector/mediator of neuroinflammation and cell death. Recently, it has been demonstrated that TNF downregulates Klotho (KL) through the nuclear factor kappa B (NFkB) system in animal models of chronic kidney disease and colitis. KL function in the brain is unclear, although Klotho knockout (Kl−/−) mice exhibit neural degeneration and a reduction of hippocampal synapses. Our aim was to verify if the triad KL-NFKB1-TNF is also dysregulated in temporal lobe epilepsy associated with hippocampal sclerosis (TLE(HS)) patients. Findings We evaluated TNF, NFKB1 and KL relative mRNA expression levels by reverse transcription quantitative PCR (RT-qPCR) in resected hippocampal tissue samples from 14 TLE(HS) patients and compared them to five post mortem controls. Four reference genes were used: GAPDH, HPRT1, ENO2 and TBP. We found that TNF expression was dramatically upregulated in TLE(HS) patients (P <0.005). NFKB1 expression was also increased (P <0.03) while KL was significantly downregulated (P <0.03) in TLE(HS) patients. Hippocampal KL expression had an inverse correlation with NFKB1 and TNF. Conclusions Our data suggest that, similar to other inflammatory diseases, TNF downregulates KL through NFkB in TLE(HS) patients. The remarkable TNF upregulation in patients is a strong indication of hippocampal chronic inflammation. Our finding of hippocampal KL downregulation has wide implications not only for TLE(HS) but also for other neuronal disorders related to neurodegeneration associated with inflammation. PMID:23634661

  4. Cloning and sequence analysis of candidate human natural killer-enhancing factor genes

    SciTech Connect

    Shau, H.; Butterfield, L.H.; Chiu, R.; Kim, A.

    1994-12-31

    A cytosol factor from human red blood cells enhances natural killer (NK) activity. This factor, termed NK-enhancing factor (NKEF), is a protein of 44000 M{sub r} consisting of two subunits of equal size linked by disulfide bonds. NKEF is expressed in the NK-sensitive erythroleukemic cell line K562. Using an antibody specific for NKEF as a probe for immunoblot screening, we isolated several clones from a {lambda}gt11 cDNA library of K562. Additional subcloning and sequencing revealed that the candidate NKEF cDNAs fell into one of two categories of closely related but non-identical genes, referred to as NKEF A and B. They are 88% identical in amino acid sequence and 71% identical in nucleotide sequence. Southern blot analysis suggests that there are two to three NKEF family members in the genome. Analysis of predicted amino acid sequences indicates that both NKEF A and B are cytosol proteins with several phosphorylation sites each, but that they have no glycosylation sites. They are significantly homologous to several other proteins from a wide variety of organisms ranging from prokaryotes to mammals, especially with regard to several well-conserved motifs within the amino acid sequences. The biological functions of these proteins in other species are mostly unknown, but some of them were reported to be induced by oxidative stress. Therefore, as well as for immunoregulation of NK activity, NKEF may be important for cells in coping with oxidative insults. 32 refs., 3 figs.

  5. Gene therapy with growth factors for periodontal tissue engineering--a review.

    PubMed

    Sood, S; Gupta, S; Mahendra, A

    2012-03-01

    The treatment of oral and periodontal diseases and associated anomalies accounts for a significant proportion of the healthcare burden, with the manifestations of these conditions being functionally and psychologically debilitating. A challenge faced by periodontal therapy is the predictable regeneration of periodontal tissues lost as a consequence of disease. Growth factors are critical to the development, maturation, maintenance and repair of oral tissues as they establish an extra-cellular environment that is conducive to cell and tissue growth. Tissue engineering principles aim to exploit these properties in the development of biomimetic materials that can provide an appropriate microenvironment for tissue development. The aim of this paper is to review emerging periodontal therapies in the areas of materials science, growth factor biology and cell/gene therapy. Various such materials have been formulated into devices that can be used as vehicles for delivery of cells, growth factors and DNA. Different mechanisms of drug delivery are addressed in the context of novel approaches to reconstruct and engineer oral and tooth supporting structure.

  6. A Delta-Sarcoglycan Gene Polymorphism as a Risk Factor for Hypertrophic Cardiomyopathy

    PubMed Central

    Garrido-Garduño, Martín H.; Pérez-Martínez, Ramón A.; Ruiz, Victor M.; Herrera-Tepatlán, Esteban; Rodríguez-Cruz, Maricela; Jiménez-Vaca, Ana L.; Minauro-Sanmiguel, Fernando; Salamanca-Gómez, Fabio A.

    2012-01-01

    Background: The C allele of c.−94C>G polymorphism of the delta-sarcoglycan gene was associated as a risk factor for coronary spasm in Japanese patients with hypertrophic cardiomyopathy (HCM). Aim: We evaluated whether the c.−94C>G polymorphism can be a risk factor for HCM in Mexican patients. Methods: The polymorphism was genotyped and the risk was estimated in 35 HCM patients and 145 healthy unrelated individuals. Data of this polymorphism reported in Mexican Amerindian populations were included. Results: The C allele frequency in HCM patients was higher with an odds ratio (OR) of 2.37, and the risk for the CC genotype increased to 5.0. The analysis with Mexican Amerindian populations showed that the C allele frequency was significantly higher in HCM patients with an OR of 2.96 and for CC genotype the risk increased to 7.60. Conclusions: The C allele of the c.−94C>G polymorphism is a risk factor for HCM, which is increased by the Amerindian component and can play an important role in the etiology and progression of disease in Mexican patients. PMID:22524166

  7. Robust dynamic balance of AP-1 transcription factors in a neuronal gene regulatory network

    PubMed Central

    2010-01-01

    Background The octapeptide Angiotensin II is a key hormone that acts via its receptor AT1R in the brainstem to modulate the blood pressure control circuits and thus plays a central role in the cardiac and respiratory homeostasis. This modulation occurs via activation of a complex network of signaling proteins and transcription factors, leading to changes in levels of key genes and proteins. AT1R initiated activity in the nucleus tractus solitarius (NTS), which regulates blood pressure, has been the subject of extensive molecular analysis. But the adaptive network interactions in the NTS response to AT1R, plausibly related to the development of hypertension, are not understood. Results We developed and analyzed a mathematical model of AT1R-activated signaling kinases and a downstream gene regulatory network, with structural basis in our transcriptomic data analysis and literature. To our knowledge, our report presents the first computational model of this key regulatory network. Our simulations and analysis reveal a dynamic balance among distinct dimers of the AP-1 family of transcription factors. We investigated the robustness of this behavior to simultaneous perturbations in the network parameters using a novel multivariate approach that integrates global sensitivity analysis with decision-tree methods. Our analysis implicates a subset of Fos and Jun dependent mechanisms, with dynamic sensitivities shifting from Fos-regulating kinase (FRK)-mediated processes to those downstream of c-Jun N-terminal kinase (JNK). Decision-tree analysis indicated that while there may be a large combinatorial functional space feasible for neuronal states and parameters, the network behavior is constrained to a small set of AP-1 response profiles. Many of the paths through the combinatorial parameter space lead to a dynamic balance of AP-1 dimer forms, yielding a robust AP-1 response counteracting the biological variability. Conclusions Based on the simulation and analysis results, we

  8. Baculovirus p35 gene is oppositely regulated by P53 and AP-1 like factors in Spodoptera frugiperda

    SciTech Connect

    Mohareer, Krishnaveni; Sahdev, Sudhir; Hasnain, Seyed E.

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer Baculovirus p35 is regulated by both viral and host factors. Black-Right-Pointing-Pointer Baculovirus p35 is negatively regulated by SfP53-like factor. Black-Right-Pointing-Pointer Baculovirus p35 is positively regulated by SfAP-1-like factor. -- Abstract: Baculovirus p35 belongs to the early class of genes of AcMNPV and requires viral factors like Immediate Early protein-1 for its transcription. To investigate the role of host factors in regulating p35 gene expression, the putative transcription factor binding sites were examined in silico and the role of these factors in influencing the transcription of p35 gene was assessed. We focused our studies on AP-1 and P53-like factors, which are activated under oxidative stress conditions. The AP-1 motif is located at -1401 while P53 motif is at -1912 relative to p35 translation start site. The predicted AP-1 and P53 elements formed specific complexes with Spodoptera frugiperda nuclear extracts. Both AP-1 and P53 motif binding proteins were down regulated as a function of AcMNPV infection in Spodoptera cells. To address the question whether during an oxidative outburst, the p35 transcription is enhanced; we investigated the role of these oxidative stress induced host transcription factors in influencing p35 gene transcription. Reporter assays revealed that AP-1 element enhances the transcription of p35 by a factor of two. Interestingly, P53 element appears to repress the transcription of p35 gene.

  9. Involvement of in situ conformation of ribosomal genes and selective distribution of upstream binding factor in rRNA transcription.

    PubMed Central

    Junéra, H R; Masson, C; Géraud, G; Suja, J; Hernandez-Verdun, D

    1997-01-01

    The distribution of the ribosomal genes (rDNA) and the upstream binding factor (UBF), correlatively with their RNA transcripts, was investigated in G1, S-phase, and G2. rDNA was distributed in nucleoli, with alternate sites of clustered and dispersed genes. UBF was found associated with some but not all clustered genes and proportionally more with dispersed genes. It was distributed in several foci that were more numerous and heterogeneous in size during G2 than G1. We suggest that UBF associated with rDNA during S-phase because its nucleolar amount increased during that time and remained stable in G2. 5,6-Dichloro-1-beta-D-ribofuranosylbenzimidazole treatment indicated a similar amount of UBF per transcription unit, and consequently heterogeneous size of the UBF foci can represent a variable number of transcription units per foci. Direct visualization of the transcripts demonstrated that only part of UBF is associated with active transcription and that rDNA distribution varied with transcription. We propose that in the same rDNA locus three types of configuration coexist that are correlated with gene activity: 1) clustered genes without UBF; 2) clustered genes with UBF, of which some are associated with transcription; and 3) dispersed genes with UBF and transcription. These results support the hypothesis that rDNA transcription involved several steps of regulation acting successively and locally in the same locus to promote the repressed clustered genes to become actively transcribed dispersed genes. Images PMID:9017602

  10. Molecular evolution and gene expression differences within the HD-Zip transcription factor family of Zea mays L.

    PubMed

    Mao, Hude; Yu, Lijuan; Li, Zhanjie; Liu, Hui; Han, Ran

    2016-04-01

    Homeodomain-leucine zipper (HD-Zip) transcription factors regulate developmental processes and stress responses in plants, and they vary widely in gene number and family structure. In this study, 55 predicted maize HD-Zip genes were systematically analyzed with respect to their phylogenetic relationships, molecular evolution, and gene expression in order to understand the functional diversification within the family. Phylogenetic analysis of HD-Zip proteins from Zea mays, Oryza sativa, Arabidopsis thaliana, Vitis vinifera, and Physcomitrella patens showed that they group into four classes. We inferred that the copy numbers of classes I and III genes were relatively conserved in all five species. The 55 maize HD-Zip genes are distributed randomly on the ten chromosomes, with 15 segmental duplication and 4 tandem duplication events, suggesting that segmental duplications were the major contributors in the expansion of the maize HD-Zip gene family. Expression analysis of the 55 maize HD-Zip genes in different tissues and drought conditions revealed differences in the expression levels and patterns between the four classes. Promoter analysis revealed that a number of stress response-, hormone response-, light response-, and development-related cis-acting elements were present in their promoters. Our results provide novel insights into the molecular evolution and gene expression within the HD-Zip gene family in maize, and provide a solid foundation for future functional study of the HD-Zip genes in maize.

  11. Genome-wide analysis of the R2R3-MYB transcription factor gene family in sweet orange (Citrus sinensis).

    PubMed

    Liu, Chaoyang; Wang, Xia; Xu, Yuantao; Deng, Xiuxin; Xu, Qiang

    2014-10-01

    MYB transcription factor represents one of the largest gene families in plant genomes. Sweet orange (Citrus sinensis) is one of the most important fruit crops worldwide, and recently the genome has been sequenced. This provides an opportunity to investigate the organization and evolutionary characteristics of sweet orange MYB genes from whole genome view. In the present study, we identified 100 R2R3-MYB genes in the sweet orange genome. A comprehensive analysis of this gene family was performed, including the phylogeny, gene structure, chromosomal localization and expression pattern analyses. The 100 genes were divided into 29 subfamilies based on the sequence similarity and phylogeny, and the classification was also well supported by the highly conserved exon/intron structures and motif composition. The phylogenomic comparison of MYB gene family among sweet orange and related plant species, Arabidopsis, cacao and papaya suggested the existence of functional divergence during evolution. Expression profiling indicated that sweet orange R2R3-MYB genes exhibited distinct temporal and spatial expression patterns. Our analysis suggested that the sweet orange MYB genes may play important roles in different plant biological processes, some of which may be potentially involved in citrus fruit quality. These results will be useful for future functional analysis of the MYB gene family in sweet orange.

  12. Genome-scale study of the importance of binding site context for transcription factor binding and gene regulation

    PubMed Central

    Westholm, Jakub Orzechowski; Xu, Feifei; Ronne, Hans; Komorowski, Jan

    2008-01-01

    Background The rate of mRNA transcription is controlled by transcription factors that bind to specific DNA motifs in promoter regions upstream of protein coding genes. Recent results indicate that not only the presence of a motif but also motif context (for example the orientation of a motif or its location relative to the coding sequence) is important for gene regulation. Results In this study we present ContextFinder, a tool that is specifically aimed at identifying cases where motif context is likely to affect gene regulation. We used ContextFinder to examine the role of motif context in S. cerevisiae both for DNA binding by transcription factors and for effects on gene expression. For DNA binding we found significant patterns of motif location bias, whereas motif orientations did not seem to matter. Motif context appears to affect gene expression even more than it affects DNA binding, as biases in both motif location and orientation were more frequent in promoters of co-expressed genes. We validated our results against data on nucleosome positioning, and found a negative correlation between preferred motif locations and nucleosome occupancy. Conclusion We conclude that the requirement for stable binding of transcription factors to DNA and their subsequent function in gene regulation can impose constraints on motif context. PMID:19014636

  13. The ETS transcription factor MEF is a candidate tumor suppressor gene on the X chromosome.

    PubMed

    Seki, Yoshiyuki; Suico, Mary Ann; Uto, Ayako; Hisatsune, Akinobu; Shuto, Tsuyoshi; Isohama, Yoichiro; Kai, Hirofumi

    2002-11-15

    Although X chromosome transfer experiments indicated that tumor suppressor genes are present on the X chromosome, they have not been previously identified. In this report, we show that the ETS transcription factor MEF (ELF4), which is located on chromosome Xq26.1, possesses tumor suppressive capability. MEF expression was up-regulated by 5-azacytidine in some cancer cell lines. MEF overexpression induced morphological changes, such as the conversion of normally loose cell-cell contacts to strong interactions similar to those seen in the presence of matrix metalloproteinase (MMP) inhibitor BB94. In the colony formation assay, A549 cells, but not MEF-overexpressing cells, formed colonies in soft agar culture. Furthermore, MEF-overexpressing cells s.c. injected in the nude mice did not grow, whereas the control cells did. The A549 tumors were poorly differentiated, whereas the MEF-overexpressing tumors were well differentiated. By immunostaining with CD31, a marker on vascular endothelial cells, we found that tumor angiogenesis was significantly suppressed in the tumors formed from MEF-overexpressing cells. In addition, the conditioned media from A549 cell cultures stimulated the migration of human umbilical vein endothelial cells, whereas conditioned media from MEF-overexpressing cell cultures had less of an effect. By gelatin zymography, Western blotting analysis, and immunohistochemistry, we found that the expression levels of MMP-9 and MMP-2 were significantly reduced in MEF-overexpressing tumors. Immunohistochemical analyses showed that interleukin (IL)-8 expression was reduced in the MEF-overexpressing tumors in nude mice. Furthermore, IL-8 mRNA expression in vitro was significantly down-regulated in MEF-overexpressing cells, compared with A549 cells. MEF suppressed the transcription and promoter activities of the genes encoding MMP-9 and IL-8, whereas ETS-2 up-regulated these activities. Therefore, we propose that MEF is a candidate tumor suppressor gene on the

  14. A binding site for the transcription factor Grainyhead/Nuclear transcription factor-1 contributes to regulation of the Drosophila proliferating cell nuclear antigen gene promoter.

    PubMed

    Hayashi, Y; Yamagishi, M; Nishimoto, Y; Taguchi, O; Matsukage, A; Yamaguchi, M

    1999-12-03

    The Drosophila proliferating cell nuclear antigen promoter contains multiple transcriptional regulatory elements, including upstream regulatory element (URE), DNA replication-related element, E2F recognition sites, and three common regulatory factor for DNA replication and DNA replication-related element-binding factor genes recognition sites. In nuclear extracts of Drosophila embryos, we detected a protein factor, the URE-binding factor (UREF), that recognizes the nucleotide sequence 5'-AAACCAGTTGGCA located within URE. Analyses in Drosophila Kc cells and transgenic flies revealed that the UREF-binding site plays an important role in promoter activity both in cultured cells and in living flies. A yeast one-hybrid screen using URE as a bait allowed isolation of a cDNA encoding a transcription factor, Grainyhead/nuclear transcription factor-1 (GRH/NTF-1). The nucleotide sequence required for binding to GRH was indistinguishable from that for UREF detected in embryo nuclear extracts. Furthermore, a specific antibody to GRH reacted with UREF in embryo nuclear extracts. From these results we conclude that GRH is identical to UREF. Although GRH has been thought to be involved in regulation of differentiation-related genes, this study demonstrates, for the first time, involvement of a GRH-binding site in regulation of the DNA replication-related proliferating cell nuclear antigen gene.

  15. Functional analysis of the white gene of Drosophila by P-factor-mediated transformation.

    PubMed

    Gehring, W J; Klemenz, R; Weber, U; Kloter, U

    1984-09-01

    A 12-kb DNA segment spanning the white (w) locus of Drosophila has been inserted into a P-transposon vector and used for P-factor-mediated germ-line transformation. Several red-eyed transformants were recovered which complement the white mutant phenotype. Analysis of the eye pigments and the interaction with the zeste mutation indicates that the w gene inserted at several new chromosomal sites is expressed normally. The tissue-specific accumulation of w transcripts, as studied by in situ hybridization to tissue sections, is the same in transformant and wild-type larvae. This indicates that all the genetic information specified by the w locus is contained within this 12-kb segment of DNA. By secondary mobilization it was shown that the w sequences have been inserted as a functional P(w) transposon which is capable of further transposition.

  16. Pituitary tumor-transforming gene and its binding factor in endocrine cancer.

    PubMed

    Smith, Vicki E; Franklyn, Jayne A; McCabe, Christopher J

    2010-12-03

    The pituitary tumor-transforming gene (PTTG1) encodes a multifunctional protein (PTTG) that is overexpressed in numerous tumours, including pituitary, thyroid, breast and ovarian carcinomas. PTTG induces cellular transformation in vitro and tumourigenesis in vivo, and several mechanisms by which PTTG contributes to tumourigenesis have been investigated. Also known as the human securin, PTTG is involved in cell cycle regulation, controlling the segregation of sister chromatids during mitosis. This review outlines current information regarding PTTG structure, expression, regulation and function in the pathogenesis of neoplasia. Recent progress concerning the use of PTTG as a prognostic marker or therapeutic target will be considered. In addition, the PTTG binding factor (PBF), identified through its interaction with PTTG, has also been established as a proto-oncogene that is upregulated in several cancers. Current knowledge regarding PBF is outlined and its role both independently and alongside PTTG in endocrine and related cancers is discussed.

  17. A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease.

    PubMed

    Tuszynski, Mark H; Thal, Leon; Pay, Mary; Salmon, David P; U, Hoi Sang; Bakay, Roy; Patel, Piyush; Blesch, Armin; Vahlsing, H Lee; Ho, Gilbert; Tong, Gang; Potkin, Steven G; Fallon, James; Hansen, Lawrence; Mufson, Elliott J; Kordower, Jeffrey H; Gall, Christine; Conner, James

    2005-05-01

    Cholinergic neuron loss is a cardinal feature of Alzheimer disease. Nerve growth factor (NGF) stimulates cholinergic function, improves memory and prevents cholinergic degeneration in animal models of injury, amyloid overexpression and aging. We performed a phase 1 trial of ex vivo NGF gene delivery in eight individuals with mild Alzheimer disease, implanting autologous fibroblasts genetically modified to express human NGF into the forebrain. After mean follow-up of 22 months in six subjects, no long-term adverse effects of NGF occurred. Evaluation of the Mini-Mental Status Examination and Alzheimer Disease Assessment Scale-Cognitive subcomponent suggested improvement in the rate of cognitive decline. Serial PET scans showed significant (P < 0.05) increases in cortical 18-fluorodeoxyglucose after treatment. Brain autopsy from one subject suggested robust growth responses to NGF. Additional clinical trials of NGF for Alzheimer disease are warranted.

  18. [Effect of semax on the temporary dynamics of brain-derived neurotrophic factor and nerve growth factor gene expression in the rat hippocampus and frontal cortex].

    PubMed

    Agapova, T Iu; Agniullin, Ia V; Silachev, D N; Shadrina, M I; Slominskiĭ, P A; Shram, S I; Limborskaia, S A; Miasoedov, N F

    2008-01-01

    Semax is a synthetic peptide, which consists of the N-terminal adrenocorticotropic hormone fragment (4-7) (ACTH4-7) and C-terminal Pro-Gly-Pro peptide. Semax promotes neuron survival in hypoxia, increases selective attention and memory storage. It was shown that this synthetic peptide exerted a number of gene expressions, especially brain derived neurotrophic factor gene (Bdnf) and nerve growth factor gene (Ngf). Temporary dynamics of Bdnf and Ngf ex- pression in rat hippocampus and frontal cortex under Semax action (50 mg/kg, single intranasal administration) was studied in this work. It was shown that the studied gene expression levels changed significantly both in the hippocampus and the frontal cortex tissues 20 minutes after the peptide preparation application. The expression levels decreased in the hippocampus and increased in the frontal cortex. Forty minutes after Semax administration both gene expression levels returned to the level typical of control tissues. After that they increased significantly by 90 minutes after experiment start. Bdnf and Ngf expression levels decreased up to the control levels by 8 hours after medicine applying maximum gene expression levels were attained. Thus, Semax administration results in rapid, long-term, and specific activation of Bdnf and Ngf expression changes in different rat brain departments.

  19. Tumor necrosis factor gene expression is mediated by protein kinase C following activation by ionizing radiation.

    SciTech Connect

    Hallahan, D. E.; Virudachalam, S.; Sherman, M. L.; Huberman, E.; Kufe, D. W.; Weichselbaum, R. R.; Univ. of Chicago; Dana-Farber Cancer Inst.; Univ. of Chicago

    1991-01-01

    Tumor necrosis factor (TNF) production following X-irradiation has been implicated in the biological response to ionizing radiation. Protein kinase C (PKC) is suggested to participate in TNF transcriptional induction and X-ray-mediated gene expression. We therefore studied radiation-mediated TNF expression in HL-60 cells with diminished PKC activity produced by either pretreatment with protein kinase inhibitors or prolonged 12-O-tetradecanoylphorbol-13-acetate treatment. Both treatments resulted in attenuation of radiation-mediated TNF induction. Consistent with these results, we found no detectable induction of TNF expression following X-irradiation in the HL-60 variant deficient in PKC-mediated signal transduction. The rapid activation of PKC following {gamma}-irradiation was established using an in vitro assay measuring phosphorylation of a PKC specific substrate. A 4.5-fold increase in PKC activity occurred 15 to 30 s following irradiation, which declined to baseline at 60 s. Two-dimensional gel electrophoresis of phosphoproteins extracted from irradiated cells demonstrated in vivo phosphorylation of the PKC specific substrate Mr 80,000 protein at 45 s following X-irradiation. These findings indicate that signal transduction via the PKC pathway is required for the induction of TNF gene expression by ionizing radiation.

  20. Effects of molecular size and chemical factor on plasma gene transfection

    NASA Astrophysics Data System (ADS)

    Ikeda, Yoshihisa; Motomura, Hideki; Kido, Yugo; Satoh, Susumu; Jinno, Masafumi

    2016-07-01

    In order to clarify the mechanism of plasma gene transfection, the relationship between transfection efficiency and transferred molecular size was investigated. Molecules with low molecular mass (less than 50 kDa; dye or dye-labeled oligonucleotide) and high molecular mass (more than 1 MDa; plasmid DNA or fragment of plasmid DNA) were transferred to L-929 cells. It was found that the transfection efficiency decreases with increasing in transferred molecular size and also depends on the tertiary structure of transferred molecules. Moreover, it was suggested the transfection mechanism is different between the molecules with low (less than 50 kDa) and high molecular mass (higher than 1 MDa). For the amount of gene transfection after plasma irradiation, which is comparable to that during plasma irradiation, it is shown that H2O2 molecules are the main contributor. The transfection efficiency decreased to 0.40 ± 0.22 upon scavenging the H2O2 generated by plasma irradiation using the catalase. On the other hand, when the H2O2 solution is dropped into the cell suspension without plasma irradiation, the transfection efficiency is almost 0%. In these results, it is also suggested that there is a synergetic effect of H2O2 with electrical factors or other reactive species generated by plasma irradiation.

  1. The elongation factor Spt5 facilitates transcription initiation for rapid induction of inflammatory-response genes

    PubMed Central

    Diamant, Gil; Bahat, Anat; Dikstein, Rivka

    2016-01-01

    A subset of inflammatory-response NF-κB target genes is activated immediately following pro-inflammatory signal. Here we followed the kinetics of primary transcript accumulation after NF-κB activation when the elongation factor Spt5 is knocked down. While elongation rate is unchanged, the transcript synthesis at the 5′-end and at the earliest time points is delayed and reduced, suggesting an unexpected role in early transcription. Investigating the underlying mechanism reveals that the induced TFIID–promoter association is practically abolished by Spt5 depletion. This effect is associated with a decrease in promoter-proximal H3K4me3 and H4K5Ac histone modifications that are differentially required for rapid transcriptional induction. In contrast, the displacement of TFIIE and Mediator, which occurs during promoter escape, is attenuated in the absence of Spt5. Our findings are consistent with a central role of Spt5 in maintenance of TFIID–promoter association and promoter escape to support rapid transcriptional induction and re-initiation of inflammatory-response genes. PMID:27180651

  2. Glial cell line-derived neurotrophic factor gene therapy ameliorates chronic hyperprolactinemia in senile rats.

    PubMed

    Morel, G R; Sosa, Y E; Bellini, M J; Carri, N G; Rodriguez, S S; Bohn, M C; Goya, R G

    2010-05-19

    Progressive dysfunction of hypothalamic tuberoinfundibular dopaminergic (TIDA) neurons during normal aging is associated in the female rat with chronic hyperprolactinemia. We assessed the effectiveness of glial cell line-derived neurotrophic factor (GDNF) gene therapy to restore TIDA neuron function in senile female rats and reverse their chronic hyperprolactinemia. Young (2.5 months) and senile (29 months) rats received a bilateral intrahypothalamic injection (10(10) pfu) of either an adenoviral vector expressing the gene for beta-galactosidase; (Y-betagal and S-betagal, respectively) or a vector expressing rat GDNF (Y-GDNF and S-GDNF, respectively). Transgenic GDNF levels in supernatants of GDNF adenovector-transduced N2a neuronal cell cultures were 25+/-4 ng/ml, as determined by bioassay. In the rats, serum prolactin (PRL) was measured at regular intervals. On day 17 animals were sacrificed and neuronal nuclear antigen (NeuN) and tyrosine hydroxylase (TH) immunoreactive cells counted in the arcuate-periventricular hypothalamic region. The S-GDNF but not the S-betagal rats, showed a significant reduction in body weight. The chronic hyperprolactinemia of the senile females was significantly ameliorated in the S-GDNF rats (P<0.05) but not in the S-betagal rats. Neither age nor GDNF induced significant changes in the number of NeuN and TH neurons. We conclude that transgenic GDNF ameliorates chronic hyperprolactinemia in aging female rats, probably by restoring TIDA neuron function.

  3. On the origin of protein synthesis factors: a gene duplication/fusion model.

    PubMed

    Cousineau, B; Leclerc, F; Cedergren, R

    1997-12-01

    Sequence similarity has given rise to the proposal that IF-2, EF-G, and EF-Tu are related through a common ancestor. We evaluate this proposition and whether the relationship can be extended to other factors of protein synthesis. Analysis of amino acid sequence similarity gives statistical support for an evolutionary affiliation among IF-1, IF-2, IF-3, EF-Tu, EF-Ts, and EF-G and suggests further that this association is a result of gene duplication/fusion events. In support of this mechanism, the three-dimensional structures of IF-3, EF-Tu, and EF-G display a predictable domain structure and overall conformational similarity. The model that we propose consists of three consecutives duplication/fusion events which would have taken place before the divergence of the three superkingdoms: eubacteria, archaea, and eukaryotes. The root of this protein superfamily tree would be an ancestor of the modern IF-1 gene sequence. The repeated fundamental motif of this protein superfamily is a small RNA binding domain composed of two alpha-helices packed along side of an antiparallel beta-sheet.

  4. Endothelin-converting enzyme is a plausible target gene for hypoxia-inducible factor.

    PubMed

    Khamaisi, Mogher; Toukan, Hala; Axelrod, Jonathan H; Rosenberger, Christian; Skarzinski, Galia; Shina, Ahuva; Meidan, Rina; Koesters, Robert; Rosen, Seymour; Walkinshaw, Gail; Mimura, Imari; Nangaku, Masaomi; Heyman, Samuel N

    2015-04-01

    Renal endothelin-converting enzyme (ECE)-1 is induced in experimental diabetes and following radiocontrast administration, conditions characterized by renal hypoxia, hypoxia-inducible factor (HIF) stabilization, and enhanced endothelin synthesis. Here we tested whether ECE-1 might be a HIF-target gene in vitro and in vivo. ECE-1 transcription and expression increased in cultured vascular endothelial and proximal tubular cell lines, subject to hypoxia, to mimosine or cobalt chloride. These interventions are known to stabilize HIF signaling by inhibition of HIF-prolyl hydroxylases. In rats, HIF-prolyl-hydroxylase inhibition by mimosine or FG-4497 increased HIF-1α immunostaining in renal tubules, principally in distal nephron segments. This was associated with markedly enhanced ECE-1 protein expression, predominantly in the renal medulla. A progressive and dramatic increase in ECE-1 immunostaining over time, in parallel with enhanced HIF expression, was also noted in conditional von Hippel-Lindau knockout mice. Since HIF and STAT3 are cross-stimulated, we triggered HIF expression by STAT3 activation in mice, transfected by or injected with a chimeric IL-6/IL-6-receptor protein, and found a similar pattern of enhanced ECE-1 expression. Chromatin immunoprecipitation sequence (ChIP-seq) and PCR analysis in hypoxic endothelial cells identified HIF binding at the ECE-1 promoter and intron regions. Thus, our findings suggest that ECE-1 may be a novel HIF-target gene.

  5. Physical Factors Affecting Plasmid DNA Compaction in Stearylamine-Containing Nanoemulsions Intended for Gene Delivery

    PubMed Central

    Silva, André Leandro; Júnior, Francisco Alexandrino; Verissimo, Lourena Mafra; Agnez-Lima, Lucymara Fassarella; Egito, Lucila Carmem Monte; de Oliveira, Anselmo Gomes; do Egito, Eryvaldo Socrates Tabosa

    2012-01-01

    Cationic lipids have been used in the development of non-viral gene delivery systems as lipoplexes. Stearylamine, a cationic lipid that presents a primary amine group when in solution, is able to compact genetic material by electrostatic interactions. In dispersed systems such as nanoemulsions this lipid anchors on the oil/water interface confering a positive charge to them. The aim of this work was to evaluate factors that influence DNA compaction in cationic nanoemulsions containing stearylamine. The influence of the stearylamine incorporation phase (water or oil), time of complexation, and different incubation temperatures were studied. The complexation rate was assessed by electrophoresis migration on agarose gel 0.7%, and nanoemulsion and lipoplex characterization was done by Dynamic Light Scattering (DLS). The results demonstrate that the best DNA compaction process occurs after 120 min of complexation, at low temperature (4 ± 1 °C), and after incorporation of the cationic lipid into the aqueous phase. Although the zeta potential of lipoplexes was lower than the results found for basic nanoemulsions, the granulometry did not change. Moreover, it was demonstrated that lipoplexes are suitable vehicles for gene delivery. PMID:24281666

  6. Eradication of neutralizing antibodies to factor VIII in canine hemophilia A after liver gene therapy.

    PubMed

    Finn, Jonathan D; Ozelo, Margareth C; Sabatino, Denise E; Franck, Helen W G; Merricks, Elizabeth P; Crudele, Julie M; Zhou, Shangzhen; Kazazian, Haig H; Lillicrap, David; Nichols, Timothy C; Arruda, Valder R

    2010-12-23

    Inhibitory antibodies to factor VIII (FVIII) are a major complication in the treatment of hemophilia A, affecting approximately 20% to 30% of patients. Current treatment for inhibitors is based on long-term, daily injections of large amounts of FVIII protein. Liver-directed gene therapy has been used to induce antigen-specific tolerance, but there are no data in hemophilic animals with pre-existing inhibitors. To determine whether sustained endogenous expression of FVIII could eradicate inhibitors, we injected adeno-associated viral vectors encoding canine FVIII (cFVIII) in 2 strains of inhibitor hemophilia A dogs. In 3 dogs, a transient increase in inhibitor titers (up to 7 Bethesda Units [BU]) at 2 weeks was followed by continuous decline to complete disappearance within 4-5 weeks. Subsequently, an increase in cFVIII levels (1.5%-8%), a shortening of clotting times, and a reduction (> 90%) of bleeding episodes were observed. Immune tolerance was confirmed by lack of antibody formation after repeated challenges with cFVIII protein and normal protein half-life. A fourth dog exhibited a strong early anamnestic response (216 BU), with slow decline to 0.8 BU and cFVIII antigen detection by 18 months after vector delivery. These data suggest that liver gene therapy has the potential to eradicate inhibitors and could improve the outcomes of hemophilia A patients.

  7. Generation and gene expression profiling of 48 transcription-factor-inducible mouse embryonic stem cell lines

    PubMed Central

    Yamamizu, Kohei; Sharov, Alexei A.; Piao, Yulan; Amano, Misa; Yu, Hong; Nishiyama, Akira; Dudekula, Dawood B.; Schlessinger, David; Ko, Minoru S. H.

    2016-01-01

    Mouse embryonic stem cells (ESCs) can differentiate into a wide range – and possibly all cell types in vitro, and thus provide an ideal platform to study systematically the action of transcription factors (TFs) in cell differentiation. Previously, we have generated and analyzed 137 TF-inducible mouse ESC lines. As an extension of this “NIA Mouse ESC Bank,” we generated and characterized 48 additional mouse ESC lines, in which single TFs in each line could be induced in a doxycycline-controllable manner. Together, with the previous ESC lines, the bank now comprises 185 TF-manipulable ESC lines (>10% of all mouse TFs). Global gene expression (transcriptome) profiling revealed that the induction of individual TFs in mouse ESCs for 48 hours shifts their transcriptomes toward specific differentiation fates (e.g., neural lineages by Myt1 Isl1, and St18; mesodermal lineages by Pitx1, Pitx2, Barhl2, and Lmx1a; white blood cells by Myb, Etv2, and Tbx6, and ovary by Pitx1, Pitx2, and Dmrtc2). These data also provide and lists of inferred target genes of each TF and possible functions of these TFs. The results demonstrate the utility of mouse ESC lines and their transcriptome data for understanding the mechanism of cell differentiation and the function of TFs. PMID:27150017

  8. Physical factors affecting plasmid DNA compaction in stearylamine-containing nanoemulsions intended for gene delivery.

    PubMed

    Silva, André Leandro; Alexandrino, Francisco; Verissimo, Lourena Mafra; Agnez-Lima, Lucymara Fassarella; Egito, Lucila Carmem Monte; de Oliveira, Anselmo Gomes; do Egito, Eryvaldo Socrates Tabosa

    2012-06-18

    Cationic lipids have been used in the development of non-viral gene delivery systems as lipoplexes. Stearylamine, a cationic lipid that presents a primary amine group when in solution, is able to compact genetic material by electrostatic interactions. In dispersed systems such as nanoemulsions this lipid anchors on the oil/water interface confering a positive charge to them. The aim of this work was to evaluate factors that influence DNA compaction in cationic nanoemulsions containing stearylamine. The influence of the stearylamine incorporation phase (water or oil), time of complexation, and different incubation temperatures were studied. The complexation rate was assessed by electrophoresis migration on agarose gel 0.7%, and nanoemulsion and lipoplex characterization was done by Dynamic Light Scattering (DLS). The results demonstrate that the best DNA compaction process occurs after 120 min of complexation, at low temperature (4 ± 1 °C), and after incorporation of the cationic lipid into the aqueous phase. Although the zeta potential of lipoplexes was lower than the results found for basic nanoemulsions, the granulometry did not change. Moreover, it was demonstrated that lipoplexes are suitable vehicles for gene delivery.

  9. GLABRA2 Directly Suppresses Basic Helix-Loop-Helix Transcription Factor Genes with Diverse Functions in Root Hair Development

    PubMed Central

    Ohashi, Yohei; Kato, Mariko; Tsuge, Tomohiko; Aoyama, Takashi

    2015-01-01

    The Arabidopsis thaliana GLABRA2 (GL2) gene encodes a transcription factor involved in the cell differentiation of various epidermal tissues. During root hair pattern formation, GL2 suppresses root hair development in non-hair cells, acting as a node between the gene regulatory networks for cell fate determination and cell differentiation. Despite the importance of GL2 function, its molecular basis remains obscure because the GL2 target genes leading to the network for cell differentiation are unknown. We identified five basic helix-loop-helix (bHLH) transcription factor genes (ROOT HAIR DEFECTIVE6 [RHD6], RHD6-LIKE1 [RSL1], RSL2, Lj-RHL1-LIKE1 [LRL1], and LRL2) as GL2 direct targets using transcriptional and posttranslational induction systems. Chromatin immunoprecipitation analysis confirmed GL2 binding to upstream regions of these genes in planta. Reporter gene analyses showed that these genes are expressed in various stages of root hair development and are suppressed by GL2 in non-hair cells. GL2 promoter-driven GFP fusions of LRL1 and LRL2, but not those of the other bHLH proteins, conferred root hair development on non-hair cells. These results indicate that GL2 directly suppresses bHLH genes with diverse functions in root hair development. PMID:26486447

  10. Impact of biotic and abiotic factors on the expression of fungal effector-encoding genes in axenic growth conditions.

    PubMed

    Meyer, Michel; Bourras, Salim; Gervais, Julie; Labadie, Karine; Cruaud, Corinne; Balesdent, Marie-Hélène; Rouxel, Thierry

    2017-02-01

    In phytopathogenic fungi, the expression of hundreds of small secreted protein (SSP)-encoding genes is induced upon primary infection of plants while no or a low level of expression is observed during vegetative growth. In some species such as Leptosphaeria maculans, this coordinated in-planta upregulation of SSP-encoding genes expression relies on an epigenetic control but the signals triggering gene expression in-planta are unknown. In the present study, biotic and abiotic factors that may relieve suppression of SSP-encoding gene expression during axenic growth of L. maculans were investigated. Some abiotic factors (temperature, pH) could have a limited effect on SSP gene expression. In contrast, two types of cellular stresses induced by antibiotics (cycloheximide, phleomycin) activated strongly the transcription of SSP genes. A transcriptomic analysis to cycloheximide exposure revealed that biological processes such as ribosome biosynthesis and rRNA processing were induced whereas important metabolic pathways such as glycogen and nitrogen metabolism, glycolysis and tricarboxylic acid cycle activity were down-regulated. A quantitatively different expression of SSP-encoding genes compared to plant infection was also detected. Interestingly, the same physico-chemical parameters as those identified here for L. maculans effectors were identified to regulate positively or negatively the expression of bacterial effectors. This suggests that apoplastic phytopathogens may react to similar physiological parameters for regulation of their effector genes.

  11. Identification of stress-tolerance-related transcription-factor genes via mini-scale Full-length cDNA Over-eXpressor (FOX) gene hunting system.

    PubMed

    Fujita, Miki; Mizukado, Saho; Fujita, Yasunari; Ichikawa, Takanari; Nakazawa, Miki; Seki, Motoaki; Matsui, Minami; Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo

    2007-12-14

    Recently, we developed a novel system known as Full-length cDNA Over-eXpressor (FOX) gene hunting [T. Ichikawa, M. Nakazawa, M. Kawashima, H. Iizumi, H. Kuroda, Y. Kondou, Y. Tsuhara, K. Suzuki, A. Ishikawa, M. Seki, M. Fujita, R. Motohashi, N. Nagata, T. Takagi, K. Shinozaki, M. Matsui, The FOX hunting system: an alternative gain-of-function gene hunting technique, Plant J. 48 (2006) 974-985], which involves the random overexpression of a normalized Arabidopsis full-length cDNA library. While our system allows large-scale collection of full-length cDNAs for gene discovery, we sought to downsize it to analyze a small pool of full-length cDNAs. As a model system, we focused on stress-inducible transcription factors. The full-length cDNAs of 43 stress-inducible transcription factors were mixed to create a transgenic plant library. We screened for salt-stress-resistant lines in the T1 generation and identified a number of salt-tolerant lines that harbored the same transgene (F39). F39 encodes a bZIP-type transcription factor that is identical to AtbZIP60, which is believed to be involved in the endoplasmic reticulum stress response. Microarray analysis revealed that a number of stress-inducible genes were up-regulated in the F39-overexpressing lines, suggesting that AtbZIP60 is involved in stress signal transduction. Thus, our mini-scale FOX system may be used to screen for genes with valuable functions, such as transcription factors, from a small pool of genes that show similar expression profiles.

  12. Molecular basis for glucocorticoid induction of the Kruppel-like factor 9 gene in hippocampal neurons.

    PubMed

    Bagamasbad, Pia; Ziera, Tim; Borden, Steffen A; Bonett, Ronald M; Rozeboom, Aaron M; Seasholtz, Audrey; Denver, Robert J

    2012-11-01

    Stress has complex effects on hippocampal structure and function, which consequently affects learning and memory. These effects are mediated in part by circulating glucocorticoids (GC) acting via the intracellular GC receptor (GR) and mineralocorticoid receptor (MR). Here, we investigated GC regulation of Krüppel-like factor 9 (KLF9), a transcription factor implicated in neuronal development and plasticity. Injection of corticosterone (CORT) in postnatal d 6 and 30 mice increased Klf9 mRNA and heteronuclear RNA by 1 h in the hippocampal region. Treatment of the mouse hippocampal cell line HT-22 with CORT caused a time- and dose-dependent increase in Klf9 mRNA. The CORT induction of Klf9 was resistant to protein synthesis inhibition, suggesting that Klf9 is a direct CORT-response gene. In support of this hypothesis, we identified two GR/MR response elements (GRE/MRE) located -6.1 and -5.3 kb relative to the transcription start site, and we verified their functionality by enhancer-reporter, gel shift, and chromatin immunoprecipitation assays. The -5.3-kb GRE/MRE is largely conserved across tetrapods, but conserved orthologs of the -6.1-kb GRE/MRE were only detected in therian mammals. GC treatment caused recruitment of the GR, histone hyperacetylation, and nucleosome removal at Klf9 upstream regions. Our findings support a predominant role for GR, with a minor contribution of MR, in the direct regulation of Klf9 acting via two GRE/MRE located in the 5'-flanking region of the gene. KLF9 may play a key role in GC actions on hippocampal development and plasticity.

  13. Regulation of chick early B-cell factor-1 gene expression in feather development.

    PubMed

    El-Magd, Mohammed Abu; Sayed-Ahmed, Ahmed; Awad, Ashraf; Shukry, Mustafa

    2014-05-01

    The chick Ebf1 (early B-cell factor-1) gene is a member of a novel family of helix loop helix transcription factors. The expression profile, regulation and significance of this gene have been extensively studied in lymphatic, nervous, adipose and muscular tissues. However, cEbf1 expression, regulation and function in the feather of chick embryo have not yet been investigated. cEbf1 expression was first detected throughout the mesenchymal core of some few feather placodes (D7-D7.5). After feathers became mature and grew distally (D9 and D10), the mesenchymal expression of cEbf1 became confined to the caudal margin of the proximal half of all formed feather buds. Because this dynamic pattern of expression resembles that of Sonic Hedgehog (Shh) protein and bone morphogenetic protein (Bmp4) plus the crucial role of these two major signals in feather development, we hypothesized that cEbf1 expression in the feather may be regulated by Shh and Bmp4. In a feather explant culture system, Shh signals are necessary to initiate and maintain cEbf1 expression in the posterior half of the feather bud, while Bmp4 is crucial for the initial cEbf1 expression in the anterior half of the feather bud. Inhibition of Shh, not only down-regulates cEbf1, but also changes the morphology of feather buds, which become irregular and fused. This is the first study to demonstrate that cEbf1 expression in the feather bud is under the control of Shh and Bmp4 signals and that expression may play a role in the normal development of feathers.

  14. The low levels of circulating hepatocyte growth factor in nephrolithiasis cases: independent from gene polymorphism.

    PubMed

    Ozturk, Nurinnisa; Aksoy, Hulya; Aksoy, Yilmaz; Yildirim, Abdulkadir; Akcay, Fatih; Yanmaz, Vefa

    2015-10-01

    Environmental and genetic factors are important in development of nephrolithiasis. In a recent study, it has been demonstrated that hepatocyte growth factor (HGF) has an anti-apoptotic effect and thus can reduce the adhesion of calcium oxalate monohydrate crystals to renal epithelial cells. The aim of this study was to evaluate the HGF serum levels and its two gene polymorphisms and possible association of the two in patients with nephrolithiasis. One hundred and five patients with nephrolithiasis and 70 healthy volunteers with similar demographic features were included in this study. Serum HGF levels were measured, and HGF intron 13 C>A (in 102 stone patients and 68 healthy subjects) and intron 14 T>C (in 99 stone patients and 56 healthy subjects) polymorphisms were determined using real-time polymerase chain reaction with TaqMan allelic discrimination method. There were no statistically significant differences in HGF intron 13 C>A and intron 14 T>C polymorphisms between the control and patient groups (X (2) = 1.72 df = 2; p = 0.42, and X (2) = 0.68 df = 2; p = 0.71, respectively). Mean serum HGF concentration was significantly lower in the stone disease patients than in the control subjects (1.05 ± 0.63 pg/mL and 1.35 ± 0.58 ng/mL respectively, p = 0.0001). When allele distribution frequency between stone patients and healthy subjects was compared, there were no significant differences in intron 13 and intron 14 allele distributions between two groups (p = 0.43 and p = 0.44, respectively). It may be concluded from the findings that decrease in HGF levels may play a role in renal stone formation, independent from gene polymorphisms.